
www.allitebooks.com

http://www.allitebooks.org

®

Java EE 7:
The Big Picture

www.allitebooks.com

http://www.allitebooks.org

About the Author
Dr. Danny Coward is a Principal Architect at Oracle. Coward has been a
contributor to all editions of the Java platform from Java ME to Java EE, and he
founded the JavaFX project. A member of the first Java EE platform team at Sun
Microsystems, he led the definition of a number of versions of the Java Servlet API
and most recently led the definition of the Java WebSocket API for Java EE 7. He
served as an executive member of the Java Community Process for several years,
guiding the evolution of the expert groups that create new APIs for the Java
platform in partnership with developers across a large number of companies and
industry organizations. Dr. Coward holds a doctorate in Number Theory from the
University of Oxford.

About the Technical Editor
John Yeary is a Principal Software Engineer on Epiphany CRM Marketing at Infor
Global Solutions. John is a Java evangelist who has been working with Java since
1995. He is a technical blogger with a focus on Java Enterprise Edition technology,
NetBeans, and GlassFish. John is currently the President of the Greenville Java
Users Group (GreenJUG), as well as its founder. He is an instructor, mentor, and a
prolific open source contributor.

John graduated from Maine Maritime Academy with a B.Sc. in Marine
Engineering with a concentration in mathematics. He is a Merchant Marine officer,
and has a number of licenses and certifications. When he is not doing Java and
F/OSS projects, he likes to hike, sail, travel, and spend time with his family. John is
also a Cubmaster in the Boy Scouts of America (BSA) Pack 833, Unit Commissioner,
and Southbounder District Chairman for Activities and Civic Service in the Blue
Ridge Council of the BSA.

www.allitebooks.com

http://www.allitebooks.org

®

Java EE 7:
The Big Picture

Dr. Danny Coward

New York Chicago San Francisco
Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2015 by McGraw-Hill Education (Publisher). All rights reserved. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the Publisher, with the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

ISBN: 978-0-07-183733-0

MHID: 0-07-183733-7

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-183734-7,
MHID: 0-07-183734-5.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate
training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. All other trademarks are the property of their respective
owners, and McGraw-Hill Education makes no claim of ownership by the mention of products that contain these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its
affiliates.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical
error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included
in this work and is not responsible for any errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained
in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these
terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile,
disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or
sublicense the work or any part of it without McGraw-Hill Education’s prior consent. You may use the work for your own noncommercial and
personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error
free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless
of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special,
punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in
contract, tort or otherwise.

www.allitebooks.com

http://www.mhprofessional.com
http://www.allitebooks.org

This book is dedicated to David, Olive, Matthew, Bill, Jared, and Alex.

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Contents at a GlanceContents at a Glance

 1 The Big Picture . 1

PART I
The Mouthpiece of Java EE: The Web Tier

 2 Java Servlets and Web Applications: Foundations of the Web Tier 25

 3 Dynamic Web Pages: JSP . 57

 4 Assembling Dynamic Web Pages: JavaServer Faces . 95

 5 Web Sites for Non-browsers: JAX-RS . 135

 6 Adding Sparkle: Java WebSockets . 169

 7 Securing Web Applications . 199

 8 The Self-Contained Web Site: Java EE Web Application . 227

PART II
The Brain of Java EE: The Middle Tier

 9 The Fundamentals of Enterprise Beans . 261

 10 Advanced Thinking with Enterprise Beans . 293

PART III
The Collective Memory: The Information Tier

 11 Classic Memories: JDBC . 319

 12 Modern Memories: The Java Persistence API . 345

vii

www.allitebooks.com

http://www.allitebooks.org

viii Java EE 7: The Big Picture

PART IV
The Java EE Toolbox: Java EE Environment

 13 The Big Picture Revisited: Java EE Applications . 377

 14 Deconstructing Components: Java EE Contexts
 and Dependency Injection . 397

 15 Java EE Security . 429

 16 Many Hands Make Light Work: Java EE Concurrency . 451

 Index . 473

www.allitebooks.com

http://www.allitebooks.org

ContentsContents

Introduction . xvii

 1 The Big Picture . 1
Java EE Architecture . 2
Hello Java EE . 4

Running Hello Java EE . 4
Inside Hello Java EE . 6
Hello to the Major Elements of Java EE . 14

The Many Variations of Java EE Applications . 14
Many Flavors of Web Interface . 15
Many Kinds of Application Logic . 16
Different Ways to Store Application Data . 17
Interfacing with Other Systems . 17
Modularity . 18
Ways to Secure Java EE Applications . 18

Packaging and Deploying the Hello Java EE Application . 18
Java EE Platform and Implementations . 20
Guide to the Rest of the Book . 21

PART I
The Mouthpiece of Java EE: The Web Tier

 2 Java Servlets and Web Applications: Foundations of the Web Tier 25
The HTTP Protocol . 26

Inside the HTTP Protocol . 26
Introducing Java Servlets . 29

What a Java Servlet Does . 29
How to Create a Java Servlet . 31
Publishing a Java Servlet to the Web Container . 34

Example Java Servlet Application: Photo Application . 34

ix

www.allitebooks.com

http://www.allitebooks.org

x Java EE 7: The Big Picture

Understanding the Java Servlet API . 44
The javax.servlet.http.HttpServlet Class . 45
Number of Instances of Java Servlets . 45
The ServletContext . 46
The HttpSession . 47
The RequestDispatcher . 50

Web Applications . 51
Deployment Information for Java Servlets . 51
Servlet Path Mapping . 52

Java Servlets: The Good and the Bad . 54
Summary . 55

 3 Dynamic Web Pages: JSP . 57
JSP Runtime Architecture . 59
A JSP Clock . 60
JSP Syntax . 63

JSP Directives . 63
Using Java Beans from JSPs . 68

The Java Environment for JSPs . 75
JSP Standard Tags . 76
Custom Tag Libraries . 80

Tag Libraries vs. JavaBeans . 83
Expression Language . 84
JSP Photo Album . 88
Summary . 94

 4 Assembling Dynamic Web Pages: JavaServer Faces . 95
Architecture of a JSF Application . 97

Model-View-Controller . 97
Hello JavaServer Faces . 98
JavaServer Faces: Model-View-Controller . 102

JavaServer Faces Tags . 104
UI Component Tags . 104
The PartyPlanner . 106

Java EE Managed Beans . 112
@RequestScoped . 113
@SessionScoped . 113
@ApplicationScoped . 113
@ConversationScoped . 113
@FlowScoped . 114
@ViewScoped . 114
@Dependent . 114

f: Core Tags . 115
Data Validation . 115
Event Handling . 117
Data Converters . 118

Contents xi

JSTL Core Tags . 119
Extensibility and Modularity . 120
Photo Application . 120
Summary . 133

 5 Web Sites for Non-browsers: JAX-RS . 135
What Are RESTful Web Services? . 136

Uses a URI Space to Address Web Service Resources . 137
Uses HTTP Methods for Operations . 138
RESTful Web Service Resources Are Stateless . 138
Use Familiar Formats for Structured Data . 139

The Java API for RESTful Web Services . 140
HelloResource Example: Server Side . 142
Deploying JAX-RS Resources . 144
HelloResource Example and the Rich Client . 144
Content Production . 146

Extending Response Entity Production . 147
@Produces . 148

Content Consumption . 148
@Consumes . 149

Accessing Web Service Context . 149
Exception Mapping . 150
Number of Instances of Resource Classes . 151
Path Mapping . 152

Relative URIs . 152
URI Templates . 152

The Library Service . 153
Summary . 167

 6 Adding Sparkle: Java WebSockets . 169
Introduction to the WebSocket Protocol . 170
The WebSocket Lifecycle . 171
Overview of the Java WebSocket API . 173

WebSocket Annotations . 174
The Java WebSocket API Classes . 176

WebSocket Clock . 176
How Many WebSocket Instances? . 182

Java WebSocket Encoders and Decoders . 182
Message Processing Modes . 184

Receiving Large Messages . 184
Modes for Sending Messages . 185
Asynchronous Sending of Messages . 185

Path Mapping . 186
Accessing Path Information at Runtime . 187
Query Strings and Request Parameters . 188

xii Java EE 7: The Big Picture

Deployment of Server Endpoints . 190
The Chat Application . 190
Summary . 198

 7 Securing Web Applications . 199
Security Concepts . 200
Java EE Web Container Security . 201

The Declarative Security Model . 202
Programmatic Security . 213

Photo Application Example . 217
Summary . 225

 8 The Self-Contained Web Site: Java EE Web Application 227
The WAR File . 228
The URI Space of a Web Application . 229

Static Content . 231
JavaServer Faces . 231
Java Servlets . 231
JavaServer Pages . 233
JAX-RS Resources and Java WebSockets . 233
Summary: Web Components and Their URI Paths . 233

Global Web Components: Web Filters and Web Listeners . 234
Web Filters . 234
Web Listeners . 241

Asynchronous Modes in Web Applications . 246
Asynchronous Java Servlets . 247
Asynchronous Web Resources . 252

Summary . 257

PART II
The Brain of Java EE: The Middle Tier

 9 The Fundamentals of Enterprise Beans . 261
Introduction to Enterprise Beans . 262

RMI/IIOP . 264
HTTP . 264
JMS Protocol . 264
Local Java Method Invocation . 264
Flavors of Enterprise Bean . 265

Hello Enterprise Beans . 265
Flavors of Enterprise Beans . 268

Stateless Session Beans: @Stateless . 268
Stateful Session Beans: @Stateful . 269
Singleton Session Beans: @Singleton . 269
Message-Driven Beans . 269

Contents xiii

Exposing Enterprise Beans . 270
Java Methods . 270
Web Services View . 272

Finding Enterprise Beans . 273
Finding Message-Driven Beans . 273
Finding Session Beans . 274

EJB Lifecycle . 277
Packaging Enterprise Beans . 279
Banking Example . 280
Summary . 291

 10 Advanced Thinking with Enterprise Beans . 293
Multi-threading and Enterprise Beans . 294

Multi-threading and Singleton Beans . 296
Threading Restrictions . 297

Asynchronous Enterprise Beans . 298
The Async Example . 299

Enterprise Bean Contexts . 302
The Timer Service . 303

The Language of Schedules . 305
Timers at Runtime . 307

Transactions and Enterprise Beans . 307
Programmatic Transactions . 308
Transaction by Annotation . 310

Interceptors . 311
The AuditInterceptor Example . 313

Summary . 314

PART III
The Collective Memory: The Information Tier

 11 Classic Memories: JDBC . 319
Introduction to JDBC . 320
Hello JDBC Example . 322
Structured Query Language . 329

Statements That Alter Table Structure . 329
Statements That Store or Retrieve Data into and from Tables 330

The JDBC APIs . 331
The DataSource Object . 331
The Connection Object . 332
Statement Objects . 333
ResultSets . 334

Library Application Using JDBC . 336
Summary . 344

xiv Java EE 7: The Big Picture

 12 Modern Memories: The Java Persistence API . 345
The Library Service, with Java Persistence . 347
Persistence Entities . 353

Embeddable Classes . 354
Entity Relationships . 355
Persistent States . 357
Cascading in Entity Relationships . 358

The Entity Manager . 359
Java Persistence Query Language . 361
Configuring JPA Applications . 362
The Persistent Library Service . 363
Summary . 373

PART IV
The Java EE Toolbox: Java EE Environment

 13 The Big Picture Revisited: Java EE Applications . 377
The Java EE Application . 378

Web Application WARs . 378
Enterprise Bean JARs . 378
Application Client JARs . 378
Resource Adapter Archives . 378
Java EE Modules . 378
Application Clients . 379
Enterprise Archives: EAR Files . 381

Injectable and Named Objects of Java EE . 382
JNDI Namespaces . 383
Simple Environment Entries . 385
Enterprise Bean References . 388
DataSource . 390
Java Persistence Objects: EntityManager, EntityManagerFactory 392
Other Named and Injectable Objects . 394
Where Does Injection Work? . 394

Summary . 395

 14 Deconstructing Components: Java EE Contexts
 and Dependency Injection . 397

Introduction to CDI . 398
Goldilocks and the Three Bears . 399

CDI Beans . 404
Examples . 404

Qualifiers . 405
@Default . 405
@Named . 406

Contents xv

Injection Points . 406
Lifecycle of a CDI Bean . 407

@PostConstruct . 407
@PreDestroy and @Disposes . 407

Java EE Scopes . 409
SleepScopes example . 410
Events . 413

Goldilocks Observed . 414
Interceptors . 419
Packaging CDI Beans . 421
CDI Chat . 421
Summary . 428

 15 Java EE Security . 429
Enterprise Bean Security . 430

Declarative Security . 431
Declarative Security Example . 433
Programmatic Security . 436

Application Client Authentication . 437
Security Identity Propagation . 440
The Library Example with End-to-End Security . 441
Summary . 449

 16 Many Hands Make Light Work: Java EE Concurrency 451
Tasks and Executors . 453
Concurrent Prime Calculator . 455

Running the Concurrent Prime Calculator . 455
Architecture of the Concurrent Prime Calculator Example 456
Code Analysis . 457

The Java EE Concurrency API . 460
ManagedExecutorService and ManagedScheduledExecutorService 460
Obtaining a ManagedExecutorService instance . 461
Identifying and Monitoring Concurrent Tasks . 462
The ManagedThreadFactory . 463

Monitored Prime Calculator Example . 464
Running the Monitored Prime Calculator . 464
Architecture of the Monitored Prime Calculator . 465

Summary . 471

 Index . 473

This page intentionally left blank

IntroductionIntroduction

A
s a relatively new employee of Sun Microsystems, in 1998 I found myself a member
of a fledgling team called the Enterprise Java group. This was the heyday of interest
 in Java technology: APIs were being created for Java at a breakneck pace. Even the

announcement of the creation of a new API for Java was headline news in the computing
press, as though in the computing world it was only a matter of time before every idea,
construct, and program would be expressed as a Java technology. Ideally, each technology
would have a “J” in front of the name, as though each were part of a crowd of surfers barely
ahead of the crest of a wave that was engulfing the programming world. Whether or not it
made any business sense, developers declared they would convert programs, written in dull,
corporate, unhip languages into Java, as if simply by doing so, they would automatically
become better.

Complete with my Java Ring, an early wearable computer with 6KB of RAM and a JVM
with the all-important coffee cup logo on it, I soon discovered that I was to work on a piece
of software that would run Enterprise JavaBeans. At the time, this was considered a kind of
server-side answer to the JavaBeans component model intended to be able to embed GUI
components in IDEs, but suspected by some to be a new higher level of abstraction that
would make object-oriented programming look like assembly language. For a year,
distinguished engineer Vlada Matena had worked with Sun’s key partners and competitors
to create a server-side component that could run in a cosseted environment called a
container within an application server, and rely on the container to abstract away some of
the tricky and vendor-specific mechanisms for programming security, transactions, and
thread management. The server-side component was called, of course, the EJB: Enterprise
JavaBean. The new component model promised to revolutionize the world of enterprise
middleware.

And what a dull and slow-moving world it was in the eyes of the web developer, whose
often-renegade approach called for any tool to be picked up and used to great effect, whose

xvii

xviii Java EE 7: The Big Picture

rapid development cycles made the enterprise developers’ eyes water. And who, furthermore, was
starting to take a great interest in a technology that had been developed as part of the standard
Java platform: Java servlets. The standard technique for processing information dynamically on a
website at the time was CGI programming. Unfortunately for the web developer, CGI programs
were rooted in the C programming language. The Java Servlet API offered a more interesting,
more functional, and more fashionable approach to creating dynamic web sites that could
process user input and requests and serve back interesting, context-based content tailored to the
user. The servlet model allowed the creation of HTML pages within a Java component. This made
for great flexibility, but for the web developer, well-versed in the nuances of HTML programming,
led to lines and lines of HTML code trapped within Java statements, editable only within Java IDE
rather than with the HTML editing tools with which they were already familiar. Already, other
groups at Sun were starting to experiment with APIs that would allow a Java servlet–emitting
HTML to be turned “inside out” so that the HTML code was outside the Java code instead of the
other way around in a Java servlet. This, of course, led to the creation of JavaServer Pages, which
provided a syntax and runtime environment in which Java code could be embedded within an
HTML page directly. Thus, the power of the Java platform was brought directly into HTML pages,
and into the hands of the renegade web developer. Dynamic content creation no longer needed
to be the preserve of the nerd in the corner, limited to CGI bin scripts; instead, web developers
had a doorway to the rich new world of the Java platform that they could open anywhere they
needed in their web pages.

When it was proposed that these two technologies, the buttoned-up Enterprise JavaBeans and
renegade Java servlets, should be brought together into one platform, suffice it to say that, given
the vastly differing sensibilities of the enterprise and web developers at the time, many words (a
good deal of which were quite heated) were exchanged in the meeting rooms and corridors of the
JavaSoft building in Cupertino in the heart of Silicon Valley. But that was in fact what our group
did, releasing after a very intense year and a half’s work, the 1.0 version of the Java EE platform in
December 1999 in New York.

Since that first release, the platform has become the foundation of server-side development for
much of the corporate world, being adopted by and improved by industry heavyweights such as
IBM and Oracle. My own contributions to the platform continued after the first release by leading
various versions of the Java servlet specification, up to most recently leading the definition of the
new Java WebSocket API for the most recent version of the platform. Over the course of the last
15 years, the Java EE platform has added a great number of features and adapted to a changing
world of standards and technologies, some of which I was involved in and some of which I was not.

What this has meant is that the Java EE platform is far more relevant and useful as a computing
platform today than it was 15 years ago. But it also bears the weight of a platform that has evolved
as developers have been using it. It means that there is frequently more than one way to solve a
problem in the platform, and there are several areas of functionality in the platform that have been
superseded by superior frameworks and APIs that do the same jobs better and more easily.

In part because of this legacy and in part because of the sheer range of functionality
encompassed in the platform, approaching the Java EE platform for the first time can be a daunting
prospect. The reason I wrote this book was because I wanted to create something that cuts through
the complexity of the platform, with all its myriad features and choices, by exploring as
straightforwardly as possible the most important aspects of the platform. The task of producing an
exhaustive survey of every feature of the platform I have left to other authors. In reading this book,
you will understand the key component models and APIs that the platform has to offer, with
enough context and some encouragement to explore the more specialized and less frequently

Introduction xix

used aspects of each component and API. I have chosen straightforward sample code in the
chapters in a way that both illustrates how to use specific features of the platform, and that also
indicates the class of real-world applications for which the features are intended to be used. I
have also chosen sample applications to which the book returns chapter after chapter, to
illustrate with a known application how an API or component model or technique can be
applied naturally to improve or add functionality to an application.

Chapter 1: The Big Picture
This introductory chapter immediately presents a simple end-to-end Java EE application, running
from the web tier through the Enterprise Bean and data tiers to introduce in overview form the
whole Java EE platform at once.

Thereafter, the book is divided into four parts.

Part I: The Mouthpiece of Java EE: The Web Tier
This part covers the web technologies in the Java EE platform.

Chapter 2: Java Servlets and Web Applications:
Foundations of the Web Tier
Here we introduce the Java servlet component model and API. This chapter is both an exploration
of how to create a Java servlet application, and also an introduction to the fundamental ideas and
objects of the Java web container, used by the other web technologies in the Java EE platform.

Chapter 3: Dynamic Web Pages: JSP
Chapter 3 explores JavaServer Pages (JSPs), starting with the idea of a JSP as an inside-out servlet,
and examining tag libraries and JSP Expression Language, converting the main application
encountered in Chapter 2 into a JSP application.

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces
In this chapter, we look at JavaServer Faces, which build on many of the ideas and mechanisms
in both the Java servlet and JSP model, providing a syntax for quickly creating modular web
applications with a high degree of separation between application logic and presentation code.

Chapter 5: Web Sites for Non-browsers: JAX-RS
Focusing on the RESTful web service APIs, JAX-RS, Chapter 5 explores the primary technology in
the Java EE platform for exposing web application data and logic out to non-browser clients such
as rich clients and other web applications.

Chapter 6: Adding Sparkle: Java WebSockets
One of the most recent additions to the Java EE web tier is the Java WebSocket API, introduced in
Java EE version 7. Chapter 6 looks in some detail at how to create Java WebSocket endpoints,
thereby allowing web applications to push application data at will to interested browser and non-
browser clients.

Chapter 7: Securing Web Applications
This chapter looks in detail at the mechanisms available to the Java EE developer to secure a web
application, using the built-in declarative model as well as the programming APIs in the web
container controlling access to web components and resources.

www.allitebooks.com

http://www.allitebooks.org

xx Java EE 7: The Big Picture

Chapter 8: The Self-Contained Web Site: Java EE Web Applications
Here we look at how web applications are packaged and at some more advanced features of web
applications such as servlet filters, web listeners, and asynchronous servlet execution.

Part II: The Brain of Java EE: The Middle Tier
Part II of the book covers Enterprise Beans, the essential component and container model of the
middle tier of the Java EE platform.

Chapter 9: The Fundamentals of Enterprise Beans
In Chapter 9, we look at the most important features of the Enterprise Bean model; the different
types of Enterprise Beans; their lifecycle; and how they are packaged, published, and located.

Chapter 10: Advanced Thinking with Enterprise Beans
With this grounding in Enterprise Beans, in Chapter 10, we explore more of the features of the
model, such as concurrency, transactions, and the Timer Service.

Part III: The Collective Memory: The Information Tier
In Part III, the book turns to the data tier of the Java EE platform, which holds all the important
data a Java application needs to use and store away.

Chapter 11: Classic Memories: JDBC
Starting with an examination of the Java Database Connectivity APIs, Chapter 11 looks at how to
store and retrieve Java EE application data in a relational database and how best to manage the
SQL code needed for such operations.

Chapter 12: Modern Memories: The Java Persistence API
Chapter 12 looks at the more streamlined approach offered by the Java Persistence API. I have
included both modes of interacting with relational data from the Java EE platform, since JDBC is
well established and SQL is a relatively well-known and well-understood language, while the Java
Persistence API is the more modern and simpler approach.

Part IV: The Java EE Toolbox: The Java EE Environment
In the last part of the book, we look at some aspects of the Java EE platform that cut across more
than one or even all the tiers of the platform.

Chapter 13: The Big Picture Revisited: Java EE Applications
Chapter 13 looks at the overall architecture of a Java EE application: its packaging format. With a
small diversion into the Java EE application client, the chapter also looks at some well-known
objects and services available to Java EE application components.

Chapter 14: Deconstructing Components:
Java EE Contexts and Dependency Injection
In Chapter 14, we look at the powerful Context and Dependency Injection (CDI) framework,
which offers a variety of techniques for modularizing a Java EE application into more reusable
components called CDI beans.

Introduction xxi

Chapter 15: Java EE Security
We return to the topic of security in Chapter 15, looking at how to secure the Enterprise Bean
layer of a Java EE application, and how the security models of the Enterprise Bean and web layers
that Chapter 7 presented relate to each other.

Chapter 16: Many Hands Make Light Work: Java EE Concurrency
Finally, in Chapter 16, we look at another very recent addition to the Java EE platform: the Java
Concurrency API. Focusing on how the API can support parallel execution of large, computer-
intensive tasks, we see how this API can lead to useful performance gains in certain types of Java
EE applications.

The most difficult thing about writing this book was deciding what to leave out. I hope you
become a better Java EE programmer as a result of reading this book: I certainly became a better
one by writing it.

Intended Audience
This book is suitable for developers new to the Java EE platform and with some familiarity with the
Java EE platform alike. Readers need only have some prior knowledge of the Java language and
some of the core standard APIs.

Retrieving the Examples
All the code and other files used in this book can be downloaded from the Oracle Press web site
at www.OraclePressBooks.com. The files are contained in a zip file. Once you’ve downloaded the
zip file, you need to extract its contents.

http://www.OraclePressBooks.com

CHAPTER
1

The Big Picture

2 Java EE 7: The Big Picture

A
familiar form in the realm of musical composition is that of theme and variations.
A theme encapsulates a musical idea; the variations add to the basic structure that the
 theme establishes, adding new musical ideas, flourishes, and stylistic enhancements

often yielding a more elaborate and complex result. The variations never alter the underlying
theme on which they build. If you know the theme, you can always discern it in the variations;
in the theme, you may see the possibilities for all the variations to come.

In the same way, this first chapter of Java EE 7: The Big Picture establishes a fundamental
application that embodies all the core concepts of the Java Platform, Enterprise Edition (Java EE)
platform. As you progress through the book and increase your understanding of the capabilities
of the Java EE platform, you will see that every application you write will contain the core
concepts established in this chapter. Every application that you write will be a variation of the
basic application that this chapter introduces.

With the Java EE platform, you can develop and run a huge range of interesting applications.
While powerful and flexible, the platform is also complicated. It has evolved over 15 years,
adding numerous technologies, packages, classes, and methods. To the new and seasoned
developer alike, the list of capabilities can be daunting and the collection of technologies
intimidating. In particular, the Java EE platform contains technologies that, for some purposes,
can perform the same or similar function.

This chapter examines an application that is familiar to most readers: HelloWorld.

Java EE Architecture
Before we dive into the application, we will start with a diagram of the Java EE platform, as shown
in Figure 1-1.

In the diagram, we see that the large box, labeled Java EE, represents the Java EE platform.
This refers to the runtime environment provided by a Java EE application server. All the Java EE
code you write as a developer runs in this environment. A common term for this environment is
the Java EE container, the word container derived from the idea that the environment envelops
your application code. In technical terms, the concept of the container is a powerful one: in
enveloping application code, the container can mediate or intercept calls to and from the
application code, and insert other kinds of logic that qualify and modify the calls to and from the
application code. A good example, which we shall see throughout the book, is the security
services that the Java EE container provides: the Java EE container can enforce security rules on
the application that is running, for example, a rule such as “only allow access from Mary and Ian
to my application.” The Java EE server container is itself made up of two other containers: the web
container and the Enterprise JavaBeans (EJB) container. The web container is the part of the Java EE
environment devoted to running the web components in a Java EE application: the web pages,
Java servlets, and other Java EE web components that can interact with clients connecting to
the Java EE application with standard web protocols. The EJB container is the part of the Java
EE environment that is devoted to running the application logic part of the Java EE application.
Enterprise JavaBeans are Java classes that contain and manipulate the core data structures of the
Java EE application. Finally, the database tier of the Java EE platform holds all application data that
the Java EE application needs to exist longer than the scope of a single session of the application,
or simply between different steps in the application that are separated in time.

Chapter 1: The Big Picture 3

The Java EE platform supports a wide variety of protocols that clients may use to interact with
a Java EE application that it is running, the main client types being the browser client, which
connects to the Java EE application using standard web protocols such as HTTP and WebSockets.
Many Java EE applications have non-Java clients, perhaps a Java desktop application, or another
Java EE application running on a different application server. This other client type can connect to
a Java EE application running on the Java EE application server using standard web protocols, in
addition to TCP-based protocols such as Remote Method Invocation (RMI).

The final part of the diagram is the boxes contained within the Java EE container box. These
other boxes represent a variety of services that a Java EE application may choose to use. The security
service enables a Java EE application to restrict access to its functions to only a certain set of known
users. The dependency injection service enables a Java EE application to delegate the lifecycle
management and discovery of some of its core components. The transaction service enables Java EE
applications to define collections of methods that modify application data in such a way that either
all the methods must complete successfully, or the whole set of method executions is rolled back as
though nothing has ever happened. The Java Message Service (JMS) exposes a Java EE application to
the ability to reliably send messages to other servers in the deployment environment of the Java EE
application server. The Persistence service in the Java EE platform enables application data in the
form of a Java object to be synchronized with its equivalent form in the tables of a relational
database. The JavaMail service enables a Java EE application to send email, particularly useful in the
kind of application that takes some action initiated by and on behalf of a user, and which needs to

FIGURE 1-1. Architecture of the Java EE platform

Java EE

Database

Web Container

Http
Http/SSL

WebSocket

Http
Http/SSL

WebSocket

Browser

Java
Client

EJB Container

EJBs

Java
ServerFaces

WebServices

WebSocketsTag Libs

ServletsJSPs

D
ep

en
de

nc
y

In
je

ct
io

n

Se
cu

ri
ty

Tr
an

sa
ct

io
ns

JM
S

Pe
rs

is
te

nc
e

Ja
va

M
ai

l

C
on

ne
ct

or

JD
B

C

4 Java EE 7: The Big Picture

notify the user at some later time of the outcome of the action. The Java EE platform’s main
extensibility point comes with the Java EE Connector Architecture (JCA), which provides a framework
into which a new service that is not a standard part of the Java EE platform may be added and that
can then, in turn, be utilized by a Java application running in the platform. Finally, the Java Database
Connectivity (JDBC) API supports traditional storage and retrieval of Java EE application data in a
relational database using the SQL query language.

Some of these services and APIs will already be familiar to you. If others are not, then a key
takeaway from the diagram is the architectural concept of the Java EE container, the web container,
and the EJB container’s ability to provide these services to a Java EE application. Sometimes, this
requires the Java EE developer to use an API to utilize the service, but many times, by means of
metadata, for example, a configuration XML file or a Java annotation embedded within the code,
these services may be used and adjusted with minimal change to the basic application logic of the
application.

Before we get too deep into this survey of the specific capabilities of the Java EE platform, let
us turn now to the Java application that we will study in this chapter, and the one that forms a
template for all Java EE applications: HelloWorld.

Hello Java EE
Many presentations, tutorials, and books devoted to technology begin with the example of the
HelloWorld application. One reason is that the application is invariably a simple one. Another is
that it is possible to copy this kind of application and use it as a starting point for building your
own, because it already contains the basic setup tasks of any application. But more importantly,
the HelloWorld example, if designed properly, connects all the major points of the technology
that applications of the technology need to work together.

Running Hello Java EE
The Java EE HelloWorld application is a simple Java EE application. Let’s examine what it does.
When you first access the application, you access a Java servlet component that is part of the
application from your browser, and you will see something like what is shown in Figure 1-2.
When you enter a message, you will see what is shown in Figure 1-3, and when you press the
Enter button, you will see the page change to the image shown in Figure 1-4.

This application is built with two Java servlets in the web tier. Java servlets are the foundation
of all the web component technologies in the Java EE platform. A solid understanding of the Java
servlet model and Java servlet API in Java EE is fundamental to understanding all the other web
components in the platform. In this HelloJava EE application, the DisplayServlet Java servlet
is responsible for rendering the web page you see from the browser in the application, for creating
the HTML elements that make up the web page, and for displaying the message that the Java EE
application is holding for you. The second Java servlet, the WriteServlet, is responsible for
processing the message that is input to the application when you press the Enter button in the
web page. The WriteServlet, in turn, passes the message it receives to an Enterprise Bean
component, called ModelEJB. This processes the message and formulates a Java object from
the Message class that is part of the application. The ModelEJB uses the Java Persistence API
(JPA) to store this message object in the database for later retrieval. The ModelEJB performs this
retrieval on behalf of the DisplayServlet we first met when the servlet needs to create the
web page to display in the browser. In this way, the circle is completed.

Chapter 1: The Big Picture 5

FIGURE 1-2. Hello Java EE first page

FIGURE 1-3. Hello Java EE with unsent message

6 Java EE 7: The Big Picture

Inside Hello Java EE
Before we look at the code in the application (don’t worry, it is not complicated), let’s take a look
at how the different pieces of the Hello Java EE application are arranged and what their primary
functions are, as shown in Figure 1-5.

The role of the browser client in this application is to render the HTML content that the Java
EE application creates for it, and also to send a message typed in by the user to the text field on
the web page. The role of the web components, the DisplayServlet and WriteServlet
servlets, is to create the HTML content for the browser and to direct the incoming user message to
the correct portion of the application that can handle the message processing logic. In this
application, the message processing logic is handled by the ModelEJB, which in turn manages
the storage and retrieval of the user message to the database.

Let us look at the code that is first executed when you press the Enter button on the web page.
The browser formulates an HTTP POST request and sends it to the Java EE server, to a URL that
will look something like this: http://localhost:8080/HelloJavaEE-war/WriteServlet
(depending on the hostname your Java EE server is using: here, the Java EE server is deployed to
the local machine and uses the hostname localhost).

We shall see that the WriteServlet is mapped to the URI /WriteServlet, and because of
this fact, the Java EE server routes the HTTP POST request to the WriteServlet.

FIGURE 1-4. Hello Java EE message received

Chapter 1: The Big Picture 7

Listing: The WriteServlet in the Hello Java EE application

import java.io.IOException;
import javaeems.chapter1.model.MessageException;
import javaeems.chapter1.model.ModelEJB;
import javax.ejb.EJB;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "WriteServlet", urlPatterns = {"/WriteServlet"})
public class WriteServlet extends HttpServlet {
 @EJB
 private ModelEJB ModelEJB;
 private static String PUT_MESSAGE = "put_message";

 @Override
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

FIGURE 1-5. The Hello Java EE application

Http GET

Http POST

EJB Container

Web Container

Browser

Java EE

Display HTML page,
send user message

Create HTML page,
process incoming data,

delegate message handling
to EJB tier

Logic for processing
messages

Store messages

DisplayServlet

WriteServlet

ModelEJB

Message

Persistence

www.allitebooks.com

http://www.allitebooks.org

8 Java EE 7: The Big Picture

 String message = request.getParameter(PUT_MESSAGE);
 if ("".equals(message)) {
 ModelEJB.deleteMessage();
 } else {
 try {
 ModelEJB.putUserMessage(message);
 } catch (MessageException nme) {
 throw new ServletException(nme);
 }
 }
 response.sendRedirect("./DisplayServlet");
 }

}

If you are entirely new to Java EE, one of the first things you will notice is that there is no
constructor. As we progress through the sample, you will find that there is no application code
that instantiates this DisplayServlet. In fact, this is true of most all Java EE components that
you will write: one of the functions that the Java EE containers perform is that of managing the
lifecycle of components. In particular, the web container manages the lifecycle of Java servlet
components for you, so you can focus on the application logic instead. You do not need to
understand every detail of this code at this point in the book, but you should note the key
elements of this web servlet. First, the following annotation defines its position in the URI
space of the Java EE server:

@WebServlet(name = "WriteServlet", urlPatterns = {"/WriteServlet"})

This is how this web component receives all the HTTP requests that end in /WriteServlet.
Second, this web component intercepts HTTP POST requests, which we know because it has a
doPost() method, a method it overrides because it is a servlet of the HttpServlet class in the Java EE
API. When this method is called, we can see that from the HttpRequest object, we can pull out
the post parameters the web page sent, and thus pull out the user message. When this is done, the
doPost() method asks the ModelEJB to delete the current message it manages if the user
message is blank, or, if the user message is not blank, to accept the user message for processing.
Once these tasks are performed, the work of the WriteServlet is done. We next turn our
attention to the ModelEJB.

The ModelEJB is an Enterprise Bean. Don’t be daunted by that definition, it is mostly just the
kind of Plain Old Java Object (POJO) you have created many times over.

Listing: The ModelEJB in the Hello Java EE application

import java.io.UnsupportedEncodingException;
import java.net.URLDecoder;
import java.util.List;
import javax.ejb.*;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;

Chapter 1: The Big Picture 9

@Stateful
public class ModelEJB {
 @PersistenceUnit
 private EntityManagerFactory emf;

 public void putUserMessage(String messageString) throws MessageException {
 this.deleteMessage();
 try {
 String decodedMessage = URLDecoder.decode(messageString, "UTF-8");
 Message message = new Message("1", "(" +
 messageString + ")" + " in a database");
 EntityManager em = emf.createEntityManager();
 em.persist(message);
 } catch (UnsupportedEncodingException uee) {
 throw new MessageException("something odd
 about that message..." + messageString);
 }
 }

 public String getStoredMessage() throws MessageException {
 EntityManager em = emf.createEntityManager();
 List messages = em.createNamedQuery("findMessages").getResultList();
 if (messages.size() > 0) {
 Message message = (Message) messages.get(0);
 return "(" + message.getMessageString() + "), inside an EJB";
 } else {
 throw new MessageException("There was nothing in
 the database.");
 }
 }

 public void deleteMessage() {
 EntityManager em = emf.createEntityManager();
 em.createNamedQuery("deleteMessages").executeUpdate();
 }

}

What makes this Java class an Enterprise Bean is the annotation

@Stateful

that occurs immediately prior to the class declaration. You will quickly become familiar with the
use of this kind of statement in Java EE programming: Java EE defines many standard Java annotations
that make the task of creating Java EE components easier than always hand coding or hand
configuring them. The @Stateful annotation declares this class as a particular kind of Enterprise
Bean: a Stateful session bean. This means that the Enterprise Bean container that will run this
Enterprise Bean will create one instance of the bean for each client that talks to it. You will learn
about the lifecycle and scope of Enterprise Beans in much more detail; for now, it is sufficient to
know that an instance of this Enterprise Bean exists when either the DisplayServlet or

10 Java EE 7: The Big Picture

WriteServlet needs to call it. And in that regard, you can see that this Enterprise Bean can
manage a user-provided message: storing it to the database with the putUserMessage() method,
clearing the stored message with the deleteMessage() method, and retrieving the message
held in the database with the getStoredMessage() method.

You will also notice in the implementation of the putUserMessage() that the message string
that the WriteServlet passes into this Enterprise Bean is converted into an instance of the
Message class. The Message class, although it mostly looks like a normal class, is actually a very
special class that has been annotated with Java annotations in such a way that it can very easily
be persisted and managed within a database, which is precisely what this application needs to do
with the message provided by the user in the web page. You will notice, for example, that if you
close the browser window to the application and then reload the page, the last message you
stored in the application is still there. You will also notice that if you stop and restart the Java EE
server and return to the application that the same message is still displayed. This is because the
user message is persisted in the database using the Java Persistence API and the Message class.
Let's examine the code for the Message class.

Listing: The Message class in the Hello Java EE application

import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Table;

@Entity
@Table(name = "MESSAGE")
@NamedQueries({
 @NamedQuery(
 name="findMessages",
 query="select m from Message m"
),
 @NamedQuery(
 name="deleteMessages",
 query="delete from Message"
)
}
)
public class Message implements Serializable {
 @Id
 @Column(name = "ID")
 private String id;

 @Column(name = "MESSAGE")
 private String messageString;

 public Message() {
 }

Chapter 1: The Big Picture 11

 public Message(String id, String messageString) {
 this.id = id;
 this.messageString = messageString;
 }

 public String getId() {
 return this.id;
 }

 public String getMessageString() {
 return this.messageString;
 }

}

The first thing to notice about this class is that, at its core, it represents a data object that has
an ID and a message. The less familiar part of this class may be the use of the annotations at the
class level, beginning with

@Entity

which identifies this class to Java EE as a class that the application will need to be stored in a
database, and the annotation

@Table (name = "MESSAGE")

which identifies the name, MESSAGE, of the database table into which Java EE will store instances
of the Message class and the annotation.

Listing: The @NamedQueries annotation from the Hello Java EE application

 @NamedQueries({
 @NamedQuery(
 name="findMessages",
 query="select m from Message m"
),
 @NamedQuery(
 name="deleteMessages",
 query="delete from Message"
)
}
)

that defines a list of the two SQL queries that will be used to retrieve instances of the Message
class from the database and to remove all instances of the Message class from the database.
From these annotations, we can see that we have a POJO with the special ability to be persisted
in a database, and carrying the exact database instructions to do so.

Now returning to the code of the ModelEJB, we can see in the implementation of the
methods that causing this storage, retrieval, and deletion of the Message objects from the
database is a matter of executing the queries that the Message class carries in the @NamedQuery
annotations.

12 Java EE 7: The Big Picture

One note before we complete the journey of the message from user to browser to web
component to Enterprise Bean to database and back again: let’s notice how the ModelEJB
references an instance of the EntityManagerFactory, which it uses to obtain an
EntityManager instance in order to carry out commands to store and retrieve the following
message:

public class ModelEJB {
 @PersistenceUnit
 private EntityManagerFactory emf;

You will not find any code in this application that ever initializes this instance variable, yet the
ModelEJB makes calls to it. Similar to how the Java EE containers manage the lifecycle of Java
components such as the Java servlets and Enterprise Beans that they are running, the Java EE
containers can initialize certain variables while the component is coming to life, provided they
are specially marked with Java annotations, in this case, the @PersistenceUnit annotation. This
process of initializing variables is called injection, and is a pattern and technique that you will see
used in many places in the Java EE platform. Returning for a moment to the WriteServlet, you
might deduce that the same process of injection is used to initialize the instance variable holding
the reference to the ModelEJB that the WriteServlet needs to store the user message it
received from the browser.

public class WriteServlet extends HttpServlet {
 @EJB
 private ModelEJB ModelEJB;

This time, the instance variable is annotated with the Java annotation @EJB, which indicates
to the Java EE web container that this Java servlet wants the value of this instance variable to be
initialized to reference a suitable instance of the ModelEJB.

The final piece of code in this application is the DisplayServlet, which queries the
ModelEJB for the stored message and creates the HTML that forms the web page that is shown
to the user. It uses the same technique of injection to request the initialization of its reference to a
suitable instance of the ModelEJB, as you can see immediately after the class declaration:

Listing: The DisplayServlet in the Hello Java EE application

import java.io.IOException;
import java.io.PrintWriter;
import javaeems.chapter1.model.MessageException;
import javaeems.chapter1.model.ModelEJB;
import javax.ejb.EJB;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "DisplayServlet", urlPatterns = {"/DisplayServlet"})
public class DisplayServlet extends HttpServlet {
 @EJB
 private ModelEJB modelEJB;

Chapter 1: The Big Picture 13

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Hello Java EE</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("
");
 out.println("<div align='center'>");
 out.println("<h2>Hello Java EE</h2>");
 out.println("Enter a message for Java EE which will pass
 through the web tier, the EJB tier to the database,
 and back again !");
 out.println("

");

 out.println("<form action='./WriteServlet' method='POST'>");
 out.println("<input type='submit' value='Enter'>");
 out.println("<input type='text' name='put_message'> ");
 out.println("</form>");
 out.println("
");
 String displayMessage;
 try {
 String storedMessage = modelEJB.getStoredMessage();
 displayMessage = "Hello from (" + storedMessage + "),
 inside a web component";
 } catch (MessageException nme) {
 displayMessage = "you should enter a value...";
 }
 out.println("The current message from Java EE:
"
 + displayMessage + "");
 out.println("</div>");
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }
}

Recalling the WriteServlet code at the start of this exposition of the Hello Java EE
application, the DisplayServlet subclasses the Java EE API class javax.servlet.http
.HttpServlet and uses the @WebServlet annotation to declare its place in the URI namespace
of the application as /DisplayServlet. It, too, contains a single method, but this time, instead
of a doPost() method for handling any HTTP POST requests, it has a doGet() method so that
it will intercept any HTTP GET requests. Inside the implementation of the doGet() method, you
will see that it is mainly writing out the HTML code for the web page, line by line; for example:

out.println("<html>");
...
out.println("</html>");

14 Java EE 7: The Big Picture

with only an interlude in the middle, where it uses its reference to the ModelEJB to obtain the
current value of the message stored in the database by the Enterprise Bean and to insert it into the
HTML page it is producing.

Listing: Excerpt from the DisplayServlet in the Hello Java EE application

 String displayMessage;
 try {
 String storedMessage = modelEJB.getStoredMessage();
 displayMessage = "Hello from (" + storedMessage + "),
 inside a web component";
 } catch (MessageException nme) {
 displayMessage = "you should enter a value...";
 }
 out.println("The current message from Java EE:
"
 + displayMessage + "");

When the doGet() method of the DisplayServlet completes, the round trip of the user
message is complete: the user message is displayed in the web page, with some helpful additions
to explain where it has been on its journey.

Hello to the Major Elements of Java EE
In examining the code for this application, we have also taken a brief tour of the main elements
of the Java EE platform. The application is a classic, three-tier application, with a web layer that
provides the user interaction point, displaying information and consuming user input, with an
Enterprise Bean tier for processing the application logic of the application, and with a data tier for
storing application data. The application is made up of two Java servlets, Java servlets being the
fundamental type of web components in the Java EE platform on which all other web components
are based. One of the Java servlets, the WriteServlet, is responsible for processing the
incoming message and passing it to the Enterprise Bean tier for further processing. The other Java
servlet, the DisplayServlet, is responsible for generating the HTML page that you see when
you access the application, containing the button that sends the user message into the Java EE
application, and containing the last user message that was sent. You saw the ModelEJB that
processes the incoming message and manages its storage and retrieval in the database. Finally,
you saw the Message class, which is a special kind of Java class that is a Java Persistence entity,
meaning it can be stored and retrieved easily in the database. You didn’t have to write any
initialization code to instantiate any of the Java EE components, and you didn’t have to connect
any of the Java EE components together: both those functions were managed for you by the
underlying Java EE container.

The Many Variations of Java EE Applications
The Hello Java EE application may seem a reductive application, and one that you may never
wish to write yourself. However, as a three-tier Java EE application that interacts with a user through
a client interface, processes incoming information, and stores and retrieves application data in a
database, it captures the essence of almost every Java EE application. Most of the Java EE
applications you will write will have this basic structure in common with the Hello Java EE

Chapter 1: The Big Picture 15

application. Every Java EE application that you write can be viewed as a variation on this
archetype. Let’s take a look at some of the most common variations, many of which are further
examined later in the book.

Many Flavors of Web Interface
We’ve already seen the cornerstone of the web interface model for Java EE: the Java servlet. Java
servlets are very powerful and flexible and make a great foundation for web applications. Their
original purpose was to be, on one hand, a replacement for CGI programming, and, on the other,
a kind of all-purpose server-side component model for handling any request/response style network
protocol, not just HTTP. But powerful as Java servlets are, their inconvenience for serious web
programming may already be obvious from the application we have seen. The basic model of
generating HTML content by embedding the HTML inside Java code is too cumbersome an
approach for experienced web developers. Imagine creating a complicated web page using a Java
servlet, with custom formatting and look-and-feel, and then imagine how many lines of Java code
you would have to edit to give the page a makeover. Experienced web developers are accustomed
to treating HTML pages in a very fluid manner, without the heavyweight machinery of compilation
and a new syntax (Java) required by the Java servlet model. Therefore, Java EE offers a superior
web component model to generate dynamic web content for browsers of all kinds: JavaServer
Pages (JSP) and JavaServer Faces (JSF).

The first variation on the basic Java servlet theme is to introduce the first alternative web
component to Java servlets: JavaServer Pages. JSPs can be thought of as “inside-out Java servlets.”
Instead of the programming model being a matter of embedding HTML content within Java
statements, JSP code looks pretty much like HTML content, but with Java code embedded within
it. This makes the task of creating interesting web pages that connect to all the relevant application
data in the rest of the Java EE environment an endeavor that is much closer to that of the
traditional HTML developer.

JSPs can be further enhanced by taking any snippets of Java code that are embedded within
them, and that may be used in several other JSPs, and turning them into a kind of reusable Java
component called a JSP tag library. From web page analytic components to HTML table
rendering components, JSP tag libraries are a powerful organizing technology, and they enhance
the reusability of the user interface logic held within a JSP page.

Using JSPs with tag libraries is a very convenient alternative to the Java servlet model. Yet
fundamentally, JavaServer Pages are Java servlets: the Java EE server compiles JSPs dynamically
into servlets at runtime. Thus, Java servlets form the underpinnings of this second kind of web
component in the Java platform.

We are familiar with many different kinds of web applications on the Internet. A common
variant of the user interaction model of our Hello Java EE application provides a much more
complicated interaction flow than simple entry of one piece of data and the display of said data.
Some web applications, such as airline booking sites or college course registration web sites,
need to guide the user through several pages, each of which gathers information, including
validation steps, and flows based on previous information the user has entered. Many web sites
combine such flows with presentation of complex information, such as shopping catalogs, which
are taxonomies of media content. For these kinds of applications, building such flows, display
elements, and validations is complicated.

JavaServer Faces is the second type of web component that provides a higher-level framework,
including prebuilt user interface components such as lists, buttons, and tables, together with the
ability to validate input and define user interaction flows. JavaServer Faces, like JSPs, are based on

16 Java EE 7: The Big Picture

Java servlets, so a solid understanding of Java servlets is also essential to learning the JavaServer
Faces framework.

One need look only at the proliferation of rich client applications that run on smartphones to
interact efficiently with our favorite online shopping, television, and social networking sites to see
that not all web applications have browser clients. In addition to their publicly facing functions
exposed as HTML web pages, these sites expose their functions to nonbrowser clients using web
services. The Java EE platform contains a variety of web components that can handle and respond
to incoming web service calls. Known as Java Web Service components, these components are to
both Simple Object Access Protocol (SOAP) and to Representational State Transfer (REST) web
services what Java servlets, JSPs, and JavaServer Faces are to HTML content. Like JSPs, JSF
components, and Java servlets, these components are another flavor of Java component that can
respond to an HTTP request with an HTTP response.

The HTTP client/server model underpinning web applications is best suited to an interaction
style where a server can give out information only when a client requests it. But many server
applications contain interesting information that is changing more often than its clients are
requesting it. And many clients of such web applications do not wish to have to keep asking for
updates, not knowing whether new information is available. The range of such applications is
wide, from social networking applications that broadcast the status of your friends, including their
location or even the latest pictures of their lunch, financial applications that track current market
conditions, and group gaming sites that maintain the state of a shared game. These applications
need a way to broadcast information to interested clients. While there are many techniques
that can be employed to simulate this kind of server push of information, such as variations on
a central theme of intermitted polling, they are complicated and inefficient. The final type of web
component in the Java EE platform gives a server component the ability to send data out to
interested clients and is called the Java WebSocket.

The web layer of a Java EE application of some sophistication may be a mix of any or all of
these web components, depending on the nature of the application.

Many Kinds of Application Logic
Turning our attention to the EJB layer, our Hello Java EE application contained one very simple
Enterprise Bean: a stateful session bean. Such Enterprise Beans are instantiated by the EJB container
each time a new client wishes to use it. This is especially useful in the kind of application that needs
to hold its application state for each of its connected clients, for example, if the application
needs to model a shopping cart, or to hold the currently entered data values as the user works
through the process of entering information for purchasing insurance online. Other kinds of
Enterprise Beans can be created in the Java EE platform, such as stateless session beans, whose
ephemeral nature means they are brought into existence each time they are called. This makes
this kind of Enterprise Bean perform very well in large-scale systems, because these beans are
instantiated only when needed and can easily be instantiated on a node in a cluster that has
spare capacity, without worrying about replicating any client state between calls. Singleton
session beans are ideal for representing an application state that is common to all connected
clients of the application, because singleton session beans are instantiated only once in the Java
EE application that contains them. Modeling a news feed viewable by all logged-in users, or a
high score table, are variations on the model used in our archetype HelloJava EE application that
singleton session beans are made for. Finally, for applications that implement many long-running
activities, such as backing up large amounts of data, handling a complicated purchase order, or
analyzing demographic information over large datasets, message-driven beans offer a

Chapter 1: The Big Picture 17

programming model wherein instead of making method invocations, tasks are initiated by sending
a message, with task completion occurring asynchronously with the sending of another message.

Of course, it is worth noting at this point that for a variety of reasons, a large class of Java EE
applications does not use any Enterprise Beans at all. The web application model is quite capable
of interfacing directly with the data tier and can manage its own application data model. In this
process, such Java EE applications must have as part of their design some of the thread safety,
object lifecycle management, and other services that Enterprise Beans enjoy with little development
effort. Despite these challenges, the variant of Java EE application that uses only the web and data
tiers of the platform is a perfectly valid and quite popular form.

Different Ways to Store Application Data
The data layer of the Hello Java EE application was created and managed using the Java Persistence
API. This API offers a high-level framework with which applications can perform object-relational
mapping. In other words, data objects that you want to model in your application can easily be
translated into equivalent data tables in a relational database, which can be a shortcut to designing
relational schemas and the various queries needed to store and retrieve the data. But for those
developers very comfortable with SQL and the design of relational database tables, Java EE offers
the alternative and more traditional Java Database Connectivity API. Instead of modeling data
objects that reflect a relational table in the database counterpart, the JDBC API models connections
to the relational database and the execution of SQL statements to store, manage, and retrieve
that data.

In the database where they store their data, most Java EE applications have data management
tasks to perform that are much more complicated than the simple, atomic read, write, and delete
operations you have seen in the Hello Java EE application. Even making a transfer of money
between two bank accounts involves two separate transactions: deducting the transfer amount
from one account while adding the transfer amount to another. In case of something going wrong
in the middle of these operations, it is essential that the whole transaction either complete fully or
not complete at all (though some of us wish money could magically appear from nowhere into
our bank accounts). For these wide classes of applications, the Java Transaction API allows multiple
activities to be grouped into a single atomic action that either succeeds, meaning each member
of the atomic action succeeds, or fails, in which case the individual activities that completed before
the failure are reversed, in which case the overall effect is as though nothing had happened.

Interfacing with Other Systems
Many Java EE applications need to extend outside of the Java EE environment to interface with
other systems deployed in the network, and three technologies in the platform cater to this
outgrowth of the class of Java EE applications. The first we have already touched on: many Java EE
applications interface with other systems such as analytics servers, purchasing systems, and order
management servers and equivalent systems using the Java web services APIs. While not providing
a framework of reliable messaging, this allows for loosely coupled interactions, where systems
evolve and add functionality separately from their peers without disrupting a working system.
Other Java EE application variants need a kind of reliable asynchronous message exchange
mechanism such as is provided by the Java Message Service, perhaps to fulfill a complex order
from a central Java EE application, which needs to initiate various activities such as performing a
financial purchase transaction, ordering a part number, or requesting a delivery scheme in order
to complete its work. Finally, for custom enterprise systems that present a more complicated
interface into applications that use them, the all-purpose extensibility mechanism that is the Java

www.allitebooks.com

http://www.allitebooks.org

18 Java EE 7: The Big Picture

EE Connector Architecture enables a class of Java EE applications that uses it to rely on arbitrary
external information systems.

Modularity
The fundamental three-tier approach of the Java EE platform inherently divides Java EE applications
into the three corresponding areas: presentation in the web tier, application logic in the Enterprise
Bean tier, and persistent application data in the data tier. However, the dependency injection
framework allows for the separation of a wide variety of application functions into separate Java
classes, and whose instances; lifecycles can be managed by the Java EE container rather than the
application. This design pattern can dramatically increase the modularity of Java EE applications.
This general-purpose model we have already seen to great effect in the Hello Java EE application,
wherein by means of Java EE dependency injection, we can reference Enterprise Beans easily from
web components, and persistence services easily from Enterprise Beans. We thus have an easy way
to perform this kind of core application plumbing, as well as being able to inject other services
into Java EE applications, such as auditing, customer security checks, and arbitrary application
components, without changing core application code at all.

Ways to Secure Java EE Applications
Last but certainly not least, the Java EE security model focuses on the tasks of restricting access to
Java EE applications only to certain known users and to a certain range of protocols. Using a mix
of Java annotations, static configuration, and runtime API calls, Java EE applications can be adapted
to a wide range of security policies. These range from requiring access from browsers only with
encrypted connections, to being able to specify fine-grained access models that can express
role-based access control to individual or groups of web components, to runtime security checks
and identity propagation throughout the tiers of the Java EE platform. The security service is a core
building block of the server.

Packaging and Deploying
the Hello Java EE Application
With this tour of the range of variants you can build from the core Hello Java EE application in
mind, let us return to examining how to develop, package, and deploy the application.

The Hello Java EE application, as we have seen, consists of web components and an Enterprise
Bean and data code. The vehicle for deploying the web components in a Java EE application is a
file called the Web ARchive file (WAR). The WAR format is a kind of ZIP file, with a predefined
structure consisting of a root directory to hold any textual web pages such as HTML pages, JSP, or
JSF files. Additionally, this file type has a special /WEB-INF directory under which any Java class
files they need, such as Java servlets, are held, in addition to other configuration information, as we
will explore further in later chapters. For example, in the case of our Hello Java EE application,
the archive entries of the WAR file that contains them are as follows:

/META-INF
 /MANIFEST.MF
/WEB-INF
 /classes
 /javaeems

Chapter 1: The Big Picture 19

 /chapter1
 /web
 /DisplayServlet.class
 /WriteServlet.class

You can choose your own nomenclature for WAR files. In this example, the file is called
HelloJavaEE-war.war.

Moving to the application’s next tier, the application code residing in the Enterprise Bean is
packaged in a similar but different kind of archive called an Enterprise Bean JAR. The Enterprise
Bean JAR uses the /META-INF directory to store configuration information about the Enterprise
Beans it contains, together with the class files that the beans use at the root level of the archive.
Since the ModelEJB in the Hello Java EE application uses the Java Persistence API, a special file
called the persistence.xml is held in the /META-INF directory. We will not worry too much about
the contents of this file at this point, but will simply note that it is needed to ensure that the
ModelEJB can access the database through the Java Persistence layer. And so we see that the
structure of the Enterprise Bean JAR file is as follows:

/META-INF
 /MANIFEST.MF
 /persistence.xml
/javaeems
 /chapter1/
 /model
 /ModelEJB.class
 /Message.class
 /MessageException.class

Again, the name of the Enterprise Bean file is important only to those people who are going to
need to know what it is: it has no significance to how the application works. In this application,
the filename is HelloJavaEE-jar.jar.

These relatively straightforward WAR and Enterprise Bean JAR file structures do have
variations: some Java EE applications need more configuration information. This information is
contained in special configuration files called deployment descriptor files, which are co-packaged
in the archives in the /WEB-INF directory of the WAR file and the /META-INF directory of the
Enterprise Bean JAR file. Some Java EE applications co-package JAR files containing library classes
and resources, as we shall see in later chapters. But the structure of the Hello Java EE WAR and
JAR files is, like the application itself, the archive theme upon which these variations are built.

The final step, which allows the Hello Java EE application to be packaged into one single,
self-contained file, is to package these two archives into a third kind of ZIP file called the
Enterprise ARchive or EAR file. This, too, may carry extra configuration information for more
sophisticated applications, in which case this configuration information would be held in the
/META-INF directory of the WAR file. Otherwise, the EAR file simply contains the web WAR and
Enterprise Bean JAR files, yielding an archive structure like this:

/META-INF
 /MANIFEST.MF
/HelloJavaEE-jar.jar
/HelloJavaEE-war.war

called HelloJavaEE.ear. Figure 1-6 shows a diagram of the logical structure of this file.

20 Java EE 7: The Big Picture

Once a Java EE application has been packaged into this form, it can be deployed to any Java
EE server. The Hello Java EE application in this form contains all the configuration information
needed to deploy it.

Java EE Platform and Implementations
Aside from the breadth and depth of the features and services available in the Java EE platform,
the great strength of the platform is that it has many different implementations. What this means is
that there are several application servers that support all the application API calls, component
models, configuration semantics, security model, database model, and so on that are part of the
definition of the platform.

This does not mean that all Java EE application servers are the same: far from it. There are
compact application servers that run Java EE applications with a minimal footprint, with fast,
nimble startup times, and with the ability to run on computers with limited computing power.
There are Java EE application servers that run Java EE applications in a multi–Java Virtual Machine
(JVM) environment, that can service requests from thousands of clients, that can recover from
failures of the underlying software and hardware in the environment without the Java EE
applications it runs even noticing any disruption. Some Java application servers offer
straightforward, basic tools for deploying and managing applications and for administering the
server. Other Java EE applications offer sophisticated suites of tools for managing applications and
analytics, and monitoring many dimensions of the performance of the running server. But they
can all run the same Java EE application in the same way.

FIGURE 1-6. Hello Java EE EAR file

HelloJavaEE-war.war

HelloJavaEE.ear

DisplayServlet.class

WriteServlet.class

HelloJavaEE-jar.jar

persistence.xml

ModelEJB.class

Message.class

MessageException.class

Chapter 1: The Big Picture 21

Guide to the Rest of the Book
In this chapter, you have examined the most fundamental aspects of the Java EE platform. In
musical terms, you have explored in detail the theme that is the basis and that will be the source
of variations for all the Java EE applications you write. Imagining that the Java EE platform were a
factory, you have been on a quick tour of all the important areas of the factory, understanding
how the major elements of the platform are laid out and how they interrelate in the context of a
simple application. You have peeked through the glass at some of the secondary areas of the
factories, paused at open doors into other areas such as other types of web components for
different clients, and other Enterprise Bean models for other application lifecycle needs, but not
yet gone in.

The rest of the book explores, variation by variation, open door by open door, the other
dimensions of the Java EE platform that this chapter has outlined. As you progress through the
chapters, you will learn about the expansive and diverse range of Java EE applications that you
can imagine and write yourself.

We will start by entering the domain of the Java EE web container.

PART
I

The Mouthpiece of
Java EE: The Web Tier

This page intentionally left blank

CHAPTER
2

Java Servlets and Web
Applications: Foundations

of the Web Tier

26 Java EE 7: The Big Picture

J
ava servlets support the creation of a wide range of dynamic web content. From online
catalogs, to chat applications, to stock trading sites, to complex portals, Java servlets can do
almost anything that you can do with HTTP and a markup language.

Since their introduction in 1997 as a primary development model for dynamic web content,
however, Java servlets are used less and less widely today. Consequently, you may be wondering
why Java servlets have not been relegated to a later chapter, which could be skimmed over in
favor of discussion of the more modern web components in the Java EE platform.

In fact, Java servlets are by far the most widely used Java web component, although today
they are usually used indirectly. Since they were introduced, they have been followed and
superseded by a variety of Java web components and web languages with Java underpinnings.
From the web technologies that are part of the Java EE platform, including JSPs, tag libraries,
JavaServer Faces, Java API for RESTful Web Services (JAX-RS), and WebSocket endpoints, to
implementations of popular scripting languages such as PHP, to web frameworks such as Struts
and Spring, the Java servlet model, and the Java Servlet API that supports it, form the foundation
of most Java-based web technologies.

In this chapter, we will look at the basic Java servlet component model and lifecycle. By
gradually adding features to an online photo album application written exclusively with Java
servlets, we will explore all the features of the Java servlet model and the Java Servlet API.

The reason we start our journey into the Java EE web container with Java servlets, aside from
the fact that they are both interesting and useful, is that understanding them is the key to
understanding all the web components in the Java EE platform.

The HTTP Protocol
Once you are familiar with the Java Servlet API, you will see that in addition to constituting an
API and component model for programming server-side Java components for HTTP interactions,
it also can be extended to other Internet protocols on the server side that share the same basic
interaction model as HTTP. While there are extensions to the Java Servlet API for other protocols,
most notably, for the File Transfer Protocol (FTP) and for the Session Initiation Protocol (SIP), such
extensions are not a part of the Java EE platform, and therefore, the Java Servlet API remains an
API for HTTP.

We start this examination of the Java Servlet API with an overview of the main elements of the
HTTP protocol.

Inside the HTTP Protocol
HTTP is a client-server TCP-based protocol whose interaction model is a synchronous
request-response. This means that an HTTP client formulates an HTTP request, sends it to the
server, and awaits a response. The server, in turn, receives the HTTP request from the client, examines
it, and accordingly formulates a response. The server sends this response back to the client, who
reads the information out of the response, and the interaction is complete. Figure 2-1 shows a
diagram of this basic interaction model, using an example of an HTTP web server that is running
a photo sharing application, and a browser acting as an HTTP client accessing the photo pages.

On the HTTP web server, each web component that is able to respond to an HTTP request
has an address that identifies it in the space of web components on that server. The address is a

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 27

uniform resource identifier (URI), relative to the hostname of the web server. If the web server has
a hostname of

photoserver.com

and the web component on the server has an address of

/myphotos.html

then the HTTP client can access the web component using the URL

http://photoserver.com/myphotos.html

Let’s take a look at the structure of the HTTP request and HTTP response involved in this kind
of interaction. Both request and response messages share a common structure: each consists of a
section containing information that describes what kind of data the message is carrying. This
information comes in the form of key-value pairs called HTTP headers. Additionally, the message
contains a section that contains the data the message is carrying. For example, many of the HTTP
responses we experience in our daily lives contain web page information. In this case, the HTTP
response objects carrying the content to a web page to our browser have a special header with
value content-type and value text/html to denote that they carry HTML text, and the
response objects data is a string consisting of the HTML code that makes up the web page being
transmitted. Let us look at this type of common example in Figure 2-2.

FIGURE 2-1. Browser interaction with web application using HTTP

Web Server

Photo
Web

Application

HTTP Response

HTTP Request

Browser

www.allitebooks.com

http://www.photoserver.com
http://www.myphotos.html
http://photoserver.com/myphotos.html
http://www.allitebooks.org

28 Java EE 7: The Big Picture

In this example, we can see a diagrammatic form of the kind of HTTP requests and responses
a browser might send to the photo application.

HTTP requests always contain a signifier called an HTTP method and a request URI that
identify for the server the type of request and the address of the web component on the web
server it would like to access. The HTTP methods are GET, HEAD, POST, PUT, DELETE, TRACE,
OPTIONS, CONNECT, and PATCH. Most commonly in web programming, you see only two of
those methods in use:

 ■ GET Used when the request is seeking information from the server, typically without
sending any accompanying information in the request body, for example, when
requesting the content of the web page /myphotos.html, as in the diagram.

 ■ POST Used when the request is carrying some information in the body that accompanies
the request. A very common example of this occurs when you upload a file to a web site;
in this case, the browser formulates the HTTP request. We will see an example of this
shortly.

In the example, the host header carries the hostname of the web server to which the client
is sending the request, and the accept header contains a listing of MIME types that describe the

FIGURE 2-2. Example HTTP request and HTTP response

Http Request

Headers

GET /myphotos.html HTTP/1.1
host : photoserver.com
accept : text/html, application/xml
user-agent : Mozilla/5.0
accept-encoding : gzip
accept-language : en-US

Body

<empty>

Http Response

Headers

HTTP/1.1 200 OK
server : GlassFish Server Open Source
Edition 4.0
content-type : text/html; charset=UTF-8

Body
<html>
 <head>
 <title>My Photos</title>
</head>
<body>
 <h3 align='center'>My Photos</h3>
 <table align='center'><td>

....
</html>

http://www.photoserver.com

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 29

kinds of response body information the client will be able to deal with and the response
the server will send back. The user-agent header identifies the HTTP client, in this case, the
Mozilla browser, and finally the accept-encoding and accept-language headers are used to
inform the server what kind of language formats the client will be able to accept in a response.

When the server formulates an HTTP response, it always includes an HTTP status code and a
three-digit number signifying what kind of response it is making, together with a message string
identifier. Most of the time, the status code is as the example shows: a 200 OK status code that is
used to say that the server has processed the request normally and is making its response in the
way it expects to. Many other status codes indicate a range of situations. Some common ones we
have all seen are 404 Not Found, indicating that the server has no web component at that address
the client. 401 Not Authorized indicates that the web component is accessible only to certain
authenticated clients and not the requesting client, and 500 Internal Error indicates that the server
has encountered an error on its side processing the incoming request. The server header is used,
analogously to the user-agent header, to name the web server software, in this example, the
GlassFish server. The content-type header is used to describe what kind of data is held in the
body of the HTTP response; in the example, the data held is HTML.

Because HTTP is so widely used, many mechanisms have been built on top of this basic
interaction model. It is possible to use the headers to cause clients to be redirected to other web
responses to keep HTTP connections open after the HTTP responses have been received, and
even to emulate asynchronous messaging wherein web servers are able to send out information
and updates, such as changing stock quote information, or chat messages, unsolicited with an
HTTP request by interested clients. It is beyond the scope of this book to examine all such
mechanisms, but we will encounter them from time to time, and will describe them briefly when
we need to in order to understand the capabilities of the Java EE platform.

Introducing Java Servlets
Now that we are grounded in the fundamental aspects of the HTTP protocol, we can turn our
attention to the Java servlet.

A Java servlet is a Java object that processes the server side of HTTP interactions.

What a Java Servlet Does
Let us suppose for a moment that the web component in our example was a Java servlet. In such a
case, we would be able to see the primary functions of the Java servlet. In Figure 2-3, this Java
servlet is called a PhotoServlet and is running in the web container of a Java EE server.

The diagram shows the main tasks of the photo servlet: looking at the request header to
discover that the client would like HTML content to be returned, gathering photo data to send
back, and formulating the response by assigning the correct header to describe the HTML web
page containing photos it will send back.

30 Java EE 7: The Big Picture

Together, these tasks are a special case of the general tasks all Java servlets undertake:

 ■ Examine request headers The servlet ascertains what kind of information the client is
requesting and how it would like to receive it.

 ■ Read request body This step further qualifies the request, or gathers further information
accompanying the request, for example, for a POST request carrying an uploaded
photo or document. This step may not always apply if the client request does not carry
a payload of information in the request body, which is the case for many HTTP GET
requests.

 ■ Gather data to send back The power of the Java servlet model is that it brings together
the HTTP request into the Java EE environment in which the Java servlet can access other
Java EE components or a database or other external systems to gather up dynamically
application data that it will use to formulate the response.

 ■ Set response headers Java servlets then fill out the response headers in order to
describe to the client what kind of information is held in the payload of the response it is
returning.

 ■ Write response body Finally, the response body is written by the servlet and
transmitted, after the HTTP response headers, back to the calling client, and the Java
servlet’s work is done until the next request comes in.

FIGURE 2-3. Main tasks performed by a Java servlet

Http Response

Http Request

Browser

Java EE

Web Container

PhotoServlet

Examine request headers
Read request body

Gather data to send back
Set response headers
Write response body

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 31

How to Create a Java Servlet
Creating a Java servlet is straightforward: first you subclass the Java Servlet API class:

javax.servlet.http.HttpServlet

The Java Servlet API contains two other very important classes:

javax.servlet.http.HttpServletRequest
javax.servlet.http.HttpServletResponse

that model incoming HTTP requests and outgoing HTTP responses, respectively. The heart of a
Java servlet is implementing the request/response interaction we have been looking at. In order to
do that in a servlet, you simply override one of the following methods of the HttpServlet
superclass, depending on what kind of HTTP requests you wish to process with your method, or
more specifically, the HTTP requests of which HTTP method you wish to process.

HttpServlet method Purpose

public void service(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

Handle all HTTP requests

protected void doget(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

Handle only HTTP GET
requests

protected void doHead(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

Handle only HTTP HEAD
requests

protected void doOptions(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

Handle only HTTP
OPTIONS requests

protected void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

Handle only HTTP POST
requests

protected void doPut(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

Handle only HTTP PUT
requests

protected void doTrace(HttpServletRequest req,

 HttpServletResponse res)

 throws ServleTexception, IOException

Handle only HTTP TRACE
requests

If you only ever learn one method of the HttpServlet class, it is the service() method: it
will handle all HTTP requests! In reality, much of the time you will be implementing either the

32 Java EE 7: The Big Picture

doGet() or the doPost() methods because they are the most common forms of HTTP requests
in web applications.

The HttpServletRequest object contains a variety of methods for reading HTTP request
headers and for reading the HTTP request body content, if there is any. The key methods are

public Enumeration getHeaderNames()
public String getHeader(String name)

and

public InputStream getInputStream()
public Reader getReader()

Similarly, the HttpServletResponse object contains a variety of methods for setting HTTP
response headers and for writing HTTP response body content. The key methods are

public void setHeader(String name, String value)

and

 public OutputStream getOutputStream()
public Writer getWriter()

Now we can fit together these pieces of the Java Servlet API into a picture that shows how
they fit together to form a functioning Java Servlet, as shown in Figure 2-4.

FIGURE 2-4. Java servlet API classes in action

HttpServlet

MyServlet

public void service (HttpServletRequest request,
 HttpServletResponse response)

HttpServletRequest

Headers

public Enumeration getHeaderNames()
public String getHeader(String name)

Body

public InputStream getInputStream()
public Reader getReader()

HttpServletResponse

Headers
public void setHeader(String name,
 String value)

Body
public OutputStream getOutputStream()
public Writer getWriter()

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 33

Finally, we are now in a position to show the skeleton code for how most every Java servlet
you will ever write will look, using the key APIs and the five-step task list common to all Java
servlets:

import java.io.*;
import java.util.*;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "TemplateServlet",
 urlPatterns = {"/TemplateServletURI"})
public class TemplateServlet extends HttpServlet {

 @Override
 protected void service(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 for (Enumeration e = request.getHeaderNames();
 e.hasMoreElements();) {
 String nextRequestHeaderName = (String) e.nextElement();
 String nextRequestHeaderValue =
 request.getHeader(nextRequestHeaderName);
 // 1. Examine request headers
 }

 // 2. Read request body
 InputStream is = request.getInputStream();
 // or
 Reader reader = request.getReader();

 // 3. Gather data to send back

 // 4. Set response headers
 response.setHeader(myResponseHeaderName,
 myResponseHeaderValue);

 // 5. Write response body
 PrintWriter writer = response.getWriter();
 // or
 OutputStream output = response.getOutputStream();

 }
}

34 Java EE 7: The Big Picture

Publishing a Java Servlet to the Web Container
One final thing to notice before we get our hands on a real Java servlet is the annotation

@WebServlet(name = "TemplateServlet",
 urlPatterns = {"/TemplateServletURI"})

This annotation defines how this Java servlet will be deployed. In particular, in the case of this
pseudo-servlet, its logical name is TemplateServlet, only coincidentally the same as the class
name, and it will be published for clients using /TemplateServletURI as the partial URI. Each
web application residing on a Java EE server also has a partial URI called the context path of the
web application. The complete path a client uses to access a servlet that declares a partial URI in
this way is

http://<hostname:port>/<context-path>/<url-pattern>

where hostname is the hostname of the Java EE server, context-path is a partial URI for the
web application containing the servlet, and url-pattern is the partial URI of the servlet.

Example Java Servlet Application:
Photo Application
Now that we have examined the basic structure and functions of a Java servlet, we have enough
knowledge to write the photo application. This web application allows users to upload photos to
a web page, which provides a simple thumbnail display of all the user’s uploaded photos, the
ability to see any of the photos in full size, and the ability to remove photos from the album.

In Figure 2-5, we can see a browser view of this web application in which a user has
uploaded two photographs to the album. By pressing the Choose File button, selecting a photo
file, and clicking upload, the user can upload more photos to the album. By clicking on the
photo, the user can see the photo full size, and by clicking the remove link, the user can remove
the relevant photo from the album.

This web application is composed of three servlets, the DisplayAlbumServlet, the
DisplayPhotoServlet, and the RemovePhotoServlet, as shown in Figure 2-6. Additionally,
the PhotoAlbum class holds all the photo information that these three Java servlets access. We
shall see once we have looked through the application that these three Java servlets are like the
Three Wise Monkeys known in fairy tales.

Let’s tackle the easiest of the three servlets first: the DisplayPhotoServlet. Figure 2-7
displays its output, showing the tallest mountain in Europe.

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 35

FIGURE 2-5. Viewing a photo album

FIGURE 2-6. Java servlet anatomy of the photo application

Photo Application

DisplayAlbumServlet

DisplayPhotoServlet

RemovePhotoServlet

Displays a photo

Removes a photo from the album

Displays the contents of the album
Uploads a new photo to the album

PhotoAlbum

Holds photos

36 Java EE 7: The Big Picture

Here is the code:

import java.io.*;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "DisplayPhotoServlet",
 urlPatterns = {"/DisplayPhotoServlet"})
public class DisplayPhotoServlet extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

FIGURE 2-7. Viewing a single photo

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 37

 String indexString = request.getParameter("photo");
 int index = (new Integer(indexString.trim())).intValue();
 response.setContentType("image/jpeg");
 OutputStream out = response.getOutputStream();
 try {
 ServletContext myServletContext =
 request.getServletContext();
 PhotoAlbum pa = PhotoAlbum.getPhotoAlbum(myServletContext);
 byte[] bytes = pa.getPhotoData(index);
 for (int i = 0; i < bytes.length; i++) {
 out.write(bytes[i]);
 }
 } finally {
 out.close();
 }
 }

}

The first thing to notice is that the servlet is mapped to the URI /DisplayPhotoServlet,
which means that it is accessed by the client at the URI

http://<hostname:port>/photos/DisplayPhotoServlet

because photos is the context path of the containing web application.
Next we can see that this servlet overrides the doGet() method of the HttpServlet API

class from which it inherits. This means that this servlet only handles HTTP GET requests; any
other HTTP requests to its URI originating from other HTTP methods, for example, POST or
DELETE, are never passed to this servlet by the Java EE web container. Inside the doGet() method,
we notice that the first thing this servlet does is to parse out the parameters in the query string in
the request URI. As we will observe later, this servlet always expects a query string, with photo as
a parameter name and an integer as a value; for example:

http://<hostname:port>/photos/DisplayPhotoServlet?photo=3

The doGet() method parses out the value of the photo parameter that was passed in and
sets the content type of the response to be image/jpg because it will be sending back image data
to the client. Then it obtains a reference to the response’s OutputStream, which is where it will
write the image data. Notice that the servlet next obtains a reference to an object of type javax
.servlet.ServletContext. The ServletContext of a web application is an object that
represents to all the servlets inside the web application the web container in which it runs.
It is a very important object that we will examine further. For now, we will simply note
that the DisplayPhotoServlet obtains a reference to the photo album by passing in the
ServletContext to the PhotoAlbum class. Then it obtains the image data from the PhotoAlbum
instance and writes it to the response, closing the stream when all of the image data has
been written.

www.allitebooks.com

http://www.allitebooks.org

38 Java EE 7: The Big Picture

We look next to the DisplayAlbumServlet. It is this servlet that both displays the main
page of the web application (the photo album) and also handles the upload of a new photo. Let’s
start by looking at its basic structure:

import java.io.*;
import javax.servlet.ServletException;
import javax.servlet.ServletContext;
import javax.servlet.annotation.MultipartConfig;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.Part;

@WebServlet(name = "DisplayAlbumServlet",
 urlPatterns = {"/DisplayAlbumServlet"})
@MultipartConfig()
public class DisplayAlbumServlet extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 handleRequest(request, response);
 }

 @Override
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 handleRequest(request, response);
 }

 protected void handleRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 ServletContext servletContext = request.getServletContext();
 PhotoAlbum pa = PhotoAlbum.getPhotoAlbum(servletContext);
 if (request.getContentType() != null &&
 request.getContentType().startsWith("multipart/form-data")) {
 this.uploadPhoto(request, pa);
 }
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter writer = response.getWriter();
 try {
 writer.write("<html>");
 writer.write("<head>");
 writer.write("<title>Photo Viewer</title>");
 writer.write("</head>");
 writer.write("<body>");

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 39

 writer.write("<h3 align='center'>Photos</h3>");
 this.displayAlbum(pa, "", writer);
 writer.println("</body>");
 writer.println("</html>");
 } finally {
 writer.close();
 }
 }

 private void uploadPhoto(HttpServletRequest request,
 PhotoAlbum pa) throws IOException, ServletException {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 String filename = null;
 for (Part p: request.getParts()) {
 this.copyBytes(p.getInputStream(), baos);
 filename = p.getSubmittedFileName();
 }
 if (!"".equals(filename)) {
 String photoName = filename.substring(0, filename.lastIndexOf("."));
 pa.addPhoto(photoName, baos.toByteArray());
 }
 }

 private void displayAlbum(PhotoAlbum pa,
 String label,
 PrintWriter writer) {
 writer.write("<h3 align='center'>" + label + "</h3>");
 writer.write("<table align='center'>");
 for (int j = 0; j < pa.getPhotoCount(); j++) {
 writer.write("<td>");
 writer.write("");
 writer.write("<img src='./DisplayPhotoServlet?photo=" +
 j + "' alt='photo' height='120' width='150'> ");
 writer.write("");
 writer.write("</td>");
 }

 writer.write("<td bgcolor='#cccccc' width='120' height='120'>");
 writer.write("<form align='left' action='DisplayAlbumServlet'
 method='post' enctype='multipart/form-data'>");
 writer.write("<input value='Choose' name='myFile' type='file'
 accept='image/jpeg'>
");
 writer.write("<input value='Upload' type='submit\'>
");
 writer.write("</form>");
 writer.write("</td>");
 writer.write("</tr>");

 writer.write("<tr>");
 for (int j = 0; j < pa.getPhotoCount(); j++) {
 writer.write("<td align='center'>");
 writer.write(pa.getPhotoName(j));

40 Java EE 7: The Big Picture

 writer.write("</td>");
 }
 writer.write("</tr>");

 writer.write("<tr>");
 for (int j = 0; j < pa.getPhotoCount(); j++) {
 writer.write("<td align='center'>");
 writer.write("<a href='RemovePhotoServlet?photo=" + j +
 "'>remove");
 writer.write("</td>");
 }
 writer.write("</tr>");
 writer.write("</table>");
 }

 private void copyBytes(InputStream is, OutputStream os)
 throws IOException {
 int i;
 while ((i=is.read()) != -1) {
 os.write(i);
 }
 is.close();
 os.close();
 }

}

We can see immediately from the @WebServlet declaration that this servlet is available at

http://<hostname:port>/photos/DisplayAlbumServlet

Additionally, because it overrides both the doGet() and doPost() methods, it will respond
to HTTP GET and HTTP POST requests. The GET requests will be requests to display only the
album, and the POST requests will be requests from the client to upload a file and display the
updated album. Now both of these intercepting methods delegate to the handleRequest()
method, so let us look at this implementation. The first thing the method does is check whether
the content type of the request is

multipart/form-data

If so, then the method ascertains that there is photo information to upload. This is delegated
to the uploadPhoto() method. Since this method always returns a response containing the
HTML code displaying the photo album, it sets the content-type of the response to text/html.
In contrast with the DisplayPhotoServlet that writes binary image data to its response by
using the java.io.OutputStream, this servlet will write textual HTML output to its response.
Therefore, it obtains a reference to the Writer object from the HttpServletResponse. Then it
proceeds to start writing the HTML code for the web page. The meat of the HTML it writes to the
response is the code for displaying the table that forms the display of the photo album and the
grey panel that allows for the upload of a new photo. This code is held in the implementation of

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 41

the displayAlbum() method. Once the album has been written, the handleRequest()
method has finished writing the HTML document, closing the final <html> tag and closing the
output. Let us look at the method for writing the HTML code to display the album:

 private void displayAlbum(PhotoAlbum pa,
 String label,
 PrintWriter writer) {
 writer.write("<h3 align='center'>" + label + "</h3>");
 writer.write("<table align='center'>");
 for (int j = 0; j < pa.getPhotoCount(); j++) {
 writer.write("<td>");
 writer.write("");
 writer.write("<img src='./DisplayPhotoServlet?photo=" + j +
 "' alt='photo' height='120' width='150'> ");
 writer.write("");
 writer.write("</td>");
 }

 writer.write("<td bgcolor='#cccccc' width='120' height='120'>");
 writer.write("<form align='left' action='DisplayAlbumServlet'
 method='post' enctype='multipart/form-data'>");
 writer.write("<input value='Choose' name='myFile' type='file'
 accept='image/jpeg'>
");
 writer.write("<input value='Upload' type='submit\'>
");
 writer.write("</form>");
 writer.write("</td>");
 writer.write("</tr>");

 writer.write("<tr>");
 for (int j = 0; j < pa.getPhotoCount(); j++) {
 writer.write("<td align='center'>");
 writer.write(pa.getPhotoName(j));
 writer.write("</td>");
 }
 writer.write("</tr>");

 writer.write("<tr>");
 for (int j = 0; j < pa.getPhotoCount(); j++) {
 writer.write("<td align='center'>");
 writer.write("<a href='RemovePhotoServlet?photo=" + j +
 "'>remove");
 writer.write("</td>");
 }
 writer.write("</tr>");
 writer.write("</table>");
 }

This method is writing the HTML code for the table, iterating over the items in the PhotoAlbum,
embedding within the table cells the anchor and image tags that use the relative URI

42 Java EE 7: The Big Picture

/DisplayPhotoServlet?photo={n}

both as a source for the image thumbnail and as a hyperlink, so that when the user clicks on the
image, it invokes the DisplayPhotoServlet to display the full image. The final row of the table
inserts a hyperlink to the RemovePhotoServlet, generating the same query string used by the
DisplayPhotoServlet to identify which photo is to be removed from the album.

Before we look at photo removal, we will finish examining the DisplayAlbumServlet by
looking at the method that uploads the photo data:

 private void uploadPhoto(HttpServletRequest request,
 PhotoAlbum pa)
 throws IOException, ServletException {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 String filename = null;
 for (Part p: request.getParts()) {
 this.copyBytes(p.getInputStream(), baos);
 filename = p.getSubmittedFileName();
 }
 String photoName = filename.substring(0, filename.lastIndexOf("."));
 pa.addPhoto(photoName, baos.toByteArray());
 }

 private void copyBytes(InputStream is,
 OutputStream os) throws IOException {
 int i;
 while ((i=is.read()) != -1) {
 os.write(i);
 }
 is.close();
 os.close();
 }

Larger chunks of data uploaded as multipart data over HTTP will likely arrive in a number
of parts. This is dependent on a number of factors, including the client, the size of the file, the
network, and the Java EE server. However many parts the photo arrives in, by iterating over
the javax.servlet.http.Part objects, this method obtains all the photo data from the
HttpServletRequest object by means of its InputStream, collecting it in a byte array,
retrieving the filename chosen by the user, and inserting the photo and its name into the
photo album.

We have almost finished our tour of the photo application. Let’s jump right to the
RemovePhotoServlet, whose job it is to remove photos from the album on demand:

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "RemovePhotoServlet",
 urlPatterns = {"/RemovePhotoServlet"})
public class RemovePhotoServlet extends HttpServlet {

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 43

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String indexString = request.getParameter("photo");
 int index = (new Integer(indexString.trim())).intValue();
 PhotoAlbum pa = PhotoAlbum.getPhotoAlbum(request.getServletContext());
 pa.removePhoto(index);
 RequestDispatcher rd =
 request.getRequestDispatcher("DisplayAlbumServlet");
 rd.forward(request, response);
 }

}

Thanks to its @WebServlet annotation, this servlet is available to the client at

http://<hostname:port>/photos/RemovePhotoServlet

and since it overrides only the doGet() method of the API class HttpServlet, it responds only
to HTTP GET calls, which is precisely the kind of HTTP request that is generated when the user
presses on a hyperlink, such as the Remove link under any of the photos in the album.

Similar to the DisplayPhotoServlet, this servlet is expecting a query string of the form

?photo={some number}

from which it extracts the index of the photo to be deleted from the PhotoAlbum. Once it
removes the photo in question, the servlet obtains a reference to a Java Servlet API class
called the RequestDispatcher, using the relative URI of the DisplayAlbumServlet. The
RequestDispatcher object returned acts as a wrapper on other web components in the same
web application, in this case, the DisplayAlbumServlet. By calling the forward() method,
the RemovePhotoServlet is delegating the creation of the HTTP response to the
DisplayAlbumServlet, which proceeds by displaying the remaining photos in the newly
reduced photo album.

Finally, the PhotoAlbum itself is a relatively straightforward store of byte data representing the
photos along with a name for each:

import java.util.*;
import javax.servlet.ServletContext;

public class PhotoAlbum {
 public static String ATTRIBUTE_NAME = "Photo_Album";
 private List<byte[]> photoDataList = new ArrayList<byte[]> ();
 private List<String> names = new ArrayList<String>();

 public static PhotoAlbum getPhotoAlbum(ServletContext servletContext) {
 if (servletContext.getAttribute(ATTRIBUTE_NAME) == null) {
 PhotoAlbum pa = new PhotoAlbum();
 servletContext.setAttribute(ATTRIBUTE_NAME, pa);
 }

44 Java EE 7: The Big Picture

 return (PhotoAlbum) servletContext.getAttribute(ATTRIBUTE_NAME);
 }

 public synchronized void addPhoto(String name, byte[] bytes) {
 this.photoDataList.add(bytes);
 this.names.add(name);
 }

 public synchronized byte[] getPhotoData(int i) {
 return (byte[]) photoDataList.get(i);
 }

 public synchronized String getPhotoName(int i) {
 return (String) names.get(i);
 }

 public synchronized int getPhotoCount() {
 return photoDataList.size();
 }

 public synchronized void removePhoto(int i) {
 photoDataList.remove(i);
 names.remove(i);
 }
}

Notice the implementation of the getPhotoAlbum() method, which takes an instance of the
ServletContext as a parameter. You’ll remember that the ServletContext object is an object
global to the web application representing the web container hosting the web application. One of
its many features is that it holds an object map of key-value pairs into which web applications
may store and retrieve application objects using the method calls

public void setAttribute(String name, Object value)
public Object getAttribute(String name);
public Enumeration<String> get AttributeNames()

It is here that the instance of the PhotoAlbum that all three servlets reference lives: as an
attribute on the instance of the ServletContext associated with the photo application. In this
way, all three servlets are always using the same photo album. Notice that all the methods that
read or write photos to the PhotoAlbum are synchronized: we will return to the reason for this
later in the chapter.

Now we can explain the riddle of how the fable of the Three Wise Monkeys applies to this
example application: since the RemovePhotoServlet never produces output, it speaks no evil.
Since the DisplayPhotoServlet does not expect any request data, it hears no evil, and because
readers of this book will upload only pretty pictures, the DisplayAlbumServlet sees no evil.

Understanding the Java Servlet API
Now that we have looked at an example of a web application made of Java servlets of different
varieties, we are in a position to more formally examine the Java Servlet API.

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 45

The javax.servlet.http.HttpServlet Class
The HttpServlet class is the central class of the Java Servlet API and of most of the web
components in the Java EE platform, whether they are directly aware of it or not. We have seen
that the way to create any Java servlet is to subclass HttpServlet and override one or more of
the doXXX() methods, where XXX corresponds to the HTTP method of the kind of HTTP request
you wish your servlet to intercept. Let’s step back for a moment and look at the lifecycle of a
Java servlet.

At some point after the Java servlet is deployed to the Java EE server, and before the first HTTP
request comes in that it has to handle, the Java EE web container creates an instance of the Java
servlet class in preparation for handling the first HTTP request. When the Java servlet instance has
been created, the web container makes a call to its

public void init(ServletConfig config) throws ServletException

method. The init() method may be overridden in the servlet in order to perform any type of
expensive operation that needs to complete before the servlet is able to respond to requests, for
example, opening a database connection. The web container passes a ServletConfig object
into the init() method. The ServletConfig object gives the servlet a view into the configuration
information of the servlet. If the init() method throws a ServletException or does not
complete in a timely manner, as determined by the web container, the web container interprets
this situation as meaning that something has gone wrong while the servlet is setting itself up and
does not allow it to come into service.

Once the init() method completes, the Java servlet is put into service, and at this point
waits for incoming HTTP requests. Based on the HTTP method of the HTTP request, one of the
doXXX() methods of the servlet will be called.

protected void doXXX(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException

Java servlets that wish to handle absolutely any HTTP request, no matter the HTTP method,
must implement the service() method, which will handle any and all HTTP requests to this
servlet, and any doXXX() methods will not be called.

Once the web container decides that it has finished using this instance of the Java servlet,
after allowing it to service its last request and before allowing it to be garbage collected, it calls
the servlets

public void destroy()

which gives it the opportunity to clean up or close any expensive resources such as database
connections that it opened during its lifetime. Once the destroy() method has been called, the
servlet instance has served its purpose: the same instance can never be reused. This lifecycle is
shown in Figure 2-8.

Number of Instances of Java Servlets
One question that may not always be clear from the lifecycle of a Java servlet instance is: how
many instances will the web container create of my servlet? The exact number of instances a web
container will use varies. Some containers may use just a single instance of a Java servlet for all
the time that the web application that contains it is deployed, with the instance sitting in readiness

46 Java EE 7: The Big Picture

whether or not there are clients sending requests to it or not. Other web containers may
instantiate a pool of Java servlet instances to handle requests from large numbers of clients,
sometimes running the instances on separate Java Virtual Machines to spread out the processing
load. Other web containers may remove servlet instances from use during periods they judge to
be quiet in order to save computing resources, bringing up new instances only when a client
sends in a new request after such a quiet period. However, whatever the scheme, the servlet
developer needs to know the following two things:

 ■ Each Java servlet instance may handle simultaneous requests from multiple clients.

 ■ Each Java servlet may be instantiated multiple times by the web container.

In particular, this means that you need to be careful when you implement the doXXX()
methods of the servlet that you program with concurrent requests in mind. This is why the
PhotoAlbum in the example we looked at synchronizes access to its data: it is possible for one
client to be adding a photo at the same time that another is removing one.

It also means that you need to be careful when using instance variables in a Java servlet
instance: if, for example, you use an instance variable on a servlet to count the number of times it
is called over a period of time, it will count the number of times that instance of the Java servlet is
called. However, if the web container instantiates more than one instance of the Java servlet, the
count on any particular instance of the Java servlet may not be what you expected.

Thus, the servlet developer looks to other places in the Java servlet API to store application
state. In our photo application, you will remember that the global instance of the PhotoAlbum
was not held as an instance variable on any of the Java servlets, but rather as an attribute on the
ServletContext.

The ServletContext
Each web application has access to a single instance of the javax.servlet.ServletContext
class. This instance offers the web application its own private view into the web container. The
ServletContext holds methods that allow a Java servlet to query information about the

FIGURE 2-8. Java servlet lifecycle

MyServlet

void init(ServletConfig config)

void doXXX(HttpServletRequest req,
HttpServletResponse res)

void destroy ()

Called: once before coming into service
Used for: initializing things the servlet will need to respond to
requests

Called: many times, each time a matching Http request arrives
Used for: creating the output that will be used to respond to the
request

Called: once, just before the servlet instance is removed from
service
Used for: cleaning up things the servlet used while it was in
service

Java servlet lifecycle

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 47

environment, such as the version of the Java Servlet API it supports. It holds the means to query at
runtime other aspects of the web application to which it is associated, for example, the context
path of the web application, and the ability to register other web components dynamically during
the startup phase of the containing web application. One of its most used features is the simple
map of attributes that it holds on behalf of the application. This is a highly useful place to store
any application data in a web application that you wish to be global to all the web components
and to all clients that access it. Here is the API for manipulating application data on the
ServletContext:

public Object getAttribute(String name)
public Enumeration<String> getAttributeNames()
public void removeAttribute(String name)
public void setAttribute(String name, Object value)

If you rerun the photo application from two separate browsers, when you upload a photo in
one browser and then refresh the display of the photo application in the other browser, you will
notice that both browsers display the same photo album.

What if you wanted each client to upload photos only to their own photo album? As an
example, if a second client viewed the web application, rather than seeing all the photos that any
client of the web application had uploaded, would they see only the photos they had uploaded?

This brings us to the next object in the Java servlet environment: the HttpSession.

The HttpSession
The javax.servlet.http.HttpSession object is a representation of a series of interactions
with a single web application from a single client. If a web application wishes to adapt its
behavior for a particular user based on previous knowledge of that user, or based on the user’s
previous interactions with the web application, then the HttpSession is the object to use. Each
HttpSession object associated with a particular client is available to all Java servlet instances,
and it can be obtained each time the client makes a new HTTP request to a servlet by either of
the methods

public HttpSession getSession()

Each HttpSession object has a identifier available by the getId() call that is unique across
all the active sessions in the web container. HttpSessions ultimately expire, either by an explicit
call to its

public void invalidate()

method, or because the session times out because the client that the session is representing
doesn’t make any calls to the web application, defined by a timeout quantity controlled by the
methods

public int getMaxInactiveInterval()
public void setMaxInactiveInterval(int interval)

These methods allow the web container the opportunity to invalidate the sessions once the
maximum period of inactivity has been reached. This does not mean that the client has not been
accessing other web applications deployed to the web container: like the ServletContext
instances, HttpSession instances cannot cross the boundaries of web applications.

www.allitebooks.com

http://www.allitebooks.org

48 Java EE 7: The Big Picture

Returning to the question of how to store application states associated with a particular client
of a web application, the most commonly used feature of HttpSession is its ability to store
arbitrary objects on behalf of web components. The API for this is analogous to that of the
ServletContext:

public Object getAttribute(String name)
public Enumeration<String> getAttributeNames()
public void removeAttribute(String name)
public void setAttribute(String name, Object value)

Let’s pause here to take a look at how we would make this switch in our photo application to
store photos in a different photo album for each client of the application. Fortunately, it is very
simple. First, we would need to change the place where each PhotoAlbum instance is stored
from the ServletContext to the HttpSession:

public class PhotoAlbum {
 public static String ATTRIBUTE_NAME = "Photo_Album";
 private List<byte[]> photoDataList = new ArrayList<byte[]> ();
 private List<String> names = new ArrayList<String>();

 private PhotoAlbum() {
 }
...
 public static PhotoAlbum getPhotoAlbum(HttpSession session) {
 if (session.getAttribute(ATTRIBUTE_NAME) == null) {
 PhotoAlbum pa = new PhotoAlbum();
 session.setAttribute(ATTRIBUTE_NAME, pa);
 }
 return (PhotoAlbum) session.getAttribute(ATTRIBUTE_NAME);
 }
...
}

and then, in the Java servlets that access the PhotoAlbum, pass in the HttpSession instead of
the ServletContext:

 HttpSession session = request.getSession();
 PhotoAlbum pa = PhotoAlbum.getPhotoAlbum(session);

Now when you access this amended photo application from two different browsers, you will
notice that uploading photos in separate browsers uploads photos to separate photo albums.

This makes the HttpSession object an invaluable tool when writing websites that have any
kind of user personalization, such as websites that remember your name, remember the last page
you looked at, maintain a shopping cart as you browse through the site, or need to display any
information about you that you have previously given it.

How HttpSessions Are Maintained
In order to maintain HttpSession instances, the web container has to know that a series of
requests are all coming from the same user. It would be no use if you spent an hour doing your

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 49

holiday shopping at an online store, only to find when you came to check out that you had
someone else’s selections in your shopping cart. How does the web container do it?

The web container has various mechanisms at its disposal. Primarily, web containers depend
on HTTP cookies to maintain the HttpSession: when a client makes a first request to a web
application, the web container inserts a cookie containing a session id into the response. In turn,
the client sends a cookie containing the same session ID back each time that it makes a new
request. This session exchange inside HTTP cookies allows the web container to determine with
which past request a new request is associated. But not all clients support cookies; some users
turn off cookies in their browsers, and some HTTP clients are not browsers at all. In such cases,
the web container may use a technique to maintain sessions called URL rewriting wherein any
links the web application returns to the client have the session id added in as a query string,
under the name JSESSIONID; for example:

JSESSIONID=123456

much as the photo application uses the query string to carry the photo index. Finally, for web
applications accessed using HTTP over the secure SSL protocol, web containers can use the
stateful nature of the underlying SSL protocol to maintain the session.

Whichever technique a web container uses to maintain HttpSessions, they are an
invaluable tool in web application development.

Java Servlet API Runtime Architecture
We can now draw the architecture of the main classes of the Java Servlet API. In Figure 2-9, we
see two browser clients accessing the same HttpServlet. There is one ServletContext object
for the web application containing the servlet. Each client has made multiple HTTP requests to
the servlet and received multiple HTTP responses from the servlet in return. Each client’s
collection of request and response pairs is associated with a unique HttpSession object.

FIGURE 2-9. Java servlet API object instances, two clients

ServletContext

HttpServlet

H
ttp

Se
ss

io
n

AHttpServletRequest

HttpServletRequest
HttpServletResponse

Client A

Client B

HttpServletRequest

HttpServletRequest
HttpServletResponse

H
ttp

Se
ss

io
n

B

50 Java EE 7: The Big Picture

The RequestDispatcher
The final API class in our examination of the Java Servlet API is the RequestDispatcher. We
already saw the RequestDispatcher in action in the RemovePhotoServlet in our photo
application: once the photo was removed, this servlet used the RequestDispatcher to simply
forward the request it received to the DisplayAlbumServlet, which treated it just like any
HTTP request that had come directly from the client in order to display the newly updated
photo album.

RequestDispatcher objects provide a representation of a web resource in a web application,
whether it is a web page, Java servlet, or other kind of HTTP web component, and allows the caller
to invoke it. In calling a RequestDispatcher object from a Java servlet, you can choose either to
forward the request to it or include the response from it. If you forward the request to it, what you
are doing is asking the web resource represented by the RequestDispatcher to write the response
for you. This means you must not have already written any of the response yourself, and you must
not try to write the response after you have called the RequestDispatcher. This mode is useful
when you want another web resource to simply take over the formulation of the response
completely. If you use the RequestDispatcher to include the response, then what you are doing
is asking the web resource the RequestDispatcher represents to write its response out to the
response object you are formulating but may not have completed writing to yourself. This mode is
useful when you want another web resource to fill in a gap in the response you are formulating. But
similarly to the forward mode, you have to be careful not to trip: in this case, you have to be sure if
you are going to continue writing to the response after you have called the RequestDispatcher
that the web resource you use the RequestDispatcher to invoke does not close the underlying
response. Here are the two methods of the RequestDispatcher:

public void forward(ServletRequest request,
 ServletResponse response)
 throws ServletException, IOException

public void include(ServletRequest request,
 ServletResponse response)
 throws ServletException, IOException

You can obtain instances of the RequestDispatcher from the ServletContext in one of
two ways: either by the URI path of the web resource in the web application you need it to
represent, as we did in the photo application, or by the logical name of the web resource, as
defined, for example, in the @WebServlet annotation that decorates the Java servlet class.

The RequestDispatcher can be a very useful class to use to start modularizing a web
application, and indeed, it is the cornerstone of many Model-View-Controller frameworks for
web applications, wherein a facade “controller” servlet uses the RequestDispatcher to direct
and adapt incoming requests to the appropriate “view” web components. But use the
RequestDispatcher with care: since the RequestDispatcher is allowing more than one
web component to act on the same HttpServletResponse, there are some basic traps, as
described earlier, into which it is easy to fall.

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 51

Web Applications
We have talked about web applications in an informal way so far: a collection of related web
resources and components with a common purpose. The Java Servlet API defines the web
application as the collection of web resources and web components that have been collected
into the single unit of deployment for the web container: the WAR file.

WAR stands for Web ARchive. It is a zip-based file format that defines a specific structure into
which you can put web resources, Java classes, and libraries for Java web components, together
with any deployment information the web components need. The term web components here
includes, Java servlets, but beyond that, it includes any JSPs, tag libraries, JSF components, web
service, or WebSocket components that are part of an application.

File-based web resources such as web pages, stylesheets, image files, JSPs, and JSF files live
in the root of the WAR file. The web container uses the directory structure of these entries to map
the files to the URI space of the web container. So, for example, if an HTML page is included in
a WAR file as /cars/catalog.xhtml, and the web application is deployed to the Java EE web
container with context root /car-app, then the catalog.xhtml file will be available to
browsers at

http://mycars.com/car-app/cars/catalog.xhtml

The WAR file contains a reserved top-level directory name of WEB-INF/. This directory is not
exposed into the URI space of the web container. In other words, no client of the web container
can access this directory as a web resource, nor anything contained within it. Any class files for
web components such as Java servlets, web service resources, and WebSockets are packaged into
the WAR file under this directory in /WEB-INF/classes. If the web application’s Java components
use any library files, then there is a second name subdirectory of /WEB-INF called /WEB-INF/
lib that will contain any such JAR files.

Finally, WAR files may contain deployment information that accompanies any or all of the
web components it holds. This deployment information, held in an XML document called a
deployment descriptor located at /WEB-INF/web.xml in the WAR file, is a type of configuration
information that the web container uses to set up the web application ready for action. We will
explore this deployment information shortly, but in fact, we did not need to provide any extra
information about how to deploy the Java servlets in our photo application other than that
contained within the @WebServlet annotation at the class level of each servlet. This may often
prove to be the case for Java servlets that you write, but you will need to understand all the
possibilities, especially as you expand the repertoire of web components that you create.

We’ll summarize the structure of a WAR file with the diagram in Figure 2-10 showing the
logical structure, together with an example layout of a fictitious car website.

Deployment Information for Java Servlets
Deployment information for Java servlets may be found in two places! The first place you have
already seen is the most convenient: in the class level @WebServlet annotation. This holds
critical information: the URL mapping that the web container will use to deploy the servlet and

http://mycars.com/car-app/cars/catalog.xhtml

52 Java EE 7: The Big Picture

make it available to clients. The second place that may hold deployment information that governs
how a Java servlet is brought into service on the Java EE web container is in the deployment
descriptor for the web application, or in other words, in the web.xml file in the WAR file holding
the Java servlet. For most Java servlets, using the @WebServlet annotation is sufficient, so we will
defer a full examination of the web.xml file until Chapter 8. Let’s take a look at all the possible
configuration options in the @WebServlet annotation in Table 2-1.

Servlet Path Mapping
In our photo application, all we needed was to be able to assign a URI to each Java servlet it
contained, relative to the context root of the web application, and rely on the fact that the web
container would direct any client requests to that URI to our Java servlet. This may be sufficient for
many simple Java servlet applications, but the Java servlet API allows for other modes of mapping
servlets into the URI space of the web container.

The Java Servlet API uses the idea of a URL pattern to denote the kind of signifier you can assign
to a servlet that the web container will use to route incoming requests to it. As we have seen, a URL
pattern can be a relative URI, but it can also come in other forms. A URL pattern can be

 ■ a relative URI

 such as /catalog/albums, /images/display/photo

 ■ a relative URI with wildcard of the form <relative-uri>/*

 such as /catalog/*, /*

 ■ a file extension of the form *.<name>

 such as *.jsp, *.images, *.fruitbaskets

FIGURE 2-10. WAR file contents and example

Web Application and Web ARchive (WAR)

/
index.html
login.jsp
cars-logo.jpg
cars/
catalog.xhtml

WEB-INF/
classes/
CarSelectorServlet.class
CarRepository.class

lib/
car-utils.jar

WEB-INF/web.xmlDeployment information
located in /WEB-INF/web.xml

Web resources
located at the root /

Java classes for web components
located under /WEB-INF/classes

Code libraries
located under /WEB-INF/lib

Logical View Example Archive View

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 53

TABLE 2-1. The @WebServlet annotation

@WebServlet Purpose Example

boolean
asyncSupported

Flag to indicate to the container
whether this servlet supports the
advanced asynchronous operation
(see Chapter 8)

asyncSupported=true

String description Text description of the servlet,
used to display the servlet in tools

description="A photo display
servlet"

String displayName Text display name of the servlet
for showing in tools

displayName="PhotoComponent"

WebInitParam[]
initParam

An array of key-value pairs that can
be retrieved at runtime inside the
servlet using ServletConfig
.getInitParameter(String
name)

initParams = {

 @WebInitParam(name="size",
value="large "),

 @WebInitParam(name="frame",
value=" antique")

})

String largeIcon Relative path to an image in the
WAR file used to display the
servlet in a tool

largeIcon="/images/PS_lrg.jpg"

String smallIcon Relative path to an image in the
WAR file used to display the
servlet in a tool

smallIcon="/images/PS_sm.jpg"

int loadOnStartup Guide to the web container
to what order relative to other
servlets in the web application to
instantiate this servlet

loadOnStartup=5

String name Logical name for the Java servlet,
used, for example, to create a
RequestDispatcher to this
servlet

name="PhotoServlet"

String[] urlPatterns Array of strings used to map the
servlet into the URI space of the
web container

urlPatterns="/
DisplayAlbumServlet"

String[] value Same as urlPatterns, but must
not be used at the same time as
urlPatterns.

urlPatterns="/
DisplayAlbumServlet"

Each servlet may have one or more URL patterns. So when a request comes into the web
container, it must attempt to find the correct servlet to call based on the request URI of the request
and the URL patterns of all the servlets in the web application.

As you might imagine, especially in large web applications with many servlets, this can be a
complex process. Fortunately, the Java servlet API defines simple rules to help determine which
servlet matches a request URI, and in the cases where more than one servlet may match, which
one wins out.

54 Java EE 7: The Big Picture

First, the web container will look for an exact match of the request URI. This means if it finds
a Java servlet with a URL pattern that is a relative URI, and the relative URI is the same as the
request URI, that servlet will be called.

If no such servlet is found, the web container will look for a servlet that uses a URL pattern
that is a relative URI with wildcard, where the beginning segment of the relative URI with
wildcard matches the beginning segment of the request URI. If more than one such servlet exists
with a matching URL pattern under this rule, then the web container selects the servlet with the
longest matching relative URI with wildcard.

Finally, if still no servlet is found, the web container checks the end of the request URI for a
filename ending. If one is found, based on the location of a “.” in the last segment of the request
URI, then the web container will look for a servlet using a URL pattern with matching filename
ending. If there is one, it will call it.

Let’s look at some examples of this in action. Suppose we have three servlets: Apple, Tree
and Orange:

Apple uses the url pattern /orchard/apple
Tree uses the url pattern /orchard/*
Orange uses the url pattern *.peel
Suppose that these three servlets are contained in a web application with context root

/fruits-app, hosted at www.fruits.com:
A request to http://www.fruits.com/orchard/fruits-app/orchard/apple will call

the Apple servlet.
A request to http://www.fruits.com/orchard/fruits-app/orchard/slippery

.peel will call the Tree servlet
A request to http://www.fruits.com/orchard/fruits-app/orange.peel will call the

Orange servlet.

Java Servlets: The Good and the Bad
The Java servlet model is a very open model: it is very flexible and gives a great deal of access to
the basic plumbing that forms the basic request and response interaction model of HTTP in the
web container. This is both a boon and a curse for developers. As a developer, you are given
simultaneous access to the request object and the response object of an HTTP call from the client
at the simplest level, from within the handling Java servlet itself, and also from other components.
We shall see more of some of these in Chapter 8, and one, the RequestDispatcher, we have
already seen. Moreover, you are given simultaneous access to requests and responses from all
and any clients calling at any one particular moment in time. Even more, the access you have to
these interactions encompasses all stages in the lifecycle of the data actually arriving and being
transmitted. For example, you can attempt access to request data even before it has all arrived,
and you can write to the response even before all the request has arrived. Furthermore, as we
shall see in Chapter 8 with servlet filters and listeners, you have enormous flexibility in
intercepting interactions from a client in several separate components.

The flip side of this open access to the model is that the API design does not preclude the
possibility of abusing the API. It is very easy to attempt to write data to the HttpServletResponse
object after you have forwarded the request to another web component, resulting in a runtime

http://www.fruits.com/orchard/fruits-app/orchard/apple
http://www.fruits.com/orchard/fruits-app/orchard/slippery.peel
http://www.fruits.com/orchard/fruits-app/orchard/slippery.peel
http://www.fruits.com/orchard/fruits-app/orange.peel
http://www.fruits.com

Chapter 2: Java Servlets and Web Applications: Foundations of the Web Tier 55

error. It is possible to attempt to obtain both an InputStream and a Reader to read the data
out of the HttpServletRequest object. It is also not easy to determine when the data in an
HttpServletResponse is actually sent, since the API allows the web container some discretion
in buffering the response data. This can be a particular issue if a servlet writes data to the response
and then encounters an error: what data has actually been transmitted to the client at the point at
which the error occurs?

Programming a Java servlet to be multithreaded puts an extra burden on the Java developer:
the servlet API could have been designed so that each Java servlet instance was called by only
one thread at a time, which would mean that the developer would not need to worry about
concurrent access to data referenced in the servlet.

Perhaps the most common complaint about Java servlets as a component model for building
large dynamic websites is that writing HTML code inside Java statements makes for a very
heavyweight development model, particularly for web developers used to WYSIWYG HTML
editors. It takes some skill to look at a Java servlet that writes a large HTML page and picture
how it is going to look, and still more to tweak the look of the web page it generates.

One further complaint about the Java servlet model is that there is little support for the
separation of presentation code—for example, the HTML tags making up a web page—from
the code that defines the interaction model with the website—for example, the pathways a user
traverses as they use the application.

These last two deficiencies in the model led to the development of two of the other
web component technologies in the Java EE platform: The first deficiency led to the
development
of JavaServer Pages, which attempt to solve the problem of burying markup code inside
compiled Java statements. And the second deficiency led to the evolution of a number of
Model-View-Controller frameworks for the web container that ultimately led to the
development of JavaServer Faces.

Today, the Java Servlet API is the foundation of web technology in Java, mostly due to its
relatively low level and open approach to modeling HTTP interactions on the server. While the
API allows developers to fall into some traps, with careful use, it is used to build the most popular
Java web frameworks in use today.

Summary
In this chapter, you have seen the fundamental building blocks of the Java EE web container: the
Java Servlet API. You started out with an overview of the HTTP protocol. Then you looked at the
basic functions of a Java servlet for processing the server side of HTTP interactions, examining
the form of the HttpServletRequest and HttpServletResponse. By examining an example
application, a photo application, we saw how a web application that allows users to upload
photos to an online photo album can be written using three Java servlets, each with different
characteristics. This led to a more detailed exposition of the Java Servlet API, the lifecycle of a
Java servlet and its threading characteristics, the ServletContext, the HttpSession, and the
RequestDispatcher. You saw how Java servlets are packaged into a portable deployment file
called a WAR file, and looked at the deployment attributes of a Java servlet as expressed in the
@WebServlet annotation. You ended the chapter with an exploration of the strengths and
weaknesses of the Java Servlet API.

56 Java EE 7: The Big Picture

If you spend a lot of time writing dynamic web applications for the Java platform, you will
very likely write much of your application using one or more of the other web component
technologies other than Java servlets available in Java EE. But as you learn these other
component technologies, you will see the echoes of the Java Servlet API that underpins them
all. A solid grounding in the Java Servlet API will take you far.

CHAPTER
3

Dynamic Web Pages: JSP

58 Java EE 7: The Big Picture

A
JavaServer Page (JSP) is a Java servlet turned inside out. In other words, a JSP is equivalent to
a servlet in the sense that almost everything you can do in a Java servlet you can also do
 in a JSP; it is how you do it that is different.

In the last chapter on the Java Servlet API, you learned that a Java servlet is a Java component
that analyzes an HTTP request and writes out response content either to an OutputStream or to
a Writer. As you write more Java servlets, you will observe that much of the content that you
write to the response object is static, and only a relatively small amount of the code is dynamically
generating the data to write to the output. This is particularly true for Java servlets that write HTML
content: much of the Java servlet code is of the form

out.println(....Java string literal representing a line of HTML code...);

The inspiration for JSPs came from the observation that embedding HTML code inside out
.println() statements not only makes the HTML code difficult to maintain, it is counterintuitive
to web developers who are used to editing HTML code directly in an HTML-friendly editor, rather
than in a Java text editor or integrated development environment (IDE).

Thus, in JSP programming, instead of the static content of the web component being
embedded inside Java code, the dynamic fragments of the JSP are embedded as Java code within
the static content, as shown in Figure 3-1.

This feature makes JSPs especially well suited to the creation of web components that contain
a great deal of static content that is frequently tweaked and adjusted in a publishing tool, together
with small amounts of embedded dynamic content. In other words, JSPs are well suited to creating
content for a typical dynamic HTML website. In such sites, many of the pages are static: static
layouts; infrequently changing portions of static content that embeds more dynamic generated
content, such as breaking news headlines; personalized information such as account names; and
dynamically retrieved data such as top news headlines or recent purchases.

The key to understanding JSP technology is understanding what Java environment you have
available when you use Java code to embed dynamic content into a JSP, and the relationship
between the content language you are using (more often than not HTML, but not always) and the
dynamic data you wish to present.

FIGURE 3-1. JSPs versus Java servlets

JSP

static content

Java code
Java code

Servlet

Java code

static contentstatic content
Java code

Chapter 3: Dynamic Web Pages: JSP 59

JSP Runtime Architecture
Much becomes clear about the Java environment available in a JSP when you understand what
happens to a JavaServer Page when you deploy it to the Java EE web container. After the JSP has
been deployed as part of a WAR file to the Java EE web container, and some time before the web
container attempts to process the first request to that JSP, the web container reads the JSP you
deployed. From that information, it generates the Java code for a Java servlet that fulfills the
objectives of the JSP. It compiles the generated Java servlet and invokes it with the request that the
client intended for the JSP. In this way, the JSP never really deals with the HTTP request or the
response. The HTTP request intended for the JSP is handled in fact by the generated Java servlet
that the Java EE web container created for it. This process is shown in Figure 3-2.

This provides a large clue as to which parts of the Java EE web container environment are
available to the JSP: it is largely the same environment we have already seen in the Java Servlet API.

The JSP technology at its essence uses syntax to allow Java code to be embedded within static
content. The first and most basic form of this syntax is <% %>. You can write regular Java code
inside the <% %> braces and have access to the Java servlet and JSP APIs in such a context. When
the Java EE web container comes to create the generated Java servlet that will “implement” the
JSP, it takes any static content lines in the JSP and wraps them in an out.println() statement.
The web container also takes any Java code in the JSP embedded within the <% %> braces and
writes it directly, in sequence, in the generated Java servlet, as shown in Figure 3-3.

FIGURE 3-2. Interpreting JSPs in the web container

Web Server

JSP

Http Response

Http Request

static content

Generated Java servlet
Java code

static contentstatic content

Browser

Compile

Java code
Java code

Java code

60 Java EE 7: The Big Picture

In this view of a JSP, the basic syntax for embedded code fragments and their equivalent
generated form is only the beginning of the story. JSP provides a rich environment and set of
mechanisms for streamlining the boundaries between static and dynamic content built on top of
the Java servlet model. Nevertheless, the notion of JSP as being fundamentally the same as a Java
servlet, but with a different programming model consisting of a sea of static content containing
islands of Java code in various syntactical disguises, is the key to understanding the many aspects
of JSP technology.

A JSP Clock
Let’s take a look at a very simple example that shows some of the foundations of JSP. Here we
have a very simple JSP clock, which displays an HTML page containing the time.

In Figure 3-4, you can see that the JSP is in the page clock.jsp. You can already see that
much of the page is static: no matter when you load the page in the browser, it will probably say

FIGURE 3-3. Generating the servlet code from a JSP

Browser

Web Server

JSP

Generated Servlet

out.println(“<h3>”);
out.println(“The time is: “);
out.println(new Date());
out.println(“</h3>);

<h3>
 The time is: <%=new Date()%>
</h3>

Http Response

Http Request

Chapter 3: Dynamic Web Pages: JSP 61

“Hello there!” every time. But you can also see that the time must be generated dynamically at
the time your browser requests the page. Let’s take a look at the code:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<%@page import="java.util.Date" %>
<%@page import="java.text.SimpleDateFormat" %>
<!DOCTYPE html>
<html>
 <head>
 <title>JSP Clock</title>
 </head>
 <body>
 <div align='center'>

 Hello there!

 It's been <%=System.currentTimeMillis()%> milliseconds
 since midnight, January 1st 1970.

 In other words, it’s
 <%
 Date now = new Date();
 SimpleDateFormat sdf = new SimpleDateFormat("EEEEEEEE");
 String today = sdf.format(now);
 out.println(today.trim());
 %>.
 </div>
 </body>
</html>

FIGURE 3-4. JSP clock example

62 Java EE 7: The Big Picture

First, we start by noticing the <%@page%> lines at the top of the JSP page. These statements
are called JSP directives. The JSP @page directive is used to set up properties that are used by the
whole of the JSP page. In this example, we have three @page directives: the first defines the MIME
type and encoding for this HTML page, the second two define that the JSP page is going to use
two Java classes: java.util.Date and java.text.SimpleDateFormat.

Reading beyond the page directives, we encounter the HTML code that we would expect for
this page, until we get to the line:

It's been <%=System.currentTimeMillis()%> milliseconds

The text <%=System.currentTimeMillis()%> is called a JSP scriptlet. When we enter it,
we leave the world of static HTML code and we rejoin the world of dynamic Java code. There
are two kinds of JSP scriptlets

<%= java expression %>

where java expression evaluates to a value. This value is then used when the page is called
and the value becomes part of the page output, and

<% java expression %>

where java expression is a collection of Java statements that perform some calculation and
take some action. We see the second form in our example page when we come to calculate and
display the current day of the week:

<%
 Date now = new Date();
 SimpleDateFormat sdf = new SimpleDateFormat("EEEEEEEE");
 String today = sdf.format(now);
 out.println(today.trim());
%>

Notice that in this Java statement block, the JSP page is relying on the @page imports it
declared at the top in order for the Java classes Date and SimpleDateFormat to be resolved.
Second, look at the variable out. What is it?

In this line of code, out refers to the output of the underlying HTTP response that carries the
content back to the calling client, and is a type of java.io.Writer from the JSP API, specifically,
javax.servlet.jsp.JspWriter. Notice that this variable has not been declared anywhere
else in the JSP: that is because the Java environment within JSP expressions comes preconfigured
with a number of objects called implicit objects. Other examples include the session variable
(the current HttpSession) and the response variable (the current HttpServletResponse).

So the line

out.println(today.trim());

writes the day string to the response writer, and that is how it appears on the page when loaded in
the browser.

More complicated JSPs that make further use of embedded Java code that is in the form of a
scriptlet, as we see in this simple example, tend to suffer some of the same maintainability issues
that Java servlets can, except in reverse. Ideally, static markup content and dynamic Java content

Chapter 3: Dynamic Web Pages: JSP 63

are separated into different files. The JSP techniques and technology for doing this will lead us
into the topics of JSP beans, tag libraries, and expression language. But first, we need to more
fully understand the core JSP syntax that this simple example has introduced.

JSP Syntax
By convention, JSP files should have the file ending .jsp. This identifies to the Java EE web
container that it should attempt to interpret the file as a JSP. The URL for a JSP is just like the URL
for a regular static content file in a web application. That is, for a JSP file located at

/mysite/hello.jsp

in a WAR file, the complete URL to the JSP at runtime is

http://<hostname:port>/<web-app-context-root>/mysite/hello.jsp

It is possible to map a JSP to additional URLs within the web application, but we will leave
the more complicated topic of custom URL-mapping in a web application until Chapter 9. For
now, it will be sufficient simply to use the URL that is derived from the archive path within the
WAR file.

JSP syntax falls into two categories: JSP directives and JSP actions. JSP directives are statements
in the JSP syntax that govern properties that are global to the JSP, for example, the MIME type of
the content that the JSP will produce, as we saw in the clock example, or to which page the
browser should be directed should the JSP encounter an error. JSP actions are statements in the
JSP syntax that control some aspect of how a portion of the JSP output is created, such as including
the output of another web component within the JSP, or including a property value from a
JavaBean in a JSP. Let’s start our examination of the syntax with JSP directives.

JSP Directives
JSP directives, which dictate properties global to the JSP, are all of the form

<%@ directive_name attribute-1="value-1"...attribute-n=”value-n” %>

They can appear anywhere in the JSP file, though by convention, they are usually listed at the
top of the JSP file. This makes good sense, because their effect is on the whole of the JSP. The three
directives are

 page

This directive governs general properties of the JSP, such as characterizing its output,
buffering properties, and using imports for Java scriptlets.

include

This directive allows a JSP to include the content of another file. This can be useful for
including, for example, a standard header in your JSP.

taglib

64 Java EE 7: The Big Picture

This directive allows a JSP to declare that it will use special tags from something called a tag
library. A tag library is a collection of Java classes that formulate small snippets of markup output,
each of which is associated with a markup tag that can be included in a JSP page. We will see tag
libraries later in this chapter.

Each JSP directive may appear multiple times with different attributes, so there is a design
choice as to whether to use multiple attributes with the same directive name, or whether to list
multiple directives, each with one attribute. The type of design choice is really a matter of
aesthetics, but developers usually group related attributes together in the same directive and use
separate directives for attributes that are not related.

Page Directives: General Properties Global to the JSP
JSP page directives are a collection of instructions to the JSP runtime as to how to process the JSP.
There are several different kinds; let’s take a look at them one by one.

Attributes Governing JSP Output Two page directive attributes declare information about the
output of a JSP: contentType and pageEncoding. The contentType attribute allows the JSP
to declare the MIME type of the content it produces, and the pageEncoding allows the JSP to
declare the character encoding it uses. These may be listed as separate attributes, or, for brevity,
the pageEncoding may be combined into the contentType attribute. For example

<%page contentType"text/html"%>
<%page pageEncoding="utf-8"%>

is equivalent to

<%page contentType"text/html; utf-8" %>

Here are some additional examples of contentType:

<%page contentType"image/jpeg" %>
<%page contentType" text/plain"%>

Attributes Governing Languages Used in JSPs JSPs use the Java language for scriptlets and
JSP Expression Language (JSP EL). Languages other than Java may be used for scriptlets if the
underlying implementation supports them. Four page directive attributes govern the use of these
languages in a JSP: language, isELIgnored, isScriptingEnabled, and import. A JSP may
declare the

<%page language="java"%>

directive to indicate it uses Java in its scriptlets, although this particular value is not usually
necessary to declare because Java is always supported in JSPs. If a JSP does not use JSP EL, it may
declare it as

<%page isELIgnored ="true"%>

which can yield some performance gains. The default is that the JSP implementation always looks
for uses of JSP EL in the JSP. Finally, a JSP that uses no scriptlets at all may declare it by using the
page directive isScriptingEnabled.

<%page isScriptingEnabled ="false"%>

Chapter 3: Dynamic Web Pages: JSP 65

The JSP implementation assumes that every JSP has scriptlets unless it is told otherwise using
this directive.

When Java scriptlets are used, they often need to import classes from other Java platform
packages, in which case the JSP must declare a page directive using the import attribute. The
value is a comma-separated list of packages the scriptlet code in the JSP will need. For example,

<%page import ="java.util.*, java.text.*"%>

which is equivalent to

<%page import ="java.util.*"%>
<%page import ="java.text.*"%>

Many developers prefer the second style, where the import is split into multiple page
directives using the import with a single package, as it more closely mimics the single package
per import statement pattern found in the Java language.

JSP scriptlets may use any of the classes in java.lang, the Java servlet API, and the JSP Java
API, which are located in javax.servlet with subpackages, and javax.servlet.jsp with
subpackages.

Attributes Controlling How the JSP Behaves at Runtime When the JSP page output is gathered
in order to be written into the underlying output stream back to the calling client, there are a number
of choices about how the content is written. The implementation may buffer the content, and may
wish to choose when to write the buffer to the output. Without using any special page directive, JSP
implementations buffer the page output and automatically flush the content to the output when the
buffer fills, so these switches are definitely for more advanced developers. They can give useful
control to the developer in optimizing JSP performance for particular pages and particular clients. The
last two attributes of the JSP page directive are a request to the JSP implementation to control aspects
of how the JSP output is buffered: autoFlush and buffer. The buffer attribute defines whether
any buffering is used at all and, if so, how large the buffer should be. The second, the autoFlush
attribute, is a switch that instructs the JSP implementation whether to flush the buffer when it fills or
whether to require the JSP to flush the buffer manually. For example

<@page autoFlush="false" buffer="8kb"%>

instructs the JSP implementation to use a buffer no smaller than 8 kilobytes and not to flush it
automatically. Contrastingly,

<@page buffer="none"%>

instructs the JSP implementation not to use a buffer at all, and

<@page buffer="6kb"%>

instructs the JSP implementation to use a buffer of size at least 6 kilobytes with automatic flushing
of content when the buffer fills.

As for Java servlets, the default threading model for JSPs is that they are expected to handle
multiple incoming HTTP requests concurrently. This frequently happens in web applications with
more than one client! However, it can be useful to be able to create JSPs that you know will only
ever be called by one thread at a time. In such cases, JSP implementations may choose to make

66 Java EE 7: The Big Picture

any concurrent requests form a line and invoke only the JSP one thread at a time, or it may choose
to instantiate multiple instances of the same JSP, each handling only one request at a time. With
either approach, the JSP implementation can guarantee that each JSP instance is handling one
HTTP request, or thread, at a time. You can use the isThreadSafe attribute:

<@page isThreadSafe="false"%>

to let the JSP implementation know that this JSP needs gentle handling and should be called only
one thread at a time.

JSP Error Pages JSPs may act as error pages for other web components. This is useful if you wish
to customize the page that the client sees if a JSP generates an unhandled runtime error. In such
cases, the JSP that wishes to act as a nicely formatted error page must use the isErrorPage
attribute in a page directive:

<@page isErrorPage="true"%>

and a JSP that wishes the client to be redirected to this error page in the event of an unhandled
exception at runtime can indicate the name of the JSP that it wishes to use using the errorPage
attribute; for example:

<@page errorPage="/myerror.jsp"%>

Turning Off HttpSession Tracking As we will see when we look at JSP implicit objects
shortly, JSP developers can easily get hold of the HttpSession from the JSP Java environment
available to scriptlets. However, session tracking comes with some overhead, and as an
optimization, some JSPs that do not make use of the HttpSession can turn off the session
tracking mechanism by using the session attribute of the page directive, such as

<@page session="false"%>

By default, that is, without such a directive, the HttpSession is always maintained by the JSP
implementation. We will see that this is a useful way to share a client-specific application state.

Now that we have toured all the attributes of the @page directive, let’s summarize what we
have learned in the following table.

Page Directive Purpose Values Default
autoFlush If buffering is used

to write JSP content
to the output stream,
determines whether
to flush the buffer
when it fills or raise
an exception

true or false true

buffer Defines the size of
the buffer used to
write JSP content
to the underlying
output stream.

None for no
buffering or the
number of KB, e.g.,
8KB

Depends on
implementation—
typically a few KB

Chapter 3: Dynamic Web Pages: JSP 67

Page Directive Purpose Values Default
contentType Defines the MIME

type of the JSP
content

MIME type strings Text/html

errorPage Defines whether
this JSP can be used
as an error page for
another JSP

true or false false

extends Defines a subclass
of HttpServlet that
the servlet for this
JSP will extend

Mypackage
.MyServletClass

javax.servlet
.HttpServlet

import Defines the Java
imports for scriptlets
in the JSP

Comma-separated
list of package
names

java.lang, the
Java servlet, and
JSP APIs

info A text description of
the JSP used in tools

A string Empty string

isELIgnored Declares whether
JSP Expression
Language is can be
ignored in this JSP

true or false false

isThreadSafe Declares whether
this JSP is able to
receive multiple
concurrent requests

true or false true

isScriptingEnabled Declares whether
this JSP uses
scriptlets

true or false true

language The language used in
scriptlets in this JSP

TBD Java

pageEncoding The file encoding of
the JSP

String representing a
charset

session Declares whether
this JSP uses
HttpSessions

true or false true

The include Directive
The JSP include directive allows you to pull in static content into your JSP page. This could be
used to add a standard header or footer to your web page, or to insert content at any point. The
syntax is simple: the file attribute allows you to define the relative URL of the file you wish to
incorporate:

<% @include file="myHeader.html"%>

68 Java EE 7: The Big Picture

The taglib Directive
The JSP taglib directive allows you to import custom tags that are implemented in one or more
Java classes in a JSP tag library. We will examine JSP tag libraries shortly, but for now, you use this
directive to specify the descriptor file (ending in .tld) that describes all the available tags and the
prefix that the JSP will use when it incorporates the tags:

<%@ taglib uri="myShoppingTags.tld" prefix="shopping" >

Now that we have seen all the JSP directives, our next step is learning the JSP syntax that
allows us to generate dynamic content: JSP actions. Before we do that, we need to take a look at a
central aspect of the JSP programming model, and one to which several of the JSP actions relate.

Using Java Beans from JSPs
As we mentioned earlier, the heavy use of Java scriptlets within a JSP leads to a code file
containing a mix of code in two different languages: one for the static content and one for the
dynamic content. On one hand, the central feature of JSPs is to be able to mix those worlds
together. On the other hand, as with Java servlets that produce web pages, it leads to code with a
poor separation of responsibilities. All aspects of the JSP, whether it be code for presentation, code
for data retrieval from a data source, code that checks input values, or code that governs the user’s
interaction flow with JSPs, are all in one place. Fortunately, JSP includes two central mechanisms
to factor out dynamic Java code from static web content more cleanly than the scriptlet syntax
allows. Those mechanisms are the use of JavaBeans from JSPs and JSP tag libraries.

A JavaBean is a regular Java class that conforms to a number of conventions that allows it to
be a reusable component in a variety of settings. In order for a Java class to be a JavaBean, it must

 ■ Have a zero args constructor

 ■ Use the JavaBean property pattern to expose any data that the class wants client code
to use

For example, any data of class Foo JavaBean wishes to be retrieved must have a method of
the form

public Foo getFooPropertyName()

where fooPropertyName is the name of the property of type Foo, and any data of class Bar the
JavaBean wishes to be stored must be of the form

public void setBarPropertyName(Bar bar);

where barPropertyName is the name of the property of type Bar.
To be able to use a JavaBean from within a JSP, you need three pieces of syntax for all

JSP actions:

<jsp:useBean id="name for bean" class="full y qualified classname of bean">

The id gives the JavaBean a name you can use elsewhere in the JSP, and class tells the JSP
implementation the classname. Now you are ready to use the JavaBean in a JSP. You can use the
JavaBean two ways: either you can retrieve a property from the JavaBean using the

Chapter 3: Dynamic Web Pages: JSP 69

<jsp:getProperty name="name for bean" property="property name">

action, or you can set a value on the JavaBean by using the

<jsp:setProperty name="name for bean" property="property name" value="property value string">

Let’s take a look at an example. Since one of the goals of using JavaBeans in JSPs is to separate
the dynamic Java code from the static web content in a JSP, let’s take our clock example and see
whether using this technique achieves that goal.

First, we remember that there are two scriptlets in the clock.jsp:

<%=System.currentTimeMillis()%>

and

<%
 Date now = new Date();
 SimpleDateFormat sdf = new SimpleDateFormat("EEEEEEEE");
 String today = sdf.format(now);
 out.println(today.trim());
%>

First, let’s take this code and put it into a JavaBean instead of having it float in scriptlets:

import java.text.SimpleDateFormat;
import java.util.Date;

public class ClockBean {

 public long getCurrentTimeSinceEpoch() {
 return System.currentTimeMillis();
 }

 public String getReadableDate() {
 Date now = new Date();
 SimpleDateFormat sdf = new SimpleDateFormat("EEEEEEEE");
 String today = sdf.format(now);
 return today;
 }
}

Next, we will replace the scriptlets in the JSP page, yielding:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <head>
 <title>JSP Clock</title>
 </head>
 <body>
 <jsp:useBean id="myBean" class="javaeems.chapter3.clockbean.ClockBean"/>
 <div align='center'>

 Hello there!

70 Java EE 7: The Big Picture

 It's been
 <jsp:getProperty name="myBean" property="currentTimeSinceEpoch"/>
 milliseconds since midnight, January 1st 1970.

 In other words, it’s <jsp:getProperty name="myBean"
property="readableDate"/>.
 </div>
 </body>
</html>

Note that we no longer have any need for the @import directives at the top of the JSP, and
we have replaced the scriplets by retrieving the values of the currentTimeSinceEpoch and
readableDate properties of the bean we declare under the ID myBean.

We can go a little further and allow the JavaBean to be configurable in terms of how it formats
the readable date. Let’s add a new property called dateFormat to our bean, use it to display the
readable Date, and call it ConfigurableClockBean:

import java.text.SimpleDateFormat;
import java.util.Date;

public class ConfigurableClockBean {
 String dateFormat = "EEEEEEEE";

 public long getCurrentTimeSinceEpoch() {
 return System.currentTimeMillis();
 }

 public void setDateFormat(String dateFormat) {
 this.dateFormat = dateFormat;
 }

 public String getReadableDate() {
 Date now = new Date();
 SimpleDateFormat sdf = new SimpleDateFormat(this.dateFormat);
 String today = sdf.format(now);
 return today;

 }
}

Now from the JSP, we can choose how we would like the date to be displayed on the page,
but setting the property of the bean using the <jsp:setProperty> action:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <head>
 <title>JSP Clock</title>
 </head>
 <body>
 <jsp:useBean id="myBean" class="javaeems.chapter3.clockbean.ConfigurableClockBean"/>
 <div align='center'>

Chapter 3: Dynamic Web Pages: JSP 71

 Hello there!

 It's been
 <jsp:getProperty name="myBean" property="currentTimeSinceEpoch"/>
 milliseconds since midnight, January 1, 1970.

 In other words, it’s <jsp:getProperty name="myBean" property="readableDate"/>

 <jsp:setProperty name="myBean" property="dateFormat" value="MMMMMMMMM"/>
 Or in other words, it’s the month of <jsp:getProperty name="myBean"
property="readableDate"/>
 in
 <jsp:setProperty name="myBean" property="dateFormat" value="YYYY"/>
 <jsp:getProperty name="myBean" property="readableDate"/>
 </div>
 </body>
</html>

This yields the result shown in Figure 3-5.
Have we achieved our goal? Yes, all the dynamic code has been separated from the

presentation code. This means that the dynamic code can be separately maintained from the
presentation code, perhaps by different developers with different skill sets. You can probably
imagine how useful this technique becomes as the complexity of a JSP increases from this rather
simple level.

Several other attributes can be used on the three JavaBean-related actions of
<jsp:useBean ...>, <jsp:getProperty ...>, and <jsp:setProperty ...>. First,
when declaring that the JSP will use a particular JavaBean, the ID attribute is mandatory: the
JavaBean must have a name so that the bean can be identified and called from elsewhere in the
JSP (for example, from a <jsp:getProperty ...> action). The JavaBean instance can be
instantiated through two mechanisms: by class name using the class attribute, as we saw in the
example, or by passing a bean name, which is interpreted as the name understood by a call to
java.beans.Beans.instantiate(). Typically, JSPs simply refer to the JavaBean by its fully
qualified Java classname, that is, the first mechanism.

FIGURE 3-5. JSP clock with JavaBean

72 Java EE 7: The Big Picture

The management of objects by the platform is a recurring feature of many aspects of the Java EE
platform. One question that Java EE developers often ask is: what is the scope of an object? When is
it created, what is the period in which it can be used, and when is it destroyed? These are good
questions for instances of JavaBeans used by JSPs. Without intervention by the developer, JavaBean
instances created for a JSP in the cases we are exploring are instantiated at some point before the
<jsp:useBean> action is encountered in the JSP, and they are valid until all the JSP output has
been written to the buffer. In other words, the JSP bean can be used anywhere within the same JSP
after its <jsp:useBean> declaration, but not outside the JSP. This is called page scope.

Four scopes are available to the JSP developer:

 ■ Page scope is the scope that is active within the same JSP.

 ■ Request scope is the scope that is active in the context of the same HTTP request. This
is similar to page scope, but this scope is still active if the JSP forwards the request to
another JSP, or within a JSP that the original JSP has included using the <jsp:include>
mechanism described later.

 ■ Session scope is the scope that is active within the same HTTP session. This may span
several interactions from the same client to several JSPs within the same web application
from the same client.

 ■ Application scope is the scope that is active within the same application. This spans all
interactions within the same web application with all its clients.

So, the final optional attribute of the <jsp:useBean> declaration is the scope attribute and
can take the values page, request, session, or application. If omitted, the default value is page.

When a JavaBean is in a specific scope, it means the JSP implementation will instantiate one
instance of the JavaBean for that scope. If your JavaBean is in page scope, each time the JSP is
called, a new instance of the JavaBean will be created and will be valid only within that page. If
your JavaBean is in request scope, the JSP implementation will instantiate one instance of the
JavaBean for each HTTP request, and the instance will be valid within the JSP and any other JSPs
that the original JSP forwards to or includes from. If your JavaBean is in session scope, the JSP
implementation will create one instance of the JavaBean that will be valid for each active session
in the application. If your JavaBean is in application scope, then the JSP implementation will
maintain one instance of the JavaBean for the whole lifetime of the application, no matter which
client is calling the JSP.

Now that we have learned all the ways to declare a JavaBean, let’s look at the variants for
getting and setting the JavaBean properties. The syntax

<jsp:getProperty name="myBean" property="myBeanProperty" />

retrieves the value from the call getMyBeanProperty() on the JavaBean, which has been
declared in the containing context in this JSP. The JSP implementation uses the string
representation of the returned object from the JavaBean. Both name and property are required,
and are the only attributes of this JSP action.

The syntax

<jsp:setProperty name="myBean" property="myBeanProperty"
 value="myBeanPropertyValue"/>

is the most typical form of the JSP action for setting the value on a JavaBean. The JSP implementation
attempts a call to the method setMyBeanProperty() on the JavaBean, passing in a parameter

Chapter 3: Dynamic Web Pages: JSP 73

based on the value string from the declaration and parameter type of the method. If the parameter
method is a String, which is the simplest and most straightforward case, the JSP implementation
passes in the value string directly. If the parameter type is not a String, the JSP implementation
makes an attempt to convert the value String into an object of the parameter type, looking for a
single-argument String constructor.

Alternatively, you can set the properties on the JavaBean from the HTTP request properties,
that is to say, the key-value pairs passed in through the query string on the HTTP request. In this
case, instead of specifying the value attribute, you can use the param attribute, giving the value
as the name of the request property. In such a situation, the JSP implementation parses out the
value of the given request parameter as a string and passes that to the setter on the JavaBean. For
example, the action

<jsp:setProperty name="myColorBean" property="color" param="brush-color"/>

in a JSP called painting.jsp and invoked with the URL

painting.jsp?brush-color=red

will cause the JavaBean named myColorBean’s setColor(String colorName) method to be
called with the value “red.”

jsp:forward and jsp:include
These JSP actions allow a JSP to forward the HTTP request to another web component (servlet,
JSP, static file) and to include the output of another web component into it.

The forwarding action syntax looks like this:

<jsp:forward page="relative URL of the web component" />

and there are no variants. Just as with Java servlets, once a JSP has forwarded its request to
another web component, any content it attempts to write after the forward has been processed is
simply ignored.

The including action syntax looks like this:

<jsp:include page="relative URL of the web component" flush="true" />

where flush is an optional attribute that controls whether the content of the JSP using the
include’s buffer is flushed (that is, all its content written to the client) prior to the include or not.
Typically, JSPs want all their content to have been sent before including the output from another
JSP in this manner, so this default is true if the flush attribute is absent. When the included web
component’s output has been sent, the remainder of the content on the calling JSP is sent.

When using the <jsp:include> action, you can pass request parameters from the calling
JSP to the web component being called. This can be achieved using

<jsp:param name = “paramName" value = “paramValue">

For example, the code

<jsp:include page="brush.jsp">
 <jsp:param name="softness" value="very soft">
</jsp:include>

74 Java EE 7: The Big Picture

passes the request parameter softness=very soft to the brush.jsp. This is a very useful
technique for passing application state between a JSP and a web component it includes.

Finally, be careful not to confuse the <jsp:include> action with the @include directive we
saw earlier. The <jsp:include> action is used to include the output of any web component, be
it a static web resource such as a web page or image file, or any dynamic web component such
as another JSP or Java servlet. The @include directive is used to incorporate only static web
resources.

jsp:plugin
The jsp:plugin action allows you to use a Java applet in a JSP without worrying about how to
generate the appropriate client-browser-dependent tags (<object> or <embed>). Here is the
syntax:

<jsp:plugin
 type="bean|applet"
 code="objectCode"
 codebase="objectCodebase"
 { align="alignment" }
 { archive="archiveList" }
 { height="height" }
 { hspace="hspace" }
 { jreversion="jreversion" }
 { name="componentName" }
 { vspace="vspace" }
 { width="width" }
 { nspluginurl="url" }
 { iepluginurl="url" } >
 { <jsp:params>
 { <jsp:param name="paramName" value= paramValue" /> }+
 </jsp:params> }
 { <jsp:fallback> arbitrary_text </jsp:fallback> }
</jsp:plugin>

Here is an example of the jsp:plugin action used for an applet of the Banner class, which
uses two parameters, and a text error message:

<jsp:plugin
 type="applet"
 codebase="/myapplet"
 code="Banner.class"
 width="100"
 height="25">
 <jsp:param name="highlight" value="true" />
 <jsp:param name="repeat" value="20" />

 <jsp:fallback>
 Error initializing the Banner applet
 </jsp:fallback>

</jsp:plugin>

Chapter 3: Dynamic Web Pages: JSP 75

<jsp:text>
The <jsp:text> action enables you to dynamically include text in a JSP. This is particularly
useful when using JSP Expression Language, as we will see later. But you can also use a scriptlet
to dynamically generate the text.

The remaining JSP actions allow the developer to dynamically create XML content from a JSP.
They are <jsp:element>, <jsp:attribute>, and <jsp:body>. These actions allow you to
generate an XML element, its attributes, and its body. Here is an example:

<%@page language="java" contentType="text/html"%>
<html>
 <head>
 <title>Generate XML Element</title>
 </head>
 <body>
 <jsp:element name="my-element">
 <jsp:attribute name="my-attribute">
 Here is the value of my-attribute
 </jsp:attribute>
 <jsp:body>
 Here is the body of my-element
 </jsp:body>
 </jsp:element>
 </body>
</html>

which generates the following HTML when returned to the client:

<html>
 <head>
 <title>Generate XML Element</title>
 </head>
 <body>
 <my-element my-attribute="Here is the value of my-attribute">
 Here is the body of my-element
 </my-element>
 </body>
</html>

The Java Environment for JSPs
Now that we have explored the JSP syntax in some detail, it is time we turned our attention to the
Java environment available to Java code embedded in a JSP. This will become especially important
to understand when we come to the topic that follows, and our second mechanism that helps
organize dynamic code and presentation code in JSP applications: tag libraries.

The Java environment in which JSPs can operate can be described in two different ways. The
first is to describe the Java objects that the JSP implementation makes available in the form of
named variables from a scriptlet. The second approach is to tour the JSP Java API classes. We will
start with the first approach, as it leads naturally to the second.

Java objects in the form of named variables that are available in the Java environment for a JSP
are called the JSP’s implicit objects. They are considered implicit because the JSP doesn’t know
where they come from; like the next meal to a fortunate child, they simply appear when needed.

76 Java EE 7: The Big Picture

We already encountered an implicit object in the clock example: the java.io.Writer object
with the name out that we used to print the formatted date in the scriptlet:

<%
 Date now = new Date();
 SimpleDateFormat sdf = new SimpleDateFormat("EEEEEEEE");
 String today = sdf.format(now);
 out.println(today.trim());
%>

This object is already familiar because it is based on the Java Servlet API java.io.Writer
that you can obtain from the HttpServletResponse object passed into a Java servlet when
servicing a client request.

The following table shows the most frequently used implicit objects available from a JSP.

Implicit Object Used for
javax.servlet.ServletContext Access to the web container, storing custom

attributes
javax.servlet.ServletConfig Access to the configuration information about the

servlet backing this JSP
java.lang.Throwable For JSPs that are acting as error pages; the exception

gives the developer access to the exception that
caused the current error page to be called

javax.servlet.jsp.JspWriter Access to the writer for writing textual context out
to the client in the HTTP response body

HttpServlet Access to “this,” the instance of the Java servlet
backing this JSP

javax.servlet.jsp.PageContext Access to a JSP API object that represents the JSP
page and its properties

javax.servlet.http
.HttpServletRequest

Access to the HTTP request that came from the
client

javax.servlet.http
.HttpServletResponse

Access to the HTTP response for writing content
out to the client

javax.servlet.http.HttpSession Access to the current HTTP session for this JSP

A few more implicit objects, all of which can be derived from those in the tables, are available
to access cookies, headers, and request parameters. As a Java servlet developer, all of the JSP
implicit objects will be very familiar: they are mostly the same objects that are available to you
inside a Java servlet’s service method. This is no surprise given that a JSP is turned into a Java
servlet’s service implementation at runtime!

JSP Standard Tags
Standard with the Java EE platform, JSP defines a collection of very useful tags that can be freely
used in any JSP. They fall into a handful of categories; JSP standard tags exist for general JSP
programming, some of which we are about to explore. Additionally, there are tags for accessing

Chapter 3: Dynamic Web Pages: JSP 77

SQL data, XML and text processing and formatting, and a collection of functions for string
manipulation. It is beyond the scope of this book to example all of these tags, known as the JSP
Standard Tag Library. However, we will look closely at some of the core tags from that library,
since they are the most frequently and widely used ones.

When looking for ways to reduce the amount of embedded code in a JSP file, we frequently
encounter Java control statements within the embedded code, statements such as the for loop,
and the if-then-else statement. The JSP Standard Tag Library contains tags that allow you to replace
those control statements with tags: <c:forEach> and <c:if>.

<c:forEach> has two main variants: one for iterating through a sequence of numbers with a
step value, and one for iterating over an array, or Java collection. This is particularly useful when
iterating over properties of a JavaBean. For the first variant, the form is

<c:forEach var="index name" begin="start index" end="end index" step="step increment">

and the var value may be used anywhere within the <c:forEach> element using ${index
name}, and for the second

<c:forEach var="variable name" items="collection name">

where the variable may be referenced anywhere inside the <c:forEach> loop using
${variable name}. Let’s look at an example.

In this example, we use a JavaBean called MyWallet, the code for which is shown here:

import java.util.*;

public class MyWallet {
 String[] coins = {"1¢", "1¢", "5¢", "25¢", "25¢"};
 String[] currency = {"$1", "$1", "$1", "$5", "$10", "$10", "$20"};
 String[] receipts = {"gas - $42.50", "groceries - $35.26", "bookstore - $12.99"};

 public String[] getCoins() {
 return coins;
 }

 public List getNotes() {
 return Arrays.asList(notes);
 }

 public Set getReceipts() {
 return new HashSet(Arrays.asList(receipts));
 }

}

You will notice that this example exposes three read-only JavaBeans properties: coins, notes, and
receipts of types Java array, java.util.List and java.util.Set: the <c:forEach> syntax is
the same for each of them. Before we look at a JSP that uses this iteration tag, in order to use any tags
from the standard tag library, the JSP has to use the @taglib directive to say it is going to:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

78 Java EE 7: The Big Picture

The uri is the well-known URI for the standard tag library, and is always the same. The prefix
may be chosen according to taste, but the conventional prefix for tags in the standard tag library is
c. Now let’s look at the code:

<!DOCTYPE html>
<html>
 <jsp:useBean id="myWallet" class="javaeems.chapter3.beans.MyWallet"/>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>For each</title>
 </head>
 <body>
 Odd Numbers up to 20:
 <c:forEach var="i" begin="1" end="20" step="2">
 ${i}
 </c:forEach>
 <p/>
 Coins I have:
 <c:forEach var="coin" items="${myWallet.coins}">
 ${coin}
 </c:forEach>
 <p/>
 Notes I have:
 <c:forEach var="note" items="${myWallet.notes}">
 ${note}
 </c:forEach>
 <p/>
 Receipts:
 <c:forEach var="receipt" items="${myWallet.receipts}">
 ${receipt}
 </c:forEach>
 </body>
</html>

Notice that this JSP uses both variants of the <c:forEach> tag: iteration through a sequence
of numbers, and iteration through a collection, or array. It’s useful to know that in the former case,
if the step attribute is omitted, the default value is 1. When you execute the JSP page, you will see
the output shown in Figure 3-6.

FIGURE 3-6. JSP example with iteration tags

Chapter 3: Dynamic Web Pages: JSP 79

The <c:if> tag is equally useful, having the general form:

<c:if test="condition">

where the body of the tag is written to the JSP only if the condition evaluates to be true.
Using dynamically calculated attribute values such as the condition in this pseudo-code, we

have focused only on JavaBean properties such as ${myBean.property}. This type of expression
is an example of the JSP Expression Language, which we will be covering shortly. We have many
ways to test conditions in the JSP EL, the == operator being a very commonly used equality tester.
We examine it in the following example, which uses the <c:if> tag to test what we should be
drinking based on the time of day:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>If page</title>
 </head>
 <body>
 <jsp:useBean id="myBean" class="javaeems.chapter3.clockbean.ConfigurableClock-
Bean"/>
 <jsp:setProperty name="myBean" property="dateFormat" value="a"></
jsp:setProperty>
 <c:if test="${myBean.readableDate=='PM'}">
 time for tea!
 </c:if>
 <c:if test="${myBean.readableDate=='AM'}">
 time for coffee!
 </c:if>
 </body>
</html>

If you evaluate this JSP in the afternoon, you will get the output shown in Figure 3-7, and in
the morning you will get the output shown in Figure 3-8.

FIGURE 3-7. JSP example with conditional tag in the afternoon

80 Java EE 7: The Big Picture

FIGURE 3-8. JSP example with conditional tag in the morning

Custom Tag Libraries
We touched on some of the standard tags available to the JSP developer. You can also create your
own tags in a custom tag library. With technologies that have been around for a while, there is
often more than one way of doing the same thing. A key motivation for using JavaBeans from JSPs
was to be able to separate Java code from presentation or markup code in a web application,
making it easier to focus on one task in one place: always a plus when developing or maintaining
code. Tag libraries offer a powerful mechanism for furthering this kind of separation: they allow
developers to create new tags that they can use in their JSPs, while providing Java classes that
implement the behavior. Let’s take a look.

We use three steps to create and use a custom tag.
First, create a Java class that implements the JSP Java API interface javax.servlet.jsp

.tagext.JspTag
The easiest way to do this is to subclass javax.servlet.jsp.tagext

.SimpleTagSupport and to override the

public void doTag()

method. In order to write content out when your tag is used in a JSP, write the content to the
HTTP response by calling

super.getJspContext().getOut().print(...).

Second, you need to tell the JSP container that you have a tag in this Java class and some of
its attributes. In order to do this, you create a Tag Library Descriptor (.tld) file. We will see an
example of one shortly.

Third, you use the custom tag you created in a JSP file. Using the <% @taglib ...>
directive:

<%@ taglib prefix="prefix name" uri="relative uri of tld file in web app"%>

where “prefix name” is the prefix you will use to use the tag: <prefix:tagname> in the JSP.

Chapter 3: Dynamic Web Pages: JSP 81

The setup of a custom tag is somewhat complicated. Let’s review what we have learned by
reaching back to our clock example. We can rewrite the clock example to use custom tags
instead of embedded Java code.

We will need two tags, one to display the number of milliseconds since the computing epoch,
and another to display the current time in a nice format. Let's take the tag implementations in
order. First, a class called MyTimeSinceEpochTag:

import java.io.IOException;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.tagext.SimpleTagSupport;

public class MyTimeSinceEpochTag extends SimpleTagSupport {
 @Override
 public void doTag() throws JspException, IOException {
 JspWriter out = getJspContext().getOut();
 out.print(System.currentTimeMillis());
 }

}

which you can see simply writes the current time in milliseconds to the HTTP response via the
JSPWriter it obtains from the JspContext, available on the API class SimpleTagSupport this
class extends.

Our next tag has an attribute, the date format string, for nicely formatting the current time, so
is a little more complicated:

import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.Date;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.tagext.SimpleTagSupport;

public class MyDateTag extends SimpleTagSupport {
 private String dateFormat;

 public void setDateFormat(String dateFormat) {
 this.dateFormat = dateFormat;
 }

 public void doTag() throws JspException, IOException {
 JspWriter out = getJspContext().getOut();
 Date now = new Date();
 SimpleDateFormat sdf = new SimpleDateFormat(this.dateFormat);
 String today = sdf.format(now);
 out.println(today);
 }
}

82 Java EE 7: The Big Picture

We have now completed the first step. Next, we need to declare these tag implementations in
the web application using a TLD file:

<?xml version="1.0" encoding="UTF-8"?>
<taglib version="2.1" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/
ns/javaee/web-jsptaglibrary_2_1.xsd">
 <tlib-version>1.0</tlib-version>
 <short-name>My Custom Tags for Chapter 3</short-name>
 <tag>
 <name>time-since-epoch</name>
 <tag-class>javaeems.chapter3.clockbean.MyTimeSinceEpochTag</tag-class>
 <body-content>scriptless</body-content>
 </tag>
 <tag>
 <name>date</name>
 <tag-class>javaeems.chapter3.clockbean.MyDateTag</tag-class>
 <body-content>scriptless</body-content>
 <attribute>
 <name>dateFormat</name>
 <required>true</required>
 </attribute>
 </tag>
</taglib>

Once we have identified the versions of the JSP and tag extension APIs, we can give our collection
of tags a name that can be used in tools, the <short-name>. Then the <tag> element, a
subelement of <taglib> that may occur as many times as you have tags to declare, contains the
name of the tag as it will appear in the JSP and the tag class that implements the tag, together with
a collection of <attribute> subelements that define what bean properties on the tag may be
set. In our case, our <date> tag, implemented in the MyDateTag, has a bean property called
dateFormat that may be set. For the tag to function property, a value must be set when the tag is
used, as we shall see, which explains why this attribute has been marked <required>.

Third, we will use the tags in a version of the clock JSP, but with all the Java code replaced
with our new custom tags:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<%@ taglib prefix="custom" uri="WEB-INF/my_custom_tags.tld"%>
<!DOCTYPE html>
<html>
 <head>
 <title>JSP Clock</title>
 </head>
 <body>
 <div align='center'>

 Hello there!

 It's been <custom:time-since-epoch/> milliseconds
 since midnight, January 1, 1970

 In other words, it’s

Chapter 3: Dynamic Web Pages: JSP 83

 <custom:date dateFormat="h:mm a, zzzz"/>.
 </div>
 </body>
</html>

Notice in particular that the tags are used with the prefix declared in the @taglib directive.
When this JSP is run, it looks something like what is shown in Figure 3-9.

You should be able to see how simple the JSP code is compared with both the version at the
beginning of the chapter with embedded Java code, and even with the version using a JavaBean.

Tag Libraries vs. JavaBeans
We should address the relative merits of customer tag libraries compared with using JavaBeans in
a JSP, because they both fulfill the same goal of separating Java code from presentation code in a
web application. There is no clear answer as to which is the best, nor clear circumstances as to
when to use one technique versus the other. However, a few factors may help you decide which
approach to take in a particular setting.

The setup and configuration of a JavaBean called from a JSP is simpler than the setup and
configuration for a tag library.

Custom tags allow much greater freedom in choosing names that appear in JSP code. With
the JSP/JavaBean model, you are limited to the preset <jsp:useBean>, <jsp:setProperty>,
and <jsp:getProperty> tags. For the latter two cases, you can use JSP Expression Language as
well, whereas with custom tags, you can choose your own descriptive and more personalized
nomenclature.

It is easier to use JSP implicit objects in a custom tag. Thanks to the ease of accessing the
JspContext, it is easy to get to the implicit objects such as the request, application, and
session. For JavaBeans to be able to use these objects, they must have these objects explicitly set
as properties.

Custom tags may have only page scope, whereas JavaBeans can be used in any of the four
scopes: page, request, session, and application. In other words, an instance of a custom tag
lives only for one invocation of the JSP page. JavaBeans, on the other hand, have other lives to live.

FIGURE 3-9. JSP clock with custom tag

84 Java EE 7: The Big Picture

Expression Language
Before we can look at a more substantial example of JSPs in action, we need to consider the JSP
Expression Language. The JSP Expression Language is a small and powerful syntax that originated
as a means to read and process values from JavaBeans components, but now is a general-purpose
way to process data in a JSP.

JSP EL expressions are evaluated in JSPs to produce values either

 ■ Anywhere in an element body to produce text content

 ■ In a tag attribute

We already saw this in action when you accessed MyWallet; for example:

<c:forEach var="coin" items="${myWallet.coins}">
 ${coin}
/c:forEach>

and you also saw an example of the EL syntax when testing a condition for use in the <c:if>
standard tag:

<c:if test="${myBean.readableDate=='AM'}">
 It’s time for tea!
</c:if>

We will be returning more to the topic of JSP EL in the JavaServer Faces Chapter 4. For now,
we will quickly tour the language and use an example to illustrate its possibilities.

A JSP EL expression is declared in the form

${ expression }

and can be used in any JSP element body to product text content dynamically, or to produce a tag
attribute value dynamically. Here are some examples of JSP EL expressions:

A) ${myBean.color}
B) ${true}
C) ${session.maxInactiveInterval / 60 }

These expressions illustrate all the key aspects of the language. In order to understand them,
let’s look at what objects are already available in the language for you to use and how you can
manipulate and combine them.

The JSP EL makes available

 ■ Any declared JavaBean, using “.” to access properties (example A)

 ■ Any JSP EL literal (example B)

 ■ Any JSP implicit object (example C)

for use within a JSP EL expression.

Chapter 3: Dynamic Web Pages: JSP 85

The JSP EL literals are

Literal Type Literal Value

Boolean true or false

Numbers Integer and floating-point literals as defined in the Java language

Strings String literals using either single or double quotes

no value Null

JSP EL can manipulate variables using its language operators. There are operators for
arithmetic operations, such as addition and multiplication, and also for logic operators, for
example, for equality testing and negation and size comparison. Here is a listing of the logical
operators in the JSP EL.

Operator Type

Arithmetic +, - (binary), *, / and div, % and mod, - (unary)

Relational eq or ==, for equality
!= or ne, for negation
< or lt, for less than
> or gt, for greater than
< = or ge, for greater than or equal to
> = or le, so comparisons can be made

For comparisons against other values, or against boolean, String, int, or
float literals.

Empty Empty
Unary operation determining whether the following value is empty or null

Conditional A ? B : C

Evaluated to B or C depending the value of the boolean A

With this short introduction to the language, let’s take a look at an example. This example
considers a week and makes some evaluations of how it works out, as shown in Figure 3-10.

86 Java EE 7: The Big Picture

Let’s look at the code. It uses the JSP Expression Language to access a bean representing data
about a week in time:

import java.util.Arrays;
import java.util.List;

public class MyWeek {
 private String name;

 public enum Day {
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
 THURSDAY, FRIDAY, SATURDAY
 }

 public MyWeek() {}

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return this.name;
 }

 public String getDescription() {
 return "A description of how the week usually goes for " + name;
 }

FIGURE 3-10. JSP week schedule example

Chapter 3: Dynamic Web Pages: JSP 87

 public int getNumberDays() {
 return 7;
 }

 public List<Day> getWorkingDays() {
 return Arrays.asList(Day.MONDAY, Day.TUESDAY, Day.WEDNESDAY, Day.
THURSDAY, Day.FRIDAY);
 }

 public int getNumberWorkingDays() {
 return this.getWorkingDays().size();
 }

 public boolean isWeekendOff() {
 return true;
 }

}

Now to the JSP that generates the page.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>
<html>
 <jsp:useBean id="weekBean" class="javaeems.chapter3.beans.MyWeek"/>
 <jsp:setProperty name="weekBean" property="name" value="Danny"></
jsp:setProperty>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Week Example</title>
 </head>
 <body><div align='center'>

 <h2>${weekBean.description}</h2>
 There are <jsp:getProperty name="weekBean" property="numberDays"/>
days in the week<p>
 <jsp:getProperty name="weekBean" property="name"/> works on
 <c:forEach var="day" items="${weekBean.workingDays}">
 ${day},
 </c:forEach>
 leaving ${weekBean.numberDays - weekBean.numberWorkingDays} days
to enjoy other things in life.<p>
 <c:set var="numberDaysOff" scope="session" value="${weekBean.number-
Days - weekBean.numberWorkingDays}"/>
 That means ${weekBean.name} is working ${100 * weekBean.numberWorking-
Days / weekBean.numberDays}% of the time.
 <p>

88 Java EE 7: The Big Picture

 <c:if test="${weekBean.numberWorkingDays > (weekBean.numberDays -
weekBean.numberWorkingDays)}" >
 This is far from ideal :(
 <p>
 </c:if>
 <c:if test="${weekBean.weekendOff && !((weekBean.numberDays - week-
Bean.numberWorkingDays) == 0)}" >
 But at least ${weekBean.name} gets some time off at the weekend.
 </c:if>
 </div></body>
</html>

Notice that this page uses the standard tag library, using the <c:forEach> and <c:if>
tags. It uses the JavaBean representing the week to fish out how many days are spent working
and whose week it represents. It does so using the “.” syntax to access properties; for
example:

${weekBean.description}

It also uses the <jsp:getProperty> syntax to do this, as in

<jsp:getProperty name="weekBean" property="name"/>

Which do you prefer?
It uses number literals and arithmetic operations to calculate the percentage of the week

spent working:

${100 * weekBean.numberWorkingDays / weekBean.numberDays}

and uses logical operators to evaluate conditions for the <c:if> operator; for example:

${weekBean.weekendOff && !((weekBean.numberDays - weekBean.numberWorkingDays) == 0)}

Even this simple example shows some of the power of the JSP Expression Language.

JSP Photo Album
The goal of JSPs was originally to turn a servlet inside out for the purposes of extricating lines and
lines of static content output from being buried within out.println() expressions. The goal of
many aspects of the JSP syntax that we have seen has been to further separate the concerns of
presentation from dynamic content generation in a JSP, so that each kind of code is easier to
manage and evolve.

Let’s pull together all that we have learned in this tour of JSPs and apply it to an example we
already know: the photo application we examined in Chapter 2. We will take this application and
turn two of the key Java servlets it used into JSPs, aiming for a clean separation between the
application logic of processing photos and managing the album and the presentation code that
renders the album and its photos on screen.

Figure 3-11 shows the photo application with an album containing three photos.

Chapter 3: Dynamic Web Pages: JSP 89

You can already see that this page is a JSP, the album.jsp, instead of the
DisplayAlbumServlet you saw in Chapter 2. To approach this example application,
let’s take a look at the PhotoAlbum class that holds all the data:

import java.util.*;
import javax.servlet.http.HttpSession;

public class PhotoAlbum {
 public static String ATTRIBUTE_NAME = "Photo_Album";
 private List<byte[]> photoDataList = new ArrayList<byte[]> ();
 private List<String> names = new ArrayList<String>();

 public PhotoAlbum() {
 }

 public void setSession(HttpSession session) {
 session.setAttribute(ATTRIBUTE_NAME, this);
 }

 public List getPhotoNames() {
 return names;
 }

 public void addPhoto(String name, byte[] bytes) {
 this.photoDataList.add(bytes);
 this.names.add(name);
 }

FIGURE 3-11. Photo album using JSPs

90 Java EE 7: The Big Picture

 public byte[] getPhotoData(int i) {
 return (byte[]) photoDataList.get(i);
 }

 public String getPhotoName(int i) {
 return (String) names.get(i);
 }

 public int getPhotoCount() {
 return photoDataList.size();
 }

 public void removePhoto(int i) {
 photoDataList.remove(i);
 names.remove(i);
 }

 public static PhotoAlbum getPhotoAlbum(HttpSession session) {
 return (PhotoAlbum) session.getAttribute(ATTRIBUTE_NAME);
 }
}

This class is largely the same as in Chapter 2, except that it now has a public no-argument
constructor that allows it to be used as a JavaBean from the JSPs in the application, and also has
a new JavaBean property for setting the value of the HttpSession with which this album is
associated.

Now let us look at the first JSP that has replaced a Java servlet: this is the JSP that displays a
photo, photo.jsp:

<%@page import="javaeems.chapter3.photos.beans.PhotoAlbum" %>
<%@page contentType="image/jpeg" %>
<%java.io.OutputStream binaryOut = response.getOutputStream();
 String indexString = request.getParameter("photo");
 int index = (new Integer(indexString.trim())).intValue();
 PhotoAlbum photo = PhotoAlbum.getPhotoAlbum(session);
 byte[] bytes = photo.getPhotoData(index);
 for (int i = 0; i < bytes.length; i++) {
 binaryOut.write(bytes[i]);
 }
%>

You will immediately notice that this JSP doesn’t look like any other JSP that you have seen so
far: that’s because it isn’t. All the JSPs we have looked at so far have produced HTML content. This
one produces only binary content, and it does so in a Java scriptlet: the binary content of the
photo, which you can see from the @page directive that defines the MIME type of the output. The
JSP uses the request, response, and session JSP implicit objects. It uses the request implicit object to
derive the index of the photo that it is to display. It uses the session object to look up which
instance of the photo album to use for this client from the PhotoAlbum class, and it uses the
response implicit object to get at the binary OutputStream it will use to write the binary JSP data.

Chapter 3: Dynamic Web Pages: JSP 91

So far so good: we have seen scriptlets, implicit objects, @page directives, and binary MIME
types in action, but we have not yet used an expression language, standard tags, or custom tags.
Let’s get to that now.

First, this application uses a custom tag to display each photo in the main page. This tag
produces the HTML code that contains the photo image and a link to get a larger view of the
photo. In an application, how this HTML code is created is something you may well want to
tweak and use in more than one other JSP. By making it a custom tag, you have both separated
out its implementation from everything else and made it highly reusable. You saw this tag in
operation in the main page of the application.

Let’s first take a look at the code for the tag:

import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.SimpleTagSupport;

public class PhotoTag extends SimpleTagSupport {
 private int index;
 private int width;
 private int height;

 public void setIndex(int index) {
 this.index = index;
 }

 public void setWidth(int width) {
 this.width = width;
 }

 public void setHeight(int height) {
 this.height = height;
 }

 @Override
 public void doTag() throws JspException, IOException {
 JspWriter out = getJspContext().getOut();
 out.println("");
 out.println("<img src='photo.jsp?photo="+index+"' alt='photo'
height='"+this.height+"' width='"+this.width+"'>");
 out.println("");
 }

}

The custom tag has three properties that can be set: the index of the photo in the album, and
the display width and height. It overrides the doTag() method of SimpleTagSupport in order
to produce the HTML when the tag is called. Looking at the TLD file that declares this class as a
custom tag to the JSP implementation:

<?xml version="1.0" encoding="UTF-8"?>
<taglib version="2.1" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

92 Java EE 7: The Big Picture

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.
com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd">
 <tlib-version>1.0</tlib-version>
 <jsp-version>2.0</jsp-version>
 <short-name>Example TLD</short-name>
 <tag>
 <name>photo</name>
 <tag-class>javaeeme.chapter3.photos.tags.PhotoTag</tag-class>
 <body-content>scriptless</body-content>
 <attribute>
 <name>index</name>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>height</name>
 </attribute>
 <attribute>
 <name>width</name>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>

We can see that these properties of the class are formally declared as tag attributes, and so
can now be called from a JSP with values to suit the situation in which it is called. The
<rtexprvalue> element governs whether the attribute value may be a scriptlet or Expression
Language expression: in the example, both attributes allow this possibility.

Let’s take a look then at the album.jsp, which pulls everything together and displays the
photo album:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib prefix="photo-tags" uri="WEB-INF/mytaglib.tld"%>
<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <jsp:useBean id="photoAlbum" scope = "session" class="javaeems.chapter3.photos.
beans.PhotoAlbum"/>
 <jsp:setProperty name="photoAlbum" property="session"
 value="<%=session%>"/>

 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Photo Viewer</title>
 </head>
 <body>
 <h3 align='center'>Photos</h3>
 <table align='center'>
 <tr>
 <c:forEach var="i" begin="1" end="${photoAlbum.photoCount}">
 <td align='center'>
 <photo-tags:photo width='150' height='120'
 index='${i-1}'></photo-tags:photo>
 </td>

Chapter 3: Dynamic Web Pages: JSP 93

 </c:forEach>
 <td bgcolor='#cccccc' width='120' height='120'>
 <form align='left' action='UploadServlet'
 method='post' enctype='multipart/form-data'>
 <input value='Choose' name='myFile'
 type='file' accept='image/jpeg'>

 <input value='Upload' type='submit'>

 </form>
 </td>
 </tr>
 <tr>
 <c:forEach var="item" items="${photoAlbum.photoNames}">
 <td align='center'>
 ${item}
 </td>
 </c:forEach>
 </tr>
 <tr>
 <c:forEach var="i" begin="1" end="${photoAlbum.photoCount}">
 <td align='center'>
 remove
 </td>
 </c:forEach>
 </tr>
 </table>
 </body>
</html>

From the @page directives, you can see that this JSP produces HTML content, uses the custom
tag we just looked at, and uses the standard tag library, using the prefixes c and photo-tag,
respectively:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib prefix="photo-tags" uri="WEB-INF/mytaglib.tld"%>

Moving into the HTML code, you can see it uses the PhotoAlbum bean, declaring it to be
used in session scope, so that the instance of the PhotoAlbum that is used has the same lifespan as
the HttpSession associated with the client requesting the page. You will also notice that this
session-scoped bean has its session property set so that the PhotoAlbum instance associated with
this HttpSession can be retrieved from other web components at any other time, like the servlets
that manage the upload of the photos and the servlet that removes photos from the album:

<jsp:useBean id="photoAlbum" scope = "session"
 class="javaeems.chapter3.photos.beans.PhotoAlbum"/>
<jsp:setProperty name="photoAlbum" property="session"
 value="${session}"/>

In order to display the contents of the photo album, the page uses the <c:forEach> custom
tag and the <photo-tags:photo>.

It uses

<c:forEach var="i" begin="1" end="${photoAlbum.photoCount}">

94 Java EE 7: The Big Picture

to iterate over the photos in the album, accessing properties of the PhotoAlbum bean using the
“.” syntax in a JSP EL expression. And it uses the custom tag

<photo-tags:photo width='150' height='120' index='${i-1}'></photo-tags:photo>

to render the HTML code for displaying a photo within the table cell used to display the album,
passing in the attributes it wishes the tag to use in the context in which this custom tag is called.

This example shows just how far you can go in modularizing web page code using JSPs,
JavaBeans, and tag libraries. As your JSP applications get larger and more complicated, you will
come to see the virtues of such separations of concerns.

Summary
In this chapter, we started out by thinking of a JSP as a Java servlet that was inside-out. Starting
with scriptlets and the style of JSP programing that embeds Java code directly into the page, we
moved through all the main areas of the JSP syntax, showing at each stage this idea of teasing out
code with the different responsibilities into different components like JavaBeans and tag libraries,
an overview of which is shown in Figure 3-12.

This programming paradigm leads to much more manageable and well-organized applications
that developers with different skill sets can work on side by side, using JSP Expression Language as
both the lubricant and the glue that eases and binds the presentation world with the world of
application data and Java code.

This sets us up well for the next chapter: JavaServer Faces, which builds on much of these
concepts and much of this syntax to take the production of more complicated web interfaces to
a higher level.

FIGURE 3-12. The anatomy of a JSP application

Browser

Web Server

Http Response

Http Request

JSP Page

Implicit Objects

JavaBeans
Standard

and Custom
Tags

JSP Servlet APIs

Markup code

Expression Language

CHAPTER
4

Assembling Dynamic Web
Pages: JavaServer Faces

96 Java EE 7: The Big Picture

A
JavaServer Faces page is a better version of a JSP.

This, of course, is a simplified way to describe what a JavaServer Faces page is. If you
are concerned that all that you learned about JSPs will not be relevant if you choose to use
only JavaServer Faces for all your web application development: fear not! JavaServer Faces applies
many of the concepts and techniques that JSPs employ, including a variety of both standard and
custom tags, to help display content, and many of uses of JavaBeans to integrate pages into the
Java environment of the application. But JavaServer Faces takes many of the common tasks
that developers build into web applications and provides specific mechanisms, tags, and APIs to
help those tasks be built into a web application more easily. In particular, JSF gives you

 ■ A standard set of commonly used UI components Over and above the basic
components available in HTML, the JSF UI components, in the form of a set of tags, are
prewired into the rest of the JSF programming model. This not only makes it easy to add
lists, check boxes, tables, and other such UI components into a web application, it makes
them very easy to wire into the application data in the web application.

 ■ A mechanism for connecting UI state with application state JSF provides the means
to connect UI components in a web page with the JavaBean data components that hold
the application data that the UI components are supposed to represent. It’s actually very
easy to bind a UI component to a JavaBean, similar to the JSP-to-JavaBean binding, only
using simpler syntax. Once the binding is in place, it is easy to elaborate on that binding
by the use of separable components. For example, event handlers manage custom events
generated in the UI and allow the JavaBean to catch up with what has happened, and
validators check the values of data being set from the UI to the JavaBean. Converters
adapt the value of a UI component to the value that is set on the JavaBean.

 ■ Mechanisms for page navigation Web applications with more than a handful of web
pages have a number of predefined pathways for navigating through the content. The
particular paths may depend on the kind of user activity with the web application.
Maintaining these pathways in the form of relative links at the point of traversal can get
the job done, but usually some kind of overhaul is required to bring the navigation rules
into some sort of order. This becomes particularly apparent if you start renaming web
pages or trying to add a new pathway or modify an existing one. JSF defines mechanisms
for defining all the navigation rules in one place, which makes for a more manageable
and adaptable web application.

 ■ Defines various mechanisms for extensibility Like JSPs, JSF components include a
model that allows you to define custom UI components for your applications built from
Java code. It also includes the means by which you can take a fragment of UI code and
reuse it across other web components in the application. JSF also separates the
definition of its UI components from the way in which they are rendered. A kind of
look-and-feel for web applications, this allows web applications built using JSF to be
“skinned” appropriately to the condition in which they are deployed without needing
to redesign the application or rework the code.

In this chapter, you learn three different web technologies for building web applications. You
may already be wondering why you need to know all three and in which circumstances you
might choose to use one technology over another, or which to combine in a web application.

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 97

Architecture of a JSF Application
From the application point of view, the easiest way to understand a JSF application is to look at
what is in it.

A JSF application is made up of a collection of XHTML pages, Java classes, and JSF metadata.
The XHTML pages make up the visual part of the web application, holding the various JSF tags,
markup, and scripting content that define the UI elements.

The Java classes in the JSF application define the application data that is housed in the web
application, and also mediate the way the application data is bound into the presentation layer of
the application. So these Java classes include JavaBeans that hold various parts of the application
data, together with Java classes that mediate the data by implementing various types from the JSF
APIs, including event handlers, data validators, and data converters.

The JSF metadata defines how the XHTML pages and JavaBeans are treated in the JSF runtime.
A mix of Java annotations and XML documents, this metadata defines the scope of the JavaBeans,
how many instances are used, and their lifecycles, together with navigation rules, and can be
used to control how the UI components are rendered.

These three pieces, XHTML, Java code, and JSF metadata, as shown in Figure 4-1, may look
somewhat familiar to any developer that has developed user interfaces before: it is, of course, the
JSF version of the well-known Model-View-Controller pattern.

Model-View-Controller
The Model-View-Controller pattern is a widely adopted design pattern used to fit the particular
needs of a user interface application. It is used across many different programming languages and
platforms. It is used in the Java Swing and JavaFX frameworks, and is the basis of several web
application frameworks, including JavaServer Faces.

FIGURE 4-1. Architecture of a JavaServer Faces application

Web Server

JSF Application

XHTML

Event handlers Converters

JavaBeans

JavaServer Faces APIs

Standard and Custom
JSF Tags

Browser

Http Response

Http Request

98 Java EE 7: The Big Picture

In simple terms, the task in all user interface applications is how the user can interact with
the data model of the application, adding information to it, updating it, and deleting data from it.
An often elaborate layer allows the user to do this, and provides the visual means to make the
changes while at the same time showing the user an up-to-date view of the data. This layer is
separated into the view and controller functions, as shown in Figure 4-2.

The user makes a change to the UI, which is passed to the controller. The controller’s job in
this design pattern is to interpret the changes to the data model that the user is asking for and
transform that request, or series of requests, into a form that can be used to edit the data model.
When the model changes, the controller’s job is to make sure that the view is informed of the
change. The view, in turn, has the task of altering its state in such a way that the display
information it presents to the user of the application is consistent with the newly edited state of
the data model. Using this kind of separation of concerns, the data model never needs to interpret
all the different ways that a user may ask for a change to the data model, because the controller is
taking care of that. The data model need never concern itself with how the data model is
displayed to the user, because the view is taking care of that.

In other words, the heart of the application is insulated from any changes to how users interact
with the data model. New users with new modes of interacting with the application can be added
without disrupting the data model. New user interfaces, new means of control, and new ways to
filter, order, and present the data model can be added by adding new views and controllers, or
adapting the ones that are there.

There are few kinds of applications more prone to multiple users and ever-evolving user
interfaces as web applications; this is why JavaServer Faces adopted them. Let’s take a look at
how by looking at a very simple JSF application.

Hello JavaServer Faces
Let’s examine what this application does. When you first run the application, your browser loads
the index.html page as shown in Figure 4-3.

If you type a different name in the text box and hit return, you should see something like
Figure 4-4.

Before we look into the code, let’s look at what this application contains. This application,
like all JSF applications, is packaged in a WAR file, as shown in Figure 4-5.

FIGURE 4-2. The Model-View-Controller pattern

Model

View

Controller

User

Changes Edits

Updates Displays

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 99

FIGURE 4-3. Hello JavaServer Faces

FIGURE 4-4. Hello Danny

100 Java EE 7: The Big Picture

The code for the application lies in index.xhtml and the HelloBean class, the web.xml
containing the configuration information. Let’s first take a look at the HelloBean class.

Listing: The HelloBean class

import javax.inject.Named;
import javax.enterprise.context.*;

@Named(value = "myHelloBean")
@RequestScoped
public class HelloBean {
 private String name = "dear reader";

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return this.name;
 }
}

As you can see, the HelloBean class is mostly just a JavaBean with a readable and writeable
property called name, which assumes a default value of dear reader.

The only things that are not usually found in a regular JavaBean class are the Java annotations
that it uses at the class level.

@Named(value = "myHelloBean")
@RequestScoped

The @Named annotation gives this JavaBean a name myHelloBean that can be used to refer to
it from various contexts, but in particular, from the index.xhtml file. The @RequestScope
annotation is an annotation that makes this JavaBean something called a managed bean, a

FIGURE 4-5. A Simple WAR containing JavaServer Faces

/index.xhtml
WEB-INF/
 web.xml
 beans.xml
 classes/
 HelloBean.class

Simple JSF WAR

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 101

concept that runs throughout the entire Java EE platform. Being a managed bean means that the
lifecycle of instances of this class are controlled by the platform. The @RequestScope annotation
is one of a handful of annotations that define a class to be a managed bean, and this one defines
that the Java EE platform will create precisely one instance of this bean whenever it is needed
within the context of a single HttpRequest/HttpResponse interaction.

So when is our HelloBean needed within the context of an HttpRequest/HttpResponse
interaction? Let’s look at the index.xhtml code to see.

Listing: The index.xhtml page

<?xml version='1.0' encoding='UTF-8' ?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns=http://www.w3.org/1999/xhtml
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <head>
 <title>Simplest JSF Page</title>
 <head>
 <body>
 <div align="center">

 <h:form>
 <h:inputText value="#{myHelloBean.name}"/>
 </h:form>

 Hello to you, #{myHelloBean.name} !
 </div>
 </body>
 </html>

First we notice the namespace declaration for the XML document for HTML also using the
prefix h for all the JSF tags this page will use. This should be familiar to you, as we used a similar
mechanism to declare the sets of tags we would use for JSPs in Chapter 3. The only JSF tags that
this page uses are <h:form> and <h:inputText>, which define the form element and contained
text field, respectively. The value of the text field is bound to the value of the name property of the
HelloBean JavaBean in the element

<h:inputText value="#{myHelloBean.name}"/>

which uses JSF Expression Language (which is unified with JSP Expression Language except for
the use of # instead of $) to refer to the bean and its property. Notice also that the value of the
JavaBean is retrieved using the same expression in order to print the value on the page.

The most important thing to notice about this sample is that there is no code that you need to
write to bind the value of the text field to the JavaBean property: it is done for you by the value
attribute. Whenever the value of the text field is changed, the JavaBean property value is accordingly
changed and the page refreshed to reflect this.

Finally, the web.xml file contains configuration information about the application. We
examine the web.xml syntax in much more detail in a later chapter. For now, all we need to
know is that the web.xml file is necessary so that the container knows that this is a JavaServer
Faces application.

102 Java EE 7: The Big Picture

Listing: The web.xml configuration file

<?xml version="1.0" encoding="UTF-8"?>
 <web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">
 <context-param>
 <param-name>javax.faces.PROJECT_STAGE</param-name>
 <param-value>Development</param-value>
 </context-param>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.xhtml</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>
 30
 </session-timeout>
 </session-config>
 </web-app>

The key pieces of the web.xml file to notice are the servlet and servlet-mapping
elements.

The <servlet> element declares that the class javax.faces.webapp.FacesServlet
is a servlet, with name FacesServlet, and must be loaded first before any other servlets in the web
application. The <servlet-mapping> element asks the web container to route any HTTP requests
to a resource within the web application whose resource name ends with .xhtml to the
FacesServlet that was just declared.

The FacesServlet class is a class from the JavaServer Faces API and is the entry point to the
JSF runtime that interprets the JavaServlet Faces in the web application. Try it out: if you comment
out the servlet mapping in the web application, the .xhtml file is simply served back with none
of the JSF expressions evaluated. You get something like what is shown in Figure 4-6.

This servlet and servlet mapping syntax may be used to tell the Java EE web container about
any Java servlets you may create in the web application. However, they are usually not necessary
because you can use the @WebServlet annotation in the servlet class declaration itself, as we
did in all the examples in Chapter 2.

JavaServer Faces: Model-View-Controller
But how does this simple and fundamental example of a JSF application relate to the
Model-View-Controller patterns that we noted as the basic architecture of all JSF applications?

The model is the HelloBean; it contains the data. It knows nothing about what other code is
accessing and modifying its data, and it knows nothing about how the data is presented to the user.

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 103

The view is the index.xhtml file, which reads from the data model and decides how to
present it.

So is the index.xhtml the controller as well, since it seems to help send the request to
modify the data model when the user edits the text field? In fact, the index.xhtml is not the
controller in this model, since the request from the browser, ultimately, an HTTP POST request
containing the update, is handled by the JavaServer Faces FacesServlet part of the container
and declared for use in the web application via the web.xml and a servlet-mapping. It is
responsible for interpreting the request to change the data from the web page in the browser,
ensuring that the correct instance of the HelloBean is used to handle the request and make the
modification.

This yields the JavaServer Faces version of the Model-View-Controller pattern, as shown
in Figure 4-7.

FIGURE 4-6. Why the Face?

FIGURE 4-7. JavaServer Faces Model-View-Controller

HelloBean

index.xhtml

web.xml
javax.faces.webapp.FacesServlet

User

Http Request Change Name

Element Values
Http Response

104 Java EE 7: The Big Picture

This simple application is a template for all JavaServer Faces applications. We will elaborate
on some key aspects of this application in order to explore all the possibilities of JavaServer Faces.
We’ll start by looking in more detail at the different tag collections available for use in JavaServer
Faces, extending our knowledge from the humble <h:textField> tag.

JavaServer Faces Tags
The JavaServer Faces servlet performs a similar action on JavaServer Faces pages as the JSP runtime
does to interpret an HTTP request against a JSP: it takes the JavaServer Faces page and compiles
it down into a Java servlet that ultimately is the Java component that services the HTTP request. All
the JSF tags are converted into Java object representations of the entities that they represent: text
fields, buttons, and so on. Brought to life within the context of a Java servlet request/response
interaction, the JSF servlet provides the runtime environment in which these components can interact
with JavaBeans, have their input and output validated, fire events, and follow the prescriptions of
how they should behave from the instructions in the JavaServer Faces source file. Finally, the
JavaServer Faces runtime calls on this tree of components to render itself to the markup that
represents this final, executed state of the component tree. This markup is written back to the
client, and the user sees the results of the dynamically executed JavaServer Faces page. An easy
way to think of a JavaServer Faces page is as a set of instructions for how to produce a final
page of static markup from a collection of tags and various JavaBeans interpreted in the context of
an HTTP request/response interaction. You can, of course, use regular HTML tags in your XHTML
page, interspersed with any JSF tags you choose to use. Remember that any standard HTML tags
you use will have no JSF awareness: they will not be able to interact with the JSF environment, and
most importantly, with the data of your application. In terms of the component tree that the JSF
runtime constructs in order to render the final markup, these elements simply “pass through” the
JavaServer Faces runtime, like ghosts passing through a room but never touching anything.

All the collections of tags in JavaServer Faces are declared at the top of the XHTML file as a
namespace declaration in the <html> tag, usually of the form

<html xmlns:prefix="namespace uri">

where namespace uri is the URI assigned by JSF to the tag collection, and prefix is the prefix
you will use in all the tags you use in the page from that tag collection.

The collection of JavaServer Faces tags falls into a number of categories: those for UI
components, those for control flow and string manipulation within a page, those to create
UI components from other tags, “pass-through” tags and attributes that allow nonstandard
markup to be used in a JSF page, and finally the core set of JSF tags that bind everything together.
Let’s start with the most visible of the tags: the UI components.

UI Component Tags
The UI tags in JSF are, by convention, prefixed by h, and so the namespace declaration for the UI
tags will look like this:

<html xmlns:h="http://xmlns.jcp.org/jsf/html">

The core JSF component tags should be somewhat familiar to you already if you have written
HTML before: their naming often reflects the HTML tag that they cause to render. We will see an
example of some of these tags in action shortly, but for now, here is a listing of some of the most
commonly used user interface components in JavaServer Faces.

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 105

Component Tag Example

Button <h:commandButton> <h:commandButton
 value="Submit"
 action="#{bookingBean.submit}"
/>

Hyperlink <h:commandLink> <h:commandLink
 value="Learn more..."
 action="learn.xhtml"
/>

Table <h:dataTable>

<h:column>

<h:dataTable
 value="#{widgetBean.items}"
 var="item">
 <h:column>
 #{item.name}
 </h:column>
 <h:column>
 #{item.age}
 </h:column>
</h:dataTable>

Form <h:form> <h:form>
 <h:commandButton
 value="Submit"
 action="#{bookingBean.submit}"
 />
</h:form>

Image <h:graphicImage> <h:graphicImage
 value="#{widget.imageUri}"
/>

Text input <h:inputText>

<h:inputArea>

<h:inputText
 value ="#{widget.name}"
/>

Component
messages

<h:messages> <h:messages
 errorStyle="color:red"
/>

Check box <h:selectBooleanCheckbox> <h:selectBooleanCheckbox
 value="#{widgetBean.working}"
/>

List, single
selection

<h:selectOneMenu> <h:selectOneMenu
 value="#{widget.color}">
 <f:selectItem
 itemValue="red"
 itemLabel="Red"
 />
 <f:selectItem
 itemValue="blue"
 itemLabel="Blue"
 />
 <f:selectItem
 itemValue="green"
 itemLabel="Green"
 />
</h:selectOneMenu>

106 Java EE 7: The Big Picture

Let’s see some of these widgets in their native environment. To do that, we will turn to our
PartyPlanner sample, which makes use of many of these widgets for the purposes of displaying
and configuring a childrens' party.

The PartyPlanner
Here is the main page, as shown in Figure 4-8.

FIGURE 4-8. PartyPlanner main page

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 107

On this page, you can edit the title of the party, which is also the title of the web page, as seen
here in the title of the tab in the browser. You can choose a picture to use for the invitation and
select whether the parents of the kids are allowed to stay or not. These two pieces of information
may be submitted using the Submit button, or the party information can be reset with the Reset
button. You are shown a summary of the party, including a table display of the guests who have
been invited. Finally, if you follow the hyperlink at the bottom of the page, you will get to the
page shown in Figure 4-9. Clicking the link in this page returns you to the original page.

The data for this page is stored in a relatively straightforward JavaBean, the PartyBean, with
the properties of the party name, a boolean for the parental presence, a list of invitees, and the
name of an image file to use. Before we look at the JavaServer Pages that use this data, we’ll look
at the code for the data.

FIGURE 4-9. Surprise, you’re invited!

108 Java EE 7: The Big Picture

Listing: The PartyBean class

 import javax.enterprise.context.*;
 import javax.inject.Named;
 import java.util.*;
 import java.io.Serializable;

 @Named("partyBean")
 @SessionScoped
 public class PartyBean implements Serializable {
 private String name;
 private boolean parentsAllowed;
 private List<Guest>items;
 private String imageUri;

 public PartyBean() {
 this.reset();
 }

 public String getImageUri() {
 return this.imageUri;
 }

 public void setImageUri(String imageUri) {
 this.imageUri = imageUri;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public boolean getParentsAllowed() {
 return parentsAllowed;
 }

 public void setParentsAllowed(boolean on) {
 this.parentsAllowed = on;
 }

 public List<Guest> getItems() {
 return this.items;
 }

 public void reset() {
 this.name = "(party title)";
 this.parentsAllowed = false;
 this.items = new ArrayList<>();
 items.add(new Guest("Sally", 6));

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 109

 items.add(new Guest("Carlos", 7));
 items.add(new Guest("Nithan", 6));
 this.imageUri = "party1.jpg";
 }

 public String getSummary() {
 StringBuilder sb = new StringBuilder();
 sb.append("My party is called " + this.name);
 sb.append(", ");
 sb.append(" there are " + items.size() + " guests");
 sb.append(", ");
 sb.append("and parents are " + (parentsAllowed ? "": "not") +
 " allowed to stay.");
 return sb.toString();

 }

 }

and the accompanying guest information

public class Guest {
 private String name;
 private int age;

 public Guest(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public int getAge() {
 return this.age;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return this.name;
 }

 public String toString() {
 return "Item: " + name;
 }

 }

110 Java EE 7: The Big Picture

These two classes reflect the structure of the data shown in the application. The main things
to notice are the annotations used at the top of the PartyBean class. The @SessionScoped
annotation declares that this JavaBean is a managed bean, with a Java EE scope of “session.” This
means that this JavaBean class is instantiated exactly once for each active HttpSession that
corresponds to an active client of the web application. In particular, this means that two different
HttpSessions have two different instances of the PartyBean that HTTP interactions within
each session use. This ensures that no one else other than you can change the invitation to your
party, probably something that the guest of honor at your party will be pleased about. The
@Named attribute declares that this managed bean is accessible from JavaServer Pages using
the name provided, which is partyBean.

Now we can turn to the JavaServer Pages that use this managed bean and use UI widgets to
represent and edit its values.

First and foremost is the main party page, index.xhtml.

Listing: The index.xhtml page

<?xml version='1.0' encoding='UTF-8' ?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <title>#{partyBean.name}</title>
 </h:head>
 <h:body>
 <div align="center">
 <h:form>
 <label style="font-weight:bold"> Party Pieces </label>

 <label>Choose a title: </label>
 <h:inputText value ="#{partyBean.name}" ></h:inputText>

 <label>Choose a picture: </label>
 <h:selectOneMenu value="#{partyBean.imageUri}">
 <f:selectItem itemValue="party1.jpg" itemLabel="Hats" />
 <f:selectItem itemValue="party2.jpg" itemLabel="Balloons" />
 </h:selectOneMenu>

 <label>Are parents allowed ? </label>
 <h:selectBooleanCheckbox value="#{partyBean.parentsAllowed}" >
 </h:selectBooleanCheckbox>

 <h:commandButton value="Submit picture and parent choices"
 action="index" />

 <h:commandButton value="Reset to default"
 action="#{partyBean.reset}" />

 </h:form>

 <label style="font-weight:bold"> Party Summary </label>

 <h:outputText value="#{partyBean.summary}"/>

 <h:dataTable value="#{partyBean.items}" var="item">
 <h:column > #{item.name}</h:column>

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 111

 <h:column>#{item.age}</h:column>
 </h:dataTable>

 <h:graphicImage value="#{partyBean.imageUri}" width="200" height="171" />
 <p>
 <h:form>
 <h:commandLink value="Follow me for a surprise..."
 action="surprise.xhtml" />
 </h:form>
 </p>
 </div>
 </h:body>
 </html>

Notice that this page uses the standard widget library of JavaServer Faces, and also the core
JavaServer Faces tags in the namespace xmlns:f="http://xmlns.jcp.org/jsf/core".
The title of the page is taken from the name property of the partyBean. The text field is a JSF
component h:inputText. You will notice when you use this application that by pressing the
ENTER key, the bean property to which the text field is bound, in this case, the name for the party, is
updated automatically. The choice of picture for the invitation is captured in the JSF component
for selecting one item from a list, the tag <h:selectOneMenu>, and the choice of whether to let
the parents stay or liberate them to some less intensive activity is held in the check box tag for
JSF: <h:selectBooleanCheckbox>. These widgets are bound to the partyBean’s imageUri
and parentsAllowed properties, respectively. Two action buttons follow, using the
<h:commandButton> tags, each specifying a different action. The first action is the JSF shorthand
that causes the browser to load a given page, in this case, reloading the same page, thereby causing
the JSF page to post the new attributes to the partyBean instance and reload itself to reflect the
new state. The second action uses JSF Expression Language to call a method on a bean, in this
case, the PartyBean’s reset() method. Notice the use of regular HTML tags interspersed with
the JavaServer Faces tags: these simply pass through the JavaServer Faces runtime and are
displayed to the output page. Next let’s look at the JavaServer Faces table component in action,
<h:dataTable>, taking a value that is a collection property and automatically iterating over the
collection to generate its subelements, in this case, the two <h:column> subelements that form
the rows of the table, thereby the attributes, name, and age of each guest.

The imageUri property of the PartyBean is used this time to display the image for the
invitation, using the <h:graphicImage> JavaServer Faces tag. Finally, to get the surprise, a
hyperlink finishes off the page, using the dynamically retrieved imageUri property of the bean.
When you follow the link, a similar <h:commandLink> on the surprise.xhtml page generates
the return link, using the name of the party to create the text of the link dynamically. You can see
the code for that page in the next sample.

Listing: The surprise.xhtml page

<?xml version='1.0' encoding='UTF-8' ?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>

112 Java EE 7: The Big Picture

 <title>Surprise !</title>
 </h:head>
 <h:body>
 <div align='center'>

 Hope the party goes off with a bang !
 <p>
 <h:form>
 <h:commandLink value="Return to #{partyBean.name}" action="index" />
 </h:form>
 </p>
 </div>
 </h:body>
 </html>

Notice that the partyBean has retained its name value when we navigate to this page. In
fact, the partyBean instance you accessed in the first page retains its values until such time that
you edit them, or that the HttpSession in which your browser is participating as it accesses this
application times out or is invalidated in some other way. This is because the Java EE scope of the
partyBean is session. It also means that if someone else accesses this web application, they
are working with a different instance of the partyBean. You can emulate this locally by accessing
the same web application, but from a different browser. Note if you access the same application
from a new window or tab from the same browser, you are still acting within the same
HttpSession, so you see the same party information and the same partyBean instance.

Dust down that second browser you barely use, and observe that your party options are safe
with JavaServer Faces managed beans!

Java EE Managed Beans
In the examples so far, you have seen two different scopes for JavaBeans that they contain: request
and session. The JavaServer Faces main model for data is to use managed beans, but Java EE
managed beans are used across the platform. So it is worth spending some time at this point
describing all the six possible scopes available to you as a JavaServer Faces application developer,
because you will likely find your knowledge of these scopes useful in other parts of the platform
as well.

The Java EE managed bean scopes are an extremely simple way to be able to ask the Java EE
platform to manage the lifecycle of a JavaBean that you want to use in an application. More
importantly, they allow you to say when and how many instances of a JavaBean are created, or in
other words, its cardinality. The managed bean scopes allow you to imbue a JavaBean with the
same lifecycle and cardinality as some familiar objects in the runtime of the Java EE platform: the
Java EE container, HttpSessions, and HTTP request and response pairs, as well as some
common application-level constructs, as we shall see.

In order to declare the scope of a managed bean, the pattern is as we have seen: you annotate
the JavaBean class with one of the six scope annotations found in the Java EE platform found in
the javax.enterprise.context package. In order to make the managed bean available for
use by name within a JavaServer Faces page, you must use the @Named annotation setting the
value to the name you wish to use. You may see in older JavaServer Faces applications the
@ManagedBean annotation: this has now been replaced in favor of the scope annotations.

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 113

@RequestScoped
The simplest scope is request scope. A managed bean in request scope is instantiated once for
every new HTTP request/response interaction, created as the HTTP request arrives, and destroyed
as the HTTP response leaves. Such JavaBeans are good for holding and processing information
while a JSF page is being rendered, such as a bean that holds state across the generation of a single
page under a single request. An example of this might be a JavaBean that backs a JavaServer Faces
page that gathers contact information from a user and writes the information to a database once
the user presses the Submit button.

@SessionScoped
A managed bean in session scope has the same lifecycle as the HttpSession. This means that if
a session scoped bean is used in a JavaServer Faces page, the bean is instantiated once for each
new HttpSession that is created for that web application and destroyed when the HttpSession
to which the Java EE web container is associated either times out or is invalidated. This means that
if you use a session scoped bean in a JavaServer Faces page, each user of your application has a
unique instance of the bean backing the JavaServer Faces page that they see that lives across
multiple interactions with the web application. This applies, for example, whether they reload the
page, navigate somewhere else, or return at some later time. This kind of scope is useful when
you want to associate the application state with a particular user that survives as long as the user
is still active in the application.

@ApplicationScoped
A managed bean that is in application scope has the simplest lifecycle of all. The Java EE container
instantiates the bean once prior to any users accessing the application and destroys it prior to
shutting down the application. This means that a managed bean in application scope is a kind of
global object that is shared by all users for the lifetime of the web application. This kind of scope
is useful when you have application data that is global to the application and is shared across all
users, for example, a chat transcript, a log of all the active users of an application over time, or a
history of bids on an auction item.

@ConversationScoped
The conversation scope is a scope that is contained within the session scope, but the developer
may control when it ends, which may be before the session ends. So a managed bean that is in
conversation scope is instantiated once for every new HttpSession. It is active across several
HTTP interactions with the web application in which it is used from a JavaServer Faces page or
pages, and it is destroyed only either when the developer explicitly ends the conversation scope,
or when the HTTP session with which it is associated times out or is invalidated. This makes
conversation scope a useful lifecycle for a JavaBean to have if you want it to operate with a
predefined set of interactions with a web application, perhaps the sequence of chat interactions
on a social networking website, or a particular sequence of browsing for purchases on an online
store. To end a conversation scope from a managed bean, we need access to the javax
.enterprise.context.Conversation instance that allows us to manage the conversation
scope. To do this, we use a technique called dependency injection, a topic to which we will
return many times in this book, to inject the conversation instance as an instance variable into
our JavaBean.

114 Java EE 7: The Big Picture

Listing: A ConversationalBean class

 import javax.enterprise.context.RequestScoped;
 import javax.enterprise.context.Conversation;
 import javax.inject.Named;
 import javax.inject.Inject;

 @Named(value = "myHelloBean")
 @RequestScoped
 public class ConversationalBean {
 @Inject
 Conversation conversation;

 public void finishInteractions() {
 conversation.end();
 }
 ...

 }

In this code snippet, by using the @Inject annotation, the Java EE container ensures that the
conversation instance variable is filled out with the correct value when the ConversationalBean
is instantiated. Then when the time comes to end the conversation, its end() method may be
called, as is the case in the finishInteractions() method in the code example. The next time
a JavaServer Faces page that uses this managed bean tries to call it, instead of using the original
instance in use before the end() method was called, a new one is instantiated.

@FlowScoped
The flow scope is another managed bean scope that is contained with the session scope, like the
conversation scope. The goal of the scope is for a new one to be active during a preset sequence
of interactions with the web application from a given user. In this sense, it is similar to conversation
scope. But instead of this scope being explicitly managed by API calls from the developer, as is
the case with conversation scope, the boundaries of the flow scope are managed by a mechanism
in JavaServer Faces called faces flows, which is particularly useful when creating web wizards.

@ViewScoped
The view scope is a managed bean scope that extends the request scope by starting while a
particular JavaServer Faces page is being executed, and remains active while the client continues
to interact with that same page. The scope becomes inactive once the client navigates to a
different page. This is useful when coding pages that you expect to post back to themselves.

@Dependent
Finally, the dependent scope is a scope that says “my scope depends on where I am used.” In
other words, if you mark a managed bean @Dependent, its lifecycle and cardinality are governed
by the component that uses it. This makes it a useful scope for JavaBeans that are used from
components in more than one scope. For example, if you have a component that makes a

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 115

currency conversion, you may wish to use this from a JavaBean that is request scope, converting
currencies on a single web page, or you may wish to use it from a session-scoped managed bean
that represents a shopping cart for international shoppers.

For most of the time in a JavaServer Faces application, using request, session, or application
scope will be sufficient, as those scopes give the application the opportunity to wedge application
state only in the time period of the request-response interaction while a page is being generated,
or associate state on a per-user basis with the user session, or globally for all users, respectively.
Applications that make use of wizards, or particular sets of predefined interactions, may use the
finer-grained child scopes of the session scope: the conversation or flow scope.

f: Core Tags
The JavaServer Faces core tag library contains the basic tags that most JavaServer Faces pages will
use. The core tags are contained in the namespace

xmlns:f="http://xmlns.jcp.org/jsf/core"

Most of the tags fall into the three important categories of tags that validate data, in other
words, check that the values of data used in a tag fall within certain conditions, tags that manage
events generated in the JavaServer Faces page, and tags that deal with converting data at the page
level into a suitable form for consumption by the JavaBeans that back the page.

Data Validation
In a web page, it is important to make sure that data passed to you through the page by a user is
in the form you expect (for example, that when you expect an email address, you don’t get a
telephone number) and if it isn’t, to be able to inform the user of the mistake as quickly as
possible. JavaServer Faces provides various levels of validation that you can use for this purpose.
Often, it is enough to use the built-in tags for validation, which is the simplest approach and
covers the most frequent types of validation. The validator is applied to a tag that takes input by
making it a subelement of the tag whose value needs to be checked, as we shall shortly see. Let’s
take a look at the basic tags first.

Tag Function
<f:validateLength> Checks the minimum and/or maximum length of an input

string
<f:validateDoubleRange> Checks the minimum and/or maximum value of a input

double
<f:validateLongRange> Checks the minimum and/or maximum value of a input long
<f:validateRequired> Requires some nonempty value to be input

When validation fails, JavaServer Faces generates a default error message that is displayed on
the page. This message is often not very user-friendly, more an aid during development time, so it
is a good idea to customize the message using the validatorMessage attribute of the tag that

116 Java EE 7: The Big Picture

defined the input. Here is an example of simple text validation that checks whether the user is
providing a username of the right length:

Listing: Example String length validation

<h:form>
 <h:inputText id="username_component"
 validatorMessage="Username must be between 4 and 10 characters">
 <f:validateLength minimum="4" maximum="10"/>
 </h:inputText>
</h:form>

Input values may also be validated with the Bean Validation API or with regular expressions.

Tag Function
<f:validateBean> Checks a value against an implementation of the Beans Binding API

javax.faces.validator.BeanValidator.

<f:validateRegex> Checks a value against a regular expression. Either in the form of a
regex expression string:
<f:validateRegex pattern="/[0-9a-zA-Z]"/>

or as an implementation of the javax.faces.validator.
RegexValidator class:
<f:validateRegex binding="myRegexValidator">

You can also implement your own validator.

Listing: Example custom validator

@FacesValidator("myValidator")
public class MyValidator implements Validator {
 public void validate(FacesContext context,
 UIComponent component,
 Object value) throws ValidatorException {
 // check value
 // throw ValidatorException if it does not pass the check
 }
 }

which gives you a full view into the input component to which the validator is attached, the
context of the call, and the value object that has been input. To fail the validation, you simply
throw a ValidatorException from the validate method. This kind of custom validator is wired
into the input component using the

<f:validator validatorId="myValidator">

tag.
The mechanism for validations in JSF always requires a round trip to the server, where the

validator code runs while the page is being regenerated. Keep this in mind when you choose to

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 117

use them. There are cases where this is unavoidable, in particular, when using a custom validator
that needs to check other application data elsewhere in order to determine the validity of a value.
This may happen, for example, if a user enters a credit card number that must be checked for
validity with an external service. For validations that require only a format check, such as the
format of a telephone number, doing a round trip to the server for a JSF validation may be
unnecessary: sometimes, it can be better to use JavaScript to check this kind of value locally
without ever needing to send the information to the server to be checked.

Event Handling
So far in the examples we have looked at in this chapter, we have sidestepped the issue of when
the data showing on the JavaServer Faces page is sent to the Java EE web container and the page
refreshed with the newly generated page based on the updated information. Notice in the
PartyPlanner application that there were actually two ways in which the information on the page
was submitted to the Java EE web container, written to the underlying JavaBean, and the page
regenerated. First, the information was submitted by pressing the ENTER key after changing the
name of the party in the text field. Second, clicking the Submit button explicitly submitted the
new page data and updated the PartyBean. You will notice that altering the picture choice and
hitting reload in the browser to reload the page causes the picture choice to revert to the one held
in the JavaBean, and a similar effect is seen if you reload the page without submitting it when you
alter the choice of whether to invite parents. Even in this small example, you can see that there is
explicit work you have to do to keep the data on the page in sync with the model data in the
JavaBeans that back the page. We sidestepped the issue by having an explicit button, and by
relying on the fact that browsers generally interpret pressing the ENTER key in a text field as a
request to submit the text data to the server, as recommended by the HTML5 specification.

At times you will want the page to have a closer synchronization with the model data: even
altering a selection in a list or clicking a check box button should immediately update the model
data. In these common situations, JavaServer Faces provides an event handling mechanism so you
can intercept events generated when the widget state on the page changes and causes an update to
the corresponding model data. We examine the tags that are used in the mechanism in this section.

The overall idea is that the event handling tags can be used to register either an instance or a
class that implements a certain JavaServer Faces defined event listener interface class. When the
tag is used as a subelement of the appropriate user interface component, the event listener they
specify is added to that user interface component. When the user interface component’s state
changes, the page data is submitted to the Java EE web container, the corresponding event listener
is called, and the page regenerated and transmitted back to the browser.

The event handling tags in JavaServer Faces are shown in the following table.

Tag Function
<f:actionListener> For use with command buttons and links, this tag

registers the given implementation of javax
.faces.event.ActionListener which is then
notified when the component’s state changes.
<f:actionListener type =
"actionlistener impl classname">

<f:actionListener binding = "expression
evaluating to actionlistener instance">

118 Java EE 7: The Big Picture

Tag Function
<f:valueChangeListener> For use with all input components and lists, this tag

registers the given implementation of javax
.faces.event.ValueChangeListener, which is
then notified when the component’s state changes.
<f:valueChangeListener type =
"valuechangelistener impl classname">

<f:actionListener binding = "expression
evaluating to valuechangelistener
instance">

<f:setPropertyActionListener> For use with command buttons and links, this tag
lets you directly set the value of a property on a
managed bean.
<f:setPropertyActionListener

 target="#{myBean.babyName}"

 value="#{nameList.currentName}"

/>

We will see event listeners in action in our larger example toward the end of this chapter.

Data Converters
Data conversion is the process by which data that resides in the JavaServer Faces page, perhaps
values entered into a form, is converted to and from data that resides in the data layer and the
JavaBeans that back the page. There are various reasons why such conversions are necessary:
primarily, the JavaBeans data layer seeks to make its data formats the easiest to process for a
number of different JavaServer Faces pages, for example, BigDecimal for currency, while each
page seeks to make the format of the data in its page layer most suited to the needs of the user of
the page, a formatted String suitable to the locale in which the page is viewed.

JavaServer Faces allows for a number of different kinds of conversions that can cater to several
different data types and conversion needs. The starting point for these conversions is the conversion
tags in the JavaServer Faces core library. So again, we are looking at tags in the namespace

xmlns:f="http://xmlns.jcp.org/jsf/core"

Because data held in a web page is always held as a String, JavaServer Faces automatically
converts such strings to and from strings, Java primitive data types, and BigDecimal.

Prebuilt tags handle the two most common data conversions, with a number of configuration
options tuned to the needs of the page by the attributes on each tag.

Tag Function
<f:convertNumber> Converts a Double or Long object to and from a variety of

formats, including standard currency formats, and number
formats, specifying ranges for the number of integer and
fractional part digits, as well as grouping patterns.

<f:convertDateTime> Converts a Date object to and from a variety of human-
readable date formats suitable for a variety of locales and time
zones, and in a variety of date formats.

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 119

These two tags are the workhorses of the conversion mechanism. Like validators, used as
subelements of a UI component, they register an appropriate conversion object, supplied by
the JavaServer Faces runtime, which converts the data to the required specification. The
<f:convertNumber> tag adds a converter of type javax.faces.convert.NumberConverter
to the UI component, and the <f:convertDateTime> tag adds a converter of type javax
.faces.convert.DateTimeConverter to the UI component. By browsing the javax.faces
.convert package, you will see the other standard JavaServer Faces API classes for making the
primitive Java data type to String conversions that are in operation by default in the JavaServer
Faces runtime, such as BigDecimalConverter, BooleanConverter, and FloatConverter.
You will also notice the javax.faces.converter.Converter interface. This defines the general
contract for providing your own data converter by nesting the <f:converter> tag within a
component. To do this, you implement the Converter interface, which requires you to
implement two methods:

 public String getAsString(FacesContext context,
 UIComponent component,
 Object value)

 public Object getAsObject(FacesContext context,
 UIComponent component,
 String value)

for converting your data object to a string to display in the page, and for retrieving the instance of
your data object corresponding to the string displayed in the page, respectively. You name your
converter class using the @FacesConverter("converter-name") annotation that you have
already seen in action. Then you can have a UI component pick up this converter by nesting

<f:converter converterId="converter-name")>

in the UI component tag.

JSTL Core Tags
We have encountered the Standard Tag Library already. The control flow tags are also available in
JavaServer Faces. Here is a summary of these tags and their function.

Tag Purpose
<c:catch> Catches any throwable thrown within this tag, using the name of the var

attribute to hold the throwable.
<c:choose> Defines a set of mutually exclusive choices, used in conjunction with the

<c:when> and <c:otherwise> tags, like a Java switch statement.
<c:if> Simple conditional tag, based on the condition supplied in the test

attribute evaluating to true.
<c:forEach> Tag for iterating over collections.
<c:otherwise> Tag for the default case in a <c:choose> tag.
<c:set> Tag to set a page variable by name.
<c:when> Simple conditional tag, for use in <c:choose> tags, for example.

120 Java EE 7: The Big Picture

Extensibility and Modularity
JavaServer Faces includes many ways to extend its base functionality and to modularize pieces
of JavaServer Faces code to promote reuse within an application and across applications. It is
beyond the scope of this foundational chapter to explore all these mechanisms fully, but let’s
take a whirlwind tour of the opportunities for extensibility and modularity.

Developers can create custom UI components in two main ways. First, to render a new
user interface component on the page, they can provide a new subclass of UIComponent and
associate it with a new tag and a new set of control attributes. In this way, many developers
have created libraries of new HTML components and custom text components, for example,
image components that include mapping functionality. Second, snippets of JavaServer Faces
markup may be packaged into an XHTML file as a composite component and associated with
a tag using a tag library descriptor. In this way, commonly occurring groupings of tags in
JavaServer Faces pages, such as OK cancel button panels and image display panels, can be
bundled into a single tag, thereby making it easier to reuse such commonly recurring elements
in an application.

JavaServer Faces offers a couple of techniques to help web applications that have predefined
user interaction pathways. A wizard that collects registration data or a sequence of web forms
that help you make and pay for an online purchase are good examples of such interaction
pathways.

As a general aid for navigation, JavaServer Faces defines Faces Flows. This consists of
a managed bean scope, as described earlier, together with the ability to define a set of flows
between JavaServer Faces pages and the ability to easily share context, such as a shopping
basket or custom registration, between the pages and inject logic into the transitions.

Photo Application
We will conclude the chapter with a deeper exploration of a more sophisticated web application.
It is one that we have already seen, and it puts to the test the original claim made at the very
outset of this chapter: that a JavaServer Faces page is a better JSP. Let’s return to the photo
application, JavaServer Faces style.

The JavaServer Faces version of this application has some added functionality compared to the
previous versions. Let’s take a look at the home page, as shown in Figure 4-10.

The photos in the album are laid out, with each photograph having three buttons for viewing,
editing, and deleting it from the album. Figure 4-11 shows the view and edit screens.

New photos are added from the album page like a wizard, leading to the sequence shown in
Figure 4-12.

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 121

FIGURE 4-10. The face of a photo album

FIGURE 4-11. Viewing and editing a photo

122 Java EE 7: The Big Picture

The photo application is made up of four XHTML files, two managed beans, a Plain Old Java
Object class, and a servlet. The servlet is called DisplayPhotoServlet, and is essentially the
same servlet that we saw in Chapter 2: it displays the binary image data of a photo on demand.
The other application files are shown in Figure 4-13.

The diagram shows the correspondence between the XHTML files and the different screens
of the application. Let’s start our examination of the code by looking at the PhotoAlbum bean.

FIGURE 4-12. Uploading a photo

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 123

Listing: The PhotoAlbum class

 import java.util.*;
 import java.io.*;
 import javax.inject.*;
 import javax.enterprise.context.*;

 @Named(value = "photoAlbum")
 @SessionScoped
 public class PhotoAlbum implements Serializable {
 private List<Photo> photos = new ArrayList<>();
 private Photo currentPhoto = null;

 public PhotoAlbum() {
 }

 public void setCurrentPhoto(Photo p) {

FIGURE 4-13. Contents of the photo application

Web Server

JSF Application

JavaBeans
PhotoAlbum (bean)

EditPhoto (bean)
Photo (POJO)

ImageUploadValidator
DisplayPhotoServlet

JavaServer Faces APIs

XHTML files
upload.xhtml

edit.xhtml
photo.xhtml
album.xhtml

124 Java EE 7: The Big Picture

 this.currentPhoto = p;
 }

 public Photo getCurrentPhoto() {
 return this.currentPhoto;
 }

 public void addPhoto(Photo p) {
 if (this.containsId(p.getId())) {
 this.removePhoto(this.getPhotoById(p.getId()));
 }
 this.photos.add(p);
 }

 private Photo getPhotoById(long id) {
 for (Photo photo : this.photos) {
 if (photo.getId() == id) {
 return photo;
 }
 }
 return null;
 }

 public boolean containsId(long id) {
 return this.getPhotoById(id) != null;
 }

 public List<Photo> getPhotos() {
 return this.photos;
 }

 public void removePhoto(Photo photo) {
 this.photos.remove(photo);
 }

 public Photo getPhoto(long id) {
 for (Photo photo : this.photos) {
 if (photo.getId() == id) {
 return photo;
 }
 }
 return null;
 }

 public List getPhotoNames() {
 List<String> names = new ArrayList<>();
 for (Photo photo: this.photos) {
 names.add(photo.getName());
 }
 return names;
 }

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 125

 public List getPhotoFilenames() {
 List<String> filenames = new ArrayList<>();
 for (Photo photo: this.photos) {
 filenames.add(photo.getFilename());
 }
 return filenames;
 }

 public int getIndexOf(String photoName) {
 for (Photo photo : this.photos) {
 if (photo.getFilename().equals(photoName)) {
 return photos.indexOf(photo);
 }
 }
 return -1;
 }

 public byte[] getPhotoData(int i) {
 Photo photo = this.photos.get(i);
 return photo.getData();
 }

 public byte[] getPhotoDataByName(String name) {
 for (Photo photo : this.photos) {
 if (photo.getFilename().equals(name)) {
 return photo.getData();
 }
 }
 return null;
 }

 public String getPhotoName(int i) {
 Photo photo = this.photos.get(i);
 return photo.getFilename();
 }

 public int getPhotoCount() {
 return photos.size();
 }

 }

We can see right away that this is a session-scoped managed bean, so the PhotoAlbum will
be instantiated once for every new client of the application, and that instance will live as long as
the HttpSession in use by the client during numerous interactions with the web application is
active. The PhotoAlbum, as in previous incarnations of the application, holds all the Photo
instances that make up the current album. So by making the PhotoAlbum session scoped, we

126 Java EE 7: The Big Picture

ensure that the album lives for as long as the user interacts with the application. Of course, to
take the application to the next stage, we would want to persist the photo information in a
database. Notice that the PhotoAlbum is Serializable. This is a requirement of it being session
scoped, ensuring that all the session-scoped managed beans in the Java EE web container can be
reconstituted if an HttpSession moves from one web server node to another in a clustered
environment. The PhotoAlbum is heavily used by its @Named name from the album.xhtml page.
Since this is the most complicated of the pages, we will look at it in its entirety.

Listing: The album.xhtml file

<?xml version='1.0' encoding='UTF-8' ?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core">
 <h:head>
 <title>Photo Viewer</title>
 </h:head>
 <h:body style="font-family:Palatino;font-size:small">
 <div align='center'>
 <h3>Your Photo Album</h3>

</br>
 <table bgcolor="99CC99" cellspacing="4">
 <tbody>
 <tr>
 <c:forEach items="#{photoAlbum.photos}" var="photo">
 <td>
 <div align='center'>
 #{photo.name}
 </div>
 </td>
 </c:forEach>
 </tr>
 <tr>
 <c:forEach items="#{photoAlbum.photos}" var="photo">
 <td>
 <h:form>
 <h:graphicImage
 height="200"
 width="200"
 value="#{photo.viewUri}"/>
 </h:form>
 <h:form>
 <div align='right'>
 <h:commandButton
 title="view"
 image="view.png"
 actionListener="#{photoAlbum.setCurrentPhoto(photo)}"

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 127

 action="photo"/>
 <h:commandButton
 title="edit"
 image="edit.png"
 actionListener="#{editPhotoBean.setPhoto(photo)}"
 action="edit"/>
 <h:commandButton
 title="delete"
 image="delete.png"
 action="#{photoAlbum.removePhoto(photo)}"/>
 </div>
 </h:form>
 </td>
 </c:forEach>

 </tr>
 </tbody>
 </table>

</br>
 <h:form>
 <h:commandButton
 id="upload_button"
 value="Upload photos"
 action="upload"/>
 </h:form>
 </div>
 </h:body>
 </html>

This is a JavaServer Faces page that uses the core JavaServer Faces tags, the standard tag
library, and the JavaServer Faces UI component tags, as you can see from the c and f and h
namespace imports at the top of the file. It uses the PhotoAlbum bean, in conjunction with the
<c:forEach> tag, to iterate over the photos in the album, writing out the photo names, and
using the JavaServer Faces image component to display image data from the viewUri property of
each photo instance. The command buttons that control the view, edit, and delete behaviors
attached to each photo make use of both the actionListener attribute to take some action, as
defined in an expression language expression when they are clicked, and also the action
attribute to define a navigation target after the actionListener has been called. For example,
when the view button is pressed, you can see from the definition of the command button tag

<h:commandButton
 title="view"
 image="view.png"
 actionListener="#{photoAlbum.setCurrentPhoto(photo)}"
 action="photo"/>

that the PhotoAlbum’s current photo property is set to the photo above the button on the page,
and then the photo.xhtml page is loaded once that action has been taken.

The process of uploading and adding properties to an uploaded photo in the upload wizard
sequence is backed by the EditPhoto bean.

128 Java EE 7: The Big Picture

Listing: The EditBean class

 import java.io.ByteArrayOutputStream;
 import java.io.InputStream;
 import javax.inject.Named;
 import javax.inject.Inject;
 import javax.servlet.http.Part;
 import java.io.*;
 import java.util.Date;

 @Named(value = "editPhotoBean")
 @javax.enterprise.context.SessionScoped
 public class EditPhoto implements Serializable {
 @Inject
 PhotoAlbum photoAlbum;
 private long id = -1;
 private boolean isPublic = false;
 private String filename;
 private String photoName;
 private Date dateTaken = new Date();
 private byte[] photoData = null;

 public EditPhoto() {}

 public boolean isNew() {
 return this.id == -1;
 }

 public boolean isPublic() {
 return isPublic;
 }

 public void setPublic(boolean isPublic) {
 this.isPublic = isPublic;
 }

 public Date getDateTaken() {
 return dateTaken;
 }

 public void setDateTaken(Date dateTaken) {
 this.dateTaken = dateTaken;
 }

 public String getPhotoName() {
 return this.photoName;
 }

 public void setPhotoName(String photoName) {
 this.photoName = photoName;

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 129

 }

 public String getFilename() {
 return this.filename;
 }

 public void reset() {
 this.id = -1;
 this.dateTaken = new Date();
 this.filename = null;
 this.photoData = null;
 this.photoName = null;
 }

 public void commit() {
 this.photoAlbum.addPhoto(this.getPhoto());
 this.reset();
 }

 private void collectData(Part uploadedPart) {
 if (uploadedPart.getSize() == 0) {return;} // dannyc
 try {
 ByteArrayOutputStream baos;
 try (InputStream is = uploadedPart.getInputStream()) {
 baos = new ByteArrayOutputStream();
 int i = 0;
 while ((i=is.read()) != -1) {
 baos.write(i);
 }
 photoData = baos.toByteArray();
 }
 baos.close();
 } catch (Exception e) {
 photoData = null;
 throw new RuntimeException(e.getMessage());
 }
 this.filename = uploadedPart.getSubmittedFileName();
 this.photoName = this.filename.substring(0, this.filename.indexOf("."));
 }

 public byte[] getPhotoData() {
 return this.photoData;
 }

 public void setUploadedPart(Part p) {
 this.collectData(p);
 }

 public Part getUploadedPart() {
 return null;
 }

130 Java EE 7: The Big Picture

 public String getPreviewUrl() {
 if (this.hasPhoto()) {
 return "DisplayPhotoServlet";
 } else {
 return "nopreview.png";
 }
 }

 public void setPhoto(Photo p) {
 this.id = p.getId();
 this.isPublic = p.isPublic();
 this.filename = p.getFilename();
 this.photoName = p.getName();
 this.dateTaken = p.getDateTaken();
 this.photoData = p.getData();
 }

 public boolean hasPhoto() {
 return (this.photoData != null);
 }

 public Photo getPhoto() {
 if (this.hasPhoto()) {
 Photo p = new Photo(this.id, this.getPhotoData(),
 this.getFilename(), this.photoName, this.dateTaken, this.isPublic);
 return p;
 } else {
 return null;
 }
 }

 }

This, too, is a session-scoped bean: we need this bean to be unique to each user of our
application (you do not want to upload a photo to someone else’s album, after all), and it needs
to live at least as long as the sequence of uploading the file and filling out the name and other
properties. This bean’s function is to be able to gather that data, one piece at a time. By use of
dependency injection and the @Inject annotation, each instance of this EditPhoto bean has its
photoAlbum instance variable assigned to the instance of the photo album that is in the same
session scope (i.e., same HttpSession) as itself, thereby allowing this EditPhoto bean to add
the photo it produces when all its data has been filled out to the correct photo album in scope.

Both the upload.xhtml and edit.xhtml pages use this EditPhoto bean. We won’t look
at both, but let us look at the upload.xhtml page.

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 131

Listing: The upload.xhtml page

<?xml version='1.0' encoding='UTF-8' ?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core">
 <h:head>
 <title>Upload</title>
 </h:head>
 <h:body style="font-family:Palatino;font-size:small">
 <div align='center'>
 <h3>Upload new photo</h3>
 <table bgcolor="FFFF99" cellspacing="4"><tbody><tr><td align='center'>
 <h:graphicImage
 height="330"
 width="330"
 value="#{editPhotoBean.previewUrl}"/>

 </td></tr></tbody></table>

</br>
 <c:if test="#{!editPhotoBean.hasPhoto()}">
 <h:form id="form" enctype="multipart/form-data" prependId="false">
 <h:commandButton
 id="cancel"
 value="Back"
 actionListener="#{editPhotoBean.reset()}"
 action="album"/>
 <h:inputFile
 id="file"
 value="#{editPhotoBean.uploadedPart}">
 <f:validator validatorId="imageUploadValidator" />
 </h:inputFile>
 <h:commandButton
 id="button"
 value="Next"
 action="upload"/>

 </h:form>
 </c:if>
 <c:if test="#{editPhotoBean.hasPhoto()}">
 <h:form id="navig">
 <h:commandButton
 id="cancel"
 value="Back"
 action="#{editPhotoBean.reset()}"/>
 <h:commandButton
 id="continue"
 value="Next"

132 Java EE 7: The Big Picture

 action="edit"/>
 </h:form>
 </c:if>
 <h:messages id="messages" style="color:red" />
 </div>
 </h:body>
 </html>

Notice in this page that the EditPhoto bean is used by the name in its @Named annotation
and, in particular, its uploadedPart property is set from the <h:inputFile> tag. This means
that the uploaded file is set on the setUploadedPart() method on the EditPhoto bean when
it is uploaded. The <h:inputFile> tag has a nested validator: the imageUploadValidator. By
looking at the code for ImageUploadValidator:

 import javax.faces.application.FacesMessage;
 import javax.faces.component.UIComponent;
 import javax.faces.context.FacesContext;
 import javax.faces.validator.FacesValidator;
 import javax.faces.validator.Validator;
 import javax.faces.validator.ValidatorException;
 import javax.servlet.http.Part;

 @FacesValidator("imageUploadValidator")
 public class ImageUploadValidator implements Validator {

 @Override
 public void validate(FacesContext context,
 UIComponent component,
 Object value) throws ValidatorException {
 Part file = (Part) value;
 if (!file.getContentType().equals("application/octet-stream")
 && !file.getContentType().equals("image/jpeg")) {
 throw new ValidatorException(new FacesMessage("The file you tried
 to upload is not an image file. Please try again."));
 }
 }
 }

we can see that only files of the correct MIME type will be uploaded. Try it yourself by attempting
to upload a text file: you will see an error message on the page in red, thanks to the
<h:messages> tag, and the EditPhoto bean will not be called.

While this application takes a simple approach to presentation in terms of color, visual styles,
and layout, it should be possible to see that by using JavaServer Faces UI components, expression
language, managed beans, and a variety of components such as a data validator, and a date/time
converter in the edit.xhtml page, it is possible, even in a straightforward example, to separate
the concerns of presentation from application data and logic quite cleanly. The lifecycle of the
managed beans is taken care of by the Java EE web container, freeing us up to focus on the logic
of photos and albums. We were able to dispose of the UploadServlet seen in previous versions
of the application with the single <h:inputFile> tag.

Chapter 4: Assembling Dynamic Web Pages: JavaServer Faces 133

Summary
In this chapter, we learned about the basic architecture of a JavaServer Faces application. We
learned about the concepts of managed beans and how they can be used to hold a variety of
different kinds of application data with differing lifecycles and cardinalities. We learned the most
frequently used UI components and the mechanisms of event handling, data validation, and
conversion. We saw three examples of increasing sophistication to illustrate what we learned.

We could go much further with the photo application, applying stylesheets to factor out pure
presentation choices and using Faces Flows and navigation files to factor out the photo
information–gathering flow in the application. We could factor out some of the common user
interface elements into reusable Facelets, like the photo view table and the view, edit, delete
button triples. However, even applying the mechanisms of managed beans, UI components, and
expression language has brought us through the foundations of JavaServer Faces technology.

CHAPTER
5

Web Sites for
Non-browsers: JAX-RS

136 Java EE 7: The Big Picture

A
JAX-RS component is a web component for non-browser clients.

In the last two chapters, we focused on web components that cater to the production
of dynamic content described using a markup language. Specifically, JavaServer Faces is

predominantly focused on the production of dynamic HTML pages. We have spent a good
portion of our time so far looking at the features of the Java EE web container that make it easy to
write a dynamic web site for browser clients.

Building a web site for browser clients entails the production not just of web components
that generate dynamic markup content, but also of the design and creation of a data model and
associated application logic that supports the web site. What happens if you want to expose the
functionality of that application to non-browser clients? What if you want to expose some other
aspect of that application data model, through some new set of logic, to non-browser clients?
Suppose you have built an online store that allows customers to browse for items to purchase, fill
a shopping basket, and make purchases from their desktop or smartphone. Now suppose you
wish to build a rich client application that has a more interactive user experience than you can
achieve when the customer is limited to using a browser, such as for a dedicated smartphone app.
Suppose you wish to automate updating the inventory of items for purchase to another web
application that the warehouse staff uses.

This need led to the development of web services technologies around 10 to 15 years ago.
Initially growing out of the collection of existing CORBA/RPC technologies, interaction models
used various XML formats and the synchronous RPC execution model, with the forerunner being
SOAP/HTTP. This model paved the way for what was to come, and is well supported in the Java EE
platform, using the JAX-RPC APIs in the javax.xml.rpc.* packages, a kind of Java RMI
programming model that works with non-Java SOAP peers. But the complexity of this model was
soon to be replaced with a new style of web services called Representational State Transfer web
services (REST or RESTful for short). This web service technology is considerably simpler and
easier to use than its predecessors. The major Internet companies of our time, Google, Amazon,
Twitter, Facebook, and Yahoo!, have adopted this style for the APIs they use to expose their
functionalities over the Internet. For these two reasons, this style has become the overwhelmingly
predominant technology for web services.

What Are RESTful Web Services?
RESTful web services use a model wherein applications and data are exposed over HTTP as
resources. Each resource a web service exposes has a URI that clients may use to interact with
it. A web service resource may allow itself to be read by its client, updated by its clients, and
deleted by its clients, and may also allow the creation of new resources. Not all web service
resources allow all such operations.

In Figure 5-1, there is a web service client, which may be a rich client application on a
smartphone or another web application running on a different application server. It interacts with
the web service on the right, which is a lending library service. This service consists of two kinds
of web service resources. One, the Library resource, of which there is one, allows browsing of the
catalog and updates to the catalog information using the Read and Update operations. The second
kind of resource is the Book resource, of which the Library contains many. Books may be added
to the Library by using the Create operation on the Library, which creates a new Book resource to
represent the new title. Individual books in the collection may be examined using the Read
operation on the Book resource, while books may be removed from the Library by means of the
Delete operation on the appropriate Book resource.

Chapter 5: Web Sites for Non-browsers: JAX-RS 137

How are these kinds of create, read, update, and delete operations (also known collectively
as CRUD operations) performed using RESTful web services? Part of the appeal of RESTful web
services lies in the fact that it relies closely on well-understood and well-tested mechanisms from
traditional web programming.

RESTful web services can be characterized using the following four properties.

Uses a URI Space to Address Web Service Resources
Just like a web application maps its static web pages, JSPs, and JavaServer Faces to URIs within a
web application, web service resources are assigned one or more URIs on the web service,
providing a means for the clients of the web service to address them in order to call their
operations. Though there are no hard and fast rules about how the URI space is structured, it is
common practice for the URI space to be hierarchically arranged in such a way that it reflects the
hierarchy of the logical entities represented by the web resources. For example, you would
reasonably expect that if the library resource in the diagram in Figure 5-1 were mapped to

/library

then the books would be mapped to URIs that shared /library at the root; perhaps your three
favorite books in the library would correspond to Book web resources mapped to the following
three relative URIs:

/library/books/23
/library/books/87
/library/books/1156

FIGURE 5-1. A Library web service

Web Service Client

Web Server

Lending Library Web Service

Http Response

Http Request

Library
Resource

Read

Update

Create

Book
Resource

Read

Delete

138 Java EE 7: The Big Picture

Uses HTTP Methods for Operations
RESTful web services use HTTP methods to perform operations on resources. The model for
RESTful web services is to use

 ■ HTTP GET for read operations on a resource to obtain all the information it can give
about its identity.

 ■ HTTP PUT for update operations to allow the client to pass information to the resource
so that the resource can be modified as a result of the operation.

 ■ HTTP POST to create new web services resources to allow the client to pass information
to a web service resource that it uses to create a new web resource.

 ■ HTTP DELETE for delete operations to allow the client to send an HTTP DELETE request
to a web service resource, with the result that the resource is removed from the web
service.

We should note at this point that this model is basically an expression of good (and common)
practice. It is, of course, possible to abuse the definitions of these HTTP methods, passing data in
a query string on a GET request in order to update a web service resource instead of using a PUT,
or even using request parameters on a DELETE to create a new web service resource. Such
practices, while possible, are generally frowned upon because they lead to web services APIs that
are not very intuitive, swimming against the overwhelming stream of convention and good
practice that has grown up around the use of HTTP methods in RESTful web services.

In our Library service, therefore, you would expect a

HTTP GET /library

to perform the Read operation, that is, to give you a listing of all the books in the library. You
might well expect

HTTP PUT /library/books/87

together with accompanying information to update the library’s records about book 87, just as
you might well expect

HTTP DELETE /library/books/87

to remove book 87 from the library altogether.

RESTful Web Service Resources Are Stateless
The RESTful model is designed for highly scalable and high-performance web servers. Software
components that represent web service resources are much more cleanly supported on clusters of
servers with load balancing and failover if each request they service is entirely independent from
the next. In other words, the RESTful model is geared toward web service resources not holding
state across multiple requests. It is as though web service resources have less memory than a
goldfish does: by the time the next request arrives from a new client, they have forgotten that
anyone else has ever called them in the past.

Chapter 5: Web Sites for Non-browsers: JAX-RS 139

Use Familiar Formats for Structured Data
RESTful web services use the MIME type to both identify the request information they will and
can process and the information they will produce in response to a request. On the request side,
the client uses the HTTP Accept header to indicate the format of the data it is sending to the web
service resource. On the response side, the web service resource uses the Content-Type header
to indicate the MIME type of the response it is giving.

RESTful web services can consume and produce any MIME type they wish; however, most
web services consume and produce structured data as XML or as JavaScript Object Notation
(JSON), or both.

For example, you could reasonably expect

HTTP GET /library/book/87, mime-type="application/xml"

to return something like

<book>
 <title>Passage to India</title>
 <author>E M Forster</author>
</book>

We can show these four properties of RESTful web services in a simple diagram, as seen in
Figure 5-2.

FIGURE 5-2. A generalized view of a web service

Web Service
Client

Web Server

REST ful Web Service

Web Service Resource
/resource-uri

GET

PUT

POST

DELETE

MIME types

MIME types

MIME types

MIME types

MIME types

MIME types

MIME types

MIME types

Http Response

Http Request

140 Java EE 7: The Big Picture

The Java API for RESTful Web Services
Now that we have a good understanding of the fundamental principles of RESTful web services,
let us look at how they are supported in Java EE with the Java API for RESTful Web Services, or
JAX-RS for short.

The starting point when representing web service resources is to take a JavaBean class and
annotate it with the @javax.ws.rs.Path annotation:

import javax.ws.rs.Path;

@Path("hello")
public class HelloResource {
}

This instructs the Java EE web container to create a web service resource that is addressed at

http://<hostname>:<port>/<web-app-context-root>/hello

This is a good start, but the web service resource doesn’t do anything yet. In order for it to
have an operation, let’s say a read operation, we need to create a Java method on the class that
will be the operation and annotate it with the @GET HTTP method annotation from the javax
.ws.rs package. This package is where all the other HTTP method annotations live as well.

Listing: The HelloWorld resource

import javax.ws.rs.GET;
import javax.ws.rs.Path;

@Path("hello")
public class HelloResource {

 @GET
 public String sayHello() {
 return "Hello you !";

 }

}

Now we have the code for a web service resource that will give the string Hello you !
when sent an HTTP GET request.

In JAX-RS terminology, the HelloResource class is a root resource class. You could always
create web service resources as root resource classes if you wanted to, but once you have a root
resource class representing a web service resource, you can use the root resource class to create
web service resources whose URI is a sub-URI of the root resource class. For example, you can
create a sub-resource of HelloResource by adding a new method giveGreeting() to the
HelloResource class.

Chapter 5: Web Sites for Non-browsers: JAX-RS 141

Listing: The HelloWorld resource with greeting sub-resource

import javax.ws.rs.GET;
import javax.ws.rs.will Path;

@Path("hello")
public class HelloResource {

 @GET
 public String sayHello() {
 return "Hello you !";
 }

 @Path("greeting")
 public GreetingResource giveGreeting() {
 return new GreetingResource();
 }

}

By annotating the method with the @Path annotation and setting its value to greeting, you are
indicating that you want the GreetingResource class it returns to be a subresource of the
HelloResource, available at the URI /hello/greeting. Now all the GreetingResource
class needs to do is have a method annotated with one of the HTTP method annotations:

import javax.ws.rs.GET;

Listing: The Greeting resource

public class GreetingResource {

 @GET
 public String getGreeting() {
 return "Hail fellow well met !";
 }

}

Thus, there are two ways to create web service resources:

 ■ Create a root resource class with the @Path annotation containing the resource URI and
have it declare its own operations by using one or more Java methods with HTTP method
annotations.

 ■ From a root resource class, you declare a Java method returning a second Java class,
where the Java method is annotated with @Path containing a URI relative to the URI of
the root class. The second Java class implements the operations of the subresource with
Java methods annotated by HTTP method annotations.

Here is a summary of the annotations to use for creating JAX-RS resources.

142 Java EE 7: The Big Picture

Annotation Attribute Used
@Path Value attribute; denotes

relative path where
resource is deployed

At the class level to create a root resource; at
the method level to create a subresource

@GET None To say that a Java method will handle HTTP
GET requests for the web resource

@HEAD None To say that a Java method will handle HTTP
HEAD requests for the web resource

@PUT None To say that a Java method will handle HTTP
PUT requests for the web resource

@POST None To say that a Java method will handle HTTP
POST requests for the web resource

@DELETE None To say that a Java method will handle HTTP
DELETE requests for the web resource

@OPTIONS None To say that a Java method will handle HTTP
OPTIONS requests for the web resource

Before we look at more of the JAX-RS APIs, let’s look at a variation of this HelloWorld style of
JAX-RS application and a couple of different ways to access it.

HelloResource Example: Server Side
In this example, we have a HelloResource web service resource deployed to the URI /hello
relative to the web application that contains it. You can access the HelloResource resource
from a browser, as we can see in Figure 5-3.

FIGURE 5-3. HelloResource as seen from the browser

Chapter 5: Web Sites for Non-browsers: JAX-RS 143

You can see that this resource outputs some information about its configuration and how it
has been accessed. Let’s take a look at the code.

Listing: The HelloResource resource

import javax.ws.rs.GET;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.UriInfo;
import javax.ws.rs.core.HttpHeaders;

@Path("hello")
public class HelloResource {

 @GET
 @Produces("text/html")
 public String sayHello(@Context UriInfo uri,
 @Context HttpHeaders headers) {
 return "<html>" +
 " <head>" +
 " <title></title>" +
 " <meta http-equiv='Content-Type' content='text/html'>" +
 " </head>" +
 " <body>" +
 " <div align='center'>Hello, I am a web service resource," +
 " and here is some of my info.
</br> I am
 deployed at "
 + uri.getAbsolutePath() +
 "</div>
" +
 " <div align='center'>Here are the request
 headers
</br> " +
 " " + this.writeHeaders(headers) + "</div>" +

 " </body>\n" +
 "</html>";

 }

 private String writeHeaders(HttpHeaders headers) {

 StringBuilder buf = new StringBuilder();
 for (String header: headers.getRequestHeaders().keySet()) {
 buf.append(header);
 buf.append(":");
 buf.append(headers.getRequestHeader(header));
 buf.append("
");
 }
 return buf.toString();
 }

144 Java EE 7: The Big Picture

 @PUT
 @Produces("text/plain")
 public String sayHelloPlain(String requestEntity) {
 return "Hello " + requestEntity + ", from JAX-RS land !";

 }

}

Notice the use of the @Path annotation (with /hello as its URI relative to the context root of
its web application) at the class level: HelloResource is therefore a root resource class. Next
look at the sayHello() method. It uses the @GET annotation to declare that it will handle GET
requests. This, of course, is the kind of request that the browser makes when you access this
resource using the URL to the web resource. It uses a second JAX-RS annotation, @Produces,
which indicates the MIME type of the content that this method will produce, in this case, HTML
content. The parameter list of this method is also interesting; it asks for two objects to be passed
in: an instance of UriInfo and an instance of HttpHeaders. These two JAX-RS API classes
represent information about the URI used to access the web resource and the headers the client
sent when requesting the resource, respectively. By virtue of the JAX-RS @Context annotation,
the JAX-RS implementation knows that it (rather than anyone else who might call the method) is
responsible for making sure these objects are correctly passed into this method at runtime when
the method is called. We will return to the topics of accessing context and of MIME type
declarations shortly. For now, we can see that the method implementation uses this information to
produce the HTML content that it declares it will.

This is a rather reductive example: web service resources are not really intended for browser
access. Indeed, we have better ways of generating HTML content from the Java EE platform. So
what about the other web service method in this resource, sayHelloPlain()?

Before we take a look, we will pause to examine how JAX-RS resources are deployed on the
Java EE server.

Deploying JAX-RS Resources
In order to deploy all the web service resource classes, and any other classes that it needs, you
need to implement the javax.ws.rs.core.Application interface. The function of this
interface is to let you declare in your application which of the classes it holds are resource classes
and which are JAX-RS support classes, such as entity providers or exception mappers. The main
contract of the class is the following method:

public Set<Class<?>> getClasses()

This method asks the straightforward question: Which JAX-RS classes would you like to deploy
from this web application? When you deploy a web application containing an implementation of
this application class, the JAX-RS runtime looks in the WAR file for such implementations,
instantiates them, and gets the list of JAX-RS classes that it needs to deploy.

HelloResource Example and the Rich Client
Returning now to the second web service method of the HelloResource class in our example,
the method sayHelloPlain(), we can see that by virtue of the @PUT annotation that decorates
it, it responds to HTTP PUT requests. Therefore, it is the kind of web service resource method that

Chapter 5: Web Sites for Non-browsers: JAX-RS 145

accepts incoming data. We can see from its @Produces annotation that it produces plain text. It
also has a String method parameter that it uses to formulate its response. Now, the HelloClient
application is a second web service application, this time a Java client application, that uses a
Swing window and JAX-RS to make the call to access this second method on the
HelloResource resource on the web server, as shown in Figure 5-4.

We won’t spend any time looking at Swing code; instead, let’s look at the HelloClient
Java class that the window uses to invoke the HelloResource web service resource running
on the server.

Listing: The HelloClient class

import javax.ws.rs.client.*;

public class HelloClient {
 WebTarget wt;

 public HelloClient() {
 Client client = ClientBuilder.newClient();
 this.wt = client.target("http://localhost:8080/HelloWebServices/hello");
 }

 public String getUriAsString() {
 return this.wt.getUri().toString();
 }

 public String sayHello(String message) {
 Invocation webServiceCall = wt.request()
 .accept("text/plain")

FIGURE 5-4. HelloResource as seen from a Java client

146 Java EE 7: The Big Picture

 .build("PUT", Entity.text(message));
 String s = webServiceCall.invoke(String.class);
 return s;
 }

}

When you click the Say Hello button in the UI, it calls the sayHello() method, passing in
the value of the text field at the top of the window. The window appends the return value of this
method to the text area in the middle of the window.

The javax.ws.rs.client.WebTarget class is the client-side representation of the remote
resource that the client wishes to call. An instance of this is obtained from the instance of the
javax.ws.rs.client.Client class that is bootstrapped, as shown in the code, from the
ClientBuilder class. Once the WebTarget instance has been created, using the URL to the
web resource in question, it can be used to create an instance of the class javax.ws.rs
.client.Invocation, which represents all the data about the call that will be made. Finally,
the call is actually made when the invoke() method of the invocation instance is called,
passing in the class of the expected data type that the invocation will return, in this case, the
String class.

Because the request that the sayHello() method on the client generates has been created
with the text/plain MIME type, when the server receives the request to that URI, it looks for a
method on the web service resource that can process data of that MIME type. So the incoming
message is routed to the method on the server-side resource on HelloResource of
sayHelloPlain()

 @PUT
 @Produces("text/plain")
 public String sayHelloPlain(String requestEntity) {
 return "Hello " + requestEntity + ", from JAX-RS land !";

 }

which was the mystery method of the HelloResource class earlier.
Since many web services are enacted server to server, this is no casual introduction to the

JAX-RS client API. Indeed, you may well expect to use it from other Java EE components in
addition to rich clients such as this Swing window. The example also introduces you rather
informally to the two foundational mechanisms in JAX-RS: that of web resource content
consumption and web resource production.

Content Production
All the examples that we have seen so far have web resource methods that return strings. Some
were strings containing HTML, and some were strings containing regular text, but what they all
had in common was that they came from Java methods whose return value was java.lang
.String.

JAX-RS provides the means to model the content produced by web service resource methods
with other Java classes suitable to the needs of the application and the means to describe the
content to the calling client of the web resource.

The content produced by a web service resource method is called a response entity. Java
methods that implement web service web resource methods create response entities in one of two

Chapter 5: Web Sites for Non-browsers: JAX-RS 147

ways. They may return an instance of the javax.ws.rs.core.Response class, which they can
build with the Response.ResponseBuilder class, in which case the response entity is the
entity property of the Response instance. Second, they may return a Java object that represents
the response entity itself. The second case is a shortcut for web service methods that have no need
to set other aspects of the response, for example, setting HTTP headers in the response.

You may be wondering what kinds of Java objects may be used to represent response entities:
you have already seen that java.lang.String is one of them. JAX-RS supports encoding of
several other Java types into response entities.

Java Type Content Types
byte[] Any
java.lang.String Any
java.io.InputStream Any
java.io.Reader Any
java.io.File Any
javax,activation.DataSource Any
java.xml.transform.Source Text/xml, application/xml application/*+xml

javax.xml.bind.JAXBElement and
application-supplied JAXB classes

Text/xml, application/xml application/*+xml

javax.ws.rs.core.
MultivaluedMap<String,String>

Application/x-www-form-urlencoded

javax.ws.rs.core.StreamingOutput Any
java.lang.Boolean and boolean Text/plain

java.lang.Character and char Text/plain

java.lang.Number and primitive
equivalents

Text/plain

Extending Response Entity Production
If this list is not convenient enough to model a response entity in an application, an application
might deal in custom application-specific classes. In this case, JAX-RS has an extensibility scheme
wherein any arbitrary Java type may be used in a response entity, provided there is a corresponding
Java class that knows how to convert the Java type into the response type. Such conversion classes
are known as response entity providers, and the contract you have to follow in creating entity
providers is defined in the API class javax.ws.rs.MessageBodyWriter<T>.

In other words, if you want your web service method to return a Java object of type Foo,
either directly or set as the entity of the Response instance it returns, then you provide an
implementation of the interface MessageBodyWriter<Foo>, which requires you to implement
the following method:

void writeTo(Foo entity,
 Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mediaType,

148 Java EE 7: The Big Picture

 MultivaluedMap<String,Object> httpHeaders,
 OutputStream entityStream)
 throws IOException,

 WebApplicationException

The Foo entity parameter contains the response entity your web service method has returned, and
it must be written to the entityStream parameter. We will see an example of such an entity
provider at the end of the chapter.

@Produces
As we saw at the beginning of the chapter that when a client requests a response from a RESTful
web service resource, it can use the Accept header to inform the resource of the MIME type of
the response it wishes to receive. For the JAX-RS web service methods to be able to declare what
kind of content they produce, the JAX-RS API includes the @Produces annotation for use on web
service methods. The @Produces annotation’s sole and mandatory attribute is the value()
attribute, which contains the array of MIME types of the response entity of the method. This allows
the same web resource method to be implemented by several Java methods, each producing a
response entity of a different MIME type, as declared by the @Produces annotation that annotates
each such Java method.

Content Consumption
Somewhat symmetrically, consumption of the body of a RESTful web service request follows
many of the same mechanisms. A Java method that wishes to process the body of a web service
request, known as a request entity, must have a parameter unadorned by annotations that is of a
Java type suitable for holding the request entity. As we have seen, java.lang.String is one of
the approved types for textual request entities. Just as with response entities, JAX-RS supports most
of the same Java types that may be used for the request entity parameter of the Java web service
method, with some limitations on the MIME types of the requests that can be used.

Java Type Content Types
byte[] Any
java.lang.String Any
java.io.InputStream Any
java.io.Reader Any
java.io.File Any
javax,activation.DataSource Any
java.xml.transform.Source Text/xml, application/xml

application/*+xml

javax.xml.bind.JAXBElement and
application-supplied JAXB classes

Text/xml, application/xml
application/*+xml

Chapter 5: Web Sites for Non-browsers: JAX-RS 149

Java Type Content Types
javax.ws.rs.core.
MultivaluedMap<String,String>

Application/x-www-form-urlencoded

java.lang.Boolean and boolean Text/plain

java.lang.Character and char Text/plain

java.lang.Number and primitive equivalents Text/plain

Similarly, if an application wishes to consume its incoming request entities in the form of
some Java type that is not on this list of supported standard types, an analogous mechanism exists
for decoding incoming request entities into the given Java type. The application-provided objects
that implement such decoding tasks are called request entity providers. The API contract for
request entity providers is given by the MessageBodyReader<T> interface.

In other words, if you wish incoming web service request entities to arrive into your Java web
service method as an instance of the Foo class, you need to create a Java class that implements
MessageBodyReader<Foo>. This primarily requires you to implement the method

Foo readFrom(Class<Foo> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mediaType,
 MultivaluedMap<String,String> httpHeaders,
 InputStream entityStream)
 throws IOException,

 WebApplicationException

which means you must read the incoming data from the entityStream parameter and
instantiate a Foo instance. This instance will be passed to the Java web service method for
which the request entity is destined. We will see an example of a MessageBodyReader later
in the chapter.

@Consumes
When a resource method consumes data, the Java method that implements it expects data in a
particular format. It may be that a resource wishes to implement a resource method using more
than one Java method: one Java method implementation for every MIME type that it supports. The
@Consumes annotation allows a Java method to declare the MIME types that it can support for
incoming request entities.

Accessing Web Service Context
So far, we have seen that from a Java web service method, you have access to the request entity.
We were able in the HelloResource example to access some more information about the
context surrounding the HelloResource web service, namely the URL used by the client to
access the web service resource, and the HTTP headers of the web service request.

150 Java EE 7: The Big Picture

Any JAX-RS resource may ask for this kind of contextual information to be passed to it by the
web container by using the @Context annotation. A web service resource may obtain
information about the HTTP request underlying the web service request, security information
about the resource, the request and response entity providers, and other configuration information
and options available to the resource. Here is a list of the JAX-RS API types that may be used in
conjunction with the @Context annotation.

API Class Purpose
javax.ws.rs.core.UriInfo Access to the URI used to access the

resource; the URI mapping of the resource.
javax.ws.rs.core.HttpHeaders Access to the HTTP headers of the request.
javax.ws.rs.core.Request Ability to perform content negotiation

based on a client request.
javax.ws.rs.core.Application Access to all the web service classes and

properties in the same application.
javax.ws.rs.core.SecurityContext Access to security information about the

web resource, such as the user principal.
javax.ws.rs.ext.Providers Access to all the entity providers in the

application.
javax.ws.rs.container.ResourceContext Ability to inject resources into a web

service application.
javax.ws.rs.core.Configuration Access to all the component instances in

the application.

@Context may be used to annotate a parameter on a method, a constructor, or an instance
variable on a resource class.

Exception Mapping
Much of the time, a web service method will function correctly and complete its work without
any exceptions being raised. But this will not always be the case. Perhaps a web service method
is passed content that it cannot make sense of, or perhaps some error internal to the application
occurs in the middle of its execution. A Java method marked as a web service method may raise
two kinds of exceptions when something unexpected happens. The method can raise a checked
exception, in which case it will need to declare the exception in the throws clause of the method
declaration. Or it can raise an unchecked/runtime exception. How does JAX-RS deal with these
exceptions, and how does it communicate the error condition to the client?

Without any work on the developer’s part, JAX-RS will transform Java exceptions thrown by
web service methods into a suitable HTTP response. This may vary from implementation to
implementation, but usually this will be a generic HTTP 500 - Internal Server Error. No matter
what the exception, this is all the information the client will receive.

http://javax.ws.rs.core.UriInfo
http://javax.ws.rs.core.HttpHeaders
http:// javax.ws.rs.core.Request
http://javax.ws.rs.core.Application
http://javax.ws.rs.core.SecurityContext
http://javax.ws.rs.ext.Providers
http://javax.ws.rs.container.ResourceContext
http://javax.ws.rs.core.Configuration

Chapter 5: Web Sites for Non-browsers: JAX-RS 151

Therefore, it is often useful to be able to customize the responses your web service resource
methods send back to the client in ways that depend on what kind of Java exception is raised
when invoking the method and what other diagnostic information the exception is carrying. You
may want to provide more descriptive information in the response about what the problem was.

In order to customize how application exceptions are mapped to HTTP responses, the
javax.ws.rs.ext.ExceptionMapper<E> interface allows you define for a particular
exception type E what kind of HTTP response you wish JAX-RS to make at runtime. There is only
one method on this interface:

public Response toResponse(E exception)

When a class that implements this interface for a particular exception type (and, of course,
one class may implement ExceptionMappers with many different exception types) is used in
an application, and when the application throws an exception of the type specified in the generic
type of the ExceptionMapper, then the JAX-RS runtime asks the ExceptionMapper to
create the response that will be sent back to the client. If no ExceptionMapper for that type is
found, then the container will send back the generic response, usually HTTP 500.

ExceptionMappers are useful ways to make your web service resource methods express
more detail about what might go wrong when they are invoked.

Number of Instances of Resource Classes
So far, we have not talked much about how JAX-RS resources are deployed. In order to deploy all
the web service resource classes, any message entity providers, or exception mapper classes, you
will need to implement the javax.ws.rs.core.Application. The function of this interface is
to let you declare in your application which of the classes it holds are resource classes or JAX-RS
support classes such as entity providers or exception mappers. The main contract of the class is
the method

public Set<Class<?>> getClasses()

This method asks the straightforward question: Which JAX-RS classes would you like to deploy
from this web application? When you deploy a web application containing an implementation
of this application class, the JAX-RS runtime looks in the WAR file for such implementations,
instantiates them, and gets the list of JAX-RS classes that it needs to deploy.

This leads to the question of how many instances of each kind of JAX-RS classes are
instantiated. Web service resource classes, unless they use some other scope annotation, are
instantiated once for each client request. This belies the origins of RESTful web services as
stateless and scalable. For developers creating resource classes, it means that any ordinary
instance variables they hold in a resource class last only the lifetime of a single client request to
the web service resource. It also means that JAX-RS resource class instances are called only by
one thread at a time, and so do not need to deal with concurrent requests.

Provider classes, such as message body readers and writers and exception mappers, have a
different lifecycle and cardinality. The JAX-RS implementation will maintain a single instance of
each provider class in a web application and will share the instance among all the resource

152 Java EE 7: The Big Picture

classes that use them for calls from any client. This means that multiple threads may access
provider classes concurrently, so care must be taken when keeping states in such provider classes.

In the terminology of the managed beans we saw in Chapter 4, JAX-RS resource classes are
request scoped and provider classes are application scoped.

It is possible to change the default scope and cardinality of resource classes, although for
many web service developers, the default scopes are often the ones that their application needs.
In order to change the scope of resource classes, you can declare those resource classes using the
classes level @javax.enterprise.context.RequestScoped and @javax.enterprise
.context.ApplicationScoped annotations, respectively. We will look at examples of
managing the scope of a JAX-RS resource in this way when we look in detail at dependency
injection later in the book.

Path Mapping
JAX-RS resources are mapped into the URI space using the @Path annotation. This annotation has
one mandatory value: a path to which the resource is published for client access in the URI space
of the web application in which it resides. This value may be either a relative URI or a URI
template.

Relative URIs
In this case, the web service resource is published to the URI space of the web application, and a
client request matches it if and only if the URI matches exactly. For example, a web service
endpoint BramleyApple using the annotation

@Path("trees/apple/bramley")
public class BramleyApple {...}

deployed in a web application with context root /horticulture would only be available to
clients at the URL

http://<hostname.port>/horticulture/trees/apple/bramley

URI Templates
URI templates are a fancy way of saying that one or more segments of the URI can be substituted
with variables {variable-name}. A path variable used in the @Path annotation may be one of
these; for example

@Path("/books/{book-id}")
public Book {}

would make the Book resource available to any of the following URIs, assuming the Book
resource is deployed in a web application with a context root of /library:

Chapter 5: Web Sites for Non-browsers: JAX-RS 153

http://<hostname.port>/library/books/24
http://<hostname.port>/library/books/98
http://<hostname.port>/library/books/9654

where the value of the path segment variable book-id would be 24, 98, and 9654, respectively.
In other words, any client URI that is a valid expansion of the URI template would be a match

to the endpoint. If there is any contention, a match to an exact URI will always win over a match
to a URI template.

This example of URI templates leads us to examine a more sophisticated application that uses
and pulls together a number of the features of the JAX-RS API that we have talked about: the
Library service.

The Library Service
The Library service is a client-server application. The server side is an online library that manages
a collection of books that it contains. The client side is a GUI application that accesses the library
and browses books in the library, adds new books to the library, and removes old books. Let’s take
a quick look through the main functions, as we will want to understand how the application
works before we start looking at the code.

Figure 5-5 shows the main window. On the lower left, you can see a listing of the book titles
in the library. When you click on a title, the panel on the right-hand side of the screen updates to
give you full information about the selected book. Clicking Delete deletes the currently selected
book from the library.

FIGURE 5-5. The main window to the Library service

154 Java EE 7: The Big Picture

At the top of the window is a UI widget that allows you to filter the list of books you see by
genre, as shown in Figure 5-6.

If you click the Add title button, you are asked to fill out the information about the new book
you wish to add to the library, as seen in Figure 5-7.

If you forget to fill out the full information about the book properly, as in Figure 5-8, and try
to add the book, the book will not be added. The Library service will tell you why, as seen in
Figure 5-9.

Hopefully, you have already started to think about what kind of structure the web
service resources in this application look like and the structure of the information consumed

FIGURE 5-6. Picking a genre to browse

FIGURE 5-7. Adding a new book

Chapter 5: Web Sites for Non-browsers: JAX-RS 155

and produced by its web service methods. First, let’s map out the different classes in the
application.

On the client side, the workhorse is the LibraryClient class, as shown in Figure 5-10. We
will not discuss the Swing classes used to implement the user interface. The LibraryClient is
responsible for formulating all the requests that the user interface needs to gather the information
it needs to display and for unmarshaling the incoming responses to those requests from the
Library service on the server. On the server side, the Library service is modeled as a single

FIGURE 5-8. Who’s the author?

FIGURE 5-9. Your book is not welcome here.

156 Java EE 7: The Big Picture

instance of the Library class that references a list of Book objects that it contains. This
arrangement gives us the structure of a single library containing a collection of books. As we shall
see, Library is a root resource class, which defines itself by subresources, and, in addition, the
Book class is a resource class. Web service calls from client to server carry payloads of entities
that are JSON documents and of MIME type application/json. Both client and server use
JSON entity providers for reading and writing JSON objects to request and response entities. The
server-side application uses the addition providers LibraryExceptions for mapping application
exceptions and the LibraryConfig class, which is the deployment class, for implementing
javax.ws.rs.core.Application.

Before we look at the code, let’s look at a breakdown of all the web service calls in the
application in Figure 5-11, as it will prove useful to have these interactions in mind when we look
at the code.

This diagram shows the five web service calls that the client makes to the server, detailing the
payloads of each request and response. There are three GET requests, which get the list of genres
that the library has, get the list of books of a given genre, and get a full description of a particular
book, respectively. There is a DELETE request, which removes a book from the library, and there is
a POST request containing a description of a new book to be added to the library.

FIGURE 5-10. Library service, class view

Library Client Application

Library User Interface

Java EE Web Server

LibraryService

Library
JsonMessageBodyReader

Book

JsonMessageBodyWriter

LibraryExceptions

LibraryConfig

LibraryClient

JsonMessageBodyReader

JsonMessageBodyWriter

Http Response

Http Request

Chapter 5: Web Sites for Non-browsers: JAX-RS 157

Let’s look first at the server side, starting with the Library class.

Listing: The Library class

import javax.ws.rs.Path;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.Produces;
import javax.ws.rs.Consumes;
import java.util.List;
import java.util.ArrayList;
import java.util.Random;
import javax.json.Json;
import javax.json.JsonObject;

FIGURE 5-11. Library service, interaction view

Library
Client

{"genres":["Novel","Reference","Humor"]}

GET /library/genres

GET /library/books?genre=Humor

{"booklist":[
{"id":55732,"title":"Damp Bedsheets"},

{"id":94999,"title":"Too close to the edge ?"},
{"id":20112,"title":"Disguises in History"}

]}

GET /library/books/94999

POST /library

{"title":"Java EE Made Simple",
"author":"Danny Coward",

"genre":"Reference"}

{"id":94999,
"title":"Too close to the edge ?",

"author":"Eileen Dover",
"genre":"Humor"}

200 OK

DELETE /library/books/94999

200 OK

Library
Client

158 Java EE 7: The Big Picture

import javax.json.JsonArrayBuilder;
import javax.enterprise.context.ApplicationScoped;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.UriInfo;
import javax.annotation.PostConstruct;

@Path("library")
@ApplicationScoped
public class Library {
 private String NOVEL = "Novel";
 private String REFERENCE = "Reference";
 private String HUMOR = "Humor";
 private List<Book> books = new ArrayList<>();

 @GET
 @Path("/books")
 @Produces(MediaType.APPLICATION_JSON)
 public JsonObject getBooks(@Context UriInfo uriInfo) {
 String genre = uriInfo.getQueryParameters().getFirst("genre");
 JsonArrayBuilder ab = Json.createArrayBuilder();
 for (Book next : this.books) {
 if (next.getGenre().equals(genre) || genre.equals("All")) {
 ab.add(next.getSummaryDescription());
 }
 }
 JsonObject model = Json.createObjectBuilder()
 .add("booklist", ab.build())
 .build();
 return model;
 }

 @Path("books/{id}")
 public Book getBook(@Context UriInfo uriInfo) {
 String idString = uriInfo.getPathParameters().get("id").get(0);
 return this.getBook(new Integer(idString));
 }

 void removeBook(Book book) {
 this.books.remove(book);
 }

 private Book getBook(int id) {
 for (Book book : this.books) {
 if (book.getId() == id) {
 return book;
 }
 }
 return null;
 }

 @GET
 @Path("/genres")
 @Produces(MediaType.APPLICATION_JSON)
 public JsonObject getGenres() {
 JsonArrayBuilder ab = Json.createArrayBuilder()

Chapter 5: Web Sites for Non-browsers: JAX-RS 159

 .add(NOVEL)
 .add(REFERENCE)
 .add(HUMOR);
 JsonObject genreso = Json.createObjectBuilder()
 .add("genres", ab)
 .build();
 return genreso;
 }

 @POST
 @Consumes(MediaType.APPLICATION_JSON)
 public void addBook(JsonObject booko) throws InvalidBookException {
 String genre = booko.getString("genre");
 String title = booko.getString("title");
 String author = booko.getString("author");
 if ("".equals(author)) {
 throw new InvalidBookException("No author name was given !");
 }
 int id = (int) this.generateId();
 Book b = new Book(
 this,
 id,
 title,
 author,
 genre
);
 this.books.add(b);
 }

 private int generateId() {
 long l = System.currentTimeMillis() * (new Random()).nextInt();
 String asString = "" + l;
 String as5String = asString.substring((asString.length()-5), (asString.
length()));
 return (new Integer(as5String)).intValue();
 }

 @PostConstruct
 private void initLibrary() {
 Book b = new Book(this, this.generateId(),
 "A Passage to India", "E M Forster", NOVEL);
 this.books.add(b);
 b = new Book(this, this.generateId(),
 "Damp Bedsheets", "I P Nightly", HUMOR);
 this.books.add(b);
 b = new Book(this, this.generateId(),
 "Sense and Sensibility", "Jane Austen", NOVEL);
 this.books.add(b);
 b = new Book(this, this.generateId(),
 "The Stranger", "Albert Camus", NOVEL);
 this.books.add(b);
 b = new Book(this, this.generateId(),
 "How the Dinosaurs Died", "P T Dactyl", REFERENCE);
 this.books.add(b);
 b = new Book(this, this.generateId(),
 "Too close to the edge ?", "Eileen Dover", HUMOR);

160 Java EE 7: The Big Picture

 this.books.add(b);
 b = new Book(this, this.generateId(),
 "Houseplants for Dummies", "G Fingers", REFERENCE);
 this.books.add(b);
 b = new Book(this, this.generateId(),
 "Disguises in History", "Ivor Beard", HUMOR);
 this.books.add(b);
 b = new Book(this, this.generateId(),
 "10,000 Knitting Patterns", "M N E Sweaters", REFERENCE);
 this.books.add(b);
 }

}

First, notice by virtue of the class level @Path("library") annotation that this is a root
resource class, mapped to /library in the URI space of the containing web application.
Second, it uses the @ApplicationScoped annotation to declare itself as a managed bean of
application scope. This means that for each web application, there will be one and only one
instance of the Library class that services requests from all clients. This is what this application
needs: if we did not have this annotation, each time that the client makes a web service call to it,
a new instance of the class would be created. In this implementation, the books are added to the
library in the initLibrary() method at the bottom of the class. We are not using a database to
store this information, and we are essentially storing the book information in the single instance
of the Library class. When we have progressed further in our exploration of the Java EE
platform, we will discover several better ways to store such information, but for now, a singleton
is what we want. Notice also that the Library bean uses the @PostConstruct annotation to
request that the Java EE web container call the initLibrary() method immediately after the
new instance is created. This convenience hints at more of the lifecycle management of managed
beans that we will be covering throughout the book.

Now to the web service method calls on the Library class: getGenres() annotated by
@GET, getBooks() annotated by @GET, and addBook() annotated by @POST. Notice that all
these methods process incoming and outgoing entities as JSON objects using the javax.json
JSON-Processing API in the Java EE platform. For example, the return value of getGenres() is
JsonObject, which contains a list of all the genres in the library in the form of a JsonArray. For
example, the method parameter of addBook() is also JsonObject, which is expected to be a
JsonObject containing the key-value pairs for author, title, and genres when adding a new book
to the library. The marshaling and unmarshaling of JSON documents to the JSON objects that
these Java methods deal in is handled by the two entity provider classes in the Library service
application: JsonMessageBodyReader and JsonMessageBodyWriter. Since one is almost the
mirror image of the other, let us limit our examination of these entity providers by looking at the
JsonMessageBodyReader class.

Listing: The JsonMessageBodyReader entity provider

import javax.ws.rs.WebApplicationException;
import javax.ws.rs.ext.Provider;
import javax.ws.rs.ext.MessageBodyReader;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;

Chapter 5: Web Sites for Non-browsers: JAX-RS 161

import javax.ws.rs.Consumes;
import javax.json.Json;
import javax.json.JsonObject;
import java.lang.reflect.Type;
import java.lang.annotation.Annotation;

@Provider
@Consumes(MediaType.APPLICATION_JSON)
public class JsonMessageBodyReader implements MessageBodyReader<JsonObject> {

 @Override
 public boolean isReadable(java.lang.Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mediaType) {
 return true;

 }

 @Override
 public JsonObject readFrom(java.lang.Class<JsonObject> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mediaType,
 MultivaluedMap<java.lang.String,java.lang.String> httpHeaders,
 java.io.InputStream entityStream)
 throws java.io.IOException,

 WebApplicationException {

 JsonObject o = Json.createReader(entityStream).readObject();
 return o;

 }
}

We can see that the workhorse method of the class is the readFrom() method, which uses the
JSON Processing API to read the request entity from the InputStream into the expected
JsonObject. The JsonMessageBodyWriter has analogous code for the reverse process of writing
the JsonObject to an OutputStream, representing the response entity in its writeTo() method.

public void writeTo(JsonObject t,
 Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mediaType,
 MultivaluedMap<String,Object> httpHeaders,
 OutputStream entityStream)
 throws IOException,

 WebApplicationException {

162 Java EE 7: The Big Picture

 String s = t.toString();
 byte[] bytes = s.getBytes();
 for (int i = 0; i < bytes.length; i++) {
 entityStream.write(bytes[i]);
 }
 }

Returning to the Library class again for a moment, notice that it has two ways to accept
incoming data from the client. When the client requests the lists of books from a certain genre,
the genre is passed in as a query string on the GET call to /library/books; for example, GET
/library/books?genre=Humor. This call is implemented by the

public JsonObject getBooks(@Context UriInfo uriInfo)

method, which, by use of the @Context annotation, requires the information about the URI used
to invoke it be passed in as a method parameter. You can see from the implementation that the
genre request parameter is obtained from the UriInfo class, which is used to filter the list of
books to be returned. This is quite a common pattern. Logically, the /library/books resource
represents a list of the books in the library. It is common practice in web service APIs to use a
query string to filter or order the result of a web service call. In this case, the Library service is just
using the query string to filter the results, but you could equally imagine a second request
parameter called orderBy, which would take a particular approach to order the results to a
criterion.
The second way that the Library class accepts incoming data is in the addBook() method.
Data is explicitly passed to this method as a request entity, represented in the Java method by the
JsonObject method parameter. This Java method is implementing a POST request that, if
successful, will lead to the creation of a new web resource for the new book. Passing this kind of
information as a query string is possible but considered bad practice, as the data is not qualifying
a query for information; it will be used directly to create a new resource. In general, it is good
practice to use query strings to qualify querying calls and use request entities to pass into web
resource creational calls.

The final piece of the puzzle is to follow the subresources representing the books. Each book
is represented by a subresource at /library/books/{id}, where id is the book ID of the Book.
The Java method

public Book getBook(@Context UriInfo uriInfo)

of the Library class implements this subresource, but instead of being qualified by an HTTP
method annotation, it returns a Book instance. The Book class contains the web resource methods
for this subresource. Before we examine this further, notice again that the use of the @Context
annotation to require the UriInfo for this subresource is passed in when it is invoked. This
subresource is being mapped to a /books/{id} URI template rather than to a URI, and the
request URIs that will match this path will contain the ID of the book being requested. Therefore,
the getBook() method needs to find out the value of the ID parameter from the matching
request URI from the client to know which book to respond with information about.

The Book class is relatively straightforward, being a JavaBean with readable properties of ID,
title, author, and genre.

Chapter 5: Web Sites for Non-browsers: JAX-RS 163

Listing: The Book resource

import javax.json.Json;
import javax.json.JsonObject;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

public class Book {
 private Library library;
 private int id;
 private String title;
 private String author;
 private String genre;

 public Book(Library library, int id,
 String title, String author, String genre) {
 this.library = library;
 this.id = id;
 this.title = title;
 this.author = author;
 this.genre = genre;
 }

 @DELETE
 public void removeFromLibrary() {
 this.library.removeBook(this);
 }

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public JsonObject getFullDescription() {
 JsonObject descriptiono = Json.createObjectBuilder()
 .add("id", this.getId())
 .add("title", this.getTitle())
 .add("author", this.getAuthor())
 .add("genre", this.getGenre())
 .build();
 return descriptiono;
 }

 public JsonObject getSummaryDescription() {
 JsonObject descriptiono = Json.createObjectBuilder()
 .add("id", this.getId())
 .add("title", this.getTitle())
 .build();
 return descriptiono;
 }

164 Java EE 7: The Big Picture

 public int getId() {
 return this.id;
 }

 public String getTitle() {
 return this.title;
 }

 public String getAuthor() {
 return this.author;
 }

 public String getGenre() {
 return this.genre;
 }

 @Override
 public String toString() {
 return "a book by " + this.author;
 }

}

Notice its two web service methods, GET and DELETE, for querying a book’s information
and removing it from the library, implemented by getFullDescription() and
removeFromLibrary(), respectively.

Notice throughout the Library and Book class the use of the @Produces and @Consumes
annotations to qualify the formats of the incoming and outgoing entities to be JSON data.

Finally, in the server application, there is an ExceptionMapper implementation called
LibraryExceptions that takes the InvalidBookException and maps it to an HTTP 404
Response, with a response body that contains the error message in the Java exception. This is used
in the Library.addBook() method if the client sends a request entity whose author attribute is
mistakenly empty. In this case, the addBook() method throws an InvalidBookException,
which the JAX-RS implementation passes to the LibraryExceptions class, which in turn
creates the HTTP 404 response just described. If you look carefully at the server and client code,
you should be able to track the error message that pops up in the warning dialog when you try to
add an authorless book to the library from the server code, where the exception is generated to
the client code that displays the message.

Now that we understand the server side, the client side will be relatively straightforward.

Listing: The LibraryClient class

import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.client.Invocation;
import javax.ws.rs.client.Entity;
import javax.json.JsonObject;
import javax.json.JsonArray;
import java.util.List;

Chapter 5: Web Sites for Non-browsers: JAX-RS 165

import java.util.ArrayList;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;

public class LibraryClient {
 Client wsClient;
 private static String WEBSERVICE_ROOT =
 "http://localhost:8080/LibraryService";
 private static String LIBRARY_URI = WEBSERVICE_ROOT + "/library";
 private static String BOOKS_URI = LIBRARY_URI + "/books";
 private static String GENRES_URI = LIBRARY_URI + "/genres";

 public LibraryClient() {
 this.wsClient = ClientBuilder.newBuilder()
 .register(JsonMessageBodyReader.class)
 .register(JsonMessageBodyWriter.class)
 .build();
 }

 public String getUriAsString() {
 return LIBRARY_URI;
 }

 public List<JsonObject> getBooks(String genre) {
 WebTarget wt = this.wsClient.target(BOOKS_URI + "?genre=" + genre);
 Invocation webServiceCall = wt.request()
 .accept(MediaType.APPLICATION_JSON)
 .build("GET");
 JsonObject genreso = webServiceCall.invoke(JsonObject.class);
 List<JsonObject> bookSummaries = new ArrayList<>();

 JsonArray ar = genreso.getJsonArray("booklist");
 for (int i = 0; i < ar.size(); i++) {
 JsonObject jsono = ar.getJsonObject(i);
 bookSummaries.add(jsono);
 }
 return bookSummaries;
 }

 public JsonObject getBookById(int id) {
 WebTarget genresTarget = this.wsClient.target(BOOKS_URI + "/"+ id);
 Invocation webServiceCall = genresTarget.request()
 .accept(MediaType.APPLICATION_JSON)
 .build("GET");
 JsonObject jsono = webServiceCall.invoke(JsonObject.class);
 return jsono;
 }

 public void deleteBook(int id) {
 WebTarget genresTarget = this.wsClient.target(BOOKS_URI + "/"+ id);
 Invocation webServiceCall = genresTarget.request()
 .build("DELETE");

166 Java EE 7: The Big Picture

 webServiceCall.invoke();
 }

 public List<String> getGenres() {
 WebTarget genresTarget = wsClient.target(GENRES_URI);
 Invocation webServiceCall = genresTarget.request()
 .accept(MediaType.APPLICATION_JSON)
 .build("GET");
 JsonObject genreso = webServiceCall.invoke(JsonObject.class);
 JsonArray ar = genreso.getJsonArray("genres");
 List<String> genres = new ArrayList<>();
 for (int i = 0; i < ar.size(); i++) {
 String next = ar.getString(i);
 genres.add(next);
 }
 return genres;
 }

 public AddBookStatus addBook(JsonObject bookaddo) {
 WebTarget genresTarget = this.wsClient.target(LIBRARY_URI);
 Invocation webServiceCall = genresTarget.request()
 .header("Content-Type", MediaType.APPLICATION_JSON)
 .build("POST", Entity.json(bookaddo));
 Response response = webServiceCall.invoke();
 if (response.getStatus() == Response.Status.BAD_REQUEST.getStatusCode()) {
 return new AddBookStatus(false, response.readEntity(String.class));
 } else {
 return new AddBookStatus(true, "");
 }

 }

}

class AddBookStatus {
 boolean added = false;
 String errorMessage = "";

 AddBookStatus(boolean added, String errorMessage) {
 this.added = added;
 this.errorMessage = errorMessage;
 }
}

The LibraryClient class contains most of the JAX-RS-related code in the client application
and uses a single instance of the javax.ws.rs.client.Client object to do its work. Notice
that when this client is created, the JsonMessageBodyReader and JsonMessageBodyWriter
classes are registered on it. You can see that by virtue of these entity provider classes, the
LibraryClient deals only in message entities that are JSON objects.

The client methods all follow the same pattern: They create from the JAX-RS client object a
web service Invocation object, using the WebTarget object that contains the full URL to the
server resource, adding in any qualifying information about the call, such as the content type,
always application/json in this application, and any request payload, as you can see, for
example, in the addBook() method:

Chapter 5: Web Sites for Non-browsers: JAX-RS 167

WebTarget genresTarget = this.wsClient.target(LIBRARY_URI);
 Invocation webServiceCall = genresTarget.request()
 .header("Content-Type", MediaType.APPLICATION_JSON)
 .build("POST", Entity.json(bookaddo));
 Response response = webServiceCall.invoke();

Finally, the method calls invoke() on the Invocation instance to obtain the response from the
resource.

When there is information in the payload of the response, as there is, for example, in the
method getBooks() that fetches the list of books in a certain genre, the response is “read” using
a variant of the invoke() call, such as:

JsonObject genreso = webServiceCall.invoke(JsonObject.class);

This fetches the response entity in the form of a JsonObject, which in this case, is the JSON
object containing the list of books.

Summary
The JAX-RS APIs have many features that you can continue to explore once you have fully
understood the key concepts of this chapter, in particular, the model for JAX-RS filters. These
filters allow you to add components to the JAX-RS application that can block or transform
incoming or outgoing data to and from web service resources. These are useful for adding
compression and authorization checks to a web service application.

However, this chapter is a full grounding in the essentials of JAX-RS programming, having
explored all the ways Java classes can become web service resources and how their Java methods
can become web service resource methods, qualified by the content types they consume and
produce. The chapter looked at how such resources are mapped into the URI space of a web
application and how provider classes can be created to extend the core supported request and
response entity Java types to any custom Java object. We discussed the scope model for JAX-RS
resources and looked at how to customize exception handling in a JAX-RS application in order to
give informative error responses to clients of a RESTful API.

Finally, we looked at the Library service that pulled together all these concepts and
mechanisms into a single client server RESTful application, using JSON as a content model and
the JSON API to process it, showing how JAX-RS can be used to build an online library for the
non-browser client.

CHAPTER
6

Adding Sparkle:
Java WebSockets

170 Java EE 7: The Big Picture

J
ava WebSockets are unlike other Java EE web components because can they push data out to
web clients without clients having to ask for it.

Java WebSockets are a departure from the HTTP-based interaction model, providing
a way for Java EE applications to update browser and non-browser clients asynchronously. The
interaction model for web sites has long been the HTTP request/response interaction model,
which is rich and allows for many sophisticated browser-based applications. Each interaction,
however, always starts from the browser with some action on the part of the user: loading a page,
refreshing a page, clicking a button, following a link, and so on.

For many kinds of web applications, having the user always in the driver’s seat is not desirable.
From financial applications with live market data, to auction applications where people around the
world bid on items, to the lowly chat and presence applications, web developers have long sought
means by which the server side of the web application can push data out to the client. A mix of ad
hoc mechanisms arose out of this need that were either based around keeping long-lived HTTP
connections or some form of client polling; none proved a complete solution to the problem.
There was a need for a new approach, which led to the development of the WebSocket protocol.

Introduction to the WebSocket Protocol
The WebSocket protocol is a TCP-based protocol that provides a full duplex communication
channel over a single connection. In simple terms, this means that it uses the same underlying
network protocol as does HTTP and that over a single WebSocket connection both parties can send
messages to the other at the same time. The WebSocket protocol defines a simple connection
lifecycle, as we shall see, and defines a data-framing mechanism that supports binary and text-
based messages. Unlike HTTP, the connections are long lived. This means that since
the connection need not continually be re-established for each message transmission, as the
antisymmetric HTTP protocol does, each data message in the WebSocket protocol does not need to
carry all the metainformation about the connection as does HTTP. In other words, once
the connection is established, the message transmission is much lighter weight than in the HTTP
protocol.

Yet, this is not the primary reason WebSocket is better suited to the task of servers pushing
information than are polling frameworks layered on top of the HTTP protocol. Having a dedicated
TCP connection to its clients makes WebSockets an inherently more efficient way for a server to
update clients because data is sent only when it is needed.

To see why, imagine an online auction where 10 people are bidding on an item over a period
of 12 hours. Suppose that each bidder makes an average of two successful bids on the item. So
the item price changes 20 times over the period of the auction. Suppose now that the clients have
to poll to see the latest bidding information. Because you cannot know when the bidders will
make a bid or how up to date the amount of the current bid is, the web application supporting the
auction needs to make sure that each client is refreshed at least every minute and probably more!
This means that each of the clients needs to poll 60 times an hour, giving a total of 60 × 10 × 12 =
7,200 updates to make. In other words, 7,200 update messages get generated.

If, however, the server can push the data out to the client only when the data has actually
changed, such as the case when using WebSockets, only 20 messages need to be sent to each
client, giving 20 × 10 = 200 messages in total.

Chapter 6: Adding Sparkle: Java WebSockets 171

You can probably see how the relative numbers get even more divergent as, over the lifetime
of an application, either the number of clients increases or the amount of time when server data
could change but doesn’t increases. The server push model offered by WebSockets is inherently
more efficient than any polling mechanism could ever be.

The WebSocket Lifecycle
In the WebSocket protocol, a client and a server are mostly the same as each other. The only
antisymmetry in the protocol is in the initial phase of the connection being established, where it
matters who initiated the connection. It is somewhat like a phone call. To make the phone call
happen, someone has to dial the number and someone has to answer. But once the phone call
has been connected, it doesn’t matter who initiated it.

For WebSockets in the Java EE platform, a WebSocket client is almost always a browser or a
rich client running on a laptop, smartphone, or desktop computer, and the WebSocket server is a
Java EE web application running on a Java EE application server.

Let’s look now at a typical lifecycle of a WebSocket connection. First, the client initiates a
connection request. This occurs when the client sends a specially formulated HTTP request to the
web server. You do not need to understand every detail of the handshake request. What identifies
this as a WebSocket opening handshake request over any common or garden-variety HTTP
request is the use of the Connection : Upgrade and Upgrade : websocket headers, and
the most important information is the request URI, /myChat in Figure 6-1.

The web server decides whether it supports WebSockets at all (which all Java EE web
containers do) and, if so, whether there is an endpoint at the request URI of the handshake
request that meets the requirements of the request. If all is well, the WebSocket-enabled web
server responds with an equally specially formulated HTTP response called a WebSocket
opening handshake response, as shown in Figure 6-2.

FIGURE 6-1. WebSocket handshake request

Handshake Request

Http Request
GET /mychat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==
Sec-WebSocket-Protocol: megachat, chat
Sec-WebSocket-Extensions : compress, mux
Sec-WebSocket-Version: 13
Origin: http://example.com

172 Java EE 7: The Big Picture

This response confirms that the server will accept the incoming TCP connection request
from the client and may impose restrictions on how the connection may be used. Once the
client has processed the response and is happy to accept any such restrictions, the TCP
connection is created, as shown in Figure 6-3, and each end of the connection may proceed
to send messages to the other.

Once the connection is established, a number of things can occur:

 ■ Either end of the connection may send a message to the other. This may occur at any
time that the connection is open. Messages in the WebSocket protocol have two flavors:
text and binary.

 ■ An error may be generated on the connection. In this case, assuming the error did not
cause the connection to break, both ends of the connection are informed. Such non
terminal errors may occur, for example, if one party in the conversation sends a badly
formed message.

 ■ The connection is voluntarily closed. This means that either end of the connection
decides that the conversation is over and so closes the connection. Before the
connection is closed, the other end of the connection is informed of this.

FIGURE 6-2. WebSocket handshake response

Handshake Response

Http Response
HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: HSmrc0sMlYUkAGmm5OPpG2HaGWk=
Sec-WebSocket-Protocol: chat
Sec-WebSocket-Extensions: compress, mux

FIGURE 6-3. Establishing a WebSocket connection

Server
Endpoint

Client
Endpoint

Handshake Request

Handshake Response

Connected!

Chapter 6: Adding Sparkle: Java WebSockets 173

In Figure 6-4, we see an example flow of the events that can occur in the lifecycle of any
WebSocket connection.

Overview of the Java WebSocket API
The Java WebSocket API provides a set of Java API classes and Java annotations that make it
relatively straightforward to create WebSocket endpoints that reside in the Java EE web container.
The general idea is to take a Java class that you want to implement the logic of the server endpoint
and annotate it at the class level with the special Java WebSocket API annotation @ServerEndpoint.
Next, you annotate its method with one of the lifecycle annotations, such as @OnMessage, which
imbues the method in question with the special power of being called every time a WebSocket
client sends a message to the endpoint. You then package it in the WEB-INF/classes directory
of the WAR file. Let’s see an example of just that.

Listing: The EchoServer sample

import javax.websocket.OnMessage;
import javax.websocket.server.ServerEndpoint;

@ServerEndpoint("/echo")
public class EchoServer {

 @OnMessage
 public String echo(String incomingMessage) {
 return "I got this (" + incomingMessage + ")"
 + " so I am sending it back !";
 }
}

FIGURE 6-4. WebSocket lifecycle

Client
Endpoint

Server
Endpoint

Connected!

message

message

Disconnected

openopen

error

closeclose

messagemessage
message

174 Java EE 7: The Big Picture

This WebSocket endpoint is mapped to /echo in the URI space of the web application. Each
time a WebSocket client sends it a message, it responds back immediately with a message derived
from the one it received.

The Java WebSocket API contains the means to intercept all the WebSocket lifecycle events
and provides the means to send messages in both synchronous and asynchronous modes. It
allows you to translate WebSocket messages to and from arbitrary Java classes using decoder and
encoder classes.

The Java WebSocket API also provides the means to create WebSocket client endpoints. The
only time that the WebSocket protocol is asymmetric concerns who initiates the connection. The
client support in the Java WebSocket API allows a client to connect to the server, and so is
suitable for Java clients to connect to WebSocket endpoints running in the Java EE web container,
or in fact, any WebSocket server endpoint.

Before we look at a real example of a Java WebSocket, let’s take a tour of the annotations and
main classes in the Java WebSocket API. Don’t worry about spending too long before we get to
working code: the Java WebSocket API is one of the smaller APIs of the Java EE platform.

WebSocket Annotations
The Java WebSocket annotations have two main purposes. First, they allow you to declare that
you want an ordinary Java class to become a WebSocket endpoint, and second, they allow you to
annotate methods on that class so that they intercept the lifecycle events of the WebSocket
endpoint. First, we will take a look at the class-level annotations.

@ServerEndpoint
This is the workhorse annotation of the API, and if you create many WebSocket endpoints, you
will be seeing a lot of it. The primary (and only) mandatory attribute of this class-level annotation
is the value attribute, which specifies the URI path to which you want this endpoint to be
registered in the URI space of the web application.

Attribute Function Mandatory
value Defines URI path under which the endpoint is registered Yes

@ClientEndpoint
The @ClientEndpoint annotation is used at the class level on a Java class that you wish to turn
into a client endpoint that initiates connections to server endpoints. This is often used in rich
client applications that connect to the Java EE web container. It has no mandatory attributes.

@ServerEndpoint and @ClientEndpoint Optional Attributes
These class-level annotations have several other attributes in common that define other
configuration options that apply to the WebSocket endpoint they decorate.

@ServerEndpoint and
@ClientEndpoint Attributes Function Mandatory
configurator The class name of a special class the developer

may provide to dynamically configure the
endpoint

No

Chapter 6: Adding Sparkle: Java WebSockets 175

@ServerEndpoint and
@ClientEndpoint Attributes Function Mandatory
decoders List of classes used to convert incoming

WebSocket messages into Java classes that
represent them

No

encoders List of classes used to convert Java classes into
outgoing WebSocket messages

No

subprotocols List of string names denoting any special
subprotocols, such as “chat,” that the endpoint
supports

No

Now let us turn to the lifecycle annotations.

@OnOpen
This method-level annotation declares that the Java EE web container must call the method it
annotates on a WebSocket endpoint whenever a new party connects to it. The method may have
either no arguments or an optional Session parameter, where the class javax.websocket.Session
is an API object that represents the WebSocket connection that has just opened, and/or an optional
Endpoint config parameter, where javax.websocket.EndpointConfig is an API object
representing the configuration information for this endpoint, and an optional WebSocket path
parameter, which we will soon discuss.

@OnMessage
This method-level annotation declares that the Java EE web container must call the method it
decorates whenever a new message arrives on the connection. The method must have a certain
type of parameter list, but luckily, there are a number of options. The parameter list must include a
variable that can hold the incoming message, can include the Session, and can include path
parameters. A range of options exists for what kind of variables can hold the incoming message,
with the most commonly used options being String for text messages and ByteBuffer for
binary messages.

The method may have a specified return type or be of void return type. If there is a return type,
the Java EE web container interprets the return as a message to send back immediately to the client.

@OnError
This method-level annotation declares that the Java EE web container must call the method it
decorates whenever an error occurs on the connection. The method must have a Throwable
parameter in its parameter list, and may have an optional Session parameter and path
parameters.

@OnClose
For the final event in any WebSocket lifecycle, this method-level annotation declares that the Java
EE web container must call the method it decorates whenever a WebSocket connection to this
endpoint is about to close. The method is allowed to have a Session parameter and path
parameters in its parameter list if it wants them to be passed in, as well as a javax.websocket
.CloseReason parameter, which contains some explanation as to why the connection is closing.

176 Java EE 7: The Big Picture

The Java WebSocket API Classes
The most important API classes that the developer of Java WebSockets will encounter are the
Session, Remote, and WebSocketContainer interfaces.

Session
The Session object is a high-level representation of an active WebSocket connection to an
endpoint. It is available to any of the WebSocket lifecycle methods. It contains information about
how the connection was established, for example, the request URI that the other party in the
connection used to establish it, and the amount of time, if left idle, that the connection will time
out after. It contains the means to close the connection programmatically. It holds a map that
applications may use to hold application data that they wish to associate with the connection,
perhaps a transcript of the entire message that an endpoint received from a given peer. Although
different from the HttpSession object, it is analogous in that it represents a sequence of
interactions from a particular peer of the endpoint that has access to the Session object
instance. Additionally, it holds access to the RemoteEndpoint interface for the endpoint.

RemoteEndpoint
The RemoteEndpoint interface is available from the Session object and represents the endpoint
at the other end of the connection. In practical terms, it is the object you call when you want to
send a message to the other end of the connection. There are two subtypes of RemoteEndpoint.
One, RemoteEndpoint.Basic, holds all the methods for sending WebSocket messages
synchronously. The other, RemoteEndpoint.Async, holds all the methods for sending
WebSocket messages asynchronously. Many applications only send WebSocket messages
synchronously because many applications have only small messages to send, so the difference
between synchronous and asynchronous sending is small. Many applications send only simple
text and binary messages, so knowing that the RemoteEndpoint.Basic interface has the
following two methods:

public void sendText(String text) throws IOException;
public void sendBinary(ByteBuffer bb) throws IOException

will get you a long way.

WebSocketContainer
As the ServletContext is to Java servlets, so is the WebSocketContainer to Java WebSockets.
It represents the Java EE web container to the WebSocket endpoints it contains. It holds a number
of configuration properties of the WebSocket functionality, such as message buffer sizes and
asynchronous send timeouts.

WebSocket Clock
We have completed our tour of the Java WebSocket API, and having done so, we know more
than enough to look at our first WebSocket application. The Clock application is a simple web
application. When you run the application, you see the index.html web page, as shown in
Figure 6-5.

Chapter 6: Adding Sparkle: Java WebSockets 177

When you click the Start button, the clock starts, with the current time as shown in Figure 6-6.
The time updates every second.

When you click the Stop button, the clock stops until you restart it, as seen in Figure 6-7.
The application is made up of a single web page, index.html, and a single Java WebSocket

endpoint, called ClockServer. When Start is pressed, the index.html uses JavaScript code to

FIGURE 6-5. WebSocket Clock off

FIGURE 6-6. WebSocket Clock on

178 Java EE 7: The Big Picture

establish a WebSocket connection with the ClockServer endpoint. The ClockServer endpoint
sends time update messages every second back to the browser client. The JavaScript code handles
the incoming message and renders it on the page. Clicking Stop causes the JavaScript code in the
index.html page to send a stop message to the ClockServer, which consequently stops
sending the time updates. This architecture is shown in Figure 6-8.

FIGURE 6-7. WebSocket Clock stopped

FIGURE 6-8. Clock architecture

Browser Server

ClockServer
Java

endpoint

/index.html
JavaScript

code
Time update messages

Stop message

Connect

Chapter 6: Adding Sparkle: Java WebSockets 179

Let’s take a look at the code, first for the client.

Listing: The Clock client page

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Web Socket Clock</title>
 <script language="javascript" type="text/javascript">
 var websocket;
 var last_time;

 function init() {
 output = document.getElementById("output");
 }

 function start_clock() {
 var wsUri = "ws://localhost:8080/clock-app/clock";
 websocket = new WebSocket(wsUri);
 websocket.onmessage = function (evt) {
 last_time = evt.data;
 writeToScreen("" + last_time + "");
 };
 websocket.onerror = function (evt) {
 writeToScreen('ERROR: ' + evt.data);
 websocket.close();
 };
 }

 function stop_clock() {
 websocket.send("stop");
 }

 function writeToScreen(message) {
 var pre = document.createElement("p");
 pre.style.wordWrap = "break-word";
 pre.innerHTML = message;
 oldChild = output.firstChild;
 if (oldChild == null) {
 output.appendChild(pre);
 } else {
 output.removeChild(oldChild);
 output.appendChild(pre);
 }
 }
 window.addEventListener("load", init, false);

 </script>
 </head>

180 Java EE 7: The Big Picture

 <body>
 <div style="text-align: center;font-family: Arial; font-size: large">
 WebSocket Clock

</br>
 <form action="">
 <input
 onclick="start_clock()"
 title="Press to start the clock on the server"
 value="Start"
 type="button">
 <input
 onclick="stop_clock()"
 title="Press to stop the clock on the server"
 value="Stop"
 type="button">
 </form>
 <div id="output"></div>
 </div>
 </body>
</html>

The HTML for this page is relatively straightforward. Notice that the JavaScript API for
WebSockets uses the full URI to the WebSocket endpoint:

ws://localhost:8080/clock-app/clock

where clock-app is the context path of the web application. The start_clock() method does
all the work of making the WebSocket connection and adding the event handlers, JavaScript style,
particularly for handling messages that it receives from the server. The stop_clock() method
simply sends the stop String to the server.

Now let’s turn to the ClockServer endpoint.

Listing: The ClockServer endpoint

import javax.websocket.OnOpen;
import javax.websocket.OnClose;
import javax.websocket.OnMessage;
import javax.websocket.OnError;
import javax.websocket.Session;
import javax.websocket.server.ServerEndpoint;
import java.util.Date;
import java.text.SimpleDateFormat;
import java.io.IOException;

@ServerEndpoint("/clock")
public class ClockServer {
 Thread updateThread;
 boolean running = false;

 @OnOpen

Chapter 6: Adding Sparkle: Java WebSockets 181

 public void startClock(Session session) {
 final Session mySession = session;
 this.running = true;
 final SimpleDateFormat sdf = new SimpleDateFormat("h:mm:ss a");
 this.updateThread = new Thread() {
 public void run() {
 while (running) {
 String dateString = sdf.format(new Date());
 try {
 mySession.getBasicRemote().sendText(dateString);
 sleep(1000);
 } catch (IOException | InterruptedException ie) {
 running = false;
 }
 }
 }
 };
 this.updateThread.start();
 }

 @OnMessage
 public String handleMessage(String incomingMessage) {
 if ("stop".equals(incomingMessage)) {
 this.stopClock();
 return "clock stopped";
 } else {
 return "unknown message: " + incomingMessage;
 }
 }

 @OnError
 public void clockError(Throwable t) {
 this.stopClock();
 }

 @OnClose
 public void stopClock() {
 this.running = false;
 this.updateThread = null;
 }
}

You will notice that the ClockServer uses the @ServerEndpoint annotation to declare
itself as a WebSocket endpoint, mapped to the URI /clock, relative to the context root of the web
application that it is contained in. Notice that the startClock() method, called when a new
client connects thanks to its @OnOpen annotation, does most of the work. It creates a thread that
uses the Session object to obtain a reference to the RemoteEndpoint instance representing the
client and sends it the current time, formatted into a string. If the endpoint receives a message, it
is passed into the handleMessage() method, which you can identify because this method is

182 Java EE 7: The Big Picture

annotated with @OnMessage. The String parameter of this method informs you that the
endpoint is electing to receive its text messages in the simplest form of a Java string. This method
returns a string, which is turned into a WebSocket message by the Java EE container and sent back
to the client immediately.

How Many WebSocket Instances?
One question that arises even in this simple example is: How many instances will occur for a
WebSocket endpoint class such as the ClockServer? The answer is that there will be one
instance of the WebSocket endpoint class for each client that connects to it. Each client gets a
unique endpoint instance. Further, the Java EE web container guarantees that no two WebSockets
are sent to the same endpoint instance at once. So, in contrast to the Java servlet model, you can
program your WebSocket endpoints knowing that there will only ever be one thread calling it at a
time.

Java WebSocket Encoders and Decoders
The base WebSocket protocol gives us two native formats to work with: text and binary. This
works well for very simple applications that exchange only simple information between client
and server. For example, in our Clock application, the only data that is exchanged during the
WebSocket messaging interaction is the formatted time string broadcast from the server endpoint
and the stop string sent by the client to end the updates. But as soon as an application has
anything more complicated to send or receive over a WebSocket connection, it will find itself
seeking a structure into which to put the information. As Java developers, we are used to dealing
with application data in the form of objects: either from classes from the standard Java APIs, or
from Java classes that we create ourselves. This means that if you stick with the lowest-level
messaging facilities of the Java WebSocket API and want to program using objects that are not
strings or byte arrays for your messages, you need to write code that converts your objects into
either strings or byte arrays and vice versa.

Fortunately, the Java WebSocket API gives us some support in this task of encoding objects to
WebSocket messages and decoding WebSocket messages into objects.

First, the Java WebSocket API attempts to convert incoming messages into any Java primitive
type (or its class equivalent) that you request. This means you can declare a message handling
method of this form

@OnMessage
public void handleCounter(int newValue) {...}

or

@OnMessage
public void handleBoolean(Boolean b) {...}

and the Java WebSocket implementation attempts to convert any incoming message into the Java
primitive parameter type you declare.

Equivalently, when sending messages, the RemoteEndpoint.Basic methods for sending
include a general-purpose

public void sendObject(Object message) throws IOException, EncodeException

Chapter 6: Adding Sparkle: Java WebSockets 183

method, into which you can pass any Java primitive or its class equivalent, and the Java
WebSocket implementation converts the value into the string equivalent for you.

This only gets you so far. Often, you want higher-level, highly structured objects to represent
the messages in your application. In order to handle custom objects in your message handling
methods, you must provide, along with the endpoint, a WebSocket Decoder implementation,
which the runtime uses to convert the incoming message into an instance of the custom object
type. To handle custom objects in your send methods, you must provide a WebSocket Encoder
implementation that the runtime will use to convert instances of the custom object into a native
WebSocket message. We can summarize this kind of scheme in Figure 6-9.

Figure 6-9 shows endpoints exchanging strings with the client at the top, and other endpoints
using an encoder and a decoder for converting Foo objects into WebSocket text messages and
vice versa.

There is a family of javax.websocket.Decoder and javax.websocket.Encoder
interfaces in the Java WebSocket API to choose from, depending on what kind of conversion you
wish to make. For example, to implement a Decoder that converts text messages into instances of
a custom developer class called Foo, you would implement the interface Decoder.Text<T>
using Foo as the generic type, which would require you to implement the method

public Foo decode(String s) throws DecodeException

This is the workhorse method of the decoder and would be called each time a new text message
came in to produce an instance of the Foo class. The runtime would then be able to pass this
class into the message handling method of your endpoint.

There are sibling Decoder classes for decoding binary WebSocket messages and WebSocket
messages that arrive in the form of a blocking I/O stream that you may also use.

FIGURE 6-9. Encoders and decoders

Web Container
Client

Endpoint
RemoteEndpoint

Endpoint
RemoteEndpoint

FooDecoder

FooEncoder

Client

String String

String

String

String

Foo

Foo

String

184 Java EE 7: The Big Picture

To implement an Encoder that converts instances of a custom developer class Foo into a
WebSocket text message, you would implement the Encoder.Text<T> interface using Foo as
the generic type. This would require you to implement the method

public String encode(Foo foo) throws EncodeException

which does the work of converting Foo instances into strings, which is needed by the Java
WebSocket runtime if you call the RemoteEndpoint’s sendObject() method (see earlier),
passing in an instance of the class Foo. Like Decoders, there are Encoder siblings for converting
custom objects into binary messages and for writing custom objects to blocking I/O streams in
order to send the message.

This simple scheme is easy to wire into an endpoint if you wish to use it: as we saw in the
definitions for @ClientEndpoint and @ServerEndpoint. You can simply list the Decoder and
Encoder implementations you wish the endpoint to use in the decoders() and encoders()
attributes, respectively.

If you configure your own encoders or decoders for the Java primitive types, they will override
the runtime’s default encoders for those types, as you would expect.

Message Processing Modes
So far, we have only discussed sending and receiving WebSocket messages one entire message at
a time. Although many applications retain this simple model for message processing because they
define only small messages in their application protocol, some applications will deal with large
WebSocket messages, perhaps transmitting photographs or large documents. The Java WebSocket
API provides a number of processing modes suited to handling larger messages gracefully and
efficiently.

Receiving Large Messages
The WebSocket API has two additional modes for receiving messages that are suited to situations
when you know the message will be large. The first mode exposes the endpoint to a blocking I/O
API that the endpoint can use to consume the message, either java.io.Reader for text
messages or java.io.InputStream for binary messages. To use this mode, instead of using
either a String or ByteBuffer parameter in your message handling method, you would use a
Reader or InputStream. For example:

@OnMessage
public void handleMessageAsStream(InputStream messageStream, Session session) {
 // read from the messageStream until you have consumed the whole binary message
}

The second mode allows for a kind of elementary chinking API, where the WebSocket
message is passed to the message handler method in small pieces together with a boolean flag
telling you whether there are more pieces yet to come in order to complete the message. Of
course, the message pieces arrive in order, and there is no interleaving of other messages. To use
this mode, the message handler method adds a boolean parameter; for example:

@OnMessage
public void handleMessageInChunks(String chunk, boolean isLast) {
 // reconstitute the message from the chunks as they arrive
}

Chapter 6: Adding Sparkle: Java WebSockets 185

In this mode, the size of the chunks is dependent on a number of factors relating to the peer
that sends the message and the configuration of the Java WebSocket runtime. All you know is that
you will receive the whole message in a number of pieces.

Modes for Sending Messages
As you may expect, given the symmetry of the WebSocket protocol, there are equivalent modes
for sending messages in the Java WebSocket API suited to large message sizes. In addition to
sending a message all in one piece, as we have seen so far in this chapter, you can send messages
to a blocking I/O stream, either java.io.Writer or java.io.OutputStream depending on
whether the message is text or binary. These are, of course, additional methods on the
RemoteEndpoint.Basic interface that you obtain from the Session object:

public Writer getSendWriter() throws IOException

and

public OutputStream getSendStream() throws IOException

The second mode is the chunking mode, but in reverse, for sending rather than receiving.
Again, an endpoint can send messages in this mode by calling either of the following methods of
RemoteEndpoint.Basic:

public void sendText(String partialTextMessage,
 boolean isLast) throws IOException
public void sentBinary(ByteBuffer partialBinaryMessage,
 boolean isLast) throws IOException

depending on the type of message you wish to send.

Asynchronous Sending of Messages
Receipt of WebSocket messages is always asynchronous. An endpoint typically has no idea when
messages are going to arrive; they just appear whenever the peer chooses. Now, all the methods
of the RemoteEndpoint.Basic interface for sending messages (most all of which we have seen)
are synchronous sends. In simple terms, what this means is that the send() method calls always
block until the message has been transmitted. This is fine for small messages, but if the message is
large, a WebSocket may well have better things to do than wait for it to send, such as messaging
someone else, repainting a user interface, or focusing more resources on processing incoming
messages. For such endpoints, the RemoteEndpoint.Async, obtainable from the Session
object, as is the RemoteEndpoint.Basic, contains send() methods that take a whole message
as a parameter (in various forms), but that return immediately, and before the message passed in is
actually sent. For example, when sending a large text message, you may wish to use the

public void sendText(String textMessage, SendHandler handler)

method. The method returns immediately, and the SendHandler that you pass in to this method
receives a callback when the message is actually transmitted. In this way, you know the message
was sent, but you don’t have to wait around until it does so. Or you may want to check in

186 Java EE 7: The Big Picture

periodically on the progress of an asynchronous message send. For example, you may choose
the method

public Future<Void> sendText(String textMessage)

in which case the method returns immediately and before the message is transmitted. You can
query the Future object you obtain in return for the status of the message sent, and even cancel
transmission if you change your mind.

There are binary message equivalents for these methods, as you might expect.
Before we leave the topic of sending messages in the Java WebSocket API, it’s worth pointing

out that the WebSocket protocol has no built-in notion of delivery guarantee. In other words,
when you send a message, you don’t know for sure whether it was received by the client. If you
receive an error in your error handler methods, that’s usually a sure sign that the message was not
delivered properly. But if there is no error, the message still may not have been properly delivered.
It is possible to build interactions yourself in Java WebSockets, wherein for important messages
you have the peer send you an acknowledgement of receipt. But, unlike other messaging
protocols, such as JMS, there is no inherent guarantee of delivery.

Path Mapping
In the Clock example, there was one endpoint and it was mapped to a single relative URI in the
URI space of the web application. The client that connected to this endpoint did so by choosing
a URL that was exactly that of the URI to the web application, plus the URI of the endpoint. This
is an example of exact path mapping in the Java WebSocket API. In general, an endpoint is
accessible at

<ws or wss>://<hostname>:<port>/
 <web-app-context-path>/<websocket-path>?<query-string>

where <websocket-path> is the value attribute of the @ServerEndpoint annotation and
query-string is an optional query string.

When the <websocket-path> is a URI, as it is in the ClockServer endpoint, the only
request URI that will connect to the endpoint is the one that matches it exactly.

The JavaWebSocket API also allows server endpoints to be mapped to level 1 URI templates.
URI templates are a fancy way of saying that one or more segments of the URI can be substituted
with variables. For example,

/airlines/{service-class}

is a URI template with a single variable called service-class.
The Java WebSocket API allows incoming request URIs to match an endpoint using a URI

template path mapping if and only if the request URI is a valid expansion of the URI template.
For example,

/airlines/coach
/airlines/first
/airlines/business

are all valid expansions of the URI template

/airlines/{service-class}

Chapter 6: Adding Sparkle: Java WebSockets 187

with variable service-class equal to coach, first, and business, respectively.
URI templates can be very useful in a WebSocket application, since the template variable

values are available within the endpoint that matches the request URI. In any of the lifecycle
methods of a server endpoint, you can add as many String parameters annotated with the
@PathParam annotation to obtain the value of the variable path segments in the match.
Continuing this example, suppose we had the following server endpoint:

Listing: A Booking notifier endpoint

@ServerEndpoint("/airlines/{service-class}")
public class MyBookingNotifier {

@OnOpen
public void initializeUpdates(Session session,
 @PathParam("service-class") String sClass) {
 if ("first".equals(sClass)) {
 // open champagne
 } else if ("business".equals(sClass)) {
 // heated nuts
 } else {
 // don’t bang your head on our aircraft
 }
}
...
}

which would yield different levels of service, depending on which request URI a client connects with.

Accessing Path Information at Runtime
An endpoint has full access to all of its path information at runtime. First, it can always obtain the
path under which the WebSocket implementation has published it. Using the

ServerEndpointConfig.getPath()

call for the endpoint holds this information, which you can easily access wherever you can get
hold of the ServerEndpointConfig instance, such as we see in this example.

Listing: An endpoint accessing its own path mapping

@ServerEndpoint("/travel/hotels/{stars}")
public class HotelBookingService {

 public void handleConnection(Session s, EndpointConfig config) {
 String myPath = ((ServerEndpointConfig) config).getPath();
 // myPath is "/travel/hotels/{stars}"
 ...
 }
}

This works equally well for exact URI-mapped endpoints.

188 Java EE 7: The Big Picture

The second piece of information you may wish to access at runtime from within an endpoint
is the URI with which the client to your endpoint connected. This information is available in a
variety of forms, as we shall see later, but the workhorse method that contains all the information
is the

Session.getRequestURI()

method. This gives you the URI path relative to the web server root of the WebSocket
implementation. Notice that this includes the context root of the web application that the
WebSocket is part of. So, in our hotel booking example, if it is deployed in a web application
with context root /customer/services and a client has connected to the
HotelBookingService endpoint with the URI

ws://fun.org/customer/services/travel/hotels/3

then the request URI the endpoint receives by calling getRequestURI() is

/customer/services/travel/hotels/3

Two more methods on the Session object parse out further information from this request
URI when the request URI includes a query string. So let’s take a look at query strings.

Query Strings and Request Parameters
As we saw earlier, following the URI path to a WebSocket endpoint is the optional query string

<ws or wss>://<hostname>:<port>/
 <web-app-context-path>/<websocket-path>?<query-string>

Query strings in URIs originally became popular in Common Gateway Interface (CGI)
applications. The path portion of a URI locates the CGI program (often /cgi-bin), and the query
string appended after the URI path supplies a list of parameters to the CGI program to qualify the
request. The query string is also commonly used when posting data using an HTML form. For
example, in a web application, in the HTML code

<form name="input" action="form-processor" method="get">
 Your Username: <input type="text" name="user">
 <input type="submit" value="Submit">
</form>

clicking the Submit button produces an HTTP request to the URI

/form-processor?user=Jared

relative to the page holding the HTML code and where the input field contains the text Jared.
Depending on the nature of the web resource located at the URI path /form-processor, the
query string user=Jared can be used to determine what kind of response should be made. For
example, if the resource at form processor is a Java servlet, the Java servlet can retrieve the query
string from the HttpServletRequest using the getQueryString() API call.

In a similar spirit, query strings can be used in the URIs used to connect to WebSocket
endpoints created using the Java WebSocket API. The Java WebSocket API does not use a query
string sent as part of the request URI of an opening handshake request to determine the endpoint

Chapter 6: Adding Sparkle: Java WebSockets 189

to which it might match. In other words, whether or not a request URI contains a query string or
not makes no difference to whether it matches a server endpoint’s published path. Additionally,
query strings are ignored in paths used to publish endpoints.

Just as CGI programs did and other kinds of web components do, WebSocket endpoints can
use the query string to further configure a connection that a client is making. Because the
WebSocket implementation essentially ignores the value of the query string on an incoming
request, any logic that uses the value of the query string is purely inside the WebSocket
component. The main methods that you can use to retrieve the value of the query string are all on
the Session object

public String getQueryString()

which returns the whole query string (everything after the ? character) and

public Map<String,List<String>> getRequestParameterMap()

which gives you a data structure with all the request parameters parsed from the query string.
You’ll notice that the values of the map are lists of strings; this is because a query string may have
two parameters of the same name but different values. For example, you might connect to our
HotelBookingService endpoint using the URI

ws://fun.org/customer/
 services/travel/hotels/4?showpics=thumbnails&description=short

In this case, the query string is showpics=thumbnails&description=short, and to obtain
the request parameters from the endpoint, you might do something like this:

Listing: Accessing request parameters

@ServerEndpoint("/travel/hotels/{stars}")
public class HotelBookingService2 {

 public void handleConnection(Session session, EndpointConfig config) {
 String pictureType = session.getRequestParameterMap()
 .get("showpics").get(0);
 String textMode = session.getRequestParameterMap()
 .get("description").get(0);
 ...
 }
 ...
}

where the values of pictureType and textMode would be thumbnails and short,
respectively.

NOTE
You can also get the query string from the request URI. In the Java
WebSocket API, the Session.getRequestURI() call always
includes both the URI path and the query string.

190 Java EE 7: The Big Picture

Deployment of Server Endpoints
Deployment of Java WebSocket endpoints on the Java EE web container follows the rule that easy
things are easy. When you package a Java class that has been annotated with @ServerEndpoint
into a WAR file, the Java WebSocket implementation scans the WAR file and finds all such classes
and deploys them. This means there is nothing special you have to do in order to get your server
endpoints deployed except package them in the WAR file. However, you may wish to more tightly
control which of a collection of server endpoints gets deployed in a WAR file. In this case, you
may provide an implementation of the Java WebSocket API interface javax.websocket
.ServerApplicationConfig, which allows you to filter which of the endpoints get deployed.

The Chat Application
A good way to test a push technology is to build an application that has frequent, asynchronous
updates to make to a number of interested clients. Such is the case with a Chat application. Let’s
take a look in some detail at how to apply what we have learned about the Java WebSocket API to
build a simple chat application.

Figure 6-10 shows the main window of the Chat application, which prompts for a username
when you sign in.

Several people can be chatting all at once, typing their messages in the text field at the bottom
and clicking the Send button. You can see the active chatters on the right side and the shared
transcript recording everyone’s messages in the middle and left. In Figure 6-11, there is an
uncomfortable triad of people chatting.

In Figure 6-12, we can see that one of the chatters left rather suddenly, and the other has left
slightly more gracefully, leaving just one chatter in the room.

FIGURE 6-10. Logging in to chat

Chapter 6: Adding Sparkle: Java WebSockets 191

FIGURE 6-11. Chat in full flow

FIGURE 6-12. Leaving chat

192 Java EE 7: The Big Picture

Before we look at the code in detail, let’s get the big picture of how this application is built.
The web page uses the JavaScript WebSocket client to send and receive all the chat messages.
There is a single ChatServer Java WebSocket endpoint on the web server, which is handling all
chat messages from multiple clients, keeping track of those clients that are actively chatting,
maintaining the transcript, and broadcasting updates to all connected clients whenever someone
enters or leaves the chat room and whenever any one of them sends a message to the group. The
application uses custom objects with WebSocket Encoders and Decoders to model all the chat
messages.

Let’s look at the ChatServer endpoint.

Listing: The ChatServer endpoint

import java.io.IOException;
import java.util.*;
import javax.websocket.*;
import javax.websocket.server.*;
import jwsp.chapter4.data.*;

@ServerEndpoint(value = "/chat-server",
 subprotocols={"chat"},
 decoders = {ChatDecoder.class},
 encoders = {ChatEncoder.class})
public class ChatServer {
 private static String USERNAME_KEY = "username";
 private static String USERNAMES_KEY = "usernames";
 private Session session;
 private Transcript transcript;
 private EndpointConfig endpointConfig;

 @OnOpen
 public void startChatChannel(EndpointConfig endpointConfig, Session session) {
 this.endpointConfig = endpointConfig;
 this.transcript = Transcript.getTranscript(endpointConfig);
 this.session = session;
 }

 @OnMessage
 public void handleChatMessage(ChatMessage message) {
 switch (message.getType()){
 case NewUserMessage.USERNAME_MESSAGE:
 this.processNewUser((NewUserMessage) message);
 break;
 case ChatMessage.CHAT_DATA_MESSAGE:
 this.processChatUpdate((ChatUpdateMessage) message);
 break;
 case ChatMessage.SIGNOFF_REQUEST:
 this.processSignoffRequest((UserSignoffMessage) message);
 }
 }

 @OnError
 public void myError(Throwable t) {
 System.out.println("Error: " + t.getMessage());

Chapter 6: Adding Sparkle: Java WebSockets 193

 }

 @OnClose
 public void endChatChannel() {
 if (this.getCurrentUsername() != null) {
 this.addMessage(" just left...without even signing out !");
 this.removeUser();
 }
 }

 void processNewUser(NewUserMessage message) {
 String newUsername = this.validateUsername(message.getUsername());
 NewUserMessage uMessage = new NewUserMessage(newUsername);
 try {
 session.getBasicRemote().sendObject(uMessage);
 } catch (IOException | EncodeException ioe) {
 System.out.println("Error signing " + message.getUsername() +
 " into chat : " + ioe.getMessage());
 }
 this.registerUser(newUsername);
 this.broadcastUserListUpdate();
 this.addMessage(" just joined.");
 }

 void processChatUpdate(ChatUpdateMessage message) {
 this.addMessage(message.getMessage());
 }

 void processSignoffRequest(UserSignoffMessage drm) {
 this.addMessage(" just left.");
 this.removeUser();
 }

 private String getCurrentUsername() {
 return (String) session.getUserProperties().get(USERNAME_KEY);
 }

 private void registerUser(String username) {
 session.getUserProperties().put(USERNAME_KEY, username);
 this.updateUserList();
 }

 private void updateUserList() {
 List<String> usernames = new ArrayList<>();
 for (Session s : session.getOpenSessions()) {
 String uname = (String) s.getUserProperties().get(USERNAME_KEY);
 usernames.add(uname);
 }
 this.endpointConfig.getUserProperties().put(USERNAMES_KEY, usernames);
 }

 private List<String> getUserList() {
 List<String> userList =
 (List<String>) this.endpointConfig.getUserProperties().get(USERNAMES_KEY);
 return (userList == null) ? new ArrayList<String>() : userList;
 }

194 Java EE 7: The Big Picture

 private String validateUsername(String newUsername) {
 if (this.getUserList().contains(newUsername)) {
 return this.validateUsername(newUsername + "1");
 }
 return newUsername;
 }

 private void broadcastUserListUpdate() {
 UserListUpdateMessage ulum =
 new UserListUpdateMessage(this.getUserList());
 for (Session nextSession : session.getOpenSessions()) {
 try {
 nextSession.getBasicRemote().sendObject(ulum);
 } catch (IOException | EncodeException ex) {
 System.out.println("Error updating a client : " + ex.getMessage());
 }
 }
 }

 private void removeUser() {
 try {
 this.updateUserList();
 this.broadcastUserListUpdate();
 this.session.getUserProperties().remove(USERNAME_KEY);
 this.session.close(new CloseReason(CloseReason.CloseCodes.NORMAL_CLOSURE,
"User logged off"));
 } catch (IOException e) {
 System.out.println("Error removing user");
 }
 }

 private void broadcastTranscriptUpdate() {
 for (Session nextSession : session.getOpenSessions()) {
 ChatUpdateMessage cdm = new
 ChatUpdateMessage(this.transcript.getLastUsername(),
 this.transcript.getLastMessage());
 try {
 nextSession.getBasicRemote().sendObject(cdm);
 } catch (IOException | EncodeException ex) {
 System.out.println("Error updating a client : " + ex.getMessage());
 }
 }
 }

 private void addMessage(String message) {
 this.transcript.addEntry(this.getCurrentUsername(), message);
 this.broadcastTranscriptUpdate();
 }

}

There is a lot to notice in this code. First, notice that this is a server endpoint that is mapped
to the relative URI /chat-server. The endpoint uses an encoder and a decoder class,
ChatEncoder and ChatDecoder, respectively.

Chapter 6: Adding Sparkle: Java WebSockets 195

The best way to look at Java WebSocket endpoints for the first time is to look at the lifecycle
methods: These, as you know, are the methods annotated by @OnOpen, @OnMessage, @OnError,
and @OnClose. We can see by looking at the ChatServer class in this way that the first thing the
ChatServer WebSocket does when a new client connects is to set up instance variables that
reference the chat transcript, the session, and the EndpointConfig. Remember that there is a
new instance of the endpoint for each client that connects. So each chatter in the chat room will
have a unique chat server instance associated with it. There is always a single EndpointConfig
per logical WebSocket endpoint, so the endpointConfig instance variable on each instance of
the ChatServer points to the single shared instance of the EndpointConfig class. This instance
is a singleton, and it holds a user map that can hold an arbitrary application state. Thus, it is a
good place to hold global state in an application. There is always a unique session object per
client connection, so each ChatServer instance points to its own Session instance representing
the client to which the instance is associated by following the code to the Transcript class.

Listing: The Transcript class

import java.util.ArrayList;
import java.util.List;
import javax.websocket.*;

public class Transcript {
 private List<String> messages = new ArrayList<>();
 private List<String> usernames = new ArrayList<>();
 private int maxLines;
 private static String TRANSCRIPT_ATTRIBUTE_NAME = "CHAT_TRANSCRIPT_AN";

 public static Transcript getTranscript(EndpointConfig ec) {
 if (!ec.getUserProperties().containsKey(TRANSCRIPT_ATTRIBUTE_NAME)) {
 ec.getUserProperties()
 .put(TRANSCRIPT_ATTRIBUTE_NAME, new Transcript(20));
 }
 return (Transcript) ec.getUserProperties().get(TRANSCRIPT_ATTRIBUTE_NAME);
 }

 Transcript(int maxLines) {
 this.maxLines = maxLines;
 }

 public String getLastUsername() {
 return usernames.get(usernames.size() -1);
 }

 public String getLastMessage() {
 return messages.get(messages.size() -1);
 }

 public void addEntry(String username, String message) {
 if (usernames.size() > maxLines) {
 usernames.remove(0);
 messages.remove(0);
 }

196 Java EE 7: The Big Picture

 usernames.add(username);
 messages.add(message);
 }

}

We can see that there is a single transcript instance per EndpointConfig. In other words,
there is a single Transcript instance and it is shared across all ChatServer instances. This is
good because we need the transcript to show the group chat messages to all clients.

The most important method on the ChatServer is the message handling method, annotated
with @OnMessage. You can see from its signature that it deals with ChatMessage objects rather
than text or binary WebSocket messages, thanks to the ChatDecoder that it uses. The ChatDecoder
it uses has already decoded the message into one of the subclasses of ChatMessage. In the
interest of brevity, rather than listing all the ChatMessage subclasses, here is a summary of
the different ChatMessage subclasses and the function of each.

ChatMessage subclass Purpose
ChatUpdateMessage Message holding a username and a chat message that user sent
NewUserMessage Message holding the name of a new user signing on
UserListUpdateMessage Message holding a list of the names of the current active chatters
UserSignoffMessage Message holding the name of a user who has signed off

Now we can easily see that the ChatServer’s message handling method,
handleChatMessage(), which is called by the client every time a new chat-related action
occurs, is designed to handle situations when a new user signs in, when a user posts a new chat
message to the board, and when a user signs out.

Let’s follow the code path when a ChatServer is notified that the user has posted a new chat
message. This leads us from the handleChatMessage() method to the processChatUpdate()
method, which calls addMessage(), which adds the new chat message to the shared transcript.
Then it calls broadcastTranscriptUpdate().

Listing: Broadcasting a new chat message

 private void broadcastTranscriptUpdate() {
 for (Session nextSession : session.getOpenSessions()) {
 ChatUpdateMessage cdm = new ChatUpdateMessage(
 this.transcript.getLastUsername(),
 this.transcript.getLastMessage());
 try {
 nextSession.getBasicRemote().sendObject(cdm);
 } catch (IOException | EncodeException ex) {
 System.out.println("Error updating a client : " +
 ex.getMessage());
 }
 }
 }

Chapter 6: Adding Sparkle: Java WebSockets 197

This method uses the very useful API call Session.getOpenSessions(), allowing one
endpoint instance to gain a handle on all the open connections to the logical endpoint. In this
case, the method uses that list of all the open connections to broadcast the new chat message out
to all the clients so that they can update their user interfaces with the latest chat message. Notice
that the message that is sent is in the form of a ChatMessage, here, the ChatUpdateMessage.
The ChatEncoder takes care of marshaling the ChatUpdateMessage instance into a text
message that is actually the one sent back to the client with the news of the new chat message
contained within.

Since we did not look at the ChatDecoder when we were looking at incoming messages,
let’s pause to look at the ChatEncoder class.

Listing: The ChatEncoder class

import java.util.Iterator;
import javax.websocket.EncodeException;
import javax.websocket.Encoder;
import javax.websocket.EndpointConfig;

public class ChatEncoder implements Encoder.Text<ChatMessage> {
 public static final String SEPARATOR = ":";

 @Override
 public void init(EndpointConfig config) {}
 @Override
 public void destroy() {}

 @Override
 public String encode(ChatMessage cm) throws EncodeException {
 if (cm instanceof StructuredMessage) {
 String dataString = "";
 for (Iterator itr = ((StructuredMessage) cm)
 .getList().iterator(); itr.hasNext();) {
 dataString = dataString + SEPARATOR + itr.next();
 }
 return cm.getType() + dataString;
 } else if (cm instanceof BasicMessage) {
 return cm.getType() + ((BasicMessage) cm).getData();
 } else {
 throw new EncodeException(cm, "Cannot encode messages of type: " +
 cm.getClass());
 }
 }
}

You can see that the ChatEncoder class is required to implement the Encoder lifecycle
methods init() and destroy(). Although this encoder does nothing with these callbacks from
the container, other encoders may choose to initialize and destroy expensive resources in these
lifecycle methods. The encode() method is the meat of the class and takes the message instance
and turns it into a string, ready for transmission back to the client.

Returning now to the ChatServer class, we see from the handleChatMessage() method
that this endpoint has a graceful way of dealing with clients that sign off in the proper way: by
sending a UserSignoffMessage prior to closing the connection. It also has a graceful way of

198 Java EE 7: The Big Picture

dealing with clients who simply close the connection unilaterally, perhaps by closing the browser
or navigating away from the page. The @OnClose annotated endChatChannel() method
broadcasts a message to all connected clients informing them when someone leaves the chatroom
without saying goodbye. Looking back at the screenshots, we can now see the difference between
the manner in which Jess and Rob left the room.

Summary
In this chapter, we have learned how to create a Java WebSocket endpoint. We have explored the
basic concepts of the WebSocket protocol and what kinds of situations demand their true server
push nature. We have looked at the lifecycle of a Java WebSocket endpoint, examined the main
classes of the Java WebSocket API, and looked at encoding and decoding techniques, including
the variety of messaging modes supported in the Java WebSocket API. We looked at how server
endpoints are mapped to the URI space of a web application and how client requests are
matched to endpoints therein. We concluded with a look at a Chat application that exercises
many of the features of the Java WebSocket API.

CHAPTER
7

Securing Web
Applications

200 Java EE 7: The Big Picture

M
edieval castles usually had high walls and gates that were guarded by soldiers who
checked who was allowed entry. So the notions of authentication, authorization, and
 protection of what is valuable are not new to the Internet age after all! If your Java EE

web application has any interesting data in it, then it probably needs securing.

There are many aspects of securing a web application: You may wish simply to ensure that
you know who is interacting with resources in an application, or you may wish to use the identity
of the user of your application to customize the interactions. You may wish to allow only certain
kinds of users to access an application, or you may wish to provide different levels of access to an
application to different kinds of users. You may wish to ensure that some or all of the interactions
with the application are encrypted to foil eavesdroppers. You may want to combine any or all
these kinds of approaches in your application.

In this chapter, we will look at the security mechanisms available in the Java EE web container
for securing web applications. As we explore the mechanisms, we see how they apply to all the
web components we have studied so far: Java servlets, JSPs, JavaServer Faces, JAX-RS resources,
and WebSocket endpoints. The primary security mechanism is the declarative security model. This
describes in metadata the protection model that you want the web container to apply to your web
application. The metadata is mostly held within the deployment descriptor of the web application,
but can also be held within certain security annotations in source code. The second security
mechanism is the roll-your-own model: the Java EE web APIs collectively hold a number of APIs
that web components can use in order to build their own security model.

Before we get into the declarative and programmatic security mechanisms in the Java EE web
container, let’s review the core security concepts we will be using.

Security Concepts
Let’s start by looking at our basic deployment scenario, someone using a web browser or a rich
client application with access to a web component that is hosted on a web server. The starting
point for all interactions with web components on the Java EE web container is an HTTP request;
this is true whether the web component is a servlet, JAX-RS resource, or WebSocket. Even in the
case of WebSocket, the client may not establish a WebSocket session until the opening HTTP
handshake interaction has completed.

In Figure 7-1, the user is initiating an HTTP request from a browser or rich client for a web
component that is protected by a security model on the server. Before the request can be fulfiled,
the server’s security model must consider the following three questions:

 ■ Who is asking for the resource? If the user has not previously logged into the web
server, and if the HTTP request is not carrying some indication of that state, the request
is anonymous. It may be that the security model allows anonymous access to the
web component, or it may be that the web server must know the identity of the user
requesting the resource in order to answer the next question.

 ■ May this person have it? If the web server does not allow anonymous access to the
web component, then it has the information necessary to determine whether this
particular user is allowed access to the resource or not. Once the server has made this
determination, the server needs to consider the next question.

Chapter 7: Securing Web Applications 201

 ■ How private is its data? The server may have decided that the data the web component
yields in response to the request must be delivered back to the client in such a way that
guarantees that the information has not been altered en route. Or the server may wish to
ensure with some level of certainty that anyone intercepting the data it sends from the
web component to the client cannot read it.

The processes of determining the answers to these questions are more commonly known as

 ■ Authentication Establishing the identity of a user making a request

 ■ Authorization Granting or denying access to a web component by a user

 ■ Establishing data privacy Determination the privacy level of the communication
channel used to transmit data between the web component and the client

Java EE Web Container Security
The Java EE web container supports a declarative security model, wherein the container acts as
the gatekeeper to all the web components that elect to be protected by it, intercepting all HTTP
requests to the application and deciding whether they are allowed to continue and, if so, over
what channel the interaction may proceed. A web application that chooses to use the Java EE web
container’s declarative security model does so by adding security declarations to its deployment
descriptor, in combination with certain annotations in certain cases. This kind of static configuration
generally allows the security model for an application to be configured and defined separately
from the application logic itself. The second security model that a web application may choose to
use is the programmatic one. In this model, the application itself is responsible for determining
whether an HTTP request issued by a user to one or more of its web components is allowed to
execute the application logic of the web component. In this case, the application developer is
essentially responsible for programming the web application security in the application itself. In
this chapter, our focus is mainly on the declarative security model. However, there are a number
of runtime APIs concerned with different aspects of security in a web application that are useful to

FIGURE 7-1. The three security questions

Http Client Web server

/uri-to-component

Who is asking for it?

May this person have it?

How private is it?

Http Request
STOP

?

?

?

Web
component

202 Java EE 7: The Big Picture

developers, whether they choose to use a built-in declarative model or a programmatic one. We
will cover these APIs as well.

Of course, every good security model has many more features in addition to the core three
we have just described, including auditing, nonrepudiation, and interoperability. Every
implementation of the Java EE platform will have some level of support for these features, but the
level of support is likely to differ from implementation to implementation. We will focus on the
three core features of authentication, authorization, and establishing data privacy, since they are
supported in a standard way by the Java EE web container and because they cover the security
needs of a majority of Java EE web applications.

The Declarative Security Model
The declarative security model is declared in the web.xml deployment descriptor of the web
application. We will see many examples of relevant syntax, but let’s start with the models that
allow you to ensure that only known, or authenticated, users are allowed access to the web
components in a Java EE web application.

Authentication
We will look at three standard types of authentication for Java EE web applications in this section,
starting with the simplest.

Basic Authentication This is the simplest HTTP-based authentication scheme. Basic
authentication is initiated when the client sends its credentials in the form of a username and
password pair encoded in an HTTP header. The client may either send this preemptively or in
reaction to a challenge from the server, if the client sends an unauthenticated request. Because
the credentials in the HTTP Basic scheme are encoded only with Base 64 encoding, they are
vulnerable to being intercepted and decoded. This is a good scheme to use in a web application
where you need a sign-in and need to know which user is accessing the application, but you do
not necessarily have a strong concern about the privacy of the data in the application. In other
words, basic authentication is useful in applications where you wish to tailor the content to the
users because you already know something about them, but you do not necessarily need a strong
security scheme to protect the data that you are sending or receiving. Other web applications that
wish to protect the credentials and the application data may choose to use basic authentication,
but only when the communication occurs over an encrypted or private connection.

Browsers typically use a basic modal username password dialog to retrieve the user
credentials, so the user experience from a browser is simple, but it is also not easy to customize.

Form-Based Authentication Form-based authentication is a mechanism that allows the user
credentials to be gathered by a highly customizable HTML form in a login page created by the
developer. The mechanism defines the pair of HTTP request parameters that signify the username
and password that are encoded in a <form> element in the web page. Like basic authentication,
the credentials are vulnerable to interception, so this suits the same class of applications. The
main difference between form authentication and basic authentication is that the look and
placement of the login form is customizable, and thus suits applications that are more conscious
of the user experience. Again, applications that are doing more than a casual personalization
based on the user identity and that are concerned about maintaining the integrity of credentials
supplied by the user will choose to use only form-based authentication over an encrypted or
private connection.

Chapter 7: Securing Web Applications 203

Client Certificate Authentication Client certificate authentication is a process by which the
server and, optionally, the client authenticate one another using a digital certificate, which acts as
a kind of encrypted passport that verifies the agent’s identity. The process is more secure than
either basic or form-based authentication because the credentials are always transferred using
HTTP over SSL and because the client is able to verify the server identity.

Configuring Authentication Mechanisms Once you have decided which scheme you wish to
use, configuring it is relatively easy: you specify it in the web.xml deployment descriptor of the
WAR file in which your web components are packaged. The key element to include in the
deployment descriptor is the <login-config> element. It has the following subelements.

Element Name Value Meaning
auth-method BASIC, FORM, or CLIENT-CERT Defines the authentication

scheme
realm-name Name of the user realm used

for basic authentication
Defines which server realm
is used to verify the basic
authentication credentials

form-login-config Subelements
login-page

and
error-page

For form login only, defines
the relative location within the
web application of the page
containing the login form and
the page to which the user is
redirected if the login fails

Authentication Examples Here are some excerpts of web.xml files that specify each of the
three types of authentication that you can use for web applications.

For basic authentication, including this snippet of XML under the top-level web-app element
of the web.xml configures an application to receive an HTTP basic authentication challenge
when attempting to access a protected web component. The server verifies the credentials that the
client sends in response with matching user credentials in the server's file authentication realm.

Listing: Basic authentication

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>file</realm-name>
</login-config>

To specify your application, use form authentication if you include the following XML under
the top-level web-app element of the web.xml

Listing: Form login authentication

<login-config>
 <auth-method>FORM</auth-method>

204 Java EE 7: The Big Picture

 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/error.html</form-error-page>
 </form-login-config>
</login-config>

then the server redirects any unauthenticated requests to protected resources within the web
application to the login.html page located at the root of the web application’s URI namespace.
The login.html page needs to include a form of the shape shown next.

Listing: A login <form>

<form method=POST action="j_security_check">
 User ID
 <input type="text" size="10" name="j_username">

 Password
 <input type="password" size="10" name="j_password">
 <input type="submit" name="login" value="Login">
 </form>

And so the form submission posts request parameters named j_username and j_password
containing the values of the username and password that the user enters to a specially reserved
name, j_security_check, on the server that processes the authentication request. If the
authentication succeeds, the user is redirected to the protected resource he requested in the first
place. If the authentication fails, the user is redirected to the error.html page that was specified
in the form-login-config element and that is located at the root of the web application’s
URI space.

Finally, here is the login-config snippet you need to include in your web application if you
would like the server to initiate a client-certificate challenge when an unauthenticated user of the
web application attempts to access a protected resource.

Listing: Client certificate authentication

<login-config>
 <auth-method>CLIENT-CERT</auth-method>
</login-config>

Being able to specify an authentication scheme for the web component isn’t any use unless
you know how to protect those server-side endpoints in the first place. Thus, we turn to the
language of authentication in Java EE web applications.

Authorization
Authorization is the process by which the Java EE web container decides whether a particular user
is permitted access to a particular endpoint. The Java EE platform uses a level of indirection in
defining users by using the idea of a user role, or simply a role. A role is a kind of abstraction of a
user that allows authorization rules to be set up in the application without actually having to put
real usernames in the application configuration.

Chapter 7: Securing Web Applications 205

When an authenticated HTTP request for a web component arrives at the web container, the
web container must decide three things in order to determine whether it will grant access to the
web component the request is for.

First, the web container must determine to which role or roles the authenticated user belongs.
How users are associated with roles is not a standard part of the Java EE platform, and therefore
will vary from Java EE implementation to Java EE implementation. In the GlassFish 4.0 application
server, you can make the association between the user and the roles to which he belongs in a
GlassFish-specific deployment descriptor called the glassfish.xml file that you co-package
with the WAR file containing your endpoints. Other application servers, however, use different
schemes.

Next, the web container looks at the web application’s deployment descriptor (the web.xml
file co-packaged in the WAR file). The definition of which roles are allowed access to which URI in
the URI space of a web application is expressed in a number of XML elements called security
constraints, which have been written by the developer. We will look at some specific examples of
this later. Once the web container has examined the deployment descriptor, it knows which roles
are allowed access to the URI that the original HTTP request is for.

Finally, since the web container knows the association between the requested URI and the
web component, whether it be a static file, Java servlet, JSP, JavaServer Faces page, JAX-RS
resource, or Java WebSocket, it can now determine whether the user has access to the web
component. Figure 7-2 shows this process of authorization.

With these three pieces of information, the server can then decide for a given user and HTTP
request URI whether the user is allowed access to the web component.

Now the mapping of URIs to web components is handled by the individual component
technologies, so we already know one part of the three. The question of the role to which the user

FIGURE 7-2. The process of authorization

Http Client

Java EE Web Container

Web Application

Web page

Java servlet

JSP JavaServer Faces page

WebSocket

JAX-RS resource

web.xml

Http Request user

/my/component

User to role mapping

Is the role allowed
access to

/my/component?

Which web
component is

mapped to
/my/component?

To which role
does the user

belong?

206 Java EE 7: The Big Picture

issuing the HTTP request belongs, as we already mentioned, is defined in the Java EE
implementation. To consider the question “Are users in this role allowed access to this URI?,” we
need to look at the <security-constraint> element of the web.xml, as this is where that
question will be answered for a web application.

Security Constraints The security constraint element contains two pieces of information:

 ■ A web resource collection in the web resource collection subelement This is
composed of a list of URL patterns, which define a portion of the URI space within
the web application to which the containing security constraint applies. The second
component is a list of HTTP methods that defines the HTTP operations on the URIs
covered in the URL patterns to which you wish this security constraint to apply.

 ■ An authorization constraint in the auth-constraint subelement This is composed of a
list of the names of roles to which the security constraint will apply.

The security-constraint element also may contain a third subelement,
user-data-constraint, which defines how data is transported between client and server
for the web component operations defined in the containing security constraint. We will
examine this shortly.

Let’s look in some detail at the semantics of web-resource-collection and of
auth-constraint. The next table contains a description of each of the subelements.

web-resource-collection
Sub Element Multiplicity Value
web-resource-collection-name Single Optional text name of this collection

of URIs for display in tools
description Single An optional text description of this

collection of URIs for display in tools
url-pattern Multiple A path designation indicating a URL

or group of URLs
http-method Multiple The HTTP method (GET, POST...)

used to access the web component

The url-pattern element contains a string that indicates a URI or signifies some matching
set of URIs. There are three ways you can define a uri-pattern value:

 ■ exact path This is a path relative to the context root of the web application, for
example, /airlines/booking.xhtml. This path matches one and only one web
component in the web application.

 ■ wildcard This is a path that defines a group of URLs relative to the context root of the
web application. For example /airlines/* indicates all URIs starting with airlines,
including, for example, /airlines/booking.xhtml.

 ■ filename ending This is a URL pattern that looks for a particular endpoint pattern in
a URI. For example, if you decided to protect all the JavaServer Faces pages ending in
.xhtml in your application, you could use the filename extension URL pattern *.xhtml
in the URL pattern element.

Chapter 7: Securing Web Applications 207

The auth-constraint element is much simpler: it simply contains a list of the names of
user roles that are allowed access under the limits of these security constraints.

auth-constraint Sub Elements Multiplicity Value
role-name multiple The name of a role to which the

security constraint applies

The values of the user roles in the role-name element may be drawn from the list of security
roles that has been previously defined for this web.xml. This list is held in a list of <security-role>
subelements of the root web-app element of the web.xml, with the name of the role the text
value of the role-name subelement.

Note that there is a special role name, “*,” which denotes any user. Using * in a security
constraint allows any user to access the resources matched under the URL pattern, provided they
have authenticated. This is different from allowing open access to resources: in this latter case,
access is granted to anyone, authenticated or not.

This gives us the answer to our question: To which roles is a given HTTP request URI
(including the HTTP method) allowed access in my web application?

Before we look at an example of the security constraint in action, we will finish off the
exploration by looking at the final question in the security model: how to ensure data privacy.

User Data Constraints The user data constraint of a security constraint defines the level of
privacy the web application needs in order for users to access it. This is defined in the subelement
user-data-constraint of the security-constraint. It takes a text value, either NONE,
INTEGRAL, or CONFIDENTIAL. A value of NONE allows the Java EE server to interpret this as
allowing access over HTTP, which is the default mode if non-user-data-constraint is included.
The risk to application data is that a third party can intercept the HTTP interactions and read
potentially sensitive data (such as HTTP basic authentication information and credentials, which
are held in the headers of HTTP requests and responses). A value of INTEGRAL or CONFIDENTIAL
is, in practice, interpreted by Java EE web containers as meaning the web components need an
encrypted connection.

We can summarize the structure of the security constraint syntax in Figure 7-3, where
web-app is the root element of the web.xml deployment descriptor.

Example Let’s take a look at an example using security constraints. In this example, we have
a web application that is an online book store. It allows any Internet user to browse its online
catalog of books, which is displayed in a JavaServer Faces page called store-front.xhtml.
It allows customers to create accounts with another JavaServer Faces page called
create-account.xhtml. Once a user has created a customer account, he or she is then
allowed to purchase books from the store, either through a browser by viewing the /purchase
/purchase.xhtml page, or on a custom smartphone app by accessing a JAX-RS endpoint
mapper to /purchase/PurchaseResource. Another type of user is the user who is working in
the warehouse where the books for sale are kept and new ones delivered. Through a browser
interface, they are able to upload new book information, using the BookUpload servlet that is
mapped to /inventory/BookUploader. As a real-time check on what inventory exists across
all the warehouses, a web page called /inventory/inventory.xhtml is always up to date

208 Java EE 7: The Big Picture

with regard to what books are in stock. This page uses a Java WebSocket mapped to the URI
/inventory/TrackingMonitor to remain up to date without needing the warehouse manager
to keep refreshing the page. Let’s see that web application and the URI space it occupies in
Figure 7-4.

Like any Internet user, the site would be able to browse the catalog of books, would like only
registered customers to be able to purchase books, and only the team across the warehouses
would be able to access inventory information and update the catalog as new books arrive. Last,
it would like its own team of administrators to have access to all the functions of the web site.

Let’s look at how we express those constraints in the web.xml deployment descriptor. First,
we will create three different roles for each of the different types of users that have access to parts
of the web application: customer, backoffice, and administrator. So to the web.xml, we
add the following security role elements that are described in the listing:

FIGURE 7-3. Security constraints in the deployment descriptor

<auth-constraint>

<user-data-constraint>

<url-pattern>

<web-resource-collection>

<http-method>

<role-name>

<security-constraint>

Defines the security of the
transport client to web

component

Defines the URI space
to which the security

constraint applies

Defines the Http
methods to which the

security constraint applies

Defines the roles to
which the security
constraint applies

<web-app>

Chapter 7: Securing Web Applications 209

Listing: Security roles

<web-app>
...
 <security-role>
 <role-name>backoffice</role-name>
 </security-role>
 <security-role>
 <role-name>client</role-name>
 </security-role>
 <security-role>
 <role-name>administrator</role-name>
 </security-role>
...
<web-app>

Now, let’s look through the URI space of the application. In order to restrict access to the
purchasing web components (JAX-RS resource, JavaServer Faces pages), all we need to do is make
sure that any user trying to access

FIGURE 7-4. Online book store

Http Client

Java EE Web Container

Web Application

/catalog.xhtml

/purchase

/index.html

/purchase.xhtml

/confirm.xhtml

/inventory

/PurchaseResource
(JAX-RS resource)

Browse catalog
Purchase books

Add and track stock

/create-account.xhtml

/BookUploader
(Servlet)

/TrackingMonitor
(WebSocket)

/inventory.xhtml

210 Java EE 7: The Big Picture

/purchase/PurchaseResource
/purchase/purchase.xhtml
/purchase/confirm.xhtml

must belong to either the customer or administrator role. In order to restrict access to the
inventory-related web components (TrackingMonitor WebSocket, and inventory.xhtml
page), we need to make sure that any user trying to access

/inventory/TrackingMonitor
/inventory/inventory.xhtml

has to belong to either the backoffice or administrator role. These restrictions can be
enforced by adding the following two security constraints to the web.xml:

Listing: Security constraints

<web-app>
...
 <security-constraint>
 <display-name>Customer Constraint</display-name>
 <web-resource-collection>
 <web-resource-name>inventory</web-resource-name>
 <url-pattern>/inventory/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>backoffice</role-name>
 <role-name>administrator</role-name>
 </auth-constraint>
 </security-constraint>
 <security-constraint>
 <display-name>Client Constraint</display-name>
 <web-resource-collection>
 <web-resource-name>purchase</web-resource-name>
 <url-pattern>/purchase/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>client</role-name>
 <role-name>administrator</role-name>
 </auth-constraint>
 </security-constraint>
...
<web-app>

Notice that the index.html, catalog.xhtml, and create-account.xhtml pages are not
matched by any of the URL patterns in the security constraints in the example. Therefore, they are
available to any user, whether they are authenticated or not.

Chapter 7: Securing Web Applications 211

Finally, we have not specified in this example how the users are to be authenticated. Once
the scheme has been decided on, the authentication scheme can be requested in the web.xml by
adding the suitable login-config element, as we covered earlier.

A Note on WebSockets
A final note on WebSockets: as you read in Chapter 6, Java WebSockets use an underlying
protocol that is not the same as HTTP. Java WebSockets are mapped by the Java WebSocket API to
URIs within a web application, and are in fact covered by the security constraints in a web
application. How can this be possible? You will recall that a WebSocket connection can be
established only by the client initiating a specially formatted HTTP request called a WebSocket
opening handshake. It is this HTTP response interaction that is gated by the security model of the
web application that contains it: if the opening handshake returns an HTTP 403 Forbidden
response, the WebSocket connection is not established. This means that the authorization model
of the Java EE web container applies to Java WebSockets just as it does to the other HTTP
components in the platform. How does a Java WebSocket authenticate the opening handshake
request so that the Java EE web container can check the caller identity and determine whether to
authorize the interaction? Unfortunately, the WebSocket protocol does not include any standard
mechanism for authentication. Fortunately, WebSocket connections in web applications are
typically initiated by JavaScript code within a web page. So when a WebSocket attempts the
opening handshake with the Java EE web container, the Java EE web container knows the
authorization state of the opening handshake HTTP request because it knows the authorization
state of the web page in which the JavaScript code is executing. In this way, provided the web page
in which the WebSocket connection is trying to be established is authenticated, so is the opening
handshake, and the converse is also true. The upshot of this is that everything in the Java EE web
container security model carries through for Java WebSockets, except that in order to know that a
WebSocket client in a web page is authenticated with the Java EE web container, you must ensure
that the web page that contains it is authenticated.

Security Constraints in Java Servlets
One type of web component does not need the web.xml deployment descriptor to define the
security constraints under which it wishes to operate: Java servlets.

The original goal of the deployment descriptor in the WAR file was to be able to simultaneously
standardize information about the web application needed by the web container in order to
deploy it, while at the same time making sure that such deployment information was separate
from the source code. Thus, the information could, in theory, be created (or at least tweaked) after
all the application code was written, possibly by someone other than the developer of the
application and someone more familiar with the setup of the web server. But editing the web.xml
can be somewhat onerous, in part because you are maintaining a global view of all the web
components in the web application. This is why the Java servlet API includes several security
annotations that allow developers to annotate a Java servlet with the information needed to define
the security model under which it operates. The annotations control the same security model we
have already examined, so they should be easy to pick up.

212 Java EE 7: The Big Picture

In order to apply a security constraint to a Java servlet, the starting point is to add an annotation
of type @ServletSecurity from the package javax.servlet.annotation to the servlet
class. The @ServletSecurity annotation is the same as a security constraint, with a single URL
pattern matching the path of the Java servlet in question. The @ServletSecurity allows two
attributes that are themselves annotations from the same package. First, @HttpConstraint
annotation allows you to define the list of roles allowed to access all of the servlet’s HTTP
methods by listing the role names in its rolesAllowed attribute, or to grant access to all
authenticated users using ServletSecurity.EmptyRoleSemantic in the value attribute.
The attribute transportGuarantee allows you to specify in this annotation the level of data
privacy this servlet needs. Second, the @HttpMethodConstraint annotation has the value
attribute, which is the name of one of the standard HTTP methods, GET, POST, and so forth,
together with the same attributes as the @HttpConstraint element. In this way, the
@HttpMethodConstraint annotations allow you to define per-HTTP method constraints,
while the @HttpConstraint annotation enables you to define security constraints that apply
to all of the HTTP methods of the Java servlet. We summarize the structure of the servlet security
annotations in Figure 7-5.

We’ll conclude this section with a simple example of the @ServletSecurity annotation in
action. In this example, we have a Java servlet that can display a web page containing information
about all the uploaded photos, and can also upload a photo to add to the catalog.

FIGURE 7-5. @ServletSecurity annotation

Http method name
String

Defines the Http methods to
which this constraint applies

Defines which roles
are allowed access

The shorthand to
allow or deny all
authenticated users

Defines if the
connection should
be encrypted or not

Mandatory attribute

Optional attribute

@SecuritySecurity

@HttpConstraint

@HttpMethodConstraint

empty role semantic
ServletSecurity.EmptyRoleSemantic.PERMIT

or
ServletSecurity.EmptyRoleSemantic.DENY

transport guarantee
ServletSecurity.TransportGuarantee.CONFIDENTIAL

or
ServletSecurity.TransportGuarantee.NONE

role name allowed
String

Chapter 7: Securing Web Applications 213

Listing: A secure servlet using security annotations

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.annotation.MultipartConfig;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;
import javax.servlet.annotation.ServletSecurity;
import javax.servlet.annotation.HttpMethodConstraint;

@WebServlet(name = "UploadPhoto", urlPatterns = {"/photo/upload"})
@MultipartConfig()
@ServletSecurity(httpMethodConstraints={
 @HttpMethodConstraint(
 value="GET",
 emptyRoleSemantic=ServletSecurity.EmptyRoleSemantic.PERMIT),
 @HttpMethodConstraint(
 value="POST",
 rolesAllowed={"administrator", "photographer"},
 transportGuarantee=ServletSecurity.TransportGuarantee.CONFIDENTIAL)
 })
public class UploadPhoto extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 // create the photo catalog page
 }

 @Override
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 // upload a photo
 }
}

This servlet uses the @ServletSecurity with two @HttpMethodConstraints to define
access restrictions on the two HTTP methods, GET and POST, implemented by the servlet.
You can see from the first of the @HttpMethodConstraints that all authenticated users
are allowed access to the HTTP GET method implemented by the servlet. From the second
@HttpMethodConstraint, you can see that only users that are in the administrator role or
in the photographer role are allowed to upload photos to the servlet, and only over an
encrypted connection.

Programmatic Security
When a web application has declared a security model that causes its users to be authenticated,
web components can do several interesting things with this information. Within a particular
request to web components, it is often useful to know programmatically who is calling, how they

214 Java EE 7: The Big Picture

authenticated, and in which of the application-defined roles they belong. Perhaps you wish to use
their identity to pull up and display private information particular to that user. Perhaps you wish to
provide different output from your web component depending on which roles they belong to.
Anyone who has peered forward to the meal and entertainment service available to first-class
passengers on a plane can probably relate to that idea. Second, it is useful to be able to manage
the authentication model explicitly, perhaps being able to programmatically initiate an
authentication interaction, even if the user has not requested a protected resource, or to explicitly
log a user out of an application.

So we will take a look at the APIs available at runtime to web component developers to
perform these functions.

Understanding the Caller
Java represents a user identity using the javax.security.Principal class. The Principal
of the client calling a web component is available to all web components, as shown in the
following table.

Who’s Calling? Object Method

Java Servlet javax.servlet.http
.HttpServletRequest

Principal
getUserPrincipal()

JSP The request implicit object Principal
getUserPrincipal()

JavaServer Faces The request implicit object Principal
getUserPrincipal()

JAX-RS The javax.ws.rs.core.SecurityContext
object, injected with the @Context annotation

Principal
getUserPrincipal()

Java WebSocket The javax.websocket.Session object Principal
getUserPrincipal()

This is useful information to have at runtime, allowing a range of possibilities for personalizing
the output of a web component based on knowing information about the user and his or her
previous interactions.

As we have seen, however, web applications often partition their users into roles. This allows
applications a simplified view of their users, being able to divide a large number of users into a
small set of known roles that can be used to control access, as we have already seen. Exposing
the knowledge concerning the current user’s role allows applications to offer different functionality
to different user groups or roles. The source of the defined list of roles for a web application, as
we have seen, is defined in the list of <security-role> elements in the web.xml deployment
descriptor. The function

boolean isUserInRole(String rolename)

occurs in a number of places in the Java EE web APIs, and is the means by which you can tell
whether a caller is in a given role. The following table shows you the locations for each of the
web component types.

Chapter 7: Securing Web Applications 215

The Caller Is in
Which Role? Object Method

Java Servlet javax.servlet.http
.HttpServletRequest

boolean isUserInRole(String
role)

JSP The request implicit object boolean isUserInRole(String
role)

JavaServer Faces The request implicit object boolean isUserInRole(String
role)

JAX-RS The javax.ws.rs.core
.SecurityContext object
injected with the @Context
annotation

boolean isUserInRole(String
role)

Java WebSocket The javax.websocket.server
.HandshakeRequest object

boolean isUserInRole(String
role)

The role name you pass into this method is checked by the Java EE web container against role
names that appear in the web.xml. If you wish to decouple the hard-coded role names from code
calling isUserInRole() from the role names that appear in the web.xml, you can take advantage
of the <security-role-ref> syntax in the web.xml to map role references in code to role
names in the web.xml deployment descriptor.

If the current request is not authenticated (i.e., there is no user identity associated with the
request), then the method returns false.

It is often useful to know whether or not the current connection of the current underlying HTTP
request, or the WebSocket connection that is invoking the web component, is encrypted. The

boolean isSecure()

method is available to make this determination, and the following table summarizes the locations
of the API call on the various Java EE web APIs.

The Caller Is in
Which Role? Object Method

Java Servlet javax.servlet.http
.HttpServletRequest

boolean isSecure()

JSP The request implicit object boolean isSecure()

JavaServer Faces The request implicit object boolean isSecure()

JAX-RS The javax.ws.rs.core.SecurityContext
object injected with the @Context annotation

boolean isSecure()

Java WebSocket The javax.websocket.Session object boolean isSecure()

Finally, you can determine the authentication scheme used, for the HTTP components by
means of the String getAuthenticationScheme() calls. As you might imagine, it is
available on the HttpServletRequest, JSP and JSP request implicit objects, and the JAX-RS
SecurityContext.

216 Java EE 7: The Big Picture

HttpSessions, login(), and logout()
Many Java EE web containers use the HttpSession mechanism not only to track a sequence of
interactions from the same browser, but also to track authenticated state. Unfortunately, as a Java
EE developer, you cannot rely on all containers taking this approach. For example, some web
containers may expire the authenticated state of a user while allowing the HttpSession to
continue unexpired. Equally, explicitly invalidating an HttpSession using the HttpSession
.invalidate() call may not log out the user, even if on many Java EE implementations it does.

The Java Servlet API does allow you to control HttpSession state and authenticated state
separately, however, and most importantly, provides a means to reliably log a user out of an
application no matter what the underlying mechanism a web container is using to track the
authenticated state.

The HttpServletRequest provides three useful methods to explicitly control authenticated
state. First and foremost, however, if a user has authenticated, calling

public void logout() throws ServletException

causes that user to be logged out: that is, all authenticated state associated with that user is
removed. If the same client calls the web application again and the web component requested is
protected, a new authenticated challenge will be issued.

Second, some applications that have decided on using a username/password scheme of
authentication may wish to further customize the login process, more than is allowed by the
form login mechanism. Such applications can manage their own authentication process, from
the gathering of the credentials from the user to the call to a web component, and call the
HttpServletRequest API

void login(String username,
 String password)

 throws ServletException

passing in the username and password that it gathered from the client. The method returns
without exception if the authentication succeeds; otherwise, the exception is raised.

To complete the trio of controls on the authentication mechanism in the Java EE web
container, the method

public boolean authenticate(HttpServletResponse response)
 throws IOException, ServletException

can be called from application code to explicitly cause the Java EE web container to attempt to
authenticate the caller, based on the mechanism defined in the web application deployment
descriptor. This method returns true if and only if the authentication succeeds. This can be a
useful method to know about if you wish to make decisions on your web component based on
the caller's identity, but you do not necessarily want to have to use security constraints to protect
the web component just to do so.

In order to pull together some of the ideas and mechanisms we have explored in this
example, it’s high time we looked at an example.

Chapter 7: Securing Web Applications 217

Photo Application Example
We will apply the Java EE web container’s declarative security model to an application we already
know: the photo application we studied in Chapter 4.

You will recall that the photo application allows its users to view the contents of a photo album,
the photos themselves, and the metadata about the photo, for example, the date that the photo was
taken. The application also allows its users to upload new photos to the photo album, adding the
associated descriptive information, and to delete photos from the photo album.

This version of the application is updated to require all users to authenticate with the Java EE
web container before the user is able to use the application. The application defines two kinds of
users. One, the viewer user, is allowed to log in and browse the photo album, but not to make any
changes to it. The second kind of user, the photographer user, is allowed to view the photo album
and upload new photos, as well as edit or delete existing photos in the album. The URI space of
the application has changed a little, so let’s take a look at it in Figure 7-6.

You can see that the JavaServer Faces pages concerned with viewing the photo album are in
the /main directory in the URI space of the web application, and all the JavaServer Faces pages
concerned with altering the photo album or its photos are in the /main/edit directory in the
URI space of the web application. This makes it easier to express the security constraints on the
application, as we shall see.

FIGURE 7-6. The secured photo application

Browse album
Edit photos

Upload and delete photos

Java EE Web Container

Web Application

/login.xhtml

/main

/index.html

/DisplayPhotoServlet
(Java Servlet)

/photo.xhtml

/main/edit

/album.xhtml

/error.xhtml

/edit.xhtml

/upload.xhtml

218 Java EE 7: The Big Picture

When you run the application, you will see a number of new things. In order to run the
application, you will need to set up at least two user accounts on your application server and
note the username and passwords. Second, you will need to associate one of the users to each of
the security roles that have been defined in the Photo application. Creating users in the Java EE
server and associating them with application-defined roles are tasks that are done differently
depending on the Java EE server you are using.

You can find the declarations of the roles for the photo application in the web deployment
descriptor.

Listing: Photographer and viewer roles

<web-app>
...
 <security-role>
 <role-name>viewer</role-name>
 </security-role>
 <security-role>
 <role-name>photographer</role-name>
 </security-role>
</web-app>

You can see the role names are viewer and photographer. In the GlassFish 4.0 server, you can
associate the users you have created with these roles by adding a glassfish-web.xml file
containing the mappings to the web application.

Once you run the application, as shown in Figure 7-7, having provisioned these user accounts
and associated them with the viewer and photographer roles, you will see that the first page of the
application has changed.

Pressing the image of a key attempts to access the main/album.xhtml page. Now, you will
notice that the deployment descriptor of this application contains a directive to use the form login
mechanism, as we can see from this excerpt from the web.xml file.

Listing: Form login for photos

<web-app>
...
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.xhtml</form-login-page>
 <form-error-page>/error.xhtml</form-error-page>
 </form-login-config>
 </login-config>
...
</web-app>

Chapter 7: Securing Web Applications 219

We shall see that the main/album.xhtml page is protected by the security constraints in the
deployment descriptor, and so when you attempt to access it, the form login mechanism redirects
you to log in in the login.xhtml page specified in the deployment descriptor, as shown earlier.
This is shown in Figure 7-8.

Filling out one of the user accounts you had created and associated with one of the security
roles grants you access to the photo album page. If the user account you use to authenticate is the
viewer account, you should see something like what is shown in Figure 7-9.

On the other hand, if you authenticated using a user account that is associated with the
photographer role, you should see something like Figure 7-10.

Notice that the main/album.xhtml page knows the name of the user account in its
Welcome title. Notice also that for either user, you can log out of the web application. Notice that
for both account types, you can view the photos and click the view icon to get a more detailed
view. Only the users that have the role of photographer see the Upload photos button and see the
icons for editing or deleting the photos. In fact, if a user in the viewer role tried to access some of
the editing functionality despite it not being available in the UI, by typing the /main/edit/
photo.xhtml URI to edit a photo, they are forbidden from accessing the resource and receive an
HTTP 403 response.

FIGURE 7-7. Welcome to security

220 Java EE 7: The Big Picture

FIGURE 7-8. Logging in

FIGURE 7-9. Photo album as a viewer

Chapter 7: Securing Web Applications 221

Two things are occurring here: first, the declarative security model is enforcing the different
access rights to the resources in the web application to users in the viewer role versus users in the
photographer role. And second, the JavaServer Faces pages are using the programmatic access to
the underlying security model in order to display only those options to the user that are allowed.

Let’s look at the two security constraints that protect the web components in the application
and divide the access rights between the two roles.

Listing: Security constraints for the photo application

<web-app>
...
 <security-constraint>
 <display-name>ViewAndEdit</display-name>
 <web-resource-collection>
 <web-resource-name>ViewableAndEditable</web-resource-name>
 <url-pattern>/main/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>photographer</role-name>
 </auth-constraint>

FIGURE 7-10. Photo album as a photographer

222 Java EE 7: The Big Picture

 </security-constraint>
 <security-constraint>
 <display-name>ViewOnly</display-name>
 <web-resource-collection>
 <web-resource-name>Viewables</web-resource-name>
 <url-pattern>/main/album.xhtml</url-pattern>
 <url-pattern>/main/photo.xhtml</url-pattern>
 <url-pattern>/main/DisplayPhotoServlet</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <description/>
 <role-name>viewer</role-name>
 <role-name>photographer</role-name>
 </auth-constraint>
 </security-constraint>
...
</web-app>

We see that the first security constraint, ViewAndEdit, grants access to photographers to all
the web components in the application: the ones that display and also those that edit the photo
album. It does so using a url-pattern in the wildcard matching style.

The second security constraint, ViewOnly, grants access to viewers to only the web components
in the application that display photos and the album. It does so using an explicit list of
url-patterns that use the exact URI style.

The programmatic APIs for security are used in the photo application to display the current
username on the album page, to decide whether to display the various edit functions to the user
based on knowing the role to which he or she belongs, and to perform the logout. The code that
uses these APIs is collected together into a request-scoped managed bean that various JavaServer
Faces pages in the photo application can use. Let’s take a look at the code for this, the
SecurityBean:

Listing: The SecurityBean

import javax.enterprise.context.RequestScoped;
import javax.faces.FacesException;
import javax.inject.Named;
import javax.faces.context.FacesContext;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.ServletException;

@Named(value = "securityBean")
@RequestScoped
public class SecurityBean {
 private static String VIEWER_ROLE = "viewer";
 private static String PHOTOGRAPHER_ROLE = "photographer";

 private HttpServletRequest getHttpServletRequest() {
 return (HttpServletRequest) FacesContext.getCurrentInstance()
 .getExternalContext().getRequest();

Chapter 7: Securing Web Applications 223

 }

 public String getUsername() {
 HttpServletRequest request = this.getHttpServletRequest();
 if (request.getUserPrincipal() != null) {
 return request.getUserPrincipal().getName();
 } else {
 return "";
 }
 }

 public boolean isUserAbleToEdit() {
 HttpServletRequest request = this.getHttpServletRequest();
 return request.isUserInRole(PHOTOGRAPHER_ROLE);
 }

 public boolean isLoggedIn() {
 return (this.getHttpServletRequest().getUserPrincipal() != null);
 }

 public void logout() {
 try {
 this.getHttpServletRequest().logout();
 this.getHttpServletRequest().getSession().invalidate();
 } catch (ServletException se) {
 throw new FacesException("Failure on logout", se);
 }
 }
}

The managed bean is in request scope, and is named securityBean so it can be accessed
with that name from any of the JavaServer Faces pages in the application. The central object it
uses to support its messages is the HttpServletRequest object from the underlying Java servlet
API. It obtains this from its FacesContext object, as you can see from the
getHttpServletRequest() method, and uses it to perform logout() on demand, and to
present the key bean properties that allow a client of the bean to determine whether the current
user is authenticated, what the current user’s username is, and whether the current user is allowed
to edit the photo album by checking the user’s membership in the roles defined for the
application. These properties are defined in the methods isLoggedIn(), getUsername(), and
isUserAbleToEdit(), respectively.

We won’t look at all the places in the application where the security bean is used, but let’s
look just at the main/album.xhtml to see where it is used.

Listing: The album JavaServer Faces page

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"

224 Java EE 7: The Big Picture

 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core">
 <h:head>
 <title>Photo Viewer</title>
 </h:head>
 <h:body style="font-family:Palatino;font-size:small">
 <div align='center'>
 <h3>Welcome #{securityBean.username}</h3>

</br>
 <table bgcolor="99CC99" cellspacing="4">
 <tbody>
 <tr>
 <c:forEach items="#{photoAlbum.photos}" var="photo">
 <td>
 <div align='center'>
 #{photo.name}
 </div>
 </td>
 </c:forEach>
 </tr>
 <tr>
 <c:forEach items="#{photoAlbum.photos}" var="photo">
 <td>
 <h:form>
 <h:graphicImage
 height="200"
 width="200"
 value="#{photo.viewUri}"/>
 </h:form>

 <h:form>
 <div align='right'>

 <h:commandButton
 title="view"
 image="../view.png"
 actionListener="#{photoAlbum.setCurrentPhoto(photo)}"
 action="photo"/>
 <c:if test="#{securityBean.userAbleToEdit}">
 <h:commandButton
 title="edit"
 image="../edit.png"
 actionListener="#{editPhotoBean.setPhoto(photo)}"
 action="edit/edit"/>
 <h:commandButton
 title="delete"
 image="../delete.png"
 action="#{photoAlbum.removePhoto(photo)}"/>
 </c:if>
 </div>
 </h:form>

 </td>
 </c:forEach>

 </tr>
 </tbody>

Chapter 7: Securing Web Applications 225

 </table>

</br>
 <c:if test="#{securityBean.userAbleToEdit}">
 <h:form>
 <h:commandButton
 id="upload_button"
 value="Upload photos"
 onclick="window.open('edit/upload.xhtml')"/>
 </h:form>
 </c:if>
 <c:if test="#{securityBean.loggedIn}">
 <h:form>
 <h:commandButton
 id="logout_button"
 value="Logout"
 actionListener="#{securityBean.logout()}"
 onclick="window.open('../index.xhtml')"/>
 </h:form>
 </c:if>
 </div>
 </h:body>
</html>

You should be able to locate quite easily in the code the point where the security bean is used
to display the username, where it is used to hide or display the edit and delete icons under
each photo in the album, where it is used to show or hide the Upload button, and where it is
used for the logout function. You will find the security bean used for similar purposes, that is to
say, hiding functionality that the declarative security model forbids, throughout the rest of the
photo application.

Summary
In this chapter, we looked at the general principles of security models for web applications, the
concepts of authenticating users, allowing access to resources only to certain authenticated users,
and determining communication channels that are more or less easy to intercept and decode.

We looked at the mechanisms in the Java EE web container for configuring the declarative
security model, covering the techniques for defining the login mechanism for a web application,
using security constraints to shut off access to web components based on their position in the URI
space of the web application to unwanted users, and ensuring an encrypted communication
channel for access to web components. We looked at the programmatic APIs for security available
to the different types of web components, and in a final example, we applied all we learned to a
familiar application, showing how the security mechanisms can protect resources in an
application, allow for different levels of access to that application to different types of users, and
how to use the programmatic APIs to make the user experience adapt to the constraints of the
security model.

CHAPTER
8

The Self-Contained
Web Site:

Java EE Web Application

228 Java EE 7: The Big Picture

N
ow that we have looked at all the web component technologies in the Java EE web
container, it’s time to take a step back and look at the mechanisms in the web container
that apply not to individual web components, but to the web application as a whole.

In this chapter, we will examine how the URI space of a web application is composed. This
will lead us to look in some detail at the WAR file format, and in particular, the web.xml
deployment descriptor. We have already encountered some aspects of this important piece of
metadata, in particular, the security directives it contains. We will now look more deeply at two
kinds of web components: servlet context listeners and web filters. The former category is never
called by a client, and the latter category never produces its own content. We will conclude our
examination by looking at how asynchronous processing is modeled in the web component APIs,
using examples throughout.

The WAR File
The WAR file is a special kind of ZIP archive that contains all the static and dynamic content,
class files, text files, images, libraries, and other resources that make up a web application,
together with the deployment information that the web container needs to know in order to know
how to configure the application at runtime. This deployment information is held in part in Java
annotations in code and/or the WAR file’s web.xml deployment descriptor.

Let’s take a look at the structure of a WAR file.
There are three main areas:

 ■ Web resources, rooted at / The web resources section is the home to all of the static
content in the web application, together with any of the web components that are held in
a text file containing a markup language, such as JSPs and JavaServer Faces pages. Unless
explicitly protected by a security constraint, any web resource put into this area will be
exposed into the URI space of the web application, and so will be visible to clients when
deployed to the Java EE web container.

 ■ Java classes and code libraries, rooted at WEB-INF/classes and WEB-INF/lib This
section contains all the Java class files that constitute top-level web components, or that
are used by web components in the application. Therefore, this is the location for all Java
servlet class files, JAX-RS resources, WebSocket endpoints, and any other classes used by
any of the web components such as managed beans and tag libraries. The classes may
be placed directly under the WEB-INF/classes entry in the WAR file. Or, if the classes
have been packaged into a JAR file as a self-contained library, they may be placed under
the WEB-INF/lib entry. Anything placed under the WEB-INF entry will not be directly
exposed to HTTP clients of the web application when deployed to the Java EE web
container.

 ■ The web deployment descriptor at WEB-INF/web.xml This XML document contains
deployment information describing how the Java EE web container is to deploy the
web application contained in the WAR file. This configuration file is not available to
be viewed by HTTP clients when the web application is deployed to the Java EE web
container.

Chapter 8: The Self-Contained Web Site: Java EE Web Application 229

In Figure 8-1, the example application is a car dealership web site. The application contains a
number of web components: JavaServer Faces components for browsing the catalog of available
models, and the ability to take a 3D tour of a particular vehicle. It uses JSPs to implement a form
login for repeat viewers of the web site. It uses various Java web components, for example, a
servlet and a JAX-RS resource to update the inventory, and a Java WebSocket to keep the user’s
web page up to date with regard to current offers. It has a class library specially for displaying car
information as HTML. Finally, it uses the web deployment descriptor to map the Java servlet to a
URI in the URI space of the application and configure the form login, among other things.

What other things can it configure? We begin by looking at a global property of the web
application that is not always straightforward to derive from the WAR file.

The URI Space of a Web Application
The URI space of a web application is the collection of URIs relative to the root URL of the web
container under which the web container publishes all the web components and static resources
in the application. When a web application is deployed to a Java EE web container, it must be
accompanied by a relative URI that the web container uses to place the root of all web resources
in the web application. This relative URI is called the context root of the web application. If the

FIGURE 8-1. Example of WAR file showing structure

Web Application and Web ARchive (WAR)

/
index.html
login.jsp
error.jsp
banner.js
cars-logo.jpg
cars/
catalog.xhtml
360Tour.xhtml

/WEB-INF/
classes/
 CarSelectorServlet.class
 CarRepositoryBean.class
 CarValidator.class
 OfferUpdates.class
 InventoryWebService.class

lib/
 car-utils.jar

/WEB-INF/web.xml

web resources
located at the root/

Java classes for web components
located under /WEB-INF/classes

Code libraries
located under /WEB-INF/lib

Logical View Example Archive View

Deployment information
located in /WEB-INF/web.xml

230 Java EE 7: The Big Picture

web application is deployed directly to the web container, then how the context root for that web
application is set depends on the particular web container being used. For example, the GlassFish
web container uses a GlassFish-specific XML file called the glassfish-web.xml, which resides
under the WEB-INF/ entry in the WAR file to hold the context root.

Listing: GlassFish descriptor

<glassfish-web-app>
 <context-root>car-app</context-root>
...
</glassfish-web-app>

If the WAR file is contained within a larger Java EE application (perhaps because it uses
Enterprise Beans), then the WAR file will be deployed as part of a larger archive called an
Enterprise ARchive, or EAR file. In this case, the EAR file has its own deployment descriptor that
contains the context root of the WAR file. We will see more of the Java EE deployment descriptor
and EAR file format later. For now, if the car web site is packaged in a WAR file called car-site
.war, then the Java EE application that contains it defines the context root for the WAR file by
including the following information in its application.xml deployment descriptor:

<application>

 <module>
 <web>
 <web-uri>car-site.war</web-uri>
 <context-root>/car-app</context-root>
 </web>
 </module>
 ...
</application>

However the context root is established, the root of the web application when deployed to
the Java EE web container is

http://<hostname:port>/<context-path>/

which means that any web component with a relative path of /web-component will be
available at

http://<hostname:port>/<context-path>/web-component

This means that once we have fully understood all the ways that web components can be
mapped in a web application, we will fully understand the complete URI space of a web
application.

So let us take a look at all the different web components and how they are mapped into the
URI space of a web application.

Chapter 8: The Self-Contained Web Site: Java EE Web Application 231

Static Content
The relative URI of a static content file (HTML file, XML file, text file, sound file, image file) within
the web application is simply its entry name in the WAR file.

So, for example, if the index page of a web application is named index.html, and it is
located in the WAR file at the entry /index.html, then, it is available to clients at the URL

http://<hostname:port>/<context-path>/index.html

Similarly, if a file named classroom.jpg is located at the WAR file entry /kids/classroom
.jpg, then it is available to clients at the URL

http://<hostname:port>/<context-path>/kids/classroom.jpg

JavaServer Faces
In terms of path mapping, JavaServer Faces pages are treated like static content, so their URI paths
within the deployed web application are the same as their WAR file entry names. In the car web
site example earlier, the JavaServer Faces page at the WAR file entry /cars/catalog.xhtml is
available to clients at the URL

http://<hostname:port>/<context-path>/cars/catalog.xhtml

Java Servlets
As we saw in Chapter 2, the path mapping for a Java servlet can be achieved by using the
@WebServlet annotation. The urlPatterns attribute of this annotation takes an array of Strings,
each of which can be a kind of path called a servlet URL pattern. We encountered the definition
of a URL pattern in Chapter 7, where we learned that URL patterns are used to define the paths
covered by a security constraint.

Definition of URL Patterns
There are three kinds of URL patterns to map a Java servlet. They are

 ■ An exact path For example, cars/InventoryUploadServlet. Only request URIs
that are the same as this path, including case, will match this path.

 ■ Path with wildcard For example, cars/*, which will match any request URI that
begins with /cars; for example, cars/InventoryUploadServlet, or
cars/InventoryDownload.

 ■ Filename ending This is a URLpattern that is matched by any request URI whose last
segment includes the same filename ending pattern. For example, a filename endpoint
URLpattern of *.web will match the request URI index.web, /cars/inventory.web
and /cars/make/models.web.

In this way, a single Java servlet may use the @WebServlet annotation to map to one or a
collection of different possible URIs within the web application.

There is a second way in which a Java servlet may declare its position in the URI space of a
web application: by using the servlet mapping mechanism in the web deployment descriptor.

232 Java EE 7: The Big Picture

Using this mechanism occurs in two steps. First, you have to declare the Java servlet in the
web application using a <servlet> element. This element has the sub elements <servlet-name>
and <servlet-element>, which require you to give the servlet a logical name that will be used
elsewhere in the deployment descriptor, and the fully qualified classname of the servlet. For
example, if the servlet has classname

com.acme.cars.CarSelectorServlet

then it can be given the logical name CarSelector, and so would be declared in the web
deployment descriptor as shown in the following listing.

Listing: Web deployment descriptor with servlet declaration

<web-app>
 <servlet>
 <servlet-name>CarSelector</servlet-name>
 <servlet-class>com.acme.cars.CarSelectorServlet</servlet-class>
 </servlet>
...
</web-app>

Now that the servlet has a logical name, it can be used in an element called the
<servlet-mapping> element to associate the servlet with one or more URL patterns, using
the <url-pattern> element, which takes one of the three forms of the URL pattern
described earlier. For example, to map the CarSelectorServlet to the URL pattern
/cars/CarSelectorServlet, you would need fragment in the deployment descriptor
that this listing shows.

Listing: Web deployment descriptor with servlet mapping

<web-app>
 <servlet>
 <servlet-name>CarSelector</servlet-name>
 <servlet-class>com.acme.cars.CarSelectorServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>CarSelector</servlet-name>
 <url-pattern>/cars/CarSelectorServlet</url-pattern>
 </servlet-mapping>

...
</web-app>

Finally, if you define both a servlet mapping in the web deployment descriptor and a URL
pattern in the @WebServlet annotation for a Java servlet, then mapping in the web deployment
descriptor replaces the mapping defined in the annotation. This can often be a useful implementation
technique to create a reasonable default URL pattern in the annotation, which can be overridden
later by servlet mappings in the deployment descriptor as the servlet is assembled into the
web application.

Chapter 8: The Self-Contained Web Site: Java EE Web Application 233

JavaServer Pages
JavaServer Pages are simple to map into the URI space of the web application: like Java Server
Faces pages, the relative URI of a JavaServer Page is the same as the archive entry name in the
WAR file.

Like servlets, however, you can provide additional mappings to the JavaServer Page by
declaring the JSP in the deployment descriptor, using the <servlet> element. The <servlet>
element has an alternative sub element, <jsp-file>, which can be used in place of the
<servlet-class> element. Once the JSP has been declared using the servlet element, you can
add a <servlet-mapping> element to add any number of <url-pattern> elements that will
expose the JSP to more URIs in the URI space of the web application. For example, suppose that
you want to expose the login.jsp page in the car web site example not simply as /login.jsp,
which is the default, but as login.html as well. Then you would need to add the following
servlet and servlet mapping elements to the deployment descriptor.

Listing: Web deployment descriptor with JSP mapping

<web-app>
 <servlet>
 <servlet-name>LoginPage</servlet-name>
 <jsp-file>login.jsp</jsp-file>
 </servlet>
 <servlet-mapping>
 <servlet-name>LoginPage</servlet-name>
 <url-pattern>/login.html</url-pattern>
 </servlet-mapping>

...
</web-app>

JAX-RS Resources and Java WebSockets
JAX-RS resources and Java WebSocket endpoints are mapped to their positions in the URI space of
the web application using the @Path annotation from the javax.ws.rs package and by using
the @ServerEndpoint annotation from the javax.websocket.server package, respectively.
As we saw in Chapters 5 and 6, both kinds of components can be mapped using these annotations
with either a relative URI or a URI template. Neither web component technology defines any
syntax in the web deployment descriptor for mappings to the URI space of the web application.

Summary: Web Components and Their URI Paths
We’ll end this section by summarizing the ways in which web applications define the URI space
that they expose to their clients.

Category Path Type URI Path Defined

Static content Exact path Same as WAR archive entry

JavaServer Faces Exact path Same as WAR archive entry

234 Java EE 7: The Big Picture

Category Path Type URI Path Defined

JavaServer Pages Exact path
and
URL pattern

Same as WAR archive entry;
additional paths defined using
<servlet-mappings>

Java servlets URL pattern Either using @WebServlet annotation in
servlet class
OR using <servlet-mappings>

JAX-RS resources Exact path or URI template Using @Path annotation in the resource
class or method

Java WebSocket
endpoint

Exact path or URI template Using @ServerEndpoint annotation in
the endpoint class

Global Web Components:
Web Filters and Web Listeners
We turn our attention next to two kinds of web components that we have not yet covered: web
filters and web listeners. Each kind of component is global in a different way. Web filters are a
way to adapt incoming HTTP requests and adapt outgoing HTTP responses to any HTTP web
component in a web application. Thus, their global quality is that they can apply equally to a
Java servlet or to a JavaServer Faces page. Web listeners are global in the sense that they are
instantiated once for the lifetime of the web application. Both are useful additions to web
applications and offer a degree of modularity in dividing up the functionality of a web application
and making some of the functionality available for use in other web applications.

Web Filters
Web filters are very powerful web components that intercept the HTTP interactions to any HTTP
component in a web application. The web filter model may be used to implement a wide range of
filtering tasks, from filters that simply monitor interactions with web components such as logging
filters, to filters that selectively block or allow interactions based on some dynamic decision
making, such as authentication filters, to filters that can transform any aspect of the incoming
request and/or any aspect of the outgoing HTTP response, including compression filters and XML
transformation filters.

The web filter model enables you to write a Java component that intercepts the underlying
HttpServletRequest object as it arrives at the web container. The filter is responsible for
passing a possibly read and modified HttpServletRequest and possibly a modified response
object to the next web component in the interaction, which may be another web filter, or
may be the destination web component of the interaction. The strategy used for modifying
HttpServletRequests and HttpServletResponses is by wrapping them: in other words, a
filter will create an implementation of HttpServletRequest or HttpServletResponse that
delegates most of its method implementations to the instance it wraps, but modifies the behavior
of other calls in order to implement the filtering behavior. We can see this kind of approach in
Figure 8-2.

Chapter 8: The Self-Contained Web Site: Java EE Web Application 235

We can see that by the time the HTTP components in the web application call the read
methods on the HttpServletRequest, they are calling it on an HttpServletRequestWrapper
object that wraps the original HttpServletRequest, and so has the opportunity to modify and/
or delegate the behavior of reading the original content of the request. Similarly, by the time the
HTTP component writes data to the response, the HttpServletResponseWrapper object to
which it writes is wrapping the HttpServletResponse object that the container created in
order to send the content back to the caller, and so has a similar opportunity to modify and
delegate the behavior of those write methods to the real response. If more than one filter applies
to a particular interaction (we shall see shortly how they are configured), then the collection of
filters that apply is called a filter chain. Each filter in the chain may wrap the request and response
objects passed to the next filter in the chain, just as the last filter in the chain can wrap the request
and response objects for the destination HTTP component.

Let us look first at some pseudocode that illustrates how a web filter works. The starting point
for creating a web filter is to implement the class javax.servlet.Filter. This class has two
lifecycle methods to implement:

void init(FilterConfig filterConfig) throws ServletException

which is called by the container when the web filter is being called into service, and

void destroy()

which is called by the web container when the web filter instance is being taken out of service.
These two methods give the web filter instances the chance to call up and clean up any

potentially expensive resources they may need to work, for example, database or external
connections.

FIGURE 8-2. Web filters

Browser Web Server

Http
Components

HttpServletRequest

HttpServletResponse

(wrapped)
HttpServletRequest

(wrapped)
HttpServletResponse

Web
Filter

HttpServletRequest

HttpServletResponse

236 Java EE 7: The Big Picture

The main method of the filter interface is the doFilter() method:

void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException

The FilterChain object is the web container’s object reference to the next web component
that this filter needs to call, either another filter if this is not the last filter in the chain, or the
destination HTTP component. All web filters implement the doFilter() method according to
the following recipe:

 ■ First, they may examine the request that was passed in, for example, reading headers and
logging the request with the time.

 ■ Second, they may wrap the request or the response object or both in order to perform
some kind of request and/or response modification as part of their filtering job.

 ■ Third, they decide whether to allow the interaction to continue by choosing whether or
not to invoke doFilter() on the FilterChain object. For example, an authentication
filter may decide whether to allow the interaction to continue based on customer request
headers it is looking for when invoked.

 ■ Finally, it may directly add or change headers on the response object after it has invoked
the filter chain. Just as in the servlet model, whether this change makes an effect will
depend on whether the headers of the response have already been sent back to the client.

All web filters follow some subset of these steps in their doFilter() implementations. Here
is a simple example of a filter that makes no modification or requests and responses, but simply
logs HTTP interactions it receives.

Listing: Log filter

import java.io.IOException;
import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpServletRequest;
import java.util.logging.*;

@WebFilter(filterName = "LogFilter", urlPatterns = {"/*"})
public class LogFilter implements Filter {
 private Logger logger;
 @Override

Chapter 8: The Self-Contained Web Site: Java EE Web Application 237

 public void init(FilterConfig filterConfig) {
 this.logger = Logger.getLogger(LogFilter.class.getName());
 }

 @Override
 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException {

 this.logger.log(Level.INFO, "Request for " +
 ((HttpServletRequest)request).getRequestURI());
 try {
 chain.doFilter(request, response);
 } catch (ServletException se) {
 this.logger.log(Level.SEVERE, "Error fulfilling request " +
 se.getMessage());
 throw new ServletException("Error invoking the " +
 "rest of the filter chain: " + se.getMessage());
 }
 this.logger.log(Level.INFO, "Request complete.");
 }

 @Override
 public void destroy() {
 this.logger = null;
 }

}

Web Filter Configuration
The configuration model for web filters is similar to that of Java servlets. Logically, each web filter
may be assigned a list of URL patterns whose match to an incoming request governs whether the
filter is invoked or not.

Just as with Java servlets, a web filter can be declared either using an annotation or in the web
deployment descriptor.

The annotation for declaring web filters is @javax.servlet.annotation.WebFilter,
which has attributes of name, the logical name of the web filter, and an array of url-patterns;
for example,

@WebFilter(name="LogFilter", url-pattern="/*")

maps a filter to any request URI to the web application.

238 Java EE 7: The Big Picture

Alternatively, the filter may be equivalently declared in the deployment descriptor, using the
<filter> and <filter-mapping> elements as follows.

Listing: Web deployment descriptor with filter mapping

<web-app>
 <filter>
 <filter-name>LogFilter</filter-name>
 <filter-class>javaeems.chapter8.filters.LogFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>LogFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
...
</web-app>

If you have a web application in which you wish to configure a number of filters and the
order in which the chain is called is significant, then you should always declare the filter
mappings in the deployment descriptor. The Java EE web container assembles the filter chain
following the order in which matching URL patterns appear in the web deployment descriptor. If
you use the annotation approach, there is no guaranteed order in which the filters are called.

Let’s look now at a slightly more complicated filter. This filter injects additional content into
the response from static content in a web application to let the client know it has been operating
and converts the static content to all uppercase letters.

This filter requires that the caller be an authenticated user, so to run it, you need to add a user
to your Java EE application server and associate it with the user role that it defines in the web
deployment descriptor. Each Java application server has a different mechanism for adding users
and associating them with application-defined roles.

Back to the example: let’s see what happens when the UppercaseFilter is applied to the
following HTML code.

Listing: Unfiltered HTML code

<html>
 <head>
 <title></title>
 </head>
 <body>
 <title></title>
 <div align="center">
 <h3>Web filters are really Wonderful !</h3>
 </div>
 </body>
</html>

The result for the user becky is shown in Figure 8-3.

Chapter 8: The Self-Contained Web Site: Java EE Web Application 239

This application requires all users be authenticated, and applies the UppercaseFilter to all
the HTML pages in the application. Let’s take a look at the code.

Listing: The UppercaseFilter content filter

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.http.*;
import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.annotation.WebFilter;
import java.security.Principal;

@WebFilter(filterName = "Uppercase", urlPatterns = {"*.html"})
public class UppercaseFilter implements Filter {

 @Override
 public void init(FilterConfig filterConfig) {
 }

 @Override
 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException {

FIGURE 8-3. Filtered output of the HTML content

240 Java EE 7: The Big Picture

 Principal principal = ((HttpServletRequest) request).getUserPrincipal();
 PrintWriter writer = new PrintWriter(response.getWriter());
 writer.println("<p>The page is filtered for: " +
 principal.getName() + "</p>");
 try {
 UppercaseResponse uResponse =
 new UppercaseResponse((HttpServletResponse) response);
 chain.doFilter(request, uResponse);
 } catch (Throwable t) {
 throw new ServletException("Error during filtering: " +
 t.getMessage());
 }
 }

 @Override
 public void destroy() {
 }

}

We can see immediately from the use of the @WebFilter annotation that it uses the filename
ending style of URL pattern to map itself to all the HTML files in the web application. The
UppercaseFilter has no state associated with its instances; therefore, it has nothing to initialize
or tear down in its lifecycle methods init() and destroy(). The meat of the filter is in the
doFilter() method.

We can see that by reading the user principal out of the request, it first writes a header line
to the response, which we can see in the web page. Second, in order to convert all the content
of the web page it is filtering to uppercase, it uses a custom class, UppercaseResponse, to wrap
the real response from the web page. The request remains unmodified by this filter. Let’s look
at the UppercaseResponse, which makes the character conversion.

Listing: Filter response wrapper

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Arrays;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpServletResponseWrapper;

public class UppercaseResponse extends HttpServletResponseWrapper {

 UppercaseResponse(HttpServletResponse response) {
 super(response);
 }

 @Override
 public PrintWriter getWriter() throws IOException {
 return new UppercaseWriter(super.getWriter());
 }

Chapter 8: The Self-Contained Web Site: Java EE Web Application 241

 class UppercaseWriter extends PrintWriter {

 public UppercaseWriter(PrintWriter w) {
 super(w);
 }

 @Override
 public void write(char[] cbuf, int off, int len) {
 char[] charsToConvert = Arrays.copyOfRange(cbuf, off, off+len);
 String convertedString = (new String(charsToConvert)).toUpperCase();
 super.write(convertedString.toCharArray(), 0, len);
 }

 }
}

The Java Servlet API includes the helper classes HttpServletRequestWrapper and
HttpServletResponseWrapper. These classes are wrapper classes on HttpServletRequest
and HttpServletResponse, respectively, with the default behavior of doing nothing to the
objects they wrap. In other words, they implement all the methods of HttpServletRequest/
Response simply by calling the same method on the class that they wrap. What this means is that
if you wish to provide your own request or response wrapper, all you have to do is subclass one
of the wrapper classes, overriding only the methods where you wish to modify some behavior.
The behavior we wish to override is in converting the characters written to the response writer of
the HTML page. Therefore, the UppercaseResponse wrapper overrides the getWriter()
method, inserting another wrapper around the PrintWriter. The only method that needs to be
overridden on the PrintWriter is the write(char[] cbuf, int off, int len) method,
as all other write() methods on this class ultimately call this one. You can see that the
implementation of this wrapper method takes the incoming characters as they are being written
and converts them to uppercase. You might equally see this kind of character manipulation
working for word substitution or eliminating certain character combinations for a range of other
filters that can modify the text content of a static (or dynamic!) web page.

Web filters are enormously powerful. With a web filter, you have ultimate control over the
request and response interactions between an HTTP client and an HTTP component. While Java
WebSockets are unaffected by web filters, their opening handshake interactions are not. Since a
WebSocket opening handshake is the beginning of each and every WebSocket connection, in this
way, even WebSockets can be affected by web filters.

Web Listeners
A variety of important events occurs in the ordinary functioning of the Java EE web container that
web applications can sign up to hear about. These events concern changes in state in either the
ServletContext or the HttpSession objects.

The first two types of event listeners are concerned with the global lifecycle of the
ServletContext. The web container creates a unique instance of the ServletContext for
each new web application that it deploys. The lifetime of this instance begins at some point

242 Java EE 7: The Big Picture

before the web container allows the web application to accept its first HTTP request, and ends
after the web container has allowed the web application to make its last HTTP response. The
ServletContextListener interface allows a web application to intercept the events that are
generated as the web container creates the ServletContext instance for a web application and
as the web container releases the ServletContext instance for a web application. This makes
the ServletContextListener the ultimate global timekeeper for a web application: it is called
right after a new web application comes to life, and right before an old one is about to die. This is
a very useful event listener when you have some heavy initialization and/or cleanup to do before
you start up a web application and after you are done, for example, readying a database for use
by the web components in the web application.

The ServletContextAttributesListener interface is designed to allow web
applications to be notified when attributes are added to or removed from the ServletContext.
They do so simply by having any application object that will be set as a ServletContext
attribute implement that interface.

The other three event listeners in the web container are all concerned with the activities of
HttpSessions. The HttpSessionListener allows a web application to listen in to all session
creation and destruction events in the web container: by implementing this interface with a Java
class, the container will instantiate one instance of the Java class and notify it whenever an
HttpSession is created or destroyed. This can be a really useful interface to implement if you
want to keep a handle on all the different clients of your application; as we shall see shortly, you
can easily use this listener to keep an up-to-date list of all the active sessions in an application.

HttpSessions may change IDs during their lifetime. This is often done when a user
authenticates in the middle of an active session. It can be useful to know about changes in the
HttpSession ID in case you have code that is relying on the relationship between the current
session and its ID. If you need to know when an active session changes its ID, then your
application can implement the HttpSessionIdListener interface to be notified when such an
event occurs.

Like the ServletContext, HttpSessions have an attribute map where applications may
store application data in the form of key-value pairs. Like the ServletContext, it can be useful
to know when application data is added to or removed from or changed in the attribute map of
the HttpSession. A number of events can occur: it may be the case that an attribute is newly
added, changed, or removed by one of the web components or listener objects in the web
application. For these kinds of events, all the attribute needs to do to be notified of such changes
is to implement the HttpSessionAttributesListener. The web container may have to
temporarily store the state of the HttpSession so that it can replicate the state of the web
application at a later time, or even on a different machine. This is often the case for distributed
application servers where the web server runs on a number of VMs. In such deployments, there
is a special server called a load balancer that is sharing out the work of the web server across those
VMs. The load balancer may choose to move an HttpSession from one VM to another to ensure
that the load of the web application is borne evenly among the VMs in the web server. In such cases,
any attributes bound to the HttpSession are also stored with the HttpSession and restored as
part of the HttpSession when it is revived. To be notified when application data is stored or
restored in this way, the attribute need only implement HttpSessionActivationListener and
it will be told. Let’s look at a summary of all these listeners in Figure 8-4.

Chapter 8: The Self-Contained Web Site: Java EE Web Application 243

Configuring Web Listeners
As we have discussed, to configure web listeners that listen to changes to the state of attributes on
either the ServletContext or the HttpSession, simply have the attribute implement the
relevant web listener interface.

The three other web listeners, the ServletContextListener, the HttpSessionListener,
and the HttpSessionIdListener, must be configured using a different mechanism. As
usual with the Java EE web APIs, you have some choices. You can use the @javax.servlet
.annotation.WebListener annotation at the class level to mark the listener implementation as
a web listener, or you can add a

<listener>
 <listener-class> fully qualified classname of
 the listener implementation </listener-class>
</listener>

to the web deployment descriptor. As for web filters, if the order of invocation of web listeners is
important to your application, then if you use the annotation approach, there is no guaranteed
order of invocation. However, with the deployment descriptor approach, the web container for

FIGURE 8-4. All the web listeners

Web Server

Web ApplicationHttpSession

ServletContext

HttpSession

HttpSession H
ttp

Se
ss

io
nL

is
te

ne
r

HttpSession

HttpSessionAttributeListener

HttpSessionActivationListener

ServletContextListener

H
ttp

Se
ss

io
nI

dL
is

te
ne

r

Se
rv

le
tC

on
te

xt
A

ttr
ib

ut
eL

is
te

ne
r

244 Java EE 7: The Big Picture

each listener type invokes the listeners in the order that they are declared in the deployment
descriptor.

Let’s look a quick application of a web listener for an example we already know: the photo
application. It is often useful to know how many people are actively using your web application.
Of course, you cannot always tell the difference when a client is idle for a few minutes if they
have lost interest and are doing something else, or if they are avidly reading every word on one of
the pages of your web site, but you get a reasonable idea of how many people are using your
application by tracking the active HttpSessions, as seen in Figure 8-5. It may sometimes be
something you would like to inform your users about.

In the photo application example for this chapter, the photo album used is a group album: the
managed bean that implements the album and holds the pictures has application scope. In
addition, the main page tells you how many other active users are looking at the group album.

FIGURE 8-5. Who’s watching?

Chapter 8: The Self-Contained Web Site: Java EE Web Application 245

This is achieved by means of the UserCounter class, which implements the
HttpSessionListener interface.

Listing: UserCounter session listener

import javax.servlet.http.HttpSessionEvent;
import javax.servlet.http.HttpSessionListener;
import javax.servlet.annotation.WebListener;
import java.util.List;
import java.util.ArrayList;
import javax.servlet.http.HttpSession;
import javax.servlet.ServletContext;

@WebListener
public class UserCounter implements HttpSessionListener {
 private List<HttpSession> sessions = new ArrayList<>();
 public static String SERVLET_CONTEXT_SESSION_LIST =
 "servlet_context_session_list";

 @Override
 public void sessionCreated(HttpSessionEvent se) {
 this.sessions.add(se.getSession());
 this.updateServletContext(se.getSession().getServletContext());
 }

 @Override
 public void sessionDestroyed(HttpSessionEvent se) {
 this.sessions.remove(se.getSession());
 this.updateServletContext(se.getSession().getServletContext());
 }

 private void updateServletContext(ServletContext sc) {
 sc.setAttribute(SERVLET_CONTEXT_SESSION_LIST, new ArrayList(sessions));

 }
}

The UserCounter is registered by the web container as a web listener because, as you can
see, it includes a @WebListener annotation. It maintains a list of the active sessions in the photo
application by adding newly activated sessions as it receives notification as they start, and
removing recently destroyed sessions as they are terminated by the web container as it receives
notification of that event. Whenever the UserCounter changes the list of active sessions, it
updates a ServletContext attribute that holds a copy of the list. This is the list that is accessed
by the PhotoAlbum class in its new property viewerCount.

246 Java EE 7: The Big Picture

Listing: Viewer count property of the photo album

 public int getViewerCount() {
 ServletContext servletContext = (ServletContext) FacesContext
 .getCurrentInstance().getExternalContext().getContext();
 List sessions = (List) servletContext
 .getAttribute(UserCounter.SERVLET_CONTEXT_SESSION_LIST);
 if (sessions != null) {
 return sessions.size();
 } else {
 return 0;
 }
 }

This is used by the JavaServer Faces page album.xhtml to display the active user count, as
shown in the following listing.

Listing: Album JavaServer Faces page displaying the viewer count

...
<c:if test="#{photoAlbum.viewerCount == 2}">
 one other person is viewing this album
</c:if>
<c:if test="#{photoAlbum.viewerCount != 2}">
 #{photoAlbum.viewerCount - 1} other people are viewing this album
</c:if>

...

Asynchronous Modes in Web Applications
All the programming models and APIs for HTTP components we have looked at so far have
followed the underlying synchronous nature of the underlying HTTP request and response
interaction. In other words, when a client has made a request, the thread that the container uses
to invoke the web component with the request, and that the web component uses to read the
request, is the same as the thread the web component uses to formulate the data it uses to write to
the response. There are a number of situations where this synchronous programming model is not
ideal. Examples include cases where either the reading of the request or the formulation of the
response is a lengthy or expensive process, such as gathering a large data set from a database, or
doing some kind of post-processing on a large amount of data that will be used in the response.
In such cases, such as AJAX programming, the client is deliberately setting up long-lived HTTP
connections to the web server in order to receive small updates from the web component over a
period of time. Since the web container generally uses a finite thread pool to fund its web
components, the one-thread-per-client interaction model can lead to situations in which there are
more active client interactions than threads in the thread pool, causing new client interactions to
be put on hold until threads that are tied up doing slow response processing or holding persistent

Chapter 8: The Self-Contained Web Site: Java EE Web Application 247

HTTP connections become freed up. So, you may wish to separate the request reading and the
response formulation onto two separate threads, and even use your own thread pool to allocate
the threads you wish your web application to use for formulating its HTTP responses.

In this section, we look at two examples of asynchronous support in the Java EE web
container. First, let us see how to create an asynchronous servlet.

Asynchronous Java Servlets
In the traditional servlet model, the processing of the incoming HttpServletRequest and the
formulation of the HttpServletResponse all occur within the servlets service() method in
one block of code that can be executed only by one thread provided by the container. The state of
the objects available within the service methods, for example, the request and the readability of
the headers, and the response and the availability of its output stream, can be described as the
execution context of the servlet interaction. If you have tried to store the HttpServletRequest
or HttpServletResponse that you obtained from within a servlet service() call and tried to
use them after the service method has completed, you may well have seen some very unusual
behavior: these objects are not supposed to be used outside their execution context.

The key to being able to process a servlet call asynchronously is the ability to extend the
execution context of a call beyond the bounds of the servlet’s service() invocation. The Java
Servlet API provides a call called the javax.servlet.AsyncContext, which can be understood
as a place to hold the HttpServletRequest and HttpServletResponse pair passed into a
servlet’s service() method that extends the execution context of the call to wherever the
AsyncContext object is. Once the HttpServletRequest and HttpServletResponse are in
the AsyncContext, the service() method may finish without any processing having occurred,
and the AsyncContext passed to another thread can retrieve them for processing at leisure.

The key points of using the AsyncContext in this manner include the following: The
servlet must be marked as using the asynchronous programming mechanism, either by
using the asyncSupported=true attribute of the @WebServlet annotation or adding
<async-supported>true</async-supported> to the <servlet> element in the web
deployment descriptor. This allows the web container to treat this servlet differently in terms of
how it allocates its threads.

The AsyncContext object for the interaction is obtained from the HttpServletRequest
using the request.startAsync() method. This places the active request and response into the
context so that it can be passed to a different thread to process the interaction.

This is accomplished by passing the thread you wish to use to do the actual request
processing to the AsyncContext using the AsyncContext.start(Thread) method. Now the
service() method can complete and the web container thread that called it can finish its work.

On the worker thread used to process the interaction, the request and response objects can be
retrieved from the AsyncContext using

asyncContext.getRequest()
asyncContext.getResponse()

and used just as if they were within the usual confines of the service() call.
Once the processing is complete, the complete() method must be called on the

AsyncContext to commit the response and allow the web container to garbage-collect the
request and response objects.

248 Java EE 7: The Big Picture

This is the flow with which you can dissect the execution context of a servlet invocation and
pass it to a different thread for processing. Let us take a look at a simple example of this in action.

Locked Servlet
The Locked Servlet example uses a servlet that uses the AsyncContext to delegate processing of its
invocation to a different thread. The thread that the Locked Servlet application uses to process
interactions with the servlet, however, always waits until a second web component has
“unlocked” a servlet context attribute. Once the servlet context attribute has been unlocked, at
some arbitrary time after the call to the locked servlet was made, the thread proceeds to process
the request. Let’s see what this looks like.

The lock.xhtml page is the first web page, as shown in Figure 8-6.
Clicking the thunderbolt button invokes the LockedServlet in a second window, as shown

in Figure 8-7, which waits on the LockedServlet’s response. The LockedServlet is locked
until the padlock button is clicked in the original window, which releases the waiting
asynchronous thread and completes execution of the Locked Servlet, as shown in Figure 8-8.

The code for the lock.xhtml reveals simply the two actions on the page, given in the
following excerpt.

FIGURE 8-6. Locked servlet home page

Chapter 8: The Self-Contained Web Site: Java EE Web Application 249

FIGURE 8-7. Locked servlet locked

FIGURE 8-8. Locked servlet unlocked

250 Java EE 7: The Big Picture

Listing: lock.xhtml JavaServer Faces page

<h:form> Click the thunderbolt to invoke the asynchronous servlet

 <h:commandbutton
 id="async_button"
 value="Call async servlet"
 image="lightening_sm.png"
 onclick="window.open('LockedServlet','_blank',
 'height=300,width=275')"/>

 Click the padlock to unlock the asynchronous servlet

 <h:commandbutton
 id="upload_button"
 value="Unlock async servlet"
 image="unlock_sm.png"
 action="#{application.setAttribute('lock', 'unlocked')}"/>
</h:form>

You can see that the first button causes the LockedServlet to be called, and the second
causes the ServletContext, represented by the implicit object called application in the JSF
environment, to have an attribute called lock set to the value unlocked.

Now let us look at the LockedServlet itself.

Listing: The asychronous LockedServlet

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.AsyncContext;
import javax.servlet.ServletContext;

@WebServlet(urlPatterns = {"/LockedServlet"}, asyncSupported=true)
public class LockedServlet extends HttpServlet {
 public static String LOCK = "lock";
 public static String LOCKED = "locked";
 public static String UNLOCKED = "unlocked";

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 final AsyncContext asyncContext = request.startAsync();
 asyncContext.start(new Runnable() {
 @Override
 public void run() {
 performProcessing(asyncContext);

Chapter 8: The Self-Contained Web Site: Java EE Web Application 251

 }
 });
 ServletContext context = request.getServletContext();
 context.setAttribute(LOCK, LOCKED);
 }

 protected void performProcessing(AsyncContext asyncContext) {
 HttpServletResponse response =
 (HttpServletResponse) asyncContext.getResponse();
 response.setContentType("text/html");
 HttpServletRequest request =
 (HttpServletRequest) asyncContext.getRequest();
 ServletContext context = request.getServletContext();
 int wait = 0;
 for (wait = 0; wait < 100; wait++) {
 if (!"locked".equals(context.getAttribute(LOCK))) {
 break;
 } else {
 try {
 Thread.sleep(250);
 } catch (Exception r) {}
 }
 }
 int waitSecs = (int) (wait /4);
 try (PrintWriter out = response.getWriter()){
 out.println("<!DOCTYPE html>");
 out.println("<html>");
 out.println("<head>");
 out.println("<title>" + waitSecs + " seconds</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<image src='unlock_lg.png'/>");
 out.println("</body>");
 out.println("</html>");
 } catch (IOException ioe) {
 System.out.println("There was an IOException");
 }
 asyncContext.complete();

 }

}

The overall structure of the LockedServlet is simple. In the doGet() method, instead of
performing the request/response processing, it obtains the AsyncContext from the request object
and creates a worker thread, the runnable anonymous class, that is passed to the AsyncContext
instance to perform the actual work of the servlet. Once this is done, it ensures the special lock
attribute on the ServletContext is locked. The worker thread simply makes a call to the
performProcessing() method of the LockedServlet. The action of passing the worker
thread into the start() method of the AsyncContext kicks the thread off. Notice that by the
time the performProcessing() method is called, the doGet() method of the servlet will have
completed, without sending any response back to the client.

252 Java EE 7: The Big Picture

The performProcessing() method obtains the request and response objects that were
passed into the doGet() method of the LockedServlet, and otherwise looks like a regular
servlet method in terms of how it uses the request and response objects. It waits in a loop until the
ServletContext attribute used as a lock is unlocked, at which point it renders the page
containing the image of an unlocked padlock. It keeps a note of the time at which the worker
thread first enters the performProcessing() method, and uses that to set the title of the page to
the number of seconds it had to wait to be unlocked.

Asynchronous Web Resources
The JAX-RS uses a similar mechanism to separate out the execution context of a web service call
on the server from the execution context of a single Java method used to implement the web
service resource. We will explore that mechanism in this section. There is a similar, if not greater,
need in web applications that expose a RESTful web service API to be able to manage processing
of the web service requests in separate threads from those that produce the response entities. Web
service resources may represent large data sets, or may be used to initiate operations that take a
long time and/or a large amount of computing power to complete, such as installing software or
transforming or analyzing large amounts of data.

On the server side, the class javax.ws.rs.container.AsyncResponse represents the
execution context of a web service call that can be lifted out of a single synchronous Java method
call and used in a different thread. Like the Java servlet API’s AsyncContext, the JAX-RS’s
AsyncResponse allows you to delegate formulating the response to another thread.

Here are the steps to using the AsyncResponse in a web service resource.
First, you must get hold of the AsyncResponse instance associated with a particular resource

call. To do this, you declare a parameter of type AsyncResponse in the resource method,
decorating the parameter with the @javax.ws.rs.container.Suspended annotation.

Inside the resource method, you can then establish the thread you wish to use to do the actual
response processing and have it reference the AsyncResponse to start the work by calling its
resume() method, or you can cancel the request by means of the cancel() method. We will
see an example of this in action shortly.

Since the JAX-RS API also includes a client API, we should mention that the client API also
contains a mechanism for handling returning responses from web service calls asynchronously.
This is equally useful for client applications of web services that call web service APIs that
represent long-lived operations as the server-side mechanism is. Client applications typically will
invoke a potentially lengthy web service call in response to a GUI event initiated by a user. The
client application will certainly not want the GUI to freeze while the event thread waits for the
web service it is calling to formulate a response. Instead, it may wish to dispatch the request and
assign a different thread from the GUI event thread to poll for the result, or opt to receive a
callback when the response has arrived.

In the JAX-RS client API, the web service invocation may be made asynchronous while
building the Invocation object from the WebTarget; for example:

WebTarget resourceTarget = client.target("http://acme.com/webservice/bigdata/");

where instead of building a synchronous Invocation object on which the web service method,
in this case, get(), is called:

String responseString = resourceTarget
 .request("text/plain")
 .get(String.class);

http://acme.com/webservice/bigdata/

Chapter 8: The Self-Contained Web Site: Java EE Web Application 253

instead, the asynchronous mode builds an AsyncInvoker object by using the async() method
on the Invocation.Builder on which the web service method, in this case get(), is called:

Future<String> responseFuture = resourceTarget
 .request("text/plain")
 .async()
 .get(String.class);

In the asynchronous case, what you get back is a java.util.concurrent.Future<V>
object, where V is the Java type of the response entity you are expecting. You get the Future
object back immediately, before the response is received from the server. The Future object is a
holder for the ultimate response that will return from the server, and you can interrogate it in
order to determine the state of the call, cancel it, and obtain the actual response entity when it
arrives. These tasks are accomplished by calling the following methods:

boolean isDone()
boolean cancel(boolean mayInterruptIfRunning)
V get()

where V is the Java type of the result you expect.

Hello Asynchrony
Let us look at a familiar example that we saw in Chapter 5: the HelloWorld web service with rich
client. But now this example has been updated so that the client makes its call to the web service
and awaits the response on a separate thread, and the server side creates the response it will make
to the client call on a separate thread from that which handled the incoming request from the
client.

The client window looks the same as before, as seen in Figure 8-9, until you press the Say
Hello button, when you will notice a couple of things, as seen in Figure 8-10. First, the response

FIGURE 8-9. Hello Asynchronous Client main window

254 Java EE 7: The Big Picture

takes a few seconds to arrive. And second, the client application lets you know every second that
it is waiting on the response to return. Those of you who are very practiced in the arts of GUI
programming will also notice that the activities of making the web service request, awaiting the
reply, and processing the response do not tie up the GUI event thread. The Say Hello button
repaints once the request is made, the window may be resized mid-operation, and so on.

Let’s take a look at the code on the server side first.

Listing: The HelloResource asynchronous web resource

import java.text.SimpleDateFormat;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.Suspended;
import java.util.*;

@Path("hello")
public class HelloResource {
 SimpleDateFormat dateFormatter = new SimpleDateFormat("h:mm:ss a");

 @PUT
 @Produces("text/plain")
 public void sayHelloPlain(@Suspended final AsyncResponse asyncResponse,
 final String requestEntity) {
 final Date requestTime = new Date();
 Thread workerThread = new Thread() {
 @Override
 public void run() {
 try {Thread.sleep(2000);} catch (Exception r) {}
 asyncResponse.resume(processResponse(requestTime, requestEntity));

FIGURE 8-10. Hello Asynchronous Client call complete

Chapter 8: The Self-Contained Web Site: Java EE Web Application 255

 }
 };
 workerThread.start();
 }

 private String processResponse(Date requestTime, String requestEntity) {
 return "Replying to your message ("+ requestEntity +")
 I got at " + dateFormatter.format(requestTime);
 }

}

Notice now that the web service resource method sayHelloPlain() no longer formulates
the response. Instead, it takes the AsyncResponse object that it has asked the container to pass
it, using the @Suspended annotation, and submits a new worker thread that it creates to a thread
pool that the class is using. It starts the worker thread, and before waiting for any particular work
on that thread to be done, the method is finished and completes. The worker thread does the
work of formulating the response by invoking the processResponse() method, which contains
the response. Notice that the worker thread emulates a slow process by pausing for two seconds
before calling the processResponse() method. In this way, the work of responding to the web
service client is delegated to a thread that is managed by, in this case, the application, but could
equally be drawn from a thread pool.

Unlike the Java Servlet API, the execution context in this case need not be explicitly closed:
the AsyncResponse.resume() method that you can see in the worker thread’s run() method
writes the response entity in a one-shot deal and also commits the underlying response object.
The AsyncResponse may be used to set timeouts for the operation and to listen to events
pertaining to the progress of the response formulation.

Turning to the client side, the GUI thread that initiates the call to this web service call that will
take two seconds to complete does not wait on the response. Let’s see how in the following listing.

Listing: The Asynchronous HelloClient

import javax.ws.rs.client.*;
import java.util.concurrent.Future;
import javax.ws.rs.core.Response;

public class HelloClient {
 WebTarget wt;

 public HelloClient() {
 Client client = ClientBuilder.newClient();
 this.wt =
 client.target("http://localhost:8080/HelloAsyncWebServices/hello");
 }

 public String getUriAsString() {
 return this.wt.getUri().toString();
 }

 public Future<Response> sayHelloFuture(String message) {
 Future<Response> futureResponse = wt

256 Java EE 7: The Big Picture

 .request()
 .accept("text/plain")
 .async()
 .method("PUT", Entity.text(message));
 return futureResponse;
 }
}

We can see from the HelloClient class’s sayHelloFuture() method that instead of
using the Invocation class to invoke the put, by virtue of the async() call it makes on the
Invocation.Builder, it obtains an AsyncInvoker on which to call the put. This in turn
immediately returns a Future<Response> object, where Response is the JAX-RS API’s javax
.ws.rs.core.Response object representing the returning response from the call. In this way,
this method returns before the web service call has actually completed, allowing the ClientWindow
to check in on the Future object to establish the status of the response. In this excerpt from the
ClientWindow code, the sayHello() method is the one called when the Say Hello button is
pressed, and the jta variable is the text area it uses to display information to the user.

Listing: Excerpt from the ClientWindow class

 public void sayHello() {
 final Future<Response> futureResponse =
 this.helloClient.sayHelloFuture(this.jtf.getText());
 this.jta.append(dateFormatter.format(new Date()) +
 " " + "sent request." + "\n");
 Thread pollingThread = new Thread() {
 @Override
 public void run() {
 pollForResponse(futureResponse);
 }

 };
 pollingThread.start();
 }

 void pollForResponse(Future<Response> futureResponse) {
 while(!futureResponse.isDone()) {
 jta.append(dateFormatter.format(new Date()) + " " +
 "waiting..." + "\n");
 try {Thread.sleep(1000);} catch (InterruptedException ie) {}
 }
 String s = "";
 try {
 Response r = futureResponse.get();
 s = r.readEntity(String.class);
 jta.append(dateFormatter.format(new Date()) + " " + s + "\n");
 } catch (ExecutionException | InterruptedException e) {
 jta.append(e.getMessage() + "\n");
 }
 }

Chapter 8: The Self-Contained Web Site: Java EE Web Application 257

In the sayHello() method, the ClientWindow initiates the web service call on the
HelloClient instance it uses and obtains the Future<Response> object. After printing status
to the window saying the request has been made, it creates a polling thread that calls the
pollForResponse() method. This method remains in a loop, checking every second whether
the Future<Response> has completed by calling its isDone() method and printing a message
each time it checks. When the Future is done, it means that the Response has been received
and can be read. The isDone() method then returns true, and the method reads the response
entity and prints it out to the window.

In this way, the work of waiting for the response and informing the user is delegated to a
special thread, instead of the work having to occur on the same thread as is used to paint the user
interface.

Summary
In this chapter, we looked at some of the global aspects of a web application: the URI space, the
deployment descriptor, and the global components that are web filters and web listeners. We
also looked at how in applications where web components model potentially long and expensive
operations, the execution context of a web component call can be moved into threads under the
control of the application for an asynchronous programming model.

In all our explorations of the web layer, we have found some useful structures such as the
ServletContext and HttpSession in which we can hold application- and user-specific
information, but only for the lifetime of the application. In order to keep application data around
longer than the short time of an application session, we need to dig deeper into the next layer of
the Java EE platform. In the next chapter, we start moving out of the work of markup, XML, and
HTTP and into the world of data, transactions, and persistence.

PART
II

The Brain of Java EE:
The Middle Tier

This page intentionally left blank

CHAPTER
9

The Fundamentals of
Enterprise Beans

262 Java EE 7: The Big Picture

I
f Enterprise Beans were airline passengers, they would all fly first class.

Enterprise Beans are application components that run on the Java EE server in the most
cosseted components in any of the Java platforms. Like regular Java classes, they have

constructors to instantiate them, and methods to process information and perform tasks. Unlike
regular Java classes, they run in the luxurious environment of the Enterprise Bean container,
which takes care of a variety of potentially complicated tasks that typically confront the developer
of a server application.

Introduction to Enterprise Beans
The services that an Enterprise Bean container offers to its components include

 ■ Managing the lifecycle and number of instances of the Enterprise Bean, from instantiation
through various phases to destruction.

 ■ Managing the concurrency of access to methods exposed by the Enterprise Bean,
allowing the Enterprise Bean to determine whether the Enterprise Bean container should
allow multiple threads to access its methods at the same time, or whether such threads
should wait in line to access methods one at a time.

 ■ Allowing Enterprise Beans to implement asynchronous methods, wherein the
component’s method can return immediately while the container thread waits on the
actual process of the method to complete.

 ■ Allowing multiple Enterprise Bean method calls to be handled atomically within a single
transaction, guaranteeing the integrity of common data being handled by more than one
method at a time.

 ■ Gating calls to Enterprise Beans to allow them to declare which users are allowed access
to their methods.

In Figure 9-1, we can see a summary of the services enjoyed by an Enterprise Bean.
These features of the Enterprise Bean component model mean that as a Java EE developer, you

should consider using them in an application if

 ■ Your application needs to scale to a large number of users. Because the Enterprise
Bean’s lifecycle is managed by the container, containers can instantiate a suitable
number of them to meet the current demand made by the active clients at any one time.
Additionally, because many Enterprise Bean containers are distributed across more than
one Java VM, the work of running the application can be evenly shared across Java VMs
and even across server machines. In this way, the load borne by the application due
to the varying client demand can be effectively balanced by the container. Finally, the
clients of Enterprise Beans do not need to know the details of how many instances there
are nor where physically (i.e., on which Java VM) they are located; the methods with
which a client can locate an Enterprise Bean are independent of these details. Therefore,
it is generally easier to let Enterprise Bean containers perform this kind of load balancing
rather than trying to write it yourself in a Java EE application.

Chapter 9: The Fundamentals of Enterprise Beans 263

 ■ Your application is managing relatively complex data that requires transactional support.
Because the Enterprise Bean container is managing concurrent threads, it is clear in the
programming model where there may be contention while reading and writing data from
and to a database or databases. The Java Transaction API that supports the transactional
capabilities of Enterprise Beans allows you to demarcate where you need multiple
Enterprise Bean operations to be considered as one atomic action. In other words, you
get to decide whether a group of method calls that manipulate application data must
either all complete without a hitch in order to succeed, or whether the collective action
will be rolled back if a constituent method fails. Like load balancing, the controls that
allow you to control concurrent access to Enterprise Beans and demarcate transactions
involving application data are generally much easier to use than trying to code these
kinds of safeguards by yourself.

 ■ Your application has a variety of different clients. There are a number of different client
types that can call an Enterprise Bean. Enterprise Beans may be called from other
Enterprise Beans, from Java EE web components, from client applications using the
Java EE Application Client container, and from web service clients. By implementing
application logic in one or more Enterprise Beans, you do not need to change the
application logic in order to add a new client type, which is always a big timesaver in
application development and maintenance.

The main ways that these clients connect with Enterprise Beans are over RMI/IIOP (described
next), HTTP, JMS, and local Java method invocation.

FIGURE 9-1. Services enjoyed by Enterprise Beans

Client

Enterprise Bean Container

Lifecycle

Method invocation

Security

Concurrency

Transaction

Asynchrony

Enterprise Bean

264 Java EE 7: The Big Picture

RMI/IIOP
Short for Java Remote Method Invocation over the Internet Inter-Orb Protocol, this is the primary and
general-purpose means for clients to talk to Enterprise Beans in a different Java VM, for example, a
Java servlet in the web container calling an Enterprise Bean in the Enterprise Bean container.

HTTP
You can declare that an Enterprise Bean be callable as a RESTful web service, meaning its methods
are exposed to clients making the kind of RESTful web service calls over HTTP that we observed
in Chapter 5.

JMS Protocol
One of the flavors of Enterprise Beans is called the message-driven bean. Clients of this kind of
bean use one of the many wire protocols for message transmission supported under the Java
Message Service to make calls.

Local Java Method Invocation
In some situations, clients of an Enterprise Bean may be colocated in the same container. It is
actually possible to run certain kinds of Enterprise Beans in the web container, in which case calls
to this kind of Enterprise Beans from a web component in the same web container may occur
using plain old Java object-to-Java object method calls. Developers usually opt for this kind of
setup if they want the performance advantages of local calls.

Figure 9-2 provides a summary of the ways different clients connect to an Enterprise Bean.

FIGURE 9-2. Enterprise Bean clients

Web Container

Web Component

Application Client

Enterprise Bean Container

RMI/IIOP

Enterprise Bean

Enterprise Bean Container

Enterprise BeanRMI/IIOP

RMI/IIOP

Web Service

Web Service
Client

Enterprise Bean

Messaging Client

JMS protocol

Local Java method calls

Chapter 9: The Fundamentals of Enterprise Beans 265

Flavors of Enterprise Bean
There are two essentially different types of Enterprise Bean. They are known as session beans and
message-driven beans.

Session beans are a general-purpose kind of Enterprise Bean, accessible through RMI/IIOP
and web service protocols, as well as local Java method invocations. They are the most commonly
used kind of Enterprise Beans. Message-driven beans are a special kind of Enterprise Bean for use
with clients that make calls on them by sending messages using the Java Messaging Service (JMS).
While session beans and message-driven beans share some properties, for example, the way in
which they are packaged and deployed to the Java EE server, their interaction models are quite
different. We will examine these categories of Enterprise Beans separately.

Before we explore the different kinds of Enterprise Beans, we start with a very simple example.

Hello Enterprise Beans
This example is a Java EE application containing a single Enterprise Bean, which is called by a
Java servlet. We use this example to highlight some of the core concepts of Enterprise Beans.

When you run the application, the web browser calls the Java servlet. You will see something
like Figure 9-3.

There are three Java classes in this application: the Java servlet, called ServletClient, and
two Java classes that make up the Enterprise Bean: HelloBean and HelloBeanImpl.

FIGURE 9-3. Hello Enterprise Beans client view

266 Java EE 7: The Big Picture

The HelloBean Java class is actually an interface.

Listing: The HelloBean remote interface

import javax.ejb.Remote;

@Remote
public interface HelloBean {
 public String getMessageFor(String caller);
}

It defines a single method, and other than the @Remote annotation at the class level, it is just
like an ordinary Java interface. What the @Remote annotation does is turn this interface into an
Enterprise Bean remote interface, which is to say, this is an interface that is used by an Enterprise
Bean to publish its methods to all its potential clients, whether they be application clients, web
components, or other Enterprise Beans.

Figure 9-4 shows the architecture of the Hello Enterprise Beans application, showing its
implementation classes.

Figure 9-5 shows the logical arrangement of the Enterprise Bean and its Java servlet client.

Listing: The HelloBean implementation class

import javax.ejb.Stateful;

@Stateful
public class HelloBeanImpl implements HelloBean {

 @Override
 public String getMessageFor(String caller) {
 return "hello to you, " + caller + " !";
 }
}

We can see from the code that the Enterprise Bean implementation class implements the remote
interface. The only extra thing over a regular Java class that implements an interface is the use of the

FIGURE 9-4. Hello Enterprise Beans architecture

Web Container

ServletClient

Enterprise Bean Container

HelloBeanImpl

getMessageFor(“web client”)

H
elloB

ean“hello to you, web client !”

H
elloB

ean

Chapter 9: The Fundamentals of Enterprise Beans 267

@Stateful annotation from the javax.ejb package. This marks the implementation class as a
particular kind of session bean called a stateful session bean. In short, the Enterprise Bean container
creates exactly one instance of this kind of bean for each client that makes calls to it.

Finally, let us see how the Enterprise Bean is called from the Java servlet client.

 Listing: The HelloBean client: ServletClient

import java.io.IOException;
import java.io.PrintWriter;
import javaeems.chapter9.hello.HelloBean;
import javax.ejb.EJB;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "ServletClient", urlPatterns = {"/ServletClient"})
public class ServletClient extends HttpServlet {
 @EJB
 private HelloBean helloBean;

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Hello Java EE</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("
");
 out.println("<div align='center'>");
 out.println("<h2>Hello Enterprise Beans</h2>");
 out.println("
");
 String displayMessage;
 String message = helloBean.getMessageFor("web client");
 out.println("Result of calling the enterprise bean:
"
 + message + "");
 out.println("</div>");
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }
}

268 Java EE 7: The Big Picture

The ServletClient accesses the Hello Enterprise Bean by declaring an instance variable,
helloBean, to store a reference to the bean’s remote interface and by annotating the instance
variable declaration with the @EJB annotation from the javax.ejb package. What this annotation
does is ask the web container to inject a suitable instance of the Enterprise Bean whose remote
interface is HelloBean at the time that the servlet is being instantiated. Then, as you see from the
doGet() method of the servlet, the HelloBean’s getMessageFor() method is called when
the browser makes its request.

This example shows one particular type of Enterprise Bean, a stateful session bean, being
accessed through its remote interface from a Java servlet that is using dependency injection by virtue
of the @EJB annotation to locate an instance of the Enterprise Bean and then calling its method.

We now explore the four avenues that this example opens up: the different types of Enterprise
Beans, how Enterprise Beans are located from the clients that use them, different modes for accessing
Enterprise Beans, both local and remote, and what kinds of Java methods an Enterprise Bean
can expose.

Flavors of Enterprise Beans
As you now know, there are two main kinds of Enterprise Beans: session beans and message-driven
beans, and we have already hinted at different kinds of session beans. Let’s look at the three types
of session beans: stateless, stateful, and singleton.

Stateless Session Beans: @Stateless
A stateless session bean is so called because, from the client’s perspective, it cannot hold a state
between calls. In other words, this bean can be extremely forgetful! A stateless session bean is
one whose implementation class is marked @Stateless. The reason it cannot hold a state is that
two separate calls to this kind of Enterprise Bean may be handled by two different instances of the
Enterprise Bean’s implementation class. This is true whether the calls are from the same client or
from totally different clients. Thus, if the Enterprise Bean implementation instance attempts to hold
state in its instance variables based on the first method call, because subsequent calls to the
Enterprise Bean may be handled by a different instance of the implementation class, the retained
state from the first call is lost. This model allows Enterprise Bean containers to choose how many
instances to create a running Enterprise Bean, and typically to manage a pool of them. This means
that applications that use this kind of bean scale well to many clients. Thus, developers often choose
to use this kind of bean for performance reasons. That is the case, of course, in applications where
they do not need to hold any kind of application state in the Enterprise Beans. Such applications
might include beans that model execution of stateless processes, such as deleting files, sending
messages, and performing mathematical calculations. We could in fact have used a stateless
session bean for our HelloBean example, as it holds no application state. For holding application
state, we need to move to the next kind of session bean, stateful session beans.

Chapter 9: The Fundamentals of Enterprise Beans 269

Stateful Session Beans: @Stateful
Stateful session beans are the most common kind of Enterprise Bean. A stateful session bean is
one whose implementation class is marked @Stateful. The Enterprise Bean container instantiates
a stateful session bean once for each client that calls it. This means that if, for example, a particular
web component calls a stateful session bean multiple times, it will actually be calling the same
instance of the Enterprise Bean implementation class. Equally, if a different web component calls
the same stateful session bean, it will call a different instance of the bean’s implementation class.

This model allows such Enterprise Beans to hold state in the instance variables of its
implementation class that it wishes to associate with its clients across multiple method calls from
that client. This makes this kind of bean very useful for applications such as shopping carts,
applications that collect user data over a sequence of interactions, or any kind of application
containing personalization features, adapting the application based on previous interactions. The
downside of stateful session beans is that they do not scale quite so well as stateless session
beans: the Enterprise Bean container must maintain as many instances of the stateful session bean
as it has active clients. Sometimes, however, applications need to hold state that is common to all
clients of the application. This brings us to singleton session beans.

Singleton Session Beans: @Singleton
Singleton session beans are instantiated once in the application and last for as long as the
application is deployed. They are marked using the annotation @Singleton. Singleton session
beans, or singletons for short, can be accessed by multiple clients concurrently, and can hold
state in their instance variables for the lifetime of the application. This makes this type of
Enterprise Bean good for modeling global properties of the application, for example, a group chat
transcript, a record of all the bids on an item in an online auction, or a repository of all posted
news articles in an aggregation site.

Message-Driven Beans
Message-driven beans are a type of Enterprise Bean that responds to Java Message Service (JMS)
messages. They are marked using the @MessageDriven annotation, and receive messages
through the javax.messaging.MessageListener interface with its single method

void onMessage(Message inMessage)

where javax.messaging.Message represents the incoming message. This makes its interaction
model fundamentally different from session beans. For session beans, clients call Java methods on
the Enterprise Bean. For message-driven beans, clients push JMS messages into a JMS queue,
which delivers them to the message-driven bean asynchronously.

Session beans are generally accessed through a remote interface (though, as we shall see,
there are cases where a remote interface is not required), while message-driven beans have only a
bean implementation class.

Message-driven beans are stateless, that is to say, clients of message beans may not rely on
the same instance being used to process a message to be the same on subsequent messages.
Message-driven beans are useful in applications where clients need to be able to initiate some
action or task, but do not want to wait around for the task or action to complete.

270 Java EE 7: The Big Picture

Exposing Enterprise Beans
Let us look now at how Enterprise Beans expose their functions to the clients that wish to use them.

Java Methods
Generally speaking, there are two ways in which an Enterprise Bean implementation class may
expose its Java methods: remotely or locally. Message-driven beans are the exception: they
expose only their callable method remotely. All types of session beans, however, can expose
remote or local views to their Java methods.

When an Enterprise Bean exposes its Java methods remotely, it can be accessed from application
clients, from web components, and from other Enterprise Beans in the same or other applications.
At the heart of this remote access model is the ability for the Enterprise Bean to reside on a different
Java VM and a different computer altogether.

When an Enterprise Bean exposes its Java methods locally, it can be accessed from web
components and other Enterprise Beans within the same Java EE application, a more limited
scope, but one that comes with an important advantage.

The wide exposure granted to an Enterprise Bean’s remote view comes at a price: when a client
calls an Enterprise Bean through its remote methods, it does so using the remote protocol
RMI/IIOP. This means that every Java object passed as a method parameter or return value
has to be serialized in order to be transmitted over the wire. This incurs a performance penalty when
compared with ordinary local Java method invocation. For this reason, some Enterprise Beans
choose to expose a local view when they are sure their clients fall within the more limited scope
of the same Java EE application because clients can call them more quickly.

So how does an Enterprise Bean expose a remote view and a local view?

Exposing a Remote View
An Enterprise Bean exposes a remote view by providing one or more remote interfaces. A remote
interface is a regular Java interface that contains methods that the container is to expose to clients
of the Enterprise Bean and that is marked with the @Remote annotation from the javax.ejb
package. An Enterprise Bean implementation class provides the implementations for the methods
exposed remotely on a remote interface. The Enterprise Bean implementation class declares its
remote interfaces in one of two ways:

 ■ By implementing the remote interface(s) directly

 ■ By using the class-level annotation @Remote using the value attribute to list the remote
interface classes it wishes to expose.

In the Hello example, we saw that the Hello Enterprise Bean exposes a remote interface
called HelloBean,

@Remote
public interface HelloBean { ... }

while its implementation class exposes the HelloBean remote interface by implementing it
directly:

@Stateful
public class HelloBeanImpl implements HelloBean {...}

Chapter 9: The Fundamentals of Enterprise Beans 271

However, the Hello Enterprise Bean implementation class could equivalently have declared
its remote interface by using the @Remote annotation:

@Stateful
@Remote(HelloBean.class)
public class HelloBeanImpl {...}

Exposing a Local View
When an Enterprise Bean wishes to expose its methods through a local view, it has a couple of
ways of doing this. The first and more formal way is for it to define a local interface, which is a
regular Java interface that declares the methods of the bean’s implementation class that it
wishes to expose and that is marked with the @Local annotation. Then the bean’s implementation
class declares its local interface, or interfaces if it wishes to expose more than one local view,
either by implementing the local interface or interfaces, or by using the @Local annotation,
listing the local interface classes in the value attribute. This is analogous to the way the Enterprise
Bean exposes its remote view. So, for example, if our Hello Enterprise Bean wishes to expose a
local view, it might do this

@Local

public interface LocalHelloBean { ... }

and declare the local view like this

@Stateful
@Local(LocalHelloBean.class)
public class HelloBeanImpl {...}

or like this

@Stateful
public class HelloBeanImpl implements LocalHelloBean {...}

The second way to expose a local view on an Enterprise Bean is to add the @LocalBean
annotation to the bean’s implementation class. This gives the Enterprise Bean what is called a
no-interface view, a type of local view that does not require the definition of a local interface.
For example, here’s how you would declare a no-interface view on our Hello Enterprise Bean:

@Stateful
@LocalBean
public class HelloBeanImpl {...}

This says that all the methods of the HelloBeanImpl class will be available to local clients.
In fact, if the bean implementation class does not implement any other interfaces, you can omit
the @LocalBean entirely.

@Stateful
public class HelloBeanImpl {...}

and this becomes the definition of an Enterprise Bean that exposes all the methods on
HelloBeanImpl to local clients.

272 Java EE 7: The Big Picture

In general, it is better to be explicit about the views that your Enterprise Beans export,
particularly if exposing both a local and a remote view. Calling methods on an Enterprise Bean
locally and remotely have a subtly different semantic, and it is best to be clear about that by
defining remote and local views.

Pass by Value and Pass by Reference
When a client calls methods on an Enterprise Bean, if it calls it as a local bean, the method
invocation is a local one. This means that when objects are passed into the method call, they are
passed by reference. In other words, if the bean’s method implementation calls methods on the
object passed in, it is calling methods on exactly the same object that the client passed to it.
Changes that the bean makes to the object are observed by the client when the method completes.
However, if the client is remote, the objects it passes to the bean’s methods are first serialized,
sent on the wire, deserialized, and then passed in. This means the objects that the bean methods
process are copies of the ones sent by the client. So changes the bean makes to the object are not
observed by the client. In other words, objects used in method invocations made by local clients
are passed by reference, and objects used in method invocations made by remote clients are
passed by value.

Web Services View
In addition to remote and local views of its Java methods, stateless session beans and singleton
session beans may expose a web service view by turning one or more of the methods on its
implementation as web service resources. To do so, the bean class must be marked with the
@WebService annotation, and the methods to expose with the @WebMethod annotation. Here
is a short example.

Listing: Enterprise Bean with web service view

import javax.jws.WebMethod;
import javax.jws.WebService;

@WebService
@Stateless
public class HelloServiceBean {

 public void HelloServiceBean() {}

 @WebMethod
 public String getMessageFor(String caller) {
 return “hello to you, “ + caller + “ !”;
 }
}

We summarize the different types of views on Enterprise Beans in Figure 9-5.

Chapter 9: The Fundamentals of Enterprise Beans 273

Finding Enterprise Beans
Now that we have seen how an Enterprise Bean can make its functions available for clients to use,
we will look at how clients that wish to use these functions can locate the Enterprise Bean.

Finding Message-Driven Beans
Message-driven beans listen to the messages that are received by a JMS messaging queue;
message-driven beans are not called by direct Java method invocation. The @MessageDriven
bean annotation that you use to declare a Java class as a message-driven bean calls for you to
include a JNDI name of a JMS messaging queue to connect to this bean. Supposing the messaging
queue is available at the JNDI name jms/myQueue, then the following message-driven bean
receives a callback each time a client of the JMS queue sends in a message.

Listing: Mapping a message-driven bean

import javax.ejb.MessageDriven;
import javax.jms.Message;

FIGURE 9-5. The various views onto Enterprise Beans

Java EE Application

Session Bean

Implementation
class

Local Client

Enterprise Bean
Web Component

R
em

ote

Local

Local

Message-Driven Bean

Implementation
class

M
essageListener

Messaging client

R
em

ote

Remote Client

Enterprise Bean
Web Component
Application Client

W
eb Service

Web Service Client

Messaging
Queue

274 Java EE 7: The Big Picture

@MessageDriven(mappedName = "jms/myQueue")
public class MyMessageDrivenBean {
 ...
 public void onMessage(Message incoming) {
 // process message
 }
...
}

Finding Session Beans
There are two ways to find a reference to a session bean. The first is by looking up the Enterprise
Bean in the Java Naming and Directory Interface (JNDI) service that is part of the Java EE platform.
The second method is to use dependency injection.

Enterprise Bean Lookup in JNDI
The JNDI service in the Java EE platform is a handy repository of interesting platform objects,
which can also be used to store application objects. We will return to the topic of JNDI in a later
chapter. For now, it is enough to understand that objects may be stored in JNDI under a unique
name, which can be used later to look up and locate them.

Any Enterprise Bean you deploy in Java EE is given a name in the JNDI namespace where it
can be looked up later by any other Java class running in the same Java EE environment. This
lookup may occur in the same EJB module. It may occur in a different module in the same Java EE
application, for example, if the client looking up the Enterprise Bean is in a web application or
application client module within the same Java EE application. Additionally, the lookup may
occur from a client located in an entirely different Java EE application.

All of the Enterprise Bean annotations have a name attribute that allows you to name the bean
explicitly. For example, to name the HelloBean in the preceding example, we would use

@Stateful(name=”hello-bean”)
public class HelloBeanImpl implements HelloBean {
...
}

The most general form of the JNDI name of an Enterprise Bean is

java:global/app-name/module-name/ejb-name

where app-name is the name of the application containing the Enterprise Bean, module-name is
the name of the module containing the Enterprise Bean, and ejb-name is the name of the
Enterprise Bean. If an Enterprise Bean does not declare a name explicitly in its Enterprise Bean
annotation, then the ejb-name in the JNDI lookup may be formed using the short classname of
the bean implementation class and short remote interface classname.

ejb-name = <bean-implementation-class>!<remote-interface>

Therefore, to locate the HelloBean Enterprise Bean in the JNDI namespace from any other
application, you could use either of the JNDI names

java:global/<hello-app-name>/<hello-ejb-module-name>/hello-bean

Chapter 9: The Fundamentals of Enterprise Beans 275

or

java:global/<hello-app-name>/<hello-ejb-module-name>/HelloBeanImpl!HelloBean

The lookup itself occurs programmatically using the JNDI APIs. For example, to look up the
HelloBean, you could use

import javax.naming.InitialContext;

...

 HelloBean hello = (HelloBean) InitialContext.doLookup("java:global/
 <hello-app-name>/<hello-ejb-module-name>/hello-bean");

If the client of the Enterprise Bean resides in the same application, it can be accessed with the
shortened JNDI name of

java:app/module-name/ejb-name

and if the client of the Enterprise Bean resides in the same module, it can be accessed with the
shortened JNDI name of

java:module/ejb-name

We illustrate this naming scheme in Figure 9-6.

FIGURE 9-6. Enterprise Beans in the JNDI namespace

Any Application

Same Application

Same Module

Enterprise Bean

java:module/ejb-name

java:app/ejb-module-name/ejb-name

java:global/app-name/ejb-module-name/ejb-name

276 Java EE 7: The Big Picture

Enterprise Bean Injection
It is important to understand the global naming scheme for Enterprise Beans. However, the
simplest way to locate an Enterprise Bean and use it from client code is to inject it using the
@EJB annotation. As with many mechanisms in Enterprise Beans technology, there are several
ways this can be done!

The first approach is simply to inject the Enterprise Bean by its remote classname. Looking
back to our example:

Listing: The HelloBean implementation class and remote interface

@Remote
public interface HelloBean {
 public String getMessageFor(String caller);
}

@Stateful(name=”hello-bean”)
public class HelloBeanImpl implements HelloBean {

 @Override
 public String getMessageFor(String caller) {
 return "hello to you, " + caller + " !";
 }
}

We could inject a reference to this Enterprise Bean into an instance variable by using the
remote classname:

import javax.ejb.EJB;
import javaeems.chapter9.hello.HelloBean;
...
@EJB
HelloBean hello;

or we could inject a reference to this Enterprise Bean into an instance variable by using the formal
name of the Enterprise Bean:

import javaeems.chapter9.hello.HelloBean;
...
@EJB(name=”hello-bean”)
HelloBean hello;

or we could do an explicit JNDI lookup:

import javaeems.chapter9.hello.HelloBean;
...
@EJB(lookup=” java:global/<hello-app-name>/
 <hello-ejb-module-name>/hello-bean”)
HelloBean hello;

Chapter 9: The Fundamentals of Enterprise Beans 277

Dependency injection of this type limits you to using the Enterprise Bean as an instance
variable, and also can be used only when the Java class is a Java EE managed bean. We will return
to the topic of Java EE managed beans in Chapter 13, but for now, we will just note that Enterprise
Beans, Java servlets, JSF managed beans, application clients, JAX-RS resource classes, and Java
WebSocket endpoints are all Java EE managed beans, and thus can use this mechanism. For an
ordinary Java class, you need to use the JNDI API lookup described in the previous section.

EJB Lifecycle
One thing to notice about Enterprise Beans is that you never instantiate them yourself; the
Enterprise Bean container manages the lifecycle and cardinality of Enterprise Beans. In this
section, we look at the different lifecycles of the different kinds of Enterprise Bean.

Singleton and stateless session beans together with message-driven beans have the same
lifecycle. There are two states: Out of Service and Active. When such beans are being brought
into service, they start in the Out of Service state. At this point, all the Enterprise Bean container
has is the class definitions of the Enterprise Beans. When the container needs to bring a bean
into service, it invokes the constructor, injects any dependencies such as other Enterprise Bean
references made using the @EJB annotation, prepares other container-level resources in support
of the bean instance, and then brings the instance into the Active state. In this state, the bean
instance can accept and service incoming calls from clients. When the container has no more
need for the bean instance, it brings the instance out of service, cleans up any supporting
resources, and releases the bean instance for garbage collection. This happens, for example, if the
container is itself shutting down.

Stateless session beans and message-driven bean instances are required to exist only for the
duration of a client call, and Enterprise Bean containers may bring them into service only as a
client makes a call to them. Equally, Enterprise Bean containers may destroy such bean instances
as soon as the client call is serviced. On the other hand, singleton session beans are created only
once prior to any client calls being serviced, and then destroyed only once all the client calls have
been completed, for example, when the container shuts down.

You may intercept all these state changes on your Enterprise Beans, from Out of Service to
Active, and from Active to Out of Service. To do so, you implement a Java method that you wish
to be called when the state change occurs and mark it with one of the Enterprise Bean state change
annotations. In order for the container to call your Enterprise Bean when it is moving from the Out
of Service to the Active state, you use the @PostConstruct annotation. Note that at this point,
the bean instance has been constructed and any dependency injection has already occurred. For
the container to call your Enterprise Bean when it is moved from the Active state to the Out of
Service state, you use the @PreDestroy annotation.

Stateful session beans have a lifecycle that includes these same states, Out of Service and
Active, and you can use @PostConstruct and @PreDestroy annotations to ask the container
to call you when it transitions your Enterprise Beans between these states. Additionally, stateful
session beans contains a third state: the Passive state. The Passive state is one in which the
Enterprise Bean instance is taken out of service temporarily. The container will not pass any client
calls to the Enterprise Bean while it is in this state. When a call comes in for a bean in the Passive
state, the container brings it back into the Active state in order to respond to the call. The container
may bring the same Stateful session bean instance in and out of the Passive state many times. The
reason for this extra state in the case of Stateful session beans is as follows: for this kind of bean,
the container must create a new instance for each and every client that uses it. This means that for

278 Java EE 7: The Big Picture

such stateful session beans with large numbers of clients, the container needs to support
correspondingly large numbers of instances. The Passive state allows the container to put beans
that are not currently being called onto the back burner, thereby saving valuable computing
resources. You may participate in this kind of optimization by intercepting the state transitions
between Active and Passive, using the @PrePassivate and @PostActivate events to annotate
methods so the container calls them during the transitions.

One final note on singleton beans: the Enterprise Bean container has a choice as to when to
instantiate the single instance it uses of a singleton bean: it can do it at any time between the
deployment of the application containing the singleton bean and the moment immediately prior
to a client call needing a response. You can use the class-level @Startup annotation on a
singleton bean to direct the container to instantiate the bean upon application deployment, rather
than allow the container to leave it to the last minute. This, in combination with a method
annotated with @PostConstruct, is a useful way to have the container run code for you right
after the application is deployed and before any calls, whether they be to this singleton bean or to
any others in the application that have been serviced.

We summarize the lifecycles of Enterprise Beans and the annotations that allow them to be
called back at the key stages in Figure 9-7.

FIGURE 9-7. Lifecycles of Enterprise Beans

Enterprise Bean
Stateful

Out of Service

Active

Passive

Enterprise Bean
Stateless
Singleton

Message Driven

Out of Service

Active

@PostConstruct

@PostConstruct

@PrePassivate

@PostActivate

@PreDestroy

@PreDestroy

Chapter 9: The Fundamentals of Enterprise Beans 279

Packaging Enterprise Beans
Packaging of Enterprise Beans is similar to, though simpler than, the packaging of web components
into WAR files. The packaging format for Enterprise Beans is the Enterprise Beans JAR file. This is a
regular JAR file that contains all the Enterprise Bean classes and their supporting classes located
at the root, together with the JAR’s manifest file, and an optional Enterprise Bean deployment
descriptor, located in a file called ejb-jar.xml, under the META-INF entry in the JAR file.

Like the web deployment descriptor, the Enterprise Bean deployment descriptor is often not
needed: much of the information the container needs to know about the Enterprise Beans in the
JAR file is contained within the annotations embedded within the code for the beans. In fact, as
we shall see shortly, relatively complicated Enterprise Bean applications might have no need for
the Enterprise Bean deployment descriptor. We return to this descriptor in the next chapter.

We illustrate the Enterprise Bean JAR format in Figure 9-8.
Enterprise Bean applications may also be packaged inside a WAR file. This can be convenient

when the Enterprise Beans it contains are used by a web application only as it allows all the
application logic to be located in the same file.

As you might expect, the Enterprise Bean JAR may simply be added to the WEB-INF/lib
entry in the WAR file, or the Enterprise Bean classes added to the WEB-INF/classes directory,
and the ejb-jar.xml deployment descriptor, if used, added to the WEB-INF directory.

We have learned much about Enterprise Beans, and now it is time to put what we have
learned into practice.

FIGURE 9-8. The Enterprise Bean JAR file format

Enterprise Bean JAR file format

HelloBean.class
HelloBeanImpl.class

/META-INF/MANIFEST-MF

Enterprise Bean classes
located at the root /

Information describing the Enterprise
Beans

located under /META-INF/

MANIFEST-MF
(optional ejb-jar.xml)

Logical View Example Archive View

/

280 Java EE 7: The Big Picture

Banking Example
The Banking Example application comes in two pieces. The customer-facing piece is a Java EE
application, containing a web application and Enterprise Beans that power an online banking
website. You can use the website to check your balance (as shown in Figure 9-9), make a payment
by entering the amount (shown in Figure 9-10), confirm the payment (shown in Figure 9-11),
submit the payment (shown in Figure 9-12), and see the new account balance after the payment
has been made (shown in Figure 9-13).

There is a second application, the Banking Backoffice application. As clients make payments
through the website, this application displays confirmation of each payment as it comes in, as you
can see in Figure 9-14. Let’s take a look at the applications in Figure 9-15.

We can see that the Bank Account application is made up of a web application containing
three JavaServer Faces pages. These are using a JSF managed bean called the AccountBean,
which is in turn making calls to the Checking bean and the BillPay bean. We won’t spend any
time looking at the JavaServer Faces code, but we will look at the AccountBean code as this is
where the first Enterprise Bean calls are made.

FIGURE 9-9. Banking Application home page

Chapter 9: The Fundamentals of Enterprise Beans 281

FIGURE 9-10. Making a payment

FIGURE 9-11. Confirm payment

282 Java EE 7: The Big Picture

FIGURE 9-12. Payment confirmed

FIGURE 9-13. Banking Application, new account balance

Chapter 9: The Fundamentals of Enterprise Beans 283

FIGURE 9-14. Banking Backoffice status window

FIGURE 9-15. Banking Example architecture

Back Account client

Backoffice Application

Bank Account Application

Stateful Session Bean

CheckingImpl

C
hecking

Message Driven Bean

BackofficeBean

MessageListener

JMS Messaging
Queue

Web Application

account.xhtml

pay.xhtml

confirm.xhtml

A
ccountB

ean

Singleton Session Bean

BillPayService

B
illPay

Singleton Session Bean

PaymentRecorderImpl

Paym
entR

ecorder

Paym
entR

ecorder

Payment made

Make payment

View
 ac

count

Payment made

Record
payment

View account,
make payments

Retrieve
payments

284 Java EE 7: The Big Picture

Listing: The AccountBean JavaServer Faces managed bean

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.faces.FacesException;
import javax.ejb.EJB;
import javaeems.chapter9.bank.Checking;
import javaeems.chapter9.bank.BillPay;
import javaeems.chapter9.bank.PaymentException;
import java.util.*;

@ManagedBean
@SessionScoped
public class AccountBean {
 @EJB
 private Checking checking;
 @EJB
 private BillPay billPay;

 private String currentPayee;
 private double amount = 15;
 private boolean paymentOK = false;
 private String paymentConfirmation = null;

 public AccountBean() {
 }

 public String getCheckingAccountNumber() {
 return this.checking.getAccountNumber();
 }

 public double getCheckingBalance() {
 return this.checking.getBalance();
 }

 public List<String> getPayees() {
 return this.billPay.getPayees();
 }

 public String getCurrentPayee() {
 if (this.currentPayee == null) {
 this.currentPayee = this.billPay.getPayees().get(0);
 }
 return this.currentPayee;
 }

 public void setCurrentPayee(String payee) {
 this.currentPayee = payee;
 }

Chapter 9: The Fundamentals of Enterprise Beans 285

 public double getAmount() {
 return this.amount;
 }

 public void setAmount(double amount) {
 this.amount = amount;
 }

 public void reset() {
 this.paymentOK = false;
 this.paymentConfirmation = null;
 }

 public String getPaymentConfirmation() {
 return this.paymentConfirmation;
 }

 public boolean getPaymentOK() {
 return this.paymentOK;
 }

 public void makePayment() {
 try {
 this.checking.doDeduct(this.amount);
 String confirmation = this.billPay.doPay(
 this.checking.getAccountNumber(),
 currentPayee,
 this.amount);
 this.paymentOK = true;
 this.paymentConfirmation = confirmation;
 this.amount = 15;
 this.currentPayee = null;
 } catch (PaymentException pe) {
 throw new FacesException(pe.getMessage());
 }
 }

}

Note first that the AccountBean locates the Checking and BillPay beans by asking the
Java EE container to inject them into its instance variables by means of the @EJB annotation. The
lookup is occurring by virtue of the remote interfaces that are specified as the type of instance
variables to be filled out by injection. Notice also that the AccountBean is session scoped,
meaning that each client of the JavaServer Faces pages using this AccountBean sees its own
instance of the AccountBean. The AccountBean uses the Checking Enterprise Bean to obtain
the account number and current balance of the account for this client, and to deduct money from
the account as a bill is being paid. It uses the BillPay Enterprise Bean to list out all the potential
bill payees and to make the call to make a payment in a specific amount to a specific payee.

So now let us turn our attention to the Enterprise Beans, first the Checking bean.

286 Java EE 7: The Big Picture

Listing: The Checking bean implementation class

import javax.ejb.Stateful;
import javax.annotation.PostConstruct;

@Stateful
public class CheckingImpl implements Checking {
 private double balance;
 private String accountNumber;

 @PostConstruct
 private void init() {
 this.balance = 400;
 this.accountNumber = "8729-356-XXXXX";
 }

 @Override
 public double getBalance() {
 return this.balance;
 }

 @Override
 public String getAccountNumber() {
 return this.accountNumber;
 }

 @Override
 public void doDeduct(double amount) throws PaymentException {
 if (amount > this.balance) {
 throw new PaymentException("Not enough cash in the account
 to deduct " + amount);
 } else {
 balance = balance - amount;
 }
 }

}

Notice that the Checking bean is a stateful session bean. This means that the Enterprise Bean
container creates a new instance for each client of the bean. In this application, since the only
client of this bean is the AccountBean in the web application, and since there is one
AccountBean instance per web client, it means that each web client has one and only one
Checking bean associated with it. This is what we want, because this bean represents a user’s
own bank account. Notice also that the Checking bean implements the calls of its remote
interface Checking as used by the AccountBean for returning the current balance, account
number, and deducting money from the account. The Checking bean also takes advantage of the
@PostConstruct annotation to initialize its account information. In a more complete
application, this method would likely connect to a database to retrieve this information, using the
identity of the caller to find the correct account information.

Chapter 9: The Fundamentals of Enterprise Beans 287

Listing: The BillPay bean implementation class

import javax.ejb.Singleton;
import java.util.*;
import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;

@Singleton
public class BillPayService implements BillPay {
 @Resource(mappedName = "jms/myConnectionFactory")
 private ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/myQueue")
 private javax.jms.Queue queue;

 @Override
 public List<String> getPayees() {
 List<String> l = new ArrayList<>();
 l.add("energy");
 l.add("water");
 l.add("mortgage");
 l.add("cable");
 return l;
 }

 @Override
 public String doPay(String accountNumber, String payee, double amount)
 throws PaymentException {
 // process the payment in the credit system
 String confirmation = new Long(System.currentTimeMillis()).toString();
 this.updateBackofficeRecords(accountNumber, payee,
 amount, confirmation, new Date());
 return confirmation;
 }

 private void updateBackofficeRecords(String accountNumber, String payee,
double amount, String confirmation, Date d) {
 try (Connection connection = connectionFactory.createConnection()){
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 MessageProducer messageProducer = session.createProducer(queue);
 TextMessage message = session.createTextMessage();
 message.setText(accountNumber + ":" + payee + " paid " + amount +
 " ["+confirmation+"]");

288 Java EE 7: The Big Picture

 messageProducer.send(message);

 } catch (JMSException e) {
 System.out.println("Exception occurred: " + e.toString());
 }

 }
}

The BillPay bean is a singleton session bean, meaning that there is only one instance of this
bean per application. Therefore, the instance of this bean in the application processes all
payments from all accounts.

Aside from returning the current list of payees, this bean sends a JMS message notification to
the JMS queue located at jms/myQueue using a connection obtained from the JMS
ConnectionFactory located at the JNDI address jms/myConnectionFactory. In order for
these operations to succeed, the Java EE server must be configured with these objects registered in
the JNDI namespace at those addresses. The way to set up this JMS environment depends on
which Java EE server you are using. Please refer to the introduction for more information on how
to set up the JMS environment in the GlassFish server. The message that the BillPay bean sends to
the JMS queue contains a confirmation of the payment made, from which account, to which
payee, and the amount.

Where does this message go?
In order to answer this question, we must now look at the Backoffice application. This

application contains two Enterprise Beans, as we saw in Figure 9-15. One is a message-driven
bean; let’s take a look.

Listing: The Backoffice bean implementation class

import javax.ejb.MessageDriven;
import javax.jms.Message;
import javax.jms.TextMessage;
import javax.jms.JMSException;
import javax.ejb.EJB;

@MessageDriven(mappedName = "jms/myQueue")
public class BackofficeBean {
 @EJB(lookup="java:module/payment-recorder")
 private PaymentRecorder recorder;

 public BackofficeBean() {
 }

 public void onMessage(Message incoming) {
 try {
 if (incoming instanceof TextMessage) {
 TextMessage message = (TextMessage) incoming;
 this.recorder.recordPayment(message.getText());
 } else {
 System.out.println("Unexpected message type: " +

Chapter 9: The Fundamentals of Enterprise Beans 289

 incoming.getClass().getName());
 }
 } catch (JMSException jmse) {
 System.out.println("Exception recording incoming message: "
 + jmse.getMessage());
 }

 }
}

This message bean’s mapped name is jms/myQueue, the same JNDI name as the JNDI name
used by the BillPay bean to look up the queue into which it sends its messages. So this
message-driven bean receives a callback into its onMessage() method every time anyone sends
a JMS message to that queue. In other words, this bean receives all the payment confirmations
from the Bank Account application.

When it gets this kind of message, we can see that it invokes the other Enterprise Bean in the
application, the PaymentRecorder bean, passing it the payment confirmation. It locates this
bean by using the lookup variant of the @EJB annotation and using the module-wide name
java:module/payment-recorder.

Now we look at the code for the PaymentRecorder bean.

Listing: The PaymentRecorder bean implementation class

import javax.ejb.Singleton;
import java.util.List;
import java.util.ArrayList;

@Singleton(name="payment-recorder")
public class PaymentRecorderImpl implements PaymentRecorder {
 List<String> payments = new ArrayList<>();

 @Override
 public void recordPayment(String payment) {
 this.payments.add(payment);
 }

 @Override
 public List<String> getPayments() {
 return this.payments;
 }
}

We can see that it is a singleton session bean, which is appropriate as it records confirmations for
all accounts managed by this Bank application, and that it declares a formal Enterprise Bean
name, payment-recorder, tallying with the JNDI name used by the BackofficeBean to locate
it. In addition to exposing the method that receives the confirmation, it exposes a method that lists
all the confirmations it has received. This brings us to the last part of the Backoffice application,

290 Java EE 7: The Big Picture

and the last part of the overall example: the Java EE application client that calls the
PaymentRecorder bean.

Listing: The application client for the PaymentRecorder bean

import javax.swing.*;
import javaeems.chapter9.backoffice.PaymentRecorder;
import java.util.*;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class Main extends JFrame {
 JTextArea jta = new JTextArea();
 PaymentRecorder recorder;

 public Main() {
 try {
 recorder = (PaymentRecorder) InitialContext
 .doLookup("java:app/BankBackoffice-ejb/payment-recorder");
 } catch (NamingException ne) {
 System.out.println("Could not connect to payment
 recorder bean, exiting. " + ne.getMessage());
 return;
 }
 JScrollPane jsp = new JScrollPane(jta);
 this.getContentPane().add(jsp);
 Thread t = new Thread() {
 @Override
 public void run() {
 while (true) {
 List<String> l = recorder.getPayments();
 updateUI(l);
 setTitle("Backoffice at " + new Date());
 try {sleep(5000);} catch (InterruptedException r) {}

 }
 }

 };
 t.start();
 }

 public static void main(String[] args) {
 Main m = new Main();
 m.setBounds(20,20, 450, 300);
 m.setVisible(true);
 m.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

Chapter 9: The Fundamentals of Enterprise Beans 291

 void updateUI(List<String> l) {
 this.jta.setText("");
 for (String next : l) {
 jta.append(next + "\n");
 }
 }

}

This simple swing application uses the JNDI API method for locating the PaymentRecorder
bean in the JNDI namespace, looking it up from the InitialContext class. Once it has done
so, it polls the Enterprise Bean and displays all its confirmations.

In this application, we have exercised many of the features we have explored so far in
Enterprise Bean technology. One question that may have come up in your mind as you looked at
this application is: what happens if something goes wrong during the bill payment process? Is it
possible for money to be deducted from a bank account successfully, but for the bill payment not
to complete?

The answer is, yes. This example needs some more work to ensure the integrity of the bill
payment process in the face of error. In the next chapter, we will see how to correct this kind of
situation by using one of the many features of Enterprise Beans we have not yet explored: their
transactional capabilities.

Summary
In this chapter we introduced Enterprise Beans, the middleware component model of the Java EE
platform. We explored some of the common services supplied to Enterprise Bean components by
the Java EE server, such as lifecycle management, security, and transactions. We looked at the
different types of Enterprise Beans and how to declare them and package them in an application.
We examined the different ways Enterprise Beans can be located and called from clients within
the same application and also from different applications. We looked at the lifecycle and cardinality
of Enterprise Beans and how to intercept state transitions during the lifetime of a bean. We finished
the chapter with an exploration of a multi–Enterprise Bean banking application that used a variety
of Enterprise Bean types and lookup methods by application clients, web components, and other
Enterprise Beans.

CHAPTER
10

Advanced Thinking
with Enterprise Beans

294 Java EE 7: The Big Picture

T
he goal of the Enterprise Bean container is to allow Enterprise Beans to do what they are
best at: thinking.

Everyone knows that in order to think best, it’s best to have peace and quiet. You need
to be relieved temporarily of the details of everyday life that interrupt the thought process. So it is
with Enterprise Beans: the Enterprise Bean container manages several aspects of programming a
server-side component that clears a path for the bean to focus on its intended application logic.
Let’s look again at Figure 10-1, which we first saw in Chapter 9.

We have already covered in some detail the lifecycle of the various kinds of Enterprise Beans,
and we will thoroughly explore security with Enterprise Beans in Chapter 15. In this chapter, we
look at the topics of asynchronous programming, transactions, and concurrency in Enterprise
Beans, while also covering topics such as timers and interceptors.

Multi-threading and Enterprise Beans
Session and message-driven bean instances are single threaded: that is to say that for each
instance of any Enterprise Bean of this type, the Enterprise Bean container ensures that only one
thread is calling the Enterprise Bean at any one time. There is one case where the developer can
override this behavior, as we shall see next, but without special work on the developer’s part,

FIGURE 10-1. The services of the Enterprise Bean container

Client

Enterprise Bean Container

Lifecycle

Method invocation

Security

Concurrency

Transaction

Asynchrony

Enterprise Bean

Chapter 10: Advanced Thinking with Enterprise Beans 295

this single-threaded behavior is the case. From the client’s perspective, however, the Enterprise
Bean appears to be multi-threaded. Multiple clients of an Enterprise Bean may call it simultaneously;
the same client of an Enterprise Bean may spawn multiple threads to call it and start them all at
the same time. What is happening in this case is that the Enterprise Bean container is the first to
receive the client requests. It is in charge of how to pass the request to the correct bean instance,
and if multiple requests are destined for the same bean instance, it will deliver them one at a
time, as shown in Figure 10-2.

There’s a big benefit of this approach and also a drawback. The benefit of this approach is for
the developer. Enterprise Beans do not need to be coded defensively against simultaneous access
by more than one thread; no race conditions to worry about, for example. The drawback is that
there is a performance price to be paid. If an Enterprise Bean receives 10,000 simultaneous
requests (for example, it is handling online votes in a TV talent show contest), then either the
container has to form a queue of all the requests, or it has to instantiate enough separate instances
of the Enterprise Bean so that there is one instance to handle each request, or some combination
of the two approaches. Either approach, or hybrid of the two, has a computation cost. The type of
the Enterprise Bean matters in how the container chooses its approach: for example, for stateless
session beans, it is free to instantiate as many instances as it judges suitable to handle the
requests, but for singleton session beans, since the rule is that there can only be one instance of
the singleton bean in the application, the container has no choice but to form a queue of requests
and deliver them one at a time to the single instance. Anyone who has been on a multilane
freeway that suddenly narrows to a single lane can appreciate the performance penalty.

FIGURE 10-2. Delivering requests one at a time

Concurrency

Enterprise Bean Container

Enterprise BeanC A B

Request A

Request B

Request C

296 Java EE 7: The Big Picture

Multi-threading and Singleton Beans
In the case of the singleton session bean, however, the developer, with some extra work, can
override this threading restriction. This is achieved by opening up the bean to concurrent threads,
either on a per-method basis or to all of the methods on the bean at once.

The class-level annotation @javax.ejb.ConcurrencyManagement controls the overall
concurrency scheme for a singleton bean. Its value attribute is either
ConcurrencyManagementType.CONTAINER or ConcurrencyManagementType.BEAN.

The annotation @ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
indicates that the Enterprise Bean container manages concurrent client requests for the bean,
passing them one at a time to it. This is the same as the default behavior if the annotation is not
included. The annotation @ConcurrencyManagement(ConcurrencyManagementType.BEAN)
indicates that the container is to pass concurrent requests to the bean instance, and it is up to the
bean itself to synchronize its own data.

When a singleton bean uses container-managed concurrency, it may declare how concurrent
access is managed on a method-level basis. The method-level @javax.ejb.Lock governs this
behavior. A method of a singleton using container-managed concurrency annotated with
@Lock(LockType.READ) may be called while other threads are calling the bean, while a
method of a singleton bean using container-managed concurrency that is marked with
@Lock(LockType.WRITE) can be called by a thread only when there are no other active threads
calling the bean. Finally, the @Lock annotation can be used at the class level to provide the
desired level of concurrency methods to all methods that are not already marked with the @Lock
annotation.

Let’s look at an example.

Listing: A non-concurrent singleton bean

import javax.ejb.Singleton;

@Singleton
public class VotingBeanSingleThreaded {
 private String contestant;
 private long voterId;

 public String getLastVote() {
 return "Voter: " + voterId + " vote for " + contestant;
 }

 public void doVote(long voterId, String contestant) {
 // process vote in voting system
 this.voterId = voterId;
 this.contestant = contestant;
 }
}

In this example, the singleton bean is responsible for both accepting and processing votes
coming in from viewers for contestants in a TV talent show. The bean can also report who the last
voter was and which contestant he or she voted for.

In a talent show with hundreds of thousands of votes, you would expect there to be many
concurrent requests to vote. Assuming there are as many viewers accessing the show’s website as

Chapter 10: Advanced Thinking with Enterprise Beans 297

the votes flood in, you might also expect as many, if not more, requests for the last vote report.
Now, as written, the VotingBeanSingleThreaded bean can respond only to one request at a
time, whether it is to vote or to get a vote report. We would not want two people to vote at the
same time, since the recording data in the bean might be corrupted. But it would be okay, and in
fact desirable, if the bean could serve multiple requests for the vote report at the same time. In
terms of the method calls, we would prefer that all requests wait while a thread is in the doVote()
method, but that if no one was calling doVote(), requests to getLastVote() could be served
concurrently. In the next listing, you will see that we have used the @ConcurrencyManagement
and @Lock annotations to do just that.

Listing: A partially concurrent singleton bean

import javax.ejb.Singleton;
import javax.ejb.ConcurrencyManagement;
import javax.ejb.ConcurrencyManagementType;
import javax.ejb.Lock;
import javax.ejb.LockType;

@Singleton
@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
public class VotingBeanConcurrentReadAccess {
 private String contestant;
 private long voterId;

 @Lock(LockType.READ)
 public String getLastVote() {
 return "Voter: " + voterId + " vote for " + contestant;
 }

 @Lock(LockType.WRITE)
 public void doVote(long voterId, String contestant) {
 // process vote in voting system
 this.voterId = voterId;
 this.contestant = contestant;
 }
}

Threading Restrictions
Aside from this type of more specialized case, the typical case of the Enterprise Bean not having
to concern itself with concurrent access to its methods comes with another larger benefit, though
one that can be less tangible during development. By handing over responsibility for thread
management to the Enterprise Bean container, the container is free to apply all sorts of hard-earned
lessons in order to balance the load on an Enterprise Bean application (in other words, the number
and frequency of client requests) with the computing resources it has at hand. This means that
Enterprise Bean containers are taking on some of the burden of optimizing application performance.
But this benefit also comes with a tradeoff: if the Enterprise Bean container is to manage the
threads used to invoke its Enterprise Beans, it has to manage all the threads in the application.
This means that Enterprise Beans are restricted from creating, stopping, and suspending threads,

298 Java EE 7: The Big Picture

and from altering thread priorities of container threads. Some applications find this restriction too
onerous and the type of optimizations that Enterprise Bean containers perform not specific enough
to their needs. We will return to the topic of concurrent processing in the Java EE platform in
Chapter 16.

Asynchronous Enterprise Beans
Enterprise Beans model a wide variety of programming tasks. Some of those tasks are long lived,
such as analysis of large amounts of data, or may take periods of time that are difficult to determine
at the time of calling, such as operations that depend on some external service whose response
time is unpredictable. When the initiators of such tasks kick them off, it can often be useful if they
are not required to wait on the response coming: they might have better things to do with their
resources while they await the result, or they may wish to cancel the task if the task ends up taking
longer than they thought it would at the start. For such cases, Enterprise Beans support an
asynchronous invocation model. Let’s take a closer look at how it works.

Suppose we have an Enterprise Bean that analyzes examination results for a school district.
Such analyses are potentially slow since the datasets will be large.

Listing: A synchronous SlowBean

@Stateful
public class SlowBean {
 public String getAverageExamScore(String criteria) {
 String score;
 // unpredictably long operation calculating the score
 return score;
 }

}

A client of the SlowBean makes a regular invocation, such as

String score = slowBean.getAverageExamScore("11<age<13&F&county");

But rather than wait while the calculation is performed, the client would rather be getting
on with something else. We can therefore rewrite the SlowBean a little, adding the
@javax.ejb.Asynchronous annotation to the method, changing its return type to
java.util.concurrent.Future, and using the javax.ejb.AsyncResult class to
model the return value of the calculation.

Listing: An asynchronous SlowBean

@Stateful
public class SlowBeanAsync {

 @Asynchronous
 public Future<String> getAverageExamScore(String criteria) {
 String score;
 // unpredictably long operation calculating the score

Chapter 10: Advanced Thinking with Enterprise Beans 299

 return new AsyncResult<String>(score);
 }
}

When this method is called, it immediately returns the Future object while the calculation starts
as shown here:

Future<String> futureScore =
 slowBeanAsync.getAverageExamScore("11<age<13&F&county");

The client can test the Future object to see whether the method is complete:

boolean calculationComplete = futureScore.isDone();

The client can cancel the operation if it is taking too long:

if (impatient) {
 futureScore.cancel(true);
}

or await the result:

String score = futureScore.get();

The @Asynchronous annotation can be applied to synchronous Enterprise Bean methods
with a void return value, but the new return value is also void, so the client has no way to track
the completion of the method.

If an exception is raised during the execution of the asynchronous method with a return
value, then the result of the get() call on the Future object that the client receives upon invoking
the asynchronous method is a java.util.ExecutionException whose cause, obtainable by
calling getCause(), is the exception generated in the method.

Let’s walk through a less generic example.

The Async Example
When you run the Async example, you are using a Java EE application client, wrapped in a Java
Swing window, to connect to an asynchronous method on an Enterprise Bean running on the server
that is making a calculation. The calculation is to calculate the largest prime number less than a
given upper bound. When you start the application, you see a window as shown in Figure 10-3.

FIGURE 10-3. Async example on startup

300 Java EE 7: The Big Picture

If you choose a smaller upper bound and a generous timeout, when you press the Calculate
button you should see something like Figure 10-4.

However, if you increase the upper bound and do not give a large enough timeout, you will
see something like Figure 10-5.

In this case, instead of getting a result from the asynchronous method call, the client window
has timed out and stopped waiting for the result to arrive.

In the Async example there is a stateless session bean called PrimeCalculator that is able to
calculate the largest prime number under a given maximum bound. Let’s take a look at the code.

Listing: Calculating primes

import javax.ejb.AsyncResult;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;
import javax.ejb.Asynchronous;
import javax.annotation.Resource;
import java.util.concurrent.Future;

@Stateless
public class PrimeCalculator implements PrimeCalculatorRemote {
 @Resource
 SessionContext context;

FIGURE 10-4. Async example, calculating a large prime

FIGURE 10-5. Async example, timed out, calculation canceled

Chapter 10: Advanced Thinking with Enterprise Beans 301

 @Asynchronous
 public Future<Long> calculateMaxPrimeBelow(long upperLimit) {
 Long current = null;

 for (long candidate = 2; candidate < upperLimit+1; candidate++) {
 if (isPrime(candidate)) {
 current = candidate;
 }
 if (context.wasCancelCalled()) {
 System.out.println("Cancel was called....");
 break;
 };
 }
 return new AsyncResult<>(current);
 }

 private boolean isPrime(long l) {
 for (long i = 2; i <= (long) l/2; i++) {
 if ((l % i) == 0) {
 return false;
 }
 }
 return true;
 }

}

Don’t worry that the algorithm it uses to determine whether a number is prime is not at all:
the point of this example is to be slow!

The main method of interest here is the method calculateMaxPrimeBelow(). It takes the
upper bound as a method parameter and returns a Future<Long> that will hold the largest
prime number less than the upper bound provided, if all goes well. When the calculation
completes, the method returns an instance of the AsyncResult class, containing the prime
number. Notice that this result is returned only after the calculation has completed. Notice also
the injection of an object of type SessionContext using the @Resource annotation. The
SessionContext is an object representing various information that the Enterprise Bean container
keeps current while this session bean is active. When the calculateMaxPrimeBelow() method
calls the context.wasCancelCalled() method, it is querying whether the client of the call has
cancelled the asynchronous method invocation.

We will not look at all of the client code, but the client initiates the calculation by the call

Future<Long> calculationFuture = calculatorBean.calculateMaxPrimeBelow((long) max);

and creates a thread that loops on the test

while (!calculationFuture.isDone()) {..}

to test whether the calculation is complete. If the time exceeds the timeout, the client code calls

calculationFuture.cancel(true);

302 Java EE 7: The Big Picture

which can be picked up in the PrimeCalculator bean in its call to
context.wasCancelCalled().

If the timeout is not exceeded, then the prime number is returned from the get() on the
Future object:

Long prime = calculationFuture.get();

In this way, the client window does not have to hang while the calculation is made.

Enterprise Bean Contexts
In the middle of the last example, we discovered that session beans have access to some useful
information that the Enterprise Bean container keeps while the session bean is active. This is a
good point to look more closely at the SessionContext and at the contextual information
available to other kinds of beans.

Session beans have access to an instance of the javax.ejb.SessionContext that the
container associates with it, while message-driven beans have access to an instance of the
javax.ejb.MessageDrivenContext that the container associates with it. Both contexts inherit
from javax.ejb.EJBContext. This interface contains a variety of useful methods concerning
security, to look up objects in the JNDI namespace, for example. Here is a selection of the more
commonly used ones:

EJBContext Method Purpose
Principal getCallerPrincipal()

and
boolean isCallerInRole(String rolename)

Obtain the identity of the caller
associated with the calling thread, and
test whether the caller belongs to the
given role.

Object lookup(String jndiName) Look up an object (for example,
another Enterprise Bean) in the JNDI
namespace.

TimerService getTimerService() Obtain a reference to the timer
service associated with the context for
registering scheduled callbacks.

UserTransaction getUserTransaction() If the calling thread is associated with
a bean-created transaction, return it.

We will soon be covering the timer service and the topic of transactions. The
MessageDrivenContext in fact adds no new methods to what is provided in this common
super interface, but the SessionContext adds several methods, two of which we highlight here.

SessionContext Method Purpose
Class getInvokedBusinessInterface() Obtain the remote or no-interface type

through which the caller accessed the bean.
boolean wasCancelCalled() Determine for asynchronous calls whether

the client cancelled the operation before it
completed.

Chapter 10: Advanced Thinking with Enterprise Beans 303

The relevant context object is injected into an instance variable of the bean, for example, as
we saw in the Async example.

Listing: Accessing the SessionContext

import javax.annotation.Resource;

public class PrimeCalculator implements PrimeCalculatorRemote {
 @Resource
 SessionContext context;
...
}

and equally for a message-driven bean:

Listing: Accessing the MessageDrivenContext

import javax.annotation.Resource;

@MessageDriven(mappedName = "jms/myQueue")
public class NotifyBean {
 @Resource
 MessageDrivenContext context;
...
}

The Timer Service
So far, all the examples and scenarios we have discussed concerning Enterprise Beans have been
based on the idea that there is always a calling client outside the Java EE application that causes
activity (such as a method call) to an Enterprise Bean. Whether it has been a user action conveyed
through an application client, through a web component calling, or in reaction to a JMS message,
the Enterprise Beans have had work to do only in reaction to some external event. Enterprise Beans
can also have another client: the Enterprise Bean Timer Service can invoke them automatically
according to some preset schedule.

The Timer Service has a variety of uses in applications that need some kind of periodic
heartbeat activity or task. Such tasks include periodic backup of data, regular notifications or
reporting of the current state in an application, and background cleanup of old application data at
preset intervals. All such tasks can be scheduled by the Enterprise Bean container according to a
timetable set by the application.

The basic mechanism of the Timer Service comprises the following pieces:

 ■ A Timer object created according to the schedule the application needs

 ■ The timeout event of the Timer object expiring as it follows the stipulations of its schedule

 ■ The timeout method of the Enterprise Bean that the container calls when the timer
generates a timeout event

We can illustrate this general mechanism in Figure 10-6.

304 Java EE 7: The Big Picture

The Timer Service can be used in conjunction with any type of session or message-driven
bean. Timer objects may be created with a variety of schedules, from simple one-time expiry
timers, to timers that expire at regular intervals, or according to calendar-specified times. There
are two ways in which timers may be associated with a timeout method: programmatically and
using an annotation.

In the programmatic approach, a Timer object is created using one of the methods on the
javax.ejb.TimerService obtained from the EJBContext associated with the bean. For
example, this snippet of code

TimerService timerService = ejbContext.getTimerService();
Timer myTimer = timerService.createSingleActionTimer(60 * 1000,
 new TimerConfig("just a minute", false));

creates and starts a Timer object that will create one timeout event after one minute.
When the Timer object creates a timeout event, the Timer Service looks for a method on the

bean that is annotated with @javax.ejb.Timeout. Such timeout methods must have a void
return value and either no arguments or a single method parameter of type javax.ejb.Timer.

@Timeout
 private void closeAuction(Timer t) {
 // close the auction to bids, the time has come.
 }

Using the annotation approach, the creation of the Timer object and the assignment of the
timeout method are both achieved by annotating a suitable timeout callback method (subject to
the same restrictions as described in the programmatic approach) with the @Schedule annotation.
Under this approach, the Timer object used by the container is created and started as soon as the
Enterprise Bean is deployed. The @Schedule annotation contains a number of attributes, which

FIGURE 10-6. The Timer Service

Enterprise Bean Container

Enterprise
Bean

TimerService

Timer
<timeout-event>

<timeout-method>

Chapter 10: Advanced Thinking with Enterprise Beans 305

we will look at shortly, that allow you to define the timetable under which you wish the
associated Timer object to create expiry events. For example, the snippet

@Schedule(dayOfWeek = "*")
public void backupCustomerData() {
 // make the daily backup of the customer's data
}

causes this method to be called every day at the turn of midnight. Finally, timeout callback
methods may be assigned more than one Timer object by annotating it with the composite
@Schedules annotation, which may contain one or more @Schedule annotations, each of
which creates a Timer object.

The Language of Schedules
The @Schedule annotation’s many time attributes allow for a wide range of values to be given
for a schedule. In the next table, we summarize all the allowable values that may be used in the
annotation.

@Schedule
Attribute Allowable Values
second 0,1,...,59

*, meaning every second
minute 0,1,...,59

*, meaning every minute
Hour 0,1,...,23

*, meaning every hour
dayOfMonth 1,2,...,31

-1, -2, ..., -31 (counted back)
“Last” (last day of month)
{"1st", "2nd", "3rd", "4th", "5th", "Last"} {"Sun", "Mon", "Tue", "Wed", "Thu",
"Fri", "Sat"}
*, meaning every day

Month [1,12]
{"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov",
Dec"}
*, meaning every month

dayOfWeek 0,1,...,7, where 0 and 7 are Sunday.
{"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}
*, meaning every day

Year NNNN
*, meaning every year

timezone Zone Name(TZ), defaults to time zone of server
Info String used to identify the schedule
persistent True (default) or false, depending on whether you want the timer to survive

Java EE server crashes and restarts

306 Java EE 7: The Big Picture

The values for the time-relative attributes, such as hour and month, may be used as single
values. For example

@Schedule(hour="2")

means “every day at 2 a.m.,” and

@Schedule(dayOfWeek="5", hour="17")

means “every Friday at 5 p.m.”
Alternatively, they may be used in a list, separated by comments, such as

@Schedule(dayOfWeek="Mon,Wed,Fri", hour="9")

meaning “every Monday, Wednesday, and Friday at 9 a.m.”
They may also be used in a range of values, with the minimum and maximum values separated
by -, for example

@Schedule(dayOfMonth="1-7")

which means “every day for the first seven days of the month.”
Finally, the values for the time-relative attributes may be used in increment expressions, using / to
denote a range and an interval. For example

@Schedule(minute="*/5")

which means “every five minutes,” or

@Schedule(dayOfMonth="10/2")

which means “every other day from the 10th of the month to the end of the month.”
Under the programmatic approach, the Timer object can be created using the

TimerService call

Timer createCalendarTimer(ScheduleExpression schedule)

where the ScheduleExpression object can be created from the same attributes used in the
@Schedule annotation.

For example,

new ScheduleExpression()
 .dayOfWeek("Mon,Wed,Fri")
 .hour(9);

And if you are reading this at the time denoted by the following expression

ScheduleExpression happyHour = new ScheduleExpression()
 .dayOfWeek("Fri")
 .hour(18)
 .minute("*");

then perhaps it is time to put down this book and go and do something else.

Chapter 10: Advanced Thinking with Enterprise Beans 307

Timers at Runtime
Enterprise Beans running under a time can programmatically control the Timer object. The
timeout callback method, as we have already seen, can elect to receive the javax.ejb.Timer
object as a method parameter. Even if an Enterprise Bean has set up multiple timers, the Timer
instance that has just created a timeout event is the one that is passed into the method.

From this Timer object you can cancel the timer and find out full information about its
schedule. Timer objects are by default persistent and so are persisted in the event of a Java EE
server restart or failure. This means that such timers continue to operate if and when the Java
EE server and its applications are restored. You can make the Timer objects you create not persistent,
either programmatically in the TimerConfig object passed to the TimerService’s Timer
creation methods, or through the use of the @Schedule annotation, setting the persistent
attribute to false.

Finally, you can access all the timers for the current bean, or all the timers for the current
bean’s containing module from the TimerService, by calling getTimers() or getAllTimers(,)
respectively.

Transactions and Enterprise Beans
Enterprise Beans are the thinking layer in the Java EE platform. This means that they are often
handling, processing, and synthesizing application data whose resting place is in the data layer of
the Java EE platform, managed either through the JDBC or Java Persistence APIs. It is therefore very
important that while Enterprise Beans are interacting with application data held in one or more
databases, the integrity of the data is maintained across operations. Simple data operations, such
as incrementing a counter or adding an employee record to a database can easily be modeled as
single Enterprise Bean methods. If the method fails, the data write fails and vice versa. But in
real-world applications, many operations, such as adding a new employee to a company’s HR
system, involve interactions with more than one database table. And returning to the bank account
example we studied in Chapter 8, making a payment is a classic example of a two-step operation:
withdrawing money to make the payment, and making the payment. When everything goes well, it
doesn’t matter whether these operations have multiple steps. But when something does go wrong
in the middle of a multistep operation, extra work needs to happen to make sure that the system is
left in a consistent state. In the bank account example, if something goes wrong with the payment
step, we really should return the money that we withdrew from the bank account.

Java transactions are an answer to this problem. In a multistep operation, often coded in an
application as several method calls that result in read-and-write operations to one or more data
sources, a Java transaction turns the operations into a single unit of action that either succeeds or
fails. If the transaction succeeds, all the data sources involved move to the new state. If the
transaction fails due to any of the constituent steps failing, the data sources involved are all rolled
back to their state as it was at the beginning of the operation. In the bank account example, either
the payment goes through and the money is withdrawn from the account, or no payment is made
and no money is removed from the account.

With that background, an easier way to think of a transaction is a way to treat multiple Java
methods that update data sources as a single atomic operation that either succeeds or fails.

To help visualize, let’s look at the bank account example in Figure 10-7.
In Figure 10-7, the operations of making the payment and debiting the checking account are

wrapped in a transaction. Before anything happens, the transaction, the atomic payment operation,
begins. Then the payment is made and the account debited. If anything goes wrong in these

308 Java EE 7: The Big Picture

operations that are part of the payment transaction, the transaction is rolled back, and everything
returns to the beginning state. If both the operations complete successfully, then and only then
can the payment transaction complete.

Since you have already written some Enterprise Beans and called their methods, you have
already used Java transactions: by default, every Enterprise Bean method invocation occurs within
a Java transaction. This is not very useful in the kind of scenario earlier, because every Enterprise
Bean method invocation occurs within its own Java transaction. Transactions are only really useful
when you can group Enterprise Bean method invocations together into the same transaction so
that they can act as one atomic and indivisible operation.

There are two ways to use Java transactions in Enterprise JavaBeans: the first is to use them
programmatically, defining the transaction boundaries by hand using API calls to the Java
Transaction API. The second method is to annotate the Enterprise Bean methods to govern their
transactional properties.

Programmatic Transactions
When Enterprise Beans want to control their own transactions explicitly, they
declare the class-level annotation @javax.ejb.TransactionManagement with value
TransactionManagementType.BEAN. Then they must use the javax.transaction
.UserTransaction object to perform transactions. This object can be injected into an Enterprise
Bean using resource injection, the @Resource annotation, just as we saw, for example, when
injecting the SessionContext into a session bean earlier. Or it can be accessed from the
Enterprise Bean’s EJBContext. UserTransaction has three methods that control the
transaction behavior in scope in which it is used.

FIGURE 10-7. A transactional bank account

Enterprise Bean Container

Transaction Service

Payment
Bean

makePayment()

Checking
Bean

debitAccount()

Payment
Transaction

begin transaction

commit transaction

Chapter 10: Advanced Thinking with Enterprise Beans 309

UserTransaction.begin()

causes a new transaction to be created. Any Enterprise Bean method call that follows this will
now be a part of this transaction.

UserTransaction.rollback()

causes the current transaction to roll back to its original state, causing any data source updates
that have been made by any of the bean method calls in this transaction (and so are pending
being committed permanently) to be removed. Enterprise Beans call rollback() when one of
the Java methods they call as part of the transaction goes wrong: all it takes is one missing link in
the chain for it all to break, and the rollback() ensures that no permanent damage is done.

UserTransaction.commit()

causes any data source updates that have been made by any of the bean method calls in this
transaction to be committed permanently to the data sources.

The following code excerpt shows how you might apply the UserTransaction to the bank
account example to ensure that the payment operation is processed as a single transaction.

Listing: Paying a bill within a transaction

import javax.transaction.UserTransaction;
import javax.annotation.Resource;
import javax.ejb.TransactionManagement;
import javax.ejb.TransactionManagementType;

@Stateful
@TransactionManagement(value=TransactionManagementType.BEAN)
public class PaymentBean implements Payment {
@Resource
private UserTransaction userTransaction;
...
 public String makePayment(double amount,
 String accountNumber,
 String payee)
 throws ApplicationException {
 try {
 userTransaction.begin();
 this.checkingBean.doDeduct(amount, accountNumber);
 String confirmation =
 this.billPay.doPay(amount, accountNumber, payee);
 userTransaction.commit();
 return confirmation;
 } catch (PaymentException pe) {
 userTransaction.rollback();
 throw new ApplicationException(pe.getMessage());
 }
 }
...
}

310 Java EE 7: The Big Picture

Transaction by Annotation
When an Enterprise Bean wants the Enterprise Bean container to manage its transactions instead
of having to handle them explicitly with the UserTransaction object, it omits any class-level
@TransactionManagement annotation altogether, since by default the container manages
Enterprise Bean transactions. Equivalently, it may include the @TransactionManagement
annotation, but this time with value TransactionManagementType.CONTAINER.

@TransactionManagement(value=TransactionManagementType.CONTAINER)

Without further intervention, such an Enterprise Bean is assigned a new transaction for every
call that the container makes to its methods. As we noted, transactions are really useful only when
they allow you to group a number of method invocations together, so let us look at how you can
annotate the Enterprise Bean methods to define how they participate in Java transactions.

Suppose a bean client C calls a method on Enterprise Bean B. C could be a web component,
an application client, or another Enterprise Bean. Either the call C makes is already in a transaction
or it isn’t. Now when C calls B, B has some choices it can make. If C’s call is already in a transaction,
does B want to be part of it? Does B always want to have a new transaction to operate in? Does
B never want to be in a transaction at all? B can make such choices, and more, by annotating
its method in question with the annotation @javax.ejb.TransactionAttribute.
@TransactionAttribute has one mandatory value attribute, which takes one of the values of
the TransactionAttributeType enum: MANDATORY, NEVER, NOT_SUPPORTED, REQUIRED,
REQUIRES_NEW, and SUPPORTS. Let’s look at what each attribute means in the next table.

Method on B Uses the
TransactionAttributeType:

If the Call from C
Is Already Part of a
Transaction:

If the Call from C Is Not
Part of a Transaction:

MANDATORY The call to B is part of C’s
transaction.

Invocation to B’s method
throws an EJBException.

NEVER Invocation to B’s method
throws an EJBException.

Invocation to B’s method
proceeds with no
transaction.

NOT_SUPPORTED C’s transaction is suspended
while the call to B proceeds
with no transaction.

Invocation to B’s method
proceeds with no
transaction.

REQUIRED The call to B is part of C’s
transaction.

The container creates a
new transaction for the call
to B to be part of.

REQUIRES_NEW C’s transaction is suspended
while the container creates
a new transaction for the
call to B to be part of.

The container creates a
new transaction for the call
to B to be part of.

SUPPORTS The call to B is part of C’s
transaction.

Invocation to B’s method
proceeds with no
transaction.

Chapter 10: Advanced Thinking with Enterprise Beans 311

In order to see the power of transactions and Enterprise Beans together, we need to connect
with some data sources to see the effects of transaction commits and rollbacks. So for now, we
will defer a detailed example. But we will return to transactions in the next two chapters.

Interceptors
Enterprise Bean interceptors are Java components that wrap around invocations to Enterprise
Beans. Interceptors are useful because they allow you to write separate Java classes that you can
attach to one or more Enterprise Beans that intercept all method invocations on the bean. This
kind of component has a variety of uses: from logging and auditing, to security checks, to allowing
application development frameworks to modify the behaviors of Enterprise Beans by modifying
the objects they consume and produce. We can get a general picture of how interceptors work in
Figure 10-8.

You can flag that a Java class will be an interceptor by marking it with the class annotation
@javax.interceptor.Interceptor.

And in order to intercept regular Enterprise Bean invocations, you write a method that you
will use to implement the intercepting logic and annotate it with @javax.interceptor
.AroundInvoke. The method must have an Object return value, throw java.lang.Exception,
and take a class called javax.interceptor.InvocationContext as its single method

FIGURE 10-8. An interceptor attached to an Enterprise Bean

Enterprise Bean Container

Interceptor

Enterprise
Bean

@AroundInvoke
method()

bean_method() Client

312 Java EE 7: The Big Picture

parameter. In other words, all the @AroundInvoke interceptors you might write look something
like this:

Listing: Template for an interceptor

import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;
import javax.interceptor.Interceptor;

@Interceptor
public class MyInterceptor {
 @AroundInvoke
 public Object myInterceptMethodName(InvocationContext ic)
 throws Exception {
 ...
 }
}

The InvocationContext is the key to implementing the @AroundInvoke method. From
the InvocationContext, you can determine the java.lang.reflect.Method object of the
Enterprise Bean method being intercepted. Using the getMethod() call, you can obtain the
values of the method parameters with getParameters(), and even modify them with the
setParameters() call. Most importantly, the proceed() method causes the Enterprise Bean
(or next interceptor in the chain) to be called, either throwing an exception or returning, with a
value or null if the Enterprise Bean method has void return. So the typical flow of an
@AroundInvoke method implementation is something like this:

Listing: Template for an @AroundInvoke method

 @AroundInvoke
 public Object myInterceptMethodName(InvocationContext ic)
 throws Exception {
 // look at InvocationContext to obtain information
 // about the Enterprise bean being called, and information
 // about the method
 // modify parameters if necessary
 try {
 Object result = ic.proceed(); // call the bean
 } catch (Exception e) {
 // rethrow, wrap, or consume exception e
 }
 // clean up, record interception complete
 return result;
 }

In order to attach an interceptor to an Enterprise Bean or to any of its methods, all you need to
do is list the interceptor class in the class or method-level annotation @Interceptors, whose
value attribute takes a list of classnames of interceptors. The Enterprise Bean container calls the
interceptors attached to an Enterprise Bean in the order they appear in the @Interceptors

Chapter 10: Advanced Thinking with Enterprise Beans 313

annotation. If the @Interceptors annotation is applied at the class level, it applies to all
methods of the Enterprise Bean.

The AuditInterceptor Example
Let’s look at a short example. Consider the AuditInterceptor, which logs every method call to
an Enterprise Bean.

Listing: The AuditInterceptor

import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;
import javax.interceptor.Interceptor;
import java.util.*;

@Interceptor
public class AuditInterceptor {
 @AroundInvoke
 public Object intercept(InvocationContext context) throws Exception {
 Object result = null;
 String ebClassname = context.getTarget().getClass().getSimpleName();
 String methodName = context.getTarget().getClass().getSimpleName();
 String parameterString =
 Arrays.asList(context.getParameters()).toString();
 System.out.println("AuditInterceptor: The call to " +
 ebClassname +
 "." + methodName +
 parameterString + "...");
 try {
 result = context.proceed();
 } catch (Exception e) {
 System.out.println("AuditInterceptor:which raised " + e);
 throw e;
 }
 System.out.println("AuditInterceptor:has returned " + result);
 return result;
 }

}

Now let us attach this to the critical methods of a pair of Enterprise Beans we have already
met in Chapter 8: the BillPay and Checking beans from the bank account example. We will
attach the AuditInterceptor to the payment and debit methods on those beans, respectively.

Listing: Attaching the AuditInterceptor (1)

@Stateful
public class CheckingImpl implements Checking {
...

314 Java EE 7: The Big Picture

 @Interceptors(AuditInterceptor.class)
 public void doDeduct(double amount) throws PaymentException {
 ...
 }
...
}

and

Listing: Attaching the AuditInterceptor (2)

@Stateful
public class BillPayService implements BillPay {
@Interceptors(AuditInterceptor.class)
 public String doPay(String accountNumber,
 String payee,
 double amount) throws PaymentException {
...
}

Then when we make a payment through the web interface, the AuditInterceptor
produces output, as you can see in the next excerpt.

Listing Output from the AuditInterceptor

Info: AuditInterceptor: The call to CheckingImpl.CheckingImpl[15.0]...
Info: AuditInterceptor:has returned null
Info: AuditInterceptor: The call to BillPayService.BillPayService[8729-356-
XXXXX, energy, 15.0]...
Info: AuditInterceptor:has returned 1399960391941

Interceptors can be used to catch invocations to the timeout methods that we introduced in
the previous section, using the @AroundTimeout annotation applied to any method of the same
shape as required by the @AroundInvoke annotation. An interceptor may have at most one
@AroundInvoke and one @AroundTimeout method. Otherwise, if there is more than one of
either, the container does not know which one you want it to call!

The Enterprise Bean container creates one instance of the interceptor for each instance of an
Enterprise Bean that declares it. This makes the lifecycle of interceptor instances easy: they live
and die with the Enterprise Bean instance they are attached to. They are truly the WebFilters of the
Enterprise Bean container.

Summary
In this chapter, we have explored some of the various services that Enterprise Beans can enjoy.
We looked at what the threading model is for Enterprise Beans and at how they can depend on
single-threaded access, while, in the case of singleton session beans, for performance reasons,
some of the methods may be allowed to have access by concurrent threads. We looked at how
Enterprise Bean methods can work asynchronously, what that looks like, and what can be

Chapter 10: Advanced Thinking with Enterprise Beans 315

controlled about the asynchronous process both from the perspective of the bean and its client.
We looked at how the Enterprise Bean container can automatically invoke a bean according to a
wide variety of different application-provided schedules with the Timer Service. We looked at the
EJBContext of an Enterprise Bean and how it can be used to access caller information and the
JNDI naming directory and timers on a bean. We explored the world of transactions from the
perspective of an Enterprise Bean developer and concluded by looking at the very useful and
general-purpose Interceptor model.

However, we are running short on new examples of Enterprise Beans, because as much as we
have seen how good they are at thinking, we haven’t really given them anything interesting to
think about. For that, we need to delve deeper into the platform and the data layer, which are the
subjects of the next two chapters.

PART
III

The Collective Memory:
The Information Tier

This page intentionally left blank

CHAPTER
11

Classic Memories: JDBC

320 Java EE 7: The Big Picture

R
elational databases form the majority of databases today, and JDBC is the traditional way to
access data in a relational database.

A relational database is a storage system for information that is based on storing the
information in tables. The term relational comes from the idea that when you define the columns in
a table, for each row of data in the table you are defining a relationship between the pieces of
information in the row. For example, if you define a table to have columns for name, age, and
height for each row, you are defining a relationship between the name of a person, her age, and
her height. In relational databases, tables themselves are created to have relationships between
them: in a relational database containing information about employees, you might define a table
to contain all personal information about an employee: their hire date, home address, and so on.
You might define a second table to contain information about their job: their title, salary, and
grade level. You need to have a way to uniquely identify each row in the personal information table
in a relational database, usually in the form of a unique identifier called a primary key. With
these, you can link the information from the personal information table with the table
containing the job-related information by using an identifier in the job table, called a foreign
key, to match the primary key. Using this basic scheme of tabular information and a way to link
tables together, relational databases store most of the information used in computer systems today.

In order to interact with a relational database, to write information to and read information
from its tables, relational databases use query languages. There are several such languages, but
the most popular for many years is Structured Query Language (SQL). The JDBC APIs use SQL to
create, delete, and update tables in the relational databases that it uses.

JDBC is not the only API through which to access the database in the Java EE platform; in the
next chapter we will examine the Java Persistence API. The JDBC API provides a simple approach,
where data is modeled through SQL statements and a generic object called a ResultSet, which
represents the results of a query for data. In contrast, the Java Persistence API offers a higher-level
view of relational data in terms of application objects. In the next two chapters, we will explore
both approaches in some detail.

In this chapter, we look at the JDBC APIs, focusing on the key abstractions needed to interact
with a relational database. We review the SQL language, introducing or refamiliarizing you with
this relatively straightforward query language. We also present some examples to illustrate the
concepts we discuss.

Introduction to JDBC
The Java Database Connectivity APIs (JDBC) enable you to connect to a relational database for the
following principal tasks:

 ■ To connect to a database configured in the Java EE server

 ■ To define, set up, and create tables in which to hold data

 ■ To add, remove, and edit data held within tables in the database

You can use the JDBC APIs from either the web container or the EJB container, as you can see
in Figure 11-1.

Chapter 11: Classic Memories: JDBC 321

Because of the relative simplicity of the JDBC APIs, there are many Java EE applications that
use JDBC in combination with one or more kinds of web components and do not use Enterprise
Beans at all. This two-tier approach has many advantages of simplicity, particularly for smaller
applications, not requiring knowledge of the Enterprise Bean container at all. In this chapter, our
examples all have this simple two-tier architecture. However, the kind of access to relational data
you see in this chapter from web components through the JDBC APIs also works equally well
from Enterprise Beans.

In Figure 11-2, we see the typical JDBC objects in play in a typical JDBC application.
The JDBC client application, either a web component or Enterprise Bean, obtains an instance

of a javax.sql.DataSource. The DataSource object is the entry point for access to a
relational database, acting as a factory for java.sql.Connection objects. Java EE components
may either look up preconfigured DataSource objects in the JNDI namespace, or they can be
injected into the Java EE component, as we shall see. A Connection object represents a single
session with a database, encompassing a series of interactions to update the database or retrieve
data from it. Applications pass SQL statements to the Connection object in order to create
java.sql.Statement objects representing the operation they wish to perform. There are
various different kinds of Statement objects, as we shall see, depending on how the SQL
statement will be processed. The application causes the SQL statement held by a Statement object
to be run against the database by calling one of the execute() methods on the Statement
object. The result of the execution of the Statement is either a status in the case of operations

FIGURE 11-1. Accessing JDBC APIs from Java EE components

Java EE

EJB Container

EJBs

JDBC

Web Container

Web Component

JDBC

Database

322 Java EE 7: The Big Picture

like table creation or updating a row in a table that does not return table data, or an instance of
the ResultSet object in the case of operations that retrieve data. The java.sql.ResultSet
object is a representation of general tabular information based on the concepts of traversing
through each row of data with a cursor and reading each piece of data from the row based on a
get() call using the name of the column. You might immediately see from this description that
much of the work in an application that uses JDBC to hold its data is in formulating the correct
SQL statements and in reading data from ResultSet objects and converting them into
application-level Java objects.

Hello JDBC Example
With this general description of the JDBC API, let us look at a simple example: Hello JDBC.

In this example, from the initial page we see in Figure 11-3 we create a table as can be seen
in Figure 11-4, add a message to it as we see in Figure 11-5, retrieve the message as seen in
Figure 11-6, and then delete the table, shown in Figure 11-7.

FIGURE 11-2. Anatomy of a JDBC application

Connection

ResultSet

JDBC Client
Application

DataSource

getConnection()

createStatement()

StatementSt t tStatementStatementStatementtatementtate
Statement

R ltS tResultSetResultSetResultSetesultSetesultSe
ResultSet

execute()

inject or lookup

getX()

SQL Code

Database

Chapter 11: Classic Memories: JDBC 323

FIGURE 11-3. The HelloJDBC home page

FIGURE 11-4. Creating a table in HelloJDBC

324 Java EE 7: The Big Picture

FIGURE 11-5. Adding a message to the database

FIGURE 11-6. Fetching a message from the database

Chapter 11: Classic Memories: JDBC 325

The Hello JDBC application is a JavaServer Faces page called database.xhtml, calling into
a request-scoped managed bean with classname HelloJDBCBean. This managed bean could
equally be a Java servlet or Enterprise Bean in terms of its use of the JDBC APIs.

Before we turn to the source code in this example, we cover the topic of how it is configured.
The main two steps in the configuration are first to set up a schema in the database where the
table in the example will be written, and second to configure a data source that the application
will use and that will contain all the configuration information necessary for the application to
connect through this data source to the schema set up in the database.

How these two tasks are accomplished varies depending on which database and which Java
EE application server you use. From the Netbeans tool, using the Derby Java database and
GlassFish 4.0 in order to create the schema, the first step is to locate the JavaDB NetBeans and
choose the Create Database option, supplying a name for the database and a username and
password that can be used to connect to it. Second, to configure a data source in an application,
add a New GlassFish JDBC DataSource to the application. This process prompts you to select a
JNDI name under which to register the data source, guiding you through the available schema
(one of which you should just have created) to which the data source will connect. NetBeans will
store a glassfish-resources.xml file with the application that contains the configuration
information about the data source. In this example, we have set up a data source registered to the
JNDI name jdbc/helloJDBCDatasource, which connects to the schema called hello-jdbc
with the username hello and password hello1. Here is the glassfish-resources.xml file for
this example.

FIGURE 11-7. Deleting the table

326 Java EE 7: The Big Picture

Listing: A DataSource configuration in GlassFish the glassfish-resources.xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE resources PUBLIC
 "-//GlassFish.org//DTD GlassFish Application Server 3.1 Resource Definitions//EN"
 "http://glassfish.org/dtds/glassfish-resources_1_5.dtd">
<resources>
 <jdbc-resource enabled="true"
 jndi-name="jdbc/helloJDBCDatasource"
 object-type="user"
 pool-name="helloConnectionPool">
 <description/>
 </jdbc-resource>
 <jdbc-connection-pool allow-non-component-callers="false"
 associate-with-thread="false"
 connection-creation-retry-attempts="0"
 connection-creation-retry-interval-in-seconds="10"
 connection-leak-reclaim="false"
 connection-leak-timeout-in-seconds="0"
 connection-validation-method="table"
 datasource-classname="org.apache.derby.jdbc.ClientDataSource"
 fail-all-connections="false"
 idle-timeout-in-seconds="300"
 is-connection-validation-required="false"
 is-isolation-level-guaranteed="true"
 lazy-connection-association="false"
 lazy-connection-enlistment="false"
 match-connections="false"
 max-connection-usage-count="0"
 max-pool-size="32" max-wait-time-in-millis="60000"
 name="helloConnectionPool"
 non-transactional-connections="false"
 ping="false" pool-resize-quantity="2"
 pooling="true"
 res-type="javax.sql.DataSource"
 statement-cache-size="0"
 statement-leak-reclaim="false"
 statement-leak-timeout-in-seconds="0"
 statement-timeout-in-seconds="-1"
 steady-pool-size="8"
 validate-atmost-once-period-in-seconds="0"
 wrap-jdbc-objects="true">
 <property name="URL" value="jdbc:derby://localhost:1527/hello-jdbc"/>
 <property name="serverName" value="localhost"/>
 <property name="PortNumber" value="1527"/>
 <property name="DatabaseName" value="hello-jdbc"/>
 <property name="User" value="hello"/>
 <property name="Password" value="hello1"/>
 </jdbc-connection-pool>
</resources>

We will not look at the source code for the database.xhtml JavaServer Faces page because
it is backed by the managed bean HelloJDBCBean, which contains all the code relating to the
JDBC APIs. We will look only at the following listing.

Chapter 11: Classic Memories: JDBC 327

Listing: The HelloJDBCBean

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.Statement;
import javax.annotation.Resource;
import javax.enterprise.context.RequestScoped;
import javax.sql.DataSource;
import java.sql.SQLException;
import javax.inject.Named;

@Named("databaseBean")
@RequestScoped
public class HelloJDBCBean {
 @Resource(lookup="jdbc/helloJDBCDatasource")
 DataSource ds;
 String statusString = "";
 String message = "Hello JDBC !";
 String iconString = NO_TABLE_ICON;
 static String NO_TABLE_ICON = "database-icon.png";
 static String EMPTY_TABLE_ICON = "database-add-icon.png";
 static String FULL_TABLE_ICON = "database-check-icon.png";
 static String ERROR_TABLE_ICON = "database-error-icon.png";

 public HelloJDBCBean() {
 }

 public String getIcon() {
 return this.iconString;
 }

 public String getStatus() {
 return this.statusString;
 }

 public void setMessage(String message) {
 this.message = message;
 }

 public String getMessage() {
 return this.message;
 }

 private void setStatus(String statusString, String icon) {
 this.statusString = statusString;
 this.iconString = icon;
 }

 public void createTable() {
 try (Connection connection = ds.getConnection()) {
 Statement smnt = connection.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 int result = smnt.executeUpdate(
 "CREATE TABLE Messages (MessageID int, Message varchar(255))");
 this.setStatus(
 "The Messages table was created. You can now add your message.",

328 Java EE 7: The Big Picture

 EMPTY_TABLE_ICON);

 } catch (SQLException e) {
 this.setStatus("Error: " + e.getMessage(), ERROR_TABLE_ICON);
 }
 }

 public void writeValue() {
 try (Connection connection = ds.getConnection()) {
 Statement smnt = connection.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 int result = smnt.executeUpdate(
 "INSERT INTO Messages (MessageID,Message)
 VALUES (1,'"+this.message+"')");
 this.setStatus(
 result + " row was added to the Messages table.",
 FULL_TABLE_ICON);
 } catch (SQLException e) {
 this.setStatus("Error: " + e.getMessage(), ERROR_TABLE_ICON);
 }
 }

 public String retrieveValue() throws SQLException {
 ResultSet rs = null;
 try (Connection connection = ds.getConnection()) {

 Statement smnt = connection.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 rs = smnt.executeQuery("SELECT Message FROM Messages");
 rs.last();
 String s = rs.getString("Message");
 rs.close();
 this.setStatus(
 "Retrieved the value [" + s + "] from the Messages table.",
 FULL_TABLE_ICON);
 return s;
 } catch (SQLException e) {
 rs.close();
 this.setStatus("Error: " + e.getMessage(), ERROR_TABLE_ICON);
 }
 return "";
 }

 public void dropTable() {
 try (Connection connection = ds.getConnection()) {
 Statement smnt = connection.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 int result = smnt.executeUpdate("DROP TABLE Messages");
 this.setStatus("The Messages table was removed.", NO_TABLE_ICON);
 } catch (SQLException e) {
 this.setStatus("Error: " + e.getMessage(), ERROR_TABLE_ICON);
 }
 }
}

Chapter 11: Classic Memories: JDBC 329

Notice that this request scope bean injects the DataSource as an instance variable into
itself, using the JNDI name to locate it in the JNDI name @Resource(lookup="jdbc/
helloJDBCDatasource"). The methods that are invoked when the four buttons on the main
page are pressed are createTable(), writeValue(), retrieveValue(), and dropTable().
Each method follows the same pattern of obtaining a new connection from the data source.
Notice that the call getConnection() takes no arguments: as we saw from the particular
configuration of the data source in NetBeans, the DataSource object already contains the
location of the database and the account credentials needed to connect to it; no such configuration
information is needed in code that will use the connection. Each of the four methods creates a
Statement object that is ready to accept the SQL statement. The options used to create the
statement, ResultSet.TYPE_SCROLL_INSENSITIVE and ResultSet.CONCUR_READ_ONLY,
indicate that the ResultSet coming from a SQL statement executed on this Statement, if it
returns data, will return data that will not be changed while the result set is open. Then the four
methods use SQL CREATE TABLE, INSERT, SELECT, and DELETE TABLE statements to create a
table called Messages, add a row containing a custom message to the table, retrieve the last row
of the Messages table, and delete the Messages table, respectively. The SQL statement is
executed against the database when the relevant execute() method is called: either
executeQuery() or executeUpdate() depending on whether the SQL statement will return
data or not. In the case where the SQL statement does result in returning data, in the
retrieveValue() method, the ResultSet object contains all the rows of the table, and the
value of the Message column in the row last added to the Messages table is returned. The
HelloJDBCBean maintains a status string and a link to the appropriate icon depending on the
state of the proceedings.

You can see in this very simple example the building block steps of creating and adding to a
table and of retrieving values and deleting the table. You can start to see some of the main themes
of a JDBC application even in this simple application: managing connections, managing SQL code
embedded within Java JDBC API calls, and the beginnings of how to use statements and navigate
through the ResultSets that return data that application has requested.

Now we are ready to expand on these foundational themes and explore in more detail how to
use JDBC for more sophisticated application data storage and retrieval. But first we will present a
quick overview of the SQL language.

Structured Query Language
SQL is a simple language for interacting with relational databases. It has proved extremely
durable, having been first created in the early 1970s. In this section, we will look at the most
common commands.

SQL statements fall into two basic categories: ones that manipulate the shape of the data that
can be stored in the database, and ones that manipulate the data itself. In other words, there are
statements that create or alter the tables that will hold the data, and there are statements that
create or alter the data held within the tables.

Statements That Alter Table Structure
The most frequently used statements are CREATE TABLE and DROP TABLE. We have already seen
two of these in action in the Hello JDBC example.

330 Java EE 7: The Big Picture

The CREATE TABLE statement is used to create a new table in the database, for example:

CREATE TABLE Employees (
Employee_Number Integer,
First_Name Text,
Last_Name Text)

The syntax

CREATE TABLE <table-name> (
 <column-name1> <data-type(size)>,
 <column-name2> <data-type(size)>,

 <column-nameN> <data-type(size)>
)

creates a new table in the database with the name table name, and with N columns, named
column-name1...column-nameN, each with the specified data type for holding information.
Each relational database defines a slightly different set of allowed data types, which can cause
problems when moving from database to database. All relational databases support data types for
text; various number, date, and time formats; and binary formats such as blob. The examples in
this chapter are limited to commonly supported data types, in particular, those supported by the
Apache Derby database.

The statement

DROP TABLE <table-name>

deletes the table called <table-name> in the database and all the data it holds. For example,

DROP TABLE Employees

removes the Employees table and all the employee records that it holds.

Statements That Store or Retrieve Data Into and From Tables
The SELECT statement is the workhorse statement for retrieving data from a table in a relational
database. The statement is composed of the table name or names from which you want to get
information and the column names of the data you want to access together.

The statement

SELECT <column-name1>, <column-name2>...<column-nameN>
FROM <table-name1>, ..., <table-nameM>

will retrieve the data held within all the named columns in the given tables. You can use table-
name.column-name to disambiguate column names if more than one table uses the same
column name. For example,

SELECT First_Name, Last_Name FROM Employees

will return the first and last names of all the employees in the Employees table.
The WHERE clause can be used at the end of the SELECT statement to filter the results

according to some given criteria:

Chapter 11: Classic Memories: JDBC 331

SELECT <column-name1>, <column-name2>...<column-nameN>
FROM <table-name1>, ..., <table-nameM>
WHERE <column-name> <sql-operator> <value>;

and where sql-operator can be = (equal), <> (unequal), > (greater than), < (less than), >=
(greater than or equal), <= (less than or equal), BETWEEN (within an inclusive range), LIKE
(matching a pattern), or IN (to specify multiple possible values for a column).

For example:

SELECT Last_Name FROM Employees WHERE First_Name='John'

would fetch all the last names of employees whose first name is John.
The INSERT statement allows you to add a record to an existing table. The syntax is

INSERT INTO <table-name> (<column-name1>, <column-name2>,...,<column-nameN>)
VALUES (<value1>,<value2>,...<valueN>)

where table-name is the name of the table to which you wish to add new information, the
column-names are the names of the columns you wish to update, and the values list contains
the values you wish to update in the columns you have specified.

For example:

INSERT INTO Employees (Employee_Number, First_Name, Last_Name)
VALUES (398, 'John', 'Robles')

There are more commands in the SQL language, such as the UPDATE statement for editing
rows within a table or ALTER for changing the columns in a table. However, if you are not already
familiar with them, CREATE TABLE, INSERT, SELECT, and DROP TABLE will take you a long way.

The JDBC APIs
Now we can take a look at the main classes of the JDBC APIs.

The DataSource Object
From the perspective of an application using the JDBC APIs, the DataSource object is a factory
object for creating connections that the application can use to interact with the database. The
DataSource interface hides away a number of complexities concerning locating and connecting
with a relational database from the JDBC application. It encapsulates all the configuration information
that the application needs to connect to the database, including the driver information and location,
any driver-specific properties, and optionally, the credentials that will be used when connecting
to the database through the driver. The DataSource also hides away the implementation of the
connection pool used and the transactional support of the driver, if it is supported. This leaves the
application free of such configuration options, and leaves the DataSource object with only two
methods for creating connections, one using the credential setup in the DataSource, and one
using an application-supplied credential.

Connection getConnection() throws SQLException
Connection getConnection(String username,
 String password)
 throws SQLException

332 Java EE 7: The Big Picture

DataSources are configured into applications in different ways by different development
environments. The Hello JDBC example showed how NetBeans and GlassFish configure a
DataSource into an application. Once configured, the DataSource can either be injected into
a web component or Enterprise Bean in the application, or looked up in the JNDI namespace.
Supposing the DataSource has been registered under the name my/jdbcDataSource, then the
following examples show the two modes that can be used to locate it and find it in an
application.

Listing: Two ways to locate a DataSource

@Stateless
public class MySessionBean {
 @Resource(lookup="jdbc/helloJDBCDatasource")
 private DataSource ds;
...
}

or

@Stateless
public class MySessionBean {
 private DataSource ds;
 public void init() {
 try {
 DataSource ds = (DataSource) InitialContext
 .doLookup("jdbc/helloJDBCDatasource");
 } catch (NamingException ne) {
 // time for plan B
 }
 }
 ...
}

The Connection Object
The JDBC Connection object represents an active session with a database fronted by a
DataSource object. The connection is either active or it is closed. This state can be tested with its
isClosed() method, and the application can close the connection with the close() method.
The Connection object contains a number of methods that allow the JDBC application to query
the configuration of the database, for example, the DatabaseMetaData object returned from its
getMetaData() call. Most critically for JDBC applications, the Connection object holds the
means to Statement objects, which will be used to invoke SQL statements on the database. As
we will soon see, there are different kinds of Statement objects, which vary in terms of how the
SQL statement they embody is executed (though the results are the same whichever Statement
type you choose). Let us look at the most general-purpose Statement object. Any empty
Statement object is created from the Connection object using the method

Statement createStatement() throws SQLException

Chapter 11: Classic Memories: JDBC 333

with variants that control the properties of the ResultSet object that is returned in the cases
where the Statement is used to execute queries that return data.

Statement Objects
There are three kinds of Statement objects, represented by the Statement, PreparedStatement,
and CallableStatement interfaces. CallableStatement inherits from PreparedStatement,
which inherits from Statement.

The Statement interface represents an object that executes arbitrary SQL statements. The
statements are executed by one of the execute() methods that takes an SQL statement as a
parameter, for example

int executeUpdate(String sql) throws SQLException

for SQL statements that do not return table data, such as TABLE CREATE or INSERT
statements, and

ResultSet executeQuery(String sql) throws SQLException

for SQL statements that do return table data, in the form of a ResultSet object such as
SELECT statements.

You will notice that the SQL statement is known only to JDBC and the database at the time it
is being executed. Using the Statement object to run SQL statements is perfectly adequate for
many programs. It does, however, offer the JDBC API and database few opportunities for optimizing
frequently used queries.

The PreparedStatement interface represents an SQL statement that has been precompiled
into a Java class and so saves a step in the process of running the statement against the database.
For frequently used SQL statements in an application, using a PreparedStatement instead of a
Statement can lead to performance improvements. PreparedStatements are created from the
Connection objects by passing in an SQL statement, for example, the Connection method

PreparedStatement prepareStatement(String sql) throws SQLException

The SQL statement passed in can be parameterized with the ? character so that the same
PreparedStatement can be reused easily with different parameterized values. For example,

PreparedStatement ps = prepareStatement("SELECT Last_Name FROM
 Employees WHERE First_Name = ?")
ps.setString(1, "Sarah");
..
ps.setString(1, "Ian");

shows the same PreparedStatement being used with two different values of the last name in
the WHERE clause of its SELECT statement.

PreparedStatements are executed using

int executeUpdate();

and

ResultSet executeQuery()

depending on whether the SQL statement will return table data or not.

334 Java EE 7: The Big Picture

The CallableStatement interface represents the next and final step in optimization of SQL
statement execution. Most relational databases can store queries themselves. More efficient than
the precompiled PreparedStatements, the queries, being local to the database, are usually
much more efficiently processed. They are created from the Connection object, using, for
example, the method

CallableStatement prepareCall(String sql) throws SQLException

Similar to PreparedStatements, CallableStatements may be created with SQL statements
that are parameterized. CallableStatements are executed by the same method calls as its
super-interface PreparedStatement executeQuery() or executeUpdate(), depending on
the nature of the SQL statement it represents.

Which style of Statement you use depends very much on the nature of your application. It is
a simple and valid approach to stick with the Statement interface until you understand where
your application may benefit from optimization. Figure 11-8 shows the three different types of
statements.

ResultSets
The ResultSet object is a representation of table data that is returned from an SQL query such
as a SELECT statement. JDBC applications can read data from a ResultSet object and can also
update the data in a ResultSet. ResultSets are returned from Statement objects as a result
of executing a query that returns table data, such as a SELECT statement. A ResultSet is not

FIGURE 11-8. Statement, PreparedStatement, and CallableStatement

Java EE

PreparedStatement

Statement

Stored procedure
CallableStatement [SQL statement]

Compiled class
[SQL statement]

execute

execute

execute [SQL Statement]

Database

Chapter 11: Classic Memories: JDBC 335

simply a data structure containing table data: it represents an active session with a table or tables
in the database. ResultSets must be closed when the JDBC application has finished using them.

In reading data, there are two ideas: the first is that the ResultSet contains a notion of a
cursor, or a current row. The cursor position is the index of the row in the table, and a new
ResultSet will have its cursor set at the first row of the table. The ResultSet API contains
various methods to read data from the cell in the table data corresponding to the value in the
current row given a column name or index. For example, if the cursor position in a ResultSet is
at the first row of our Employees table, the call getString("First_Name") returns the first
name of the first employee in the table. The cursor position in a ResultSet may be moved
around using the row navigation methods, for example, next() and previous(). We can
illustrate this kind of navigation around the data in a ResultSet in Figure 11-9.

The API is quite large, so we do not include a listing of all the methods. The accessor methods
for cell data are typed according to the SQL datatype requested in the column containing the
cell, for example: getString(String columnName), getByte(String columnName),
getDate(String columnName), and getInt(String columnName). Additionally, there are
several methods for moving the cursor through the rows of the table in addition to next() and
previous() as shown.

FIGURE 11-9. Navigating a ResultSet

Row
Navigation

ResultSet

Employee_Number First_Name Last_Name

390 Grace Chatto

953 Jack Patterson

832 Milan Amin-Smith

199 Luke Patterson

Cursor position

previous()

next()

Reading values

getInt(“Employee_Number”)

953 Jack Patterson

getString(“First_Name”) getString(“Last_Name”)

336 Java EE 7: The Big Picture

You may have noticed that when creating Statement objects from the Connection object,
there are variants on the create() methods that allow any or all of three options that can be set.
For example,

Statement createStatement(int resultSetType,
 int resultSetConcurrency,
 int resultSetHoldability)
 throws SQLException

These options govern aspects of the ResultSet objects that are returned when the
Statements are executed.

The resultSetType governs how the cursor can be moved through the set. The default
value ResultSet.TYPE_FORWARD_ONLY allows only the cursor to move down the table. The
resultSetConcurrency value governs whether the ResultSet can be updated or not. If you
wish to change the underlying data tables in the ResultSet by calling its write methods, you
need to use the ResultSet.CONCUR_UPDATABLE option as the default. ResultSet.CONCUR_
READ_ONLY does not allow for anything but reading the ResultSet. The resultSetHoldability
value governs what happens to the ResultSet if the statement is executed within a transaction.

For ResultSets that are writable, there are write methods that are analogous to the read
methods for accessing data. The methods updateString(String columnName, String value),
updateByte(String columnName, byte b), updateDate(String columnName, Date date),
and updateInt(String columnName, int i) are some of the most commonly used.

We now have enough knowledge of the JDBC APIs to revisit a familiar application and find a
permanent storage place for its precious data.

Library Application Using JDBC
In Chapter 5 we created a Library application. The Library application is a JAX-RS application
with a Swing client. With the JAX-RS client, you can browse books in the library, filtering by the
genre of the book, and you can add or delete books to and from the Library, as you can see in
Figures 11-10, 11-11 and 11-12.

FIGURE 11-10. Browsing books in the Library

Chapter 11: Classic Memories: JDBC 337

FIGURE 11-11. Browsing books in the library by genre

FIGURE 11-12. Adding a book to the library

In Chapter 5, the data held in the application was held in the code of the application:
the books that are displayed when you first start up the application are added to a list upon
initialization of the library endpoint class.

By now, we have enough knowledge of the JDBC APIs to use them to keep the book data that
the Library application uses in a database. Before we look at any code, let’s look at a picture of
the architecture of this application.

In Figure 11-13, we can see that the client is using REST calls to the LibraryEndpoint
and BookEndpoint JAX-RS resources in order to query and modify the library service. In turn,
these JAX-RS resources are using a singleton session bean called the LibraryManager. The
LibraryDataManager Enterprise Bean is using the JDBC APIs to fulfill the requests to search for
books by genre and add and delete books from the database. The Book data object represents

338 Java EE 7: The Big Picture

each book inside the Library Service application. Since we have already covered the JAX-RS
aspects of this application in Chapter 5, we will not repeat it here. We will instead just focus on
the LibraryDataManager bean and look at how it uses JDBC. First, we will take a quick look at
the Book data object.

Listing: The Book data object

public class Book {
 private final int id;
 private final String title;
 private final String author;
 private final String genre;

 public Book(int id, String title, String author, String genre) {
 this.id = id;
 this.title = title;

FIGURE 11-13. Anatomy of the Library application

Java EE Web Server

LibraryService

REST

LibraryEndpoint

BookEndpoint

Singleton Session Bean

LibraryManagerImpl

LibraryManager

JDBC calls

BookEndpointBookEndpoint

Book
data object

Database

BookID Title Author Genre

72929 A Passage To India E M Forster Novel

29401 The Stranger
Albert
Camus

Novel

95539 Disguises in History Ivor Beard
Reference

86390 Damp Bedsheets I P Nightly Humor

Chapter 11: Classic Memories: JDBC 339

 this.author = author;
 this.genre = genre;
 }

 public int getId() {
 return this.id;
 }

 public String getTitle() {
 return this.title;
 }

 public String getAuthor() {
 return this.author;
 }

 public String getGenre() {
 return this.genre;
 }

 @Override
 public String toString() {
 return "a book by " + this.author;
 }
}

This is a simple immutable Java object containing the attributes of a book in the Library
application. The LibraryEndpoint and BookEndpoint JAX-RS resources talk to the
LibraryDataManager bean through its remote interface LibraryDataManager.

Listing: The LibraryDataManager remote interface

import java.util.List;
import javax.ejb.Remote;

@Remote
public interface LibraryDataManager {
 public static String NOVEL = "Novel";
 public static String REFERENCE = "Reference";
 public static String HUMOR = "Humor";

 public boolean removeBook(int id);
 public List<Book> getBooks(String searchGenre);
 public List<Book> getBooks();
 public boolean addBook(Book book);
 public int generateId();
}

Notice that this remote interface makes heavy use of the Book data object.

340 Java EE 7: The Big Picture

Now we turn to the JDBC calls and the LibraryDataManagerImpl class. The prerequisite
for running this Enterprise Bean is that there must be a preconfigured DataSource registered under
the name jdbc/myLibraryDatasource, such as we set up for the HelloJDBC example earlier.

Listing: The LibraryDataManagerImpl Enterprise Bean implementation

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.PreparedStatement;
import javax.annotation.Resource;
import javax.ejb.Singleton;
import javax.sql.DataSource;
import javax.ejb.Startup;
import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import java.util.*;

@Singleton
@Startup
public class LibraryDataManagerImpl implements LibraryDataManager {
 @Resource(lookup="jdbc/myLibraryDatasource")
 private DataSource ds;

 @PostConstruct
 public void initializeData() {
 try {
 this.initDatabase();
 } catch (SQLException er) {
 System.out.println("Error initializing: " + er.getMessage());
 }
 }

 @PreDestroy
 private void deleteData() {
 try (Connection connection = ds.getConnection()) {
 Statement smnt = connection.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 smnt.executeUpdate("DROP TABLE Books");
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 }
 }

 @Override
 public boolean removeBook(int id) {
 try (Connection connection = ds.getConnection()) {
 Statement smnt = connection.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 int result = smnt.executeUpdate("DELETE FROM Books WHERE BookID="+ id);
 return true;

Chapter 11: Classic Memories: JDBC 341

 } catch (SQLException e) {
 return false;
 }
 }

 @Override
 public List<Book> getBooks(String searchGenre) {
 List<Book> books = new ArrayList<>();

 try (Connection connection = ds.getConnection()) {
 String getAllQuery = "SELECT BookID, Title, Author, Genre FROM Books";
 String getByGenreQuery = getAllQuery + " WHERE Genre=?";

 PreparedStatement getAllStatement =
 connection.prepareStatement(getAllQuery,
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

 PreparedStatement getByGenreStatement =
 connection.prepareStatement(getByGenreQuery,
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

 PreparedStatement ps;
 if (!"All".equals(searchGenre)) {
 ps = getByGenreStatement;
 ps.setString(1, searchGenre);
 } else {
 ps = getAllStatement;
 }
 try (ResultSet rs = ps.executeQuery()) {
 while (!rs.isLast()) {
 rs.next();
 int id = rs.getInt("BookID");
 String title = rs.getString("Title");
 String author = rs.getString("Author");
 String genre = rs.getString("Genre");
 Book b = new Book(id, title, author, genre);
 books.add(b);
 }

 }
 return books;
 } catch (SQLException e) {
 System.out.println(e.getMessage());

 }
 return new ArrayList<>();

 }

 @Override
 public List<Book> getBooks() {
 return this.getBooks("All");
 }

342 Java EE 7: The Big Picture

 @Override
 public boolean addBook(Book book) {
 try (Connection connection = ds.getConnection()) {
 Statement smnt = connection.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 smnt.executeUpdate("INSERT INTO Books
 (BookID, Title, Author, Genre) VALUES
 ("+book.getId()+",'"+book.getTitle()+"', '"+book.getAuthor()+"',
 '"+book.getGenre()+"')");
 return true;
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 return false;
 }
 }

 private void initDatabase() throws SQLException {
 try (Connection connection = ds.getConnection()) {
 Statement smnt = connection.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 smnt.executeUpdate("CREATE TABLE Books "
 + "(BookID int, Title varchar(255), "
 + "Author varchar(255), Genre varchar(255))");
 for (Book b : this.getDefaultBooks()) {
 this.addBook(b);
 }
 }
 }

 @Override
 public int generateId() {
 long l = System.currentTimeMillis() * (new Random()).nextInt();
 String asString = "" + l;
 String as5String = asString.substring((asString.length()-5),
 (asString.length()));
 return (new Integer(as5String)).intValue();

 }

 private List<Book> getDefaultBooks() {
 List<Book> books = new ArrayList<>();
 Book b = new Book(this.generateId(), "A Passage to India", "E M Forster",
 LibraryDataManager.NOVEL);
 books.add(b);
 b = new Book(this.generateId(), "Damp Bedsheets", "I P Nightly",
 LibraryDataManager.HUMOR);
 books.add(b);
 b = new Book(this.generateId(), "Sense and Sensibility", "Jane Austen",
 LibraryDataManager.NOVEL);
 books.add(b);
 b = new Book(this.generateId(), "The Stranger", "Albert Camus",
 LibraryDataManager.NOVEL);

Chapter 11: Classic Memories: JDBC 343

 books.add(b);
 b = new Book(this.generateId(), "How the Dinosaurs Died", "P T Dactyl",
 LibraryDataManager.REFERENCE);
 books.add(b);
 b = new Book(this.generateId(), "Too close to the edge ?", "Eileen Dover",
 LibraryDataManager.HUMOR);
 books.add(b);
 b = new Book(this.generateId(), "Houseplants for Dummies", "G Fingers",
 LibraryDataManager.REFERENCE);
 books.add(b);
 b = new Book(this.generateId(), "Disguises in History", "Ivor Beard",
 LibraryDataManager.HUMOR);
 books.add(b);
 b = new Book(this.generateId(), "10,000 Knitting Patterns",
 "M N E Sweaters", LibraryDataManager.REFERENCE);
 books.add(b);
 return books;
 }

}

Notice first that this singleton bean is taking advantage of its lifecycle in order to provide the
convenience of setting up the database table, called Books, and populating it with default values
on application startup. You can see that through the use of the

@PostConstruct
public void initializeData() {...}

method. Similarly, the application “cleans up” after itself by using the @PreDestroy annotation
to mark the deleteData() that deletes the Books table when the application shuts down.

Other than these two methods, which exist to make the Library application easy to run
without having to set up the tables separately, this class contains all the methods to search the
Books database table and edit it. Let’s take a look, for example, at the addBook() method.

You can see that the method obtains a connection to the data source, which is injected into
this Enterprise Bean into the ds variable. Then the method creates a Statement object containing
the SQL to add a row to the Books table. It does so using the supplied Book object, which is to be
added to fill out the values in the row in the SQL statement. Next it calls the executeUpdate()
method to call the database. This method either succeeds or throws an exception.

Since adding books is not likely to be such a frequently used operation, using a Statement
object should be perfectly adequate. The search operation that searches for lists of books is likely
to be called more frequently, so let’s look at the getBooks(String searchGenre) method that
implements that.

Instead of using a Statement object, this method creates PreparedStatements to
accommodate the two kinds of SQL statements that will be executed: one that returns all the
books if the search criteria is All, and one that returns only the books that match a given
genre. In the latter case, notice how the genre is set on the SQL statement using the setString()
method. Once the ResultSet is obtained, when the appropriate PreparedStatement is executed,
the navigation of the ResultSet is simple: looping through the ResultSet using the next()
method and the isLast() method to terminate the loop when all the data is read. By using the
PreparedStatement object, the execution of the SQL statement avoids the step inside the JDBC
implementation of creating and compiling a Java object to represent the query.

344 Java EE 7: The Big Picture

Summary
In this chapter, we learned about the most traditional method for accessing relational databases
from Java EE. Based on SQL statements, a connection framework, and APIs for reading tabular
data from the database, we worked through the fundamental concepts of this important API. We
reviewed the basic SQL syntax and looked at how the JDBC API allows for precompilation of
statements and access to stored procedures on the database in order to increase the efficiency of
frequently used database queries. We did not show all the possibilities for modeling data in a
relational database, since this is a book about Java APIs. But we worked through two examples
that highlight the most common types of queries, in the second case, to use the JDBC APIs to take
a RESTful web application and move its data into a relational database.

Even with the two relatively simple example JDBC applications we looked at, it is clear that
much of the code in a JDBC application is devoted to modeling the data held in the tables (such
as in the Book class defined for the Library application), or to maintaining SQL statements
embedded in code, or to navigating ResultSet objects to extract the data in the shape the
application needs. This is in addition to dealing with some of the lower-level connection issues
such as having to close Connection objects and ResultSets.

Wouldn’t it be nice if there was code that could map Java objects more directly to and from
their equivalent form as rows of relational data in a database? In the next chapter, we will see
how the Java Persistence API does just that.

CHAPTER
12

Modern Memories:
The Java Persistence API

346 Java EE 7: The Big Picture

T
he Java Persistence API enables applications to extend the life of regular Java objects by
persisting them in a relational database.

As we saw in the JDBC APIs, much of the work of a JDBC application is concerned
with formulating the correct SQL statements that will write an application’s data objects into a
relational database, manage them there, and reconstruct application-level data objects by
interpreting the generic ResultSet objects that represent the result of a data query against the
database.

The Java Persistence API (JPA) provides a very convenient shortcut to some of these steps. JPA
helps applications in the process of storing and retrieving data from a relational database with the
following key features:

 ■ It allows application data objects to be easily converted into objects that can be persisted
in a relational database. Such data objects are called persistence entities or simple
entities.

 ■ It contains APIs to manage the transition of entities between the application layer and the
relational database, with a simple method protocol for simple tasks. This API is called
the EntityManager.

 ■ It includes both a query language called Java Persistence Query Language (JPQL) and a
Criteria API for creating queries against the data.

Figure 12-1 shows a simple architecture of the Java Persistence API.
In this chapter, we explore what kind of Java classes are eligible to be persistence entities, and

we look in some detail at how such Java classes can be mapped to tables in a relational database,
in particular when there are numerous Java classes that model an application’s data and that have

FIGURE 12-1. Anatomy of the Java Persistence API

Java EE Server

JPA Application

EntityManager

Entity
Entity

property1
property2
property3

Entity

Entity

property1 property2 property3

72929 9 Jun 1938 m

29401 19 Jan 1939 f

95539 26 Feb 1970 m

86390 11 Dec 1966 m

property1 property2 property3

72929 9 Jun 1938 m

29401 19 Jan 1939 f

95539 26 Feb 1970 m

86390 11 Dec 1966 m

JPQA or
Criteria API

queries

Database

Chapter 12: Modern Memories: The Java Persistence API 347

relationships with one another, either by referencing one another in instance variables, or by
having inheritance relationships with each other. We look at how to use Java objects as primary
keys in the relational tables. We look in some detail at the EntityManager APIs, and we take a
high-level view, with examples from the JPQL language.

The Java Persistence API is one of those APIs in the Java EE platform that has been designed to
make the simple things simple. In that spirit, we use a familiar application with fairly
straightforward application data as our “Hello World” application.

The Library Service, with Java Persistence
We last saw the Library service application in Chapter 11. We had extended this JAX-RS client/
server application from its incarnation in Chapter 5 to store its book data in a relational database,
and we used the JDBC APIs to store and retrieve the book data.

As a reminder, here is the Library service in action, shown in Figure 12-2(a) and 12-2(b).
As we touched on at the end of Chapter 11, a portion of the JDBC data management layer of

the Library service is taken up with SQL statements to create, update, and delete from the table
used to store the book data, and another portion is concerned with reading book data out of the
generic JDBC ResultSet object. As we look at the Library service application here that uses the
Java Persistence API, notice how much simpler the application code is.

To start with, much of the application is the same. In fact, the application modifies the Book
data object, which represents the application data about a single book to make it a persistence
entity. Then, the application replaces the LibraryDataManager Enterprise Bean implementation
class with a new implementation that uses the Java Persistence API. We can see the general
architecture of the application in Figure 12-3.

FIGURE 12-2. (a) Library service browsing; (b) Library service adding a book

(a) (b)

348 Java EE 7: The Big Picture

Therefore, we need not revisit the client code or the code for the JAX-RS endpoints: they are
all unchanged. Let’s look first at the new Book class.

Listing: The Book class

import javax.persistence.Entity;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Id;
import java.io.*;

@Entity
@NamedQueries({

FIGURE 12-3. Architecture of the Library service

Java EE Web Server

LibraryService

REST

LibraryEndpoint

Singleton Session Bean

JPALibraryDataManagerImpl

LibraryManager

EntityManager

BookEndpoint

Book
persistence entity

Book
Book

Book

Database

BookID Title Author Genre

72929 A Passage To India E M Forster Novel

29401 The Stranger
Albert
Camus

Novel

95539 Disguises in History Ivor Beard
Reference

86390 Damp Bedsheets I P Nightly Humor

Chapter 12: Modern Memories: The Java Persistence API 349

 @NamedQuery(
 name="findAllBooks",
 query="select b from Book b"
),
 @NamedQuery(
 name="findBooksByGenre",
 query="select b from Book b where b.genre = :genre"
)
 }
)
public class Book implements Serializable {
 @Id
 private int id;
 private String title;
 private String author;
 private String genre;

 public Book() {}

 public Book(int id, String title, String author, String genre) {
 this.id = id;
 this.title = title;
 this.author = author;
 this.genre = genre;
 }

 public int getId() {
 return this.id;
 }

 public String getTitle() {
 return this.title;
 }

 public String getAuthor() {
 return this.author;
 }

 public String getGenre() {
 return this.genre;
 }

 @Override
 public String toString() {
 return "a book by " + this.author;
 }
}

The overall data structure of the Book class is unchanged: it still has an ID and slots for the
book’s title, author name, and genre. But you can see from the class declaration that it uses a

350 Java EE 7: The Big Picture

number of annotations to transform it into a persistence entity. It uses @Entity annotation to
declare that this class is a persistence entity. It also defines at the class level two NamedQueries.
Notice that a NamedQuery has a name (which will be used to execute it as we shall see) and a
query string. The query strings are in the JPQL language. Notice, with the exception of the query
parameters, for example, the :genre, in the NamedQuery named findBooksByGenre, the query
strings look very like SQL statements. Finally, notice that the ID instance variable has been
marked with the @Id annotation. The Java Persistence API will map this Book entity to a single
table called Book. Each instance variable that the Book class has will be a column in the table,
and each Book instance that is persisted will be a new row in the table. The @Id annotation says
that the ID instance variable of the Book class will be used as the primary key for the table, and
that the column name in the table for the ID will be called ID, the name attribute of the @Column
annotation.

Therefore, this Book class contains all the information needed by the Java Persistence API to
map its instances into a table in a relational database.

Now we can use this persistent data. Let’s look at the JPALibraryDataImpl class.

Listing: The JPALibraryDataImpl class

import javax.ejb.Singleton;
import javax.ejb.Startup;
import javax.annotation.PostConstruct;
import java.util.*;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.Query;

@Singleton
@Startup
public class JPALibraryDataManagerImpl implements LibraryDataManager {
 @PersistenceContext
 private EntityManager em;

 @PostConstruct
 public void initializeDefaultData() {
 for (Book b : this.getDefaultBooks()) {
 this.addBook(b);
 }
 }

 @Override
 public void removeBook(int id) {
 Book book = this.em.find(Book.class, id);
 this.em.remove(book);
 }

 @Override
 public List<Book> getBooks(String searchGenre) {
 List<Book> books;
 if (LibraryDataManager.ALL.equals(searchGenre)) {

Chapter 12: Modern Memories: The Java Persistence API 351

 books = em.createNamedQuery("findAllBooks").getResultList();
 } else {
 Query query = em.createNamedQuery("findBooksByGenre");
 query.setParameter("genre", searchGenre);
 books = query.getResultList();
 }
 return books;
 }

 private void addBook(Book book) {
 this.em.persist(book);
 }

 @Override
 public void addBook(String title, String author, String genre) {
 Book book = new Book(this.generateId(), title, author, genre);
 this.addBook(book);
 }

 public int generateId() {
 long l = System.currentTimeMillis() * (new Random()).nextInt();
 String asString = "" + l;
 String as5String = asString.substring((asString.length()-5),
 (asString.length()));
 return new Integer(as5String);
 }

 private List<Book> getDefaultBooks() {
 List<Book> books = new ArrayList<>();
 Book b = new Book(this.generateId(), "A Passage to India",
 "E M Forster", LibraryDataManager.NOVEL);
 books.add(b);
 b = new Book(this.generateId(), "Damp Bedsheets",
 "I P Nightly", LibraryDataManager.HUMOR);
 books.add(b);
 b = new Book(this.generateId(), "Sense and Sensibility",
 "Jane Austen", LibraryDataManager.NOVEL);
 books.add(b);
 b = new Book(this.generateId(), "The Stranger",
 "Albert Camus", LibraryDataManager.NOVEL);
 books.add(b);
 b = new Book(this.generateId(), "How the Dinosaurs Died",
 "P T Dactyl", LibraryDataManager.REFERENCE);
 books.add(b);
 b = new Book(this.generateId(), "Too close to the edge ?",
 "Eileen Dover", LibraryDataManager.HUMOR);
 books.add(b);
 b = new Book(this.generateId(), "Houseplants for Dummies",
 "G Fingers", LibraryDataManager.REFERENCE);
 books.add(b);
 b = new Book(this.generateId(), "Disguises in History",

352 Java EE 7: The Big Picture

 "Ivor Beard", LibraryDataManager.HUMOR);
 books.add(b);
 b = new Book(this.generateId(), "10,000 Knitting Patterns",
 "M N E Sweaters", LibraryDataManager.REFERENCE);
 books.add(b);
 return books;
 }
}

This singleton bean injects an instance of the javax.persistence.EntityManager into itself.
All the data operations on books performed by this class use this instance of the EntityManager.
The JPALibraryDataImpl class uses the following API methods on the EntityManager:

 ■ find() to locate an instance of an entity by primary key, for example,

Book b = this.em.find(Book.class, id)

 which finds the instance of the Book class with the given ID

 ■ remove() to remove an entity from the database, for example,

this.em.remove(book)

 which removes the Book instance from the database

 ■ persist(), which adds an entity to the database if it is not already there, or updates the
database version of the entity if it was added previously, for example,

this.em.persist(book)

 which puts a new Book instance into the Book table.

 ■ createNamedQuery()

 which makes a Query object from the supplied named query that can be executed,
for example,

books = em.createNamedQuery("findAllBooks").getResultList()

 yields a List of Book objects, and also, when the named query contains a parameter,
such as the findBookByGenre query, it can be set on the Query object, as you can
see here:

Query query = em.createNamedQuery("findBooksByGenre");
query.setParameter("genre", searchGenre);
books = query.getResultList();

Even in this simple example where the application data is a list of book objects, there are a
few additional things to notice:

 ■ The mapping of the Book object to and from its database table is wholly contained within
the Book class by means of the persistence annotations. There is no translation code.

 ■ The simple operations of adding and removing a Book to and from the database are
one-line calls.

 ■ For more complicated data queries, NamedQueries look very much like SQL code.

Chapter 12: Modern Memories: The Java Persistence API 353

This example shows the fundamental properties of a Java Persistence application: the
transformation of an application class into a persistence entity, the use of the EntityManager
to move entities in and out of the database, and the use of queries (in this case, JPQL queries) to
question the data.

We are now in a position to look at all the variations on these three central themes.

Persistence Entities
The starting point for a JPA application is to decide which application data you wish to persist.
Let’s look first at how to turn a regular Java class into a persistence entity.

The candidate Java class must be a non-final, top-level class with a public or protected
constructor. The data held within the class that you wish to be persisted must be held in its
non-public, non-transient instance variables. The candidate class must have an instance variable
(or combination of instance variables as we shall see later) that can be used by the Persistence API
as a primary key in the table it will use to store instances of this class. The candidate class may be
turned into a persistence entity by adding the @javax.persistence.Entity annotation at the
class level and marking the instance variable used for the primary key (assuming for now the
simplest case of a single instance variable key) with the @javax.persistence.Id annotation.
The data held within the Java class’s qualifying instance variables are called the persistence
attributes of the persistence entity. For example, the following Author has been turned into a
persistence entity.

Listing: An Author entity

@Entity
public class Author {
 @Id
 private int id;
 private String firstName;
 private String lastName;

 public Author() {}

 public Author(int id, String firstName, String lastName) {
 this.id = id;
 this.firstName = firstName;
 this.lastName = lastName;
 }

}

The Author persistence entity has persistence attributes id, firstName, and lastName, and
uses the id attribute as the primary key.

A persistence entity by default is mapped to a primary table whose name is the same as the
name of its Java class, and the names of the qualifying instance variables are used as the names of
the columns in the primary table. For example, the Author entity is mapped to a relational table
called Author with columns id, firstName, and lastName.

354 Java EE 7: The Big Picture

These names can be changed by adding the @Table and @Column annotations. For example,
look at the following Author entity.

Listing: An Author entity with adjusted table and column names

@Entity
@Table(name="Author_Table")
public class Author {
 @Id
 @Column(name="Key")
 private int id;
 @Column(name="First_Name")
 private List<String> firstName;
 @Column(name="Last_Name")
 private String lastName;
...
}

This maps the Author entity to a table called Author_Table with columns named Key,
First_Name, and Last_Name.

The type of the instance variables that may be used in a persistence entity is quite long.
Here are the allowed types in a persistence entity:

 ■ Java primitives their class equivalents, strings, and Java collections thereof

 ■ Anything Serializable

java.math.BigInteger and java.math.BigDecimal
java.util.Date java.util.Calendar
java.sql.Date, java.sql.Time, java.sql.Timestamp
byte[], Byte[], char[], Character[]

 ■ Java enums

 ■ Other persistence entities and collections of other persistence entities

 ■ Embeddable classes and collections thereof

In particular, you will notice that other persistence entities may be used, which expands the
range of persistence entities to include graphs of Java classes with a variety of relationships between
the members. Before we get to the complexity of how entities can be mapped to one another, we
will cover the last type in the list of allowed types embeddable classes.

Embeddable Classes
Sometimes, it is convenient to model some of an object of type A’s private data as an instance of
another class B. In such cases, the data modeled in class B is wholly owned by class A and has no
meaning outside the context of class A. When A is a persistence entity, this means that the data in
an instance of B can be “flattened” into the same table as for A. In this situation, class B is called
an embeddable class and is marked with the class-level @javax.persistence.Embeddable
annotation. The instance variable that the persistence entity A uses to reference its instance of B is

Chapter 12: Modern Memories: The Java Persistence API 355

correspondingly marked with the @javax.persistence.Embedded annotation to complete the
persistence relationship. For example, for convenience, in our Author example, we could define a
new class Name to hold the first and last names of our authors:

Listing: An embeddable class

@Embeddable
public Name {
 private String firstName;
 private String lastName;
...
}

and then use Name in the Author persistence entity:

Listing: Embedding and embeddable class

@Entity
public class Author {
 @Id
 private int id;
 @Embedded
 private Name name;
...
}

In this case, the Author entity would be mapped to the same single table, and the embedded
Name attribute would be flattened into two columns to accommodate its data.

Entity Relationships
Now suppose we have a Book entity, with an ID and a title, and now we want each book to have
an instance of Author associated with it.

@Entity
public class Book implements Serializable {
 @Id
 private int id;
 private String title;
 private Author author;
...
}

In this case, since each author may have written more than one book, the Author instance is
not suitable to be modeled as an embedded class. We would like all the books that were written
by the same author to share the same Author instance. In this case, we want both the book and
the author to be entities, and we wish to define the relationship between the two so that the
correct instance graph is reconstructed when entities are retrieved from the database.

356 Java EE 7: The Big Picture

This simple example introduces us to the world of entity relationships. An entity relationship
is a state that exists between two persistence entities. One side of the relationship is the owning
side, and the other side is called the target. The owning entity in the relationship decides how its
target is updated in the relational database, as we shall see.

Persistence entities define their relationships with each other by the owning entity referencing
the target in an instance variable. If the target does not reference the owning entity in any of its
instance variables, this is called a unidirectional relationship. If the target entity does reference
the owning entity with an instance variable, it is called a bidirectional relationship, and the target
is sometimes called the inverse entity of the relationship.

There are four different kinds of entity relationships, whether unidirectional or bidirectional:
one-to-one, one-to-many, many-to-one, and many-to-many.

In a one-to-one relationship, the owning entity relates to a single instance of the target. If we
were to model cats with a Cat entity and their collars with a Collar entity, since each cat has
one collar, we would model the owning entity Cat as having a one-to-one relationship with its
target Collar entity.

In a one-to-many relationship, the owning entity relates to one or more instances of the target
entity. If we were to model the Author as the owning entity, since each author has written more
than one book, we would model the Author as having a one-to-many relationship with the Book
entity.

In a many-to-one relationship, one or more instances of the owning entity would relate to a
single target entity. For example, if we were modeling cars as an owning Car entity, with a target
Owner, since each Car has a single owner, but each owner may own several cars, the Car entity
would have a many-to-one relationship with the Owner entity.

In a many-to-many relationship, one or more instances of the owning entity have a
relationship to one or more instances of the target entity. For example, if we were modeling
people and families, each family has one or more persons, and each person may belong to more
than one family, so we could model the owning Person entity as having a many-to-many
relationship with the target Family entity.

We can see the four types of entity relationships in Figure 12-4.

FIGURE 12-4. The four entity relationship types

FamilyFamilyFamily

Author BookBookBook

Car OwnerCarCar

Cat Collar

PersonPersonPerson

Chapter 12: Modern Memories: The Java Persistence API 357

When an owning entity wishes to declare its relationship with a target entity, it must annotate
its attribute with one of the following four annotations from the javax.persistence package:
@OneToOne, @OneToMany, @ManyToOne, or @ManyToMany, depending on the type of the
relationship. For example, the Book entity has a unidirectional many-to-one relationship with the
Author entity, so we would need to annotate the Book entity’s author field with the @ManyToOne
annotation.

public class Book implements Serializable {
 @Id
 private int id;
 private String title;
 @ManyToOne
 private Author author;
...
}

When the relationship is bidirectional, the inverse side must refer to its owning side by using
the mappedBy attribute of the @OneToOne, @OneToMany, or @ManyToMany annotation. The
mappedBy element designates the property or field in the entity that is the owner of the relationship.
In a bidirectional relationship, if one side is “many,” that side must be the owning side. Thus, there
cannot be a one-to-many bidirectional relationship.

These annotations must be added to the persistence entities so that the Java Persistence API
knows what to do when part of a graph of related persistence entities is modified. What happens
to the books, for example, if the author is deleted?

Before we can understand how graphs of persistent objects are affected by operations on their
members, we will first take a look at the different states entities can have in the Java Persistence API.

Persistent States
Persistent entities have two existences: one is in the form of a Java object, marked with the
@Entity annotation, running in a JPA application. The other is spread as a row across one
or more tables in a relational database. The persistent states in a JPA application refer to the
relationship between the Java object form of a persistent entity and its representation in the relational
database managed by the Java Persistence entity manager.

In the New state, the persistent entity (or graph of persistent entities) has been created, but has
not yet been persisted by the entity manager into the database. At this point, there is no data in
the database reflecting the state of the persistent entity. When the entity is persisted, it moves to
the Managed state. In this state, it has an equivalent representation as relational data in the
database. Changes to the persistent entity in the managed state are reflected in the database. If the
entity is moved to the Detached state, it has a representation in the relational database, but
that representation is only up-to-date with the Java object representation at the time it became
detached. Further changes to the Java objects do not cause updates to the relational data in the
database. A detached entity may be put back into the Managed state by performing a merge
operation, which updates the relational data in the database with the new state of the Java object
representation of the entity. Finally, the entity may be in the Removed state, in which case, its
representation in the relational database has been deleted. Figure 12-5 gives a pictoral summary
of the states of persistent entities. We will look shortly at how the EntityManager API allows
JPA applications to manage these states through API calls, but now we can return to the topic of
what happens to graphs of related persistent entities when member entities are modified.

358 Java EE 7: The Big Picture

Cascading in Entity Relationships
The entity relationship annotations @OneToOne, @OneToMany, @ManyToOne, and @ManyToMany
each have a cascade attribute that defines what is to happen when there is an end of the
relationship, where the annotation applied is modified by the EntityManager in some way. The
options for this control include what happens to the target entity when the owning entity becomes
detached, is merged, or is removed or deleted, when it is refreshed, and when it is persisted. The
CascadeType enumeration defines all the possible options, as the following table shows.

CascadeType Effect
CascadeType.PERSIST If the EntityManager persists the owning entity, it will also

persist the target entity.
CascadeType.REFRESH If the EntityManager refreshes the owning entity, it will also

refresh the target entity.
CascadeType.DETATCH If the EntityManager detaches the owning entity, it will also

detach the target entity.
CascadeType.MERGE If the EntityManager merges the owning entity, it will also

merge the target entity.

FIGURE 12-5. The persistent states of persistent entities

New

Managed

Detached

Removed

EntityManager

Managed

Detached

change

Chapter 12: Modern Memories: The Java Persistence API 359

CascadeType Effect
CascadeType.REMOVE If the EntityManager removes the owning entity, it will also

remove the target entity.
CascadeType.ALL If the EntityManager performs any of the operations listed

on the owning entity, it will perform the same operation on the
target.

The Entity Manager
Now that we have explored some of the most common options for setting up persistent entities
with the Java Persistence API, it’s time to look at the controller of the show: the EntityManager.
This interface is the gateway to all the operations that store, retrieve, synchronize, and remove the
persistent data from the relational database that corresponds to persistent entities in a JPA application.

The main functions of an EntityManager are to manage the lifecycle of persistence entities
and to formulate query operations to query the data. Each EntityManager has a lifecycle of its
own: it is either open or closed. EntityManagers typically cache persistent entities, with a
flush() operation that writes the persistent entity to the database. The main methods of an open
EntityManager used in an application are as follows:

void persist(Object entity)

which persists the given entity;

void merge(Object entity)

which updates the persistent state of the given entity;

void refresh(Object entity)

which changes the state of the given entity to match that of its persistent state;

void detach(Object entity)

which detaches the given entity from its persistent state;

void remove(Object entity)

which deletes the given persistent entity’s persistent state;

<T> T find(Class<T> entityClass, Object primaryKey), and variants

which find the instance of the given persistent entity class with the matching key; and

Query createQuery(String qlString), and variants

which creates a Query object from the given query string, which can be executed to obtain the
query results.

We can see the main functions of the EntityManager in Figure 12-6.

360 Java EE 7: The Big Picture

EntityManagers may be instantiated programmatically or be injected into Java EE components.
When EntityManager instances are injected, the Java EE container manages their lifecycles,
whereas programmatically instantiated EntityManagers must be explicitly opened and closed. This
makes injecting the EntityManager instance the easier option, and, when programming with
standard Java EE components, the obvious choice for using the Java Persistence API.

In order to inject an EntityManager, all you need to do is add an instance variable of type
EntityManager annotated with @PersistenceContext, for example

@Singleton
public class Library {
 @PersistenceContext
 private EntityManager em;

..
}

EntityManager instances may be created programmatically using the EntityManagerFactory
interface, which is obtained from an instance of the PersistenceUnit class that may be injected:

@PersistenceUnit
EntityManagerFactory emf;
...
EntityManager em = emf.createEntityManager();

FIGURE 12-6. EntityManager operations

New

Managed

Detached

Removed

EntityManager

Managed

Detached

persist()

detach()

merge()

refresh()

merge()

remove()

flush()

open()

close()

Database

find() createQuery()

Managed

Chapter 12: Modern Memories: The Java Persistence API 361

Java Persistence Query Language
The Java Persistence API defines an SQL-like query language that can be used to formulate queries
against persistent data managed by an EntityManager. It is beyond the scope of this chapter
and this book to discuss every aspect of the language, so this section will limit itself to the main
and most commonly used features as they apply to querying data with the Java Persistence API.

JPQL is heavily inspired by SQL, and anyone already familiar with a SQL variant will find
JPQL very easy to use. The basic statements are SELECT, UPDATE, and DELETE. For example,

SELECT a.firstName FROM Author a WHERE a.lastName = "Coward" ORDER BY a.firstName

would return all the first names of authors in alphabetical order from the Author table with last
name Coward.

DELETE from Author WHERE lastName = "James"

would delete all authors from the Author table where the last name is James.
Most pertinently to JPA applications, JPQL statements may contain named parameters. A

named parameter in a JPQL statement always begins with a colon.
JPA queries are created with the EntityManager. There are two primary ways this can be done:

either dynamically using the createQuery() API, for example

Query q = myEntityManager.createQuery("SELECT a.firstName,
 a.lastName FROM Author a ORDER BY a.lastName");

or by using named queries. Named queries are precompiled JPQL statements that are declared
using the @NamedQuery annotation. For example, the following Author entity holds a named
query with the name findAuthors:

@Entity
 @NamedQuery(
 name="findAuthors",
 query="select a from Author a"
)
public class Author implements Serializable {
 @Id
 private int id;
 ...
}

When the JPA application wishes to call the query, it creates the Query object using the
createNamedQuery() method on the EntityManager, passing in the name of the named
query. For example,

Query q = myEntityManager.createNamedQuery("findAuthors");

However the query is created, whether dynamically or as a precompiled named query, the
query is executed by calling the Query object’s

executeUpdate()

method if the query is a CREATE or an UPDATE statement.

362 Java EE 7: The Big Picture

When the query is created from a SELECT statement, the query is executed by calling either
the Query object’s

List getResultList()

method, which returns a List of result objects of the type expected when multiple are expected,
or the

Object getSingleResult()

method, which returns a single result object of the type expected in the case when a single result
is expected.

Most usefully, JPQL statements may be parameterized with named parameters. A named
parameter is a string that starts with a colon and whose value can be set on the Query object
created from the EntityManager at runtime. So, for example, if we wished to create a named
query that searched for authors with the same last name, but wanted to defer which last name
until the JPA application chose it at runtime, we could create the named query

@NamedQuery(
 name="findAuthorsByLastName",
 query="select a from Author a where a.lastName = :ln"
)

Then when we create the Query in the JPA application,

Query q = myEntityManager.createNamedQuery("findAuthorsByLastName");

we can set the ln parameter by calling

q.setParameter("ln", "Jones");

prior to executing the query. You can use named parameters in the other JPQL clauses, such as
ORDER BY or GROUP BY. There are also many other ways to use and set parameters on JPA
queries, but this named form is the most basic and useful to master. We will see some more
examples of this style of formulating queries shortly.

Configuring JPA Applications
The PersistenceContext is a kind of high-level abstraction of a data source used by a JPA
application. You will recall that when injecting the EntityManager into a Java EE application,
the annotation @PersistenceContext is used to make the injection. This injection says that all
the EntityManager instances will be created from the same PersistenceContext. In fact, an
application may have more than one persistence context, in which case, using the name attribute
of the @PersistenceContext annotation can disambiguate them. In many cases, applications
have only one PersistenceContext, so the name attribute is frequently omitted.

The Java Persistence API defines a file format that contains the configuration information for
the PersistenceContexts in an application, called the persistence.xml file. It resides in
the META-INF directory of the containing Java EE archive. So, for example, if an Enterprise Bean

Chapter 12: Modern Memories: The Java Persistence API 363

application uses a persistence context, the persistence.xml will reside in the Enterprise Bean
JAR’s META-INF entry. Usually, the persistence.xml file is set up for you if you are using an
IDE, so you only need concern yourself with the name if you are using more than one persistence
context in an application. However, here is an example.

Listing: An example persistence.xml file

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1"
 xmlns="http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="myPersistenceContextName" transaction-type="JTA">
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="javax.persistence.schema-generation.database.action"
 value="drop-and-create"/>
 </properties>
 </persistence-unit>
</persistence>

This persistence.xml file defines a persistence context with name
myPersistenceContextName. Notice in particular the property javax.persistence
.schema-generation.database.action. This property has three options: none, create, and
drop-and-create. When a JPA application is being deployed, this property governs whether
the JPA runtime attempts to create tables for the persistence entities within the application and
whether it deletes the tables when the application is undeployed. If the property is absent, the
application takes neither action. If the property is present with the create value, the tables are
created at deployment time, and if present with the drop-and-create value, the tables are
created at application deployment and deleted when the application is undeployed.

With this understanding of the primary features of the Java Persistence API, we are now in a
position to revisit the Library application.

The Persistent Library Service
The Persistent Library service builds on the concept of the Library service introduced earlier, but
adds the notion of book authors and genres to which books can belong. Instead of a Swing client,
the JavaServer Faces web front end is used. This web UI allows you to browse books by genre
(shown in Figure 12-7), list all the books by a given author (shown in Figure 12-8), add a new
book (shown in Figure 12-9) and add a new author (shown in Figure 12-10).

364 Java EE 7: The Big Picture

FIGURE 12-7. Browsing the Sci-Fi catalog

FIGURE 12-8. All about the author

Chapter 12: Modern Memories: The Java Persistence API 365

FIGURE 12-9. Adding a new book

FIGURE 12-10. Adding a new author

366 Java EE 7: The Big Picture

The core of this application is its collection of persistence entities: Book with its subclass
ChildrensBook, and Author and Genre. First let’s look at the Book class.

Listing: The Book class

import javax.persistence.Entity;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.ManyToOne;
import javax.persistence.OneToMany;
import javax.persistence.CascadeType;
import java.io.*;
import java.util.List;

@Entity
@NamedQueries({
 @NamedQuery(
 name="findAllBooks",
 query="select b from Book b order by b.title"
),

 @NamedQuery(
 name="findAllBooksBy",
 query="select b from Book b where b.author.id = :aId order by b.title"
)
 }
)
public class Book implements Serializable {
 @GeneratedValue
 @Id
 private int id;
 private String title;
 @ManyToOne(cascade={CascadeType.PERSIST, CascadeType.REFRESH})
 private Author author;
 @OneToMany(cascade={CascadeType.PERSIST, CascadeType.REFRESH})
 private List<Genre> genres;

 public Book() {}

 public Book(String title, Author author, List<Genre> genres) {
 this.title = title;
 this.author = author;
 this.genres = genres;
 }

 public int getId() {
 return this.id;
 }

 public String getTitle() {
 return this.title;
 }

Chapter 12: Modern Memories: The Java Persistence API 367

 public Author getAuthor() {
 return this.author;
 }

 public List<Genre> getGenres() {
 return this.genres;
 }

 public boolean isInGenre(String name) {
 for (Genre g : this.genres) {
 if (g.getName().equals(name)) {
 return true;
 }
 }
 return false;
 }

 @Override
 public String toString() {
 return "a book called " + this.title + " by " + this.author + " in " + this.
genres;
 }
}

We can see from its class declaration that it is a persistence entity thanks to its @Entity
annotation, and it declares two named queries, one that fetches all books in the library, and one
that fetches all the books by a given author id, ordered by title. It has persistence attributes ID,
its primary key, and title. It also has a many-to-one entity relationship with the Author entity, and
a one-to-many entity relationship with the Genre entity. So this library allows only single-author
books, but each book may belong to multiple genres. We can see from the cascade attribute of
the relationship annotations that under the operations persist() and refresh() the Book
entity will cause its associated author and genres to be persisted and refreshed. But if the Book entity
is removed, the associated author and genres will not be removed. If we did want those target
entities removed in that situation, we could have used CascadeType.REMOVE in the entity
relationship annotations to have the EntityManager do it automatically.

Notice also that compared with the previous version of the Book class, this Book class does
not require a unique id to be passed in order to create an instance from it. Instead, the Book
entity uses the @GeneratedValue annotated from the Java Persistence API to request that its id
variable be generated automatically by the Java Persistence runtime, a unique one for each
instance. This means that this version of the library no longer has to worry about creating unique
ids for the books it houses. The @GeneratedValue annotation has optional attributes that allow
applications to control the generation strategy for the IDs.

Listing: The Author class

import java.util.*;
import java.io.*;
import javax.persistence.Entity;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Id;

368 Java EE 7: The Big Picture

import javax.persistence.GeneratedValue;

@Entity
@NamedQueries({
 @NamedQuery(
 name="findAllAuthors",
 query="select a from Author a"
),
 @NamedQuery(
 name="findAuthorById",
 query="select a from Author a where a.id = :aId"
)
}
)
public class Author implements Serializable {
 @Id
 @GeneratedValue
 private int id;
 private List<String> foreNames;
 private String lastName;
 private String description = "";

 public Author() {}

 public Author(List<String> foreNames,
 String lastName,
 String description) {
 this.foreNames = foreNames;
 this.lastName = lastName;
 this.description = description;
 }

 public Author(String firstName, String lastName, String description) {
 this(new ArrayList<String>(), lastName, description);
 List<String> foreNames = new ArrayList<>();
 foreNames.add(firstName);
 this.foreNames = foreNames;
 }

 public int getId() {
 return this.id;
 }

 public List<String> getForeNames() {
 return this.foreNames;
 }

 public String getLastName() {
 return this.lastName;

Chapter 12: Modern Memories: The Java Persistence API 369

 }

 public String getDescription() {
 return this.description;
 }

 @Override
 public String toString() {
 return "Author:(" + this.foreNames + " " + this.lastName + ")";
 }

}

In the Author class, we can see the Book’s relationship to it is unidirectional, since the Author
class has no instance variable for Books. The Author class makes use of NamedQueries, in
particular, using a named parameter for the findAuthorById query to allow the author id to be
supplied dynamically. The Genre entity is along the same lines, with NamedQueries, showing
that its relationship from Book is also unidirectional, having primary key as the name of the genre
and having an attribute to hold the description of the genre.

Notice that, like the Book class, the Author class now requests its id be generated by the
Java Persistence runtime, relieving the application of the job of generating a new one each time it
creates a new Author instance.

Listing: The Genre class

import java.io.Serializable;
import javax.persistence.*;

@Entity
@NamedQueries({
 @NamedQuery(
 name="findAllGenres",
 query="select g from Genre g"
),
 @NamedQuery(
 name="findByGenreName",
 query="select g from Genre g where g.name = :gName"
)
}
)
public class Genre implements Serializable {
 @Id
 private String name;
 private String description;

 public String toString() {
 return "genre: " + name + " " + description;
 }

370 Java EE 7: The Big Picture

 public Genre(String name, String description) {
 this.name = name;
 this.description = description;
 }

 public String getName() {return this.name;}

 public String getDescription() {return this.description;}
 public Genre() {}
}

Finally, regarding the entities, the ChildrensBook entity is a subclass of Book, adding an
integer age attribute to denote a guide age for the audience of the book. You will see the childrens’
books are shown in the library front page with different icons depending on whether they are for
adults or younger or older children.

Listing: The ChildrensBook class

import java.io.Serializable;
import java.util.List;
import javax.persistence.Entity;

@Entity
public class ChildrensBook extends Book implements Serializable {
 private int bestAge;

 public ChildrensBook() {}

 public ChildrensBook(String title, Author author,
 List<Genre> genres, int bestAge) {
 super(title, author, genres);
 this.bestAge = bestAge;
 }

 public int getAge() {
 return bestAge;
 }

 @Override
 public String toString() {
 return "a kids book called " + super.getTitle() +
 " by " + super.getAuthor() + " in " + super.getGenres() +
 "age " + bestAge;
 }

}

In this application, we have configured the persistent unit such that the tables are created on
application deployment and dropped when the application is removed. The tables are populated
by a Singleton bean, which is marked with the @javax.ejb.Startup annotation to ensure

Chapter 12: Modern Memories: The Java Persistence API 371

that it runs when the application is deployed. We will not look at the code, except to note that it
uses the ordinary Java constructors for Book, ChildrensBook, Author, and Genre to set up the
data, and the EntityManager persist() call to write each Book to the database; for example

Book b = new Book("The Adventures of Herlock Sholmes", a, genres);
entityManager.persist(b);

We could equally create SQL scripts to populate the tables on startup. This is a more advanced
configuration option in the persistence.xml than we need to show in this example.

Now we come to the thinking part of the application, the LibraryBeanImpl that uses the
Entity Manager to query and manage the book, author, and genre data.

Listing: The LibraryBeanImpl class

import javaeems.chapter12.library.entities.*;
import javaeems.chapter12.library.LibraryBean;
import java.util.*;
import javax.ejb.*;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.Query;

@Singleton
public class LibraryBeanImpl implements LibraryBean {
 @PersistenceContext
 private EntityManager em;

 @Override
 public Genre getGenreByName(String name) {
 Query query = em.createNamedQuery("findByGenreName");
 query.setParameter("gName", name);
 return (Genre) query.getSingleResult();
 }

 @Override
 public List<Book> getBooksByGenre(String genreName) {
 Query query = em.createNamedQuery("findAllBooks");
 List<Book> books = query.getResultList();
 List<Book> genreBooks = new ArrayList<>();
 for (Book b : books) {
 if (b.isInGenre(genreName)) {
 genreBooks.add(b);
 }
 }
 return genreBooks;
 }

 @Override
 public List<Book> getBooksByAuthor(int authorID) {
 Query query = em.createNamedQuery("findAllBooksBy");
 query.setParameter("aId", authorID);
 return query.getResultList();
 }

372 Java EE 7: The Big Picture

 @Override
 public List<Author> getAuthors() {
 Query query = em.createNamedQuery("findAllAuthors");
 List<Author> authors = query.getResultList();
 return authors;
 }

 private List<Genre> getGenres(List<String> genreNames) {
 List<Genre> genres = new ArrayList<>();
 for (String name : genreNames) {
 genres.add(this.getGenreByName(name));
 }
 return genres;
 }

 @Override
 public void addBook(String title, int authorId,
 List<String> genreNames, boolean isChildrens, int age) {
 Author author = this.getAuthorForId(authorId);
 if (author == null) {
 throw new RuntimeException("bad author");
 }
 List<Genre> genres = this.getGenres(genreNames);
 Book newBook;
 if (isChildrens) {
 newBook = new ChildrensBook(title, author, genres, age);
 } else {
 newBook = new Book(title, author, genres);
 }
 em.persist(newBook);

 }

 @Override
 public List<String> getGenreNames() {
 Query query = em.createNamedQuery("findAllGenres");
 List<Genre> genres = query.getResultList();
 List<String> names = new ArrayList<>();
 for (Genre g : genres) {
 names.add(g.getName());
 }
 return names;
 }

 @Override
 public void deleteBook(int id) {
 Book b = em.find(Book.class, id);
 em.remove(b);
 }

 @Override
 public Author getAuthorForId(int id) {
 Query query = em.createNamedQuery("findAuthorById");
 query.setParameter("aId", id);
 return (Author) query.getSingleResult();

Chapter 12: Modern Memories: The Java Persistence API 373

 }

 @Override
 public void addAuthor(List<String> foreNames, String lastName, String description) {
 Author a = new Author(foreNames, lastName, description);
 em.persist(a);
 }

}

Take some time to look through all the operations. Note in particular the use of persist()
to persist an entity, such as can be seen in the addAuthor() method.

And note the use of named queries throughout, in particular, the use of named parameters
therein, for example, in getAuthorForId() and getBooksByAuthor().

Note in particular, and in contrast to the JDBC examples, how the results of the SELECT-based
queries return with all the entity type information. There is no need to cast the elements of a result
list to a Book object. If you look carefully around the rest of the application, in particular, the
managed bean that supplies the icons that signify the guide age for the books, you see that
the EntityManager preserves the polymorphism in the Book/ChildrensBook hierarchy,
retrieving instances of ChildrensBook where appropriate.

Summary
In this chapter, we have examined the primary features of the Java Persistence API. Starting with a
Hello World-style application, we set out by looking at how the Java Persistence API offers a
higher level and more compact approach than does JDBC to storing and retrieving application
data in and from a relational database. We explored the mechanisms to turn a regular Java class
into a persistence entity that can be used with the JPA APIs and how to define embeddable classes
and relationships with other persistence entities. We toured the EntityManager API, understanding
its main operations and how they relate to the different states persistence entities can be in. We
looked at queries and the JPQL language. We concluded with an examination of an updated
library with a more complete application dataset, including persistence entities within a class
hierarchy and with a variety of entity relationships.

PART
IV

The Java EE Toolbox:
Java EE Environment

This page intentionally left blank

CHAPTER
13

The Big Picture Revisited:
Java EE Applications

378 Java EE 7: The Big Picture

T
he Java EE application model is the combination and culmination of the web, Enterprise
Bean, and data models in the Java EE platform.

Up to this point in the book, we have focused mainly on the individual enterprise technologies
that make up the Java EE platform. We have examined all the major point technologies in Java EE.
Now we will consider some of the mechanisms and concepts that bring the point technologies
together.

Although we have already seen some of these ideas in action, this chapter will explore the
packaging and deployment mechanisms of Java EE applications, and will look at some of the
services common to Java EE components. We will finish with a description of Java EE profiles.

The Java EE Application
A Java EE application is a single deployable unit of code, resources, and deployment information.
It is composed of any or all of the following elements.

Web Application WARs
As discussed in Chapter 8, a web application is a collection of static content, markup pages, and
images, together with dynamic web components such as Java servlets, JSPs, JavaServer Faces,
JAX-RS resources, and Java WebSocket endpoints, with any resources that these web components
need such as managed beans or tag libraries and their collective deployment information.

Enterprise Bean JARs
As we saw in Chapter 9, an Enterprise Bean JAR is a collection of one or more related Enterprise
Beans and any resources or libraries they need, along with their collective deployment information.

Application Client JARs
An application client JAR is a Java EE application client application, containing a main class, any
other classes, libraries, and resources it needs together with its deployment information. We will
discuss application clients in more detail shortly.

Resource Adapter Archives
A Resource Adapter Archive (RAR) is something that implements the Java EE Connector architecture.
This architecture is the standard way by which the Java EE server can be extended to connect to
other enterprise information systems such as ERP systems, transaction processing systems, and
non-Java systems of many kinds. A Resource Adapter Archive allows the rest of the Java EE
application of which it is part to call into these systems. Creating RARs is usually done by developers
with a high degree of familiarity with the system to which it connects, and is a specialty that is
beyond the scope of this book.

Java EE Modules
Each of these elements: a web application WAR, Enterprise Bean JAR, application client JAR, and
Resource Adapter Archive is known more generically as a Java EE module.

In addition, a Java EE application may contain deployment information that is not already
contained in its constituent Java EE modules.

Chapter 13: The Big Picture Revisited: Java EE Applications 379

In Figure 13-1, we see a representation of the logical structure of a Java EE application.
Before we look at how this logical structure is reflected in the Enterprise Archive packaging

format for Java EE applications, we will look a little more formally at Java EE application clients.

Application Clients
The Java EE platform includes a container for client-side applications, such as Java Swing or JavaFX
GUI applications. This container, called the application client container, provides a number of the
Java EE services that are available to Java EE components running in the web or Enterprise Bean
container. Examples of these services include access to configured objects such as a JDBC data
source in the JNDI namespace, and the abilities to inject references to Enterprise Beans running
on the Java EE server and to call them.

An application client application always has a main class with a Java main() method. The
application client container upon initialization calls the main class, and the application has a
particularly simple lifecycle because the application container does not ever instantiate the main
class; it runs the main() method until it finishes.

One of the main features of the Java EE platform that an application client may take advantage
of is access to the JNDI namespace.

FIGURE 13-1. A logical view of a Java EE application

Java EE Application Archive (EAR)

Enterprise Bean JAR

Enterprise Bean JAR

Web Application Archive

Application Client JAR

Application Client

Resource Adapter RAR

Enterprise Bean

Web Application Archive

Enterprise Bean

Resource Adapter

Java EE application deployment information

Enterprise BeanEnterprise BeanEnterprise BeanEnterprise BeanEnnttntrrepprprisee e BeaeaeanEnterprise Bean

Enterprise BeanEnterprise Bean

Enterprise BeanEnterprise Bean

Web ComponentWeb ComponentWeb ComponentWeb ComponentWWWebebebb CCCooomppponentWeb ComponentWeb CompponentWWWWebebebebb CCCCoooommpppppponenenttWeb Component

Web ComponentWeb ComponentWeb ComponentWeb ComponentWWWebebebb CCCooompppponentWeb Component

380 Java EE 7: The Big Picture

Java EE application clients have access to a subset of the Java EE services available in the
server-side web and Enterprise Bean containers. For example, an application client may look up
any of the Enterprise Beans on its Java EE server in the JNDI namespace. We will be exploring the
Java EE services available in the JNDI namespace across the entire platform shortly, and we will
identify this subset for application clients.

Application Client Resource Injection
Because the application container never instantiates the main class, resource injection into the
fields of the main class is available only into the static variables, and is performed prior to the
main() method being called.

Application clients are packaged in a file called the application client JAR file. This type of file
is a regular JAR file containing all the classes and resources needed by the application client
code, with a couple of additional features.

The MANIFEST.MF file of the JAR file contains the fully qualified classname of the application
client’s main class in the Main-Class attribute.

An optional XML deployment descriptor file is located in the META-INF directory and called
application-client.xml, which contains descriptive information about the application such
as a logical and display name, together with descriptions of the references to Enterprise Bean
components and external resources used by the application, if they are not already declared using
annotations in the source code.

Figure 13-2 shows the structure of the application client JAR, together with an example
application client JAR.

FIGURE 13-2. The structure of an application client JAR

Application Client JAR

/
com/store/MainWindow.class
com/store/AddProduct.class
com/store/ShoppingUtil.class
com/store/ShoppingUtil.class

/META-INF/application-client.xml
/META-INF/MANIFEST-MF

Deployment information
in /META-INF/application-client.xml

and in /META-INF/MANIFEST.MF

Application client classes
located at the root /

Logical View Example Archive View

Manifest-Version: 1.0
Created-By: 1.8.0-b129 (Oracle Corporation)
Main-Class: com.store.MainWindow

Chapter 13: The Big Picture Revisited: Java EE Applications 381

Enterprise Archives: EAR Files
A Java EE Enterprise ARchive file, or EAR file for short, is the file format for distributing Java EE
applications. It is a special kind of ZIP archive that may contain zero or more WAR files,
Enterprise Bean JAR files, RAR files, and application client JAR files in its root entry. It may also
contain a deployment descriptor in a file called application.xml in its META-INF directory,
which may add further descriptions of the modules it contains (we will see examples later). It may
also contain descriptions of references to Enterprise Bean components and external resources
used by the application. It may also contain JAR files that contain libraries used by one or more of
the Java EE modules in the application, under the /lib directory.

Java EE Application and Module Names
All modules within an EAR file have a logical name, called the module name. The module name
of a Java EE module defaults to the archive entry name of its archive, minus the file extension. So,
for example, in Figure 13-3, the default module name of the Java EE modules contained in the
example EAR file are ui/store, ui/catalog, adminsite, dataModelBeans, and admin-client.

Java EE applications themselves have a logical name. The default logical name of a Java EE
application is its filename, minus the .ear extension. So in Figure 13-3, the default logical name
is myShop.

The default application and module name may be overridden in the optional
application.xml deployment descriptor.

FIGURE 13-3. The structure of a Java EE application

Java EE Application EAR

/
/ui/

store.war
catalogBeans.jar

admin-site.war
dataModelBeans.jar
admin-client.jar

/lib
creditutils.jar

/META-INF/application.xml

Deployment information
located in /META-INF/application.xml

Java EE Modules

Logical View
Example Archive View: myShop.ear

Application libraries
/lib

382 Java EE 7: The Big Picture

Java EE Application External Libraries
The /lib directory of the EAR file provides a general-purpose means by which multiple Java EE
modules in the same Java EE application can use common code. What about code that is shared
across multiple Java EE applications? In this kind of situation, the Java EE archives, whether they
be EARs, WARs, RARs, or application client JARs, use the JAR extension mechanism to declare a
dependency on an external JAR file.

In order for a Java EE archive myApplication.ear to declare a dependency on a library
called mybookutils, it adds a declaration of the dependency to its MANIFEST.MF file.

Listing: Expressing an external dependency

META-INF/MANIFEST.MF
Manifest-Version: 1.0
Extension-List: mydependency
mydependency-Extension-Name: mybookutils
mydependency-Specification-Version: 4.8

When deployed, the Java EE server looks for a JAR file satisfying the requirements of the
EAR file. It will look for a JAR file, installed previously, that declares that it supports the
mybookutils library, by expressing this in its MANIFEST.MF file.

Listing: Satisfying an external dependency

META-INF/MANIFEST.MF
Manifest-Version: 1.0
Extension-Name: mybookutils
Specification-Vendor: Library code LLC
Specification-Version: 4.8.1

This mechanism is based on the Java SE applet mechanism for installed extensions. Additional
attributes of the extension syntax allow libraries to declare more vendor information, and also
implementation information, and correspondingly, the additional Extension-List syntax
allows Java EE modules to declare a dependency on a particular vendor and/or implementation
of the library.

When a Java EE application bundles a library used by one or more of its modules, and one or
more of those modules declares an external dependency on the same library, the bundled library
will be used by the Java EE server in preference to any libraries that satisfy the external dependency.
In this way, Java EE modules can override the installed libraries on the server if they need to.

Injectable and Named Objects of Java EE
As we have seen, the Java EE platform allows Java EE applications to access various available
resources and configuration objects through named objects. Some of the most common examples
of such named objects, all of which we have already encountered, are the other Enterprise Beans
deployed in the Java EE server, configured JDBC DataSources and EntityManagers. In this
section, we look at all the named objects available in the Java EE platform.

Chapter 13: The Big Picture Revisited: Java EE Applications 383

Named objects are available to Java EE components in one of two ways. First, they can be
looked up in the Java Naming and Directory Interface (JNDI) namespace using the name under
which the object is registered. Second, named objects can be injected into the Java EE component
using one of the annotations @EJB, @Resource, @PersistenceContext, or @PersistenceUnit
depending on the type of the object.

A Java EE component expresses its dependency on named objects either through the use of
the annotations listed earlier, or through the deployment descriptor of the module that contains it.
The deployment descriptor elements such as <env-entry>, <ejb-ref>, <resource-ref>, and
<resource-env-ref>, are common to all the Java EE deployment descriptors and define the
syntax defining a component’s dependency on the different types of named objects. The annotations
listed earlier, and the deployment descriptor syntax for dependencies on named objects that we
explore in this section, apply equally to all Java EE component types, from web components
through Enterprise Beans to application clients.

The power of this scheme, whether it be used for configuring Enterprise Bean references,
general-purpose configuration objects, or JavaMail sessions, is that Java EE components can locate
and use these named objects without having to understand any of the details concerning how the
object has been configured into the Java EE server by the person who deploys the application, or
by the person who administers the Java EE server. Equally, the deployer, or server administrator,
can ascertain, through the use of annotations and deployment descriptors in a Java EE application,
on which named objects a Java EE component depends, and so set up the correct named objects
in the Java EE server that the Java EE application needs.

We can see an illustration of the named object scheme in Figure 13-4.

JNDI Namespaces
In the Java EE server, the namespace JNDI uses is divided up into different logical areas: for objects
local to a particular component, for objects shared by all components within a particular Java EE
module, for objects shared by all components within any Java EE module within a particular Java EE
application, and finally, a logical area where objects can be put that are shared across any Java
EE application deployed on the Java EE server. These scopes apply equally to all Java EE components
with the exception of web components: web components do not have individual java:comp
namespaces; they share the java:comp namespace with all the web components within the
same WAR.

Namespace Name Scope
java:comp Local to a particular component (except web components)
java:module Local to a particular Java EE module
java:app Local to a Java EE application
java:global Shared across all Java EE applications on the Java EE server

We have already encountered some of the named objects in these namespaces. All Enterprise
Beans in a given application appear in the java:module, java:app, java:global
namespaces, as we shall see.

384 Java EE 7: The Big Picture

In addition, all web applications are given names in the shared namespaces to which the Java
EE server maps the java.net.URL to the web application’s context root. In the java:app
namespace, a web application has the JNDI name

java:app/<module-name>!ROOT

where <module-name> is the logical name of the web application.
In the java:global namespace, a web application has the JNDI name

java:global<app-name>/<module-name>!ROOT

FIGURE 13-4. Injected and named objects in Java EE

Java EE application

Java EE Module

Java EE component

@Resource
@Inject
@EJB

@PersistenceContext
@PersistenceUnit

Java EE Module

Java EE component

deployment descriptor
<env-entry>

<ejb-ref>
<resource-ref>

<resource-env-ref>

Java EE Server

Java EE application

Java EE Module

Java EE component
Java EE Module

Java EE component

DataSourceEnterprise Beans
Configuration

object

Deploy

descriptor<env-entry><ejb-ref><resource-ref><resource-env-ref>

Chapter 13: The Big Picture Revisited: Java EE Applications 385

The JNDI namespace of the Java EE server also contains the logical names of the applications
and the modules that have been deployed on it. A Java EE component can access its application
name, a String object, under the JNDI name java:app/AppName, and the name of its
containing module, a String object, under the JNDI name java:module/ModuleName.

You can also tell whether you are running within an application client container or a
server-side Java EE container such as the web or Enterprise Bean containers. A Java EE component’s
local java:comp namespace contains a Boolean object registered under the name java:comp/
InAppClientContainer, which returns true if the component is within the Java EE application
client container, and false otherwise.

We now explore some of the other named objects in the JNDI namespace.

Simple Environment Entries
Most applications have some kind of application-specific parameters that are useful to tune
without having to recompile the source code. Filenames, user messages, and port numbers are all
common examples. Environment entries give Java EE applications a general-purpose way to declare
such properties in the deployment descriptor, and to use their (configurable) values from Java EE
application code.

The simplest way to declare an environment entry is to create an <env-entry> element
containing the name and value and add it to the application or Java EE module deployment
descriptor, depending on where in the application you wish to access it. You can either inject the
value into an instance variable using the @Resource annotation, or look it up on the JNDI
InitialContext class.

To see this syntax, let’s look at a familiar example. Recall the Async Enterprise Bean example
from Chapter 9, consisting of an Enterprise Bean that calculates the largest prime number under a
given limit, with a Java EE application client front end allowing the user to initiate calculations
setting the upper limit. We see its GUI in Figure 13-5.

FIGURE 13-5. The Asyc Enterprise Bean, main window

386 Java EE 7: The Big Picture

A careful examination of the application client JAR reveals the addition of an environment
entry with name window-title in the application-client.xml deployment descriptor.

Listing: The Async application client deployment descriptor

<application-client version="7"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/application-client_7.xsd">
 <display-name>Async-client</display-name>
 <env-entry>
 <description>Title of window</description>
 <env-entry-name>window-title</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ACME Prime Calculator</env-entry-value>
 </env-entry>
</application-client>

This is used in the PrimesWindow class (which renders the window you see in Figure 13-5).

Listing: Excerpt from the PrimesWindow

 public PrimesWindow() {
 try {
 String title = (String) InitialContext.doLookup(
 "java:comp/env/window-title");
 this.setTitle(title);
 } catch (NamingException r) {
 // the entry was not found, or was incorrectly specified
 // in the deployment descriptor
 this.setTitle("Find the largest prime under a limit");
 }
 ...
 }
...
}

Note the use of the java:comp scope because this environment entry is declared in a Java EE
module. Also notice the use of /env in the naming: this is the Java EE convention for naming
environment entries.

Similarly, if you try to invoke the PrimeCalculator bean with the maximum upper limit
allowed in the UI, you will see the PrimesWindow display the violation, shown in Figure 13-6.

You will notice that the PrimeCalculator is now applying an upper limit to the calculations
it will make. It injects this as an environment entry into an instance variable.

Chapter 13: The Big Picture Revisited: Java EE Applications 387

Listing: Injecting an environment entry

@Stateless
public class PrimeCalculator implements PrimeCalculatorRemote {
 @Resource
 SessionContext context;
 @Resource(lookup="java:comp/env/max-uppper-bound")
 int maximumBound;
 ...
}

Then it declares the value of the environment entry, called max-upper-bound, in its deployment
descriptor.

Listing: Listing an environment entry in an Enterprise Bean deployment descriptor

<ejb-jar xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 version="3.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/ejb-jar_3_2.xsd">
 <enterprise-beans>
 <session>
 <ejb-name>PrimeCalculator</ejb-name>
 <env-entry>
 <description>Maximum Limit on Primes</description>
 <env-entry-name>max-uppper-bound</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>150000</env-entry-value>
 </env-entry>
 </session>
</enterprise-beans>
</ejb-jar>

Notice how easy it would be to give this application to someone else and have them choose
their own window title and upper bound on the prime calculations. It would simply be a matter
of editing the deployment descriptors: no need to understand or touch the code.

FIGURE 13-6. The Primes Window, limit exceeded

388 Java EE 7: The Big Picture

Environment entries can be any of the following types: String, Character, Byte, Short,
Integer, Long, Boolean, Double, Float, Class, and any Java enum. These types are usually
enough to cover most of the configuration options you may need in a Java EE application.

We summarize the env-entry element with its subelements that are used to define
environment entries in the following table.

env-entry Subelement Purpose
env-entry-name The logical name of the environment entry, used to map the

value to /env/(logical name) in the JNDI namespace
env-entry-type The Java type of the environment entry value
env-entry-value The string value of the environment entry
env-entry-description A text description of the environment entry

Enterprise Bean References
When a session bean is deployed, either just within an Enterprise Bean JAR or within an
Enterprise Bean JAR contained in an EAR file, the Java EE server makes it available for lookup in
the JNDI namespace, either by looking it up directly in the JNDI InitialContext, or by
injection using the @EJB annotation with the lookup attribute.

The Enterprise Bean is available for lookup in the global, application, and module namespaces.
An Enterprise Bean, you will remember, has a logical name, its bean name, which defaults to the
short class name of its implementation class. This name may be overridden using the name
attributes of the @Stateful, @Stateless, or @Singleton. The Enterprise Bean may have a
no-interface view, in which case the methods on its implementation class can be called directly,
or expose one or more remote (sometimes called business) interfaces. A combination of the bean
name and, in the case that the client wishes to call the bean through one of its remote interfaces,
the fully qualified class name of the desired remote interface, forms the basis of the JNDI names
under which the Enterprise Bean is published.

If the Enterprise Bean is packaged in an Enterprise Bean JAR with module name ejb-module
and packaged in an Enterprise Archive with logical name enterprise-archive, then the
following table gives the JNDI names of the Enterprise Bean:

Scope JNDI Name

Global If deployed in an EAR:
java:global/enterprise-archive/
 ejb-module/bean-name[!fq remote classname]

or, if deployed just in its Enterprise Bean JAR:
java:global/ejb-module/bean-name[!fq remote classname]

Application java:app/ejb-module/bean-name[!fq remote classname]

Module java:module/bean-name[!fq remote classname]

A simpler alternative to using the @EJB(lookup=jndi-name) syntax for locating a reference
to an Enterprise Bean is to use the name attribute of the @EJB annotation instead.

Chapter 13: The Big Picture Revisited: Java EE Applications 389

For example, for the Enterprise Bean described in the JNDI namespace in the table, the syntax
@EJB(name="bean-name") locates the Enterprise Bean with the given bean-name in the closest
scope.

You can in fact omit the name attribute altogether, and the container will use the Java type of
the field you annotate as the name of the bean to locate in this case. This is a common style to
use, particularly in smaller applications where there are fewer Enterprise Beans.

Enterprise Bean Named Objects
Now let’s look at some named objects that are available to Enterprise Beans.

EJBContext The javax.ejb.EJBContext is a very useful named object that can be accessed
by all Enterprise Beans. It can be used, for example, to access security information about a call to
a bean, like the Java Principal associated with the call. You will recall from Chapter 10 that it has
the subinterfaces MessageDrivenContext and SessionContext for message-driven beans and
session beans. The EJBContext may be injected into a field of the Enterprise Bean instance using
the @Resource annotation:

@Stateful
public class MySessionBean {
 @Resource
 private SessionContext myContext;
...
}

The EJBContext instance associated with an Enterprise Bean is available in the JNDI
namespace, and so can be explicitly found in the bean’s component scope namespace using the
JNDI naming context.

Listing: Looking up the EJBContext

@Stateful
public class MySessionBean {
 private SessionContext myContext;
 public void init() {
 try {

 SessionContext myContext =
 InitialContext.lookup("java:comp/EJBContext");
 ...

 } catch (NamingException ex) {
 // something is wrong in the environment
 }

...
}

390 Java EE 7: The Big Picture

TimerService
The TimerService is a useful named object that can be used by any Enterprise Bean except for
stateful session beans. Like the EJBContext, it may be injected into a field on an Enterprise Bean
using the @Resource annotation:

@Resource
private TimeServer myTimer;

or it can be found in the bean’s component scope namespace under the name java:comp/
Timerservice and looked up explicitly:

 TimerService myTimeService =
 InitialContext.lookup("java:comp/Timerservice");

DataSource
When a Java EE application that needs a JDBC DataSource to access a relational database is
deployed on a Java EE server, then its dependency on a DataSource must be resolved. How this
dependency is resolved depends on the particular application server, but the outcome of that
process, however it is achieved, will be a configured DataSource on the server under a given JNDI
name. For the GlassFish application server, the configuration information about the DataSource is
held in a supplemental deployment descriptor called glassfish-resources.xml.

Listing: GlassFish configuration of a JDBC DataSource

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE resources PUBLIC "-//GlassFish.org//DTD GlassFish
 Application Server 3.1 Resource Definitions//EN"
 "http://glassfish.org/dtds/glassfish-resources_1_5.dtd">
<resources>
 <jdbc-resource
 enabled="true"
 jndi-name="jdbc/myDatasource"
 object-type="user"
 pool-name="myConnectionPool">
 <description/>
 </jdbc-resource>
 <jdbc-connection-pool allow-non-component-callers="false"
 associate-with-thread="false"
 connection-creation-retry-attempts="0"
 connection-creation-retry-interval-in-seconds="10"
 connection-leak-reclaim="false"
 connection-leak-timeout-in-seconds="0"
 connection-validation-method="auto-commit"
 datasource-classname=
 "org.apache.derby.jdbc.ClientDataSource"
 fail-all-connections="false"
 idle-timeout-in-seconds="300"

Chapter 13: The Big Picture Revisited: Java EE Applications 391

 is-connection-validation-required="false"
 is-isolation-level-guaranteed="true"
 lazy-connection-association="false"
 lazy-connection-enlistment="false"
 match-connections="false"
 max-connection-usage-count="0"
 max-pool-size="32"
 max-wait-time-in-millis="60000"
 name="myConnectionPool"
 non-transactional-connections="false"
 pool-resize-quantity="2"
 res-type="javax.sql.DataSource"
 statement-timeout-in-seconds="-1"
 steady-pool-size="8"
 validate-atmost-once-period-in-seconds="0"
 wrap-jdbc-objects="false">
 <property name="URL"
` value="jdbc:derby://localhost:1527/databaseForHelloJDBC"/>
 <property name="serverName" value="localhost"/>
 <property name="PortNumber" value="1527"/>
 <property name="DatabaseName" value="databaseForHelloJDBC"/>
 <property name="User" value="hello"/>
 <property name="Password" value="hello1"/>
 </jdbc-connection-pool>
</resources>

Any Java EE component in the application can access the DataSource by injecting it into a
field using the @Resource annotation. The least error-prone way to perform the injection is to use
the lookup attribute to specify the JNDI name of the DataSource:

import javax.annotation.Resource;

public class MyDataBean {
 @Resource(lookup="jdbc/helloJDBCDatasource")
 DataSource ds;
 ...
}

Alternatively, if there is only one configured DataSource for the application, the dependency
injection framework can infer the location of the DataSource, and the lookup attribute may be
omitted.

import javax.annotation.Resource;

public class MyDataBean {
 @Resource
 DataSource ds;
 ...
}

392 Java EE 7: The Big Picture

Finally, the DataSource may be looked up explicitly using the JNDI InitialContext.

Listing: Looking up a DataSource

import javax.naming.InitialContext;
import javax.naming.NamingException;
@Stateless
public class MyDataBean {
 DataSource ds;
 ...
 public MyDataBean {
 try {
 this.ds = InitialContext.doLookup("jdbc/helloJDBCDatasource");
 } catch (NamingException e) {
 // the data source was not found at that name....
 }
 }
...
}

Java Persistence Objects:
EntityManager, EntityManagerFactory
A Java EE application may depend on the Java Persistence API, in which case it will need one or
more persistence units to be configured for the application. In order to configure a persistence
unit for an application, the Java EE module that will utilize it must contain a persistence.xml
file in the META-INF directory where the scope of the persistence unit will apply. In the case of
Enterprise Bean JAR files, this is the META-INF directory of the JAR file, and although somewhat
counterintuitive, for a WAR file, the WEB-INF/classes/META-INF directory.

The persistence.xml contains, at a minimum, the logical name of the persistence unit and
may optionally include the logical name of a DataSource that the application would like the
persistence implementation to use. For example, here is a persistence.xml file that defines
a persistence unit of name myPersistenceUnit and that uses the DataSource named
jdbc/myDataSource.

Listing: Configuring a persistence unit in a persistence.xml file

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1"
 xmlns="http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="myPersistenceUnit" transaction-type="JTA">
 <jta-data-source>jdbc/myDataSource</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 </persistence-unit>
</persistence>

Chapter 13: The Big Picture Revisited: Java EE Applications 393

You will recall from Chapter 12 that there are two ways to access the persistence unit in a JPA
application. The most convenient way is to use a container-managed EntityManager injected
into a field of the Java EE component that will use it. It is easiest because in this case the Java EE
server manages the lifecycle of the EntityManager instance for the application. It is injected
using the @PersistenceContext annotation and the name of the persistence unit:

@PersistenceContext(unitName="myPersistenceUnit")
private EntityManager entityManager;

If the Java EE module has only one configured persistence unit, then the unitName may be
omitted:

@PersistenceContext
private EntityManager entityManager;

Unlike DataSources, however, the EntityManager instance is not registered by default
in the component namespaces of components within a Java EE module. If you do wish to look up
the EntityManager instance for a component in the JNDI namespace, you must put it there
yourself. Fortunately, this is relatively easy: all you need to do is pick a memorable JNDI name for
the EntityManager, and now use the @PersistenceContext annotation at the class level to
make the registration, as in the following example:

@PersistenceContext(
 name="myPersistenceUnit-jndi-name",
 unitName="myPersistenceUnit"
)
@Singleton
public class MyBeanImpl implements MyBean {

...

}

This registers the persistence unit called myPersistenceUnit under the JNDI name
myPersistenceUnit-jndi-name in the component’s java:comp/env namespace. Then,
 from any instance method in the component, the EntityManager can be found as follows:

 EntityManager em = InitialContext.doLookup("java:comp/env/
myPersistenceUnit-jndi-name");

If you wish to manage your own instances of the EntityManager, you can inject instead
the EntityManagerFactory, which can be used to instantiate them. The annotation
@PersistenceUnit is used to inject the EntityManagerFactory, specifying the name of
the persistence unit:

@PersistenceUnit(unitName="myPersistenceUnit")
private EntityManagerFactory entityManagerFactory;

or, like the @PersistenceContext injection for the EntityManager, omitting the unit name if
there is only one in the module.

394 Java EE 7: The Big Picture

The @PersistenceUnit annotation may also be used at the class level to register the
EntityManagerFactory in the component’s java:comp namespace, exactly as for the
@PersistenceContext case.

Other Named and Injectable Objects
The named and injectable objects that we have looked at: application and module names, web
application context roots, environment entries, Enterprise Beans, data sources, and persistence
unit objects are not the only named and injectable objects in the platform. You can also inject and
look up configured objects such as JMS connection factories, JavaMail sessions, and the current
transaction in scope.

Here is a summary of the most commonly used named and injectable objects in the Java EE
platform.

 ■ Application and module names

 ■ Environment entries

 ■ Enterprise Beans

 ■ JDBC data sources

javax.jdbc.DataSource

 ■ Java Persistence objects

javax.persistence.EntityManager, javax.persistence.EntityManagerFactory

 ■ Current transaction

javax.transaction.UserTransaction

 ■ Message destinations

javax.jms.Queue

Where Does Injection Work?
In our discussion of the injectable objects in the Java EE platform, we started out by stating that
the injection works in any Java EE component: web, application client, or Enterprise Bean. This is
true, except that it is also available in other components in the Java EE platform, such as Java
servlet filters or in JavaServer Faces managed beans. Here is a listing of all the sites in a Java EE
application in which injectable objects may be utilized.

 ■ Java servlets
Servlet filters
Web listeners
Event listeners

 ■ JSP tag library and event listeners

 ■ JavaServer Faces managed beans

 ■ JAX-RS resources

 ■ WebSocket endpoints

Chapter 13: The Big Picture Revisited: Java EE Applications 395

 ■ Enterprise Beans
Interceptors

 ■ CDI managed beans (see Chapter 14)

Summary
In this chapter, we looked at the packaging and deployment formats for Java EE applications, the
EAR file format, and the JAR packaging and deployment format for application clients. We looked
at the different ways in which a Java EE application can co-bundle library files and express
dependencies on external libraries. We explored the most commonly used injectable named
objects in the platform.

In our exploration of named objects, we implicitly touched on the topic of objects that Java EE
applications use, but whose lifecycle they do not manage. We have already seen how the Java EE
containers manage the lifecycle of application components. This means that it is high time to look
at the topic of Contexts and Dependency Injection (CDI): the Java EE platform’s general-purpose
lifecycle management framework.

CHAPTER
14

Deconstructing
Components:

Java EE Contexts and
Dependency Injection

398 Java EE 7: The Big Picture

T
he Java EE dependency injection service is like the ultimate delivery service for programming:
whenever you need an instance of something, you can rely on Java EE dependency injection
to get you the right one.

Properly entitled Contexts and Dependency Injection, or CDI for short, this is the state of the
art for modularizing applications. Integrated with the Java EE platform, CDI provides many ways
to decouple implementations of the elements of a Java EE application. It grew from a desire to
make it easier to bring together web components with Enterprise Bean components, and it shares
and generalizes aspects from both tiers of the Java EE platform.

In this chapter, we will examine the CDI framework, its mechanisms, and APIs, while also
looking at where CDI can be used in conjunction with the Java EE components and APIs that we
already know.

Introduction to CDI
The fundamental concept of CDI is the consumer-producer relationship that it supports. Typically,
the consumer side is an application component, a Java class, or Java EE component that needs
another object to perform a specific task by calling its methods. The task may be encoding some
data, performing an algorithmic step on a collection of numbers, sending a message, or storing
data in a database. The producer side of the relationship is a Java object that can perform the task
on behalf of the consumer. In ordinary Java programming, the consumer could be a Java class that
creates an instance of another Java class that is the producer when it needs it. Or the consumer
could be a Java class that requires an instance of the producer class to be passed into its constructor,
where it stores it in an instance variable. One aspect of this kind of consumer-producer relationship
is that it is tightly coupled: the consumer class is concerned not only with the type of the
producer, but it also has to worry about the lifecycle of the producer instance. The producer class
could hide itself behind an interface, but someone would still be responsible for instantiating an
implementation of the interface.

What CDI does is decouple the consumer-producer relationship in a way that is typesafe.
When a consumer needs an instance of a producer, the CDI runtime selects a suitable instance of
the producer under its management and gives it to the consumer. Let’s see this in diagram form in
Figure 14-1.

On the Consumer side of Figure 14-1 at the right, the Java class needs a particular kind of
object. In order to declare its need to the CDI framework, it defines an injection point. An
injection point may be located at a field, method, or constructor, and is where the CDI runtime
will inject the object that the consumer class needs. In order to do this, the CDI runtime analyzes
the injection point declared by the consumer class, looking in its store of available CDI beans, on
the producer side of Figure 14-1. Depending on whether there is a suitable instance of the CDI
bean already being managed by the CDI runtime that will be suitable for the consumer class’s
injection point or whether the CDI runtime needs to create a new instance, the CDI runtime
injects the instance it has selected into the injection site.

The CDI APIs include annotations that allow the consumer to define qualifying information
that the CDI runtime will use to select the appropriate CDI bean to make the injection. It also
includes the notion of a CDI bean producer: a class that gives an instance of a CDI bean when

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 399

the CDI runtime needs to inject one, but without being injected itself. It includes lifecycle
annotations that give each CDI bean instance the ability to intercept the key stages in its lifecycle.
It includes an interceptor model that allows applications to add Java classes that intercept CDI
bean lifecycle and method invocations, and includes an event model, which allows CDI beans to
notify each other of changes.

We have already encountered many examples of the CDI framework in Java EE at work: for
example, the injection of references to Enterprise Beans into web components and JDBC
DataSources and EntityManagers into Enterprise Beans.

CDI also includes the notion of Java EE scopes, which define how many instances of a CDI
bean the CDI runtime will instantiate and how long each instance will live.

We will look at how these CDI concepts are formulated in the CDI APIs and how to use them
in Java EE applications, but first, we will start with a simple example.

Goldilocks and the Three Bears
In this example, we retell the traditional children’s story in which the little girl Goldilocks finds a
house that belongs to three bears and tries various things in it, including the beds.

Before we look at any code, let’s look at the general composition of this application.
The GoldilocksServlet has three injection points that are asking the CDI runtime to inject

three instances of a CDI bean of type Bed. Bed is an interface that defines the API implemented
by all of the CDI beans in the application. The GoldilocksServlet declares its injection points
slightly differently from each other: one requests no special qualifying properties; the other two
do. There are three CDI beans that implement the Bed interface, which declare different injection
properties. You can see the result of calling the GoldilocksServlet in Figure 14-2.

FIGURE 14-1. The consumer-producer relationship in CDI

CDI runtime

Available
CDI Beans

Injection
point

create

inject
CDI bean
instance

ConsumerProducer

Manage
Java class

400 Java EE 7: The Big Picture

FIGURE 14-2. The Goldilocks application home page

Let’s look first at the CDI beans: DaddyBearBed, MommyBearBed, and BabyBearBed and the
Bed interface they all implement.

Listing: The bears’ beds

public interface Bed {
 public String tryIt();
}

@Comfort("firm")
public class DaddyBearBed implements Bed {
 @Override
 public String tryIt() {
 return "too hard";
 }
}

@Comfort("yielding")
public class MommyBearBed implements Bed {
 @Override
 public String tryIt() {
 return "too soft";
 }
}

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 401

public class BabyBearBed implements Bed {
 @Override
 public String tryIt() {
 return "just right";
 }
}

What we see is three classes implementing the single method Bed interface. But notice also
that the DaddyBearBed and MommyBearBed have a class-level @Comfort annotation, while the
BabyBearBed has none. The @Comfort annotation is an example of how a Java EE application
can define an annotation that qualifies an injection point and qualifies a CDI bean that the CDI
runtime can match and inject into that injection point.

Listing: The @Comfort qualifier

import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import javax.inject.Qualifier;

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Comfort {
 String value();
}

What makes the @Comfort annotation a qualifier is that it is itself annotated with the
@Qualfier annotation from the CDI APIs. We can see it has one attribute: value, which the CDI
beans in this application use to declare a string describing their comfort level.

Now we turn to the GoldilocksServlet.

Listing: The GoldilocksServlet class

import java.io.*;
import javax.servlet.*;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;
import javax.inject.Inject;

@WebServlet(name = "GoldilocksServlet", urlPatterns = {"/GoldilocksServlet"})
public class GoldilocksServlet extends HttpServlet {
 @Inject
 private Bed bed3;

402 Java EE 7: The Big Picture

 @Inject
 @Comfort("firm")
 private Bed bed1;

 private Bed bed2;

 @Inject
 public void initializeBed(@Comfort("yielding") Bed bean) {
 this.bed2 = bean;
 }

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 try (PrintWriter out = response.getWriter()) {
 out.println("<!DOCTYPE html>");
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Goldilocks and the CDI beans</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<div align='center'>");
 out.println("<h2>Hello Servlet using three CDI beans</h2>");
 out.println("<img width = '80' height='80'
 src='Goldilocks.jpg'>");
 out.println("<p>");
 out.println("Goldilocks tried the first bed, but it was "
 + bed1.tryIt() + ".

");
 out.println("Goldilocks tried the second bed, but it was "
 + bed2.tryIt() + ".

");
 out.println("Goldilocks tried the third bed, and it was "
 + bed3.tryIt() + ".

");
 out.println("</p>");
 out.println("</div>");
 out.println("</body>");
 out.println("</html>");
 }
 }

}

The first thing to notice about the GoldilocksServlet is that it has three instance variables:
bed1, bed2, and bed3. Each is of type Bed, which means the GoldilocksServlet has no notion
of the implementation classes that will fill out its instance variables. The bed3 variable is decorated
with the @Inject annotation, which means that it is asking the CDI runtime to inject a suitable
instance of the type Bed into this variable when the servlet class is first instantiated. There is no
other information associated at this injection point, so this is a request to the CDI runtime

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 403

to select the default CDI bean implementation, which since it declares no other annotations
is the BabyBearBed bean. The bed1 instance variable is annotated with the @Inject and
@Comfort("firm") annotations, which means that it is asking the CDI runtime to inject a
suitable instance of the type Bed when the servlet is first instantiated, and that the instance
injected must be qualified with the @Comfort("firm") annotation. Among the CDI beans in
this application, only the DaddyBearBean satisfies these requirements. Finally, the bed2
instance variable has no @Inject annotation. So how is the value assigned at runtime? Notice
the initializeBed() method, marked with the @Inject annotation, which assigns the value
of bed2. This means that the CDI runtime will call this method after the servlet is instantiated,
injecting the values of the method parameters. Notice that the Bed method parameter is marked
@Comfort("yielding"), which is a request to the CDI runtime to inject a CDI bean of type
Bed, which is marked with the @Comfort("yielding") annotation. In this application, this
request is satisfied by the MommyBearBed bean. Now that we have understood how these
instance variables are initialized, when the servlet is called, its doGet() method calls each of the
three beans to create the page we see in Figure 14-3.

The main thing to notice in this application is that the GoldilocksServlet on the
consumer side of the relationship not only has no knowledge of the implementation classes, it
has no knowledge of how they are instantiated and passed to its fields and methods. How a
suitable instance of a bean is injected into the GoldilocksServlet is governed by its use of
@Qualifier annotations, and the injection points it uses are both into its instance variables
(usually called fields in the CDI API documentation) and into a method.

FIGURE 14-3. Logical structure of the Goldilocks application

Goldilocks Servlet

Injection
point
type: Bed
comfort: firm

inject

inject

inject
DaddyBearBed
comfort: firm

Producer

Injection
point
type: Bed
comfort: yielding

MommyBearBed
comfort: yielding

BabyBearBed

Injection
point
type: Bed
comfort: <none>

Consumer

Bed
interface

Available
CDI Beans

404 Java EE 7: The Big Picture

With this simple example under our belt, we have already seen some of the primary aspects
of the CDI framework in action. So we are in a good position to look a little more formally at how
it works.

CDI Beans
A CDI bean is a source of instances of Java objects, called bean instances. A CDI bean may be a
class, or a special kind of Java method called a producer method, or a special kind of field
called a producer field. CDI beans that are Java methods or fields are marked with the
@javax.enterprise.inject.Produces annotation.

A CDI bean has the following properties:

 ■ A set of bean types A bean type is a Java type that a consumer of the bean may use
to access its functionality or data. Java interfaces, classes with or without generic type
parameters, arrays thereof, raw, and primitive types may all be bean types.

 ■ A set of qualifiers A qualifier is a special kind of annotation, marked with the
@javax.inject.Qualifier annotation, that adds metatdata to a bean that the CDI
runtime uses to match it with an injection point.

 ■ A scope A bean’s scope is something that defines when new instances of the bean are
to be created.

 ■ An optional name A bean may be given a logical name using the @javax.inject.Named
annotation, which can be used to refer to it. JavaServer Faces Expression Language can
refer to CDI beans only if they are named.

 ■ A set of interceptor bindings This set defines all the interceptor classes that will be
applied to this CDI bean.

Examples
All the CDI beans we saw in the Goldilocks example are CDI beans in the form of a Java class.
For example, the MommyBearBed class is a CDI bean, with bean types of Object, MommyBearBed,
and Bed. It has one qualifier @Comfort("yielding"), the default CDI scope of which is such
that it is instantiated every time it is injected, with no logical name and no interceptor bindings.

Here are two examples of CDI beans that are methods:

public class ProducerMethodClass {
 @Produces
 public Integer getAnswerToUltimateQuestionOfLifeTheUniverseAndEverything() {
 return 42;
 }

 @Produces
 public Bed getMyBed() {
 return new BabyBearBed();
 }
}

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 405

The first produces bean instances with bean types Object and Integer, and the second
produces bean instances with bean types Bed, BabyBearBed, and Object.

And here’s a CDI bean that is a field of a class:

public class ProducerFieldClass {
 @Produces
 private Bed bed = new DaddyBearBed();
}

This produces bean instances with bean types Bed, DaddyBearBed, and Object.

Qualifiers
Qualifiers are used to express a conditional relationship between an injection point and CDI
beans that might be injected into it. A qualifier is a special kind of annotation whose targets are
class, method, field, and type; whose retention policy keeps its information at runtime; and which
is itself marked with the @Qualifier annotation from the CDI API. Qualifier annotations may
have attributes. In our Goldilocks example, the application-defined @Comfort qualifier has a
single value attribute.

A CDI bean may declare multiple qualifiers to define the kind of injection point into which
the CDI runtime may inject it. Equally, an injection point may define multiple qualifiers to define
the kind of CDI beans that the CDI runtime may inject into it. In order for the CDI runtime to
make the injection, all the qualifiers must match, using the equals() test. This means all the
qualifier’s attribute values must match exactly.

Thus, applications can define qualifiers to refine how the CDI runtime matches CDI beans to
consumers. The @Default qualifier is built into the Java EE APIs and has a special meaning.

@Default
When either a CDI bean or an injection site does not declare any qualifiers other than @Named, it
is the same as it declaring the @Default qualifier. For example,

public class BabyBearBed implements Bed {...}

is equivalent to

@Default
public class BabyBearBed implements Bed {...}

and either CDI bean definition matches either of these equivalent field injection points:

@Default
private Bed bed;

or

@Default
private Bed bed

406 Java EE 7: The Big Picture

@Named
The @Named qualifier has a single optional value attribute allowing CDI applications to use this
annotation to give CDI beans logical names. This is a must when using CDI beans from JavaServer
Faces Expression Language: the only way to reference a CDI bean instance from EL is by its
@Named name. If the value attribute is omitted, the logical name of the bean is the short
class name.

Injection Points
A Java class can declare three different kinds of injection points. It may declare any of its instance
variables to be an injection point by annotating it with @Inject and any qualifiers. This kind of
injection is called field injection. The CDI runtime injects a suitable CDI bean into the instance
variable as soon as it has created the instance of the Java class. For example,

public class Car {
 @Inject
 private Driver driver;
 ...
}

Second, a Java class may declare an injection point on a method by annotating it with
@Inject. The CDI runtime looks through the method parameters of this method, which may be
annotated with qualifiers, and for each one attempts to find a suitable CDI bean that matches and
injects an instance of it. The Java method-as-injection-point is known as an initializer method, and
a Java class may declare one or more of them.

public class Car {
 @Inject
 public void initDriver(@Fast Driver driver) {
 ...
 }
 ...
}

Finally, a Java class may declare a single constructor as an injection point. The @Inject
annotation is used to annotate the constructor, and the CDI runtime will attempt to supply
CDI-suitable bean instances for each of its constructor parameters.

public class Car {
 @Inject
 public Car(@Safe Driver driver) {
 ...
 }
 ...
}

We can summarize what we have learned about CDI beans, injection points, and qualifiers
in Figure 14-4.

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 407

Lifecycle of a CDI Bean
So far we have not learned anything about the lifecycle of a CDI bean instance other than that it is
instantiated and injected. CDI bean instances have a lifecycle, managed by the CDI runtime, for
which the bean instance can receive callbacks.

@PostConstruct
A CDI bean may request that the CDI runtime call one of its methods after it has been instantiated
and any injection it needs has completed. Any no-arg method on the CDI bean may be annotated
with the @javax.annotation.PostConstruct annotation. The method may have any Java
package access level. For example, in the Goldilocks example, if we need to know the moment
after the DaddyBearBed instance is created and before it is injected into the servlet, we can define

@PostConstruct
private void doInit() {
 System.out.println("dad’s bed got made");
}

@PreDestroy and @Disposes
Similarly, when the bean instance has been used and the CDI runtime is about to dereference it,
the CDI bean instance may request a callback to be made immediately before this happens. The
CDI bean annotates a suitable method with the @javax.annotation.PreDestroy annotation.

FIGURE 14-4. Injection points, ways to produce CDI bean instances, and matching them up

CDI Beans

CDI bean
instance

Consumer class

Instance
creation

Instance
injection

q

q
q q

q q
q

= qualifier

producer
field

method

field

constructor

bean class

producer
method

408 Java EE 7: The Big Picture

For example, after the GoldilocksServlet instance has fulfilled the client request, its injected
beans are no longer needed, and the CDI runtime will invoke any methods marked @PreDestroy
on them.

Listing: Example usage of @PreDestroy

import javax.annotation.PreDestroy;

@Comfort("firm")
public class DaddyBearBed implements Bed {
 @Override
 public String tryIt() {
 return "too hard";
 }

 @PreDestroy
 public void doCleanup() {
 System.out.println("Bye: your bed was too hard in any case");
 }
}

The time at which a CDI bean instance is dereferenced clearly depends on the consumer class
that is using it, in this example, the GoldilocksServlet. We shall shortly be exploring more
about the lifetime of CDI bean instances, called the CDI bean scope, in relation to their
consumers.

If a CDI bean uses producer methods or producer fields to create its bean instances, it may
also declare a method on the class holding the producer fields or methods that the CDI runtime
will call right before the bean instances are dereferenced. The class may have many methods
marked @Disposes, each with a single parameter to hold the bean instance being dereferenced
and marked @Disposes.

For example, here is a class called BedFactory that makes disposable Bed instances with a
low comfort level. It has a producer method that creates instances of Bed objects that can be
injected into any site expecting a bed of low comfort.

Listing: Example usage for @Disposes

public class BedFactory {

 @Produces @Comfort("low")
 public Bed getDisposableBed() {
 return new DisposableBed();
 }

 void discardBedInstance(@Disposes @Comfort("low") Bed bed) {
 System.out.println("throwing out this bed -
 maybe it wasn't very comfortable ?");
 }

}

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 409

Whenever the Bed instance the BedFactory class creates is about to be dereferenced, the
discardBedInstance() method is called by the CDI runtime, passing in the instance to be
dereferenced.

Though not specific to disposer methods, the @Any annotation is another CDI qualifier built
into the Java EE APIs. This annotation basically means “matches anything.” We can illustrate its
uses here by adding a new producer method to the BedFactory that produces FeatherBed
instances.

Listing: Example usage for the @Any annotation

public class BedFactory {

 @Produces @Comfort("low")
 public Bed getDisposableBed() {
 return new DisposableBed();
 }

 @Produces @Comfort("high")
 public Bed getAnotherBed() {
 return new FeatherBed();
 }

 void discardBedInstance(@Disposes @Any Bed bed) {
 System.out.println("throwing out this bed: " + bed +
 " was it too comfortable, or not comfortable enough ?");
 }

}

In this case, the discardBedInstance() is called for either of the Bed instances produced
by either of the producer methods on the class.

CDI bean instances, once injected into their consumer, can define further stages in their
lifecycle, defining their own API methods to transition between states. What lifecycle stages they
define within the time they are injected is specific to their application and is not modeled within
the CDI APIs. The CDI framework does, however, support such application-specific lifecycles with
an event framework, which we shall explore. But first, we will look at the lifetime of a CDI bean
instance.

Java EE Scopes
The scope of a CDI bean tells you how often a CDI bean instance is created. Some CDI beans are
instantiated every time there is a consumer that needs to inject it. Other CDI beans are instantiated
only once for the lifetime of their applications, and others still, like Goldilocks’ taste in beds, fall
in between those two extremes.

The Java EE platform contains a number of predefined scopes that a CDI bean may have.
Advanced CDI developers create their own scopes, but this is not needed for most Java EE
applications since the predefined ones usually work.

410 Java EE 7: The Big Picture

A CDI bean declares the scope to which it belongs with, at most, one scope per annotation.
If a CDI makes no declaration of scope, then it belongs to the dependent scope. This scope is
sometimes called a pseudo-scope because it simply says that the scope of the CDI bean instance
is that of the consumer that injects it. Let’s look at the predefined scopes in the Java EE platform.

Scope Annotation Meaning

Dependent @Dependent The CDI runtime instantiates a default scope
CDI bean instance every time that it is injected
into a consumer object. The bean instance
inherits the scope of the consumer instance.
If a CDI bean does not declare a scope, it
defaults to having dependent scope.

Request @RequestScoped The CDI runtime instantiates a new request-
scoped CDI bean instance for each HTTP
request/response interaction encompassing the
consumer instance.

Session @SessionScoped The CDI runtime instantiates a new session-
scoped CDI bean instance for each HTTP
session that encompasses the consumer
instance. If the CDI bean is used by more than
one injection point in the consumer instance
within the same session, or by more than one
consumer instance within the same session,
they all share the same bean instance.

Application @ApplicationScoped The CDI runtime instantiates a new application-
scoped CDI bean instance once for the lifetime
of the application, which is shared by all
consumer instances.

Conversation @ConversationScoped The CDI runtime instantiates one new
conversation-scoped CDI bean instance for
every developer-controller conversation scope,
as discussed in Chapter 4.

In addition, CDI beans that are session-, application-, or conversation-scoped must be
Serializable.

SleepScopes Example
Let’s illustrate these scopes with a simple example. In this example, we have a web application
containing three kinds of Beds: DisposableBed, RegularBed, and BunkBed.

Listing: The SleepScopes beds

import javax.enterprise.context.RequestScoped;

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 411

@RequestScoped
@Inexpensive
public class DisposableBed implements Bed {...}

import javax.enterprise.context.SessionScoped;

@SessionScoped
@Comfortable
public class RegularBed implements Bed, Serializable {...}

import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class BunkBed implements Bed, Serializable {...}

The three types of Bed have request, session, and application scope, respectively. The
SleepScopesServlet injects instances of these beds and prints each bed object to the web
page each time that the browser requests it.

Listing: The SleepScopesServlet class

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.inject.*;

@WebServlet(urlPatterns = {"/SleepScopesServlet"})
public class SleepScopesServlet extends HttpServlet {
 @Inject
 @Inexpensive
 Bed bedA;
 @Inject
 @Comfortable
 Bed bedB;
 @Inject
 Bed bedC;

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 try (PrintWriter out = response.getWriter()) {
 out.println("<!DOCTYPE html>");
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Sleep test servlet</title>");
 out.println("</head>");

412 Java EE 7: The Big Picture

 out.println("<body>");
 out.println("<div align='center'>");
 out.println("<h2>Three beds to sleep in,
 but which one has which scope ? </h2>");
 out.println("<h2>Request scope,
 Session scope or Application scope ? </h2>");
 out.println("<p>");
 out.println("Bed A " + bedA + "

");
 out.println("Bed B " + bedB + "

");
 out.println("Bed C " + bedC + "

");
 out.println("</p>");
 out.println("</div>");
 out.println("</body>");
 out.println("</html>");
 }
 }

}

If you look at the qualifiers, you see that the CDI runtime will inject DisposableBed
instances into bed A, RegularBed instances into bed B, and BunkBed instances into bed C.
Now if you load the servlet page, you should see something like Figure 14-5.

So far, so good. Now in order to test which Bed is in which scope, by reloading the servlet
page, you are creating a new HTTP request/response interaction. Therefore, any CDI bean used by

FIGURE 14-5. The SleepScopes application home page

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 413

this servlet that is in request scope will be reinstantiated and reinjected for each HTTP request/
response interaction. Since the DisposableBed is in request scope, because it uses the
@RequestScope annotation, each time that you reload the page it will show a new instance of
Bed A. Since each HTTP request is coming from the same browser client, all such requests are
within the same HTTP session. Therefore, the CDI bean instance injected into Bed B, which is
assigned to the RegularBed CDI bean, which is in session scope, remains the same instance: no
new injection occurs since we are still within the same HttpSession. Similarly, for Bed C, the
application-scoped BunkBed, the instance remains the same since only one instance of the
BunkBed will be instantiated for the lifetime of the application and will be shared among all its
injection points.

The reinstantiation and reinjection of Bed B can be triggered by opening up a separate
browser and loading the servlet page. This creates a new HttpSession within the same
application. So Bed A and Bed B will both be reinstantiated for the new HttpSession.

Bed C remains the same BunkBed instance, so your browser clients will have to fight over
who gets which bunk of the shared instance.

Events
The CDI framework has an event mechanism. This allows applications to define events, provides
the means for CDI beans to fire them using the CDI APIs, and allows them to selectively observe
any or all of the events from other CDI beans.

The mechanism is relatively straightforward, and as you might expect from the CDI framework,
has a high degree of separation between the sender and the observer of the events.

The event class is any Java class that contains the information that the event wishes to convey
about when and why it was sent. The construction of the event is under the control of the
application, so there are no restrictions on how this object is created.

A CDI bean fires the event by injecting an instance of the CDI API’s javax.enterprise
.event.Event class. With this Event instance, the CDI bean may fire instances of the event class
it creates at will, using the Event method:

void fire(T event)

CDI beans that are interested in listening in on the broadcast of such events may register their
interest by defining a method, which takes the event class as a parameter, annotated with the
@javax.enterprise.event.Observes annotation.

Additionally, the application may annotate the event class it defines with one or more qualifiers.
In turn, the CDI beans declaring an observer method may add qualifiers to the event class parameter
of the observer method to refine which events it elects to receive from the CDI runtime.

Let’s see the setup in picture form in Figure 14-6.
For a CDI bean that has elected to receive event notifications from the CDI runtime by declaring

an observer method, there may not be an instance in existence when an event in which it is
interested is fired. The CDI API allows for two possibilities in the case when there is no instance of
the observing CDI bean: it either does not deliver the event because there is no instance to which
to deliver it, or it will instantiate a new instance of the observing CDI bean and deliver it there.

414 Java EE 7: The Big Picture

The observing CDI bean can control this behavior with the notifyObserver attribute of the
@Observes annotation that it uses in its observer method. It has two options:

 ■ @Observes(notifyObserver=Reception.ALWAYS)

 ■ @Observes(notifyObserver=Reception.IF_EXISTS)

The former option instantiates the observing CDI bean if it needs to, which is the same behavior
as though the attribute is omitted, and the latter option does not instantiate a new instance just to
deliver the event.

We can see these two options in action, as well as an example of the overall CDI event
mechanism, in the next example.

Goldilocks Observed
In the next example, we take a CDI twist on the Goldilocks story in which the grandmother and
grandfather bears live next door and have a clear view into the bears’ home from their window.

We can see now that in this Goldilocks Observed example, once Goldilocks makes her visits
around the house, we can find out what the grandparents know.

Let’s take a look at the code.
The event class in this application is the SomeoneInBedEvent class.

Listing: The SomeoneInBedEvent class

public class SomeoneInBedEvent {
 private final String name;
 private final Bed bed;

FIGURE 14-6. Creating, broadcasting, and observing events

CDI Event

source beans

event class

q = qualifier

Observer bean

Observer method

Observer method

event class q

q

Event.fire()

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 415

FIGURE 14-7. The Goldilocks Observer home page

 public SomeoneInBedEvent(Bed bed, String name) {
 this.bed = bed;
 this.name = name;
 }

 public String getName() {
 return this.name;
 }

 public Bed getBed() {
 return this.bed;
 }
}

There is nothing special about this class: it is a plain old Java class, with no special
annotations to mark it as an event class used by CDI.

There are again three Bed implementation classes: BabyBearBed, MommyBearBed, and
DaddyBearBed, with a single method that is called by the GoldilocksServlet when it renders
the first page in Figure 14-7. The three implementation classes are all very similar, so let’s look at
the BabyBearBed class.

416 Java EE 7: The Big Picture

Listing: The BabyBearBed fires an event

import javax.enterprise.event.Event;
import javax.inject.Inject;

public class BabyBearBed implements Bed {
 @Inject
 Event<SomeoneInBedEvent> sibe;

 @Override
 public String tryIt(String name) {
 sibe.fire(new SomeoneInBedEvent(this, name));
 return "just right";
 }

 public String toString() {
 return "Baby's bed";
 }

}

Aside from its tryIt() method, this class injects an instance of the CDI API class
javax.enterprise.event.Event parameterized with the defined event class that
we just saw: SomeoneInBedEvent. The tryIt() method creates a new instance of the
SomeoneInBedEvent class and uses the injected Event instance to broadcast it to its observers,
using the fire() method. The tryIt() method of the DaddyBearBed and MommyBearBed
classes follow the same pattern.

Now, let’s look at the CDI beans that listen in to the broadcast of the events
GrandmotherBear and GrandfatherBear.

Listing: The grandparents’ CDI bean classes

import java.util.*;
import javax.enterprise.event.Observes;
import javax.enterprise.event.Reception;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;

public class RememberingBear {
 List<SomeoneInBedEvent> events = new ArrayList<>();

 public List<SomeoneInBedEvent> getEvents() {
 return events;
 }
}

@SessionScoped
public class GrandmotherBear extends RememberingBear
 implements Serializable {

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 417

 public void listen(@Observes SomeoneInBedEvent whbimbe) {
 events.add(whbimbe);
 }
}

@SessionScoped
public class GrandfatherBear extends RememberingBear
 implements Serializable {
 public void listen(@Observes(notifyObserver=Reception.IF_EXISTS) SomeoneInBedEvent whbimbe) {
 events.add(whbimbe);
 }
}

Both instances of these classes have, thanks to their common superclass RememberingBear,
a list of events that its instances add to each time it receives an event. The observer method in
each case is called listen(), with the single SomeoneInBedEvent parameter annotated with
@Observes. Both grandparent CDI beans are session-scoped.

Now we can look at the GrandparentsServlet, which asks each grandparent to remember
what they saw, if anything, as we see in Figure 14-8.

FIGURE 14-8. What do the grandparents know?

418 Java EE 7: The Big Picture

Listing: The GrandparentsServlet class

import java.io.*;
import javax.servlet.*;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;
import javax.inject.Inject;
import java.util.List;

@WebServlet(urlPatterns = {"/GrandparentsServlet"})
public class GrandparentsServlet extends HttpServlet {
 @Inject
 GrandmotherBear grandmotherBear;
 @Inject
 GrandfatherBear grandfatherBear;

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 try (PrintWriter out = response.getWriter()) {
 request.getSession().invalidate();
 out.println("<!DOCTYPE html>");
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Goldilocks and the CDI beans</title>");
 out.println("</head>");
 out.println("<body>");

 out.println("<div align='center'>");
 out.println("<h2>CDI beans with events</h2>");
 out.println("<img width = '80' height='80'
 src='bear-icon.png'>");
 out.println("<p>");

 out.println("Grandmother bear knows:

");
 this.printMemory(grandmotherBear.getEvents(), out);
 out.println("

");
 out.println("Grandfather bear knows ");
 this.printMemory(grandfatherBear.getEvents(), out);

 out.println("</p>");
 out.println("</div>");
 out.println("</body>");
 out.println("</html>");
 }
 }

 private void printMemory(List<SomeoneInBedEvent> events,

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 419

 PrintWriter out) {
 if (events.isEmpty()) {
 out.print("nothing, he was asleep !");
 }
 for (SomeoneInBedEvent e : events) {
 out.print(e.getName() + " tried " + e.getBed() + "
");
 }
 }
}

This servlet injects an instance of each grandparent bean into itself and prints out what events
it has received. From Figure 14-8, we see that the GrandmotherBear receives events each time
that the GoldilocksServlet tries out each Bed. But how is it that the GrandmotherBear gets
the events from the different Bed instances and the GrandfatherBear does not? The key lies in the
@Observes annotation used in the respective event observer methods. The GrandmotherBear
uses @Observes, while the GrandfatherBear uses the @Observes(notifyObserver=Recep
tion.IF_EXISTS) annotation. Since neither grandparent CDI bean has an instance in existence
while the GoldilocksServlet is called, the events generated by that execution of that servlet
cause a new GrandmotherBear instance to be created to which the events are delivered. But the
notifyObserver=Reception.IF_EXISTS attribute on the GrandfatherBear’s @Observes
annotation means the CDI runtime does not instantiate a new instance of that CDI bean in order
to deliver the events. So the first time the GrandfatherBear bean is instantiated is when it is
injected into the GrandparentsServlet. This instance never received any of the events.

Next door from the window, the grandmother bear saw Goldilocks try all the beds, while the
grandfather must have been asleep and saw nothing.

Interceptors
Java EE interceptors, which we first encountered in Chapter 10 with Enterprise Beans, can also be
attached to CDI beans. A range of use cases exists for interceptors just as for Enterprise Beans:
from simple application auditing to custom authentication schemes and transformation of inputs
and outputs to and from CDI beans.

The most common form of interceptor intercepts any method call to the CDI bean. The
interceptor is a method on a class that takes a javax.interceptor.InvocationContext as its
single method parameter, which is annotated with the javax.interceptor.AroundInvoke
annotation. The InvocationContext gives an abstracted view of the CDI bean method instance
that is to be invoked. For example, the best way for the Bear family to find out what goes on in
their house while they are out, rather than relying on the grandparents next door, is to set up
bugging devices in the house. Let’s look at one of them.

Listing: An interceptor as a BuggingDevice

import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;
import java.util.*;

public class BuggingDevice {
 @AroundInvoke

420 Java EE 7: The Big Picture

 public Object intercept(InvocationContext context) throws Exception {
 Object result = null;
 Bed bed = (Bed) context.getTarget();

 String parameterString =
 Arrays.asList(context.getParameters()).toString();
 System.out.println("BedInterceptor: " + parameterString +
 " is about to try " + bed + "...");
 try {
 result = context.proceed();
 } catch (Exception e) {
 System.out.println("BedInterceptor:which raised " + e);
 throw e;
 }
 System.out.println("BedInterceptor:and has found it to be " +
 result);
 return result;
 }
}

AroundInvoke interceptors are wired to the Java method or methods on the CDI bean
instance by annotating the @javax.interceptor.Interceptors annotation carrying the
array of interceptor classes as its value attribute. For example, there is the code to add the
BuggingDevice to the baby bear’s bed.

Listing: Attaching a BuggingDevice interceptor to the baby bear's bed

import javax.interceptor.Interceptors;
import javax.enterprise.event.Event;
import javax.inject.Inject;

public class BabyBearBed implements Bed {
 @Inject
 Event<SomeoneInBedEvent> sibe;

 @Override
 @Interceptors(BuggingDevice.class)
 public String tryIt(String name) {
 sibe.fire(new SomeoneInBedEvent(this, name));
 return "just right";
 }

 public String toString() {
 return "Baby's bed";
 }
}

In contrast to the event mechanism, within the InvocationContext passed into the
AroundInvoke interceptor is all the information associated with the Java method call; none of
that needs to be re-created in an event class.

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 421

More advanced uses of interceptors for CDI beans include interceptors for the callbacks to
the bean after construction, before disposal, before passivation, and after activation, the last
two applying to session-scoped beans. These are declared in a similar way as the invocation
interceptors, but by using the @PostConstruct, @PreDestroy, @PrePassivate, or
@PostActivate annotations.

Packaging CDI Beans
When a Java EE application is deployed, the CDI runtime will look into each of the Java EE
modules for CDI beans. It does this by using two techniques: it looks for Java classes that are
annotated with a CDI scope annotation, and it looks in the Java EE archives for a file called
beans.xml. In WAR files, the beans.xml home is in WEB-INF/, and in Enterprise Bean
archives, its home is in META-INF/.

If there is no beans.xml file in a Java EE module, CDI can inject only Java classes that are
explicitly marked with one of the scope annotations that we explored earlier. Therefore, in such
modules, you may not assume that CDI will recognize Java classes that you intend to be
injectable with an implicit dependent scope. When you do have Java classes you wish to inject
that do not explicitly carry a scope annotation, you need to include a beans.xml file with its
bean-discover-mode option set to all.

Listing: Example beans.xml file

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
 bean-discovery-mode="all">
</beans>

CDI Chat
Let us apply some of what we have learned to a familiar example: the WebSocket chat example
from Chapter 4. You will recall that this example is a Java EE web application with an HTML front
end using JavaScript to connect to a Java WebSocket, which implements a simple chat application.
You can see the main Chat page in Figure 14-9.

The key application constructs in this application in Chapter 4 were the chat transcript, the
list of active users of the application, and the user associated with the current WebSocket session.
In Chapter 4, we used the WebSocket’s EndpointConfig to store the global transcript and user
list, and the Java WebSocket session object to store the current user. This is a perfectly valid approach
and is a great way to understand the Java WebSocket APIs. But CDI offers an alternative approach,
since it allows us to define CDI beans that live in the global scope and CDI beans that depend on
the scope of the current WebSocket endpoint instance. So instead of hand-managing the relationships
of the transcript end-user list to the global EndpointConfig object of the WebSocket endpoint
and the current user to the WebSocket Session object, we can hand off some of that code and
have CDI manage the objects for us. Most of the application is exactly the same when compared

422 Java EE 7: The Big Picture

with the version from Chapter 4: the chat messages, the HTML, and JavaScript code. What has
changed is the ChatServer endpoint and the Transcript object. Let’s look first at the
Transcript.

Listing: The chat Transcript class

import java.util.ArrayList;
import java.util.List;
import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class Transcript {
 private final List<String> messages = new ArrayList<>();
 private final List<String> usernames = new ArrayList<>();
 private final int maxLines;

 public Transcript() {
 maxLines = 20;
 }

 public String getLastUsername() {
 return usernames.get(usernames.size() -1);

FIGURE 14-9. The CDI chat client

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 423

 }

 public String getLastMessage() {
 return messages.get(messages.size() -1);
 }

 public void addEntry(String username, String message) {
 if (usernames.size() > maxLines) {
 usernames.remove(0);
 messages.remove(0);
 }
 usernames.add(username);
 messages.add(message);
 }
}

We can see now that the Transcript object has lost its connection with the WebSocket
EndpointConfig: it used to have a static method that looked up the global instance of the
Transcript on the EndpointConfig’s user properties map. It has become a CDI bean with
application scope instead. So when it is injected, there is always only one.

There is another application-scoped object now, the UserList, which holds the current list
of users signed into the chat.

Listing: The UserList class

import java.util.*;
import javax.enterprise.context.*;
import javax.enterprise.inject.*;
import javaeems.chapter14.chat.event.*;
import javax.enterprise.event.Event;
import javax.inject.Inject;

@ApplicationScoped
public class UserList {
 private final List<User> users = new ArrayList<>();
 @Inject
 private Event<ChatEvent> eventSource;

 class UserImpl implements User {
 private String name;

 @Override
 public void setName(String name) {
 this.name = name;
 eventSource.fire(new UserJoinedEvent(this));
 }

424 Java EE 7: The Big Picture

 @Override
 public String getName() {
 return this.name;
 }

 @Override
 public String toString() {
 return "User: " + name;
 }

 }

 @Default @Produces @Dependent
 private User getUser() {
 User user = new UserImpl();
 this.users.add(user);
 return user;
 }

 public void deleteUser(User user) {
 this.users.remove(user);
 eventSource.fire(new UserLeftEvent(user));
 }

 public List<String> getUsernames() {
 List<String> usernames = new ArrayList<>();
 for (User u : this.users) {
 usernames.add(u.getName());
 }
 return usernames;
 }

 public String validateUsername(String newUsername) {
 if (this.getUsernames().contains(newUsername)) {
 return this.validateUsername(newUsername + "1");
 }
 return newUsername;
 }

}

Notice that in addition to holding a list of User objects, this class acts as a producer of User
beans thanks to its getUser() producer method. Notice also that it injects an Event into itself
that it uses to fire events when its user list changes.

Now the User beans it produces are in @Dependent scope. So we should look next to see
where the User beans are injected.

import javaeems.chapter14.chat.data.*;
import java.io.IOException;
import java.util.*;
import javax.websocket.*;

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 425

import javax.websocket.server.*;
import javax.inject.Inject;

@ServerEndpoint(value = "/chat-server",
 subprotocols={"chat"},
 decoders = {ChatDecoder.class},
 encoders = {ChatEncoder.class})
public class ChatServer {
 private Session session;
 @Inject
 private Transcript transcript;
 @Inject
 UserList userList;
 @Inject
 User currentUser;

 @OnOpen
 public void startChatChannel(Session session) {
 this.session = session;
 }

 @OnMessage
 public void handleChatMessage(ChatMessage message) {
 switch (message.getType()){
 case NewUserMessage.USERNAME_MESSAGE:
 this.processNewUser((NewUserMessage) message);
 break;
 case ChatMessage.CHAT_DATA_MESSAGE:
 this.processChatUpdate((ChatUpdateMessage) message);
 break;
 case ChatMessage.SIGNOFF_REQUEST:
 this.processSignoffRequest((UserSignoffMessage) message);
 }
 }

 @OnError
 public void myError(Throwable t) {
 System.out.println("Error: " + t.getMessage());
 }

 @OnClose
 public void endChatChannel() {
 if (this.currentUser.getName() != null) {
 this.addMessage(" just left...without even signing out !");
 this.broadcastUserListUpdate();
 }
 }

 void processNewUser(NewUserMessage message) {
 String newUsername =
 this.userList.validateUsername(message.getUsername());
 currentUser.setName(newUsername);
 NewUserMessage uMessage = new NewUserMessage(newUsername);

426 Java EE 7: The Big Picture

 try {
 session.getBasicRemote().sendObject(uMessage);
 } catch (IOException | EncodeException ioe) {
 System.out.println("Error signing " +
 message.getUsername() + " into chat : " + ioe.getMessage());
 }
 this.broadcastUserListUpdate();
 this.addMessage(" just joined.");
 }

 void processChatUpdate(ChatUpdateMessage message) {
 this.addMessage(message.getMessage());
 }

 void processSignoffRequest(UserSignoffMessage drm) {
 this.addMessage(" just left.");
 this.userList.deleteUser(this.currentUser);
 try {
 this.broadcastUserListUpdate();
 this.session.close(
 new CloseReason(CloseReason.CloseCodes.NORMAL_CLOSURE,
 "User logged off"));
 } catch (IOException e) {
 System.out.println("Error removing user");
 }
 }

 private List<String> getUserList() {
 return userList.getUsernames();
 }

 private void broadcastUserListUpdate() {
 UserListUpdateMessage ulum = new
 UserListUpdateMessage(this.getUserList());
 for (Session nextSession : session.getOpenSessions()) {
 try {
 nextSession.getBasicRemote().sendObject(ulum);
 } catch (IOException | EncodeException ex) {
 System.out.println("Error updating a client : " +
 ex.getMessage());
 }
 }
 }

 private void broadcastTranscriptUpdate() {
 for (Session nextSession : session.getOpenSessions()) {
 ChatUpdateMessage cdm =
 new ChatUpdateMessage(this.transcript.getLastUsername(),
 this.transcript.getLastMessage());

Chapter 14: Deconstructing Components: Java EE Contexts and Dependency Injection 427

 try {
 nextSession.getBasicRemote().sendObject(cdm);
 } catch (IOException | EncodeException ex) {
 System.out.println("Error updating a client : " +
 ex.getMessage());
 }
 }
 }

 private void addMessage(String message) {
 this.transcript.addEntry(this.currentUser.getName(), message);
 this.broadcastTranscriptUpdate();
 }
}

We see quickly that the User beans are injected into each new instance of the ChatServer
WebSocket endpoint. Remember from Chapter 4 that there is one instance of the ChatServer
WebSocket endpoint per WebSocket connection with a browser client. So CDI injects exactly one
distinct User instance into each ChatServer instance, into its currentUser field. Notice also
that the CDI runtime injects the Transcript and UserList instances into the ChatServer’s
other fields. All the lifecycle management of these three pivotal objects in the application are now
under the control of CDI: there is no need for this endpoint to know about its EndpointConfig
global or store anything in the Session object, and still less worry about maintaining the user list
or current user. Finally, this CDI chat example adds a simple auditing bean to listen to the changes
in the UserList bean.

Listing: The UserAudit bean

import java.text.SimpleDateFormat;
import javaeems.chapter14.chat.event.*;
import javax.enterprise.event.*;
import java.util.*;

public class UserAudit {

 void userJoined(@Observes UserJoinedEvent e) {
 System.out.println(e.getUser().getName() + " joined the chat at " +
 this.format(e.getTimestamp()));
 }

 void userLeft(@Observes UserLeftEvent e) {
 System.out.println(e.getUser().getName() + " left the chat at " +
 this.format(e.getTimestamp()));
 }

 String format(Date d) {
 SimpleDateFormat sdf = new SimpleDateFormat(
 "yyyy.MM.dd 'at' HH:mm:ss z");

428 Java EE 7: The Big Picture

 String formatted = sdf.format(d);
 return formatted;
 }

}

If you compare the CDI chat application with Chapter 4’s version, you might try to determine
which application has less code and which spends more of its code on the logic of chat, rather
than on the lifecycle management of its data.

Summary
In this chapter, we explored the general-purpose paradigm of the CDI framework and APIs. We
explored how to declare Java classes in such a way that they might be managed by the CDI
runtime, instead of by the application, and the mechanism by which they can be injected into the
consumer objects that need to use them. We explored the way in which CDI beans are matched
to injection sites. We looked at the different places beans may be injected into a Java class. Using
examples based around Goldilocks trying three different beds at the bears’ house, we looked at
how to declare events that are broadcast by the CDI runtime and how to listen in to them. We
touched on CDI interceptors. We finished up the chapter by taking a familiar example, the
WebSocket chat example from Chapter 4, and refactored its principal application data objects
into CDI beans to illustrate how even the fundamental CDI mechanisms can simplify Java EE
applications by taking on the work of managing the lifecycles of their objects.

CHAPTER
15

Java EE Security

430 Java EE 7: The Big Picture

A
lthough you may want the whole world to know about your Java EE application, you may
not want the whole world to use it. And you will probably want to know something about
 who is using it.

In Chapter 7, we used the analogy of a castle with a guarded door that restricts entry only to
known visitors. We explored the techniques available in the Java EE web container to secure web
components within web applications deployed on a Java EE server. The HTTP and WebSocket
protocols are not the only ways to get into the castle.

In this chapter, we look at the security mechanisms available in the Enterprise Bean container
for securing Enterprise Beans in a Java EE application. The clients of Enterprise Beans can be other
Enterprise Beans, Java EE application clients, or Java EE web components running in the Java EE
web container. We look at how the security mechanisms in the Enterprise Beans container fit into
the larger picture of other Java EE components making calls into it. We can see a visual
representation of the Java EE platform and its access points in Figure 15-1.

Enterprise Bean Security
The Java EE platform assists developers in limiting access to Enterprise Beans in two basic ways:
programmatically or declaratively. Using the programmatic approach, an Enterprise Bean elects to
manage all access to its application logic itself. In this case, when the Enterprise Bean container
receives an invocation for the Enterprise Bean, it in turn calls the Enterprise Bean, exposing the
information about the caller that it has to the bean. The Enterprise Bean makes whatever checks
about the caller’s identity that it needs to in order to determine how and indeed whether to call
the application logic. For example, is the caller allowed access at all, and if so, is the caller in a

FIGURE 15-1. Security of calls in the Java EE platform

Browser

Java Client

Web Container
Http

Http/SSL

Http
Http/SSL

WebSocket

WebSocket

RMI/IIOP

RMI/IIOP Enterprise Bean Container

Java EE Server

Enterprise
Bean

Web
Component

Chapter 15: Java EE Security 431

certain role that gives it a specific level of functionality? Using the declarative approach, the
Enterprise Bean uses Java EE annotations and/or information it declares in its deployment descriptor
to request that the Enterprise Bean container set up its security model. In this case, when the
Enterprise Bean container receives a call for the Enterprise Bean, it requires the client to be
authenticated and decides, based on the caller and the information declared by the Enterprise
Bean, whether to allow the call to continue to the bean. In this case, the Enterprise Bean has the
same access to the security information associated with the call as in the programmatic approach,
but the container has already checked the caller’s permissions to invoke the bean. We can see a
visual representation of these two approaches, valid regardless of the client of the Enterprise Bean,
in Figure 15-2.

Declarative Security
The declarative model is based on the abstraction of the caller as something called a security role.
A security role has a name, and is used to provide a layer of abstraction between the application
and how it understands the set of its callers and the actual authenticated names of the callers
when the application is deployed. Just as for web applications, Enterprise Bean applications can
declare access constraints in terms of security role names. For example: “only allow users that are
part of the security role ‘managers’ to access my methods,” or “allow ‘administrator’ users and
‘paid-customer’ users to access my methods.” The person deploying the application makes the
association between the database of known callers and the security roles to which they belong.

In the declarative security model, an Enterprise Bean uses one or more security annotations to
define the security roles to which a caller must belong in order to have access to the bean. The
annotations can be applied to the implementation class at the class level, in which case they
apply either to all the methods of the bean or to individual methods of the implementation class,
in which case the permission applies only to that method. In cases where an Enterprise Bean uses
security annotations both at the method and class levels, the method-level annotation overrides
the class-level annotation. If a client of the Enterprise Bean attempts to call one of its methods that

FIGURE 15-2. Programmatic vs. declarative security of Enterprise Beans

Enterprise Bean Container

Enterprise Bean

application
logic

Enterprise
Bean

Client

method

Enterprise BeanProgrammatic
security

Declarative
security

application
logicmethod

432 Java EE 7: The Big Picture

is protected by a security annotation and the client does not have sufficient permissions to do so,
the client receives an exception of type javax.ejb.EJBAccessException.

Let’s take a look at the annotations, starting with the first and most widely useful.

@RolesAllowed
The @javax.annotation.security.RolesAllowed has the single value attribute, which
takes an array of security role names. What it means is that only authenticated users that are part
of one or more of the security roles that it lists may have access to the Enterprise Bean or
Enterprise Bean method it annotates.

Listing: An Enterprise Bean allowing only certain users

import javax.ejb.Stateful;
import javax.annotation.security.RolesAllowed;

@Stateful
public class LibraryBean {
 @RolesAllowed({"customer", "backend"})
 public List<String> getBookTitles() {
 ...
 }
...
}

In this example, only users that are part of the customer and backend security roles are
allowed access to the getBookTitled() method of the LibraryBean.

@PermitAll
The @javax.annotation.security.PermitAll annotation has no attributes. When it annotates
an Enterprise Bean class or method, its meaning is that any authenticated users may access the class
or method, whether they belong to one of the security roles defined by the application or not. This is
a useful shorthand for allowing everyone access, but it is not the same as using @RolesAllowed
with all the security roles listed for that application: @PermitAll allows users that don’t belong to
any security role to have access, as well as those who do belong to a security role.

@DenyAll
The @javax.annotation.security.DenyAll annotation has no attributes. When it annotates
an Enterprise Bean class or method, its meaning is that no one can access the class or method.

You may not mix these annotations at the same level; for example:

@RolesAllowed({"customer", "backend"})
@PermitAll
public List<String> getBookTitles() {
 ...
 }

is not permitted and would lead to a deployment error. However, you can use the annotations at
both the class and method levels. As mentioned, the security annotations at the method level

Chapter 15: Java EE Security 433

override the security annotations at the class level. This does not mean that the access allowed is
additive when you have both; rather, it means that if there is a security annotation at the method
level, that is the definitive amount of access control for that method. If there is no security
annotation at the method level and there is a security annotation at the class level, the amount of
access granted to the method is that defined in the class-level security annotation. Finally, of course,
if there is no security annotation that applies to a method, any caller is allowed to call it,
authenticated or not.

@DeclareRoles
The @javax.annotation.security.DeclareRoles has a single attribute, value, which takes
a list of security role names, and it is used at the class level of an Enterprise Bean. Unlike the other
security annotations, it does not allow access based on role names; rather, it tells the deployer of
the application (or the tool that the deployer is using) which roles the bean is using, either in
explicit declarations such as in the @RolesAllowed annotation, or in security roles used
programmatically (examples of which we shall see later). This allows the deployer to map the
users registered in the Java EE server to the roles that the bean uses.

Let’s look at an example of some of these annotations in action and the override rules.

Declarative Security Example
This example takes the form of an Enterprise Bean, called HelloBean, with a Java EE application
client that makes calls to it. The application client has a GUI, as we see in Figure 15-3.

The application client can ask the HelloBean to say hello, ask to say hello to a given name,
and change the greeting the HelloBean uses to say hello. But only if they are authenticated and
in the right security rule can they do all three. Let’s look at the bean implementation class to see
who is allowed to do what.

FIGURE 15-3. The declarative security GUI

434 Java EE 7: The Big Picture

Listing: The HelloBeanImpl class

import javax.ejb.Stateful;
import java.io.Serializable;
import javax.annotation.security.PermitAll;
import javax.annotation.security.RolesAllowed;
import javax.annotation.security.DeclareRoles;

@Stateful
@PermitAll
@DeclareRoles({"registered-user", "administrator", "guest"})
public class HelloBeanImpl implements HelloBean, Serializable {
 private String greeting = "Hello";

 @Override
 public String sayHello() {
 return greeting;
 }

 @RolesAllowed({"administrator", "registered-user"})
 @Override
 public String sayHelloTo(String name) {
 return greeting + " " + name + " !";
 }

 @RolesAllowed("administrator")
 @Override
 public void setGreeting(String greeting) {
 this.greeting = greeting;
 }

}

We can see that HelloBeanImpl is a stateful session bean, which from its @DeclareRoles
annotation we can tell uses the roles registered-user, administrator, and guest. It has a @PermitAll
annotation at the class level, which means that, unless a bean method has its own security
annotation, then all authenticated users will be allowed to call the method. This is the case, for
example, for sayHello(). But the sayHelloTo() method uses the @RolesAllowed annotation
to limit access to authenticated users who are in either the registered-user or administrator role.
The setGreeting() method, similarly, may be called only by authenticated users in the
administrator role.

Now, to check this, we need to set up some users. No matter what Java EE server you are
using, this is a two-step process: first you need to add users to the application server, supplying a
username and credential, and second, you need to decide which user to associate with which
security role in the application.

This example was built and tested on the GlassFish application server. Adding users in GlassFish
may be done by means of the GlassFish Admin console, adding usernames and passwords to the
file realm. GlassFish uses a specific deployment descriptor packaged in the Enterprise Bean JAR
called the glassfish-ejb-jar.xml file to associate usernames with security roles.

Chapter 15: Java EE Security 435

For this example, we have set up three users: cecile, alex, and jared. The following table
shows the roles to which they are associated:

User Roles
Cecile guest
Alex registered-user
Jared administrator

And here’s the corresponding glassfish-ejb-jar.xml file.

Listing: The glassfish-ejb-jar.xml file defining role user associations

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE glassfish-ejb-jar PUBLIC "-//GlassFish.org//DTD GlassFish Application Server
3.1 EJB 3.1//EN" "http://glassfish.org/dtds/glassfish-ejb-jar_3_1-1.dtd">
<glassfish-ejb-jar>
 <security-role-mapping>
 <role-name>administrator</role-name>
 <principal-name>jared</principal-name>
 </security-role-mapping>
 <security-role-mapping>
 <role-name>registered-user</role-name>
 <principal-name>alex</principal-name>
 </security-role-mapping>
 <security-role-mapping>
 <role-name>guest</role-name>
 <principal-name>cecile</principal-name>
 </security-role-mapping>
 <enterprise-beans/>
</glassfish-ejb-jar>

Now when cecile logs in, she can call sayHello(), since as a member of the guest role
she is permitted. But when she tries to call either of the other methods, she is not allowed, as you
can see in Figure 15-4.

FIGURE 15-4. Cecile is not permitted to say hello to a given name

436 Java EE 7: The Big Picture

When alex logs in, he can call sayHello() and sayHelloTo() since he is in the
registered-user role, but he cannot call the setGreeting() method, shown in Figure 15-5,
because he is not in the administrator role,

Only jared, as a member of the administrator role, can call all three methods.
We will not look in detail at the client code, but we will look at the method that is called

when the user tries to change the greeting in the client window.

Listing: The changeGreeting() method of the client window

 public void changeGreeting() {
 try {
 helloBean.setGreeting(changeGreetingTf.getText());
 } catch (EJBAccessException ejbae) {
 JOptionPane.showMessageDialog(this,
 "You do not have permission to change the greeting !");
 }
 }

Notice that the method explicitly handles the EJBAccessException, which is thrown if the
user does not have the correct role membership to execute the method.

Programmatic Security
Every Enterprise Bean has access to the security information that its container holds about the
current caller through the container-provided javax.ejb.EJBContext object. We first
encountered this object in Chapter 10 when we were exploring the Enterprise Bean Timer Service.
There are two methods that grant access to the security context of a call. The first one is:

Principal getCallerPrincipal()

which returns the java.security.Principal associated with the caller. If the caller is not
authenticated, as can happen in the case of unauthenticated web components making a call to
the Enterprise Bean, the Principal in this case is a reserved UserPrincipal that is supplied by
the Java EE server to signify that the caller is unauthenticated. The name of the Principal depends

FIGURE 15-5. Alex may not change the greeting

Chapter 15: Java EE Security 437

on which Java EE server you are using. In the case of the GlassFish server, the Principal has the
reserved name ANONYMOUS.

The second method that grants access to the security context of a call is

boolean isCallerInRole(String roleName)

which tests whether the caller is in the security role with the given roleName.
These methods are analogous to their companion methods for web components on javax

.servlet.http.HttpServletRequest for servlets, JSPs, and JavaServer Faces; javax.ws.rs

.core.SecurityContext for JAX-RS components; and on javax.websocket.Session for
Java WebSocket components.

The EJBContext object may be injected into an Enterprise Bean; for example:

import javax.ejb.Stateful;
import javax.ejb.EJBContext;
import javax.annotation.Resource;

@Stateful
public class LibraryBean {
 @Resource
 EJBContext myContext;
 ...
}

With these methods, an Enterprise Bean may implement its own access control. It may do so
by checking for specific users using getCallerPrincipal() before allowing a method invocation
to proceed. It may use the security roles defined for the Enterprise Bean and gate method execution
based on membership of a security role or roles by using isCallerInRole().

Enterprise Beans may also use the declarative and programmatic security models together,
using the declarative model to provide basic access control, and using the programmatic model to
refine the tasks performed by the Enterprise Bean based on the caller identity and/or the caller’s
membership of certain security roles. We will see this in action later in the chapter.

Application Client Authentication
In the declarative security example, we did not explain how the user was authenticated to the
application client of the application. The means by which an application client authenticated with
the Enterprise Bean container is specific to the Java EE server implementation that you are using.
Some provide a single sign-on capability, allowing application clients to authenticate once and
access the Enterprise Beans of more than one application without having to reauthenticate. Some
application clients may integrate with the operating system’s certificate store and perform SSL
certificate authentication. Some may provide a basic username-password scheme, akin to the
HTTP basic authentication mechanism, and a default UI for gathering the credential for the user
prior to obtaining a reference to an Enterprise Bean that declares some access restriction. This last
model is the case for the GlassFish server.

All application clients, regardless of which Java EE server implementation they are part of,
must provide support for the javax.security.auth.callback.CallbackHandler interface.

438 Java EE 7: The Big Picture

The purpose of this interface is to allow applications to define their own mechanisms for
gathering a user credential. If an application client application implements this interface, it must
implement the single method

void handle(Callback[] callbacks)
 throws IOException, UnsupportedCallbackException

which is called by the application client container when it needs to gather credential information,
requiring the implementation to fill out the Callback objects it passes into the method to fulfill
the credential interaction. In turn, the application client registers its callback handler class in an
entry in its application-client.xml deployment descriptor. Let’s take a look at this in action,
together with the deployment descriptor syntax.

In the declarative security example, we relied on the GlassFish application client container’s
default login screen. But using our own customer CallbackHandler, we can customize this
screen and supply the credentials ourselves. We will see how to do this with a simple GUI. First,
we write the CallbackHandler.

Listing: A custom CallbackHandler

import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.UnsupportedCallbackException;
import javax.security.auth.callback.Callback;
import java.io.*;

public class MyCallbackHandler implements CallbackHandler {

 @Override
 public void handle(Callback[] callbacks)
 throws IOException, UnsupportedCallbackException {
 MyLoginWindow mlw = MyLoginWindow.gatherCredential(
 "Login to Declarative Security");
 if (mlw.isCanceled()) {
 return ;
 }
 for (Callback c : callbacks) {
 if (c instanceof NameCallback) {
 ((NameCallback) c).setName(mlw.getUsername());
 } else if (c instanceof PasswordCallback) {
 ((PasswordCallback) c).
 setPassword(mlw.getPassword().toCharArray());
 }
 }
 }
}

Chapter 15: Java EE Security 439

This CallbackHandler uses another class, MyLoginWindow, to retrieve the credentials from
the user. On GlassFish, the CallbackHandler is invoked with the simple basic authentication
protocol, so we expect only to be passed a PasswordCallback and a NameCallback object to
fill out in the handle() method. Once the username and password values have been filled out,
the handle() method completes and the authentication commences against the supplied
credential.

We will not look through the GUI code of the MyLoginWindow class; instead, shown in
Figure 15-6 is the login screen the user will see.

While this is a simple GUI, you can easily imagine something more elaborate, something that
integrates tightly with a larger GUI application, or something that connects to a systems-specific
system to gather the credentials.

Declaring the CallbackHandler in the application-client.xml is simply a matter of
adding an element <callback-handler> with the classname of the CallbackHandler
implementation. For example, here is the application-client.xml needed to run this custom
login process.

Listing: An application client deployment descriptor declaring a CallbackHandler

<?xml version="1.0" encoding="UTF-8"?>
<application-client version="7"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/application-client_7.xsd">
 <display-name>DeclarativeEnterpriseBean-client</display-name>
 <callback-handler>javaeems.chapter15.hello.client.MyCallbackHandler
 </callback-handler>
</application-client>

FIGURE 15-6. Custom application client login GUI

440 Java EE 7: The Big Picture

Security Identity Propagation
Probably the most common scenario for Java EE security is the situation when the clients of a
collection of Enterprise Beans are web components and other Enterprise Beans rather than
application clients.

In the Java EE platform, you can choose whether you want a web component or an Enterprise
Bean to use the identity with which it was called to be propagated to the Enterprise Bean it is
calling, or whether you want the call to be made with some other identity.

It can be useful to use the latter mechanism to isolate the identities and roles set up in the
web layer of an application from those in the Enterprise Bean layer. In such cases, using the
second mechanism, you can ensure that all the calls into the Enterprise Bean layer occur under
a single identity reserved for calls from the web layer. This mechanism is known as the Run-As
mechanism.

Before we look at the syntax, Figure 15-7 illustrates the various permutations of a browser and
application client calling web components that in turn call into the Enterprise Bean layer of an
application. Each time that a web component or Enterprise Bean component is called, there is the
possibility of that component passing on the identity of its caller to an Enterprise Bean it itself
calls, or using the Run-As mechanism to pass on some other defined identity.

The way to read Figure 15-7 is to see that the browser has authenticated and makes calls to
two web components under a given identity A. The first web component, when it calls its Enterprise
Bean, elects to pass on the caller identity A, so the Enterprise Bean it calls knows that call as identity
A. The second web component that the browser calls has chosen to use the Run-As mechanism to
call its Enterprise Bean with a different identity, identity B, from that with which it was called.

When a web or Enterprise Bean component wants to call other Enterprise Beans with the same
identity as its own caller, there is nothing to do: this is the default mode for these components.

FIGURE 15-7. Permutations of identity propagation in the Java EE platform

Java EE Server

Browser

Web Container

Web
Component

Enterprise Bean Container

Java Client

Web
Component

Enterprise
Bean

Enterprise
Bean

Enterprise
Bean

Enterprise
Bean

Enterprise
Bean

Enterprise
Bean

Chapter 15: Java EE Security 441

To use the Run-As mechanism, the web or Enterprise Bean component declares a single role
name, which the Java EE server will use to derive the identity that it would use to call any
Enterprise Beans.

For Java servlets and Enterprise Beans, declaring this role name is easy: you simply annotate the
servlet or Enterprise Bean implementation class with the @javax.annotation.security.RunAs
annotation, specifying the security role name as the value of the single value attribute. For example:

import javax.annotation.security.RunAs;

@RunAs("auto")
@Stateless
public MyFacadeBean {
 @EJB
 CalculatorBean calculator;
 ...
}

In this example, no matter who the caller of the MyFacadeBean is, when any of its methods
call the CalculatorBean, they will occur as an identity within the security role called auto. The
question is which identity? The auto role may potentially have several users associated with it.
How the Java EE server selects the specific user from within the @RunAs defined role is a configuration
task that is specific to the Java EE server on which the application is deployed. In the special case
when only one user has been associated with the security role, as we saw in the declarative
security example for the GlassFish server, then that single user is the one that is selected as the
RunAs identity. This can often prove an easy way to set up the @RunAs identity, and frequently
applications that use this facility set up a special user and assign it and only it to a special role
just for use with this mechanism.

Now that we have explored the concepts of identity propagation from between the tiers of a
Java EE application, looked at some of the options for how it may be configured, and seen how to
access security information programmatically, let’s pull together some of these ideas into a familiar
scenario: the Library example of Chapter 12.

The Library Example with End-to-End Security
When last we looked at the Library example, we had upgraded its data layer to use the Java
Persistence API. In this chapter, we have learned enough to require authentication to use this
application and apply the Java EE security model to it through the web and Enterprise Bean layers.

For this application, we have set up three users and associated them with three roles:

User Role

cecile adult

alex child

jared administrator

442 Java EE 7: The Big Picture

When we first try to access the application, we are asked to sign in, as shown in Figure 15-8.
If we sign in as Cecile, we will see a list of books, but they are books for adults, as we can see

in Figure 15-9. Whereas, if we log in as Alex, we will also see a list of books, but they are all
children’s books as Figure 15-10 shows. Furthermore, if either Alex or Cecile try to add or delete
a book or add an author, they will see the page shown in Figure 15-11. Finally, if we log in as
Jared, we see all the titles in the library, both for adults and for children, and we can add authors
and add or delete books in the library, as shown in Figure 15-12.

Let’s take a look at where the Java EE security model is being used in this application. First,
in the web.xml deployment descriptor of the web application piece, we have protected the
JavaServer Faces pages in the application using the form login mechanism and constrained
access to those JavaServer Faces pages only to authenticated users in one of the roles
administrator, adult, or child.

FIGURE 15-8. Signing into the Library application

Chapter 15: Java EE Security 443

FIGURE 15-10. Alex’s books for children

FIGURE 15-9. Cecile’s books for adults

444 Java EE 7: The Big Picture

FIGURE 15-11. Unauthorized access

FIGURE 15-12. Jared has all the books

Chapter 15: Java EE Security 445

Listing: The web deployment descriptor for the Library example

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">
 <context-param>
 <param-name>javax.faces.PROJECT_STAGE</param-name>
 <param-value>Development</param-value>
 </context-param>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.xhtml</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>
 30
 </session-timeout>
 </session-config>
 <welcome-file-list>
 <welcome-file>site/books.xhtml</welcome-file>
 </welcome-file-list>
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.xhtml</form-login-page>
 <form-error-page>/error.xhtml</form-error-page>
 </form-login-config>
 </login-config>
 <error-page>
 <exception-type>
 javaeems.chapter15.library.
 </exception-type>
 <location>/site/accessdenied.xhtml</location>
 </error-page>
 <security-constraint>
 <display-name>ViewAndEdit</display-name>
 <web-resource-collection>
 <web-resource-name>ViewableAndEditable</web-resource-name>
 <description/>
 <url-pattern>/site/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>administrator</role-name>

446 Java EE 7: The Big Picture

 <role-name>adult</role-name>
 <role-name>child</role-name>
 </auth-constraint>
 </security-constraint>
 <security-role>
 <description/>
 <role-name>administrator</role-name>
 </security-role>
 <security-role>
 <description/>
 <role-name>adult</role-name>
 </security-role>
 <security-role>
 <description/>
 <role-name>child</role-name>
 </security-role>
</web-app>

Notice the <error-page> declaration in this deployment descriptor. What it says is that any
unhandled exception of type UnauthorizedAccessException (that the Library application
now defines) that is thrown by any of the managed beans takes the browser to the page /site/
accessdenied.xhtml: this is the page with the skull and crossbones that Alex and Cecile see
when they try to add a new book or author.

Now let’s look at an excerpt from the LibraryBeanImpl class.

Listing: Excerpt from the LibraryBeanImpl class

import javax.annotation.security.PermitAll;
import javax.annotation.security.RolesAllowed;
import javax.annotation.security.DeclareRoles;
import javax.annotation.Resource;

@PermitAll
@Singleton
@DeclareRoles({"adult", "child", "adminstrator"})
public class LibraryBeanImpl implements LibraryBean {
 @PersistenceContext
 private EntityManager em;
 @Resource
 SessionContext sessionContext;

 @Override
 public List<Book> getBooksByGenre(String genreName) {
 Query query = em.createNamedQuery("findAllBooks");
 List<Book> books = query.getResultList();
 List<Book> genreBooks = new ArrayList<>();
 for (Book b : books) {
 if (b.isInGenre(genreName)) {
 if (sessionContext.isCallerInRole("child")) {

Chapter 15: Java EE Security 447

 if (b instanceof ChildrensBook) {
 genreBooks.add(b);
 }
 } else if (sessionContext.isCallerInRole("adult")) {
 if (!(b instanceof ChildrensBook)) {
 genreBooks.add(b);
 }
 } else {
 genreBooks.add(b);
 }
 }
 }
 return genreBooks;
 }

 @RolesAllowed("administrator")
 @Override
 public void addBook(String title,
 int authorId,
 List<String> genreNames,
 boolean isChildrens,
 int age) {
 int id = this.generateNewBookId();
 Author author = this.getAuthorForId(authorId);
 if (author == null) {
 throw new RuntimeException("bad author");
 }
 List<Genre> genres = this.getGenres(genreNames);
 Book newBook;
 if (isChildrens) {
 newBook = new ChildrensBook(id, title, author, genres, age);
 } else {
 newBook = new Book(id, title, author, genres);
 }
 em.persist(newBook);

 }

 @RolesAllowed("administrator")
 @Override
 public void addAuthor(List<String> foreNames,
 String lastName,
 String description) {
 int id = this.generateNewAuthorId();
 Author a = new Author(id, foreNames, lastName, description);
 em.persist(a);
 }

 @RolesAllowed("administrator")
 @Override
 public void deleteBook(int id) {

448 Java EE 7: The Big Picture

 Book b = em.find(Book.class, id);
 em.remove(b);
 }
...
}

Notice first that in using the @PermitAll annotation at the class level, all authenticated users
are allowed to call methods on this bean, unless the method has a security annotation that says
otherwise. Which is indeed the case for the addBook(), addAuthor(), and deleteBook()
methods, each of which uses the @RolesAllowed annotation to allow only users in the
administrator role to call these methods. This explains why only Jared can edit the contents
of the Library application, as he is the only user in the administrator role.

Second, notice that while the getBooksByGenre() method is accessible to all authenticated
users, its implementation uses the SessionContext that has been injected into the
LibraryBeanImpl class to determine to which role the current caller belongs, and so list only
children’s books to users in the child role, and books for adults for the callers in the adult role.
This explains why Cecile and Alex see a different selection of books, because Cecile is in the
adult role and Alex in the child role.

Finally, we look at an excerpt from the AddBookJSFBean, used by the JavaServer Faces
addbook.xhtml page, which adds new books to the library.

Listing: Excerpt from the AddBookJSFBean, handling an EJBAccessException

import javax.ejb.EJB;
import javax.ejb.EJBAccessException;

@Named("addBookBean")
@RequestScoped
public class AddBookJSFBean {
 @EJB
 LibraryBean librarybean;
 private String title;
 private String genreName1;
 private String genreName2;
 private Author author;
 private boolean childrensBook = false;
 private List<Integer> ages = new ArrayList<>();
 private int age;

 public void add() {
 List<String> genres = new ArrayList<>();
 this.addIfNotEmpty(genreName1, genres);
 this.addIfNotEmpty(genreName2, genres);
 try {
 librarybean.addBook(this.title,
 this.author.getId(),
 genres,
 childrensBook,

Chapter 15: Java EE Security 449

 this.age);
 } catch (EJBAccessException e) {
 throw new UnauthorizedAccessException(
 "Error adding a new book",
 librarybean.getClass().getSimpleName(),
 "addBook");
 }
 }
...
}

The add() method catches the EJBAccessException thrown by the libraryBean,
such as when Alex or Cecile try to add a book to the library, and throws an
UnauthorizedAccessException, which, thanks to the <error-page> declaration in
the web.xml deployment descriptor, takes them to the /site/accessdenied.xhtml page.

We could go further with this application: for example, using the web security APIs, which
we covered in Chapter 7, to disable functions in the JavaServer Faces pages when they are not
permissible to the current authenticated user. That is left as an exercise to the reader.

Summary
In this chapter, we started where Chapter 7, with its examination of the declarative and
programmatic security features of the Java EE web container, left off. We explored both the
declarative security model of the Enterprise Bean container, using an application client to
Enterprise Bean example to show how Enterprise Beans may be annotated to limit access to
their methods. We took an excursion into the world of application client authentication and
looked at how the login process can be customized. We looked at the programmatic access
Enterprise Beans have to their caller information and saw how Java EE server components can
control the identity that is passed on to Enterprise Beans they call. Finally, we looked at how
to take a familiar Library application and apply Java EE end-to-end security to both limit its
exposure and differentiate its functionality based on who is using it.

CHAPTER
16

Many Hands Make
Light Work:

Java EE Concurrency

452 Java EE 7: The Big Picture

T
he Java EE concurrency API is to compute-intensive tasks what multilane freeways are to
traffic management.

For many years, computation tasks could be performed more and more quickly
because of improvements in one aspect of the underlying processing power of processors: the
chip speed. However, as the chip architectures started to approach the physical limits of what
could be manufactured, chip designers turned to another technique to increase the computing
power of their architectures: parallel processing. In terms of managing traffic on roads, this is
rather like the realization that increasing the speed limit can only be taken so far: if your concern
is the overall throughput of vehicles, you have to start adding more lanes to the road. Whether a
chip has multiple cores or an architecture is based on multiple chips operating in parallel, the
concept is the same: if a computing task, such as running a complicated web site, analyzing very
large datasets, or converting information from one format into another, can be broken down into
a number of independent tasks, they can be executed in parallel instead of sequentially, take
advantage of the parallel processing capabilities of a multiprocessor or multicore architecture,
and so complete their work more quickly and efficiently. First becoming prevalent in the 1990s in
large computer systems suited for running web servers, multicore and multiprocessor
architectures have become prevalent on billions of platforms from server machines, to desktop
systems, laptops, tablets, and smartphones.

For certain kinds of computing tasks such as running multiple applications on a desktop, it is
relatively easy for the system to know how to separate tasks out from one another and decide
which can be executed in parallel. For other kinds of tasks, such as analyzing demographic
information across a database of census information, it is more difficult. So increasingly,
programming languages and platforms are evolving ways to allow applications to introduce
concurrent techniques themselves. Figure 16-1 shows the conceptual flow of executing a task
concurrently versus in parallel.

FIGURE 16-1. Parallel execution of a large task

Result

Result

Execute

Execute

Execute

Execute

Split Collect

Result 1

Result 2

Result 3

Task 1

Task 2

Task 3

Computing
Task

Computing
Task

Chapter 16: Many Hands Make Light Work: Java EE Concurrency 453

The Java SE platform contained facilities for breaking computing tasks into subtasks that could
be executed in parallel, starting with the humble Thread class. Difficult to use correctly due
to its low-level nature and the ease with which race conditions, thread starvation, and locking
conditions can arise, the Java SE platform has a collection of APIs called the concurrency APIs for
a higher-level approach to concurrent programming. All the techniques at heart rely on the ability
to create multiple threads to process a collection of tasks in parallel.

For Java EE programmers, the Java EE containers take on the job of thread management, and
indeed, in the Enterprise Bean container, application-created threads are strongly discouraged
because the container has no way to know of their existence and integrate them into the lifecycle
and other services they provide. As we have seen, the Java EE platform itself allows applications to
define components that can act in a concurrent manner, such as stateless session beans that are
instantiated each time they are needed, or WebSocket endpoints that are instantiated once for
every client that connects to them. Until recently, however, there has not been a way to execute
work in a concurrent manner and wholly under the application’s control. In this chapter, we will
look at the Java EE Concurrency API.

Tasks and Executors
The core concepts of the Java EE Concurrency API are that of a task and an executor. A task is a
piece of computing work that the application would like to complete. Tasks are created by Java EE
applications and can be any kind of application work, from mathematical computations, to
processes that affect large database tables, to conversions of data from one form into another.
Tasks may or may not have a result when they are complete. An executor is a service provided by
the Java EE platform. A Java EE concurrency executor service provides the means for applications
to submit tasks. It maintains a pool of container-managed threads that execute the task and can
inform the application of the progress of each task’s execution.

Application tasks are classes that implement either the java.lang.Runnable or
java.util.concurrent.Callable<V> interfaces. The Runnable interface is suited for
application tasks that do not return a result, for example, a task that compresses a video file.
It has one method that you probably already know:

void run()

which the application implements with the code that executes the task.
The Callable<V> interface is suited for modeling application tasks that produce some result

object (of type V) at the end of their execution, for example, calculating the average age as a
double of respondents in a sample from a country-wide census report. It has one method:

V call() throws Exception

which the application implements with the code that executes the task, returning the result of the
task execution.

The Java EE platform provides the service by which application tasks, either Runnables or
Callable<V>s, are executed in the form of instances of the interface javax.enterprise
.concurrent.ManagedExecutorService. For example, the submit() calls allow you to
submit a single task for execution by the service

Future<V> submit(Callable<V> task)

454 Java EE 7: The Big Picture

which returns a java.util.concurrent.Future object, which gives you a reference to the
task (and its result) as it is completed by the service, or

Future<?> submit(Runnable task)

that also returns a Future object, which gives you a reference to the task as it is completed by the
service, and whose get() returns null upon the completed execution of the Runnable.

You can also submit collections of tasks in return for a corresponding collection of Future
objects. You can do this, for example, with the method

List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
 throws InterruptedException

We can see the general idea behind using tasks and executors in Figure 16-2.
The executor service maintains a pool of threads that it uses to work on the tasks that have

been submitted to it. How many threads are used at any one time is very dependent on the Java
EE server implementation and the system on which it is deployed. All the application needs to
concern itself with is formulating the correct tasks that model the operations in the application
and processing the results.

FIGURE 16-2. Tasks and executors in the Java EE Concurrency API

Java EE Platform

Application

Executor

Computing Task

CallableRunnable

Thread Pool

ThreadThreadThread

Thread

Computing Task

Completed Task

ManagedExecutorService

Completed Task

CallableRunnable

Computing Task Completed Task

Chapter 16: Many Hands Make Light Work: Java EE Concurrency 455

Before we look any more into the Java EE Concurrency API, let’s look at a relatively simple
example.

Concurrent Prime Calculator
We first encountered this algorithm for calculating the highest prime number less than a given
upper bound in Chapter 10 when we explored asynchronous Enterprise Bean behavior. In this
example, we take the same algorithm in terms of a task that can take a non-trivial amount of time
to complete. We will compare the results of executing a number of these tasks sequentially, using
traditional Java looping, or concurrently, using the Java EE Concurrency API.

Running the Concurrent Prime Calculator
When you run the application, you will see something like Figure 16-3.

The application takes a maximum upper bound and randomly creates a number of upper
bounds less than the maximum. For each of these, the application calculates the largest prime

FIGURE 16-3. Running the Concurrent Prime Calculator

456 Java EE 7: The Big Picture

below it. When you press Submit, the application makes the calculations, first executing the
calculations serially, and then concurrently. The page displays the results of the calculations
(which will always be the same, regardless of the mode of calculation) and also the time taken to
complete the calculations for each mode. From the web page, you can adjust the number of
calculations, and you can adjust the maximum upper bound that will be applied. If you spend
some time adjusting these variables, you should consistently see that the calculation completes
much more quickly when the individual calculations are executed concurrently as compared to
when the same individual calculations are executed sequentially. How much more quickly
depends on the number of individual calculations; for example, if there is only one calculation,
the time will be more or less the same! The difference in speed also depends on the type of Java
EE server and system on which you are running the application.

Architecture of the Concurrent Prime Calculator Example
Since we are not going to take a look at all the code in the application, let’s look at the overall
architecture in Figure 16-4.

The web page is generated by the index.xhtml JavaServer Faces page. The page uses a
request scoped-managed bean called ConcurrencyBean. The ConcurrencyBean creates
PrimeCalculation objects, one for each of the individual calculations that the application
makes by each mode. Each PrimeCalculation object uses a slightly modified version of the
PrimeCalculator Enterprise Bean from Chapter 10 to make the calculation. The
ConcurrencyBean assembles two lists of the PrimeCalculation objects, one that it iterates
through a loop, and the other that it submits to a ManagedExecutorService instance to execute
concurrently.

FIGURE 16-4. Concurrent Prime Calculator architecture

Concurrent Prime Calculator

for loop

index.xhtml

ConcurrencyBean

Calculation PrimeCalculator

ManagedExecutorService

Calculation PrimeCalculator

Chapter 16: Many Hands Make Light Work: Java EE Concurrency 457

Code Analysis
First let’s look at the PrimeCalculation class.

Listing: The PrimeCalculation class

import java.util.concurrent.Callable;
 import javaeems.chapter16.primes.beans.PrimeCalculatorRemote;
 import javax.naming.*;

 public class PrimeCalculation implements Callable<Long> {
 private long upperBound = 10;

 public void setUpperBound(long upperBound) {
 this.upperBound = upperBound;
 }

 @Override
 public Long call() {
 try {
 PrimeCalculatorRemote primeCalculator = InitialContext.doLookup(
 "java:global/ConcurrentPrimeCalculator/PrimeCalculator");
 return primeCalculator.calculateMaxPrimeBelow(upperBound);
 } catch (NamingException ne) {
 System.out.println(ne.getMessage());
 return (long) -1;
 }
 }

 }

Notice that this class implements the Callable interface from the Java EE Concurrency API
because it is an application task that returns a result, the largest prime lower than the given
bound. Notice that within the call() method, this class looks up the instance of the
PrimeCalculator Enterprise Bean to which it will delegate the actual computation.

Now let’s look at the ConcurrencyBean.

Listing: The ConcurrencyBean class

import javax.enterprise.context.RequestScoped;
 import javax.inject.Named;
 import java.util.*;
 import javax.annotation.Resource;
 import java.util.concurrent.Future;
 import java.util.concurrent.ExecutionException;
 import javax.enterprise.concurrent.ManagedExecutorService;

 @Named("concurrencyBean")
 @RequestScoped
 public class ConcurrencyBean {
 @Resource
 ManagedExecutorService executor;
 private int numberCalculations = 5;
 private long lastParallelTime;

458 Java EE 7: The Big Picture

 private long lastSequentialTime;

 private List<Long> sequentialResults = null;
 private List<Long> parallelResults = null;
 private List<Long> upperBounds = null;
 private int maxUpperBound = 1000;

 public void reset() {
 this.lastParallelTime = 0;
 this.lastSequentialTime = 0;
 this.sequentialResults = null;
 this.parallelResults = null;
 this.upperBounds = null;
 }

 public int getMaxUpperBound() {
 return this.maxUpperBound;
 }

 public void setMaxUpperBound(int maxUpperBound) {
 this.maxUpperBound = maxUpperBound;
 }

 public int getNumberCalculations() {
 return this.numberCalculations;
 }

 public void setNumberCalculations(int numberCalculations) {
 this.numberCalculations = numberCalculations;
 this.reset();
 }

 public void doCalculate() {
 this.getSequentialResults();
 this.getParallelResults();
 }

 public List<Long> getSequentialResults() {
 if (this.sequentialResults != null) {
 return this.sequentialResults;
 }
 this.sequentialResults = new ArrayList<>();
 long then = System.currentTimeMillis();
 for (Long upperBound : this.getUpperBounds()) {
 PrimeCalculation c = new PrimeCalculation();
 c.setUpperBound(upperBound);
 this.sequentialResults.add(c.call());
 }
 this.lastSequentialTime = System.currentTimeMillis() - then;
 return this.sequentialResults;
 }

 public List<Long> getUpperBounds() {
 if (this.upperBounds == null) {
 this.upperBounds = new ArrayList<>();
 for (int i = 0; i < this.numberCalculations; i++) {

Chapter 16: Many Hands Make Light Work: Java EE Concurrency 459

 double d = Math.random();
 long nextUpperBound =
 (long) (2 + (d * (this.maxUpperBound - 2)));
 this.upperBounds.add(nextUpperBound);
 }
 }
 return this.upperBounds;
 }

 public Long getLastParallelTime() {
 return this.lastParallelTime;
 }

 public List<Long> getParallelResults() {
 if (this.parallelResults != null) {
 return this.parallelResults;
 }
 this.parallelResults = new ArrayList<>();
 long then = System.currentTimeMillis();
 List<PrimeCalculation> calculations = new ArrayList<>();
 for (Long upperBound : this.getUpperBounds()) {
 PrimeCalculation c = new PrimeCalculation();
 c.setUpperBound(upperBound);
 calculations.add(c);
 }
 try {
 List<Future<Long>> resultList = executor.invokeAll(calculations);
 for (Future<Long> next : resultList) {
 this.parallelResults.add(next.get());
 }
 this.lastParallelTime = System.currentTimeMillis() - then;
 return this.parallelResults;
 } catch (InterruptedException e) {
 System.out.println("The executor encountered an error
 making the calculation: " + e.getMessage());
 } catch (ExecutionException ee) {
 System.out.println("The calculation threw
 an error: " + ee.getMessage());
 }
 return new ArrayList<>();
 }

 public Long getLastSequentialTime() {
 return this.lastSequentialTime;
 }

 }

Notice that this request-scoped bean holds the JavaServer Faces properties that govern the number
of calculations it will perform, numberCalculations, and also the variable maxUpperBound
controlling the maximum upper bound for the calculations. When the doCalculate() method
is called, the ConcurrencyBean creates a single list of randomly generated upper bounds for all the
calculations that will be made in the method getUpperBounds().

Next look at the implementation of the getSequentialResults() method. This method
uses the list of upper bounds to create PrimeCalculation objects, one with each upper bound,

460 Java EE 7: The Big Picture

and iterates in a traditional Java for loop, calling the call() method on each PrimeCalculation
object that it creates. In this way, the single calling thread of the getSequentialResults()
method performs each prime number calculation, the next one starting only after the previous
one has completed, like a line of single-file traffic on a single-lane country road.

In contrast, the implementation of the getParallelResults() creates a list of
PrimeCalculation objects with the same upper bounds as in the sequential version. Notice
that the ConcurrencyBean injects an instance of the ManagedExecutorService into itself, to
which the getParallelResults() method submits the list of PrimeCalculation objects for
execution using the method call invokeAll(). It loops through the Future object that that this
invokeAll() method returns, calling get() on each one to assemble the results. Notice that
since the get() method call on the Future object blocks until the calculation has completed,
this iteration loop waiting on the future objects completes only when all the calculations have
been made, though it does know what order the calculations have completed.

You can see that there is slightly more overhead in using the ManagedExecutorService,
but there is an easy payoff in terms of performance.

The Java EE Concurrency API
We already looked at the Runnable and Callable<V> interfaces that a concurrent application
task must implement to use the executor service. In our example, the class we used for modeling the
calculation, other than implementing Callable, was just a plain Java class. Such application
tasks can in fact be other Java EE components such as the CDI beans we looked at in Chapter 14,
though care must be taken when using such objects: the lifecycle of a concurrent task can be
unpredictable. The completion of a concurrent task depends on a number of factors outside the
nature of the task itself, such as how many other tasks are executing in the executor service, or
the resource constraints of the underlying system running the Java EE server. The results are
unpredictable if the lifecycle of a concurrent task is ended before the task has been completed.
It is better to stick to @Application or @Dependent scope objects if you choose to implement
concurrent tasks as managed objects.

Concurrent task objects do, however, retain all the privileges of the Java EE environment once
they have been submitted to an executor service. This is important because the Java EE environment
in place when a concurrent task is submitted to the executor may not even exist at the time when
the concurrent task is actually executed. This can easily happen, for example, if a request-scoped
bean submits the task and does not wait for the result to be computed. The request scope, and all
associated information such as the JNDI context and security information about the call, may
have been destroyed before the task is executed. This allows concurrent task objects to reliably
use services like resource injection and JNDI lookup, such as the lookup of the Enterprise Bean in
the Concurrent Prime Calculator example.

ManagedExecutorService and
ManagedScheduledExecutorService
The ManagedExecutorService interface holds the methods required for submission of concurrent
tasks to the service. Additionally, it has methods, which allows the application using the service to
shut the service down. The method

void shutdown()

Chapter 16: Many Hands Make Light Work: Java EE Concurrency 461

prevents any new tasks from being submitted to the executor service and puts the service into the
shutdown state. Any tasks currently being executed continue to be executed until the last one has
completed when the executor enters the terminated state. You can await the terminated state with
the blocking call

boolean awaitTermination(long timeout,
 TimeUnit unit)
 throws InterruptedException

If you cannot wait for such a civilized winding down of the service, you can call the method

List<Runnable> shutdownNow()

which prevents any new tasks from being submitted to the executor service and returns any
incomplete tasks without executing them any further.

Under normal circumstances, the ManagedExecutorService instances provided by the Java
EE platform are shut down by the Java EE container, in which case any unexecuted tasks are
canceled and any in-process tasks are interrupted.

In addition to the ManagedExecutorService, its specialization, the
ManagedScheduledExecutorService, offers additional facilities for scheduling the start
of execution of application tasks, both at specified times and at specified time intervals.

For example,

AlarmCallable myAlarm = new AlarmCallable("ring ring");
myScheduledExecutor.schedule(myAlarm, 8, TimeUnit.HOURS);

schedules the given alarm callable to have its call() method in 8 hours’ time and

BackupTask backup = new BackupTask(BackupTask.LOG_FILES);
Future backup = myScheduledExecutor..scheduleAtFixedRate(
 backup, 30, TimeUnit.MINUTES);

schedules all the log files to be backed up every 30 minutes.

Obtaining a ManagedExecutorService Instance
The Java EE platform provides two service instances of the ManagedExecutorService for
use by Java EE applications, one instance of the ManagedExecutorService, and one of the
ManagedScheduledExecutorService. They may either be injected using the @Resource
annotation, such as

import javax.annotation.Resource;

 public class MyComponent {
 @Resource
 ManagedExecutorService executor;
 ...
 }

 or

462 Java EE 7: The Big Picture

 public class MyComponent {
 @Resource
 ManagedScheduledExecutorService scheduledExecutor;
 ...
 }

or these instances are available in the JNDI namespace for lookup under the names
java:comp/DefaultManagedExecutorService and
java:comp/DefaultManagedScheduledExecutorService.

Identifying and Monitoring Concurrent Tasks
It is often useful to be able to add information to a task you have created for later identification
and also monitor the progress of a task that you have submitted to the executor service. In order
to do this, two additional interfaces are relevant. First, the ManagedTask interface gives a
standard way to add arbitrary properties to a concurrent task, as well as defining some commonly
used identifying properties. Implementing this interface requires a task to implement the method

Map<String,String> getExecutionProperties()

while the interface defines static Strings to use as standard keys in the Map, such as ManagedTask
.IDENTITY_NAME, ManagedTask.LONGRUNNING_HINT. These standard keys allow you to give
the task a identifying name, and to set a boolean value to indicate whether the task is expected to
take a long time to complete or not, respectively.

The other method that implementing ManagedTask requires a concurrent task to implement is

ManagedTaskListener getManagedTaskListener()

allowing the concurrent task to supply an instance of the ManagedTaskListener to the executor
service. If the concurrent task does this, the executor service will call the listener back at specific
times during the submission and execution of the task.

ManagedTaskListener Time Called
void taskSubmitted(Future<?> future,
 ManagedExecutorService executor,
 Object task)

Called after the task has been
submitted and before the task has
started.

void taskStarting(Future<?> future,
 ManagedExecutorService executor,
 Object task)

Called when the executor is
about to start executing the task.

void taskAborted(Future<?> future,
 ManagedExecutorService executor,
 Object task,
 Throwable exception)

Called whenever the executor has
to cancel the task, for example,
if the Java EE server is shutting
down.

void taskDone(Future<?> future,
 ManagedExecutorService executor,
 Object task,
 Throwable exception)

Called after the task has been
executed.

We can see the different states of a ManagedTask as it is processed in by an executor service
in Figure 16-5.

Chapter 16: Many Hands Make Light Work: Java EE Concurrency 463

The ManagedThreadFactory
When more complicated execution patterns are required than the submission methods of the
executor service allow for, then the Java EE Concurrency API provides the means for Java EE
applications to spawn new threads of their own. In the traditional Java SE approach, the
application would create a new thread by creating a Runnable and instantiating it, or creating a
subclass of Thread and instantiating it by hand. All such threads are outside the control of the
Java EE containers and lack the contextual properties Java EE applications need, such as the
current transaction and the JNDI naming context. So the Java EE Concurrency API provides an
instance of a ManagedThreadFactory, from which new threads can be created. Like the
managed tasks of the executor service, threads created from the ManagedThreadFactory carry
the entire Java EE context, and so services such as looking up managed objects through JNDI or
injecting resources work in such threads.

The instance of the ManagedThreadFactory provided by the Java EE server to a Java EE
application is available either to be injected using the @Resource annotation

import javax.annotation.Resource;

 public class MyComponent {
 @Resource
 ManagedThreadFactory myManagedThreadFactory;
 ...
 }

or may be looked up in the JNDI namespace under the reserved name java:comp/
DefaultManagedThreadFactory.

The single method on the ManagedThreadFactory is

Thread newThread(Runnable r)

FIGURE 16-5. The states of a ManagedTask

ManagedTask states

Submitted

Started

Completed

Aborted

taskSubmitted()

taskStarting()

taskDone()

taskAborted()

taskAborted()

taskAborted()

464 Java EE 7: The Big Picture

which allows you to pass a Runnable object, a task of some sort, and receive back a Java EE
container-managed thread that you can use to execute it.

Monitored Prime Calculator Example
We will continue our study of concurrent task execution using the Java EE Concurrency API by
taking our Prime Calculator example and looking a little more deeply into the task execution,
applying some of what we have learned about managed tasks.

Running the Monitored Prime Calculator
When we open up the Monitored Prime Calculator example, we see that we have the same
ability to kick off and configure a number of calculations, as shown in Figure 16-6.

FIGURE 16-6. A monitored prime calculation

Chapter 16: Many Hands Make Light Work: Java EE Concurrency 465

By clicking the Monitor button, we can bring up another page that monitors each individual
calculation as it is executed, shown in Figure 16-7.

As you play with this example, you might notice that while the order of execution of the
sequential tasks is entirely predictable (as it should be: they are executing in order within each
loop), the order of execution of the concurrent tasks is not.

Architecture of the Monitored Prime Calculator
Let’s look at an overall picture of this updated application, shown in Figure 16-8.

In this update, we have added CalculatorListener classes that track the progress of each
prime calculation. All the CalculatorListener instances pass updates to a singleton Enterprise
Bean called MonitorBean. This in turn notifies a WebSocket endpoint called MonitorBroadcaster
to which the monitor.html web page connects when it first loads. In this way, the monitor.html
page receives information about every prime calculation task as it completes. Let’s take a look at
the code.

FIGURE 16-7. Monitoring individual managed tasks

466 Java EE 7: The Big Picture

First, the ConcurrencyBean managed bean and PrimeCalculator Enterprise Beans are
largely unchanged, so we will jump straight to the Calculation class, which you will recall
from earlier manages the prime calculation.

Listing: The Calculation class

import javaeems.chapter16.monitoredprimes.beans.MonitorBean;
import java.util.concurrent.Callable;
import javaeems.chapter16.monitoredprimes.beans.PrimeCalculatorRemote;
import javax.enterprise.concurrent.ManagedTask;
import javax.enterprise.concurrent.ManagedTaskListener;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import java.util.*;

 public class Calculation implements Callable<Long>, ManagedTask {
 public static String SUBMIT_TIME_KEY = "SUBMIT_TIME_KEY";

FIGURE 16-8. Architecture of the monitored Prime Calculator

Monitored Prime Calculator

monitor.html

Calculation

for loop

index.xhtml

ConcurrencyBean

MonitorBroadcaster

PrimeCalculatorCalculation

MonitorBean

CalculationListener

CalculationListener

PrimeCalculator

ManagedExecutorService

Chapter 16: Many Hands Make Light Work: Java EE Concurrency 467

 public static String START_TIME_KEY = "START_TIME_KEY";
 public static String END_TIME_KEY = "END_TIME_KEY";
 public static String EXECUTION_TYPE = "EXECUTION_TYPE";
 public static String SEQUENTIAL = "sequential";
 public static String CONCURRENT = "concurrent";

 private final long upperBound;
 private final MonitorBean mb;
 private final Map<String,String> executionProperties = new HashMap<>();

 public Calculation(MonitorBean mb, int id, long upperBound, String type) {
 this.mb = mb;
 this.upperBound = upperBound;
 this.executionProperties.put(EXECUTION_TYPE, type);
 this.executionProperties.put(
 ManagedTask.IDENTITY_NAME, Integer.toString(id));
 }

 @Override
 public Long call() {
 try {
 PrimeCalculatorRemote primeCalculator = InitialContext.doLookup(
 "java:global/MonitoredPrimeCalculator/PrimeCalculator");
 return primeCalculator.calculateMaxPrimeBelow(upperBound);
 } catch (NamingException ne) {
 System.out.println(ne.getMessage());
 return (long) -1;
 }
 }

 @Override
 public ManagedTaskListener getManagedTaskListener() {
 return new CalculationListener(this.mb);
 }

 @Override
 public Map<String,String> getExecutionProperties() {
 return this.executionProperties;
 }

 }

Notice that the Calculation class now implements the ManagedTask interface from the
Java EE Concurrency API. This requires it to expose a Map of execution properties and produce an
instance of a ManagedTaskListener. The Calculation class is evolved to use the execution
properties to store its execution type: sequential or concurrent, and the upper bound of the prime
calculation. It also defines keys for its execution properties to store the submission, start, and end
time of its execution, but does not set the values. Notice also that the Calculation class looks
up a reference to the singleton MonitorBean Enterprise Bean that it uses to construct the
instances of CalculatorListener it produces.

The CalculatorListener class has an instance variable to refer to the MonitorBean, as
we can see from its code.

468 Java EE 7: The Big Picture

Listing: The CalculationListener class

 import javaeems.chapter16.monitoredprimes.beans.MonitorBean;
 import javax.enterprise.concurrent.ManagedTaskListener;
 import javax.enterprise.concurrent.ManagedExecutorService;
 import javax.enterprise.concurrent.ManagedTask;
 import java.util.concurrent.Future;

 public class CalculationListener implements ManagedTaskListener {
 private final MonitorBean mb;

 public CalculationListener(MonitorBean mb) {
 this.mb = mb;
 }

 @Override
 public void taskSubmitted(Future<?> future,
 ManagedExecutorService executor,
 Object task) {
 ((ManagedTask) task).getExecutionProperties().put(
 Calculation.SUBMIT_TIME_KEY,
 Long.toString(System.currentTimeMillis()));
 }

 @Override
 public void taskAborted(Future<?> future,
 ManagedExecutorService executor,
 Object task,
 Throwable exception) {
 System.out.println("Task Aborted: " + task);
 }

 @Override
 public void taskDone(Future<?> future,
 ManagedExecutorService executor,
 Object task,
 Throwable exception) {
 ((ManagedTask) task).getExecutionProperties().put(
 Calculation.END_TIME_KEY,
 Long.toString(System.currentTimeMillis()));
 mb.taskCompleted(task);
 }

 @Override
 public void taskStarting(Future<?> future,
 ManagedExecutorService executor,
 Object task) {
 ((ManagedTask) task).getExecutionProperties().put(
 Calculation.START_TIME_KEY,
 Long.toString(System.currentTimeMillis()));
 }

 }

Chapter 16: Many Hands Make Light Work: Java EE Concurrency 469

You can also see from its code that in implementing the ManagedTaskListener interface, it
sets the submission, start, and end time as execution properties of the task, the Calculation
object, to which it listens. Additionally, when the task is complete, it notifies the MonitorBean.

The CalculationListener interface is called only during the concurrent calculation, at
some point after the submission of the corresponding Calculation instance to the
ManagedExecutorService. Let’s look briefly at the sequential calculation in the
ConcurrencyBean class.

Listing: Excerpt from the ConcurrencyBean class

public List<Long> getSequentialResults() {

if (this.sequentialResults != null) {
return this.sequentialResults;
}
this.sequentialResults = new ArrayList<>();
long then = System.currentTimeMillis();
int id = 0;
for (Long upperBound : this.getUpperBounds()) {
Calculation c = new Calculation(mb,
id++,
upperBound,
Calculation.SEQUENTIAL);
c.getExecutionProperties().put(
Calculation.SUBMIT_TIME_KEY,
Long.toString(System.currentTimeMillis()));
c.getExecutionProperties().put(
Calculation.START_TIME_KEY,
Long.toString(System.currentTimeMillis()));
long l = c.call();
c.getExecutionProperties().put(
Calculation.END_TIME_KEY,
Long.toString(System.currentTimeMillis()));
this.mb.taskCompleted(c);
this.sequentialResults.add(c.call());
}
this.lastSequentialTime = System.currentTimeMillis() - then;
return this.sequentialResults;
}

We can see that the execution properties to do with timing are set “by hand” by the application
code, as is the notification of completion to the MonitorBean.

You may be wondering why the CalculationListener does not look up the MonitorBean
itself, rather than relying on a reference to be passed in to its constructor. The answer is that while
a managed task inherits the Java EE calling context of its caller, the ManagedTaskListener instance
that they produce does not necessarily do the same. So it is good practice not to depend on the
full Java EE calling context being available from within a ManagedTaskListener.

470 Java EE 7: The Big Picture

Whether sequential or concurrent, the MonitorBean is notified as each calculation
completes, and each Calculation object carries with it in its execution properties the timing
information for its execution.

Listing: The MonitorBean class

import javaeems.chapter16.monitoredprimes.web.Calculation;
import javaeems.chapter16.monitoredprimes.web.MonitorBroadcaster;
import javax.ejb.Singleton;
import javax.ejb.LocalBean;
import java.util.*;
import javax.enterprise.concurrent.ManagedTask;

 @Singleton
 @LocalBean
 public class MonitorBean {
 private final List<MonitorBroadcaster> listeners = new ArrayList<>();

 public void add(MonitorBroadcaster pbe) {
 this.listeners.add(pbe);
 }

 public void remove(MonitorBroadcaster pbe) {
 this.listeners.remove(pbe);
 }

 public void calculationStarted(int numberCalculations) {
 for (MonitorBroadcaster pbe : this.listeners) {
 pbe.sendUpdate("xx");
 pbe.sendUpdate("iCalculation started with " +
 numberCalculations + " calculations.");
 }
 }

 public void taskAborted(Object task) {
 Calculation calculation = (Calculation) task;
 for (MonitorBroadcaster pbe : this.listeners) {
 pbe.sendUpdate("iError in Task: " + calculation.
 getExecutionProperties().get(ManagedTask.IDENTITY_NAME));
 }
 }

 public void taskCompleted(Object task) {
 for (MonitorBroadcaster pbe : this.listeners) {
 if (task instanceof Calculation) {
 Calculation c = (Calculation) task;
 String prefix;
 if (c.getExecutionProperties()
 .get(Calculation.EXECUTION_TYPE)
 .equals(Calculation.CONCURRENT)) {
 prefix = "c";
 } else {
 prefix = "s";

Chapter 16: Many Hands Make Light Work: Java EE Concurrency 471

 }
 long submitTime = Long.parseLong(c.getExecutionProperties()
 .get(Calculation.SUBMIT_TIME_KEY));
 long startTime = Long.parseLong(c.getExecutionProperties()
 .get(Calculation.START_TIME_KEY));
 long endTime = Long.parseLong(c.getExecutionProperties()
 .get(Calculation.END_TIME_KEY));
 int id = Integer.parseInt(c.getExecutionProperties()
 .get(ManagedTask.IDENTITY_NAME));
 pbe.sendUpdate(prefix + "Task(" + id +
 ") completed in " + (endTime-startTime) + "ms.");
 } else {
 pbe.sendUpdate(task.toString());
 }
 }

 }
 }

Looking at the MonitorBean, we can see that it allows instances of the MonitorBroadcaster
WebSocket endpoint to be registered for updates and removed when done. When the
MonitorBean receives a task completion notification, it notifies its list of MonitorBroadcaster
endpoints. In turn, the MonitorBroadcaster endpoints update the client WebSocket, residing
in the monitor.html page, with a simple format of a text message that allows the results to be
tabulated as they are sent.

In this way, the monitor.html page can show the completion of each individual
computation as it happens, whether in the sequential or concurrent calculation.

Summary
Many hands make light work!

In this chapter, we looked at the general principles of concurrent programming in the context
of multicore and multiprocessor system architectures. We explored the concepts of a Java EE
concurrent task and an executor, the main elements of the Java EE Concurrency API. We looked
at the two kinds of executor service available to Java EE applications for use in creating concurrent
applications, and by means of an example based on time-consuming mathematical calculations,
we compared traditional sequential execution of a task with managed task execution based on
the Java EE Concurrency API. We looked at the facilities available in the APIs to track task execution,
and possibly convinced ourselves that there are a large number of compute-intensive tasks that
can benefit from being processed in parallel.

A

AccountBean, 284–285
action attribute, 127
actionListener attribute, 127
actions, JSP, 63, 73–75
Active state, EJB lifecycle, 277
addAuthor() method, 373, 448
addBook() method, 160, 162, 343, 448
AddBookJSFBean, 448–449
addMessage() method, 196
administrator role, 436
album.xhtml file, 126–127
ALTER statement, 331
annotations

Enterprise Bean, 268–269, 274,
277–278, 310

entity relationship, 357, 358
Java EE programming, 9, 11, 12
Java Persistence API, 350, 357, 358
Java servlet, 34, 40, 43, 50, 52, 53,

212–213
Java WebSocket, 174–175
JavaServer Faces, 100–101, 112–115
JAX-RS resource, 141–142, 148,

149, 150
JDBC API, 343
named object, 383
security, 432–433, 448
transaction by, 310
web filter, 237, 240
web listener, 243, 245

anonymous access, 200

@Any annotation, 409
application clients, 379–380

authentication, 437–439
resource injection, 380

application scope, 72, 113, 152, 410
application.xml deployment descriptor,

230, 381
application-client.xml file, 439
applications

client-side, 379–380
Java EE, 4–20, 378–382
Java Persistence API, 362–363
Java servlet, 34–44, 51
Java WebSocket, 176–182, 190–198
JAX-RS, 153–167
JSP, 88–94

@ApplicationScoped annotation, 113,
160, 410

architecture
Concurrent Prime Calculator, 456
Java EE platform, 2–4
Java Persistence API, 346
Java servlet runtime, 49
JSF application, 97–104
JSP runtime, 59–60
Library application, 338
Monitored Prime Calculator, 466

arithmetic operators, 85, 88
@AroundInvoke annotation, 312, 314
AroundInvoke interceptors, 420
@AroundTimeout annotation, 314
Async example, 299–302, 385–387
async() method, 253, 256

IndexIndex

473

474 Java EE 7: The Big Picture

AsyncContext object, 247
@Asynchronous annotation, 299
asynchronous modes, 246–257

Async example, 299–302
Enterprise Beans and, 298–302
Hello Asynchrony example, 253–257
Java servlets and, 247–252
Locked Servlet example, 248–252
web resources and, 252–257

AsyncInvoker object, 256
AsyncResponse object, 252, 255
AuditInterceptor example, 313–314
auth-constraint element, 207
authentication, 201, 202–204

application client, 437–439
basic, 202, 203
client certificate, 203, 204
configuring mechanisms for, 203
examples of, 203–204
form-based, 202, 203–204

auth-method element, 203
Author class, 367–369
Author persistence entity, 353–354
authorization, 201, 204–211

process diagram, 205
security constraints, 206–207
user data constraints, 207

auto role, 441
autoFlush attribute, 65, 66

B

Backoffice application, 288–291
Banking application, 280–291
basic authentication, 202, 203
bean instances, 404
beans.xml file, 421
BillPay bean, 287–288
binary content, 90, 182, 186
Book class, 162–164, 348–350, 366–367
Book data object, 338–339
BookEndpoint resources, 337, 339
boolean isSecure() method, 215
Boolean literals, 85
broadcastTranscriptUpdate() method, 196–197
buffer attribute, 65, 66
BuggingDevice interceptor, 419–420

C

<c:forEach> tag, 77–78, 84
<c:if> tag, 79, 84
calculateMaxPrimeBelow() method, 301
Calculation class, 466–467
CalculatorListener class, 467–469
calculators, prime. See Prime Calculator

examples
call() method, 457, 460
Callable<V> interface, 453, 460
CallableStatement interface, 334
CallbackHandler implementation, 438–439
caller identification, 214–215
cancel() method, 252
cascade attribute, 358
CascadeType enumeration, 358–359
CDI (Contexts and Dependency Injection),

398–428
CDI beans, 404–421
Chat application example, 421–428
consumer-producer relationship,

398, 399
Goldilocks application examples,

399–404, 414–419
introductory overview, 398–399
SleepScopes example, 410–413
summary about, 428

CDI beans, 404–421
events, 413–419
examples of, 404–405
injection points, 406–407
interceptors, 419–421
lifecycle of, 407–409
packaging, 421
properties, 404
qualifiers, 405–406
scopes, 409–410

CGI applications, 188
Chat application, 190–198

CDI example of, 421–428
ChatEncoder class, 197
ChatServer endpoint, 192–195
new message broadcasts, 196–197
Transcript class, 195–196, 422–423
UserList class, 423–424

ChatEncoder class, 197
ChatMessage subclasses, 196
ChatServer endpoint, 192–194, 427
Checking bean, 286

Index 475

ChildrensBook class, 370
classes

embeddable, 354–355
Java Persistence API, 353
Java servlet, 45, 46–47, 50
Java WebSocket, 176
JAX-RS, 151–152

client certificate authentication, 203, 204
@ClientEndpoint annotation, 173–174
client-side applications, 379–380
Clock application, 176–182

architecture, 178
client page, 179–180
ClockServer endpoint, 177–178,

180–181
WebSocket instances, 182

clock JSP, 60–63, 81–83
close() method, 332
@Column annotation, 354
@Comfort annotation, 401, 403
Common Gateway Interface (CGI), 188
complete() method, 247
composite components, 120
concurrency

Enterprise Beans and, 294–298
See also Java EE Concurrency API

ConcurrencyBean class, 456, 457–459,
466, 469

@ConcurrencyManagement annotation,
296, 297

Concurrent Prime Calculator, 455–460
architecture, 456
code analysis, 457–460
running, 455–456
See also Monitored Prime Calculator

conditional operators, 85
conditional tag, 79–80
configuration

authentication mechanism, 203
Java Persistence API, 362–363
web filter, 237–241
web listener, 243–246

Connection object, 321, 332–333
constraints

security, 206–211
user data, 207

consumer-producer relationship, 398–399
@Consumes annotation, 149, 164
containers, Java EE, 2

content consumption in JAX-RS, 148–149
@Consumes annotation for, 149
explanation of, 148–149

content production in JAX-RS, 146–148
extending for response entities, 147–148
@Produces annotation for, 148

contentType attribute, 64, 67
Content-Type header, 139
@Context annotation, 144, 150, 162
context.wasCancelCalled() method, 301
Contexts and Dependency Injection. See CDI
control flow tags, 119
control statements, 77
conversation scope, 113–114, 410
@ConversationScoped annotation,

113–114, 410
conversion of data, 118–119
cookies, 49
core tags, JSF, 115–119
create() methods, 336
CREATE TABLE statement, 330
createNamedQuery() method, 352, 361
createQuery() API, 361
createTable() method, 329
custom tags, JSP, 80–83, 91
custom validation, 116

D

data conversion, 118–119
data validation, 115–117
database tier, 2
database.xhtml file, 325
databases

explanation of relational, 320
JDBC access to, 320–321

DataSource object, 321, 329, 331–332,
390–392

declarative security model, 200, 201,
202–213

annotations used in, 432–433
authentication in, 202–204
authorization in, 204–211
data privacy in, 207
Enterprise Bean, 431–436
examples of using, 217–225, 433–436

@DeclareRoles annotation, 433, 434
decoders, WebSocket, 182–184
@Default qualifier, 405

476 Java EE 7: The Big Picture

@DELETE annotation, 142
DELETE method, 164
DELETE statement, 361
deleteData() method, 343
deleteMessage() method, 10
@DenyAll annotation, 432–433
dependency injection, 3, 277
@Dependent annotation, 114–115, 410
dependent scope, 114–115, 410
deployment

Java EE application, 20
Java servlet, 51–52
JAX-RS resource, 144
WebSocket endpoint, 190

deployment descriptors
contained in WAR files, 19, 51, 203, 228
Enterprise Bean, 279, 387
Library example, 445–446
named object, 383
security constraints, 205, 207, 208,

211, 219
servlet declaration and mapping, 232
web filters declared in, 238
web listeners declared in, 243–244

destroy() method, 45, 197
directives

include, 67
page, 62, 64–67
taglib, 68, 77

DisplayAlbumServlet, 34, 38–40, 44
DisplayPhotoServlet, 34, 36–37, 42, 44, 122
DisplayServlet, 4, 6, 8, 12–13, 14
@Disposes annotation, 408
doCalculate() method, 459
doFilter() method, 236–237
doGet() method, 13, 32, 37, 251, 268
doPost() method, 8, 32
doTag() method, 91
doVote() method, 297
DROP TABLE statement, 330
dropTable() method, 329
dynamic web pages. See JSPs

E

EAR files, 19–20, 230, 381–382
Echo Server sample code, 173
EditBean class, 128–130
@EJB annotation, 12, 268, 276, 277, 383
EJB container, 2, 3, 294, 295

EJBAccessException, 448–449
EJBContext() method, 302
EJBContext object, 389
EJBs. See Enterprise Beans
embeddable classes, 354–355
empty operators, 85
encode() method, 197
encoders, WebSocket, 182–184
end() method, 114
endChatChannel() method, 198
endpointConfig instance variable, 195
end-to-end security, 441–449
Enterprise Beans, 262–291

annotations, 268–269, 274,
277–278, 310

application client authentication,
437–439

asynchronous, 298–302
AuditInterceptor example, 313–314
Banking application, 280–291
client connections, 264
concurrency and, 294–298
contexts for, 302–303
declarative security, 431–436
exposure of, 270–273
finding, 273–277
flavors of, 265, 268–269
Hello application, 265–268
identity propagation, 440–441
injection, 276–277
interceptors, 311–314
JAR files, 19, 279, 378
JDBC APIs and, 321
lifecycle of, 277–278
local view, 271–272
multi-threading and, 294–298
named objects, 389–390
packaging, 19, 279
programmatic security, 436–437
references, 388–390
remote view, 270–271
security methods, 430–437
services enjoyed by, 262, 263
situations for using, 262–263
summaries about, 291, 314–315
Timer Service, 303–307
transactions and, 307–311
views illustration, 273
web service view, 272

Enterprise JavaBeans (EJB) container, 2, 3,
294, 295

Index 477

@Entity annotation, 11, 350, 357, 367
entity providers, 160–162
entity relationships

cascading in, 358–359
explanation of, 355–357

EntityManager interface, 352,
359–360, 393

EntityManagerFactory instance, 393–394
env-entry element, 388
environment entries, 385–388
error pages, JSP, 66
errorPage attribute, 66, 67
event handling, 117–118
events

CDI, 413–419
JSF, 117–118

exception mapping, JAX-RS,
150–151, 164

execute() methods, 321, 329, 333
executeQuery() method, 329, 333, 334
executeUpdate() method, 329, 333,

334, 343, 361
execution context, 247
executors, 453–455
expressions, JSP EL, 84–88
extends attribute, 67
extensibility of JSF, 96, 120
external libraries, 382

F

Faces Flows, 120
FacesServlet class, 102
field injection, 406
File Transfer Protocol (FTP), 26
FilterChain object, 236
find() method, 352
finding Enterprise Beans, 273–277

message-driven beans, 273–274
session beans, 274–277

finishInteractions() method, 114
flow scope, 114
@FlowScoped annotation, 114
flush() operation, 359
form-based authentication, 202,

203–204
form-login-config element, 203, 204
forward() method, 43
forwarding action, 73
FTP (File Transfer Protocol), 26

G

@GeneratedValue annotation, 367
Genre class, 369–370
@GET annotation, 140, 142, 144, 160
get() call, 322, 460
GET method in HTTP, 28, 164
getAllTimers() method, 307
getAuthenticationScheme() method, 215
getAuthorForId() method, 373
getBooks() method, 160, 162, 167
getBooksByAuthor() method, 373
getBooksByGenre() method, 448
getCause() method, 299
getConnection() call, 329
getFullDescription() method, 164
getGenres() method, 160
getHttpServletRequest() method, 223
getID() call, 47
getLastVote() method, 297
getMessageFor() method, 268
getMetaData() call, 332
getMethod() call, 312
getMyBeanProperty() method, 72
getParallelResults() method, 460
getParameters() method, 312
getPhotoAlbum() method, 44
getSequentialResults() method, 459, 460
getStoredMessage() method, 10
getString() method, 335
getTimers() method, 307
getUpperBounds() method, 459
getUser() method, 424
getUsername() method, 223
getUserPrincipal() method, 214
giveGreeting() method, 140
Glassfish application server, 205, 218
glassfish-ejb-jar.xml file, 435
glassfish-resources.xml file, 325–326
glassfish-web.xml file, 230
Goldilocks application, 399–404
Goldilocks Observed example, 414–419
GoldilocksServlet class, 399, 401–402, 403
GrandparentsServlet class, 418–419
GreetingResource class, 141

H

handle() method, 439
handleChatMessage() method, 196, 197

478 Java EE 7: The Big Picture

handleMessage() method, 181
handleRequest() method, 40, 41
handshake, WebSockets, 171–172
@HEAD annotation, 142
Hello Asynchrony application, 253–257
Hello Enterprise Beans application, 265–268
Hello Java EE application, 4–14

components and code, 6–14
example of running, 4–6
packaging and deploying, 18–20

Hello JavaServer Faces application, 98–102
Hello JDBC application, 322–329
HelloBean class, 100, 102–103, 266
HelloBeanImpl class, 434
HelloClient class, 145–146
HelloJDBCBean, 325, 327–329
HelloResource class, 140
HelloResource example

rich clients and, 144–146
server side, 142–144

HTML code
tags used in, 104
web filter applied to, 238–240

HTTP DELETE request, 138
HTTP GET request, 138
HTTP POST request, 6, 138
HTTP protocol, 26–29

Accept header, 139
Enterprise Beans and, 264
methods for operations, 138
requests/responses, 27–28
session cookies, 49
status codes, 29

HTTP PUT request, 138
@HttpConstraint annotation, 212
@HttpMethodConstraint annotation, 212, 213
http-method element, 206
HttpServlet class, 31, 45, 49
HttpServletRequest objects, 32, 55, 216,

223, 247
HttpServletResponse objects, 32, 55, 247
HttpSession object, 47–49

event listeners, 242
runtime architecture, 49
security concerns, 216
session maintenance, 48–49
turning off tracking, 66

HttpSessionIdListener, 242, 243
HttpSessionListener, 242, 243, 245

I

@Id annotation, 350
identity propagation, 440–441
ImageUploadValidator, 132
implicit objects, 75–76, 83
import attribute, 65, 67
include directive, 67
including action, 73–74
index.xhtml file, 101, 103, 110–111
info attribute, 67
init() method, 45, 197
InitialContext class, 291
initLibrary() method, 160
@Inject annotation, 114, 130, 403, 406
injectable objects, 382–394

DataSource, 390–392
Enterprise Bean references, 388–390
environment entries, 385–388
Java Persistence, 392–394
namespaces, 383–385
summary of, 384, 394

injection, 12
application client resource, 380
Enterprise Bean, 276–277
where it works, 394–395
See also CDI

injection points, 398, 406–407
INSERT statement, 331
instances

CDI bean, 404
Concurrency API, 463–464
EntityManager, 360
Java servlet, 45–46
Java WebSocket, 182
JAX-RS resource class, 151–152

interceptors
AuditInterceptor example, 313–314
CDI bean, 419–421
Enterprise Bean, 311–314

@Interceptors annotation, 312–313
InvocationContext class, 312, 419
invoke() method, 146, 167
invokeAll() method, 460
isClosed() method, 332
isDone() method, 257
isELIgnored attribute, 64, 67
isErrorPage attribute, 66
isLast() method, 343
isLoggedIn() method, 223
isScriptingEnabled attribute, 64, 67

Index 479

isThreadSafe attribute, 66, 67
isUserAbleToEdit() method, 223
isUserInRole() method, 215
iteration tags, 78

J

JAR files, 19, 279, 378, 380
Java Database Connectivity APIs.

See JDBC APIs
Java EE

architecture, 2–4
concurrency, 453–471
identity propagation, 440–441
implementations, 20
managed beans, 112–115
named objects, 382–394
predefined scopes, 410
security model, 18, 430

Java EE applications
components of, 378–382
deploying, 20
external libraries, 382
Hello Java EE example, 4–14, 18–20
module names and, 381
packaging, 18–20
security model, 18
variations, 14–18

Java EE Concurrency API, 452–471
Concurrent Prime Calculator example,

455–460
identifying/monitoring concurrent

tasks, 462–463
ManagedExecutorService interface,

460–462
ManagedScheduledExecutorService

interface, 461–462
ManagedThreadFactory instance,

463–464
Monitored Prime Calculator example,

464–471
tasks and executors, 453–455

Java EE Connector Architecture (JCA), 4
Java EE modules, 378, 381
Java environment for JSPs, 75–76
Java Message Service (JMS), 3, 264, 265, 269
Java Naming and Directory Interface (JNDI),

274–275, 383
Java Persistence API (JPA), 4, 17, 346–373

annotations, 350, 357, 358

application configuration, 362–363
architecture diagram, 346
CascadeType enumeration, 358–359
embeddable classes, 354–355
entity relationships, 355–357
EntityManager interface, 359–360
key features, 346
Library Service and, 347–353, 363–373
named objects, 392–394
persistence entities, 353–359
persistent states, 357–358
query language, 361–362
summary about, 373

Java Servlet API class, 31
Java servlets, 4, 26, 29–56

API overview, 44–50
asynchronous, 247–252
caller identification, 214, 215
creating, 31–33
deployment information, 51–52
good and bad features of, 54–55
HttpServlet class, 45
HttpSession object, 47–49, 216
JavaServer Pages vs., 58
lifecycle of, 46
Locked Servlet example, 248–252
number of instances of, 45–46
path mapping, 52–54, 231
Photo application example, 34–44
picture of functioning, 32
publishing to web container, 34
RequestDispatcher class, 50
runtime architecture, 49
security constraints, 211–213
ServletContext class, 46–47
skeleton code used for, 33
summary about, 55–56
tasks performed by, 29–30
URI space and, 231–232
web applications, 51

Java Swing, 379
Java Transaction API, 17
Java Web Service components, 16
Java WebSockets, 170–198

annotations, 174–175
API overview, 173–176
caller identification, 214, 215
Chat application, 190–198
classes, 176
Clock application, 176–182
connections, 171–172

480 Java EE 7: The Big Picture

Java WebSockets (cont.)
encoders and decoders, 182–184
endpoint deployment, 190
instances, 182
lifecycle, 173
message processing modes, 184–186
path mapping, 186–189
protocol, 170–171
query strings, 188–189
security constraints, 211
summary about, 198
URI space and, 233

JavaBeans
characteristics of, 68
JSP use of, 68–75, 83
tag libraries vs., 83
UI components and, 96

JavaMail service, 3
JavaScript Object Notation (JSON), 139
JavaServer Faces (JSF), 15–16, 96–133

annotations, 100–101, 112–115
application architecture, 97–104
caller identification, 214, 215
core tags, 115–119
data conversion, 118–119
data validation, 115–117
event handling, 117–118
extensibility and modularity, 120
features overview, 96
Hello application, 98–102
Java EE managed beans, 112–115
JSTL core tags, 119
Locked Servlet example, 250
Model-View-Controller pattern, 97–98,

102–104
PartyPlanner application, 106–112
path mapping, 231
Photo application, 120–132, 223–225
scope annotations, 112–115
summary about, 133
tags used in, 104–105, 115–119
UI component tags, 104–105
URI space and, 231

JavaServer Pages. See JSPs
javax.enterprise.context package, 112
javax.faces.convert package, 119
javax.security.Principal class, 214
javax.servlet.AsyncContext call, 247
javax.servlet.http.HttpServlet class, 45
javax.servlet.http.HttpSession object, 47
javax.servlet.ServletContext class, 46–47

javax.ws.rs.core.Application interface,
144, 151

javax.ws.rs.ext.ExceptionMapper<E>
interface, 151

JAX-RS, 136, 140–167
annotations list, 142
asynchronous mode, 252–253
caller identification, 214, 215
content consumption, 148–149
content production, 146–148
context information, 149–150
deploying resources in, 144, 151
exception mapping, 150–151
explanatory overview of, 140–142
HelloResource examples, 142–144
Library service application,

153–167, 336
path mapping, 152–153
resource class instances, 151–152
response entities, 146–147
summary about, 167
URI space and, 233
See also RESTful web services

JDBC APIs, 4, 17, 320–344
annotations, 343
Connection object, 332–333
DataSource object, 331–332
Enterprise Beans and, 321
Hello JDBC example, 322–329
introductory overview of, 320–322
Library application using, 336–343
main classes of, 331–336
ResultSet object, 334–336
SQL statements for, 329–331
Statement objects, 333–334
summary about, 344

JMS (Java Message Service), 3, 264, 265, 269
JNDI namespaces, 383–385
JNDI service, 274–275, 383
JPA. See Java Persistence API
JPALibraryDataImpl class, 350–352
JPQL statements, 361–362
JSF. See JavaServer Faces
JSON Processing API, 161
JsonMessageBodyReader class, 160–161, 166
JsonMessageBodyWriter class, 161–162, 166
JsonObject method parameter, 162
JSP Expression Language (JSP EL), 64,

79, 84–88
expression declarations, 84
literal types/values, 85
operator types, 85

Index 481

JSP Standard Tag Library, 77
JSPs (JavaServer Pages), 15, 58–94

actions, 63, 73–75
caller identification, 214, 215
clock example, 60–64, 81–83
custom tags, 80–83
directives, 62, 63–68
error pages, 66
explanatory overview of, 58
Expression Language, 64, 79, 84–88
Java environment for, 75–76
Java servlets vs., 58
JavaBeans used from, 68–75, 83
Photo application example, 88–94
runtime architecture, 59–60
scopes available for, 72
scriptlets, 62, 64–65, 68, 90
servlet code generation, 60
standard tags, 76–80
summary about, 94
syntax, 63–75
URI space and, 233

JSTL core tags, 119

L

language attribute, 64, 67
Library class, 156, 157–160, 162
Library service application, 153–167

architecture of, 338, 348
classes in, 155–156
client side of, 153–154, 164–167
deployment descriptor for, 445–446
end-to-end security for, 441–449
entity provider classes, 160–162
example of using, 153–154
income data handling, 162–164
interaction view diagram, 156–157
Java Persistence API and, 347–353,

363–373
JDBC APIs and, 336–343
server side of, 153, 155–156, 157–164

LibraryBeanImpl class, 371–373, 446–448
LibraryClient class, 155, 164–166
LibraryDataManager bean, 338, 340–343
LibraryDataManager interface, 339–340
LibraryDataManagerImpl class, 340–343
LibraryEndpoint resources, 337, 339

lifecycles
CDI bean, 407–409
Enterprise Bean, 277–278
Java servlet, 46
Java WebSocket, 171–173

literals, JSP EL, 85
@Local annotation, 271
local view, Enterprise Bean, 271–272
@LocalBean annotation, 271
@Lock annotation, 296, 297
Locked Servlet example, 248–252
logical names, 381
logical operators, 88
login() method, 216
login-config element, 203, 211
logout() method, 216, 223

M

main() method, 379, 380
managed beans, 100–101, 112–115
@ManagedBean annotation, 112
ManagedExecutorService interface, 460–462
ManagedScheduledExecutorService

interface, 461–462
ManagedTask interface, 462, 463, 467
ManagedTaskListener interface, 462, 467, 469
ManagedThreadFactory instance, 463–464
many-to-many relationship, 356
many-to-one relationship, 356
mapping paths. See path mapping
Message class, 10–11
message processing modes

(Java WebSocket), 184–186
receiving large messages, 184–185
sending messages, 185–186

message-driven beans, 265, 269
finding, 273–274
Java EE applications and, 16–17
JMS protocol and, 264

@MessageDriven annotation, 269, 273
MessageDrivenContext, 302, 303
Messages table, 329
MIME types, 62, 63, 64, 90, 139
ModeEJB component, 4, 6, 8–9, 14
Model-View-Controller pattern, 97–98,

102–104
modularity of JSF, 120
module names, 381
monitor.htlm page, 471

482 Java EE 7: The Big Picture

MonitorBean class, 469, 470–471
MonitorBroadcaster endpoints, 465, 471
Monitored Prime Calculator, 464–471

architecture, 466
code analysis, 465–471
running, 464–465
See also Concurrent Prime Calculator

monitoring concurrent tasks, 462–463
multi-threading

Enterprise Beans and, 294–298
restrictions related to, 297–298
singleton session beans and, 296–297

MyLoginWindow class, 439
MyWallet JavaBean, 77, 84

N

@Named annotation, 100, 112, 132
@Named CDI qualifier, 406
named objects, 382–394

annotations, 383
DataSource, 390–392
deployment descriptors, 383
Enterprise Bean references, 388–390
environment entries, 385–388
Java Persistence, 392–394
JNDI namespaces, 383–385
summary of, 384, 394

named parameters, 362, 373
named queries, 361, 369
@NamedQueries annotation, 11
NamedQueries class, 350, 352
namespaces, JNDI, 383–385
navigation

mechanisms for page, 96
ResultSet object, 335

NetBeans tool, 325
next() method, 335, 343
no-argument constructor, 90
no-interface view, 271
number literals, 85, 88

O

@Observes annotation, 414, 417, 419
@OnClose annotation, 175, 198
@OnError annotation, 175
one-to-many relationship, 356
one-to-one relationship, 356
online bookstore example, 207–211

@OnMessage annotation, 173, 175, 196
@OnOpen annotation, 175, 181
operators, JSP EL, 85
@OPTIONS annotation, 142
Out of Service state, 277

P

packaging
CDI beans, 421
Enterprise Beans, 279
Java EE applications, 18–20

page directives, 62, 64–67
page navigation mechanisms, 96
page scope, 72, 83
pageEncoding attribute, 64, 67
parallel processing, 452–453
PartyBean class, 108–110
PartyPlanner application, 106–112
passing objects by value/reference, 272
Passive state, EJB lifecycle, 277–278
@Path annotation, 141, 142, 144, 152, 160
path information, 187–188
path mapping

Java servlet, 52–54, 231
Java WebSocket, 186–189
JAX-RS, 152–153

PaymentRecorder bean, 289–291
performProcessing() method, 251–252
@PermitAll annotation, 432, 434, 448
persist() method, 352, 367, 371, 373
persistence entities, 353–359

allowed types, 354
CascadeType enumeration, 358–359
embeddable classes, 354–355
entity relationships, 355–357
Java classes as, 353–354
persistent states of, 357–358

Persistence service, 3
See also Java Persistence API

@PersistenceContext annotation, 360,
362, 383

@PersistenceUnit annotation, 12, 360, 383
persistence.xml file, 362–363, 371, 392
persistent states, 357–358
Photo application

Java servlet, 34–44
JavaServer Faces, 120–132, 223–225
JavaServer Pages, 88–94
security for, 217–225
web listeners and, 244–246

Index 483

PhotoAlbum class, 34, 43–44, 89–90,
123–125

Plain Old Java Object (POJO), 8
plugin action, 74
pollForResponse() method, 257
@POST annotation, 142, 160
POST method in HTTP, 28
@PostActivate annotation, 278
@PostConstruct annotation, 160, 277, 278,

286, 343, 407
@PreDestroy annotation, 277, 343, 407–408
PreparedStatement interface, 333, 334, 343
@PrePassivate annotation, 278
previous() method, 335
Prime Calculator examples

Async example, 299–302
Concurrent Prime Calculator, 455–460
Monitored Prime Calculator, 464–471

PrimeCalculation class, 457
PrimeCalculator bean, 300–301,

386–387, 466
privacy of data, 201, 207
proceed() method, 312
processChatUpdate() method, 196
processResponse() method, 255
producer-consumer relationship, 398–399
@Produces annotation, 144, 145, 148, 164
programmatic security, 201, 213–216

Enterprise Bean, 436–437
HttpSession mechanism and, 216
login() and logout() methods, 216
understanding the caller in, 214–215

programmatic transactions, 308–309
provider classes, 151–152
@PUT annotation, 142, 144
putUserMessage() method, 10

Q

@Qualifier annotation, 401, 405
qualifiers, CDI bean, 405–406
query language

Java Persistence, 361–362
SQL, 320, 329–331

query strings, 188–189

R

readFrom() method, 161
realm-name element, 203

receiving WebSocket messages,
184–185

references
Enterprise Bean, 388–390
passing objects by, 272

refresh() operation, 367
relational databases, 320
relational operators, 85
relative URIs, 51, 53, 54, 152, 229
@Remote annotation, 266, 270, 271
Remote Method Invocation (RMI), 3
remote view, Enterprise Bean, 270–271
RemoteEndpoint interface, 176, 185
remove() method, 352
removeFromLibrary() method, 164
RemovePhotoServlet, 34, 42–43, 44
Representational State Transfer (REST), 16
request parameters, 189
request scope, 72, 113, 152, 410
RequestDispatcher class, 43, 50
@RequestScoped annotation, 113, 410
reset() method, 111
resource Adapter Archive (RAR), 378
@Resource annotation, 308, 329,

383, 463
resource classes, JAX-RS, 151–152
resource injection, 380
response entities

explanation of, 146–147
extending the production of, 147–148

response wrappers, 240–241
RESTful web services, 136–139

Enterprise Beans and, 264
explanation of, 136–137
generalized view of, 139
properties characterizing, 137–139
See also JAX-RS

ResultSet object, 320, 322, 329,
334–336, 343

resume() method, 252
retrieveValue() method, 329
rich clients, 144–146
RMI/IIOP, 264, 265
roles, 204–205, 207, 209, 218, 435, 441
@RolesAllowed annotation, 432, 434, 448
root resource class, 140, 156
Run-As mechanism, 440, 441
Runnable interface, 453, 454, 460
runtime architecture

Java servlet, 49
JSP, 59–60

484 Java EE 7: The Big Picture

S

sayHello() method, 144, 146, 257,
434, 435–436

sayHelloFuture() method, 256
sayHelloPlain() method, 144, 146, 255
sayHelloTo() method, 434, 436
@Schedule annotation, 304–306, 307
scope attribute, 72, 83
scopes

application, 72, 113, 152
CDI bean, 409–410
conversation, 113–114
dependent, 114–115
flow, 114
managed bean, 112–115
page, 72, 83
predefined, 410
request, 72, 113, 152
session, 72, 110, 113
SleepScopes example, 410–413
view, 114

scriptlets, JSP, 62, 64–65, 68, 90
security, 18, 200–225, 430–449

annotations for, 432–433, 448
authentication, 201, 202–204, 437–439
authorization, 201, 204–211
core concepts for, 201
declarative model of, 200, 201,

202–213, 431–436
Enterprise Bean, 430–441
identity propagation, 440–441
Java servlets and, 211–213
Java WebSockets and, 211
Library application example, 441–449
Photo application example of, 217–225
programmatic model of, 201,

213–216, 436–437
security constraints for, 206–211
summaries about, 225, 449
three questions related to, 200–201
user data constraints for, 207
web container, 200, 201–216

security bean, 222–223, 225
security constraints, 206–211

deployment descriptor, 208, 219
example of using, 207–211
information contained in, 206–207
Java Servlets and, 211–213

Java WebSockets and, 211
Photo application, 221–222

security service, 3, 18
SELECT statement

JPQL, 361, 362
SQL, 330–331

sending messages
asynchronous method for, 185–186
WebSocket modes for, 185

sendObject() method, 184
server endpoint deployment, 190
@ServerEndpoint annotation, 173–174,

181, 190
service() method, 31, 45, 247
servlet element, 102
ServletClient class, 267–268
ServletConfig object, 45
ServletContext class, 46–47
ServletContext object, 37, 44, 241–242
ServletContextAttributesListener interface, 242
ServletContextListener interface, 242, 243
ServletException, 45
servlet-mapping element, 102
servlets. See Java servlets
@ServletSecurity annotation, 212–213
session attribute, 66, 67
session beans, 265

finding, 274–277
Java EE applications and, 16
JNDI lookup for, 274–275

Session.getOpenSessions() call, 197
Session.getRequestURI() call, 189
Session Initiation Protocol (SIP), 26
Session interface, 176
session scope, 72, 110, 113, 410
SessionContext() method, 302–303
@SessionScoped annotation, 110, 113, 410
setGreeting() method, 434, 436
setMyBeanProperty() method, 72
setParameters() method, 312
setString() method, 343
setUploadedPart() method, 132
Simple Object Access Protocol (SOAP), 16
@Singleton annotation, 269
singleton session beans, 269

Java EE applications and, 16
lifecycle of, 277, 278
multi-threading and, 296–297

SleepScopes example, 410–413

Index 485

SleepScopesServlet class, 411–412
SlowBean examples, 298–299
snippets, JSF, 120
SQL (Structured Query Language), 320,

329–331
statements for altering table

structure, 329–330
statements for storing/retrieving

data, 330–331
SSL protocol, 49
standard tags, JSP, 76–80
start_clock() method, 180, 181
@Startup annotation, 278
@Stateful annotation, 9, 267, 269
stateful session beans, 16, 269, 277–278
@Stateless annotation, 268
stateless resources, 138
stateless session beans, 16, 268, 277
Statement interface, 333, 334
Statement objects, 321, 333–334, 343
static content files, 231
status codes, HTTP, 29
stop_clock() method, 180
String constructor, 73
string length validation, 116
string literals, 85
String object, 385
Structured Query Language. See SQL
submit() calls, 453
@Suspended annotation, 255
synchronous programming, 246

T

@Table annotation, 11, 354
tables

altering structure of, 329–330
data storage/retrieval, 330–331

tag attributes, 92
tag libraries (JSP), 64

custom, 80–83
JavaBeans vs., 83
standard, 76–80

Tag Library Descriptor (.tld) file, 80
taglib directive, 68, 77
tags

JavaServer Faces, 104–105, 115–119
JavaServer Pages, 76–83

tasks, 453–455

templates, URI, 152–153, 186–187
text action, 75
text messages, 184
Timer Service, 303–307

language of schedules, 305–306
mechanism of, 303–304
runtime controls, 307
timeout methods, 304–305

TimerService object, 390
transaction service, 3
@TransactionAttribute annotation, 310
@TransactionManagement annotation,

308, 310
transactions

annotation-based, 310
Enterprise Beans and, 307–311
programmatic, 308–309

Transcript class, 195–196, 422–423
tryIt() method, 416

U

UI component tags, 104–105
UnauthorizedAccessException, 449
UPDATE statement

JPQL, 361
SQL, 331

upload.xhtml page, 131–132
uploadPhoto() method, 40
UppercaseFilter, 238–239
UppercaseResponse wrapper, 240
URI space of web applications, 229–234

Java servlets and, 231–232
Java WebSockets and, 233
JavaServer Faces and, 231
JavaServer Pages and, 233
JAX-RS resources and, 233
static content files and, 231

UriInfo class, 162
URIs (uniform resource identifiers), 27

relative, 51, 53, 54, 152, 229
templates for, 152–153, 186–187
URL patterns as, 52–53
web service resources and, 137

url-pattern element, 206, 222
URLs (uniform resource locators)

custom mapping of, 63
patterns of, 52–53, 231–232
rewriting of, 49

486 Java EE 7: The Big Picture

user data constraints, 207
user roles, 204–205, 207, 209, 218, 441
UserAudit bean, 427–428
UserCounter class, 245
UserList class, 423–424
UserTransaction methods, 308–309

V

validation of data, 115–117
ValidationException, 116
validatorMessage attribute, 115
value, passing objects by, 272
value() attribute, 148
view scope, 114
viewerCount property, 245–246
@ViewScoped annotation, 114
void run() method, 453

W

WAR files
Enterprise Beans in, 279
example of using, 18–19
structure of, 52, 228–229
web applications and, 51, 52, 378

web applications
asynchronous modes, 246–257
URI space, 229–234
WAR files, 51, 52, 378

Web Archive files. See WAR files
web container, 2, 3

asynchronous modes, 246–257
HTTP protocol, 26–29
Java servlets, 26, 29–56
Java WebSockets, 170–198
JavaServer Faces, 96–133
JavaServer Pages, 58–94
JAX-RS, 136, 140–167
security mechanisms, 200, 201–216

web filters, 234–241
configuration of, 237–241
declaration options for, 237–238
doFilter() method implementation,

236–237
explanation of using, 234–235
response wrappers and, 240–241

web listeners, 241–246
configuration of, 243–246
declaration options for, 243–244
explanation of using, 241–243
summary illustration of, 243

web resources
asynchronous, 252–257
contained in WAR files, 228
URI space and, 229

web services
AsyncResponse in, 252–253
contextual information for, 149–150
Enterprise Bean view, 272
exception mapping for, 150–151
generalized view of, 139
resource creation for, 141
RESTful web services, 136–139
technological development of, 136

@WebFilter annotation, 240
WEB-INF/ directory, 51
@WebListener annotation, 245
@WebMethod annotation, 272
web-resource-collection element, 206
@WebService annotation, 272
@WebServlet annotation, 34, 40, 43,

50, 52, 53
WebSocketContainer interface, 176
WebSockets. See Java WebSockets
web.xml file, 52, 101–102, 207, 211
WHERE clause, 330–331
widget library, JSF, 111
WriteServlet, 4, 6, 7–8, 12, 14
writeTo() method, 161
writeValue() method, 329

http://www.oracle.com/technetwork/java

START TODAY

cert i f ication.oracle.com

Your Future.
Fast-track your career with an Oracle Certification.

Over 1.5 million
certifications testify to

the importance of these
top industry-recognized
credentials as one of the
best ways to get ahead.

Our Technology.

AND STAY THERE.

http://www.certification.oracle.com

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 123022

You Need an Oracle ACE
Oracle partners, developers, and customers look to
Oracle ACEs and Oracle ACE Directors for focused
product expertise, systems and solutions discussion,
and informed opinions on a wide range of data center
implementations.

Their credentials are strong as Oracle product and
technology experts, community enthusiasts, and
solutions advocates.

And now is a great time to learn more about this
elite group—or nominate a worthy colleague.

For more information about the
Oracle ACE program, go to:
oracle.com/technetwork/oracleace

Need help? Need consultation?
Need an informed opinion?

Stay Connected

oracle.com/technetwork/oracleace

 oracleaces

 @oracleace

 blogs.oracle.com/oracleace B

http://www.oracle.com/technetwork/oracleace
http://www.blogs.oracle.com/oracleace
http://www.oracle.com/technetwork/oracleace

Oracle TIGHT / Java EE 7: The Big Picture / Danny Coward / 734-5 Oracle TIGHT / Java EE 7: The Big Picture / Danny Coward / 734-5

Reach More than 700,000 Oracle Customers
with Oracle Publishing Group

Connect with the Audience
that Matters Most to Your Business

Oracle Magazine
The Largest IT Publication in the World
Circulation: 550,000
Audience: IT Managers, DBAs, Programmers, and Developers

Profit
Business Insight for Enterprise-Class Business Leaders to
Help Them Build a Better Business Using Oracle Technology
Circulation: 100,000
Audience: Top Executives and Line of Business Managers

Java Magazine
The Essential Source on Java Technology, the Java
Programming Language, and Java-Based Applications
Circulation: 125,000 and Growing Steady
Audience: Corporate and Independent Java Developers,
Programmers, and Architects

For more information
or to sign up for a FREE
subscription:
Scan the QR code to visit
Oracle Publishing online.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 113940

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	1 The Big Picture
	Java EE Architecture
	Hello Java EE
	Running Hello Java EE
	Inside Hello Java EE
	Hello to the Major Elements of Java EE

	The Many Variations of Java EE Applications
	Many Flavors of Web Interface
	Many Kinds of Application Logic
	Different Ways to Store Application Data
	Interfacing with Other Systems
	Modularity
	Ways to Secure Java EE Applications

	Packaging and Deploying the Hello Java EE Application
	Java EE Platform and Implementations
	Guide to the Rest of the Book

	Part I: The Mouthpiece of Java EE: The Web Tier
	2 Java Servlets and Web Applications: Foundations of the Web Tier
	The HTTP Protocol
	Introducing Java Servlets
	Example Java Servlet Application: Photo Application
	Understanding the Java Servlet API
	Web Applications
	Java Servlets: The Good and the Bad
	Summary

	3 Dynamic Web Pages: JSP
	JSP Runtime Architecture
	A JSP Clock
	JSP Syntax
	The Java Environment for JSPs
	JSP Standard Tags
	Custom Tag Libraries
	Expression Language
	JSP Photo Album
	Summary

	4 Assembling Dynamic Web Pages: JavaServer Faces
	Architecture of a JSF Application
	JavaServer Faces Tags
	Java EE Managed Beans
	f: Core Tags
	JSTL Core Tags
	Extensibility and Modularity
	Photo Application
	Summary

	5 Web Sites for Non-browsers: JAX-RS
	What Are RESTful Web Services?
	The Java API for RESTful Web Services
	HelloResource Example: Server Side
	Deploying JAX-RS Resources
	HelloResource Example and the Rich Client
	Content Production
	Content Consumption
	Accessing Web Service Context
	Exception Mapping
	Number of Instances of Resource Classes
	Path Mapping
	The Library Service
	Summary

	6 Adding Sparkle: Java WebSockets
	Introduction to the WebSocket Protocol
	The WebSocket Lifecycle
	Overview of the Java WebSocket API
	WebSocket Clock
	Java WebSocket Encoders and Decoders
	Message Processing Modes
	Path Mapping
	Deployment of Server Endpoints
	The Chat Application
	Summary

	7 Securing Web Applications
	Security Concepts
	Java EE Web Container Security
	Photo Application Example
	Summary

	8 The Self-Contained Web Site: Java EE Web Application
	The WAR File
	The URI Space of a Web Application
	Global Web Components: Web Filters and Web Listeners
	Asynchronous Modes in Web Applications
	Summary

	Part II: The Brain of Java EE: The Middle Tier
	9 The Fundamentals of Enterprise Beans
	Introduction to Enterprise Beans
	Hello Enterprise Beans
	Flavors of Enterprise Beans
	Exposing Enterprise Beans
	Finding Enterprise Beans
	EJB Lifecycle
	Packaging Enterprise Beans
	Banking Example
	Summary

	10 Advanced Thinking with Enterprise Beans
	Multi-threading and Enterprise Beans
	Asynchronous Enterprise Beans
	Enterprise Bean Contexts
	The Timer Service
	Transactions and Enterprise Beans
	Interceptors
	Summary

	Part III: The Collective Memory: The Information Tier
	11 Classic Memories: JDBC
	Introduction to JDBC
	Hello JDBC Example
	Structured Query Language
	The JDBC APIs
	Library Application Using JDBC
	Summary

	12 Modern Memories: The Java Persistence API
	The Library Service, with Java Persistence
	Persistence Entities
	The Entity Manager
	Java Persistence Query Language
	Configuring JPA Applications
	The Persistent Library Service
	Summary

	Part IV: The Java EE Toolbox: Java EE Environment
	13 The Big Picture Revisited: Java EE Applications
	The Java EE Application
	Injectable and Named Objects of Java EE
	Summary

	14 Deconstructing Components: Java EE Contexts and Dependency Injection
	Introduction to CDI
	CDI Beans
	Qualifiers
	Injection Points
	Lifecycle of a CDI Bean
	Java EE Scopes
	SleepScopes example
	Events
	Interceptors
	Packaging CDI Beans
	CDI Chat
	Summary

	15 Java EE Security
	Enterprise Bean Security
	Application Client Authentication
	Security Identity Propagation
	The Library Example with End-to-End Security
	Summary

	16 Many Hands Make Light Work: Java EE Concurrency
	Tasks and Executors
	Concurrent Prime Calculator
	The Java EE Concurrency API
	Monitored Prime Calculator Example
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

