
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Java Message Service

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

SECOND EDITION

Java Message Service

Mark Richards, Richard Monson-Haefel, and
David A. Chappell

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Java Message Service, Second Edition
by Mark Richards, Richard Monson-Haefel, and David A. Chappell

Copyright © 2009 Mark Richards. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Julie Steele
Production Editor: Sarah Schneider
Production Services: Appingo, Inc.

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
May 2009: Second Edition.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Java Message Service,
Second Edition, the image of a passenger pigeon, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-52204-9

[C]

1242320347

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
http://www.allitebooks.org

Table of Contents

Foreword . xi

Preface . xiii

1. Messaging Basics . 1
The Advantages of Messaging 3

Heterogeneous Integration 3
Reduce System Bottlenecks 3
Increase Scalability 4
Increase End User Productivity 4
Architecture Flexibility and Agility 5

Enterprise Messaging 5
Centralized Architectures 7
Decentralized Architectures 7
Hybrid Architectures 8
Centralized Architecture As a Model 8

Messaging Models 9
Point-to-Point 10
Publish-and-Subscribe 10

JMS API 11
Point-to-Point API 13
Publish-and-Subscribe API 14

Real-World Scenarios 14
Service-Oriented Architecture 15
Event-Driven Architecture 16
Heterogeneous Platform Integration 16
Enterprise Application Integration 17
Business-to-Business 17
Geographic Dispersion 18
Information Broadcasting 18
Building Dynamic Systems 18

RPC Versus Asynchronous Messaging 21

v

www.allitebooks.com

http://www.allitebooks.org

Tightly Coupled RPC 21
Enterprise Messaging 23

2. Developing a Simple Example . 25
The Chat Application 25

Getting Started with the Chat Example 28
Examining the Source Code 30
Sessions and Threading 39

3. Anatomy of a JMS Message . 41
Headers 42

Automatically Assigned Headers 43
Developer-Assigned Headers 46

Properties 47
Application-Specific Properties 47
JMS-Defined Properties 49
Provider-Specific Properties 50

Message Types 50
Message 50
TextMessage 51
ObjectMessage 52
BytesMessage 53
StreamMessage 56
MapMessage 58
Read-Only Messages 60
Client-Acknowledged Messages 61
Interoperability and Portability of Messages 61

4. Point-to-Point Messaging . 63
Point-to-Point Overview 63

When to Use Point-to-Point Messaging 66
The QBorrower and QLender Application 67

Configuring and Running the Application 67
The QBorrower Class 69
The QLender Class 76

Message Correlation 81
Dynamic Versus Administered Queues 83
Load Balancing Using Multiple Receivers 84
Examining a Queue 85

5. Publish-and-Subscribe Messaging . 87
Publish-and-Subscribe Overview 87

When to Use Publish-and-Subscribe Messaging 89

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

The TBorrower and TLender Application 90
Configuring and Running the Application 90
The TLender Class 92
The TBorrower Class 96

Durable Versus Nondurable Subscribers 100
Dynamic Versus Administered Subscribers 101
Unsubscribing Dynamic Durable Subscribers 104
Temporary Topics 104

6. Message Filtering . 107
Message Selectors 109

Identifiers 110
Literals 111
Comparison Operators 111
Arithmetic Operators 113

Declaring a Message Selector 114
Message Selector Examples 116

Managing Claims in an HMO 116
Notification of Certain Bids on Inventory 116
Priority Handling 116
Stock Trade Order Auditing 117

Not Delivered Semantics 117
Design Considerations 118

7. Guaranteed Messaging and Transactions . 125
Guaranteed Messaging 125

Message Autonomy 126
Store-and-Forward Messaging 126
Message Acknowledgments and Failure Conditions 126

Message Acknowledgments 127
AUTO_ACKNOWLEDGE 127
DUPS_OK_ACKNOWLEDGE 132
CLIENT_ACKNOWLEDGE 132

Message Groups and Acknowledgment 133
Handling Redelivery of Messages in an Application 134
Message Groups Example 134
Message Grouping and Multiple Receivers 143

Transacted Messages 145
Creating and Using a JMS Transaction 147
Transacted Session Example 147
Distributed Transactions 150

Lost Connections 151
The ExceptionListener Example 152

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Dead Message Queues 153

8. Java EE and Message-Driven Beans . 155
Java EE Overview 155

Enterprise JavaBeans 156
Enterprise JavaBeans 3.0 (EJB3) Overview 157

Simplified Bean Development 158
Dependency Injection 158
Simplified Callback Methods 159
Programmatic Defaults 159
Interceptors 160
Java Persistence API 162

JMS Resources in Java EE 162
The JNDI Environment Naming Context (ENC) 164

Message-Driven Beans 166
Concurrent Processing and Scalability 168
Defining Message-Driven Beans 168

Message-Driven Bean Use Cases 171
Message Facade 171
Transformation and Routing 173

9. Spring and JMS . 177
Spring Messaging Architecture 177
JmsTemplate Overview 180

Send Methods 181
convertAndSend Methods 181
receive and receiveSelected Methods 182
receiveAndConvert Methods 183

Connection Factories and JMS Destinations 184
Using JNDI 184
Using Native Classes 187

Sending Messages 189
Using the send Method 190
Using the convertAndSend Method 191
Using a Nondefault JMS Destination 193

Receiving Messages Synchronously 195
Message-Driven POJOs 198

The Spring Message Listener Container 198
MDP Option 1: Using the MessageListener Interface 199
MDP Option 2: Using the SessionAwareMessageListener Interface 201
MDP Option 3: Using the MessageListenerAdapter 202
Message Conversion Limitations 207

The Spring JMS Namespace 208

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

<jms:listener-container> Element Properties 209
<jms:listener> Element Properties 211

10. Deployment Considerations . 213
Performance, Scalability, and Reliability 213

Determining Message Throughput Requirements 213
Testing the Real-World Scenario 214

To Multicast or Not to Multicast 217
TCP/IP 218
UDP 218
IP Multicast 218
Messaging Over IP Multicast 219
The Bottom Line 221

Security 222
Authentication 222
Authorization 223
Secure Communication 224
Firewalls and HTTP Tunneling 224

Connecting to the Outside World 225
Bridging to Other Messaging Systems 227

11. Messaging Design Considerations . 229
Internal Versus External Destination 229

Internal Destination Topology 230
External Destination Topology 231

Request/Reply Messaging Design 232
Messaging Design Anti-Patterns 236

Single-Purpose Queue 236
Message Priority Overuse 240
Message Header Misuse 240

A. The Java Message Service API . 245

B. Message Headers . 265

C. Message Properties . 277

D. Installing and Configuring ActiveMQ . 285

Index . 291

Table of Contents | ix

Foreword

For close to a decade now, I’ve been a fan of messaging-based systems. They offer a
degree of reliability, flexibility, extensibility, and modularity that a traditional RPC or
distributed object system simply cannot. Working with them takes a bit of adjustment,
because they don’t quite behave the same way that an architect or designer expects a
traditional n-tier system to behave. This is not to say that they’re better or worse; they’re
just different. Instead of invoking methods on objects directly, where the object can
hold conversational state or context, now the message itself has to be self-contained
and state-complete.

Which raises an important point.

For any given developer with respect to any given technology, there are four distinct
stages.

The first is the Ignorant. We may know the technology exists, or not, but beyond that
we remain entirely ignorant about its capabilities. It’s a collection of letters, at best,
often mentioned in conjunction with other technologies that may or may not matter
to what we’re doing on a daily basis.

The second is the Explorer. Something piques our curiosity, voluntarily or not. We
begin some initial forays into the jungle, perhaps downloading an implementation or
reading a few articles. We begin to understand the basic framing of where this thing
sits in the broad scheme of things and maybe how it’s supposed to work, but our hands-
on experience is generally limited to the moral equivalent of “Hello World” and a few
other samples.

The third is the Journeyman. After running many of the samples and reading a few
articles, we realize that we understand it at a basic level and begin to branch out to
writing code with it. We feel reasonably comfortable introducing it into production
code and reasonably comfortable debugging the stupid mistakes we’ll make with it.
We’re not experts, by any means, but we can at least get the stuff to compile and run
most of the time.

The last, of course, is the Master. After building a few systems and seeing how they
react under real-world conditions, we have a deep gestalt with it and can often predict
how the tool or technology will react without even running the code. We can see how

xi

this thing will interact with other, complementary technologies, and understand how
to achieve some truly miraculous results, such as systems that resist network outages
or machine failures. When the Java Message Service (JMS) API was first released, back
in 1999, before any noncommercial/open-source implementations were available, I
distinctly remember looking at it, thinking, “Well, it seems interesting, but it’s not
something I can use without a real implementation,” and setting my printed copy of
the specification off to one side for later perusal. My transition to Explorer and
Journeyman came a few years later, as I came to understand the power of messaging
systems, partly thanks to the few implementations out, partly thanks to my own ex-
ploration of other messaging systems (most notably MSMQ and Tibco), but mostly
due to the person who wrote this second edition of Java Message Service.

I’m still well shy of Master status. Fortunately, both you and I know somebody who is
not.

Mark Richards has spent the last several years living the messaging lifestyle, both as an
architect and implementor as well as a leader and luminary: the first in his capacity as
a consultant, the second in his capacity as a speaker on the No Fluff Just Stuff (NFJS)
tour. He has a great “take” on the reasons for and the implications of building message-
based systems, and he brings that forth in this nearly complete rewrite of Richard
Monson-Haefel and Dave Chappell’s first edition. Even if you’re in the Ignorant stage
of JMS, Mark’s careful walkthrough of the basics, through implementation and then
the design pros and cons of messaging will bring you to the Journeyman stage fast and
leave you with the necessary structure in place to let you reach that Master stage in no
time at all.

And that, my friend, is the best anybody can ask of a book.

Happy messaging.

—Ted Neward
Principal Consultant,ThoughtWorks

December 10, 2008, Antwerp, Belgium

xii | Foreword

Preface

When I was presented with the opportunity to revise Java Message Service, I jumped
at the chance. The first edition, published by O’Reilly in 2000, was a bestseller and
without a doubt the definitive source for JMS and messaging in general at that time.
Writing the second edition was an exciting chance to breath new life into an already
great book and add new content that was relevant to how we use messaging today.
What I failed to fully realize when I took on the project was just how much messaging
(or, more precisely, how we use messaging) has changed in the past 10 years. New
messaging techniques and technologies have been developed, including message-
driven beans (as part of the EJB specification), the Spring messaging framework, Event-
Driven Architecture, Service-Oriented Architecture, RESTful JMS interfaces, and the
Enterprise Service Bus (ESB), to name a few. The somewhat minor book project that I
originally planned quickly turned into a major book project.

My original intent was to preserve as much of the original content as possible in this
new edition. However, based on changes to the JMS specification since the first edition
was written, as well as the development of new messaging techniques and technologies,
the original content quickly shrank. As a result, you will find that roughly 75% of this
second edition is new or revised content.

The JMS specification was updated to version 1.1 a couple of years after the printing
of the first edition of this book. While not a major change to the JMS specification, the
JMS 1.1 specification was nevertheless a significant step toward fixing some of the
deficiencies with the original JMS specification. One of the biggest changes in the spec-
ification was the joining of the queue and topic API under a unified general API,
allowing queues and topics to share the same transactional unit of work. However, the
specification change alone was not the only factor that warranted a second edition of
the book. As the Java platform has matured, so has the way we think about messaging.
From new messaging technologies and frameworks to complex integration and
throughput requirements, messaging has changed the way we think about and design
systems, particularly over the past 10 years. These factors, combined with the specifi-
cation changes, are the reasons for the second edition.

xiii

With the exception of the Chat application found in Chapter 2, all of the sample code
has been changed to reflect more up-to-date messaging use cases and to illustrate some
additional features of JMS that were not included in the first edition.

I added several new chapters that were not included in the first edition, for obvious
reasons. You will find new sections in the first chapter on the JMS API, updated
messaging use cases, and a discussion of how messaging has changed how we design
systems. You will also find new chapters on message filtering, Java EE and message-
driven beans, Spring JMS and message-driven POJOs, and messaging design.

In addition to adding new chapters, I significantly revised the existing chapters. Because
I updated the sample code used to illustrate various points throughout the book, I was
in turn forced to rewrite much of the corresponding text. This provided me with the
opportunity to add additional sections and topics, particularly in Chapter 4, Point-to-
Point Messaging, and Chapter 5, Publish-and-Subscribe Messaging. I also reversed these
chapters from the first edition with the belief that it is easier to jump into messaging
with the point-to-point messaging model using queues rather than the publish-and-
subscribe messaging model using topics and subscribers.

I hope you find the new edition of this book helpful in terms of understanding the Java
Message Service and messaging in general.

—Mark Richards

Who Should Read This Book?
This book explains and demonstrates the fundamentals of Java Message Service. It
provides a straightforward, no-nonsense explanation of the underlying technology,
Java classes and interfaces, programming models, and various implementations of the
JMS specification.

Although this book focuses on the fundamentals, it’s no “dummy’s” book. While the
JMS API is easy to learn, the API abstracts fairly complex enterprise technology. Before
reading this book, you should be fluent with the Java language and have some practical
experience developing business solutions. Experience with messaging systems is not
required, but you must have a working knowledge of the Java language.

Organization
The book is organized into 11 chapters and 4 appendixes. Chapter 1 explains messaging
systems, messaging use cases, centralized and distributed architectures, and why JMS
is important. Chapters 2 through 6 go into detail about developing JMS clients using
the two messaging models, point-to-point and publish-and-subscribe, including how
to filter messages using message selectors. Chapters 7 and 10 should be considered
“advanced topics,” covering deployment and administration of messaging systems.
Chapter 8 provides an overview of the Java 2, Enterprise Edition (Java EE) with regard

xiv | Preface

to JMS, including coverage of message-driven beans as part of the Enterprise JavaBeans
3.0 specification. Chapter 9 covers the Spring Framework as it relates to messaging.
Finally, Chapter 11 provides some insight into many of the design considerations and
anti-patterns associated with messaging.

Chapter 1, Messaging Basics
Defines enterprise messaging and common architectures used by messaging ven-
dors. JMS is defined and explained, as are its two programming models, publish-
and-subscribe and point-to-point. Many of the use cases and real-world scenarios
for messaging are described in this chapter, as are the basics of the JMS API.

Chapter 2, Developing a Simple Example
Walks the reader through the development of a simple publish-and-subscribe JMS
client.

Chapter 3, Anatomy of a JMS Message
Provides a detailed examination of the JMS message, the most important part of
the JMS API.

Chapter 4, Point-to-Point Messaging
Examines the point-to-point messaging model through the development of a sim-
ple borrower and lender JMS application. Also covers some of the finer points of
the point-to-point messaging model, including message correlation, dynamic
queues, load balancing, and queue browsing.

Chapter 5, Publish-and-Subscribe Messaging
Examines the publish-and-subscribe messaging model through the enhancement
of the borrower and lender application developed in Chapter 4. This chapter also
covers durable subscribers, nondurable subscribers, dynamic durable subscribers,
and temporary topics.

Chapter 6, Message Filtering
Provides a detailed explanation of message filtering using message selectors.

Chapter 7, Guaranteed Messaging and Transactions
Provides an in-depth explanation of advanced topics, including guaranteed mes-
saging, transactions, acknowledgments, message grouping, and failures.

Chapter 8, Java EE and Message-Driven Beans
Provides an overview of the Java 2, Enterprise Edition (Java EE) version 3.0 with
regard to JMS and includes coverage of message-driven beans (MDBs).

Chapter 9, Spring and JMS
Provides a detailed explanation of the Spring Framework with regards to JMS,
including the Spring JMS Template and message-driven POJOs (MDPs).

Chapter 10, Deployment Considerations
Provides an in-depth examination of features and issues that should be considered
when choosing vendors and deploying JMS applications.

Preface | xv

Chapter 11, Messaging Design Considerations
Provides insight into and explanation of several design considerations, including
the use of internal versus external destinations, request/reply processing, and a
discussion of some of the more common messaging anti-patterns.

Appendix A, The Java Message Service API
Provides a quick reference to the classes and interfaces defined in the JMS package.

Appendix B, Message Headers
Provides detailed information about message headers.

Appendix C, Message Properties
Provides detailed information about message properties.

Appendix D, Installing and Configuring ActiveMQ
Provides detailed information about installing and configuring ActiveMQ to run
the examples in this book.

Software and Versions
This book covers Java Message Service version 1.1. It uses Java language features from
the Java 6 platform. Because the focus of this book is to develop vendor-independent
JMS clients and applications, I have stayed away from proprietary extensions and
vendor-dependent idioms. Any JMS-compliant provider can be used with this book;
you should be familiar with that provider’s specific installation, deployment, and run-
time management procedures to work with the examples. To find out the details of
installing and running JMS clients for a specific JMS provider, consult your JMS ven-
dor’s documentation; these details aren’t covered by the JMS specification. We have
provided the details for running the examples with ActiveMQ, a popular open source
JMS provider, in Appendix D.

The source code examples and explanation in Chapter 8 refer to the Enterprise Java-
Beans 3.0 (EJB 3) specification. The source code examples and explanation in Chap-
ter 9 refer to version 2.5 of the Spring Framework

The examples developed in this book are available through the book’s catalog page at
http://oreilly.com/catalog/9780596522049/examples. These examples are organized by
chapter. Special source code modified for specific vendors is also provided. These
vendor-specific examples include a readme.txt file that points to documentation for
downloading and installing the JMS provider, as well as specific instructions for setting
up the provider for each example.

Conventions Used in This Book
The following typographical conventions are used in this book:

xvi | Preface

http://oreilly.com/catalog/9780596522049/examples

Italic
Used for filenames, pathnames, hostnames, domain names, URLs, email ad-
dresses, and new terms when they are defined.

Constant width
Used for code examples and fragments, class, variable, and method names, Java
keywords used within the text, SQL commands, table names, column names, and
XML elements and tags.

Constant width bold
Used for emphasis in some code examples.

Constant width italic
Used to indicate text that is replaceable.

This icon signifies a tip, suggestion, or general note.

The term JMS provider is used to refer to a vendor that implements the JMS API to
provide connectivity to its enterprise messaging service. The term JMS client refers to
Java components or applications that use the JMS API and a JMS provider to send and
receive messages. JMS application refers to any combination of JMS clients that work
together to provide a software solution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example, “Java Message Service, Second Edition, by
Mark Richards, Richard Monson-Haefel, and David A. Chappell. Copyright 2009 Mark
Richards, 978-0-596-52204-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Preface | xvii

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com/.

How to Contact Us
We have tested and verified the information in this book to the best of our ability, but
you may find that features have changed (or even that we have made mistakes!). Please
let us know about any errors you find, as well as your suggestions for future editions,
by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596522049/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and
the O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments
These acknowledgments are from Mark Richards and refer to the second edition of this
book.

No one ever writes a book alone; rather, it is the hard work of many people working
together that produces the final result. There are many people I would like to acknowl-
edge and thank for the hard work and support they provided during the project.

xviii | Preface

www.allitebooks.com

http://my.safaribooksonline.com/
http://www.oreilly.com/catalog/9780596522049/
http://www.oreilly.com
http://www.allitebooks.org

First, I would like to recognize and thank my editor, Julie Steele, for putting up with
me during the project and doing such a fantastic job editing, coordinating, and every-
thing else involved with getting this book to print. I would also like to thank Richard
Monson-Haefel for doing such a great job writing the first edition of this book (along
with David Chappell), and for providing me with the opportunity to write the second
edition.

To my good friend and colleague, Ted Neward, I want to thank you for writing the
Foreword to this book during your very busy travel schedule and for providing me with
insight and guidance throughout the project. Your suggestions and guidance helped
bring this new edition together. I also want to thank my friends, Neal Ford, Scott Davis,
Venkat Subramaniam, Brian Sletten, David Bock, Nate Shutta, Stuart Halloway, Jeff
Brown, Ken Sipe, and all the other No Fluff Just Stuff (NFJS) gang, for your continued
support, lively discussions, and camaraderie both during and outside the NFJS con-
ferences. You guys are the greatest.

I also want to thank the many expert technical reviewers who helped ensure that the
material was technically accurate, including Ben Messer, a super software engineer and
technical expert; Tim Berglund, principle software developer and owner of the August
Technology Group, LLC; Christian Kenyeres, principle technical architect at Collab-
orative Consulting, LLC; and last (but certainly not least), Ken Yu and Igor Polevoy. I
know it wasn’t easy editing and reviewing the manuscript during the holiday season
(bad timing on my part, I’m afraid), but your real-world experience, advice, comments,
suggestions, and technical editing helped make this a great book.

To the folks at the Macallan Distillery in Scotland, thank you for making the best single
malt Scotch in the world. It helped ease the pain during those long nights of writing,
especially during the winter months.

Finally, I would like to acknowledge and thank my lovely wife, Rebecca, for her con-
tinued support throughout this book project. You mean the world to me, Rebecca, and
always will.

Acknowledgments from the First Edition
These acknowledgments are carried over from the first edition of this book and are from
the original authors, Richard Monson-Haefel and David A. Chappell.

While there are only two names on the cover of this book, the credit for its development
and delivery is shared by many individuals. Michael Loukides, our editor, was pivotal
to the success of this book. Without his experience, craft, and guidance, this book
would not have been possible.

Many expert technical reviewers helped ensure that the material was technically accu-
rate and true to the spirit of the Java Message Service. Of special note are Joseph Fialli,
Anne Thomas Manes, and Chris Kasso of Sun Microsystems; Andrew Neumann and

Preface | xix

Giovanni Boschi of Progress; Thomas Haas of Softwired; Mikhail Rizkin of Interna-
tional Systems Group; and Jim Alateras of ExoLab. The contributions of these technical
experts are critical to the technical and conceptual accuracy of this book. They brought
a combination of industry and real-world experience to bear and helped to make this
the best book on JMS published today.

Thanks also to Mark Hapner of Sun Microsystems, the primary architect of Java 2,
Enterprise Edition, who answered several of our most complex questions. Thanks to
all the participants in the JMS-INTEREST mailing list hosted by Sun Microsystems for
their interesting and informative postings.

Special appreciation goes to George St. Maurice of the SonicMQ tech writing team for
his participation in organizing the examples for the O’Reilly website.

Finally, the most sincere gratitude must be extended to our families. Richard Monson-
Haefel thanks his wife, Hollie, for supporting and assisting him through yet another
book. Her love makes everything possible. David Chappell thanks his wife, Wendy,
and their children, Dave, Amy, and Chris, for putting up with him during this endeavor.

David Chappell would also like to thank some of the members of the Progress SonicMQ
team—Bill Wood, Andy Neumann, Giovanni Boschi, Christine Semeniuk, David
Grigglestone, Bill Cullen, Perry Yin, Kathy Guo, Mitchell Horowitz, Greg O’Connor,
Mike Theroux, Ron Rudis, Charlie Nuzzolo, Jeanne Abmayr, Oriana Merlo, and
George St. Maurice—for helping to ensure that the appropriate topics were addressed,
and addressed accurately. And special thanks to George Chappell for helping him with
“split infinitives.”

xx | Preface

CHAPTER 1

Messaging Basics

Over the years, systems have grown significantly in terms of complexity and sophisti-
cation. The need to have systems with better reliability, increased scalability, and more
flexibility than in the past has given rise to more complex and sophisticated architec-
tures. In response to this increased demand for better and faster systems, architects,
designers, and developers have been leveraging messaging as a way of solving these
complex problems.

Messaging has come a long way since the first edition of this book was published in
2000, particularly with respect to the Java platform. Although the Java Message Service
(JMS) API hasn’t changed significantly since its introduction in 1999, the way messag-
ing is used has. Messaging is widely used to solve reliability and scalability issues, but
it is also used to solve a host of other problems encountered with many business and
nonbusiness applications.

Heterogeneous integration is one primary area where messaging plays a key role.
Whether it be through mergers, acquisitions, business requirements, or simply a change
in technology direction, more and more companies are faced with the problem of in-
tegrating heterogeneous systems and applications within and across the enterprise. It
is not unusual to encounter a myriad of technologies and platforms within a single
company or division consisting of Java EE, Microsoft .NET, Tuxedo, and yes, even
CICS on the mainframe.

Messaging also offers the ability to process requests asynchronously, providing archi-
tects and developers with solutions for reducing or eliminating system bottlenecks, and
increasing end user productivity and overall system scalability. Since messaging pro-
vides a high degree of decoupling between components, systems that utilize messaging
also provide a high degree of architectural flexibility and agility.

Application-to-application messaging systems, when used in business systems, are
generically referred to as enterprise messaging systems, or Message-Oriented Middle-
ware (MOM). Enterprise messaging systems allow two or more applications to ex-
change information in the form of messages. A message, in this case, is a self-contained
package of business data and network routing headers. The business data contained in

1

a message can be anything—depending on the business scenario—and usually contains
information about some business transaction. In enterprise messaging systems, mes-
sages inform an application of some event or occurrence in another system.

Using Message-Oriented Middleware, messages are transmitted from one application
to another across a network. Enterprise middleware products ensure that messages are
properly distributed among applications. In addition, these products usually provide
fault tolerance, load balancing, scalability, and transactional support for enterprises
that need to reliably exchange large quantities of messages.

Enterprise messaging vendors use different message formats and network protocols for
exchanging messages, but the basic semantics are the same. An API is used to create a
message, load the application data (message payload), assign routing information, and
send the message. The same API is used to receive messages produced by other
applications.

In all modern enterprise messaging systems, applications exchange messages through
virtual channels called destinations. When a message is sent, it’s addressed to a desti-
nation (i.e., queue or topic), not a specific application. Any application that subscribes
or registers an interest in that destination may receive the message. In this way, the
applications that receive messages and those that send messages are decoupled. Senders
and receivers are not bound to each other in any way and may send and receive messages
as they see fit.

All enterprise messaging vendors provide application developers with an API for send-
ing and receiving messages. While a messaging vendor implements its own networking
protocols, routing, and administration facilities, the basic semantics of the developer
API provided by different vendors are the same. This similarity in APIs makes the Java
Message Service possible.

JMS is a vendor-agnostic Java API that can be used with many different enterprise
messaging vendors. JMS is analogous to JDBC in that application developers reuse the
same API to access many different systems. If a vendor provides a compliant service
provider for JMS, the JMS API can be used to send and receive messages to that vendor.
For example, you can use the same JMS API to send messages using SonicMQ that you
would using IBM’s WebSphere MQ. It is the purpose of this book to explain how
enterprise messaging systems work and, in particular, how JMS is used with these sys-
tems. The second edition of this book focuses on JMS 1.1, the latest version of the
specification, which was introduced in March 2002.

The rest of this chapter explores enterprise messaging and JMS in more detail, so that
you have a solid foundation with which to learn about the JMS API and messaging
concepts in later chapters. The only assumption we make in this book is that you are
already familiar with the Java programming language.

2 | Chapter 1: Messaging Basics

The Advantages of Messaging
As stated at the beginning of this chapter, messaging solves many architectural chal-
lenges such as heterogeneous integration, scalability, system bottlenecks, concurrent
processing, and overall architecture flexibility and agility. This section describes the
more common advantages and uses for JMS and messaging in general.

Heterogeneous Integration
The communication and integration of heterogeneous platforms is perhaps the most
classic use case for messaging. Using messaging you can invoke services from applica-
tions and systems that are implemented in completely different platforms. Many open
source and commercial messaging systems provide seamless connectivity between Java
and other languages and platforms by leveraging an integrated message bridge that
converts a message sent using JMS to a common internal message format. Examples of
these messaging systems include ActiveMQ (open source) and IBM WebSphere MQ
(commercial). Both of these messaging systems support JMS, but they also expose a
native API for use by non-Java messaging clients (such as C and C++). The key point
here is that, depending on the vendor, it is possible to use JMS to communicate to non-
Java or non-JMS messaging clients.

Historically, there have been many ways of tackling the issue of heterogeneous systems
integration. Some earlier solutions involved the transfer of information through FTP
or some other file transfer means, including the classic “sneakernet” method of carrying
a diskette or tape from one machine to another. Using a database to share information
between two heterogeneous systems or applications is another common approach that
is still widely used today. Remote Procedure Call, or RPC, is yet another way of sharing
both data and functionality between disparate systems. While each of these solutions
have their advantages and disadvantages, only messaging provides a truly decoupled
solution allowing both data and functionality to be shared across applications or sub-
systems. More recently, Web Services has emerged as another possible solution for
integrating heterogeneous systems. However, lack of reliability for web services make
messaging a better integration choice.

Reduce System Bottlenecks
System and application bottlenecks occur whenever you have a process that cannot
keep up with the rate of requests made to that process. A classic example of a system
bottleneck is a poorly tuned database where applications and processes wait until
database connections are available or database locks free up. At some point the system
backs up, response time gets worse, and eventually requests start timing out.

A good analogy of a system bottleneck is pouring water into a funnel. The funnel be-
comes a bottleneck because it can only allow a certain amount of water to pass through.
As the amount of water entering the funnel increases, the funnel eventually overflows

The Advantages of Messaging | 3

because water cannot exit the funnel fast enough to handle the increased flow. IT sys-
tems work in much the same way: some components can only handle a limited number
of requests and can quickly become bottlenecks.

Going back to our example, if a single funnel can “process” one liter of water per
minute, but three liters of water are entering the funnel, the funnel will eventually back
up and overflow. However, by adding two more funnels to the process, we can now
theoretically “process” three liters of water per minute, thereby keeping up with the
demand. Similarly, within IT systems messaging can be used to reduce or even eliminate
system bottlenecks. Rather than have requests backing up one behind the other while
a synchronous component is processing them, the requests are sent to a messaging
system that distributes the requests to multiple message listener components. In this
manner the bottlenecks experienced with a single synchronous point-to-point connec-
tion are reduced or in some cases completely eliminated.

Increase Scalability
Much in the same way that messaging reduces system bottlenecks, it can also be used
to increase the overall scalability and throughput of a system, effectively reducing the
response time as well. Scalability in messaging systems is achieved by introducing mul-
tiple message receivers that can process different messages concurrently. As messages
stack up waiting to be processed, the number of messages in the queue, or what is
otherwise known as the queue depth, starts to increase. As the queue depth increases,
system response time increases and throughput decreases. One way to increase the
scalability of a system is to add multiple concurrent message listeners to the queue
(similar to what we did in the funnel example previously) to process more requests
concurrently.

Another way to increase the overall scalability of a system is to make as much of the
system asynchronous as possible. Decoupling components in this manner allows for
systems to grow horizontally, with hardware resources being the main limiting factor.
However, while this may seem like a silver bullet, the middleware can only be hori-
zontally scaled within practical limits of another major system bottleneck—the data-
base. You can have hundreds or even thousands of message listeners on a single queue
providing the ability to process many messages at the same time, but the database may
only be able to process a limited number of concurrent requests. Although there are
complicated techniques for addressing the database bottleneck issue, the reality is that
there will always be practical limits to how far you can scale the middleware layer.

Increase End User Productivity
The use of asynchronous messaging can also increase end user productivity. Consider
the case where an end user makes a request to the system from a web-based or desktop
user interface that takes several minutes to run. During that time the end user is waiting
for the results, unable to do any additional work. By using asynchronous messaging,

4 | Chapter 1: Messaging Basics

the end user can make a request to the system and get an immediate response back
indicating that the request was accepted. The end user now continues to do other work
on the system while the long running request is executing. Once the request has com-
pleted, the end user is notified that the request has been processed and the results are
delivered to the end user. By using messaging, the end user is able to get more work
done with less wait time, making that end user more productive.

Many front-office trading systems use this sort of messaging strategy between the trad-
ing application and the backend systems. This type of messaging-based architecture
allows the trader to perform other work without having to wait for a response from the
system. The trade-off for this increased flexibility and productivity, however, is added
complexity. A good architect will always look for opportunities to make various aspects
of a system asynchronous, whether it be between a user interface and a system or
between internal components within the system.

Architecture Flexibility and Agility
The use of messaging as part of an overall enterprise architecture solution allows for
greater architectural flexibility and agility. These qualities are achieved through the use
of abstraction and decoupling. With messaging, subsystems, components, and even
services can be abstracted to the point where they can be replaced with little or no
knowledge by the client components.

Architectural agility is the ability to respond quickly to a constantly changing environ-
ment. By using messaging to abstract and decouple components, one can quickly re-
spond to changes in software, hardware, and even business changes. The ability to swap
out one system for another, change a technology platform, or even change a vendor
solution without affecting the client applications can be achieved through abstraction
using messaging. Through messaging, the message producer, or client component, does
not know which programming language or platform the receiving component is written
in, where the component or service is located, what the component or service imple-
mentation name is, or even the protocol used to access that component or service. It is
by means of these levels of abstraction that we are able to more easily replace compo-
nents and subsystems, thereby increasing architectural agility.

Enterprise Messaging
Enterprise messaging is not a new concept. Messaging products such as IBM Web-
Sphere MQ, SonicMQ, Microsoft Message Queuing (MSMQ), and TIBCO Rendezvous
have been in existence for many years. Recently, several open source messaging prod-
ucts such as ActiveMQ have entered the market and are being used in enterprise pro-
duction environments. Also, the introduction of Service-Oriented Architecture (SOA)
has given rise to a new type of messaging product known as an Enterprise Service Bus
(ESB). Although most ESBs allow for HTTP-based communications, messaging-based

Enterprise Messaging | 5

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

communication continues to remain the standard in most production enterprise
systems.

A key concept of enterprise messaging is that messages are delivered asynchronously
from one system to others over a network. To deliver a message asynchronously means
the sender is not required to wait for the message to be received or handled by the
recipient; it is free to send the message and continue processing. Asynchronous mes-
sages are treated as autonomous units—each message is self-contained and carries all
of the data and state needed by the business logic that processes it.

In asynchronous messaging, applications use a simple API to construct a message, then
hand it off to the Message-Oriented Middleware for delivery to one or more intended
recipients (see Figure 1-1). A message is a package of business data that is sent from
one application to another over the network. The message should be self-describing in
that it should contain all the necessary context to allow the recipients to carry out their
work independently.

Application A Application B

Messaging API Messaging API

Messaging Clients Messaging Clients

Message-Oriented
Middleware

Figure 1-1. Message-Oriented Middleware

Message-Oriented Middleware architectures of today vary in their implementation.
The spectrum ranges from a centralized architecture that depends on a message server
to perform routing, to a decentralized architecture that distributes the “server” pro-
cessing out to the client machines. A varied array of protocols including TCP/IP, HTTP,
SSL, and IP multicast are employed at the network transport layer. Some messaging
products use a hybrid of both approaches, depending on the usage model.

It is important to explain what we mean by the term client. Messaging systems are
composed of messaging clients and some kind of messaging middleware server. The
clients send messages to the messaging server, which then distributes those messages
to other clients. The client is a business application or component that is using the
messaging API (in our case, JMS).

6 | Chapter 1: Messaging Basics

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

Centralized Architectures
Enterprise messaging systems that use a centralized architecture rely on a message
server. A message server, also called a message router or broker, is responsible for de-
livering messages from one messaging client to other messaging clients. The message
server decouples a sending client from other receiving clients. Clients see only the mes-
saging server, not other clients, which allows clients to be added and removed without
affecting the system as a whole.

Typically, a centralized architecture uses a hub-and-spoke topology. In a simple case,
there is a centralized message server and all clients connect to it. As shown in Fig-
ure 1-2, the hub-and-spoke architecture lends itself to a minimal amount of network
connections while still allowing any part of the system to communicate with any other
part of the system.

Application A

Application D Application C

Application B

Message
Server

JMS
Client

JMS
Client

JMS
Client

JMS
Client

Figure 1-2. Centralized hub-and-spoke architecture

In practice, the centralized message server may be a cluster of distributed servers
operating as a logical unit.

Decentralized Architectures
All decentralized architectures currently use IP multicast at the network level. A mes-
saging system based on multicasting has no centralized server. Some of the server func-
tionality (persistence, transactions, security) is embedded as a local part of the client,

Enterprise Messaging | 7

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

while message routing is delegated to the network layer by using the IP multicast
protocol.

IP multicast allows applications to join one or more IP multicast groups; each group
uses an IP network address that will redistribute any messages it receives to all members
in its group. In this way, applications can send messages to an IP multicast address and
expect the network layer to redistribute the messages appropriately (see Figure 1-3).
Unlike a centralized architecture, a distributed architecture doesn’t require a server for
the purposes of routing messages—the network handles routing automatically. How-
ever, other server-like functionality is still required to be included with each client, such
as message persistence and message delivery semantics like once-and-only-once
delivery.

Local “Server”Local “Server”Local “Server”
Local “Server”

Application A

Application C Application C Application C

JMS
Client

JMS
Client

JMS
Client

JMS
Client

Router

Figure 1-3. Decentralized IP multicast architecture

Hybrid Architectures
A decentralized architecture usually implies that an IP multicast protocol is being used.
A centralized architecture usually implies that the TCP/IP protocol is the basis for
communication between the various components. A messaging vendor’s architecture
may also combine the two approaches. Clients may connect to a daemon process using
TCP/IP, which in turn communicates with other daemon processes using IP multicast
groups.

Centralized Architecture As a Model
Both ends of the decentralized and centralized architecture spectrum have their place
in enterprise messaging. The advantages and disadvantages of distributed versus cen-
tralized architectures are discussed in more detail in Chapter 10. In the meantime, we
need a common model for discussing other aspects of enterprise messaging. To simplify
discussions, this book uses a centralized architecture as a logical view of enterprise
messaging. This is for convenience only and is not an endorsement of centralized over

8 | Chapter 1: Messaging Basics

www.allitebooks.com

http://www.allitebooks.org

decentralized architectures. The term message server is frequently used in this book to
refer to the underlying architecture that is responsible for routing and distributing
messages. In centralized architectures, the message server is a middleware server or
cluster of servers. In decentralized architectures, the server refers to the local server-
like facilities of the client.

Messaging Models
JMS supports two types of messaging models: point-to-point and publish-and-
subscribe. These messaging models are sometimes referred to as messaging domains.
Point-to-point messaging and publish-and-subscribe messaging are frequently short-
ened to p2p and pub/sub, respectively. This book uses both the long and short forms
throughout.

In the simplest sense, publish-and-subscribe is intended for a one-to-many broadcast
of messages, while point-to-point is intended for one-to-one delivery of messages (see
Figure 1-4).

Point-to-point

Publish-and-subscribe

(1 1)

(1 Many)

JMS messaging domains

Publisher

QueueSender

Topic

Potential
receiver

Potential
receiver

Subscriber

Subscriber

Figure 1-4. JMS messaging domains

From a JMS perspective, messaging clients are called JMS clients, and the messaging
system is called the JMS provider. A JMS application is a business system composed of
many JMS clients and, generally, one JMS provider.

In addition, a JMS client that produces a message is called a message producer, while a
JMS client that receives a message is called a message consumer. A JMS client can be
both a message producer and a message consumer. When we use the term consumer
or producer, we mean a JMS client that consumes messages or produces messages,
respectively. We use this terminology throughout the book.

Messaging Models | 9

shailesh
Underline

shailesh
Underline

shailesh
Underline

shailesh
Underline

Point-to-Point
The point-to-point messaging model allows JMS clients to send and receive messages
both synchronously and asynchronously via virtual channels known as queues. In the
point-to-point model, message producers are called senders and message consumers
are called receivers. The point-to-point messaging model has traditionally been a pull-
based or polling-based model, where messages are requested from the queue instead
of being pushed to the client automatically. One of the distinguishing characteristics
of point-to-point messaging is that messages sent to a queue are received by one and
only one receiver, even though there may be many receivers listening on a queue for
the same message.

Point-to-point messaging supports asynchronous “fire and forget” messaging as well
as synchronous request/reply messaging. Point-to-point messaging tends to be more
coupled than the publish-and-subscribe model in that the sender generally knows how
the message is going to be used and who is going to receive it. For example, a sender
may send a stock trade order to a queue and wait for a response containing the trade
confirmation number. In this case, the message sender knows that the message receiver
is going to process the trade order. Another example would be an asynchronous request
to generate a long-running report. The sender makes the request for the report, and
when the report is ready, a notification message is sent to the sender. In this case, the
sender knows the message receiver is going to pick up the message and create the report.

The point-to-point model supports load balancing, which allows multiple receivers to
listen on the same queue, therefore distributing the load. As shown in Figure 1-4, the
JMS provider takes care of managing the queue, ensuring that each message is con-
sumed once and only once by the next available receiver in the group. The JMS speci-
fication does not dictate the rules for distributing messages among multiple receivers,
although some JMS vendors have chosen to implement this as a load balancing capa-
bility. Point-to-point also offers other features, such as a queue browser that allows a
client to view the contents of a queue prior to consuming its messages—this browser
concept is not available in the publish-and-subscribe model. The point-to-point mes-
saging model is covered in more detail in Chapter 4.

Publish-and-Subscribe
In the publish-and-subscribe model, messages are published to a virtual channel called
a topic. Message producers are called publishers, whereas message consumers are called
subscribers. Unlike the point-to-point model, messages published to a topic using the
publish-and-subscribe model can be received by multiple subscribers. This technique
is sometimes referred to as broadcasting a message. Every subscriber receives a copy of
each message. The publish-and-subscribe messaging model is by and large a push-based
model, where messages are automatically broadcast to consumers without them having
to request or poll the topic for new messages.

10 | Chapter 1: Messaging Basics

shailesh
Underline

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

The pub/sub model tends to be more decoupled than the p2p model in that the message
publisher is generally unaware of how many subscribers there are or what those sub-
scribers do with the message. For example, suppose a message is published to a topic
every time an exception occurs in a Java application. The responsibility of the publisher
is to simply broadcast that an exception occurred. The publisher does not know or
generally care how that message will be used. For example, there may be subscribers
that send an email to the development or support staff based on the exception, sub-
scribers that accumulate counts of the various types of exceptions for reporting pur-
poses, or even subscribers that use the information to page an on-call support person
based on the exception type.

There are many different types of subscribers within the pub/sub messaging model.
Nondurable subscribers are temporary subscriptions that receive messages only when
they are actively listening on the topic. Durable subscribers, on the other hand, will
receive a copy of every message published, even if they are “offline” when the message
is published. There is also the notion of dynamic durable subscribers and administered
durable subscribers. The publish-and-subscribe messaging model is discussed in
greater detail in Chapters 2 and 5.

JMS API
JMS is an API for enterprise messaging created by Sun Microsystems through JSR-914.
JMS is not a messaging system itself; it’s an abstraction of the interfaces and classes
needed by messaging clients when communicating with messaging systems. In the same
way that JDBC abstracts access to relational databases and JNDI abstracts access to
naming and directory services, JMS abstracts access to messaging providers. Using JMS,
an application’s messaging clients are portable across messaging server products.

The creation of JMS was an industry effort. Sun Microsystems took the lead on the spec
and worked very closely with the messaging vendors throughout the process. The initial
objective was to provide a Java API for connectivity to enterprise messaging systems.
However, this changed to the wider objective of supporting messaging as a first-class
Java-distributed computing paradigm equal with RPC-based systems such as CORBA
and Enterprise JavaBeans. Mark Hapner, the JMS spec lead at Sun Microsystems,
explained:

There were a number of MOM vendors that participated in the creation of JMS. It was
an industry effort rather than a Sun effort. Sun was the spec lead and did shepherd the
work but it would not have been successful without the direct involvement of the mes-
saging vendors. Although our original objective was to provide a Java API for connectivity
to MOM systems, this changed over the course of the work to a broader objective of
supporting messaging as a first class Java distributed computing paradigm on equal
footing with RPC.

JMS API | 11

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

The result is a best-of-breed, robust specification that includes a rich set of message
delivery semantics, combined with a simple yet flexible API for incorporating messaging
into applications. The intent was that in addition to new vendors, existing messaging
vendors would support the JMS API.

The JMS API can be broken down into three main parts: the general API, the point-to-
point API, and the publish-and-subscribe API. In JMS 1.1, the general API can be used
to send and receive messages from either a queue or a topic. The point-to-point API is
used solely for messaging with queues, and the publish-and-subscribe API is used solely
for messaging using topics.

Within the JMS general API, there are seven main JMS API interfaces related to sending
and receiving JMS messages:

• ConnectionFactory

• Destination

• Connection

• Session

• Message

• MessageProducer

• MessageConsumer

Of these general interfaces, the ConnectionFactory and Destination must be obtained
from the provider using JNDI (per the JMS specification). The other interfaces are
created through factory methods in the various API interfaces. For example, once you
have a ConnectionFactory, you can create a Connection. Once you have a Connection,
you can create a Session. Once you have a Session, you can create a Message, Message
Producer, and MessageReceiver. The relationship between these seven primary JMS
general API interfaces is illustrated in Figure 1-5.

In JMS, the Session object holds the transactional unit of work for messaging, not the
Connection object. This is different from JDBC, where the Connection object holds the
transactional unit of work. This means that when using JMS, an application will typi-
cally have only a single Connection object but will have a pool of Session objects.

There are several other interfaces related to exception handling, message priority, and
message persistence. These and other API interfaces are discussed in more detail
throughout the book and also in Appendix A.

12 | Chapter 1: Messaging Basics

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

Connection
factory Connection Session Message

producer

Message
consumer

Message

Destination

JMS provider
(JNDI)

JMS provider
(JNDI)

Figure 1-5. JMS general API core interfaces

Point-to-Point API
Once you gain an understanding of the JMS general API, the rest of the JMS API is fairly
easy to infer and understand. The point-to-point messaging API refers specifically to
the queue-based interfaces within the JMS API. The interfaces used for sending and
receiving messages from a queue are as follows:

• QueueConnectionFactory

• Queue

• QueueConnection

• QueueSession

• Message

• QueueSender

• QueueReceiver

As in the JMS general API, the QueueConnectionFactory and Queue objects must be ob-
tained from the JMS provider via JNDI (per the JMS specification). Notice that most
of the interface names simply add the word Queue before the general API interface name.
The exception to this is the Destination interface, which is named Queue, and the
MessageProducer and MessageConsumer interfaces, which are named QueueSender and
QueueReceiver, respectively. Figure 1-6 illustrates the flow and relationship between
the queue-based JMS API interfaces.

Applications using the point-to-point messaging model will typically use the queue-
based API rather than the general API.

JMS API | 13

shailesh
Highlight

shailesh
Highlight

shailesh
Highlight

Queue connection
factory Queue connection Queue session Queue

sender

Queue
receiver

Message

Queue

JMS provider
(JNDI)

JMS provider
(JNDI)

Figure 1-6. JMS point-to-point API core interfaces

Publish-and-Subscribe API
The topic-based JMS API is similar to the queue-based API in that, in most cases, the
word Queue is replaced with the word Topic. The interfaces used within the pub/sub
messaging model are as follows:

• TopicConnectionFactory

• Topic

• TopicConnection

• TopicSession

• Message

• TopicPublisher

• TopicSubscriber

Notice that the interfaces in the pub/sub domain have names similar to those of the
p2p domain, with the exception of TopicPublisher and TopicSubscriber. The JMS API
is very intuitive in this regard. As stated at the start of this chapter, pub/sub uses
topics with publishers and subscribers, whereas p2p uses queues with senders and
receivers. Notice how this terminology matches the API interface names. The relation-
ship and flow of the topic-based JMS API interfaces are illustrated in Figure 1-7.

Real-World Scenarios
Until now, our discussion of enterprise messaging has been somewhat abstract. This
section attempts to give some real-world scenarios to provide you with a better idea of
the types of problems that enterprise messaging systems can solve.

14 | Chapter 1: Messaging Basics

shailesh
Highlight

shailesh
Highlight

shailesh
Underline

Topic connection
factory Topic connection Topic session Topic

publisher

Topic
subscriber

Message

Topic

JMS provider
(JNDI)

JMS provider
(JNDI)

Figure 1-7. JMS publish-and-subscribe API core interfaces

Service-Oriented Architecture
Service-Oriented Architecture (SOA) describes an architecture style that defines busi-
ness services that are abstracted from the corresponding enterprise service implemen-
tations. SOA has given rise to a new breed of middleware known as an Enterprise Service
Bus, or ESB. In the early days of SOA, most ESBs were implemented as message brokers,
whereby components within the messaging layer were used to perform some sort of
intelligent routing or message transformation before delivering the message. These
earlier message brokers have evolved into sophisticated commercial and open source
ESB products that use messaging at their core. Although some ESB products support
a traditional non-JMS HTTP transport, most enterprise-wide production implemen-
tations still leverage messaging as the protocol for communication.

Messaging is an excellent means of building the abstraction layer within SOA needed
to fully abstract a business service from its underlying implementation. Through mes-
saging, the business service does not need to be concerned about where the corre-
sponding implementation service is, what language it is written in, what platform it is
deployed in, or even the name of the implementation service. Messaging also provides
the scalability needed within an SOA environment, and also provides a robust level of
monitoring and control for requests coming into and out of an ESB. Almost all of the
commercial and open source ESB products available today support JMS messaging as
a communication protocol—the notable exception being the Microsoft line of mes-
saging products (e.g., BizTalk and MSMQ).

The increased interest and use of SOA in the industry has in turn given rise to increased
interest and usage of messaging solutions in general. Although full-blown SOA imple-
mentations are continuing to evolve, many companies are tuning to messaging solu-
tions as a step toward SOA.

Real-World Scenarios | 15

shailesh
Underline

Event-Driven Architecture
Event-Driven Architecture (EDA) is an architecture style that is built on the premise
that the orchestration of processes and events is dynamic and very complex, and there-
fore not feasible to control or implement through a central orchestration component.
When an action takes place in a system, that process sends an event to the entire system
stating that an action took place (an event). That event may then kick off other pro-
cesses, which in turn may kick off additional processes, all decoupled from each other.

Some good examples of EDA include the insurance domain and the defined benefits
domain. Both of these industry domains are driven by events that happen in the system.
For example, something as simple as changing your address can affect many aspects of
the insurance domain, including policies, quotes, and customer records. In this case,
the driving event in the insurance application is an address change. However, it is not
the responsibility of the address change module to know everything that needs to hap-
pen as a result of that event. Therefore, the address change module sends an event
message letting the system know that an address has changed. The quoting system will
pick up that event and adjust any outstanding quotes that may be present for that
customer. Simultaneously, the policy system will pick up the change address event and
adjust the rates and policies for that customer.

Another example of EDA is within the defined benefits domain. Getting married or
changing jobs triggers events in the system that qualify you for certain changes to your
health and retirement benefits. Many of these systems use EDA to avoid using a large,
complex, and unmaintainable central processing engine to control all of the actions
associated with a particular “qualifying event.”

Messaging is the foundation for systems based on an Event-Driven Architecture. Events
are typically implemented as empty payload messages containing some information
about the event in the header of the message, although some pass the application data
as part of the event. Not surprisingly, most architectures based on EDA leverage the
pub/sub model as a means of broadcasting the events within a system.

Heterogeneous Platform Integration
Most companies, through a combination of mergers, acquisitions, migrations, or bad
decisions, have a myriad of heterogeneous platforms, products, and languages sup-
porting the business. Integrating these platforms can be a challenging task, particularly
with standards continually changing and evolving. Messaging plays a key role in being
able to make these heterogeneous platforms communicate with one another, whether
it be Java EE and Microsoft .NET, Java EE and CICS, or Java EE and Tuxedo C++.

Although platforms such as Java can utilize the JMS API, other platforms such as .NET
or C++ cannot (for obvious reasons). Many messaging vendors, both commercial and
open source, support both the JMS API and a native API. These providers typically
have a built-in messaging bridge that allows the provider to be able to convert a JMS

16 | Chapter 1: Messaging Basics

shailesh
Underline

shailesh
Underline

message into an internal message and vice versa. Some platforms, such as .NET, may
require an external messaging bridge to convert a JMS message into an MSMQ message
(depending on the messaging provider you are using). For example, ActiveMQ provides
a messaging bridge for converting MSMQ to JMS (and vice versa). This lower-level
platform integration has given rise to a broader scope of integration, known as Enter-
prise Application Integration.

Enterprise Application Integration
Most mature organizations have both legacy and new applications that are implemen-
ted independently and cannot interoperate. In many cases, organizations have a strong
desire to integrate these applications so that they can share information and cooperate
in larger enterprise-wide operations. The integration of these applications is generally
called Enterprise Application Integration (EAI).

A variety of vendor and home-grown solutions are used for EAI, but enterprise
messaging systems are central to most of them. Enterprise messaging systems allow
stovepipe applications (consisting of heterogeneous products, technologies, and com-
ponents) to communicate events and to exchange data while remaining physically
independent. Data and events can be exchanged in the form of messages via topics or
queues, which provide an abstraction that decouples participating applications.

As an example, a messaging system might be used to integrate an Internet order pro-
cessing system with an Enterprise Resource Planning (ERP) system like SAP. The
Internet system uses JMS to deliver business data about new orders to a topic. An ERP
gateway application, which accesses a SAP application via its native API, can subscribe
to the order topic. As new orders are broadcast to the topic, the gateway receives the
orders and enters them into the SAP application.

Business-to-Business
Historically, businesses exchanged data using Electronic Data Interchange (EDI) sys-
tems. Data was exchanged using rigid, fixed formats over proprietary Value-Added
Networks (VANs). Cost of entry was high and data was usually exchanged in batch
processes—not as real-time business events.

The Internet, XML, and modern messaging systems have radically changed how busi-
nesses exchange data and interact in what is now called Business-to-Business (B2B).
The use of messaging systems is central to modern B2B solutions because it allows
organizations to cooperate without requiring them to tightly integrate their business
systems. In addition, it lowers the barriers to entry since finer-grained participation is
possible. Businesses can join in B2B and disengage depending on the queues and topics
with which they interact.

A manufacturer, for example, can set up a topic for broadcasting requests for bids on
raw materials. Suppliers can subscribe to the topic and respond by producing messages

Real-World Scenarios | 17

shailesh
Underline

shailesh
Underline

back to the manufacturer’s queue. Suppliers can be added and removed at will, and
new topics and queues for different types of inventory and raw materials can be used
to partition the systems appropriately.

Geographic Dispersion
These days many companies are geographically dispersed. Brick-and-mortar, click-
and-mortar, and dot-coms all face problems associated with geographic dispersion of
enterprise systems. Inventory systems in remote warehouses need to communicate with
centralized back-office ERP systems at corporate headquarters. Sensitive employee data
that is administered locally at each subsidiary needs to be synchronized with the main
office. JMS messaging systems can ensure the safe and secure exchange of data across
a geographically distributed business.

Information Broadcasting
Auction sites, stock quote services, and securities exchanges all have to push data out
to huge populations of recipients in a one-to-many fashion. In many cases, the broad-
cast of information needs to be selectively routed and filtered on a per-recipient basis.
While the outgoing information needs to be delivered in a one-to-many fashion, often
the response to such information needs to be sent back to the broadcaster. This is
another situation in which enterprise messaging is extremely useful, since pub/sub can
be used to distribute the messages and p2p can be used for responses.

Choices in reliability of delivery are key in these situations. In the case of broadcasting
stock quotes, for example, absolutely guaranteeing the delivery of information may not
be critical, since another broadcast of the same ticker symbol will likely happen in
another short interval of time. In the case where a trader is responding to a price quote
with a buy order, however, it is crucial that the response is returned in a guaranteed
fashion. In this case, you mix reliability of messaging so that the pub/sub distribution
is fast but unreliable, while the use of p2p for buying orders from traders is very reliable.
JMS and enterprise messaging provide these varying degrees of reliability for both the
pub/sub and p2p models.

Building Dynamic Systems
In JMS, pub/sub topics and p2p queues are centrally administered and are referred to
as JMS administered objects. Your application does not need to know the network
location of topics or queues to communicate with other applications; it just uses topic
and queue objects as identifiers. Using topics and queues provides JMS applications
with a certain level of location transparency and flexibility that makes it possible to add
and remove participants in an enterprise system.

18 | Chapter 1: Messaging Basics

www.allitebooks.com

http://www.allitebooks.org

For example, a system administrator can dynamically add subscribers to specific topics
on an as-needed basis. A common scenario might be if you discover a need to add an
audit-trail mechanism for certain messages and not others. Figure 1-8 shows you how
to plug in a specialized auditing and logging JMS client whose only job is to track
specific messages, just by subscribing to the topics you are interested in.

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Server(s)

Application A

Application CApplication D

Application B

Subscribe

Subscribe

Subscribe Subscribe

Publish

Publish

Auditing &
Logging

Figure 1-8. Dynamically adding auditing and logging using publish-and-subscribe

The ability to add and remove producers and consumers allows enterprise systems to
dynamically alter the routing and re-routing of messages in an already deployed
environment.

As another example, we can build on the EAI scenario discussed previously. In this
case, a gateway accepts incoming purchase orders, converts them to the format appro-
priate for a legacy ERP system, and calls into the ERP system for processing (see Fig-
ure 1-9).

In Figure 1-8, other JMS applications (A and B) also subscribe to the purchase order
topic and do their own independent processing. Application A might be a legacy ap-
plication in the company, while application B may be another company’s business
system, representing a B2B integration.

Real-World Scenarios | 19

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Server(s)

Internet
Purchase Order

Application A

Application B

Publish
“PO Message”

Subscribe “PO Message”

ERP
Gateway

Figure 1-9. Integrating a purchase order system with an ERP system

Using JMS, it’s fairly easy to add and remove applications from this process. For ex-
ample, if purchase orders need to be processed from two different sources, such as an
Internet-based system and a legacy EDI system, you can simply add the legacy purchase
order system to the mix (see Figure 1-10).

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Server(s)

Internet
Purchase Order

Application A

Application B

Publish
“PO Message”

Publish
“PO Message”

Subscribe “PO Message”

ERP
Gateway

Legacy EDI
Purchase Order

Figure 1-10. Integrating two different purchase order systems with an ERP system

20 | Chapter 1: Messaging Basics

What is interesting about this example is that the ERP gateway is unaware that it is
receiving purchase order messages from two completely different sources. The legacy
EDI system may be an older in-house system or it could be the main system for a
business partner or a recently acquired subsidiary. In addition, the legacy EDI system
would have been added dynamically without requiring the shutdown and retooling of
the entire system. Enterprise messaging systems make this kind of flexibility possible,
and JMS allows Java clients to access many different messaging systems using the same
Java programming model.

RPC Versus Asynchronous Messaging
RPC (Remote Procedure Call) is a term commonly used to describe a distributed
computing model that is used today by both the Java and .NET platforms. Component-
based architectures such as Enterprise JavaBeans are built on top of this model.
RPC-based technologies have been, and will continue to be, a viable solution for many
applications. However, the enterprise messaging model is superior in certain types of
distributed applications. In this section we will discuss the pros and cons of each model.

Tightly Coupled RPC
One of the most successful areas of the tightly coupled RPC model has been in building
3-tier, or n -tier, applications. In this model, a presentation layer (first tier) communi-
cates using RPC with business logic on the middle tier (second tier), which accesses
data housed on the backend (third tier). Sun Microsystems’ J2EE platform and Micro-
soft’s .NET platform are the most modern examples of this architecture.

With J2EE, JSP and servlets represent the presentation tier while Enterprise JavaBeans
(EJB) is the middle tier. Regardless of the platform, the core technology used in these
systems is RPC-based middleware with RPC being the defining communication
paradigm.

RPC attempts to mimic the behavior of a system that runs in one process. When a
remote procedure is invoked, the caller is blocked until the procedure completes and
returns control to the caller. This synchronized model allows the developer to view the
system as if it runs in one process. Work is performed sequentially, ensuring that tasks
are completed in a predefined order. The synchronized nature of RPC tightly couples
the client (the software making the call) to the server (the software servicing the call).
The client cannot proceed—it is blocked—until the server responds.

The tightly coupled nature of RPC creates highly interdependent systems where a fail-
ure on one system has an immediate and debilitating impact on other systems. In J2EE,
for example, the EJB server must be functioning properly if the servlets that use enter-
prise beans are expected to function.

RPC Versus Asynchronous Messaging | 21

RPC works well in many scenarios, but its synchronous, tightly coupled nature is a
severe handicap in system-to-system processing where vertical applications are inte-
grated together. In system-to-system scenarios, the lines of communication between
vertical systems are many and multidirectional, as Figure 1-11 illustrates.

Accounts
Receivable

CRM
Application

HelpDesk

Inventory

RPC
Client/Server

RPC
Client/Server

RPC
Client/Server

RPC
Client/Server

RPC
Client/Server

Sales Order

Figure 1-11. Tightly coupled with synchronous RPC

Consider the challenge of implementing this infrastructure using a tightly coupled RPC
mechanism. There is the many-to-many problem of managing the connections between
these systems. When you add another application to the mix, you have to go back and
let all the other systems know about it. Also, systems can crash. Scheduled downtimes
need to happen. Object interfaces need to be upgraded.

When one part of the system goes down, everything halts. When you post an order to
an order entry system, it needs to make a synchronous call to each of the other systems.
This causes the order entry system to block and wait until each system is finished
processing the order.*

It is the synchronized, tightly coupled, interdependent nature of RPC systems that cause
entire systems to fail as a result of failures in subsystems. When the tightly coupled
nature of RPC is not appropriate, as in system-to-system scenarios, messaging provides
an alternative.

* Multithreading and looser RPC mechanisms like CORBA’s one-way call are options, but these solutions have
their own complexities and require very sophisticated development. Threads are expensive when not used
wisely, and CORBA one-way calls still require application-level error handling for failure conditions.

22 | Chapter 1: Messaging Basics

Enterprise Messaging
Problems with the availability of subsystems are not an issue with Message-Oriented
Middleware. A fundamental concept of messaging is that communication between ap-
plications is intended to be asynchronous. Code that is written to connect the pieces
together assumes there is a one-way message that requires no immediate response from
another application. In other words, there is no blocking. Once a message is sent, the
messaging client can move on to other tasks; it doesn’t have to wait for a response. This
is the major difference between RPC and asynchronous messaging, and it is critical to
understanding the advantages offered by messaging systems.

In an asynchronous messaging system, each subsystem (Accounts Receivable, Inven-
tory, etc.) is decoupled from the other systems (see Figure 1-12). They communicate
through the messaging server, so that a failure in one does not impede the operation of
the others.

CRM
Application

Accounts
Receivable

Inventory

HelpDeskSales Order

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Server

Figure 1-12. JMS provides a loosely coupled environment where partial failure of system components
does not impede overall system availability

Partial failure in a networked system is a fact of life. One of the systems may have an
unpredictable failure or may need to be shut down at some time during its continuous
operation. This can be further magnified by geographic dispersion of in-house and
partner systems. In recognition of this, JMS provides guaranteed delivery, which ensures
that intended consumers will eventually receive a message even if partial failure occurs.

RPC Versus Asynchronous Messaging | 23

Guaranteed delivery uses a store-and-forward mechanism, which means that the un-
derlying message server will write the incoming messages out to a persistent store if the
intended consumers are not currently available. When the receiving applications
become available at a later time, the store-and-forward mechanism will deliver all of
the messages that the consumers missed while unavailable (see Figure 1-13).

Application A Application B

Messaging API Messaging API

Messaging Client Messaging Client

Message
Server

Message

Message

Message-Oriented Middleware

Store &
Forward

Figure 1-13. Underlying store-and-forward mechanisms guarantee delivery of messages

To summarize, JMS is not just another event service. It was designed to cover a broad
range of enterprise applications, including EAI, B2B, push models, etc. Through asyn-
chronous processing, store-and-forward, and guaranteed delivery, it provides high
availability capabilities to keep business applications in continuous operation with
uninterrupted service. It offers flexibility of integration by providing publish-and-
subscribe and point-to-point functionality. Through location transparency and
administrative control, it allows for a robust, service-based architecture. And most
important, it is extremely easy to learn and use. In the next chapter we will take a look
at how simple it is by building our first JMS application.

24 | Chapter 1: Messaging Basics

CHAPTER 2

Developing a Simple Example

Now that you understand Message-Oriented Middleware and some JMS concepts, you
are ready to write your first JMS application. Although it would be easier to demonstrate
a simple example using the more widely used point-to-point model, the publish-and-
subscribe model offers a more interesting example. Therefore, in this chapter we will
provide a gentle introduction to JMS using the publish-and-subscribe messaging
model. You will get your feet wet with JMS and learn some of the basic classes and
interfaces. Chapter 4 covers the point-to-point model in detail using a real-world ex-
ample, and Chapter 5 covers the publish-and-subscribe messaging model following up
on the same example.

As with all examples in this book, example code and instructions specific to several
vendors are available for download on O’Reilly’s website at http://oreilly.com/catalog/
9780596522049/examples. You will need to install and configure your JMS provider
according to the instructions provided by your vendor. To illustrate a sample vendor
configuration, we will be using ActiveMQ version 5.2, a popular robust and produc-
tion-quality open source JMS provider (see http://activemq.apache.org). You can find
the basic installation instructions and configuration settings for executing the code
examples in this book in Appendix D.

The Chat Application
Internet chat provides an interesting application for learning about the JMS pub/sub
messaging model. Used mostly for entertainment, web-based chat applications can be
found on thousands of websites. In this type of application, people join virtual chat
rooms where they can “chat” with a group of other people.

To illustrate how JMS works, we will use the JMS pub/sub API to build a simple chat
application. The requirements of Internet chat map neatly onto the publish-and-
subscribe messaging model. In this model, a producer can send a message to many
consumers by delivering the message to a single topic. A message producer is also called
a publisher, and a message consumer is also called a subscriber.

25

http://oreilly.com/catalog/9780596522049/examples
http://oreilly.com/catalog/9780596522049/examples
http://activemq.apache.org
shailesh
Underline

shailesh
Underline

shailesh
Underline

shailesh
Underline

shailesh
Highlight

shailesh
Underline

shailesh
Underline

shailesh
Highlight

The following complete source code listing is a JMS-based chat client. Every participant
in a chat session uses this Chat program to join a specific chat room (topic), and to
deliver and receive messages to and from that room. In this chapter, we will be taking
this example apart and explaining the various API calls used throughout this listing.
Further details will be provided in the chapters describing the point-to-point (Chap-
ter 4) and publish-and-subscribe (Chapter 5) models:

package ch02.chat;

import java.io.*;
import javax.jms.*;
import javax.naming.*;

public class Chat implements javax.jms.MessageListener {
 private TopicSession pubSession;
 private TopicPublisher publisher;
 private TopicConnection connection;
 private String username;

 /* Constructor used to Initialize Chat */
 public Chat(String topicFactory, String topicName, String username)
 throws Exception {

 // Obtain a JNDI connection using the jndi.properties file
 InitialContext ctx = new InitialContext();

 // Look up a JMS connection factory and create the connection
 TopicConnectionFactory conFactory =
 (TopicConnectionFactory)ctx.lookup(topicFactory);
 TopicConnection connection = conFactory.createTopicConnection();

 // Create two JMS session objects
 TopicSession pubSession = connection.createTopicSession(
 false, Session.AUTO_ACKNOWLEDGE);
 TopicSession subSession = connection.createTopicSession(
 false, Session.AUTO_ACKNOWLEDGE);

 // Look up a JMS topic
 Topic chatTopic = (Topic)ctx.lookup(topicName);

 // Create a JMS publisher and subscriber. The additional parameters
 // on the createSubscriber are a message selector (null) and a true
 // value for the noLocal flag indicating that messages produced from
 // this publisher should not be consumed by this publisher.
 TopicPublisher publisher =
 pubSession.createPublisher(chatTopic);
 TopicSubscriber subscriber =
 subSession.createSubscriber(chatTopic, null, true);

 // Set a JMS message listener
 subscriber.setMessageListener(this);

 // Intialize the Chat application variables
 this.connection = connection;

26 | Chapter 2: Developing a Simple Example

shailesh
Underline

 this.pubSession = pubSession;
 this.publisher = publisher;
 this.username = username;

 // Start the JMS connection; allows messages to be delivered
 connection.start();
 }

 /* Receive Messages From Topic Subscriber */
 public void onMessage(Message message) {
 try {
 TextMessage textMessage = (TextMessage) message;
 System.out.println(textMessage.getText());
 } catch (JMSException jmse){ jmse.printStackTrace(); }
 }

 /* Create and Send Message Using Publisher */
 protected void writeMessage(String text) throws JMSException {
 TextMessage message = pubSession.createTextMessage();
 message.setText(username+": "+text);
 publisher.publish(message);
 }

 /* Close the JMS Connection */
 public void close() throws JMSException {
 connection.close();
 }

 /* Run the Chat Client */
 public static void main(String [] args) {
 try {
 if (args.length!=3)
 System.out.println("Factory, Topic, or username missing");

 // args[0]=topicFactory; args[1]=topicName; args[2]=username
 Chat chat = new Chat(args[0],args[1],args[2]);

 // Read from command line
 BufferedReader commandLine = new
 java.io.BufferedReader(new InputStreamReader(System.in));

 // Loop until the word "exit" is typed
 while(true) {
 String s = commandLine.readLine();
 if (s.equalsIgnoreCase("exit")){
 chat.close();
 System.exit(0);
 } else
 chat.writeMessage(s);
 }
 } catch (Exception e) { e.printStackTrace(); }
 }
}

The Chat Application | 27

Notice that the code just given is using the form of the createSubscriber() method that
takes three arguments rather than just one. This is so the noLocal flag can be set (the
third parameter) so that messages published by this class will not also be consumed by
this class. The second parameter is used for a message selector. Since we are not doing
any filtering on the topic, this value is set to null. If we were to use the single parameter
method call to create a subscriber, we would see the messages we sent on our console
display.

Getting Started with the Chat Example
To run the Chat application you will need a JMS provider that supports JNDI and JMS
1.1. To illustrate some of the details and configuration in the code examples, we’ll be
using ActiveMQ, a popular open source JMS provider. You’ll need to consult your JMS
vendor’s documentation for information on configuring a TopicConnectionFactory
and a Topic for the Chat application. In our example, we have named these TopicCF
and topic1, respectively. For instance, using ActiveMQ you can set the
TopicConnectionFactory name and a Topic for the Chat Application by creating a
jndi.properties file located in your classpath and setting the names as follows:

java.naming.factory.initial = org.apache.activemq.jndi.ActiveMQInitialContextFactory
java.naming.provider.url = tcp://localhost:61616
java.naming.security.principal=system
java.naming.security.credentials=manager

connectionFactoryNames = TopicCF
topic.topic1 = jms.topic1

The jndi.properties file also contains the JNDI connection information for the JMS
provider. You will need to set the initial context factory class, provider URL, username,
and password needed to connect to the JMS server. Each vendor will have a different
context factory class and URL name for connecting to the server. You will need to
consult the documentation of your specific JMS provider or Java EE container to obtain
these values. For example, in the jndi.properties file just shown, for ActiveMQ you
would set the initial context factory to org.apache.activemq.jndi.ActiveMQInitialCon
textFactory and the provider URL to tcp://localhost:61616 (the default protocol,
host, and port for ActiveMQ). More details surrounding the installation and configu-
ration of ActiveMQ can be found in Appendix D.

After configuring and starting your JMS server, you will need to compile the Chat
application. In addition to the jms-11.jar file, you will need to include any JAR files
required by the JMS provider in your classpath (in the case of ActiveMQ 5.2, simply
include the activemq-all-5.2.0.jar file in your classpath).

The Chat class includes a main() method so that it can be run as a standalone Java
application. You will obviously want to open multiple command windows so that you
can simulate a chat with multiple people. The Chat class can be executed from the
command line or from a shell script:

28 | Chapter 2: Developing a Simple Example

www.allitebooks.com

http://www.allitebooks.org

java ch02.chat.Chat topicConnectionFactory topicName username

For example, in the OpenJMS configuration listed previously we have defined a Topic
Connection Factory named TopicCF and a Topic named topic1. Therefore, to execute
the chat application for a user named Fred and another user named Wilma, you would
use the following command:

java ch02.chat.Chat TopicCF topic1 Fred
java ch02.chat.Chat TopicCF topic1 Wilma

Run at least two chat clients in separate command windows and try typing into one;
you should see the text you type displayed by the other client.

Before we examine the source code in detail, a quick explanation of what the code is
doing might be helpful. The chat client creates a JMS publisher and subscriber for a
specific topic. The topic represents the chat room. The JMS server registers all the JMS
clients that want to publish or subscribe to a specific topic. When text is entered at
the command line of one of the chat clients, it is published to the messaging server.
The messaging server identifies the topic associated with the publisher and delivers the
message to all the JMS clients that have subscribed to that topic. As Figure 2-1 illus-
trates, messages published by any one of the JMS clients are delivered to all the JMS
subscribers for that topic.

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Server(s)

Chat

Chat

Chat

Chat

Chat

Figure 2-1. The Chat application

The Chat Application | 29

Examining the Source Code
Running the Chat example in a couple of command windows demonstrates what the
Chat application does. The rest of this chapter examines the source code for the Chat
application so that you can see how the Chat application works.

Bootstrapping the JMS client

The main() method bootstraps the chat client and provides a command-line interface.
Once an instance of the Chat class is created, the main() method spends the rest of its
time reading text typed at the command line and passing it to the Chat instance using
the instance’s writeMessage() method.

The Chat instance connects to the topic and receives and delivers messages. The Chat
instance starts its life in the constructor, which does all the work to connect to the topic
and set up the TopicPublisher and TopicSubscribers for delivering and receiving
messages.

Obtaining a JNDI connection

The chat client starts by obtaining a JNDI connection to the JMS messaging server.
JNDI is an implementation-independent API for directory and naming systems. A
directory service provides JMS clients with access to ConnectionFactory and
Destination (topics and queues) objects. ConnectionFactory and Destination objects
are the only things in JMS that cannot be obtained using the JMS API—unlike
connections, sessions, producers, consumers, and messages, which are manufactured
using the factory pattern within the JMS API. JNDI provides a convenient, location-
transparent, configurable, and portable mechanism for obtaining ConnectionFactory
and Destination objects, also called JMS-administered objects because they are estab-
lished and configured by a system administrator.

Using JNDI, a JMS client can obtain access to a JMS provider by first looking up a
ConnectionFactory. The ConnectionFactory is used to create JMS connections, which
can then be used for sending and receiving messages. Destination objects, which rep-
resent virtual channels (topics and queues) in JMS, are also obtained via JNDI and are
used by the JMS client. The directory service can be configured by the system admin-
istrator to provide JMS-administered objects so that the JMS clients don’t need to use
proprietary code to access a JMS provider.

JMS servers will either work with a separate directory service (e.g., LDAP) or provide
their own directory service that supports the JNDI API. For more details on JNDI, see
the sidebar “Understanding JNDI” on page 31.

The constructor of the Chat class starts by obtaining a connection to the JNDI naming
service used by the JMS server:

// Obtain a JNDI connection using the jndi.properties file
InitialContext ctx = new InitialContext();

30 | Chapter 2: Developing a Simple Example

Understanding JNDI
JNDI is a standard Java extension that provides a uniform API for accessing a variety
of directory and naming services. In this respect, it is somewhat similar to JDBC. JDBC
lets you write code that can access different relational databases such as Oracle,
SQLServer, or Sybase; JNDI lets you write code that can access different directory and
naming services, such as LDAP, NDS, CORBA Naming Service, and proprietary
naming services provided by JMS servers.

In JMS, JNDI is used mostly as a naming service to locate administered objects. Ad-
ministered objects are JMS objects that are created and configured by the system ad-
ministrator. Administered objects include JMS ConnectionFactory and Destination
objects such as topics and queues.

Administered objects are bound to a name in a naming service. A naming service as-
sociates names with distributed objects, files, and devices so that they can be located
on the network using simple names instead of cryptic network addresses. An example
of a naming service is the DNS, which converts an Internet hostname like
www.oreilly.com into a network address that browsers use to connect to web servers.
There are many other naming services, such as CosNaming in CORBA and the Java
RMI registry. Naming services allow printers, distributed objects, and JMS adminis-
tered objects to be bound to names and organized in a hierarchy similar to a filesystem.
A directory service is a more sophisticated kind of naming service.

JNDI provides an abstraction that hides the specifics of the naming service, making
client applications more portable. Using JNDI, JMS clients can browse a naming service
and obtain references to administered objects without knowing the details of the nam-
ing service or how it is implemented. JMS servers can usually be used in combination
with a standard JNDI driver (a.k.a. service provider) and directory service like Light-
weight Directory Access Protocol (LDAP), or provide a proprietary JNDI service
provider and directory service.

JNDI is both virtual and dynamic. It is virtual because it allows one naming service to
be linked to another. Using JNDI, you can drill down through directories to files,
printers, JMS administered objects, and other resources following virtual links between
naming services. The user doesn’t know or care where the directories are actually lo-
cated. As an administrator, you can create virtual directories that span a variety of
different services over many different physical locations.

JNDI is dynamic because it allows the JNDI drivers for specific types of naming and
directory services to be loaded dynamically at runtime. A driver maps a specific kind
of naming or directory service into the standard JNDI class interfaces. Drivers have
been created for LDAP, Novell NetWare NDS, Sun Solaris NIS+, CORBA CosNaming,
and many other types of naming and directory services, including proprietary ones.
Dynamically loading JNDI drivers (service providers) makes it possible for a client to
navigate across arbitrary directory services without knowing in advance what kinds of
services it is likely to find.

The Chat Application | 31

Creating a connection to a JNDI naming service requires that a javax.naming.Initial
Context object be created. An InitialContext is the starting point for any JNDI
lookup—it’s similar in concept to the root of a filesystem. The InitialContext provides
a network connection to the directory service that acts as a root for accessing JMS-
administered objects. The properties used to create an InitialContext depend on which
JMS directory service you are using. You could configure the initial context properties
using the Properties Object directly in your source code, or preferably using an external
jndi.properties file located in the classpath of the application. In our example using
ActiveMQ, the jndi.properties file would look something like this:

java.naming.factory.initial = org.apache.activemq.jndi.ActiveMQInitialContextFactory
java.naming.provider.url = tcp://localhost:61616
java.naming.security.principal=system
java.naming.security.credentials=manager

...

The corresponding source code using the properties object would be as follows:

Properties env = new Properties();
env.put(Context.SECURITY_PRINCIPAL, "system");
env.put(Context.SECURITY_CREDENTIALS, "manager");
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "org.apache.activemq.jndi.ActiveMQInitialContextFactory");
env.put(Context.PROVIDER_URL, "tcp://localhost:61616");

InitialContext ctx = new InitialContext(env);

The TopicConnectionFactory

Once a JNDI InitialContext object is instantiated, it can be used to look up the Topic
ConnectionFactory in the messaging server’s naming service:

TopicConnectionFactory conFactory =
 (TopicConnectionFactory)ctx.lookup(topicFactory);

The javax.jms.TopicConnectionFactory is used to manufacture connections to a mes-
sage server. A TopicConnectionFactory is a type of administered object, which means
that its attributes and behavior are configured by the system administrator responsible
for the messaging server. The TopicConnectionFactory is implemented differently by
each vendor, so configuration options available to system administrators vary from
product to product. A connection factory might, for example, be configured to
manufacture connections that use a particular protocol, security scheme, clustering
strategy, etc. A system administrator might choose to deploy several different
TopicConnectionFactory objects, each configured with its own JNDI lookup name.

The TopicConnectionFactory provides two overloaded versions of the createTopicCon
nection() method:

package javax.jms;

public interface TopicConnectionFactory extends ConnectionFactory {

32 | Chapter 2: Developing a Simple Example

 public TopicConnection createTopicConnection()
 throws JMSException, JMSSecurityException;
 public TopicConnection createTopicConnection(String username,
 String password) throws JMSException, JMSSecurityException;
}

These methods are used to create TopicConnection objects. The behavior of the no-arg
method depends on the JMS provider. Some JMS providers will assume that the JMS
client is connecting under anonymous security context, whereas other providers may
assume that the credentials can be obtained from JNDI or the current thread.* The
second method provides the client with a username-password authentication creden-
tial, which can be used to authenticate the connection. In our code, we are using the
no-arg method, which will use a default user identity when creating the connection.

The TopicConnection

The TopicConnection is created by the TopicConnectionFactory:

// Look up a JMS connection factory and create the connection
TopicConnectionFactory conFactory =
 (TopicConnectionFactory)ctx.lookup(topicFactory);
TopicConnection connection = conFactory.createTopicConnection();

The TopicConnection represents a connection to the message server. Each TopicConnec
tion that is created from a TopicConnectionFactory is a unique connection to the
server.† A JMS client might choose to create multiple connections from the same con-
nection factory, but this is rare as connections are relatively expensive (each connection
requires a network socket, I/O streams, memory, etc.). Creating multiple session ob-
jects (discussed later in this chapter) from the same connection is considered more
efficient, because sessions share access to the same connection. The TopicConnection
is an interface that extends javax.jms.Connection interface. It defines several general-
purpose methods used by clients of the TopicConnection. Among these methods are the
start() , stop(), and close() methods:

public interface Connection {
 public void start() throws JMSException;
 public void stop() throws JMSException;
 public void close() throws JMSException;
 ...
}

public interface TopicConnection extends Connection {
 public TopicSession createTopicSession(boolean transacted,
 int acknowledgeMode)
 throws JMSException;

* Thread-specific storage is used with the Java Authentication and Authorization Service (JAAS) to allow
security credentials to transparently propagate between resources and applications.

† The actual physical network connection may or may not be unique, depending on the vendor. However, the
connection is considered to be logically unique so authentication and connection control can be managed
separately from other connections.

The Chat Application | 33

 ...
}

The start(), stop(), and close() methods allow a client to manage the connection
directly. The start() method turns the inbound flow of messages “on,” allowing mes-
sages to be received by the client. This method is used at the end of the constructor in
the Chat class:

// Start the JMS connection; allows messages to be delivered
connection.start();

It is a good idea to start the connection after the subscribers have been set up, because
the messages start to flow in from the topic as soon as start() is invoked.

The stop() method blocks the flow of inbound messages until the start() method is
invoked again. The close() method is used to close the TopicConnection to the message
server. This should be done when a client is finished using the TopicConnection; closing
the connection conserves resources on the client and server. In the Chat class, the
main() method calls Chat.close() when “exit” is typed at the command line. The
Chat.close() method in turn calls the TopicConnection.close() method:

public void close() throws JMSException {
 connection.close();
}

Closing a TopicConnection closes all the objects associated with the connection,
including the TopicSession, TopicPublisher, and TopicSubscriber.

The TopicSession

After the TopicConnection is obtained, it’s used to create TopicSession objects:

// Create two JMS session objects
TopicSession pubSession = connection.createTopicSession(
 false, Session.AUTO_ACKNOWLEDGE);

TopicSession subSession = connection.createTopicSession(
 false, Session.AUTO_ACKNOWLEDGE);

A TopicSession object is a factory for creating Message, TopicPublisher, and TopicSub
scriber objects. It is also used as the transactional unit of work within JMS. A client
can create multiple TopicSession objects to provide more granular control over pub-
lishers, subscribers, and their associated transactions. In this case, we create two
TopicSession objects: pubSession and subSession. We need two objects because of
threading restrictions in JMS, which are discussed later in this chapter.

The boolean parameter in the createTopicSession() method indicates whether the
Session object will be transacted. A transacted Session automatically manages outgoing
and incoming messages within a transaction. Transactions are important but not crit-
ical to our discussion at this time, so the parameter is set to false, which means the
TopicSession will not be transacted. Transactions are discussed in more detail in Chap-
ter 7.

34 | Chapter 2: Developing a Simple Example

The second parameter indicates the acknowledgment mode used by the JMS client. An
acknowledgment is a notification to the message server that the client has received the
message. In this case we chose AUTO_ACKNOWLEDGE, which means that the message is
automatically acknowledged after it is received by the client.

The TopicSession objects are used to create the TopicPublisher and TopicSubscriber.
The TopicPublisher and TopicSubscriber objects are created with a Topic identifier and
are dedicated to the TopicSession that created them; they operate under the control of
a specific TopicSession:

TopicPublisher publisher =
 pubSession.createPublisher(chatTopic);
TopicSubscriber subscriber =
 subSession.createSubscriber(chatTopic);

The TopicSession is also used to create the Message objects that are delivered to the
topic. The pubSession is used to create Message objects in the writeMessage() method.
When you type text at the command line, the main() method reads the text and passes
it to the Chat instance by invoking writeMessage(). The writeMessage() method (shown
in the following example) uses the pubSession object to generate a TextMessage object
that can be used to deliver the text to the topic:

protected void writeMessage(String text) throws JMSException {

 TextMessage message = pubSession.createTextMessage();
 message.setText(username+" : "+text);
 publisher.publish(message);
}

Several Message types can be created by a TopicSession. The most commonly used type
is the TextMessage.

The Topic

JNDI is used to locate a Topic object, which is an administered object like the Topic
ConnectionFactory:

InitialContext jndi = new InitialContext(env);
...

// Look up a JMS topic
Topic chatTopic = (Topic)jndi.lookup(topicName);

A Topic object is a handle or identifier for an actual topic, called a physical topic, on the
messaging server. A physical topic is an electronic channel to which many clients can
subscribe and publish. A topic is analogous to a news group or list server: when a
message is sent to a news group or list server, it is delivered to all the subscribers.
Similarly, when a JMS client delivers a Message object to a topic, all the clients
subscribed to that topic receive the Message.

The Topic object encapsulates a vendor-specific name for identifying a physical topic
in the messaging server. The Topic object has one method, getName(), which returns

The Chat Application | 35

the name identifier for the physical topic it represents. The name encapsulated by a
Topic object is vendor-specific and varies from product to product. For example, one
vendor might use dot-separated (.) topic names, like “oreilly.jms.chat,” while an-
other vendor might use a completely different naming system, similar to LDAP naming,
“o=oreilly,cn=chat.” Using topic names directly will result in client applications that
are not portable across brands of JMS servers. The Topic object hides the topic name
from the client, making the client more portable.

As a convention, we’ll refer to a physical topic as a topic and only use the term “physical
topic” when it’s important to stress its difference from a Topic object.

The TopicPublisher

A TopicPublisher is created using the pubSession and the chatTopic:

// Look up a JMS topic
Topic chatTopic = (Topic)ctx.lookup(topicName);

// Create a JMS publisher and subscriber
TopicPublisher publisher =
 pubSession.createPublisher(chatTopic);

A TopicPublisher is used to deliver messages to a specific topic on a message server.
The Topic object used in the createPublisher() method identifies the topic that will
receive messages from the TopicPublisher. In the Chat example, any text typed on the
command line is passed to the Chat class’s writeMessage() method. This method uses
the TopicPublisher to deliver a message to the topic:

/* Create and Send Message Using Publisher */
protected void writeMessage(String text) throws JMSException {
 TextMessage message = pubSession.createTextMessage();
 message.setText(username+": "+text);
 publisher.publish(message);
}

The TopicPublisher delivers messages to the topic asynchronously. Asynchronous
delivery and consumption of messages is a key characteristic of Message-Oriented
Middleware; the TopicPublisher doesn’t block or wait until all the subscribers receive
the message. Instead, it returns from the publish() method as soon as the message
server receives the message. It’s up to the message server to deliver the message to all
the subscribers for that topic.

The TopicSubscriber

The TopicSubscriber is created using the subSession and the chatTopic:

// Look up a JMS topic
Topic chatTopic = (Topic)ctx.lookup(topicName);

// Create a JMS publisher and subscriber
TopicSubscriber subscriber =
 subSession.createSubscriber(chatTopic, null, true);

36 | Chapter 2: Developing a Simple Example

A TopicSubscriber receives messages from a specific topic. The Topic object argument
used in the createSubscriber() method identifies the topic from which the TopicSub
scriber will receive messages. The second argument contains the message selector used
to filter out only those messages we want to receive based on certain criteria. In this
case, we set this value to null, indicating that we want to receive all messages. The third
argument contains a boolean value indicating whether or not we want to receive mes-
sages we publish ourselves. In this case, we are setting the value to true, indicating that,
as a subscriber to the topic, we do not want to see messages we publish.

The TopicSubscriber receives messages from the message server one at a time (serially).
These messages are pushed from the message server to the TopicSubscriber asynchro-
nously, which means that the TopicSubscriber does not have to poll the message server
for messages. In our example, each chat client will receive any message published by
any of the other chat clients. When a user enters text at the command line, the text
message is delivered to all other chat clients that subscribe to the same topic.

The pub/sub messaging model in JMS includes an in-process Java event model for
handling incoming messages. This is similar to the event-driven model used by Java-
Beans.‡ An object simply implements the listener interface, in this case the MessageLis
tener, and then is registered with the TopicSubscriber. A TopicSubscriber may have
only one MessageListener object. Here is the definition of the MessageListener interface
used in JMS:

package javax.jms;

public interface MessageListener {
 public void onMessage(Message message);
}

When the TopicSubscriber receives a message from its topic, it invokes the
onMessage() method of its MessageListener objects. The Chat class itself implements
the MessageListener interface and implements the onMessage() method:

public class Chat implements javax.jms.MessageListener {
 ...
 public void onMessage(Message message) {
 try{
 TextMessage textMessage = (TextMessage)message;
 System.out.println(textMessage.getText());
 } catch (JMSException jmse) { jmse.printStackTrace(); }
 }
 ...
}

The Chat class is a MessageListener type, and therefore registers itself with the Topic
Subscriber in its constructor:

‡ Although the in-process event model used by TopicSubscriber is similar to the one used in JavaBeans, JMS
itself is an API and the interfaces it defines are not JavaBeans.

The Chat Application | 37

TopicSubscriber subscriber = subSession.createSubscriber(chatTopic);

subscriber.setMessageListener(this);

When the message server pushes a message to the TopicSubscriber, the TopicSub
scriber invokes the Chat object’s onMessage() method.

It’s fairly easy to confuse the Java Message Service with its use of a Java
event model. JMS is an API for asynchronous distributed enterprise
messaging that spans processes and machines across a network. The
Java event model is used to deliver events by invoking methods on one
or more objects in the same process that have registered as listeners.
The JMS pub/sub model uses the Java event model so that a
TopicSubscriber can notify its MessageListener object in the same proc-
ess that a message has arrived from the message server.

The Message

In the chat example, the TextMessage class is used to encapsulate the messages we send
and receive. A TextMessage contains a java.lang.String as its body and is the most
commonly used message type. The onMessage() method receives TextMessage objects
from the TopicSubscriber. Likewise, the writeMessage() method creates and publishes
TextMessage objects using the TopicPublisher:

/* Receive Messages From Topic Subscriber */
public void onMessage(Message message) {
 try {
 TextMessage textMessage = (TextMessage) message;
 String text = textMessage.getText();
 System.out.println(text);
 } catch (JMSException jmse){ jmse.printStackTrace(); }
}

/* Create and Send Message Using Publisher */
protected void writeMessage(String text) throws JMSException {
 TextMessage message = pubSession.createTextMessage();
 message.setText(username+": "+text);
 publisher.publish(message);
}

A message has three parts: a header, properties, and payload. The header is comprised
of special fields that are used to identify the message, declare attributes of the message,
and provide information for routing. The properties area of the message contains ad-
ditional metadata about the message that is set by the application developer or, in some
cases, the JMS provider (more on this in Chapter 3). The difference between message
types is determined largely by their payload (i.e., the type of application data the mes-
sage contains). The Message class, which is the superclass of all message objects, has no
payload. It is a lightweight message that delivers no payload but can serve as a simple

38 | Chapter 2: Developing a Simple Example

www.allitebooks.com

http://www.allitebooks.org

event notification. The other message types have special payloads that determine their
type and use:

Message
This type has no payload. It is useful for simple event notification.

TextMessage
This type carries a java.lang.String as its payload. It is useful for exchanging
simple text messages and also for more complex character data, such as XML
documents.

ObjectMessage
This type carries a serializable Java object as its payload. It’s useful for exchanging
Java objects.

BytesMessage
This type carries an array of primitive bytes as its payload. It’s useful for exchanging
data in an application’s native format, which may not be compatible with other
existing Message types. It is also useful where JMS is used purely as a transport
between two systems, and the message payload is opaque to the JMS client.

StreamMessage
This type carries a stream of primitive Java types (int, double, char, etc.) as its
payload. It provides a set of convenience methods for mapping a formatted stream
of bytes to Java primitives. It’s an easy programming model when exchanging
primitive application data in a fixed order.

MapMessage
This type carries a set of name-value pairs as its payload. The payload is similar to
a java.util.Properties object, except the values must be Java primitives or their
wrappers. The MapMessage is useful for delivering keyed data.

Sessions and Threading
The Chat application uses a separate session for the publisher and subscriber,
pubSession and subSession, respectively. This is due to a threading restriction imposed
by JMS. According to the JMS specification, a session may not be operated on by more
than one thread at a time. In our example, two threads of control are active: the default
main thread of the Chat application and the thread that invokes the onMessage() han-
dler. The thread that invokes the onMessage() handler is owned by the JMS provider.
Since the invocation of the onMessage() handler is asynchronous, it could be called
while the main thread is publishing a message in the writeMessage() method. If both
the publisher and subscriber had been created by the same session, the two threads
could operate on these methods at the same time; in effect, they could operate on the
same TopicSession concurrently—a condition that is prohibited.

The Chat Application | 39

A goal of the JMS specification was to avoid imposing an internal architecture on the
JMS provider. Requiring a JMS provider’s implementation of a Session object to be
capable of safely handling multiple threads was specifically avoided. This is mostly due
to one of the intended uses of JMS—that the JMS API be a wrapper around an existing
messaging system, which may not have multithreaded delivery capabilities on the
client.

The requirement imposed on the JMS provider is that the sending of messages and the
asynchronous receiving of messages be processed serially. It is possible to publish-and-
subscribe using the same session, but only if the application is publishing from within
the onMessage() handler. An example of this will be covered in Chapter 5.

40 | Chapter 2: Developing a Simple Example

CHAPTER 3

Anatomy of a JMS Message

This chapter focuses on the anatomy of a message: the individual parts that make up
a message (headers, properties, and the different kinds of message payloads). Appen-
dixes B and C cover additional information that will prove invaluable as a reference
when developing JMS applications. Appendix B provides in-depth information on the
purpose and application of JMS headers, and Appendix C covers the rules governing
the use of JMS properties. Although you do not need to read these appendixes to un-
derstand subsequent chapters in this book, you will need them as a reference when
implementing real JMS applications. After you finish reading this chapter, take a look
at Appendixes B and C so you’re familiar with their content.

The Message is the most important part of the entire JMS specification. All data and
events in a JMS application are communicated with messages, while the rest of JMS
exists to facilitate the transfer of messages. Messages are the lifeblood of the system.

A JMS message carries application data and provides event notification. Its role is
unique to distributed computing. In RPC-based systems (CORBA, Java RMI, DCOM),
a message is a command to execute a method or procedure, which blocks the sender
until a reply has been received. A JMS message is not a command; it transfers data and
tells the receiver that something has happened. A message doesn’t dictate what the
recipient should do and the sender doesn’t wait for a response. This decouples the
sender from the receiver, making messaging systems and their messages far more
dynamic and flexible than request/reply paradigms.

A Message object has three parts: the message header, message properties, and finally
the message data itself, called the payload or message body (see Figure 3-1).

Messages come in various types that are defined by the payload they carry. The payload
itself might be very structured, as with StreamMessage and BytesMessage objects, or fairly
unstructured, as with TextMessage, ObjectMessage, and MapMessage types. Messages can
carry important data or simply serve as notifications of events in the system. In most
cases, messages are both notifications and vehicles for carrying data.

41

Headers
JMSDestination
JMSDeliveryMode
JMSMessageID
JMSTimestamp
JMSExpiration
JMSRedelivered
JMSPriority
JMSReplyTo
JMSCorrelationID
JMSCorrelationID
JMSType

Properties

Payload

Figure 3-1. Anatomy of a message

The message headers provide metadata about the message describing who or what cre-
ated the message, when it was created, how long the data is valid, etc. The headers also
contain routing information that describes the destination of the message (topic or
queue), how a message should be acknowledged, and a lot more. In addition to headers,
messages can carry properties that can be defined and set by the JMS client. JMS con-
sumers can choose to receive messages based on the values of certain headers and
properties, using a special filtering mechanism called message selectors. Message selec-
tors are discussed in detail in Chapter 6.

Headers
Every JMS message has a set of standard headers. Each header is identified by a
set of accessor and mutator methods that follow the idiom setJMS<HEADER>(),
getJMS<HEADER>(). Here is a partial definition of the Message interface that shows all the
JMS header methods:

public interface Message {

 public Destination getJMSDestination() throws JMSException;
 public void setJMSDestination(Destination destination)
 throws JMSException;

42 | Chapter 3: Anatomy of a JMS Message

 public int getJMSDeliveryMode() throws JMSException;
 public void setJMSDeliveryMode(int deliveryMode)
 throws JMSException;

 public String getJMSMessageID() throws JMSException;
 public void setJMSMessageID(String id) throws JMSException;

 public long getJMSTimestamp() throws JMSException;
 public void setJMSTimestamp(long timestamp) throws JMSException;

 public long getJMSExpiration() throws JMSException;
 public void setJMSExpiration(long expiration) throws JMSException;

 public boolean getJMSRedelivered() throws JMSException;
 public void setJMSRedelivered(boolean redelivered)
 throws JMSException;

 public int getJMSPriority() throws JMSException;
 public void setJMSPriority(int priority) throws JMSException;

 public Destination getJMSReplyTo() throws JMSException;
 public void setJMSReplyTo(Destination replyTo) throws JMSException;

 public String getJMSCorrelationID() throws JMSException;
 public void setJMSCorrelationID(String correlationID)
 throws JMSException;

 public byte[] getJMSCorrelationIDAsBytes() throws JMSException;
 public void setJMSCorrelationIDAsBytes(byte[] correlationID)
 throws JMSException;

 public String getJMSType() throws JMSException;
 public void setJMSType(String type) throws JMSException;

}

JMS headers are divided into two large groups: automatically assigned headers and
developer-assigned headers. The next two sections discuss these two types.

Automatically Assigned Headers
Most JMS headers are automatically assigned; their value is set by the JMS provider
when the message is delivered so that values assigned by the developer using the
setJMS<HEADER>() methods are ignored. In other words, for most headers that are au-
tomatically assigned, using the mutator methods explicitly is fruitless.* This doesn’t
mean, however, that the developer has no control over the value of these headers. Some
automatically assigned headers can be programmatically set by the developer when
creating the Session and MessageProducer (i.e., TopicPublisher). These cases include

* According to the specification authors, the setJMS<HEADER>() methods were left in the Message interface for
“general orthogonality,” or to keep it semantically symmetrical to balance the getJMS<HEADER>() methods—
a fairly strange but established justification.

Headers | 43

the JMSDeliveryMode and the JMSPriority headers, which are illustrated in the header
definitions that follow.

JMSDestination

The JMSDestination header identifies the destination with either a Topic or Queue object,
both of which are Destination types. Identifying the message’s destination is valuable
to JMS clients that consume messages from more than one topic or queue:

Topic destination = (Topic) message.getJMSDestination();

JMSDeliveryMode

There are two types of delivery modes in JMS: persistent and nonpersistent. A persistent
message should be delivered once-and-only-once, which means that if the JMS provider
fails, the message is not lost; it will be delivered after the server recovers. A nonpersistent
message is delivered at-most-once, which means that it can be lost permanently if the
JMS provider fails. In both persistent and nonpersistent delivery modes, the message
server should not send a message to the same consumer more than once, but it is pos-
sible (see “JMSRedelivered” on page 45 for more details):

int deliverymode = message.getJMSDeliveryMode();
if (deliverymode == javax.jms.DeliveryMode.PERSISTENT) {
 ...
} else { // equals DeliveryMode.NON_PERSISTENT
 ...
}

The delivery mode can be set using the setJMSDeliveryMode() method on the
producer (i.e., TopicPublisher or QueueSender). Once the delivery mode is set on the
MessageProducer, it is applied to all messages delivered using that producer. The default
setting is PERSISTENT:

// Set the JMS delivery mode on the message producer
TopicPublisher topicPublisher = topicSession.createPublisher(topic);
topicPublisher.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

JMSMessageID

The JMSMessageID is a String value that uniquely identifies a message. How unique the
identifier is depends on the vendor. The JMSMessageID can be useful for historical re-
positories in JMS consumer applications where messages need to be uniquely indexed.
Used in conjunction with the JMSCorrelationID, the JMSMessageID is also useful for
correlating messages:

String messageid = message.getJMSMessageID();

JMSTimestamp

The JMSTimestamp is set automatically by the message producer when the send() oper-
ation is invoked. It contains the time the message was received by the JMS provider,

44 | Chapter 3: Anatomy of a JMS Message

not the time it was actually delivered. This header is useful for determining the duration
between when the message was sent and when it was actually received by the consumer.
The timestamp is a long value that measures time in milliseconds (since January 1,
1970):

long timestamp = message.getJMSTimestamp();

JMSExpiration

A Message object’s expiration date prevents the message from being delivered to con-
sumers after it has expired. This is useful for messages whose data is only valid for a
period of time:

long timeToLive = message.getJMSExpiration();

The expiration time for messages is set in milliseconds on the producer (that is,
TopicPublisher) using the setTimeToLive() method:

TopicPublisher topicPublisher = topicSession.createPublisher(topic);
// Set time to live as 1 hour (1000 millis x 60 sec x 60 min)
topicPublisher.setTimeToLive(3600000);

The provider will then add the timeToLive value to the system timestamp and set the
JMSExpiration. By default the timeToLive is zero (0), which indicates that the message
doesn’t expire. Calling setTimeToLive() with a zero argument ensures that a message
is created without an expiration date. Any direct programmatic invocation of the
setJMSExpiration() method will be ignored when the message is sent.

JMSRedelivered

The JMSRedelivered header indicates that the message was redelivered to the consumer.
The JMSRedelivered header is true if the message is redelivered, and false if it’s not. A
message may be marked redelivered if a consumer failed to acknowledge previous de-
livery of the message, or when the JMS provider is not certain whether the consumer
has already received the message:

boolean isRedelivered = message.getJMSRedelivered()

Message redelivery is covered in more detail in Chapter 7.

JMSPriority

The message producer may assign a priority to a message when it is delivered. There
are two categories of message priorities: levels 0–4 are gradations of normal priority,
and levels 5–9 are gradations of expedited priority. The message servers may use a
message’s priority to prioritize delivery of messages to consumers—messages with an
expedited priority are delivered ahead of normal priority messages:

int priority = message.getJMSPriority();

Headers | 45

The priority of messages can be declared by the JMS client using the setPriority()
method on the producer:

TopicPublisher topicPublisher = TopicSession.createPublisher(someTopic);
topicPublisher.setPriority(9);

Any direct programmatic invocation of the setJMSPriority() method will be ignored
when the message is sent.

Developer-Assigned Headers
While many of the JMS headers are set automatically when the message is delivered,
several others must be set explicitly on the Message object before it is delivered by the
producer.

JMSReplyTo

In some cases, a JMS message producer may want the consumers to reply to a message.
The JMSReplyTo header, which contains a javax.jms.Destination, indicates which ad-
dress a JMS consumer should reply to. Using this header property further decouples
the message producer from the message consumer when using a request/reply scenario.
Note that a JMS consumer is not required to send a reply just because this header
property is set:

message.setJMSReplyTo(topic);
...
Topic topic = (Topic) message.getJMSReplyTo();

JMSCorrelationID

The JMSCorrelationID provides a header for associating the current message with
some previous message or application-specific ID. In most cases, the JMSCorrelationID
will be used to tag a message as a reply to a previous message identified by a
JMSMessageID, but the JMSCorrelationID can be any value, not just a JMSMessageID:

message.setJMSCorrelationID(identifier);
...
String correlationid = message.getJMSCorrelationID();

JMSType

JMSType is an optional header that is set by the JMS client. Its main purpose is to identify
the message structure and type of payload. Note that this header does not indicate the
class of message being sent (MapMessage, TextMessage, etc.), but rather an entry in an
internal repository used by the JMS provider. Some MOM systems (IBM’s WebSphere
MQ, for example) treat the message body as uninterpreted bytes. These systems often
provide a message type as a simple way for applications to label the message body. So
a message type can be useful when exchanging messages with non-JMS clients that
require this type of information to process the payload.

46 | Chapter 3: Anatomy of a JMS Message

Other MOM and EDI systems directly tie each message to some form of external mes-
sage schema, with the message type as the link. These MOM and EDI systems require
a message type because they provide metadata services bound to it. For example, IBM’s
WebSphere Business Integration (WBI) Adapter Framework uses the JMSType to de-
termine what kind of message is being received; a null value indicates an administrative
message, whereas values beginning with mcd://mrm or mcd://xml refer to a business
object.

Properties
Properties act like additional headers that can be assigned to a message. They allow the
developer to add additional opaque information about the message. They are also used
to expose data used for message selectors when doing message filtering. The Message
interface provides several accessor and mutator methods for reading and writing prop-
erties. The value of a property can be a String, boolean, byte, double, int, long, or float.

There are three basic categories of message properties: application-specific properties,
JMS-defined properties, and provider-specific properties. Application properties are
defined and applied to Message objects by the application developer; the JMS extension
and provider-specific properties are additional headers that are, for the most part,
automatically added by the JMS provider.

Application-Specific Properties
Any property defined by the application developer can be an application-specific prop-
erty. Application properties are set before the message is delivered. There are no pre-
defined application properties; developers are free to define any properties that fit their
needs. For example, in the chat example developed in Chapter 2, a special property
could be added that identifies the user sending the message:

TextMessage message = pubSession.createTextMessage();
message.setText(text);
message.setStringProperty("username",username);
publisher.publish(message);

As an application-specific property, username is not meaningful outside the Chat appli-
cation; it is used exclusively by the application to filter messages based on the identity
of the publisher.

Property values can be any boolean, byte, short, int, long, float, double, or String. The
javax.jms.Message interface provides accessor and mutator methods for each of these
property value types. Here is a subset of the Message interface definition that shows
these methods:

package javax.jms;

public interface Message {

Properties | 47

 public String getStringProperty(String name)
 throws JMSException, MessageFormatException;
 public void setStringProperty(String name, String value)
 throws JMSException, MessageNotWriteableException;

 public int getIntProperty(String name)
 throws JMSException, MessageFormatException;
 public void setIntProperty(String name, int value)
 throws JMSException, MessageNotWriteableException;

 public boolean getBooleanProperty(String name)
 throws JMSException, MessageFormatException;
 public void setBooleanProperty(String name, boolean value)
 throws JMSException, MessageNotWriteableException;

 public double getDoubleProperty(String name)
 throws JMSException, MessageFormatException;
 public void setDoubleProperty(String name, double value)
 throws JMSException, MessageNotWriteableException;

 public float getFloatProperty(String name)
 throws JMSException, MessageFormatException;
 public void setFloatProperty(String name, float value)
 throws JMSException, MessageNotWriteableException;

 public byte getByteProperty(String name)
 throws JMSException, MessageFormatException;
 public void setByteProperty(String name, byte value)
 throws JMSException, MessageNotWriteableException;

 public long getLongProperty(String name)
 throws JMSException, MessageFormatException;
 public void setLongProperty(String name, long value)
 throws JMSException, MessageNotWriteableException;

 public short getShortProperty(String name)
 throws JMSException, MessageFormatException;
 public void setShortProperty(String name, short value)
 throws JMSException, MessageNotWriteableException;

 public Object getObjectProperty(String name)
 throws JMSException, MessageFormatException;
 public void setObjectProperty(String name, Object value)
 throws JMSException, MessageNotWriteableException;

 public void clearProperties()
 throws JMSException;

 public Enumeration getPropertyNames()
 throws JMSException;

 public boolean propertyExists(String name)
 throws JMSException;
 ...
}

48 | Chapter 3: Anatomy of a JMS Message

www.allitebooks.com

http://www.allitebooks.org

The object property methods (setObjectProperty() and getObjectProperty()) can only
be used with object wrappers that correspond to the allowed primitive types
(java.lang.Integer, java.lang.Double, etc.) and the String type. They cannot be used
with other types of Java objects (such as transfer objects or business objects).

Once a message is published or sent, its properties become read-only; the properties
cannot be changed by either the consumer or the producer. If the consumer attempts
to set a property, the method throws a javax.jms.MessageNotWriteableException. The
properties can, however, be changed on that message by calling the method
clearProperties(), which removes all the properties from the message so that new ones
can be added.

The getPropertyNames() method in the Message interface can be used to obtain an
Enumeration of all the property names contained in the message. These names can then
be used to obtain property values using the property accessor methods. For example:

public void onMessage(Message message) {
 Enumeration propertyNames = message.getPropertyNames();
 while(propertyNames.hasMoreElements()) {
 String name = (String)propertyNames.nextElement();
 Object value = getObjectProperty(name);
 System.out.println("\nname+" = "+value);
 }
}

JMS-Defined Properties
JMS-defined properties have the same characteristics as application properties, except
that most of them are set by the JMS provider when the message is sent. JMS-defined
properties act as optional JMS headers; with some noted exceptions, vendors can
choose to support none, some, or all of them. The following is a list of the nine JMS-
defined properties, which are described in more detail in Appendix C:

• JMSXUserID

• JMSXAppID

• JMSXProducerTXID

• JMSXConsumerTXID

• JMSXRcvTimestamp

• JMSXDeliveryCount

• JMSXState

• JMSXGroupID

• JMSXGroupSeq

Of this list, only JMSXGroupID and JMSXGroupSeq are required to be supported by all JMS
providers. These optional properties are used to group messages.

Properties | 49

Note that in the Message interface you will not find corresponding setJMSX<PROP
ERTY>() and getJMSX<PROPERTY>() methods defined; when used, they must be set in the
same manner as application-specified properties:

message.setStringProperty("JMSXGroupID", "ERF-001");
message.setIntProperty("JMSXGroupSeq", 3);

Provider-Specific Properties
Every JMS provider can define a set of proprietary properties that can be set by the
client or the provider automatically. Provider-specific properties must start with the
prefix JMS followed by the property name (JMS_<vendor-property-name>). The purpose
of the provider-specific properties is to support proprietary vendor features.

Message Types
The Java Message Service defines six Message interface types that must be supported
by JMS providers. Although JMS defines the Message interfaces, it doesn’t define their
implementation. This allows vendors to implement and transport messages in their
own way, while maintaining a consistent and standard interface for the
JMS application developer. The six message interfaces are Message and its five subin-
terfaces: TextMessage, StreamMessage, MapMessage, ObjectMessage, and BytesMessage.

The Message interfaces are defined according to the kind of payload they are designed
to carry. In some cases, Message types were included in JMS to support legacy payloads
that are common and useful, which is the case with the TextMessage, BytesMessage, and
StreamMessage message types. In other cases, the Message types were defined to facilitate
emerging needs; for example, ObjectMessage can transport serializable Java objects.
Some vendors may provide other proprietary message types. Progress’s SonicMQ, for
example, provides an XMLMessage type that extends the TextMessage, allowing develop-
ers to deal with the message directly through DOM or SAX interfaces.

Message
The simplest type of message is the javax.jms.Message, which serves as the base inter-
face to the other message types. As shown below, the Message type can be created and
used as a JMS message with no payload:

// Create and deliver a Message
Message message = session.createMessage();
publisher.publish(message);
...

// Receive a message on the consumer
public void onMessage(Message message) {
 // No payload, just process event notification
}

50 | Chapter 3: Anatomy of a JMS Message

This type of message contains only JMS headers and properties and is used in event
notification. An event notification is a broadcast, warning, or notice of some occur-
rence. If the business scenario requires a simple notification without a payload, the
lightweight Message type is the most efficient way to implement it. For example, to
provide a broadcast notification of an exception in a particular class, you could publish
a message containing the text of the exception without a payload, as follows:

//send the exception
 ...
 try {
 ...
 } catch (Exception up) {
 Message message = session.createMessage();
 message.setStringProperty("Exception", up.getMessage());
 publisher.publish(message);
 throw up;
 }

//receive the exception
 ...
 public void onMessage(Message message) {
 ...
 System.out.println("Exception: " + message.getStringProperty());
 ...
 }
 ...

TextMessage
This type carries a java.lang.String as its payload. It’s useful for exchanging simple
text messages and more complex character data like XML documents:

package javax.jms;

public interface TextMessage extends Message {
 public String getText()
 throws JMSException;
 public void setText(String payload)
 throws JMSException, MessageNotWriteableException;
}

Text messages can be created with one of two factory methods defined in the Session
interface. One factory method takes no arguments, resulting in a TextMessage object
with an empty payload—the payload is added using the setText() method defined in
the TextMessage interface. The other factory method takes a String type payload as an
argument, producing a ready-to-deliver TextMessage object:

TextMessage textMessage = session.createTextMessage();
textMessage.setText("Hello!");
topicPublisher.publish(textMessage);
...

Message Types | 51

TextMessage textMessage = session.createTextMessage("Hello!");
queueSender.send(textMessage);

When a consumer receives a TextMessage object, it can extract the String payload using
the getText() method. If the TextMessage was delivered without a payload, the
getText() method returns a null value.

ObjectMessage
This type carries a serializable Java object as its payload. It’s useful for exchanging Java
objects:

package javax.jms;

public interface ObjectMessage extends Message {
 public java.io.Serializable getObject()
 throws JMSException;
 public void setObject(java.io.Serializable payload)
 throws JMSException, MessageNotWriteableException;
}

Object messages can be created with one of two factory methods defined in the Ses
sion interface. One factory method takes no arguments, so the serializable object must
be added using the setObject(). The other factory method takes the Serializable pay-
load as an argument, producing a ready-to-deliver ObjectMessage:

// Order is a serializable object
Order order = new Order();
...
ObjectMessage objectMessage = session.createObjectMessage();
objectMessage.setObject(order);
queueSender.send(objectMessage);
...
ObjectMessage objectMessage = session.createObjectMessage(order);
topicPublisher.publish(objectMessage);

When a consumer receives an ObjectMessage, it can extract the payload using the
getObject() method. If the ObjectMessage was delivered without a payload, the
getObject() method returns a null value:

public void onMessage(Message message) {
 try {
 ObjectMessage objectMessage = (ObjectMessage)message;
 Order order = (Order)objectMessage.getObject();
 ...
 } catch (JMSException jmse) {
 ...
}

52 | Chapter 3: Anatomy of a JMS Message

While the ObjectMessage looks very convenient, there are implications to using this
message type. For example, when using the ObjectMessage, both the message producer
and the message consumer must be JMS-compatible (i.e., written for the Java
platform).†

Furthermore, the class definition of the object payload has to be available to both the
JMS producer and JMS consumer. If the Order class used in the previous example is
not available to the JMS consumer’s Java Virtual Machine (JVM), an attempt to access
the Order object from the message’s payload would result in a java.lang.ClassNotFoun
dException. Some JMS providers may provide dynamic class-loading capabilities, but
that would be a vendor-specific quality of service. Most of the time, the class must be
placed on the JMS consumer’s class path manually by the developer.

BytesMessage
This type carries an array of primitive bytes as its payload. It’s useful for exchanging
data in an application’s native format, which may not be compatible with other existing
Message types. It is also useful where JMS is used purely as a transport between two
systems, and the message payload is opaque to the JMS client:

package javax.jms;

public interface BytesMessage extends Message {

 public byte readByte() throws JMSException;
 public void writeByte(byte value) throws JMSException;
 public int readUnsignedByte() throws JMSException;

 public int readBytes(byte[] value) throws JMSException;
 public void writeBytes(byte[] value) throws JMSException;
 public int readBytes(byte[] value, int length)
 throws JMSException;
 public void writeBytes(byte[] value, int offset, int length)
 throws JMSException;

 public boolean readBoolean() throws JMSException;
 public void writeBoolean(boolean value) throws JMSException;

 public char readChar() throws JMSException;
 public void writeChar(char value) throws JMSException;

 public short readShort() throws JMSException;
 public void writeShort(short value) throws JMSException;
 public int readUnsignedShort() throws JMSException;

 public void writeInt(int value) throws JMSException;
 public int readInt() throws JMSException;

† It’s possible that a JMS provider could use the CORBA 2.3 IIOP protocol, which can handle ObjectMessage
types consumed by non-Java, non-JMS clients.

Message Types | 53

 public void writeLong(long value) throws JMSException;
 public long readLong() throws JMSException;

 public float readFloat() throws JMSException;
 public void writeFloat(float value) throws JMSException;

 public double readDouble() throws JMSException;
 public void writeDouble(double value) throws JMSException;

 public String readUTF() throws JMSException;
 public void writeUTF(String value) throws JMSException;

 public void writeObject(Object value) throws JMSException;

 public void reset() throws JMSException;
}

If you’ve worked with the java.io.DataInputStream and java.io.DataOutputStream
classes, then the methods of the BytesMessage interface, which are loosely based on
these I/O classes, will look familiar to you. Most of the methods defined in the
BytesMessage interface allow the application developer to read and write data to a byte
stream using Java’s primitive data types. When a Java primitive is written to the
BytesMessage using one of the set<TYPE>() methods, the primitive value is converted
to its byte representation and appended to the stream. Here’s how a BytesMessage is
created and how values are written to its byte stream:

BytesMessage bytesMessage = session.createBytesMessage();

bytesMessage.writeChar('R');
bytesMessage.writeInt(10);
bytesMessage.writeUTF("OReilly");

queueSender.send(bytesMessage);

When a BytesMessage is received by a JMS consumer, the payload is a raw byte stream,
so it is possible to read the stream using arbitrary types, but this will probably result in
erroneous data. It’s best to read the BytesMessage’s payload in the same order, and with
the same types, with which it was written:

public void onMessage(Message message) {
 try {
 BytesMessage bytesMessage = (BytesMessage)message;
 char c = bytesMessage.readChar();
 int i = bytesMessage.readInt();
 String s = bytesMessage.readUTF();
 } catch (JMSException jmse){
 ...
}

In order to read and write String values, the BytesMessage uses methods based on the
UTF-8 format, which is a standard format for transferring and storing Unicode text
data efficiently.

54 | Chapter 3: Anatomy of a JMS Message

UTF-8
UTF-8 encodes Unicode characters as 1 to 4 bytes. The encoding is designed for pro-
cessing efficiency, ease of implementation in most existing software, and compatibility
with ASCII. That is, the encoding of any character in the ASCII character set has the
same encoding in UTF-8. So the letter “A” (0×41 in ASCII) is also a 1-byte character
with the same value, 0×41, in UTF-8. The characters in ISO 8859-1 that are above the
ASCII range (i.e., above 127), when converted to Unicode and encoded in UTF-8, are
2-byte characters.

Every character in the Unicode character set can be expressed in UTF-8, and there is
an algorithmic conversion between the 16-bit (2-byte) form of Unicode and UTF-8 that
ensures lossless transformations.

One of the key benefits of using the UTF-8 encoding is that null bytes are only used as
string terminators. Some mail systems and network protocols cannot tolerate null bytes
in the input stream, so the 16-bit encoding of Unicode, which might have a null value
in either byte, is unacceptable for these purposes.

The methods for accessing the short and byte primitives include unsigned methods
(readUnsignedShort(), readUnsignedByte()). These methods are something of a sur-
prise, since the short and byte data types in Java are almost always signed. The values
that can be taken by unsigned byte and short data are what you’d expect: to 255 for a
byte, and to 65535 for a short. Because these values can’t be represented by the (signed)
byte and short data types, readUnsignedByte() and readUnsignedShort() both return
an int.

In addition to the methods for accessing primitive data types, the BytesMessage includes
a single writeObject() method. This is used for String objects and the primitive wrap-
pers: Byte, Boolean, Character, Short, Integer, Long, Float, Double. When written to the
BytesMessage, these values are converted to the byte form of their primitive counter-
parts. The writeObject() method is provided as a convenience when the types to be
written aren’t known until runtime.

If an exception is thrown while reading the BytesMessage and you are able to recover
from the exception without having to retrieve the message again, the pointer in the
stream must be reset to the position it had just been in prior to the read operation that
caused the exception. This allows the JMS client to recover from read errors without
losing its place in the stream.

The reset() method returns the stream pointer to the beginning of the stream and puts
the BytesMessage in read-only mode so that the contents of its byte stream cannot be
further modified. This method can be called explicitly by the JMS client if needed, but
it’s always called implicitly when the BytesMessage is delivered.

The BytesMessage is one of the most portable of the message types, and is therefore
useful when communicating with non-JMS messaging clients. In some cases, a JMS

Message Types | 55

client may be a kind of router, consuming messages from one source and delivering
them to a destination. Routing applications may not need to know the contents of the
data they transport and so may choose to transfer payloads as binary data, using a
BytesMessage, from one location to another.

StreamMessage
The StreamMessage carries a stream of primitive Java types (int, double, char, etc.) as
its payload. It provides a set of convenience methods for mapping a formatted stream
of bytes to Java primitives. Primitive types are read from the Message in the same order
they were written. Here’s the definition of the StreamMessage interface:

public interface StreamMessage extends Message {

 public boolean readBoolean() throws JMSException;
 public void writeBoolean(boolean value) throws JMSException;

 public byte readByte() throws JMSException;
 public int readBytes(byte[] value) throws JMSException;
 public void writeByte(byte value) throws JMSException;
 public void writeBytes(byte[] value) throws JMSException;
 public void writeBytes(byte[] value, int offset, int length)
 throws JMSException;

 public short readShort() throws JMSException;
 public void writeShort(short value) throws JMSException;

 public char readChar() throws JMSException;
 public void writeChar(char value) throws JMSException;

 public int readInt() throws JMSException;
 public void writeInt(int value) throws JMSException;

 public long readLong() throws JMSException;
 public void writeLong(long value) throws JMSException;

 public float readFloat() throws JMSException;
 public void writeFloat(float value) throws JMSException;

 public double readDouble() throws JMSException;
 public void writeDouble(double value) throws JMSException;

 public String readString() throws JMSException;
 public void writeString(String value) throws JMSException;

 public Object readObject() throws JMSException;
 public void writeObject(Object value) throws JMSException;

 public void reset() throws JMSException;
}

On the surface, the StreamMessage strongly resembles the BytesMessage, but they are
not the same. The StreamMessage keeps track of the order and types of primitives written

56 | Chapter 3: Anatomy of a JMS Message

to the stream, so formal conversion rules apply. For example, an exception would be
thrown if you tried to read a long value as a short:

StreamMessage streamMessage = session.createStreamMessage();
streamMessage.writeLong(2938302);

// The next line throws a JMSException
short value = streamMessage.readShort();

While this would work fine with a BytesMessage, it won’t work with a StreamMessage.
A BytesMessage would write the long as 64 bits (8 bytes) of raw data, so that you could
later read some of the data as a short, which is only 16 bits (the first 2 bytes of the long).
The StreamMessage, on the other hand, writes the type information as well as the value
of the long primitive, and enforces a strict set of conversion rules that prevent reading
the long as a short.

Table 3-1 shows the conversion rules for each type. The left column shows the type
written, and the right column shows how that type may be read. A JMSException is
thrown by the accessor methods to indicate that the original type could not be
converted to the type requested. This is the exception that would be thrown if you
attempted to read long as a short.

Table 3-1. Type conversion rules

write<TYPE>() read<TYPE>()

boolean boolean, String

byte byte, short, int, long, String

short short, int, long, String

char char, String

long long, String

int int, long, String

float float, double, String

double double, String

String String, boolean, byte, short, int, long, float, double

byte [] byte []

String values can be converted to any primitive data type if they are formatted correctly.
If the String value cannot be converted to the primitive type requested, a java.lang.Num
berFormatException is thrown. However, most primitive values can be accessed as a
String using the readString() method. The only exceptions to this rule are char values
and byte arrays, which cannot be read as String values.

The writeObject() method follows the rules outlined for the similar method in the
BytesMessage class. Primitive wrappers are converted to their primitive counterparts.
The readObject() method returns the appropriate object wrapper for primitive values,

Message Types | 57

or a String or a byte array, depending on the type that was written to the stream. For
example, if a value was written as a primitive int, it can be read as a java.lang.Inte
ger object.

The StreamMessage also allows null values to be written to the stream. If a JMS client
attempts to read a null value using the readObject() method, null is returned. The rest
of the primitive accessor methods attempt to convert the null value to the requested
type using the valueOf() operations. The readBoolean() method returns false for
null values, while the other primitive property methods throw the java.lang.Number
FormatException. The readString() method returns null or possibly an empty String
("") depending on the implementation. The readChar() method throws a NullPointer
Exception.

If an exception is thrown while reading the StreamMessage and you are able to recover
from the exception without having to retrieve the message again, the pointer in the
stream is reset to the position it had just been in prior to the read operation that caused
the exception. This allows the JMS client to recover gracefully from exceptions without
losing the pointer’s position in the stream.

The reset() method returns the stream pointer to the beginning of the stream and puts
the message in a read-only mode. It is called automatically when the message is deliv-
ered to the client. However, it may need to be called directly by the consuming client
when a message is redelivered:

if (strmMsg.getJMSRedelivered())
 strmMsg.reset();

MapMessage
This type carries a set of name-value pairs as its payload. The payload is similar to a
java.util.Properties object, except the values must be Java primitives (or their wrap-
pers) in addition to Strings. The MapMessage class is useful for delivering keyed data
that may change from one message to the next:

public interface MapMessage extends Message {

 public boolean getBoolean(String name) throws JMSException;
 public void setBoolean(String name, boolean value)
 throws JMSException;

 public byte getByte(String name) throws JMSException;
 public void setByte(String name, byte value) throws JMSException;

 public byte[] getBytes(String name) throws JMSException;
 public void setBytes(String name, byte[] value)
 throws JMSException;
 public void setBytes(String name, byte[] value, int offset, int length)
 throws JMSException;

58 | Chapter 3: Anatomy of a JMS Message

 public short getShort(String name) throws JMSException;
 public void setShort(String name, short value) throws JMSException;

 public char getChar(String name) throws JMSException;
 public void setChar(String name, char value) throws JMSException;

 public int getInt(String name) throws JMSException;
 public void setInt(String name, int value) throws JMSException;

 public long getLong(String name) throws JMSException;
 public void setLong(String name, long value) throws JMSException;

 public float getFloat(String name) throws JMSException;
 public void setFloat(String name, float value)
 throws JMSException;

 public double getDouble(String name) throws JMSException;
 public void setDouble(String name, double value)
 throws JMSException;

 public String getString(String name) throws JMSException;
 public void setString(String name, String value)
 throws JMSException;

 public Object getObject(String name) throws JMSException;
 public void setObject(String name, Object value)
 throws JMSException;

 public Enumeration getMapNames() throws JMSException;
 public boolean itemExists(String name) throws JMSException;
}

Essentially, MapMessage works similarly to JMS properties: any name-value pair can be
written to the payload. The name must be a String object, and the value may be a
String or a primitive type. The values written to the MapMessage can then be read by a
JMS consumer using the name as a key:

MapMessage mapMessage = session.createMapMessage();
mapMessage.setInt("Age", 88);
mapMessage.setFloat("Weight", 234);
mapMessage.setString("Name", "Smith");
mapMessage.setObject("Height", new Double(150.32));
....

int age = mapMessage.getInt("Age");
float weight = mapMessage.getFloat("Weight");
String name = mapMessage.getString("Name");
Double height = (Double)mapMessage.getObject("Height");

The setObject() method writes a Java primitive wrapper type, String object, or byte
array. The primitive wrappers are converted to their corresponding primitive types
when set. The getObject() method reads Strings, byte arrays, or any primitive type as
its corresponding primitive wrapper.

Message Types | 59

The conversion rules defined for the StreamMessage apply to the MapMessage. See Ta-
ble 3-1 in the section “StreamMessage” on page 56.

A JMSException is thrown by the accessor methods to indicate that the original type
could not be converted to the type requested. In addition, String values can be con-
verted to any primitive value type if they are formatted correctly; the accessor will throw
a java.lang.NumberFormatException if they aren’t.

If a JMS client attempts to read a name-value pair that doesn’t exist, the value is treated
as if it was null. Although the getObject() method returns null for nonexistent map-
pings, the other types behave differently. While most primitive accessors throw the
java.lang.NumberFormatException if a null value or nonexistent mapping is read, other
accessors behave as follows: the getBoolean() method returns false for null values;
the getString() returns a null value or possibly an empty String (""), depending on
the implementation; and the getChar() method throws a NullPointerException.

To avoid reading nonexistent name-value pairs, the MapMessage provides an
itemExists() test method. In addition, the getMapNames() method lets a JMS client
enumerate the names and use them to obtain all the values in the message. For example:

public void onMessage(Message message) {
 MapMessage mapMessage = (MapMessage)message;
 Enumeration names = mapMessage.getMapNames();
 while(names.hasMoreElements()){
 String name = (String)names.nextElement();
 Object value = mapMessage.getObject(name);
 System.out.println("Name = "+name+", Value = "+value);
 }
}

Read-Only Messages
When messages are delivered, the body of the message is made read-only. Any attempt
to alter a message body after it has been delivered results in a javax.jms.MessageNot
WriteableException. The only way to change the body of a message after it has been
delivered is to invoke the clearBody() method, which is defined in the Message interface.
The clearBody() method empties the message’s payload so that a new payload can be
added.

Properties are also read-only after a message is delivered. Why are both the body and
properties made read-only after delivery? It allows the JMS provider more flexibility in
implementing the Message object. For example, a JMS provider may choose to stream
a BytesMessage or StreamMessage as it is read, rather than all at once. Another vendor
may choose to keep properties or body data in an internal buffer so that it can be read
directly without the need to make a copy, which is especially useful with multiple
consumers on the same client.

60 | Chapter 3: Anatomy of a JMS Message

Client-Acknowledged Messages
The acknowledge() method, defined in the Message interface, is used when the consumer
has chosen CLIENT_ACKNOWLEDGE as its acknowledgment mode. There are three acknowl-
edgment modes that may be set by the JMS consumer when its session is created:
AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE, and CLIENT_ACKNOWLEDGE. Here is how a pub/
sub consumer sets one of the three acknowledgment modes:

TopicSession topic =
 topicConnection.createTopicSession(false, Session.CLIENT_ACKNOWLEDGE);

In CLIENT_ACKNOWLEDGE mode, the JMS consumer (client) explicitly acknowledges each
message as it is received. The acknowledge() method on the Message interface is used
for this purpose. For example:

public void onMessage(Message message) {
 message.acknowledge();
 ...
}

The other acknowledgment modes do not require the use of this method and are
covered in more detail in Chapter 7 and Appendix B.

Any acknowledgment mode specified for a transacted session is ignored.
When a session is transacted, the acknowledgment is part of the trans-
action and is executed automatically prior to the commit of the trans-
action. If the transaction is rolled back, no acknowledgment is given.
Transactions are covered in more detail in Chapter 7.

Interoperability and Portability of Messages
A message delivered by a JMS client may be converted to a JMS provider’s native format
and delivered to non-JMS clients, but it must still be consumable as its original
Message type by JMS clients. Messages delivered from non-JMS clients to a JMS provider
may be consumable by JMS clients—the JMS provider should attempt to map the
message to its closest JMS type or, if that’s not possible, to the BytesMessage.

JMS providers are not required to be interoperable. A message published to one JMS
provider’s server is not consumable by another JMS provider’s consumer. In addition,
a JMS provider usually can’t publish or read messages from destinations (topics and
queues) implemented by another JMS provider. Most JMS providers have bridges or
connectors to address this issue.

Although interoperability is not required, limited message portability is required. A
message consumed or created using JMS provider P1 can be delivered using JMS pro-
vider P2. JMS provider P2 will simply use the accessor methods of the message to read
its headers, properties, and payload and convert them to its own native format: not a

Message Types | 61

fast process, but portable. This portability is limited to interactions of the JMS client,
which takes a message from one provider and passes it to another.

62 | Chapter 3: Anatomy of a JMS Message

CHAPTER 4

Point-to-Point Messaging

This chapter focuses on the point-to-point (p2p) messaging model. The point-to-point
model is used when you need to send a message to only one message consumer. Even
though multiple consumers may be listening on the queue for the same message, only
one of those consumer threads will receive the message. This is different from the
publish-and-subscribe model described in Chapter 5, where a message is broadcast to
(and consumed by) multiple consumers.

In this chapter, we will describe the point-to-point model through the use of a typical
messaging scenario involving a borrower and a mortgage lender. In our example, the
QBorrower class will submit a loan application via JMS messaging to a QLender class.
The QLender class will receive the loan request through a message queue, determine
whether to accept or decline the loan based on certain business rules, and send the
result (accept or decline) back to the QBorrower class through another message queue.
However, before launching into the messaging example, we will first describe the main
characteristics and use cases of the p2p messaging model.

Point-to-Point Overview
In the p2p model, the producer is called a sender and the consumer is called a
receiver. The most important characteristics of the point-to-point model are as follows:

• Messages are exchanged through a virtual channel called a queue. A queue is a
destination to which producers send messages and a source from which receivers
consume messages.

• Each message is delivered to only one receiver. Multiple receivers may listen on a
queue, but each message in the queue may only be consumed by one of the queue’s
receivers.

• Messages are ordered. A queue delivers messages to consumers in the order they
were placed in the queue by the message server. As messages are consumed, they
are removed from the head of the queue (unless message priority is used).

63

• There is no coupling of the producers to the consumers. Receivers and senders can
be added dynamically at runtime, allowing the system to grow or shrink in
complexity over time. (This is a characteristic of messaging systems in general.)

Point-to-point messaging is based on the concept of sending a message to a named
destination. The actual network location of the destination is transparent to the sender,
because the p2p client works with a Queue identifier obtained from a JNDI namespace.

As you will see in the next chapter, the pub/sub model is based on a push model, which
means that consumers are delivered messages without having to request them. With
the p2p messaging model, the p2p receiver can either push or pull messages, depending
on whether it uses the asynchronous onMessage() callback or a synchronous
receive() method. Both of these methods are explained in more detail later in this
chapter.

In the p2p model there is no direct coupling of the producers to the consumers. The
destination queue provides a virtual channel that decouples consumers from producers.
In the pub/sub model, multiple consumers that subscribe to the same topic each receive
their own copy of every message addressed to that topic. In the p2p model, multiple
consumers can use the same queue, but each message delivered to the queue can only
be received by one of the queue’s consumers. How messages sent to a queue are dis-
tributed to the queue’s consumers depends on the policies of the JMS provider. Some
JMS providers use load-balancing techniques to distribute messages evenly among
consumers, while others will use more arbitrary policies.

Messages intended for a p2p queue can be either persistent or nonpersistent. Persistent
messages survive JMS provider failures, while nonpersistent messages do not. Messages
may also have a priority and an expiration time. One important difference between
point-to-point and publish/subscribe messaging is that p2p messages are always
delivered, regardless of the current connection status of the receiver. Once a message
is delivered to a queue, it stays there even if no consumer is currently connected.

There are two types of point-to-point messaging: asynchronous fire-and-forget pro-
cessing and asynchronous request/reply processing. With fire-and-forget processing,
the message producer sends a message to a queue and does not expect to receive a
response (at least not right away). This type of processing can be used to trigger an
event or make a request to a receiver to execute a particular action that does not require
a response (or in some cases, an immediate response). For instance, you may want to
use asynchronous fire-and-forget processing to send a message to a logging system,
make a request to kick off a report, or trigger an event on another process. Asynchro-
nous fire-and-forget processing is illustrated in Figure 4-1.

64 | Chapter 4: Point-to-Point Messaging

Application
sender

Queue

Application
receiver

Figure 4-1. p2p async fire-and-forget

With asynchronous request/reply processing, the message producer sends a message
on one queue and then does a blocking wait on a reply queue waiting for the response
from the receiver. The request/reply processing provides for a high degree of decoupling
between the producer and consumer, allowing the message producer and consumer
components to be heterogeneous languages or platforms. Asynchronous request/reply
processing is illustrated in Figure 4-2.

Application
sender

Queue
IN

Queue
OUT

Application
receiver

Figure 4-2. p2p async request/reply

The specific p2p interfaces for connecting, creating, sending, and receiving are shown
in Table 4-1.

Point-to-Point Overview | 65

Table 4-1. Interfaces for queues

General API Point-to-point API

ConnectionFactory QueueConnectionFactory

Destination Queue

Connection QueueConnection

Session QueueSession

MessageConsumer QueueSender

MessageProducer QueueReceiver

When to Use Point-to-Point Messaging
The rationale behind the two models (point-to-point and publish-and-subscribe) lies
in the origin of the JMS specification. JMS started out as a way of providing a common
API for accessing existing messaging systems. At the time of its conception, some mes-
saging vendors had a p2p model, and some had a pub/sub model. Hence JMS needed
to provide an API for both models to gain wide industry support.

In most cases, the decision about which model to use depends on the distinct charac-
teristics of each model. With pub/sub, any number of subscribers can be listening on
a topic, all receiving copies of the same message. The publisher generally does not care
how many subscribers there are or how many of them are actively listening on the topic.
For example, consider a publisher that broadcasts stock quotes. If any particular sub-
scriber is not currently connected and misses out on a great quote, the publisher is not
concerned. In contrast, with point-to-point messaging, a particular message is likely to
be intended for a one-on-one conversation with a specific application at the other end.
In this scenario, every message matters.

Point-to-point is used when you want one receiver to process any given message once
and only once. This is perhaps the most critical difference between the two models:
point-to-point guarantees that only one consumer will process a given message. This
is extremely important when messages need to be processed separately but in tandem,
balancing the load of message processing across many JMS clients. Another advantage
is that the point-to-point model provides a QueueBrowser that allows the JMS client to
take a snapshot of the queue to see messages waiting to be consumed. Pub/sub does
not include a browsing feature. We’ll talk more about the QueueBrowser later in this
chapter.

Another use case for point-to-point messaging is when you need synchronous com-
munication between components, but those components are written in different pro-
gramming languages or implemented in different technology platforms (e.g., J2EE
and .NET). For example, you may have a stock trading client written as a Java Swing
client that needs to communicate with a .NET/C# trading server to process the stock
trade. In this scenario, point-to-point messaging can be used to provide the interoper-
ability between these heterogeneous platforms.

66 | Chapter 4: Point-to-Point Messaging

As you will see later in this chapter, another good reason to use point-to-point mes-
saging is to provide a higher degree of throughput to server-side components through
the use of message-based load balancing, particularly for homogeneous components
(i.e., Java to Java). Introducing p2p messaging allows you to add a degree of concurrent
processing to your architecture without having to deal with threads or Java concurrency
issues.

The QBorrower and QLender Application
To illustrate how point-to-point messaging works, we will use a simple decoupled
request/reply example where a QBorrower class makes a simple mortgage loan request
to a QLender class using point-to-point messaging. The QBorrower class sends the loan
request to the QLender class using a LoanRequest queue, and based on certain business
rules, the QLender class sends a response back to the QBorrower class using a LoanRes
ponseQ queue indicating whether the loan request was approved or denied. Since the
QBorrower is interested in finding out right away whether the loan was approved or not,
once the loan request is sent, the QBorrower class will block and wait for a response from
the QLender class before proceeding. This simple example models a typical messaging
request/reply scenario.

Configuring and Running the Application
Before looking at the code, let’s look at how the application works. As with the Chat
application, the QBorrower class and QLender class both include a main() method so they
can be run as a standalone Java application. To keep the code vendor-agnostic, both
classes need the connection factory name and queue names when starting the applica-
tion. The QLender class is executed from the command line as follows:

java ch04.p2p.QLender ConnectionFactory RequestQueue

where ConnectionFactory is the name of the queue connection factory defined in your
JMS provider and RequestQueue is the name of the queue that the QLender class should
be listening on to receive loan requests. As you’ll see later in this chapter, the
QBorrower sends the destination for the response message in the JMSReplyTo header
property, which is why you do not need to specify it when starting the QLender class.

The QBorrower class can be executed in the same manner in a separate command
window:

java ch04.p2p.QBorrower ConnectionFactory RequestQueue ReplyQueue

where ConnectionFactory is the name of the queue connection factory defined in your
JMS provider, RequestQueue is the name of the queue that the QBorrower class should
send loan requests to, and ReplyQueue is the name of the queue that the QBorrower class
should use to receive the results from the QLender class.

The QBorrower and QLender Application | 67

You will also need to define a jndi.properties file in your classpath that contains the
JNDI connection information for the JMS provider. The jndi.properties file contains
the initial context factory class, provider URL, username, and password needed to
connect to the JMS server. Each vendor will have a different context factory class and
URL name for connecting to the server. You will need to consult the documentation
of your specific JMS provider or Java EE container to obtain these values. We have
included the steps for configuring ActiveMQ to run the examples in this chapter in
Appendix D.

The QBorrower and QLender classes both require the queue connection factory name and
queue names to run. We have chosen to name the connection factory QueueCF, and the
loan request and loan response queues LoanRequestQ and LoanResponseQ, respectively.
These JNDI resources are typically configured in the JMS provider XML configuration
files or configuration screens. You will need to consult your JMS provider documen-
tation on how to configure these resources (please refer to Appendix D for the specific
configuration settings for ActiveMQ used to run the examples in this chapter).

You can run the QBorrower and QLender classes by entering the following two commands
in separate command windows:

java ch04.p2p.QLender QueueCF LoanRequestQ

java ch04.p2p.QBorrower QueueCF LoanRequestQ LoanResponseQ

When the QBorrower class starts, you will be prompted to enter a salary amount and
the requested loan amount. When you press enter, the QBorrower class will send the
salary and loan amount to the QLender class via the LoanRequestQ queue, wait for the
response on the LoanResponseQ queue, and display whether the loan was approved or
denied:

QBorrower Application Started
Press enter to quit application
Enter: Salary, Loan_Amount
e.g. 50000, 120000

> 80000, 200000
Loan request was Accepted!

> 50000, 300000
Loan request was Declined
>

Here’s what happened. The QBorrower sent the salary ($80,000) and the loan amount
($200,000) to the LoanRequestQ queue, then blocked and waited for a response from
the QLender class. The QLender class received the request on the LoanRequestQ queue,
applied the simple business logic based on the salary to loan ratio, and sent back the
response on the LoanResponseQ queue. The message was then received by the
QBorrower class, and the contents of the return message displayed on the console. This
interaction is illustrated in Figure 4-3.

68 | Chapter 4: Point-to-Point Messaging

Send loan request
on request queue

JMS
providerBorrower Lender

Producers and consumers

1 Receive loan request
on request queue

2

Receive response
on reply queue

4 Send response on
reply queue

3

Figure 4-3. Producers and consumers in the loan example

The rest of this chapter examines the source code for the QBorrower and QLender classes,
and covers several advanced subjects related to the point-to-point messaging model.

The QBorrower Class
The QBorrower class is responsible for sending a loan request message to a queue con-
taining a salary and loan amount. The class is fairly straightforward: the constructor
establishes a connection to the JMS provider, creates a QueueSession, and gets the re-
quest and response queues using a JNDI lookup. The main method instantiates the
QBorrower class and, upon receiving a salary and loan amount from standard input,
invokes the sendLoanRequest method to send the message to the queue. Here is the
listing for the QBorrower class in its entirety. We will be examining the JMS aspects of
this class in detail after the full listing:

package ch04.p2p;

import java.io.*;
import java.util.StringTokenizer;
import javax.jms.*;
import javax.naming.*;

public class QBorrower {

 private QueueConnection qConnect = null;
 private QueueSession qSession = null;
 private Queue responseQ = null;
 private Queue requestQ = null;

 public QBorrower(String queuecf, String requestQueue,
 String responseQueue) {
 try {
 // Connect to the provider and get the JMS connection
 Context ctx = new InitialContext();
 QueueConnectionFactory qFactory = (QueueConnectionFactory)
 ctx.lookup(queuecf);
 qConnect = qFactory.createQueueConnection();

 // Create the JMS Session
 qSession = qConnect.createQueueSession(
 false, Session.AUTO_ACKNOWLEDGE);

The QBorrower and QLender Application | 69

 // Lookup the request and response queues
 requestQ = (Queue)ctx.lookup(requestQueue);
 responseQ = (Queue)ctx.lookup(responseQueue);

 // Now that setup is complete, start the Connection
 qConnect.start();

 } catch (JMSException jmse) {
 jmse.printStackTrace();
 System.exit(1);
 } catch (NamingException jne) {
 jne.printStackTrace();
 System.exit(1);
 }
 }

 private void sendLoanRequest(double salary, double loanAmt) {
 try {
 // Create JMS message
 MapMessage msg = qSession.createMapMessage();
 msg.setDouble("Salary", salary);
 msg.setDouble("LoanAmount", loanAmt);
 msg.setJMSReplyTo(responseQ);

 // Create the sender and send the message
 QueueSender qSender = qSession.createSender(requestQ);
 qSender.send(msg);

 // Wait to see if the loan request was accepted or declined
 String filter =
 "JMSCorrelationID = '" + msg.getJMSMessageID() + "'";
 QueueReceiver qReceiver = qSession.createReceiver(responseQ, filter);
 TextMessage tmsg = (TextMessage)qReceiver.receive(30000);
 if (tmsg == null) {
 System.out.println("QLender not responding");
 } else {
 System.out.println("Loan request was " + tmsg.getText());
 }

 } catch (JMSException jmse) {
 jmse.printStackTrace();
 System.exit(1);
 }
 }

 private void exit() {
 try {
 qConnect.close();
 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }
 System.exit(0);
 }

70 | Chapter 4: Point-to-Point Messaging

 public static void main(String argv[]) {
 String queuecf = null;
 String requestq = null;
 String responseq = null;
 if (argv.length == 3) {
 queuecf = argv[0];
 requestq = argv[1];
 responseq = argv[2];
 } else {
 System.out.println("Invalid arguments. Should be: ");
 System.out.println
 ("java QBorrower factory requestQueue responseQueue");
 System.exit(0);
 }

 QBorrower borrower = new QBorrower(queuecf, requestq, responseq);

 try {
 // Read all standard input and send it as a message
 BufferedReader stdin = new BufferedReader
 (new InputStreamReader(System.in));
 System.out.println ("QBorrower Application Started");
 System.out.println ("Press enter to quit application");
 System.out.println ("Enter: Salary, Loan_Amount");
 System.out.println("\ne.g. 50000, 120000");

 while (true) {
 System.out.print("> ");
 String loanRequest = stdin.readLine();
 if (loanRequest == null ||
 loanRequest.trim().length() <= 0) {
 borrower.exit();
 }

 // Parse the deal description
 StringTokenizer st = new StringTokenizer(loanRequest, ",") ;
 double salary =
 Double.valueOf(st.nextToken().trim()).doubleValue();
 double loanAmt =
 Double.valueOf(st.nextToken().trim()).doubleValue();

 borrower.sendLoanRequest(salary, loanAmt);
 }
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }
}

The main method of the QBorrower class accepts three arguments from the command
line: the JNDI name of the queue connection factory, the JNDI name of the loan request
queue, and finally, the JNDI name of the loan response queue where the response from
the QLender class will be received. Once the input parameters have been validated, the

The QBorrower and QLender Application | 71

QBorrower class is instantiated and a loop is started that reads the salary and loan amount
into the class from the console:

String loanRequest = stdin.readLine();

The salary and loan amount input data is then parsed, and finally the sendLoanRe
quest method invoked. The input loop continues until the user presses enter on the
console without entering any data:

if (loanRequest == null ||
 loanRequest.trim().length() <= 0) {
 borrower.exit();
}

Now let’s look at the JMS portion of the code in detail, starting with the constructor
and ending with the sendLoanRequest method.

JMS Initialization

In the QBorrower class example, all of the JMS initialization logic is handled in the
constructor. The first thing the constructor does is establish a connection to the JMS
provider by creating an InitialContext:

Context ctx = new InitialContext();

The connection information needed to connect to the JMS provider is specified in the
jndi.properties file located in the classpath (see Appendix D for an example). Once we
have a JNDI context, we can get the QueueConnectionFactory using the JNDI connection
factory name passed into the constructor arguments. The QueueConnectionFactory is
then used to create the QueueConnection using a factory method on the QueueConnec
tionFactory:

QueueConnectionFactory qFactory =
 (QueueConnectionFactory) ctx.lookup(queuecf);
qConnect = qFactory.createQueueConnection();

Alternatively, you can pass a username and password into the createQueueConnection
method as String arguments to perform basic authentication on the connection. A
JMSSecurityException will be thrown if the user fails to authenticate:

qConnect = qFactory.createQueueConnection("system", "manager");

At this point a connection is created to the JMS provider. When the QueueConnection
is created, the connection is initially in stopped mode. This means you can send messages
to the queue, but no message consumers (including the QBorrower class, which is also
a message consumer) may receive messages from this connection until it is started.

The QueueConnection object is used to create a JMS Session object (specifically, a Queue
Session), which is the working thread and transactional unit of work in JMS. Unlike
JDBC, which requires a connection for each transactional unit of work, JMS uses a
single connection and multiple Session objects. Typically, applications will create a

72 | Chapter 4: Point-to-Point Messaging

single JMS Connection on application startup and maintain a pool of Session objects
for use whenever a message needs to be produced or consumed.

The QueueSession object is created through a factory object on the QueueConnection
object. The QueueConnection variable is declared outside of the constructor in our ex-
ample so that the connection can be closed in the exit method of the QBorrower class.
It is important to close the connection after it is no longer being used to free up
resources. Closing the Connection object also closes any open Session objects associated
with the connection. The statement in the constructor to create the QueueSession is as
follows:

qSession =
 qConnect.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

Notice that the createQueueSession method takes two parameters. The first parameter
indicates whether the QueueSession is transacted or not. A value of true indicates that
the session is transacted, meaning that messages sent to queues during the lifespan
of the QueueSession will not be delivered to the receivers until the commit method
is invoked on the QueueSession. Likewise, invoking the rollback method on
the QueueSession will remove any messages sent during the transacted session.
The second parameter indicates the acknowledgment mode. The three
possible values are Session.AUTO_ACKNOWLEDGE, Session.CLIENT_ACKNOWLEDGE, and
Session.DUPS_OK_ACKNOWLEDGE. The acknowledgment mode is ignored if the session is
transacted. Acknowledgment modes are discussed in more detail in Chapter 7.

The next two lines in the constructor perform a JNDI lookup to the JMS provider to
obtain the administered destinations. In our case, the JMS destination is cast to a
Queue. The argument supplied to each of the lookup methods is a String value containing
the JNDI name of the queues we are using in the class:

requestQ = (Queue)ctx.lookup(requestQueue);
responseQ = (Queue)ctx.lookup(responseQueue);

The final line of code starts the connection, allowing messages to be received on this
connection. It is generally a good idea to perform all of your initialization logic before
starting the connection:

qConnect.start();

Interestingly enough, you do not need to start the connection if all you are doing is
sending messages. However, it is generally advisable to start the connection to avoid
future issues if there is a chance the connection may be shared or request/reply pro-
cessing added to the sender class.

Another useful thing you can obtain from the JMS Connection is the metadata about
the connection. Invoking the getMetaData method on the Connection object gives you
a ConnectionMetaData object that provides useful information such as the JMS version,
JMS provider name, JMS provider version, and the JMSX property name extensions
supported by the JMS provider:

The QBorrower and QLender Application | 73

import java.util.Enumeration;
import javax.jms.ConnectionMetaData;
import javax.jms.JMSException;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class MetaData {
 public static void main(String[] args) {
 try {
 Context ctx = new InitialContext();
 QueueConnectionFactory qFactory = (QueueConnectionFactory)
 ctx.lookup("QueueCF");
 QueueConnection qConnect = qFactory.createQueueConnection();
 ConnectionMetaData metadata = qConnect.getMetaData();
 System.out.println("JMS Version: " +
 metadata.getJMSMajorVersion() + "." +
 metadata.getJMSMinorVersion());
 System.out.println("JMS Provider: " +
 metadata.getJMSProviderName());
 System.out.println("JMSX Properties Supported: ");
 Enumeration e = metadata.getJMSXPropertyNames();
 while (e.hasMoreElements()) {
 System.out.println(" " + e.nextElement());
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 System.exit(1);
 }
 }
}

For example, invoking the previous code using the ActiveMQ open source JMS pro-
vider will yield the following results:

JMS Version: 1.1
JMS Provider: ActiveMQ
JMSX Properties Supported:
 JMSXGroupID
 JMSXGroupSeq
 JMSXDeliveryCount
 JMSXProducerTXID

This information can be logged on application startup, indicating the JMS provider and
version numbers. It is particularly useful for products or applications that may use
multiple providers.

Sending the message and receiving the response

Once the QBorrower class is initialized, the salary and loan amounts are entered through
the command line. At this point, the sendLoanRequest method is invoked from the
main method to send the loan request to the queue and wait for the response from the

74 | Chapter 4: Point-to-Point Messaging

QLender class. At the start of this method, we chose to create a MapMessage but we could
have used any of the five JMS message types:

MapMessage msg = qSession.createMapMessage();
msg.setDouble("Salary", salary);
msg.setDouble("LoanAmount", loanAmt);
msg.setJMSReplyTo(responseQ);

Notice that the JMS message is created from the Session object via a factory method
matching the message type. Instantiating a new JMS message object using the new key-
word will not work; it must be created from the Session object. After creating and
loading the message object, we are also setting the JMSReplyTo message header property
to the response queue, which further decouples the producer from the consumer. The
practice of setting the JMSReplyTo header property in the message producer as opposed
to specifying the reply-to queue in the message consumer is a standard practice when
using the request/reply model.

After the message is created, we then create the QueueSender object, specifying the queue
we wish to send messages to, and then send the message using the send method:

QueueSender qSender = qSession.createSender(requestQ);
qSender.send(msg);

There are several overridden send methods available in the QueueSender object. The one
we are using here accepts only the JMS message object as the single argument. The
other overridden methods allow you to specify the Queue, the delivery mode, the mes-
sage priority, and finally the message expiry. Since we are not specifying any of the
other values in the example just shown, the message priority is set to normal (4), the
delivery mode is set to persistent messages (DeliveryMode.PERSISTENT), and the message
expiry (time to live) is set to 0, indicating that the message will never expire. All of these
parameters can be overridden by using one of the other send methods.

Once the message has been sent, the QBorrower class will block and wait for a response
from the QLender on whether the loan was approved or denied. The first step in this
process is to set up a message selector so that we can correlate the response message
with the one we sent. This is necessary because there may be many other loan requests
being sent to and from the loan request queues while we are making our loan request.
To make sure we get the proper response back, we would use a technique called message
correlation. Message correlation is required when using the request/reply model of
point-to-point messaging where the queue is being shared by multiple producers and
consumers (see “Message Correlation” on page 81 for more details):

String filter = "JMSCorrelationID = '" + msg.getJMSMessageID() + "'";
QueueReceiver qReceiver = qSession.createReceiver(responseQ, filter);

Notice we specify the filter when creating the QueueReceiver, indicating that we
only want to receive messages when the JMSCorrelationID is equal to the original
JMSMessageID. Now that we have a QueueReceiver, we can invoke the receive method
to do a blocking wait until the response message is received. In this case, we are using
the overridden receive method that accepts a timeout value in milliseconds:

The QBorrower and QLender Application | 75

TextMessage tmsg = (TextMessage)qReceiver.receive(30000);
if (tmsg == null) {
 System.out.println("QLender not responding");
} else {
 System.out.println("Loan request was " + tmsg.getText());
}

It is a good idea to always specify a reasonable timeout value on the receive method;
otherwise, it will sit there and wait forever (in effect, the application would “hang”).
Specifying a reasonable timeout value allows the request/reply sender (in this case the
QBorrower) to take action in the event the message has not been delivered in a timely
fashion or there is a problem on the receiving side (in this case the QLender). If a timeout
condition does occur, the message returned from the receive method will be null. Note
that it is the entire message object that is null, not just the message payload. The
receive method returns a Message object. If the message type is known, then you can
cast the return message as we did in the preceding code example. However, a more
failsafe technique would be to check the return Message type using the instanceof
keyword as indicated here:

Message rmsg = qReceiver.receive(30000);
if (rmsg == null) {
 System.out.println("QLender not responding");
} else {
 if (rmsg instanceof TextMessage) {
 TextMessage tmsg = (TextMessage)rmsg;
 System.out.println("Loan request was " + tmsg.getText());
 } else {
 throw new IllegalStateException("Invalid message type);
 }
}

Notice that the message received does not need to be of the same message type as the
one sent. In the example just shown, we sent the loan request using a MapMessage, yet
we received the response from the receiver as a TextMessage. While you could poten-
tially increase the level of decoupling between the sender and receiver by including the
message type as part of the application properties of the message, you would still need
to know how to interpret the payload in the message. For example, with a StreamMes
sage or BytesMessage you would still need to know the order of data being sent so that
you could in turn read it in the proper order and data type. As you can guess, because
of the “contract” of the data between the sender and receiver, there is still a fair amount
of coupling in the point-to-point model, at least from the payload perspective.

The QLender Class
The role of the QLender class is to listen for loan requests on the loan request queue,
determine if the salary meets the necessary business requirements, and finally send the
results back to the borrower. Notice that the QLender class is structured a bit differently
from the QBorrower class. In our example, the QLender class is referred to as a message

76 | Chapter 4: Point-to-Point Messaging

listener and, as such, implements the javax.jms.MessageListener interface and over-
rides the onMessage() method. Here is the complete listing for the QLender class:

package ch04.p2p;

import java.io.*;
import javax.jms.*;
import javax.naming.*;

public class QLender implements MessageListener {

 private QueueConnection qConnect = null;
 private QueueSession qSession = null;
 private Queue requestQ = null;

 public QLender(String queuecf, String requestQueue) {
 try {
 // Connect to the provider and get the JMS connection
 Context ctx = new InitialContext();
 QueueConnectionFactory qFactory = (QueueConnectionFactory)
 ctx.lookup(queuecf);
 qConnect = qFactory.createQueueConnection();

 // Create the JMS Session
 qSession = qConnect.createQueueSession(
 false, Session.AUTO_ACKNOWLEDGE);

 // Lookup the request queue
 requestQ = (Queue)ctx.lookup(requestQueue);

 // Now that setup is complete, start the Connection
 qConnect.start();

 // Create the message listener
 QueueReceiver qReceiver = qSession.createReceiver(requestQ);
 qReceiver.setMessageListener(this);

 System.out.println("Waiting for loan requests...");

 } catch (JMSException jmse) {
 jmse.printStackTrace();
 System.exit(1);
 } catch (NamingException jne) {
 jne.printStackTrace();
 System.exit(1);
 }
 }

 public void onMessage(Message message) {
 try {
 boolean accepted = false;

 // Get the data from the message
 MapMessage msg = (MapMessage)message;
 double salary = msg.getDouble("Salary");

The QBorrower and QLender Application | 77

 double loanAmt = msg.getDouble("LoanAmount");

 // Determine whether to accept or decline the loan
 if (loanAmt < 200000) {
 accepted = (salary / loanAmt) > .25;
 } else {
 accepted = (salary / loanAmt) > .33;
 }
 System.out.println("" +
 "Percent = " + (salary / loanAmt) + ", loan is "
 + (accepted ? "Accepted!" : "Declined"));

 // Send the results back to the borrower
 TextMessage tmsg = qSession.createTextMessage();
 tmsg.setText(accepted ? "Accepted!" : "Declined");
 tmsg.setJMSCorrelationID(message.getJMSMessageID());

 // Create the sender and send the message
 QueueSender qSender =
 qSession.createSender((Queue)message.getJMSReplyTo());
 qSender.send(tmsg);

 System.out.println("\nWaiting for loan requests...");

 } catch (JMSException jmse) {
 jmse.printStackTrace();
 System.exit(1);
 } catch (Exception jmse) {
 jmse.printStackTrace();
 System.exit(1);
 }
 }

 private void exit() {
 try {
 qConnect.close();
 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }
 System.exit(0);
 }

 public static void main(String argv[]) {
 String queuecf = null;
 String requestq = null;
 if (argv.length == 2) {
 queuecf = argv[0];
 requestq = argv[1];
 } else {
 System.out.println("Invalid arguments. Should be: ");
 System.out.println
 ("java QLender factory request_queue");
 System.exit(0);
 }

78 | Chapter 4: Point-to-Point Messaging

 QLender lender = new QLender(queuecf, requestq);

 try {
 // Run until enter is pressed
 BufferedReader stdin = new BufferedReader
 (new InputStreamReader(System.in));
 System.out.println ("QLender application started");
 System.out.println ("Press enter to quit application");
 stdin.readLine();
 lender.exit();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }
}

The QLender class is what is referred to as an asynchronous message listener, meaning
that unlike the prior QBorrower class it will not block when waiting for messages. This
is evident from the fact that the QLender class implements the MessageListener interface
and overrides the onMessage method.

The main method of the QLender class validates the command-line arguments and
invokes the constructor by instantiating a new QLender class. It then keeps the primary
thread alive until the enter key is pressed on the command line.

The constructor in the QLender class works much in the same way as the QBorrower class.
The first part of the constructor establishes a connection to the provider, does a JNDI
lookup to get the queue, creates a QueueSession, and starts the connection:

...
// Connect to the provider and get the JMS connection
Context ctx = new InitialContext();
QueueConnectionFactory qFactory = (QueueConnectionFactory)
 ctx.lookup(queuecf);
qConnect = qFactory.createQueueConnection();

// Create the JMS Session
qSession = qConnect.createQueueSession(
 false, Session.AUTO_ACKNOWLEDGE);

// Lookup the request queue
requestQ = (Queue)ctx.lookup(requestQueue);

// Now that setup is complete, start the Connection
qConnect.start();
...

Once the connection is started, the QLender class can begin to receive messages. How-
ever, before it can receive messages, it must be registered by the QueueReceiver as a
message listener:

QueueReceiver qReceiver = qSession.createReceiver(requestQ);
qReceiver.setMessageListener(this);

The QBorrower and QLender Application | 79

At this point, a separate listener thread is started. That thread will wait until a message
is received, and upon receipt of a message, will invoke the onMessage method of the
listener class. In this case, we set the message listener to the QLender class using the
this keyword in the setMessageListener method. We could have easily delegated
the messaging work to another class that implemented the MessageListener interface:

qReceiver.setMessageListener(someOtherClass);

When a message is received on the queue specified in the createReceiver method, the
listener thread will asynchronously invoke the onMessage method of the listener class
(in our case, the QLender class is also the listener class). The onMessage method first casts
the message to a MapMessage (the message type we are expecting to receive from the
borrower). It then extracts the salary and loan amount requested from the message
payload, checks the salary to loan amount ratio, then determines whether to accept or
decline the loan request:

...
public void onMessage(Message message) {
 try {
 boolean accepted = false;

 // Get the data from the message
 MapMessage msg = (MapMessage)message;
 double salary = msg.getDouble("Salary");
 double loanAmt = msg.getDouble("LoanAmount");

 // Determine whether to accept or decline the loan
 if (loanAmt < 200000) {
 accepted = (salary / loanAmt) > .25;
 } else {
 accepted = (salary / loanAmt) > .33;
 }
 System.out.println("" +
 "Percent = " + (salary / loanAmt) + ", loan is "
 + (accepted ? "Accepted!" : "Declined"));
 ...

Again, to make this more failsafe, it would be better to check the JMS message type
using the instanceof keyword in the event another message type was being sent to that
queue:

if (message instanceof MapMessage) {
 //process request
} else {
 throw new IllegalArgumentException("unsupported message type");
}

Once the loan request has been analyzed and the results determined, the QLender class
needs to send the response back to the borrower. It does this by first creating a JMS
message to send. The response message does not need to be the same JMS message
type as the loan request message that was received by the QLender. To illustrate this
point the QLender returns a TextMessage back to the QBorrower:

80 | Chapter 4: Point-to-Point Messaging

TextMessage tmsg = qSession.createTextMessage();
tmsg.setText(accepted ? "Accepted!" : "Declined");

The next statement sets the JMSCorrelationID, which is the JMS header property that
is used by the QBorrower class to filter incoming response messages:

tmsg.setJMSCorrelationID(message.getJMSMessageID());

Message correlation is discussed in more detail in the next section of this chapter.

Once the message is created, the onMessage method then sends the message to the
response queue specified by the JMSReplyTo message header property. As you may re-
member, in the QBorrower class we set the JMSReplyTo header property when sending
the original loan request. The QLender class can now use that property as the destination
to send the response message to:

QueueSender qSender =
 qSession.createSender((Queue)message.getJMSReplyTo());
qSender.send(tmsg);

Message Correlation
In the previous code example, the borrower sent a loan request on a request queue and
waited for a reply from the lender on a response queue. Many borrowers may be making
requests at the same time, meaning that the lender application is sending many mes-
sages to the response queue. Since the response queue may contain many messages,
how can you be sure that the response you received from the lender was meant for you
and not another borrower?

In general, whenever using the request/reply model, you must make sure the response
you are receiving is associated with the original message you sent. Message correla-
tion is the technique used to ensure that you receive the right message. The most popular
method for correlating messages is leveraging the JMSCorrelationID message header
property in conjunction with the JMSMessageID header property. The JMSCorrelatio
nID property contains a unique String value that is known by both the sender and
receiver. The JMSMessageID is typically used, since it is unique and is available to the
sender and receiver.

When the message consumer (e.g., QLender) is ready to send the reply message, it sets
the JMSCorrelationID message property to the message ID from the original message:

public class QLender implements MessageListener {

 ...
 public void onMessage(Message message) {
 try {
 ...
 // Send the results back to the borrower
 TextMessage tmsg = qSession.createTextMessage();
 tmsg.setText(accepted ? "Accepted!" : "Declined");
 tmsg.setJMSCorrelationID(message.getJMSMessageID());

Message Correlation | 81

 // Create the sender and send the message
 QueueSender qSender =
 qSession.createSender((Queue)message.getJMSReplyTo());
 qSender.send(tmsg);

 System.out.println("\nWaiting for loan requests...");
 ...
 }
 }
 ...

The original message producer (e.g., QBorrower) expecting the response about whether
the loan was approved creates a message selector based on the JMSCorrelationID mes-
sage property:

public class QBorrower {

 ...
 private void sendLoanRequest(double salary, double loanAmt) {
 try {
 ...

 // Wait to see if the loan request was accepted or declined
 String filter =
 "JMSCorrelationID = '" + msg.getJMSMessageID() + "'";
 QueueReceiver qReceiver = qSession.createReceiver(responseQ, filter);
 TextMessage tmsg = (TextMessage)qReceiver.receive(30000);
 ...
 }
 }
 ...

Although the JMSMessageID is typically used to identify the unique message, it certainly
is not a requirement. You can use anything that would correlate the request and reply
messages. For example, as an alternative you could use the Java UUID class to generate
a unique ID. In the following code example, the QBorrower class generates a unique ID
and sets an application message property called “UUID” to the generated value:

public class QBorrower {

 ...
 private void sendLoanRequest(double salary, double loanAmt) {
 try {
 // Create JMS message
 MapMessage msg = qSession.createMapMessage();
 msg.setDouble("Salary", salary);
 msg.setDouble("LoanAmount", loanAmt);
 msg.setJMSReplyTo(responseQ);
 UUID uuid = UUID.randomUUID();
 String uniqueId = uuid.toString();
 msg.setStringProperty("UUID", uniqueId);

 // Create the sender and send the message
 QueueSender qSender = qSession.createSender(requestQ);

82 | Chapter 4: Point-to-Point Messaging

 qSender.send(msg);

 // Wait to see if the loan request was accepted or declined
 String filter =
 "JMSCorrelationID = '" + uniqueId + "'";
 QueueReceiver qReceiver = qSession.createReceiver(responseQ, filter);
 TextMessage tmsg = (TextMessage)qReceiver.receive(30000);
 ...
 }
 }
 ...

The QLender application must now get the UUID property from the original message and
set the JMSCorrelationID message property to this value:

public class QLender implements MessageListener {

 ...
 public void onMessage(Message message) {
 try {
 ...
 // Send the results back to the borrower
 TextMessage tmsg = qSession.createTextMessage();
 tmsg.setText(accepted ? "Accepted!" : "Declined");
 tmsg.setJMSCorrelationID(message.getStringProperty("UUID"));

 // Create the sender and send the message
 QueueSender qSender =
 qSession.createSender((Queue)message.getJMSReplyTo());
 qSender.send(tmsg);

 System.out.println("\nWaiting for loan requests...");
 ...
 }
 }
 ...

Although it is commonly used, you are not required to use the JMSCorrelationID mes-
sage header property to correlate messages. As a matter of fact, you could set the cor-
relation property to any application property in the message. While this is certainly
possible, you should leverage the header properties if they exist for full compatibility
with messaging servers, third-party brokers, and third-party message bridges.

Dynamic Versus Administered Queues
Dynamic queues are queues that are created through the application source code using
a vendor-specific API. Administered queues are queues that are defined in the JMS pro-
vider configuration files or administration tools.

The setup and configuration of dynamic queues tends to be vendor-specific. A queue
may be used exclusively by one consumer or shared by multiple consumers. It may have
a size limit (limiting the number of unconsumed messages held in the queue) with

Dynamic Versus Administered Queues | 83

options for in-memory storage versus overflow to disk. In addition, a queue may be
configured with a vendor-specific addressing syntax or special routing capabilities.

JMS does not attempt to define a set of APIs for all the possible options on a queue. It
should be possible to set these options administratively, using the vendor-specific ad-
ministration capabilities. Most vendors supply a command-line administration tool, a
graphical administration tool, or an API for administering queues at runtime. Some
vendors supply all three. Using vendor-specific administration APIs to create and con-
figure a queue may be convenient at times. However, it is not very portable and may
require that the application have administrator privileges.

JMS provides a QueueSession.createQueue(String queueName) method, but this is not
intended to define a new queue in the messaging system. It is intended to return a
Queue object that represents an existing queue. There is also a JMS-defined method for
creating a temporary queue that can only be consumed by the JMS client that created
it using the QueueSession.createTemporaryQueue() method.

Creating dynamic queues is useful if you have a large number of queues that may in-
crease over time. For example, consider the scenario where a book publisher has rela-
tionships with a large number of bookstores. The book publisher regularly sends new
book information and order status to the bookstores. Let’s assume that there are 1,000
bookstores related to the book publisher. That equates to 1,000 queues—somewhat
excessive to administer. The book publisher can dynamically create the bookstore
queues based on a numbering scheme, therefore quickly defining the queues necessary
for this scenario (e.g., BookstoreQ1, BookstoreQ2, etc.).

Load Balancing Using Multiple Receivers
A queue may have multiple receivers attached to it for the purpose of distributing the
workload of message processing. The JMS specification states that this capability must
be implemented by a JMS provider, although it does not define the rules for how the
messages are distributed among consumers. A sender could use this feature to distribute
messages to multiple instances of an application, each of which would provide its own
receiver.

When multiple receivers are attached to a queue, each message in the queue is delivered
to one receiver. The absolute order of messages cannot be guaranteed, since one receiver
may process messages faster than another. From the receiver’s perspective, the mes-
sages it consumes should be in relative order; messages delivered to the queue earlier
are consumed first. However, if a message needs to be redelivered due to an acknowl-
edgment failure, it is possible that it could be delivered to another receiver. The other
receiver may have already processed more recently delivered messages, which would
place the redelivered message out of the original order.

84 | Chapter 4: Point-to-Point Messaging

If you would like to see multiple recipients in action, try starting two instances of the
QLender class and one instance of the QBorrower class, each in a separate command
window:

java ch04.p2p.QLender QueueCF LoanRequestQ
java ch04.p2p.QLender QueueCF LoanRequestQ
java ch04.p2p.QBorrower QueueCF LoanRequestQ LoanResponseQ

Now, when entering a salary and loan amount in the command window, you will notice
that the message is delivered to one or the other QLender application, but not both. The
exact load balancing scheme will vary between JMS providers. Some may use a round-
robin load balancing scheme, whereas others may use a first-available balancing
scheme. You will need to consult your JMS provider documentation to determine the
specific load balancing algorithm used.

Examining a Queue
A QueueBrowser is a specialized object that allows you to peek ahead at pending mes-
sages on a Queue without actually consuming them. This feature is unique to point-to-
point messaging. Queue browsing can be useful for monitoring the contents of a queue
from an administration tool or for browsing through multiple messages to locate a
message that is more important than the one at the head of the queue. It is also useful
for other monitoring tasks, such as determining the current queue depth.

Messages obtained from a QueueBrowser are copies of messages contained in the queue
and are not considered to be consumed—they are merely for browsing. It is also
important to note that the QueueBrowser is not guaranteed to have a definitive list of
messages in the queue. The QueueBrowser contains only a snapshot, or a copy of, the
queue as it appears at the time the QueueBrowser is created. The contents of the queue
may change between the time the browser is created and the time you examine its
contents. However, no matter how small that window of time is, new messages may
arrive and other messages may be consumed by other JMS clients.

A QueueBrowser is created from the Session object using the createBrowser() method.
This method takes as an argument the queue from which you would like to view the
messages. It is during the createBrowser() method invocation that the snapshot is taken
from the queue. You can then get a list of the messages by using the method
getEnumeration() from the QueueBrowser:

...
QueueBrowser browser = session.createBrowser(queue);
Enumeration e = browser.getEnumeration();
while (e.hasMoreElements()) {
 //display messages
}
...

Examining a Queue | 85

The full LoanRequestQueueBrowser class is listed here:

import java.util.Enumeration;
import javax.jms.Queue;
import javax.jms.QueueBrowser;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueSession;
import javax.jms.TextMessage;
import javax.naming.Context;
import javax.naming.InitialContext;

public class LoanRequestQueueBrowser {

 public static void main(String[] args) {
 try {
 //establish connection
 Context context = new InitialContext();
 QueueConnectionFactory factory = (QueueConnectionFactory)
 context.lookup("QueueCF");
 QueueConnection connection = factory.createQueueConnection();
 connection.start();

 //establish session
 Queue queue = (Queue) context.lookup("LoanRequestQ");
 QueueSession session = connection.createQueueSession
 (false, Session.AUTO_ACKNOWLEDGE);
 QueueBrowser browser = session.createBrowser(queue);

 Enumeration e = browser.getEnumeration();
 while (e.hasMoreElements()) {
 TextMessage msg = (TextMessage)e.nextElement();
 System.out.println("Browsing: " + msg.getText());
 }

 browser.close();
 connection.close();
 System.exit(0);

 } catch (Exception exception) {
 exception.printStackTrace();
 }
 }
}

86 | Chapter 4: Point-to-Point Messaging

CHAPTER 5

Publish-and-Subscribe Messaging

This chapter focuses on the publish-and-subscribe (pub/sub) messaging model. This
messaging model is used when you need to broadcast an event or message to many
message consumers. Unlike the point-to-point messaging model discussed in Chap-
ter 4, all message consumers (called subscribers) listening on the topic will receive the
message.

In this chapter, we will describe the publish-and-subscribe model through the use of a
typical broadcast messaging scenario where a mortgage lender publishes its latest
mortgage rates for a 30-year fixed mortgage to various borrowers in the hope of
attracting one of the borrowers to apply for a mortgage loan. The TLender class will
publish a new mortgage rate through a topic, and the TBorrower class will subscribe to
the topic and make a decision on whether or not it is a good rate.

We have mentioned several new terms already in this chapter: topic, subscriber, and
publish. Before moving on to the code example, we will first describe the main charac-
teristics and nomenclature of the publish-and-subscribe model and discuss some of the
typical use cases for this model.

Publish-and-Subscribe Overview
The publish-and-subscribe model is more commonly referred to as the pub/sub model.
In this model, the message producer is called a publisher and the message consumer a
subscriber. Messages are published to a topic as opposed to being sent to a queue, as in
the point-to-point model. The most important characteristics of the pub/sub model are
as follows:

• Messages are exchanged through a virtual channel called a topic.

87

• Each message is delivered to multiple message consumers, called subscribers.
There are many types of subscribers, including durable, nondurable, and dynamic.
These subscriber types are described later in this chapter.

• The publisher generally does not know and is not aware of which subscribers are
receiving the topic messages.

• Messages are pushed to consumers, which means that consumers are delivered
messages without having to request them. Messages are exchanged through a vir-
tual channel called a topic. A topic is a destination where producers can publish,
and subscribers can consume, messages. Messages delivered to a topic are auto-
matically pushed to all qualified consumers.

• As in enterprise messaging in general, there is no coupling of the producers to the
consumers. Subscribers and publishers can be added dynamically at runtime,
which allows the system to grow or shrink in complexity over time.

• Every client that subscribes to a topic receives its own copy of messages published
to that topic. A single message produced by one publisher may be copied and
distributed to hundreds or even thousands of subscribers.

With the pub/sub model, messages published to a topic are immediately delivered to
each subscriber by the JMS provider. Therefore, unlike the point-to-point model,
subscribers do not “scan the topic” for messages belonging to them. Rather, the JMS
provider delivers a copy of the message to each subscriber.

Another major difference between the pub/sub and p2p models is that, with the pub/
sub model, message selectors are applied when the message is copied to each subscriber;
whereas with the p2p model, message selectors are applied after the message has been
added to the queue.

Subscribers can be either durable or nondurable. Nondurable subscribers receive mes-
sages only when that subscriber is currently active and connected to the topic, whereas
durable subscribers receive all desired messages sent to that topic, regardless of whether
that subscriber is active. Durable and nondurable subscribers are discussed in more
detail later in this chapter.

Subscribers may also be dynamic or administered. As you will see later in this chapter,
dynamic durable subscribers can be created on the fly, whereas administered subscrib-
ers are static and known by the JMS provider. Although the JMS specification allows
for the creation of dynamic durable subscribers, there are negative implications asso-
ciated with this feature which will be discussed later in this chapter. The publish-and-
subscribe model is illustrated in Figure 5-1.

88 | Chapter 5: Publish-and-Subscribe Messaging

Application
subscriber

Application
subscriber

Topic

Application
publisher

Figure 5-1. Pub/sub model

The specific pub/sub interfaces for connecting, creating, sending, and receiving are
shown in Table 5-1.

Table 5-1. Interfaces for topics

General API Publish-and-subscribe API

ConnectionFactory TopicConnectionFactory

Destination Topic

Connection TopicConnection

Session TopicSession

MessageConsumer TopicPublisher

MessageProducer TopicSubscriber

When to Use Publish-and-Subscribe Messaging
As indicated in Chapter 4, the rationale behind the two models (point-to-point and
publish-and-subscribe) lies in the origin of the JMS specification. JMS started out as a
way of providing a common API for accessing existing messaging systems. At the time
of its conception, some messaging vendors had a p2p model and some had a pub/sub
model. Hence, JMS needed to provide an API for both models to gain wide industry
support.

The publish-and-subscribe model is used when you want to broadcast a message or
event to multiple message consumers. The important point here is that multiple
consumers may consume the message. By design, the pub/sub model will push copies
of the message out to multiple subscribers.

Publish-and-Subscribe Overview | 89

Some of the more common use cases for the pub/sub model are examples such as stock
price updates, exception or error notification, and change notification of a particular
data item in the database. Any situation where you need to notify multiple consumers
of an event is a good use of the pub/sub model. For example, suppose you want to send
out a notification to a topic whenever an exception occurs in your application or a
system component. You may not know how that information will be used or what type
of components will use it. Will the exception be emailed to various parties of interest?
Will a notification be sent to a beeper or pager? This is the beauty of the pub/sub
model—the publisher does not care or need to worry about how the information will
be used; it simply publishes it to a topic.

The same is true of stock price updates—how will that data be used? Is it used for
analytics, trend gathering, or to make a buy or sell decision for a particular stock? Again,
the publisher of the price quotes does not know or care how the data is used. Its only
purpose it to publish the necessary data to the topic, demonstrating the decoupled
nature of the pub/sub model.

Conversely, you would not want to use the pub/sub model for such activities as ordering
a book or placing a stock trade. In these situations, if the pub/sub model was used,
multiple subscribers might pick up the book order or stock trade, resulting in many
books delivered to your house or multiple buy or sell orders for the stock. These
scenarios would be better suited for the point-to-point model, where the message is
guaranteed to be delivered to one and only one consumer.

The TBorrower and TLender Application
To illustrate how pub/sub messaging works, we will use a simple example where a
mortgage lender publishes mortgage rates and a borrower interested in the latest rates
subscribes to the topic. The lender, implemented through the TLender class, will publish
a simple BytesMessage containing the rate. The borrower, implemented through the
TBorrower class, will subscribe to the topic through a nondurable subscriber and then
decide whether it is a good rate or not.

Since the JMS API for the pub/sub model is similar to the point-to-point model dis-
cussed in the previous chapter, we will not be going into as much detail regarding the
similar API in this chapter.

Configuring and Running the Application
Before looking at the code, let’s look at how the application works. As with the Chat
application, the TBorrower class and TLender class both include a main() method so they
can be run as a standalone Java application. To keep the code vendor-agnostic, both
classes need the connection factory name and queue names when starting the applica-
tion. The TLender class is executed from the command line as follows:

java ch05.pubsub.TLender ConnectionFactory Topic

90 | Chapter 5: Publish-and-Subscribe Messaging

where ConnectionFactory is the name of the topic connection factory defined in your
JMS provider and Topic is the name of the topic where the TLender class publishes the
new rate.

The TBorrower class can be executed in the same manner in a separate command
window:

java ch05.pubsub.TBorrower ConnectionFactory Topic CurrentRate

where ConnectionFactory is the name of the topic connection factory defined in your
JMS provider, Topic is the name of the topic that the TBorrower class should listen on
for updated mortgage rates, and CurrentRate is the current mortgage rate for the
borrower.

You will also need to define a jndi.properties file in your classpath that contains the
JNDI connection information for the JMS provider. The jndi.properties file for running
the examples in this chapter is similar to the one used in Chapter 4. You will need to
consult the documentation of your specific JMS provider or Java EE container to obtain
these values. You can find the steps for configuring ActiveMQ to run the examples in
this chapter in Appendix D.

The TBorrower and TLender classes both require the topic connection factory name and
topic name to run. We have chosen to name the connection factory TopicCF and the
loan rate topic RateTopic. These JNDI resources are typically configured in the JMS
provider XML configuration files or configuration screens. You will need to consult
your JMS provider documentation on how to configure these resources (please refer to
Appendix D for the specific configuration settings for ActiveMQ used to run the
examples in this chapter).

You can run the TBorrower and TLender classes by entering the following two commands
in separate command windows:

java ch05.pubsub.TLender TopicCF RateTopic

java ch05.pubsub.TBorrower TopicCF RateTopic 5.6

When the TLender class starts, you will be prompted to enter a new mortgage rate.
When you press enter, the TLender class will publish the new rate to the topic. The
TBorrower class will then receive the new rate and decide whether it is good or not:

TLender> TLender Application Started
TLender> Press enter to quit application
TLender> Enter: Rate
TLender> e.g. 6.8

TLender> 6.8
TBorrower> New rate = 6.8 - keep existing loan

TLender> 4.5
TBorrower> New rate = 4.5 - consider refinancing loan
TLender>

The TBorrower and TLender Application | 91

This interaction is illustrated in Figure 5-2.

Publish rate on topic
JMS

providerLender Borrower

Borrower

…

BorrowerPublishers and subscribers

1 Subscribe to topic
and receive rate

2

Figure 5-2. Publishers and subscribers

The rest of this chapter examines the source code for the TBorrower and TLender classes
and covers several advanced subjects related to the pub/sub messaging model.

The TLender Class
The TLender class is responsible for publishing a new mortgage rate to a topic. The class
is fairly straightforward; the constructor establishes a connection to the JMS provider,
creates a TopicSession, and gets the topic using a JNDI lookup. The main method in-
stantiates the TLender class and, upon receiving a new rate, invokes the publishRate
method to publish the message to the topic. Here is the listing for the TLender class in
its entirety. We will be examining the JMS aspects of this class in detail after the full
listing:

package ch05.pubsub;

import java.io.*;
import javax.jms.*;
import javax.naming.*;

public class TLender {

 private TopicConnection tConnect = null;
 private TopicSession tSession = null;
 private Topic topic = null;

 public TLender(String topiccf, String topicName) {
 try {
 // Connect to the provider and get the JMS connection
 Context ctx = new InitialContext();
 TopicConnectionFactory qFactory = (TopicConnectionFactory)
 ctx.lookup(topiccf);
 tConnect = qFactory.createTopicConnection();

92 | Chapter 5: Publish-and-Subscribe Messaging

 // Create the JMS Session
 tSession = tConnect.createTopicSession(
 false, Session.AUTO_ACKNOWLEDGE);

 // Lookup the request and response queues
 topic = (Topic)ctx.lookup(topicName);

 // Now that setup is complete, start the Connection
 tConnect.start();

 } catch (JMSException jmse) {
 jmse.printStackTrace();
 System.exit(1);
 } catch (NamingException jne) {
 jne.printStackTrace();
 System.exit(1);
 }
 }

 private void publishRate(double newRate) {
 try {
 // Create JMS message
 BytesMessage msg = tSession.createBytesMessage();
 msg.writeDouble(newRate);

 // Create the publisher and publish the message
 TopicPublisher publisher = tSession.createPublisher(topic);
 publisher.publish(msg);

 } catch (JMSException jmse) {
 jmse.printStackTrace();
 System.exit(1);
 }
 }

 private void exit() {
 try {
 tConnect.close();
 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }
 System.exit(0);
 }

 public static void main(String argv[]) {
 String topiccf = null;
 String topicName = null;
 if (argv.length == 2) {
 topiccf = argv[0];
 topicName = argv[1];
 } else {
 System.out.println("Invalid arguments. Should be: ");
 System.out.println("java TLender factory topic");
 System.exit(0);

The TBorrower and TLender Application | 93

 }

 TLender lender = new TLender(topiccf, topicName);

 try {
 // Read all standard input and send it as a message
 BufferedReader stdin = new BufferedReader
 (new InputStreamReader(System.in));
 System.out.println ("TLender Application Started");
 System.out.println ("Press enter to quit application");
 System.out.println ("Enter: Rate");
 System.out.println("\ne.g. 6.8");

 while (true) {
 System.out.print("> ");
 String rate = stdin.readLine();
 if (rate == null || rate.trim().length() <= 0) {
 lender.exit();
 }

 // Parse the deal description
 double newRate = Double.valueOf(rate);
 lender.publishRate(newRate);
 }
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }
}

The main method of the TLender class accepts two arguments from the command line:
the JNDI name of the topic connection factory and the JNDI name of the topic used
to publish the rates. Once the input parameters have been validated, the TLender class
is instantiated and a loop is started that reads the new mortgage rate from the console:

String rate = stdin.readLine();

The rate is then parsed and finally the publishRate method is invoked. The input loop
continues until the user presses enter on the console without entering any data:

if (rate == null || rate.trim().length() <= 0) {
 lender.exit();
}

Now let’s look at the JMS portion of the code in detail, starting with the constructor
and ending with the publishRate method.

JMS initialization

In the TLender class example, all of the JMS initialization logic is handled in the
constructor. The code in the TLender constructor is almost identical to the QBorrower
constructor found in Chapter 4 with a couple of important differences. First of all,
notice that the connection factory, connection, and session objects are similar to that

94 | Chapter 5: Publish-and-Subscribe Messaging

of the QBorrower class, except that the topic-based interfaces are used instead of the
queue-based interfaces:

// Connect to the provider and get the JMS connection
Context ctx = new InitialContext();
TopicConnectionFactory qFactory = (TopicConnectionFactory)
 ctx.lookup(topiccf);
tConnect = qFactory.createTopicConnection();

// Create the JMS Session
tSession = tConnect.createTopicSession(
 false, Session.AUTO_ACKNOWLEDGE);

// Lookup the request and response queues
topic = (Topic)ctx.lookup(topicName);

// Now that setup is complete, start the Connection
tConnect.start();

The important thing to note here is that although we are using the topic-based API, the
flow is the same as that of the queue-based API used with the point-to-point model:

1. Get an initial context to the JMS provider.

2. Look up the connection factory.

3. Create a JMS connection.

4. Create a JMS session.

5. Look up the destination.

6. Start the connection.

Since the details are the same as those for the queue-based API found in Chapter 4, we
will not repeat the details of each of these statements.

Publishing the message

Once the TLender class is initialized, the rate is entered through the command line. At
this point, the publishRate method is invoked from the main method and the rate pub-
lished to the topic. Unlike the example in the previous chapter, the TLender class will
not wait for a response once the message has been published. This is done intentionally
to illustrate the decoupled nature of the pub/sub model; the TLender class does not
know or care about who is subscribing to the rates, what they are doing with the data,
or how many subscribers are receiving the rate information. There may be subscribers
that are receiving the rate data to do some trend analysis on the fluctuation of mortgage
rates by this particular lender, whereas other subscribers (like the TBorrower class) are
analyzing the rate to determine whether to refinance or not.

At the start of the publishRate method, we create a BytesMessage to hold the rate data.
Again, we could have chosen any of the five JMS message types, but we chose the
BytesMessage for maximum portability:

The TBorrower and TLender Application | 95

BytesMessage msg = tSession.createBytesMessage();
msg.writeDouble(newRate);

After the message is created, we then create the TopicPublisher object, specifying the
topic we wish to publish messages to, and then publish the message using the
publish method:

// Create the publisher and publish the message
TopicPublisher publisher = tSession.createPublisher(topic);
publisher.publish(msg);

Like the send method in the point-to-point model, there are several overridden
publish methods available in the TopicSender object. The one we are using here accepts
only the JMS message object as the single argument. The other overridden methods
allow you to specify the Topic, the delivery mode, the message priority, and finally the
message expiry. Since we are not specifying any of the other values in the example just
shown, the message priority is set to normal (4), the delivery mode is set to persistent
messages (DeliveryMode.PERSISTENT), and the message expiry (time to live) is set to 0,
indicating that the message will never expire. All of these parameters can be overridden
by using one of the other publish methods.

One note to make at this point: although we are not using the request/reply model in
this example, request/reply could certainly apply to the pub/sub model as with the
point-to-point messaging model. As a matter of fact, we can publish to a topic and listen
for requests on a separate queue. While this is certainly possible, it is not common in
today’s topic-based messaging models, mostly due to the nature of the pub/sub model.
The pub/sub model is generally used to broadcast events or information without
expecting a response to that broadcast.

The TBorrower Class
The TBorrower class acts as a subscriber to the rate topic and, as such, is an asynchronous
message listener similar to the QLender class found in Chapter 4. Since it is an asyn-
chronous message listener, it implements the javax.jms.MessageListener interface and
overrides the onMessage() method. Here is the complete listing for the TBorrower
subscriber class:

package ch05.pubsub;

import java.io.*;
import javax.jms.*;
import javax.naming.*;

public class TBorrower implements MessageListener {

 private TopicConnection tConnect = null;
 private TopicSession tSession = null;
 private Topic topic = null;
 private double currentRate;

96 | Chapter 5: Publish-and-Subscribe Messaging

 public TBorrower(String topiccf, String topicName, String rate) {
 try {
 currentRate = Double.valueOf(rate);

 // Connect to the provider and get the JMS connection
 Context ctx = new InitialContext();
 TopicConnectionFactory qFactory = (TopicConnectionFactory)
 ctx.lookup(topiccf);
 tConnect = qFactory.createTopicConnection();

 // Create the JMS Session
 tSession = tConnect.createTopicSession(
 false, Session.AUTO_ACKNOWLEDGE);

 // Lookup the request and response queues
 topic = (Topic)ctx.lookup(topicName);

 // Create the message listener
 TopicSubscriber subscriber = tSession.createSubscriber(topic);
 subscriber.setMessageListener(this);

 // Now that setup is complete, start the Connection
 tConnect.start();

 System.out.println("Waiting for loan requests...");

 } catch (JMSException jmse) {
 jmse.printStackTrace();
 System.exit(1);
 } catch (NamingException jne) {
 jne.printStackTrace();
 System.exit(1);
 }
 }

 public void onMessage(Message message) {
 try {
 // Get the data from the message
 BytesMessage msg = (BytesMessage)message;
 double newRate = msg.readDouble();

 // If the rate is at least 1 point lower than the current rate, then
 //recommend refinancing
 if ((currentRate - newRate) >= 1.0) {
 System.out.println(
 "New rate = " + newRate + " - Consider refinancing loan");
 } else {
 System.out.println("New rate = " + newRate + " - Keep existing loan");
 }

 System.out.println("\nWaiting for rate updates...");

 } catch (JMSException jmse) {
 jmse.printStackTrace();
 System.exit(1);

The TBorrower and TLender Application | 97

 } catch (Exception jmse) {
 jmse.printStackTrace();
 System.exit(1);
 }
 }

 private void exit() {
 try {
 tConnect.close();
 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }
 System.exit(0);
 }

 public static void main(String argv[]) {
 String topiccf = null;
 String topicName = null;
 String rate = null;
 if (argv.length == 3) {
 topiccf = argv[0];
 topicName = argv[1];
 rate = argv[2];
 } else {
 System.out.println("Invalid arguments. Should be: ");
 System.out.println("java TBorrower factory topic rate");
 System.exit(0);
 }

 TBorrower borrower = new TBorrower(topiccf, topicName, rate);

 try {
 // Run until enter is pressed
 BufferedReader stdin = new BufferedReader
 (new InputStreamReader(System.in));
 System.out.println ("TBorrower application started");
 System.out.println ("Press enter to quit application");
 stdin.readLine();
 borrower.exit();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }
}

The main method of the TBorrower class validates the command-line arguments and
invokes the constructor by instantiating a new TBorrower class. It then keeps the primary
thread alive until the Enter key is pressed on the command line.

The constructor in the TBorrower class works much in the same way as the TLender class.
The first part of the constructor establishes a connection to the provider, does a JNDI
lookup to get the topic, creates a TopicSession, and starts the connection:

98 | Chapter 5: Publish-and-Subscribe Messaging

...
// Connect to the provider and get the JMS connection
Context ctx = new InitialContext();
TopicConnectionFactory qFactory = (TopicConnectionFactory)
 ctx.lookup(topiccf);
tConnect = qFactory.createTopicConnection();

// Create the JMS Session
tSession = tConnect.createTopicSession(
 false, Session.AUTO_ACKNOWLEDGE);

// Lookup the request and response queues
topic = (Topic)ctx.lookup(topicName);
...

Once the connection is started, the TBorrower class can begin to receive messages.
However, before it can receive messages, it must be registered by the TopicSubscriber
as a message listener (in this case, a subscriber):

TopicSubscriber subscriber = tSession.createSubscriber(topic);
subscriber.setMessageListener(this);

At this point, a separate listener thread is started. That thread will wait until a message
is received, and upon receipt of a message will invoke the onMessage method of the
listener class. In this case, we set the message listener to the TBorrower object using the
this keyword in the setMessageListener method.

When a message is received on the topic specified in the createSubscriber method, the
listener thread will asynchronously invoke the onMessage method of the listener class
(in our case the TBorrower class is also the listener class). The onMessage method first
casts the message to a BytesMessage (the message type we are expecting to receive from
the lender). It then extracts the new rate and determines whether to refinance or not:

...
public void onMessage(Message message) {
 try {
 // Get the data from the message
 BytesMessage msg = (BytesMessage)message;
 double newRate = msg.readDouble();

 // If the rate is at least 1 point lower than the current rate, then
 //recommend refinancing
 if ((currentRate - newRate) >= 1.0) {
 System.out.println("New rate = " + newRate + " - Consider refinancing loan");
 } else {
 System.out.println("New rate = " + newRate + " - Keep existing loan");
 }
 ...

In practice, it would be better to make this method more failsafe by checking the JMS
message type using the instanceof keyword in the event another message type was
being sent to that queue:

The TBorrower and TLender Application | 99

if (message instanceof BytesMessage) {
 //process request
} else {
 throw new IllegalArgumentException("unsupported message type");
}

Durable Versus Nondurable Subscribers
If you were to run the TBorrower class and then publish several rates, the TBorrower class
would pick up the new rate and make a determination as to whether it was a good rate
or not. However, if you were to terminate the TBorrower class, publish some new rates,
then restart the TBorrower class, you would not have picked up the rates that were
published to the topic while the TBorrower class was not running. Why? Because the
TBorrower class was created as a nondurable subscriber:

TopicSubscriber subscriber = tSession.createSubscriber(topic);

Nondurable subscribers receive messages only when they are actively listening on that
topic. Otherwise, the message is gone. In the pub/sub model, there is no real concept
of a “topic” holding all of the messages; rather, when a message is received by the JMS
provider, the provider makes a copy of that message for each subscriber. If the sub-
scriber is not active, it does not receive a copy of that message. This concept is illustrated
in Figure 5-3.

Nondurable
subscriber

(not active)

Nondurable
subscriber

(active)

Topic

Message never
received
by subscriber

Application
publisher

Figure 5-3. Nondurable subscribers

Durable subscribers, on the other hand, will receive all messages sent to that topic
(depending on the message selectors applied to that subscriber), regardless of whether
that subscriber is active or not. This is commonly referred to as “store-and-forward”
messaging. Email is a good example of this concept, even though email is usually not
implemented using messaging. You may receive an email in the middle of the night
when your computer is off and you are asleep. When you turn your computer on in the

100 | Chapter 5: Publish-and-Subscribe Messaging

morning or when you get to work, sure enough, you receive the email, even through
you were not actively connected to the email provider. Figure 5-4 illustrates the store-
and-forward concept of durable subscribers.

Nondurable
subscriber

(not active)

Nondurable
subscriber

(active)

TopicStore

Delivered once
subscriber is active

Application
publisher

Figure 5-4. Durable subscribers

Durable subscribers are created by specifying the subscriber name in the JMS provider
(either through configuration or through an admin interface) and using the method
createDurableSubscriber, which accepts a subscription name as one of the parameters:

TopicSubscriber subscriber = tSession.createDurableSubscriber(topic, "Borrower1");

There are many cases where a durable subscriber makes sense and other times when it
does not. Although business need generally dictates the choice between a durable and
nondurable subscriber, there are several other considerations to take into account, in-
cluding the volatility of the data and the amount of storage consumed by the messages.
For example, stock price updates published every 30 seconds is probably not a good
use case for a durable subscriber. First, unless you are doing some sort of trend analysis,
generally you would be more concerned about the current price of a stock, not the price
20 or 30 minutes ago. Second, if the durable subscriber is inactive for a long period of
time, thousands of useless messages will be stored for that subscriber, wasting valuable
space in the JMS datastore. These considerations should be taken into account when
deciding between durable and nondurable subscribers.

Dynamic Versus Administered Subscribers
In the previous section, we created a durable subscriber named Borrower1:

TopicSubscriber subscriber = tSession.createDurableSubscriber(topic, "Borrower1");

Some JMS providers allow you to statically define the durable subscriber in the con-
figuration file or admin interface. In this case, the durable subscriber is said to be an

Dynamic Versus Administered Subscribers | 101

administered durable subscriber, meaning that the durable subscriber is statically
defined and known by the JMS provider. However, suppose you needed to produce a
temporary durable subscriber, say to gather mortgage rates for the next one or two days
to do some trend analysis. It would be silly to have to modify the JMS provider
configuration files for this simple request.

The JMS specification allows for durable subscribers to be defined dynamically at run-
time, without having to statically define them in your JMS provider configuration files.
These types of durable subscribers are known as dynamic durable subscribers. For ex-
ample, if we were to define a new durable subscriber called BorrowerA, we could simply
do the following:

TopicSubscriber subscriber = tSession.createDurableSubscriber(topic, "BorrowerA");

In this case, the BorrowerA durable subscriber is not defined in the JMS provider and,
therefore, is not an administered durable subscriber. However, once the line of code
listed above executes, a new durable subscriber called BorrowerA is created in the JMS
provider and, therefore, will receive all rates published to the topic, whether the
subscriber is active or not. The subscriber will remain a durable subscriber until it
is unsubscribed (see the section “Unsubscribing Dynamic Durable Subscrib-
ers” on page 104).

Although this feature provides a great deal of flexibility, it also comes with a price. Each
durable subscriber, whether it is administered or dynamic, will receive a copy of the
message published to the topic.*

This means that when the subscriber is not active, those messages are being stored for
each durable subscriber. From a capacity planning standpoint, dynamic durable sub-
scribers are somewhat dangerous in that it is difficult to control the number of durable
subscribers using the system (although this can be monitored through an admin con-
sole, depending on the JMS provider and monitoring software you are using). Imagine
for a moment that 100 new dynamic durable subscribers were suddenly created to start
receiving every mortgage rate or stock price to perform trend analysis. Then, once that
analysis was complete, those 100 subscribers were retired, but not unsubscribed. This
means that every mortgage rate and every stock price update would be stored for those
retired dynamic durable subscribers forever or until the machine hosting the JMS
datastore ran out of storage or memory.

There are a few methods a middleware administrator can use for addressing this issue
in production environments to help control machine resources and capacity. You can
prohibit dynamic durable subscribers in your messaging system by frequently (once a
minute, once an hour, etc.) running a control program or database script that compares
the known durable subscribers with those registered with the JMS provider. Each JMS
provider will store the messages in either a database or filesystem. For example,

* At least theoretically. Each JMS provider may have a different implementation of how messages are associated
with durable subscribers.

102 | Chapter 5: Publish-and-Subscribe Messaging

OpenJMS—an open source JMS provider useful for testing and training purposes—
uses a JDBC 2.0-compliant database to store messages. If you look at the MySQL
database schema in OpenJMS,† you will observe two tables of interest—the
consumers table and the message_handles table:

create table consumers (
 name varchar(255) not null,
 destinationId bigint not null,
 consumerId bigint not null,
 created bigint not null);

create unique index consumers_pk on consumers(
 name, destinationId);

create table message_handles (
 messageId varchar(64) not null,
 destinationId bigint not null,
 consumerId bigint not null,
 priority int,
 acceptedTime bigint,
 sequenceNumber bigInt,
 expiryTime bigint,
 delivered int);

create index message_handles_pk ON message_handles(
 destinationId, consumerId, messageId);

For pub/sub messaging, the consumers table is used to hold durable subscribers and the
message_handles table is used to link the messages to the consumers. Given this schema,
a middleware administrator can write a simple database script or program to query for
any durable subscribers in the consumer table that are not in the administered list of
subscribers, and simply delete them from the JMS provider database (along with the
corresponding messages in the message_handles table).

Another solution is to allow for the creation of dynamic durable subscribers, but only
have them active for a limited time period (e.g., two days, one week, etc.). If you notice
in the previous MySQL database schema definitions for OpenJMS, the consumers table
has a created column containing the timestamp (represented as a long in milliseconds)
of when that durable subscriber was first created. You can easily create a database script
or control program that executes each evening, removing any dynamic durable sub-
scribers that were created a specified number of days ago. With this method, you can
allow for the flexibility of dynamic durable subscribers if the business rules or use cases
call for them, but limit the lifespan of those dynamic durable subscribers to avoid filling
up the storage capacity of the database.

A less aggressive approach would be to leverage the database schema of the JMS pro-
vider to create a report of the number of dynamic durable subscribers and current

† OpenJMS is a simple open source JMS provider useful for testing and training purposes. It can be found at
http://openjms.sourceforge.net.

Dynamic Versus Administered Subscribers | 103

http://openjms.sourceforge.net

message count using the tables described earlier. This report would show any signifi-
cantly large message count for a particular subscriber, indicating that the durable
subscriber is possibly retired or no longer interested in the data. The dynamic subscriber
would then be flagged as a possible candidate for removal or message cleanup.

Unsubscribing Dynamic Durable Subscribers
There may be cases where you want to explicitly unsubscribe a durable subscriber in
a client application. To remove a dynamic durable subscription, you can invoke the
Session.unsubscribe method:

...
private void exit() {
 try {
 subscriber.close();
 tSession.unsubscribe("BorrowerA");
 tConnect.close();
 } catch (javax.jms.JMSException jmse){
 jmse.printStackTrace();
 }
 System.exit(0);
}
...

For nondurable subscriptions, calling the close() method on the TopicSubscriber class
is sufficient. For durable subscriptions, there is an unsubscribe(String name) method
on the TopicSession object, which takes the subscription name as its parameter. This
informs the JMS provider that it should no longer store messages on behalf of this client.
You cannot call the unsubscribe() method without first closing the subscription (you
will get an exception if you do this). Hence, both methods need to be called for durable
subscriptions.

Temporary Topics
In the chat example we explored in Chapter 2, we assumed that JMS clients would
communicate with each other using established topics on which messages are asyn-
chronously produced and consumed. In this section, we will explore ways to augment
this basic mechanism by looking at temporary topics, which is a mechanism for JMS
clients to create topics dynamically.

A temporary topic is a topic that is dynamically created by the JMS provider, using the
createTemporaryTopic method of the TopicSession object. A temporary topic is asso-
ciated with the connection that belongs to the TopicSession that created it. It is only
active for the duration of the connection and it is guaranteed to be unique across all
connections. Since it is temporary, it can’t be durable—it lasts only as long as its as-
sociated client connection is active. In all other respects, it is just like a “regular” topic.

104 | Chapter 5: Publish-and-Subscribe Messaging

Since a temporary topic is unique across all client connections (it is obtained dynami-
cally through a method call on a client’s session object), it is unavailable to other JMS
clients unless the topic identity is transferred using the JMSReplyTo header. While any
client may publish messages on another client’s temporary topic, only the sessions that
are associated with the JMS client connection that created the temporary topic may
subscribe to it. JMS clients can also, of course, publish messages to their own temporary
topics.

A temporary topic allows a consumer to respond directly to a producer. In larger real-
world applications, however, there may be many publishers and subscribers exchang-
ing messages across many topics. A message may represent a workflow, which may
take multiple hops through various stages of a business process. In that type of scenario,
the consumer of a message may never respond directly to the producer that originated
the message. It is more likely that the response to the message will be forwarded to
some other process. Thus, the JMSReplyTo header can be used as a place to specify a
forwarding address, rather than the destination address of the original sender.

Temporary Topics | 105

CHAPTER 6

Message Filtering

There may be times when you want to be more selective about the messages received
from a particular queue or topic. Without message filtering, topic subscribers receive
every message published to the topic and queue receivers receive the next available
message, regardless of the message content or type. In the case of topic subscribers, the
subscriber may be forced to process a large number of unnecessary and unwanted
messages, usually leading to custom-written Java code to manually filter unwanted
messages. A good example of this is with the TBorrower class from the prior chapter. In
this case, the TBorrower class is receiving every loan rate published from the TLender on
the RateTopic topic, and then using conditional logic to determine whether to refinance
the existing mortgage loan:

public class TBorrower implements javax.jms.MessageListener {

 ...
 public TBorrower(String topiccf, String topicName, String rate) {
 try {
 ...
 TopicSubscriber subscriber =
 session.createSubscriber();
 ...
 }

 public void onMessage(Message message) {
 try {
 // Get the data from the message
 BytesMessage msg = (BytesMessage)message;
 double newRate = msg.readDouble();

 // If the rate is at least 1 point lower than the current rate, then
 //recommend refinancing
 if ((currentRate - newRate) >= 1.0) {
 System.out.println(
 "New rate = " + newRate + " - Consider refinancing loan");
 } else {
 System.out.println("New rate = " + newRate + " - Keep existing loan");
 }

107

 System.out.println("\nWaiting for rate updates...");
 ...
 }

 ...
}

In this example, the TBorrower subscriber may process thousands of messages before
finding one that is a good deal, unnecessarily consuming precious machine resources
(e.g., memory and CPU) in the process. A better approach in this case would be to use
message filtering so that the subscriber only receives messages that it deems good deals,
thereby making the TBorrower subscriber processing more efficient:

public class TBorrower implements javax.jms.MessageListener {

 ...
 public TBorrower(String topiccf, String topicName, String rate) {
 try {
 ...
 topic = (Topic)ctx.lookup(topicName);
 ...
 String filter = "(currentRate - newRate) >= 1.0";
 TopicSubscriber subscriber =
 session.createSubscriber(topic, filter, true);
 ...
 }

 public void onMessage(Message message) {
 try {
 // Get the data from the message
 BytesMessage msg = (BytesMessage)message;
 double newRate = msg.readDouble();

 //we received a good deal, start the refinancing process
 ...

 System.out.println("\nWaiting for rate updates...");
 ...
 }
 ...
}

This example is only meant to illustrate the possibilities of message filtering. For the
code to work, the currentRate and newRate would both have to be exposed as message
properties by the message sender (you cannot use local variables or data in the message
body as part of a message selector). Notice that the TBorrower subscriber still has control
over the rules for what it considers a good deal (specified when creating the subscriber).
Also notice that since every message received from the TBorrower subscriber is now a
good deal, the onMessage method is no longer required to have conditional logic applied
to every message to determine whether it should automatically refinance an existing
loan. By using message selectors, the number of messages it receives and processes is
significantly reduced, making the overall system processing much more efficient.

108 | Chapter 6: Message Filtering

Message filtering with queues is a much more interesting case because, unlike topics,
once a message is consumed by one queue receiver, it is no longer available to any other
queue receiver. This means that if one queue receiver consumes a message and decides
it shouldn’t process it, it is too late; the message has already been received and will be
removed from the queue. For example, assume we have a single queue that holds orders
from a retailer. Depending on the status of the customer, orders are either processed
with a high priority or normal priority. In this case, two different classes handle the
processing of high priority and normal priority orders (PriorityHandling class and
NormalHandling class, respectively). Message filtering based on the customer status
would be required since both the PriorityHandling and NormalHandling classes are both
receiving messages on the same queue. If message filtering was not used, the
NormalHandling class might consume a message for a customer with a status eligible for
high-priority order handling, which would in turn require the NormalHandling class to
somehow get the message to the PriorityHandling class (e.g., through inter-service
communication or resending the message).

When a JMS consumer declares a message selector for a particular des-
tination, the selector is applied only to messages delivered to that con-
sumer. Every JMS client can have a different selector specified for each
of its consumers.

Filtering out certain messages from a queue and/or topic is done through message
selectors. This chapter describes the specification, use cases, and design considerations
for using message selectors within JMS.

Message Selectors
Message selectors are applied to message consumers when creating a QueueReceiver,
QueueBrowser, or TopicSubscriber. When message selectors are used, the consumer will
receive only messages that apply to the specified filter. Message selectors use message
properties and headers as criteria in conditional expressions. These conditional ex-
pressions use boolean logic to declare which messages should be delivered to a JMS
consumer. Note that a message selector cannot refer to data within the message body;
only message header and message properties can be used. This means that the message
producer must add the appropriate data to the message properties area of the message
so that messages can be logically filtered.

Message selectors are based on a subset of the SQL-92 conditional expression syntax.
If you are familiar with SQL-92, the conditional expressions used in message selectors
will be familiar to you. Message selectors are made up of three elements: identifiers,
literals, and comparison operators. The details about each of these elements are
described in the following sections.

Message Selectors | 109

To illustrate how message selectors are applied, in the following sections we will con-
sider a hypothetical stock trading message that contains three application properties:
Symbol, Side, and Shares. Symbol is a String property containing the stock symbol;
Side is a String property indicating whether this is a buy or sell order; and Shares is a
double property indicating the number of shares to be purchased or sold. The values
of these properties depend on the message. The message selector is used to obtain only
those messages with property values of interest to the consumer.

Identifiers
An identifier is the part of the expression that is being compared. Identifiers must come
from either the message header or message properties. For example, the identifiers in
the following expression are Symbol, Side, Shares, and JMSPriority:

Symbol = 'ABC' AND Side = 'BUY' AND Shares <= 1000.0 AND JMSPriority > 4

Identifiers can be any application-defined, JMS-defined, or provider-specific property,
or one of several JMS headers. In the example just shown Symbol, Side, and Shares come
from application properties in the message, whereas the JMSPriority comes from the
message header. Identifiers are case-sensitive and must match the property or JMS
header name exactly. Identifiers have the same naming restrictions as property names
(see Appendix C). Thus, to use the identifiers above, the message producer must set
the Symbol, Side, and Shares properties prior to sending the message:

...
ObjectMessage msg = session.createObjectMessage(tradeOrder);
msg.setStringProperty("Symbol", tradeOrder.getSymbol());
msg.setStringProperty("Side", tradeOrder.getSide());
msg.setDoubleProperty("Shares", tradeOrder.getShares());
...

The JMS headers that can be used as identifiers include the following:

• JMSDeliveryMode

• JMSPriority

• JMSMessageID

• JMSTimestamp

• JMSCorrelationID

• JMSType

The JMSDestination and JMSReplyTo headers cannot be used as identifiers because their
corresponding values are Destination objects whose underlying value is proprietary
and therefore undefined. The JMSRedelivered value may be changed during delivery
and is therefore not allowed in a selector. If a consumer uses a message selector where
"JMSRedelivered = false" and there was a failure delivering a message, then the
JMSRedelivered flag might be set to true. JMSExpiration is not supported as an identifier

110 | Chapter 6: Message Filtering

because JMS providers may choose to implement this value differently. Some may store
it with the message, while others calculate it as needed.

Literals
Literals are expression values that are hardcoded into the message selector. In the mes-
sage selector shown here, 'ABC', 'SELL', and 1000 are all literals:

Symbol = 'ABC' AND Side = 'BUY' AND Shares <= 1000.0

String literals are enclosed in single quotes. An apostrophe or single quote can be
included in a String literal by using two single quotes (e.g., 'Smith''s').

Numeric literals are expressed using exact numerical (+22, 30, -52134), approximate
numerical with decimal (-33.22, 100.00, +7.0) or scientific (-9E4, 3.5E6) notation.

Boolean literals are expressed as true or false.

Comparison Operators
Comparison operators compare identifiers to literals in a boolean expression that eval-
uates to either true or false. Comparison operations can be combined into more com-
plex expressions using the logical operators AND and OR. The comparison operators that
are used with message selectors include:

• Algebraic comparison operators

• LIKE operator

• BETWEEN operator

• IN operator

• NOT operator

• IS NULL operator

Message selector expressions are evaluated from left to right:

Symbol = 'ABC' AND Side = 'BUY' OR Shares <= 1000.0

In this example, the expression would be evaluated as if it had parentheses placed as
follows (parentheses can be used to group expressions and can change the precedence
of evaluation):

(Symbol = 'ABC' AND Side = 'BUY') OR Shares <= 1000.0

Either the Shares must be less than or equal to 1000.0 or the Shares can be any value
as long as the Symbol equals 'ABC' and the Side equals 'BUY'. Evaluating these kinds of
expressions should be second nature for most programmers.

Message selectors support six algebraic comparison operators, which are = , > , >= , < ,
<= , and <> (not equal). These algebraic comparison operators can be used on any of

Message Selectors | 111

the primitive property types except for boolean. The boolean and String property types
are restricted to the = or the <> algebraic operators. A mismatch between the identifier
type and the operations allowed on that type will result in an InvalidSelectorException.

String types can be compared using the LIKE comparison operator. For example:

Shares > 1000.0 AND Symbol LIKE 'A%C'

The LIKE comparison operator attempts to match each character in the literal with
characters of the property value. Two special wildcard characters, underscore (_) and
percent (%), can be used with the LIKE comparison. The underscore stands for any single
character. The percent symbol stands for any sequence of characters. All other char-
acters stand for themselves and are case sensitive. Table 6-1 provides some examples
of successful and unsuccessful comparisons using the LIKE operator.

Table 6-1. Comparisons using the LIKE operator

Expression True for values False for values

LName LIKE 'A_C' ABC, AEC, AZC ABQC, ABD, AB

LName LIKE 'AB_' ABC, ABQ, ABZ AQC, ABCD

LName LIKE 'A%C' ABC, ASFC, AC AQ, BFTC, ACD

LName LIKE '%CD' ABCD, QCD, CD ABQD, ACDX

The BETWEEN operator can be used to specify a range (inclusive). For example:

Shares BETWEEN 1000 and 2000

This expression is the same as:

(Shares >= 1000) AND (Shares <= 2000)

The IN operator can be used to specify membership in a set:

Symbol IN ('ABC', 'AQC', 'BCD')

This expression is the same as:

(Symbol = 'ABC') OR (Symbol = 'AQC') OR (Symbol = 'BCD')

The NOT logical operator can be used in combination with the LIKE, BETWEEN, IN, and
IS NULL (discussed later) operators to reverse their evaluation. If the expression would
have evaluated to true, it becomes false, and vice versa.

When no property or header exists to match an identifier in a message selector, the
value of the identifier is assigned a null value. Nonexistent properties evaluating to
null present some problems with message selectors. In some cases, the null value of
the property cannot be evaluated in a conditional expression. The result is an
unknown evaluation—a nice way of saying the result is not predictable across JMS
providers. If, for example, a particular message contains the Symbol and Side properties
but does not have a Shares property, then the message selector following would evaluate
to unknown as shown:

112 | Chapter 6: Message Filtering

Symbol = 'ABC' AND Side = 'BUY' OR Shares >= 1000.0
 ____ _____ _______
 TRUE AND FALSE OR UNKNOWN

The results of evaluating unknown expressions with logical operators (AND, OR, NOT) are
shown in Tables 6-2 through 6-4.

Table 6-2. Definition of the AND operator

Expression Result

TRUE AND TRUE TRUE

TRUE AND FALSE FALSE

TRUE AND Unknown Unknown

FALSE AND Unknown FALSE

Unknown AND Unknown Unknown

Table 6-3. Definition of the OR operator

Expression Result

TRUE OR TRUE TRUE

TRUE OR FALSE TRUE

TRUE OR Unknown TRUE

FALSE OR Unknown Unknown

Unknown OR Unknown Unknown

Table 6-4. Definition of the NOT operator

Expression Result

NOT TRUE FALSE

NOT FALSE TRUE

NOT Unknown Unknown

To avoid problems, the IS NULL or IS NOT NULL comparison can be used to check for
the existence of a property:

Shares IS NULL AND Symbol IS NOT NULL

This expression selects messages that do not have a Shares property but do have a
Symbol property.

Arithmetic Operators
In addition to normal comparison operators, message selectors can use arithmetic
operators to calculate values for evaluation dynamically at runtime. Table 6-5 shows
the arithmetic operators in their order of precedence.

Message Selectors | 113

Table 6-5. Arithmetic operators

Type Symbol

Unary +, -

Multiplication and division *, /

Addition and subtraction +, -

For example, the following expression applies arithmetic operations to the Price and
Shares properties of a message to only select trade messages in excess of one million
dollars:

(Price * Shares) > 1000000.00

Declaring a Message Selector
When a consumer is created with a message selector, the JMS provider must validate
that the selector statement is syntactically correct. If the selector is not correct, the
operation throws a javax.jms.InvalidSelectorException. For the point-to-point
model, message selectors can be applied to a QueueBrowser and the QueueReceiver,
specifically within the createBrowser() and createReceiver() methods of the
QueueSession:

public interface QueueSession extends Session {

 public QueueBrowser createBrowser(Queue queue,
 String messageSelector)
 throws JMSException,
 InvalidSelectorException,
 InvalidDestinationException;

 public QueueReceiver createReceiver(Queue queue,
 String messageSelector)
 throws JMSException,
 InvalidSelectorException,
 InvalidDestinationException;
 ...
}

For the publish-and-subscribe model, message selectors can be applied to a durable or
nondurable TopicSubscriber (topic browsing is not supported for the publish-and-
subscribe model). When creating a topic subscriber, you can specify the message
selector in the createSubscriber() or createDurableSubscriber() methods of the
TopicSession:

public interface TopicSession extends Session {

 public TopicSubscriber createSubscriber(Topic topic,
 String messageSelector,
 boolean noLocal)
 throws JMSException,

114 | Chapter 6: Message Filtering

 InvalidSelectorException,
 InvalidDestinationException;

 public TopicSubscriber createDurableSubscriber(Queue queue,
 String name,
 String messageSelector,
 boolean noLocal)
 throws JMSException,
 InvalidSelectorException,
 InvalidDestinationException;
 ...
}

Notice in the publish-and-subscribe model, when specifying the message selector when
creating a subscriber, you must also specify a boolean value for the noLocal argument.
The noLocal argument is only applicable for topics and specifies whether messages
published from this message producer should be delivered to this message producer.
A value of true inhibits messages from being delivered to the same connection that
published those messages.

Because the general Session interface applies to both the point-to-point and publish-
and-subscribe models (and the corresponding QueueSession and TopicSession
interfaces), you can also use the Session interface to create a generic MessageConsumer
using the createConsumer() method, specifying the message selector as follows:

public interface Session extends Runnable {

 public MessageConsumer createConsumer(Destination dest,
 String messageSelector)
 throws JMSException,
 InvalidSelectorException,
 InvalidDestinationException;

 public MessageConsumer createConsumer(Destination dest,
 String messageSelector,
 boolean noLocal)
 throws JMSException,
 InvalidSelectorException,
 InvalidDestinationException;
 ...
}

You can specify the message selector as a string value directly in the method to create
the message consumer or you can use a separate String variable defined outside the
scope of the method call. Specifying a null or empty string value in the message selector
indicates that no message selector is to be used for this message consumer.

The message selector used for a consumer can always be obtained by calling the get
MessageSelector() method on a QueueReceiver, QueueBrowser, or TopicSubscriber. The
getMessageSelector() method returns the message selector for that consumer as a
String.

Declaring a Message Selector | 115

Once a consumer’s message selector has been established, it cannot be changed while
that message consumer is active. To change a message selector, you must first close the
active message consumer and recreate it using the new message selector.

Message Selector Examples
The following are four selectors used in hypothetical environments. Although you will
have to use a little imagination, the purpose of these examples is to convey the power
of the message selectors. Notice in these examples that a message selector can be applied
to both the publish-and-subscribe model and the point-to-point model.

Managing Claims in an HMO
Due to some fraudulent claims, an automatic process is implemented that will audit
all claims submitted by patients who are employees of the ACME manufacturing com-
pany with visits to chiropractors, psychologists, and dermatologists:

String selector =
 "PhysicianType IN ('Chiropractor', 'Psychologist', 'Dermatologist') "
 + "AND PatientGroupID LIKE 'ACME%'";

TopicSubscriber subscriber =
 session.createSubscriber(topic, selector, false);

Notification of Certain Bids on Inventory
A supplier wants notification of requests for bids on specific inventory items at specific
quantities:

String selector =
 "InventoryID = 'S93740283-02' AND Quantity BETWEEN 1000 AND 13000";

TopicSubscriber subscriber =
 session.createSubscriber(topic, selector, false);

Priority Handling
A supplier receiving orders handles two types of customers: gold and silver. Since the
priority and handing of orders differs greatly between these customer types, the online
supplier has different processes to handle gold customers and silver customers, even
though all orders are sent to the same queue. Priority handling is offered to gold cus-
tomers or those messages with a high priority (notice here the use of both a header
property and an application-specified property in the message selector):

String selector = "CustomerType = 'GOLD' OR JMSPriority BETWEEN 5 AND 9";

QueueReceiver receiver = session.createReceiver(queue, selector);

116 | Chapter 6: Message Filtering

Stock Trade Order Auditing
As part of a standard stock trade order process, whenever a stock trade order is placed,
a corresponding message is published on a topic containing the details of that trade.
An audit process subscribes to the trade order topic to ensure compliance with the
allowable commission rates. For trade orders less than one million dollars, the com-
mission rate is 2.3%. For trade orders greater than or equal to one million dollars, the
commission rate drops to 1.6%. Only those orders not in compliance will be received
by the subscriber:

String selector =
 "((Shares * Price) < 1000000.00 AND Commission > (Shares * Price) * .023) OR "
 + "((Shares * Price) >= 1000000.00 AND Commission > (Shares * Price) * .016)";

TopicSubscriber subscriber =
 session.createSubscriber(topic, selector, false);

Not Delivered Semantics
What happens to messages that are not selected for delivery to the consumer by its
message selector? This depends on the message model used. For the publish-and-
subscribe model, the messages are not delivered to that subscriber; they are, however,
delivered to other pub/sub subscribers. This is true for both nondurable and durable
subscriptions. For the point-to-point model, any messages that are not selected by the
consumer are not visible to that consumer. They are, however, visible to other point-
to-point consumers.

Because messages may not be delivered to consumers based on message filtering, it is
important to make sure that all messages produced by a sender or publisher have a
corresponding expiration associated with them. By default, messages are set never to
expire. This means that if a message is filtered out and not delivered to a consumer, it
will reside in the queue forever. By setting the message time to live option, you can
control how long the message stays on the queue if it is not delivered.

The JMSExpiration header property contains a timestamp indicating when a message
is set to expire. The JMS provider will constantly check the queue or topic (i.e., sub-
scribers) for any messages set to expire and will automatically remove the message when
the message is set to expire. The JMSExpiration header property is set by the JMS pro-
vider and is calculated by adding the time to live (in milliseconds) specified by the JMS
developer to the timestamp when the message is sent or published.

The message’s time to live property is set using the MessageProducer JMS interface, or
more specifically, the QueueSender or TopicPublisher JMS interface. For example, to set
all messages to expire 30 minutes after they have been sent and not delivered, you would
set the message expiration as follows:

Not Delivered Semantics | 117

...
QueueSender sender = session.createSender(queue);
sender.setTimeToLive(1000 * 60 * 30);
...

Using the code snippet just shown, messages not delivered (due to message filters or
consumers not available) would only remain on the queue or topic for 30 minutes. After
that time, the JMS provider would remove the message from the queue or topic. While
it is necessary to take into account the business requirements when deciding on the
message expiration, it is equally important to make sure messages that are not delivered
due to message filtering do not remain on the queue or topic for extended periods of
time. Messages that are not delivered add to the queue depth and can cause unwanted
queue depth notifications if left unattended for too long.

Design Considerations
There are two main message filtering approaches to consider when designing message-
based solutions. You can send all related messages (e.g., trade orders) to a single JMS
destination and use message filtering on the message consumer to select specific mes-
sages or you can use multiple JMS destinations that contain prefiltered messages. The
first approach we will call the Message Filtering approach, and the second we will call
the Multiple Destination approach. Understanding the implications of each of these
approaches will help you arrive at a proper design for your particular situation.

What we have been focusing on so far in this chapter has been the Message Filtering
approach using message filters on the QueueReceiver or TopicSubscriber to receive only
those messages we are interested in. With the Message Filtering approach, messages
are sent to a single JMS destination and filtered by the message consumer, as shown in
Figure 6-1.

Queue sender Queue
Filter

Filter

Filter
Queue receiver

Queue receiver

Queue receiver

Figure 6-1. Message Filtering approach

118 | Chapter 6: Message Filtering

Notice that with the Message Filtering approach it is the message consumer that has
control over filtering and what messages it wants to receive. This approach provides
for a higher level of decoupling between the message producer components and the
message consumer components because less information needs to be known by the
message producer about how the message will be processed. This is particularly true
for the publish-and-subscribe model, where the topic publisher is generally unaware
of the number and type of subscribers for a particular topic.

The Multiple Destination approach applies filtering before the message is sent to the
destination. Rather than using message selectors, multiple destinations containing spe-
cific messages would be used instead. The message producer would typically use Java
code to apply filtering logic to determine to which destination the message should be
sent. Since each queue or topic contains a specific type of prefiltered message, the
message consumer does not have to use message filtering to receive the messages it is
interested in. This approach is illustrated in Figure 6-2.

Queue sender

Queue receiver

Queue receiver

Queue receiver

Queue

Queue

Queue

Figure 6-2. Multiple Destination approach

As shown in Figure 6-2, with the Multiple Destination approach it is the message
producer that has control over the filtering and which destinations are to receive which
messages. This is one of the fundamental differences between the two filtering ap-
proaches. One key factor to consider with the Multiple Destination approach is whether
the message producer has enough knowledge of how the messages are processed to
make the decision about which destinations to route the message to. The more the
message producer needs to know about how the message will be consumed, the tighter
the coupling will be between the message producer and message consumer. Of course,
just because you are using the Multiple Destination approach does not mean that you
cannot do further message selector-based filtering on the message consumer. The com-
bined approach is illustrated in Figure 6-3.

Design Considerations | 119

Queue sender

Queue receiver

Queue receiver

Queue receiver

Queue

Queue

Filter

Filter

Figure 6-3. Combined approach

In many respects, the combined approach strikes the best balance between the two
approaches. It resolves many of the issues facing both the Message Filtering approach
and the Multiple Destination approach. Heavy use of either approach is a good indi-
cation that there is an issue in the overall design of your queues and topics, primarily
with respect to the level of granularity of the JMS destinations. Topic subscribers con-
taining a substantial amount of message filtering would suggest that the topics are too
coarse-grained, and should perhaps be split up into multiple topics. On the other hand,
topic subscribers forced to subscribe to multiple topics to retrieve the information they
need would suggest that the topics are too fine-grained and should be combined to fit
the majority of the use cases used by the topic subscribers. In general, the level of
granularity represented by the queue or topic and overall queue or topic design should
reflect how the information is used.

There are further implications within the point-to-point model with respect to message
filtering, particularly when using the Message Filtering approach. With the point-to-
point model, the message is guaranteed to be delivered to at most one message con-
sumer. This means that if you are not careful with your message filtering on the message
consumer side, there is the chance that the message selectors will be written so that the
message will not be delivered to any of the consumers. For example, consider the case
where message filtering is used to separate the processing of large and small stock trade
orders. Two separate message consumers might have the corresponding message
selectors:

//Consumer 1
String filter = "Shares < 5000";

//Consumer 2
String filter = "Shares > 5000";

If a trade order came through with exactly 5,000 shares, it would not be delivered to
either consumer. The message would instead remain on the queue indefinitely, de-
pending on the message expiry. If the message did expire, the trade order would be lost

120 | Chapter 6: Message Filtering

and never processed. That is bad news if the execution of that trade would have resulted
in a substantial gain for the customer (but good news if it would have resulted in a loss!).

When using the Message Filtering approach with the point-to-point model, it is some-
times useful to create an undelivered message consumer so that messages excluded from
the message filtering will be received by at least one message consumer. The message
selector for the undelivered message consumer would be an exact negative of the union
of all message selectors for all consumers of that queue. For example, if one queue
receiver had a message selector specified as CustType = 'GOLD' and another had a mes-
sage selector specified as CustType = 'SILVER', the undelivered message consumer
would specify its message selector as CustType <> 'GOLD' AND CustType <> 'SILVER'.
This way, if a message came through without a CustType property or a CustType value
other than GOLD or SILVER, the message would still be delivered. Upon receiving the
message, the undelivered message consumer could then send out a notification to op-
erations support, send the message to a workflow queue, or simply send the message
back to the message producer with an associated error message.

To further illustrate the implications between the two filtering approaches, consider
the example we have been using where an order is sent from a Retailer class and is
processed by separate wholesaler consumers (in this case WholesalerGold and Wholesa
lerSilver) based on the retailer type (GOLD or SILVER). Gold retailers go through a special
order process that is significantly different from Silver retailers, hence the need for
separate message consumers. With the Message Filtering approach, all messages are
sent to a single order queue and delivered to the message consumers using message
filtering by the WholesalerGold and WholesalerSilver classes.

First, the Retailer class sends an order, setting the message property based on the
customer type of that retailer:

public class Retailer {
 ...
 private void makePurchase (String itemDesc, long qty, String custType) {
 try {
 ...

 Queue orderQ = (Queue)ctx.lookup("orderQueue");
 QueueSession session =
 connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
 QueueSender sender = session.createSender(orderQ);

 StreamMessage msg = session.createStreamMessage();
 msg.writeString(itemDesc);
 msg.writeLong(qty);

 msg.setStringProperty("CustType", custType);

 sender.send(msg);
 } catch (JMSException jmse) {
 ...
 }

Design Considerations | 121

 }
 ...
}

Notice how the retailer only needs to be concerned about writing to one queue and
how the CustType property is set on the message using an application property on the
message. Next, the WholesalerGold class receives orders, but only for those orders hav-
ing the CustType of GOLD:

public class WholesalerGold implements MessageListener {
 ...
 public WholesalerGold(String broker, String username, String password) {
 try {
 ...
 Queue orderQ = (Queue)ctx.lookup("orderQueue");

 QueueReceiver qReceiver =
 qSession.createReceiver(orderQ, "CustType = 'GOLD'");
 qReceiver.setMessageListener(this);

 } catch (javax.jms.JMSException jmse) {
 ...
 }
 }
 ...
}

Finally, the WholesalerSilver class, which is listening on the same queue as the Whole
salerGold class, receives orders only for retailers with a CustType of SILVER:

public class WholesalerSilver implements MessageListener {
 ...
 public WholesalerSolver(String broker, String username, String password) {
 try {
 ...
 Queue orderQ = (Queue)ctx.lookup("orderQueue");

 QueueReceiver qReceiver =
 qSession.createReceiver(orderQ, "CustType = 'SILVER'");
 qReceiver.setMessageListener(this);

 ...
 }
 }
 ...
}

Now let’s take the same example but apply the Multiple Destination approach instead.
In this case, the retailer class must apply conditional logic (in Java) to determine which
queue to send the message to:

public class Retailer {
 ...
 private void makePurchase (String itemDesc, long qty, String custType) {
 try {

122 | Chapter 6: Message Filtering

 ...

 Queue goldQueue = (Queue)ctx.lookup("GoldOrderQueue");
 Queue silverQueue = (Queue)ctx.lookup("SilverOrderQueue");
 QueueSession session =
 connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

 QueueSender goldSender = session.createSender(goldQueue);
 QueueSender SilverSender = session.createSender(silverQueue);

 StreamMessage msg = session.createStreamMessage();
 msg.writeString(itemDesc);
 msg.writeLong(qty);

 if (custType.equals("GOLD") {
 goldSender.send(msg);
 } else {
 silverSender.send(msg);
 }

 } catch (JMSException jmse) {
 ...
 }
 }
 ...
}

Notice the need for multiple senders, multiple queues, and conditional logic to route
the message. The wholesaler classes, however, are simpler in that each wholesaler class
receives all messages from the queue, with no message selectors needed. First the
WholesalerGold receiver, which is listening on the order queue holding Gold orders:

public class WholesalerGold implements MessageListener {
 ...
 public WholesalerGold(String broker, String username, String password) {
 try {
 ...
 Queue orderQ = (Queue)ctx.lookup("GoldOrderQueue");

 QueueReceiver qReceiver = qSession.createReceiver(orderQ);
 qReceiver.setMessageListener(this);

 ...
 }
 }
 ...
}

Next we have the WholesalerSilver class listening on the SilverOrdersQueue. Notice
that no message selectors are required:

public class WholesalerSilver implements MessageListener {
 ...
 public WholesalerSilver(String broker, String username, String password) {
 try {

Design Considerations | 123

 ...
 Queue orderQ = (Queue)ctx.lookup("SilverOrderQueue");

 QueueReceiver qReceiver = qSession.createReceiver(orderQ);
 qReceiver.setMessageListener(this);

 ...
 }
 }
 ...
}

If you look closely at the source code of the preceding Retailer and Wholesaler example
you will see an immediate advantage to the Message Filtering approach. This approach
is much more extensible than the Multiple Destination approach. If we were to add a
third customer type to the mix with a CustType of PLATINUM, all that would need to
change with the Message Filtering approach is to add another Wholesaler consumer
class to consume orders from PLATINUM retailers. However, with the Multiple Destina-
tion approach, not only would we have to add another Wholesaler class to process
PLATINUM retailers, but we would also have to add another queue to hold PLATINUM orders
and modify the retailer class to route orders to the PLATINUM queue. Clearly, Message
Filtering is a much better approach for this use case.

As you can see, while message selectors may seem like a fairly straightforward topic,
there are many design-related implications to consider when using them, particularly
when using the point-to-point model. Understanding these implications and the design
trade-offs will help you make the right decisions for your messaging infrastructure.

124 | Chapter 6: Message Filtering

CHAPTER 7

Guaranteed Messaging and
Transactions

Guaranteed messaging is more than just a mechanism for handling disconnected con-
sumers. It is a crucial part of the messaging paradigm and is the key to understanding
the design of a distributed messaging system. This chapter examines why guaranteed
messaging works, including message acknowledgment protocols that are part of guar-
anteed messaging and how to use client acknowledgments in applications. This chapter
will also cover the design patterns of JMS that enable you to build guaranteed messaging
into applications, and discuss failure scenarios, the rules that apply to recovery, and
how to deal with recovery semantics in a JMS application.

Guaranteed Messaging
Before we discuss the parts of guaranteed messaging, we need to review and define
some new terms. A JMS client application uses the JMS API. Each JMS vendor provides
an implementation of the JMS API on the client, which we call the client runtime. In
addition to the client runtime, the JMS vendor also provides some kind of message
“server” that implements the routing and delivery of messages. The client runtime and
the message server are collectively referred to as the JMS provider. Regardless of the
architecture used by a JMS provider, the logical parts of a JMS system are the same.
The number of processes and their location on the network is unimportant for this
discussion. (In Chapter 10, you will see that some providers use a multicast architecture
in which there is no central server.) The upcoming sections make use of diagrams that
describe the logical pieces and do not necessarily reflect the process architecture of any
particular JMS provider.

A provider failure refers to any failure condition that is outside of the domain of the
application code. It could mean a hardware failure that occurs while the provider is
entrusted with the processing of a message, an unexpected exception, the abnormal
end of a process due to a software defect, or network failures.

125

There are three main parts to guaranteed messaging: message autonomy, store-and-
forward, and the underlying message acknowledgment semantics. Each of these con-
cepts is discussed in the following sections.

Message Autonomy
Messages are self-contained autonomous entities. This fact needs to be foremost in
your mind when designing a distributed messaging application. A message may be sent
and re-sent many times across multiple processes throughout its lifetime. Each JMS
client along the way will consume the message, examine it, execute business logic,
modify it, or create new messages in order to accomplish the task at hand.

In a sense, a JMS client has a contract with the rest of the system: when it receives a
message, it does its part of the processing and may deliver the message (or new message)
to another topic or queue. When a JMS client sends a message, it has done its job. The
messaging server guarantees that any other interested parties will receive the messages.
This contract between the sender and the message server is much like the contract
between a JDBC client and a database. Once the data is delivered, it is considered “safe”
and out of the hands of the client.

Store-and-Forward Messaging
When messages are marked persistent, it is the responsibility of the JMS provider to
utilize a store-and-forward mechanism to fulfill its contract with the sender. The storage
mechanism is used for persisting messages to disk (or some other reliable medium) in
order to ensure that the message can be recovered in the event of a provider failure or
a failure of the consuming client. The implementation of the storage mechanism is up
to the JMS provider. The messages may be stored centrally (as is the case with central-
ized architectures) or locally, with each sending or receiving client (the solution used
by decentralized architectures). While some vendors may still use a flat-file storage
mechanism, most vendors use a database. Some may also use an intelligent combina-
tion of both. The forwarding mechanism is responsible for retrieving messages from
storage and subsequently routing and delivering them.

Message Acknowledgments and Failure Conditions
JMS specifies a number of acknowledgment modes. These acknowledgments are a key
part of guaranteed messaging. A message acknowledgment is part of the protocol that
is established between the client runtime portion of the JMS provider and the server.
Servers acknowledge the receipt of messages from JMS producers, and JMS consumers
acknowledge the receipt of messages from servers. The acknowledgment protocol
allows the JMS provider to monitor the progress of a message so that it knows whether
the message was successfully produced and consumed. With this information, the JMS
provider can manage the distribution of messages and guarantee their delivery.

126 | Chapter 7: Guaranteed Messaging and Transactions

Message Acknowledgments
The message acknowledgment protocol is the key to guaranteed messaging, and sup-
port for acknowledgment is required by the semantics of the JMS API. This section
provides an in-depth explanation of how the acknowledgment protocol works and its
role in guaranteed messaging.

We will begin by examining the AUTO_ACKNOWLEDGE mode. We will revisit this discussion
later as it pertains to CLIENT_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE, and JMS-transacted
messages. An understanding of the basic concepts of AUTO_ACKNOWLEDGE will make it easy
to grasp the fundamental concepts of the other modes.

The acknowledgment mode is set on a JMS provider when a Session is created:

tSession =
 tConnect.createTopicSession(false, Session.CLIENT_ACKNOWLEDGE);

qSession =
 qConnect.createQueueSession(false, Session.DUPS_OK_ACKNOWLEDGE);

AUTO_ACKNOWLEDGE
We’ll look at the AUTO_ACKNOWLEDGE mode from the perspective of a message producer,
the message server, and the message consumer.

The message producer’s perspective

Under the covers, the TopicPublisher.publish() or QueueSender.send() methods are
synchronous. These methods are responsible for sending the message and blocking
until an acknowledgment is received from the message server. Once an acknowledg-
ment has been received, the thread of execution resumes and the method returns; pro-
cessing continues as normal. The underlying acknowledgment is not visible to the client
programming model. If a failure condition occurs during this operation, an exception
is thrown and the message is considered undelivered.

The message server’s perspective

The acknowledgment sent to the producer (sender) from the server means that the
server has received the message and has accepted responsibility for delivering it. From
the JMS server’s perspective, the acknowledgment sent to the producer is not tied
directly to the delivery of the message. They are logically two separate steps.* For
persistent messages, the server writes the message out to disk (the store part of store-
and-forward), then acknowledges to the producer that the message was received (see
Figure 7-1). For nonpersistent messages, this means the server may acknowledge the
sender as soon as it has received the message and has the message in memory. If there

* In reality, these two operations may likely happen in parallel, but that depends on the vendor.

Message Acknowledgments | 127

are no subscribers for the message’s topic, the message may be discarded depending
on the vendor.

publish() method returns

Send

Ack

Persist

JMS
Server

JMS
Producer

JMS
Consumer

Persistent messages
(normal operation)

1

2

3

4

Receive5

Ack6

Remove from persistent store7

Persistent
Store

Figure 7-1. Send and receive are separate operations

In a publish-and-subscribe model, the message server delivers a copy of a message to
each of the subscribers. For durable subscribers, the message server does not consider
a message fully delivered until it receives an acknowledgment from all of the message’s
intended recipients. It knows on a per-consumer basis which clients have received each
message and which have not.

Once the message server has delivered the message to all of its known subscribers and
has received acknowledgments from each of them, the message is removed from its
persistent store (see Figure 7-2).

publish()
method returns

Send

Ack

Persist

JMS
Server

JMS
Producer

JMS
Consumer

Persistent messages
(normal operation)

1

2

3
4

Receive5

Ack6

Remove from persistent store7

Persistent
Store

Figure 7-2. A message is removed when the last known subscriber has acknowledged

128 | Chapter 7: Guaranteed Messaging and Transactions

If the subscriptions are durable and the subscribers are not currently connected, then
the message will be held by the message server until either the subscriber becomes
available or the message expires. This is true even for nonpersistent messages. If a
nonpersistent message is intended for a disconnected durable subscriber, the message
server saves the message to disk as though it were a persistent message. In this case, the
difference between persistent and nonpersistent messages is subtle, but very important.
For nonpersistent messages, there may be a window of time after the message server
has acknowledged the message to the sender and before it has had a chance to write
the message out to disk on behalf of the disconnected durable subscribers. If the JMS
provider fails during this window of time, the message may be lost (see Figure 7-3).†

Durable subscriber

publish() method returns

Send

Ack

Persist

JMS
Server

JMS
Producer

JMS
Consumer

Nonpersistent messages
(provider failure)

1

Message is lost!6

5

3

3
Provider fails4

Persistent
Store

Figure 7-3. Nonpersistent messages with durable subscribers may be lost

With persistent messages, a provider may fail and recover gracefully, as illustrated in
Figures 7-4 and 7-5. Since the messages are held in persistent storage, they are not lost,
and will be delivered to consumers when the provider starts up again. If the messages
are sent using a p2p queue, they are guaranteed to be delivered. If the messages were
sent via publish-and-subscribe, they are guaranteed to be delivered only if the con-
sumers’ subscriptions are durable. The delivery behavior for nondurable subscribers
may vary from vendor to vendor.

The message consumer’s perspective

There are also rules governing acknowledgments and failure conditions from the con-
sumer’s perspective. If the session is in AUTO_ACKNOWLEDGE mode, the JMS provider’s
client runtime must automatically send an acknowledgment to the server as each con-
sumer gets the message. If the server doesn’t receive this acknowledgment, it considers
the message undelivered and may attempt redelivery.

† In practice, the JMS provider may not allow this condition to happen. However, the JMS specification does
imply that this failure condition can occur.

Message Acknowledgments | 129

publish() method returns

Send

Ack

Persist

JMS
Server

JMS
Producer

JMS
Consumer

Persistent messages
(provider failure)

1

Message retained in persistent store6

2

3

4
Provider fails5

Persistent
Store

Figure 7-4. Persistent messages will not be lost in the event of a provider failure

JMS
Server

JMS
Producer

JMS
Consumer

Persistent messages
(provider recovers)

Receive2

Ack3

Remove from persistent store4Recover from persistent store1

Persistent
Store

Figure 7-5. Persistent messages are delivered upon recovery of the provider

Message redelivery

The message may be lost if the provider fails while delivering a message to a consumer
with a nondurable subscription. If a durable subscriber receives a message, and a failure
occurs before the acknowledgment is returned to the provider (see Figure 7-6), then
the JMS provider considers the message undelivered and will attempt to redeliver it
(see Figure 7-7). In this case, the once-and-only-once requirement is in doubt. The
consumer may receive the message again, because when delivery is guaranteed, it’s
better to risk delivering a message twice than to risk losing the message entirely. A
redelivered message will have the JMSRedelivered flag set. A client application can check
this flag by calling the getJMSRedelivered method on the Message object. Only the most
recent message received is subject to this ambiguity.

130 | Chapter 7: Guaranteed Messaging and Transactions

JMS
Server

JMS
Producer

JMS
Consumer

Durable subscriber
(consumer fails)

Receive5Send1

Ack3
publish() method returns4

Consumer fails6

Message still in persistent store7

Persist2

Persistent
Store

Durable subscriber

Figure 7-6. Failure occurs during the delivery of a message to a durable subscriber

JMS
Server

JMS
Producer

JMS
Consumer

Durable subscriber
(consumer recovers)

Redeliver2

Ack3

Remove from persistent store4Recover from persistent store1

Persistent
Store

Durable subscriber

Figure 7-7. Durable subscriber recovers

To guard against duplicate messages while in AUTO_ACKNOWLEDGE mode, an application
must check whether a redelivered message was already processed. One common tech-
nique for checking is to use a database table that is keyed on the JMSMessageID header.
A JMSMessageID is unique for all messages and is intended for historical monitoring
of messages in a repository. The JMSMessageID is therefore guaranteed to retain its
uniqueness across provider failures. An alternate approach would be to use the
CLIENT_ACKNOWLEDGE mode or to use a transacted message, which we will discuss in detail
shortly.

Point-to-point queues

For point-to-point queues, messages are marked by the producer as either persistent
or nonpersistent. If they are persistent, they are written to disk and subject to the same
acknowledgment rules, failure conditions, and recovery as persistent messages in the
publish-and-subscribe model.

Message Acknowledgments | 131

From the receiver’s perspective, the rules are somewhat simpler, since only one con-
sumer can receive a particular instance of a message. A message stays in a queue until
it is either delivered to a consumer or it expires. This is analogous to a durable subscriber
in that a receiver can be disconnected while the message is being produced without
losing the message. If the messages are nonpersistent, they are not guaranteed to survive
a provider failure.

DUPS_OK_ACKNOWLEDGE
Specifying the DUPS_OK_ACKNOWLEDGE mode on a session instructs the JMS provider that
it is OK to send a message more than once to the same destination. This is different
from the once-and-only-once or the at-most-once delivery semantics of AUTO_ACKNOWL
EDGE. The DUPS_OK_ACKNOWLEDGE delivery mode is based on the assumption that the pro-
cessing necessary to ensure once-and-only-once delivery incurs extra overhead and
hinders performance and throughput of messages at the provider level. An application
that is tolerant of receiving duplicate messages can use the DUPS_OK_ACKNOWLEDGE mode
to avoid incurring this overhead.

In practice, the performance improvement that you gain from DUPS_OK_ACKNOWLEDGE may
be insignificant or even nonexistent, depending on the JMS vendor. It is even conceiv-
able that a JMS provider could perform better in AUTO_ACKNOWLDEGE mode because it
would receive its acknowledgments sooner rather than later. This could allow it to clean
up resources more quickly, or reduce the size of persistent storage and in-memory
queues. At first glance, it seems reasonable that fewer acknowledgments result in less
network traffic. However, the network may not be the bottleneck under heavy load
conditions with large numbers of clients. In summary, the benefits of DUPS_OK_ACKNOWL
EDGE are something you may want to measure before designing your application around
it.

CLIENT_ACKNOWLEDGE
With AUTO_ACKNOWLEDGE mode, the acknowledgment is always the last thing to happen
implicitly after the onMessage() handler returns. The client receiving the messages can
get finer-grained control over the delivery of guaranteed messages by specifying the
CLIENT_ACKNOWLEDGE mode on the consuming session.

The use of CLIENT_ACKNOWLEDGE allows the application to control when the acknowl-
edgment is sent. For example, an application can acknowledge a message—thereby
relieving the JMS provider of its duty—and perform further processing of the data
represented by the message. The key to this is the acknowledge() method on the
Message object, as shown in the following example:

public void onMessage(javax.jms.Message message) {
 try {
 // Perform some business logic with the message
 ...

132 | Chapter 7: Guaranteed Messaging and Transactions

 message.acknowledge();
 // Perform more business logic with the message
 ...
 } catch (javax.jms.JMSException jmse) {
 // Catch the exception thrown and undo the results
 // of partial processing
 ...
 }
}

The acknowledge() method informs the JMS provider that the message has been suc-
cessfully received by the consumer. This method throws an exception to the client if a
provider failure occurs during the acknowledgment process. The provider failure re-
sults in the message being retained by the JMS server for redelivery. Therefore, the
exception handling code should undo the results of any partially processed business
logic in preparation for receiving the message again, or it should log the message as
processed so that the redelivered message can be ignored. The acknowledge() method
should only be used with the CLIENT_ACKNOWLEDGE mode; if used with the AUTO_ACKNOWL
EDGE or DUPS_OK_ACKNOWLEDGE mode, the call is ignored by the JMS provider.

Grouping multiple messages

The CLIENT_ACKNOWLEDGE mode also gives you the ability to batch together multiple
message receipts and consume them in an all-or-nothing fashion. A consuming client
may receive several messages in a sequence and treat them as a group. CLIENT_ACKNOWL
EDGE does not provide the capability to consume messages selectively. A single ac-
knowledgment for the last message in the group implicitly acknowledges all previously
unacknowledged messages for the current session. This means that if the client appli-
cation fails before the last message is acknowledged, it may recover when it comes back
up. All of the unacknowledged messages will be resent with the JMSRedelivered flag set
on each of the unacknowledged messages. A JMS client may also call the recover()
method on a Session object to force the redelivery of all previously unacknowledged
messages, even if there hasn’t been a failure.

Message Groups and Acknowledgment
When multiple messages need to be dealt with as a group, the application needs to be
able to store or cache interim messages until the entire group has been delivered. This
requirement typically means that the asynchronous invocation of the onMessage()
handler would result in business logic getting executed and data would be placed tem-
porarily in a database table in preparation for processing the group of messages as a
whole. When the last message of the group arrives, the application can then go to the
database to retrieve the data from the previous messages to establish any context it may
need.

Message Groups and Acknowledgment | 133

Handling Redelivery of Messages in an Application
JMS provides strict rules that govern when the redelivered flag is set. In AUTO_ACKNOWL
EDGE mode, only the most recently consumed message is subject to ambiguous rede-
livery. In other modes, multiple messages may have the redelivered flag set. It is up to
the application designer to isolate the conditions under which ambiguity can occur and
to account for it in the application. To illustrate the use of the CLIENT_ACKNOWLEDGE mode
and redelivered flag, we will use a simple example where multiple messages are sent as
a group to the receiver.

Whenever a message is redelivered to a message consumer, the JMSRedelivered message
header property will be set to true on the message. This is an indication to the message
consumer that the message has been partially processed but an exception occurred
preventing that message from being completely processed. In some cases, this flag only
serves to inform the message consumer that the message is being sent again, and no
action needs to be taken by the message consumer. However, in other cases, specific
action might need to be taken if the message is being redelivered to the message
consumer.

In the example we are about to show, multiple messages may be sent to a message
consumer as a group, meaning that the messages must be processed together and thus
acknowledged by the message consumer as a group. This requires the use of the
CLIENT_ACKNOWLEDGE mode so that the message consumer has control over when the
messages are acknowledged and hence marked as having been delivered by the JMS
provider. If a failure occurs during the processing of the message group, the entire
message group is redelivered.

To check if a message has been redelivered, you can interrogate the JMSRedelivered
message header property of the message received:

...
if (message.getJMSRedelivered()) {
 processCompensatingTransaction();
}
...

As you will see in the example provided in the next section, the contents of the message
need to be stored in some sort of in-memory cache or persistence store when processing
multiple messages in a group. If the message is being redelivered, the data in the per-
sistence store or in-memory cache will need to be cleared because the message is being
processed again. Without checking to see whether the message has been redelivered,
you could end up with duplicate data in the cache or persistence store.

Message Groups Example
While there are several use cases for using the CLIENT_ACKNOWLEDGE mode and redelivery
flag, one of the best examples is that of processing groups of messages. In this case,
multiple messages are sent from the message producer, but need to be “batched” and

134 | Chapter 7: Guaranteed Messaging and Transactions

processed by the message consumer as a single unit of work. A transacted session would
not work in this case because the messages may be sent to the message consumer in-
dividually and at different times.

When processing messages as a group, typically the message producer will use some
sort of custom sequence marker to indicate when the sequence of messages start and
end. The ending sequence marker tells the message consumer that all of the messages
in the group have been sent and it is OK to process the messages and then acknowledge
that they have all been delivered. One way to do this is with an empty payload message
containing a custom sequence marker message property:

...
//send an empty payload message starting the group
BytesMessage msg = session.createBytesMessage();
msg.setStringProperty("SequenceMarker", "START_SEQUENCE");
sender.send(msg);

//now send the messages
TextMessage msg = session.createTextMessage(messagePayload);
sender.send(msg);
...

//send an empty payload message ending the group
BytesMessage msg = session.createBytesMessage();
msg.setStringProperty("SequenceMarker", "END_SEQUENCE");
sender.send(msg);

The message consumer would start accumulating the payload data until it receives the
END_SEQUENCE event message, at which point it would then process the messages. Once
processing is complete, the message consumer would then acknowledge all of the mes-
sages using the acknowledge() method on the Message object.

To illustrate how to process groups of messages using the CLIENT_ACKNOWLEGE mode and
the JMSRedelivered message header property, we will use two simple classes:
JMSSender and JMSReceiver. The JMSSender class will connect to the JMS provider and
send a group of three simple TextMessages, along with an empty BytesMessage contain-
ing a START_SEQUENCE message property and an empty BytesMessage containing an
END_SEQUENCE message property.

The JMSReceiver class will then recognize when a sequence of messages is starting, and
until the END_SEQUENCE message is received, will accumulate the message payload in a
simple List. Once all of the messages have been received, the JMSReceiver class will
then display the message payload for all of the messages and acknowledge the receipt
of the messages.

We will start by showing the complete listing for the JMSSender and JMSReceiver classes
and then describe the areas of the code that pertain to the CLIENT_ACKNOWLEDGE mode
and redelivery flag. The following is the complete listing of the JMSSender class:

import javax.jms.*;
import javax.naming.*;

Message Groups and Acknowledgment | 135

public class JMSSender {

 private QueueConnection connection = null;
 private QueueSession session = null;
 private QueueSender sender = null;

 public static void main(String[] args) {
 try {
 JMSSender app = new JMSSender();
 app.sendMessageGroup();
 System.exit(0);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
}

 public JMSSender() {
 try {
 //connect to the jms provider and create the
 //connection, session, and sender
 Context ctx = new InitialContext();
 QueueConnectionFactory factory = (QueueConnectionFactory)
 ctx.lookup("QueueCF");
 connection = factory.createQueueConnection();
 connection.start();
 session =
 connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
 Queue queue = (Queue)ctx.lookup("queue1");
 sender = session.createSender(queue);
 } catch (Exception jmse) {
 jmse.printStackTrace();
 }
 }

 public void sendMessageGroup() throws JMSException {
 //send the messages as a group
 sendSequenceMarker("START_SEQUENCE");
 sendMessage("First Message");
 sendMessage("Second Message");
 sendMessage("Third Message");
 sendSequenceMarker("END_SEQUENCE");
 connection.close();
}

 //send a simple text message within the group of messages
 private void sendMessage(String text) throws JMSException {
 TextMessage msg = session.createTextMessage(text);
 msg.setStringProperty("JMSXGroupID", "GROUP1");
 sender.send(msg);
 }

 //send an empty payload message containing the sequence marker
 private void sendSequenceMarker(String marker) throws JMSException {
 BytesMessage msg = session.createBytesMessage();

136 | Chapter 7: Guaranteed Messaging and Transactions

 msg.setStringProperty("SequenceMarker", marker);
 msg.setStringProperty("JMSXGroupID", "GROUP1");
 sender.send(msg);
 }
}

The main method of the JMSSender class instantiates a new JMSSender object and invokes
the main driver method sendMessageGroup. The constructor establishes a connection to
the JMS provider and creates the QueueConnection, QueueSession, Queue, and Queue
Sender objects needed by the rest of the class. The sendMessageGroup method sends a
blank message containing the starting sequence marker, then sends three simple
messages, then the ending sequence marker. It then closes the connection. The
sendMessage method creates a simple TextMessage and sends it to the queue, whereas
the sendSequenceMarker method sends an empty BytesMessage containing the sequence
marker. We will describe this code in more detail later in this section.

The complete listing for the JMSReceiver class is given here:

public class JMSReceiver implements MessageListener {

 private List<String> messageBuffer = new ArrayList<String>();

 public JMSReceiver() {
 try {
 Context ctx = new InitialContext();
 QueueConnectionFactory factory = (QueueConnectionFactory)
 ctx.lookup("QueueCF");
 QueueConnection connection = factory.createQueueConnection();
 connection.start();
 QueueSession session =
 connection.createQueueSession(false, Session.CLIENT_ACKNOWLEDGE);
 Queue queue = (Queue)ctx.lookup("queue1");
 QueueReceiver receiver = session.createReceiver(queue);
 receiver.setMessageListener(this);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 public void onMessage(Message message) {
 try {
 if (message.propertyExists("SequenceMarker")) {
 String marker = message.getStringProperty("SequenceMarker");

 //if we are starting a message group, clear out the message buffer
 if (marker.equals("START_SEQUENCE")) {
 //since the messages are delivered and acknowledged as a group, any
 //failures will result in the first sequence message being marked as
 //being redelivered - we don't care about the others
 if (message.getJMSRedelivered()) {
 processCompensatingTransaction();
 }

 messageBuffer.clear();

Message Groups and Acknowledgment | 137

 }

 //if we are ending the message group, process the message and
 //acknowledge that all messages as having been delivered
 if (marker.equals("END_SEQUENCE")) {
 //process the message
 System.out.println("Messages: ");
 for (String msg : messageBuffer) {
 System.out.println(msg);
 }

 //acknowledge that all messages have been received
 message.acknowledge();
 }
 }

 //save the message contents if it is a non-marker message
 if (message instanceof TextMessage) {
 TextMessage msg = (TextMessage)message;
 processInterimMessage(msg.getText());
 }

 //wait for the next message
 System.out.println("waiting for messages...");
 } catch (Exception ex) {
 ex.printStackTrace();
 System.exit(1);
 }
 }

 public void processCompensatingTransaction() {
 //reverse the processing from the prior message set
 messageBuffer.clear();
 }

 public void processInterimMessage(String msg) {
 //process the interim message
 messageBuffer.add(msg);
 }

 public static void main(String argv[]) {
 new JMSReceiver();
 }
}

In the preceding JMSReceiver class, the constructor establishes a connection to the JMS
provider and creates the QueueConnection, QueueSession, Queue, and QueueReceiver
objects needed by the rest of the class. The bulk of the work occurs in the onMessage
method, where messages are accumulated and processed.

The processing of the message group starts with the JMSSender class sending the various
messages within the message group:

public void sendMessageGroup() throws JMSException {
 //send the messages as a group

138 | Chapter 7: Guaranteed Messaging and Transactions

 sendSequenceMarker("START_SEQUENCE");
 sendMessage("First Message");
 sendMessage("Second Message");
 sendMessage("Third Message");
 sendSequenceMarker("END_SEQUENCE");
 connection.close();
}

The JMSSender first sends an empty BytesMessage containing a sequence marker value
of START_SEQUENCE. Note that although we chose to use a BytesMessage, any JMS message
type could have been used to send the sequence marker message. Then the three Text
Message messages are sent, followed by another empty BytesMessage containing the
END_SEQUENCE sequence marker. Note that all five of these messages are sent as separate
messages to the JMS provider (and in turn are received as separate messages in the
JMSReceiver).

Once the START_SEQUENCE message is sent, it is picked up by the JMSReceiver and pro-
cessing of the message group begins:

public void onMessage(Message message) {
 try {
 if (message.propertyExists("SequenceMarker")) {
 String marker = message.getStringProperty("SequenceMarker");

 ...
 //if we are starting a message group, clear out the message buffer
 if (marker.equals("START_SEQUENCE")) {
 ...
 messageBuffer.clear();
 }
 ...
}

The onMessage method of the JMSReceiver class first detects that the SequenceMarker
property exists on the message, indicating that it is an event message containing a
sequence directive. The START_SEQUENCE message causes the messageBuffer ArrayList
to be cleared, preparing it to accept the payload from the message group.

The JMSSender class then sends the three TextMessage objects, which are picked up by
the JMSReceiver. The JMSReceiver recognizes these TextMessage objects as being part of
the message group, and invokes the processInterimMessage method, which adds the
message payload to the messageBuffer ArrayList object:

public void onMessage(Message message) {
 try {
 //save the message contents if it is a non-marker message
 if (message instanceof TextMessage) {
 TextMessage msg = (TextMessage)message;
 processInterimMessage(msg.getText());
 }
 ...
}

Message Groups and Acknowledgment | 139

public void processInterimMessage(String msg) {
 //process the interim message
 messageBuffer.add(msg);
}

In real life, one would imagine the processInterimMessage method inserting the message
payload into a staging database or a sophisticated in-memory cache. However, for pur-
poses of this example, we are simply adding the message contents to an ArrayList
represented by the messageBuffer attribute.

The last message sent by the JMSSender class is the END_SEQUENCE message, indicating
that the sequence of messages is over and can be processed. The JMSReceiver class picks
up this message and, upon receipt of the message, prints out the contents of the mes-
sages and acknowledges that the messages have been delivered:

public void onMessage(Message message) {
 try {
 if (message.propertyExists("SequenceMarker")) {
 String marker = message.getStringProperty("SequenceMarker");
 ...

 //if we are ending the message group, process the message and
 //acknowledge all messages as having been delivered
 if (marker.equals("END_SEQUENCE")) {
 //process the message
 System.out.println("Messages: ");
 for (String msg : messageBuffer) {
 System.out.println(msg);
 }

 //acknowledge that all messages have been received
 message.acknowledge();
 }
 }
 ...
}

Calling the acknowledge method on a message acknowledges the current message and
all previously unacknowledged messages. Because the logic in the JMSReceiver class does
not process the messages until it sees the END_SEQUENCE sequence marker message, it
also does not explicitly acknowledge the receipt of the message until it knows it can
process all the messages at the same time. This logic avoids processing the first message
if the second message fails to be delivered, and so on. If the messages were to be sepa-
rately acknowledged, the client could fail after the first message was acknowledged,
but before the second or third message was fully processed. If this occurred, the first
message would be considered delivered by the JMS provider, yet not fully processed
by the client. It would be effectively lost. Delaying acknowledgment provides a way to
write the application so that it behaves correctly when failures occur.

140 | Chapter 7: Guaranteed Messaging and Transactions

A single acknowledgment is now sent, acknowledging all three messages. The JMS
provider has now fulfilled its part of the contract with the receiving application and can
remove the messages from its persistent store.

Running these two classes produces the following output:

$./jmsreceiver.sh
Messages:
First Message
Second Message
Third Message
waiting for messages...

So, what happens when an exception occurs during the processing of this message
group or the message consumer failed to invoke the acknowledge method after the last
END_SEQUENCE message? In both these cases, the messages that were previously delivered
to the message consumer would be marked as not having been delivered and the de-
livery of all of the messages in the group (including the sequence marker messages)
would be redelivered to the message consumer. In this case, the messages that were
previously delivered to the message consumer would have the JMSRedelivered message
header property set to true (it has a value of false otherwise).

Let’s modify the message processing in the JMSReceiver class to throw an exception
when the third message in the group is received:

public void onMessage(Message message) {
 try {
 //save the message contents if it is a non-marker message
 if (message instanceof TextMessage) {
 TextMessage msg = (TextMessage)message;
 processInterimMessage(msg.getText());
 if (msg.getText().equals("Third Message")) {
 throw new Exception("Exception after Message 3");
 }
 }

 //wait for the next message
 System.out.println("waiting for messages...");
 } catch (Exception ex) {
 ex.printStackTrace();
 System.exit(1);
 }
}

Running the two classes with the code change just shown would produce the following
output:

$./jmsreceiver.sh
Messages:
First Message
Second Message
java.lang.Exception: Exception after Message 3

Message Groups and Acknowledgment | 141

If we browse the queue1 queue, we would find the following messages waiting to be
redelivered:

$./jmsbrowser.sh

Message: START_SEQUENCE, Redelivered: true

Message: First Message, Redelivered: true

Message: Second Message, Redelivered: true

Message: Third Message, Redelivered: true

Message: END_SEQUENCE, Redelivered: false

Notice that all the messages except the END_SEQUENCE message have the JMSRedeliv
ered header property set to true. Since the last message was never received by the
message consumer, it was not marked as having been redelivered.

We now have an issue: Since we are storing the message contents for this message
group, if the JMSReceiver class were to pick up these messages a second time, we could,
in real life, get duplicate data processed by the message group. The JMSReceiver class
therefore needs to take corrective action in the event the messages are redelivered:

public void onMessage(Message message) {
 try {
 if (message.propertyExists("SequenceMarker")) {
 String marker = message.getStringProperty("SequenceMarker");

 //if we are starting a message group, clear out the message buffer
 if (marker.equals("START_SEQUENCE")) {
 if (message.getJMSRedelivered()) {
 processCompensatingTransaction();
 }

 messageBuffer.clear();
 }
 ...
}

public void processCompensatingTransaction() {
 //reverse the processing from the prior message set
 messageBuffer.clear();
}

Notice that the onMessage method of the JMSReceiver first checks to see whether the
message was being redelivered by invoking the getJMSRedelivered method on the
message object. Since the messages are delivered and acknowledged as a group, any
failures in the onMessage method will result in the entire message sequence being rede-
livered. As a result, we only have to check the redelivered flag for the first message.
Checking the redelivered flag for subsequent messages would result in the message
buffer continually being reloaded.

142 | Chapter 7: Guaranteed Messaging and Transactions

In the preceding code, if the redelivered flag was set on the message, we invoked the
processCompensatingTransaction method to reverse any persisted or cached changes as
a result of the prior message processing. In our case, the call to processInterimMes
sage really doesn’t do anything except add the message payload to an internal Array
List. However, in a real-world application, the call to processInterimMessage would
probably execute some business logic and place data in a database table in preparation
for the next message. Upon failure of the client, the messages would be redelivered,
and the processCompensatingTransaction would clean up or reinitialize any application-
specific data that may have been left in an unclean state.

This is a good argument for message autonomy. Each message should be self-contained.
When multiple messages need to depend on each other, the application should be
written like a finite state machine where the results of the processing of one message
are saved so that the application’s state can be reestablished at a later time. The next
message can then independently reestablish all of the context it needs to do its work.
This is a perfectly viable and valid application design and should be considered in lieu
of, or in conjunction with, other approaches.

Message Grouping and Multiple Receivers
There are additional factors to take into account for message grouping when using
multiple receivers. As you learned in Chapter 4, the point-to-point messaging model
supports load balancing through the use of concurrent message listeners (i.e., multiple
receivers), allowing the messaging system to process multiple messages at the same
time. As you can guess, this poses a serious problem when grouping messages. Without
the proper code and message properties set, you run the risk of having the group of
messages spread across multiple receivers. This would cause obvious problems in that
one receiver may get the first couple of messages, whereas another receiver ends up
getting the message containing the group terminator. This would result in messagages
being left on the queue without ever being acknowledged. Fortunately, there is a simple
solution to this problem.

Whenever you use message grouping, you should always use the JMSXGroupID message
property. This property will essentially provide you with a “sticky consumer,” guar-
anteeing that all messages in the group go to the same consumer, regardless of the
number of consumers listening on the queue. Notice in the code example from the
previous section that the sendMessage() and the sendSequenceMarker() methods of
the JMSSender class set an additional JMSXGroupID property on the message containing
the value GROUP1. This value is completely arbitrary and could be assigned any value
whatsoever:

import javax.jms.*;
import javax.naming.*;

public class JMSSender {

Message Groups and Acknowledgment | 143

 ...

 //send a simple text message within the group of messages
 private void sendMessage(String text) throws JMSException {
 TextMessage msg = session.createTextMessage(text);
 msg.setStringProperty("JMSXGroupID", "GROUP1");
 sender.send(msg);
 }

 //send an empty payload message containing the sequence marker
 private void sendSequenceMarker(String marker) throws JMSException {
 BytesMessage msg = session.createBytesMessage();
 msg.setStringProperty("SequenceMarker", marker);
 msg.setStringProperty("JMSXGroupID", "GROUP1");
 sender.send(msg);
 }
}

When the JMSXGroupID property is set, the JMS provider will look for a consumer that
has that group ID assigned to it. If there are no consumers assigned to that group, the
JMS provider will pick one based on its load balancing scheme and assign it the group
ID. From that point on, only that consumer will receive the messages associated with
that group.

Notice that this property is a JMS extension (hence the JMSX prefix). As such, there is
no corresponding setJMSXGroupID() method as with the other JMS header properties.
There’s a corresponding JMS extension property that is related to the JMSXGroupID called
the JMSXGroupSeq message property. This int property is an optional property that you
can use to specify a sequence within the group. Referring to the example in the previous
section, in the sendMessage() method of the JMSSender class we could have specified a
sequence of messages using the JMSXGroupSeq property as follows:

public class JMSSender {

 ...

 //send a simple text message within the group of messages
 private void sendMessage(String text, int sequence) throws JMSException {
 TextMessage msg = session.createTextMessage(text);
 msg.setIntProperty("JMSXGroupSeq", sequence);
 msg.setStringProperty("JMSXGroupID", "GROUP1")
 sender.send(msg);
 }

 ...
}

Since the messages would be sent to the queue as an ordered list and only received by
a single “sticky” consumer, this property is usually skipped. However, it is a useful
property in that it is one way to essentially “close” the group. If you are done processing
the group and want to free up the consumer for another group, you can close the group
by setting the JMSXGroupID to a value of –1.

144 | Chapter 7: Guaranteed Messaging and Transactions

Transacted Messages
Our discussion of message acknowledgment shows that producers and consumers have
different perspectives on the messages they exchange. The producer has a contract with
the message server that ensures the message will be delivered as far as the server. The
server has a contract with the consumer that ensures the message will be delivered to
it. The two operations are separate, which is a key benefit of asynchronous messaging.
It is the role of the JMS provider to ensure that messages get to where they are supposed
to go. Having all producers and all consumers participate in one global transaction
would defeat the purpose of using a loosely coupled asynchronous messaging
environment.

JMS transactions follow the convention of separating the send operations from the
receive operations. Figure 7-8 shows a transactional send, in which a group of messages
are guaranteed to get to the message server, or none of them will. From the sender’s
perspective, the messages are cached by the JMS provider until a commit() is issued. If
a failure occurs, or a rollback() is issued, the messages are discarded. Messages deliv-
ered to the message server in a transaction are not forwarded to the consumers until
the producer commits the transaction.

Send
JMS

Server
JMS

Producer
JMS

Consumer

Transactional sends
(producer’s perspective)

1
Send2 Receive4

commit()3

Figure 7-8. Transactional messages are sent in an all-or-nothing fashion

The JMS provider will not start delivery of the messages to its consumers until the
producer has issued a commit() on the session, even though it has received all of the
messages from the sender. The scope of a JMS transaction can include any number of
messages. Although similar in concept, the session commit() is not the same as a Java
Transaction API (JTA) transaction commit(). The session transaction is managed by the
JMS provider, not JTA.

It should be no surprise that JMS also supports transactional receives, in which a group
of transacted messages are received by the consumer on an all-or-nothing basis (see
Figure 7-9). From the transacted receiver’s perspective, the messages are delivered to
it as expeditiously as possible, yet they are held by the JMS provider until the receiver
issues a commit() on the session object. If a failure occurs or a rollback() is issued, then
the provider will attempt to redeliver the messages, in which case the messages will
have the redelivered flag set.

Transacted Messages | 145

When sending messages, if the Session.commit() method is not invoked upon normal
completion of the method sending the messages, the messages are removed from the
queue by the JMS provider and never delivered to the message consumers. When re-
ceiving messages, if the Session.commit() method is not invoked upon normal com-
pletion of the method receiving the messages, the messages are marked as having not
been delivered. The JMS provider will redeliver the messages to the message consumer
with the JMSRedelivered header property set to true, indicating that there was a prior
attempt to process the messages. Thus, in either case, care must be taken to ensure that
the session is either committed or rolled back prior to the end of the method.

JMS
Server

JMS
Producer

JMS
Consumer

Transactional receives
(consumer’s perspective)

Receive3
Receive4

commit()5

Send1

Send2

Figure 7-9. Transactional messages are received by a consumer in an all-or-nothing fashion

Transacted producers and consumers can exchange messages with nontransacted con-
sumers and producers. The scope of the transaction is limited to the producer’s or
consumer’s session with the message server. Transacted producers and transacted con-
sumers can, however, be grouped together in a single transaction, provided that they
are created from the same session object, as shown in Figure 7-10. This allows a JMS
client to produce and consume messages as a single unit of work. If the transaction is
rolled back, the messages produced within the transaction will not be delivered by the
JMS provider. The messages consumed within the same transaction will not be
acknowledged and will be redelivered.

Receive
JMS

Server
JMS

Producer
JMS

Consumer

Transactional messages
(receive and send)

1
Receive4Send2

commit()3

Figure 7-10. Sends and receives may be grouped together in one transactional session

Unless you are doing a synchronous request/reply, you should avoid grouping a send
followed by an asynchronous receive within a transaction. In general, transactions
should be as short-lived as possible. When using message grouping, there could be a
long interval between the time that a message is sent and the related message is asyn-
chronously received, depending on failures or downtime of other processes that are

146 | Chapter 7: Guaranteed Messaging and Transactions

involved. It is more practical to group the receipt of a message with the send of another
message.

Creating and Using a JMS Transaction
Now that you understand the concepts of transactional sends and receives, we can take
a look at some code. The first step in creating a transactional message is the initialization
of the Session object:

// Create a transacted TopicSession
TopicSession session =
 connect.createTopicSession(true, Session.AUTO_ACKNOWLEDGE);

// Create a transacted QueueSession
QueueSession =
 connect.createQueueSession(true, Session.AUTO_ACKNOWLEDGE);

The first parameter of a createTopicSession() or createQueueSession() method is a
boolean indicating whether this is a transacted session. That is the only thing required
to create a transactional session. There is no explicit begin() method. When a session
is transacted, all messages sent or received using that session are automatically grouped
in a transaction. The transaction remains open until either a session.rollback() or a
session.commit() happens, at which point a new transaction is started.‡ An additional
Session method, getTransacted(), returns true or false indicating whether or not the
current session is transactional.

Transacted Session Example
In this very simple example, we will demonstrate the use of the transacted session for
sending a group of messages. When sending messages in a transacted session, the mes-
sages will not be delivered to the message consumer until the session in the message
producer has been committed via the Session.commit() method:

import javax.jms.*;
import javax.naming.*;

public class JMSSenderTransacted {

 private QueueConnection connection = null;
 private QueueSession session = null;
 private QueueSender sender = null;

 public void sendMessages() {
 try {
 //send the messages in a transaction
 System.out.println("Session Transacted: " + session.getTransacted());
 sendMessage("First Message");

‡ This is called “transaction chaining,” which means that the end of one transaction automatically starts
another.

Transacted Messages | 147

 sendMessage("Second Message");
 sendMessage("Third Message");
 session.commit();
 connection.close();
 } catch (Exception ex) {
 try {
 System.out.println("Exception caught, rolling back session");
 session.rollback();
 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }
 }
 }

 private void sendMessage(String text) throws Exception {
 //send a simple text message within the group of messages
 TextMessage msg = session.createTextMessage(text);
 sender.send(msg);
 } public static void main(String[] args) {
 try {
 JMSSenderTransacted app = new JMSSenderTransacted();
 app.sendMessages();
 System.exit(0);
 } catch (Exception up) {
 up.printStackTrace();
 }
 }

 public JMSSenderTransacted() {
 try {
 //create the connection, session, and sender
 Context ctx = new InitialContext();
 QueueConnectionFactory factory = (QueueConnectionFactory)
 ctx.lookup("QueueCF");
 connection = factory.createQueueConnection();
 connection.start();
 session =
 connection.createQueueSession(true, Session.AUTO_ACKNOWLEDGE);
 Queue queue = (Queue)ctx.lookup("queue1");
 sender = session.createSender(queue);
 } catch (Exception jmse) {
 jmse.printStackTrace();
 System.exit(0);
 }
 }
}

The main method instantiates a new JMSSenderTransacted object and invokes the
sendMessages method, which sends a group of messages within the context of a
QueueSession transaction. The constructor of this class establishes a connection to the
JMS provider and sets up the JMS objects needed by the rest of the class.

The two key methods of this class related to JMS transactions are when the session is
created and when the messages are sent:

148 | Chapter 7: Guaranteed Messaging and Transactions

public JMSSenderTransacted() {
 try {
 ...
 session =
 connection.createQueueSession(true, Session.AUTO_ACKNOWLEDGE);
 ...
}

public void sendMessages() {
 try {
 //send the messages in a transaction
 System.out.println("Session Transacted: " + session.getTransacted());
 sendMessage("First Message");
 sendMessage("Second Message");
 sendMessage("Third Message");
 session.commit();
 connection.close();
 } catch (Exception ex) {
 try {
 System.out.println("Exception caught, rolling back session");
 session.rollback();
 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }
 }
}

Notice that when creating the QueueSession, a value of true is specified in the create
QueueSession method. This specifies that the session should be transacted and all mes-
sages withheld from delivery to the message consumer until the session is committed.
In the sendMessages method, three messages are sent, then the commit method on the
session is invoked. At this point, all three messages are released by the JMS provider
and are available for receipt by the message consumer.

If the session.commit() method is not invoked and the sendMessages method terminates
normally, the messages will not be sent. No exception will be thrown and there is no
record of the messages—they simply cease to exist without having been sent. It is
therefore very important to ensure that the method logic always either commits the
session or invokes the rollback() method.

If an exception occurs while sending the messages, say after sendMessage("Second Mes
sage"), then the session.rollback() method is invoked, rolling back all of the messages
sent since the session was created.

Transacted sessions do not require the use of the JTA or an external container-based
transaction manager to work properly. The transaction management is handled by the
JMS provider. However, if you need to coordinate a single transaction across multiple
sessions or between queues, topics, and a database, then transacted sessions are not
enough. In this case, you will need to use JTA distributed transactions, which is
discussed in the next section.

Transacted Messages | 149

Distributed Transactions
Distributed systems sometimes use a two-phase commit (2PC) process that allows mul-
tiple distributed resources to participate in one transaction. This typically involves an
underlying transaction manager that takes care of coordinating the prepare, commit,
or rollback of each resource participating in the transaction. In most cases, the resources
involved in the transaction are databases, but they can be other things, like JMS
providers.

Transactions can be either local transactions or global transactions. Local transactions
involve work performed on a single resource: one database or JMS provider. Global
transactions involve work performed across several different resources (i.e., some com-
bination of databases and JMS providers). JMS provides transaction facilities for both
local and global transactions. The transacted sessions discussed previously are local
transactions in JMS; they involve a single JMS provider.

The 2PC protocol is designed to facilitate global transactions—transactions that span
multiple resources. As an example, an enterprise application may need to process (con-
sume and produce) messages as well as make changes to a database. In some cases, the
processing of messages and database updates needs to be treated as a single unit of
work so that a failure to update the database or consume a message will cause the entire
unit of work to fail. This is the basic premise behind a transaction: all the tasks must
complete or fail together. To create a unit of work that spans different resources, the
resources must be able to cooperate with a transaction manager in a 2PC.

The 2PC protocol is used by a transaction manager to coordinate the interactions of
resources in a global transaction. A resource can only participate in a global transaction
if it supports the 2PC protocol, which is usually implemented using the eXtended
Architecture (XA) interface developed by The Open Group. In the Java enterprise
technologies, the XA interface is implemented by the JTA and XA interfaces
(javax.transaction and javax.transaction.xa). Any resource that implements these
interfaces can be enrolled in a global transaction by a transaction manager that supports
these interfaces.

JMS providers that implement the JTA XA APIs can therefore participate as a resource
in 2PC. The JMS specification provides XA versions of the following JMS objects:
XAConnectionFactory, XAQueueConnection, XAQueueConnectionFactory, XAQueueSession,
XASession, XATopicConnection, XATopicConnectionFactory, and XATopicSession.

Each of these objects works like its corresponding non-XA-compliant object. The
XATopicSession, for example, provides the same methods as the TopicSession. An ap-
plication server’s transaction manager uses these XA interfaces directly, but a JMS client
only sees the nontransactional versions.

All XA-compliant resources (JDBC or JMS) provide an XAResource object that is an
interface to the underlying resource (in JMS, the JMS provider). The XAResource object
is used by the TransactionManager to coordinate the 2PC commit. In the previous

150 | Chapter 7: Guaranteed Messaging and Transactions

example, the application associates the XAResource for the JDBC driver and the JMS
provider with the current transaction so that all the work performed using those re-
sources is bound together in one transaction. When the transaction is committed, all
the work performed by the JDBC connection and JMS session is committed. If the
transaction had been rolled back, all the work performed by the JDBC connection and
JMS session would have been rolled back. All the work performed across these two
resources either succeeds together or fails together.

An application server, such as an EJB server, may itself be a JMS client. In this case,
whether the interfaces are exposed depends on how the JMS server and the application
server are integrated. If the integration is hidden within the implementation, as is the
case with EJB, then the container may use the XA-compliant version of these objects
directly. Since the XA interfaces in JMS are not intended for application developers—
they are intended to be implemented by vendors—we will not go into them in detail
in this book. The important thing to understand is that JMS providers that implement
the XA interfaces properly can be used in a 2PC transaction. If your application server
(i.e., EJB server) supports 2PC, then these kinds of JMS providers can be used with
other resources in global transactions.

Lost Connections
When the network connection between the client and server is lost, a JMS provider
must make every reasonable attempt to reestablish the connection. In the event that
the JMS provider cannot automatically reconnect, the provider must notify the client
of this condition by throwing an exception when the client invokes a method that would
cause network traffic to occur. However, it is reasonable to expect that a JMS client
may only be a receiver using the MessageListener interface, and not a producer that
makes any outbound publish() or send() calls. In this case, the client is not invoking
JMS methods—it is just listening for messages—so a dropped connection may not be
detected.

JMS provides an ExceptionListener interface for trapping a lost connection and noti-
fying the client of this condition. The ExceptionListener is bound to the connection—
unlike MessageListeners, which are bound to sessions. The definition of the Exception
Listener is:

public interface ExceptionListener {
 void onException(JMSException exception);
}

It is the responsibility of the JMS provider to call the onException() method of all reg-
istered ExceptionListeners after making reasonable attempts to reestablish the con-
nection automatically. The JMS client can implement the ExceptionListener so that it
can be alerted to a lost connection and possibly attempt to reestablish the connection
manually.

Lost Connections | 151

How can the JMS provider call an ExceptionListener if the client has been disconnec-
ted? Every JMS provider has some amount of functionality that resides in the client
application. We have been referring to this as the client runtime portion of the JMS
provider. It is the responsibility of the client runtime to detect the loss of connection
and call the ExceptionListener.

The ExceptionListener Example
To illustrate the use of the ExceptionListener interface, we start by changing the formal
declaration of the JMSReceiver class used in the previous section to implement the
javax.jms.ExceptionListener interface:

public class JMSReceiver implements
 javax.jms.MessageListener,
 javax.jms.ExceptionListener
{
...

Next, we remove the connection setup information from the constructor and isolate it
in its own method, establishConnection():

public JMSReceiver() {
 establishConnection();
}

The establishConnection() method sets up the connection and other JMS objects
needed by the class and registers the class as an ExceptionListener on the connection:

public void establishConnection() {
 try {
 Context ctx = new InitialContext();
 QueueConnectionFactory factory = (QueueConnectionFactory)
 ctx.lookup("QueueCF");
 QueueConnection connection = factory.createQueueConnection();
 connection.setExceptionListener(this);
 ...
}

Last, but not least, is the implementation of the onException() listener method. Its task
is to call the establishConnection() method again to reestablish a connection with the
JMS provider:

public void onException (javax.jms.JMSException jmse)
{
 // Tell the user that there is a problem
 System.err.println ("\n\nThere is a problem with the connection.");
 System.err.println (" JMSException: " + jmse.getMessage());

 System.err.println ("Please wait while the application tries to "+
 "reestablish the connection...");
 connect = null;
 establishConnection();
}

152 | Chapter 7: Guaranteed Messaging and Transactions

When a connection is dropped and reestablished, all of the sessions, queues, and send-
ers need to be reestablished in order for the application to continue normal processing.
This is why we isolated all the connection logic in the establishConnection() method,
so that it can be used during startup and reused if the connection is lost.

JMS does not define any reason codes for a dropped connection. However, a JMS
provider may provide a finer level of granularity by defining reason codes. Depending
on the host operating system’s network settings, it may take a while for the provider to
notice that a connection has been dropped. Some providers implement a ping capability
as a configurable setting to detect a network loss.

Dead Message Queues
JMS provides mechanisms for guaranteed delivery of messages between clients, utiliz-
ing the mechanisms we have discussed in this chapter. However, there are cases where
guaranteed delivery, acknowledgments, and transactional semantics are just not
enough. Many conditions may cause a message to be undeliverable. Messages may
expire before they reach their intended destination or messages are viewed by the pro-
vider as undeliverable due to some other reason such as a deployment configuration
problem. A message need not have an expiration associated with it, which means it
would never expire. Forever is a long time. Realistically, it would be more prudent if
the JMS provider could notify an application if a message cannot be delivered within
a reasonable amount of time.

Although these issues are not specifically addressed by the JMS specification, some
messaging vendors have the notion of a “Dead Letter Queue” or “Dead Message
Queue” to deal with messages that are deemed undeliverable.

The extent of Dead Message Queue (DMQ) support varies from vendor to vendor. In
the simplest case, it is the responsibility of the messaging system to put all undeliverable
messages in the DMQ and it is the responsibility of the application to monitor its con-
tents. In addition, a JMS provider may support administrative events that notify the
application when something is placed in the DMQ. The notification may go to the
sender or it may go to a centralized management tool. A specialized JMS client may be
written to receive all DMQ notifications.

A DMQ can be treated just like a normal queue in most respects; it can be consumed
or it can be browsed. There is one respect in which a DMQ behaves differently from
other queues: The destination of a message, as obtained via Message.getJMSDestina
tion(), would be the original destination the message was intended for, not the DMQ.
The message may also contain additional properties, such as a vendor-defined reason
code indicating why the message was placed in the DMQ.

Dead Message Queues | 153

It’s important to know whether the JMS provider you are using supports Dead Message
Queues. If it does, and you don’t provide the application support to monitor it and peel
things from the DMQ in a timely fashion, then the DMQ may fill up over time without
your knowledge.

154 | Chapter 7: Guaranteed Messaging and Transactions

CHAPTER 8

Java EE and Message-Driven Beans

Java EE Overview
The examples in the book so far have primarily been Java SE applications using an
external JMS provider (e.g., ActiveMQ, WebSphere MQ, and SonicMQ, to name a
few). We will now look at how JMS can be used within the Java Platform, Enterprise
Edition (Java EE). Java EE is a specification that unites several other Java enterprise
technologies, including JMS, into one complete platform. Java EE is built on several
main components: Web Services, Enterprise JavaBeans (EJB), and Java Management
Extensions (JMX). Many other technologies, such as JMS, JDBC, JPA, JSP, JavaMail,
JTA, and JNDI are also included as services in Java EE. The Java Message Service
actually has two roles in Java EE: it is both a service and the basis for a special enterprise
bean type called a message-driven bean, or simply MDB.

Java EE provides applications with several advantages, including object lifecycle man-
agement, container-managed resources, simplified deployment, load balancing, and
the ability to seamlessly define and access remote objects. The Java EE container man-
ages several types of resources, including data sources, JTA UserTransactions, and the
EJB SessionContext. In addition to these resources, the Java EE container also manages
JMS resources, including JMS destinations (queues and topics) and the JMS connection
factory.

Per the Java EE specification, every application server compliant with the Java EE 4
specification and higher is also required to be a JMS provider as well, meaning that
within the Java EE container environment you do not need an external JMS provider
to use JMS messaging. However, as you will see in Chapter 11, many times it is desirable
to have an external messaging provider, even within a Java EE container environment.

The Java EE specification ensures a certain amount of portability between vendors. A
Java EE application that runs on Vendor A’s platform should, with a little work, be
able to run on Vendor B’s Java EE platform. As long as proprietary extensions are not
used, web, enterprise bean, and application client components developed to the Java
EE specification will run on any Java EE platform.

155

Enterprise JavaBeans
Although JavaServer Pages (JSP) and Servlets can act as a JMS producer and synchro-
nous consumer, the real power of JMS messaging comes from within Enterprise
JavaBeans. The EJB3 specification (JSR-220) provides a simplified model for the de-
velopment of Enterprise JavaBeans that significantly reduces the effort involved in de-
veloping and deploying Enterprise JavaBeans.

There are three main types of bean components in the EJB 3.0 specification: session
beans, message-driven beans, and mapped entity objects. Session beans model pro-
cesses and act as server-side extensions of their clients (they can manage a client’s
session state). Message-driven beans (MDB) are JMS clients that can consume (and
send) messages concurrently in a robust and scalable EJB environment (these types of
beans are the primary focus of this chapter). Mapped entity objects replace the older
EJB 2.1 Entity Beans and are part of the Java Persistence API (JPA). They are used to
model persistent business objects using well-known object-relational mapping (ORM)
frameworks such as Hibernate, TopLink, and OpenJPA.

Application developers create custom enterprise beans by applying annotations to reg-
ular Java objects (or in the case of EJB 2.1, implementing one of the main bean inter-
faces) and developing the bean according to conventions and policies dictated by the
EJB specification. Session beans model business processes that may or may not have
session state. Session beans might be used to model business concepts such as a se-
curities broker, an online shopping cart, loan calculation, medical claims processor—
any process or mediator-type business concept. MDBs are used to model stateless JMS
consumers. An MDB will have a pool of instances at runtime, each of which is a
MessageListener. The bean instances can concurrently consume hundreds of messages
delivered to the MDB, which makes the MDB scalable. Similar to session beans, mes-
sage-driven beans model business processes by coordinating the interaction of other
beans and resources according to the messages received and their payloads.

The EJB3 specification provides a rich set of Java metadata annotations that allow the
bean developer to declare many of a bean’s runtime behaviors including transaction
policies, access control policies, and the resources (services) available. Resources (JMS,
JDBC, JavaMail, etc.) that are declared through annotations are accessed via JNDI
using a dependency injection annotation or alternatively from the bean’s environment
naming context (ENC). The ENC is a default read-only JNDI namespace that is avail-
able to every bean at runtime. Each bean deployment has its own JNDI ENC. In addi-
tion to providing a bean with access to resources such as JDBC, JavaMail, JTA, and
URL and JMS connection factories, the JNDI ENC is used to access properties and
other enterprise beans. Resources accessed from the JNDI ENC are managed implicitly
by the EJB server so that they are pooled and then automatically enrolled in transactions
as needed.

All enterprise beans (session, message-driven, and mapped entity) can be developed
separately, packaged in a JAR file, and distributed. As components, packaged beans

156 | Chapter 8: Java EE and Message-Driven Beans

can be reused and combined with various other beans to solve any number of applica-
tion requirements. In addition, enterprise beans are portable so that they can be com-
bined and deployed on any application server that is EJB-compliant (providing you do
not use any vendor-specific extensions).

Session beans are accessed as distributed objects via Java RMI-IIOP, which provides
some level of location transparency; clients can access the beans on the server somewhat
like local objects. Session beans are based on the RPC distributed computing paradigm.
Message-driven beans are JMS clients that process JMS messages; they are not accessed
as distributed objects. Message-driven beans are based on the asynchronous enterprise
messaging paradigm.

Some of the details surrounding the EJB3 (JSR-220) specification are described in the
next section. You can learn more about EJB by reading Enterprise JavaBeans 3.0, Fifth
Edition (http://oreilly.com/catalog/9780596009786/), by Richard Monson-Haefel
(O’Reilly).

Enterprise JavaBeans 3.0 (EJB3) Overview
The release of the EJB3 (JSR-220) specification in 2006 marked a significant turning
point for EJB and Java EE in general. The primary theme of EJB3 is simplification and
it achieves this goal very nicely. In addition to simplifying the development and de-
ployment of Enterprise JavaBeans, the EJB3 specification added a new ORM-based
persistence framework called JPA aimed at replacing the EJB 2.1 Entity Beans (which
are no longer supported in EJB3).

One of the goals of the EJB3 specification is to address several issues found in the EJB
2.1 specification. Some of these issues included the dependency on a framework for
the development of Enterprise JavaBeans (i.e., implementing and extending specific
EJB interfaces), the need for home and remote interfaces, verbose and complex XML
deployment descriptors, and the Entity Bean persistence model.

One of the significant productivity improvements in EJB3 is the use of Java metadata
annotations over XML deployment descriptors (e.g., ejb-jar.xml). Of course, you can
still choose to use XML deployment descriptors rather than annotations or you can use
both XML and annotations together. When used in conjunction with annotations, the
XML deployment descriptor overrides any matching configuration specified by the
metadata annotation.

Other major features of the EJB3 framework include simplified bean development, the
use of dependency injection, simplified callback methods for session and message-
driven beans, the use of programmatic defaults that actually make sense, interceptors,
and finally, the JPA. A description of each of these features is discussed in the following
sections.

Enterprise JavaBeans 3.0 (EJB3) Overview | 157

http://oreilly.com/catalog/9780596009786/
http://oreilly.com/catalog/9780596009786/
http://oreilly.com/catalog/9780596009786/

Simplified Bean Development
In EJB 2.1, an Enterprise JavaBean was made up of three components: a home interface,
a remote interface, and the bean class. One of the issues with this model was that the
home interface and remote interface were decoupled from the bean class and not as-
sociated with the bean class until the EJB stubs and skeletons were generated via the
ejbc compile process. The relationship between the home interface, remote interface,
and bean class was specified in the XML deployment descriptor (e.g., ejb-jar.xml):

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>LenderBean</ejb-name>
 <home>LenderHome</home>
 <remote>Lender</remote>
 <ejb-class>LenderBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 ...
 </enterprise-beans>
</ejb-jar>

The EJB3 specification addressed this issue by eliminating remote and home interfaces.
Rather, the business interfaces are specified in the bean class through either the
@Remote or @Local annotation. In addition, you are no longer required to implement the
Session bean interface in your bean class. Session beans are developed as Plain Old Java
Objects (POJOs) that either implement a corresponding business interface (or multiple
business interfaces) specified through the @Remote or @Local annotation. Session beans
are specified using the @Stateless or @Stateful annotations:

@Stateless
@Remote(Lender.class)
public class LenderBean implements Lender {
 ...
}

Notice that the LenderBean stateless session bean is defined only as a POJO with two
annotations: one to define the object as a stateless session bean and the other to define
which POJO interface should act as the remote interface for this bean. The
Lender.class interface specified in the @Remote annotation is a plain Java interface. The
nice thing about EJB3 is that no XML deployment descriptors are required to further
define or deploy this bean. In addition, you no longer need to specify the
RemoteException exception.

Dependency Injection
EJB3 offers limited dependency injection, allowing you to inject container managed
resources and other Enterprise JavaBeans within an Enterprise JavaBean. It is limited
because you can only inject container-managed resources into an Enterprise JavaBean.

158 | Chapter 8: Java EE and Message-Driven Beans

Unlike other frameworks, EJB3 does not allow dependency injection into POJOs. One
nice thing about EJB3 is that no corresponding setter method is required when defining
an injected resource. To inject a container-managed resource, you would use the
@Resource annotation followed by the JNDI name and the attribute declaration. Re-
sources that can be injected into a bean include a data source, a JTA UserTransaction,
a SessionContext, a JMS destination (e.g., Queue, Topic), and a JMS connection factory.
To inject a bean into another bean for inter-service communication, you would use the
@EJB annotation:

@Stateless
@Remote(Lender.class)
public class LenderBean implements Lender {

 @Resource SessionContext ctx;
 @Resource(name="jdbc/MasterDS") DataSource ds;
 @EJB protected CreditCheck creditCheck;
 ...
}

Once we get a reference to the LenderBean class, we have access within the bean to these
resources. Notice that no corresponding setter method is required for these injected
resources. We will be looking more at the @Resource annotation and how it relates to
JMS later in this chapter.

Simplified Callback Methods
Because EJB3 session beans do not implement specific EJB framework components
(e.g., javax.ejb.SessionBean), you are no longer required to override the annoying and
rarely used callback methods (i.e., ejbActivate(), ejbPassivate(), ejbRemove(), and
setSessionContext()). Instead, you can use corresponding annotations to annotate any
method on the bean to be invoked for the specific callback desired. For stateless session
beans and message-driven beans, the lifecycle callback annotations available are @Post
Construct and @PreDestroy. For stateful session beans, the lifecycle callback annota-
tions available are @PostConstruct, @PreDestroy, @PostActivate, and @PrePassivate.
You can apply these lifecycle callback annotations to any business method in the bean.

Programmatic Defaults
EJB3 makes use of programmatic defaults to simplify the development and deployment
of Enterprise JavaBeans. For example, in EJB3 you no longer need to specify the EJB
name for a bean; unless specified by the developer, the EJB name will automatically
default to the fully qualified class name. In most cases, the fully qualified class name
of the bean is unique enough to serve as the EJB name. In cases where it is not, you can
always specify a name as an argument in the @Stateless annotation. The same holds
true for the JNDI binding name—unless specified by the developer, each EJB3 con-
tainer will automatically provide a default value for the JNDI binding name used to

Enterprise JavaBeans 3.0 (EJB3) Overview | 159

access the bean. For example, JBoss provides the following programmatic default for
accessing a session bean from a servlet, JSP, or application client:

<earfile name>/<bean name>/<interface type>

The interface type is specified as either remote or local. For instance, to access a remote
stateless session bean defined as LenderBean located in an EAR file named
example.ear, you would specify the lookup as follows:

...
Context ctx = new InitialContext();
Lender Lender = (Lender)
 ctx.lookup("example/LenderBean/remote");
...

The client code just listed does not need a corresponding extended deployment de-
scriptor (e.g., jboss.xml) to define the JNDI bindings. Using programmatic defaults, we
know the EJB name (i.e., the fully qualified class name of the bean) and the JNDI
binding (i.e., example/LenderBean/remote).

Interceptors
Interceptors are EJB3’s answer to aspect-oriented programming (AOP). Unlike other
aspect-oriented languages (e.g., AspectJ, Spring AOP), EJB3 interceptors do not require
a specific aspect-oriented language. Rather, they use Java to define the interceptor
method and annotations to specify the directives. While EJB3 interceptors are very
powerful and easy to use, there are some limitations imposed on the use of interceptors.
For example, you can use interceptors only on Enterprise JavaBeans; regular POJOs
cannot be intercepted using EJB3 interceptors. Also, only one interceptor method can
be defined per class, and a business method in a bean cannot be defined as an
interceptor.

There are four annotations used for interceptors. The @AroundInvoke annotation defines
a method as an interceptor. The rest of the annotations define the directives for the
interceptor. The @Interceptors annotation, which is specified at a class level, defines
the interceptors that are used for all methods in that bean class. The @ExcludeClassIn
terceptors annotation is used at the method level to indicate that the interceptors
defined for the bean class should not be executed for a particular method. Finally, the
@ExcludeDefaultInterceptors annotation is used at the class or method level to indicate
that default interceptors should be excluded from the bean class and/or method.
Default interceptors are interceptors defined in XML that apply to all bean classes.

To illustrate the use of interceptors in conjunction with JMS, consider the use case
where any exception thrown by the backend session beans must publish that exception
to an exception topic. That exception may then be picked up by anyone subscribing to
that exception topic, including on-call systems, monitoring systems, and logging sys-
tems. Rather than adding the JMS publishing logic to every piece of code that throws
an exception, we can define an interceptor to perform this cross-cutting concern:

160 | Chapter 8: Java EE and Message-Driven Beans

public class ExceptionAOP {

 @AroundInvoke
 public Object sendException(InvocationContext ctx)
 throws Exception {
 String bean = ctx.getBean().getClass().getName();
 String op = bean + "->" + ctx.getMethod().getName();

 try {
 return ctx.proceed();
 } catch (Exception up) {
 InitialContext ictx = new InitialContext();
 TopicConnectionFactory factory =
 (TopicConnectionFactory)ictx.lookup("ConnectionFactory");
 TopicConnection conn = factory.createTopicConnection();
 Topic topic = (Topic)ictx.lookup("topic/exceptionTopic");
 TopicSession session =
 conn.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 conn.start();

 TopicPublisher publisher = session.createPublisher(topic);
 TextMessage msg = session.createTextMessage(op + ":" + up);
 publisher.publish(msg);
 session.close();
 conn.close();
 throw up;
 }
 }
}

Notice that we can intercept the method and perform logic before the method is
invoked as well as after the method is invoked. The proceed() method from the
InvocationContext object is what triggers the invocation of the method being invoked.
All interceptors must use the following method signature: public Object myMethod
Name(InvocationContext ctx), where myMethodName is any method name you want (in
our case it is sendException). The code to specify how this interceptor should be used
is as follows:

@Stateless
@Remote(Lender.class)
@Interceptors(ExceptionAOP.class)
public class LenderBean implements Lender{

 ...
}

Notice that we specified via the @Interceptors annotation that the ExceptionAOP class
(which is just a POJO) should be used as an interceptor for this bean class. You can
chain interceptors by listing them as a class array in the @Interceptors annotation.

Enterprise JavaBeans 3.0 (EJB3) Overview | 161

Java Persistence API
Finally, Entity beans in EJB 2.1 have been replaced with a new object-relational map-
ping (ORM) framework called the Java Persistence API (JPA). The great thing about
JPA is that it does not require EJB; JPA can be used within Java EE or standalone
through a Java SE application. The Spring Framework by SpringSource also provides
seamless integration with JPA. JPA is a standard API and, as such, requires a JPA pro-
vider. Popular JPA providers include Hibernate, TopLink, and OpenJPA. You can read
more about JPA in Enterprise JavaBeans 3.0, Fifth Edition (http://oreilly.com/catalog/
9780596009786/), by Richard Monson-Haefel (O’Reilly).

JMS Resources in Java EE
The two JMS resources that must be obtained from the JNDI context are the JMS
destination (Queue and Topic) and the JMS connection factory (TopicConnectionFac
tory and QueueConnectionFactory). In previous examples in this book, these resources
were obtained by first getting an InitialContext to the JMS provider and then per-
forming a lookup using the published JNDI name. Keeping with our borrower and
lender example from the previous chapters, let’s assume that we have a topic connection
factory defined in the Java EE application server named “TopicCF,” and a topic used
to publish prices also defined in the Java EE application server named “jms/Rates.” In
previous examples, the constructor of the Lender class was where we established an
InitialContext and obtained the TopicConnectionFactory and Topic via a JNDI lookup:

public class Lender {

 TopicConnection conn = null;
 TopicSession session = null;
 Topic ratesTopic = null;
 TopicPublisher publisher = null;

 public Lender() {
 try {

 Context ctx = new InitialContext();

 TopicConnectionFactory factory = (TopicConnectionFactory)
 ctx.lookup("TopicCF");
 conn = factory.createTopicConnection();
 conn.start();

 session =
 conn.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

 ratesTopic = (Topic)ctx.lookup("jms/Rates");
 publisher = session.createPublisher(ratesTopic);

 ...

162 | Chapter 8: Java EE and Message-Driven Beans

http://oreilly.com/catalog/9780596009786/
http://oreilly.com/catalog/9780596009786/
http://oreilly.com/catalog/9780596009786/

 } catch (JMSException jmse) {
 jmse.printStackTrace();
 } catch (NamingException jne) {
 jne.printStackTrace();
 }
 }
 ...
}

Within the Java EE environment, objects bound within the Java EE context can use the
@Resource annotation to inject the JMS resources (connection factories and destina-
tions) into the code rather than performing a JNDI lookup using the InitialContext.
Servlets, session beans, and message-driven beans can access JMS resources in this
manner. Therefore, we can rewrite the previous Java SE code example in Java EE using
resource injection as follows:

@Stateless
@Remote(Lender.class)
public class LenderBean implements Lender {

 @Resource(name="TopicCF") TopicConnectionFactory factory;
 @Resource(name="jms/Rates") Topic ratesTopic;

 TopicConnection conn = null;
 TopicSession session = null;
 TopicPublisher publisher = null;

 @PostContruct
 public void init() {
 try {
 conn = factory.createTopicConnection();
 conn.start();
 session =
 conn.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

 publisher = session.createPublisher(ratesTopic);
 ...

 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }
 }
 ...
}

Notice that we do not need to establish an InitialContext and perform a JNDI lookup
to obtain the JMS connection factory and topic resources accessed through JNDI;
rather, they are injected through the @Resource annotation and are available to us
immediately in the init() method.

JMS Resources in Java EE | 163

The JNDI Environment Naming Context (ENC)
In older versions of Java EE (e.g., Java EE 4 and EJB 2.1), the JNDI Environment Nam-
ing Context (ENC) is used to access JNDI-based managed resources. The JNDI ENC
specifies that JMS connection factories (TopicConnectionFactory and QueueConnection
Factory) can be bound within a JNDI namespace and made available to any Java EE
component at runtime. This allows any Java EE component to become a JMS client.

For example, the Lender JMS client developed in Chapter 4 could be modeled as a Java
EE application client, which would allow it to access a JMS connection factory through
the JNDI ENC:

public class Lender implements javax.jms.MessageListener {

 TopicConnection conn = null;
 TopicSession session = null;
 TopicPublisher publisher = null;

 public Lender() {
 try{
 InitialContext jndiEnc = new InitialContext();

 TopicConnectionFactory factory = (TopicConnectionFactory)
 jndiEnc.lookup("java:comp/env/jms/TopicCF");
 connect = factory.createTopicConnection();

 session =
 connect.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

 Topic ratesTopic = (Topic)
 jndiEnc.lookup("java:comp/env/jms/Rates");
 publisher = session.createPublisher(ratesTopic);

 ...

 } catch (javax.jms.JMSException jmse) {
 jmse.printStackTrace(); System.exit(1);
 } catch (javax.naming.NamingException jne) {
 jne.printStackTrace(); System.exit(1);
 }
 }
...

Notice that the InitialContext did not need a set of vendor-specific properties and that
the lookup() operations referenced a special namespace, "java:comp/env/jms/", to
access the connection factories. The JNDI ENC allows the Java EE component to re-
main ignorant of the actual network location of the administered objects, and even of
the vendor that implements them. This allows the Java EE components to be portable
across JMS providers as well as Java EE platforms. In addition, the JNDI names used
to locate objects are logical bindings, so the topics or queues bound to these names can
change independently of the actual bindings used by the JMS provider.

164 | Chapter 8: Java EE and Message-Driven Beans

In the XML deployment descriptor for the Lender application client, the component
developer declares that a JMS connection factory and destination need to be bound
within the JNDI ENC:

<application-client>
 <display-name>Lender Applicaton</display-name>
 <resource-ref>
 <description>Lender Broker</description>
 <res-ref-name>jms/TopicCF</res-ref-name>
 <res-type>javax.jms.TopicConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 ...
 <resource-env-ref>
 <description>Rates Topic</description>
 <resource-env-ref-name>jms/Rates</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>
 </resource-env-ref>
 ...
</application-client>

When the component is deployed, the Java EE vendor tools generate code to translate
the JNDI ENC resource references into JMS-administered objects. This translation is
done when the bean is deployed using administration tools.

Any J2EE component can access JMS connection factories and destinations using the
JNDI ENC. As an example, the Lender client can be rewritten as a stateless session bean
that uses the JNDI ENC to obtain a JMS connection factory and destination:

public class LenderBean implements javax.ejb.SessionBean {

 ...

 public void setSessionContext(SessionContext cntx) {
 try {

 InitialContext jndiEnc = new InitialContext();

 TopicConnectionFactory factory = (TopicConnectionFactory)
 jndiEnc.lookup("java:comp/env/jms/TopicCF");
 connect = factory.createTopicConnection();

 session =
 connect.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

 Topic RatesTopic=(Topic)
 jndiEnc.lookup("java:comp/env/jms/Rates");
 publisher = session.createPublisher(ratesTopic);

 ...

 }
 ...

JMS Resources in Java EE | 165

 }
 public void publishRates(double oldRate, double newRate) {
 try {
 javax.jms.StreamMessage message =
 session.createStreamMessage();
 message.writeDouble(oldRate);
 message.writeDouble(newRate);
 ...

 publisher.publish(
 message,
 DeliveryMode.PERSISTENT,
 Message.DEFAULT_PRIORITY,
 1800000);

 } catch (javax.jms.JMSException jmse){
 jmse.printStackTrace();
 }
 }
 ...
}

Message-Driven Beans
Although session beans and web components can act as JMS producers, these com-
ponents can only consume JMS messages synchronously using one of the MessageCon
sumer.receive() methods. Calling the receive() methods causes the JMS client to
block on the currently running thread and wait for a message.* These methods are used
to consume messages synchronously, whereas MessageListener objects are used to
consume messages asynchronously.

Only the message-driven bean and application client components can both produce
and consume asynchronous messages. The web and session components cannot act as
asynchronous JMS consumers because they are driven by synchronous request/reply
protocols, not asynchronous messages. Web components respond to HTTP requests
while session beans respond to Java RMI-IIOP requests.

The fact that neither web components nor session beans can asynchronously consume
JMS messages was one of the things that originally led to development of the message-
driven bean. The MDB provides Java EE developers with a server-side JMS consumer
that can consume asynchronous messages, something that wasn’t supported in the
early versions of Java EE.

* It’s recommended that the component developer use the timeout version of the receive method, receive(long
timeout), where the timeout is specified in milliseconds. Unrestricted blocking not limited to any length of
time is risky.

166 | Chapter 8: Java EE and Message-Driven Beans

While most JMS vendors provide the message-brokering facilities for routing messages
from producers to consumers, the responsibility for implementing JMS clients is left to
the application developer. In many cases, the JMS clients that consume and process
messages need a lot of infrastructure in order to be robust, secure, fault-tolerant, and
scalable. JMS clients may access databases and other resources, use local and distrib-
uted transactions, require authentication and authorization security, or need to process
a large load of concurrent messages. Fulfilling these needs is a tall order, requiring that
a significant amount of work be done by the application developer. In the end, the kind
of infrastructure needed to support powerful JMS consumers is not unlike the infra-
structure needed for session beans, which can produce but not consume messages
asynchronously.†

In recognition of this need, Java EE provides support for the MessageDrivenBean type,
which can consume JMS messages and process them in the same robust component-
based infrastructure that session beans enjoy. The MessageDrivenBean type (message-
driven bean) is a first-class enterprise bean component that is designed to consume
asynchronous JMS messages. Like stateless session beans, message-driven beans don’t
maintain state between requests; they may also have instance variables that are main-
tained throughout the bean instance’s life, but they may not store conversational state.
Unlike session beans, a message-driven bean does not have remote or local business
interfaces associated with them, because the MDB is not an RPC component. Further-
more, it does not have business methods that are invoked by EJB clients. An MDB
consumes messages delivered by other JMS clients through a message server.

The lifecycle of a message-driven bean is shown in Figure 8-1. The setMessageDriven
Context() is called by the container on each instance right after it is instantiated. It
provides the instance with a MessageDrivenContext, which is based on a standard con-
tainer interface, EJBContext. The ejbCreate() method is invoked by the container on
each instance after the setMessageDrivenContext() method, but before the bean
instance is added to the pool for a particular message-driven bean. Once the MDB has
been added to the pool, it’s ready to process messages. When a message arrives, the
instance is removed from the pool and its onMessage() method is invoked. When the
onMessage() method returns, the bean instance is returned to the pool and is ready to
process another message. The ejbRemove() method is invoked by the container on an
instance when it is discarded. This might happen if the container needs to reduce the
size of the pool.

† Session beans can technically consume JMS messages synchronously by using one of the
MessageConsumer.receive() methods.

Message-Driven Beans | 167

onMessage()

ejbRemove()
1. newInstance()
2. setMessageDrivenContext(mdc)
3. ejbCreate()

does not
exist

method-ready
pool

Figure 8-1. Lifecycle of a message-driven bean

Concurrent Processing and Scalability
In addition to providing the container infrastructure for message-driven beans, Java EE
provides another important advantage: concurrent processing. A message-driven bean
is deployed as a JMS consumer. It subscribes to a topic or connects to a queue and waits
to receive messages. At runtime, the EJB container actually instantiates many instances
of the same MDB and keeps those instances in pool. When a message is delivered to
an MDB, one instance of that bean is selected from a pool to handle the message. If
several messages are delivered at the same time, the container can select a different bean
instance to process each message; the messages can be processed concurrently. Because
a message-driven bean can consume messages concurrently in a robust server environ-
ment, it is capable of much higher throughput and better scalability than most tradi-
tional JMS clients.

Defining Message-Driven Beans
In EJB3, message-driven beans are defined through the @MessageDriven annotation. In
addition, the bean class must implement the javax.jms.MessageListener interface. The
@MessageDriven annotation is used to identify the bean as a message-driven bean,
whereas the associated @ActivationConfigProperty annotation is used to specify the
JMS destination the message-driven bean is listening on:

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(
 propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(

168 | Chapter 8: Java EE and Message-Driven Beans

 propertyName="destination",
 propertyValue="jms/LoanRequest")
})

Notice here that two properties are set; the first identifies the destination type (Queue
or Topic), and the second identifies the JNDI name of the JMS destination. Like session
beans, no XML deployment descriptors are required to develop and deploy a MDB.
You can specify other MDB-related properties here as well, including a message selector
and the number of concurrent listener threads.

The MessageListener interface defines the onMessage() method, which is used to asyn-
chronously receive messages:

package javax.jms;

public interface MessageListener {
 public void onMessage();
}

Per the JMS specification, all MDBs must implement the MessageListener interface.

The @PostConstruct callback method (if specified) is called on each instance right after
it is instantiated. Prior to the callback, the instance is provided with a MessageDriven
Context, which is based on a standard container interface, EJBContext. Once the
message-driven bean has been added to the pool, it’s ready to process messages. When
a message arrives, the instance is removed from the pool and its onMessage() method
is invoked. When the onMessage() method returns, the bean instance is returned to the
pool and is ready to process another message. The @PreDestroy callback method (if
specified) is invoked on an instance when it is discarded. This might happen if the
container needs to reduce the size of the pool.

The Lender JMS client developed in Chapter 4 can easily be converted to a message-
driven bean. When messages are received from the borrowers, the LenderMDB class can
process them quickly and efficiently, providing a more scalable option then the JMS
clients we previously developed:

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(
 propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(
 propertyName="destination",
 propertyValue="jms/LoanRequest")
})
public class LenderMDB implements MessageListener {

 @Resource(name="jms/QueueCF") private QueueConnectionFactory factory;

 private javax.jms.QueueConnection qConnect = null;
 private javax.jms.QueueSession qSession = null;

 @PostConstruct
 public void init(){

Message-Driven Beans | 169

 try {
 //needed for request/reply processing
 qConnect = factory.createQueueConnection();
 qSsession = qConnect.createQueueSession
 (false,Session.AUTO_ACKNOWLEDGE);
 qConnect.start();

 } catch (JMSException jmse){
 throw new RuntimeException();
 }
 }

 @PreDestroy
 public void cleanup(){
 try {
 qConnect.close();
 } catch (JMSException jmse){
 throw new RuntimeException();
 }
 }

 public void onMessage(Message message){
 try{
 boolean accepted = false;

 // Get the data from the message
 MapMessage msg = (MapMessage)message;
 double salary = msg.getDouble("Salary");
 double loanAmt = msg.getDouble("LoanAmount");

 // Determine whether to accept or decline the loan
 if (loanAmt < 200000) {
 accepted = (salary / loanAmt) > .25;
 } else {
 accepted = (salary / loanAmt) > .33;
 }
 System.out.println("" +
 "Percent = " + (salary / loanAmt) + ", loan is "
 + (accepted ? "Accepted!" : "Declined"));

 // Send the results back to the borrower
 TextMessage tmsg = qSession.createTextMessage();
 tmsg.setText(accepted ? "Accepted!" : "Declined");
 tmsg.setJMSCorrelationID(message.getJMSMessageID());

 // Create the sender and send the message
 QueueSender qSender =
 qSession.createSender((Queue)message.getJMSReplyTo());
 qSender.send(tmsg);

 System.out.println("\nWaiting for loan requests...");
 } catch (Exception rte) {
 throw new RuntimeException();
 }

170 | Chapter 8: Java EE and Message-Driven Beans

 }
}

The LoanMDB message-driven bean listens for loan requests on the loanRequest queue to
determine whether the loan request should be approved or denied. The QueueConnec
tionFactory is obtained from the JNDI ENC using the @Resource annotation, elimi-
nating the code necessary to obtain an initial context and get the connection factory.
However, where is the code used to specify the loanRequest queue?

A message-driven bean is, by definition, a JMS consumer. The EJB container in which
the bean is deployed takes care of registering the bean as a listener to the desired queue
based on JMS configuration information provided by the developer or deployer. In the
case of message-driven beans, the bean developer or deployer can use either the
@MessageDriven annotation and the corresponding @ActivationConfigProperty anno-
tation or the corresponding XML deployment descriptors. The @MessageDriven anno-
tation includes properties for describing the type of destination (topic or queue),
whether to use durable or nondurable subscriptions with topics, the acknowledgment
mode, and even the message selector used.

With the message-driven bean, it is important to understand that messages do not have
to be produced by other beans in order for them to be consumed by an MDB. Message-
driven beans can consume messages from any topic or queue administered by a JMS
provider.‡ Messages consumed by MDBs may have come from other beans (session
beans or message-driven beans), web components, application client components,
non-J2EE JMS clients, or even legacy messaging systems supported by a JMS provider.
A legacy application might, for example, use IBM’s WebSphere MQ to deliver messages
to a queue, which is consumed by other legacy applications as well as message-driven
beans.

Message-Driven Bean Use Cases
We saw earlier in the chapter that within the Java EE environment, session beans and
web components can only receive messages synchronously, whereas message-driven
beans can receive messages asynchronously. While this is a key point for the usefulness
of MDBs, there are several other use cases that make MDBs a good design choice.

Message Facade
There may be times when you want to expose business functionality written in Java to
remote client applications outside of the EJB container. This is typically done though
the use of the Session Facade pattern. In Java EE, this pattern is implemented via state-
less session beans that act as the remote entry point to the business functionality we

‡ In almost all cases, the EJB vendor will also be the JMS provider, provided the EJB container is Java EE 1.4
(and above) compliant.

Message-Driven Bean Use Cases | 171

want to expose. However, this implementation assumes that the client invoking the
service is written in Java, can support the RMI/IIOP protocol, and has the necessary
interfaces, stubs, and skeletons to access the remote session bean. While this solution
is valid for Java-based client applications, it does not lend itself well to interoperability
with non-Java clients or Java clients outside of the Java EE environment.

Another approach for exposing business functionality within an EJB container to
outside client applications is through the use of the Message Facade pattern. Using a
message-driven bean as a facade to business functionality (services) decouples client
applications from the service implementation, allowing for greater flexibility and in-
teroperability, particularly for non-Java client applications wishing to use the service.
In this scenario, the message-driven bean acts as the facade to receive the request via a
JMS message, invoke the necessary service, and return the result back to the caller in
the form of a JMS message. Consider the example in Chapter 4 where the Borrower
class makes a request to the Lender class for a mortgage loan. Rather than convert the
entire Lender object to a message-driven bean, we could create a message facade (in this
case LenderMDB) that handles the loan request:

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(
 propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(
 propertyName="destination",
 propertyValue="jms/LoanRequest")
})
public class LenderMDB implements MessageListener {

 @Resource(name="jms/QueueCF") private QueueConnectionFactory factory;

 private javax.jms.QueueConnection qConnect = null;
 private javax.jms.QueueSession qSession = null;

 @PostConstruct
 public void init() {
 try {
 qConnect = factory.createQueueConnection();
 qSsession = qConnect.createQueueSession
 (false,Session.AUTO_ACKNOWLEDGE);
 qConnect.start();

 } catch (JMSException jmse) {
 throw new RuntimeException();
 }
 }

 @PreDestroy
 public void cleanup(){
 try {
 qConnect.close();
 } catch (JMSException jmse) {
 throw new RuntimeException();

172 | Chapter 8: Java EE and Message-Driven Beans

 }
 }

 public void onMessage(Message message) {
 try{
 // Get the data from the message
 MapMessage msg = (MapMessage)message;
 double salary = msg.getDouble("Salary");
 double loanAmt = msg.getDouble("LoanAmount");

 // Determine whether to accept or decline the loan
 Lender lender = new Lender();
 boolean accepted = lender.analyzeLoadRequest(salary, loanAmt);

 // Send the results back to the borrower
 TextMessage tmsg = qSession.createTextMessage();
 tmsg.setText(accepted ? "Accepted!" : "Declined");
 tmsg.setJMSCorrelationID(message.getJMSMessageID());

 // Create the sender and send the message
 QueueSender qSender =
 qSession.createSender((Queue)message.getJMSReplyTo());
 qSender.send(tmsg);

 System.out.println("\nWaiting for loan requests...");
 } catch (Exception rte) {
 throw new RuntimeException();
 }
 }
}

Notice that by using a message-driven bean as a message facade to the loan request,
the Lender business object did not need to be converted to a remote object (i.e., session
bean) or a JMS consumer and producer (i.e., message-driven bean). In this example,
loan requests are received in the jms/LoanRequest queue in the form of a MapMessage
containing the salary and loan amount information and returned via the jms/LoanRes
ponse queue (specified in the JMSReplyTo message header property) as a TextMessage
containing the information on whether the loan was approved or denied. The key point
here is that the LenderMDB facade abstracts out the JMS infrastructure and connection
logic from the core business logic, allowing the class containing the business logic to
be independent of how the functionality is exposed (in our case, JMS).

Transformation and Routing
In the previous example, we saw how a message-driven bean can be used as a message
facade to a POJO-based business object, allowing the POJO business functionality to
be exposed outside of the EJB container. Suppose the client application making the
loan request was written in a language other than Java? Suppose also that the analyze
LoanRequest() method in the Lender class took a LoanRequest object rather than two
double arguments? One obvious solution to this problem would be to have the client

Message-Driven Bean Use Cases | 173

application use XML to make the request. However, we would then have to modify the
analyzeLoanRequest() method of the Lender class to accept XML rather than a
LoanRequest object.

In this scenario, we can use a message-driven bean to act as a message facade but also
have the additional responsibility of transforming the message to the appropriate con-
tract definition language (in this case, going from XML to a Java object and back to
XML for the response). Although the topic of message transformation is beyond the
scope of this book, conceptually a message-driven bean can perform this task as follows:

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(
 propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(
 propertyName="destination",
 propertyValue="jms/LoanRequest")
})
public class LenaderMDB implements MessageListener {

 ...

 public void onMessage(javax.jms.Message message) {
 try{
 // Get the data from the message
 BytesMessage msg = (BytesMessage)message;
 String xmlIn = msg.readUTF();

 LoanRequest loan = transformFromXML(xmlIn);

 Lender lender = new Lender();
 boolean accepted = lender.analyzeLoanRequest(loan);

 String xmlOut = transformToXML(accepted);

 BytesMessage returnMsg = session.createBytesMessage();
 returnMsg.writeUTF(xmlOut);
 sender.send(returnMsg);

 } catch (Exception e) {
 throw new RuntimeException();
 }
 }
}

Additionally, we could add further functionality to our message-driven bean to have it
interrogate the message properties to determine the name of the operation to be invoked
and effectively “route” the request (via method invocation) to the requested service. In
effect, the message-driven bean performing this functionality is essentially doing what
an Enterprise Service Bus (ESB) does: accept a request, transform the message,
and route the request. Depending on the complexity of the application, with a

174 | Chapter 8: Java EE and Message-Driven Beans

message-driven bean you could conceivably build a simple mediator component that
handles transformations, routing, and request management.

Although the actual development of message-driven beans with transformation and
routing capabilities would be a complex undertaking, it nevertheless illustrates the
possible use cases of message-driven beans within an overall integration architecture
solution.

Message-Driven Bean Use Cases | 175

CHAPTER 9

Spring and JMS

The Spring Framework provides built-in support for JMS that greatly simplifies the
development of messaging-based applications. For synchronous message sending and
receiving, Spring provides a JMS template that abstracts the developer from the details
of the JMS API. For asynchronous message receiving, Spring provides a framework that
allows regular POJOs to act as asynchronous message listeners (also known as message-
driven POJOs, or MDPs). Message-driven POJOs are similar in nature to the message-
driven beans discussed in the previous chapter. However, unlike message-driven beans,
MDPs can be created using standard POJO business objects that optionally have no
knowledge of messaging or JMS.

This chapter introduces JMS messaging using version 2.5 of the Spring Framework.
We will start by reviewing the overall architecture and components of Spring’s mes-
saging framework, and then describe the details of connecting to a JMS provider, send-
ing messages, receiving messages synchronously, and creating message-driven POJOs
to receive messages asynchronously. In the last section (“The Spring JMS Name-
space” on page 208), we will discuss the new Spring JMS namespace, which simplifies
the configuration for Spring-based JMS containers and listeners.

Spring Messaging Architecture
The JMS template and the message listener container are the two main components
within the Spring Framework for using JMS messaging. Spring’s JMS template (JmsTem
plate) is used when sending messages or receiving messages synchronously (i.e., block-
ing when receiving messages). The message listener container (DefaultMessageListe
nerContainer) is used to receive messages asynchronously through the use of MDP.
Unlike most Java EE application servers (e.g., JBoss, WebSphere), Spring itself is not
a JMS provider, meaning that an external JMS provider (e.g., ActiveMQ, JBoss Mes-
saging, IBM WebSphere MQ) is necessary to use messaging with Spring. The purpose
of the JMS template and the message listener container is to isolate the developer from
the details of connecting to the JMS provider, establishing a JMS connection, creating
a JMS session, and creating a JMS message producer or message consumer. The high-
level architecture of how Spring is used for messaging is illustrated in Figure 9-1.

177

Connection
factory Destination

JMS provider

JmsTemplate Message listener
container

Spring framework

Application

Figure 9-1. High-level architecture

The Spring JMS template (JmsTemplate) is the primary interface used for sending mes-
sages and receiving messages synchronously. When using JNDI, the JmsTemplate is used
in conjunction with several other Spring objects to connect to the JMS provider, in-
cluding the JndiTemplate, JndiObjectFactoryBean, JndiDestinationResolver, and the
CachingConnectionFactory (or SingleConnectionFactory). The JndiTemplate bean is
used to specify the initial factory, provider URL, security principals, and security cre-
dentials properties for connecting to the JMS provider. It is used when defining the JMS
connection factory via the JndiObjectFactoryBean and the JMS destinations via the
JndiDestinationResolver. These Spring beans are discussed in more detail in the section
on connecting to a JMS provider. Figure 9-2 illustrates the relationship and collabora-
tion among Spring’s JNDI objects, the JMS provider, and the application.

For receiving messages asynchronously (i.e., listening for messages on a queue or topic
without blocking), Spring provides a message listener container (DefaultMessageListe
nerContainer or SimpleMessageListenerContainer) that is used to create what is called
a MDP. At first glance, MDPs seem similar to the message-driven beans found in the
Java EE specification. However, Spring MDPs provide much more flexibility than
MDBs in that Spring MDPs can be created from non-message-aware POJOs, whereas
MDBs must adhere to specific rules in the EJB3 specification—namely, the object must
implement the javax.jms.MessageListener interface, override the onMessage method,
and provide a @MessageDriven annotation (or XML) containing configuration properties
containing the destination type (e.g., javax.jms.Queue or javax.jms.Topic) and desti-
nation JNDI name.

178 | Chapter 9: Spring and JMS

Connection
factory

JndiObjectFactory
bean

JndiTemplate

JndiDestination
resolver

CachingConnection
factory

JmsTemplate

Sender and
sync. receiver

Destination

JMS provider

Figure 9-2. Synchronous send and receive using JNDI

Like the JmsTemplate, the message listener container is used in conjunction with the
JndiTemplate, JndiObjectFactoryBean, JndiDestinationResolver, and the CachingCon
nectionFactory to connect to the JMS provider and start the asynchronous listener.
Unlike message-driven beans, Spring provides three different ways to create MDPs. The
three methods for creating a Spring MDP are outlined and discussed later in the section
“Message-Driven POJOs” on page 198. Figure 9-3 illustrates the relationships and
objects used for receiving asynchronous messages.

Connection
factory

JndiObjectFactory
bean

JndiTemplate

JndiDestination
resolver

CachingConnection
factory

DefaultMessage
ListenerContainer

Asynchronous
receiver

Destination

JMS provider

Figure 9-3. Asynchronous receive using JNDI

Spring Messaging Architecture | 179

JmsTemplate Overview
The JmsTemplate is the primary object used for sending messages and receiving messages
synchronously (i.e., blocking while waiting to receive messages). There is a JMS tem-
plate version for JMS 1.1 (JmsTemplate) and a version for JMS 1.0.2 (JmsTemplate102).
Since most JMS providers and Java EE application servers now support JMS 1.1, we
will be focusing our attention on the JMS 1.1 Spring objects. Using the JmsTemplate
significantly reduces the development effort involved in sending and receiving mes-
sages. When using the JmsTemplate, you do not need to worry about connecting to the
JMS provider, creating a JMS session (e.g., QueueSession), creating a message producer
(e.g., QueueSender), or even creating a JMS message (e.g., TextMessage). The
JmsTemplate can automatically convert String objects, Byte[] objects, Java objects, and
java.util.Map objects into the corresponding JMS message object types. You can also
provide your own message converter to provide custom converters for complex mes-
sages or other types of messages not supported by the default message converter. The
following code example illustrates the simplicity of sending a simple text message using
Spring:

public class SimpleJMSSender {

 public static void main(String[] args) {
 try {
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("app-context.xml");
 JmsTemplate jmsTemplate =
 (JmsTemplate)ctx.getBean("jmsTemplate");

 jmsTemplate.convertAndSend("This is easy!");
 }
 ...
 }
}

In this example, the convertAndSend method will automatically create a TextMessage
from the String argument containing the text "This is easy!" and send it to the default
JMS destination (queue1) specified in the defaultDestinationName property of the
jmsTemplate bean (we will be covering the configuration of the JmsTemplate in more
detail in subsequent sections):

<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="queueConnectionFactory"/>
 <property name="destinationResolver" ref="destinationResolver"/>
 <property name="defaultDestinationName" value="queue1"/>
</bean>

But wait a minute—what about connecting to the JMS provider, establishing a Queue
Session, and creating a QueueSender? The JmsTemplate takes care of all these details
(including cleanup), allowing you to focus on business logic rather than the JMS in-
frastructure. Of course, things can get a little more complex, particularly when you

180 | Chapter 9: Spring and JMS

need to set message headers, message properties, or even create your own JMS message
objects. We’ll cover those details in subsequent sections of this chapter.

Out of the 75 methods defined in the JmsTemplate class (located in the org.springfra
mework.jms.core package), the most common methods that you will likely use are send,
convertAndSend, receive, receiveSelected, receiveAndConvert, and receiveSelecte
dAndConvert. Each of these common methods are outlined and discussed in the
following subsections.

Send Methods
When using the send method in the JmsTemplate class, you will need to create an in-
stance of Spring’s MessageCreator class. This class, which is usually specified as an
anonymous inner class within the send method parameter list, is used to create and
populate a JMS Message object. The send method then invokes the createMessage
method on the MessageCreator object to get the message to send.

When you have a default destination specified in the JmsTemplate and you wish to send
a message to that default destination, you would use the following send method:

public void send(MessageCreator messageCreator)
 throws JmsException

If you are not using a default destination in the JmsTemplate or you want to send to a
destination other than the default destination specified, you can use the following
overridden methods and specify a destination directly in the send method as a String
argument containing the JNDI name or a JMS Destination argument (e.g.,
javax.jms.Queue or javax.jms.Topic):

public void send(String destinationName,
 MessageCreator messageCreator)
 throws JmsException

public void send(Destination destination,
 MessageCreator messageCreator)
 throws JmsException

We will cover the details of actually using these methods later in this chapter.

convertAndSend Methods
The convertAndSend methods will invoke a message converter to automatically convert
a String object into a JMS TextMessage, a Java object into an JMS ObjectMessage, a
byte[] array into a JMS BytesMessage, and a java.util.Map object into a JMS MapMes
sage. There are six variations of the convertAndSend method. The convertAndSend meth-
ods use a message converter to convert the Object argument into a JMS Message. If you
do not specify a message converter, the convertAndSend methods will automatically use
the default message converter provided by Spring (SimpleMessageConverter).

JmsTemplate Overview | 181

To have the JmsTemplate convert an object into a corresponding JMS message type using
the default destination, you would use the following convertAndSend method:

public void convertAndSend(Object message)
 throws JmsException

If you are not using a default destination in the JmsTemplate or you want to send to a
destination other than the default destination specified, you can use the following
overridden methods and specify a destination directly in the convertAndSend method
as a String argument containing the JNDI name or a JMS Destination argument:

public void convertAndSend(String destinationName,
 Object message)
 throws JmsException

public void convertAndSend(Destination destination,
 Object message)
 throws JmsException

Finally, there may be times when you need to set some message headers or application
properties on the message or perform other logic prior to the message being sent. To
do this, you could use one of the overridden methods that take an instance of a
MessagePostProcessor class as an argument, which is usually defined as an anonymous
inner class. The use of the MessagePostProcessor will be covered in more detail in the
following sections of this chapter. The following three overridden methods use the
MessagePostProcessor:

public void convertAndSend(Object message,
 MessagePostProcessor postProcessor)
 throws JmsException

public void convertAndSend(String destinationName,
 Object message,
 MessagePostProcessor postProcessor)
 throws JmsException

public void convertAndSend(Destination destination,
 Object message,
 MessagePostProcessor postProcessor)
 throws JmsException

receive and receiveSelected Methods
The receive methods are used to block and wait for a message from a specified queue
or topic. You can set the receive timeout by setting the receiveTimeout property on the
JmsTemplate bean or by invoking the setReceiveTimeout method directly. The six over-
ridden receive methods all return a javax.jms.Message object, which can then be cast
into one of the five JMS message types. If you want to receive all messages from a default
destination, you can use the following receive method:

public Message receive() throws JmsException

182 | Chapter 9: Spring and JMS

If you do not have a default destination defined or wish to receive all messages from
another destination, you can use either of the following receive methods, passing in a
String argument containing the JNDI name of the destination or a reference to a JMS
destination:

public Message receive(String destinationName)
 throws JmsException

public Message receive(Destination destination)
 throws JmsException

Each of the receive methods just shown has a corresponding receiveSelected method
that accepts a message selector as a String object. You can use these if you want to be
more selective about the messages you want to receive:

public Message receiveSelected(String messageSelector)
 throws JmsException

public Message receiveSelected(String destinationName,
 String messageSelector)
 throws JmsException

public Message receiveSelected(Destination destination,
 String messageSelector)
 throws JmsException

receiveAndConvert Methods
As with the convertAndSend methods, Spring provides the ability to convert the JMS
Message object to a corresponding Java object type upon receipt of the message. Each
of the receiveAndConvert methods returns a Java object based on the message type.
Using the default message converter, the receiveAndConvert method will return a
String object when receiving a TextMessage, a byte[] array when receiving a BytesMes
sage, a java.util.Map object when receiving a MapMessage, and finally a Java Object
when receiving an ObjectMessage. There are three variations of the receiveAndConvert
method: one that uses the default destination, one that accepts a String argument
containing the JNDI name of the JMS destination, and one that accepts a Destina
tion object containing the queue or topic from which to receive messages:

public Object receiveAndConvert() throws JmsException

public Object receiveAndConvert(String destinationName)
 throws JmsException

public Object receiveAndConvert(Destination destination)
 throws JmsException

Each of these methods will use Spring’s default message converter (SimpleMessage
Converter) or alternatively a custom message converter specified in the message
Converter property on the JmsTemplate bean. Like the receive methods, the receiveAnd
Convert methods have corresponding receiveSelectedAndConvert methods that accept
a message selector as a String argument:

JmsTemplate Overview | 183

public Object receiveSelectedAndConvert(String messageSelector)
 throws JmsException

public Object receiveSelectedAndConvert(String destinationName,
 String messageSelector)
 throws JmsException

public Object receiveSelectedAndConvert(Destination destination,
 String messageSelector)
 throws JmsException

The remaining sections of this chapter cover the details on how to configure and use
the various JmsTemplate methods to send and receive messages.

Connection Factories and JMS Destinations
The JmsTemplate class handles all of the logic for connecting to a JMS provider and
accessing the JMS destinations. However, you still need to specify how the
JmsTemplate class establishes the connection to the JMS provider. There are two ways
to do this; using JNDI, or using the native connection factories and destination classes
supplied by the provider. This section will go through the details of both of these
methods, starting with JNDI.

Using JNDI
Spring provides several classes within its messaging framework for accessing JNDI-
based connection factories and destinations. The advantage of this approach is that
using JNDI further decouples your application from the JMS provider. The Spring
classes needed when using JNDI to access the connection factories and JMS destina-
tions are the JndiTemplate, JndiObjectFactoryBean, CachingConnectionFactory (or Sin
gleConnectionFactory), JndiDestinationResolver, and finally the JmsTemplate. The re-
lationship between these Spring classes and the JMS template is shown in Figure 9-4.

Connection
factory

JndiObjectFactory
bean

JndiTemplate

JndiDestination
resolver

CachingConnection
factory

JmsTemplate

Destination

JMS provider

Figure 9-4. JNDI objects and the JmsTemplate

184 | Chapter 9: Spring and JMS

The first thing you need to do is define the JndiTemplate bean, which is used to specify
the initial context factory, provider URL, and security credentials necessary to make a
connection to the JMS provider. It is here that you would specify the TCP address and
port for the JMS provider server, which can usually be found in the provider docu-
mentation or logs used by the JMS provider. You can refer to Appendix D for more
information regarding how to configure ActiveMQ for running the examples in this
chapter. The following JndiTemplate XML code snippet connects to the JMS provider
(in this case ActiveMQ, an open source JMS provider) using the localhost address on
port 61616:

<bean id="jndiTemplate" class="org.springframework.jndi.JndiTemplate">
 <property name="environment">
 <props>
 <prop key="java.naming.factory.initial">
 org.apache.activemq.jndi.ActiveMQInitialContextFactory</prop>
 <prop key="java.naming.provider.url">tcp://localhost:61616</prop>
 <prop key="java.naming.security.principal">system</prop>
 <prop key="java.naming.security.credentials">manager</prop>
 </props>
 </property>
 </bean>

Next, you will need to define a bean for the JMS connection factory, which is usually
accessed through JNDI. To do this, you would use Spring’s JndiObjectFactoryBean
combined with Spring’s CachingConnectionFactory (or alternatively, the SingleConnec
tionFactory). The JndiObjectFactoryBean takes a reference to the JndiTemplate and a
String argument containing the JNDI name of the connection factory (defined in the
JMS provider). The CachingConnectionFactory, which is a subclass of the SingleConnec
tionFactory, then takes a reference to the connection factory defined by the JndiOb
jectFactoryBean (in this case jndiQueueConnectionFactory) and an integer value indi-
cating the size of the JMS Session cache. In the following example, the cache size is set
to 1. This value can be increased to support more sessions in the cache:

<bean id="jndiQueueConnectionFactory"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiTemplate" ref="jndiTemplate"/>
 <property name="jndiName" value="QueueCF"/>
</bean>

<bean id="queueConnectionFactory"
 class="org.springframework.jms.connection.CachingConnectionFactory">
 <property name="targetConnectionFactory" ref="jndiQueueConnectionFactory"/>
 <property name="sessionCacheSize" value="1"/>
</bean>

After defining the connection factory, you will need to define a JndiDestination
Resolver bean, which allows you to specify JMS queue and topic destinations by JNDI
name rather than as javax.jms.Destination reference. The JmsTemplate bean will use
the JndiDestinationResolver to create the JMS destination from the JNDI name. This
bean takes a reference to the JndiTemplate and has properties for modifying the behavior

Connection Factories and JMS Destinations | 185

when resolving JNDI names. The cache property (which defaults to a value of true)
will cache resolved destination names. The JndiDestinationResolver will cache dy-
namic queues and topics by JNDI name, so if using dynamic queues and topics, make
sure the names are unique across all queues and topics. The other setting you should
be aware of is the fallbackToDynamicDestination boolean flag, which determines
whether the JndiDestinationResolver should create a dynamic destination if the JNDI
name is not found. If this flag is set to false, it will not create a dynamic destination.
If set to true, then a dynamic destination will be created using a name based on the
JNDI destination name. The default value for this flag is false. In the following exam-
ple, the JndiDestinationResolver bean is defined using the JndiTemplate previously
created using caching and configured not to create dynamic destinations:

<bean id="destinationResolver"
 class="org.springframework.jms.support.destination.JndiDestinationResolver">
 <property name="jndiTemplate" ref="jndiTemplate"/>
 <property name="cache" value="true"/>
 <property name="fallbackToDynamicDestination" value="false"/>
</bean>

The last step in the configuration process is to create the JmsTemplate bean. When using
JNDI, the basic properties for the JmsTemplate include the connection factory, the des-
tination resolver, a pubSubDomain property indicating whether you are using queues or
topics for this JMS template, and optionally a default destination for the template. As
illustrated in the following code, the JmsTemplate binds together the connection factory,
destination resolver, and a default destination name (in this case queue1). When using
JMS 1.1, you do not need to worry about the pubSubDomain property unless you are
using dynamic destination creation:

<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="queueConnectionFactory"/>
 <property name="destinationResolver" ref="destinationResolver"/>
 <property name="defaultDestinationName" value="queue1"/>
 <property name="pubSubDomain" value="false"/>
</bean>

The following code shows all of the Spring beans necessary for connecting to the JMS
provider, defining the connection factory, and specifying the JMS destinations when
using JNDI. This configuration will be used for the synchronous sender and receiver
examples that follow:

...

<bean id="jndiTemplate" class="org.springframework.jndi.JndiTemplate">
 <property name="environment">
 <props>
 <prop key="java.naming.factory.initial">
 org.apache.activemq.jndi.ActiveMQInitialContextFactory</prop>
 <prop key="java.naming.provider.url">tcp://localhost:61616</prop>
 <prop key="java.naming.security.principal">system</prop>
 <prop key="java.naming.security.credentials">manager</prop>
 </props>

186 | Chapter 9: Spring and JMS

 </property>
</bean>

<bean id="jndiQueueConnectionFactory"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiTemplate" ref="jndiTemplate"/>
 <property name="jndiName" value="QueueCF"/>
</bean>

<bean id="queueConnectionFactory"
 class="org.springframework.jms.connection.CachingConnectionFactory">
 <property name="targetConnectionFactory" ref="jndiQueueConnectionFactory"/>
 <property name="sessionCacheSize" value="1"/>
</bean>

<bean id="destinationResolver"
 class="org.springframework.jms.support.destination.JndiDestinationResolver">
 <property name="jndiTemplate" ref="jndiTemplate"/>
 <property name="cache" value="true"/>
 <property name="fallbackToDynamicDestination" value="false"/>
</bean>

<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="queueConnectionFactory"/>
 <property name="destinationResolver" ref="destinationResolver"/>
 <property name="defaultDestinationName" value="queue1"/>
 <property name="pubSubDomain" value="false"/>
</bean>

...

Using Native Classes
As an alternative to using JNDI, you can define the connection factory and JMS desti-
nation beans using native JMS provider classes. This is a useful alternative if the JMS
provider does not use JNDI or does not support JNDI connection factories or destina-
tions. Using this approach, you do not specify a JndiTemplate or JndiDestination
Resolver, nor do you use the JndiObjectFactoryBean. Instead, the connection factory
and JMS destinations are defined using the JMS provider classes directly.

Each native JMS provider class will have a different set of properties used to specify the
URL, port, and other information for connecting to the JMS provider. For example,
IBM WebSphere MQ v6 uses the MQQueueConnectionFactory class located in the
com.ibm.mq.jms package, which takes a transport type, queue manager name, host-
name, port, and channel. Note that in this example, we are leveraging the FieldRetrie
vingFactoryBean to convert the static field reference to the actual value rather than
specifying the integer value for the transportType in the MQQueueConnectionFactory:

<bean id="transport"
 class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean">
 <property name="staticField">
 <value>com.ibm.mq.jms.JMSC.MQJMS_TP_CLIENT_MQ_TCPIP</value>

Connection Factories and JMS Destinations | 187

 </property>
</bean>

<bean id="queueConnectionFactory" class="com.ibm.mq.jms.MQQueueConnectionFactory">
 <property name="transportType" ref="transport" />
 <property name="queueManager" value="QM1" />
 <property name="hostName" value="localhost" />
 <property name="port" value="1415" />
 <property name="channel" value="SYSTEM.DEF.SVRCONN" />
</bean>

To illustrate how the native connection factories differ, consider the following example,
which uses the native classes in ActiveMQ, a robust open source JMS provider:

<bean id="queueConnectionFactory" class="org.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

Notice that ActiveMQ only requires the brokerURL property needs to be defined,
whereas IBM WebSphere MQ requires the transport type, queue manager name, host-
name, port, and channel. Using the native JMS provider classes binds your code
specifically to that provider, whereas using JNDI does not.

For those connection factories that require a secure connection (such as IBM Web-
Sphere MQ), you can wrap the connection factory bean in Spring’s UserCredentials
ConnectionFactoryAdapter bean. This bean takes the connection factory defined pre-
viously as an argument, along with the username and password. Note that if you are
not connecting to IBM WebSphere MQ using security credentials, you still need to
define the secure connection factory passing in a space in the username and password
property values.

<bean id="secureQueueConnectionFactory"
 class=
 "org.springframework.jms.connection.UserCredentialsConnectionFactoryAdapter">
 <property name="targetConnectionFactory" ref="queueConnectionFactory"/>
 <property name="username" value="admin"/>
 <property name="password" value="pwd"/>
</bean>

Defining JMS destinations is simply a matter of creating a bean with the native desti-
nation class, usually providing a constructor argument containing the name of the
queue or topic. For example, in IBM WebSphere MQ you would create a JMS desti-
nation bean using the com.ibm.mq.jms.MQQueue native class, as follows:

<bean id="queueDest1" class="com.ibm.mq.jms.MQQueue">
 <constructor-arg value="queue1" />
</bean>

Once all of the connection factories and JMS destinations have been defined, you can
create the JmsTemplate bean using the native JMS connection factory and JMS desti-
nation beans:

<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="secureQueueConnectionFactory"/>

188 | Chapter 9: Spring and JMS

 <property name="defaultDestination" ref="queueDest1"/>
 <property name="pubSubDomain" value="false"/>
</bean>

The complete listing for configuring Spring to use native classes (in this example, IBM
WebSphere MQ) is as follows:

<bean id="transport"
 class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean">
 <property name="staticField">
 <value>com.ibm.mq.jms.JMSC.MQJMS_TP_CLIENT_MQ_TCPIP</value>
 </property>
</bean>

<bean id="queueConnectionFactory" class="com.ibm.mq.jms.MQQueueConnectionFactory">
 <property name="transportType" ref="transport" />
 <property name="queueManager" value="QM1" />
 <property name="hostName" value="localhost" />
 <property name="port" value="1415" />
 <property name="channel" value="SYSTEM.DEF.SVRCONN" />
</bean>

<bean id="secureQueueConnectionFactory"
 class=
 "org.springframework.jms.connection.UserCredentialsConnectionFactoryAdapter">
 <property name="targetConnectionFactory" ref="queueConnectionFactory"/>
 <property name="username" value="admin"/>
 <property name="password" value="pwd"/>
</bean>

<bean id="queueDest1" class="com.ibm.mq.jms.MQQueue">
 <constructor-arg value="queue1" />
</bean>

<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="secureQueueConnectionFactory"/>
 <property name="defaultDestination" ref="queueDest1"/>
 <property name="pubSubDomain" value="false"/>
</bean>

Sending Messages
There are two ways to send a message when using Spring: you can create a standard
JMS Message object (e.g., TextMessage) and send that message using the send method
on the JmsTemplate, or you can create a Java object (e.g., String) and send it using the
convertAndSend method without having to first create a JMS Message object. Both of
these techniques can use either a default destination (specified in the defaultDestina
tion or defaultDestinationName properties on the JmsTemplate) or a specific destination
specified directly in the send or convertAndSend methods.

Sending Messages | 189

When specifying a default destination on the JmsTemplate, you can use either the
defaultDestination property or the defaultDestinationName property. The defaultDes
tination property takes a reference to a JMS destination. This can be a javax.jms.Des
tination, javax.jms.Queue, javax.jms.Topic, or a reference bean created from one of
the specific destination classes provided by a JMS provider (for example,
com.ibm.mq.jms.MQQueue). The defaultDestinationName property takes a String argu-
ment containing the JNDI name of the queue or topic. Note that when using the
defaultDestinationName, you must also have a destinationResolver bean defined so
the JNDI name can be resolved.

In the following two subsections, we will show how to use the send and convertAnd
Send methods using a default destination. In the third subsection, we will show how to
specify a JMS destination in the send methods using either a JNDI name or a
javax.jms.Destination object. This is useful when you have multiple queues or topics
serviced by a single JmsTemplate or have a variable queue or topic.

Using the send Method
To use the send method in the JmsTemplate, you must first create the JMS Message object
you want to send using Spring’s MessageCreator class. The MessageCreator class is used
to construct the JMS Message object, which is then used by the JmsTemplate send
method. The MessageCreator class can be created as an anonymous inner class as part
of the body of the send method or instantiated outside of the context of the send method.
When creating the MessageCreator object, you need override the createMessage
method, which returns a JMS Message object. It is within the createMessage method
that you write custom JMS code to create the JMS Message object you wish to send.
The following example shows the use of the MessageCreator to create a simple
TextMessage:

public class SimpleJMSSender {

 public static void main(String[] args) {
 try {
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("app-context.xml");
 JmsTemplate jmsTemplate =
 (JmsTemplate)ctx.getBean("jmsTemplate");

 MessageCreator mc = new MessageCreator() {
 public Message createMessage(Session session) throws JMSException {
 TextMessage msg = session.createTextMessage();
 msg.setJMSPriority(9);
 msg.setText("This is easy!");
 return msg;
 }
 };

 jmsTemplate.send(mc);
 } catch (Exception ex) {

190 | Chapter 9: Spring and JMS

 ex.printStackTrace();
 }
 }
}

Notice that the createMessage method contains the JMS Session object, which allows
you to create the JMS Message object. In this example, the JMS priority header property
is set to a value of 9 (high priority), illustrating that header and application properties
can be set in this method as well. The MessageCreator object is passed into the send
method, which invokes the createMessage method to get the JMS message object to
send.

An alternative technique that yields the same results is to instantiate the MessageCrea
tor object as an anonymous inner class within the context of the send method:

public class SimpleJMSSender {

 public static void main(String[] args) {
 try {
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("app-context.xml");
 JmsTemplate jmsTemplate =
 (JmsTemplate)ctx.getBean("jmsTemplate");

 jmsTemplate.send(new MessageCreator() {
 public Message createMessage(Session session) throws JMSException {
 TextMessage msg = session.createTextMessage();
 msg.setJMSPriority(9);
 msg.setText("This is easy!");
 return msg;
 }
 });
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Notice that when using the JmsTemplate you do not need to connect to the JMS provider
or create a QueueSession and QueueSender object. All of this infrastructure-related mes-
saging logic is handled by the JmsTemplate, making it easier to send messages using the
Spring Framework.

Using the convertAndSend Method
One of the implications of using the send method is that you still have to use the JMS
API to create the JMS Message object. Spring offers another approach that even further
simplifies the task of sending a message: automatic message conversion. The
convertAndSend method is used to send a message without having to create the JMS
Message object. This method will automatically convert a Java object into its
corresponding JMS Message type using a message converter. Spring’s default message

Sending Messages | 191

converter (SimpleMessageConverter) will convert a Java object into an ObjectMessage, a
String object into a TextMessage, a byte[] array into a BytesMessage, and a
java.util.Map object into a MapMessage. You can define other custom conversions by
writing your own message converter and wiring it to the JmsTemplate using the messa
geConverter property.

Using the example from the previous section, you can send a simple TextMessage using
the default message converter as follows:

public class SimpleJMSSender {

 public static void main(String[] args) {
 try {
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("app-context.xml");
 JmsTemplate jmsTemplate =
 (JmsTemplate)ctx.getBean("jmsTemplate");

 jmsTemplate.convertAndsend("This is even easier!");

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Notice in this example you do not need to create a TextMessage object. It is automatically
created for you using the String value passed into the convertAndSend method. Using
this technique, you can reduce the Java code used to send a simple message to one line
of code.

Since the actual message object is not accessible when sending an object, how do you
set the header properties and application properties on the message? Easy. To set mes-
sage header and application properties when using the convertAndSend method, you
can create a Spring MessagePostProcessor object, which gives you access to the JMS
Message object created by the convertAndSend method. The MessagePostProcessor object
can be created as an inner class or as an anonymous inner class within the convertAnd
Send method.

To illustrate the use of the MessagePostProcessor object, consider the following example
where you want to set the priority of the message via the JMSPriority header property.
Here you can simply create a MessagePostProcessor object and override the postPro
cessMessage method to set the message priority:

public class SimpleJMSSender {

 public static void main(String[] args) {
 try {
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("app-context.xml");
 JmsTemplate jmsTemplate =
 (JmsTemplate)ctx.getBean("jmsTemplate");

192 | Chapter 9: Spring and JMS

 MessagePostProcessor postProcessor = new MessagePostProcessor() {
 public Message postProcessMessage(Message message)
 throws JMSException {
 message.setJMSPriority(9);
 return message;
 }
 };

 jmsTemplate.convertAndsend((Object)"This is even easier!", postProcessor);

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

As illustrated in the example just shown, when using the MessagePostProcessor in con-
junction with a String message type with a default destination, you must cast the
String message body to an Object to avoid ambiguity with the overloaded method
signatures on the convertAndSend method. Within the postProcessMessage method you
can also do other messaging related tasks, such as set application properties on the
message. This technique provides the same capabilities as you have when creating the
JMS Message object directly.

Using a Nondefault JMS Destination
While having a default destination specified in the JmsTemplate is handy, there are
situations in which you may have a common JmsTemplate that is shared by multiple
sender classes, each using a different JMS destination. In this case, you need to specify
the destination in the send method itself. There are two ways of doing this: use the JNDI
destination name or define a JMS destination object and use that reference in the
send method.

To use a JNDI destination name, the JmsTemplate needs to have a reference to a JNDI
DestinationResolver, which is specified in the destinationResolver property. Using
the JNDI name is simply a matter of setting the String value of the JNDI destination
name (in this case queue1) in the send method as illustrated here:

public class SimpleJMSSender {

 public static void main(String[] args) {
 try {
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("app-context.xml");
 JmsTemplate jmsTemplate =
 (JmsTemplate)ctx.getBean("jmsTemplate");

 jmsTemplate.send("queue1", new MessageCreator() {
 public Message createMessage(Session session) throws JMSException {
 TextMessage msg = session.createTextMessage();

Sending Messages | 193

 msg.setJMSPriority(9);
 msg.setText("This is easy!");
 return msg;
 }
 });
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

In the example just shown, the JMS destination with the JNDI name queue1 will be
used when sending messages. Rather than hardcoding this value, you will obviously
want to either pass this value in as an argument or specify the destination JNDI name
as a property for this class within the Spring application context XML file (assuming it
is defined as a Spring-managed bean). The JmsTemplate will use the JNDIDestination
Resolver to resolve the JNDI name within the send method.

The other alternative is to use a javax.jms.Destination object as the argument for the
JMS destination in the send method. To do this you would first create a Spring bean
containing the JNDI destination using the JndiObjectFactoryBean from Spring:

...
<bean id="queue1Dest"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiTemplate" ref="jndiTemplate"/>
 <property name="jndiName" value="queue1"/>
</bean>

Now, in the code, you can either get the queue1Dest bean from the Spring application
context directly via the getBean method or add a property to the application sender
bean if it is a Spring managed bean:

public class SimpleJMSSender {

 public static void main(String[] args) {
 try {
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("app-context.xml");
 JmsTemplate jmsTemplate =
 (JmsTemplate)ctx.getBean("jmsTemplate");
 Destination queue =
 (Destination)ctx.getBean("queue1Dest");

 jmsTemplate.send(queue, new MessageCreator() {
 public Message createMessage(Session session) throws JMSException {
 TextMessage msg = session.createTextMessage();
 msg.setJMSPriority(9);
 msg.setText("This is easy!");
 return msg;
 }
 });
 } catch (Exception ex) {
 ex.printStackTrace();

194 | Chapter 9: Spring and JMS

 }
 }
}

One of the differences between using the JNDI name versus the JMS destination is
when the JNDI name is resolved. When passing the JNDI destination name into the
send method, the name is not resolved until the send method is ready to send the mes-
sage. When using a JMS destination reference, the name is resolved when the JMS
destination bean (e.g., queueDest1) during the initial loading of the Spring application
context. Therefore, when defining a JMS destination bean object, errors in the JNDI
name will be realized during application startup rather than when the queue is actually
used. While using the JNDI destination name approach requires less configuration, it
does require additional testing to discover possible JNDI name resolution errors.

Receiving Messages Synchronously
Receiving messages synchronously works much in the same way that sending a message
works in that they both use the JmsTemplate class. When receiving messages synchro-
nously the application receiver class blocks until a message is received from the queue
or topic. Like the send methods on the JmsTemplate, there are two forms of receive
methods; receive and receiveAndConvert. The receive method returns a JMS
Message object, whereas the receiveAndConvert method returns a Java Object corre-
sponding to the type of JMS Message object received. Like the send method, you can
use a default destination or specify the JNDI name or JMS destination directly in the
receive method itself.

The receiver timeout value allows you to control the amount of time the application
receiver should wait before receiving a message. The default value is 0, indicating that
the receiver should block and wait forever until a message is received. The receiver
timeout value can be specified through the receiveTimeout property on the
JmsTemplate bean. This property takes a long value containing of the receive timeout
in milliseconds. For example, receivers using the JmsTemplate defined here will stop
waiting for messages after 30 seconds:

<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="queueConnectionFactory"/>
 <property name="destinationResolver" ref="destinationResolver"/>
 <property name="defaultDestinationName" value="queue1"/>
 <property name="receiveTimeout" value="30000"/>
 <property name="pubSubDomain" value="false"/>
</bean>

Like the JMS API, if the receive method times out based on the receiveTimeout prop-
erty, the receive method will return a null. You should always account for this in your
code when using a timeout value. To receive a JMS Message object from a JMS desti-
nation you would use the receive method on the JmsTemplate class. In the following

Receiving Messages Synchronously | 195

code example, the receive method is used to block and wait for a JMS TextMessage
object received from a default destination:

public class SimpleJMSReceiver {

 public static void main(String[] args) {
 try {
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("app-context.xml");
 JmsTemplate jmsTemplate =
 (JmsTemplate)ctx.getBean("jmsTemplate");

 Message msg = jmsTemplate.receive();
 if (msg instanceof TextMessage) {
 System.out.println(((TextMessage)msg).getText());
 } else {
 throw new IllegalStateException("Message type not supported");
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Notice that the receive method on the JmsTemplate returns a standard JMS Message
object. Once received, you can process the message just as you would when using the
JMS API.

The other alternative for receiving messages synchronously is to have Spring automat-
ically convert the incoming JMS Message object into a corresponding Java object, elim-
inating the need to use the JMS API altogether. Using the receiveAndConvert method
with Spring’s default message converter (SimpleMessageConverter), a TextMessage will
be converted to a String object, a BytesMessage converted to a byte[] array, a MapMes
sage converted to a java.util.Map object, and an ObjectMessage converted to a serialized
Java Object. The following example illustrates the use of the receiveAndConvert method
for receiving a TextMessage from the queue:

public class SimpleJMSReceiver {

 public static void main(String[] args) {
 try {
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("app-context.xml");
 JmsTemplate jmsTemplate =
 (JmsTemplate)ctx.getBean("jmsTemplate");

 Object msg = jmsTemplate.receiveAndConvert();
 if (msg instanceof String) {
 System.out.println(msg);
 } else {
 throw new IllegalStateException("Message type not supported");
 }
 } catch (Exception ex) {
 ex.printStackTrace();

196 | Chapter 9: Spring and JMS

 }
 }
}

Notice in this example that the SimpleJMSReceiver class does not reference the JMS API
at all. You can also define your own custom message converter to convert other types
of messages or enhance the incoming message with additional data or properties.

There may be times when you want to be more selective about the messages you receive
from a queue or topic. You can apply a message selector to filter only those messages
you are interested in receiving (see Chapter 6 for details on message selectors). Spring
provides additional receive methods for specifying a message selector for receiving
messages synchronously: receiveSelected, which corresponds to the receive method,
and receiveSelectedAndConvert, which corresponds to the receiveAndConvert. In ad-
dition to the arguments in the corresponding receive and receiveAndConvert methods,
these two methods also take an additional String argument containing the message
selector to apply for this receiver. For example, to filter out normal priority messages
and receive only high priority messages (those with a JMS priority greater than 4), you
would use the receiveSelected method, passing in the appropriate message selector:

public class SimpleJMSReceiver {

 public static void main(String[] args) {
 try {
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("app-context.xml");
 JmsTemplate jmsTemplate =
 (JmsTemplate)ctx.getBean("jmsTemplate");

 Message msg = jmsTemplate.receiveSelected("JMSPriority > 4");
 if (msg instanceof TextMessage) {
 System.out.println(((TextMessage)msg).getText());
 } else {
 throw new IllegalStateException("Message type not supported");
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

You would normally receive messages synchronously when using the request/reply
model, where you send a message and then block and wait for a response. For example,
you may send a message to create an order for a customer, but you need to wait for the
response to confirm the order creation and have the order number returned to you
before continuing. For those times when you want to create a nonblocking listener,
you would use asynchronous processing using MDPs. MDPs are described in the next
section.

Receiving Messages Synchronously | 197

Message-Driven POJOs
Receiving messages asynchronously means you have a nonblocking process that is
listening for messages on a particular queue or topic. This technique is a form of
event-driven processing where the presence of a message triggers an action on a message
listener. Message-driven beans (discussed in Chapter 8) are Java EE’s answer to asyn-
chronous receivers. The Spring Framework also supports asynchronous receivers
through MDPs.

There are three different ways of configuring asynchronous message listeners in Spring:
implementing the javax.jms.MessageListener interface, implementing Spring’s Sessio
nAwareMessageListener, and finally, wrapping a standard POJO in Spring’s MessageLis
tenerAdapter class. These three methods vary in terms of how the message listener class
is structured. All three of these methods use a message listener container, which is anal-
ogous to the JmsTemplate class described in the previous sections. The following sec-
tions will describe the details of the message listener container and each of the three
message-driven bean techniques.

The Spring Message Listener Container
Message-driven POJOs are created within the context of a message listener container.
The message listener container binds the connection factory, JMS destination, JNDI
destination resolver (if using JNDI), and the message listener bean. Spring provides two
message listener containers: the DefaultMessageListenerContainer and the SimpleMes
sageListenerContainer. While both of these message listener containers allow you to
specify the number of concurrent listener threads, only the DefaultMessageListener
Container has the ability to dynamically adjust the number of listener threads during
runtime. In addition, the DefaultMessageListenerContainer allows integration with XA
transactions, whereas the SimpleMessageListenerContainer does not. For simple
messaging applications that use a local transaction manager and do not require
thread, session, or connection tuning based on varying load conditions, use the
SimpleMessageListenerContainer. For messaging applications using an external trans-
action manager or XA transactions that may require tuning, use the
DefaultMessageListenerContainer.

The configuration of the message listener container is similar to the JmsTemplate; you
can use JNDI to access the connection factory and JMS destinations or use the JMS
provider’s native connection factory and JMS destination classes directly. The follow-
ing example shows the configuration necessary to setup a message-driven POJO (Sim
pleJmsReceiver) using the DefaultMessageListenerContainer with the ActiveMQ JMS
provider:

...

<bean id="jndiTemplate" class="org.springframework.jndi.JndiTemplate">
 <property name="environment">

198 | Chapter 9: Spring and JMS

 <props>
 <prop key="java.naming.factory.initial">
 org.apache.activemq.jndi.ActiveMQInitialContextFactory</prop>
 <prop key="java.naming.provider.url">tcp://localhost:61616</prop>
 <prop key="java.naming.security.principal">system</prop>
 <prop key="java.naming.security.credentials">manager</prop>
 </props>
 </property>
</bean>

<bean id="jndiQueueConnectionFactory"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiTemplate" ref="jndiTemplate"/>
 <property name="jndiName" value="QueueCF"/>
</bean>

<bean id="queueConnectionFactory"
 class="org.springframework.jms.connection.CachingConnectionFactory">
 <property name="targetConnectionFactory" ref="jndiQueueConnectionFactory"/>
 <property name="sessionCacheSize" value="1"/>
</bean>

<bean id="destinationResolver"
 class="org.springframework.jms.support.destination.JndiDestinationResolver">
 <property name="jndiTemplate" ref="jndiTemplate"/>
 <property name="cache" value="true"/>
 <property name="fallbackToDynamicDestination" value="false"/>
</bean>

<bean id="messageListener" class="SimpleJMSReceiver"/>

<bean id="jmsContainer"
 class="org.springframework.jms.listener.DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="queueConnectionFactory"/>
 <property name="destinationResolver" ref="destinationResolver"/>
 <property name="concurrentConsumers" value="3" />
 <property name="destinationName" value="queue1"/>
 <property name="messageListener" ref="messageListener" />
</bean>

...

Notice in this configuration how the messageListener bean is wired to the DefaultMes
sageListenerContainer through the jmsContainer bean, along with the destination
name, connection factory, and JNDI destination resolver. In this example, three con-
current listener threads will be started, as indicated by the concurrentConsumers prop-
erty. This configuration will be used for the rest of this section to illustrate the three
ways to implement a message listener.

MDP Option 1: Using the MessageListener Interface
The simplest form of a message-driven POJO is an asynchronous receiver that
implements the javax.jms.MessageListener interface. This is similar to the EJB3

Message-Driven POJOs | 199

message-driven beans described in Chapter 8. As illustrated in Figure 9-5, the POJO
receiver (e.g., SimpleJMSReceiver) implements the javax.jms.MessageListener inter-
face, which is then wired to the DefaultMessageListenerContainer. The DefaultMessa
geListenerContainer is then wired to the CachingConnectionFactory and the JNDIDesti
nationResolver (assuming you are using JNDI).

Connection
factory

JndiObjectFactory
bean

JndiTemplate

JndiDestination
resolver

CachingConnection
factory

DefaultMessage
ListenerContainer

POJO receiver

Implements

MessageListener
Interface

Destination

JMS provider

Figure 9-5. Implementing the MessageListener interface

When implementing the MessageListener interface, you must override the onMessage
method in your message listener class. There are no changes to the prior XML config-
uration when using this technique. In the following code example, the SimpleJMSRe
ceiver message listener implements the javax.jms.MessageListener interface and over-
rides the onMessage method, which in turn consumes a TextMessage object:

public class SimpleJMSReceiver implements MessageListener {

 public void onMessage(Message message) {
 try {
 if (message instanceof TextMessage) {
 System.out.println(((TextMessage)message).getText());
 } else {
 throw new IllegalStateException("Message Type Not Supported");
 }
 } catch (JMSException e) {
 e.printStackTrace();
 }

200 | Chapter 9: Spring and JMS

 }
}

MDP Option 2: Using the SessionAwareMessageListener Interface
The Spring Framework provides an extension to the javax.jms.MessageListener inter-
face called the SessionAwareMessageListener. Like the javax.jms.MessageListener in-
terface, the SessionAwareMessageListener interface contains an onMessage method that
must be overridden by the listener class. However, unlike the javax.jms.MessageLis
tener interface, in addition to the Message object, the SessionAwareMessageListener
interface also provides access to the JMS Session:

void onMessage(Message message,
 Session session)
 throws JMSException

Figure 9-6 illustrates the use of the SessionAwareMessageListener technique. From a
configuration standpoint, this technique is the same as when using the javax.jms.Mes
sageListener interface.

Connection
factory

JndiObjectFactory
bean

JndiTemplate

JndiDestination
resolver

CachingConnection
factory

DefaultMessage
ListenerContainer

POJO receiver

Implements

SessionAware
MessageListener

Destination

JMS provider

Figure 9-6. Implementing the SessionAwareMessageListener interface

The SessionAwareMessageListener is useful when you need access to the JMS Session
object in the asynchronous message listener. One common use case for this is when
you need to send a response message back to the sender. Another use case is when you

Message-Driven POJOs | 201

need to transact the Session. Consider the following simple example where the
SimpleJMSReceiver class returns a message back to the sender on the destination speci-
fied in the JMSReplyTo header property indicating that it processed the message:

public class SimpleJMSReceiver implements SessionAwareMessageListener {

 public void onMessage(Message message, Session session) throws JMSException {
 if (message instanceof TextMessage) {
 String text = ((TextMessage)message).getText();
 System.out.println(text);

 //send the response
 MessageProducer sender =
 session.createProducer(message.getJMSReplyTo());
 TextMessage msg = session.createTextMessage();
 msg.setJMSCorrelationID(message.getJMSMessageID());
 msg.setText("Message " + message.getJMSMessageID()
 + " received");
 sender.send(msg);
 } else {
 throw new IllegalStateException("Message type not supported");
 }
 }
}

Notice that you do not have to obtain a Session object yourself or clean up after
you sent the message; Spring handles all of this in the JmsTemplate. Also notice that
the onMessage method of Spring’s SessionAwareMessageListener interface throws a
JMSException, whereas the javax.jms.MessageListener interface does not.

MDP Option 3: Using the MessageListenerAdapter
The third technique for creating asynchronous message listeners is to wrap a standard
POJO receiver class in a Spring MessageListenerAdapter object. What makes this
technique unique from the others is that the POJO receiver class does not implement
any message listener interface, nor does it need to include any reference to a
javax.jms.Message object. As illustrated in Figure 9-7, the POJO receiver class is wired
to Spring’s MessageListenerAdapter, which is then referenced by the messageListener
property on the DefaultMessageListenerContainer.

There are several ways to structure your POJO receiver methods when using the
MessageListenerAdapter. You can use the default message handling methods used by
the MessageListenerAdapter or designate a custom method on the listener class to be
the listener method. When using the latter, you can also specify whether to use a mes-
sage converter to convert the incoming message into the corresponding Java object type
or consume a JMS Message object directly. Both of these options will be explored in the
following sections.

202 | Chapter 9: Spring and JMS

Connection
factory

JndiObjectFactory
bean

JndiTemplate

JndiDestination
resolver

CachingConnection
factory

DefaultMessage
ListenerContainer

MessageListener
Adapter

POJO receiver

Destination

JMS provider

Figure 9-7. Using a MessageListenerContainer bean

Default message handler method

By default, the MessageListenerAdapter will look for a handleMessage method in your
POJO corresponding to the type of JMS message being received. The following listing
contains the handleMessage method signatures when using the automatic message
conversion:

//receive a converted TextMessage
public void handleMessage(String message) {...}

//receive a converted BytesMessage
public void handleMessage(byte[] message) {...}

//receive a converted MapMessage
public void handleMessage(Map message) {...}

//receive a converted ObjectMessage
public void handleMessage(Object message) {...}

To use the default message listener handler methods, all you need to do is wire the
message-driven POJO (e.g., SimpleJMSReceiver) to the MessageListenerAdapter bean
through the constructor-arg property (or delegate property):

<bean id="messageListener"
 class="org.springframework.jms.listener.adapter.MessageListenerAdapter">
 <constructor-arg>

Message-Driven POJOs | 203

 <bean class="SimpleJMSReceiver"/>
 </constructor-arg>
</bean>

<bean id="jmsContainer"
 class="org.springframework.jms.listener.DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="queueConnectionFactory"/>
 <property name="destinationResolver" ref="destinationResolver"/>
 <property name="concurrentConsumers" value="3" />
 <property name="destinationName" value="queue1"/>
 <property name="messageListener" ref="messageListener" />
</bean>

When defining the message-driven POJO, you would simply define a handleMessage
method for each type of JMS message you want to consume. For example, the following
code will receive JMS TextMessage messages:

public class SimpleJMSReceiver {

 public void handleMessage(String message) {
 System.out.println(message);
 }
}

Notice that the SimpleJMSReceiver class does not have a reference to any JMS API in-
terface; as a matter of fact, in this example the message-driven POJO has no knowledge
whatsoever that it is even being used within the context of messaging. All of the mes-
saging infrastructure is handled by the MessageListenerAdapter and the DefaultMessa
geListenerContainer. All you have to do is write the necessary POJO handleMessage
methods that correspond to the type of JMS message being received.

What happens if you are not sure of the JMS Message type you will be receiving, or what
if you have the possibility of receiving either a TextMessage or MapMessage to process?
In prior examples you could check the instance of the JMS Message object and direct
processing based on the Message type:

public class SimpleJMSReceiver implements MessageListener {

 public void onMessage(Message message) {
 try {
 if (message instanceof TextMessage) {
 //process message text...
 } else if (message instanceof MapMessage) {
 //process map message...
 } else {
 throw new IllegalStateException("Message Type Not Supported");
 }
 } catch (JMSException e) {
 e.printStackTrace();
 }
 }
}

204 | Chapter 9: Spring and JMS

However, the argument in the default handleMessage method is already “cast” to the
message type it is supposed to receive. Spring handles this in several ways: if the cor-
responding default handleMessage method for a particular message type is not found in
the class, the MessageListenerAdapter will throw (and then absorb) a NoSuchMethodEx
ception indicating that the corresponding message handler method for that JMS mes-
sage type was not found. Therefore, you must code a handleMessage method for each
type of message you expect to receive. For example, if you are expecting to receive
TextMessage and MapMessage message types, then you only need to code the handleMes
sage methods containing a String and Map argument:

public class SimpleJMSReceiver {

 public void handleMessage(String message) {
 //process String message body
 }

 public void handleMessage(Map message) {
 //process Map message body
 }
}

One issue with the message conversion just described is that only the message payload
is passed into the message handler method. Therefore, you do not have access to any
of the message header properties or message application properties that may have been
set on the message. For example, the sender may have used the application properties
section of the message to pass additional metadata about the message (e.g., security
credentials) or you may need access to certain message header properties such as the
JMSReplyTo property or the JMSMessageID property. In these cases, you can tell the
DefaultMessageListenerContainer that you do not wish to have the message payload
automatically converted. You can easily do this by setting the messageConverter prop-
erty value to null in the MessageListenerAdapter bean, which tells it to look for a
handleMessage method with a corresponding JMS Message object argument rather than
the corresponding Java object type:

<bean id="messageListener"
 class="org.springframework.jms.listener.adapter.MessageListenerAdapter">
 <constructor-arg>
 <bean class="SimpleJMSReceiver"/>
 </constructor-arg>
 <property name="messageConverter"><null/></property>
</bean>

When disabling the message conversion feature, the MessageListenerAdapter will, by
default, look for one of the following handleMessage methods:

//receive a JMS TextMessage
public void handleMessage(TextMessage message) {...}

//receive a JMS BytesMessage
public void handleMessage(BytesMessage message) {...}

Message-Driven POJOs | 205

//receive a JMS MapMessage
public void handleMessage(MapMessage message) {...}

//receive a JMS ObjectMessage
public void handleMessage(ObjectMessage message) {...}

//receive a JMS StreamMessage
public void handleMessage(StreamMessage message) {...}

Using this technique gives you access to the JMS Message object, allowing you to
interrogate the message and extract the header and application properties from the
message:

public class SimpleJMSReceiver {

 public void handleMessage(TextMessage message) {
 String text = message.getText();
 String username = message.getStringProperty("username");
 String msgId = message.getJMSMessageID();

 //process text message
 }

}

Custom message handler method

Of course, you do not need to restrict your POJO message listeners to only the default
handleMessage methods. In fact, any method in your POJO message listener can be the
listener handler method, providing the method contains a single parameter containing
either a JMS Message type or one of the four message conversion objects (String, byte[],
Map, or Object). To use your own method as a message handler, you must set the
defaultListenerMethod property on the MessageListenerAdapter to the name of the
method you are using as the message handler. You must also specify whether
the MessageListenerAdapter should convert the message body or deliver the standard
JMS Message type to the message handler method. For example, to configure the Mes
sageListenerAdapter to use a custom createTradeOrder method in the TradeOrderMan
ager class that receives a String object containing an XML trade order, you would set
the defaultListenerMethod property to createTradeOrder and use the SimpleMessage
Converter:

<bean id="messageListener"
 class="org.springframework.jms.listener.adapter.MessageListenerAdapter">
 <constructor-arg>
 <bean class="TradeOrderManager"/>
 </constructor-arg>
 <property name="defaultListenerMethod" value="createTradeOrder"/>
</bean>

In the POJO message listener, you would code the createTradeOrder method to receive
a String object message as follows:

206 | Chapter 9: Spring and JMS

public class TradeOrderManager {

 public void createTradeOrder(String xml) {

 //process trade order xml message
 ...
 }
 ...
}

If you study the code just shown, you will see that this POJO has no awareness of
messaging at all. This is the true value of message-driven POJOs—the ability to abstract
the messaging and communication logic away from the POJO, allowing that POJO to
focus on business logic rather than messaging infrastructure logic. The above class can
now be used both inside and outside a messaging context, allowing it to be tested (or
used) outside of the messaging framework.

Message Conversion Limitations
While there are many clear advantages to using automatic message conversion, it is
important to understand the limitations of using it as well. Using message conversion
increases the overall testability of your receiver class and decouples the POJO message
listener from JMS. For example, the following class is configured and used as a message-
driven POJO, but can be also used (and tested!) outside of the context of messaging:

public class TradeOrderManager {

 public void createTradeOrder(String xml) {

 //process trade order xml message
 ...
 }
 ...
}

While this is certainly an attractive feature of Spring’s messaging framework, it does
have its limitations. For example, when using message conversion, only the body of the
message is delivered to the message handler method, meaning that you do not have
access to the message headers or application properties. Thus, you cannot extract and
use application properties or message header properties in your handler method.

Alternatively, using the JMS Message approach in the MDP allows you to gain access
to the entire message:

public class TradeOrderManager {

 public void createTradeOrder(TextMessage msg) {
 String xml = msg.getText();
 int priority = msg.getJMSPriority();

 //process trade order xml message
 ...

Message-Driven POJOs | 207

 }
 ...
}

Unfortunately, in this code the TradeOrderManager is tightly bound to JMS and difficult
to test outside of the context of JMS. It is important to understand these differences
when making the design choice between using message conversion or JMS Message
object processing.

The Spring JMS Namespace
Version 2.5 of the Spring Framework introduced the JMS XML namespace support,
which greatly simplifies the configuration of message-driven POJOs. To add JMS
namespace support to your configuration, you would simply specify the JMS schema
in the <beans> element of your Spring application context XML file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jms="http://www.springframework.org/schema/jms"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/jms
http://www.springframework.org/schema/jms/spring-jms-2.5.xsd">

Without the JMS namespace you must define a separate DefaultMessageListenerCon
tainer bean for each message listener you define. In the following example, two mes-
sage listeners are defined (messageListener1 and messageListener2), which listen on
queue1 and queue2, respectively. Notice how you need to define two message listener
containers, one for each message listener. This can get quite cumbersome and verbose
when using multiple message listeners:

<bean id="messageListener1"
 class="org.springframework.jms.listener.adapter.MessageListenerAdapter">
 <constructor-arg>
 <bean class="SimpleJMSReceiver1"/>
 </constructor-arg>
 <property name="defaultListenerMethod" value="processRequest"/>
</bean>

<bean id="messageListener2"
 class="org.springframework.jms.listener.adapter.MessageListenerAdapter">
 <constructor-arg>
 <bean class="SimpleJMSReceiver2"/>
 </constructor-arg>
 <property name="defaultListenerMethod" value="processRequest"/>
</bean>

<bean id="jmsContainer1"
 class="org.springframework.jms.listener.DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="queueConnectionFactory"/>

208 | Chapter 9: Spring and JMS

 <property name="destinationResolver" ref="destinationResolver"/>
 <property name="concurrentConsumers" value="3" />
 <property name="destinationName" value="queue1"/>
 <property name="messageListener" ref="messageListener1" />
</bean>

<bean id="jmsContainer2"
 class="org.springframework.jms.listener.DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="queueConnectionFactory"/>
 <property name="destinationResolver" ref="destinationResolver"/>
 <property name="concurrentConsumers" value="3" />
 <property name="destinationName" value="queue2"/>
 <property name="messageListener" ref="messageListener2" />
</bean>

With the JMS namespace support, you can combine multiple message listeners within
the same message listener container:

<bean id="messageListener1" class="SimpleJMSReceiver1"/>
<bean id="messageListener2" class="SimpleJMSReceiver2"/>

<jms:listener-container connection-factory="queueConnectionFactory"
 destination-resolver="destinationResolver"
 concurrency="3">
 <jms:listener destination="queue1" ref="messageListener1" />
 <jms:listener destination="queue2" ref="messageListener2" />
</jms:listener-container>

This technique is a significant improvement over the older approach.

<jms:listener-container> Element Properties
There are 12 attributes that can be set on the <jms:listener-container> element. The
most popular attributes you will likely need to use for most mainstream JMS applica-
tions are the connection-factory, destination-resolver, message-converter, and
concurrency. These, as well as the other attributes, are defined here:

container-type
This optional attribute contains the type of message listener container. The possi-
ble values are default and simple, which correspond to the DefaultMessageListe
nerContainer and the SimpleMessageListenerContainer. The default value is
default, indicating that the DefaultMessageListenerContainer will be used.

connection-factory
This optional attribute contains a reference to the queue connection factory or
topic connection factory bean, and corresponds to the connectionFactory property
on the DefaultMessageListenerContainer.

destination-resolver
This optional attribute contains a reference to the JNDI destination resolver used
to resolve JNDI destination names. It points to the bean that is using the

The Spring JMS Namespace | 209

JndiDestinationResolver class, and corresponds to the destinationResolver prop-
erty on the DefaultMessageListenerContainer.

message-converter
This optional attribute contains a reference to a message converter that is used to
convert a JMS Message object into a corresponding Java object. If not specified, the
listener container will use the default message converter (SimpleMessage
Converter). If you do not want the message listener container to use a message
converter, then this attribute must be specified as null. This attribute corresponds
to the messageConverter property on the MessageListenerAdapter.

concurrency
This optional attribute corresponds to the concurrentConsumers property on the
DefaultMessageListenerContainer and specifies the number of concurrent listener
threads the message listener container should start for each listener. If the order of
messages in the queue must be preserved, then this attribute should be set to 1
(which is the default value). Note that this value applies to all listeners specified
under the message listener container.

cache
This optional attribute identifies the level of caching that the message listener con-
tainer should use for JMS resources. The possible values are none, connection,
session, consumer, or auto. If an external transaction manager (i.e., JTA Transac-
tion Manager) is specified, then the default value is none. However, if no external
transaction manager is specified, then the default value is auto, which in most cases
defaults to consumer.

client-id
This optional attribute is used for durable subscribers and represents the JMS client
ID for the message listener container.

destination-type
This optional attribute indicates the type of JMS destination that is used by this
message listener container. The possible values are queue, topic (nondurable sub-
scription), and durableTopic (durable subscription). Since the default value is
queue, this attribute needs to be specified only when using the publish-and-
subscribe model (pub/sub).

acknowledge
This optional attribute contains the JMS acknowledgment mode. The possible
values are auto, client, dups-ok, and transacted. These four values correspond to
the AUTO_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE, and SES
SION_TRANSACTED settings found in the javax.jms.Session interface. The default
value is auto.

transaction-manager
This optional attribute contains a reference to an external transaction manager
defined through the PlatformTransactionManager bean. If this attribute is specified,
then the acknowledgment mode is automatically set to transacted.

210 | Chapter 9: Spring and JMS

prefetch
This optional attribute is used to specify the number of messages to load in a single
session.

task-executor
This optional attribute is used to specify the TaskExecutor, which is used to run
and manage the listener threads. If not specified, the default task executor is used,
which is the SimpleAsyncTaskExecutor. There are several other task executors avail-
able in Spring, including the SyncTaskExecutor, TimerTaskExecutor, ThreadPoolTas
kExecutor, and the WorkmanagerTaskExecutor. Please refer to the Spring API docu-
mentation for a description of each of these task executors.

<jms:listener> Element Properties
Out of the seven attributes that you can specify for the <jms:listener> element, only
two are required: destination and ref. The attributes used with this element are defined
here:

destination
This required attribute is used to specify the JMS destination name, which is re-
solved through the destination resolver defined in the message listener container.
With the JMS namespace support, you can define multiple listeners using different
queues within the same message listener container.

ref
This required attribute contains a reference to the bean that is used as the message
listener class.

method
This optional attribute contains the name of the method that is used as the message
handler. This attribute can be ignored for message listeners that implement the
MessageListener or SessionAwareMessageListener interfaces.

selector
This optional attribute contains a String value representing a message selector that
should be applied to this message listener.

subscription
This optional attribute contains the name of a durable subscriber. It is only needed
when using the publish-and-subscribe messaging model where the message listener
is a durable subscriber.

id
This optional attribute contains the name of the message container bean that this
listener is defined under. If you do not specify a bean name, one will be automat-
ically generated.

The Spring JMS Namespace | 211

response-destination
This optional attribute contains a default ReplyTo queue in the event that the
JMSReplyTo header is not set or is not accessible in the receiver. It is typically used
when a listener method returns a value other than void.

212 | Chapter 9: Spring and JMS

CHAPTER 10

Deployment Considerations

An enterprise application’s performance, scalability, and reliability should be among
the foremost concerns in a real deployment environment. The underlying messaging
middleware is critical to that environment.

Performance, Scalability, and Reliability
Performance and scalability are terms commonly used together, but they are not
interchangeable. Performance refers to the speed at which the JMS provider can process
a message through the system from the producer to the consumer. Scalability refers to
the number of concurrently connected clients that a JMS provider can support. When
used together, the terms refer to the effective rate at which a JMS provider can con-
currently process a large volume of messages on behalf of a large number of simulta-
neously connected producers and consumers. The distinction between performance
and scalability, as well as the implications of what it means to combine them, is very
important. A simple test using one or two clients will differ drastically from a test using
hundreds or thousands of clients. The following section is intended to be used as a
guide to help with performance and scalability testing.

Determining Message Throughput Requirements
Before you embark on your performance and scalability testing effort, consider what
you are trying to accomplish. Since any particular vendor may do well with one scenario
and not so well in others, the makeup of your application is important to define. Here
are some key things to consider:

• The potential size of the user community for your application. While this may be
hard to project, it is important to try to predict how it will grow over time.

• The average load required by the application. Given a total size of the user com-
munity for your application, how many are going to be actively using it at any given
time?

213

• The peak load required by the application. Are there certain times of the day, or
certain days in a month, when the number of concurrent users will surge?

• The number of JMS client connections used by the application. In some cases, the
number of JMS clients does not correspond to the number of application users.
Middleware products, such as EJB servers, share JMS connections across applica-
tion clients, requiring far fewer JMS client connections than other applications. On
the other hand, some applications use multiple JMS connections per client appli-
cation, requiring more JMS client connections than users. Knowing the ratio of
users to JMS clients helps you determine the number of messages being processed
per client.

• The amount of data to be processed through the messaging system over a given
period of time. This can be measured in messages per second, bytes per second,
messages per month, etc.

• The typical size of the messages being processed. Performance data will vary
depending on the message size.

• Any atypical message sizes being produced. If 90 percent of the messages being
processed through the system are 100 bytes in size, and the other 10 percent are
10 megabytes, it would be important to know how well the system can handle
either scenario.

• The messaging model to be used and how it will be used. Does the entire applica-
tion use one p2p queue? Are there many queues? Is it pub/sub with 1,000 topics?
One-to-many, many-to-one, or many-to-many?

• The message delivery modes to be used. Persistent? Nonpersistent? Durable sub-
scribers? Transacted messages? A mixture? What is the mixture?

Testing the Real-World Scenario
Any vendor can make any software product run faster, provided the company has the
right amount of time, proper staffing, commitment, and enough hardware to analyze
and test a real-world deployment environment.

The simplest scenario for a vendor to optimize is the fastest performance throughput
possible with one or two clients connected. This is also the easiest scenario to test, but
it is not the kind of testing we recommend; for one thing, it’s difficult to imagine a
realistic application that only has one or two clients. More complex testing scenarios
that better match your system’s real-world environment are preferable.

It is important to know ahead of time if the vendor you have chosen will support the
requirements of your application when it is deployed. Because JMS is a standard, you
may switch JMS vendors at any time. However, you may soon find yourself building
vendor-specific extensions and configurations into your application. It’s always possi-
ble to change vendors, if you’re willing to expend some effort. However, if you wait to

214 | Chapter 10: Deployment Considerations

find out whether or not your application scales, you may no longer be able to afford
the time to switch to another vendor.

This is not intended to imply that using JMS is a risky proposition. These same issues
apply to any distributed infrastructure, whether third-party or home-grown, whether
it is based on a MOM or based on CORBA, DCOM, EJB, or RMI, and whether it is
based on an established vendor or an emerging one. Everything should be sized and
tested prior to deployment.

Testing with one client

The most important thing to realize is this:

performanceWithOneClient != performanceWithManyClients;

Many issues come into play once a message server starts to scale up to a large number
of clients. New bottlenecks appear under heavy load that would never have occurred
otherwise. Examples include thread contention, overuse of object allocation, garbage
collection, and overflow of shared internal buffers and queues.

A vendor may have chosen to optimize message throughput with hundreds or thou-
sands of concurrent clients at the expense of optimizing for throughput with one client.
Likewise, a vendor may have optimized for a small number of clients at the expense of
scalability with larger client populations.

The best approach is to start with something small and build up the number of clients
and the number of messages in increments. For example, run a test with 10 senders
and 10 receivers, and 100,000 messages. Next try 100 senders and 100 receivers, and
run a test with 1,000,000 messages. Try as many clients as you can, within the limita-
tions of the hardware you have available, and watch for trends.

Send rate versus receive rate

It is extremely important to measure both the send rates and the receive rates of the
messages being pumped through the messaging system. If the send rate far exceeds the
receive rate, what is happening to the messages? They are being buffered at the JMS
provider level. That’s OK, right? That is what a messaging product does—it queues
things. In some cases, that may be acceptable based on the predetermined throughput
requirements of your application and the predictable size and duration of the surges
and spikes in the usage of the application. If these factors are not extremely predictable,
it is important to measure the long-term effects of unbalanced send and receive rates.

In reality, everything has a limit. If the send rate far exceeds the receive rate, the mes-
sages are filling up in-memory queues and eventually overflowing the memory limits
of the system, or perhaps the in-memory queues are overflowing to disk storage, which
also has a limit. The closer the system gets to its hardware limits, the more the JVM
and the operating system thrash to try to compensate, further limiting the JMS pro-
vider’s ability to deliver messages to its consumers.

Performance, Scalability, and Reliability | 215

Determining hardware requirements

The hardware required to perform testing varies from vendor to vendor. You should
have the hardware necessary to do a full-scale test or be prepared to purchase the hard-
ware as soon as possible. If the JMS provider’s deployment architecture uses one or
more server processes (as in a hub and spoke model), then a powerful server (like a
quad-processor) and lightweight clients are appropriate. If the vendor’s architecture
requires that the persistence and routing functionality be located on the client machine,
then many workstations may be required.

If you have limited hardware for testing, do the best you can to run a multiclient load
test within the limitations of your hardware. You typically won’t see any reasonably
indicative results until you have at least 20 JMS clients. You must therefore be able to
find a machine or a set of machines that can handle at least that much.

Assuming your client population will be large, truly indicative results start showing up
with over 100 JMS clients. Your goal should be to use as many clients as possible within
the limits of the testing hardware and to see whether the message throughput gets better
or gets worse. A good guideline is to stop adding clients when the average resource
utilization on each test machine (both clients and servers) approaches 80 percent CPU
or memory use. At 80 percent, you realistically measure the throughput capacity of the
JMS provider for a given class of machine and eliminate the possibility of having
exceeded the limits of your hardware.

If the CPU or memory utilization does not approach its maximum, and the message
throughput does not continue to improve as you add clients, then the bottleneck is
probably disk I/O or network throughput. Disk I/O is most likely to be the bottleneck
if you are using persistent messaging.

Finding or building a test bed

Building a test bed suitable for simulating a proper deployment environment itself can
be a moderately sized effort. Most JMS vendors provide a performance test environment
freely downloadable from their web site. In most cases, they provide a test bed sufficient
for testing with one client. Alternatively, you can build your own custom test bed or
use an open source or commercial performance testing tool.

Long duration reliability

Testing your application over a long period of time is very important. After all, it is
expected to perform continuously once deployed. Verifying that the middleware
behaves reliably is the first step toward ensuring long-term application reliability.

Once you have a multiclient test bed in place, try running it for an extended period of
time to ensure that the performance throughput is consistent. Start out by running the
test bed while you can be there to monitor the behavior. Any long-term trends are likely
to be detected in the first few hours. Things to watch for are drops in performance

216 | Chapter 10: Deployment Considerations

throughput, increase in memory usage, CPU usage, and disk usage. When you feel
comfortable with the results you see, you may progressively start running tests over-
night, over the weekend, or over a week.

Memory leaks

The term “memory leak” refers to a condition that can happen when new memory gets
allocated and never freed over a period of time, usually through a repeated operation,
such as repeatedly pumping messages through a messaging system. Eventually, the
system runs out of available memory; as a result, it will perform badly and may even-
tually crash.

Although Java has built-in memory management through garbage collection, it is an
oversimplification to think that garbage collection permanently solves the problem of
memory links. Garbage collection works effectively only when the developer follows
explicit rules for the scoping of Java objects. A Java object can be garbage collected
only if it has gone out of scope and there are no other objects currently referencing it.
Even the best code can contain memory leaks if the developer has mistakenly over-
looked an object reference in a collection class that never goes out of scope.

Therefore, you need to monitor for memory leaks during testing. Memory that leaks
in small increments may be not be noticeable at first, but eventually these leaks could
seriously impact performance. To detect them quickly, it helps to use a memory leak
detection tool like OptimizeIt! or JProbe. Even if the JMS provider and other third-
party Java products you are using contain obfuscated classes, tools like these still help
you prove that your memory requirements are growing (possibly the result of a memory
leak), which is a good start.

To Multicast or Not to Multicast
An increasing number of vendors are releasing products based on IP multicasting. To
understand the tradeoffs involved in these products, you need a basic understanding
of how the TCP/IP protocol family works, and how multicasting fits into the bigger
picture.* We won’t discuss any particular JMS implementations or suggest that one
vendor might be better than another; our goal is to give you the tools that you need to
ask intelligent questions, evaluate different products, and map out a deployment
strategy.

* A comprehensive discussion of TCP/IP networking is out of the scope of this book. If you want detailed
treatment of these protocols, see Internet Core Protocols (http://oreilly.com/catalog/9781565925724/), by Eric
Hall (O’Reilly). If you’re interested in network programming in Java, see Java Network Programming (http:
//oreilly.com/catalog/9780596007218/), by Elliotte Rusty Harold (O’Reilly).

To Multicast or Not to Multicast | 217

http://oreilly.com/catalog/9781565925724/
http://oreilly.com/catalog/9781565925724/
http://oreilly.com/catalog/9780596007218/
http://oreilly.com/catalog/9780596007218/
http://oreilly.com/catalog/9780596007218/

TCP/IP
TCP/IP is the name for a family of protocols that includes TCP (Transmission Control
Protocol), UDP (User Datagram Protocol), and IP (Internet Protocol). The protocols
are layered: IP provides low-level services; both TCP and UDP sit “on top of” IP.

TCP is a reliable, connection-oriented protocol. A process wishing to establish com-
munication with one or more processes across a network creates a connection to each
of the other processes and sends and receives data using those connections. The net-
work software, rather than the application, is responsible for making sure that all the
data arrives, and that it arrives in the correct order. It takes care of acknowledging that
data has been received, automatically discards duplicate data, and performs many other
services for the application. If something happens with the connection, the process on
either side of the connection will know almost immediately that the connection has
been permanently broken.†

Most high-level network protocols (and most JMS implementations) are built on top
of TCP, for obvious reasons: it’s a lot easier to use a protocol that takes care of reliability
for you. However, reliability comes with a cost: a lot of work is involved in setting up
and tearing down connections, and additional overhead is required to acknowledge
data that’s sent and received. Therefore, TCP is slower than its unreliable relative, UDP.

UDP
UDP (User Datagram Protocol) is an unreliable protocol; you send data to a destination,
but there’s no guarantee that the data will arrive. If it doesn’t arrive, you’ll never find
out; furthermore, the process receiving the data will never know that you sent anything.

This sounds like a bad basis for reliable software, but it really only means that appli-
cations using UDP have to take reliability into their own hands: they need to come up
with their own mechanism for verifying that data was received, and for retransmitting
data that went astray. In practice, applications that need reliability guarantees can either
use TCP, or can incorporate software to build reliability on top of UDP. Most appli-
cations have taken the easier route, but a few important applications (like DNS and the
early versions of NFS) make extensive use of UDP.

IP Multicast
The simplicity of UDP makes possible a kind of service that’s completely different from
anything in the TCP world. Because it is connection-oriented, TCP is fundamentally
limited to point-to-point communications. UDP offers the notion of a “multicast,” in
which an application can send data to a group of recipients. Multicasting is based on

† If a connection is not sending or receiving any data, it could take a while before the owning process is signaled
about a problem, depending on the network settings.

218 | Chapter 10: Deployment Considerations

a special class of addresses, known as Class D addresses.‡ Class D addresses are not
assigned to individual hosts; they’re assigned to multicast groups. Hosts can join and
leave groups that they have an interest in. Data sent to a multicast address will only be
received by the hosts in the multicast group. At least from the network’s standpoint,
multicast is much more efficient when you need to send a message to many recipients.

Multicasting maps naturally into the sorts of things we want messaging systems to do.
Many messaging products use multicasting for one-to-many pub/sub broadcast of
messages. Most have built some level of reliability on top of UDP. If this issue is im-
portant to you, it would be in your interest to delve deeper and find out exactly what
your JMS vendor has, or has not, implemented. Multicast has its drawbacks as well.
UDP traffic is usually not allowed through a firewall, so you may have to negotiate with
your network administrators or find some workaround if you need to get multicast
traffic through your company’s firewalls. Furthermore, multicast relies heavily on spe-
cial routing software. Most modern routers support multicast, but lots of old routers
are still in service. Even if you have up-to-date routers within your corporate network,
and your network administrators know how to configure multicast routing, there’s still
the Internet; multicasting does not realistically work across the Internet (this is
discussed in more detail later in the chapter). As a configuration and maintenance
consideration, multicast addresses must be coordinated across the network to avoid
collisions. These drawbacks are especially important if you are building an application
that you want to sell to others, who in turn expect to deploy it easily.

Messaging Over IP Multicast
In the following section we will explore the tradeoffs of using messaging over an IP
multicast architecture. It is important for you to understand the issues as you map out
your deployment strategy.

Duplication, ordering, and reliability of messages

If a messaging vendor wishes to provide full reliability for IP multicast and UDP, it must
build TCP-like semantics into the JMS provider layer to compensate for duplicate da-
tagrams, out of order datagrams, and datagrams that could never possibly get to the
intended destination. Either the JMS provider has to incur the overhead of detecting
and compensating for duplicate datagrams or the application needs to be tolerant of
duplicate messages. If the duplication of datagrams is not dealt with at the JMS provider
level, it is only really viable for DUPS_OK_ACKNOWLEDGE. No matter what, a messaging
vendor has to implement the reliability necessary to ensure guaranteed ordering, since
UDP doesn’t ensure that packets are received in the same order that they are sent.

‡ A Class D network address is one defined as having the range of 224.0.0.0 through 239.255.255.255. Class
D network addresses are reserved for IP multicast.

To Multicast or Not to Multicast | 219

A messaging vendor should support some sort of error detection to know when a UDP
datagram is lost. Ideally it should know that a client can’t be reached due to a network
boundary across an unsupported network router. The JMS specification allows for a
nondurable JMS subscriber to miss messages, but is intentionally vague about this since
it is not a goal of the specification to impose an architecture on a JMS provider. How-
ever, for all practical purposes, nonguaranteed messaging means that messages may be
lost, and that should mean they may only be lost once in a while. For both cases, some
sort of acknowledgment semantics are required.

Centralized and decentralized architectures

A TCP-based messaging system generally uses a hub-and-spoke architecture whereby
a centralized message server, or cluster of message servers, communicates with JMS
clients using TCP/IP, SSL, or HTTP connections. The centralized server is responsible
for knowing who is publishing and who is subscribing at any given time. Message
servers may operate in a cluster spread across multiple machines, but to the clients
there only appears to be a single logical server. Message servers operating in a cluster
can intelligently route messages to other servers. Clustering may provide load balancing
and may help to optimize network traffic by selectively filtering and routing only the
messages that need to get to a particular node. The servers are also responsible for
persistence of guaranteed messages, and for Access Control Lists (ACLs) that grant
permissions to subscribers on a per-topic basis. The messages are only delivered to the
subscribers that are interested in a particular topic, and only to those that have the
permissions to get them. A centralized server also makes it easier to add subscribers:
when a new subscriber comes online, only the message server needs to know about it.

At the same time, a centralized architecture may introduce a single point of failure: if
the main server in a cluster (the server to which clients initially connect) goes down,
the entire cluster may become unavailable. A JMS provider may solve this problem by
distributing the connections across multiple servers in the cluster. If one server goes
down, the other servers can continue to operate, thus minimizing the impact of the
failure. Reconnect logic may also be built into the client, enabling it to find another
server if its initial server goes down.

Multicasting implies a drastically different architecture, in which there usually is no
centralized server. Because there is no central server, there is no single point of failure;
each JMS client broadcasts directly to all other JMS clients. One consequence of this
architecture is that every publisher and every subscriber may have local configuration
information about every other JMS client on the system. This can be an extremely
important consideration for deployment administration. In the absence of a higher-
level administrative framework, local configurations have to be updated on every client
whenever a new client or a new topic is added.

A decentralized architecture may also mean that the persistence mechanism for guar-
anteed messaging is pushed out to the client machines. No matter how efficient the
storage algorithm, disk I/O is always going to be the biggest bottleneck. Choosing to

220 | Chapter 10: Deployment Considerations

use such an architecture would require that the client machines have disk storage that
is both fast and large.

There is disagreement as to whether guaranteed messaging (storing persistent mes-
sages) benefits from a decentralized architecture. Proponents of a decentralized archi-
tecture argue that the I/O load is distributed among the clients and is therefore faster.
On the other hand, client I/O is not nearly as reliable, nor is it as fast as a centralized
server with a powerful disk system.

Network routers and firewalls

Although technically possible, it is unlikely that a firewall administrator will allow UDP
traffic to pass through a firewall. Firewalls typically disallow all traffic, except for traffic
to or from specific hosts, using specific protocols. UDP traffic is rarely allowed through
a firewall for various reasons.

In recognition of the problems with IP multicast (lack of support and firewall blocking),
messaging vendors that use IP multicast provide software bridge processes to carry
messaging traffic across routers and firewalls. The bridges may consist of one or more
processes connected together by HTTP, SSL, or TCP/IP.

If you’re considering a vendor that supports multicasting, it is worth considering what
percentage of your message traffic is going through one of these bridges. If all of your
messages are going through the firewall over an SSL or HTTP connection, there will be
little point in using multicasting behind the firewall for performance reasons. If the
routers in your deployment environment require that a number of TCP/IP-based
bridges be put in place, the performance benefits of multicast are diminished, depend-
ing on how many of these you have to put in place and administer. The messaging
system is only as fast as its slowest link.

If most of the message traffic is confined to your corporate LAN or a VPN and you have
full control over it, IP multicasting is a very attractive option.

Some vendors support both centralized and decentralized architectures

In recognition of these issues, the vendors who support IP multicast also provide cen-
tralized servers using TCP/IP socket connections. This could mean you have two dif-
ferent architectures to configure and support: one configuration for the nonguaranteed
one-to-many pub/sub multicast of messages within a subnet on your corporate LAN,
and another for everything else. It is important to consider what it will mean to choose
one of these architectures at deployment time or how you will switch from one mode
to the other after your application is deployed.

The Bottom Line
IP multicast has significant network throughput benefits in a one-to-many broadcast
of information. A single multicast message to multiple recipients will always cause less

To Multicast or Not to Multicast | 221

network traffic than sending the message to each recipient via a TCP connection. A
messaging vendor picks and chooses how much reliability to build on top of UDP based
on the quality of service required for the message as defined by JMS.

However, the choice is not that simple when it is applied to a deployment environment
in a messaging product. The performance advantages of IP multicasting are only viable
for a certain deployment environment. These advantages can diminish depending on
the types of messages in your application, the networking hardware at your site, the
deployment environment (intranet, extranet, Internet), and the complexity of
administration.

Make sure to benchmark your application carefully before making a final decision,
using the guidelines we discussed earlier in this chapter. You may be surprised at what
you see. When a JMS provider is put under heavy stress with lots of clients, there are
so many other factors involved that the speed at which network packets go across the
wire is not usually a significant factor. You may see that one vendor’s implementation
of messaging over IP multicast will perform vastly differently from another’s—even
with the use of nonguaranteed messaging. You may even find that one vendor’s
TCP-based implementation performs better than another vendor’s multicast
implementation.

Security
In this section, we are only going to concern ourselves with those aspects of security
that are commonly supported by JMS providers. You need to think about three aspects
of security: authentication, authorization, and secure communication. How these
aspects of security are implemented is vendor-specific and each vendor uses its own
combination of available technologies to authenticate, authorize, and secure commu-
nication between JMS clients.

We will also discuss firewalls and HTTP tunneling as a solution to restrictions placed
on JMS applications by organizations.

Authentication
Simply put, authentication verifies the identity of the user to the messaging system; it
may also verify the identity of the server to the JMS client. The most common kind of
authentication is a login screen that requires a username and a password. This is sup-
ported explicitly in the JMS API when a Connection is created, as well as in the JNDI
API when an InitialContext is created. JMS providers that use username/password
authentication may support either of these solutions:

Properties env = new Properties();

env.put(Context.SECURITY_PRINCIPAL, "username");
env.put(Context.SECURITY_CREDENTIALS, "password");

222 | Chapter 10: Deployment Considerations

InitalContect ctx = new InitialContext(env);

TopicConnectionFactory factory =
 (TopicConnectionFactory)ctx.lookup("...");

TopicConnection connection =
 factory.createTopicConnection("username", "password");

JMS providers may also use more sophisticated mechanisms for authentication, such
as secret or public key authentication. Secret key authentication, most commonly used
in Kerberos, requires the participation of a Kerberos server.§ Public key authentication,
most commonly used in SSL, is based on a chain of certifying authorities. Each of these
systems has its supporters and detractors, but the end result is the same: the connecting
client is given permission to access the system.

Authorization
Authentication is only the first step in the security process, but it’s the basis for what
follows. Once you have verified the identify of the user, you can make intelligent de-
cisions about what that user is allowed to do. That’s where authorization comes in.
Authorization (a.k.a. access control) applies security policies that regulate what a user
can and cannot do within a system. Authorization policies are usually set up as access
control lists by the system administrators. Authorized users are given an identity in the
system and assigned to user groups, which may themselves be a part of a larger group.
Groups and individual users (identities) are assigned permissions dictating which top-
ics, queues, or connection factories they are allowed to access. Permissions may be
configured to grant all members of a group access except for some specified members,
or deny all members of a group except some specified members. Some JMS providers
may choose to check access control lists on every message delivered, while others simply
control the destinations or connection factory that a JMS client can obtain from the
JNDI namespace. Generally, authorization policies work better in a centralized mes-
saging system, since it can be centrally managed.

Most JMS providers provide hierarchical topic trees that allow consumers to subscribe
to different levels of topics using wildcard substitution. For example, topics could be
divided into “ACME.SALES.SOUTHWEST.ANVILS” and “ACME.SALES.NORTH-
EAST.ANVILS.” A subscriber can subscribe to “ACME.SALES.” and see all the mes-
sages published for all the sales of ACME, though that may not be the desire of the
system administrator. A companion security feature allows permissions to be set at
each level in the topic tree, thus making access control much easier to manage by pro-
viding more finely grained access control.

§ Although a system may use Kerberos to authenticate a user, the system will probably use SSL for secure
communications.

Security | 223

Secure Communication
Communication channels between a client and a server are frequently the focus of
security concerns. A channel of communication can be secured by physical isolation
(like a dedicated network connection) or by encrypting the communication between
the client and the server. Physically securing communication is expensive, limiting, and
pretty much impossible on the Internet, so we will focus on encryption. When com-
munication is secured by encryption, the messages passed are encoded so that they
cannot be read or manipulated while in transit. This normally involves the exchange
of cryptographic keys between the client and the server. The keys allow the receiver of
the message to decode and read the message.

There are two basic ways that messages are encrypted by JMS providers today: SSL and
Payload Encryption. SSL (Secure Socket Layer) is an industry-standard specification
for secure communication used extensively in Internet applications. With SSL, the JMS
provider’s protocol is encrypted, protecting every aspect of the JMS client’s exchanges
with the message service. Payload Encryption allows messages to be encrypted on a
per-topic, per-queue basis. This unusual variance minimizes overhead by encrypting
only the messages that need it, rather than everything on the whole connection.

For example, a PricingServer class may not need to encrypt the broadcast of updated
stock prices since that same information is being replicated to every subscriber with an
authenticated connection. The response message with a “Buy Trade Order” would
more likely be encrypted since that is sensitive data that is unique to each subscriber.
Payload Encryption can also ensure end-to-end security between a producer and a
consumer. Without it, there may be nothing preventing a sender from connecting to
the message server using a SSL connection and receiving an unencrypted message using
a non-SSL connection.

Firewalls and HTTP Tunneling
Firewalls are systems that serve as the gateway between an organization and a broader
network such as the Internet. These gateways filter all incoming and outgoing messages.
Firewalls only allow packets of a predetermined type and protocol to pass between
computers within the organization and those in the broader network. Firewalls help to
stop malicious attacks against an organization’s information systems by outside parties.

In most cases, firewalls allow HTTP traffic to flow without restriction. Since HTTP is
not the native protocol of most JMS providers, JMS providers must piggy-back their
protocol on top of HTTP to penetrate a firewall and exchange messages. This is com-
monly referred to as HTTP tunneling. HTTP tunneling is not really complicated. It
involves nesting a JMS provider’s native protocol inside HTTP requests and responses.
Because the JMS provider’s protocol is nested in HTTP, it’s hidden from the firewall
and effectively tunnels through unnoticed.

224 | Chapter 10: Deployment Considerations

In any JMS application that must communicate across a variety of firewalls with large
user populations, HTTP tunneling is a necessity. This is especially true when the clients
are not centrally managed and may be added and removed at will, which is often the
case in B2B applications.

The level of support for tunneling varies, depending on the JMS provider. In addition
to tunneling through server-side firewalls, it is important to know if the JMS client can
tunnel through a client-side firewall and if HTTP proxies are supported. It is also im-
portant to know if the vendor supports HTTP 1.1 Persistent Connections, HTTP 1.0
Keep-Alive Connections, or simple HTTP 1.0 Connections.

Connecting to the Outside World
There are often entities outside your corporation that you need to interact with. You
may have trading partners, financial institutions, and vertical business portals to
connect to and communicate with. These outside entities usually have established pro-
tocols that they already use for electronic communication. An Electronic Data
Interchange (EDI) system may have nightly batch jobs that export flat files to an FTP
site. A trading partner may expect to send and receive HTTP transmissions as its way
of communicating with the outside world. A supply chain portal may require that you
install one of their clients on your site in order to communicate with them through
whatever protocol they dictate. Sometimes email is required as a way of sending a
“Thank you for your order” message.

Ideally each of these outside entities would have a close working relationship with you
and would allow you to install a JMS client at each site. That would make communi-
cation very easy—but it’s not how the world works. These other communication
mechanisms may have been in place for a number of years and their users aren’t about
to rip them out just because you want them to. They may not be capable of changing
the way their systems work just to accommodate your JMS provider. These are “legacy
systems”; in the future, they may gradually disappear, but for the time being, we have
to figure out how to work with them.

There is recent activity in the area of providing a RESTful interface to JMS. REST
(Representational State Transfer) is an architecture style outlined in a doctoral disser-
tation by Roy Fielding that describes a fixed set of verbs (e.g., GET, POST, PUT, and
DELETE) and nouns (or system resources) that those verbs act on. As of this writing,
ActiveMQ and IBM WebSphere MQ both provide a RESTful interface to JMS, allowing
an external client to use a URL to send and receive messages.

One of the issues with developing a RESTful interface to JMS is that it unfortunately
does not conform perfectly to the core REST principles. For example, one of the REST
principles states that the GET action must be idempotent, meaning that repeated
operations against the same action must yield the same results. However, the GET

Connecting to the Outside World | 225

operation on a queue removes a message from the queue, thereby altering the state of
the queue and hence returning different results on repeated GET operations.

Another issue with a RESTful interface to JMS is establishing what the definition of a
JMS resource is and how it should be used in relation to the REST verbs. For example,
what does it mean to DELETE a queue? Does it mean to remove the physical queue or
remove a message from the queue? What about a GET on a queue? Does that return a
reference to the queue itself or does it return a message from the queue? ActiveMQ and
IBM WebSphere MQ both take a slightly different approach to these questions.

While there is promise for this emerging technology, it is still largely inconsistent and
unproven at this point. Until then, we are left to building messaging bridges, or con-
nectors, to those other protocols. As illustrated in Figure 10-1, a bridge is simply a JMS
client. Its sole purpose is to receive data using the foreign protocol, create a JMS mes-
sage, and send it along through your JMS-based system. Likewise an outbound con-
nector would listen for messages from your JMS-based system and transmit the message
out into the world using the protocol expected by the entity at the other end.

HTTP

FTP

Email

HTTP
Connector

FTP
Connector

Email
Connector

Gateways to the Outside World

JMS
Server

JMS
Client

JMS
Client

JMS
Client

Figure 10-1. JMS clients can be dedicated as protocol connectors to the outside world

The JMS specification does not suggest this notion of connectors.‖ However, legacy
systems are a fact of life. In recognition of this, most JMS vendors are starting to provide
connectors to legacy systems as a way to provide added value. If your JMS provider
does not support the connector you are looking for, it is typically easy enough to write
your own. In fact, this is an ideal situation for using CLIENT_ACKNOWLEDGE mode. As
illustrated in Figure 10-2, a JMS consumer can explicitly acknowledge the receipt of
the message once its data transmission has been successfully completed.

‖ The use of the term connector in this discussion should not be confused with “connectors” as defined by the
J2EE connector specification—a different thing altogether.

226 | Chapter 10: Deployment Considerations

JMS
Server

JMS
Producer

JMS
Consumer

onMessage()2

acknowledge()4
Send()1 HTTP Send3

CLIENT_ACKNOWLEDGE

Figure 10-2. Using CLIENT_ACKNOWLEDGE, a JMS consumer can still ensure reliability when
bridging to other protocols

It is important to know that end-to-end quality of service may not be guaranteed when
using bridges to other protocols. In Figure 10-2, the HTTP send may succeed, yet the
acknowledge() may fail.

Bridging to Other Messaging Systems
JMS does not provide for interoperability between JMS providers and other non-JMS
providers. A JMS client from one vendor cannot talk directly to a JMS server from
another vendor. Interoperability between vendors was not a goal of the specification’s
creators, since the architecture of messaging vendors can be so vastly different. Since
messaging is designed to provide an abstraction layer between a message producer and
a message consumer, we ought to be able to send a message with a Java client using
JMS and receive that message in a receiver written in C++ or C#. This would require
either a JMS provider that contained a message bridge or a separate message bridge to
convert the JMS message to a message that could be understood by another messaging
system (e.g., MSMQ).

IBM’s WebSphere MQ and the open source ActiveMQ JMS provider are two such
messaging vendors that provide the ability to use both JMS and the vendor’s native
API, allowing interoperability between languages and platforms. Alternatively, there
are open source and commercial messaging bridges available that will perform this
function as well. Another solution is to build a connector process that is a client of both
providers. Its sole purpose is to act as a pass-through mechanism between the two
providers, as shown in Figure 10-3. This is one of the reasons why the message itself is
required to be interoperable between vendors. The message need not be recreated as it
is passed along to the other JMS client.

It is important when selecting a JMS provider that you consider your interoperability
requirements and whether the messaging provider can support those requirements. For
example, some JMS providers (including Java EE application servers) can only send
and receive JMS messages. These types of JMS providers would not be of much use if
your requirements are to provide interoperability between Java and C#. Most vendors
that supply a built-in messaging bridge have restrictions in terms of the types of JMS
message types that can be sent. For example, using the JMS ObjectMessage will, for the
most part, restrict your producers and consumers to Java, whereas use of the

Bridging to Other Messaging Systems | 227

MapMessage or BytesMessage provides maximum portability across most messaging pro-
viders and messaging bridges.

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Client

JMS
Server

JMS
Server

JMS
Client A

JMS
Client B

Vendor A Vendor B

Vendor-to-vendor
connector

JMS-to-JMS connectors

Figure 10-3. Connecting from one JMS provider to another is a simple pass-through process that is a
client of both

228 | Chapter 10: Deployment Considerations

CHAPTER 11

Messaging Design Considerations

Until now we have been focusing on the concepts and semantics of JMS messaging.
This chapter expands on those concepts and introduces some of the design consider-
ations that need to be addressed when building messaging systems.

Internal Versus External Destination
The Java Message Service API consists of a set of standard interfaces that must be
implemented by open source or commercial vendor products called JMS providers.
There are many different types of open source and commercial JMS providers ranging
from J2EE application servers (e.g., JBoss, WebLogic, IBM WebSphere, Oracle AS) to
standalone solutions (e.g., ActiveMQ, SonicMQ, IBM WebSphere MQ).

Because most Java EE application servers can also serve as JMS providers, a common
design choice is deciding whether to leverage your current application server environ-
ment or use an external JMS provider. After all, why complicate your architecture and
incur additional middleware licensing fees if you can simply utilize your existing ap-
plication server? While this seems like a straightforward question, there are several
implications and limitations to using an application server as a JMS provider. As you
will see in this section, using an existing Java EE application server environment versus
an external standalone JMS provider is an important design decision that carries with
it many implications with respect to an overall messaging solution.

There are two primary deployment topologies with respect to JMS providers: Internal
Destination and External Destination. The Internal Destination topology refers to
queues and topics that are administered by an application server (e.g., WebLogic) that
also hosts web-based or server-based applications, whereas the External Destination
Topology refers to queues and topics that are administered on a dedicated system out-
side of the context of web-based or server-based applications. The following sections
describe the details and design considerations surrounding each of these design choices.

229

Internal Destination Topology
As stated earlier, the Internal Destination topology refers to queues and topics that are
administered by an application server that also hosts web-based or server-based appli-
cations. Since all Java EE 4 and above application servers are also JMS providers, this
is something that is fairly easy to configure and use. Use of the Internal Destination
topology is common for message-driven beans (Chapter 8), but is certainly not a
requirement.

As illustrated in Figure 11-1, with the Internal Destination topology queues and topics
are administered by the Java EE application server, which also hosts the applications
deployed as either WAR (Web Archive) files, EAR (Enterprise Archive) files, or simple
JAR (Java Archive) files. External message consumers or receivers must connect to that
application server (usually through TCP/IP) to send and receive messages.

Sending
app

Application server
(JMS provider)

Receiving
app

Application server

Internal Destination

Connection

Figure 11-1. Internal Destination

There are a variety of issues associated with the Internal Destination topology that are
important to consider. First, using a Java EE application server as the JMS provider
restricts message producers and consumers to the Java platform (i.e., JMS) only. This
means that your messaging solution will not support heterogeneous messaging clients.
While this restriction may not be an issue for you now, it may be an issue with respect
to future expansion. With mergers and acquisitions on the rise, many companies find
heterogeneous integration an important capability a system must support in order to
maintain architectural vitality.

Maintaining a healthy separation of concerns is another issue with the Internal Desti-
nation topology. Application servers that play a dual role of being an application host-
ing server and a messaging provider at the same time can slow down a system and create
significant system bottlenecks. A messaging server consumes a significant amount of
system resources, particularly with respect to CPU and available thread count. When
an application server instance hosts web-based or server-based applications and acts
as a JMS provider at the same time, resources needed by the applications may be con-
sumed by message processing, thereby starving applications of much-needed system
resources.

230 | Chapter 11: Messaging Design Considerations

Message server availability is another issue associated with the Internal Destination
topology. When the application server instance needs to be taken down for system
maintenance or application deployment, your messaging system comes down as well,
preventing external message producers or consumers from getting to the queues and
topics.

Based on these issues, it is generally not a good idea to use an application server as a
dual purpose server for both applications and message processing. That said, there are
times when it might make sense to use the Internal Destination topology. One of these
use cases is when you have a self-contained Java-based application that utilizes mes-
saging to decouple internal components to reduce bottlenecks and increase scalability
and throughput. In this scenario, it is unlikely that the queues and topics will be used
outside of the context of the application, so using the Internal Destination topology in
this case makes sense.

External Destination Topology
With the External Destination topology, the JMS provider is deployed as a dedicated
server that is separate from any Java EE application servers used to host applications
(including messaging producers and consumers). As illustrated in Figure 11-2, the JMS
provider server instance is only responsible for managing the queues and topics, leaving
the Java EE application servers free to host web-based or server-based applications.
This topology supports a healthy separation of concerns between application hosting
and providing messaging services, resolving several of the issues encountered with the
Internal Destination topology.

Sending
app

Application server

Receiving
app

Application server

External Destination

ConnectionConnection

JMS provider

Figure 11-2. External Destination

While the external JMS provider can be deployed using a dedicated Java EE application
server instance, the limitation of JMS-only messaging would still apply. For this reason,
a standalone JMS provider such as ActiveMQ, SonicMQ, or IBM WebSphere MQ (to
name a few) is typically used instead. These messaging providers support the JMS API,
but also expose a native API for the programming languages supported by that provider.
For example, as of the time of this writing ActiveMQ (a popular open source messaging

Internal Versus External Destination | 231

provider) supports thirteen different languages and platforms, including C, C++, C#,
Perl, Ruby, and Smalltalk.

The External Destination topology supports heterogeneous integration through mes-
saging, and also provides a high degree of separation between applications and the JMS
provider. For instance, application servers can be taken down for maintenance or ap-
plication deployment without affecting the rest of the system from a messaging stand-
point. Other applications can continue to send and receive messages while application
servers are unavailable.

The External Destination topology also allows the JMS provider to be co-located on
the same physical machine or deployed on a dedicated physical machine. The choice
between where the JMS provider is deployed is largely based on the throughput
required by your messaging solution. Systems with low messaging throughput require-
ments (e.g., 50 messages per second) might be good candidates for co-location, whereas
systems with high messaging throughput requirements (e.g., 2,000 messages per
second) might warrant a separate physical machine.

Request/Reply Messaging Design
In Chapter 4 we introduced point-to-point messaging using a simple request/reply
model. In this scenario the message producer (QBorrower) sent a loan request to the
message consumer (QLender) and waited (blocking wait) for a response from the
QLender on whether the loan was approved or denied. To implement the request/reply
model we used a technique known as message correlation, where messages sent to the
response queue were correlated with the original message using the JMSMessageID and
JMSCorrelationID. The following are the original QBorrower and QLender listings used
to implement the request/reply scenario.

public class QBorrower {
 ...
 public QBorrower(String queuecf, String requestQueue,
 String responseQueue) {
 try {
 ...
 // Lookup the request and response queues
 requestQ = (Queue)ctx.lookup(requestQueue);
 responseQ = (Queue)ctx.lookup(responseQueue);
 }
 ...
 }

 private void sendLoanRequest(double salary, double loanAmt) {
 try {
 // Create JMS message
 MapMessage msg = qSession.createMapMessage();
 msg.setDouble("Salary", salary);
 msg.setDouble("LoanAmount", loanAmt);
 msg.setJMSReplyTo(responseQ);

232 | Chapter 11: Messaging Design Considerations

 // Create the sender and send the message
 QueueSender qSender = qSession.createSender(requestQ);
 qSender.send(msg);

 // Wait to see if the loan request was accepted or declined
 String filter =
 "JMSCorrelationID = '" + msg.getJMSMessageID() + "'";
 QueueReceiver qReceiver = qSession.createReceiver(responseQ, filter);
 TextMessage tmsg = (TextMessage)qReceiver.receive(30000);
 if (tmsg == null) {
 System.out.println("QLender not responding");
 } else {
 System.out.println("Loan request was " + tmsg.getText());
 }
 ...
 }
 }
 ...
}

To implement request/reply message processing in the preceding QBorrower class we
had to create a Queue object for the response queue, create a message selector based on
the JMSCorrelationID header property, and then create a QueueReceiver using the re-
sponse queue and message selector. Then, in the QLender class, we had to set the
JMSCorrelationID header property to the JMSMessageID of the original message when
sending the reply:

public class QLender implements MessageListener {
 ...
 public void onMessage(Message message) {
 try {
 ...
 // Send the results back to the borrower
 TextMessage tmsg = qSession.createTextMessage();
 tmsg.setText(accepted ? "Accepted!" : "Declined");
 tmsg.setJMSCorrelationID(message.getJMSMessageID());

 // Create the sender and send the message
 QueueSender qSender =
 qSession.createSender((Queue)message.getJMSReplyTo());
 qSender.send(tmsg);
 ...
 }
 }
}

The message correlation code just shown was necessary to ensure that the message
being received by the response queue was intended for the loan request originally sent.
Keep in mind, other borrower clients may be making loan requests at the same time,
creating multiple response messages in the loan response queue.

Another technique for accomplishing the same thing but with far less code is using the
javax.jms.QueueRequestor class (or javax.jms.TopicRequestor class for topic-based

Request/Reply Messaging Design | 233

request/reply). With the QueueRequestor class, senders and receivers do not have to
worry about setting the JMSCorrelation header property or even creating the corre-
sponding QueueReceiver to receive the reply. Instead, the QueueRequestor class creates
a unique temporary queue whose reference is passed to the message receiver through
the JMSReplyTo header property. This temporary queue only has context for the com-
munications between a sender and receiver for a specific request. By using a temporary
queue, the QBorrower can be assured that the next available message in that queue is a
response to the prior loan request message sent.

Sending a message and waiting (while blocking) for the response is done though a single
request method call on the QueueRequestor class. The following revised QBorrower uses
the QueueRequestor class to send the loan request and wait for a response:

public class QBorrower {

 public QBorrower(String queuecf, String requestQueue) {
 try {
 ...
 // Lookup the request queue
 requestQ = (Queue)ctx.lookup(requestQueue);
 ...
 }
 ...
 }

 private void sendLoanRequest(double salary, double loanAmt) {
 try {
 // Create JMS message
 MapMessage msg = qSession.createMapMessage();
 msg.setDouble("Salary", salary);
 msg.setDouble("LoanAmount", loanAmt);

 QueueRequestor requestor = new QueueRequestor(qSession, requestQ);
 TextMessage tmsg = (TextMessage)requestor.request(msg);
 if (tmsg == null) {
 System.out.println("Lender not responding");
 } else {
 System.out.println("Loan request was " + tmsg.getText());
 }
 }
 ...
 }
 ...
}

There are several differences between the modified QBorrower just shown and the orig-
inal QBorrower from Chapter 4, even though they both do exactly the same thing. First,
notice that the QBorrower constructor no longer requires a response queue name argu-
ment, nor does it need to do a JNDI lookup on the response queue. Since the QueueRe
questor class creates a temporary queue for the loan response message, you no longer
have to specify an administered queue to handle responses, nor do you need to manage

234 | Chapter 11: Messaging Design Considerations

a separate queue in the JMS provider. The QueueRequestor class will take care of creating
and destroying the temporary queue.

Second, notice that the sendLoanRequest method is significantly shorter than the prior
version from Chapter 4. As a matter of fact, the act of sending the loan request and
waiting for the response has been reduced to only two lines of code:

QueueRequestor requestor = new QueueRequestor(qSession, requestQ);
TextMessage tmsg = (TextMessage)requestor.request(msg);

The first line constructs a new QueueRequestor object using the QueueSession and loan
request queue. The second line then sends the message and automatically blocks and
waits for the response. A reference to the temporary queue created by the QueueReques
tor class is passed to the receiver (in this case QLender) through the JMSReplyTo message
header property.

Now that we are using a temporary queue, we can remove the code in the QLender class
that set the JMSCorrelationID. Notice that because the QLender was already agnostic as
to the response queue, the other code stays the same:

public class QLender implements MessageListener {

 ...
 public void onMessage(Message message) {
 try {
 ...
 // Send the results back to the borrower
 TextMessage tmsg = qSession.createTextMessage();
 tmsg.setText(accepted ? "Accepted!" : "Declined");

 //since we are using a temporary queue, we no longer
 //need to set the JMSCorrelationID property
 //tmsg.setJMSCorrelationID(message.getJMSMessageID());

 // Create the sender and send the message
 QueueSender qSender =
 qSession.createSender((Queue)message.getJMSReplyTo());
 qSender.send(tmsg);
 ...
 }
 }
}

While this alternative request/reply technique simplifies the source code and reduces
the number of required administered queues, it does have some limitations. First, there
is no way to specify a timeout value with the request method on the QueueRequestor as
we did with the receive method on the QueueReceiver:

//QueueReceiver
TextMessage tmsg = (TextMessage)qReceiver.receive(30000);

//QueueRequestor
TextMessage tmsg = (TextMessage)requestor.request(msg);

Request/Reply Messaging Design | 235

This is somewhat an issue in that if the message consumer is not responding, the mes-
sage producer will appear to “hang” and might require a restart. If you did restart the
message producer, the original message would still be sitting on the request queue
waiting to be processed by the message consumer. Implementing a timeout would
require you to override the javax.jms.QueueRequestor receive() method, thereby pos-
sibly creating nonportable JMS code. When considering this approach the benefits of
streamlined code should be weighed against the lack of a receive timeout capability.

Another limitation of the QueueRequestor is that the QueueSession cannot be transacted,
and will not support the CLIENT_ACKNOWLEDGE message acknowledgment mode. These
limitations should also be considered before using the QueueRequestor technique.

Messaging Design Anti-Patterns
There are several messaging-related anti-patterns that manifest themselves in produc-
tion environments. An anti-pattern is a practice that is repeated but produces negative
results (unlike a pattern, which is a repeatable process that produces positive results).
Three of the most common messaging anti-patterns are the single-purpose queue,
message priority overuse, and message header misuse. This section will cover the details
of each of these anti-patterns and describe ways to avoid them.

Single-Purpose Queue
A common messaging anti-pattern is designing a system with only a single purpose
queue. Typically this problem manifests itself when a single queue handles different
types of messages (e.g., book orders, order status requests, and order cancellations),
but problems can also occur when a single purpose queue is used for the same type of
message (e.g., book orders). We will start with the first scenario since it is most com-
mon, and then move onto the second scenario, which is a little more subtle.

Systems that use a single purpose queue often have a single message listener class that
acts as a router. The router listener receives the next message on the queue, determines
the message type, and redirects processing to some other class to process that message.
This design scenario is illustrated in Figure 11-3.

The routing rules used by the listener router can be based on the JMS message type
(e.g., TextMessage, StreamMessage), a custom message property, or even the JMSType
message header property. Since the JMSType header property may be used by the JMS
provider, it is not a good idea to use it to store your own custom routing information
or message type. In the following example, a single queue (requestQueue) is used to
handle book orders, order status requests, and order cancellations. A custom message
property is used to store the message type that is used to route the message to the
particular class responsible for processing that message:

236 | Chapter 11: Messaging Design Considerations

Queue

Order status Cancel orderBook orders

Router
receiver 20 listeners

Messages

Status
processor

Cancel
processor

Order
processor

Figure 11-3. Single-purpose queue—different message types

public class QRouter implements MessageListener {

 private OrderProcessor orderProcessor = null;
 private StatusProcessor statusProcessor = null;
 private CancelProcessor cancelprocessor = null;

 ...
 public void onMessage(Message message) {
 try {
 //get the message payload
 String xml = ((TextMessage)message).getText();

 //get the message type
 int type = message.getIntProperty("type");
 if (type == NEW_BOOK_ORDER) {
 orderProcessor.placeOrder(xml);
 } else if (type == ORDER_STATUS) {
 statusProcessor.checkOrderStatus(xml);
 } else if (type == CANCEL_ORDER) {
 cancelProcessor.cancelOrder(xml);
 } else {
 throw new Exception("Invalid Order Type: " + type);
 }
 }
 ...
 }
 ...
}

Messaging Design Anti-Patterns | 237

In this code snippet, the XML application data is extracted from the message payload,
then the message type is extracted from the message properties. Notice that the message
type comes from a custom application property (type), not a standard header property.
The QRouter class then analyzes the type value and redirects processing to one of three
processor classes.

At first glance, this messaging design strategy may seem attractive due to the simplicity
of the message processing. Adding a new messaging type (e.g., VIEW_ORDER_HISTORY) is
simply a matter of adding the additional if statement in the QRouter class and adding
the class or method to process that request. Since there is only a single queue, no ad-
ditional messaging configuration is necessary to add the additional request:

public void onMessage(Message message) {
 try {
 ...
 //get the message type
 int type = message.getIntProperty("type");
 if (type == NEW_BOOK_ORDER) {
 orderProcessor.placeOrder(xml);
 } else if (type == ORDER_STATUS) {
 statusProcessor.checkOrderStatus(xml);
 } else if (type == CANCEL_ORDER) {
 cancelProcessor.cancelOrder(xml);
 } else if (type == VIEW_ORDER_HISTORY) {
 orderProcessor.viewHistory(xml);
 } else {
 throw new Exception("Invalid Order Type: " + type);
 }
 }
 ...
}

While this design approach seems to provide a lot of flexibility to the architecture,
several inefficiencies manifest themselves in this design. First, since all messages are
sent to the same queue, it is not possible to load balance the system based on the
message type. For instance, in the preceding example, assume that there are 20 con-
current QRouter listener threads. This means 20 messages can be processed at the same
time. However, let’s say the distribution of message types is 80% NEW_BOOK_ORDER, 10%
ORDER_STATUS, 7% CANCEL_ORDER, and 3% VIEW_ORDER_HISTORY. Therefore, if the queue
contains 100 new book orders and a message is sent to cancel an order, the
CANCEL_ORDER message will be placed on the queue at position 101 and not received
until the previous 100 book orders are processed.

The issue is that the QRouter listener simply pulls off the next available message in the
queue, regardless of the type. With this design it is not possible to tune the system to
provide optimized throughput for the different message types. Using the original ex-
ample, a better design approach would be to have three separate queues to handle the
three message types and three separate message listeners, one for each queue. Fig-
ure 11-4 illustrates this approach.

238 | Chapter 11: Messaging Design Considerations

New order queue Order staus queue Cancel queue

Order status Cancel orderBook orders

20 listeners 4 listeners 2 listeners

Messages

Order
receiver

Status
receiver

Cancel
receiver

Figure 11-4. Multiple queues—different message types

Notice in Figure 11-4 how each message receiver can now be tuned to add the number
of concurrent listener threads based on the message distribution. More importantly
however, with this design 20 new book orders can still be processed concurrently, but
order status requests and cancel order requests can immediately be processed at the
same time. This is a significant improvement over the previous single-purpose queue
design. With the multiple queue approach, adding new message types involves adding
a new queue (configuration), changing the message producer code to send the new
request to the new queue, and adding the new message listener. Since there is no central
“routing listener,” no additional coding changes are required.

What about a single queue that handles the same message type? In most cases this is
exactly what we want, but in some cases this too can present issues. Take, for example,
the book order messages from the previous example. After applying the multiple queue
approach, we now have a queue dedicated to book orders. However, suppose that book
orders can come from an online web-based source but also in batch form from a book
store. They are the same NEW_BOOK_ORDER message, but they come from different client
channels (one online, one batch). Now suppose the online web-based channel requires
immediate feedback about the book order, whereas the batch orders from the book
store (typically hundreds of book orders in a single batch) do not require a response.
This is where additional issues can arise.

Just because the message type (e.g., NEW_BOOK_ORDER) is the same does not necessarily
mean the messages themselves are the same. In the previous example, even though the
message format and structure are exactly the same, there are actually two types of
NEW_BOOK_ORDER messages: online and batch. When this scenario occurs, the same prob-
lems described with the multiple message types can occur here as well. Consider for a
moment the case where a batch order comes in for 400 books. The queue depth for the
new order queue is now 400. Immediately after the batch messages are received, an
online request is received for a NEW_BOOK_ORDER. The online order is placed at position

Messaging Design Anti-Patterns | 239

401 in the new order queue, and will not be processed for quite some time. Meanwhile,
the online web-based customer is waiting for the response for the book order.

A temporary solution to this problem is to use message priority to assign a higher priority
to online messages, therefore effectively moving online messages to the front of the
queue. However, using this approach leads to another messaging anti-pattern known
as message priority overuse. This messaging anti-pattern is described in the following
section.

Message Priority Overuse
In the previous section, we used message priority as a way to solve the problem where
the same message type (e.g., NEW_BOOK_ORDER) is being used in two different ways. In the
previous example, we had new book orders coming from an online web-based channel
as well as a batch channel. Using message priority effectively moved the online orders
ahead of the batch orders, solving the long wait problem for online book orders—or
did it?

While the use of message priority as a way of processing certain messages faster may
seem like a good permanent solution, the problem is that all of the listener threads
available to process the higher priority messages may be tied up processing lower pri-
ority messages. Therefore, priority messages are processed slower than they otherwise
could be.

In the example used in the previous section, online orders were given a higher priority
than batch orders, meaning that they were pushed to the front of the queue. Suppose
that, because of special validation and processing, batch orders take one minute to
process, whereas online orders take 200 milliseconds to process. In this scenario most
of the available message listeners will be tied up processing batch orders, leaving the
online orders waiting on the queue to be processed. Once again, this is a case where
the new order queue should be split into two queues: an online new order queue and
a batch new order queue. This way, more listener threads can be assigned to the online
new order queue where an immediate response is needed.

There are times when setting the message priority makes sense. However, a general rule
of thumb to apply is as follows: when using message priority, always ask yourself if it
would make more sense to use separate queues instead. Too often message priority is
used to mask deeper rooted problems.

Message Header Misuse
Most of the message header properties are set by the JMS provider, even though the
header property setter methods are exposed to the developer through the JMS API.
This creates potential hard-to-find bugs, particularly when setting the message expi-
ration and message priority.

240 | Chapter 11: Messaging Design Considerations

The expiration date of a message is contained in the JMSExpiration message header
with corresponding getJMSExpiration and setJMSExpiration methods to get and set the
expiration date. All too often, a developer will attempt to set the expiration date of a
message as follows:

public class QBorrower {
 ...
 private void sendLoanRequest(double salary, double loanAmt) {
 try {
 // Create JMS message
 MapMessage msg = qSession.createMapMessage();
 msg.setDouble("Salary", salary);
 msg.setDouble("LoanAmount", loanAmt);
 msg.setJMSReplyTo(responseQ);

 //set the message expiration to 30 seconds (incorrect!)
 msg.setJMSExpiration(new Date().getTime() + 30000);

 // Create the sender and send the message
 QueueSender qSender = qSession.createSender(requestQ);
 qSender.send(msg);
 ...
 }
 }
 ...
}

Notice the use of the setJMSExpiration method on the message object. This compiles
fine and, when executed, will put the message on the queue. The message will then
expire after 30 seconds if not received, right? Wrong. Using the code just shown, the
message sent to the queue will never expire. Why? Because the time to live property on
the message is set to zero (the default value). When the message is sent, the JMS provider
adds the value in the time to live property to the current system time and sets the
JMSExpiration header property itself. In the previous code example, the JMSExpira
tion header property was in fact getting overridden by the JMS provider.

This is a very common mistake and, unfortunately, is something that is rarely tested.
So, if the setJMSExpiration method is off-limits to application developers, what is the
proper way to set the message expiration? There are two ways to set the message ex-
piration. The first technique is to invoke the setTimeToLive() method on the Message
Producer (QueueSender or TopicPublisher), which sets the message expiration for all
messages sent using that sender:

//set the default message expiration for all messages to 30 seconds
QueueSender qSender = qSession.createSender(requestQ);
qSender.setTimeToLive(30000);
...
qSender.send(msg);
...

Messaging Design Anti-Patterns | 241

The other technique is to set the message expiration when sending the message:

QueueSender qSender = qSession.createSender(requestQ);
...
//set the message expiration for this message to 20 seconds
qSender.send(msg, DeliveryMode.PERSISTENT, 4, 20000);
...

Notice in this code snippet that messages sent using the qSender will, by default, have
no message expiration. However, the message being sent in the code snippet has a
message expiration of 20 seconds. Unfortunately, when using the second approach,
you have to specify the message delivery mode and message priority as well.

There may be cases when you want to have a default message expiration for all messages
sent by a QueueSender but still have the flexibility to override it for certain message types
sent by that same QueueSender. In this case, you can use both forms together:

//set the default message expiration for all messages to 30 seconds
QueueSender qSender = qSession.createSender(requestQ);
qSender.setTimeToLive(30000);
...
qSender.send(msg1);

//this message should expire in 20 seconds
qSender.send(msg2, DeliveryMode.PERSISTENT, 0, 20000);
...

In this example, msg1 will go on the queue and expire in 30 seconds (the default),
whereas msg2 will go on the same queue but expire in 20 seconds.

The same problem holds true for message priority, which is even harder to test than
the message expiration. Here, a common mistake is to set the message priority directly
using the setJMSPriority() method on the Message object prior to sending the message:

public class QBorrower {
 ...
 private void sendLoanRequest(double salary, double loanAmt) {
 try {
 // Create JMS message
 MapMessage msg = qSession.createMapMessage();
 msg.setDouble("Salary", salary);
 msg.setDouble("LoanAmount", loanAmt);

 //incorrect!
 msg.setJMSPriority(9);

 // Create the sender and send the message
 QueueSender qSender = qSession.createSender(requestQ);
 qSender.send(msg);
 ...
 }
 }
 ...
}

242 | Chapter 11: Messaging Design Considerations

In this code, the message priority is set to 9, indicating this is a high-priority message.
However, when the message is sent, the message will have a priority of 4 (normal
priority). The reason? Like the message expiration, the JMS provider will look at the
message priority property on the message and invoke the setJMSPriority method prior
to placing the message on the queue. Since the default message priority is 4 (normal
priority), the message priority will not be set to a high priority message, as the developer
had originally intended.

Like the message expiration, there are two ways of setting the message priority: you
can invoke the setPriority() method on the MessageProducer (QueueSender or Topic
Publisher) or set the message priority when sending the message:

//set the default message priority for all messages to 9 (high)
QueueSender qSender = qSession.createSender(requestQ);
qSender.setPriority(9);
...
qSender.send(msg1);

//this message is low priority
qSender.send(msg2, DeliveryMode.PERSISTENT, 1, 30000);
...

In this example, msg1 will be sent with a priority of 9 (high priority), whereas msg2 will
be sent with a priority of 1 (low priority).

Understanding these messaging anti-patterns will help you build more robust messag-
ing systems and help you avoid some of the more common mistakes associated with
messaging.

Messaging Design Anti-Patterns | 243

APPENDIX A

The Java Message Service API

This appendix is a quick reference guide to the Java Message Service API. It is organized
into five sections: “Message Interfaces” (next), “Common Facilities” on page 249,
“Common API” on page 252, “Point-to-Point API” on page 257, and “Publish-and-
Subscribe API” on page 260. Each section provides a summary of its interfaces and is
organized alphabetically. The XA-compliant interfaces are not included in this section
because they are essentially the same as their non-XA interfaces. In addition, the Ap-
plication Server API (ConnectionConsumer, ServerSession, and ServerSessionPool) is
not covered in this book because this API is not supported by most vendors.

Message Interfaces
This section covers the message interface and the six message types.

BytesMessage
This Message type carries an array of primitive bytes as its payload. It’s useful for ex-
changing data in an application’s native format, providing for a high degree of intero-
perability with other messaging servers. It is also useful where JMS is used purely as a
transport between two systems, and the message payload is opaque to the JMS client:

public interface BytesMessage extends Message {

 public long getBodyLength() throws JMSException
 public byte readByte() throws JMSException;
 public void writeByte(byte value) throws JMSException;
 public int readUnsignedByte() throws JMSException;
 public int readBytes(byte[] value) throws JMSException;
 public void writeBytes(byte[] value) throws JMSException;
 public int readBytes(byte[] value, int length)
 throws JMSException;
 public void writeBytes(byte[] value, int offset, int length)
 throws JMSException;
 public boolean readBoolean() throws JMSException;
 public void writeBoolean(boolean value) throws JMSException;

245

 public char readChar() throws JMSException;
 public void writeChar(char value) throws JMSException;
 public short readShort() throws JMSException;
 public void writeShort(short value) throws JMSException;
 public int readUnsignedShort() throws JMSException;
 public void writeInt(int value) throws JMSException;
 public int readInt() throws JMSException;
 public void writeLong(long value) throws JMSException;
 public long readLong() throws JMSException;
 public float readFloat() throws JMSException;
 public void writeFloat(float value) throws JMSException;
 public double readDouble() throws JMSException;
 public void writeDouble(double value) throws JMSException;
 public String readUTF() throws JMSException;
 public void writeUTF(String value) throws JMSException;
 public void writeObject(Object value) throws JMSException;
 public void reset() throws JMSException;
}

MapMessage
This Message type carries a set of name-value pairs as its payload. The payload is similar
to a java.util.Properties object, except the values must be Java primitives or their
wrappers. The MapMessage is useful for delivering keyed data:

public interface MapMessage extends Message {

 public boolean getBoolean(String name) throws JMSException;
 public void setBoolean(String name, boolean value)
 throws JMSException;
 public byte getByte(String name) throws JMSException;
 public void setByte(String name, byte value) throws JMSException;
 public byte[] getBytes(String name) throws JMSException;
 public void setBytes(String name, byte[] value)
 throws JMSException;
 public void setBytes(String name, byte[] value,
 int offset, int length)
 throws JMSException;
 public short getShort(String name) throws JMSException;
 public void setShort(String name, short value) throws JMSException;
 public char getChar(String name) throws JMSException;
 public void setChar(String name, char value) throws JMSException;
 public int getInt(String name) throws JMSException;
 public void setInt(String name, int value)throws JMSException;
 public long getLong(String name) throws JMSException;
 public void setLong(String name, long value) throws JMSException;
 public float getFloat(String name) throws JMSException;
 public void setFloat(String name, float value)
 throws JMSException;
 public double getDouble(String name) throws JMSException;
 public void setDouble(String name, double value)
 throws JMSException;
 public String getString(String name) throws JMSException;
 public void setString(String name, String value)

246 | Appendix A: The Java Message Service API

 throws JMSException;
 public Object getObject(String name) throws JMSException;
 public void setObject(String name, Object value)
 throws JMSException;
 public Enumeration getMapNames() throws JMSException;
 public boolean itemExists(String name) throws JMSException;
}

Message
The Message interface is the super interface for all message types. There are six messages
types, including: Message, TextMessage, ObjectMessage, StreamMessage, BytesMessage,
and MapMessage. The Message type has no payload and can be used for simple event
notification.

A message basically has two parts: a header and a payload. The header is comprised of
special fields that are used to identify the message, declare attributes of the message,
and provide information for routing. The difference between message types is deter-
mined largely by their payload, which determines the type of application data the
message contains:

public interface Message {
 public void acknowledge() throws JMSException;
 public void clearBody() throws JMSException;

 public Destination getJMSDestination() throws JMSException;
 public void setJMSDestination(Destination destination)
 throws JMSException;
 public int getJMSDeliveryMode() throws JMSException;
 public void setJMSDeliveryMode(int deliveryMode)
 throws JMSException;
 public String getJMSMessageID() throws JMSException;
 public void setJMSMessageID(String id) throws JMSException;
 public long getJMSTimestamp() throws JMSException;
 public void setJMSTimestamp(long timestamp) throws JMSException
 public long getJMSExpiration() throws JMSException;
 public void setJMSExpiration(long expiration) throws JMSException;
 public boolean getJMSRedelivered() throws JMSException;
 public void setJMSRedelivered(boolean redelivered)
 throws JMSException;
 public int getJMSPriority() throws JMSException;
 public void setJMSPriority(int priority) throws JMSException;
 public Destination getJMSReplyTo() throws JMSException;
 public void setJMSReplyTo(Destination replyTo) throws JMSException;
 public String getJMSCorrelationID() throws JMSException;
 public void setJMSCorrelationID(String correlationID)
 throws JMSException;
 public byte[] getJMSCorrelationIDAsBytes() throws JMSException;
 public void setJMSCorrelationIDAsBytes(byte[] correlationID)
 throws JMSException;
 public String getJMSType() throws JMSException;
 public void setJMSType(String type) throws JMSException;

Message Interfaces | 247

 public String getStringProperty(String name)
 throws JMSException, MessageFormatException;
 public void setStringProperty(String name, String value)
 throws JMSException, MessageNotWriteableException;
 public int getIntProperty(String name)
 throws JMSException, MessageFormatException;
 public void setIntProperty(String name, int value)
 throws JMSException, MessageNotWriteableException;
 public boolean getBooleanProperty(String name)
 throws JMSException, MessageFormatException;
 public void setBooleanProperty(String name, boolean value)
 throws JMSException, MessageNotWriteableException;
 public double getDoubleProperty(String name)
 throws JMSException, MessageFormatException;
 public void setDoubleProperty(String name, double value)
 throws JMSException, MessageNotWriteableException;
 public float getFloatProperty(String name)
 throws JMSException, MessageFormatException;
 public void setFloatProperty(String name, float value)
 throws JMSException, MessageNotWriteableException;
 public byte getByteProperty(String name)
 throws JMSException, MessageFormatException;
 public void setByteProperty(String name, byte value)
 throws JMSException, MessageNotWriteableException;
 public long getLongProperty(String name)
 throws JMSException, MessageFormatException;
 public void setLongPreperty(String name, long value)
 throws JMSException, MessageNotWriteableException;
 public short getShortProperty(String name)
 throws JMSException, MessageFormatException;
 public void setShortProperty(String name, short value)
 throws JMSException, MessageNotWriteableException;
 public Object getObjectProperty(String name)
 throws JMSException, MessageFormatException;
 public void setObjectProperty(String name, Object value)
 throws JMSException, MessageNotWriteableException;
 public void clearProperties()
 throws JMSException;
 public Enumeration getPropertyNames()
 throws JMSException;
 public boolean propertyExists(String name)
 throws JMSException;
}

ObjectMessage
This Message type carries a serializable Java object as its payload. It is useful for
exchanging Java objects:

public interface ObjectMessage extends Message {
 public java.io.Serializable getObject()
 throws JMSException;
 public void setObject(java.io.Serializable payload)
 throws JMSException, MessageNotWriteableException;
}

248 | Appendix A: The Java Message Service API

StreamMessage
This Message type carries a stream of primitive Java types (int, double, char, etc.) as its
payload. It provides a set of convenience methods for mapping a formatted stream of
bytes to Java primitives. It provides an easy programming model for exchanging prim-
itive application data in a fixed order:

public interface StreamMessage extends Message {

 public boolean readBoolean() throws JMSException;
 public void writeBoolean(boolean value) throws JMSException;
 public byte readByte() throws JMSException;
 public int readBytes(byte[] value) throws JMSException;
 public void writeByte(byte value) throws JMSException;
 public void writeBytes(byte[] value) throws JMSException;
 public void writeBytes(byte[] value, int offset, int length)
 throws JMSException;
 public short readShort() throws JMSException;
 public void writeShort(short value) throws JMSException;
 public char readChar() throws JMSException;
 public void writeChar(char value) throws JMSException;
 public int readInt() throws JMSException;
 public void writeInt(int value) throws JMSException;
 public long readLong() throws JMSException;
 public void writeLong(long value) throws JMSException;
 public float readFloat() throws JMSException;
 public void writeFloat(float value) throws JMSException;
 public double readDouble() throws JMSException;
 public void writeDouble(double value) throws JMSException;
 public String readString() throws JMSException;
 public void writeString(String value) throws JMSException;
 public Object readObject() throws JMSException;
 public void writeObject(Object value) throws JMSException;
 public void reset() throws JMSException;
}

TextMessage
This Message type carries a java.lang.String as its payload. It is useful for exchanging
simple text messages and for more complex character data, such as XML documents:

public interface TextMessage extends Message {
 public String getText()
 throws JMSException;
 public void setText(String payload)
 throws JMSException, MessageNotWriteableException;
}

Common Facilities
This section covers additional messaging interfaces used by the common, point-to-
point and publish-and-subscribe messaging APIs.

Common Facilities | 249

ConnectionMetaData
This type of object is obtained from a Connection, TopicConnection, or QueueConnec
tion object. It provides information describing the JMS connection and the JMS pro-
vider. Information available includes the identity of the JMS provider, the JMS version
supported by the provider, JMS provider version numbers, and the JMS properties
supported:

public interface ConnectionMetaData {
 public int getJMSMajorVersion() throws JMSException;
 public int getJMSMinorVersion() throws JMSException;
 public String getJMSProviderName() throws JMSException;
 public String getJMSVersion() throws JMSException;
 public Enumeration getJMSXPropertyNames() throws JMSException;
 public int getProviderMajorVersion() throws JMSException;
 public int getProviderMinorVersion() throws JMSException;
 public String getProviderVersion() throws JMSException;
}

DeliveryMode
This class contains two final static variables, PERSISTENT and NON_PERSISTENT. These
variables are used when establishing the delivery mode of a MessageProducer, TopicPub
lisher, or QueueSender.

There are two types of delivery modes in JMS: persistent and nonpersistent. A persistent
message should be delivered once-and-only-once, which means that a message is not
lost if the JMS provider fails; it will be delivered after the server recovers. A nonpersis-
tent message is delivered at-most-once, which means that it can be lost and never
delivered if the JMS provider fails. The default mode is PERSISTENT:

public interface DeliveryMode {
 public static final int NON_PERSISTENT = 1;
 public static final int PERSISTENT = 2;
}

ExceptionListener
JMS provides an ExceptionListener interface for trapping a lost connection and noti-
fying the client of this condition. The ExceptionListener is bound to the connection.
The ExceptionListener is very useful to JMS clients that wait passively for messages to
be delivered and otherwise have no way of knowing that a connection has been lost.

It is the responsibility of the JMS provider to call the onException() method of all reg-
istered ExceptionListeners after making reasonable attempts to reestablish the con-
nection automatically. The JMS client can implement the ExceptionListener so that it
can be alerted to a lost connection, and possibly attempt to reestablish the connection
manually:

250 | Appendix A: The Java Message Service API

public interface ExceptionListener {
 public void onException(JMSException exception);
}

JMSException
The JMSException is the base exception type for all exceptions thrown by the JMS API.
It may provide an error message describing the cause of the exception, a provider-
specific error code, and possibly a reference to the exception that caused the JMS
exception:

public class JMSException extends java.lang.Exception {
 public JMSException(java.lang.String reason) { .. }
 public JMSException(java.lang.String reason,
 java.lang.String errorCode) { .. }
 public String getErrorCode() { .. }
 public Exception getLinkedException() { .. }
 public void setLinkedException(java.lang.Exception ex) { .. }
}

While the JMSException is usually declared as the exception type thrown from methods
in the JMS API, the actual exception thrown may be one of a dozen subtypes, which
are enumerated here. The descriptions of these exception types are derived from Sun
Microsystems’ JMS API documentation, and they implement the methods defined by
the JMSException super type:

IllegalStateException
Thrown when a method is invoked illegally or inappropriately, or if the provider
is not in an appropriate state when the method is called. For example, this excep-
tion should be thrown if Session.commit() is called on a nontransacted session.

InvalidClientIDException
Thrown when a client attempts to set a connection’s client ID to a value that the
provider rejects.

InvalidDestinationException
Thrown when the provider doesn’t understand the destination, or the destination
is no longer valid.

InvalidSelectorException
Thrown when the syntax of a message selector is invalid.

JMSSecurityException
Thrown when a provider rejects a username/password. Also thrown when a
security restriction prevents a method from completing.

MessageEOFException
Thrown if a stream ends unexpectedly when a StreamMessage or BytesMessage is
being read.

Common Facilities | 251

MessageFormatException
Thrown when a JMS client attempts to use a data type not supported by a message,
or attempts to read data in a message as the wrong type. Also thrown when type
errors are made with message property values.

MessageNotReadableException
Thrown when a JMS client tries to read a write-only message.

MessageNotWriteableException
Thrown when a JMS client tries to write to a read-only message.

ResourceAllocationException
Thrown when a provider is unable to allocate the resources required by a method.
This exception should be thrown when a call to createTopicConnection() fails
because the JMS provider has insufficient resources.

TransactionInProgressException
Thrown when an operation is invalid because a transaction is in progress. For
instance, it should be thrown if you call Session.commit() when a session is part
of a distributed transaction.

TransactionRolledBackException
Thrown when calling Session.commit() results in a transaction rollback.

MessageListener
The MessageListener is implemented by the JMS client. It receives messages asynchro-
nously from one or more Consumers (TopicSubscriber or QueueReceiver).

The Session (TopicSession or QueueSession) must ensure that messages are passed to
the MessageListener serially, so that the messages can be processed separately. A
MessageListener object may be registered with many consumers, but serial delivery is
only guaranteed if all of its consumers were created by the same session:

public interface MessageListener {
 public void onMessage(Message message);
}

Common API
This section covers the common API new to JMS 1.1 that bridges the point-to-point
and publish-and-subscribe APIs. The common API interfaces can be used with both
queues and topics.

Connection
The Connection is the base interface for the TopicConnection and the QueueConnection,
and represents an open TCP/IP socket to the JMS provider. It defines several general-
purpose methods used by clients of the messaging system in managing a JMS

252 | Appendix A: The Java Message Service API

connection. Among these methods are the getMetaData(), start(), stop(), and close()
methods:

public interface Connection {

 public Session createSession(boolean transacted,
 int acknowledgeMode) throws JMSException;

 public ExceptionListener getExceptionListener() throws JMSException;
 public void setExceptionListener(ExceptionListener listener)
 throws JMSException;

 public ConnectionMetaData getMetaData() throws JMSException;

 public String getClientID() throws JMSException;
 public void setClientID(String clientID) throws JMSException;

 public void start() throws JMSException;
 public void stop() throws JMSException;
 public void close() throws JMSException;

 public ConnectionConsumer createConnectionConsumer
 (Destination destination,
 String messageSelector,
 ServerSessionPool sessionPool,
 int maxMessages)
 throws JMSException;
}

A Connection object represents a physical connection to a JMS provider for either point-
to-point (QueueConnection) or publish-and-subscribe (TopicConnection) messaging. A
JMS client might choose to create multiple connections from the same connection fac-
tory, but this is rare as connections are relatively expensive (each connection requires
a network socket, I/O streams, memory, etc.). Creating multiple Session objects from
the same Connection object is considered more efficient, because sessions share access
to the same connection.

ConnectionFactory
The ConnectionFactory is the base type for the TopicConnectionFactory and the Queue
ConnectionFactory, which are used in the publish-and-subscribe and point-to-point
messaging models, respectively. It can also be used to create a Connection object.

The ConnectionFactory is implemented differently by each vendor, so configuration
options available vary from product to product. A connection factory might, for
example, be configured to manufacture connections that use a particular protocol,
security scheme, clustering strategy, etc.:

public interface ConnectionFactory {
 public Connection createConnection() throws JMSException;
 public Connection createConnection(String userName,
 String password)

Common API | 253

 throws JMSException
}

Destination
This interface is the base interface for the Topic and Queue interfaces, which represent
destinations in the pub/sub and p2p domains, respectively.

In all modern enterprise messaging systems, applications exchange messages through
virtual channels called destinations. When sending a message, the message is addressed
to a destination, not a specific application. Any application that subscribes or registers
an interest in that destination may receive that message. In this way, the applications
that receive messages and those that send messages are decoupled. Senders and receiv-
ers are not bound to each other in any way and may send and receive messages as they
see fit:

public interface Destination {
}

MessageConsumer
The MessageConsumer is the base interface for the TopicSubscriber and the QueueRe
ceiver. It defines several general-purpose methods used by clients when using a con-
sumer. Among these methods are the setMessageListener() and close() methods and
three types of receive() methods.

MessageConsumer can consume messages asynchronously or synchronously. To con-
sume messages asynchronously, the JMS client must provide the MessageConsumer with
a MessageListener object, which will then receive the messages as they arrive. To con-
sume messages synchronously, the JMS client may call one of three receive methods—
receive(), receive(long timeout), and receiveNoWait():

public interface MessageConsumer {
 public void close() throws JMSException;
 public MessageListener getMessageListener() throws JMSException;
 public String getMessageSelector() throws JMSException;
 public Message receive() throws JMSException;
 public Message receive(long timeout) throws JMSException;
 public Message receiveNoWait() throws JMSException;
 public void setMessageListener(MessageListener listener)
 throws JMSException;
}

MessageProducer
The MessageProducer is the base interface for the TopicPublisher and the QueueSender.
It defines several general-purpose methods used by clients. Among these methods are
setDeliveryMode(), close(), setPriority(), and setTimeToLive(long timeToLive).

254 | Appendix A: The Java Message Service API

MessageProducer sends messages to a specified destination (Topic or Queue). The default
destination can be determined when the MessageProducer is created by its session, or
the destination can be set each time a message is sent—in this case, there is no default
destination:

public interface MessageProducer {
 public void setDisableMessageID(boolean value) throws JMSException;
 public boolean getDisableMessageID() throws JMSException;
 public void setDisableMessageTimestamp(boolean value)
 throws JMSException;
 public boolean getDisableMessageTimestamp() throws JMSException;
 public void setPriority(int defaultPriority) int getDeliveryMode()
 throws JMSException;
 public int getPriority() throws JMSException;
 public void setTimeToLive(long timeToLive) throws JMSException;
 public long getTimeToLive() throws JMSException;
 public void close() throws JMSException;

 public void send(Message message)
 throws JMSException;
 public void send(Destination destination,
 Message message)
 throws JMSException;
 public void send(Message message,
 int deliveryMode,
 int priority,
 long timeToLive)
 throws JMSException;
 public void send(Destination destination,
 Message message,
 int deliveryMode,
 int priority,
 long timeToLive)
 throws JMSException

 public Destination getDestination() throws JMSException;
 public int getDeliveryMode() throws JMSException;
 public void setDeliveryMode(int deliveryMode) throws JMSException;
}

Session
The Session is the base interface for the TopicSession and the QueueSession. It defines
several general-purpose methods used by JMS clients for managing a JMS Session.
Among these methods are the six createMessage() methods (one for each type of
Message object), setMessageListener(), close(), and transaction methods.

A Session is a single-threaded context for producing and consuming messages. It creates
message consumers, producers, and messages for a specific JMS provider. The
Session manages the scope of transactions across send and receive operations, tracks
message acknowledgment for consumers, and serializes delivery of messages to Messa
geListener objects:

Common API | 255

public interface Session extends java.lang.Runnable {
 public static final int AUTO_ACKNOWLEDGE = 1;
 public static final int CLIENT_ACKNOWLEDGE = 2;
 public static final int DUPS_OK_ACKNOWLEDGE = 3;
 public static final int SESSION_TRANSACTED = 4;

 public BytesMessage createBytesMessage() throws JMSException;
 public MapMessage createMapMessage() throws JMSException;
 public Message createMessage() throws JMSException;
 public ObjectMessage createObjectMessage() throws JMSException;
 public ObjectMessage createObjectMessage(Serializable object)
 throws JMSException;
 public StreamMessage createStreamMessage() throws JMSException;
 public TextMessage createTextMessage() throws JMSException;
 public TextMessage createTextMessage(String text)
 throws JMSException;

 public boolean getTransacted() throws JMSException;
 public int getAcknowledgeMode() throws JMSException;
 public void unsubscribe(String name) throws JMSException;
 public void commit() throws JMSException;
 public void rollback() throws JMSException;
 public void close() throws JMSException;
 public void recover() throws JMSException;
 public void run();

 public MessageListener getMessageListener() throws JMSException;
 public void setMessageListener(MessageListener listener)
 throws JMSException;

 public QueueBrowser createBrowser(Queue queue)
 throws JMSException;
 public QueueBrowser createBrowser(Queue queue,
 String messageSelector)
 throws JMSException;

 public MessageConsumer createConsumer(Destination destination)
 throws JMSException;
 public MessageConsumer createConsumer(Destination destination,
 String messageSelector)
 throws JMSException;
 public MessageConsumer createConsumer(Destination destination,
 String messageSelector,
 boolean NoLocal)
 throws JMSException;
 public MessageProducer createProducer(Destination destination)
 throws JMSException;

 public TopicSubscriber createDurableSubscriber(Topic topic,
 String name)
 throws JMSException;
 public TopicSubscriber createDurableSubscriber(Topic topic,
 String name,
 String messageSelector,
 boolean noLocal)

256 | Appendix A: The Java Message Service API

 throws JMSException;

 public TemporaryQueue createTemporaryQueue()
 throws JMSException;
 public TemporaryTopic createTemporaryTopic()
 throws JMSException;

 public Queue createQueue(String queueName)
 throws JMSException;
 public Topic createTopic(String topicName)
 throws JMSException;
}

Point-to-Point API
This section covers the queue-based point-to-point interfaces and classes.

Queue
The Queue is an administered object that acts as a handle or identifier for an actual
queue, called a physical queue , on the messaging server. A physical queue is a channel
through which many clients can receive and send messages. The Queue is a subtype of
the Destination interface.

Multiple receivers may connect to a queue, but each message in the queue may only be
consumed by one of the queue’s receivers. Messages in the queue are ordered so that
consumers receive messages in the order the message server placed them in the queue:

public interface Queue extends Destination {
 public String getQueueName() throws JMSException;
 public String toString();
}

QueueBrowser
A QueueBrowser is a specialized object that allows you to peek ahead at pending mes-
sages on a Queue without actually consuming them. This feature is unique to point-to-
point messaging. Queue browsing can be useful for monitoring the contents of a queue
from an administration tool, or for browsing through multiple messages to locate a
message that is more important than the one that is at the head of the queue:

public interface QueueBrowser {
 public Queue getQueue() throws JMSException;
 public String getMessageSelector() throws JMSException;
 public Enumeration getEnumeration() throws JMSException;
 public void close() throws JMSException;
}

Point-to-Point API | 257

QueueConnection
The QueueConnection is created by the QueueConnectionFactory. Each QueueConnection
represents a unique connection to the server.* The QueueConnection is a subtype of the
Connection interface:

public interface QueueConnection extends Connection {
 public QueueSession createQueueSession(boolean transacted,
 int acknowledgeMode)
 throws JMSException;
 public ConnectionConsumer createConnectionConsumer
 (Queue queue,
 String messageSelector,
 ServerSessionPool sessionPool,
 int maxMessages)
 throws JMSException;
}

QueueConnectionFactory
The QueueConnectionFactory is an administered object that is used to manufacture
QueueConnectionFactory objects. The QueueConnectionFactory is a subtype of the
ConnectionFactory interface:

public interface QueueConnectionFactory extends ConnectionFactory {
 public QueueConnection createQueueConnection() throws JMSException;
 public QueueConnection createQueueConnection(String username, String password)
 throws JMSException;
}

QueueReceiver
The QueueReceiver is created by a QueueSession for a specific queue. The JMS client
uses the QueueReceiver to receive messages delivered to its assigned queue. The QueueR
eceiver is a subtype of the MessageConsumer interface.

Each message in a queue is delivered to only one QueueReceiver. Multiple receivers may
connect to a queue, but each message in the queue may only be consumed by one of
the queue’s receivers:

public interface QueueReceiver extends MessageConsumer {
 public Queue getQueue() throws JMSException;
}

* The actual physical network connection may or may not be unique, depending on the vendor. However, the
connection is considered to be logically unique so authentication and connection control can be managed
separately from other connections.

258 | Appendix A: The Java Message Service API

QueueRequestor
The QueueRequestor class is used for request/reply processing. It creates a temporary
queue to be used for the response message; therefore, no message correlation is needed:

public class QueueRequestor extends Object {

 public QueueRequestor(QueueSession session,
 Queue queue)
 throws JMSException;

 public Message request(Message message)
 throws JMSException;
 public void close() throws JMSException;
}

QueueSender
A QueueSender is created by a QueueSession, usually for a specific queue. Messages sent
by the QueueSender to a queue are delivered to a client connected to that queue. The
QueueSender is a subtype of the MessageProducer interface:

public interface QueueSender extends MessageProducer {
 public Queue getQueue() throws JMSException;
 public void send(Message message) throws JMSException;
 public void send(Message message, int deliveryMode, int priority,
 long timeToLive)
 throws JMSException;
 public void send(Queue queue, Message message) throws JMSException;
 public void send(Queue queue, Message message,int deliveryMode,
 int priority,long timeToLive)
 throws JMSException;
}

QueueSession
The QueueSession is created by the QueueConnection. A QueueSession object is a factory
for creating Message, QueueSender, and QueueReceiver objects. A client can create mul-
tiple QueueSession objects to provide more granular control over senders, receivers, and
their associated transactions. The QueueSession is a subtype of the Session interface:

public interface QueueSession extends Session {
 public Queue createQueue(java.lang.String queueName)
 throws JMSException;
 public QueueReceiver createReceiver(Queue queue)
 throws JMSException;
 public QueueReceiver createReceiver(Queue queue, String messageSelector)
 throws JMSException;
 public QueueSender createSender(Queue queue) throws JMSException;
 public QueueBrowser createBrowser(Queue queue) throws JMSException;
 public QueueBrowser createBrowser(Queue queue, String messageSelector)
 throws JMSException;

Point-to-Point API | 259

 public TemporaryQueue createTemporaryQueue() throws JMSException;
}

TemporaryQueue
A TemporaryQueue is created by a QueueSession or Session. A temporary queue is asso-
ciated with the connection that belongs to the QueueSession that created it. It is only
active for the duration of the session’s connection, and is guaranteed to be unique across
all connections. It lasts only as long as its associated client connection is active. In all
other respects, a temporary queue is just like a “regular” queue. The TemporaryQueue is
a subtype of the Queue interface.

Since a temporary queue is created by a JMS client, it is unavailable to other JMS clients
unless the queue identity is transferred using the JMSReplyTo header. While any client
may send messages on another client’s temporary queue, only the sessions that are
associated with the JMS client connection that created the temporary queue may receive
messages from it. JMS clients can also, of course, send messages to their own temporary
queues:

public interface TemporaryQueue extends Queue {
 public void delete() throws JMSException;
}

Publish-and-Subscribe API
This section covers the topic-based publish-and-subscribe interfaces and classes.

TemporaryTopic
A TemporaryTopic is created by a TopicSession or Session. A temporary topic is asso-
ciated with the connection that belongs to the TopicSession that created it. It is only
active for the duration of the session’s connection, and it is guaranteed to be unique
across all connections. Since it is temporary it can’t be durable—it lasts only as long as
its associated client connection is active. In all other respects it is just like a “regular”
topic. The TemporaryTopic is a subtype of the Topic interface.

Since a temporary topic is created by a JMS client, it is unavailable to other JMS clients
unless the topic identity is transferred using the JMSReplyTo header. While any client
may publish messages on another client’s temporary topic, only the sessions that are
associated with the JMS client connection that created the temporary topic may sub-
scribe to it. JMS clients can also, of course, publish messages to their own temporary
topics:

public interface TemporaryTopic extends Topic {
 public void delete() throws JMSException;
}

260 | Appendix A: The Java Message Service API

Topic
The Topic is an administered object that acts as a handle or identifier for an actual topic,
called a physical topic, on the messaging server. A physical topic is a channel to which
many clients can subscribe and publish. When a JMS client delivers a Message object
to a topic, all the clients subscribed to that topic receive the Message. The Topic is a
subtype of the Destination interface:

public interface Topic extends Destination {
 public String getTopicName() throws JMSException;
 public String toString();
}

TopicConnection
The TopicConnection is created by the TopicConnectionFactory. The TopicConnection
represents a connection to the message server. Each TopicConnection created from a
TopicConnectionFactory is a unique connection to the server.† The TopicConnection is
a subtype of the Connection interface:

public interface TopicConnection extends Connection {
 public TopicSession createTopicSession(boolean transacted,
 int acknowledgeMode)
 throws JMSException;
 public ConnectionConsumer createConnectionConsumer
 (Topic topic, String messageSelector,
 ServerSessionPool sessionPool,
 int maxMessages)
 throws JMSException;
 public ConnectionConsumer createDurableConnectionConsumer
 (Topic topic, String subscriptionName,
 String messageSelector,
 ServerSessionPool sessionPool,
 int maxMessages)
 throws JMSException;
}

TopicConnectionFactory
The TopicConnectionFactory is an administered object that is used to manufacture
TopicConnection objects. The TopicConnectionFactory is a subtype of the Connection
Factory interface:

public interface TopicConnectionFactory extends ConnectionFactory {
 public TopicConnection createTopicConnection() throws JMSException;
 public TopicConnection createTopicConnection(String username,
 String password)

† The actual physical network connection may or may not be unique, depending on the vendor. However, the
connection is considered to be logically unique so authentication and connection control can be managed
separately from other connections.

Publish-and-Subscribe API | 261

 throws JMSException;
}

TopicPublisher
A TopicPublisher is created by a TopicSession, usually for a specific Topic. Messages
that are sent by the TopicPublisher are copied and delivered to each client subscribed
to that topic. The TopicPublisher is a subtype of the MessageProducer interface:

public interface TopicPublisher extends MessageProducer {
 public Topic getTopic() throws JMSException;
 public void publish(Message message) throws JMSException;
 public void publish(Message message, int deliveryMode,int priority,
 long timeToLive)
 throws JMSException;
 public void publish(Topic topic,Message message)
 throws JMSException;
 public void publish(Topic topic, Message message, int deliveryMode,
 int priority,long timeToLive)
 throws JMSException;
}

TopicRequestor
The TopicRequestor class is used for request/reply processing. It creates a temporary
topic to be used for the response message; therefore, no message correlation is needed:

public class TopicRequestor extends Object {

 public TopicRequestor(TopicSession session,
 Topic topic)
 throws JMSException;

 public Message request(Message message)
 throws JMSException;
 public void close() throws JMSException;
}

TopicSession
The TopicSession is created by the TopicConnection. A TopicSession object is a factory
for creating Message, TopicPublisher, and TopicSubscriber objects. A client can create
multiple TopicSession objects to provide more granular control over publishers, sub-
scribers, and their associated transactions. The TopicSession is a subtype of the
Session interface:

262 | Appendix A: The Java Message Service API

public interface TopicSession extends Session {
 public Topic createTopic(java.lang.String topicName)
 throws JMSException;
 public TopicSubscriber createSubscriber(Topic topic)
 throws JMSException;
 public TopicSubscriber createSubscriber(Topic topic,
 String messageSelector,
 boolean noLocal)
 throws JMSException;
 public TopicSubscriber createDurableSubscriber(Topic topic,
 String name)
 throws JMSException;
 public TopicSubscriber createDurableSubscriber
 (Topic topic,
 String name,
 String messageSelector,
 boolean noLocal)
 throws JMSException;
 public TopicPublisher createPublisher(Topic topic)
 throws JMSException;
 public TemporaryTopic createTemporaryTopic() throws JMSException;
 public void unsubscribe(java.lang.String name) throws JMSException;
}

TopicSubscriber
The TopicSubscriber is created by a TopicSession for a specific topic. The messages are
delivered to the TopicSubscriber as they become available, avoiding the need to poll
the topic for new messages. The TopicSubscriber is a subtype of the MessageConsumer
interface:

public interface TopicSubscriber extends MessageConsumer
 public Topic getTopic() throws JMSException;
 public boolean getNoLocal() throws JMSException;
}

Publish-and-Subscribe API | 263

APPENDIX B

Message Headers

The message headers provide metadata describing who or what created the message,
when it was created, how long its data is valid, etc. The headers also contain routing
information that describes the destination of the message (topic or queue), how a mes-
sage should be acknowledged, and a lot more.

The Message interface provides mutator (“set”) methods for each of the JMS headers,
but only the JMSReplyTo, JMSCorrelationID, and JMSType headers can be modified using
these methods. Calls to the mutator methods for any of the other JMS headers will be
ignored when the message is sent. According to the authors of the specification, the
mutator methods were left in the Message interface for “general orthogonality”; to bal-
ance the accessor methods—a fairly strange but well-established justification.

The accessor (“get”) methods always provide the JMS client with information about
the JMS headers. However, some JMS headers (JMSTimestamp, JMSRedelivered, etc.) are
not available until after the message is sent or even received.

JMSDestination Purpose: Routing

Message objects are always sent to some kind of destination. In the pub/sub model, Message
objects are delivered to a topic, identified by a Topic object. In Chapter 2, you learned that
the destination of a Message object is established when the TopicPublisher is created:

Topic chatTopic = (Topic)ctx.lookup(topicName);
TopicPublisher publisher = session.createPublisher(chatTopic);

The JMSDestination header identifies the destination of a Message object using a javax.jms.Des
tination object. The Destination class is the superclass of both Topic (pub/sub) and Queue
(p2p). The JMSDestination header is obtained using the Message.getJMSDestination()
method.

Identifying the destination to which a message was delivered is valuable to JMS clients that
consume messages from more than one topic or queue. MessageListener objects might, for
example, listen to multiple consumers (TopicSubscriber or QueueReceiver types) so that they
receive messages from more than one topic or queue. For example, the Chat client from
Chapter 2 could be modified to subscribe to more than one chat topic at a time. In this

265

scenario, the onMessage() method of the MessageListener would use the JMSDestination
header to identify which chat topic a message came from:

public void onMessage(Message message){
 try {
 TextMessage textMessage = (TextMessage)message;
 String text = textMessage.getText();

 Topic topic = (Topic)textMessage.getJMSDestination();
 System.out.println(topic.getTopicName()+": "+text);
 } catch (JMSException jmse){jmse.printStackTrace();}
}

The JMSDestination header is set automatically by the JMS provider when the message is
delivered. The Destination used in the JMSDestination header is typically specified when the
publisher is created, as shown here:

Queue queue = (Queue)ctx.lookup(queueName);
QueueSender queueSender = session.createSender(queue);
...
Topic topic = (Topic)ctx.lookup(topicName);
TopicPublisher topicPublisher = session.createPublisher(topic);

An unspecified message producer—one created without a Destination—will require that a
Destination be supplied with each send() operation:

QueueSender queueSender = session.createSender(null);
Message message = session.createMessage();

Queue queue = (Queue)jndi.lookup(queueName);
queueSender.send(queue, message);
...
TopicPublisher topicPublisher = session.createPublisher(null);
Message message = session.createMessage();

Topic topic = (Topic)jndi.lookup(topicName);
topicPublisher.publish(topic, message);

In this case, the JMSDestination header becomes the Destination used in the send() operation.

JMSDeliveryMode Purpose: Routing

There are two types of delivery modes in JMS: persistent and nonpersistent. A persistent
message should be delivered once-and-only-once, which means that a message is not lost if
the JMS provider fails; it will be delivered after the server recovers. A nonpersistent message
is delivered at-most-once, which means that it can be lost and never delivered if the JMS
provider fails. In both persistent and nonpersistent delivery modes the message server should
not send a message to the same consumer more than once, but it is possible; see the section
on JMSRedelivered for more details.

266 | Appendix B: Message Headers

The vendor-supplied client runtime and the server functionality are col-
lectively referred to as the JMS provider. A “provider failure” generically
describes any failure condition that is outside of the domain of the ap-
plication code. It could mean a hardware failure that occurs while the
provider is entrusted with the processing of a message, or it could mean
an unexpected exception or halting of a process due to a software defect.
It could also mean a network failure that occurs between two processes
that are part of the JMS vendor’s internal architecture.

Persistent messages are intended to survive system failures of the JMS provider (the message
server). Persistent messages are written to disk as soon as the message server receives them
from the JMS client. After the message is persisted to disk the message server can then attempt
to deliver the message to its intended consumer. As the messaging server delivers the message
to the consumers it keeps track of which consumers successfully receive the message. If the
JMS provider fails while delivering the message, the message server will pick up where it left
off following a recovery. Persistent messages are delivered once-and-only-once. The mechan-
ics of this are covered in greater detail in Chapter 7.

Nonpersistent messages are not written to disk when they are received by the message server,
so if the JMS provider fails, the message will be lost. In general nonpersistent messages perform
better than persistent messages. They are delivered more quickly and require less system
resources on the message server. However, nonpersistent messages should only be used when
a loss of messages due to a JMS provider failures is not an issue. The chat example used in
Chapter 2 is a good example of a system that doesn’t require persistent delivery. It’s not critical
that every message be delivered to all consumers in a chat application. In most business sys-
tems, however, messages are delivered using the persistent mode, because it’s important that
they be successfully delivered.

The delivery mode can be set using the setDeliveryMode() method defined in both the Topic
Publisher and QueueSender message producers. The javax.jms.DeliveryMode class defines the
two constants used to declare the delivery mode: PERSISTENT and NON_PERSISTENT:

// Publish-and-subscribe
TopicPublisher topicPublisher = topicSession.createPublisher(topic);
topicPublisher.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

// Point-to-point
QueueSender queueSender = queueSession.createSender(queue);
queueSender.setDeliverMode(DeliveryMode.PERSISTENT);

Once the delivery mode has been set on the message producer, it will be applied to all the
messages delivered by that producer. The delivery mode can be changed at any time using the
setDeliveryMode() method; the new mode will be applied to subsequent messages. The de-
fault delivery mode of a message producer is always PERSISTENT.

The delivery mode of a message producer can be overridden for an individual message during
the send operation, which allows a message producer to deliver a mixture of persistent and
nonpersistent messages to the same destination (topic or queue):

// Publish-and-subscribe
Message message = topicSession.createMessage();

JMSDeliveryMode | 267

topicPublisher.publish(message, DeliveryMode.PERSISTENT, 5, 0);

// Point-to-point
Message message = queueSession.createMessage();
queueSender.send(message, DeliveryMode.NON_PERSISTENT, 5, 0);

The JMSDeliveryMode can be obtained from the Message object using the getJMSDelivery
Mode() method:

public void onMessage(Message message){
 try {
 if (message.getJMSDeliveryMode() == DeliveryMode.PERSISTENT){
 // Do something
 } else {
 // Do something else
 }
 } catch (JMSException jmse){jmse.printStackTrace();}
}

JMSMessageID Purpose: Routing

The JMSMessageID is a String value that uniquely identifies a message. How unique the iden-
tifier is depends on the vendor. It may only be unique for that installation of the message
server, or it may be universally unique.

The JMSMessageID can be useful for historical repositories in applications where messages need
to be uniquely indexed. The JMSMessageID is also useful for correlating messages, which is
done using the JMSCorrelationID header. Use of the JMSCorrelationID header is described in
more detail in Chapter 4.

The message provider generates the JMSMessageID automatically when the message is received
from a JMS client. The JMSMessageID must start with ID:, but the rest of JMSMessageID can be
any collection of characters that uniquely identifies the message to the JMS provider. Here is
an example of a JMSMessageID generated by Progress’s SonicMQ:

// JMSMessageID generated by SonicMQ
ID:6c867f96:20001:DF59525514

If a unique message ID is not needed by the JMS application, the JMS client can provide a
hint to the message server that an ID is not necessary by using the setDisableMessageID()
method (as shown in the following code). Vendors that heed this hint can reduce message
processing time by not generating unique IDs for each message. If a JMSMessageID is not gen-
erated, the getJMSMessageID() method returns null:

// Publish-and-subscribe
TopicPublisher topicPublisher = topicSession.createPublisher(topic);
topicPublisher.setDisableMessageID(true);

// Point-to-point
QueueSender queueSender = queueSession.createSender(topic);
queueSender.setDisableMessageID(true);

268 | Appendix B: Message Headers

JMSTimestamp Purpose: Identification

The JMSTimestamp is set automatically by the message producer when the send operation is
invoked. The value of the JMSTimestamp is the approximate time that the send operation was
invoked. Sometimes messages are not transmitted to the message server immediately. A mes-
sage can be delayed for many reasons, including how the message producer is configured,
whether it’s a transacted session, the acknowledgment mode used, etc. When the send()
operation returns, the message object will have its timestamp:

Message message = topicSession.createMessage();
topicPublisher.publish(message);
long time = message.getJMSTimestamp();

The timestamp is set automatically, thus any value set explicitly by the JMS client will be
ignored and discarded when the send() operation is invoked. The value of the timestamp is
the amount of time, measured in milliseconds, that has elapsed since midnight, January 1,
1970, UTC (see “UTC” on page 271 for more information).

Timestamps can be used by message consumers as indicators of the approximate time that
the message was delivered by the message producer. The timestamp can be useful when
ordering messages or for historical repositories.

The JMSTimestamp is set during the send operation and may be calculated locally by the pro-
ducer (TopicPublisher or QueueSender) on the client or it may be obtained from the message
server. In the first case, when the producer calculates the timestamp, the timestamps can vary
from JMS client to client. This is because the timestamp is obtained from the JMS client’s
local system clock, which may not be synchronized with other JMS client machines. Time-
stamps acquired from the message server are more consistent across JMS clients using the
same JMS provider, since all the times are acquired from the same source, the common mes-
sage server. It’s possible to disable timestamps—or at least hint that they are not needed—
by invoking the setDisableMessageTimestamp() method, available on both TopicPublisher and
QueueSender objects:

// Publish-and-subscribe
TopicPublisher topicPublisher = topicSession.createPublisher(topic);
topicPublisher.setDisableMessageTimestamp(true);

// Point-to-point
QueueSender queueSender = queueSession.createSender(topic);
queueSender.setDisableMessageTimestamp(true);

If the JMS provider heeds the hint to disable the timestamp, the JMSTimestamp is set to 0,
indicating that no timestamp was set. Disabling the timestamp can reduce the workload for
JMS providers that use the message server to generate timestamps (instead of the JMS client),
and can reduce the size of a message by at least 8 bytes (the size of a long value), which reduces
the amount of network traffic. Support for disabling the timestamp is optional, which means
that some vendors will set the timestamp whether you need it or not.

JMSTimestamp | 269

JMSExpiration Purpose: Routing

A Message object can have an expiration date, the same as on a carton of milk. The expiration
date is useful for messages that are only relevant for a fixed amount of time. The expiration
time for messages is set in milliseconds by the producer using the setTimeToLive() method
on either the QueueSender or TopicPublisher as shown below:

// Publish-and-subscribe
TopicPublisher topicPublisher = topicSession.createPublisher(topic);
// Set time to live as 1 hour (1000 millis x 60 sec x 60 min)
topicPublisher.setTimeToLive(3600000);

// Point-to-point
QueueSender queueSender = queueSession.createSender(topic);
// Set time to live as 2 days (1000 millis x 60 sec x 60 min x 48 hours)
queueSender.setTimeToLive(172800000);

By default the timeToLive is zero, which indicates that the message doesn’t expire. Calling
setTimeToLive() with a zero value as the argument ensures that message is created without
an expiration date. The message expiration can also be set on the send() or publish() method
of the message producer as well:

// Publish-and-subscribe
// Set time to live as 1 hour (1000 millis x 60 sec x 60 min)
Message message = topicSession.createMessage();
topicPublisher.publish(message, DeliveryMode.PERSISTENT, 5, 3600000);

// Point-to-point
// Set time to live as 2 days (1000 millis x 60 sec x 60 min x 48 hours)
Message message = queueSession.createMessage();
queueSender.send(message, DeliveryMode.NON_PERSISTENT, 5, 172800000);

The JMSExpiration date itself is calculated as:

JMSExpiration = currenttime + timeToLive.

The value of the currenttime is the amount of time, measured in milliseconds, that has elapsed
since the Java epoch (midnight, January 1, 1970, UTC).

The JMS specification doesn’t state whether the current time is calculated by the client com-
puter or the message server, so consistency is dependent on either the accuracy of every client
machine or the message server. We can certainly empathize with the JMS spec producers for
remaining agnostic on this issue. Whether or not timestamps are synchronized across clients
depends on the application. There is nothing preventing a JMS vendor from providing a con-
figuration setting to control this behavior.

The JMSExpiration is the date and time that the message will expire. JMS clients should be
written to discard any unprocessed messages that have expired, because the data and event
communicated by the message is no longer valid. Message providers (servers) are also expected
to discard any undelivered messages that expire while in their queues and topics. Even per-
sistent messages are supposed to be discarded if they expire before being delivered.

270 | Appendix B: Message Headers

UTC
UTC (Universal Time Coordinated, a.k.a. Coordinated Universal Time) is an interna-
tionally accepted official standard time based on the coordination of hundreds of
atomic clocks worldwide. The JMS specification states that the time used to calculate
the JMSExpiration and JMSTimestamp are based on UTC time, but in reality this is rarely
the case. Ordinarily, there is a discrepancy between the current time reported by the
Java Virtual Machine and the true UTC. This is because the system clocks on desktop
computers and business servers are usually not synchronized with UTC, and are not
accurate enough to keep UTC time. System clocks can be coordinated with the UTC
through an Internet protocol called NTP (Network Time Protocol), which periodically
queries for the actual UTC from a network time service and resynchronizes the system
clock with the UTC.

You can get the system clock’s time from any Java Virtual Machine using the System
class as shown here:

long currentTime = System.currentTimeMillis();

The system clock’s time, as reported by the JVM, is calculated as the number of milli-
seconds (1,000 milliseconds = 1 second) that have elapsed since January 1st, 1970,
assuming that the system clock is reasonably accurate.

JMSRedelivered Purpose: Routing

The JMSRedelivered header indicates if the message was redelivered to the consumer. The
JMSRedelivered header is true if the message has been redelivered, and false if has not. A
message may be marked as redelivered if a consumer failed to acknowledge delivery, or if the
JMS provider is otherwise uncertain whether the consumer received the message.

When a message is delivered to a consumer, the consumer must acknowledge receipt of the
message. If it doesn’t, the message server may attempt to redeliver the message. Consumers
can acknowledge messages automatically or manually, depending on how the consumer was
created. A consumer created with an acknowledgment mode of AUTO_ACKNOWLEDGE or
DUPS_OK_ACKNOWLEDGE automatically informs the message server that the message was received.
When the consumer is created with CLIENT_ACKNOWLEDGE mode, the JMS client must manually
acknowledge the messages using the acknowledge() method.

In general, when a message has a JMSRedelivered value of false, the consumer should assume
that there is no chance it has seen this message before. If the redelivered flag is true, the client
may have been given this message before so it may need to take some precautions it would
not otherwise take. Redelivery can occur under a variety of conditions, and a JMS provider
may mark a message as redelivered when it’s in doubt due to failures, error conditions, and
other anomalous conditions.

Message acknowledgment and redelivery are covered in detail in Chapter 7.

JMSRedelivered | 271

JMSPriority Purpose: Routing

Messages may be assigned a priority by the message producer when they are delivered. The
message servers may use message’s priority to order delivery of messages to consumers; mes-
sages with a higher priority are delivered ahead of lower priority messages.

The message’s priority is contained in the JMSPriority header, which is set automatically by
the JMS provider. If not specified, the message priority is set to a default value of 4. The priority
of messages can be declared by the JMS client using the setPriority() method on the Messa
geProducer (not the Message object!). The following code shows how this method is used by
both the p2p and pub/sub message models:

// p2p setting the message priority to 9
QueueSender queueSender = QueueSession.createSender(someQueue);
queueSender.setPriority(9);

//pub/sub setting the message priority to 9
TopicPublisher topicPublisher = TopicSession.createPublisher(someTopic);
topicPublisher.setPriority(9);

Once a priority is established on a message producer (QueueSender or TopicPublisher), that
priority will be used for all messages delivered from that producer, unless it is explicitly over-
ridden. The priority of a specific message can be overridden during the send or publish op-
eration. The following code shows how to override the priority of a message during the send
and publish operations. In both cases, the priority is set to 3:

// p2p setting the priority on the send operation
QueueSender queueSender = QueueSession.createSender(someQueue);
queueSender.send(message,DeliveryMode.PERSISTENT, 3, 0);

// pub/sub setting the priority on the send operation
TopicPublisher topicPublisher = TopicSession.createPublisher(someTopic);
topicPublisher.publish(message,DeliveryMode.PERSISTENT, 3, 0);

There are two basic categories of message priorities: levels 0–4 are gradations of normal pri-
ority; levels 5–9 are gradations of expedited priority. Message servers are not required to
enforce message ordering based on the JMSPriority header, but they should attempt to deliver
expedited messages before normal messages.

The JMSPriority header is set automatically when the message is delivered. It can be read by
JMS clients using the Message.getJMSPriority() method, but the accessor method is mostly
used by message servers when routing messages.

JMSReplyTo Purpose: Routing

In some cases, a message producer may want the consumers to reply to a message. The
JMSReplyTo header indicates which destination, if any, a JMS consumer should reply to. The
JMSReplyTo header is set explicitly by the JMS client; its contents will be a javax.jms.Destina
tion object (either Topic or Queue).

272 | Appendix B: Message Headers

In some cases, the JMS client will want the message consumers to reply to a temporary topic
or queue set up by the JMS client. Here is an example of a pub/sub JMS client that creates a
temporary topic and uses its Topic object identifier as a JMSReplyTo header:

TopicSession session =
connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
...
Topic tempTopic = session.createTemporaryTopic();
...

TextMessage message = session.createTextMessage();
message.setText(text);
message.setJMSReplyTo(tempTopic);
publisher.publish(message);

When a JMS message consumer receives a message that includes a JMSReplyTo destination, it
can reply using that destination. A JMS consumer is not required to send a reply, but in some
JMS applications, clients are programmed to do so. Here is an example of a JMS consumer
that uses the JMSReplyTo header on a received message to send a reply. In this case, the sub-
scriber will simple send an acknowledgment back to the publisher indicating it received the
message:

Topic chatTopic = ... get topic from somewhere
...
// Publisher is created without a specified Topic
TopicPublisher publisher = session.createPublisher(null);
...

public void onMessage(Message message){
 try {
 TextMessage textMessage = (TextMessage)message;
 Topic replyTopic = (Topic)textMessage.getJMSReplyTo();
 TextMessage replyMessage = session.createTextMessage("Received Message...");
 publisher.publish(replyTopic, replyMessage);
 } catch (JMSException jmse){jmse.printStackTrace();}
}

The JMSReplyTo destination set by the message producer can be any destination in the mes-
saging system. Using other established topics or queues allows the message producer to ex-
press routing preferences for the message itself or for replies to that message. Typically, this
kind of routing is used in workflow applications. In a workflow application, a message rep-
resents some task that is processed one step at a time by several JMS clients—possibly over
days. For example, an order message might be processed by sales first, then inventory, then
shipping, and finally accounts receivable. When each JMS client (sales, inventory, shipping,
or accounts receivable) is finished processing the order data, it could use the JMSReplyTo
address to deliver the message to the next step.

JMSCorrelationID Purpose: Routing

The JMSCorrelationID provides a header for associating the current message with some pre-
vious message or application-specific ID. In most cases, the JMSCorrelationID will be used to
tag a message as a reply to a previous message. The following code shows how the

JMSCorrelationID | 273

JMSCorrelationID is set and used along with the JMSReplyTo and JMSMessageID headers to send
a reply to a message:

public void onMessage(Message message){
 try {
 TextMessage textMessage = (TextMessage)message;
 Queue replyQueue = (Queue)textMessage.getJMSReplyTo();

 Message replyMessage = session.createMessage();
 replyMessage.setJMSCorrelationID(message.getJMSMessageID());
 sender.send(replyQueue, replyMessage);
 } catch (JMSException jmse){jmse.printStackTrace();}
}

When the JMS client receives the reply message, it can match the JMSCorrelationID of the new
message with the corresponding JMSMessageID of the message it sent, so that it knows which
message received a reply. The JMSCorrelationID can be any value, not just a JMSMessageID.
The JMSCorrelationID header is often used with application-specific identifiers. Our example
in Chapter 4 uses the JMSCorrelationID as a way of identifying the sender. The important
thing to remember, however, is that the JMSCorrelationID does not have to be a JMSMessa
geID, although it frequently is. If you decide to use your own ID, be aware that you should
not start an application-specific JMSCorrelationID with ID:. That prefix is reserved for IDs
generated by JMS providers.

The methods for accessing and mutating the JMSCorrelationID come in two forms: a String
form and an AsBytes form. The String-based header is the most common and must be sup-
ported by JMS providers. The AsBytes method, which is based on a byte array, is an optional
feature that JMS providers do not have to support. It’s used for setting the JMSCorrelatio
nID to some native JMS provider correlation ID:

Message message = queueSession.createMessage();
byte [] byteArray = ... set to some JMS specific byte array
...
message.setJMSCorrelationIDAsBytes(byteArray);
sender.send(message);

If the JMS provider supports messaging exchanges with a legacy messaging system that uses
a native form of the correlation ID, the AsBytes method will be useful. If the AsBytes form is
not supported, setJMSCorrelationIDAsBytes() throws a java.lang.UnsupportedOperationEx
ception.

JMSType Purpose: Identification

JMSType is an optional header set by the JMS client. Its name is somewhat misleading because
it has nothing to do with the type of message being sent (BytesMessage, MapMessage, etc.). Its
main purpose is to identify the message structure and type of payload; it is only supported by
a couple of vendors.

274 | Appendix B: Message Headers

Some MOM systems (e.g., IBM’s WebSphere MQ) treat the message body as uninterpreted
bytes and provide applications with a simple way of labeling the body (the message type). So
the message type header can be useful when exchanging messages with non-JMS clients that
require this type of information to process the payload.

Other MOM systems (e.g., Sun’s JMQ) directly tie each message to some form of external
message schema, and the message type is the link. These MOM systems require the message
type because they provide metadata services bound to it.

In addition, the JMSType might be used on a application level. For example, a messaging ap-
plication that uses XML as its message payload might use the JMSType to keep track of which
XML DTD the message payload conforms to. However, since the JMSType can possibly be
used by JMS vendors, it would be much safer to use application properties, which are
discussed in detail in Appendix C.

JMSType | 275

APPENDIX C

Message Properties

Message properties are additional headers that can be assigned to a message. They
provide the application developer or JMS vendor with the ability to attach more infor-
mation to a message. The Message interface provides several accessor and mutator
methods for reading and writing properties. Properties can have a String value, or one
of several primitive (boolean, byte, short, int, long, float, double) values. The naming
of properties, together with their values and conversion rules, are strictly defined by
JMS.

Property Names
Properties are name-value pairs. The name, called the identifier, can be just about any
String that is a valid identifier in the Java language. With a couple of exceptions, the
rules that apply to naming a property are the same as those that apply to the naming
of variables. One difference between a JMS property name and a Java variable name is
that a property name can be any length. In addition, property names are prohibited
from using one of the message selector reserved words. These words include NOT, AND,
OR, BETWEEN, LIKE, IN, IS, NULL, TRUE, and FALSE.

The property names used in JMS-defined properties and provider-specific properties
use predefined prefixes. These prefixes (JMSX and JMS_) may not be used for application
property names.

Property Values
Property values can be any boolean, byte, short, int, long, float, double, or String. The
javax.jms.Message interface provides accessor and mutator methods for each of these
property value types. Here is the portion of the Message interface definition that shows
these methods:

package javax.jms;

public interface Message {

277

 public String getStringProperty(String name)
 throws JMSException, MessageFormatException;
 public void setStringProperty(String name, String value)
 throws JMSException, MessageNotWriteableException;

 public int getIntProperty(String name)
 throws JMSException, MessageFormatException;
 public void setIntProperty(String name, int value)
 throws JMSException, MessageNotWriteableException;

 public boolean getBooleanProperty(String name)
 throws JMSException, MessageFormatException;
 public void setBooleanProperty(String name, boolean value)
 throws JMSException, MessageNotWriteableException;

 public double getDoubleProperty(String name)
 throws JMSException, MessageFormatException;
 public void setDoubleProperty(String name, double value)
 throws JMSException, MessageNotWriteableException;

 public float getFloatProperty(String name)
 throws JMSException, MessageFormatException;
 public void setFloatProperty(String name, float value)
 throws JMSException, MessageNotWriteableException;

 public byte getByteProperty(String name)
 throws JMSException, MessageFormatException;
 public void setByteProperty(String name, byte value)
 throws JMSException, MessageNotWriteableException;

 public long getLongProperty(String name)
 throws JMSException, MessageFormatException;
 public void setLongPreperty(String name, long value)
 throws JMSException, MessageNotWriteableException;

 public short getShortProperty(String name)
 throws JMSException, MessageFormatException;
 public void setShortProperty(String name, short value)
 throws JMSException, MessageNotWriteableException;

 public Object getObjectProperty(String name)
 throws JMSException, MessageFormatException;
 public void setObjectProperty(String name, Object value)
 throws JMSException, MessageNotWriteableException;

 public void clearProperties()
 throws JMSException;
 public Enumeration getPropertyNames()
 throws JMSException;
 public boolean propertyExists(String name)
 throws JMSException;
 ...
}

278 | Appendix C: Message Properties

The following code shows how a JMS client might produce and consume messages
with properties that have primitive values:

// A message producer writes the properties
message.setStringProperty("Username","William");

message.setDoubleProperty("Limit", 33456.72);

message.setBooleanProperty("IsApproved",true);
publisher.publish(message);

...
// A message consumer reads the properties
String name = message.getStringProperty("Username");

double limit = message.getDoubleProperty("Limit");

boolean isApproved = message.getBooleanProperty("IsApproved");

The Object property methods that are defined in the Message interface (setObjectProp
erty() and getObjectProperty()) are also used for properties, but they don’t give you
as much functionality as their names suggest. Only the primitive wrappers that corre-
spond to the allowed primitive types and the String type can be used by the Object
property methods. Attempting to use any other Object type will result in a
javax.jms.MessageFormatException. Here is an example of how the Object property
methods are used to set and access properties in a message:

// A message producer writes the properties
String username = "William";
Double limit = new Double(33456.72);
Boolean isApproved = new Boolean(true);

message.setObjectProperty("Username",username);

message.setObjectProperty("Limit", limit);

message.setObjectProperty("IsApproved",isApproved);
publisher.publish(message);

...
// A message consumer reads the properties
String name = (String)message.getObjectProperty("username");

Double limit = (Double)message.getObjectProperty("Limit");

Boolean isApproved = (Boolean)message.getObjectProperty("IsApproved");

Immutable Properties
Once a message is sent, its properties become read-only; the properties cannot be
changed. While consumers can read the properties using the property accessor methods
(get<TYPE>Property()), they cannot modify the properties using any of the mutator

Immutable Properties | 279

methods (set<TYPE>Property()). If the consumer attempts to set a property, the muta-
tor method throws a javax.jms.MessageNotWriteableException.

Once a message is received, the only way its properties can be changed is by clearing
out all the properties using the clearProperties() method. This removes all the prop-
erties from the message so that new ones can be added. Individual properties cannot
be modified or removed once a message is sent.

Property Value Conversion
The JMS specification defines rules for conversion of property values, so that, for ex-
ample, a property value of type int can be read as a long:

// Set the property "Age" as an int value
message.setIntProperty("Age", 72);
...
// Read the property "Age" as a long is legal
long age = message.getLongProperty("Age");

The conversion rules are fairly simple, as shown in Table C-1. A property value can be
set as one primitive type or String, and read as one of the other value types.

Table C-1. Property type conversions

Message.set<TYPE>Property() Message.get<TYPE>Property()

boolean boolean, String

byte byte, short, int, long, String

short short, int, long, String

int int, long, String

long long, String

float float, double, String

double double, String

String String, boolean, byte, short, int, long, float, double

Each of the accessor methods (get<TYPE>Property()) can throw the MessageFormatEx
ception. The MessageFormatException is thrown by the accessor methods to indicate
that the original type could not be converted to the type requested. The MessageForma
tException might be thrown if, for example, a JMS client attempted to read a float
property as an int.

String values can be converted to any primitive type, provided the String is formatted
correctly:

Message message = topicSession.createMessage();

// Set the property "Weight" as a String value
message.setStringProperty("Weight","240.00");

280 | Appendix C: Message Properties

// Set the property "IsProgrammer" as a String value
message.setStringProperty("IsProgrammer", "true");
...

// Read the property "Weight" as a float type
float weight = message.getFloatProperty("Weight");

// Read the property "IsProgrammer" as a boolean type
boolean isProgrammer = message.getBooleanProperty("IsProgrammer");

If the String value cannot be converted to the primitive type requested, a java.lang.Num
berFormatException is thrown. Any property can be accessed as a String using the
getStringProperty() method; all the primitive types can be converted to a String value.

The getObjectProperty() returns the appropriate object wrapper for that property. For
example, an int can be retrieved by the message consumer as a java.lang.Integer
object. Any property that is set using the setObjectProperty() method can also be
accessed using the primitive property accessors; the conversion rules outlined in Ta-
ble C-1 apply. The following code shows two properties (Age and Weight) that are set
using primitive and Object property methods. The properties are later accessed using
the Object, primitive, and String accessors:

Message message = topicSession.createMessage();

// Set the property "Weight" as a float value
message.setFloatProperty("Weight",240.00);

// Set the property "Age" as an Integer value
Integer age = new Integer(72);
message.setObjectProperty("Age", age);
...

// Read the property "Weight" as a java.lang.Float type
Float weight1 = (Float)message.getObjectProperty("Weight");

// Read the property "Weight" as a float type
float weight2 = message.getFloatProperty("Weight");

// Read the property "Age" as an Object type
Integer age1 = (Integer)message.getObjectProperty("Age");

// Read the property "Age" as a long is legal
long age2 = message.getLongProperty("Age");

Nonexistent Properties
If a JMS client attempts to access a nonexistent property using getObjectProperty(),
null is returned. The rest of the property methods attempt to convert the null value to
the requested type using the valueOf() operations. This results in some interesting
behavior. The getStringProperty() returns a null or possibly an empty String ("")

Nonexistent Properties | 281

depending on the implementation. The getBooleanProperty() method returns false
for null values, while the other primitive property methods throw the java.lang.Num
berFormatException.

The propertyExists() method can be used to avoid erroneous values or exceptions for
properties that have not been set on the message. Here is an example of how it’s used:

if (message.propertyExists("Age"))
 age = message.getIntProperty("Age");
}

Property Iteration
The getPropertyNames() method in the Message interface can be used to obtain an
Enumeration of all the property names contained in the message. These names can then
be used to obtain the property values using the property accessor methods. The fol-
lowing code shows how you might use this Enumeration to print all the property values:

public void onMessage(Message message) {
 Enumeration propertyNames = message.getPropertyNames();
 while(propertyNames.hasMoreElements()){
 String name = (String)propertyNames.nextElement();
 Object value = getObjectProperty(name);
 System.out.println("\nname+" = "+value);
 }
}

JMS-Defined Properties
JMS-defined properties have the same characteristics as application properties, except
that most of them are set automatically by the JMS provider when the message is sent.
JMS-defined properties are basically optional JMS headers; vendors can choose to sup-
port none, some, or all of them. There are nine JMS-defined properties, each of which
starts with “JMSX” in the property name. Note that there is no corresponding
getJMSX<property>() and setJMSX<property>() methods on the Message object; these
properties are accessed in the same manner application properties are. For example,
the following code checks to see if an application ID has been set by the JMS provider:

public void onMessage(Message message) {
 if (message.propertyExists("JMSXAppID")) {
 String appId = message.getStringProperty("JMSXAppID");
 }
 ...
}

282 | Appendix C: Message Properties

Optional JMS-Defined Properties
Here are the optional JMS-defined properties and their descriptions:

JMSXUserID
This property is a String that is set automatically by the JMS provider when the
message is sent. Some JMS providers can assign a client a user ID, which is the
value associated with this property.

JMSXAppID
This property is a String that is set automatically by the JMS provider when the
message is sent. Some JMS providers can assign an identifier to a specific JMS
application, which is a set of consumers and subscribers that communicate using
a set of destinations.

JMSXProducerTXID and JMSXConsumerTXID
Messages can be produced and consumed within a transaction. Every transaction
in a system has a unique identity that can be obtained from the producer or con-
sumer using these properties. The JMSXProducerTXID is set by the JMS provider
when the message is sent, and the JMSXConsumerTXID is set by the JMS provider
when the message is received.

JMSXRcvTimestamp
This property is a primitive long value that is set automatically by the JMS provider
when the message is received. It represents the UTC time (see the section
“UTC” on page 271) that the message was received by the consumer.

JMSXDeliveryCount
This property is an int that is set automatically by the JMS provider when the
message is received. If a message is not properly acknowledged by a consumer it
may be redelivered. This property keeps a tally of the number of times the message
server attempts to deliver the message to that particular consumer.

JMSXState
This property is an int that is set automatically by the JMS provider. The property
is for use by repositories and JMS provider tools and is not available to either the
consumer or producer—as a developer, you will never have access to this property.
The property provides a standard way for a JMS provider to annotate the state of
a message. States can be one of the following: 1 (waiting), 2 (ready), 3 (expired),
or 4 (retained). This property can be safely ignored by most JMS developers, but
an explanation of its purpose is provided for completeness.

The JMS-defined properties that are assigned when the message is received (JMSXCon
sumerTXID, JMSXRcvTimestamp, and JMSXDeliveryCount) are not available to the message’s
producer, but only available to the message consumer.

JMS-Defined Properties | 283

Group JMS-Defined Properties
While the bulk of JMSX properties are optional, the group properties are not optional;
they must be supported by the JMS provider. The group properties allow a JMS client
to group messages together and assign each message in the group with a sequence ID.
Here are the group properties:

JMSXGroupID
This property is a String that is set by the JMS client before the message is sent. It
is the identity of the group to which the message belongs.

JMSXGroupSeq
This property is a primitive int type that is set by the JMS client before the message
is sent. It is the sequence number of the message within a group of messages.

Provider-Specific Properties
Every JMS provider can define a set of proprietary properties of any type. These prop-
erties can be set by the client or the provider automatically. Provider-specific properties
must start with the prefix “JMS_” followed by the property name (JMS_<vendor-prop
erty-name>). The purpose of the provider-specific properties is to support proprietary
vendor features. You will need to refer to your JMS vendor documentation to find out
what properties (if any) are supported by that particular vendor.

284 | Appendix C: Message Properties

APPENDIX D

Installing and Configuring ActiveMQ

ActiveMQ is an enterprise-level open source messaging provider that supports JMS (as
well as numerous native API’s), making it a popular choice among messaging providers.
It provides JMS clients with heterogeneous integration to a number of other platforms,
including C++, C, C#, and Ruby (to name a few).

Although you can use any JMS provider that supports JNDI and JMS 1.1 to run the
examples in this book, in this appendix we have provided the setup and configuration
for using ActiveMQ. All of the code examples in the book can be run by using ActiveMQ
“straight out of the box,” with some minimal configuration changes. The following
sections detail the configuration needed to run the examples using ActiveMQ version
5.2.0.

Installing ActiveMQ
The examples in this book use the basic out-of-the-box installation of ActiveMQ ver-
sion 5.2.0. You can download ActiveMQ from the website at http://activemq.apache
.org. Once downloaded, simply unzip or untar the compressed file.

Configuring ActiveMQ for JNDI
The examples in this book all use JNDI to connect to the JMS provider and obtain the
JMS destinations (queues and topics). Therefore, you will need to create a jndi.proper
ties file for each example. This property file contains the connection information, con-
nection factory names, and destination names used by the sample code in each chapter.
The code in this book is designed to be run with a centralized broker model, meaning
that there is a separate and distinct JMS server running in its own JVM that JMS clients
connect to.

In keeping with the spirit of the Java platform, we chose to use JNDI in the examples
to make the source code JMS provider agnostic, allowing you to use any JMS provider
supporting JNDI (as most do). In general, the jndi.properties file for the sample code
in the book will require six properties to be set:

285

http://activemq.apache.org
http://activemq.apache.org

java.naming.factory.initial
The initial context factory specific to each provider

java.naming.provider.url
The protocol, address, and port of the JMS provider

java.naming.security.principal
The user ID used to connect to the JMS provider

java.naming.security.credentials
The password used to connect to the JMS provider

connectionFactoryNames
The name(s) of the connection factory used to obtain JMS connections

topic.<topicname> (or queue.<queuename>)
The JNDI name of the destination object (queue or topic)

ActiveMQ contains a configuration file located in the ACTIVEMQ_HOME/conf direc-
tory called activemq.xml. This file contains most of the configuration parameters
needed for configuring and running ActiveMQ. Since the examples use the base con-
figuration for ActiveMQ, only the sections of the activemq.xml file that need to be
modified from the original base file will be shown.

The following sections illustrate the details needed in the jndi.properties file and the
activemq.xml configuration file for running the examples in each chapter.

Configuration For Chat Examples
To run the Chat application found in Chapter 2, you will need to create a jndi.proper
ties file (located in your classpath) with the connectionFactoryNames property set to
TopicCF and the topic.topic1 property set to jms.topic1:

java.naming.factory.initial = org.apache.activemq.jndi.ActiveMQInitialContextFactory
java.naming.provider.url = tcp://localhost:61616
java.naming.security.principal=system
java.naming.security.credentials=manager

connectionFactoryNames = TopicCF
topic.topic1 = jms.topic1

The jndi.properties file also contains the JNDI connection information for the JMS
provider. You will need to set the initial context factory class, provider URL, username,
and password needed to connect to the JMS server. To run the examples using Ac-
tiveMQ you would set the initial context factory to org.apache.activemq.jndi.Active
MQInitialContextFactory and the provider URL to tcp://localhost:61616 (the default
protocol, host, and port for ActiveMQ (as shown earlier).

You will also need to define the topic used by the Chat application, called topic1. This
is defined this in the activemq.xml file located in the ACTIVEMQ_HOME/conf

286 | Appendix D: Installing and Configuring ActiveMQ

directory. You will need to add a destinations element to the base configuration as
shown here:

...
<destinations>
 <topic name="topic1" physicalName="jms.topic1" />
</destinations>
...

In addition to the configuration changes indicated here, you will need to include the
activemq-all-5.2.0.jar file in your classpath.

Configuration for P2P Examples
The configuration for running the code examples in Chapter 4 is similar to that for the
Chat application previously. To run the QBorrower and QLender code, you will need to
define two new queues, LoanRequestQ and LoanResponseQ. In addition to the connection
properties (which are the same as the Chat application), the jndi.properties file should
contain three additional properties, the connectionFactoryNames property (which is set
to QueueCF), the queue.LoanRequestQ property (which is set to jms.LoanRequestQ), and
finally the queue.LoanResponseQ property (which is set to jms.LoanResponseQ). The jms
part of the name for the jms.LoanRequestQ and jms.LoanResponseQ destination property
values is completely arbitrary; you could easily name them mydestination.LoanRe
questQ and mydestination.LoanResponseQ. Whatever you choose for the destination
names, just make sure the names in the jndi.properties file match the physical names
specified in the activemq.xml file.

The jndi.properties file for the examples in Chapter 4 is as follows:

java.naming.factory.initial = org.apache.activemq.jndi.ActiveMQInitialContextFactory
java.naming.provider.url = tcp://localhost:61616
java.naming.security.principal=system
java.naming.security.credentials=manager

connectionFactoryNames = QueueCF
queue.LoanRequestQ = jms.LoanRequestQ
queue.LoanREsponseQ = jms.LoanResponseQ

You will also need to define the queues used by the QBorrower and QLender classes. These
are defined in the activemq.xml file located in the ACTIVEMQ_HOME/conf directory.
You will need to add a destinations element to the base configuration as shown here:

..
<destinations>
 <queue name="LoanRequestQ" physicalName="jms.LoanRequestQ" />
 <queue name="LoanResponseQ" physicalName="jms.LoanResponseQ" />
</destinations>
...

In addition to the configuration changes indicated here, you will need to include the
activemq-all-5.2.0.jar file in your classpath.

Configuration for P2P Examples | 287

Configuration for Pub/Sub Examples
The ActiveMQ configuration for running the TBorrower and the TLender classes is sim-
ilar to the configuration specified in the Chat application, only the topic name is set to
RateTopic rather than topic1. Everything else is the same.

The jndi.properties file for the examples in Chapter 5 is as follows:

java.naming.factory.initial = org.apache.activemq.jndi.ActiveMQInitialContextFactory
java.naming.provider.url = tcp://localhost:61616
java.naming.security.principal=system
java.naming.security.credentials=manager

connectionFactoryNames = TopicCF
topic.RateTopic = jms.RateTopic

You will also need to define the topic used by the TBorrower and TLender classes. This
is defined in the activemq.xml file located in the ACTIVEMQ_HOME/conf directory.
You will need to add a destinations element to the base configuration as shown here:

..
<destinations>
 <topic name="RateTopic" physicalName="jms.RateTopic" />
</destinations>
...

In addition to the configuration changes indicated here, you will need to include the
activemq-all-5.2.0.jar file in your classpath.

Configuration for Spring JMS Examples
This section contains the ActiveMQ configuration required to run the Spring JMS ex-
amples in Chapter 9. Like the other examples found in this book, you will need to create
a jndi.properties file (located in your classpath) with the connectionFactoryNames prop-
erty set to QueueCF and the queue.queue1 property set to jms.queue1:

java.naming.factory.initial = org.apache.activemq.jndi.ActiveMQInitialContextFactory
java.naming.provider.url = tcp://localhost:61616
java.naming.security.principal=system
java.naming.security.credentials=manager

connectionFactoryNames = QueueCF
queue.queue1 = jms.queue1

The jndi.properties file also contains the JNDI connection information for the JMS
provider. You will need to set the initial context factory class, provider URL, username,
and password needed to connect to the JMS server. To run the examples using Ac-
tiveMQ, you would set the initial context factory to org.apache.activemq.jndi.Active
MQInitialContextFactory and the provider URL to tcp://localhost:61616 (the default
protocol, host, and port for ActiveMQ (as shown previously).

288 | Appendix D: Installing and Configuring ActiveMQ

You will also need to define the queue used by the Spring JMS examples, called
queue1. This is defined in the activemq.xml file by adding a destinations element as
shown here:

..
<destinations>
 <queue name="queue1" physicalName="jms.queue1" />
</destinations>
...

In addition to the configuration changes indicated here, you will need to include the
activemq-all-5.2.0.jar file in your classpath.

Configuration for Spring JMS Examples | 289

Index

Symbols and Numbers
2PC (two-phase commit) protocol, 150
3-tier applications, 21
@ActivationConfigProperty annotation, 168,

171
@AroundInvoke annotation, 160
@ExcludeClassInterceptors annotation, 160
@ExcludeDefaultInterceptors annotation, 160
@Interceptors annotation, 160
@Local annotation, 158
@MessageDriven annotation, 168, 171
@PostActivate callback annotation, 159
@PostConstruct callback annotation, 159

called on MDB instances, 169
@PreDestroy callback annotation, 159

called on MDB instances, 169
@PrePassivate callback annotation, 159
@Remote annotation, 158
@Resource annotation, 159

injection of JMS resources into Java EE
objects, 163

@Stateful annotation, 158
@Stateless annotation, 158

specifying EJB name, 160

A
access control (authorization), 223
Access Control Lists (ACLs), 220
acknowledgments, 127–133

acknowledgment modes on QueueSession
object, 73

AUTO_ACKNOWLEDGE mode, 127–132
calling acknowledge() method on a

message, 140

client-acknowledged messages, 61
CLIENT_ACKNOWLEDGE mode, 132
DUPS_OK_ACKNOWLEDGE mode, 132
key role in guaranteed messaging, 126
message groups and, 133–144

ActiveMQ, xvi
configuration for Chat examples, 286
configuration for P2P examples, 287
configuration for Spring JMS examples,

288
configuring for JNDI, 285
connecting to, using JndiTemplate bean,

185
installing, 25, 28, 285
native API for non-Java clients, 3
native connection factory classes, 188

administered durable subscribers, 102
administered objects, 18

ConnectionFactory and Destination
objects, 30

JNDI and, 31
administered queues, 83
algebraic comparison operators used in

message selectors, 112
AND operator, 113
annotations

for interceptors, 160
lifecycle callback annotations in EJB3, 159
message-driven beans (MDBs), 168
specifying business interfaces in EJB3, 158

anti-patterns, messaging design, 236–243
message header misuse, 240–243
message priority overuse, 240
single-purpose queue, 236–240

AOP (aspect-oriented programming), 160

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

291

application properties, 47–49
application-to-application messaging systems,

2
applications (JMS), 9
architectural flexibility and agility, 5
arithmetic operators, used with message

selectors, 113
aspect-oriented programming (AOP), 160
asynchronous fire-and-forget processing, 64
asynchronous message listeners, 79

TBorrower class (example), 96
asynchronous messaging, 6

support by point-to-point model, 10
asynchronous processing, 1
asynchronous request/reply processing, 64
authentication, 222

connection to JMS provider, 72
authorization, 223
automatically assigned headers, 43–46
autonomy of messages, 126
AUTO_ACKNOWLEDGE mode, 61, 127–

132
consumer’s perspective on, 129
message redelivery and, 130
message server’s perspective on, 127
producer’s perspective on, 127

B
B2B (Business-to-Business), 17
BETWEEN operator, 112
bindings, JNDI, 160, 164
Boolean literals, 111
bottlenecks, reducing, 3
bridging to different message systems, 227
bridging to other protocols, 226
broadcast of information, using messaging for,

18
broadcasting a message, 10
business interfaces in EJB3, 158
Business-to-Business (B2B), 17
byte data type, accessing with BytesMessage,

55
BytesMessage interface, 245

definition of, 53
reset() method, 55

BytesMessage objects, 39
creating and using, 54
creating for TLender class (example), 95
reading and writing String values, 54

C
CachingConnectionFactory objects, 178, 185
callback methods in EJB, 159
centralized and decentralized architectures,

220
centralized architecture as model, 9
centralized architectures in enterprise

messaging, 7
decentralized architectures in enterprise

messaging, 8
hybrid architectures, 8
support of both by vendors, 221

channels of communication, secure, 224
character encoding, UTF-8, 55
Chat application (example), 25–40

bootstrapping, 30
compiling and running, 28
implementation of MessageListener and

onMessage(), 37
JMS provider supporting JNDI and JMS 1.1,

28
JNDI connection to JMS server, 30
message encapsulation in TextMessage

objects, 38
sessions and threading, 39
Topic object, 35
TopicConnection object, 33
TopicConnectionFactory object, 32
TopicPublisher object, 36
TopicSession object, 34
TopicSubscriber object, 36

chat rooms, 26, 29
(see also topics)

Class D addresses, 219
classes, native JMS provider classes, 187
client runtime, 125
clients

bootstrapping JMS client (Chat example),
30

JMS, 9
messaging, 6

CLIENT_ACKNOWLEDGE mode, 61, 132
grouping multiple messages, 133
using in bridging to other protocols, 226
using with message groups, 134
using with redelivered flag in processing

message groups, 134–143
commit() method, 145
common API, 252–257

292 | Index

comparison operators, use in message selectors,
111–113

concurrent processing, 168
conditional expressions, SQL-92 syntax, 109
connection factories

access by J2EE components using JNDI
ENC, 165

accessing in Spring Framework, 184
using JNDI, 184–187

defining in Spring, using native JMS
provider classes, 187

defining via JndiObjectFactoryBean, 178
JMS and JNDI ENC (environment naming

context), 164
TopicConnectionFactory object

for Chat application, 28
for TLender class (example), 95

Connection interface, 12, 253
ConnectionFactory interface, 12, 253
ConnectionFactory objects, 67

access to, 30
obtaining from JNDI, 162
TBorrower and TLender application

(example), 90
ConnectionMetaData interface, 250
ConnectionMetaData object, 73
connections to outside entities, 225
connections, lost, 151

ExceptionListener example, 152
connectors (protocol), 226
consumers, 9, 87

(see also subscribers)
adding and removing dynamically, 19
AUTO_ACKNOWLEDGE mode,

perspective on, 129
control over message filtering, 119
MDBs (message-driven beans) as, 171
obtaining message selector for, 115
QBorrower and QLender application, 68
reply to address, 46
undelivered message consumer, 121

container-managed resources, injection into
EJBs, 159

containers, EJB, 171
context, JNDI, 72
correlation (message), 232

code for, 233
JMSCorrelationID header, 274

createSubscriber() method, 28

cryptography, communication secured by
encryption, 224

D
data types

conversion rules for MapMessage, 60
conversion rules for property types, 280
conversion rules for StreamMessage, 57
MapMessage payloads, 59

dates and times, JMSExpiration header, 270
Dead Message Queues (DMQs), 153
decentralized architectures, 7, 8, 220

(see also centralized and decentralized
architectures)
vendor support of both centralized and

decentralized architectures, 221
DefaultMessageListenerContainer objects,

178
configuration of (example), 198
messageListener property, 202

delivery modes, 44
JMSDeliveryMode header, 266

DeliveryMode interface, 250
dependency injection (EJB3), 159
deployment, 213–228

bridging to other messaging systems, 227
connecting to outside world, 225
determining message throughput

requirements, 213
determining whether to multicast, 217–222
Internal versus External Destination, 229
performance, scalability, and reliability

testing, 213–217
security, 222–225

deployment descriptors, EJB, 158, 171
design considerations, 229

External Destination topology, 231
Internal Destination topology, 230
Internal versus External Destination, 229
messaging design anti-patterns, 236–243

message header misuse, 240–243
message priority overuse, 240
single-purpose queue, 236–240

request/reply messaging, 232–236
Destination interface, 12, 254
Destination objects

JMSDestination header, 44
obtaining for Chat application (example),

30

Index | 293

using with JmsTemplate send method, 194
destinations, 2

access by J2EE components using JNDI
ENC, 165

accessing with JmsTemplate, using JNDI,
184–187

defining in Spring, using native JMS
provider classes, 187

defining via JndiDestinationResolver, 178
JMS destination MDB is listening on, 168
for JMSReplyTo header, 273
Multiple Destination approach to message

filtering, 119
nondefault, using with JmsTemplate, 193
obtained from JNDI, 162
sending messages to, using JmsTemplate

send methods, 181
specifying when sending messages with

JmsTemplate, 189
developer-assigned headers, 46
directory services, 31
distributed objects, session beans accessed as,

157
DMQs (Dead Message Queues), 153
drivers, JNDI, 31
duplicate messages

guarding against while in
AUTO_ACKNOWLEDGE
mode, 131

messaging over IP multicast, 219
DUPS_OK_ACKNOWLEDGE mode, 61, 132
durable subscribers, 101

(see also dynamic durable subscribers)
dynamic durable subscribers, 102

administering, 103
unsubscribing, 104

dynamic queues, 83

E
EAI (Enterprise Application Integration), 17
EDA (Event-Driven Architecture), 16
EDI (Electronic Data Interchange) systems,

225
EJB (Enterprise JavaBeans), 156, 171

(see also MDBs)
components in EJB 3.0, 156
J2EE middle tier, 21
overview of EJB3 specification, 157–162

dependency injection, 159

interceptors, 160
JPA (Java Persistence API), 162
programmatic defaults, 160
simplified callback methods, 159
simplified development of beans, 158

version 3.0 (EJB 3) specification, xvi
ENC (environment naming context), 156, 164–

166
encryption of messages, 224
end user productivity, increasing with

messaging, 5
END_SEQUENCE message property, 135
Enterprise Application Integration (EAI), 17
Enterprise JavaBeans (see EJB)
enterprise messaging, 6

centralized architecture, 7
decentralized architectures, 8
hybrid architectures, 8
JMS API, 11
real-world scenarios for use, 14–21
tightly coupled synchronous RPC versus,

23
enterprise messaging systems, 2
Enterprise Resource Planning (see ERP

systems)
Enterprise Service Bus (see ESB)
environment naming context (ENC), 156, 164–

166
ERP (Enterprise Resource Planning) systems,

17
integration of purchase order system with,

19
ESB (Enterprise Service Bus), 6, 15
event model used by TopicSubscriber, 37
event notifications, 51
Event-Driven Architecture (EDA), 16
ExceptionListener interface, 151, 250

example of use, 152
exceptions

broadcast notification of, 51
JMSException class and derived types, 251
read errors for BytesMessage, 55
thrown while reading StreamMessage, 58
use of interceptors with JMS, 160

expedited priority, 45
expiration of messages, 45

improperly set expiration data, 241
JMSExpiration headers, 270

294 | Index

messages filtered out and not delivered,
117

proper way to set, 241
eXtended Architecture (XA) interfaces, 150
External Destination topology, 231

F
failure, provider, 125
FieldRetrievingFactoryBean objects, 187
filtering messages (see message filtering)
firewalls

JMS and, 224
messaging over IP multicast and, 221

G
General API, 12
geographic dispersion, use of messaging to

solve, 18
getObjectProperty() method, 49
group properties, JMS-defined, 284
groups of messages (see message groups)
guaranteed delivery, 23

message groups and acknowledgment, 133–
144

guaranteed messaging, 125–144
decentralized architecture and, 221
message acknowledgments and failure

conditions, 126
message autonomy, 126
store-and-forward messaging, 126

H
handleMessage method

crafting for each type of message, 205
disabling message conversion feature, 205
signatures when using automatic message

conversion, 203
hardware requirements, determining for

testing, 216
headers, message, 39, 41–47

automatically assigned, 43–46
developer-assigned, 46
Message interface and header methods, 42
misuse of, 240–243
reference listings, 265–275
used as identifiers, 110

heterogeneous integration (see integration of
heterogeneous systems)

HTTP tunneling, 224
hub-and-spoke architecture, 7, 220
hybrid architectures, 8

I
IBM WebSphere MQ, 2

native API for non-Java clients, 3
native JMS provider classes, 187

identifiers, 110
null value, 112

IllegalStateException class, 251
IN operator, 112
information broadcasting, 18
InitialContext objects, 32

creating for QBorrower class (example), 72
obtained from JNDI, 162

initialization, JMS
QBorrower class (example), 72
TBorrower class (example), 98
TLender class (example), 95

instanceof keyword, checking Message type,
76, 80

integer values in StreamMessage, 58
integration of enterprise applications (see

Enterprise Application Integration)
integration of heterogeneous systems, 1, 3, 16
interceptors, 160
Internal Destination topology, 230
interoperability between messaging systems,

227
interoperability of messages, 61
InvalidClientIDException class, 251
InvalidDestinationException class, 251
InvalidSelectorException class, 251
IP multicasting (see multicasting)
IS NOT NULL operator, 113
IS NULL operator, 113

J
J2EE (Java 2 Enterprise Edition), 21
Java 6 platform, xvi
Java EE (Enterprise Edition), 155–175

application servers as JMS providers, 229
EJB (Enterprise JavaBeans), 156–162
JMS resources in, 162–166
MDBs (message-driven beans), 166–171

used as message facade, 172

Index | 295

used for transformation and routing,
174

Java Message Service (see JMS; messaging)
Java RMI-IIOP, 157
Java Transaction API (JTA), 145
JMS (Java Message Service)

common API, 252–257
confusion with Java event model, 38
General API, 12
JMS API, 11
message interfaces, 245–249
messaging interfaces used as common

facilities, 249–252
messaging models, 9
point-to-point API, 13, 257–260
publish-and-subscribe API, 14, 260–263
RESTful interface, 225
roles in Java EE, 155
vendor-independent clients and

applications, xvi
version 1.1 specification, xiii
versions 1.1 and 1.0.2, 180

JMS-administered objects (see administered
objects)

JMS-defined properties, 49
<jms:listener> element properties, 211
<jms:listener-container> element properties,

209
JMSCorrelationID header property

specifying for QueueReceiver, 75
JMSCorrelationID headers, 46

reference listing, 274
specifying in QLender class (example), 81
use by QLender class (example), 81

JMSDeliveryMode headers, 44
reference listing, 266

JMSDestination headers, 44
reference listing, 265

JMSException class, 251
JMSExpiration headers, 45

improperly set expiration date, 241
reference listing, 270
setting message expiration, 117

JMSGroupSeq property, 49
JMSMessageID headers

preventing duplicate messages in
AUTO_ACKNOWLEDGE
mode, 131

reference listing, 268

use by QLender class (example), 81
JMSPriority headers, 45

reference listing, 272
used as identifier, 110

JMSRedelivered headers, 45
client failure and

CLIENT_ACKNOWLEDGE
mode, 133

message redelivery in an application, 134
reference listing, 271
using with CLIENT_ACKNOWLEDGE

mode to process message groups,
134–143

JMSReplyTo header property
setting in p2p request/reply model, 75
use by QBorrower class (example), 67
use by QLender class (example), 81

JMSReplyTo headers, 46
reference listing, 272
temporary topics and, 105

JMSSecurityException class, 251
JMSSender and JMSReceiver classes (example),

135–143
JMSReceiver class source code, 137
JMSSender class source code, 135
processing of message group, beginning by

JMSReceiver, 139
sending of messages by JMSSender, 138

JmsTemplate class, commonly used methods,
181

JmsTemplate objects, 177, 180–184
convertAndSend methods, 181
creating using native JMS provider classes,

188
creating, using JNDI, 186
handling connection factories and

destinations, 184
messageConverter property, 183
receive and receiveSelected methods, 182
receive method, returning standard JMS

Message object, 196
receiveAndConvert method, converting

messages, 196
receiveAndConvert methods, 183
receiveSelectedAndConvert message, using,

197
receiveTimeout property, 182, 195
receiving messages, 195
send methods, 181

296 | Index

sending messages to default destination,
using send method, 190

sending messages, specifying destination,
189

sending messages, using convertAndSend
method, 192

sending messages, using nondefault
destination, 193

JmsTemplate102 objects, 180
JMSTimestamp headers, 45

reference listing, 269
JMSType headers, 46

reference listing, 274
routing by listener router and, 236

JMSXGroupID property, 49
JNDI (Java Naming and Directory Interface)

access to resources in EJB3 specification,
156

binding name, 160
configuring ActiveMQ for, 285
connection factories and destinations,

accessing in Spring, 184–187
connection to JMS messaging server, 30
destination name, using with JmsTemplate,

193
ENC (environment naming context), 164–

166
JMS resources obtained from, 162
overview, 31
properties file and connection information,

Chat application, 28
using with Spring Framework, 178

jndi.properties files
creating, 28
defining for QBorrower and QLender

application, 68
defining for TBorrower and TLender

application (example), 91
example file for Chat application, 32

JndiDestinationResolver objects, 178
defining, 186
using with JmsTemplate send method, 194

JndiObjectFactoryBean objects, 178, 185
creating Spring bean containing JNDI

destination, 194
JndiTemplate objects, 178

defining, 185
JPA (Java Persistence API), 162
JTA (Java Transaction API), 145

JTA XA APIs, 150

K
Kerberos authentication, 223

L
LenderMDB class (example), 169

used as message facade, 172
using for transformation and routing, 174

lifecycle of message-driven bean, 167
LIKE comparison operator, 112
literals, 111
load balancing

support by point-to-point messaging, 10
using multiple receivers, 84

logical operators
results of evaluating unknown expressions

with, 113
use in message selectors, 112

M
MapMessage interface, 246

definition of, 58
MapMessage objects, 39

conversion rules for data types, 60
creating for QBorrower class (example), 75

mapped entity objects, 156
MDBs (message-driven beans), 156, 166–171

concurrent processing and scalability, 168
defining, 168
lifecycle, 167
lifecycle callback annotations in EJB3, 159
used as message facade, 172
using in message transformation and

routing, 174
MDPs (message-driven POJOs), 178, 198–208

creating, using MessageListenerAdapter,
202–207

custom message handler method, 206
default message handler method, 203–

206
implementing MessageListener interface

(example), 200
implementing

SessionAwareMessageListener
interface, 201

limitations to automatic message
conversion, 207

Index | 297

memory leaks, monitoring during testing, 217
message acknowledgments (see

acknowledgments)
message autonomy, 126
message consumers (see consumers)
message correlation, 75, 232

code for, 233
JMSCorrelationID header, 274
in p2p request/reply messaging, 81–83

Message Facade pattern, 172
message filtering, 107–124, 109

(see also message selectors)
design considerations, 118–124

combined approach, 119
examples illustrating implications of

approaches, 121–124
Message Filtering approach, 118
Multiple Destination approach, 119

not delivered semantics, 117
message groups

acknowledgment and, 133
message grouping and multiple receivers,

143
message groups example, 135–143
message redelivery in an application,

134
Message interface, 12, 247

accessor and mutator methods for
properties, 47, 277

acknowledge() method, 61
enumeration of property names in message,

49
header methods, 42
JMS point-to-point API, 13
JMS publish-and-subscribe API, 14
mutator and accessor methods for headers,

265
message interfaces, 245–249
message listener containers (Spring), 177, 198
Message objects

acknowledge() method, 132
conversions by JmsTemplate

convertAndSend methods, 181
conversions by JmsTemplate

receiveAndConvert method, 183
converting to Java object with JmsTemplate

methods, 196
creating and populating using

MessageCreator class, 181

creating and using as JMS messages, 50
creating with MessageCreator class, 190
creation by TopicSession object, 35
defined, 39
developer-assigned headers, 46
getJMSDeliveryMode() method, 268
parts of, 41
setJMSPriority() method, 242

message priority overuse, 240
message producers, 9
message properties (see properties, message)
message selectors, 109–117

arithmetic operators used with, 113
comparison operators used with, 111–113
declaring, 114
identifiers, 110
literals, 111
obtaining for a consumer, 115
specifying for creating generic consumer in

Session interface, 115
use with JmsTemplate receiveSelected

method, 183
using for priority handling (example), 116
using in managing HMO claims (example),

116
using in notification of certain bids on

inventory (example), 116
using in stock trade order auditing

(example), 117
using with JmsTemplate

receiveSelectedAndConvert
method, 183, 197

message servers, 7, 9
message, defined, 6
message-driven beans (see MDBs)
Message-Oriented Middleware (see MOM)
MessageConsumer interface, 12, 254
MessageConsumer objects

receive() method, 166
MessageCreator class, 181

created as anonymous inner class within
JmsTemplate send method, 191

createMessage method, 190
MessageDrivenBean type, 167
MessageDrivenContext objects, 169
MessageEOFException class, 251
MessageFormatException class, 252
MessageListener interface, 37, 252

implementation by MDBs, 168

298 | Index

implementation by QLender class
(example), 79

implementation by TBorrower class
(example), 96

lost connections and, 151
MDP implementing (example), 200
onMessage() method, 169

MessageListener objects
registering QLender class (example) as, 79
routing by message type and, 236
TBorrower class (example), 99

MessageListenerAdapter objects
defaultListenerMethod property, 206
messageConverter property, 205
wrapping MDP in, 202–207

MessageNotReadableException class, 252
MessageNotWriteableException class, 49, 252
MessagePostProcessor class, 182
MessagePostProcessor objects, creating and

using, 192
MessageProducer interface, 12, 254

setTimeToLive() method, 117, 241
MessageProducer objects

setPriority() method, 243, 272
messages

asynchronous delivery and consumption of,
36

BytesMessage type, 53–56
checking type with instanceof, 76, 80
client-acknowledged, 61
headers, 41–47
interoperability and portability of, 61
MapMessage type, 58–60
Message type, 50
ObjectMessage type, 52–53
properties, 47–50
read-only, 60
StreamMessage type, 56–58
structure and type of payload, 46, 274
TextMessage type, 51
types of, 39
undeliverable, Dead Message Queues, 153

messaging
allowing greater architectural flexibility and

agility, 5
changes in use of, 1
design (see design considerations)
enterprise, 6
guaranteed (see guaranteed messaging)

heterogeneous integration with, 3
increasing end user productivity, 5
over IP multicast, 219–222
new techniques and technologies, xiii
reducing system bottlenecks, 3

messaging clients
defined, 6
non-Java, support for, 3

messaging domains, 9
messaging models, 9
messaging systems, bridging to, 227
messaging throughput requirements, JMS

provider deployment and, 232
metadata

annotations in EJB3 specification, 156
obtaining from JMS Connection, 73

method signature for interceptors, 161
Microsoft .NET, use with JMS API, 17
Microsoft Message Queuing (see MSMQ)
middleware layer, scaling, 4
MOM (Message-Oriented Middleware), 2

architectures, 6
asynchronous delivery and consumption of

messages, 36
subsystem availability and, 23

MQQueue native class, creating JMS
destination bean, 188

MQQueueConnectionFactory class, 187
MSMQ (Microsoft Message Queuing), 6

integration with JMS, 17
multicasting, 8, 217–222

IP multicast, 219
messaging over IP multicast, 219–222
TCP/IP protocols, 218
UDP (User Datagram Protocol), 218
use of IP multicast in hybrid architectures,

8

N
n-tier applications, 21
namespaces

Spring Framework, JMS XML namespace,
208–212

properties of <jms:listener-container>
element, 209

properties of <jms:listener> element,
211

naming services, 31
.NET platform, use with JMS, 17

Index | 299

network routers and firewalls, IP multicasting
and, 221

network transport layer, protocols, 6
noLocal argument, boolean value for, 115
noLocal flag, 28
nondurable subscribers, 100
nonguaranteed messaging, 220
nonpersistent delivery mode, 44, 266
nonpersistent messages, 64

with durable subscribers, potential loss of,
129

server’s perspective on
AUTO_ACKNOWLEDGE
mode, 128

normal priority, 45
NOT operator, 112

definition of, 113
null values

problems in message selectors, 112
returned for nonexistent properties, 282
in StreamMessage, 58

numeric literals, 111

O
object property methods, 49
ObjectMessage interface, 248

definition of, 52
ObjectMessage objects, 39

creating and using, 52
requirements for use, 53

onMessage() event handler, 39
QLender class (example), 80
TBorrower class (example), 99

OpenJMS, handling dynamic durable
subscribers, 103

OR operator, 113
ordering of messages, IP multicasting and, 219

P
p2p (see point-to-point messaging)
Payload Encryption, 224
payloads, 39

BytesMessage messages, 54
MapMessage messages, 58
Message type and, 50
ObjectMessage messages, 52
TextMessage type, 51

performance

considerations in testing, 213
defined, 213
testing real-world deployment scenario,

214
finding or building test bed, 216
hardware requirements, 216
long duration reliability, 216
memory leaks, 217
send versus receive rate, 215
with one client, 215

persistent delivery mode, 44, 266
persistent messages, 64

decentralized architectures and, 221
not lost due to provider failure, 129
server’s perspective on

AUTO_ACKNOWLEDGE
mode, 128

physical topic, 35
Plain Old Java Objects (see POJOs)
point-to-point API, 13, 65, 257–260
point-to-point messaging, 10, 63–86

asynchronous fire-and-forget, 64
asynchronous request/reply, 64, 65
configuring ActiveMQ for examples, 287
dynamic versus administered queues, 83
examining a queue, 85
guaranteed delivery and

AUTO_ACKNOWLEDGE
mode, 131

load balancing using multiple receivers, 84
message correlation, 81–83
message filtering, design considerations,

120
message selectors, application of, 114
messages not selected for delivery, 117
overview, 63
QBorrower and QLender application

(example), 67–81
when to use, 66

POJOs (Plain Old Java Objects), 198
(see also MDPs)
message-driven POJOS (MDPs), 178
stateless beans as, 158

portability of messages, 61
primitive data types

accessing with BytesMessage, 55
conversion rules for StreamMessage, 57
using to read and write to byte stream, 54

priority of messages, 45

300 | Index

JMSPriority header, 272
overuse of, 240
setting improperly using Message object,

setJMSPriority(), 242
setting properly, 243

producers, 9
adding and removing dynamically, 19
AUTO_ACKNOWLEDGE mode,

perspective on, 127
control over message filtering, 119
QBorrower and QLender application, 68

programmatic defaults in EJB3, 160
programming languages, use with JMS API,

17
Properties object, using for Chat application

(example), 32
properties, message, 39, 47–50, 277

application-specific, 47–49
attempts to change after sending or

publishing, 49
conversion of property values, 280–282
immutable nature of, 280
iteration, 282
JMS-defined, 49, 282

group properties, 284
optional properties, 283

Message interface property methods, 47
names of, 277
nonexistent properties, 282
property values, 277–280
provider-specific, 50, 284
read-only after message delivery, 60

protocol connectors, 226
protocols, network transport layer, 6
provider failure, 125
providers

ActiveMQ, 28
bridging to other messaging systems, 227
configuration files or screens, 68
connecting to, using JNDI and Spring, 178
defined, 125
establishing connection to, QBorrower class

(example), 72
establishing connection to, QLender class

(example), 79
establishing connection to, TBorrower class

(example), 98
establishing connection to, TLender class

(example), 95

establishing JMS provider connection in
Spring

using JNDI, 184–187
using native JMS classes, 187

failure of, 125
persistent messages and, 129

Internal versus External Destination
deployment topologies, 229

JMS properties support, 49
JMS provider, 9
JPA (Java Persistence API), 162
message interoperability and portability,

61
properties specified by, 50, 284
standalone JMS providers, 232

pub/sub model (see publish-and-subscribe
messaging)

public key authentication, 223
publish-and-subscribe API, 14, 89, 260–263
publish-and-subscribe messaging, 9, 10, 87–

105
Chat application (example), 25–40
configuring ActiveMQ for examples, 288
durable versus nondurable subscribers, 100
dynamic versus nondynamic subscribers,

102
guaranteed delivery

AUTO_ACKNOWLEDGE mode, 127–
131

in-process Java event model, 37
message selectors, 114
messages not selected for delivery, 117
overview, 87
TBorrower and TLender application

(example), 90–100
temporary topics, 104
unsubscribing dynamic durable subscribers,

104
using to dynamically add auditing and

logging, 19
when to use, 89

publishers, 10, 25
in publish-and-subscribe API, 14

Q
QBorrower and QLender application

(example), 232–236
revised QBorrower using QueueRequestor,

234

Index | 301

revised QLender without code setting
JMSCorrelationID, 235

QBorrower and QLender application (p2p
example), 67–81

configuring and running, 67
load balancing with multiple receivers, 84
LoanRequestQueueBrowser class

(example), 86
message correlation, 81–83
QBorrower class, 69–76
QBorrower class, source code, 69–72

JMS initialization, 72
sending message, receiving response, 75

QLender class, 77–81
JMS instantiation, 79
receiving messages, 79
replying to messages, 80

Queue interface, 13, 257
Queue objects

destination, 44
QueueBrowser interface, 257
QueueBrowser objects, 85

getMessageSelector() method, 115
LoanRequestQueueBrowser class

(example), 86
message selectors, application to, 114

QueueConnection interface, 13, 258
QueueConnection objects

creating for QBorrower class (example), 72
QueueConnectionFactory interface, 13, 258
QueueConnectionFactory objects

creating for QBorrower class (example), 72
obtained from JNDI ENC using

@Resources, 171
QueueReceiver interface, 13, 258
QueueReceiver objects

creating for QBorrower class (example), 75
getMessageSelector() method, 115
message selectors, application to, 114
registering QLender (example) as message

listener, 79
specifying timeout value on receive()

method, 76
QueueRequestor class, 234

limitations of, 235
QueueRequestor interface, 259
queues

Dead Message Queues, 153
dynamic versus administered, 83

interfaces for, in p2p messaging, 65
message filtering with, 109
multiple receivers attached, for load

balancing, 84
in point-to-point messaging, 10
queue-based point-to-point API interfaces,

13
separate queues handling different message

types, 238
single-purpose, 236–240
temporary, 234
using to build dynamic systems, 18

QueueSender interface, 13, 259
setDeliveryMode() method, 267

QueueSender objects
creating for QBorrower class (example), 75
delivery mode, 44
send() method, 127
setPriority() method, 272
setTimeToLive() methods, 270
setting message expiration, 242
setting or disabling timestamp, 269
setting time to live for messages, 117

QueueSession interface, 13, 259
QueueSession objects

acknowledgment mode, 73
applying message selectors, 114
createQueue() and

createTemporaryQueue()
methods, 84

creating in QBorrower class (example), 73
creating in QLender class (example), 79
transacted, 73

R
ranges, specifying with BETWEEN operator,

112
read-only messages, 60
receive rates, testing, 215
receive timeout capability, QueueRequestor

request() method and, 235
receivers, 63

message grouping and multiple receivers,
143

multiple, using for load balancing, 84
redelivery of messages, 45

AUTO_ACKNOWLEDGE mode and, 130
handling in an application, 134

reliability, 213

302 | Index

testing over long time period, 216
reliability of messages, IP multicasting and,

219
Remote Procedure Call (see RPC)
replies, identifying previous message replied to,

46
reply to address, 46
request/reply messaging

designing, 232–236
in point-to-point model, 65

ResourceAllocationException class, 252
resources

in EJB3 specification, 156
injection into EJBs, 159
JMS, in Java EE, 162–166
JMS, injection into Java EE objects, 163
RESTful interface to JMS and, 226

REST (Representational State Transfer), 225
rollback() method, 145
routers, multicasting and, 221
routing of messages

in decentralized architectures, 8
by message listener class, 236
using MDB, 175

RPC (Remote Procedure Call)
asynchronous messaging versus, 22
defined, 21
session beans based on, 157
tightly coupled RPC, 21

S
scalability

considerations in testing, 213
defined, 213
increasing using messaging, 4
MDBs (message-driven beans), 168

security, 222–225
authentication, 222
authorization, 223
firewalls and HTTP tunneling, 224
secure communication, 224

selectors (see message selectors)
send rates, testing, 215
senders, 63
sequence markers, 135
SequenceMarker property, 139
servers, 9

(see also message servers)

AUTO_ACKNOWLEDGE mode,
perspective on, 127

message server, 7
messaging system, 6

Service-Oriented Architecture (SOA), 6, 15
session beans, 156

accessed as distributed objects, 157
developed as Plain Old Java Objects

(POJOs) in EJB3, 158
lifecycle callback annotations in EJB3, 159
production and consumption of JMS

messages, 166
stateless session beans implementing

Session Facade, 172
Session Facade pattern, 172
Session interface, 255

creating generic MessageConsumer with
createConsumer(), 115

Session objects, 12
access to, in asynchronous message listener,

202
commit() method, 146
contained in MessageCreator

createMessage method, 191
creating for TLender class (example), 95
creating messages from, 75
creating QueueBrowser from, 85
creating QueueSession in QBorrower class

(example), 73
rollback() method, 145

SessionAwareMessageListener interface, MDP
implementing (example), 201

sessions, 30
Chat application (example), 39
shared access to a connection, 33

setObjectProperty() method, 49
sets, membership in, specifying with IN

operator, 112
short data type, accessing with BytesMessage,

55
SimpleMessageConverter objects, 183
SimpleMessageListenerContainer objects, 178
single-purpose queue, 236–240

inefficiencies introduced by, 238
SingleConnectionFactory objects, 178, 185
SOA (Service-Oriented Architecture), 6, 15
SonicMQ, 2, 6
Spring Framework, 177–212

ActiveMQ configuration for examples, 288

Index | 303

connection factories and destinations, 184–
189

JMS namespace, 208–212
JmsTemplate objects, 180–184
MDPs (message-driven POJOs), 198–208

message listener container, 198
messaging architecture, 177
receiving messages synchronously, 195–

197
sending messages, 189–195
version 2.5, xvi, 177

SQL-92 conditional expression syntax, 109
SSL (Secure Socket Layer)

encryption, 224
public key authentication, 223

START_SEQUENCE message, 139
stopped mode, 72
store-and-forward messaging, 24, 126
StreamMessage interface, 249

definition of, 56
reset() message, 58

StreamMessage objects, 39
type conversion rules, 57

String data type
comparisons using LIKE operator, 112
conversion rules in StreamMessage, 57
reading and writing String values with

BytesMessage, 54
TextMessage payload, 51
use in MapMessage messages, 59

string literals, 111
subscribers, 10, 11, 25

(see also publish-and-subscribe messaging)
createSubscriber() method, 28
durable versus nondurable, 88, 100
dynamic versus administered, 88, 102
in publish-and-subscribe API, 14
specifying message selectors for, 114
unsubscribing dynamic durable subscribers,

104
Sun Microsystems, 11
synchronous communication between

components with p2p messaging, 66
synchronous messaging, support by point-to-

point model, 10

T
TBorrower and TLender application (pub/sub

example), 90–100

configuring and running, 90
TBorrower class, 96–100

JMS initialization, 98
message filtering, 107–108

TLender class, 92–96
JMS initialization, 95
publishing the message, 95

TCP/IP protocols, 218
use in hybrid architectures, 8

temporary queues, 234
TemporaryQueue interface, 260
TemporaryTopic interface, 260
test bed, finding or building, 216
TextMessage interface, 249

definition of, 51
TextMessage objects, 35

in Chat application (example), 38
creating and using, 51
creating using JmsTemplate

convertAndSend method, 192
this keyword, using to set message listener, 80
threading, restrictions imposed by JMS, 39
TIBCO Rendezvous, 6
time, JMSExpiration headers, 270
timestamps (see JMSTimestamp headers)
timeToLive value (JMSExpiration), 45, 270
Topic interface, 14, 261
Topic objects

access via JNDI lookup, 162
Chat application (example), 35
configuring for Chat application (example),

28
createSubscriber() method, 37
destination, 44
looking up, TBorrower class (example), 98
specifying name for TBorrower and TLender

classes (example), 91
TLender class (example), 91

TopicConnection interface, 14, 261
TopicConnection objects

creating for Chat application (example), 33
start(), stop(), and close() methods, 34

TopicConnectionFactory interface, 14, 261
TopicConnectionFactory objects, 32, 162

configuring for Chat application (example),
28

createTopicConnection() method, 32
looking up for TLender class (example), 95

304 | Index

specifying name for TBorrower and TLender
classes (example), 91

TopicPublisher interface, 14, 262
setDeliveryMode() method, 267

TopicPublisher objects
creating for Chat application (example), 36
creating for TLender class (example), 96
creating with TopicSession, 35
creation and publishing of TextMessage

objects, 38
delivery mode, 44
expiration time for messages, 45
priority of messages, 46
publish() method, 127
setPriority() method, 272
setTimeToLive() method, 270
setting or disabling timestamp, 269

TopicRequestor class, 234, 262
topics

interfaces for, 89
physical topic, 35
in publish-and-subscribe API, 14
subscriptions to, permissions set at each

topic tree level, 223
temporary, 104
using to build dynamic systems, 18

TopicSender objects
publishing message for TLender class

(example), 96
TopicSession interface, 14, 262
TopicSession objects

createTemporaryTopic() method, 104
creating for Chat application (example), 34
creating in TBorrower class (example), 98
creating transacted session, 147
specifying message selectors, 114

TopicSubscriber interface, 14, 263
TopicSubscriber objects

creating for Chat application (example), 36
creating with TopicSession, 35
getMessageSelector() method, 115
message selectors, application to, 114
MessageListener objects, 37
registration of Chat class (example), 37
registration of TBorrower as message

listener, 99
transacted QueueSession, 73
TransactionInProgressException class, 252
TransactionRolledBackException class, 252

transactions, 145–151
creating and using JMS transaction, 147
distributed, 150

transformations of messages, using MDB, 174
tunneling (HTTP), 224
two-phase commit (2PC) protocol, 150

U
UDP (User Datagram Protocol), 218

duplication, ordering, and reliability of
messages, 219

undelivered message consumer, 121
Unicode, 55
unique IDs, generating, 82
Universal Time Coordinated (UTC), 271
unknown evaluation, 112
unsigned methods, 55
User Datagram Protocol (see UDP)
UserCredentialsConnectionFactoryAdapter

bean, 188
username/password authentication, 222
UTC (Universal Time Coordinated), 271
UTF-8 character encoding, 55
UUID class, 82

V
vendors, support of your application

requirements, 215

W
web components, production and

consumption of JMS messages, 166
WebSphere MQ, 2

native API for non-Java clients, 3
native JMS provider classes, 187

workflow, messages representing, 105

X
XA (eXtended Architecture) interfaces, 150
XML deployment descriptor (EJB), 158, 171
XML transformations, using MDB for, 174

Index | 305

About the Authors
Mark Richards is an accomplished author and conference speaker working as a hands-
on SOA and enterprise architect in the financial services industry. In addition to
numerous published articles, he is the author of Java Transaction Design Strategies
(C4Media), contributing author of 97 Things Every Software Architect Should Know
(O’Reilly), and contributing author of No Fluff, Just Stuff Anthology Volumes 1 and 2
(Pragmatic Bookshelf). He is a recognized authority on messaging, Service-Oriented
Architecture, and transaction management. Mark is a regular speaker on the NFJS
Software Symposium series and speaks at conferences around the world.

Richard Monson-Haefel is the author of the first five editions of Enterprise Java
Beans (O’Reilly), the first edition of Java Message Service (O’Reilly), and is one of the
world’s leading experts and book authors on enterprise computing.

David A. Chappell is vice president and chief technologist for SOA at Oracle Corpo-
ration. He is well noted for authoring Java Web Services (O’Reilly), Professional ebXML
Foundations (Wrox), and the first edition of Java Message Service (O’Reilly).

Colophon
The animal on the cover of Java Message Service, Second Edition, is a passenger pigeon
(Ectopistes migratorius), an extinct species. In the mid-1800s, passenger pigeons were
the most numerous birds in North America. Several flocks, each numbering more than
two billion birds, lived in various habitats east of the Rocky Mountains. Flocks migrated
en masse in search of food, without regard to season, and a good food source could
keep a flock in one place for years at a time. John James Audubon observed that nearly
the entire passenger pigeon population once stayed in Kentucky for several years and
was seen nowhere else during this time.

Whole flocks roosted together in small areas, and the weight of so many birds—often
up to 90 nests in a single tree—resulted in the destruction of forests, as tree limbs and
even entire trees toppled. (The accumulated inches of bird dung on the ground didn’t
help.) Such roosting habits, combined with high infant mortality and the fact that fe-
male passenger pigeons laid a single egg in a flimsy nest, did not bode well for the long-
term survival of the species.

It was humans harvesting passenger pigeons for food, however, that drove them to
extinction. In 1855, a single operation was processing 18,000 birds per day! Not even
Audubon himself was concerned that the pace might have an adverse effect on the birds’
population, but the last passenger pigeon died in the Cincinnati Zoo in 1914.

The cover image is a 19th-century engraving from the Dover Pictorial Archive.
The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont’s
TheSansMonoCondensed.

http://oreilly.com/catalog/9780596522698/
http://oreilly.com/catalog/9780596009786/
http://oreilly.com/catalog/9780596009786/
http://oreilly.com/catalog/9780596000684/
http://oreilly.com/catalog/9780596000684/

	Table of Contents
	Foreword
	Preface
	Who Should Read This Book?
	Organization
	Software and Versions
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Acknowledgments from the First Edition

	Chapter 1. Messaging Basics
	The Advantages of Messaging
	Heterogeneous Integration
	Reduce System Bottlenecks
	Increase Scalability
	Increase End User Productivity
	Architecture Flexibility and Agility

	Enterprise Messaging
	Centralized Architectures
	Decentralized Architectures
	Hybrid Architectures
	Centralized Architecture As a Model

	Messaging Models
	Point-to-Point
	Publish-and-Subscribe

	JMS API
	Point-to-Point API
	Publish-and-Subscribe API

	Real-World Scenarios
	Service-Oriented Architecture
	Event-Driven Architecture
	Heterogeneous Platform Integration
	Enterprise Application Integration
	Business-to-Business
	Geographic Dispersion
	Information Broadcasting
	Building Dynamic Systems

	RPC Versus Asynchronous Messaging
	Tightly Coupled RPC
	Enterprise Messaging

	Chapter 2. Developing a Simple Example
	The Chat Application
	Getting Started with the Chat Example
	Examining the Source Code
	Bootstrapping the JMS client
	Obtaining a JNDI connection
	The TopicConnectionFactory
	The TopicConnection
	The TopicSession
	The Topic
	The TopicPublisher
	The TopicSubscriber
	The Message

	Sessions and Threading

	Chapter 3. Anatomy of a JMS Message
	Headers
	Automatically Assigned Headers
	JMSDestination
	JMSDeliveryMode
	JMSMessageID
	JMSTimestamp
	JMSExpiration
	JMSRedelivered
	JMSPriority

	Developer-Assigned Headers
	JMSReplyTo
	JMSCorrelationID
	JMSType

	Properties
	Application-Specific Properties
	JMS-Defined Properties
	Provider-Specific Properties

	Message Types
	Message
	TextMessage
	ObjectMessage
	BytesMessage
	StreamMessage
	MapMessage
	Read-Only Messages
	Client-Acknowledged Messages
	Interoperability and Portability of Messages

	Chapter 4. Point-to-Point Messaging
	Point-to-Point Overview
	When to Use Point-to-Point Messaging

	The QBorrower and QLender Application
	Configuring and Running the Application
	The QBorrower Class
	JMS Initialization
	Sending the message and receiving the response

	The QLender Class

	Message Correlation
	Dynamic Versus Administered Queues
	Load Balancing Using Multiple Receivers
	Examining a Queue

	Chapter 5. Publish-and-Subscribe Messaging
	Publish-and-Subscribe Overview
	When to Use Publish-and-Subscribe Messaging

	The TBorrower and TLender Application
	Configuring and Running the Application
	The TLender Class
	JMS initialization
	Publishing the message

	The TBorrower Class

	Durable Versus Nondurable Subscribers
	Dynamic Versus Administered Subscribers
	Unsubscribing Dynamic Durable Subscribers
	Temporary Topics

	Chapter 6. Message Filtering
	Message Selectors
	Identifiers
	Literals
	Comparison Operators
	Arithmetic Operators

	Declaring a Message Selector
	Message Selector Examples
	Managing Claims in an HMO
	Notification of Certain Bids on Inventory
	Priority Handling
	Stock Trade Order Auditing

	Not Delivered Semantics
	Design Considerations

	Chapter 7. Guaranteed Messaging and Transactions
	Guaranteed Messaging
	Message Autonomy
	Store-and-Forward Messaging
	Message Acknowledgments and Failure Conditions

	Message Acknowledgments
	AUTO_ACKNOWLEDGE
	The message producer’s perspective
	The message server’s perspective
	The message consumer’s perspective
	Message redelivery
	Point-to-point queues

	DUPS_OK_ACKNOWLEDGE
	CLIENT_ACKNOWLEDGE
	Grouping multiple messages

	Message Groups and Acknowledgment
	Handling Redelivery of Messages in an Application
	Message Groups Example
	Message Grouping and Multiple Receivers

	Transacted Messages
	Creating and Using a JMS Transaction
	Transacted Session Example
	Distributed Transactions

	Lost Connections
	The ExceptionListener Example

	Dead Message Queues

	Chapter 8. Java EE and Message-Driven Beans
	Java EE Overview
	Enterprise JavaBeans

	Enterprise JavaBeans 3.0 (EJB3) Overview
	Simplified Bean Development
	Dependency Injection
	Simplified Callback Methods
	Programmatic Defaults
	Interceptors
	Java Persistence API

	JMS Resources in Java EE
	The JNDI Environment Naming Context (ENC)

	Message-Driven Beans
	Concurrent Processing and Scalability
	Defining Message-Driven Beans

	Message-Driven Bean Use Cases
	Message Facade
	Transformation and Routing

	Chapter 9. Spring and JMS
	Spring Messaging Architecture
	JmsTemplate Overview
	Send Methods
	convertAndSend Methods
	receive and receiveSelected Methods
	receiveAndConvert Methods

	Connection Factories and JMS Destinations
	Using JNDI
	Using Native Classes

	Sending Messages
	Using the send Method
	Using the convertAndSend Method
	Using a Nondefault JMS Destination

	Receiving Messages Synchronously
	Message-Driven POJOs
	The Spring Message Listener Container
	MDP Option 1: Using the MessageListener Interface
	MDP Option 2: Using the SessionAwareMessageListener Interface
	MDP Option 3: Using the MessageListenerAdapter
	Default message handler method
	Custom message handler method

	Message Conversion Limitations

	The Spring JMS Namespace
	<jms:listener-container> Element Properties
	<jms:listener> Element Properties

	Chapter 10. Deployment Considerations
	Performance, Scalability, and Reliability
	Determining Message Throughput Requirements
	Testing the Real-World Scenario
	Testing with one client
	Send rate versus receive rate
	Determining hardware requirements
	Finding or building a test bed
	Long duration reliability
	Memory leaks

	To Multicast or Not to Multicast
	TCP/IP
	UDP
	IP Multicast
	Messaging Over IP Multicast
	Duplication, ordering, and reliability of messages
	Centralized and decentralized architectures
	Network routers and firewalls
	Some vendors support both centralized and decentralized architectures

	The Bottom Line

	Security
	Authentication
	Authorization
	Secure Communication
	Firewalls and HTTP Tunneling

	Connecting to the Outside World
	Bridging to Other Messaging Systems

	Chapter 11. Messaging Design Considerations
	Internal Versus External Destination
	Internal Destination Topology
	External Destination Topology

	Request/Reply Messaging Design
	Messaging Design Anti-Patterns
	Single-Purpose Queue
	Message Priority Overuse
	Message Header Misuse

	Appendix A. The Java Message Service API
	Message Interfaces
	BytesMessage
	MapMessage
	Message
	ObjectMessage
	StreamMessage
	TextMessage

	Common Facilities
	ConnectionMetaData
	DeliveryMode
	ExceptionListener
	JMSException
	MessageListener

	Common API
	Connection
	ConnectionFactory
	Destination
	MessageConsumer
	MessageProducer
	Session

	Point-to-Point API
	Queue
	QueueBrowser
	QueueConnection
	QueueConnectionFactory
	QueueReceiver
	QueueRequestor
	QueueSender
	QueueSession
	TemporaryQueue

	Publish-and-Subscribe API
	TemporaryTopic
	Topic
	TopicConnection
	TopicConnectionFactory
	TopicPublisher
	TopicRequestor
	TopicSession
	TopicSubscriber

	Appendix B. Message Headers
	JMSDestination
	JMSDeliveryMode
	JMSMessageID
	JMSTimestamp
	JMSExpiration
	JMSRedelivered
	JMSPriority
	JMSReplyTo
	JMSCorrelationID
	JMSType

	Appendix C. Message Properties
	Property Names
	Property Values
	Immutable Properties
	Property Value Conversion
	Nonexistent Properties
	Property Iteration
	JMS-Defined Properties
	Optional JMS-Defined Properties
	Group JMS-Defined Properties

	Provider-Specific Properties

	Appendix D. Installing and Configuring ActiveMQ
	Installing ActiveMQ
	Configuring ActiveMQ for JNDI
	Configuration For Chat Examples
	Configuration for P2P Examples
	Configuration for Pub/Sub Examples
	Configuration for Spring JMS Examples

	Index

