
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Java	EE	7	Performance	Tuning	and
Optimization

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

Java	EE	7	Performance	Tuning	and	Optimization

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Getting	Started	with	Performance	Tuning

Understanding	the	art	of	performance	tuning

Understanding	performance	issues

Classifying	performance	issues	by	the	discovery	phase

Requirement	phase	and	design-time	issues

Development-time	issues

Testing-time	issues

Production-time	issues

www.allitebooks.com

http://www.allitebooks.org

Classifying	performance	issues	by	the	root	phase

Requirement	phase	issues

Design/architecture	phase	issues

Development	phase	issues

Testing	phase	issues

Operational	and	environmental-specific	issues

Performance-handling	tactics

Proactive	measures	(preventive)

Reactive	measures	(curative)

Understanding	the	different	layers	of	an	enterprise	application

The	three	pillars	required	for	performance	tuning

Define	the	performance	process

Getting	ready	with	the	required	performance	tools

Being	ready	to	deal	with	performance	issues	at	any	time

The	cycle	of	learning

Tuning	yourself	before	tuning	the	application

Be	a	true	leader

Use	your	power

Be	responsible

Trust	your	team

Keep	it	simple

Respect	roles	and	responsibilities

Understand	the	application	domain	and	context

Protect	your	reputation

Standalone	applications	versus	web	applications

The	standalone	application

Thick	client	application	–	client-server	model

Thin	client	application	–	web-based	model

Dealing	with	web	applications’	performance	tuning

The	two	dimensions	of	web	applications’	performance	tuning

Horizontal	dimension	(node-to-node)

www.allitebooks.com

http://www.allitebooks.org

Vertical	dimension	(intranode)

Exploring	vertical	dimension	nodes	in	horizontal	dimension	nodes

Client	side

Network	components

HTTP	servers	(web	servers)

Application	servers

Database	servers

Middleware	integration	servers

Operating	system	and	hardware

CPU	utilization

Network	traffic

Memory	usage

Storage	I/O	performance

Summary

2.	Understanding	Java	Fundamentals

Discussing	the	new	Java	EE	7	features

Bean	Validation	1.1	(JSR	349)

Java	API	for	JSON	processing	–	JSON-P	1.0	(JSR	353)

Java	API	for	RESTful	web	services	–	JAX-RS	2.0	(JSR	339)

Java	Servlet	3.1	(JSR	340)

Context	and	Dependency	Injection	–	CDI	1.1	(JSR	346)

Interceptors	1.2	(JSR	318)

Enterprise	JavaBeans	–	EJB	3.2	(JSR	345)

Java	Message	Service	–	JMS	2.0	(JSR	343)

Concurrency	Utilities	1.0	(JSR	236)

Batch	Applications	1.0	(JSR	352)

Java	Persistence	APIs	–	JPA	2.1	(JSR	338)

JavaServer	Faces	–	JSF	2.2	(JSR	344)

Expression	language	3.0	(JSR	341)

Java	Transaction	APIs	–	JTA	1.2	(JSR	907)

Java	API	for	WebSocket	1.0	(JSR	356)

www.allitebooks.com

http://www.allitebooks.org

Understanding	memory	structure	in	the	JVM

The	JVM	specifications

Heap	area

Method	area	and	runtime	constant	pool

JVM	stack

Native	method	stacks	(C	stacks)

PC	registers

Memory	structure	in	the	Java	HotSpot	virtual	machine

Generational	memory	structure

The	Java	HotSpot	virtual	machine	generations

Understanding	the	Java	garbage	collection	policies

Different	GC	options

Concurrent	versus	stop-the-world

Serial	versus	parallel	collector

Compacting	versus	non-compacting

Summary	phase

Compacting	phase

The	Garbage-first	collector	–	G1

Different	application	scopes

Understanding	concurrency	in	Java

Process	versus	thread

Exploring	an	object	monitor

Using	the	Java	concurrency	utilities

Creating	a	thread	pool

Using	explicit	locking	with	the	Lock	interface

Concurrent	resources	and	utilities

The	ManagedExecutorService	class

The	ManagedScheduledExecutorService	class

The	ManagedThreadFactory	class

The	important	Java	EE	concurrency	features

The	SingleThreadModel	interface

www.allitebooks.com

http://www.allitebooks.org

Asynchronous	servlet	and	filter

The	new	Java	EE	non-blocking	I/O	APIs

Session	beans	asynchronous	method	invocation

A	singleton	session	bean

Sending	asynchronous	JMS	messages

More	information	about	Java	EE	7

Summary

3.	Getting	Familiar	with	Performance	Testing

Dissecting	performance	testing

Exploring	performance	testing	aspects

Selecting	the	performance	test	environment

Project	milestones	and	performance

Defining	different	rules	and	responsibilities

Performance	testing	types

Load	testing

Stress	testing

Capacity	testing

Performance	testing	components

Test	data

Test	users

Test	scenarios

Preparing	the	test	environment	prior	to	test	execution

Test	automation

Test	quality	assurance

Performance	testing	tools

Performance	benchmarking	and	baseline

Isolation	testing

Performance	fixing	cycle

When	to	stop	tuning?

Performance	testing	terminologies

Performance	testing	in	a	cloud	environment

www.allitebooks.com

http://www.allitebooks.org

Starting	with	Apache	JMeter

Different	components	of	the	JMeter	test	plan

The	execution	order	of	components

Testing	with	JMeter

Using	JMeter	to	test	web	services

Creating	a	thread	group

Creating	the	SOAP	sampler

Creating	listeners

Adding	an	assertion	on	response

Adding	the	CSV	dataset	configuration

Getting	the	final	results

Using	JMeter	to	test	a	web	application

Recording	our	testing	scenarios

Creating	thread	groups

Creating	a	configuration	element

Creating	a	recording	controller

Creating	a	workbench	server	(HTTP(s)	Test	Script	Recorder)

Updating	browser	settings

Start	recording	our	journeys/scenarios

Adding	cookie	control

Adding	a	CSV	dataset

Adding	variables	to	our	requests

Adding	suitable	thinking	time

Adding	response	assertions

Adding	results	view

Executing	our	test	plan	and	getting	the	results

Using	JMeter	to	test	database	scripts

Configuring	the	JDBC	connection

Adding	a	JDBC	request	sampler

Adding	a	CSV	dataset	configuration

Adding	listeners	to	capture	test	results

www.allitebooks.com

http://www.allitebooks.org

Summary

4.	Monitoring	Java	Applications

Exploring	the	Java	monitoring	tools

The	operating	system	monitoring	tools

The	Microsoft	Windows	tools

The	Unix/Linux	tools

An	example	of	high	CPU	utilization

The	Java	monitoring	tools

The	JDK	monitoring	tools

The	monitoring	tools	for	application	servers

The	IDE	monitoring	tools

The	standalone	monitoring	tools

The	multifunction	monitoring	tools

Understanding	the	profiling	tools

Profilers	modes

JVM	TI

Profiler	agent

The	command-line	options

Agent	start-up

Different	profiling	patterns

What	we	need	to	know	from	this	section

Understanding	the	different	JDK	tools

The	monitoring	tool	for	Java	virtual	machine	statistics

The	JVM	memory	map	tool

The	Java	heap	analysis	tool

The	Java	monitoring	and	management	console	tool

Java	VisualVM

Oracle	Java	Mission	Control

Starting	with	the	NetBeans	profiler

The	NetBeans	profiler	calibration

Using	the	NetBeans	profiler

www.allitebooks.com

http://www.allitebooks.org

The	Eclipse	tools/plugins

The	JVM	monitor

The	Test	and	Performance	Tools	Platform

Advanced	profiler	–	JProfiler

Using	the	offline	profiling	mode

Building	our	script	using	JProfiler	triggers

Further	reading

Summary

5.	Recognizing	Common	Performance	Issues

Going	through	a	slow	response	time	umbrella

Isolating	the	issue

Client	side

HTTP	server	side	(web	servers)

Application	server	issue

Database	server	issue

Integrated	systems

Networking	components

Code	and	script	analysis

Profiling	the	application

Common	performance	issues

Threading	performance	issues

Memory	performance	issues

Algorithmic	performance	issues

Work	as	designed	performance	issues

Interfacing	performance	issues

Miscellaneous	performance	issues

Fake	performance	issues

Threading	performance	issues

Blocking	threads

Performance	symptoms

An	example	of	thread	blocking

Thread	deadlock

Memory	performance	issues

Memory	leakage

Performance	symptoms

An	example	of	memory	leakage

Improper	data	caching

Improper	caching	issue	types

No	caching	(disabled	caching)

Too	small	caching	size

Too	big	caching	size

Using	the	wrong	caching	policy

Performance	symptoms

An	example	of	improper	caching	techniques

Work	as	designed	performance	issues

Synchronous	where	asynchronous	is	required

Performance	symptoms

An	example	of	improper	synchronous	code

Neglecting	remoteness

Performance	symptoms

An	example	of	using	remote	calls	as	local	calls

Excessive	serialization	performance	impact

Performance	symptoms

An	example	of	excessive	serialization

Object	size	impact

Web	services	granularity	impact

Selected	performance	issues

Unnecessary	application	logic

Excessive	application	logging

Database	performance	issues

Missing	proactive	tuning

Client-side	performance	issues

Chrome	developer	tools

Network	analysis

JavaScript	profiling

Speed	Tracer

Internet	Explorer	developer	tools

Firefox	developer	tools

Navigating	time	specifications

Summary

6.	CPU	Time	Profiling

When	to	use	CPU	profiling

Different	CPU	profiling	options

Using	a	NetBeans	profiler

Profiling	a	Java	application

Profiling	a	web	application

Using	Java	Mission	Control	(JMC)

Using	JProfiler

Reading	and	interpreting	CPU	profiling	results

The	call	tree	view

The	HotSpots	view

Analyzing	the	method	time	versus	the	method	invocation	count

The	hot	spot	method	types

Methods	with	high	self-time

Methods	with	high	invocation	events

Methods	with	high	self-time	and	invocation	events

Identifying	a	hot	spot	type

Identifying	potential	performance	issues

Algorithmic/logic	issues

Caching	issues

Resourcing	issues

Threading	issues

Fixing	algorithmic/logic	performance

Simple	algorithmic	evaluation

Evaluating	an	algorithm’s	complexity

Our	first	performance	fixing	strategy

Fixing	the	application	logic/algorithm

Adding	support	for	caching

Optimizing	the	performance	of	resources

Implementing	concurrency	or	multithreading

Using	asynchronous	methods

Summary

7.	Thread	Profiling

Determining	when	to	use	thread	profiling

Exploring	the	different	thread	profiling	options

Thread	monitoring	using	NetBeans

Thread	monitoring	using	JProfiler

Thread	monitoring	using	Java	Mission	Control

Reading	the	thread	profiling	results

Dealing	with	thread	dumps

Taking	a	thread	dump	using	the	operating	system	commands

Using	the	keyboard	shortcut	Ctrl	+	Pause	Break

Sending	SIGQUIT	to	the	Java	process

Taking	a	thread	dump	using	the	JDK	tools

Thread	dump	using	jstack

Thread	dump	using	the	Java	VisualVM

Taking	thread	dumps	using	an	application’s	server	admin	console/tools

Taking	a	thread	dump	using	profiler	tools

Reading	and	analyzing	the	thread	dumps

Understanding	the	thread	dump	structure

Analyzing	the	thread	dumps

Using	Thread	Dump	Analyzer

Exploring	potential	threading	issues

Threading	performance	issues

Threading	deadlock

Blocked/starving/stuck	threads

Low/over	threading

Threading	memory	issues

Using	unmanaged	threads

Detecting	the	root	cause	of	a	hung	application

Detecting	the	hang	location	using	thread	dumps

Detecting	the	hang	location	using	profilers

Enhancing	our	fixing	strategy

Fixing	thread	deadlocks	and	thread	blocking

Summary

8.	Memory	Profiling

When	to	use	memory	profiling?

Different	memory	profiling	options

Memory	profiling	using	NetBeans

Memory	profiling	using	JProfiler

Analyzing	memory	profiling	results

Analyzing	memory	space	graphs

Analyzing	detailed	object	statistics

Analyzing	garbage	collection	activity	logs	(HotSpot	JVM)

Reading	garbage	collection	activity	logs	(HotSpot	VM)

Visualizing	the	garbage	collection	activity

Dealing	with	memory	heap	dumps

Taking	heap	dumps	on	the	occurrence	of	JVM	OutOfMemoryError

Taking	heap	dumps	using	the	JDK	tools

Taking	heap	dump	using	jmap

Taking	heap	dumps	using	Java	VisualVM

Taking	heap	dumps	using	the	JRockit	command	utility

Taking	heap	dumps	using	the	profiler	tools

Taking	heap	dumps	using	the	NetBeans	profiler

Taking	heap	dumps	using	Eclipse	Memory	Analyzer	Tool	(MAT)

Taking	heap	dumps	using	JProfiler

Analyzing	the	heap	dump

Navigating	inside	a	heap	dump	using	visual	tools

Query	heap	dumps	using	OQL

Using	simple	OQL	queries

Using	OQL	built-in	objects	and	functions

Using	a	built-in	heap	object

Using	built-in	functions	on	individual	objects

Potential	memory	performance	issues

Application	memory	leakage	(session	leakage	versus	global	leakage)

Improper	caching	implementation

Memory	issues	of	objects	that	contain	the	finalize()	method

Invalid	contract	for	the	equals()	and	hashCode()	methods

Different	reasons	for	OOME

Adding	memory	performance	issues	to	our	fixing	strategy

Fixing	memory	leakage	issues

Summary

9.	Tuning	an	Application’s	Environment

Understanding	environment	tuning

Tuning	the	JVM

Tuning	the	Java	HotSpot	virtual	machine

Understanding	the	different	types	of	the	JVM	parameters

Selecting	the	HotSpot	JVM	type

Tuning	memory	size

Tuning	garbage	collection

Using	proper	garbage	collection	policy

Setting	GC	performance	targets

Tuning	the	JRockit	virtual	machine

Tuning	JRockit	memory	size

Tuning	JRockit	garbage	collection

Tuning	application	servers

Tuning	the	Oracle	GlassFish	application	server

Deployment	tuning	options

Web	container	tuning	options

EJB	container	tuning	options

Thread	pool	tuning	options

JDBC	connection	pool	tuning	options

Tuning	file	cache	components

Tuning	DNS	caching

Tuning	logging	information

Tuning	the	Oracle	Weblogic	application	server

Tuning	the	internal	applications’	deployment

Tuning	network	components

Tuning	stuck	thread	configuration

Tuning	web	servers	(HTTP	servers)

Tuning	the	Apache	web	server	(Apache	HTTP	server)

Tuning	the	Oracle	web	server	(Oracle	HTTP	server)

Tuning	the	operating	system	and	hardware

Capacity	planning	and	hardware	optimization

Operating	system	configurations	optimization

Summary

10.	Designing	High-performance	Enterprise	Applications

Potential	performance	impact	of	different	design	decisions

Potential	performance	impact	of	the	application	layer’s	decisions

Potential	performance	impact	of	a	component’s	selection	decisions

Potential	performance	impact	of	integration	decisions

Potential	performance	impact	of	security	decisions

Potential	performance	impact	of	framework	and	UI	decisions

Potential	performance	impact	of	application	interaction	decisions

Potential	performance	impact	of	regulatory	decisions

Potential	performance	impact	of	some	miscellaneous	decisions

Avoiding	performance	anti-patterns

Performance	aspects	of	Service	Oriented	Architecture	(SOA)

Performance	aspects	of	Resource	Oriented	Architecture	(ROA)

Dissecting	performance	aspects	of	data	caching

Data	caching	versus	no	caching

Caching	concurrency	and	performance

Different	levels	of	application	data	caching

Caching	an	invalidation/expiration	algorithm

Caching	data	store	interaction

Caching	replacement	policies

Data	caching	performance	evaluation

Performance	considerations	in	cloud	deployment

Summary

11.	Performance	Tuning	Tips

Performance	and	development	processes

Agile	and	performance

Performance	and	test-driven	development	(TDD)

Manual	and	automated	code	review

Java	EE	performance	tuning	tips

Web	service	(WS)	performance	tuning	tips

EJB	performance	tuning	tips

Servlets	and	JSP	performance	tuning	tips

JSF	performance	tuning	tips

JPA	performance	tuning	tips

Java	performance	tuning	tips

String	manipulation	performance	tuning	tips

String	creation	tips

String	concatenation	tips

The	JVM	String	tuning	parameters

Java	collections	and	performance

Using	synchronized	blocks

The	I/O	operations	and	performance

Exception	handling	and	performance

Application	logging	and	performance

Using	the	javap	tool	to	understand	micro-optimizations

Database	performance	tuning	tips

Client-side	optimization

Summary

12.	Tuning	a	Sample	Application

Reaching	our	final	destination

Setting	up	the	ExcellentSurvey	application

Functional	overview	of	the	ExcellentSurvey	application

ExcellentSurvey	performance	assessment

Performance	investigation	plan

Profiling	our	ExcellentSurvey	application

Getting	CPU	profiling	results

Getting	memory	and	thread	profiling	results

Getting	database	CPU	profiling	results

Profiling	performance	findings

Detected	HotSpot	methods

Detected	HotSpot	database	statements

Potential	wrong	logic	issues

ExcellentSurvey	issues	and	possible	resolutions

Fixing	the	EmailSender.sendEmail()	HotSpot	method

Fixing	the	DAOHelper.createNewSurvey()	HotSpot	method

Fixing	the	LoginFilter.log()	HotSpot	method

Fixing	the	HotSpot	autogen	table	update	statement

Fixing	HotSpot	statements	to	insert	questions	and	survey	questions

Fixing	HotSpot	queries	that	get	the	notification	templates/question	rating	types

Fixing	the	HotSpot	query	that	counts	user	surveys

Performance	code	review

Testing	the	application	after	our	fixes

Result	and	conclusion

Summary

Index

www.allitebooks.com

http://www.allitebooks.org

Java	EE	7	Performance	Tuning	and
Optimization

Java	EE	7	Performance	Tuning	and
Optimization
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	June	2014

Production	reference:	1160614

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78217-642-8

www.packtpub.com

Cover	image	by	Sean	FitzGerald	(<sfitzgerald@sfitzgerald.com>)

http://www.packtpub.com
mailto:sfitzgerald@sfitzgerald.com

Credits
Author

Osama	Oransa

Reviewers

E.P.	Ramakrishnan

Chirag	Sangani

Deepak	Vohra

Jeff	Zhang

Commissioning	Editor

Mary	Jasmine	Nadar

Acquisition	Editor

Nikhil	Karkal

Content	Development	Editor

Dayan	Hyames

Technical	Editors

Novina	Kewalramani

Humera	Shaikh

Copy	Editors

Alisha	Aranha

Roshni	Banerjee

Adithi	Shetty

Project	Coordinator

Priyanka	Goel

Proofreaders

Simran	Bhogal

Maria	Gould

Ameesha	Green

Paul	Hindle

Indexers

Mehreen	Deshmukh

Rekha	Nair

Tejal	Soni

Priya	Subramani

Graphics

Sheetal	Aute

Ronak	Dhruv

Disha	Haria

Abhinash	Sahu

Production	Coordinator

Manu	Joseph

Cover	Work

Manu	Joseph

About	the	Author
Osama	Oransa	is	an	IT	solution	architect	with	more	than	12	years	of	solid	technical
experience	in	Java	EE.	He	is	a	certified	Java	enterprise	architect	and	an	SME	in	web
services	technology.	He	has	worked	for	most	of	the	key	players	in	the	IT	industry,	such	as
IBM,	Oracle,	and	Hewlett	Packard.	He	previously	worked	as	a	performance	consultant	at
DevFactory,	and	he	is	currently	working	with	the	Vodafone	Group	as	a	solution	architect.
He	has	also	participated	in	establishing	Pulse	Corp	as	a	medical	software	services
company	in	Egypt.

He	has	a	diploma	in	IT	from	the	Information	Technology	Institute	(ITI)	and	a	diploma	in
CS	from	the	Arab	Academy	for	Science,	Technology	and	Maritime	Transport	(AASTM).
He	is	currently	working	towards	a	Master’s	degree	in	CS.	Being	from	Cairo,	he	is	a
frequent	speaker	at	the	Java	Developer	Conference	(JDC)	in	Cairo.

In	2010,	one	of	his	projects	in	Pulse	Corp,	“Health	Intact”,	won	Oracle	Duke’s	Choice
Award.	He	is	the	founder	of	more	than	12	open	source	projects	hosted	on	SourceForge.	He
has	also	been	selected	by	Oracle	for	the	future	of	the	Java	campaign	for	his	valuable
contribution	to	the	industry.

He	is	a	volunteer	Java	technology	evangelist	who	gives	technical	sessions	at	different
companies,	conferences,	and	on	blogs.	His	technical	blog	can	be	found	at	http://osama-
oransa.blogspot.com/.

http://osama-oransa.blogspot.com/

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments
After	more	than	17	years	since	my	first	IT	book	on	the	Assembly	language,	I	got	the
chance	to	write	my	second	book.	It	was	really	a	nice	experience	to	deal	with	the	wonderful
people	at	Packt	Publishing.	After	thanking	my	God,	I	would	like	to	thank	my	parents	and
my	wife	for	their	full	support	while	writing	this	book.

Special	thanks	to	Reshma	Raman,	the	Author	Acquisition	Executive	who	contacted	me	to
write	this	book.

I	would	like	to	thank	Priyanka	Goel,	the	Project	Coordinator	who	helped	me	to	deliver	the
book	following	the	agreed	timeline	and	who	gave	me	her	full	support.

I	would	like	to	thank	Nikhil	Karkal,	the	Acquisition	Editor,	for	his	support	in	the	early,
critical	phases	of	the	book	and	his	continuous	efforts	in	providing	me	with	the	proper
guidelines.

I	would	like	to	thank	Dayan	Hyames,	the	Lead	Technical	Editor,	for	his	efforts	in
reviewing	the	content	of	this	book	and	guiding	me	to	provide	the	best	outcome.

I	would	like	to	thank	the	technical	reviewers	E.P.	Ramakrishnan,	Chirag	Sangani,	Deepak
Vohra,	and	Jeff	Zhang,	who	caught	my	errors	and	provided	me	with	very	constructive	and
valuable	comments	to	enhance	the	content	of	this	book.

I	would	like	to	thank	the	technical	editors	Novina	Kewalramani	and	Humera	Shaikh	for
their	tremendous	efforts	in	the	book.

Finally,	thanks	goes	to	all	the	people	who	participated	in	this	book	who	I	don’t	know	by
name—without	you,	this	book	wouldn’t	see	the	light.	Thank	you!

About	the	Reviewers
E.P.	Ramakrishnan	is	an	enthusiastic	developer	and	a	technical	writer.	He	earned	his
postgraduate	degree	in	Computer	Science	and	Engineering	from	Anna	University,	Tamil
Nadu,	India.	He	has	a	steady	industry	exposure	of	6	years.	His	areas	of	expertise	include
Java	Server	Faces	(JSF),	the	Java	Persistence	API,	CDI,	RESTful	Services,	Swings,
Tomcat	Clustering,	and	load	balancing.	Also,	his	areas	of	interest	are	Linux,	Android,	and
systems	security.	Besides	development,	his	major	interest	lies	in	writing	technical	blogs
which	simplify	the	latest	technologies	for	beginners.	You	are	welcome	to	visit	his	blog	at
http://www.ramkitech.com	and	give	your	feedback.	He	can	be	reached	at
<ramkicse@gmail.com>.

Chirag	Sangani	is	a	computer	scientist	living	in	the	Seattle	area.	He	holds	an	MS	degree
in	Computer	Science	from	Stanford	University	and	a	B.Tech	degree	in	Computer	Science
and	Engineering	from	the	Indian	Institute	of	Technology,	Kanpur.

An	exposure	to	computers	since	his	early	childhood	has	allowed	Chirag	to	explore	his
varied	interests	while	witnessing	the	birth	of	the	Internet.	He	has	dedicated	the	last	10
years	to	perfecting	his	skills	while	simultaneously	diving	deep	into	computer	science
theory.

He	has	had	varied	interests	and	experiences—from	computer	architecture	to	networking,
distributed	systems	to	machine	learning	and	data	mining,	complexity	theory	to
cryptography,	and	mobile	and	web	development	to	3D	game	design.	He	has	found	that
merging	different	fields	of	computer	science	allows	for	a	holistic	approach	towards
solving	any	problem.	He	currently	works	for	Microsoft.

Deepak	Vohra	is	a	consultant	and	a	principal	member	of	the	NuBean.com	software
company.	He	is	a	Sun	certified	Java	programmer	and	web	component	developer,	and	he
has	worked	in	the	fields	of	XML,	Java	programming,	and	Java	EE	for	over	5	years.
Deepak	is	the	co-author	of	the	Apress	book	Pro	XML	Development	with	Java	Technology,
and	he	is	the	technical	reviewer	for	the	O’Reilly	book	WebLogic:	The	Definitive	Guide.
He	is	also	the	technical	reviewer	for	the	Course	Technology	PTR	book	Ruby
Programming	for	the	Absolute	Beginner.	He	is	also	the	author	of	the	Packt	Publishing
books	JDBC	4.0	and	Oracle	JDeveloper	for	J2EE	Development,	Processing	XML
Documents	with	Oracle	JDeveloper	11g,	EJB	3.0	Database	Persistence	with	Oracle
Fusion	Middleware	11g,	and	Java	EE	Development	with	Eclipse	IDE.

Jeff	Zhang	started	working	with	middleware	software	in	2002.	He	joined	IONA	and
worked	on	Corba	and	web	service	products.	In	2008,	Jeff	entered	Redhat	and	became	core
developer	of	the	JBossAS	team.

After	more	than	10	years	of	working	on	middleware,	Jeff	has	learned	a	lot	about
application	servers,	PAAS,	containers,	and	services.	He	believes	that	mobile	technology
and	the	Internet	will	change	people’s	lives.

I	would	like	to	thank	the	author	who	has	written	a	great	book.	Thanks	goes	to	Priyanka
Goel	and	Aurita	D’souza	for	their	help	in	the	reviewing	stage.

http://www.ramkitech.com
mailto:ramkicse@gmail.com

Thanks	also	goes	to	my	wife	and	my	son—your	support	is	most	important.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

	

To	my	dear	parents,	the	owners	of	all	my	life	achievements.

To	my	lovely	wife,	Rasha,	the	angel	of	my	life.

To	my	diamond	daughters—the	best	gifts	in	my	life—Judy	and	Kenzy.

	

	 —Osama	Oransa

http://www.PacktPub.com

www.allitebooks.com

http://www.allitebooks.org

Preface
Performance	tuning	is	one	of	the	biggest	challenges	in	dealing	with	the	Java	Enterprise
applications,	where	each	delay	in	response	to	the	customer	might	cause	the	enterprise	to
lose	valuable	customers.	In	particular,	during	marketing	campaigns,	such	as	launching	a
new	product,	the	load	over	the	application	jumps	to	a	peak.	It	is	common	to	see	some
enterprise	applications	that	do	not	respond	to	customers!	If	such	a	thing	happens	and	the
application	cannot	withstand	such	load,	it	will	not	only	lead	to	a	loss	of	the	expected	sales,
but	also	destroy	the	reputation	of	the	enterprise.

During	years	of	working	in	many	large	companies	with	different	enterprise	applications,
which	are	usually	composed	of	many	integrated	applications	that	are	provided	by	different
vendors,	many	challenges	have	contributed	to	the	performance	tuning	of	these
applications,	such	as	how	to	design	a	high	performing	application,	how	to	minimize	the
occurrences	of	performance	issues,	how	to	build	a	performance	team,	how	to	test	the
application	performance	efficiently,	how	to	create	an	investigation	plan,	and	many	other
questions	that	need	to	be	answered	correctly.	We	tried	to	address	these	questions	and
others	in	this	book,	aiming	to	help	establish	a	clear,	organized,	and	smooth	way	of	dealing
with	performance	tuning	of	enterprise	applications.

We	have	focused,	in	particular,	on	simplicity	and	clarity	to	remove	any	mystery	around	the
art	of	performance	tuning.	This	book	is	designed	in	a	progressive	pattern	where	each
chapter	represents	a	step	forward	towards	completing	the	complete	process	of	handling	the
performance	issues	from	end-to-end	in	any	enterprise	application,	starting	from	the
requirement	phase	to	the	production	support	phase.

Performance	tuning	activities	happen	usually	in	the	most	stressful	times	in	the	enterprise
application’s	life!	When	I	started	my	work	in	performance	tuning,	it	was	the	task	that	I
needed	to	accomplish	as	soon	as	possible.	This	led	to	an	unnecessary	increase	in	stress	and
tension.	Later,	I	learned	the	best	way	to	deal	with	performance	tuning;	dealing	with	it	as
an	art	and	enjoying	the	work	in	performance	tasks	(just	like	painting	a	picture	or
completing	a	puzzle).	It	is	an	art	that	we	need	to	respect	and	enjoy.	In	this	book,	we	will
try	to	cover	all	the	required	details	to	understand	performance	tuning	and	the	best	way	to
deal	with	this	art.

Dealing	with	performance	tuning	as	an	art	and	organizing	our	thoughts	are	the	most
important	concepts	here,	and	are	also	the	most	helpful	factors	(other	than	the	person’s
luck!).	Spending	months	to	write	this	book	and	organizing	its	different	sections	was	a	very
challenging	procedure,	in	particular,	to	establish	a	well-defined,	organized	way	of	dealing
with	performance	tuning—starting	from	the	knowledge,	which	is	considered	as	our	solid
foundation	here,	up	to	the	strategic	thinking.	While	dealing	with	these	issues,	establishing
and	finding	this	thinking	strategy	is	much	more	important	than	having	a	look-up	book	that
describes	each	problem	and	the	possible	resolution.	This	thinking	strategy	along	with	the
required	skills	and	mastery	of	different	tools	will	provide	the	best	way	to	guarantee	the
resolution	of	any	new	performance	issues	whenever	this	strategy	is	strictly	followed.

In	addition	to	that,	Java	Enterprise	Edition	7	(Java	EE	7)	platform	introduced	a	lot	of	new

features	and	improvements	that	enterprise	applications	can	benefit	from	performance
perspective.	This	is	a	part	of	our	essential	knowledge	to	work	in	performance	tuning	of
Java	EE	7	applications.

Because	of	all	of	this,	I	encourage	you	to	go	through	this	book	chapter	by	chapter,	be
patient	and	read	the	book	to	the	end,	download	the	required	tools,	and	practice	all	the
examples	to	gain	the	maximum	value	from	this	book.

What	this	book	covers
Chapter	1,	Getting	Started	with	Performance	Tuning,	takes	you	through	the	art	of
performance	tuning	with	its	different	components	and	shows	you	how	to	think	when	we
face	any	performance	issue.	It	focuses	on	preparing	you	to	deal	with	the	world	of
performance	tuning	and	defining	the	handling	tactics.

Chapter	2,	Understanding	Java	Fundamentals,	lays	the	foundation	of	required	knowledge
of	the	new	features	in	Java	Enterprise	Edition	7	and	different	important	Java	concepts,
including	the	JVM	memory	structure	and	Java	concurrency.	It	also	focuses	on	the	different
Java	Enterprise	Edition	concurrency	capabilities.

Chapter	3,	Getting	Familiar	with	Performance	Testing,	discusses	performance	testing	with
its	different	components,	defines	useful	terminologies	that	you	need	to	be	aware	of,	and
then	gives	hands-on	information	about	using	Apache	JMeter	to	create	your	performance
test	plans	for	different	components	and	get	the	results.

Chapter	4,	Monitoring	Java	Applications,	dissects	the	different	monitoring	tools	that	will
be	used	in	performance	tuning,	starting	from	the	operating	system	tools,	different	IDE
tools,	JDK	tools,	and	standalone	tools.	It	covers	JProfiler	as	an	advanced	profiling	tool
with	its	offline	profiling	capabilities.

Chapter	5,	Recognizing	Common	Performance	Issues,	discusses	the	most	common
performance	issues,	classifies	them,	describes	the	symptoms,	and	analyzes	the	possible
root	causes.

Chapter	6,	CPU	Time	Profiling,	focuses	on	the	details	of	getting	the	CPU	and	time
profiling	results,	ways	to	interpret	the	results,	and	ways	to	handle	such	issues.	It	discusses
the	application	logic	performance	and	ways	to	evaluate	different	application	logics.	It
provides	the	initial	performance	fixing	strategy.

Chapter	7,	Thread	Profiling,	discusses	thread	profiling	with	details	on	how	to	read	and
interpret	thread	profiling	results	and	how	to	handle	threading	issues.	It	also	highlights	the
ways	to	get,	use,	and	read	the	thread	dumps.

Chapter	8,	Memory	Profiling,	discusses	how	to	perform	memory	profiling,	how	to	read
and	interpret	the	results,	and	how	to	identify	and	handle	possible	issues.	It	also	shows	how
to	read	and	query	memory	heap	dumps	and	analyze	the	different	out	of	memory	root
causes.	The	chapter	finishes	your	draft	performance	fixing	strategy.

Chapter	9,	Tuning	an	Application’s	Environment,	focuses	on	tuning	the	application
environment,	starting	from	the	JVM	and	passing	through	other	elements	such	as	the
application	servers,	web	servers,	and	OS.	We	will	focus	on	selected	examples	for	each
layer	and	discuss	the	best	practices	for	tuning	them.

Chapter	10,	Designing	High-performance	Enterprise	Applications,	discusses	design	and
architecture	decisions	and	the	performance	impact.	This	includes	SOA,	REST,	cloud,	and
data	caching.	It	also	discusses	the	performance	anti-patterns.

Chapter	11,	Performance	Tuning	Tips,	highlights	the	performance	considerations	when

using	the	Agile	or	Test-driven	Development	methodologies.	This	chapter	also	discusses
some	performance	tuning	tips	that	are	essential	during	the	designing	and	development
stages	of	the	Java	EE	applications,	including	database	interaction,	logging,	exception
handling,	dealing	with	Java	collections,	and	others.	The	chapter	also	discusses	the	javap
tool	that	will	help	you	to	understand	the	compiled	code	in	a	better	way.

Chapter	12,	Tuning	a	Sample	Application,	includes	hands-on,	step-by-step	tuning	of	a
sample	application	that	has	some	performance	issues.	We	will	measure	the	application
performance	and	tune	the	application	issues,	and	re-evaluate	the	application	performance.

What	you	need	for	this	book
The	following	tools	should	be	downloaded	and	installed	on	your	machine,	as	we	will	be
using	them	throughout	the	book.	You	can	have	the	mentioned	versions	or	later	versions.
Some	additional	tools	will	also	be	required	in	some	chapters:

Java	JDK	jdk1.7.0_45	(or	later)
NetBeans	7.4	(or	later)
Glassfish	Version	4.0	(packaged	with	NetBeans	7.4)

You	can	download	the	JDK,	NetBeans,	and	GlassFish	from	the	following	URL:
http://www.oracle.com/technetwork/java/javase/downloads/jdk-7-netbeans-
download-432126.html

MySQL	Server	5.5	(or	later)

You	can	download	this	from	the	following	URL:
http://dev.mysql.com/downloads/mysql/

Eclipse	bundled	with	TPTP

You	can	download	this	from	the	following	URL:
http://www.eclipse.org/tptp/home/downloads/

Apache	JMeter	2.10

You	can	download	this	from	the	following	URL:
http://jmeter.apache.org/download_jmeter.cgi

JProfiler	8.x

You	can	download	this	from	the	following	URL:	http://www.ej-
technologies.com/download/jprofiler/files

If	you	do	not	have	a	license,	you	can	get	a	trial	evaluation	license	from	the	following
URL:	http://www.ej-technologies.com/download/jprofiler/trial

http://www.oracle.com/technetwork/java/javase/downloads/jdk-7-netbeans-download-432126.html
http://dev.mysql.com/downloads/mysql/
http://www.eclipse.org/tptp/home/downloads/
http://jmeter.apache.org/download_jmeter.cgi
http://www.ej-technologies.com/download/jprofiler/files
http://www.ej-technologies.com/download/jprofiler/trial

Who	this	book	is	for
This	book	is	for	experienced	Java	developers,	architects,	team	leaders,	consultants,
support	engineers,	and	all	people	working	in	the	performance	tuning	in	the	Java
applications,	and	particularly	in	Java	Enterprise	applications.

This	book	represents	a	strong	entry	point	for	the	persons	without	any	performance	tuning
experience	and	who	want	to	work	in	the	performance	tuning	in	the	Java	applications.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The
code	example	will	select	data	from	the	Employees	table.”

A	block	of	code	is	set	as	follows:

@NotNull

@Size(min=1,	max=12)

private	String	name;

@ValidEmail	

public	String	getEmailAddress()	{

		return	emailAddress;

}

Any	command-line	input	or	output	is	written	as	follows:

apache-jmeter-2.10\bin\jmeter.bat	(for	windows)

Or	jmeter.sh	(for	non-windows)

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes,	for	example,	appear	in	the	text	like	this:	“By	adding	it	at	the
Thread	Group	level,	we	ensure	that	all	HTTP	requests	share	the	same	cookies/session.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

www.allitebooks.com

http://www.allitebooks.org

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	a	PDF	file	that	has	color	images	of	the	screenshots	used	in	this	book.
You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/6428EN_ColorGraphics.pdf.

https://www.packtpub.com/sites/default/files/downloads/6428EN_ColorGraphics.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Chapter	1.	Getting	Started	with
Performance	Tuning
Before	we	start	digging	in	our	book	to	discuss	performance	tuning	in	Java	enterprise
applications,	we	need	to	first	understand	the	art	of	performance	tuning:	what	is	this	art?
Can	we	learn	it?	If	yes,	how?

In	this	chapter,	we	will	try	to	answer	these	questions	by	introducing	you	to	this	art	and
guiding	you	through	what	you	need	to	learn	to	be	able	to	master	this	art	and	handle
performance	issues	efficiently.

We	will	try	to	focus	more	on	how	to	prepare	yourself	to	deal	with	performance	tuning,	so
we	will	discuss	how	to	build	your	way	of	thinking	before	and	after	facing	performance
issues,	how	to	organize	your	thoughts,	and	how	to	lead	your	team	successfully	to	build	an
investigation	plan.

In	this	chapter,	we	will	cover	the	following	topics:

Understanding	the	art	of	performance	tuning
Understanding	performance	issues	and	possible	root	causes	from	a	software
engineering	perspective
Tactics	to	follow	when	dealing	with	performance	issues
The	difference	between	handling	standalone	and	web	applications	from	a
performance	perspective
How	to	troubleshoot	web	application	performance	issues

Understanding	the	art	of	performance
tuning
Performance	tuning	is	an	art.	Yes,	a	real	art,	and	fortunately	we	can	learn	this	art	because
it	is	based	on	science,	knowledge,	and	experience.	Like	any	artist	who	masters	the	art	of
drawing	a	good	picture	using	his	coloring	pencils,	we	need	to	master	our	tools	to	be	able
to	tune	the	performance	of	our	applications	as	well.

As	we	are	going	to	cover	performance	tuning	in	Java	Enterprise	Edition	7,	the	key	to
master	this	art	starts	from	understanding	the	basic	concepts	of	Java—what	are	the	different
capabilities	of	Java	EE	until	the	release	of	v7,	how	to	use	the	different	performance
diagnostic	tools	available,	and	finally	how	we	can	deal	with	different	performance	issues.

The	final	question	is	related	to	how	we	can	program	our	minds	to	deal	with	performance
issues,	and	how	we	will	build	our	own	tactics	to	address	these	performance	issues.	But	our
solid	land	here	is	our	knowledge	and	the	more	we	stand	on	solid	land	(that	is,	knowledge),
the	more	we	will	be	able	to	handle	these	performance	issues	efficiently	and	master	this
performance	tuning	art.

Of	course	with	our	continuous	dealing	with	different	performance	issues,	our	experience
will	grow	and	it	will	be	much	easier	to	draw	our	picture	even	with	a	few	set	of	colors	(that
is,	limited	tools).	The	following	diagram	shows	the	basic	components	of	Java	EE
performance	tuning	art:

As	shown	in	the	previous	diagram,	we	have	six	basic	components	to	master	the
performance	tuning	art	in	Java	EE;	four	of	them	are	related	to	our	knowledge	from	bottom
to	top:	Understand	environment	(like	OS),	Understand	Java/JVM,	Understand	Java
EE	(we	should	also	have	some	level	of	knowledge	of	the	framework	used	in	developing
the	application),	and	finally	Mastering	tools.

The	challenge	we	face	here	is	in	the	Way	of	thinking	element	where	we	usually	need	to
get	trained	under	an	expert	on	this	domain;	a	possible	alternative	for	this	is	to	read	books
or	tutorials	on	how	we	can	think	when	we	face	performance	issues	and	put	it	into	practice
bit	by	bit.

In	this	chapter,	our	focus	will	be	on	how	we	should	be	thinking	and	defining	our	tactics
when	we	deal	with	performance	issues	and	in	the	next	few	chapters,	we	will	apply	this
thinking	strategy	so	we	can	master	these	tactics.

There	are	other	factors	that	definitely	contribute	to	how	we	can	use	our	skills	and	affect
our	outcome;	this	includes,	for	example,	the	working	environment,	that	is,	different
constraints	and	policies.

If	we	are	not	able	to	access	the	performance	test	environment	to	set	up	the	required	tools,
we	would	have	a	high	rate	of	failure,	so	we	need	to	minimize	the	impact	of	such	a	risk
factor	by	having	complete	control	over	such	environments.

As	an	early	advice,	we	as	performance	experts,	should	lead	the	performance-related
decisions	and	remove	all	existing	constraints	that	can	potentially	affect	our	job.	We	should
know	that	no	one	will	really	point	to	any	condition	if	we	failed;	they	will	just	blame	us	for
not	taking	corrective	actions	for	these	bad	constraints	and	it	will	end	up	destroying	our
credibility.

	 “Don’t	ever	blame	conditions;	instead	do	your	best	to	change	them!” 	

	 —Osama	Oransa

One	important	thing	that	should	be	noted	here	is	that	if	for	any	reason	we	failed	to
improve	the	performance	of	an	application	or	discover	the	root	cause	of	some	performance
issues,	we	will	definitely	learn	something	that	should	contribute	to	our	accumulated
knowledge	and	experience,	which	is	“don’t	do	it	that	way	again!”.	Remember	the
following	famous	quote:

	 “I	have	not	failed.	I’ve	just	found	10,000	ways	that	won’t	work.” 	

	 —Thomas	Edison

When	people	get	overconfident,	they	are	easily	susceptible	to	failure	especially	when	they
don’t	stick	to	their	own	troubleshooting	process	and	follow	some	bad	practices;	one
famous	bad	practice	is	jumping	to	a	conclusion	early	without	any	real	evidence,	so	the
golden	advice	that	we	need	to	stress	on	here	is	to	always	try	to	stick	to	our	defined	process
(that	is,	the	way	of	thinking)	even	when	the	issue	is	really	obvious	to	us,	otherwise	it	will
end	up	being	a	big	failure!

Understanding	performance	issues
We	can	define	performance	tuning	issues	in	general	as	any	issue	that	causes	the
application	to	perform	outside	the	target	service-level	agreement.

Performance	issues	can	take	many	forms,	for	example,	increased	response	time	is	one	of
the	common	forms.	Let’s	list	a	few	forms	of	application	performance	issues,	as	follows:

Slow	transactional	response	with	or	without	application	workload
Failure	to	meet	the	processing	rate,	for	example,	1,000	submitted	orders	per	second
Failure	of	the	application	to	serve	the	required	number	of	concurrent	users
Non-responding	application	under	workload
Transactional	errors	during	application	workload,	which	could	be	reported	by
application	users	or	seen	in	the	application	logfiles
Mismatch	between	application	workload	and	resource	utilization,	for	example,	CPU
utilization	is	90	percent	with	a	few	users	or	memory	utilization	is	70	percent	even
during	no	user	activity
Abnormal	application	behavior	under	certain	conditions,	for	example,	the
application’s	response	slows	down	daily	at	midnight
All	other	aspects	of	application	failure	to	meet	functional	or	nonfunctional
requirements	under	workload

We	must	differentiate	between	the	application’s	consistent	slow	response,	and	sudden,
gradual,	or	intermittent	changes	of	an	application’s	response	to	be	more	sluggish	or
slower.

Having	a	design	issue	is	the	most	common	reason	behind	consistent	slow	behaviour,
which	is	usually	associated	with	missing	or	bad	quality	performance	tests	that	didn’t
discover	such	issues	early	on.	Dealing	with	these	issues	in	the	production	environment	is
very	difficult,	especially	if	they	affect	a	lot	of	users’	transactions.

The	other	types	of	sudden	or	gradual	deterioration	of	the	application	response	time	in
some	transactions	can	also	be	design	issues	but	in	most	cases,	it	requires	a	small	fix	(for
example,	configuration,	database	script,	or	code	fix),	and	usually	we	can	deploy	the	issue
resolution	in	the	production	environment	once	the	fix	is	tested	in	the	test	environment.

Note
User	transaction	here	refers	to	the	set	of	actions/interactions	in	a	single	scenario;	it	could
include	a	wizard	or	navigation	scenario	in	our	application	or	it	could	also	be	a	single
interaction	or	a	sequence	of	interactions.

For	example,	all	these	are	considered	to	be	user	transactions:	login,	add	to	basket,
checkout,	update	user	data,	and	so	on.

Unfortunately,	a	majority	of	performance	tuning	work	is	executed	in	a	production
environment,	where	the	situation	becomes	more	critical	and	the	environment	becomes
more	sensitive	to	major	changes.	When	we	deal	with	performance	tuning	of	such
applications,	we	should	push	the	transformation	to	the	correct	software	engineering	model

so	we	can	have	the	performance	testing	stage	in	place	to	catch	most	of	the	performance
issues	early	on	in	the	application	development	cycle.

Classifying	performance	issues	by	the	discovery
phase
If	we	classify	performance	issues	according	to	their	discovery	time	in	the	typical	waterfall
development	process,	we	can	see	the	following	main	categories:

Requirement	issues,	mainly	related	to	a	missing	or	unrealistic	service-level
agreement
Design	issues,	where	the	design	is	the	root	cause	of	these	issues
Development	issues,	such	as	not	following	best	coding	practices,	or	bad	coding
quality
Testing	issues,	such	as	missing	or	bad	quality	performance	testing
Operational	issues,	which	are	mainly	related	to	production	environment-specific
issues,	such	as	the	database	size	or	newly	introduced	system,	and	so	on

Requirement	phase	and	design-time	issues
The	best	location	to	discover	any	potential	performance	issue	is	at	the	design	stage	where
the	designer	can	reduce	the	cost	by	discovering	and	fixing	such	issues	in	later	steps	of	the
design	stage.

The	identification	of	performance	issues	here	means	highlighting	and	taking	into
consideration	some	critical	Service-Level	Agreements	(SLAs)	and	also	finding	possible
alternatives	for	any	technology/vendor	restrictions.

Note
An	SLA	is	part	of	a	service	contract	where	a	service	is	formally	defined;	it	describes	the
agreement	between	the	customer	and	the	service	provider(s).	SLAs	are	commonly	used	for
nonfunctional	requirements	like	performance	measurement,	disaster	recovery,	bug	fixing,
backup,	availability,	and	so	on.

Let’s	consider	the	following	example.

Let’s	assume	that	we	have	the	following	SLA	(nonfunctional	requirements)	in	our
requirement	document:

Under	the	workload	of	1,000	concurrent	users,	the	maximum	response	time	allowed
should	be	less	than	0.1	second	per	web	service	call.

The	preceding	SLA	seems	hard	to	achieve	under	workload	so	the	designer	should	be	doing
the	following	things:

Seeking	some	clarifications	on	what	is	meant	by	“workload”	here
Trying	to	work	around	the	SLA	by	adding,	for	example,	a	cache	to	such	web	services
Trying	to	develop	a	quick	Proof	Of	Concept	(POC)	to	get	early	figures	in	such	a
situation

Note
A	POC	is	simply	a	realization	of	a	certain	idea	to	assess	its	feasibility,	usually	small

and	not	completed.	In	our	situation,	we	need	to	assess	the	performance	of	using	such
a	technology	and	predict	if	an	SLA	can	be	achieved	or	not.

We	cannot	say	these	are	actual	performance	issues,	but	they	are	potential	performance
issues	that	will	violate	the	SLAs;	the	conclusion	here	is	that	the	designer	must	pay
attention	to	such	requirements	and	find	the	best	design	approach	for	similar	requirements,
which	should	be	reflected	in	all	the	application	layers.	Such	requirements,	if	not	taken	into
consideration	earlier,	should	still	be	caught	later	in	the	performance	testing	phase,	but	it
will	be	too	late	for	big	code	changes	or	architecture/design	decisions.

We	can	consider	this	as	a	proactive	measure	rather	than	a	real	reactive	measure.	It	is
clearly	important	in	an	agile	development	methodology,	where	the	designer	is	already
familiar	with	the	current	system	behavior	and	restrictions,	so	spotting	such	issues	early	on
would	be	easy.

We	will	discuss	the	different	design	decisions	and	potential	performance	impact	in	more
details	in	Chapter	10,	Designing	High-performance	Enterprise	Applications.

Development-time	issues
This	is	where	lucky	teams	discover	performance	issues!	This	is	almost	the	last	stage	where
such	issues	could	be	fixed	by	some	sort	of	major	design	changes,	but	unfortunately	it	is
not	common	to	really	discover	any	performance-related	issues	during	the	development
stage,	mainly	due	to	the	following	reasons:

The	nature	of	the	development	environment	with	its	limited	capabilities,	low
resources	profile	(for	example,	small	memory	size),	logging	enablement,	and	using
few	concurrent	users,	where	most	of	the	performance	issues	usually	appear	under
workload.
Development	of	the	database	is	usually	a	small	subset	of	the	application’s	production
database,	so	no	valid	comparison	to	the	actual	performance	in	the	production
database.
Most	of	the	external	dependencies	are	handled	through	stubbing,	which	prevents	the
real	system	performance	examination.

Note
Stubbing	means	simulating	the	behavior	of	the	components.	It	can	be	done	in	the
following	two	ways:

Using	a	simulator	for	receiving	the	request	and	sending	a	response	back
Reading	the	response	from	an	I/O	resource	with	optionally	configured	wait	time
to	simulate	the	system’s	average	response	time

Slow	response	time	nature	of	the	development	environment,	so	the	developers
neglect	any	noticeable	slow	response	in	the	application.
Continuous	changes	in	the	development	environment,	so	that	application	developers
usually	adapt	to	dealing	with	unstable	environments.	Hence,	they	wouldn’t	actually
report	any	performance	issues.
The	stressful	development	stage	where	no	one	would	open	the	door	for	additional

stress.

Testing-time	issues
In	a	typical	software	engineering	process,	there	should	be	performance	testing	in	the
testing	stage	of	the	application	development	cycle	to	ensure	that	the	application	complies
with	the	nonfunctional	requirements	and	specified	SLAs	like	stability,	scalability,	response
time,	and	others.

Unfortunately,	some	projects	do	not	give	any	importance	to	this	critical	stage	for	different
reasons	such	as	budget	issues	or	neglecting	small	deviations	from	the	SLA,	but	the	cost	of
such	wrong	decisions	would	definitely	be	very	high	if	a	single	performance	issue	is
discovered	in	the	production	environment	especially	if	the	system	is	dealing	with	sensitive
user	data	that	restricts	access	to	some	environment	boxes.

Production-time	issues
From	the	previous	performance	issue	types,	we	now	understand	that	this	type	is	the
nightmare	type;	it	is	the	most	critical	and	costly	one,	and	unfortunately	it	is	the	most
common	type	that	we	will	deal	with!

We	can	summarize	the	main	reasons	behind	discovering	performance	issues	in	the
production	environment	as	follows:

Missing	or	non-efficient	performance	testing	(process	and	quality	issue)
Under	estimation	of	the	expected	number	of	application	users	with	no	proper
capacity	planning	(quality	issue)
Non-scalable	architecture/design	(quality	issue)
No	database	cleanup,	so	it	keeps	growing,	especially	in	large	enterprise	applications
(operational	issue)
No	environment	optimization	for	the	application	from	the	operating	system,
application	server,	database,	or	Java	Virtual	Machine	(operational	issue)
Sudden	changes	to	the	production	environment	without	proper	testing	of	the	impact
on	the	performance	(operational	and	process	issue)
Other	reasons	like	using	stubs	in	the	testing	environment	instead	of	actual	integrated
test	systems,	unpredictable	issues,	and	so	on

All	the	issues	discussed	previously	can	be	summarized	in	the	following	diagram:

It	is	important	to	note	that,	in	the	production	environment,	we	should	only	handle
performance	issues;	no	optimization	or	tuning	is	to	be	implemented	in	the	production
environment	without	an	actual	reported	and	confirmed	issue.	Optimization	without	a	real
issue	can	be	conducted	in	the	performance	testing	environment	or	during	development
only;	otherwise,	we	are	putting	the	whole	application	into	high-functionality	risk,	which	is
much	more	crucial	than	reducing	the	response	time	a	little.	So,	the	production
environment	is	only	for	fixing	critical	performance	issues	that	would	impact	the	business
and	not	a	place	for	tuning	or	improving	the	performance.

	 “Things	which	matter	most	must	never	be	at	the	mercy	of	things	which	matter	least.” 	

	 —Johann	Wolfgang	von	Goethe

www.allitebooks.com

http://www.allitebooks.org

Classifying	performance	issues	by	the	root	phase
In	our	previous	classification,	we	focused	on	issue	identification	time,	but	if	we	classified
these	issues	according	to	the	possible	root	cause	from	the	software	engineering
perspective,	we	can	have	the	following	types	of	performance	issues:

Requirement	phase	issues
Design/architecture	phase	issues
Development	phase	issues
Testing	phase	issues
Operational	and	environmental-specific	issues

Requirement	phase	issues
Here,	no	clear	(or	sometimes	unrealistic)	SLAs	are	present,	which	do	not	match	the	actual
production	expectations.

Design/architecture	phase	issues
Here,	the	design	does	not	fulfill	the	provided	SLA,	or	is	built	on	certain	assumptions
retrieved	from	the	vendor	specifications	without	any	proof	of	concept	to	confirm	these
assumptions.	Also,	sometimes	the	design	takes	some	architecture	decisions	that	do	not
fulfill	the	actual	customer	performance	requirements.

The	design	and	architecture	phases	are	very	critical	as	the	impact	here	is	not	easily	fixable
later	without	major	changes	and	high	costs	that	always	make	such	decisions	very	difficult
and	risky	as	well.

Note
We	will	discuss	performance	issues	related	to	design	in	Chapter	10,	Designing	High-
performance	Enterprise	Applications.

Development	phase	issues
Bad	coding	quality,	not	following	performance-oriented	coding	practices,	and	missing
essential	code	review	(either	automated	or	manual)	are	the	main	reasons	for	this	phase.

Following	best	coding	practices	should	always	be	forced	by	the	project	leaders	to	avoid
any	potential	issues	related	to	applications	that	do	not	perform	well;	they	are	not	difficult
to	follow,	especially	if	automated	code	review	tools	are	used	early	on	during	the
development	phase.

Note
We	will	discuss	some	of	the	development	performance	issues	in	Chapter	11,	Performance
Tuning	Tips.

Testing	phase	issues
This	phase’s	issues	occur	mainly	due	to	missing	or	bad	quality	performance	testing
including	test	scripts,	test	scenarios,	number	of	test	users,	environment	selection,	and	so

on.

We	should	know	that	testing	responsibilities	are	the	biggest	here	as	developers	usually
claim	they	did	their	job	well,	but	testing	should	either	confirm	or	nullify	this	claim.

Note
We	will	discuss	performance	testing	in	detail	in	Chapter	3,	Getting	Familiar	with
Performance	Testing.

Operational	and	environmental-specific	issues
A	lot	of	operational	issues	could	impact	the	application	performance,	for	example,	missing
frequent	housekeeping	activities,	failure	to	monitor	the	application,	not	taking	early
correction	steps,	and	implementing	improperly-tested	changes	to	the	environment	(or	any
of	the	integrated	systems).

Sometimes,	specific	environment	issues	like	the	size	of	application	database,	unexpected
customer	flow,	and	so	on	can	lead	to	bad	performance	in	the	production	environment	that
we	can’t	catch	earlier	in	the	performance	test	environment.

Note
We	will	discuss	different	application	monitoring	tools	in	Chapter	4,	Monitoring	Java
Applications.

Performance-handling	tactics
Dealing	with	performance	issues	is	a	risk	management	procedure	that	should	be	handled
with	preventive	and	curative	measures,	so	we	need	to	stick	to	the	following	techniques	for
successful	and	peaceful	management	of	performance	issues:

Proactive	measures	(preventive)
Reactive	measures	(curative)

Proactive	measures	(preventive)
Proactive	measures	aim	to	reduce	and	minimize	the	occurrence	of	performance	issues	by
following	the	software	engineering	processes	properly	and	having	efficient	performance
requirement,	early	capacity	planning,	high	quality	application	development,	and	proper
application	testing	with	special	focus	on	performance	testing.

Having	the	required	monitoring	tools	in	place	and	ensuring	that	the	operation	team	has	the
required	knowledge	is	an	important	aspect.	We	also	have	to	request	the	output	samples	of
these	tools	periodically	to	ensure	that	the	tools	are	available	to	help	us	when	we	need
them.

The	proactive	tactics	only	decrease	the	possibility	of	performance	issues	but	do	not	nullify
them,	so	we	should	still	be	expecting	some	performance	issues	but	we	will	be	in	a	good
position	to	deal	with	them	as	everything	we	need	should	be	ready.

One	of	the	proactive	measures	is	that	we	should	give	a	“no	go”	decision	for	the
application.	In	case	the	application	fails	to	pass	the	agreed	SLAs	in	the	performance	test
environment,	it	is	much	easier	to	troubleshoot	and	fix	issues	in	the	performance
environment	as	compared	to	the	sensitive	and	stressful	production	environment.

We	can	summarize	the	main	proactive	tactics	as	follows:

Having	a	working	process	in	place	for	performance	tuning,	which	should	typically
include	reporting	of	issues,	fixing	cycles,	and	testing	processes.
Having	a	clear	performance	SLA	and	good	capacity	planning.
Performance-oriented	application	design	(design	documents	should	be	performance
reviewed).
Following	best	coding	practices	along	with	automated	and	manual	code	reviews;
most	of	the	automated	code	review	tools	catch	a	lot	of	fine	tuning	issues.	Also,
strictly	following	best	application	logging	practices	that	can	help	analyze	the	issues
and	prevent	performance	issues	related	to	logging.
Having	a	dedicated	performance	environment	that	is	more	or	less	similar	to	the
production	environment	specifications.
Designing	and	executing	good	quality	performance	testing.
Training	and	dedicating	a	team	to	handle	performance	issues.
Having	the	tools	required	for	performance	ready.
Continuous	monitoring	of	different	application	layers	from	trained	operational	teams.

Note
In	Chapter	3,	Getting	Familiar	with	Performance	Testing,	we	will	discuss
performance	testing	and	its	related	processes	in	detail	that	will	cover	a	lot	of	these
points.

Reactive	measures	(curative)
These	are	the	tactics	that	we	need	to	follow	when	we	face	or	discover	any	performance
issues.	If	the	proactive	tactics	are	already	followed,	then	the	reactive	tactics	would	be
straightforward	and	smooth.

Understanding	the	different	layers	of	an	enterprise	application
Before	we	discuss	the	reactive	tactics,	we	need	to	have	a	look	at	the	simple	Java	enterprise
application	layers;	they	are	illustrated	in	the	following	diagram:

As	we	can	see	in	the	preceding	diagram,	the	application	layers	represent	the	code	on	the
top	of	the	pyramid	along	with	some	database	and	configuration	scripts.

When	we	plan	to	deal	with	performance	issues,	we	should	consider	each	of	these	pyramid
layers	in	our	investigation.	We	don’t	know	at	which	layer	we	will	have	the	bottleneck,	so
as	an	initial	conclusion,	we	need	to	monitor	each	of	these	layers	with	the	suitable
monitoring	tools:	Operating	System	(OS),	Java	Virtual	Machine	(JVM),	Application
Server	(AS),	Database	Server	(DB),	Virtual	Machine	(VM)—if	it	exists,	and	hardware
and	networking.

Somehow,	the	application	is	usually	tightly	coupled	with	the	development	framework	and

used	libraries,	so	we	can	treat	them	as	one	layer	from	the	tooling	perspective	if	splitting
them	is	not	possible.

One	of	the	common	mistakes	is	to	focus	on	a	single	layer	like	the	code	layer	and	neglect
other	layers;	this	should	be	avoided.	If	we	have	the	required	monitoring	tools	for	all	of
these	layers,	our	decision	will	definitely	be	much	clearer	and	well	guided.

Note
In	Chapter	4,	Monitoring	Java	Applications,	we	will	discuss	the	monitoring	tools	in	detail.

Now,	let’s	have	a	look	at	the	three	important	pillars	required	to	enable	our	performance
tuning:	process,	tools,	and	team!

The	three	pillars	required	for	performance	tuning
The	following	three	aspects	in	the	vertices	of	the	triangle	need	to	be	fulfilled	before	we
start	any	performance	tuning	work;	they	aim	to	enable	us	to	work	efficiently	in	application
performance	tuning:

Define	the	performance	process

This	is	the	first	and	most	important	task.	We	need	to	ensure	this	process	is	already	in	place
before	we	start	any	work.	We	should	understand	the	existing	performance	tuning	process,
and	if	the	process	does	not	already	exist,	then	we	need	to	create	and	define	one	to	use.

The	process	should	include	many	major	elements	like	performance	environment,	the
reporting	of	performance	issues,	fixing	cycles,	acceptable/target	performance	goals,
monitoring	tools,	team	structure	(including	well-defined	roles	and	responsibilities),	and
sometimes	a	performance	keyword	glossary	to	clear	any	possible	misunderstanding.

The	reporting	of	performance	issues	is	the	important	part	here	to	avoid	falsely	reported
issues	and	wasting	unnecessary	time	on	fake	issues.	The	process	should	handle	the
confirmation	of	reported	issues	and	should	cover	all	necessary	steps	for	issue	replication
and	issue	evidence,	such	as	log	extract,	screenshots,	recording,	and	so	on.

It	is	worth	adding	here	that	both	lesson-learned	sessions	and	performance	knowledge-base
content	should	be	part	of	our	performance	process	execution	to	reduce	the	occurrence	of
repeated	performance	issues	in	the	future.

Getting	ready	with	the	required	performance	tools

Tools	are	our	coloring	pencils,	as	we	described	them	before,	and	without	them	we	will	not
be	able	to	draw	the	picture.	As	a	part	of	proactive	measures,	suitable	and	sufficient
monitoring	tools	should	already	be	installed	in	both	testing	and	production	environments.
We	should	also	obtain	periodic	reports	from	these	tools	to	ensure	that	they	are	working
and	helpful	at	the	same	time;	these	tools	also	give	us	the	required	application	performance
baseline,	so	we	can	compare	any	deviations	with	this	baseline.

If	the	diagnostic	tools	are	not	already	installed,	they	should	at	least	be	ready	for
installation.	This	means	that	we	have	at	least	selected	them,	checked	the	compatibility
requirements,	and	secured	the	essential	licenses,	if	any.

Since	most	of	the	monitoring	tools	are	focused	on	monitoring	certain	layers	of	our
application,	we	need	to	secure	at	least	one	tool	per	layer.	The	good	news	is	that	each	layer
usually	comes	with	useful	monitoring	tools	that	we	can	use,	and	we	will	discuss	these
tools	in	more	detail	in	Chapter	4,	Monitoring	Java	Applications.

Being	ready	to	deal	with	performance	issues	at	any	time

Now,	as	a	team,	it’s	our	turn	to	be	ready	even	if	we	haven’t	faced	any	performance	issues.
If	we	are	already	facing	some	performance	issues,	then	we	need	to	be	ready	to	handle	our
investigation	plan.

Leading	the	performance	team	and	giving	them	sufficient	guidance	and	recommendations
is	our	job,	and	it	is	our	call	to	give	decisions	and	bear	the	responsibility	of	any
consequences.

	 “It	is	the	set	of	the	sails,	not	the	direction	of	the	wind	that	determines	which	way	we	will	go.” 	

	 —Jim	Rohn

As	mentioned	before,	the	first	and	most	essential	thing	that	we	need	to	consider	is	to
confirm	that	we	really	are	facing	a	performance	issue;	this	can	be	done	in	many	ways
including	replicating	the	issue,	checking	a	recorded	scenario,	extracting	information	from
logfiles	with	the	response	time	recorded,	and	so	on.

Once	the	issue	is	confirmed,	it’s	our	turn	to	build	the	investigation	plan.	We	should	focus
on	the	root	cause	identification	rather	than	fixing	the	issue.	Of	course,	our	goal	is	to	fix	the
issue	and	this	is	what	we	will	get	paid	for,	but	we	need	to	fix	it	with	a	proper	permanent
solution	and	this	won’t	happen	unless	we	discover	the	correct	root	cause.

The	cycle	of	learning
The	cycle	of	learning	summarizes	the	process	that	we	need	to	follow	once	we	have
performance	issues	reported	till	we	fix	it.	If	we	take	a	look	at	the	following	diagram	that
illustrates	the	cycle	of	learning,	we	can	see	that	we	must	have	the	following	milestones	to
progress	with	our	learning	cycle:

Knowing	where	the	issues	are	being	reported
Analysis	and	investigation	by	different	tools
Thinking	of	a	way	to	fix	it	according	to	the	existing	inputs	that	we	have	from
different	tools
Providing	a	proper	fix	for	the	issue

The	cycle	is	repeated	from	the	first	step	to	test	and	validate	the	fix.	If	all	the	existing
issues	get	resolved,	then	the	cycle	is	broken;	otherwise,	we	will	keep	reporting	any	issues
and	go	through	the	cycle	again.

We	need	to	follow	this	model	and	typically	try	to	start	the	cycle	from	the	reporting	step	in
our	model.	The	following	diagram	illustrates	this	model	as	a	whole:

Note
Learning	cycle	is	developed	by	Peter	Honey	and	Alan	Mumford,	based	on	David	A.

Kolb’s	ideas	about	learning	styles.	The	following	are	the	stages	of	the	learning	cycle:

Doing	something,	having	an	experience
Reflecting	on	the	experience
Concluding	from	the	experience,	developing	a	theory
Planning	the	next	steps,	to	apply	or	test	the	theory

Honey	and	Mumford	gave	names	to	the	people	who	prefer	to	enter	the	cycle	at	different
stages:	activist,	reflector,	theorist,	and	pragmatist.	While	different	people	prefer	to	enter	at
different	stages,	a	cycle	must	be	completed	to	give	a	learning	that	will	change	behavior.

Let’s	assume	we	have	an	online	shopping	company	that	has	claimed	that	their	own
website’s	response	time	deteriorated	and	a	lot	of	users/customers	did	not	continue	their
own	journeys,	and	the	application	logs	show	frequent	timeout	and	stuck	threads	(we	will
explain	all	these	issues	later	in	the	book).

The	company	called	a	performance	tuning	expert	to	lead	the	investigation	in	this	critical
situation,	who	put	in	some	effort	without	any	progress.	The	operation	team	noticed	that
when	they	restart	the	cluster	servers	one	by	one,	the	issues	disappeared	from	the	site	and
they	asked	if	this	could	be	recommended	as	a	solution!

Now,	if	the	performance	expert	followed	this	recommendation,	the	issues	will	only	be
masked;	the	company	will	be	deceived	and	the	issue	will	explode	again	at	any	moment.
So,	don’t	think	of	the	solution	or	the	fix	but	focus	on	how	to	identify	the	reason	or	the	root
cause	behind	this	issue.	Once	discovered,	the	correct	solution	will	follow.

Tuning	yourself	before	tuning	the	application
We	need	to	remember	the	following	points	each	time	we	are	leading	the	investigation	to
resolve	any	performance	issues.	They	are	all	related	to	our	behavior	and	attitude	when	we
are	working	on	performance	tuning.

Be	a	true	leader
Working	on	an	enterprise	application’s	performance	tuning	as	a	performance	specialist,	we
would	usually	have	a	team	to	work	with	and	we	should	lead	and	guide	this	team
efficiently.

Here	are	some	of	a	leader’s	traits	that	we	need	to	show	the	team:	support,	help,	guide,
inspire,	motivate,	advice,	listen,	and	have	patience	while	dealing	with	their	mistakes.

Having	a	good	attitude	and	behavior	towards	the	team	will	relieve	the	pressure	from	the
team	and	motivate	them	to	work.

Use	your	power
A	successful	leader	effectively	uses	some	of	his/her	own	powers	to	influence	the	team.	A
lot	of	different	individual	powers	are	available	but	we	should	be	much	more	oriented
towards	using	either	knowledge/expertise	or	charismatic	powers.	These	power	types	have
a	stronger	impact	on	the	team.

Be	responsible
A	leader	shouldn’t	be	self-defending	and	blame	the	team	for	failure,	instead	the	leader
should	be	responsible	for	the	team.	Throwing	the	issues	under	team	responsibility	will
impact	the	team’s	progression	to	resolve	the	issue;	instead	we	need	to	protect	our	team	and
give	them	full	support	and	guidance	and	bear	the	consequences	of	our	own	decisions.

Trust	your	team
The	team	will	be	much	more	efficient	when	we	show	them	our	complete	trust	and	support;
the	more	we	guide	them	in	a	clearly-organized	process,	the	more	successful	a	team	we	will
have.

Keep	it	simple
If	we	can’t	explain	the	plan	in	a	simple	and	clear	way	to	our	team,	then	we	don’t	really
understand	what	we	are	planning	to	do	and	we	should	consider	redesigning	our
investigation	plan.

Tip
Stick	to	the	golden	Keep	It	Simple	Stupid	(KISS)	rule	whenever	you	are	leading	a	team
in	your	investigation.

Respect	roles	and	responsibilities
Everyone	should	do	what	is	required	from	them	according	to	their	own	roles	as	agreed	in
the	performance	process.	This	will	give	us	the	best	outcome	when	everyone	is	focusing	on

their	own	job.

We	shouldn’t	volunteer	to	do	what	is	beyond	our	scope,	or	we	will	be	wasting	our	time	in
unnecessary	tasks	that	make	us	lose	our	focus.	The	only	exception	here	is	that	if	there	is
no	one	in	our	team	who	can	do	this	task	and	it	is	really	important	and	relevant	to	our	work,
then	we	can	take	it	up.

Understand	the	application	domain	and	context
As	we	are	targeting	Java	enterprise	applications	performance	tuning,	a	variety	of
enterprise	application	technologies	exist	and	applications	are	built	using	different
frameworks.	Before	we	deal	with	such	applications,	we	need	to	understand	the	framework
capabilities	and	framework-related	monitoring	tools	very	well.

A	good	example	here	is	Oracle	ATG	e-commerce;	this	framework	supports	configuration
of	the	application	in	layers	so	we	can	turn	on/off	different	properties	in	each	application
layer	or	package.	Without	understanding	this	simple	concept,	we	won’t	be	able	to	progress
in	our	troubleshooting	to	achieve	even	simple	tasks	such	as	enabling	the	application
logging	in	a	certain	component.	Also,	the	framework	has	its	own	performance	monitoring
tools	that	are	disabled	by	default	in	ATG	live	configurations.	Without	knowing	this	basic
information,	we	won’t	progress	well.

Note
Art	Technology	Group	(ATG)	was	an	independent	Internet	technology	company
specializing	in	e-commerce	software	and	on-demand	optimization	applications	until	its
acquisition	by	Oracle	on	January	5,	2011.

Protect	your	reputation
No	one	can	harm	our	reputation	more	than	us;	this	is	a	fact,	unfortunately.	So,	for	instance,
we	need	to	avoid	the	following	things	that	could	destroy	our	reputation:

Don’t	ever	try	to	shoot	in	the	dark:	If	we	do	not	have	a	solid	input	from	different
performance	monitoring	and	analysis	tools,	then	we	shouldn’t	ever	try	to	guess	where
the	issue	is.	This	means	our	main	objective	is	to	have	the	required	tools	in	place	to
provide	us	with	the	essential	inputs.
Don’t	use	trial	and	error:	Trial	and	error	is	a	good	approach	for	juniors	and
developers	and	for	learning	purposes,	but	not	for	performance	experts.	Also,	it	is
okay	to	have	some	trials	but	don’t	expand	using	this	approach	as	it	will	give	a	bad
impression	of	insufficient	knowledge.	It	should	be	mainly	used	to	confirm	our
thoughts,	not	to	resolve	the	issue.
Quantify	your	expectations:	Always	have	a	doubt	in	what	is	being	reported,	so
don’t	accept	vague	words	like	“the	server	is	okay”	or	“memory	utilization	is	good”.
Instead,	we	should	check	the	results	ourselves	and	ask	for	solid	figures	and	numbers.
Don’t	jump	to	conclusions	early:	Most	of	the	early	conclusions	made	are	not	true,
so	try	to	be	more	conservative.	Jumping	to	a	conclusion	early	will	convert	the	current
investigation	into	trials	to	prove	that	conclusion!

One	famous	example	here	is	the	“same	values	and	different	interpretations”	issue

where	the	single	value	doesn’t	mean	the	same	in	all	domains.	So,	let’s	assume	we
have	an	application	with	low	CPU	utilization;	this	doesn’t	necessary	mean	the
application	is	fine!	Instead,	it	could	point	to	inefficient	CPU	utilization	and	is
potentially	caused	by	threading	or	concurrency	issues.

If	it	is	dark,	step	back	to	see	some	light:	If	the	current	investigation	does	not	reveal
any	indicators	about	the	issue’s	root	cause	and	we	keep	looping	without	any	progress,
then	try	to	step	back	and	look	from	a	wider	angle	to	see	the	missing	parts	of	the
picture.	Involving	other	people	from	outside	the	current	team	could	help	give	us
some	insight.
Don’t	talk	too	much:	In	other	words,	we	need	to	talk	a	little	and	think	a	lot.	Don’t
give	what	you	are	thinking	of	to	others,	even	if	you	have	some	early	indicators.	Keep
them	for	now	until	we	have	the	required	evidence,	or	even	better	to	keep	these
thoughts	till	the	issues	get	resolved.	The	only	exception	here	is	talking	to	the	team	to
educate	them	and	guide	them	into	the	correct	direction,	or	talking	during
brainstorming	sessions.

Standalone	applications	versus	web
applications
We	are	going	to	discuss	the	different	application	tier	models	here	so	that	we	understand
the	behavior	of	each	application	type	and	the	expected	tuning	effort	for	each	type.	While
we	are	working	with	Java	application	tuning,	we	will	mainly	face	the	following	three
different	types	of	application:

One-tier	application:	In	this	application	everything	is	installed	on	one	machine	only;
a	standalone	application	without	any	remote/external	connections.
Multi-tier	application:	This	application	is	installed	on	different	tiers;	two	different
client	types	according	to	the	client	role,	either	a	thick	(fat)	client	or	thin	client.
Smart/rich	client	application:	These	are	the	applications	where	the	client	can	work
offline	and	interact	with	a	remote	application	online	through	some	interfaces	like	web
services.	From	a	performance	tuning	perspective,	we	will	deal	with	this	type,	which
is	similar	to	dealing	with	a	thick	client.

The	standalone	application
This	application	has	the	following	main	characteristics:

Runs	on	a	single	machine	(personal	computer,	tablet,	phone,	and	so	on)
Connects	to	a	local	database,	if	any
It	is	designed	mostly	for	a	single	concurrent	user	per	installed	application
Performs	any	required	processing	locally

Performance	issues	can	be	easily	monitored	and	diagnosed	and	are	usually	related	to	the
data	that	is	being	processed.	So,	sometimes	it	might	be	required	to	get	a	copy	of	the	data
that	causes	the	performance	issue	so	we	can	replicate	the	performance	issue	in	our
environment.

Thick	client	application	–	client-server	model
This	application	has	the	following	main	characteristics:

Thick	client	is	an	application	that	is	running	on	a	user	machine	(personal	computer,
tablet,	phone,	and	so	on),	and	is	connected	to	a	remote	machine/server
It	is	responsible	for	GUI	and	some	local	processing;	it	is	connected	to	remote	servers
mostly	for	data	synchronization	(retrieval	and	persistence)
It	could	be	an	application,	applet,	Web	Start	application,	or	even	a	widget	application
The	server	side	could	be	a	web	application
Examples	of	this	type	of	applications	are	e-mail	client,	chat	application,	and	so	on
It	is	usually	designed	for	one	user	at	a	time	per	single	device

Performance	issues	are	distributed	and	investigation	could	involve	both	the	client	and
server,	and	the	more	functionality	the	client	has,	the	more	value	we	gain	from	client
application	profiling.

Thin	client	application	–	web-based	model
These	applications	has	the	following	main	characteristics:

The	client	does	not	consume	much	of	the	local	device	hardware	and	is	not	installed
on	the	user’s	machine;	users	mostly	access	these	applications	using	browsers	on
different	devices	(PC,	tablet,	phone,	and	so	on)
The	application	itself	is	running	on	remote	servers	and	these	servers	are	responsible
for	most	of	the	application	functionality
Processing	is	done	on	the	servers	and	only	some	part	of	processing	can	be	done	on
the	client	side	for	the	presentation	layer	(like	JavaScript	code)
Examples	of	this	type	are	any	browser-based	applications,	such	as	e-mail,	website,
search	engine,	online	tools,	and	so	on
It	is	designed	typically	for	multiple	concurrent	users

Performance	issues	mostly	exist	on	the	server	side	and	are	less	common	on	the	client	side,
for	example,	JavaScript	code.

The	following	diagram	illustrates	the	difference	between	one-tier	and	simple	multi-tier
application	models:

Note
Some	web	applications	are	deployed	locally	and	used	as	standalone	applications.	This
concept	differs	somehow	from	the	general	concept	that	we	have	discussed	here,	where
web	applications	are	typically	hosted	on	remote	servers	and	clients	access	those	servers
using	different	browsers.

Dealing	with	web	applications’
performance	tuning
As	we	are	targeting	the	performance	tuning	of	Java	Enterprise	Edition	7,	the	kind	of
applications	that	can	be	developed	by	Java	EE	7	can	fit	into	either	web	applications	or	the
server	side	of	the	client-server	model;	both	will	be	handled	in	nearly	the	same	way	from
the	performance	tuning	perspective.

If	the	client	is	our	browser,	then	some	additional	tools	to	analyze	the	traffic	and	JavaScript
code	are	required.	If	it	is	a	standalone	application,	then	almost	the	same	tools	that	we	will
use	on	the	server	side	can	be	used	on	the	client	side	as	well.

The	two	dimensions	of	web	applications’
performance	tuning
When	we	deal	with	such	applications,	we	need	to	think	in	two	dimensions:	vertical	and
horizontal.	So,	we	start	with	the	horizontal	dimension	to	spot	the	issue’s	location,	then	we
go	vertically	through	all	the	layers	in	this	location	to	point	out	the	root	cause.

Horizontal	dimension	(node-to-node)
From	the	client	to	the	backend	servers,	we	need	to	examine	each	node/component	in	the
flow	to	spot	the	root	cause	of	the	issue.

Having	each	node’s	performance	reports	or	access	logs	can	help	us	in	isolating	the
bottleneck	node	in	our	application.

Vertical	dimension	(intranode)
In	every	machine/node	in	the	application,	we	should	check	the	node	from	the	top	to	the
bottom,	passing	through	all	the	possible	layers.

We	definitely	do	not	need	to	go	through	this	systematic	approach	in	all	cases,	but	we	need
to	understand	the	complete	approach	in	handling	performance	issues.	After	gaining	more
experience,	we	will	bypass	certain	components	according	to	the	nature	of	the	issue	that	we
are	working	on.

	 “Bottlenecks	occur	in	surprising	places,	so	don’t	try	to	second	guess	and	put	in	a	speed	hack	until	you	have	proven
that’s	where	the	bottleneck	is.”

	

	 —Rob	Pike

In	the	following	diagram,	we	have	explained	the	horizontal	nodes	and	some	of	the
possible	vertical	dimensions	in	each	node:

Exploring	vertical	dimension	nodes	in	horizontal
dimension	nodes
Now,	let’s	go	through	the	vertical	dimensions	in	some	of	the	application	nodes	in	brief	to
explain	what	we	need	to	look	into	and	the	possible	tools	for	that.

Client	side
On	the	client	side,	we	have	to	mainly	focus	on	JavaScript	code	and	the	loading	time	of
different	resources	in	our	client;	rarely	do	we	need	to	consider	Cascading	Style	Sheets
(CSS).

The	good	news	is	that	all	modern	browsers	have	integrated	tools	to	use	for	this
troubleshooting	and	they	are	usually	named	developer	tools.	Also,	they	have	additional
useful	plugins	that	can	be	used	for	the	same	purpose.

We	can	also	use	external	tools	that	have	plugins	for	different	browsers	like	DynaTrace	or
Fiddler.

Network	components
Checking	the	performance	of	network	components	is	an	essential	part	of	any	performance
investigation.	Monitoring	and	checking	the	traffic	through	these	nodes	and	their	security
configurations	are	important	as	they	could	be	potentially	the	root	cause	of	slow	application
response.	The	most	important	network	elements	include	router,	firewall,	load	balancer,
and	proxy.

HTTP	servers	(web	servers)
Most	enterprise	deployments	tend	to	have	dedicated	HTTP	servers	(like	Apache	HTTP
server)	to	serve	the	static	enterprise	content	and	assets	(help	pages,	different	images,	CSS,
and	JavaScript	files).	Being	a	part	of	the	enterprise	application	architecture,	we	need	to
consider	checking	the	server	status,	server	logs,	and	machine’s	overall	performance	during
our	performance	troubleshooting.

It	is	not	common	to	see	issues	in	HTTP	servers,	so	it	might	be	considered	a	routine
checkup	before	excluding	them	from	our	troubleshooting	plan.	All	HTTP	servers	have
instructions	to	tune	them	for	the	best	performance	optimization.	The	operation/deployment
team	needs	to	apply	these	recommendations	for	the	best	performance	outcome.	Most	of
the	performance	tuning	aspects	in	these	servers	are	simply	configuration	parameters	that
need	to	be	adjusted	according	to	our	application	type	and	performance	needs.

One	example	for	non-configuration	tuning	elements	is	the	memory	size,	which	is	very
critical	to	HTTP	server	performance.	We	need	to	ensure	that	sufficient	memory	is
allocated	because	memory	swapping	increases	the	latency	of	a	server’s	response	to	user
requests.

Application	servers
As	we	clarified	earlier	in	the	enterprise	application	layers	diagram,	an	application	has

many	layers;	starting	from	code	up	to	the	operating	system.	Most	common	issues	are	in
the	application	code	layer,	but	we	need	to	ensure	that	all	the	other	layers	are	performing	as
expected;	all	these	layers	have	supported	guidelines	and	best	practices	to	tune	and
optimize	them,	for	example,	JVM.

We	need	to	have	monitoring	tools	in	place	including	operating	system	monitoring	tools,
application	server	monitoring	tools,	JVM	tools,	sometimes	framework	tools,	and	virtual
machine	tools	if	the	deployment	has	to	be	done	over	a	virtual	machine.

Database	servers
Monitoring	database	servers	and	getting	different	database	reports	or	logs	such	as	the
Oracle	AWR	report	are	essential	in	the	identification	of	the	performance	issues’	root
cause.	Let’s	assume	we	have	a	query	that	retrieves	data	from	a	big	database	table	where
there	is	no	index	used	in	that	table.	Checking	the	database	report	will	show	this	query
listed	at	the	top	of	slow	executing	queries	in	that	report.

We	can	then	get	an	execution	plan	for	that	query	to	identify	the	root	cause	of	its	slow
execution	and	prepare	a	potential	fix.

Checking	the	status	of	database	servers	(operating	system),	data	files,	and	the	underlying
hardware	is	an	essential	step	in	our	investigations.

Note
Automatic	Workload	Repository	(AWR)	is	a	built-in	repository	(in	the	SYSAUX
tablespace)	that	exists	in	the	Oracle	database.

At	regular	intervals,	the	Oracle	database	takes	a	snapshot	of	all	of	its	vital	statistics	and
workload	information	and	stores	them	in	the	AWR;	it	is	first	introduced	in	Oracle	10g.

Middleware	integration	servers
All	big	enterprise	applications	are	just	part	of	bigger	architectures	in	which	different
applications	are	plugged	into	the	integration	component,	that	is,	a	middleware	application
or	service	bus	to	facilitate	the	exchange	of	different	messages	or	data	between	these
integrated	systems.

Continuously	monitoring	the	performance	of	this	critical	layer	is	a	core	performance
tuning	activity.	Of	course,	we	always	have	a	scope	to	work	in,	but	the	integration	layer
should	be	neutral	during	our	work;	this	means	all	integrated	communication	shouldn’t
impact	our	application’s	performance.

Also,	we	should	be	able	to	get	performance	results	for	different	integrated	components.

Note
Some	applications	do	not	have	the	integration	layer	in	the	testing	environment	and	they
use	stubs	instead	to	simulate	the	response.	The	stubs	latency	should	be	updated
periodically	with	the	actual	live	systems	results,	otherwise	the	testing	environment	won’t
simulate	the	production’s	actual	response	time.

If	the	middleware	layer	is	not	optimized	for	a	good	performance,	all	the	integrated	systems
will	suffer	from	bad	performance,	and	if	not	well	monitored,	most	of	the	effort	of	tuning
the	integrated	applications	will	be	incorrectly	directed.

One	example	of	a	poorly	performing	middleware	application	is	overutilizing	the	hardware
by	deploying	too	many	JVMs	for	middleware	applications;	this	is	usually	unnecessary
scaling	as	middleware	applications	are	already	designed	to	connect	to	too	many
applications	efficiently.

Another	point	to	consider	here	is	that	due	to	the	critical	nature	of	this	system	component,
it	needs	to	have	some	sort	of	redundancy	and	fail	over	features	to	avoid	taking	the
performance	of	the	whole	enterprise	application	down.

Operating	system	and	hardware
Hardware	could	be	a	root	cause	of	our	performance	issues	especially	when	the	capacity
planning	is	not	well	considered.	Pointing	to	hardware	issues	is	usually	done	after
excluding	all	other	factors.

We	also	need	to	take	the	utilization	pattern	into	consideration	as	it	could	point	to	possible
cron	job	activity.

Note
Cron	job	is	a	time-based	job	scheduler	that	gets	executed	according	to	the	configured
schedule	table,	for	example,	cron	table	in	Linux	or	schtasks	in	Windows.	It	can	be	used	to
archive,	back	up,	load	data,	scan	viruses,	and	so	on.

Let’s	take	some	hardware	readings	and	analyze	them.

CPU	utilization
Web	applications	usually	consume	low	CPU	power	per	transaction	since	during	each
transaction,	the	application-user	interaction	includes	thinking	for	a	response,	selecting
different	options,	filling	application	forms,	and	so	on.

If	the	transactional	CPU	utilization	went	high,	we	can	suspect	a	running	cron	job,	for
example,	an	antivirus	that	is	running	(pattern	is	important	here),	high	traffic	load	(due	to
incorrect	capacity	planning),	or	a	common	algorithmic	logic	issue	that	needs	to	be	fixed.

With	low	CPU	utilization,	we	can	consider	using	more	asynchronous	components	to
increase	the	efficiency	of	utilizing	the	processing	power	of	the	machine.

Network	traffic
Network	bandwidth	utilization	is	very	critical	in	a	production	environment	and	it	would	be
funny	to	forget	that	automatic	application	updates	are	switched	on	because	it	consumes	the
network	traffic	in	an	undetectable	manner.

It	could	also	point	to	architecture	issues,	missing	local	caching,	backup	job,	and	so	on.

Memory	usage

After	excluding	memory	issues	like	application	memory	leakage,	we	need	to	check	the
JVM	memory	configuration.	Missing	memory	tuning	for	our	JVM	is	not	expected	in	a
production	environment	but	it	is	worth	considering	it	as	a	part	of	our	investigation.	Also,
check	the	different	components	of	memory	consumption	and	the	total	free	memory	left.

Taking	the	decision	to	upgrade	machine	memory	is	not	the	only	solution;	we	can	also
consider	moving	some	components	into	different	boxes,	for	example,	moving	certain
services,	caching	components,	or	even	the	database	server	to	another	machine.

With	low	memory	usage,	we	need	to	consider	caching	more	data	to	speed	up	the
application	by	utilizing	the	available	memory.

Storage	I/O	performance
Storage	read/write	speed	is	critical	in	a	production	environment	as	I/O	operations	are
usually	the	most	time-consuming	operations	in	relation	to	application	performance.	We
need	to	consider	using	high-speed	storage	with	a	good	percentage	of	free	space	for	the
running	applications.

The	storage	performance	issue	becomes	more	severe	when	it	affects	the	database	servers.

Note
In	Chapter	9,	Tuning	an	Application’s	Environment,	we	will	discuss	in	detail	the	different
tuning	and	optimization	options	for	some	of	these	nodes.

Summary
In	this	chapter,	we	discussed	the	art	of	performance	tuning	and	its	different	aspects.	We
defined	six	basic	components	of	this	art	in	relation	to	the	Java	enterprise	edition.	We
discussed	the	performance	issues,	and	classified	them	into	different	types	according	to
their	discovery	time	and	the	responsible	software	engineering	phase.

We	explained	at	a	high	level	the	tactics	that	we	need	to	follow	while	dealing	with
performance	tuning	including	both	proactive	measures	like	defining	processes	and
reactive	measures	like	using	the	diagnostic	and	monitoring	tools	in	performance
troubleshooting.

We	also	focused	on	how	we	need	to	think	when	we	have	to	deal	with	performance	issues,
from	our	personal	behavior,	process-wise,	and	knowledge-wise.

In	the	last	section	of	this	chapter,	we	dissected	our	strategy	when	dealing	with	different
types	of	Java	applications,	and	took	a	detailed	approach	when	dealing	with	enterprise
application	performance	tuning	by	using	both	a	horizontal-oriented	and	vertical-oriented
analysis.

In	the	subsequent	chapter,	Chapter	2,	Understanding	Java	Fundamentals,	we	will	pave
our	way	for	Java	EE	performance	tuning	by	establishing	a	solid	understanding	of	the
fundamental	concepts	in	Java	EE	7	including	recent	changes	in	the	Java	Enterprise	Edition
7,	memory	structure,	garbage	collection	policies,	and	different	Java	concurrency	concepts,
all	being	an	important	part	in	our	performance	tuning	routine.

Chapter	2.	Understanding	Java
Fundamentals
An	essential	part	of	our	journey	in	Java	EE	7	performance	tuning	is	to	briefly	go	over
some	of	the	new	features	of	Java	EE	7	to	understand	the	different	capabilities	of	this
strong	framework	in	developing	Enterprise	applications.	We	will	discuss	selected	features
in	further	detail	later	in	this	chapter.

As	mandatory	knowledge,	any	Java	performance-tuning	expert	must	understand	memory
management	in	Java	applications;	garbage	collection	policies,	including	the	new	G1
garbage	collection	policy	and	different	application	scopes	(related	to	memory
consumption);	and	finally,	the	Java	concurrency	concepts,	including	the	recent
concurrency	features	in	both	Java	SE	and	Java	EE.

This	book	is	not	intended	to	cover	Java	EE	features;	it	simply	highlights	some	essential
fundamentals	we	should	be	aware	of	while	dealing	with	Java	performance	tuning.	Most	of
the	content	of	this	chapter	adheres	to	Oracle	Java	documentations	as	the	source	of	Java
specifications	and	features.

In	this	chapter,	we	are	going	to	cover	the	following	topics:

New	features	in	Java	EE	7
Memory	structure	in	the	Java	Virtual	Machine	(JVM)
Different	Java	garbage	collection	policies
Inspection	of	the	available	application	scopes
Concurrency	in	Java
New	concurrency	utilities	in	Java	SE	and	Java	EE
Important	concurrency	concepts	of	Java	EE	components

If	you	are	already	aware	of	these	fundamental	topics,	you	can	skip	to	the	next	chapter.

Discussing	the	new	Java	EE	7	features
This	section	provides	us	with	a	sound	orientation	of	some	of	the	new	features	in	Java	EE
7,	and	thus	is	essential.	When	working	on	performance	tuning,	we	will	occasionally
recommend	solutions	for	existing	performance	issues,	which	have	already	been	solved	in	a
standard	way	in	Java	EE	7.	One	example	for	this	is	the	concurrency	issues,	which	are
resolved	in	a	standardized	container-managed	way	in	Java	EE	7,	as	we	will	explain	later	in
this	chapter.

Another	example	of	concurrency	issues	is	the	flow	scope	in	the	JSF	pages	(@FlowScoped),
where	instead	of	loading	the	user	session	with	an	object	that	is	only	required	during	a
certain	flow/wizard,	we	use	this	scope.

We	will	briefly	describe	these	new	features,	but	it	is	not	our	intention	to	go	into	the	details
of	all.	If	you	are	already	aware	of	the	new	features	in	Java	EE	7,	you	can	skip	this	section.

As	a	general	rule,	we	could	diagnose	performance	issues	without	much	knowledge	of
these	new	features,	but	we	may	not	be	able	to	recommend	the	best	solution	to	resolve
these	issues	unless	we	are	fully	aware	of	all	the	Java	EE	7	capabilities.

	 “When	you	know	better,	you	do	better.” 	

	 —Maya	Angelou

We	will	go	through	the	new	features	with	a	few	simple	statements	about	each	feature,	a
pseudo-code	example,	and	a	link	to	the	Java	specification	that	governs	this	feature.

Note
Java	Specification	Requests	(JSRs)	are	the	actual	descriptions	of	the	proposed	and	final
specifications	for	the	Java	platform.

Bean	Validation	1.1	(JSR	349)
The	Java	API	for	JavaBean	Validation	provides	a	facility	to	validate	objects,	object
members,	methods,	and	constructors.	The	following	points	represent	some	of	the	features
in	the	Bean	Validation	APIs:

Method-level	validation	(validation	of	parameters	or	return	values)
Dependency	injection	for	the	different	components	of	Bean	Validation
Integration	with	Context	and	Dependency	Injection	(CDI)
Error	message	interpolation	using	the	EL	expressions

The	following	code	is	a	sample	code	for	the	JavaBeans	Validation	annotations.	The	code
validates	if	the	name	is	NotNull	and	its	size	is	between	1	and	12,	and	the	other	tag
validates	if	it	is	a	valid	e-mail	address:

@NotNull

@Size(min=1,	max=12)

private	String	name;

@ValidEmail	

public	String	getEmailAddress()	{

		return	emailAddress;

}

Note
Bean	Validation’s	official	website	is	http://beanvalidation.org/.

More	details	can	be	found	in	JSR	349	at	http://jcp.org/en/jsr/detail?id=349.

http://beanvalidation.org/
http://jcp.org/en/jsr/detail?id=349

Java	API	for	JSON	processing	–	JSON-P	1.0	(JSR
353)
JSON	is	a	data	exchange	format	widely	used	in	web	services	and	other	connected
applications.	JSR-353	provides	an	API	to	parse,	transform,	and	query	JSON	data	using
either	object	or	streaming	models.

Note
JavaScript	Object	Notation	(JSON)	is	a	text-based	open	standard	designed	for	human-
readable	data	interchange,	and	it	defines	only	two	data	structures:	objects	and	arrays.	An
object	is	a	set	of	name-value	pairs	and	an	array	is	a	list	of	values.	JSON	defines	six	data
types,	namely	string,	number,	object,	array,	true,	false,	and	null.

The	following	code	is	a	sample	code	for	the	APIs	to	read	a	JSON	file	to	get	the
JsonStructure	object:

JsonReader	reader	=	Json.createReader(new	FileReader("my_json_data.txt"));

JsonStructure	jsonst	=	reader.read();

Note
For	more	details,	check	JSR	353	at	http://jcp.org/en/jsr/detail?id=353.

http://jcp.org/en/jsr/detail?id=353

Java	API	for	RESTful	web	services	–	JAX-RS	2.0
(JSR	339)
JAX-RS	2.0	(JSR	339)	includes	a	lot	of	enhanced	features	to	facilitate	the	development	of
a	RESTful	web	service	(WS)	as	follows:

Defining	standardized	client	APIs	to	interact	with	REST	WS
Using	interceptors
Asynchronous	request	handling

The	following	code	is	a	simple	example	of	using	new	client	APIs:

Client	client	=	ClientBuilder.newClient();

String	name	=	client.target("http://domain.com/example/name")

		.request(MediaType.TEXT_PLAIN)

		.get(String.class);

Note
For	more	details,	refer	to	JSR	339	at	http://jcp.org/en/jsr/detail?id=339.

http://jcp.org/en/jsr/detail?id=339

Java	Servlet	3.1	(JSR	340)
Both	Servlet	3.0	and	3.1	improve	the	servlet	technology	providing	the	following	features:

Providing	security	improvement	(run	as,	session	fixation,	and	so	on)
Non-blocking	IO	in	an	asynchronous	servlet	and	filter
Deprecating	the	SingleThreadModel	interface
Upgrading	support	to	communication	protocol
Providing	annotation	support	(Servlet	3.0)
Miscellaneous,	such	as	ServletResponse.reset	and	sendRedirect	using	relative
URL	and	so	on

The	following	code	is	the	sample	code	to	create	an	asynchronous	servlet	using
annotations:

@WebServlet(urlPatterns={"/asyncservlet"},	asyncSupported=true)

public	class	AsyncServlet	extends	HttpServlet	{	...	}

public	void	doGet(HttpServletRequest	req,	HttpServletResponse	resp)	{

				...

				AsyncContext	acontext	=	req.startAsync();

				...

}

We	will	cover	the	asynchronous	support	in	Java	EE	later	in	this	chapter	in	more	detail.

Note
For	more	details,	refer	to	Servlet	3.1	covered	in	JSR	340	at	http://jcp.org/en/jsr/detail?
id=340.

http://jcp.org/en/jsr/detail?id=340

Context	and	Dependency	Injection	–	CDI	1.1	(JSR
346)
In	the	CDI	specifications	1.1,	a	lot	of	small	changes	are	included	as	follows:

Added	global	enablement	of	interceptors
Added	support	for	the	@AroundConstruct	lifecycle	callback	for	constructors
Allowed	binding	interceptors	to	constructors
Moved	interceptor	binding	to	interceptors	spec,	allowing	for	reuse	by	other
specifications
Added	support	decorators	on	built-in	beans
Added	EventMetadata

The	difference	between	a	resource	injection	and	dependency	injection	is	that	the	former
enables	us	to	inject	any	resource	available	in	the	JNDI	namespace	into	any	container-
managed	object,	such	as	a	servlet,	an	Enterprise	bean,	or	a	managed	bean	(at	the	field	or
setter	method	level).	On	the	other	hand,	the	dependency	injection	enables	us	to	turn
regular	Java	classes	into	managed	objects	(using	different	scopes)	and	inject	them	into	any
other	managed	object.

The	following	code	is	a	sample	code	for	the	resource	and	dependency	injections:

//Resource	injection:	

@Resource(name="java:comp/DefinedDataSource")

private	javax.sql.DataSource	myDataSource;

//Dependency	injection:	

@javax.enterprise.context.RequestScoped

public	class	MyValidator	{	...	}

public	class	MyServlet	extends	HttpServlet	{

		@Inject	MyValidator	validator;

		...

}

Note
For	more	details,	check	JSR	346	at	http://jcp.org/en/jsr/detail?id=346.

http://jcp.org/en/jsr/detail?id=346

Interceptors	1.2	(JSR	318)
Interceptors	are	used	in	conjunction	with	Java	EE	managed	classes	to	allow	developers	to
invoke	the	interceptor	methods	on	an	associated	target	class	in	conjunction	with	method
invocations	or	lifecycle	events.

The	common	uses	of	interceptors	are	logging,	auditing,	and	profiling.	Interceptors	1.2
have	several	new	enhancements	as	follows:

Rules	to	specify	the	interceptor	order
The	@AroundConstruct	interceptors
The	@Priority	annotation	to	determine	the	interceptor	order

A	sample	code	to	use	interceptors	is	as	follows:

@Stateless

public	class	TimerBean	{

		@Schedule(minute="*/1",	hour="*")

		public	void	automaticTimerMethod()	{	...	}

		@AroundTimeout

		public	void	timeoutMethod(InvocationContext	ctx)	{	..	}

}

Note
Interceptors	1.2	specifications	are	a	part	of	the	maintenance	release	of	JSR	318,	Enterprise
JavaBeans	3.1,	which	is	available	at	http://jcp.org/en/jsr/detail?id=318.

http://jcp.org/en/jsr/detail?id=318

Enterprise	JavaBeans	–	EJB	3.2	(JSR	345)
EJB	3.2	(JSR	345)	includes	a	lot	of	minor	improvements	as	follows:

This	includes	support	for	a	local	asynchronous	session	bean	invocations
Non-persistent	EJB	TimerService	has	been	added	for	the	EJB	3.2	Lite	set	of	features
Restriction	on	obtaining	the	current	class	loader	has	been	removed
Access	to	the	Java	I/O	has	been	altered,	replacing	must	not	with	should	exercise
caution
The	lifecycle	callback	interceptor	methods	of	the	Stateful	session	bean	can	now	be
executed	in	the	transaction	context	(determined	by	the	lifecycle	callback	method’s
transaction	attribute)
It	is	now	possible	to	completely	disable	passivation	for	a	specific	Stateful	session
bean
The	TimerService	API	has	been	extended	to	query	all	active	timers	in	the	same	EJB
module

We	will	discuss	the	asynchronous	method	invocation	in	session	beans	later	in	this	chapter.

Note
For	more	details,	check	JSR	345	at	http://jcp.org/en/jsr/detail?id=345.

http://jcp.org/en/jsr/detail?id=345

Java	Message	Service	–	JMS	2.0	(JSR	343)
A	new	JMS	Version	2.0	has	been	introduced,	aiming	to	simplify	the	messaging	interaction.
We	can	list	some	of	these	improvements	as	follows:

Simplified	API	consists	of	three	new	interfaces:	JMSContext,	JMSProducer,
JMSConsumer,	and	some	new	methods
A	default	connection	factory,	which	connects	to	the	application	server’s	built-in	JMS
provider
Multiple	consumers	are	allowed	on	the	same	topic	subscription
Message	delivery	delay,	after	which	the	message	is	delivered
Clients	have	the	ability	to	send	messages	asynchronously
JMSXDeliveryCount	is	changed	into	mandatory

A	simple	code	showing	how	to	use	the	simplified	APIs	in	JMS	2.0	to	send	the	JMS
message	using	the	default	connection	factory	is	given	as	follows:

@Resource(lookup="java:comp/DefaultJMSConnectionFactory")	ConnectionFactory	

connectionFactory

public	void	sendMessageJMS20(Queue	queue,	String	text)	{

		try	(JMSContext	context	=	connectionFactory.createContext();){

				context.createProducer().send(queue,	text);

		}	catch	(JMSRuntimeException	ex)	{

				..

		}

}

We	will	go	through	the	asynchronous	JMS	messages	in	more	detail	later	in	this	chapter.

Note
For	more	details	about	JMS	2.0,	check	JSR	343	at	http://jcp.org/en/jsr/detail?id=343.

http://jcp.org/en/jsr/detail?id=343

Concurrency	Utilities	1.0	(JSR	236)
Concurrency	Utilities	1.0	(JSR	236)	contains	the	following	main	components:

ManagedExecutorService:	This	component	is	used	to	execute	submitted	tasks
asynchronously
ManagedScheduledExecutorService:	This	component	is	used	to	execute	submitted
tasks	asynchronously	at	a	specific	time
ContextService:	This	component	is	used	to	create	dynamic	proxy	objects	that
capture	the	context	of	a	container	and	enable	applications	to	run	within	that	context	at
a	later	time	or	submit	to	ManagedExecutorService
ManagedThreadFactory:	This	component	is	used	to	create	managed	threads

We	will	go	through	these	utilities	in	further	detail	later	in	this	chapter.

Note
For	more	details,	check	JSR	236	at	http://jcp.org/en/jsr/detail?id=236.

http://jcp.org/en/jsr/detail?id=236

Batch	Applications	1.0	(JSR	352)
Batch	Applications	1.0	(JSR	352)	is	the	specification	for	batch	applications	and	a	runtime
to	schedule	and	execute	jobs.

The	batch	framework	consists	of	the	following	components:

A	job	specification	language	based	on	XML
A	set	of	batch	annotations	and	interfaces	for	application	business	logic
A	batch	container	that	manages	the	execution	of	batch	jobs

Note
For	more	details,	check	JSR	352	at	http://jcp.org/en/jsr/detail?id=352.

http://jcp.org/en/jsr/detail?id=352

Java	Persistence	APIs	–	JPA	2.1	(JSR	338)
JPA	2.1	includes	a	lot	of	changes	as	follows:

Support	for	stored	procedures
Bulk	update/delete	using	the	Criteria	objects
Predefined	and	user-defined	functions	using	FUNCTION
Using	the	TREAT	and	ON	keywords
Using	CDI	for	the	Entity	listeners
Support	of	unsynchronized	persistence	context

An	example	of	using	the	new	JPA	2.1	function	feature	is	given	as	follows:

SELECT	e	FROM	Employees	e

WHERE	FUNCTION('isOldHired',	e.joinDate,	e.status)

The	preceding	code	will	select	data	from	the	Employees	table	according	to	the	results	from
the	custom-defined	function	isOldHired,	which	takes	two	parameters,	namely	joinDate
and	status.

Note
For	more	details,	check	JSR	338	at	http://jcp.org/en/jsr/detail?id=338.

http://jcp.org/en/jsr/detail?id=338

JavaServer	Faces	–	JSF	2.2	(JSR	344)
JSF	2.2	includes	a	lot	of	new	improvement	features	as	follows:

The	Faces	Flows	feature	allows	you	to	create	a	set	of	pages	for	user	actions.	For
example,	an	online	shopping	journey.	It	also	has	a	new	defined	scope,	@FlowScoped.
The	Faces	Flows	feature	gives	you	HTML	5	support	using	either	the	pass-through
elements	or	the	pass-through	attributes.
The	Faces	Flows	feature	gives	you	resource	library	contracts.

An	example	of	HTML	5	support	in	JSF	is	given	as	follows:

<input	type="email"	jsf:id="email"	name="email"	value="#

{reservationBean.email}"	required="required"/>

In	the	preceding	example,	the	jsf	prefix	is	placed	on	the	id	attribute	so	that	the	attributes
of	the	HTML	5	input	tag	are	treated	as	part	of	the	Facelets	page	(the	pass-through
elements).

We	can	use	the	pass-through	attributes	as	follows:

<h:inputText	id="month"	p:type="number"	p:min="1"	p:max="12"	

p:required="required"	p:title="Enter	a	number	between	1	and	12	inclusive.">

The	preceding	code	will	provide	the	following	output:

<input	id="month"	type="number"	min="1"	max="12"

	required="required"	title="Enter	a	number	between	1	and	12	inclusive.">

Note
For	more	details	about	JSF	2.2,	check	JSR	344	at	http://jcp.org/en/jsr/detail?id=344.

http://jcp.org/en/jsr/detail?id=344

Expression	language	3.0	(JSR	341)
Expression	language	3.0	(JSR	341)	includes	some	new	enhancements	as	follows:

The	new	operator,	;	,to	separate	statements
The	use	of	a	static	field	and	method
String	concatenation	operator	using	+	or	cat
Lambda	expression:

Lambda	expression	behaves	like	a	function
It	can	be	invoked	immediately,	such	as	((x,y)->x+y)(3,4)	equals	to	7

Note
For	more	details,	check	JSR	341	at	http://jcp.org/en/jsr/detail?id=341.

http://jcp.org/en/jsr/detail?id=341

Java	Transaction	APIs	–	JTA	1.2	(JSR	907)
JTA	1.2	includes	a	few	enhancements	as	follows:

A	new	annotation	named	javax.transaction.Transactional	and	an	exception
javax.transaction.TransactionalException

A	new	annotation	named	javax.transaction.TransactionScoped

The	following	code	is	an	example	of	using	these	annotations	on	the	class	level	and
overrides	it	on	the	method	level:

@Transactional(Transactional.TxType.MANDATORY)	

public	class	TransactionBean	{	

		@Transactional(Transactional.TxType.NEVER)	

		public	void	actionWithoutTransaction()	throws	Exception	

		public	void	actionWithTransaction()	throws	Exception	

}

Note
To	get	more	details,	visit	JSR	907	at	http://jcp.org/en/jsr/detail?id=907.

http://jcp.org/en/jsr/detail?id=907

Java	API	for	WebSocket	1.0	(JSR	356)
WebSocket	API	is	a	new	feature	in	Java	EE;	it	complies	with	HTML	5	and	the	WebSocket
technology,	which	is	widely	adapted	by	browsers	these	days.

It	supports	the	annotated	and	programmatic	patterns
It	uses	the	ws://	protocol	for	nonsecure	communication	and	wss://	for	secure
communication	(similar	to	http://	and	https://)
Each	client	should	connect	to	one	endpoint	while	a	server	can	connect	many	clients
to	a	single	end	point
Each	WebSocket	server	side	is	called	endpoint;	the	process	to	create	and	deploy	a
WebSocket	endpoint	is	as	follows:

1.	 Create	an	endpoint	class.
2.	 Implement	the	lifecycle	methods	of	the	endpoint	(onOpen,	onMessage,	onError,

and	onClose).
3.	 Add	business	logic	to	the	endpoint	methods.
4.	 Deploy	the	endpoint	method	inside	a	web	application.
5.	 At	the	most,	we	can	have	three	methods	annotated	with	@OnMessage	in	an

endpoint	method,	one	for	each	message	of	the	text,	binary,	and	pong	types.

The	following	code	is	a	pseudo	code	to	send	the	confirmation	of	receiving	the	message	to
the	connected	client:

@OnMessage

public	void	onMessage(Session	session,	String	msg)	{

		try	{

				session.getBasicRemote().sendText("The	message	:"+msg);

		}	catch	(IOException	e)	{	...	}

}

The	HTML	page	will	contain	a	<td	id="message">	element,	so	we	can	use	it	to	place	the
message	using	the	following	JavaScript	code:

<body>

		...

		<table>

				...

				<td	id="message"	name="message">--.--</td>

				...

JavaScript	should	inject	the	received	message	into	the	message	<td>	as	shown	in	the
following	code:

var	wsocket;

function	connectMe()	{

		wsocket	=	new			

				WebSocket("ws://localhost:8080/app/endPoint");

		wsocket.onmessage	=	onMessage;

}

function	onMessage(evt)	{

		document.getElementById("message").innerHTML=evt.data;

}

window.addEventListener("load",	connectMe,	false);

Note
For	more	details,	check	the	W3C	WebSocket	API	specification	at
http://www.w3.org/TR/2011/WD-websockets-20110929/	and	JSR	356	at
http://jcp.org/en/jsr/detail?id=356.

http://www.w3.org/TR/2011/WD-websockets-20110929/
http://jcp.org/en/jsr/detail?id=356

Understanding	memory	structure	in	the
JVM
Understanding	the	memory	structure	in	the	JVM	is	essential	to	tune	the	JVM	for	the	better
performance	of	the	Java	applications,	so	the	essential	knowledge	to	deal	with	the	JVM	in
general,	and	in	particular,	the	JVM	memory	management	is	required	and	expected	from	a
performance	tuning	expert	to	master.

The	JVM	is	a	specification	that	is	released	and	updated	with	each	new	Java	release;	parts
of	the	specifications	are	mandatory,	while	some	are	left	for	vendor	implementation.	This
carries	additional	responsibility	to	understand	the	different	vendor	implementations.

The	JVM	specifications
The	implementation	of	the	Java	HotSpot	virtual	machine	is	considered	as	a	high-
performance	virtual	machine	implementation	for	the	Java	platform	(another	JVM	released
by	Oracle	is	JRockit).

The	Java	JDK	HotSpot	provides	the	following	two	different	implementations	of	the	JVM:

Client	virtual	machine:	This	virtual	machine	is	typically	used	for	client
applications.	The	client	virtual	machine	is	tuned	to	reduce	the	startup	time	and
memory	footprint.	It	can	be	invoked	by	using	the	-client	command-line	option
when	launching	the	application.
Server	virtual	machine:	This	virtual	machine	is	designed	to	maximize	program
execution	speed.	It	can	be	invoked	by	using	the	-server	command-line	option	when
launching	the	application.

We	will	discuss	both	types	in	Chapter	9,	Tuning	an	Application’s	Environment.

The	memory	structure	in	the	JVM	specifications	in	Java	SE	7—as	illustrated	in	the
following	diagram—contains	Heap	Area,	Method	Area	(includes	runtime	constant	area),
Java	VM	Stack,	Native	Method	Stack,	and	PC	Registers.

Let’s	have	a	quick	look	at	each	of	these	components	according	to	what	is	mentioned	in	the
JVM	specifications.

Heap	area
The	heap	area	represents	the	runtime	data	area,	from	which	the	memory	is	allocated	for	all
class	instances	and	arrays,	and	is	created	during	the	virtual	machine	startup.

The	heap	storage	for	objects	is	reclaimed	by	an	automatic	storage	management	system.
The	heap	may	be	of	a	fixed	or	dynamic	size,	and	the	memory	allocated	for	the	heap	area
does	not	need	to	be	contiguous.

Method	area	and	runtime	constant	pool
The	method	area	is	analogous	to	the	storage	area	for	the	compiled	code	of	a	conventional
language	or	to	the	text	segment	in	an	operating	system	process.	It	stores	per-class
structures	such	as	the	runtime	constant	pool;	field	and	method	data;	the	code	for	methods
and	constructors,	including	the	special	methods	used	in	class,	instance,	and	interface
initialization.

The	method	area	is	created	on	the	virtual	machine	startup.	Although	it	is	logically	a	part	of
the	heap,	it	can	or	cannot	be	garbage	collected,	and	it	can	be	of	a	fixed	or	dynamic	size.

It	also	contains	a	runtime	constant	pool,	which	is	a	per-class	or	per-interface	runtime
representation	of	the	constant_pool	table	in	the	class	file.	It	contains	several	kinds	of
constants,	ranging	from	numeric	literals	known	at	the	time	of	compiling,	to	method	and
field	references	that	must	be	resolved	at	runtime.

The	runtime	constant	pool	serves	a	function	similar	to	that	of	a	symbol	table	for	a
conventional	programming	language,	although	it	contains	a	wider	range	of	data	than	a
typical	symbol	table.

JVM	stack
Each	of	the	JVM	threads	has	a	private	stack	created	at	the	same	time	as	that	of	the	thread.
The	stack	stores	frames	and	is	analogous	to	the	stack	of	a	conventional	language	(such	as
C).	It	holds	local	variables	and	partial	results	and	plays	a	part	in	the	method	invocation
and	return.	Because	this	stack	is	never	manipulated	directly,	except	to	push	and	pop
frames,	the	frames	may	be	heap	allocated.	Similar	to	the	heap,	the	memory	for	this	stack
does	not	need	to	be	contiguous.

This	specification	permits	that	stacks	can	be	either	of	a	fixed	or	dynamic	size.	If	it	is	of	a
fixed	size,	the	size	of	each	stack	may	be	chosen	independently	when	that	stack	is	created.

Note
A	frame	is	used	to	store	data	and	partial	results	and	to	perform	dynamic	linking,	return
values	for	methods,	and	dispatch	exceptions.

Native	method	stacks	(C	stacks)
Native	method	stacks	is	called	C	stacks;	it	support	native	methods	(methods	written	in	a
language	other	than	the	Java	programming	language),	typically	allocated	per	each	thread
when	each	thread	is	created.

The	size	of	native	method	stacks	can	be	either	fixed	or	dynamic.

PC	registers
Each	of	the	JVM	threads	has	its	own	program	counter	(pc)	register.	At	any	point,	each	of
the	JVM	threads	is	executing	the	code	of	a	single	method,	namely	the	current	method	for
that	thread.

As	the	Java	applications	can	contain	some	native	code	(for	example,	using	native
libraries),	we	have	two	different	ways	for	native	and	nonnative	methods.	If	the	method	is
not	native	(that	is,	a	Java	code),	the	PC	register	contains	the	address	of	the	JVM
instruction	currently	being	executed.	If	the	method	is	native,	the	value	of	the	JVM’s	PC
register	is	undefined.

Note
For	more	details	about	JVM	specifications,	check	the	Oracle	documentation	at

http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html.

http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html

Memory	structure	in	the	Java	HotSpot	virtual
machine
Now,	let’s	cover	the	Java	HotSpot	virtual	machine	memory	structure.

Generational	memory	structure
When	memory	is	managed	using	a	technique	called	generational	collection,	the	memory	is
divided	into	generations,	that	is,	separate	pools	holding	objects	of	different	ages	(object
age	starts	from	object	creation	and	memory	allocation).

For	example,	reserve	one	space	for	young	objects	and	another	one	for	old	objects.

Young	generation	collections	occur	relatively	frequently	and	are	efficient	and	fast	because
the	young	generation	space	is	usually	small	and	likely	to	contain	a	lot	of	objects	that	are
no	longer	referenced.

Objects	that	survive	a	number	of	young	generation	collections	are	eventually	promoted	(or
tenured)	to	the	old	generation.

The	Java	HotSpot	virtual	machine	generations
If	we	examine	the	memory	structure	in	the	Java	HotSpot	virtual	machine	in	more	detail,	as
illustrated	in	the	following	diagram,	the	memory	is	categorized	into	three	generations—
the	young	generation	(the	Eden,	From,	and	To	survivor	spaces),	the	old	generation
(tenured	space),	and	the	permanent	generation.

Most	objects	are	initially	allocated	in	the	young	generation.	The	old	generation	contains
the	objects	that	have	survived	a	number	of	young	generation	collections,	as	well	as	some
large	objects	that	may	be	allocated	directly	in	the	old	generation.

The	permanent	generation	(Perm	Gen)	holds	objects	describing	classes	and	methods,	as
well	as	the	classes	and	methods	themselves.

The	young	generation	is	further	divided	into	three	areas:	Eden	space	for	initial	object
allocations	and	the	From	and	To	survivor	spaces,	where	one	of	them	is	used	to	collect	the
objects	that	resist	garbage	collection	in	the	previous	cycle	and	the	other	one	is	empty;	they
keep	exchanging	with	each	garbage	collection	cycle.

Objects	are	initially	allocated	in	Eden	space.	As	mentioned	previously,	a	few	large	objects

may	be	allocated	directly	in	the	old	generation.	The	survivor	spaces	hold	objects	that	have
survived	from	at	least	one	young	generation	garbage	collection	and	have,	thus,	been	given
additional	chances	to	die	before	being	considered	“old	enough”	to	be	promoted	to	the	old
generation.	At	any	given	time,	a	survivor	space	holds	such	objects,	while	the	other	is
empty	and	remains	unused	until	the	next	collection.

It	should	be	noted	that	the	garbage	collector	is	not	only	responsible	for	cleaning	the
memory	but	also	has	three	main	functions,	which	are	as	follows:

Allocating	the	needed	memory
Ensuring	that	any	referenced	objects	remain	in	memory
Recovering	memory	used	by	objects	that	are	no	longer	reachable	from	references	in
executing	the	code

In	this	generational	model,	the	most	challenging	factor	is	minimizing	the	garbage
collection	pause	times.	For	this,	a	lot	of	garbage	collection	policies	are	proposed,	as	we
will	see	in	the	next	section.

Note
The	garbage	collection	pause	time	is	the	length	of	time	during	which	application	execution
is	stopped	while	garbage	collection	is	occurring.

The	main	difference	between	HotSpot	and	JRockit	is	that	there	is	no	PermGen	space	for
the	JRockit	virtual	machine;	instead,	it	uses	the	native	heap	for	the	data	related	to	the	class
metadata.	We	will	discuss	this	in	more	detail	in	Chapter	9,	Tuning	an	Application’s
Environment.

Understanding	the	Java	garbage
collection	policies
Garbage	collection	is	one	of	the	features	that	characterize	the	Java	language;	it	went
through	continuous	improvements	in	the	subsequent	Java	releases.	We	have	the	following
three	main	types	of	garbage	collectors:

Serial	collector:	This	collector	does	the	garbage	collection	in	a	serial	(sequential)
manner,	followed	by	compacting	the	old	space	to	combine	the	empty	space	for	better
object	allocations	later.	This	means	the	application	will	be	stopped	during	this
collection	activity.
Concurrent	mark	sweep	(CMS):	This	collector	runs	in	parallel	in	two	different
stages—the	mark	stage	to	mark	the	objects	that	are	eligible	for	garbage	collection
(three	steps)	and	the	sweep	stage	to	remove	these	objects.	However,	it	doesn’t
perform	any	space	compacting	after	garbage	collection.
Garbage-first	(G1):	This	collector	is	the	latest	introduced	collection	policy,	which
can	be	adjusted	according	to	the	application	needs.	It	also	compacts	the	space	after
garbage	collection.

It	is	essential	to	master	the	different	possible	configurations,	and	the	higher	the	criticality
of	the	application,	the	more	we	need	to	spend	time	tuning	the	garbage	collector	to
minimize	the	application’s	pause	times.

Different	GC	options
Before	we	discuss	the	HotSpot	GC	strategies,	we	need	to	understand	some	of	the	available
GC	options.

Concurrent	versus	stop-the-world
The	stop-the-world	garbage	collection	is	simpler	since	the	heap	is	frozen	and	the	objects
do	not	change	during	the	collection.	This	type	may	be	undesirable	for	some	applications,
such	as	real-time	applications,	which	can’t	tolerate	this	pause	time.	So	it	has	to	use	the
concurrent	collector	to	minimize	the	garbage	collection’s	pause	time.

The	concurrent	collector	needs	extra	care,	as	it	operates	the	objects	that	might	be	updated
at	the	same	time	by	the	application,	so	this	adds	some	overhead	to	the	activity	and	it
requires	a	large	heap	size	as	well.

Serial	versus	parallel	collector
In	the	serial	collector,	both	young	and	old	collections	are	done	serially.	In	a	stop-the	world
fashion,	an	application	execution	is	halted	while	collection	is	taking	place.

When	the	parallel	collection	is	used,	the	task	of	garbage	collection	is	to	split	into	parts,
and	those	subparts	are	executed	simultaneously	on	different	CPUs.	Refer	to	the	following
diagram:

The	preceding	diagram	summarizes	the	following	work	done	by	the	serial	collector:

Collecting	all	live	objects	(still	referenced	in	the	application)	from	Eden	space	in	the
empty	survivor	space	(the	To	survivor	space	in	the	preceding	diagram)
Collecting	all	live	objects	from	the	nonempty	survivor	space	(the	From	survivor
space	in	preceding	diagram)	in	the	other	survivor	space	(the	To	survivor	space)	and
very	old	objects	in	the	Old	generation	space
If	the	To	survivor	space	is	full,	the	live	objects	from	Eden	space	or	the	From
survivor	space	that	have	not	been	copied	to	it	are	tenured,	that	is,	moved	to	Old
generation	(regardless	of	how	many	young	generation	collection	cycles	they	have
survived)
Any	objects	remaining	in	Eden	space	or	the	From	survivor	space	after	live	objects
have	been	copied	are	not	considered	as	live	objects	(objects	marked	with	X	in	the
preceding	diagram)
Both	Young	generation	and	the	From	survivor	spaces	will	be	freed

Survivor	spaces	swap	rules	now;	the	From	survivor	space	now	becomes	empty	and
will	be	the	To	survivor	space,	and	the	To	survivor	space	becomes	full	and	will	be	the
From	survivor	space	in	the	next	cycle

The	parallel	collector	does	the	same	work,	but	it	splits	the	activity	into	parts	and	those
subparts	are	executed	simultaneously	on	different	CPUs,	as	shown	in	the	following	figure;
this	causes	reduction	in	the	needed	application	pause	time:

The	HotSpot	JVM	also	includes	the	CMS	collector,	which	is	considered	a	low-latency
collector.	This	collector	differs	mainly	in	the	way	it	deals	with	the	old	generation	space
collection.	It	deals	with	the	young	generation	in	the	same	way	as	the	parallel	collector.	It
has	the	following	two	subsequent	steps:

Mark	step:	This	step	includes	the	following	three	phases:

Initial	mark	phase:	The	collector	initially	marks	all	the	reachable	live	objects
(the	first	short	pause	time)
Concurrent	mark	phase:	The	concurrent	marking	of	the	objects	follows
perfectly,	but	because	the	application	is	running	and	updating	reference	fields
while	the	marking	phase	is	taking	place,	not	all	live	objects	are	guaranteed	to	be
marked	at	the	end	of	this	phase
Final	remark	phase:	The	application	stops	again	for	a	second	pause,	and
finalizes	the	marking	by	revisiting	any	objects	that	were	modified	during	the
concurrent	marking	phase

Sweep	step	(concurrent):	The	concurrent	sweep	phase	reclaims	all	the	garbage	that
has	been	identified.	Refer	to	the	following	diagram:

Compacting	versus	non-compacting
In	the	compacting	type,	the	old	space	is	compacted	by	two	subsequent	steps,	the	summary
phase	and	compacting	phase.

Summary	phase

The	GC	examines	the	density	of	the	regions,	starting	with	the	leftmost	one,	until	it	reaches
a	point	where	the	space	that	could	be	recovered	from	a	region,	and	the	density	of	the
region	to	the	right	of	it	is	worth	the	cost	of	this	compacting.

The	regions	to	the	right	of	that	point	will	be	compacted	by	eliminating	all	the	dead	spaces.

Compacting	phase

Using	the	summary	data,	the	threads	can	be	independently	copied	into	the	regions	that
need	to	be	filled;	this	produces	a	heap	that	is	densely	packed	on	one	end,	with	a	single
large	empty	block	on	the	other.

CMS	is	not	a	compacting	type,	but	other	collectors	are	compacting	collectors.	We	can	see
in	the	following	diagram	the	difference	between	the	noncompacting	and	compacting
garbage	collectors:

Compacting	makes	the	allocation	of	a	new	object	easy	and	fast	at	the	first	free	location
(one	pointer	is	enough	to	point	to	the	available	allocation	space).

A	noncompacting	collector	releases	the	space	utilized	by	the	garbage	objects	in	place,	so	it
has	the	advantage	of	faster	completion,	but	the	drawback	is	potential	heap	fragmentation.
It	needs	a	number	of	lists	linking	together	the	unallocated	regions	of	memory,	and	each
time	an	object	needs	to	be	allocated,	the	appropriate	list	(based	on	the	amount	of	memory
required)	must	be	searched	for	a	region	that	can	hold	that	object,	so	allocations	in	the	old
generation	become	more	time	consuming.

The	Garbage-first	collector	–	G1
The	G1	collector	is	a	recently	introduced	garbage	collector;	it	is	supported	since	Oracle
JDK	7	update	4.	The	G1	collector	is	a	server-style	garbage	collector	targeted	for	multi-
processor	machines	with	large	memories.

Let’s	go	through	how	this	collector	works	as	follows:

The	heap	is	partitioned	into	a	set	of	equal-sized	regions,	each	having	a	contiguous
range	of	virtual	memory.
G1	performs	a	concurrent	global	marking	phase	to	determine	the	aliveness	of	objects
throughout	the	heap.
After	the	mark	phase	is	complete,	G1	knows	which	regions	are	mostly	empty.	It
collects	the	garbage	in	these	regions	first,	which	usually	yield	a	large	amount	of	free
space.	This	is	why	it	is	called	Garbage-first.
The	regions	identified	by	G1	as	ripe	for	reclamation	are	garbage	collected	using
evacuation.	G1	copies	objects	from	one	or	more	regions	of	the	heap	to	a	single	region
on	the	heap,	and	in	the	process,	it	both	compacts	and	frees	the	memory.	This
evacuation	is	performed	in	parallel	on	multiprocessors	to	decrease	the	pause	times
and	increase	throughput.

Note
Throughput:	In	this	context,	throughput	is	the	percentage	of	the	total	time	not	spent
in	garbage	collection,	considered	over	long	periods	of	time.	It	equals	the	time
dedicated	for	the	application	to	work.

G1	uses	a	pause	prediction	model	to	meet	a	user-defined	pause	time	target	and	selects	the
number	of	regions	to	collect	the	garbage	based	on	the	specified	pause	time	target.	The

following	diagram	shows	an	example	of	G1	heap	partitions:

It	is	important	to	note	that	G1	is	not	a	real-time	collector.	It	meets	the	pause	time	target
with	high	probability,	but	not	with	absolute	certainty.	Based	on	the	data	from	the	previous
collections,	G1	does	an	estimate	of	how	many	regions	can	be	collected	within	the	user-
specified	target	time.

G1	is	planned	as	a	replacement	for	the	CMS	collector.	Comparing	G1	with	CMS,	there	are
differences	that	make	G1	a	better	solution.	One	difference	is	that	G1	is	a	compacting
collector	(with	the	advantages	of	a	compacting	collector,	as	mentioned	before);	it	also
offers	more	predictable	garbage	collection	pauses	than	the	CMS	collector	and	allows	users
to	configure	the	desired	pause	targets.

Note
For	more	details,	visit	the	Oracle	Java	documentation	at
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/G1.html.

http://docs.oracle.com/javase/7/docs/technotes/guides/vm/G1.html

Different	application	scopes
The	application	scopes	control	the	lifetime	of	the	objects	placed	inside.	We	need	to
understand	the	different	available	scopes	in	the	Java	Enterprise	application	and	carefully
pick	the	most	suitable	scope	to	use,	so	we	can	make	the	best	use	of	our	application
memory:

Global	data	should	be	stored	in	the	application	scope
The	session	scope	should	be	used	only	for	user-specific	data	that	we	need	throughout
the	application
Additional	scopes	such	as	conversational	or	flow	should	be	used	whenever	suitable

The	following	table	illustrates	the	different	available	Java	EE	7	application	scopes:

Scope Annotation	tag Usage

Request @RequestScoped This	is	a	single	HTTP	interaction.

Session @SessionScoped This	has	all	user	HTTP	interactions.

Application @ApplicationScoped This	is	shared	with	all	users’	interactions	per	web	application	server.

Flow @FlowScoped This	is	used	for	Faces	Flows	(the	JSF	scope).

View @ViewScoped
Every	view	has	its	own	unique,	non-shared	views,	and	it	remains	live	if	the
action	methods	return	the	user	to	the	same	view	(the	JSF	scope).

Flash No	annotation
This	is	used	to	carry	objects	to	the	next	view	to	overcome	the	page’s	redirection,
which	removes	the	request	parameters	(the	JSF	scope).

Dependent @Dependent
This	is	the	default	scope	if	none	is	specified;	it	means	that	an	object	exists	to
serve	exactly	one	client	(bean)	and	has	the	same	lifecycle	as	that	of	the	client.

Conversation @ConversationScoped
It	shows	a	user’s	interaction	with	a	servlet,	including	the	JavaServer	Faces
applications.

Using	the	annotation,	the	CDI	is	responsible	for	placing	the	beans	in	the	specified	context
and	ensures	that	the	objects	are	created	and	injected	at	the	correct	time,	as	determined	by
the	scope	that	is	specified	for	these	objects.

A	scope	gives	the	object	a	well-defined	lifecycle	context.	The	scoped	object	can	be
automatically	created	when	needed	and	automatically	destroyed	when	the	context	in
which	it	was	created	ends;	it	is	shared	among	any	client	that	executes	in	the	same	context.

Also,	it	should	be	noted	that	the	static	members	of	classes	are	globally	scoped	by	nature,
so	we	should	be	careful	when	dealing	with	any	static	field,	and	in	particular,	the	static
collections,	as	it	will	consume	the	memory	without	being	monitored.	A	similar	issue
happens	with	the	instance	variables	of	long-living	objects,	such	as	servlets,	filters,	and
listeners.

The	most	common	issue	related	to	using	different	scopes	is	abusing	the	session	scope	with

a	lot	of	unnecessary	data.	We	need	to	make	use	of	these	different	scopes	for	better
application	memory	management	and	performance.

Understanding	concurrency	in	Java
Concurrency	in	Java	is	one	of	the	critical	performance	issues,	particularly	in	the
standalone	or	desktop	applications.	For	the	web	applications,	it	is	less	critical.	We	can
have	a	lot	of	benefits	by	utilizing	the	Java	concurrency	features,	especially	after	the	recent
modifications	to	Java	EE	to	add	a	lot	of	asynchronous	components;	we	will	cover	these
components	in	this	chapter.

Concurrency	is	the	concept	of	executing	two	or	more	tasks	at	the	same	time	(in	parallel).
Tasks	may	include	methods	(functions),	parts	of	a	program,	or	even	other	programs	with
modern	computer	architectures;	support	for	multiple	cores	and	multiple	processors	in	a
single	CPU	is	very	common.

Before	Java	EE	7,	it	was	not	recommended	to	use	concurrency	in	the	Java	EE	applications
as	it	was	not	managed	by	the	container.	However,	standardized	ways	to	utilize	the
concurrency	feature	in	Enterprise	applications	have	been	introduced	in	Java	EE	7.

Process	versus	thread
Concurrency	in	Java	can	be	achieved	in	the	following	two	main	ways:

Using	processes:

A	process	corresponds	to	the	operating	system’s	running	process;	it	has	its	own
non-shared	runtime	resources.	For	example,	each	process	has	its	own	memory.
Our	Java	application	is	considered	as	a	standalone	process	in	most	of	the	Java
implementations.	We	can	use	the	ProcessBuilder	class	to	create	additional
processes	from	inside	the	application	by	using	following	code:

Process	process=	new	ProcessBuilder("myCommand",	

"myArguments").start();

As	each	process	has	its	own	non-shared	resource,	we	need	some	sort	of
communication	between	these	processes;	for	example,	most	of	the	operating
systems	support	the	inter-process	communication	(IPC)	resources,	such	as
pipes	and	sockets,	which	are	important	to	distribute	the	work	between	different
processes.	The	other	alternative	is	to	use	a	common	data	store	(database	or	flat
files).
The	following	redirect	method,	for	example,	can	be	used	to	redirect	the	process
output:

public	ProcessBuilder	redirectOutput(ProcessBuilder.Redirect	

destination)

If	the	destination	is	set	as	Redirect.PIPE,	the	standard	output	of	a	subprocess
can	be	read	using	the	input	stream	returned	by	the	Process.getInputStream()
method.	So	the	parent	process	can	read	the	output	of	various	subprocesses	to
follow	their	execution	progress.

Using	threads	(a	lightweight	process):

Threads	share	the	process’	resources	including	memory	and	open	files.
They	exist	within	a	process	and	every	process	has	at	least	one	thread.
Every	thread	has	a	priority	and	threads	with	higher	priority	are	executed	first.
The	thread	priority	is	inherited	from	the	parent	thread	that	creates	this	thread
unless	explicitly	changed.
Threads	can	be	classified	into	system	(daemon)	threads	and	user	threads.	An
example	of	the	system	thread	is	the	garbage	collector	and	one	of	a	user	thread	is
the	main	application	thread.
We	can	create	threads	by	either	by	implementing	the	Runnable	interface	or
extending	the	Thread	class,	as	shown	in	the	following	code:

public	class	HelloRunnable	implements	Runnable	{

		public	void	run()	{

				System.out.println("Hello!");

		}

		public	static	void	main(String	args[])	{

				(new	Thread(new	HelloRunnable())).start();

		}

}

A	concurrency	advantage	is	mainly	the	efficient	utilization	of	the	machine	processing
power.	It	is	also	the	value	of	executing	some	background	activities,	which	can	improve	the
user’s	response	time	by	not	waiting	for	these	background	activities.

It	also	has	some	drawbacks	such	as	deadlocks,	competition	on	the	shared	resources,	and
potential	corruption	of	the	shared	data.

Exploring	an	object	monitor
Each	object	in	Java	is	associated	with	a	monitor,	which	is	considered	as	the	object	lock;
only	one	thread	at	a	time	may	hold	a	lock	of	the	same	object	(even	multiple	times).
Holding	the	lock	by	a	thread	means	other	threads	can’t	access	this	object.

The	monitor	is	represented	inside	the	JVM	as	a	counter;	it	represents	the	number	of	times
the	thread	holds	the	lock	on	this	object.	The	object	is	unlocked	only	when	the	monitor	has
a	count	of	zero.

Java	initially	had	a	single	way	to	obtain	this	lock,	which	is	implicit	locking	using	the
synchronized	keyword.	Recently,	the	explicit	locking	mechanism	has	been	introduced
using	the	Lock	interface.	Let’s	learn	the	implicit	locking,	and	in	the	next	section,	we	will
discuss	the	explicit	locking	using	the	Lock	interface	in	more	detail.

First,	we	need	to	understand	the	different	synchronized	keyword	usages	as	follows:

The	Synchronized	method	could	be	either	a	static	or	instance	method
The	Synchronized	block	could	also	be	either	a	static	or	instance	block,	for	example,
synchronized	(object)	{	}

When	we	synchronize	around	an	object,	it	means	that	the	current	thread	will	try	to	get	the
lock	or	monitor	of	this	object,	and	once	the	thread	gets	the	lock,	it	will	start	executing	this
block	of	code;	otherwise,	it	will	wait	till	it	gets	that	lock.

Using	the	synchronized	keyword	with	methods	means	one	the	following	situations:

If	the	method	is	an	instance	method,	it	locks	the	monitor	associated	with	the	instance
for	which	it	was	invoked,	that	is,	this	object
If	the	method	is	static,	it	locks	the	monitor	associated	with	the	Class	object	that
represents	the	class	in	which	this	method	is	defined	(each	class	in	Java	has	a	Class
attribute	that	represents	this	Class	object).

It	is	important	to	understand	how	to	use	the	different	Thread	class	methods	to	coordinate
among	concurrently	executing	threads;	for	example,	if	a	thread	holds	the	monitor	of	an
object,	but	needs	to	perform	its	task	only	after	other	threads	do	some	processing,	it	can
release	the	object	monitor	to	other	threads	and	go	into	the	wait	status	by	calling	its	wait()
method.

When	the	other	threads	perform	the	actions,	they	need	to	notify	back	using	the	notify()
or	notifyAll()	method,	so	the	initial	thread	can	be	awakened	to	complete	its	task.

Using	the	Java	concurrency	utilities
The	concurrency	utilities	are	important	APIs	that	facilitate	the	concurrency
implementations	in	the	Java	applications.	We	can	create	the	thread	pools	for	execution,
use	the	explicit	locking	mechanism,	use	fork	or	join	to	distribute	the	required	task,	and
utilize	the	concurrency	in	context	managed	in	the	Java	Enterprise	applications.

For	example,	creating	a	thread	pool	is	simple	using	ExecutorService,	where	we	define
the	pool	size	and	add	all	the	different	threads	to	that	pool;	in	this	way,	we	can	control	the
execution	of	all	these	threads	according	to	the	defined	pool	size.

We	need	to	understand	all	the	available	concurrency	utilities	because	one	of	the
performance-improvement	techniques	is	to	implement	concurrency	in	certain	heavy-
processing	areas	in	our	application.	We	will	not	dissect	all	these	utilities	here,	instead	we
will	show	how	to	resolve	some	common	tasks	using	the	utilities	explained	in	the	next
sections.

Creating	a	thread	pool
In	Java,	we	can	create	a	pool	of	threads	using	different	APIs.	One	way	is	to	use
ExecutorService,	where	we	can	define	the	thread	pool	size	and	execute	these	threads
according	to	the	required	pool	size.	So	if	we	have	100	threads	and	we	defined	a	pool	size
of	10,	then,	at	the	most,	we	will	have	10	threads	executed	at	a	time.	When	one	thread
finishes	the	execution,	a	new	thread	begins	execution.	This	permits	us	to	maximize
resource	utilization	by	tuning	the	thread	pool	size	according	to	the	CPU	and	hardware
profile.	We	need	to	be	aware	of	classes	such	as	ThreadPoolExecutor	and
ScheduledThreadPoolExecutor.

To	get	the	number	of	cores/processors	in	the	machine,	we	can	execute	the	following	code:

int	numberOfCores	=	Runtime.getRuntime().availableProcessors();

Let’s	have	a	look	at	the	following	sample	pseudo	code	for	using	a	thread	pool:

ExecutorService	execSvc	=	Executors.newFixedThreadPool(20);

for(int	i	=	0;	i	<	600;	i++)	{

		execSvc.execute(new	MyThread());

}

//check	if	executor	service	finished	executing	threads

while(!execSvc.isTerminated()){

		Thread.sleep(500);

		execSvc.shutdown();

}

class	MyThread	implements	Runnable	{

		public	void	run()	{

				...

		}

}

In	this	code,	we	created	600	different	threads	and	configured	the	thread	pool	to	execute
only	20	concurrent	threads	at	a	time.	So	the	thread	pool	picks	20	threads	initially,	and
whenever	a	thread	is	terminated,	it	picks	another	one	till	no	threads	are	left.

It	is	important	to	know	that	tuning	the	pool	size	is	an	important	performance-tuning
aspect,	because	switching	between	20	different	threads	in	a	processor	with	5	or	7	cores
will	causes	a	lot	of	context	switchings,	which	consumes	time	and	will	definitely	impact
the	application’s	performance.

Also,	using	the	thread	pool	is	essential	to	protect	the	depletion	of	application	resources.	In
the	previous	example,	if	we	create	a	thread	when	needed,	we	will	have	to	create	hundreds
of	threads	in	a	short	time	and	it	will	end	up	with	OutOfMemoryError.

Using	explicit	locking	with	the	Lock	interface
The	Lock	objects	work	similar	to	the	implicit	lock	using	the	synchronized	keyword,	and
only	one	thread	can	own	a	Lock	object	at	a	time.	The	Lock	objects	also	support	the	wait
and	notify	mechanisms	through	their	associated	Condition	objects.

The	biggest	advantage	of	the	Lock	objects	over	the	implicit	lock	is	their	ability	to	back	out
of	an	attempt	to	acquire	a	lock.	The	tryLock	method	backs	out	if	the	lock	is	not	available
immediately	or	before	a	timeout	expires	(if	specified).	The	lockInterruptibly	method
backs	out	if	another	thread	sends	interrupt	before	the	lock	is	acquired,	so	we	will	be	able
to	control	the	locking,	which	can	prevent	deadlocks.

Let’s	take	an	example	of	a	famous	deadlock	situation	where	two	concurrent	threads	are
trying	to	acquire	the	same	look.	In	this	example,	we	will	have	two	bank	accounts	(A	and
B)	and	we	need	to	transfer	money	from	account	A	to	account	B.	At	the	same	time,	another
thread	is	trying	to	transfer	from	account	B	to	account	A.	Since	these	are	banking	accounts,
we	need	to	ensure	that	each	running	thread	is	the	only	thread	currently	modifying	a	single
account.	(for	example,	if	account	A	has	$1000	and	we	are	trying	to	withdraw	$1000	using
two	threads	concurrently,	and	if	there	is	no	good	locking,	we	could	have	a	situation	where
the	two	withdraws	happened	successfully	while	the	account	has	only	$1000).

public	void	settleTransfers()	{

		AccountWithLock	firstAccount=	new	AccountWithLock();

		AccountWithLock	secondAccount=	new	AccountWithLock();

		...

		...

		TransferLock(1,firstAccount,secondAccount,200);

		TransferLock(2,secondAccount,firstAccount,150);

		Thread	t1	=	new	Thread(transfer1);

		Thread	t2	=	new	Thread(transfer2);

		t1.start();

		t2.start();

}

In	the	preceding	code,	two	threads	are	trying	to	execute	the	transfers	at	the	same	time.	The
following	code	shows	the	transfer	logic	using	the	synchronized	keywords:

public	void	run()	{

		int	transferAttempts	=	3;

		while	(transferAttempts	>	0)	{

				if	(fromAccount.transfer(fromAccount,	toAccount,	amount))	{

						break;

				}

				//	sleep	for	a	while	to	retry

				transferAttempts--;

		}

}

The	preceding	code	tries	to	execute	the	transfer	from	the	account	and	sleep	for	a	while	to
try	again.	The	following	code	is	the	actual	transfer	code:

boolean	transfer(Account	fromAccount,	Account	toAccount,	double	amount)	{

		synchronized(fromAccount)	{

				Thread.sleep(50);	

				synchronized	(toAccount)	{

						if(fromAccount.withdraw(amount))	{

								toAccount.deposit(amount);

						}

					...

}

There	is	an	explicit	sleep	period	to	ensure	both	threads	are	now	competing	for	the	required
resources	(that	is,	on	the	two	bank	accounts),	so	a	deadlock	can	occur.	If	we	execute	the
application	now,	the	application	will	hang	because	of	this	deadlock!

Now,	let’s	rewrite	the	method	with	the	new	logic	using	the	new	explicit	locking	as
follows:

try	{

		fromAccount.lock.tryLock(3,	TimeUnit.SECONDS);

}	catch	(InterruptedException	ex)	{

		...

}

...

if	(!fromAccount.lock.isHeldByCurrentThread())	{

		return	false;

}

...

try	{

		toAccount.lock.tryLock(3,	TimeUnit.SECONDS);

}	catch	(InterruptedException	ex)	{

		...

}

if(!toAccount.lock.isHeldByCurrentThread()){

		fromAccount.lock.unlock();

		return	false;

}

...

if(fromAccount.withdraw(amount)){

		toAccount.deposit(amount);

		fromAccount.lock.unlock();

		toAccount.lock.unlock();

}

...

return	true;

In	the	Account	class,	we	have	added	the	new	ReentrantLock	attribute	as	follows:

public	ReentrantLock	lock	=	new	ReentrantLock();

This	is	one	implementation	technique.	Another	way	is	implement	the	Lock	interface	and
override	the	methods	if	we	need	to.

In	the	following	code,	we	try	to	get	the	lock	for	fromAccount	using	the	tryLock	method
and	specify	the	wait	time	to	get	the	lock	for	a	maximum	of	3	seconds:

fromAccount.lock.tryLock(3,	TimeUnit.SECONDS);

Once	we	get	this	lock,	we	try	to	get	the	toAccount	lock.	If	we	succeed	in	getting	it,	we
can	transfer	the	money	as	we	have	the	lock	of	both	the	objects.	We	specified	three	trials	to
get	the	lock,	so	the	transfer	can	occur	in	subsequent	trials	rather	than	a	deadlock.

It	is	worth	mentioning	that	in	our	modified	code,	to	use	the	Lock	interface,	we	use	the	new
thread	safe	ThreadLocalRandom	class	as	follows:

Thread.sleep(ThreadLocalRandom.current().nextInt(500));	

This	new	class	ensures	that	the	current	thread	does	not	share	the	random	object	with	any
other	thread.	So	whenever	we	need	to	generate	random	numbers	in	multithreaded	code,	we
need	to	use	ThreadLocalRandom	instead	of	Math.random().	So	the	random	results	would
be	less	contention	with	better	performance.

Note
You	can	download	the	code	from	http://www.packtpub.com.

http://www.packtpub.com

Concurrent	resources	and	utilities
In	Java	EE	7,	the	concept	of	concurrent	resources	is	introduced.	Concurrent	resources	are
the	managed	objects	that	provide	concurrency	capabilities	to	the	Java	EE	applications.

In	the	application	server,	we	need	to	configure	concurrent	resources,	and	then	make	them
available	for	use	by	the	application	using	either	the	JNDI	lookup	or	resource	injection.

The	main	concurrent	resources	are	explained	in	the	next	sections.

The	ManagedExecutorService	class
A	managed	executor	service	is	used	by	the	applications	to	execute	submitted	tasks
asynchronously.	It	extends	the	Java	SE	ExecutorService	to	provide	methods	to	submit
tasks	for	execution	in	Java	EE.

The	executor	service	accepts	both	the	Runnable	task	and	the	Callable	task.	The	main
difference	between	using	both	is	that	if	we	use	the	Runnable	task,	no	return	method	is
required	as	the	run()	method	returns	void	and	it	can’t	throw	a	checked	exception.	On	the
other	hand,	if	we	use	the	Callable	task,	we	get	the	results	from	the	Future	object	and	we
can	throw	the	different	checked	exceptions	as	well.

A	sample	code	to	use	this	service	to	submit	both	the	Runnable	and	Callable	tasks	should
look	like	the	following	code:

@Resource

ManagedExecutorService	executor;

//or	by	using	JNDI

ManagedExecutorService	executor	=	(ManagedExecutorService)	

context.lookup("java:comp/DefaultManagedExecutorService");

		//then	add	the	Runnable	task	with	no	return

		executor.submit(new	Runnable()	{

		@Override

		public	void	run()	{

				...

		}

		});

		//or	add	the	Callable	task	with	the	result	in	the	Future	object

		Future<String>	result	=	executor.submit(new	Callable<String>()	{

		@Override

		public	String	call()	throws	Exception	{

				...

				return	"Finished";

		}

});

//	get	the	results	using	the	get()	method	

//	if	result.isDone()==true:

out.println("Output:	"	+	result.get());

In	the	preceding	code,	we	submit	the	Runnable	task	to	the	executor	service	to	execute	it
without	expecting	any	result.	Then,	we	submit	a	Callable	task	to	the	executor	service	and
wait	for	the	response	using	the	Future	object	callback.

We	can	also	submit	a	list	of	the	Callable	objects	using	the	invokeAll(..)	method	and

get	a	list	of	the	Future<?>	objects	so	that	we	can	use	them	to	retrieve	the	results.

The	ManagedScheduledExecutorService	class
A	managed	scheduled	executor	service	is	used	by	applications	to	execute	the	submitted
tasks	asynchronously	at	specific	times.	The	API	provides	the	scheduling	functionality	that
allows	users	to	set	a	specific	date/time	for	the	task	execution	programmatically	in	the
application.

It	is	used	in	the	same	way	as	ManagedExecutorService	but	by	adding	the	scheduler
configurations.	A	simple	code	that	schedules	the	execution	of	the	Callable	object	is
shown	as	follows.

@Resource

ManagedScheduledExecutorService	executor	;

ScheduledFuture<String>	result	=	executor.schedule(new	Callable<String>()	{

		@Override

		public	String	call()	throws	Exception	{

				...

				return	"Finished	Scheduler	work";

		}

},	60,	TimeUnit.SECONDS);

//	Get	the	results	using	the	get()	method	

//	If	result.isDone()==true

String	output	=	result.get();

In	the	preceding	code,	we	configured	the	scheduler	task	to	execute	after	one	minute,	and
we	get	the	results	using	the	get()	method	from	the	ScheduledFuture	object.

The	ManagedThreadFactory	class
A	managed	thread	factory	is	used	by	the	applications	to	create	managed	threads.	The
threads	are	started	and	managed	by	the	container,	which	is	the	standard	way	to	create
threads	in	Java	EE	instead	of	the	non-recommended	way	used	prior	to	Java	EE	7,	which	is
creating	unmanaged	threads.

A	ManagedThreadFactory	class	extends	the	Java	SE	ThreadFactory	to	provide	a	method
to	create	threads	for	execution	in	Java	EE.	It	has	a	single	method,	newThread(),	which	is
inherited	from	the	ThreadFactory	class.

Let’s	see	the	simple	way	to	create	a	thread	using	this	managed	factory	in	the	following
code	example:

@Resource

ManagedThreadFactory	factory;

Thread	mThread	=	factory.newThread(new	Runnable()	{

		@Override

		public	void	run()	{

				System.out.println("Running…");

		}

});

mThread.start();

In	the	preceding	code,	we	have	added	the	thread	to	the	managed	container	by	using	the

ManagedThreadFactory	class	and	calling	the	newThread(..)	method.	Then,	we	start	the
thread	execution	using	the	start()	method.

The	important	Java	EE	concurrency
features
In	addition	to	the	concurrent	resources	and	concurrency	APIs,	Java	EE	has	many
concurrency	features	for	asynchronous	invocations.	We	summarize	them	as	follows:

Servlet/filter	asynchronous	processing
Nonblocking	I/O	APIs	for	asynchronous	servlet/filter
EJB	features,	such	as	singleton	EJB,	calling	asynchronous	session	bean	methods,	and
sending	asynchronous	JMS	messages

It	is	important	that	we	recognize	all	these	features	so	that	we	can	recommend	the	optimal
solutions	when	faced	with	performance	issues	in	long	processing	components.

The	SingleThreadModel	interface
When	Servlet	implements	the	SingleThreadModel	interface.	It	is	guaranteed	that	the
container	will	let	only	one	thread	at	a	time	be	executed	in	a	given	servlet	instance’s	service
method.	However,	because	the	container	may	have	a	pool	of	objects	for	Servlet,	it	is	not
recommended	to	use	this	interface	as	it	could	lead	to	potential	synchronization	issues.
Hence,	this	interface	is	deprecated	since	Servlet	API	Version	2.4.

If	we	need	to	execute	certain	code	areas	using	just	one	thread,	we	can	use	one	of	the
synchronization	methods	that	we	just	discussed	in	the	previous	section.

Asynchronous	servlet	and	filter
When	a	servlet	or	filter	component	needs	to	do	long	processing,	they	can	delegate	the
work	in	the	asynchronous	execution	context	and	get	the	results	once	the	execution	is
completed.	To	enable	asynchronous	processing	on	a	servlet	or	a	filter,	we	need	to	add	the
parameter	asyncSupported	and	set	it	as	true	on	the	@WebServlet	or	@WebFilter
annotation	subsequently,	as	shown	in	the	following	code:

@WebServlet(urlPatterns={"/asyncservlet"},	asyncSupported=true)

public	class	MyAsyncServlet	extends	HttpServlet	{	...	}

To	obtain	an	instance	of	AsyncContext,	call	the	startAsync()	method	on	the
HttpServletRequest	object.	Then,	the	execution	can	run	in	a	separate	thread.	We	can	end
the	execution	by	calling	the	context.complete()	method.	The	following	code	is	a
pseudo-code	example	illustrating	this:

AsyncContext	context	=	request.startAsync();

context.start(new	Runnable()	{...

		public	void	run(){

				...

				context.complete();

		}

});

We	can	also	add	listeners	to	this	kind	of	asynchronous	processing	using	the	method	as
follows:

public	void	addListener(AsyncListener	listener,	ServletRequest	req,	

ServletResponse	res)	

The	preceding	code	registers	the	given	listener	for	notifications	of	the	different	types:
onTimeout,	onError,	onComplete,	or	onStartAsync.

The	new	Java	EE	non-blocking	I/O	APIs
Java	EE	introduced	the	non-blocking	I/O	support	for	asynchronous	servlets	and	filters;
they	are	of	special	importance	when	processing	slow	request/response	due	to	slow	client
network	speed.

The	following	steps	summarize	how	to	use	the	non-blocking	I/O	APIs	to	process	user
requests	and	write	responses	inside	the	servlet	service	methods:

1.	 Start	servlet	asynchronous	processing.
2.	 Get	either	the	input	or	output	stream	from	the	request/response	objects	in	the	service

method	according	to	what	we	need	to	do.
3.	 Assign	a	read/write	listener	to	this	input/output	stream.
4.	 Process	the	request/response	inside	the	listener’s	callback	methods.

We	have	two	types	of	listeners,	read	listener	for	requests	and	write	listener	for	responses.

The	following	methods	are	the	ReadListener	methods:

void	onDataAvailable()

void	onAllDataRead()

void	onError(Throwable	t)

The	following	methods	are	the	WriteListener	methods:

void	onWritePossible()

void	onError(Throwable	t)

Session	beans	asynchronous	method	invocation
Instead	of	waiting	for	the	session	bean	method	to	finish	execution	before	it	returns	to	the
caller,	we	can	use	asynchronous	calls	so	that	the	session	bean	can	do	the	long	processing
in	the	background	and	the	client	gets	the	processing	status	later.	This	is	very	useful	and
similar	to	the	Servlet	asynchronous	processing	for	the	lengthy	operations.

Once	the	method	returns	a	result,	the	result	is	an	implementation	of	the
java.util.concurrent.Future<V>	interface,	where	V	is	the	result	value	type.

This	Future<V>	interface	defines	the	needed	methods	for	the	client	to	check	if	the	method
processing	is	completed	(for	example,	isDone()	and	isCanceled()),	and	then	retrieve	the
results	or	cancel	the	invocation.

To	use	asynchronous	invocation,	we	can	simply	annotate	the	session	bean	business
method	with	javax.ejb.Asynchronous	or	apply	@Asynchronous	at	the	class	level	to	mark
all	the	methods	of	this	session	bean	as	asynchronous	methods.

Tip
The	session	bean	methods	that	are	exposed	as	web	services	can’t	be	asynchronous.

The	method	can	return	Future<V>	or	void,	but	if	it	returns	void,	it	can’t	throw	an
exception.	A	pseudo	code	for	such	a	method	that	does	order	processing	in	an
asynchronous	way	will	look	like	the	following	code:

@Asynchronous

public	Future<String>	processMyOrder(Order	order)	throws	BusinessException	

{

		//process	the	order

		//..

		String	myOrderStatus	=	order.getStatus();

		return	new	AsyncResult<String>(myOrderStatus);

}

A	singleton	session	bean
A	session	bean	is	designed	for	application	scaling	by	creating	a	pool	of	objects	that	serve
the	Enterprise	application.	In	some	cases,	we	need	the	session	bean	to	be	created	only
once;	this	is	known	as	a	singleton	session	bean.	To	create	a	singleton	session	bean,	we
only	need	to	add	the	@Singleton	annotation.

We	can	initialize	the	singleton	session	bean	during	the	startup	of	a	server	by	adding	the
@Startup	annotation	to	inform	the	container	about	the	initialization.	What	if	our	session
bean	depends	on	other	beans?	It	would	potentially	fail	to	get	initialized	unless	these	beans
are	already	loaded	as	well.

In	this	case,	we	need	to	use	the	@DependsOn({"classname1",	"	classname2",
"classname3",….})	annotation	and	list	all	the	required	classes	to	initialize	this	bean.	This
will	ensure	that	these	classes	are	loaded	before	our	startup	bean.

When	creating	a	singleton	session	bean,	concurrent	access	to	the	singleton’s	business
methods	can	be	controlled	in	two	ways,	the	container-managed	concurrency	and	the	bean-
managed	concurrency.	We	can	use	annotations	to	specify	which	one	we	need	to	use.

For	the	container-managed	concurrency,	we	can	use	the	following	code:

@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)

For	the	bean-managed	concurrency,	we	can	use	the	following	code:

@ConcurrencyManagement(ConcurrencyManagementType.BEAN)

As	a	lot	of	concurrent	threads	can	access	the	bean	methods,	we	need	to	control	this
concurrent	access	by	our	bean	(bean-managed)	or	by	the	container	(container-managed).

In	case	we	decide	to	use	the	bean-managed	concurrency,	we	will	have	to	take	care	of
certain	areas	in	the	code	that	need	some	sort	of	locking	mechanism	to	avoid	concurrent
changes.

If	we	use	the	container-managed	concurrency,	we	can	control	the	concurrency	using	the
@Lock	annotation.	We	can	specify	this	on	either	the	class	or	method	level.

Two	possible	values	exist,	LockType.READ	and	LockType.WRITE,	where	we	should	specify
if	the	lock	is	just	to	read	or	write	as	well.	We	can	also	control	the	access	timeout	of	the
class	or	methods	by	using	the	annotation	@AccessTimeout.

This	is	an	example	of	how	to	use	all	these	annotations	for	a	singleton	session	bean:

@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)

@Singleton

@AccessTimeout(value=20,	unit=TimeUnit.SECONDS)

public	class	ExampleSingletonBean	{

		private	String	state;

		@Lock(LockType.READ)

		public	String	getState()	{

				return	state;

		}

		@Lock(LockType.WRITE)

		public	void	setState(String	newState)	{

				state	=	newState;

		}

}

Sending	asynchronous	JMS	messages
When	dealing	with	JMS	and	sending	a	persistent	message,	the	send	method	will	block	the
thread	execution	until	the	JMS	provider	confirms	that	the	message	was	sent	successfully.
The	asynchronous	send	method	here	allows	the	application	to	send	the	message	without
blocking	and	it	can	receive	the	sent	notification	later.

Note
This	feature	is	available	only	for	the	application	clients	and	the	Java	SE	clients.

As	we	saw	in	an	asynchronous	invocation	in	the	session	bean	method,	we	need	a
callback	object	with	different	methods	to	use.	Here,	we	can	use	a	CompletionListener
with	an	onCompletion	method.

The	CompletionListener	interface	has	two	callback	methods	as	follows:

void	onCompletion(Message	message)

void	onException(Message	message,	Exception	exception)

A	pseudo	code	to	use	this	feature	looks	like	the	following	code:

context.createProducer().setAsync(this).send(destination,	message);

//"this"	is	the	current	class,	which	implements	the	

//CompletionListener	interface

@Override

public	void	onCompletion(Message	message)	{

		System.out.println("Message	Sent.");

}

@Override

public	void	onException(Message	message,	Exception	e)	{

		System.out.println("Message	sent	failed:"	+	message);

}

It	worth	mentioning	here	that	in	our	examples	in	this	chapter,	we	have	used	a	new	feature
in	Java	EE,	which	is	the	Default	resources;	this	new	feature	requires	the	platform
provider	(that	is,	application	servers)	to	preconfigure	a	default	resource	for	different
elements	such	as	the	data	source	and	JMS	connection	factory.

@Resource(lookup	=	"java:comp/DefaultJMSConnectionFactory")

ConnectionFactory	connectionFactory;

More	information	about	Java	EE	7
A	good	tutorial	of	Java	EE	7	is	available	online	from	Oracle.	Navigate	inside	to
understand	more	about	the	newly	introduced	features	and	how	to	use	them.	It	includes
some	useful	code	samples,	and	you	can	also	find	the	different	API	documentation	at
http://docs.oracle.com/javaee/.

The	JVM	specification	can	be	found	at	the	following	URL:

http://docs.oracle.com/javase/7/docs/technotes/guides/vm/

http://docs.oracle.com/javaee/
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/

Summary
In	this	chapter,	we	have	covered	some	of	the	essential	fundamentals	to	our	performance-
tuning	book.	By	end	of	this	chapter,	we	should	have	been	orientated	with	the	new	features
of	Java	EE	7.	We	have	highlighted	the	essential	parts	that	are	related	to	concurrency.	It	is
really	worth	it	if	you	spend	more	time	getting	more	details	about	some	of	the	covered
topics.

We	have	also	covered	memory	management	according	to	the	JVM	specification	(Java	SE
7)	with	some	brief	orientation	about	the	memory	structure	of	the	HotSpot	virtual	machine.
In	addition,	we	discussed	the	different	garbage	collection	policies,	including	the	most
important	three	types,	the	serial	collector,	concurrent	mark	sweep	collector,	and	Garbage-
one	collector,	which	were	recently	introduced	in	Java	SE	7.	In	the	next	chapters,	we	will
assume	that	you	are	already	aware	of	most	of	the	mentioned	features	and	you	will	see	a	lot
of	our	sample	codes	have	different	annotations	described	in	this	chapter.	So	try	not	to
proceed	to	the	next	chapter	before	being	fully	aware	of	all	of	the	mentioned	features.

In	the	next	chapter,	Chapter	3,	Getting	Familiar	with	Performance	Testing,	we	will
execute	the	final	preparation,	which	will	focus	on	understanding	the	performance	testing
and	its	tools.	The	chapter	will	cover	performance	testing	from	different	aspects	with	focus
on	creating	performance	test	plans.	We	will	learn	how	to	use	Apache	JMeter	to	create	our
test	plans	and	will	practice	this	throughout	this	book.

Chapter	3.	Getting	Familiar	with
Performance	Testing
Performance	testing	is	a	cornerstone	element	to	ensure	the	application	quality	and	reduce
the	possibility	of	performance	issues	in	our	application.	As	this	is	not	a	testing	book,	we
are	going	to	cover	performance	testing	from	the	level	of	detail	that	would	help	our
investigations.	We	should	be	able	to	read	different	performance	testing	results	and
understand	them	as	well.	We	should	also	be	able	to	request	special	types	of	performance
testing	that	can	help	us	troubleshoot	any	issues.	We	will	also	discuss	performance	testing
tools	as	these	tools	can	be	used	by	performance	tuning	experts	to	assess	the	results	of
performance	tuning	issues	and	potential	fixes.

In	this	chapter,	we	will	cover	the	following	topics:

Explaining	performance	testing	and	its	different	components
Performance	testing	terminologies
Precautions	during	performance	testing	in	the	cloud	environment
Hands-on	trials	in	using	Apache	JMeter	to	create	different	types	of	performance
testing

Dissecting	performance	testing
Performance	testing	is	a	special	type	of	application	testing	where	the	testing	does	not
mainly	aim	at	testing	the	application	functionality,	but	instead	it	aims	to	measure	the
performance	of	the	application—this	means	responsiveness,	throughput,	reliability,	and/or
scalability	of	a	system	under	determined	workload.

The	following	are	the	main	objectives	of	performance	testing:

Assess	the	application’s	performance	and	compare	it	to	the	agreed	SLAs
Assess	the	application’s	design	and	implementation	quality
Assess	the	application’s	capacity
Identify	and	fix	any	potential	performance	issues
Enhance	the	performance	of	the	application
Get	performance	benchmark	or	baseline	for	subsequent	releases

As	we	already	highlighted	in	Chapter	1,	Getting	Started	with	Performance	Tuning,	the
most	important	thing	in	the	proactive	measures	is	to	have	a	well-established	and	agreed
upon	process	that	covers	all	performance	elements	including	performance	testing.	The
process	needs	to	cover	all	the	aspects	of	performance	testing,	such	as	the	environment
used,	fixing	cycle,	handling	performance	issues	in	each	project	stage/milestones,	and
defining	the	rules	and	responsibilities	of	team	members.

Of	course,	doing	high	quality	performance	testing	won’t	prevent	the	occurrence	of
performance	issues	in	the	production	environment,	but	at	least	it	will	minimize	the
occurrence	of	these	issues	and	reduce	the	potential	impact	of	any	undiscovered
performance	issues.

Exploring	performance	testing	aspects
Let’s	briefly	go	through	some	of	the	following	important	aspects	of	the	performance
testing	process:

The	performance	test	environment
Performance	in	different	project	milestones
Rules	and	responsibilities
Performance	test	types
Testing	components
Testing	tools
Performance	benchmarking	and	baseline
Isolation	testing
The	performance	fixing	cycle/process
When	to	stop	performance	tuning
Team	rules	and	responsibilities

	 “If	you	don’t	care	about	quality,	you	can	meet	any	other	requirement.” 	

	 —Gerald	M.	Weinberg

Selecting	the	performance	test	environment
All	enterprise	applications	must	have	a	dedicated	test	environment	with	almost	the	same
(or	nearly	the	same)	architecture	of	the	production	environment.	A	relative	capacity	should
be	assessed	between	both	environments.	The	more	the	environment	is	close	to	the
production	environment,	the	more	realistic	the	results	we	get.	The	following	are	some	of
the	aspects	we	need	to	consider:

The	same	software	and	operating	system	versions
Similar	hardware	profiles
Similar	network	configurations
Realistic	database	volumes
Connect	the	performance	test	environment	to	integrated	test	systems	and	limit	the
usage	of	stubs	as	much	as	possible

If	the	environment	is	not	exactly	the	same	as	the	production	environment,	then	we	need	to
initially	estimate	the	proportional	gap	between	both	environments	and	recalculate	this
proportion	with	each	application	release	to	reflect	the	difference	between	the	capacities	of
both	environments.

It	should	be	noted	here	that	using	the	stubbing	technique	while	dealing	with	external
systems	in	performance	environments	is	not	preferred.	We	should	instead	connect	to	the
integrated	test	systems	whenever	possible.	This	doesn’t	mean	stubbing	does	not	add	useful
values	to	our	testing	results	as	it	removes	the	external	system	dependencies	and	covers	the
unusual	system	responses	that	can’t	be	covered	during	normal	test	scenarios.

If	we	have	to	deal	with	stubbing	in	the	performance	test	environment,	we	must	ensure	that
the	stub	total	response	time	is	equal	to	the	average	production	time.	This	can	be	achieved

by	adding	a	corresponding	latency	to	the	stub	response.	This	latency	needs	to	be	updated
according	to	the	recent	production	environment	statistics.

It	is	also	important	to	have	a	testing	client	that	will	run	performance	testing	on	a	good
powerful	machine	with	good	connectivity	between	the	machine	and	testing	environment.

Project	milestones	and	performance
Each	project	has	a	delivery	plan	with	different	milestones	and	there	are	a	lot	of	different
software	development	methodologies	available,	such	as	waterfall,	agile,	and	others.	From
the	performance	perspective,	we	need	to	ensure	that	performance	testing	is	executed	with
good	quality	in	the	project’s	testing	phase,	usually	before	delivering	the	project	to	the	final
acceptance	level.

Evaluating	the	performance	at	each	stage	or	milestone	is	essential	to	prevent	any	major
performance	issues,	for	example,	in	requirement	stages,	we	need	to	ensure	that	all	SLAs
are	checked	by	the	performance	team	for	assessment	and	get	their	opinions	as	early	as
possible	to	avoid	unrealistic	requirements.

In	the	architecture	and	design	phases,	a	separate	design	review	for	the	fulfilment	of
performance	requirements	is	essential;	this	could	impact	the	selection	of	certain	products
based	on	each	product’s	performance	and	capacity	limitations.Sometimes	a	POC	is
required	to	assess	the	feasibility	of	certain	design	options	to	meet	the	SLA.

After	deploying	applications	into	the	production	environment,	performance	evaluation
should	be	done	using	suitable	monitoring	tools	to	catch	early	deviations	or	deteriorations
in	the	application’s	performance.

As	a	part	of	project	planning,	all	the	lessons	learned	from	performance	testing	and	tuning
should	be	shared	with	the	appropriate	team	to	avoid	repeating	these	issues	in	the	future.

Defining	different	rules	and	responsibilities
All	the	assigned	resources	must	be	aware	of	their	responsibilities	and	performance	task
priorities.	Usually,	performance	troubleshooting	needs	members	from	different	teams,
such	as	the	database	administrator,	system	administrator,	development	team,	testing	team,
and	design	team.

A	good	and	sufficient	level	of	understanding	of	roles	and	responsibilities	ensures	smooth
cooperation	between	all	the	assigned	resources	and	reduces	any	potential	conflicts,
especially	if	each	team	member	understands	the	priority	of	the	performance	tasks.	All	the
involved	teams	should	be	capable	of	dealing	with	performance	tasks,	and	usually,	training
them	is	required	in	order	to	avoid	misunderstanding	of	any	assigned	tasks.

All	the	teams	involved	must	select	the	required	tools	and	get	them	installed	in	all	the
possible	environments,	starting	from	the	development	environment.	Such	tools	should
cover	all	the	application	layers	and	spread	over	different	application	nodes	to	facilitate
performance	troubleshooting.

It	is	recommended	to	have	some	sort	of	knowledge	base	for	all	the	discovered	issues	with
frequent	orientation	sessions	about	performance	lessons	learned.

Performance	testing	types
Performance	testing	refers	to	different	types	of	testing,	such	as	load	testing	and	stress
testing.	We	will	go	briefly	over	each	of	these	types.

Load	testing

This	type	of	testing	tests	the	performance	of	the	application	under	an	anticipated
workload,	by	using	a	specific	number	of	concurrent	users	with	a	specific	number	of
transactions.

One	of	the	load	testing	variants	is	Soak/Endurance	Testing.	This	type	of	testing	tests	the
performance	of	the	application	under	a	prolonged	period	of	time	(12	hours	or	more)	to
determine	whether	the	application	can	withstand	the	continuous	workload	or	not.

Stress	testing

This	type	of	testing	tests	the	performance	of	the	application	beyond	the	anticipated
workload.	The	main	objective	is	to	determine	the	upper	limits	of	the	application	and	its
robustness.

One	of	its	variants	is	to	use	spike	load	to	test	the	application’s	response	with	a	sudden
increase	in	workload.

Capacity	testing

This	type	of	testing	aims	to	test	the	maximum	capacity	of	the	application	while	the
application	can	still	meet	the	performance	goals	(for	example,	handling	the	number	of
concurrent	users).

Performance	testing	components
Understanding	different	performance	testing	components	can	help	us	in	building	an
efficient	performance	testing	plan.	Let’s	look	into	these	components	briefly.

Test	data

Test	data	can	be	divided	into	transactional	(for	example,	user	orders)	and	non-transactional
data	(such	as	assets,	list	of	values,	and	master	data).	Performance	testing	should	have	a
mix	of	all	types	of	data	with	a	lot	of	variations,	so	do	not	reuse	the	same	asset	data	for	all
user	transactions,	otherwise	we	will	get	false	results	from	cached	data.	This	is	one	of	the
most	common	mistakes	in	designing	performance	testing.

Test	data	is	much	more	driven	by	the	customer’s	needs	and	expected	live	data,	for
example,	if	a	car	selling	system	is	about	to	launch,	then	the	system	should	be	tested	for	the
most	common	selected	cars	similar	to	the	real-life	sales	of	these	cars,	otherwise	the	test
won’t	be	a	real	replication	of	the	production	environment.

Test	users

Test	users	are	specified	according	to	the	expected/estimated	system	capacity.	It	could	be
either	the	actual	or	forecasted	count	of	concurrent	users.

Again	mixed	types	of	users	should	be	selected	similar	to	the	actual	expected	user	type

such	as	customer,	admin,	and	so	on.	Users	in	performance	testing	are	referred	to	as
Virtual	Users	(VUsers).

We	need	to	understand	the	difference	between	concurrent	users	and	simultaneous	users.
Concurrent	users	represent	the	number	of	users	that	have	an	active	but	possibly	idle
session	with	the	application,	while	simultaneous	users	are	those	who	are	actually	doing
active	interaction	at	a	given	time.

Note
If	the	application	has	150	concurrent	users,	we	should	not	assume	that	150	requests	were
being	processed	all	at	once	because	this	would	mean	that	150	user	sessions	exist	where
some	of	the	users	are	actively	interacting	with	the	application.	But,	in	reality,	many	of
them	could	be	just	reading	the	page,	thinking,	or	filling	in	form	fields.

While	designing	the	performance	test,	we	should	define	the	number	of	iterations	for	each
user	and	decide	whether	the	user	session	needs	to	expire	after	each	iteration	or	not.

Usually,	performance	testing	starts	with	a	warm-up	time	(ramp-up)	where	the	number	of
users	and	transactions	increases	gradually	till	it	reaches	a	steady	number	of	concurrent
users.	After	the	test	duration	ends,	it	reaches	the	final	stage,	which	is	cool-down	time
(ramp-down),	where	the	number	of	users	starts	to	decrease	gradually	(logging	off).This
entire	process	is	illustrated	in	the	following	diagram:

Test	scenarios

Test	scenarios	should	target	all	possible	scenarios	but	in	case	this	is	difficult,	then	the
priority	is	given	to	the	customer’s	transactions	rather	than	the	internal	user’s	transactions
(that	is,	the	administrator),	also	focusing	on	the	most	common	transactions	rather	than
seldom	used	transactions.	Business	priorities	should	also	be	considered	when	building	test
scenarios	and	a	test	scenario	should	behave	like	an	actual	expected	normal	human	being.
In	another	words,	the	scenario	should	consider	the	thinking	time	of	the	users	on	each	page
and	the	time	taken	to	fill	in	different	form	fields.

Note
Test	scenario	is	a	sequence	of	steps	in	the	application.	It	corresponds	to	a	use	case
scenario,	for	example,	the	purchase	of	products,	where	the	user	navigates	to	the	product
catalogs,	adds	products	to	the	basket,	checks	out,	and	gets	the	final	confirmation.

Preparing	the	test	environment	prior	to	test	execution

Usually,	some	activities	should	be	executed	prior	to	firing	the	performance	test.	The
following	are	the	examples	of	such	activities:

Restoring	the	environment	baseline	for	different	configurations,	for	example,
database	size,	by	restoring	the	database	image	for	performance	testing
Smoke	testing	to	ensure	that	everything	is	in	place
System	warm	up	(if	not	part	of	the	test)	to	preheat	caches	and	preload	pages
Configuring	the	logging	level	and	monitoring	tools	as	required

Note
Smoke	testing	is	a	type	of	software	testing	that	involves	testing	the	non-exhaustive	set	of
tests	to	ensure	that	the	most	important	functions	are	working	and	the	build	is	stable.

This	term	came	into	software	testing	from	a	similar	type	of	hardware	testing,	in	which	the
device	passed	the	test	if	it	did	not	catch	fire	(or	smoke)	the	first	time	it	was	turned	on.

Test	automation

Test	automation	is	an	important	part	of	performance	testing,	and	it	increases	the	efficiency
of	the	testing	and	reduces	the	duration	of	testing	cycles.	This	is	not	easy	to	develop	as
maintaining	the	test	scripts	up	to	date	is	not	an	easy	task,	especially	when	the	agile
development	process	is	implemented	by	continuously	adding	new	scenarios	and
modifying	old	scenarios.

The	testing	team	should	get	involved	early	enough	to	reflect	all	the	new	changes	in	the
testing	script.

Test	quality	assurance

Definitely,	the	better	the	quality	of	the	test,	the	less	issues	related	to	production
performance	will	need	to	be	reported.	So,	after	discovery	of	any	production	issues,
assessment	of	the	test	script	is	required	as	part	of	the	root	cause	analysis	to	see	why	it	was
not	discovered	during	the	performance	testing	stage,	and	make	any	necessary	changes	to
the	test	script.	Also,	periodic	checks	of	the	testing	quality	are	required	to	increase	the
script’s	quality	and	skills	of	the	testing	team.

Performance	testing	tools
A	lot	of	performance	testing	tools	can	be	used,	for	example,	IBM	Rational	Performance
Tester,	HP	LoadRunner,	OpenSTA,	Testing	Anywhere,	Borland	Silk	Performer,	NeoLoad,
WebLOAD,	SoapUI,	LoadUI,	Apache	JMeter,	and	a	lot	of	other	commercial	and	open
source	tools.

In	this	chapter,	we	will	use	Apache	JMeter	in	detail	as	a	good	option	for	doing

performance	testing.

Performance	benchmarking	and	baseline
Acquiring	the	application	baseline	means	capturing	the	performance	metrics	for	different
application	transactions	use	it	later	in	evaluating	the	subsequent	changes	and	determine	if
the	application	performance	has	deteriorated	or	improved.	Without	acquiring	an
application	baseline,	we	won’t	be	able	to	identify	whether	the	performance	issues	are	old
or	newly	introduced.

The	final	performance	testing	results	of	each	of	the	previous	release	should	be	considered
as	the	baseline	for	the	subsequent	release.	The	results	should	definitely	include	all	types	of
performance	testing	and	from	all	the	layers	of	the	application,	such	as	database,	disk	I/O,
memory,	and	CPU	utilization.

Benchmarking	is	the	process	of	comparing	the	performance	results	of	the	application	with
the	industry	standard	or	similar	leading	applications	so	that	the	difference	can	be
distinguished	from	a	performance	perspective.	It	is	useful	to	understand	the	position	of	the
application	in	terms	of	industry	performance	levels.

Isolation	testing
During	performance	tuning,	once	we	locate	the	performance	issues,	we	start	to	isolate
them	by	certain	performance	testing	to	narrow	the	scope	and	point	out	the	exact	location
of	the	issue	whenever	possible	so	that	it	is	considered	as	a	customized	test	according	to	the
performance	issues.

Isolation	testing	is	a	common	troubleshooting	strategy.	Even	if	we	can’t	develop	specific
new	test	scripts,	we	can	still	select	parts	of	our	initial	scripts	to	focus	on	our	issue,	and
exclude	unrelated	locations.

When	we	are	investigating	multiple	issues,	we	must	deal	with	them	as	separate	issues.
Even	if	we	have	doubts	that	the	issues	are	related,	we	must	consider	them	as	separate	until
they	are	proved	to	be	related	to	each	other.	This	is	done	to	avoid	wasting	time	in	assuming
that	the	issues	are	related	and	then	later	discovering	that	they	are	not.

Performance	fixing	cycle
In	Chapter	1,	Getting	Started	with	Performance	Tuning,	we	discussed	the	learning	cycle
that	should	be	followed	as	our	fixing	strategy.	Here,	we	are	focusing	on	documenting	the
process	itself	and	covering	all	the	required	activities	as	a	part	of	our	process,	which	should
answer	the	following	questions:

How	to	report	performance	issues?	What	is	the	requirement	to	consider	an	issue	as	a
performance	issue?
Who	should	confirm	the	first	line	analysis?	(Different	levels	of	application	support.)
Who	should	be	responsible	for	team	structure,	roles	and	responsibilities,	and
priorities	for	each	team	member	when	they	are	not	completely	assigned?
What	are	the	SLAs	for	fixing	the	discovered	performance	issues?
What	is	the	process	to	deploy	production	fixes	(that	is,	path	to	production)?

When	to	consider	an	issue	as	fixed	or	closed?
What	is	the	required	documentation	to	avoid	similar	issues	in	the	future?
Who	will	define	the	performance	goals?

It	is	important	to	follow	the	golden	rule	“One	change	at	a	time“,	which	means
implementing	and	testing	one	change	only,	otherwise	we	won’t	know	which	change
produces	the	performance	impact,	that	is,	always	compare	apple	to	apple.

When	to	stop	tuning?
This	is	an	important	question	and	the	answer	should	be	clear	to	all	the	involved
stakeholders.	Definitely,	the	answer	is	when	the	performance	issues	are	resolved,	or	in
other	words,	when	the	response	time	is	back	within	the	SLA	again	(agreed	or	planned).
This	is	what	we	call	achieving	the	performance	goals.

Note
Performance	goals	are	the	criteria	that	are	required	to	accept	the	release	of	the	product
from	performance	testing.

In	some	cases,	we	need	to	consider	a	lot	of	factors	before	continuing	in	endless	tuning
cycles,	such	as	what	are	the	current	performance	goal	gaps,	do	we	need	to	do	major	design
changes,	is	there	any	possible	work-around	to	reduce	the	impact	of	the	existing	issues,
does	it	depend	on	third-party	products,	do	we	have	customer	commitments	in	this	release
that	can’t	be	delayed,	what	is	the	business	impact	if	we	go	live	with	the	current	level	of
performance,	and	so	on.

Performance	testing	terminologies
Understanding	different	testing	terminologies	is	essential	so	that	we	can	be	aligned	with
the	testing	team.	Misinterpretation	of	testing	results	could	happen	if	we	don’t	really
understand	the	testing	terminologies.

For	example,	throughput	is	the	number	of	units	of	work	that	can	be	handled	per	unit	of
time,	for	instance,	requests	per	second,	hits	per	second,	and	so	on.	The	greater	the
application	throughput	value,	the	better	the	application’s	performance.

Now,	let’s	go	through	the	following	testing	terminologies	that	we	need	to	be	completely
aware	of	to	avoid	any	conflicts	or	misunderstanding	while	working	with	performance
tuning:

Capacity:	This	terminology	refers	to	the	total	workload	that	the	application	can
withstand	without	violating	any	key	performance	acceptance	criteria.
Response	time:	This	terminology	refers	to	the	time	taken	by	the	application	to
respond	to	a	request.
Latency:	This	terminology	refers	to	the	measure	of	responsiveness	that	represents	the
time	the	application	takes	to	complete	the	execution	of	a	request.
Throughput:	This	terminology	refers	to	the	number	of	units	of	work	that	can	be
handled	per	unit	of	time,	for	instance,	requests	per	second,	hits	per	second,	and	so	on.
Resource	utilization:	This	terminology	refers	to	the	percentage	of	time	that	a
resource,	such	as	processor,	memory,	disk	I/O,	and	network	I/O	takes	up	to	service
user	requests.	Once	these	resources	are	completely	utilized,	it	is	known	as
saturation.
Iteration:	This	terminology	refers	to	the	completion	of	a	test	case	once	by	a	single
user	(or	a	virtual	user).
Scalability:	This	terminology	refers	to	the	application’s	ability	to	handle	additional
workload	without	adversely	affecting	performance.	It	is	of	two	types:	vertical
scalability	and	horizontal	scalability.
Stability:	This	terminology	refers	to	the	application’s	reliability,	robustness,
functionality,	data	integrity,	availability,	and	consistency	of	responsiveness	under
various	conditions.
Thinking	time:	This	terminology	refers	to	the	time	taken	by	the	users	to	think	or
navigate	to	different	pages	in	the	application.	It	is	simulated	in	test	scenarios	by
pauses.	Users	will	have	different	thinking	times	depending	on	what	part	of	the
application	they	are	using.	A	well-designed	load	test	should	be	designed	to	apply	a
random	factor	on	the	configured	thinking	time	to	simulate	the	difference	between
people’s	speed	when	they	respond	to	the	application.	It	can	also	be	dropped	during
stress	testing.

Performance	testing	in	a	cloud
environment
When	we	test	the	performance	in	a	cloud	environment,	we	need	to	take	enough
precautions	so	that	we	can	have	accurate	performance	results.	This	is	because	a	cloud
environment	is	based	on	virtualized	resources	(that	is,	virtual	machines),	and	environment
performance	is	not	guaranteed	to	be	the	same	for	all	test	execution	times.

The	main	reason	behind	this	is	that	virtual	resources	can	be	markedly	affected	by	other
concurrent	executions	in	other	virtual	resources	hosted	on	the	same	machine.	So,	when	we
propose	a	performance	fix,	we	need	to	ensure	that	the	testing	results	reflect	the	application
performance,	not	the	environment	instability	results.	Therefore,	it	is	better	to	take	one	of
the	following	measures	to	reduce	the	impact	of	doing	performance	testing	in	a	cloud
environment:

Having	a	dedicated	(non-shared)	server	for	our	testing
Executing	the	test	many	times	and	taking	out	the	average
Calibrating	the	testing	prior	to	each	testing	cycle

Note
Calibration	is	the	comparison	between	two	measurements:	one	known	measurement
and	one	unknown	measurement.

During	our	performance	testing,	we	need	to	use	a	test	with	known	performance
results	in	the	cloud	environment,	and	the	percentage	of	difference	with	our	cloud
results	should	be	considered	as	the	difference	between	the	actual	results	and	cloud-
based	results.

Cloud	computing	is	now	considered	the	first	deployment	option	for	many	enterprise
applications	through	both	private	and	public	clouds.	Having	a	product	in	the	production
environment	and	using	cloud	gives	it	the	advantages	of	cloud,	which	includes	elasticity	as
the	biggest	advantage	where	the	application	can	expand	or	collapse	the	resources
according	to	the	workload	on	the	application.

We	can	summarize	the	advantages	of	deploying	the	application	in	a	cloud	environment	as
follows:

Eliminates	the	need	to	build	and	maintain	data	centers
Reduces	the	need	to	maintain	a	large	IT	staff
Enables	organizations	to	build	new	systems	quickly	and	easily
Provides	elastic	resources	that	allow	applications	to	scale	up	and	down	as	needed	in
response	to	market	demands
Provides	the	pay-as-you-go	rental	model,	which	allows	organizations	to	defer	costs
especially	during	the	early	project	phases
Increases	business	continuity	by	providing	inexpensive	disaster-recovery	options

Note

Cloud	computing	refers	to	any	deployment	model	that	fulfills	the	following
principals:

Pooled	computing	resources	available	to	any	subscribing	users
Virtualized	computing	resources	to	maximize	hardware	utilization
Elastic	scaling	up	or	down	according	to	our	needs	(elasticity)
Automated	creation	of	new	virtual	machines	or	deletion	of	existing	ones
Resource	usage	billed	only	as	used	(pay-as-you-go	model)

From	the	performance	testing	perspective,	cloud	computing	will	make	performance	testing
harder	than	usual.	This	is	not	because	of	elasticity	as	it	could	be	disabled	during
performance	testing	(since	we	are	not	aiming	to	test	the	cloud	elasticity	but	we	are	testing
the	application),	but	because	of	the	unstable	nature	of	the	cloud’s	results	in	a	cloud
environment,	which	is	based	on	virtual	machines,	we	can’t	guarantee	any	of	the	hardware
results.	One	of	the	most	interesting	findings	we	will	face	when	testing	in	a	cloud
environment	is	the	I/O	operation	speed	instability,	which	causes	the	results	to	vary.

The	best	solution	is	either	to	have	a	dedicated	non-shared	box	for	performance	testing	or
have	multiple	executions	and	take	the	average	of	all	these	tests,	or	do	some	sort	of
calibration	prior	to	each	test	of	the	known	results	and	consider	the	proportion	between	the
calibrated	results	and	the	performance	results.

Starting	with	Apache	JMeter
Apache	JMeter	is	one	of	the	best	open	source	solutions	in	doing	performance	testing.
Apache	JMeter	is	an	open	source	desktop	application	written	in	Java	and	is	designed	to
load	test	functional	behavior	and	measure	the	performance	of	an	application.	Originally,	it
was	designed	to	test	web	applications	but,	it	later	expanded	to	perform	other	test
functions.

It	can	be	used	to	load	and	performance	test	many	different	server/protocol	types,	as
follows:

Web—HTTP	and	HTTPS
SOAP
FTP
Database	via	JDBC
LDAP
Message-Oriented	Middleware	(MOM)	via	JMS
Mail—SMTP(s),	POP3(s),	and	IMAP(s)
Native	commands	or	shell	scripts
TCP

We	need	to	download	and	install	Apache	JMeter	to	create	performance	testing	test	plans	in
this	section.

Note
To	download	Apache	JMeter,	go	to	https://jmeter.apache.org/download_jmeter.cgi.

Using	Apache	JMeter	to	build	the	performance	test	plan	is	straightforward.	The	following
simple	steps	are	required	to	create	the	test	plan:

Create	a	thread	group,	which	represents	the	number	of	concurrent	users	with	different
iterations
Add	test	samplers	according	to	our	testing	component,	HTTP	component,	web
service,	JDBC	script,	and	so	on
Add	the	required	configurations	and	testing	data
Add	result	listeners	so	that	we	can	get	the	test	results

To	test	a	web	application,	we	use	the	recording	capability	in	JMeter	to	capture	the	scenario
in	a	simple	way.	This	recording	can	happen	by	routing	the	traffic	from	the	browsers	into	a
recording	server/proxy	that	captures	the	user	requests	when	performing	the	scenario	in	the
web	application;	then	we	use	the	captured	scenarios	as	performance	testing	scripts.

https://jmeter.apache.org/download_jmeter.cgi

Different	components	of	the	JMeter	test	plan
In	JMeter,	building	a	test	plan	is	easy	once	we	understand	the	role	of	each	of	the	testing
components.	The	following	are	the	main	components	of	JMeter:

Thread	groups	(users):	This	component	organizes	threads	of	execution.	All	the
elements	that	are	below	this	component	will	be	executed	according	to	its
configurations.	Its	configuration	elements	include	the	total	number	of	threads	(users),
the	ramp-up	period,	and	the	number	of	test	executions.	We	can	have	many	different
thread	groups	with	different	configurations	according	to	the	needs	of	our	test	plan.
Request	samplers:	This	component	sends	the	request	to	the	server	and	waits	for	the
response.	It	can	send	any	of	the	following	requests	(the	list	doesn’t	include	all
supported	types):

FTP
HTTP
JDBC
Java	object
JMS
LDAP
SOAP/XML-RPC
SMTP	sampler

It	is	obvious	from	the	names	that	the	testing	target	of	each	of	the	preceding	samplers,
for	example,	JDBC	request,	aims	to	test	the	database	script	performance.

Logical	controllers:	This	component	controls	the	flow	of	the	test	plan	(loops,
conditions,	ordering,	and	so	on).
Listeners	(test	results):	This	component	records,	summarizes,	and	displays	request
and	response	data.	All	the	listeners	save	the	same	data	but	they	differ	in	the	way	they
display	the	results,	for	example,	the	following:

Simple	data	writer
BeanShell/BSF	listener
Mail	visualizer
Results	monitor
Summary	report
Aggregate	report
Aggregate	graph
Distribution	graph

Configuration	element:	This	component	includes	a	lot	of	configuration	elements,
such	as	loading	data	from	a	file	or	configuring	default	values	for	different	elements.

In	particular,	we	will	deal	with	the	following	two	types	of	components,	which	are	of
special	importance:

CSV	dataset	config:	This	is	used	to	load	different	test	data	into	variables	so	that
we	can	customize	the	test	scripts.

Note
Comma-Separated	Values	(CSV)

These	are	also	called	Character-Separated	Values	because	the	separator
character	does	not	have	to	be	a	comma.	It	is	a	plain	text	file,	which	consists	of	a
number	of	records,	separated	by	line	breaks	and	each	record	consists	of	fields,
separated	by	a	character	or	string,	most	commonly	a	literal	comma	or	tab.	To
know	more	about	CSVs,	you	can	go	to	http://www.ietf.org/rfc/rfc4180.txt.

HTTP	cookie	manager:	This	is	used	to	manage	the	cookies;	we	will	use	it	to
store	the	cookies	and	sessions	in	a	test	scenario	for	each	thread/user.

Note
A	cookie	manager	should	be	added	to	all	web	tests;	otherwise,	JMeter	will
ignore	cookies	and	session	tracking	by	cookies.	By	adding	it	at	the	Thread
Group	level,	we	ensure	that	all	HTTP	requests	share	the	same	cookies/session.
We	will	see	this	component	in	our	web	application	testing	plan	example.

Test	fragments:	This	is	a	special	type	of	controller	that	exists	on	the	Test	Plan	tree
(at	the	same	level	as	the	Thread	Group	element).	It	is	distinguished	from	a	Thread
Group	element	in	the	sense	that	it	is	not	executed	unless	it	is	referenced	by	either	a
Module	Controller	or	an	Include	Controller	element.
Test	timers:	This	introduces	delays	in	the	test	plan.	We	will	use	the	Gaussian
Random	Timer	element	to	add	random	thinking	time	to	each	page.
Assertion	elements:	This	asserts	facts	about	responses.	For	functional	testing,	it	is
very	useful	to	ensure	that	the	response	is	correct.	For	example,	when	we	need	to
ensure	that	our	online	order	is	submitted	by	checking	the	success	message.
Preprocessors	and	postprocessors:	This	is	used	when	we	need	to	execute	something
around	(before	or	after)	the	execution	of	any	request	sampler.

The	execution	order	of	components
The	elements	mentioned	in	the	preceding	section	are	executed	in	the	following	order:

Configuration	elements
Preprocessors
Timers
Samplers
Postprocessors	(unless	SampleResult	is	null)
Assertions	(unless	SampleResult	is	null)
Listeners	(unless	SampleResult	is	null)

http://www.ietf.org/rfc/rfc4180.txt

Testing	with	JMeter
Now,	let’s	try	to	use	JMeter	to	execute	our	performance	testing.	We	will	try	the	following
three	kinds	of	performance	testing:

Web	services
Web	application
JDBC

Using	JMeter	to	test	web	services
In	this	example,	we	will	have	one	web	service	that	authenticates	users	based	on	their
username	and	password,	and	returns	true/false	according	to	this.	It	is	a	stateless	session
bean.

The	following	is	the	code	snippet	for	the	ExampleWebService	class:

@WebService(serviceName	=	"ExampleWebService")

@Stateless()

public	class	ExampleWebService	{

		@EJB(beanName	=	"DataHelperSessionBean")

		DataHelperSessionBean	dataHelperSessionBean;

		@WebMethod(operationName	=	"authenticateUser")

		public	boolean	authenticateUser(@WebParam(name	=	"username")	String	

username,@WebParam(name	=	"password")	String	password)	{

				return	dataHelperSessionBean.authenticateUser(username,	password);

		}

}

The	following	is	the	code	snippet	for	DataHelperSessionBean	that	deals	with	JPA	to
retrieve	any	required	data	from	the	JPA	layer:

@PersistenceContext(unitName	=	"ExampleOnePU")

EntityManager	em;

public	boolean	authenticateUser(String	username,	String	password)	{

		Query	query	=	em.createQuery("SELECT	a	FROM	Account	a	WHERE	a.username	=	

:username	AND	a.password	=	:password	AND	a.active	=	0",	Account.class);

		query.setParameter("username",	username);

		query.setParameter("password",	password);

		List<Account>	results	=	query.getResultList();

		try	{

				//random	wait	to	have	some	performance	results

				Thread.sleep(ThreadLocalRandom.current().nextInt(500));

		}	catch	(InterruptedException	ex)	{

		}

		if	(results	!=	null	&&	results.size()	>	0)	{

				return	true;

		}

		return	false;

}

In	the	method	of	the	preceding	code	snippet,	we	used	JPA	to	query	the	database	to	check
the	existence	of	the	username	and	password	combination.	We	have	defined	the	testone
schema	in	the	MySQL	database	that	holds	our	own	test	tables:	account	and	user_role.
The	following	screenshot	shows	the	structure	of	the	account	table:

We	have	added	three	rows	in	this	table	where	the	username	is	similar	to	the	password
(osama,	duke,	and	judy)	so	that	we	can	use	these	users	in	our	test	script.	The	following
table	shows	the	populated	test	data	in	this	table:

id username password active roleId

1001 osama osama 0 1

1002 duke duke 0 2

1003 judy judy 0 3

The	following	table	shows	the	test	data	in	the	user_role	table:

Id role_name

1 customer

2 admin

3 operator

4 superadmin

Note
You	need	to	download	the	project	from	http://www.packtpub.com/.	It	includes	both	the
NetBeans	project	and	MySql	database	schema.

To	run	the	application,	you	will	need	to	install	the	required	software:	Netbeans	7.4	and
MySQL	5.5	(and	above).

You	can	also	use	any	other	database	vendor	such	as	Oracle	XE	and	create	the	required
tables	and	then	create	the	JPA	layer	using	the	NetBeans	create	JPA	wizard.

After	starting	the	application	server	and	successfully	deploying	the	application,	right-click
on	the	ExampleWebService	web	services	icon	and	choose	Test	Web	Service,	as	shown	in
the	following	screenshot:

http://www.packtpub.com/

The	following	URL	will	open	in	our	browser:
http://localhost:8080/ExampleWebService/ExampleWebService?Tester.

Here,	you	can	enter	the	username	and	password	and	try	the	web	service	operation.	Try	to
enter	osama/osama.	You	will	get	true	if	everything	is	okay,	as	shown	in	the	following
screenshot:

On	the	results	page,	we	will	see	the	following	response:

Method	returned

boolean	:	"true"

SOAP	Request

<?xml	version="1.0"	encoding="UTF-8"?><S:Envelope	

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"	xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"><SOAP-ENV:Header/>

		<S:Body>

				<ns2:authenticateUser	xmlns:ns2="http://ora.osa/">

						<username>osama</username>

						<password>osama</password>

				</ns2:authenticateUser>

		</S:Body>

</S:Envelope>

SOAP	Response

<?xml	version="1.0"	encoding="UTF-8"?><S:Envelope	

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"	xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"><SOAP-ENV:Header/>

		<S:Body>

				<ns2:authenticateUserResponse	xmlns:ns2="http://ora.osa/">

						<return>true</return>

				</ns2:authenticateUserResponse>

		</S:Body>

</S:Envelope>

We	need	to	capture	this	SOAP	request	to	use	it	to	test	our	web	service	using	JMeter.

Now	open	JMeter	(Version	2.10	or	later)	using	the	following	commands:

apache-jmeter-2.10\bin\jmeter.bat	(for	windows)

Or	jmeter.sh	(for	non-windows)

We	have	discussed	the	different	components	that	are	available	in	JMeter.	We	will	now	use
these	different	components	to	construct	our	test	plan.	Our	target	test	plan	will	look	like	the
following	screenshot:

We	will	define	a	parent	thread	group	where	we	can	add	the	SOAP	sampler	and	different
listeners	to	it	in	order	to	show	our	results	in	either	request/response.

Creating	a	thread	group
While	we	select	Test	Plan,	right-click	on	it	and	navigate	to	Add	|	Threads	(Users)	|
Thread	Group.

Now	we	have	created	the	Thread	Group	element;	we	can	rename	it	to	Load	Testing	WS
and	specify	the	number	of	users	as	100,	ramp-up	time	as	10	seconds,	and	set	the
loop/iteration	count	to	2.

Creating	the	SOAP	sampler
Selecting	the	thread	group	we	just	created,	right-click	on	it	and	navigate	to	Add	|	Sampler
|	SOAP/XML-RPC	Request.

We	can	rename	it	to	Authenticate	WS;	we	now	need	to	add	the	following	details:

URL	(web	service	endpoint)	as
http://localhost:8080/ExampleWebService/ExampleWebService

SOAP/XML-RPC	(SOAP	response)	as	the	following:

<?xml	version="1.0"	encoding="UTF-8"?><S:Envelope	

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"	xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"><SOAP-ENV:Header/>

		<S:Body>

				<ns2:authenticateUser	xmlns:ns2="http://ora.osa/">

						<username>osama</username>

						<password>osama</password>

				</ns2:authenticateUser>

		</S:Body>

</S:Envelope>

This	is	the	SOAP	request	that	we	have	captured	from	the	test	web	service	page.	For	now,
we	can	see	that	the	username	and	password	are	hardcoded.	This	means	that	all	the	threads
will	use	the	same	username	and	password	values.	We	will	fix	this	later.

Creating	listeners
Adding	a	listener	is	simple	as	well.	Select	the	Thread	Group	element,	right-click	on	it,
and	navigate	to	Add	|	Listener	|	View	Result	Tree.

We	can	name	it	View	Results	Tree	[authenticate	results].

Now,	we	can	execute	our	created	test	case	by	choosing	Run	from	the	start	menu	or
clicking	on	the	green	arrow.

JMeter	will	show	an	alert	to	save	the	project	first;	save	it	to	proceed.

If	we	open	the	listener	during	the	test	execution,	we	will	see	that	the	results	are
continuously	added.	If	we	select	one	of	the	results,	we	can	see	the	request	and	response
data.

If	everything	is	correct,	then	all	the	executions	will	be	successfully	completed.

Now,	try	to	modify	the	SOAP	request	that	we	have	added	and	change	the	username	or
password	to	an	invalid	username/password	like	Kenzy/Kenzy	and	re-execute	the	test.	What
did	we	discover?

All	the	execution	still	shows	the	successful	green	results.	If	we	tried	to	select	one	of	these
results	to	check	the	response,	we	will	see	false	as	shown	in	the	following	code:

<?xml	version='1.0'	encoding='UTF-8'?><S:Envelope	

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"><S:Body>

<ns2:authenticateUserResponse	xmlns:ns2="http://ora.osa/">

<return>false</return></ns2:authenticateUserResponse></S:Body></S:Envelope>

This	is	the	correct	behavior	because	we	didn’t	tell	JMeter	exactly	what	we	are	testing,
hence	the	web	service	is	responding	successfully,	and	so	JMeter	considered	this	as	a
successful	execution.

Now,	let’s	try	to	fix	this	issue	by	adding	an	assertion	on	our	response.

Adding	an	assertion	on	response

Go	back	to	Thread	Group,	select	it,	and	navigate	to	Add	|	Assertions	|	Response
Assertion.

We	can	name	it	Assert	successful	authentication;	we	can	also	add	it	for	more
accuracy	under	the	SOAP	sampler	element.

In	Pattern	matching	rules,	select	contains,	click	on	the	Add	button,	and	add	the
following	text:

<return>true</return>

If	we	re-execute	the	test	now,	all	the	results	will	be	shown	as	failed.	This	is	because	we
have	informed	JMeter	to	examine	the	response	if	it	contains	<return>true</return>,
then	consider	it	as	successful,	otherwise	consider	it	as	unsuccessful.

Now	let’s	fix	the	remaining	issue	in	this	test,	which	is	the	hardcoded	values	in	our	SOAP
request.

Adding	the	CSV	dataset	configuration

We	need	to	create	a	CSV	file	named,	for	example,	testusers.csv	with	the	following
content:

osama,osama

duke,duke

test,test

judy,judy

kenzy,kenzy

This	is	the	file	that	we	will	use	to	get	the	username	and	password	combinations	to	use	in
our	SOAP	requests.	We	will	perform	the	following	steps	to	add	the	CSV	dataset
configuration:

1.	 Select	the	Thread	Group	element,	right-click	on	it,	and	navigate	to	Add	|	Config
Element	|	CSV	Data	Set	Config.

2.	 Name	it	CSV	Users	Data	Set	Config.
3.	 In	the	filename	field,	enter	the	full	path	of	the	filename	such	as	c:\testusers.csv.
4.	 In	the	Variable	Names	field,	insert	USERNAME,PASSWORD	similar	to	the	order	of	values

in	our	file.

We	can	exclusively	use	the	preceding	information	for	all	thread	groups	or	for	this
thread	group	only.

5.	 Now,	go	to	the	SOAP	sampler	and	edit	the	SOAP	request	to	let	it	use	the	USERNAME
and	PASSWORD	variables,	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?><S:Envelope	

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"	xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"><SOAP-ENV:Header/>

		<S:Body>

				<ns2:authenticateUser	xmlns:ns2="http://ora.osa/">

						<username>${USERNAME}</username>

						<password>${PASSWORD}</password>

				</ns2:authenticateUser>

		</S:Body>

</S:Envelope>

Tip
Any	spaces	included	while	defining	or	using	the	variables	will	cause	the	test	to	not
run	successfully.

6.	 Now	re-execute	the	test	and	notice	the	difference	in	the	results.	If	we	check	the
results	in	detail,	we	will	see	that	the	HTTP	requests	uses	all	the	usernames	and
passwords	that	are	specified	in	the	c:\testusers.csv	file.	We	can	also	see	that	some
of	them	have	succeeded	and	some	of	them	have	failed	according	to	the
username/password	combinations	used.

We	now	need	to	add	an	aggregated	result	component	to	our	test	plan	so	that	we	can	get	the
aggregated	test	results.	It	is	added	like	other	components—select	the	Thread	Group

element	and	navigate	to	Add	|	Listener	|	Aggregate	Report	and	Aggregate	Graph.

Now,	edit	the	Thread	Group	element	and	increase	the	thread	count	by	300	and	loops	to	3
loops,	save	the	project,	and	reset	it	to	clean	all	the	previous	results.

Getting	the	final	results

Execute	the	test	plan	now	so	that	we	can	get	the	final	test	results.	The	Aggregate	Report
in	our	case	should	be	similar	to	the	results	shown	in	the	following	screenshot	(results	in
milliseconds):

The	total	samples	are	900	because	we	have	configured	our	thread	group	by	300
threads/users	in	3	loops/iterations.	The	report	shows	the	Min,	Max,	Average,	Median,
and	90%	Line	values	of	the	aggregated	application	response	times.	The	most	important
value	is	the	90%	Line	or	90th	percentile,	which	represents	the	response	of	90	percent	of
the	sent	requests.

The	report	also	shows	the	percentage	of	errors.	We	know	errors	can	either	be	actual
errors/exceptions	or	our	assertion	to	the	returned	value	(40%	represents	the	percentage	of
invalid	users	in	our	excel	sheet),	so	we	can	consider	the	test	case	as	passed	since	the
results	match	our	expectations	(60	percent	success	and	40	percent	failed).

The	final	important	value	here	is	Throughput,	which	shows	the	number	of	processed	web
service	requests	per	second.	In	our	results,	it	processes	19.1	requests	per	second	either
successfully	or	unsuccessfully.

We	can	open	the	aggregated	graph,	select	what	we	need	to	show,	and	click	on	Display
Graph	to	show	the	results	in	a	graphical	representation.	The	following	graph	is	a	sample
of	our	graphical	output	showing	all	the	different	response	time	types	(Average,	Median,
90%	Line,	Min,	and	Max):

Using	JMeter	to	test	a	web	application
Now,	we	will	use	JMeter	to	test	a	web	application.	We	will	use	the	same	project	to	log	in
to	our	application	using	login.jsp	and	give	the	user	the	ability	to	change	the	user	role.	If
successful,	then	the	confirmation	page	will	show	a	confirmation	message;	otherwise,	an
error	page	will	be	displayed.	Our	simple	application	flow	is	illustrated	in	the	following
diagram:

Recording	our	testing	scenarios
Recording	our	testing	scenarios	using	JMeter	is	the	first	and	most	essential	part	we	need	to
learn	in	this	section.	For	this,	we	can	use	the	recording	template	by	navigating	to	File	|
Templates	and	picking	up	the	Recording	Templates.

Recording	depends	on	configuring	the	proxy	settings	in	the	browser	to	route	the	traffic
first	to	JMeter	where	JMeter	picks	up	the	request,	routes	it	back	to	the	server,	and	the
server	responds	back	to	JMeter,	which	in	turn	picks	up	the	response	and	routes	it	back	to
the	browser.

So,	we	need	to	change	the	browser’s	proxy	settings	to	localhost	(as	we	are	using	JMeter
on	the	same	machine)	and	port	to	8888,	and	uncheck	any	selected	checkbox	to	exclude	the
traffic	for	localhost	from	passing	through	this	proxy	if	JMeter	is	running	on	the	same
machine.

The	final	test	plan	will	look	like	the	following	screenshot:

We	can	see	the	three	pages	of	our	application:	index.jsp,	loginServlet,	and
ManageUserServlet,	and	some	new	components	such	as	Gaussian	Random	Time	(to
simulate	user	thinking	time),	and	also	a	newly	configured	user	role’s	CSV	file.

Let’s	perform	the	following	things	together	to	understand	what	is	required	to	execute	web
application	performance	testing.

Note
If	a	JAVA_HOME	variable	is	not	in	your	path,	you	need	to	add	it	since	JMeter	uses	a	keytool
utility	in	JRE	and	JDK.	So,	for	example,	if	you	are	using	Windows,	you	can	either	add	this
to	your	system	variables,	or	in	jmeter.bat,	add	the	following	two	lines	to	the	beginning
of	the	file:

set	JAVA_HOME=java	path

set	PATH=%JAVA_HOME%\bin;%PATH%

Creating	thread	groups

Add	it	to	our	test	plan	similar	to	what	we	did	earlier.

Creating	a	configuration	element

We	will	add	some	configuration	items	as	generic	components	in	our	test	plan	to	use	them
while	recording	our	test	plan.	For	this,	navigate	to	Add	|	Config	element	|	HTTP	Request
Defaults.	This	step	is	required	if	we	have	a	proxy	on	our	network.	We	need	to	configure
the	proxy	IP,	port,	username,	and	password	in	the	proxy	settings	section.

Creating	a	recording	controller

A	recording	controller	is	the	element	in	which	all	the	recorded	resources	will	be	placed
(we	will	configure	it	in	the	coming	steps).	For	this,	navigate	to	Add	|	Logic	Controller	|
Recording	Controller.	Nothing	needs	to	be	changed	here,	but	we	can	rename	it	if	we
want.

Creating	a	workbench	server	(HTTP(s)	Test	Script	Recorder)

Select	Workbench	and	navigate	to	Add	|	Non-test	elements	|	HTTP(s)	Test	Script
Recorder.

In	Global	Settings,	ensure	that	the	port	is	8888.	Also,	from	the	target	controller
dropdown,	pick	the	recording	controller	that	we	created	in	the	previous	step	so	that	all
recorded	scenarios	are	placed	under	this	controller.

We	can	filter	the	pages	that	we	need	or	filter	out	certain	resources	but	we	don’t
recommend	doing	this	to	simulate	the	correct	live	scenarios.	So	if	we	need	to	add	a	value,
add	.*	to	URL	Patterns	to	include.

Note
Pattern	is	specified	in	the	following	formats:

.*	is	used	to	include	all	files

.*\.png	is	used	to	include	PNG	images

Add	a	listener	to	the	HTTP	script	recorder	element	of	type	View	Result	Tree	so	that	we
can	watch	the	request/response	of	our	traffic	once	it	gets	captured	by	this	recorder.

Now,	before	we	can	click	on	the	Start	button	in	HTTP(s)	Test	Script	Recorder,	save	the
test	plan	and	update	the	browser	settings	(as	we	will	explain	in	the	following	section).

Updating	browser	settings

According	to	our	browser	type,	we	need	to	change	the	proxy	settings.	The	following
screenshot	shows	you	how	to	do	this	in	a	Firefox	browser	(portable	Firefox	v24.0):

As	shown	in	the	preceding	screenshot,	from	the	Advanced	settings,	add	the	proxy	we	just
created	on	localhost	and	port	8888,	and	remove	localhost	from	the	No	Proxy	for:	box
(because	we	have	JMeter	on	the	same	machine).

To	configure	the	proxy	settings,	similar	steps	can	be	performed	when	you	are	using	other
browsers,	for	example,	in	Internet	Explorer,	we	can	configure	the	settings	by	navigating	to
Settings	|	Internet	Options	|	Connections	|	LAN	settings,	then	setting	localhost	in
Proxy	server,	unchecking	the	checkbox	to	bypass	the	proxy	server	for	local	addresses,
and	clicking	on	OK.

Start	recording	our	journeys/scenarios

Now,	go	to	the	index.jsp	page	of	our	web	application:
http://localhost:8080/ExampleOne/index.jsp.

Enter	the	username/password	as	osama/osama.	The	welcome	page	with	user	roles	will	be

displayed;	select	a	new	user	role	and	click	on	Save.	Now,	the	confirmation	page	will	be
displayed;	this	ends	our	recording	scenario.

If	we	go	back	to	JMeter,	we	will	see	our	requests	and	responses	in	View	Results	Tree;
click	on	the	Stop	button	to	stop	the	recording.

The	work	is	not	finished	yet.	We	now	need	to	go	to	the	recorded	scenarios	and	make
further	modifications	to	have	a	good	quality	test	plan.

Tip
Remember	to	change	the	proxy	settings	in	your	browser	back	to	its	original	settings.

Adding	cookie	control

Add	an	HTTP	cookie	manager;	this	is	important	so	that	each	user	(thread)	can	have	its
own	session	during	testing.	To	add	this	HTTP	cookie	manager,	right-click	on	the	Thread
Group	element	and	navigate	to	Add	|	Config	elements	|	Http	Cookie	Manager.

Select	the	checkbox	Clear	Cookies	after	each	iteration	so	that	in	the	next	user	iteration,
a	new	user	session	is	created	for	each	thread	(that	is,	user)	in	our	test.

Adding	a	CSV	dataset

As	we	did	earlier,	we	need	to	configure	testusers.csv	with	the	two	variables:	USERNAME
and	PASSWORD.

We	also	need	to	create	userrole.csv	and	configure	it	with	one	variable	USER_ROLE;	the
content	of	this	file	will	look	like	the	following	code	(representing	all	user	role	options):

1

2

3

4

In	a	CSV	dataset,	we	will	configure	the	filename	and	variable	(that	is,	USER_ROLE)	as
shown	in	the	following	screenshot:

Adding	variables	to	our	requests

Now,	select	the	LoginServlet	option	under	Recording	Controller	and	in	the	parameters
section,	change	the	values	from	osama	to	${USERNAME}	for	the	username	and	${PASSWORD}
for	the	password.

In	the	ManageUserServlet	parameters	sections,	change	the	value	of	user_role	parameter
to	${USER_ROLE}.

All	the	configured	parameters	will	have	the	values	loaded	dynamically	from	our	CSV	files
now.

Adding	suitable	thinking	time

The	next	thing	we	need	to	do	is	add	some	sort	of	latency	where	users	usually	think	before
they	submit	the	page.	This	will	help	the	test	to	behave	similar	to	human	traffic,	where
users	fill	data	in	the	form	fields,	such	as	username	and	password,	or	select	the	values	from
different	options	(for	example,	selects	new	user	role	in	our	application)	after	spending
some	time	thinking.

While	we	select	index.jsp,	navigate	to	Add	|	Timer	|	Gaussian	Random	Timer	and
change	the	constant	delay	offset	to	1,000;	repeat	the	same	for	LoginServlet.

Adding	response	assertions

Now,	we	need	to	tell	JMeter	when	to	consider	the	invocation	of	each	page	as	a	failure
even	if	there	is	a	response	from	the	server.	We	can	do	this	by	adding	an	assertion	to
LoginServlet	so	that	we	have	a	Welcome	message	in	response,	which	means	that	the	user
has	successfully	logged	in	to	the	home	page.

Also,	for	ManageUserServlet,	we	need	to	assert	the	response	to	contain	<title>Update
confirmation</title>,	which	means	that	the	selection	of	the	new	roles	is	successful.

Adding	results	view

We	can	add	any	results	view	we	want	to	use,	such	as	View	Results	Tree,	Aggregated
Graph,	and	Response	Time	Graph.

Executing	our	test	plan	and	getting	the	results

Set	threads	as	500,	loops	or	iterations	as	3,	ramp-up	time	as	10,	and	execute	the	test.	The
following	screenshot	shows	our	execution	results	in	a	table	representation:

We	can	also	get	a	graphical	representation	of	our	performance	testing	results,	as	shown	in
the	following	graph:

The	response	times	of	different	transactions/pages	in	our	application	can	be	seen	in	the
preceding	graph.	As	we	can	see,	transactional	response	time	starts	with	good	results
during	test	ramp-up,	moves	to	steady	levels,	and	ends	up	with	lower	values	during	test
ramp-down.

Using	JMeter	to	test	database	scripts
In	this	section,	we	will	show	the	steps	needed	to	test	database	scripts;	this	is	useful	to	test
the	performance	of	the	database	in	response	to	this	script’s	workload.

Note
Before	we	can	continue	in	this	section,	we	need	to	add	a	JDBC	driver	to	JMeter’s	lib
folder:	apache-jmeter-2.10\lib.

In	our	scenario,	we	are	testing	the	MySQL	query	so	we	need	the	MySQL	JDBC	driver;	we
have	to	place	the	following	JDBC	JAR	file	in	the	lib	folder	of	JMeter:

mysql-connector-java-5.1.23-bin.jar	(or	any	newer	version)

If	you	are	using	any	other	database,	you	need	to	add	the	corresponding	JDBC	driver	in	this
lib	folder	before	you	continue	with	this	section.

As	usual,	we	need	to	add	Thread	Group	to	our	Test	Plan	element	and	then	continue	with
the	following	sections.

Configuring	the	JDBC	connection
We	can	add	it	by	right-clicking	on	Thread	Group	and	then	navigating	to	Add	|	Config
Element	|	JDBC	Connection	Configuration.

We	then	need	to	fill	in	the	following	connection	details:

Variable	Name	as	testone_cp
JDBC	URL	as	jdbc:mysql://localhost:3306/testone
JDBC	Driver	Class	as	com.mysql.jdbc.Driver
Username	as	test
Password	as	test
Validation	query	as	select	curdate()

We	just	performed	a	connection	pooling	to	the	MySQL	database.

Adding	a	JDBC	request	sampler
A	JDBC	request	sampler	can	be	added	by	right-clicking	on	Thread	Group	and	then
navigating	to	Add	|	Sampler	|	JDBC	Request.

We	then	need	to	fill	in	the	following	details:

Variable	Name	as	testone_cp	(the	exact	name	we	used	when	defining	the
connection	pool	variable	name)
Query	Type	as	Prepared	Select	Statement
Query	as	SELECT	*	FROM	testone.account	a	where	a.username	=	?	and
a.password	=	?

Parameter	Value	as	${USERNAME},${PASSWORD}
Parameter	Types	as	VARCHAR,VARCHAR

We	have	just	configured	a	prepared	statement	with	two	parameters,	username	and

password,	to	simulate	testing	our	application’s	login	query.

Adding	a	CSV	dataset	configuration
Add	a	CSV	dataset	configuration	(following	the	same	steps	we	mentioned	earlier)	and
load	the	testusers.csv	file	with	two	variables,	USERNAME	and	PASSWORD,	so	that	JMeter
can	send	these	values	as	bind	parameters	for	this	JDBC	query.

Adding	listeners	to	capture	test	results
Add	View	Results	Tree	and	Aggregate	Graph	to	capture	the	execution	results	and	then
execute	the	test	thrice	with	100	threads	and	with	five	seconds	ramp-up.	We	will	get	results
similar	to	the	following	screenshot:

As	a	final	comment,	we	should	mention	here	that	JMeter	doesn’t	execute	the	JavaScript
code,	so	do	not	assume	that	you	can	catch	any	JavaScript	issues	using	it.	Instead,	we	will
show	you	how	to	use	the	different	available	browser	tools	for	that	purpose	in	Chapter	5,
Recognizing	Common	Performance	Issues.

Note
You	can	find	more	details	about	Apache	JMeter	at	http://jmeter.apache.org/.

http://jmeter.apache.org/

Summary
In	this	chapter,	we	covered	some	essential	parts	related	to	performance	testing—concepts,
tools,	and	some	related	topics.	We	didn’t	dig	too	much	into	testing	concepts	as	this	is	not
our	intention.	We	also	demonstrated	building	performance	testing	scripts	using	the	Apache
JMeter	tool;	we	should	now	be	capable	of	testing	the	performance	of	our	application.	We
covered	testing	web	services,	web	applications,	and	database	scripts	as	samples	of
performance	testing	scripts.

We	will	use	Apache	JMeter	throughout	this	book	to	create	different	test	plans	for	our	book
examples,	so	it	is	better	not	to	leave	this	chapter	before	mastering	this	useful	tool.

In	the	next	chapter,	Chapter	4,	Monitoring	Java	Applications,	we	will	go	through	different
Java	monitoring	tools	including	different	Java	profiling	tools.	The	chapter	will	focus	on
operating	system	tools,	JDK	tools	such	as	JConsole	and	Java	Mission	Control,	IDE	tools
such	as	NetBeans	and	Eclipse,	and	third-party	tools	such	as	JProfiler.	We	will	also	cover
offline	profiling	in	detail	using	JProfiler.

Chapter	4.	Monitoring	Java	Applications
Monitoring	tools	can	be	used	to	monitor	different	layers	in	the	application.	In	this	chapter,
we	will	go	through	the	different	monitoring	tools	and	focus	on	the	JDK	tools	and	different
IDE	tools,	such	as	NetBeans	and	Eclipse.

We	will	also	cover	JProfiler,	which	is	an	advanced	third-party	tool,	with	special	attention
to	its	offline	profiling	capability.

In	this	chapter,	we	will	cover	the	following	topics:

The	different	monitoring	tools
The	different	Java	profiling	tools
A	brief	overview	of	the	JDK	tools
An	overview	of	the	NetBeans	profiler
The	Eclipse	plugin	profilers
An	advanced	profiler	tool,	JProfiler
JProfiler	in	the	offline	profiling	mode

Tip
Special	thanks	to	EJ	Technologies	for	providing	me	with	the	required	license	of	the
latest	version	of	JProfiler	8.x,	so	we	could	cover	the	full	capabilities	of	this	tool	in
this	book.

Exploring	the	Java	monitoring	tools
In	this	chapter,	we	will	focus	on	the	different	profiling/monitoring	tools,	how	to	run	them,
their	capabilities,	and	a	brief	discussion	on	how	to	read	the	results.	Later	in	this	book,	we
will	discuss	in	further	detail	the	different	interpretations	of	CPU,	threading,	and	memory
profiling	results	in	Chapter	6,	CPU	Time	Profiling,	Chapter	7,	Thread	Profiling,	and
Chapter	8,	Memory	Profiling.

In	the	previous	chapters,	we	highlighted	the	importance	of	having	different	monitoring
tools	in	different	application	layers.	We	can	classify	such	tools	according	to	the
operational	level	into	two	main	categories,	the	operating	system	tools	and	the	Java
monitoring	tools.

The	operating	system	monitoring	tools
The	operating	system	monitoring	tools	function	on	the	operating	system	level.	They
include	tools	that	provide	information	about	the	processing	power,	memory,	I/O,	and
network	utilization.

These	tools	are	mainly	based	on	acquiring	frequent	samples	of	statistics	at	all	times
specified	(sometimes	configurable).

The	Microsoft	Windows	tools
If	we	take	Microsoft	Windows	as	an	example,	we	can	use	the	Task	Manager	and	retrieve
useful	data	from	this	tool.	The	following	is	a	screenshot	of	the	MS	Windows	7	Task
Manager:

Click	on	Resource	Monitor…	to	launch	the	Resource	Monitor.	This	is	used	to	monitor
resources	during	a	specified	period	and	gives	more	information	compared	to	the	Task
Manager.	We	can	stop	it	when	we	need	to	take	a	snapshot	of	the	current	monitoring
results;	it	can	also	be	invoked	using	the	following	command	line:

C:\resmon

We	get	the	following	detailed	CPU	utilizations,	disk	speed,	network	utilization,	and
memory	consumptions	by	different	applications	(processes):

Different	command-line	tools	can	also	be	used	to	retrieve	various	machine	statistics,	for
example,	execute	netstat	(as	shown	in	the	following	command)	with	different	options	to
monitor	the	network	traffic,	used	ports,	and	so	on:

C:\>netstat

Active	Connections

		Protocol		Local	Address								Foreign	Address						State

		TCP				10.15.112.42:54792					157.55.130.155:40004			ESTABLISHED

		TCP				10.15.112.42:54796					db3msgr6011010:https			ESTABLISHED

		TCP				10.15.112.42:54797					157.55.133.138:12350			ESTABLISHED

		TCP				10.15.112.42:54798					owa:https														ESTABLISHED

..

Another	powerful	command-line	utility	is	Typeperf,	used	to	get	performance	counter
results.	This	command-line	tool	is	very	useful	as	it	can	print	the	performance	output	to
either	the	command	prompt	or	a	file	for	better	analysis.	The	general	syntax	of	this
command	is	as	follows:

Typeperf	[Path	[path…]]	[-cf	FileName]	[-f	{csv|tsv|bin}]	[-si	interval]	[-

o	FileName]	[-q	[object]]	[-qx	[object]]	[-sc	samples]	[-config	FileName]	

[-s	computer_name]

The	parameters	in	the	preceding	syntax	are	explained	as	follows:

-c	{	Path	[path…]	|	-cf	FileName	}:	This	parameter	specifies	the	performance

counter	path	to	the	log.	To	add	multiple	counter	paths,	separate	them	with	spaces.
-cf	FileName:	This	parameter	specifies	the	filename	of	counter	paths	we	need	to
monitor	(one	per	line).
-f	{csv|tsv|bin}:	This	parameter	specifies	the	output	file	format.	We	can	use	either
csv	(default),	tsv	(tab	delimited),	or	bin	(binary).
-si	interval	[mm:]	ss:	This	parameter	specifies	the	time	interval	between	each
sample.
-o	FileName:	This	parameter	specifies	the	path	of	the	output	file.
-q	[object]:	This	parameter	shows	all	available	counters	for	the	specified	object.	(If
there’s	no	name,	it	will	show	for	all.)
-qx	[object]:	This	parameter	shows	all	the	available	counters	with	instances	for	the
specified	object.	(If	there’s	no	name,	it	will	show	for	all.)
-sc	samples:	This	parameter	specifies	the	number	of	samples	to	collect.	(By	default,
it	will	continue	to	do	so	until	you	press	Ctrl	+	C.)
-config	FileName:	This	parameter	specifies	the	path	of	the	settings	file	that	contains
the	command-line	parameters.
-s	computer_name:	This	parameter	specifies	the	system	to	monitor	if	no	server	is
specified	in	the	counter	path.

For	example,	to	get	the	memory	and	process	counter	details,	refer	to	the	following
command	(the	output	shows	the	timestamp,	the	total	available	memory	in	bytes,	and	the
total	processing	power):

C:\>typeperf	"\Memory\Available	bytes"	"\processor(_total)\%processor	time"

"(PDH-CSV	4.0)","\\Computer_name\Memory\Available	bytes","\\	

Computer_name\processor(_total)\

%	processor	time"

"11/07/2013	22:35:49.059","1018003456.000000","4.256353"

"11/07/2013	22:35:50.061","1017634816.000000","15.154014"

"11/07/2013	22:35:51.063","1017683968.000000","4.645563"

"11/07/2013	22:35:52.065","1017683968.000000","5.813161"

The	command	completed	successfully.

To	get	the	list	of	available	counters	of	an	object,	we	can	execute	the	-q	option,	as	shown	in
the	following	command:

C:\>typeperf	-q	"\Processor"

\Processor(*)\%	Processor	Time

\Processor(*)\%	User	Time

\Processor(*)\%	Privileged	Time

\Processor(*)\Interrupts/sec

\Processor(*)\%	DPC	Time

\Processor(*)\%	Interrupt	Time

\Processor(*)\DPCs	Queued/sec

\Processor(*)\DPC	Rate

\Processor(*)\%	Idle	Time

\Processor(*)\%	C1	Time

\Processor(*)\%	C2	Time

\Processor(*)\C1	Transitions/sec

\Processor(*)\C2	Transitions/sec

The	command	completed	successfully.

Note
Performance	counters	provide	information	on	how	well	the	operating	system,	applications,
services,	or	drivers,	and	so	on	are	performing.	The	counter	data	will	help	to	determine	the
system’s	bottlenecks	and	provide	guidance	on	how	to	fine-tune	the	system	and	application
performance.

The	Unix/Linux	tools
A	Unix-based	operating	system	has	many	tools	that	can	be	used	to	get	system	performance
counters	as	follows:

ps/pgrep/pstree:	This	command	is	useful	to	list	the	processes	and	give	details	about
any	process
top:	This	command	shows	the	actual	process	activities,	and	by	default,	it	lists	the	top
active	processes
vmstat:	This	command	provides	information	about	memory,	processes,	I/O,	and	the
CPU
iostat:	This	command	shows	the	average	CPU	time	since	the	system	started	and
creates	a	report	of	the	activities,	including	CPU	and	disk	utilization
sar:	This	command	is	used	to	collect	and	save	system	activity	information
tcpdump:	This	command	is	used	to	get	information	about	the	current	network	traffic

Note
To	get	a	detailed	description	of	these	tools,	use	the	man	command	to	display	the
comprehensive	manual	pages	for	the	required	command,	for	example,	man	ps.

An	example	of	high	CPU	utilization

Let’s	take	an	example	that	consumes	the	CPU	power	and	checks	the	reflection	on	the
monitoring	tools	at	the	operating	system	level.

The	following	code	is	the	Java	code	of	our	sample	application:

public	class	HighCPU	{

		public	static	void	main(String[]	args)	{

				ExecutorService	execSvc	=	Executors.newFixedThreadPool(40);

				for	(int	i	=	0;	i	<	1000;	i++)	{

						execSvc.execute(new	MyThread());

				}

				while	(!execSvc.isTerminated())	{

						try	{

								Thread.sleep(500);

						}	catch	(InterruptedException	ex)	{}

						execSvc.shutdown();

				}

		}

}

class	MyThread	implements	Runnable	{

		@Override

		public	void	run()	{

				int	arraySize	=	200000;

				int[]	bigArray	=	new	int[arraySize];

				for	(int	i	=	0;	i	<	arraySize;	i++)	{

						bigArray[i]	=	ThreadLocalRandom.current().nextInt(50000);

				}

				Arrays.sort(bigArray);

				System.out.println("finished!");

		}

}

The	preceding	code	creates	1,000	different	threads	with	a	maximum	of	40	concurrent
threads	(thread	pool	size).	Each	thread	creates	200,000	random	numbers	in	an	array,	and
then	sorts	the	array	numbers.

When	we	execute	this	program,	we	get	the	results	using	Resource	Monitor.	As	we	can
see	in	the	following	screenshot,	the	CPU	utilization	jumps	to	100	percent	in	all	cores	with
one	Java	process,	which	consumes	the	biggest	share	of	74	percent	in	the	Average	CPU
Utilization	column:

We	can	use	the	typeperf	command	to	get	similar	results	for	the	CPU	utilization	(The
results	are	filtered	to	show	the	selected	four	results.	It	was	43	percent	before	the	execution
of	our	program,	100	percent	in	middle	of	the	execution,	and	25	percent	after	the	end	of	the
execution	CPU	utilization).	The	following	command	results	in	the	display	of	each
processor	utilization	and	the	total	utilization	in	the	last	column	in	each	timestamp	row:

C:\>typeperf	"\Processor(*)\%	Processor	Time"

"(PDH-CSV	4.0)","\\Computer_name\Processor(0)\%	Processor	

Time","\\COMPUTER_NAME\Processor(1

)\%	Processor	Time","\\COMPUTER_NAME\Processor(2)\%	Processor	

Time","\\COMPUTER_NAME\Process

or(3)\%	Processor	Time","\\COMPUTER_NAME\Processor(_Total)\%	Processor	

Time"

"11/09/2013	

22:12:46.824","54.852592","50.182170","47.068556","23.716448","43.954941"

"11/09/2013	

22:12:53.844","98.470666","90.823996","80.118658","81.647992","87.765328"

"11/09/2013	

22:12:55.884","100.000000","100.000000","100.000000","100.000000","100.0000

00"

"11/09/2013	

22:13:10.888","40.723011","54.762298","7.964674","0.165071","25.903758"

The	command	completed	successfully.

To	dump	such	results	into	a	CSV	file	for	better	data	manipulations,	we	can	use	the
following	command	with	the	-o	filename	option	instead:

C:\>typeperf	"\Processor(*)\%	Processor	Time"	-o	c:\results.csv

If	we	execute	the	same	Java	application	on	Linux	(Ubuntu	10.04.3)	and	the	top	command
to	monitor	the	resource	utilization,	we	can	get	results	similar	to	the	following	screenshot
(our	application	consumes	around	99.4	percent	of	the	CPU	power	and	5.8	percent	of	the
memory):

The	aim	here	is	to	detect	the	odd	utilization	by	different	tools,	and	as	we	clarified	before,
having	high	processor	utilization	doesn’t	necessary	mean	wrong	findings.	But	in	general,
the	web	applications’	processing	utilization	should	be	low	as	per	the	user	transactions
because	it	serves	the	customers’	requests	and	waits	for	a	reasonable	time	till	the	customers
invoke	subsequent	requests.	The	possible	reasons	for	high	processing	utilization	can	be
bad	logic	that	consumes	unnecessary	processing	power	or	inappropriate	processor	power

that	is	less	than	the	application’s	needs,	incorrect	capacity	planning,	bugs	that	cause	the
application	to	use	redundant	processing,	even	excessive	useless	loops,	and	so	on.

Our	target	when	we	tune	the	performance	of	Java	applications	is	to	maximize	the
utilization	of	the	high	processing	power	of	the	servers.	The	web	applications	have	low
processing	utilization	by	nature.	One	of	our	strategies	is	to	use	asynchronous	components
that	execute	some	tasks	behind	the	scene	instead	of	blocking	the	users	until	finishing	such
processing	tasks.

The	Java	monitoring	tools
The	Java	monitoring	tools	are	used	in	JVM	monitoring.	They	show	important	application
details	such	as	memory	statistics,	time	spent	by	an	application	method,	and	different
threads	status.	We	can	further	classify	these	tools.

The	JDK	monitoring	tools
The	JDK	monitoring	tools	include	a	lot	of	useful	tools	such	as	jconsole,	jmap,	jhat,
jstat,	jvisualvm,	and	Oracle	Java	Mission	Control	(jmc).

We	will	explore	all	these	tools	in	the	Understanding	different	JDK	tools	section	in	details.

The	monitoring	tools	for	application	servers
Each	application	server	comes	with	different	monitoring	capabilities	that	help	monitor	the
running	applications.

For	example,	if	we	open	the	Oracle	GlassFish	Version	4,	we	see	a	lot	of	monitoring
components/resources	in	the	server	monitoring,	where	we	can	specify	the	required
monitoring	level.	The	following	screenshot	shows	these	components	(from	the	GlassFish
admin	console,	select	Monitoring	Data	and	then	Configure	Monitoring):

We	will	cover	GlassFish	monitoring	and	tuning	in	detail	in	Chapter	9,	Tuning	an
Application’s	Environment.

The	IDE	monitoring	tools

Most	of	the	Java	IDEs	either	include	a	tool	to	profile	the	Java	application	or	support	the
plugin	installation	of	similar	tools.	For	example,	we	can	download	Eclipse	plugins,	such
as	the	TPTP,	JVM	monitor,	and	Memory	Analyzer.

Some	third-party	utilities	that	run	as	standalone	tools	can	also	integrate	with	different
IDEs.	For	example,	JProfiler	can	integrate	with	different	versions	of	NetBeans,
JDeveloper,	Eclipse,	and	IntelliJ	IDEA.

We	will	pick	up	two	examples,	NetBeans	Profiler	and	Eclipse	profiling	plugins,	and	cover
them	as	samples	of	these	tools.

The	standalone	monitoring	tools
The	standalone	monitoring	tools	include	a	lot	of	third-party	utilities.	Some	examples	of
these	tools	are	AppDynamics,	JBossProfiler,	JProbe	and	JProfiler,	and	so	on.

We	will	pick	JProfiler	as	an	example	of	this	group	and	discuss	it	in	more	detail.

The	multifunction	monitoring	tools
The	multifunction	monitoring	tools	are	configurable	tools	that	can	monitor	the
environment,	application	server,	different	resources,	virtual	machine,	and	so	on	via
different	available	matrices.	They	also	send	different	alerts,	and	the	best	examples	for
these	tools	are	Intel	Foglight,	Hyperic	HQ,	HP	SiteScope,	and	so	on.

Understanding	the	profiling	tools
Profilers	are	the	tools	that	allow	us	to	get	dynamic	information	and	monitor	our	executing
program.	The	main	difference	between	monitoring	tools	and	profilers	is	the	level	of	detail
that	can	be	provided.

Monitoring	tools	provide	high-level	information.	On	the	other	hand,	profilers	provide	very
low-level	detail,	so	it	can	catch	the	HotSpot	areas	more	efficiently	and	point	to	a	single
programming	statement.

Also,	the	monitoring	tools,	as	the	name	suggests,	merely	inspect	the	application’s
performance,	while	profiling	tools	are	usually	much	more	advanced	and	can	go	the	extra
mile	to	instrument	or	probe	the	application.	So	it	can	evaluate	each	part	of	the	application
and	point	to	the	underperforming	areas,	that	is,	the	HotSpot	areas.

All	tools	can	be	monitoring	tools,	but	not	all	can	be	profiler	tools.

Profilers	modes
Profilers	can	work	on	many	different	strategies,	such	as	event	based,	instrumental	based,
and	sampling	(statistical)	as	follows:

Event	based:	In	event	based,	the	profiler	captures	the	application’s	events.	The
events	represent	the	methods’	calls,	class	loading,	thread	changes,	and	so	on.
Instrumental	based:	This	method	instruments	the	application	with	additional
instructions	to	gather	more	information.	This	causes	the	highest	impact	on	the
application’s	execution	time	compared	to	the	other	types.
Sampling	based	(statistical):	This	method	probes	the	target	program’s	counter	at
regular	intervals	using	operating	system	interrupts.	Sampling	profiles	are	less
accurate	but	give	the	nearest	normal	execution	time	of	the	target	application.

So	while	working	with	profilers,	if	we	select	the	instrumental	type,	we	need	to	focus	on
the	relativity	of	the	time	spent	in	each	method,	rather	than	the	actual	spent	time.	But	in	the
sampling	mode,	we	can	consider	the	method	execution	time,	keeping	in	mind	that	the
results	might	not	be	fully	accurate	as	they	are	statistically	based.

JVM	TI
Java	profilers	were	initially	built	using	the	Java	Virtual	Machine	Profiler	Interface
(JVMPI)	and	the	Java	Virtual	Machine	Debug	Interface	(JVMDI).	Both	the	interfaces
are	deprecated	and	no	longer	provided	since	Java	JDK	6;	both	are	replaced	by	JVM	Tool
Interface	(JVM	TI)	in	JDK	5.0.

This	standard	native	programming	interface	enables	different	tools	to	inspect	the	state	and
control	the	execution	of	any	application	running	inside	the	JVM.	It	can	be	used	for	the
tools	that	monitor,	profile,	or	even	debug	the	Java	applications.

Profiler	agent
A	profiler	agent	can	be	developed	using	any	native	language	that	supports	C	language-
calling	conventions	and	C/C++	definitions.

For	the	agent	to	start	at	virtual	machine	startup,	specify	the	name	of	the	agent	library	using
a	command-line	option.	Implementations	might	support	a	mechanism	to	start	agents	while
the	JVM	is	in	the	live	phase	(already	running).

The	command-line	options
We	can	use	one	of	the	two	following	JVM	command-line	options	to	load	and	run	agents
and	pass	any	options	to	the	agent	in	these	commands	(We	will	see	an	example	of	passing
the	port	number	or	running	mode	as	parameters	later	in	this	chapter.):

-agentlib:<agent-lib-name>=<options>

-agentpath:<path-to-agent>=<options>

Agent	start-up
The	JVM	starts	each	agent	by	invoking	a	start-up()	function	that	is	implemented	by	the
agent.	The	two	possible	scenarios	are	if	the	agent	is	started	in	the	loading	phase,	the	JVM
will	invoke	the	Agent_OnLoad()	function;	however,	if	it	is	started	in	the	live	phase,	the
JVM	will	invoke	the	Agent_OnAttach()	function.

Different	profiling	patterns
We	can	classify	the	profile	patterns	according	to	many	aspects	as	follows:

Sampling	versus	instrumental:	This	classification	is	based	on	how	the	profiler	is
used,	as	described	earlier.
Attach	versus	start	for	profiling:	This	classification	is	based	on	the	time	of	using
the	profiling	agent	either	during	the	JVM	startup	or	by	attaching	it	later.
Local	versus	remote:	This	classification	considers	the	location	of	the	profiled
application	to	the	profiler	tool	location	if	it	is	in	the	same	machine	or	other	remote
machines.
Filtered	versus	non-filtered	classes:	This	classification	is	based	on	whether	the
profiler	will	get	the	results	for	all	classes	or	it	will	filter	in/out	some	of	these	classes.
Online	versus	offline:	This	classification	is	based	on	whether	the	profiler	is	used	in
an	attended	or	unattended	manner.	In	the	offline	mode,	the	profiler	results	are	stored
automatically	(usually	by	triggers)	in	the	snapshot	files,	where	they	can	be	used	later
by	the	profiler	tool	for	analysis.
Web	server	versus	standalone:	This	classification	is	based	on	whether	the
application	type	profiles	a	web	or	standalone	application.	There	is	no	major
difference	between	both,	but	usually,	profiling	the	web	application	will	need	some
changes	in	the	server	startup	scripts	to	add	the	profiler	instructions.

What	we	need	to	know	from	this	section
To	summarize	what	we	need	to	understand	from	this	section,	we	have	different	types	of
profilers	methodologies—event	based,	statistical,	and	instrumental—and	in	Java,	we	have
JVM	TI	to	develop	profilers.	The	profiler	agents	use	the	JVM	parameters	to	be	configured
(-agentpath	or	-agentlib)	and	can	be	used	either	during	the	JVM	startup	or	later	during
runtime	(attached);	however,	some	data	may	not	be	available	in	this	case.	Finally,	there	are
a	lot	of	different	patterns	to	use	the	profilers.

Note
For	more	information	about	JVM	TI,	refer	to	the	Oracle	documentation	at
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html.

http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html

Understanding	the	different	JDK	tools
If	we	examine	the	different	tools	that	come	with	the	JDK	to	monitor	Java	applications,	we
see	that	these	tools	vary	from	powerful	profiler	tools	to	lightweight	specific	command-line
tools.	In	this	section,	we	will	go	through	these	tools	in	detail	to	pick	the	best-suited	tool
for	whenever	we	need	certain	data	of	our	application.	As	per	the	Oracle	documentation,
apart	from	JConsole	utility,	all	the	other	tools	are	experimental	in	nature,	so	they	should	be
used	keeping	this	in	mind.	They	may	be	removed	from	the	JDK	in	future	JDK	versions.

These	tools	can	be	classified	as	follows:

Monitoring	tools:	jps,	jstat,	and	jstatd
Troubleshooting	tools:	jinfo,	jmap,	jhat,	jstack,	and	jsadebugd
Profiler	tools:	JConsole,	JVisualVM,	and	Oracle	Java	Mission	Control

The	monitoring	tool	for	Java	virtual	machine
statistics
The	jstat	tool	is	used	to	gather	some	statistics	about	the	Java	virtual	machine,	mainly
memory	statistics,	different	spaces,	loaded	classes,	garbage	collections,	and	so	on.

The	general	syntax	of	this	tool	is	as	follows:

jstat	[generalOption	|	outputOptions	vmid	[interval[s|ms]	[count]]]

Each	term	of	the	preceding	syntax	is	explained	as	follows:

generalOption:	This	parameter	is	a	single	general	option	(-help	or	-options)
outputOptions:	This	parameter	is	for	the	output	options,	such	as	the	statOption,	-t,
-h,	and	-J	options
vmid:	This	parameter	is	the	virtual	machine	identifier,	which	is	a	unique	string
representing	the	JVM	as	follows:

[protocol:][//]lvmid[@hostname[:port]/servername]

If	using	a	local	JVM,	use	only	the	process	ID	in	the	preceding	parameter

interval[s|ms]:	This	parameter	shows	the	sampling	interval	in	seconds	(s)	or
milliseconds	(ms)
count:	This	parameter	shows	the	number	of	samples	to	display;	otherwise,	it	will
continue	displaying	the	statistics	until	the	JVM	is	terminated

The	following	table	shows	the	available	statOption	values:

The	statOption
values Description

class Statistics	on	the	behavior	of	the	classloader

Compiler Statistics	of	the	HotSpot	Just-in-Time	compiler

Printcompilation HotSpot	compilation	method	statistics

gc Statistics	of	the	garbage	collected	heap

gcutil A	summary	of	the	garbage	collection	statistics

Gccapacity Statistics	of	the	generations’	capacities	and	their	corresponding	spaces

Gccause
A	summary	of	the	garbage	collection	statistics	such	as	-gcutil	with	the	cause	of	last	and	current
garbage	collection	events

gcnew Statistics	of	the	new	generation

Gcnewcapacity Statistics	of	the	new	generations’	sizes	and	its	corresponding	spaces

gcold Behavior	statistics	of	the	old	and	permanent	generations

Gcoldcapacity Statistics	of	the	sizes	of	the	old	generation

Gcpermcapacity Statistics	of	the	sizes	of	the	permanent	generation

For	example,	after	executing	our	previous	example	(it	takes	the	process	ID	2452	in	my
execution),	we	can	then	execute	the	jstat	command	to	get	the	following	results:

jstat	-gcutil	2452	250	5

		S0					S1					E						O						P						YGC				YGCT				FGC				FGCT					GCT

		0.00			0.00			0.00		37.24			1.85			1220			0.768				67				0.468				1.236

		0.00			0.00			0.00		30.09			1.85			1240			0.779				68				0.475				1.255

		0.00			0.02			0.00		30.09			1.85			1259			0.792				69				0.482				1.274

		0.01			0.00		31.92		37.23			1.85			1280			0.804				70				0.490				1.295

		0.00			0.01			0.00		51.50			1.85			1302			0.817				71				0.496				1.314

Let’s	clarify	the	preceding	result.	S0	and	S1	are	the	survivor	spaces,	E	is	the	Eden	space,	O
stands	for	the	old	generation,	P	for	the	Perm	generation,	YGC	is	the	young	garbage
collection,	T	stands	for	the	time	in	YGT,	FGC	stands	for	the	full	garbage	collection,	T	is	also
time	in	FGCT,	and	GCT	includes	both	young	and	full	garbage	collection	times.

Our	application	creates	large	arrays	and	as	we	have	mentioned	in	Chapter	2,
Understanding	Java	Fundamentals,	when	we	create	large	objects,	they	are	placed	in	the
old	generation	space	immediately.	Thus,	we	can	see	that	the	old	generation	is	growing
constantly	while	the	young	generation	is	almost	empty	(S0	and	S1).

To	execute	the	command	to	get	data	about	the	application	classes,	we	can	run	the
following	command	(process	ID	2542):

jstat	-class	2542

Loaded		Bytes		Unloaded		Bytes					Time

		434			479.0					0							0.0						0.14

The	JVM	memory	map	tool
The	jmap	tool	is	used	to	display	memory	information	about	any	running	Java	process.	This
can	be	also	used	to	dump	heap	memory	content.	The	usage	of	the	tools	with	the	syntax	is
given	as	follows:

The	jmap	tool	will	print	all	the	shared	object	mappings.	The	syntax	is	as	follows:

jmap	[option]	pid

<no	option>

The	-dump	parameter	dumps	the	Java	heap	content	in	the	hprof	binary	file	format.	If
the	live	suboption	is	specified,	only	the	current	live	objects	inside	the	heap	are
dumped.	The	syntax	is	as	follows:

-dump:[live,]format=b,file=<filename>

The	-finalizerinfo	parameter	displays	information	about	objects	waiting	on
finalization.	The	syntax	is	as	follows:

-finalizerinfo

The	-heap	parameter	shows	the	heap	summary.	The	following	is	the	syntax	for	an
algorithm	used	for	GC,	heap	configuration,	and	heap	generation	usages:

-heap

The	-histo	parameter	prints	the	heap	histogram.	For	example,	for	each	Java	class,
the	tool	will	print	the	number	of	instances,	occupied	memory	in	bytes,	and	qualified
class	names.	If	the	live	suboption	is	specified,	only	the	current	live	objects	are
counted.	The	syntax	is	as	follows:

-histo[:live]

The	-permstat	parameter	prints	the	class	loader	statistics	of	the	heap	permanent
generation.	For	example,	for	each	class	loader,	the	tool	will	print	its	name,	liveness,
address,	parent	class	loader,	and	number	and	size	of	classes	it	has	loaded.	Also,	the
number	and	size	of	the	interned	strings	are	printed.	The	syntax	is	as	follows:

-permstat

The	-J	parameter	is	used	to	pass	different	flags	to	the	JVM.	The	syntax	is	as	follows:

-J<flag>

An	example	of	using	the	preceding	commands	on	the	process	ID	2296	to	get	different
memory	details	is	given	as	follows:

jmap	-heap	2296

Attaching	to	process	ID	2296,	please	wait…

Debugger	attached	successfully.

Client	compiler	detected.

JVM	version	is	24.45-b08

using	thread-local	object	allocation.

Mark	Sweep	Compact	GC

Heap	Configuration:

			MinHeapFreeRatio	=	40

			MaxHeapFreeRatio	=	70

			MaxHeapSize						=	268435456	(256.0MB)

			NewSize										=	1048576	(1.0MB)

			MaxNewSize							=	4294901760	(4095.9375MB)

			OldSize										=	4194304	(4.0MB)

			NewRatio									=	2

			SurvivorRatio				=	8

			PermSize									=	12582912	(12.0MB)

			MaxPermSize						=	67108864	(64.0MB)

			G1HeapRegionSize	=	0	(0.0MB)

Heap	Usage:

New	Generation	(Eden	+	1	Survivor	Space):

			capacity	=	5308416	(5.0625MB)

			used					=	4262600	(4.065132141113281MB)

			free					=	1045816	(0.9973678588867188MB)

			80.29890649112654%	used

Eden	Space:

			capacity	=	4784128	(4.5625MB)

			used					=	4262552	(4.065086364746094MB)

			free					=	521576	(0.49741363525390625MB)

			89.09778333690069%	used

From	Space:

			capacity	=	524288	(0.5MB)

			used					=	48	(4.57763671875E-5MB)

			free					=	524240	(0.4999542236328125MB)

			0.0091552734375%	used

To	Space:

			capacity	=	524288	(0.5MB)

			used					=	0	(0.0MB)

			free					=	524288	(0.5MB)

			0.0%	used

tenured	generation:

			capacity	=	11210752	(10.69140625MB)

			used					=	8192464	(7.8129425048828125MB)

			free					=	3018288	(2.8784637451171875MB)

			73.07684622762149%	used

Perm	Generation:

			capacity	=	12582912	(12.0MB)

			used					=	233024	(0.22222900390625MB)

			free					=	12349888	(11.77777099609375MB)

			1.8519083658854167%	used

10903	interned	Strings	occupying	816904	bytes.

We	can	dump	the	heap	content	into	a	file	using	the	preceding	command	for	the	process	ID
1668	as	follows:

jmap	-dump:format=b,file=mydump	1668

Dumping	heap	to	mydump…

Heap	dump	file	created

We	will	now	navigate	through	the	preceding	heap	dump	file	using	the	jhat	command.

The	Java	heap	analysis	tool
The	jhat	tool	is	used	to	analyze	the	heap	dumps.	The	syntax	looks	like	the	following
code:

jhat	[options]	<heap-dump-file>

We	can	open	the	dump	file,	which	we	generated	using	jmap,	as	follows:

jhat	mydump

Reading	from	mydump…

Dump	file	created	Sun	Nov	10	20:44:45	EET	2013

Snapshot	read,	resolving…

Resolving	46793	objects…

Chasing	references,	expect	9	dots

Eliminating	duplicate	references

Snapshot	resolved.

Started	HTTP	server	on	port	7000

Server	is	ready.

Now,	open	the	following	URL	using	your	browser:
http://localhost:7000/

We	can	now	see	the	dump	file	content	in	the	browser,	where	we	can	navigate	through	the
heap	dump	content	or	even	query	the	heap	using	the	Object	Query	Language	(OQL).
Refer	to	the	following	screenshot:

In	the	following	screenshot,	we	have	used	OQL	to	query	the	heap	dump	and	select	our
custom	thread	class	MyThread	by	executing	select	t	from	osa.ora.MyThread	t:

Note
To	learn	more	about	OQL,	the	server	already	contains	a	helpful	documentation	in	the	jhat
server	at	http://localhost:7000/oqlhelp/.

We	will	discuss	this	in	more	detail	in	Chapter	8,	Memory	Profiling.

The	Java	monitoring	and	management	console	tool
The	jconsole	tool	is	a	good	profiling	tool	with	a	graphical	user	interface	that	enables	us
to	monitor	and	manage	the	Java	applications	and	virtual	machines	on	a	local	or	remote
host.

The	command	syntax	looks	as	follows:

jconsole	[options]	[connection…]

In	the	preceding	syntax,	the	connection	parameter	contains	one	of	the	following
information:	pid,	host:port,	or	jmxUrl,	explained	as	follows:

pid	–	This	is	the	ID	of	the	JVM	process	(if	local)
host:port	–	This	is	a	host	system	on	which	the	JVM	is	running,	and	depends	on	the
port	number	as	specified	by	the	system	property
com.sun.management.jmxremote.port	when	the	remote	JVM	was	started
jmxUrl	–	This	represents	the	address	of	the	JMX	agent	to	be	connected	to

Alternatively,	we	can	run	jconsole	and	connect	using	the	GUI	connections.	The	tool	GUI
displays	the	following	information	through	different	tabs:

Overview:	This	tab	contains	information	about	the	JVM	and	monitored	values
Memory:	This	tab	shows	the	memory	details
Threads:	This	tab	shows	the	threading	details
Classes:	This	tab	shows	information	about	loaded	classes
VM:	This	tab	shows	information	about	the	JVM
MBeans:	This	tab	shows	the	available	MBeans

Note
MBeans	or	managed	beans	are	JavaBeans	that	can	be	managed	through	defined
interfaces.	These	interfaces	follow	Java	Management	Extension	(JMX)
specifications.	Five	types	of	interfaces	are	available,	including	standard,	dynamic,
open,	model,	and	MXBean.

Java	VisualVM
Java	VisualVM	provides	a	visual	interface	to	view	detailed	information	about	the	Java
applications	while	they	are	running	on	a	JVM.	We	can	connect	to	the	local	or	remote
running	applications.	As	it	is	based	on	the	same	codebase	of	the	NetBeans	profiler;	it	has
almost	the	same	capabilities.

To	run	Java	VisualVM	from	the	command	prompt,	refer	to	the	following	command:

jvisualvm

To	execute	our	HighCPU	application,	start	JVisualVM	and	attach	it	to	our	application	(the
application	will	appear	in	the	running	Java	processes).	We	can	see	a	graphical
representation	of	the	much	useful	information	about	our	app	in	the	following	screenshot:

Using	the	tool,	we	can	check	the	CPU,	Memory,	Classes,	and	Threads	checkboxes.

We	can	also	perform	profiling	for	the	executing	application	from	the	Profiler	tab,	where	it
will	calibrate	the	first	time	it	runs	(we	will	discuss	the	calibration	later	in	this	chapter).
Then,	we	can	get	useful	details	about	either	CPU	or	memory	and	determine	the	HotSpot
areas.

JVisualVM	supports	the	plugin	installation,	which	is	a	good	capability	to	enable	its
extensibility	such	as	Visual	GC.	We	can	install	any	plugin	by	performing	the	following
steps:

1.	 Navigate	to	the	Tools	menu	and	select	the	Plugins	submenu.
2.	 Navigate	to	the	Available	Plugins	tab.
3.	 Select	any	plugin	we	need	to	install	from	the	plugin	list	and	click	on	Install.
4.	 Click	on	the	Accept	button	to	accept	the	terms	and	conditions.
5.	 A	restart	is	sometimes	required	to	execute	certain	parameters	after	initial	setup.

Oracle	Java	Mission	Control
Java	Mission	Control	is	a	powerful	tool	with	rich	capabilities	that	allows	us	to
continuously	collect	low-level	and	detailed	runtime	information.	Java	Flight	Recorder	is
a	profiling	and	event	collection	framework	built	into	the	Oracle	JDK.

Starting	from	JDK	release	7	(update	40),	JMC	is	bundled	with	the	HotSpot	JVM;	it	was
migrated	from	JRockit	and	called	JRockit	Mission	Control	(JRMC).

The	tool	can	be	executed	using	the	following	command	line:

jmc

The	tool	contains	two	main	powerful	features:	the	MBean	server	and	Flight	recorder.
The	former	is	considered	as	the	most	important	feature	in	jmc;	it	works	in	the	event-based
mode,	so	it	doesn’t	cause	noticeable	overhead	on	the	profiled	application.

The	usage	of	the	tool	is	simple.	In	the	left-hand	side	window,	we	can	see	the	current
running	processes,	and	can	pick	our	HighCPU	example	and	check	the	amazing	graphical
representations	of	the	gathered	information,	as	shown	in	the	following	screenshot:

The	sidebar	contains	three	different	options	to	display	the	General	option	for	general
information,	MBeans	for	different	attributes	and	invoke	different	methods,	and	Runtime
for	detailed	information,	as	shown	in	the	following	screenshot:

The	Runtime	information	includes	the	System,	Memory,	Garbage	Collection,	Memory
Pools,	and	Threads	information	tabs.

Note
We	will	not	dig	further	into	the	different	information	meanings	as	we	will	cover	all
information	details	when	we	deal	with	the	different	profilers	in	the	next	sections.

Starting	with	the	NetBeans	profiler
The	NetBeans	profiler	is	a	useful	feature	inside	NetBeans	IDE.	It	facilitates	the
identification	of	performance	issues	mainly	in	the	development	environment;	however,	it
can	also	be	used	in	other	environments.

To	start	using	the	NetBeans	profiler,	perform	the	essential	initial	calibration	for	the	used
Java	platform.	This	can	be	done	easily	from	inside	NetBeans.

The	NetBeans	profiler	calibration
To	run	the	NetBeans	profiler	calibration,	we	need	to	select	the	Profile	menu,	select	the
Advanced	Commands	submenu,	and	click	on	the	Run	Profiler	Calibration.	A	pop-up
will	appear	with	a	list	of	all	the	installed	Java	JDK.	We	can	pick	the	one	we	need	to
calibrate,	and	it	will	take	few	moments	before	the	calibration	process	ends.	If	we	need	to
calibrate	remote	machine,	we	have	to	do	so	using	the	profiler	remote	pack	for	the
appropriate	remote	platform.

Now,	let’s	understand	what	is	meant	by	calibration.	Calibration	is	the	process	of
measuring	the	time	used	to	instrument	the	bytecode;	this	time	causes	overhead	during
profiling	the	application.

In	the	calibration	process,	the	profiler	calculates	the	different	extra	times	and	subtracts
them	while	profiling	the	application	to	reduce	this	overhead.	The	calibration	data	for	each
JDK	is	saved	in	the	.nbprofile	directory	in	our	home	directory.	The	following	screenshot
is	an	example	of	the	profiling	results:

Using	the	NetBeans	profiler
If	we	open	one	of	our	previous	NetBeans	projects,	we	can	go	to	the	Profile	menu	and
click	on	Profile	Project.	A	pop-up	screen	will	appear	with	three	main	options;	each	option
has	its	own	suboptions:

Monitor:	This	option	is	concerned	with	threads	and	different	object	monitors.	It	has
three	options:	Enable	threads	monitoring,	Sample	threads	states,	and	Enable	lock
contention	monitoring.	While	selecting	the	required	monitoring	level,	we	see	at	the
bottom	the	Overhead	bar	that	shows	the	overhead	impact	by	selecting	these	options
on	our	application	execution	time.
CPU:	This	option	is	concerned	with	the	CPU	time,	where	we	can	select	Quick
(sampled)	or	Advanced	(instrumented).	We	have	mentioned	before	the	difference
between	both	types.	We	can	select	to	profile	all	the	classes	that	are	the	highest
overhead;	only	the	project	class;	or	even	define	our	inclusion/exclusion	rules,	such	as
including	all	the	classes	within	the	org.apache.com.*	package.	This	useful	filtering
is	required	when	we	need	to	narrow	our	investigation	scope.
Memory:	This	option	has	two	modes,	Quick	(sampled)	and	Advanced
(instrumented).	If	we	select	instrumented,	we	can	further	select	the	Record	full
object	lifecycle	and	Record	stack	trace	for	allocations	options.

If	the	project	is	a	web-based	project,	the	application	server	(for	example,	GlassFish)	will
start	in	the	profiling	mode.	The	application	will	be	deployed	and	profiling	will	record	all
interactions	with	the	applications.	However,	if	the	project	is	a	Java	project,	the	application
will	be	executed	directly	in	the	profiling	mode.

Let’s	try	now	our	first	NetBeans	profiling	project	using	a	simple	Java	application	to
demonstrate	the	different	capabilities	in	this	profiler.

1.	 Open	the	HighCPU	project.
2.	 Select	the	Profile	menu.
3.	 Then,	select	the	profile	project	(HighCPU)	from	the	pop-up	options,	select	Monitor,

and	check	all	available	options.
4.	 Click	on	Run.	Refer	to	the	following	screenshot:

We	can	see	most	of	the	threads	are	in	red	for	most	of	the	execution	time.	This	means	the
threads	are	blocked	and	are	waiting	to	get	the	monitors/locks	of	certain	objects.	If	we	open
the	Lock	Contention	view	and	expand	some	threads,	we	will	see	that	we	have	a	thread
locking	over	java.io.printStream,	as	shown	in	the	following	screenshot:

The	following	are	the	colors	and	the	statuses	they	denote	for	any	thread:

Monitor	(red):	This	means	the	thread	is	blocked	and	waiting	for	the	monitor

Park	(orange):	This	indicated	the	thread	is	parked	and	waiting	for	the	permission	to
continue	execution
Wait	(yellow):	This	denotes	the	thread	is	waiting	in	response	to	the	call	of	the
method	object.wait()
Sleeping	(purple):	This	means	the	thread	is	sleeping	in	response	to	the	call	of	the
method	Thread.sleep()
Running	(green):	This	implies	the	thread	is	running

We	get	the	thread’s	details	by	selecting	one	thread	and	right-clicking	on	it.	Select	the
thread’s	Details	option.	We	can	see	the	exact	time	spent	while	the	thread	is	in	different
states,	as	shown	in	the	following	screenshot:

We	can	re-run	the	profiler	to	monitor	the	memory	to	get	far	more	details	about	the
application	memory	usages.	The	following	screenshot	is	of	the	memory	results	when	we
repeat	the	profiling	for	memory	consumption	(top	records):

As	we	can	see,	we	have	a	lot	of	useful	information	about	the	most	created	objects,	live
objects,	allocated	objects,	and	so	on.	We	will	discuss	all	the	different	memory	readings	in
more	detail	later	in	a	chapter	dedicated	to	memory	management:	Chapter	8,	Memory
Profiling.

Now,	let’s	see	the	CPU	utilization	time	in	different	code	parts	of	our	project.	Navigate	to
Profile	and	execute	profiling	in	the	Quick	(sampled)	mode.	We	will	get	results	similar	to
what’s	shown	in	the	following	screenshot	when	our	execution	ends:

As	we	can	see,	most	of	the	execution	time	(71.8	percent)	is	spent	on	the
java.io.PrintStream.println(String)	method.	Refer	to	the	following	source	code	of
this	Java	internal	method:

public	void	println(String	x)	{

		synchronized	(this)	{

				print(x);

				newLine();

		}

}

It	is	now	clear	that	the	biggest	HotSpot	in	our	code	is	the	println	statement,	where	there
is	a	synchronization	statement	and	all	the	threads	are	competing	with	each	other	to	get
PrintStream	object	monitor.	We	will	see	more	details	on	how	to	deal	with	similar	issues
in	subsequent	chapters;	nevertheless,	we	have	almost	covered	the	NetBeans	profiler
overview	in	this	section.

The	Eclipse	tools/plugins
The	Eclipse	IDE	is	the	most	commonly	used	IDE	in	the	Java	development	with	its
different	variants.	It	is	a	very	powerful	plugin-based	IDE	that	can	be	customized	according
to	the	different	needs.

Several	profiling	plugins	are	available	for	Eclipse,	including	plugins	from	famous	third-
party	providers,	such	as	JProfiler	and	YourKit.	Also,	some	plugins	such	as	Test	and
Performance	Tools	Platform	(TPTP)	can	be	used	to	acquire	an	application’s
performance	results.	We	will	also	cover	the	JVM	monitor	tool	in	brief,	and	in	Chapter	8,
Memory	Profiling,	we	will	discuss	the	Eclipse	Memory	Analyzer	Tool	(MAT).

Using	the	profilers	from	inside,	IDEs	help	us	produce	good	and	optimized	code	during	the
development	time.

The	JVM	monitor
The	JVM	monitor	is	a	Java	profiler	integrated	with	Eclipse	to	monitor	the	CPU,	threads,
and	memory	usage	of	the	Java	applications.

Note
Download	and	install	the	JVM	monitor	using	the	instructions	at
http://www.jvmmonitor.org/download/index.html.

Open	Eclipse,	navigate	to	the	Window	menu,	click	on	Show	View,	and	then	select	the
JVM	Explorer	view.	Now,	in	the	JVM	explorer,	we	see	all	the	current	running	Java
processes,	where	we	can	select	one	of	the	running	processes.	Right-click	on	it	and	click	on
Start	Monitoring.	A	Properties	window	will	open	with	all	the	process	properties,	as
shown	in	the	following	screenshot:

As	we	can	see,	the	Properties	window	includes	a	lot	of	useful	information,	including
Timeline,	Threads,	Memory,	CPU,	MBeans,	and	Overview.	We	can	navigate	inside
these	tabs	to	see	the	available	process-profiling	details.

http://www.jvmmonitor.org/download/index.html

The	Test	and	Performance	Tools	Platform
TPTP	is	one	of	the	Eclipse	efficient	plugins	that	can	be	used	in	profiling	our	application.

Note
Download	Eclipse	with	TPTP	from	http://www.eclipse.org/tptp/home/downloads/	or
download	the	plugin	and	install	it	in	your	Eclipse.

If	we	open	our	Eclipse	project	HighCPU	and	click	on	the	Profiling	menu,	the	usual
options	to	profile	the	Java	applications	will	appear	as	shown	in	the	following	screenshot:

We	can	select	any	of	the	available	options,	for	example,	Execution	Time	Analysis.	The
application	will	run	and	we	will	get	results	similar	to	those	shown	in	the	following
screenshot:

http://www.eclipse.org/tptp/home/downloads/

We	can	expand	the	method	in	each	thread	and	see	the	number	of	invocations,	average
time,	and	minimum	and	maximum	times.	We	can	also	right-click	on	them	and	get	Method
Invocation	or	Method	Invocation	Details.

We	can	repeat	this	to	get	the	thread	profiling	by	selecting	the	Thread	Analysis	tab	from
the	Profile	Settings.	The	following	screenshot	shows	our	application	thread	analysis
results:

By	moving	the	mouse	over	the	blocked	sections,	we	see	the	monitor	and	thread	that
owns/holds	it	at	each	moment	along	the	thread	lifetime.

Executing	profiling	operation	from	IDE	is	an	easy	task	for	developers	and	allows	them	to
catch	potential	performance	issues	or	memory	leakages	at	an	early	stage.	We	can
download	a	lot	of	Eclipse	plugins	either	commercially	or	for	free,	and	try	them	to	get	the
best	and	easiest	way	to	use	the	IDE-based	profilers.

Advanced	profiler	–	JProfiler
JProfiler	is	a	powerful	all-in-one	tool	that	enables	us	to	profile	local	or	remote
applications.	It	also	integrates	with	most	of	the	available	IDEs	(Eclipse,	JDeveloper,
NetBeans,	and	so	on)	and	with	almost	all	application	servers.

It	has	a	very	powerful	way	to	profile	the	applications	offline,	where	we	don’t	need	to
connect	with	GUI	to	monitor	the	profiling	session.	Using	this	offline	mode,	we	can	record
the	performance	information	and	save	the	required	profiling	snapshots	either	by	using	the
JProfiler	trigger	system	or	by	calling	the	JProfiler	APIs	to	control	them.

It	supports	most	of	the	existing	operating	system	platforms,	so	all	these	features	make
JProfiler	a	very	powerful	tool.

Note
Download	JProfiler	8.x	from	http://www.ej-technologies.com/download/jprofiler/files.

JProfiler	is	a	commercial	product,	but	the	good	news	is	that	you	can	request	for	the
evaluation	license	to	use	with	this	book	from	http://www.ej-
technologies.com/download/jprofiler/trial.

They	provide	a	free	license	for	open	source	projects	as	well	at	http://www.ej-
technologies.com/buy/jprofiler/openSource.

Now,	let’s	start	our	web	application	ExampleOne	(the	example	application	that	we	used	in
Chapter	3,	Getting	Familiar	with	Performance	Testing)	on	GlassFish	application	server,	so
we	can	start	using	JProfiler	to	profile	this	application.

Once	we	open	JProfiler,	we	can	attach	our	JProfiler	to	the	running	GlassFish.	In	the	start
center,	navigate	to	the	New	Session	tab	and	click	on	Quick	Attach.	We	will	see	all	the
running	Java	applications/processes.	We	need	to	search	for	our	GlassFish	process	and
select	it.

JProfiler	will	prompt	us	to	select	either	the	Sampling	or	Instrumentation	mode.	We
discussed	the	difference	between	the	both	modes	earlier.

Let’s	select	the	Sampling	mode.	We	now	need	to	select	the	session	options;	the	more	we
select	different	options,	the	more	the	overhead	indicator	shows	us	the	current	overhead.
We	always	need	to	keep	this	to	the	minimum	if	possible.	Click	on	OK	so	that	we	can
successfully	complete	the	attachment	of	the	profiler	to	the	running	JVM,	as	shown	in	the
following	screenshot:

http://www.ej-technologies.com/download/jprofiler/files
http://www.ej-technologies.com/download/jprofiler/trial
http://www.ej-technologies.com/buy/jprofiler/openSource

Now,	we	need	to	either	go	to	our	web	application’s	homepage	to	invoke	our	routine
scenarios	or	better	execute	the	JMeter	recorded	login	scenario	by	many	concurrent	users.
This	is	to	get	the	location	of	the	HotSpots	of	our	application	exactly.	We	can	see	a	lot	of
options	on	the	left-hand	side	of	the	profiling	window	related	to	the	different	profiling
options,	such	as	Live	Memory,	Heap	walker,	CPU	views,	Threads,	Monitors	&	locks,
Telemetries,	and	Database.

Navigate	to	Database	and	click	on	the	record	icon	that	appears	in	the	right-hand	side	of
the	window	to	enable	it	as	our	application	deals	with	the	database.

Now,	start	executing	the	JMeter	load	test.	We	already	recorded	this	test	scenario	in
Chapter	3,	Getting	Familiar	with	Performance	Testing.

Once	the	JMeter	execution	ends,	we	can	save	a	snapshot	of	the	profiling	results	(from	the
Session	menu,	click	on	Save)	and	then	click	on	the	detach	icon	to	stop	profiling	our
application,	as	shown	in	the	following	screenshot:

We	can	see	the	different	invocation’s	Call	Tree	with	the	percentage	of	time	spent	inside
each	method.	Some	of	these	methods	are	from	our	code	and	some	from	the	used
framework	or	libraries.	We	can	also	open	the	Hot	Spots	tab	in	the	CPU	view	and
Database	to	see	where	most	of	the	time	is	spent	in	our	application,	as	shown	in	the
following	screenshot.

We	can	repeat	the	profiling	using	the	instrumental	mode	to	get	more	information;
however,	the	overhead	will	be	much	more	and	the	method	time	will	not	be	accurate.	In
that	case,	we	don’t	need	it	as	we	will	interpret	it	as	the	relative	time.

Now,	let’s	try	to	start	the	GlassFish	application	server	in	the	profiling	mode	instead	of
attaching	the	profiler	in	while	the	server	is	running.	We	can	use	New	Server	Integration
from	New	Session	in	the	start	center,	as	shown	in	the	following	screenshot	(in	the
Integration	Wizard	dialog	box,	JProfiler	supports	the	integration	with	a	lot	of	different
application	servers):

Select	Glassfish	V3	(it	is	similar	to	V4)	from	the	integration	server	list.	It	will	prompt	for
the	location	of	domain.xml	and	asadmin.bat.	JProfiler	will	modify	the	files	and	create	a
backup	for	both.	Once	all	the	changes	are	complete,	JProfiler	will	prompt	us	if	we	need	to
start	the	GlassFish	server	now	or	later.	We	can	select	Start	now.	Select	any	profiling
option	(for	example,	database)	and	run	the	JMeter	load	testing	again	so	that	we	can	obtain
the	required	profiling	results.

The	following	code	is	what	JProfiler	will	modify	in	domain.xml	to	inject	the	agentpath
JVM	option:

<jvm-options>

-agentpath:D:\	JPROFI~2\bin\windows\jprofilerti.dll=port=8849

</jvm-options>

We	can	see	here	how	to	pass	an	option	to	the	profiling	agent,	which	is	port=8849	in	this
case.

We	can	use	JProfiler	to	the	profiler	Java	applets	as	follows;	it	works	in	the	same	way	by
injecting	the	agent	information:

-agentpath:D:/PROGRA~1/JPROFI~2/bin/windows/jprofilerti.dll=port=8849

This	information	is	entered	in	Java	Control	Panel	by	setting	it	on	Java	Runtime
Environment	Settings,	as	shown	in	the	following	screenshot:

Now,	we	need	to	restart	the	browser	and	connect	to	the	applet	by	the	profiler	to	profile	it.

Note
We	have	the	SimpleApplet	project	containing	one	applet	that	has	the	same	logic	as	the
HighCPU	application;	you	can	download	the	code	from	http://packtpub.com/.

Try	to	follow	the	mentioned	steps	to	profile	this	applet	using	JProfiler.	Once	you	succeed,
try	to	do	the	same	using	the	NetBeans	profiler.

http://packtpub.com/

Using	the	offline	profiling	mode
We	do	not	have	to	connect	the	JProfiler	GUI	to	our	application	in	order	to	profile	it.	By
using	the	JProfiler	offline	profiling	mode,	we	can	use	JProfiler’s	powerful	trigger	system
or	even	JProfiler	APIs	to	control	the	profiling	agent	and	save	profiling	snapshots	to	the
disk.	Later,	we	can	open	these	snapshots	using	JProfiler	for	further	analysis.

The	main	advantages	and	uses	of	the	offline	profiling	mode	(unattended	profiling)	are	as
follows:

No	connectivity	is	required	between	the	remote	application	server	machine	and	the
profiler-installed	machine	because	offline	profiling	is	recorded	in	the	remote	server
machine
We	can	take	regular	snapshots	of	the	application’s	performance
Trigger-based	profiling,	for	example,	profiles	the	application	when	CPU	utilization
reaches	80	percent

Building	our	script	using	JProfiler	triggers
By	using	the	JProfiler	triggers,	we	can	build	our	own	scripting	scenarios	and	different
event-based	actions.	This	enables	the	automatic	profiling	of	the	application	in	the	offline
mode	according	to	these	triggers.

For	example,	a	trigger	named	JVM	startup	can	be	used	to	start	the	recording,	while	the
timer-based	triggers	can	be	useful	to	record	certain	elements	or	save	periodic	snapshots,
and	so	on.

We	can	use	the	following	triggers	in	JProfiler:

JVM	startup:	This	is	triggered	when	JVM	is	started
JVM	exit:	This	is	triggered	when	JVM	is	stopped
Timer:	This	is	triggered	by	the	configured	timer
Out	of	memory	exception:	This	is	triggered	in	case	OutOfMemoryError	occurs
CPU	load	threshold:	This	is	triggered	when	the	CPU	load	exceeds	a	certain
threshold
Heap	usage	threshold:	This	is	triggered	when	the	used	heap	exceeds	a	certain
threshold
Method	invocation:	This	is	triggered	when	a	certain	configured	method	is	invoked

All	these	triggers	can	have	many	actions	associated	with	them.	The	following	screenshot
shows	the	list	of	all	possible	actions	that	can	be	used	as	per	JProfiler	8.x:

To	execute	our	profiling	in	the	offline	mode,	the	following	three	additional	parameters	are
required	for	the	profiler	agent:

Offline:	This	parameter	informs	the	agent	to	perform	the	profiling	in	the	offline
mode.
Session	ID:	This	parameter	links	to	the	configured	session	ID	in	the	JProfiler
configuration	file.
Configuration	xml	file	path:	The	configuration	file	holds	the	different	profiling
configurations,	such	as	triggers.	If	not	specified,	JProfiler	will	try	to	find	it	on	the
default	location.

The	default	location	is	under	the	.jprofiler8	directory	in	the	user’s	home	directory

The	complete	parameter	now	looks	like	the	following	command:

"-agentpath:…../jprofilerti.dll=offline,id=125,config=…../config.xml"

"-Xbootclasspath/a:……\agent.jar"

Now,	let’s	create	the	triggers	in	our	profiling	session	by	performing	the	following	steps:

1.	 Create	a	new	session	and	name	it	My	Profile	Session.	We	can	see	the	session	ID
besides	the	session	name.	We	need	this	information	to	pass	this	value	to	the	profiled
JVM.

2.	 Navigate	to	the	Triggers	Settings	section	and	add	the	triggers	by	clicking	on	the
green	plus	icon.

3.	 Add	the	trigger	JVM	startup,	select	the	action	Start	Recording,	and	click	on	VM
Telemetry	data.

4.	 Add	the	trigger	Timer	and	configure	it	as	Limited	number	of	times	=1,	Offset=2
minutes.	Select	the	action	Start	Recording.	Select	CPU	data,	Thread	data,	and
Method	statistics.

5.	 Add	the	trigger	Timer	and	configure	it	as	Unlimited,	Interval=5	minutes.	Set	the
action	and	click	on	Save	Snapshot	(add	the	complete	file	path,	such	as	c:\snapshot,
and	check	the	checkbox	to	add	unique	ID	to	the	snapshot	name,	so	it	generates
snapshot.0,	snapshot.1,	and	so	on).

6.	 Click	on	the	OK	button	and	close	the	Attach	dialog	box.	If	we	open	Start	Center,
we	will	find	the	newly	created	session	with	the	name	we	gave	to	it,	My	Profile
Session.

7.	 Now,	we	need	to	use	this	configuration	to	profile	our	application	and	get	the	required
profiling	snapshots.	Open	domain.xml	of	our	Glassfish	V4	(or	the	corresponding
configuration	file	for	the	application	server)	and	add	the	following	JVM	option:

<jvm-options>-

agentpath:D:/PROGRA~1/JPROFI~2/bin/windows/jprofilerti.dll=offline,id=1

33,config=C:\Users\Admin\.jprofiler8\config.xml</jvm-options>

Note
Change	the	path	of	JProfiler	and	configuration	file	according	to	your	machine	and
change	the	ID	to	that	of	the	created	session.

All	we	need	now	is	to	run	the	application	server	and	the	JMeter	load	testing	so	that	we	can
have	a	good	offline	profiling.	We	can	see	the	following	messages	in	the	GlassFish	logs

that	indicate	the	saving	of	profiling	snapshots	within	periodic	times	according	to	our
configured	timer:

JProfiler>	Saving	snapshot	c:\snapshot.0.jps…

JProfiler>	Done.

JProfiler>	Saving	snapshot	c:\snapshot.1.jps…

JProfiler>	Done.

Once	the	testing	is	complete,	switch	the	server	off	and	remove	this	JVM	option,	and	open
the	created	snapshots	using	JProfiler.

With	the	command-line	utility	jpenable,	we	can	start	the	offline	profiling	in	any	running
JVM	with	a	Java	version	of	1.6	or	higher	without	the	need	to	restart	it.	If	we	provide	the
command-line	utility	arguments,	we	can	automate	the	process	so	that	it	requires	no	user
interaction/input.	The	usage	syntax	is	as	follows:

jpenable	[options]

The	offline	profiling	options	are	as	follows:

-d	--pid=PID:	This	is	the	pid	option	of	the	JVM	that	should	be	profiled
-o	--offline:	This	is	the	JVM	that	will	be	profiled	in	the	offline	mode
-c	--config=PATH:	This	is	the	path	to	the	config	file	that	holds	the	profiling	settings
-i	--id=ID:	This	is	the	session	ID	in	the	configuration	file

Note
Note	that	the	JVM	must	run	with	the	same	system	user	as	jpenable;	otherwise,
JProfiler	cannot	connect	to	it.

If	we	execute	the	jpenable	command	without	any	parameter,	it	will	prompt	and	ask	for	all
the	required	information	to	facilitate	the	configuration.	To	try	this	command,	let’s	perform
the	following	steps:

1.	 Run	our	application	on	the	GlassFish	application	server	(without	any	profiling
parameters).

2.	 Run	the	jpenable	command	and	respond	to	the	questions,	as	shown	in	the	following
command:

jpenable

Do	you	want	to	search	for	JVMs	running	as	service?

Yes	[y],	No	[n,	Enter]

y

Select	a	JVM:

<unknown>	[7532]	[1]

ApacheJMeter.jar	[9276]	[2]

com.sun.enterprise.glassfish.boots…\glassfish\domains\domain1	[6336]	

[3]

3

Please	select	the	profiling	mode:

GUI	mode	(attach	with	JProfiler	GUI)	[1,	Enter]

Offline	mode	(use	config	file	to	set	profiling	settings)	[2]

2

Please	enter	the	path	to	the	JProfiler	config	file

C:\Users\Administrator\.jprofiler8\config.xml

Please	choose	the	session	ID

Animated	Bezier	Curve	Demo	[80]

JDBC	demo	[81]

Offline	Profiling	[111]

Glassfish	V3	on	localhost	[131]

My	Profile	Session	[133]

133

Note
We	will	use	the	same	session	that	we	created	to	profile	offline	(that	is,	My	Profile
Session).

We	can	then	use	the	jpcontroller	utility	to	control	our	offline	session	by	either	starting
or	stopping	the	recording,	disabling	or	enabling	triggers,	heap/thread	dumping,	saving
profiling	snapshot,	and	so	on.

Further	reading
Refer	to	the	following	for	more	information:

You	can	find	more	details	about	the	different	JDK	tools	at
http://docs.oracle.com/javase/7/docs/technotes/tools/index.html
You	can	find	more	information	about	the	NetBeans	profiler	at
https://netbeans.org/kb/docs/java/profiler-intro.html
You	can	find	the	online	documentation	for	JProfiler	at	http://resources.ej-
technologies.com/jprofiler/help/doc/

http://docs.oracle.com/javase/7/docs/technotes/tools/index.html
https://netbeans.org/kb/docs/java/profiler-intro.html
http://resources.ej-technologies.com/jprofiler/help/doc/

Summary
In	this	chapter,	we	learned	different	monitoring	tools	used	to	monitor	our	Java	application.
We	selected	some	tools	from	each	category,	including	operating	system	tools	(in	both
Windows	and	Linux)	and	Java	tools.	We	should	now	have	a	good	understanding	of
different	JDK	command-line	tools,	such	as	jhat	and	jmap,	and	more	advanced	tools,	such
as	JConsole,	JVisualVM,	and	Oracle	Mission	Control.

From	the	IDE	profiler	tools,	we	demonstrated	the	NetBeans	and	Eclipse	profilers.	We	also
selected	JProfiler	as	an	example	of	the	advanced	Java	profilers	with	special	attention	to
the	offline	profiling	capability.

In	Chapter	6,	CPU	Time	Profiling,	Chapter	7,	Thread	Profiling,	and	Chapter	8,	Memory
Profiling,	we	will	go	in	depth	into	how	to	read	and	interpret	the	different	profiling	results
and	build	our	strategy	to	fix	any	potential	performance	issues.

In	Chapter	5,	Recognizing	Common	Performance	Issues,	we	will	discuss	the	most
common	performance	issues	that	we	can	face.	We	will	categorize	them	and	discuss	each
one,	with	special	focus	on	the	application’s	symptoms,	giving	examples	and	seeing	the
different	profiling	results.

Chapter	5.	Recognizing	Common
Performance	Issues
Before	we	dig	more	into	the	profiling	tools	and	how	to	interpret	the	results	in	the	coming
chapters,	we	need	to	highlight	some	of	the	most	frequent	performance	issues	that	we	could
face.	In	this	chapter,	we	will	go	through	different	performance	issues,	classify	them	into
different	categories,	and	then	discuss	the	most	common	issues	briefly.

Here	is	a	list	of	topics	that	we	will	cover	in	this	chapter:

Slow	response	time	umbrella
Threading	performance	issues
Memory	performance	issues
Work	as	designed	performance	issues
Miscellaneous	performance	issues
Client-side	performance	issues

Going	through	a	slow	response	time
umbrella
In	general,	performance	issues	mean	an	impact	on	the	application	response	time.	It	could
be	consistent	or	intermittent	behavior.	Sometimes,	the	performance	keeps	deteriorating	till
it	impacts	the	application	functionality.

In	this	chapter,	we	will	try	to	look	at	different	performance	issues	in	enterprise
applications.	Understanding	the	issue	is	the	first	step	to	resolve	it;	we	will	use	these	issues
as	a	template	to	guide	our	troubleshooting	and	investigations.	Learning	by	example	is	an
important	type	of	learning	strategy,	and	it	can	help	us	to	organize	our	thoughts	as	well.

Isolating	the	issue
Assuming	that	we	have	confirmed	the	existence	of	the	performance	issue	in	our
application	and	we	are	able	to	replicate	this	issue	(or	at	least	have	some	evidence),	it	is
critical	that	we	succeed	in	isolating	the	performance	issue	(that	is,	determine	its	location),
so	we	can	narrow	our	investigations	and	focus	all	our	efforts	on	the	root	cause	of	the	issue.

We	will	summarize	what	we	have	learned	from	the	previous	chapters.	While	dealing	with
performance	issues,	the	role	says,	“We	need	to	troubleshoot	the	issues	horizontally	and
vertically”.	Let’s	assume	that	the	issue	we	have	is	the	slow	response	of	a	page	or
transaction	in	our	web	application.

With	respect	to	the	order,	we	need	to	fulfill	the	following	tasks:

We	need	to	confirm	the	issue	by	either	replicating	it	or	getting	evidence	(in	case	it	is
not	a	persistent	issue).	At	this	stage,	the	confirmation	might	include	the	customer
feedback,	replicating	the	issue,	monitoring	tools	reports,	and	log	extract	(for	example,
access	logs).	Later,	we	can	involve	other	tools	as	profilers	in	our	investigation.
We	need	to	analyze	the	issue	and	draft	our	investigation	plan.
We	need	to	arrange	different	team	activities	according	to	our	plan.

What	we	will	highlight	here	is	the	sequence	of	locating	such	proved	issues	whenever	we
do	not	have	a	clear	indicator	of	the	issue	location.	In	case	we	have	this	indicator,	we	can
shorten	our	investigation	roadmap	and	focus	on	the	related	parts.

Client	side
By	using	the	developer	tools	in	different	browsers,	we	can	confirm	whether	the	issue	is	a
client-	or	server-side	issue.	These	tools	show	the	server	response	time,	page	size,	and
resourcing	issue	(a	remote	resource	that	prevents	the	page	from	loading),	and	it	can	also
profile	the	JavaScript	code,	as	we	will	see	later	in	this	chapter.

HTTP	server	side	(web	servers)
In	most	enterprise	applications’	deployment,	there	is	an	HTTP	server	up	front	that	works
as	a	proxy	and	serves	the	application’s	static	contents,	server	access	logs	containing	the
request	timestamp,	response	status,	response	size,	and	response	time.	This	will	help	in
locating	the	issue	either	in	the	network	component	before	the	HTTP	server	(such	as	a
proxy	or	load	balance	issue)	or	in	subsequent	nodes.

If	the	response	time	is	correct,	we	need	to	check	the	HTTP	server	statistics,	especially	the
operating	system	statistics;	otherwise,	we	will	move	our	investigations	to	the	next	node.

Tip
If	access	logs	do	not	show	enough	details,	we	need	to	reconfigure	them	to	show	all	the
required	information	that	can	facilitate	the	troubleshooting	of	any	issue.	We	should	be
careful	as	excessive	logging	might	affect	the	performance	as	well.

Application	server	issue

We	need	to	do	the	following	activities	in	parallel	while	replicating	the	issue	if	it’s	not	a
persistent	issue:

Check	the	server	statistics	from	the	admin	console	or	from	any	used	monitoring	tools
(for	example,	connection	pools,	thread	pools,	server	logs,	and	so	on)
Check	operating	system	statistics
Check	cache	statistics	(if	on	the	same	server	or	a	dedicated	server)
Take	a	heap	dump	and	frequent	thread	dumps	according	to	the	issue	type	(the
frequency	of	the	thread	dump	should	be	adjusted	according	to	the	response	time	and
it	is	usually	3	to	5	seconds)
Examining	the	application	logs

Usually,	the	production	monitoring	tools	provide	a	history	of	different	resources’
performance	that	would	help	us	to	locate	the	issue	start	time,	progression,	patterns,	and	so
on.

Database	server	issue
Database	server	issue	is	a	common	reason	for	enterprise	application	performance	issues.
Some	of	the	required	activities	are	as	follows:

Checking	the	database	report	and	SQL	tracing	over	the	period	where	the	performance
issue	occurred	was	not	persistent,	for	example,	an	Oracle	AWR	report
Gathering	the	monitoring	tool	statistics	results,	such	as	the	operating	system,	I/O,
memory,	and	processing	speed

Integrated	systems
If	the	impacted	transactions	are	related	to	interactions	with	an	integrated	system	through
web	service,	service	bus,	and	so	on,	we	need	to	gather	statistics	and	get	the	different
available	reports	for	this	integration	layer	to	evaluate	its	performance	(including	the
different	available	logs).

Networking	components
It	is	important	to	examine	the	different	networking	components,	for	example,	the	firewall
and	different	connections.

Code	and	script	analysis
Code	and	script	analysis	includes	manual	inspection	of	the	suspected	code,	script,	and
global	elements.

Tip
In	the	global	application	performance	issues,	we	need	to	focus	more	on	global	elements,
such	as	caching,	filters,	security,	and	pooled	resources.

Profiling	the	application
Profiling	the	application	includes	profiling	the	slow	response	scenario	in	the	test
environment	(under	load).	If	no	issues	are	observed,	profile	this	in	the	production

environment	using	the	minimal	possible	profiling	overhead.	If	the	issues	are	not	detected,
we	can	increase	the	level	of	profiling	details	till	the	issue	is	detected.

Tip
Usually	in	our	investigations,	we	will	need	at	least	two	snapshots	of	the	data,	one	as
baseline	(before	the	issue)	and	one	during/after	the	performance	issues.	The	more
snapshots	available,	the	better	it	is	for	our	analysis.	Different	monitoring	tools	store
valuable	historical	data	that	can	help	us.

These	are	the	samples	of	gradual	isolation	strategic	steps	to	locate	the	performance	issue
in	different	application	components,	such	as	the	operating	system,	application	server,
database	server,	caching	components,	and	integrated	system.

Common	performance	issues
Let’s	now	go	through	the	most	common	performance	issues	in	enterprise	applications	that
we	could	face	during	performance	troubleshooting.	For	each	issue,	we	will	define	the
issue,	describe	it	and	its	symptoms,	and	give	examples.	Let’s	begin	with	classifying	the
most	common	issues	and	organizing	them	into	different	categories.

Threading	performance	issues
Threading	performance	issues	are	the	issues	related	to	concurrency,	as	follows:

Lack	of	threading	or	excessive	threading
Threads	blocking	up	to	starvation	(usually	from	competing	on	shared	resources)
Deadlock	until	the	complete	application	hangs	(threads	waiting	for	each	other)

Memory	performance	issues
Memory	performance	issues	are	the	issues	that	are	related	to	application	memory
management,	as	follows:

Memory	leakage:	This	issue	is	an	explicit	leakage	or	implicit	leakage	as	seen	in
improper	hashing
Improper	caching:	This	issue	is	due	to	over	caching,	inadequate	size	of	the	object,
or	missing	essential	caching
Insufficient	memory	allocation:	This	issue	is	due	to	missing	JVM	memory	tuning

Algorithmic	performance	issues
Implementing	the	application	logic	requires	two	important	parameters	that	are	related	to
each	other;	correctness	and	optimization.	If	the	logic	is	not	optimized,	we	have
algorithmic	issues,	as	follows:

Costive	algorithmic	logic
Unnecessary	logic

Work	as	designed	performance	issues
The	work	as	designed	performance	issue	is	a	group	of	issues	related	to	the	application
design.	The	application	behaves	exactly	as	designed	but	if	the	design	has	issues,	it	will
lead	to	performance	issues.	Some	examples	of	performance	issues	are	as	follows:

Using	synchronous	when	asynchronous	should	be	used
Neglecting	remoteness,	that	is,	using	remote	calls	as	if	they	are	local	calls
Improper	loading	technique,	that	is,	eager	versus	lazy	loading	techniques
Selection	of	the	size	of	the	object
Excessive	serialization	layers
Web	services	granularity
Too	much	synchronization
Non-scalable	architecture,	especially	in	the	integration	layer	or	middleware
Saturated	hardware	on	a	shared	infrastructure

Interfacing	performance	issues
Whenever	the	application	is	dealing	with	resources,	we	may	face	the	following	interfacing
issues	that	could	impact	our	application	performance:

Using	an	old	driver/library
Missing	frequent	database	housekeeping
Database	issues,	such	as,	missing	database	indexes
Low	performing	JMS	or	integration	service	bus
Logging	issues	(excessive	logging	or	not	following	the	best	practices	while	logging)
Network	component	issues,	that	is,	load	balancer,	proxy,	firewall,	and	so	on

Miscellaneous	performance	issues
Miscellaneous	performance	issues	include	different	performance	issues,	as	follows:

Inconsistent	performance	of	application	components,	for	example,	having	slow
components	can	cause	the	whole	application	to	slow	down
Introduced	performance	issues	to	delay	the	processing	speed
Improper	configuration	tuning	of	different	components,	for	example,	JVM,
application	server,	and	so	on
Application-specific	performance	issues,	such	as	excessive	validations,	apply	many
business	rules,	and	so	on

Fake	performance	issues
Fake	performance	issues	could	be	a	temporary	issue	or	not	even	an	issue.	The	famous
examples	are	as	follows:

Networking	temporary	issues
Scheduled	running	jobs	(detected	from	the	associated	pattern)
Software	automatic	updates	(it	must	be	disabled	in	production)
Non-reproducible	issues

In	the	following	sections,	we	will	go	through	some	of	the	listed	issues,	and	in	subsequent
chapters,	we	will	discuss	some	other	issues.

Threading	performance	issues
Multithreading	has	the	advantage	of	maximizing	the	hardware	utilization.	In	particular,	it
maximizes	the	processing	power	by	executing	multiple	tasks	concurrently.	But	it	has
different	side	effects,	especially	if	not	used	wisely	inside	the	application.

For	example,	in	order	to	distribute	tasks	among	different	concurrent	threads,	there	should
be	no	or	minimal	data	dependency,	so	each	thread	can	complete	its	task	without	waiting
for	other	threads	to	finish.	Also,	they	shouldn’t	compete	over	different	shared	resources	or
they	will	be	blocked,	waiting	for	each	other.	We	will	discuss	some	of	the	common
threading	issues	in	the	next	section.

Blocking	threads
A	common	issue	where	threads	are	blocked	is	waiting	to	obtain	the	monitor(s)	of	certain
shared	resources	(objects),	that	is,	holding	by	other	threads.	If	most	of	the	application
server	threads	are	consumed	in	a	certain	blocked	status,	the	application	becomes	gradually
unresponsive	to	user	requests.

In	the	Weblogic	application	server,	if	a	thread	keeps	executing	for	more	than	a
configurable	period	of	time	(not	idle),	it	gets	promoted	to	the	Stuck	thread.	The	more	the
threads	are	in	the	stuck	status,	the	more	the	server	status	becomes	critical.	Configuring
the	stuck	thread	parameters	is	part	of	the	Weblogic	performance	tuning,	as	we	will	see	in
Chapter	9,	Tuning	an	Application’s	Environment.

Performance	symptoms
The	following	symptoms	are	the	performance	symptoms	that	usually	appear	in	cases	of
thread	blocking:

Slow	application	response	(increased	single	request	latency	and	pending	user
requests)
Application	server	logs	might	show	some	stuck	threads.
The	server’s	healthy	status	becomes	critical	on	monitoring	tools	(application	server
console	or	different	monitoring	tools)
Frequent	application	server	restarts	either	manually	or	automatically
Thread	dump	shows	a	lot	of	threads	in	the	blocked	status	waiting	for	different
resources
Application	profiling	shows	a	lot	of	thread	blocking

An	example	of	thread	blocking
To	understand	the	effect	of	thread	blocking	on	application	execution,	open	the	HighCPU
project	and	measure	the	time	it	takes	for	execution	by	adding	the	following	additional
lines:

long	start=	new	Date().getTime();

..

..

long	duration=	new	Date().getTime()-start;

System.err.println("total	time	=	"+duration);

Now,	try	to	execute	the	code	with	a	different	number	of	the	thread	pool	size.	We	can	try
using	the	thread	pool	size	as	50	and	5,	and	compare	the	results.	In	our	results,	the
execution	of	the	application	with	5	threads	is	much	faster	than	50	threads!

Let’s	now	compare	the	NetBeans	profiling	results	of	both	the	executions	to	understand	the
reason	behind	this	unexpected	difference.

The	following	screenshot	shows	the	profiling	of	50	threads;	we	can	see	a	lot	of	blocking
for	the	monitor	in	the	column	and	the	percentage	of	Monitor	to	the	left	waiting	around	at
75	percent:

To	get	the	preceding	profiling	screen,	click	on	the	Profile	menu	inside	NetBeans,	and	then
click	on	Profile	Project	(HighCPU).	From	the	pop-up	options,	select	Monitor	and	check
all	the	available	options,	and	then	click	on	Run.

The	following	screenshot	shows	the	profiling	of	5	threads,	where	there	is	almost	no
blocking,	that	is,	less	threads	compete	on	these	resources:

Try	to	remove	the	System.out	statement	from	inside	the	run()	method,	re-execute	the
tests,	and	compare	the	results.

Another	factor	that	also	affects	the	selection	of	the	pool	size,	especially	when	the	thread
execution	takes	long	time,	is	the	context	switching	overhead.	This	overhead	requires	the
selection	of	the	optimal	pool	size,	usually	related	to	the	number	of	available	processors	for
our	application.

Note
Context	switching	is	the	CPU	switching	from	one	process	(or	thread)	to	another,	which
requires	restoration	of	the	execution	data	(different	CPU	registers	and	program	counters).
The	context	switching	includes	suspension	of	the	current	executing	process,	storing	its

current	data,	picking	up	the	next	process	for	execution	according	to	its	priority,	and
restoring	its	data.

Although	it’s	supported	on	the	hardware	level	and	is	faster,	most	operating	systems	do	this
on	the	level	of	software	context	switching	to	improve	the	performance.	The	main	reason
behind	this	is	the	ability	of	the	software	context	switching	to	selectively	choose	the
required	registers	to	save.

Thread	deadlock
When	many	threads	hold	the	monitor	for	objects	that	they	need,	this	will	result	in	a
deadlock	unless	the	implementation	uses	the	new	explicit	Lock	interface,	which	we
discussed	in	the	example	in	Chapter	2,	Understanding	Java	Fundamentals.	In	the
example,	we	had	a	deadlock	caused	by	two	different	threads	waiting	to	obtain	the	monitor
that	the	other	thread	held.

The	thread	profiling	will	show	these	threads	in	a	continuous	blocking	status,	waiting	for
the	monitors.	All	threads	that	go	into	the	deadlock	status	become	out	of	service	for	the
user’s	requests,	as	shown	in	the	following	screenshot:

Usually,	this	happens	if	the	order	of	obtaining	the	locks	is	not	planned.	For	example,	if	we
need	to	have	a	quick	and	easy	fix	for	a	multidirectional	thread	deadlock,	we	can	always
lock	the	smallest	or	the	largest	bank	account	first,	regardless	of	the	transfer	direction.	This
will	prevent	any	deadlock	from	happening	in	our	simple	two-threaded	mode.	But	if	we
have	more	threads,	we	need	to	have	a	much	more	mature	way	to	handle	this	by	using	the
Lock	interface	or	some	other	technique.

Note
In	Chapter	7,	Thread	Profiling,	we	will	understand	the	thread	dump,	different	thread
profiling	interpretations,	and	our	fixing	strategy	for	threading	issues.

Memory	performance	issues
In	Chapter	2,	Understanding	Java	Fundamentals,	we	have	seen	the	continuous	and
tremendous	effort	to	enhance	and	optimize	the	JVM	garbage	collector.	In	spite	of	all	this
great	effort	put	into	the	allocated	and	free	memory	in	an	optimized	way,	we	still	see
memory	issues	in	Java	Enterprise	applications	mainly	due	to	the	way	people	are	dealing
with	memory	in	these	applications.

We	will	discuss	mainly	three	types	of	memory	issues:	memory	leakage,	memory
allocation,	and	application	data	caching.

Memory	leakage
Memory	leakage	is	a	common	performance	issue	where	the	garbage	collector	is	not	at
fault;	it	is	mainly	the	design/coding	issues	where	the	object	is	no	longer	required	but	it
remains	referenced	in	the	heap,	so	the	garbage	collector	can’t	reclaim	its	space.	If	this	is
repeated	with	different	objects	over	a	long	period	(according	to	object	size	and	involved
scenarios),	it	may	lead	to	an	out	of	memory	error.

The	most	common	example	of	memory	leakage	is	adding	objects	to	the	static	collections
(or	an	instance	collection	of	long	living	objects,	such	as	a	servlet)	and	forgetting	to	clean
collections	totally	or	partially.

Performance	symptoms
The	following	symptoms	are	some	of	the	expected	performance	symptoms	during	a
memory	leakage	in	our	application:

The	application	uses	heap	memory	increased	by	time
The	response	slows	down	gradually	due	to	memory	congestion
OutOfMemoryError	occurs	frequently	in	the	logs	and	sometimes	an	application	server
restart	is	required
Aggressive	execution	of	garbage	collection	activities
Heap	dump	shows	a	lot	of	objects	retained	(from	the	leakage	types)
A	sudden	increase	of	memory	paging	as	reported	by	the	operating	system	monitoring
tools

An	example	of	memory	leakage
We	have	a	sample	application	ExampleTwo;	this	is	a	product	catalog	where	users	can	select
products	and	add	them	to	the	basket.	The	application	is	written	in	spaghetti	code,	so	it	has
a	lot	of	issues,	including	bad	design,	improper	object	scopes,	bad	caching,	and	memory
leakage.	The	following	screenshot	shows	the	product	catalog	browser	page:

Note
You	need	to	download	the	project	from	http://www.packtpub.com/.

It	includes	both,	the	NetBeans	project	and	MySQL	database	schema.

It	also	includes	a	simple	Apache	JMeter	test	plan,	but	it’s	better	if	you	build	it	yourself.

One	of	the	bad	issues	is	the	usage	of	the	servlet	instance	(or	static	members),	as	it	causes	a
lot	of	issues	in	multiple	threads	and	has	a	common	location	for	unnoticed	memory
leakages.

We	have	added	the	following	instance	variable	as	a	leakage	location:

private	final	HashMap<String,	HashMap>	cachingAllUsersCollection	=	new	

HashMap();

We	will	add	some	collections	to	the	preceding	code	to	cause	memory	leakage.	We	also
used	the	caching	in	the	session	scope,	which	causes	implicit	leakage.	The	session	scope
leakage	is	difficult	to	diagnose,	as	it	follows	the	session	life	cycle.	Once	the	session	is
destroyed,	the	leakage	stops,	so	we	can	say	it	is	less	severe	but	more	difficult	to	catch.

Adding	global	elements,	such	as	a	catalog	or	stock	levels,	to	the	session	scope	has	no
meaning.	The	session	scope	should	only	be	restricted	to	the	user-specific	data.	Also,
forgetting	to	remove	data	that	is	not	required	from	a	session	makes	the	memory	utilization
worse.	Refer	to	the	following	code:

@Stateful

http://www.packtpub.com/

public	class	CacheSessionBean	

Instead	of	using	a	singleton	class	here	or	stateless	bean	with	a	static	member,	we	used	the
Stateful	bean,	so	it	is	instantiated	per	user	session.	We	used	JPA	beans	in	the	application
layers	instead	of	using	View	Objects.	We	also	used	loops	over	collections	instead	of
querying	or	retrieving	the	required	object	directly,	and	so	on.

It	would	be	good	to	troubleshoot	this	application	in	the	coming	chapters	with	different
profiling	aspects	to	fix	all	these	issues.	All	these	factors	are	enough	to	describe	such	a
project	as	spaghetti.

We	can	use	our	knowledge	in	Apache	JMeter	to	develop	simple	testing	scenarios.	As
shown	in	the	following	screenshot,	the	scenario	consists	of	catalog	navigations	and	details
of	adding	some	products	to	the	basket:

Executing	the	test	plan	using	many	concurrent	users	over	many	iterations	will	show	the
bad	behavior	of	our	application,	where	the	used	memory	is	increased	by	time.	There	is	no
justification	as	the	catalog	is	the	same	for	all	users	and	there’s	no	specific	user	data,	except
for	the	IDs	of	the	selected	products.	Actually,	it	needs	to	be	saved	inside	the	user	session,
which	won’t	take	any	remarkable	memory	space.

In	our	example,	we	intend	to	save	a	lot	of	objects	in	the	session,	implement	a	wrong
session	level,	cache,	and	implement	meaningless	servlet	level	caching.	All	this	will
contribute	to	memory	leakage.	This	gradual	increase	in	the	memory	consumption	is	what
we	need	to	spot	in	our	environment	as	early	as	possible	(as	we	can	see	in	the	following
screenshot,	the	memory	consumption	in	our	application	is	approaching	200	MB!):

Improper	data	caching
Caching	is	one	of	the	critical	components	in	the	enterprise	application	architecture.	It
increases	the	application	performance	by	decreasing	the	time	required	to	query	the	object
again	from	its	data	store,	but	it	also	complicates	the	application	design	and	causes	a	lot	of
other	secondary	issues.

The	main	concerns	in	the	cache	implementation	are	caching	refresh	rate,	caching
invalidation	policy,	data	inconsistency	in	a	distributed	environment,	locking	issues	while
waiting	to	obtain	the	cached	object’s	lock,	and	so	on.

Improper	caching	issue	types
The	improper	caching	issue	can	take	a	lot	of	different	variants.	We	will	pick	some	of	them
and	discuss	them	in	the	following	sections.

No	caching	(disabled	caching)

Disabled	caching	will	definitely	cause	a	big	load	over	the	interfacing	resources	(for
example,	database)	by	hitting	it	in	with	almost	every	interaction.	This	should	be	avoided
while	designing	an	enterprise	application;	otherwise;	the	application	won’t	be	usable.

Fortunately,	this	has	less	impact	than	using	wrong	caching	implementation!

Most	of	the	application	components	such	as	database,	JPA,	and	application	servers	already
have	an	out-of-the-box	caching	support.

Too	small	caching	size

Too	small	caching	size	is	a	common	performance	issue,	where	the	cache	size	is	initially
determined	but	doesn’t	get	reviewed	with	the	increase	of	the	application	data.	The	cache
sizing	is	affected	by	many	factors	such	as	the	memory	size.	If	it	allows	more	caching	and
the	type	of	the	data,	lookup	data	should	be	cached	entirely	when	possible,	while
transactional	data	shouldn’t	be	cached	unless	required	under	a	very	strict	locking
mechanism.

Also,	the	cache	replacement	policy	and	invalidation	play	an	important	role	and	should	be
tailored	according	to	the	application’s	needs,	for	example,	least	frequently	used,
least	recently	used,	most	frequently	used,	and	so	on.

As	a	general	rule,	the	bigger	the	cache	size,	the	higher	the	cache	hit	rate	and	the	lower	the
cache	miss	ratio.	Also,	the	proper	replacement	policy	contributes	here;	if	we	are	working
—as	in	our	example—on	an	online	product	catalog,	we	may	use	the	least	recently
used	policy	so	all	the	old	products	will	be	removed,	which	makes	sense	as	the	users
usually	look	for	the	new	products.

Monitoring	of	the	caching	utilization	periodically	is	an	essential	proactive	measure	to
catch	any	deviations	early	and	adjust	the	cache	size	according	to	the	monitoring	results.
For	example,	if	the	cache	saturation	is	more	than	90	percent	and	the	missed	cache	ratio	is
high,	a	cache	resizing	is	required.

Missed	cache	hits	are	very	costive	as	they	hit	the	cache	first	and	then	the	resource	itself

(for	example,	database)	to	get	the	required	object,	and	then	add	this	loaded	object	into	the
cache	again	by	releasing	another	object	(if	the	cache	is	100	percent),	according	to	the	used
cache	replacement	policy.

Too	big	caching	size

Too	big	caching	size	might	cause	memory	issues.	If	there	is	no	control	over	the	cache	size
and	it	keeps	growing,	and	if	it	is	a	Java	cache,	the	garbage	collector	will	consume	a	lot	of
time	trying	to	garbage	collect	that	huge	memory,	aiming	to	free	some	memory.	This	will
increase	the	garbage	collection	pause	time	and	decrease	the	cache	throughput.

If	the	cache	throughput	is	decreased,	the	latency	to	get	objects	from	the	cache	will
increase	causing	the	cache	retrieval	cost	to	be	high	to	the	level	it	might	be	slower	than
hitting	the	actual	resources	(for	example,	database).

Using	the	wrong	caching	policy

Each	application’s	cache	implementation	should	be	tailored	according	to	the	application’s
needs	and	data	types	(transactional	versus	lookup	data).	If	the	selection	of	the	caching
policy	is	wrong,	the	cache	will	affect	the	application	performance	rather	than	improving	it.

Performance	symptoms
According	to	the	cache	issue	type	and	different	cache	configurations,	we	will	see	the
following	symptoms:

Decreased	cache	hit	rate	(and	increased	cache	missed	ratio)
Increased	cache	loading	because	of	the	improper	size
Increased	cache	latency	with	a	huge	caching	size
Spiky	pattern	in	the	performance	testing	response	time,	in	case	the	cache	size	is	not
correct,	causes	continuous	invalidation	and	reloading	of	the	cached	objects

An	example	of	improper	caching	techniques
In	our	example,	ExampleTwo,	we	have	demonstrated	many	caching	issues,	such	as	no
policy	defined,	global	cache	is	wrong,	local	cache	is	improper,	and	no	cache
invalidation	is	implemented.	So,	we	can	have	stale	objects	inside	the	cache.

Note
Cache	invalidation	is	the	process	of	refreshing	or	updating	the	existing	object	inside	the
cache	or	simply	removing	it	from	the	cache.	So	in	the	next	load,	it	reflects	its	recent
values.	This	is	to	keep	the	cached	objects	always	updated.

Cache	hit	rate	is	the	rate	or	ratio	in	which	cache	hits	match	(finds)	the	required	cached
object.	It	is	the	main	measure	for	cache	effectiveness	together	with	the	retrieval	cost.

Cache	miss	rate	is	the	rate	or	ratio	at	which	the	cache	hits	the	required	object	that	is	not
found	in	the	cache.

Last	access	time	is	the	timestamp	of	the	last	access	(successful	hit)	to	the	cached	objects.

Caching	replacement	policies	or	algorithms	are	algorithms	implemented	by	a	cache	to

replace	the	existing	cached	objects	with	other	new	objects	when	there	are	no	rooms
available	for	any	additional	objects.	This	follows	missed	cache	hits	for	these	objects.
Some	examples	of	these	policies	are	as	follows:

First-in-first-out	(FIFO):	In	this	policy,	the	cached	object	is	aged	and	the	oldest
object	is	removed	in	favor	of	the	new	added	ones.
Least	frequently	used	(LFU):	In	this	policy,	the	cache	picks	the	less	frequently	used
object	to	free	the	memory,	which	means	the	cache	will	record	statistics	against	each
cached	object.
Least	recently	used	(LRU):	In	this	policy,	the	cache	replaces	the	least	recently
accessed	or	used	items;	this	means	the	cache	will	keep	information	like	the	last
access	time	of	all	cached	objects.
Most	recently	used	(MRU):	This	policy	is	the	opposite	of	the	previous	one;	it
removes	the	most	recently	used	items.	This	policy	fits	the	application	where	items	are
no	longer	needed	after	the	access,	such	as	used	exam	vouchers.
Aging	policy:	Every	object	in	the	cache	will	have	an	age	limit,	and	once	it	exceeds
this	limit,	it	will	be	removed	from	the	cache	in	the	simple	type.	In	the	advanced	type,
it	will	also	consider	the	invalidation	of	the	cache	according	to	predefined
configuration	rules,	for	example,	every	three	hours,	and	so	on.

It	is	important	for	us	to	understand	that	caching	is	not	our	magic	bullet	and	it	has	a	lot	of
related	issues	and	drawbacks.	Sometimes,	it	causes	overhead	if	not	correctly	tailored
according	to	real	application	needs.

Note
In	Chapter	8,	Memory	Profiling,	we	will	dissect	heap	dump,	different	memory	profiling
interpretations,	and	our	fixing	strategy	for	memory	issues.	In	Chapter	10,	Designing	High-
performance	Enterprise	Applications,	we	will	have	another	detailed	discussion	about	data
caching.

Work	as	designed	performance	issues
In	work	as	designed	performance	issues,	the	application	behaves	exactly	as	designed	but
the	design	itself	has	issues	that	lead	to	bad	performance.	Let’s	go	through	some	examples.

Synchronous	where	asynchronous	is	required
The	design	assumes	that	some	parts	of	the	application	can	be	achieved	in	sequence
without	considering	the	expected	time	spent	in	some	elements	of	this	flow	(or	retry	logic
in	certain	services).	This	will	lead	to	a	bad	performance	of	the	application	in	these
transactions,	while	in	fact	it	is	working	as	designed.

For	example,	if	the	transaction	needs	to	send	an	e-mail	to	the	customer	and	the	e-mail
server	is	not	responding,	the	request	will	end	up	with	a	timeout	after	a	configurable	period,
and	if	there	is	a	retry	logic	applied,	the	user	will	wait	until	a	response	is	sent	back	from	the
application.

Performance	symptoms
The	identification	of	the	issues	usually	results	from	application	analysis	(for	example,
code	inspection,	profiling	analysis,	and	so	on),	but	we	can	expect	the	general	symptoms
when	we	use	synchronous	code	where	we	should	use	the	asynchronous	one,	as	follows:

Slow	response	time	intermittent	or	consistent	in	certain	application	areas
Customer	browser	inconsistently	gives	timeout	messages	such	as	408	-	Http
Request	timeout	error

An	example	of	improper	synchronous	code
A	common	example	of	improper	synchronous	code	is	how	online	orders	are	submitted.	As
a	part	of	submission	of	the	order,	a	lot	of	internal	systems	communication	is	usually
required.	We	shouldn’t	let	the	customer	wait	all	this	time,	but	instead,	we	need	to	show	the
confirmation	page	after	executing	only	the	essential	steps.	All	other	steps	that	can	be
executed	in	the	background	should	be	communicated	to	the	customer	by	the	asynchronous
communication,	that	is,	Ajax	calls	or	e-mails.

Neglecting	remoteness
In	the	distributed	development	with	different	system	components,	sometimes	the
developers	are	not	aware	that	they	are	actually	making	remote	calls	when	an	abstract	layer
is	used	or	when	they	interact	with	the	integration	library.	So	whenever	they	need	to	get
some	information	from	this	interface,	they	use	it	without	any	concerns.

This	is	a	typical	development	issue.	What	we	mean	here	by	neglecting	remoteness	is	that
the	designer	does	not	respect	the	remoteness	of	the	system	that	calls	during	the	design	of
the	application.	These	remote	calls	will	consume	time	and	could	also	involve	some
serialization	operations;	both	will	impact	the	transaction	performance.

Performance	symptoms
The	following	symptoms	usually	appear	when	we	neglect	the	cost	of	the	remote	calls:

Consistent	delay	of	the	application	transactions
Performance	tuning	cycles	do	not	cause	any	actual	improvements
Code	analysis	suggests	the	response	time	is	almost	spent	in	certain	remote	calls
Mismatch	between	the	number	of	transactions	and	the	number	of	remote	service	calls
(for	example,	remote	calls	double	the	number	of	transactions)

An	example	of	using	remote	calls	as	local	calls
The	application	displays	a	lot	of	the	vendor’s	products.	We	need	to	check	the	product
availability	and	the	latest	prices	prior	to	displaying	it,	adding	it	to	the	basket,	or	executing
the	final	checkout.

The	operation	seems	to	be	simple	but	it	is	a	remote	call.	The	response	time	is	dependent
on	the	remote	system	and	a	sequence	of	these	operations	will	cause	an	impact	on
application	response	time.

Excessive	serialization	performance	impact
The	system	design	follows	the	best	practices	of	isolating	different	application	layers	and
organizing	them	into	loosely	coupled	layers.	One	of	these	layers	consists	of	fine-tuned
web	services	that	are	orchestrated	into	larger	wrapper	web	services.	This	will	cause	each
request	to	these	orchestrated	services	to	go	through	many	serialization	layers,	from	the
wrapper	web	services	to	the	subsequent	fine	service	calls.

Performance	symptoms
Excessive	serialization	can	lead	to	the	following	performance	symptoms:

Consistent	slow	performance	of	the	application,	in	particular,	under	load
Low	throughput	of	the	application
Taking	thread	dump	under	load	will	show	a	lot	of	threads	in	serialization	logic

An	example	of	excessive	serialization
The	following	two	issues	represent	good	examples	of	the	excessive	serialization	issue.

Object	size	impact

Determining	the	object	size	is	essential	as	it	can	impact	the	performance	if	not	optimally
designed.	For	example,	small-sized	objects	can	affect	the	performance	if	it	is	in	the
interfacing	layer,	and	it	would	require	a	lot	of	calls	to	assemble	all	the	required	objects
even	if	only	a	few	attributes	are	actually	needed	from	each	object.

Large	objects	can	also	produce	useless	overhead	over	network	transmission.	The	same
effect	takes	place	from	using	complex	nested	object	structures.	The	following	diagram
represents	the	impact	of	selecting	the	object	size	during	designing,	in	particular,	the
interfacing	specifications:

If	these	calls	involve	serialization	in	any	form	of	data,	it	would	produce	additional
overhead,	for	example,	XML,	JSON,	and	so	on.

Another	aspect	for	the	object	size	impact	is	memory	consumption,	so	if	we	need	to	save
the	User	object	in	the	session	and	if	this	object	holds	a	lot	of	unnecessary	data,	it	will	be	a
waste	of	memory	to	do	that.	Instead,	we	need	to	add	to	the	session	the	minimal	required
information	to	efficiently	utilize	the	application	memory.

Web	services	granularity	impact

Similar	to	the	object	size	performance	concern,	web	services	should	be	designed	to	fulfill
the	requirement	in	the	least	number	of	service	calls	rather	than	having	multiple	calls	that
produce	overhead	and	decrease	the	performance	of	the	application.

Let’s	assume	that	we	have	a	web	service	that	returns	the	weather	forecast	for	a	given	city.
We	can	select	one	of	the	following	design	options:

If	the	application	wants	a	week’s	data,	it	should	call	the	weather	forecast	per	day
option	seven	times	with	a	different	day
If	the	application	wants	a	month’s	data,	it	should	call	the	weather	forecast	per	week
option	four	to	five	times	to	get	the	complete	weather	detail	of	that	month,	and	if	it
needs	just	a	day	detail,	it	should	neglect	the	extra	data

If	the	application	wants	a	week	or	a	day’s	data,	it	should	call	the	weather	forecast	per
month	option	and	filter	out	the	extra	data
Weather	forecast	for	the	required	period	provides	the	caller	the	ability	to	send	the
start	date	and	number	of	days	the	forecast	is	required	for	with	a	maximum	of	30	days
of	data	that	will	be	returned

These	options	are	designed	for	a	decision	that	should	be	taken	according	to	application
needs,	but	we	can	see	the	fourth	option	is	equivalent	to	implementing	the	other	three	call
types.	So,	it	would	be	better	to	have	a	single	call	of	the	fourth	type	rather	than	having	all
these	call	types.	At	the	same	time,	all	the	other	three	call	types	wouldn’t	serve	all	possible
scenarios	(for	example,	retrieving	the	weather	forecast	for	10	days)	without	having	to
make	multiple	calls	or	returning	extra	data	that	produces	performance	overhead	to	retrieve
such	data	from	the	database	and	serialize	them	back	to	the	caller.

In	some	design	decisions	to	reuse	the	code,	a	new	web	service	is	created	that	provides
wider	user	experience	by	orchestrating	many	calls	to	the	old	web	service	calls.	This	will
produce	performance	degradation,	especially	if	these	calls	are	remote	calls.

Selected	performance	issues
In	this	section,	we	will	pick	some	performance	issues	and	discuss	them	in	more	detail.

Unnecessary	application	logic
Here,	the	application	developers	usually	lack	a	good	understanding	of	the	used	framework
capabilities	so	they	use	extra	unnecessary	logic	that	either	produces	extra	database	hits,
memory	consumption,	or	even	processing	power	consumption.	Such	unwanted	code	can
only	be	detected	if	it	causes	extra	hits	to	resources	or	external	calls,	and	the	best	way	to
detect	this	is	to	perform	manual	code	inspection	or	profiling	on	the	application.

If	we	open	our	project,	ExampleTwo,	we	will	find	a	lot	of	good	examples	of	extra
unnecessary	logic,	such	as	loading	the	whole	collection	to	search	for	an	instance	inside	it,
where	we	can	retrieve	it	directly.	Refer	to	the	following	code:

ProductStock[]	stocks	=	catalogSessionBean.loadAllStocks();

for	(ProductStock	stock	:	stocks)	{

		if	(stock.getProductId().getId()==id)	{

				if(catalogSessionBean.updateStock(stock,-1)){

						basketBean.addToBasket(id);

						.	.	.

				}

				.	.	.

}

Also,	we	can	see	that	the	operation	of	decreasing	the	stock	once	added	to	the	basket	is	not
correct.	This	should	only	operate—if	required—on	the	memory	level	and	not	actually
update	the	database	unless	the	order	is	finally	submitted.	In	this	case,	we	won’t	need	the
session	listener	and	all	this	spaghetti	unwanted	code!	Refer	to	the	following	code:

for	(BasketElement	basketElement	:	basketBean.getBasketElements())

{

		ProductStock	currentStock	=	null;

		for	(ProductStock	stock	:	stocks)	{

				if	(stock.getProductId().getId()	==	basketElement.getProductId())	{

						currentStock	=	stock;

						break;

				}

		}

		catalogSessionBean.updateStock(currentStock,	

		basketElement.getCount());

}

A	third	example	in	this	project	is	the	bad	product	catalog	filtering	logic.	It	should
construct	the	query	according	to	the	parameters	rather	than	having	all	the	possible
combinations	in	such	a	bad	logic	that	it	misses	certain	scenarios.	If	the	code	is	not
documented,	no	one	will	actually	be	able	to	catch	these	issues	easily.	Refer	to	the
following	code:

if(criteria.getProductCategory()==0	&&	criteria.getPrice()>0	&&	

criteria.getSearchKeyword()==null)	{

		query	=	em.createNamedQuery("Product.findByPrice");

		query.setParameter("price",	criteria.getPrice());

}else	if(criteria.getProductCategory()>0	&&	criteria.getPrice()==0	&&	

criteria.getSearchKeyword()==null)	{

		query	=	em.createNamedQuery("Product.findByCategoryId");

		query.setParameter("categoryId",	criteria.getProductCategory());

}else	if(

...

...	//	rest	of	the	bad	logic	code

Similar	code	shouldn’t	pass	through	either	an	automatic	or	manual	code	review	and	we
shouldn’t	allow	such	code	in	our	enterprise	application	code.	In	the	production
environment,	changing	such	bad	logic	code	is	not	recommended	because	of	the	potential
impact	unless	the	impact	assessment	is	clear.	Otherwise,	it	could	lead	to	potential
application	malfunction,	so	it	is	better	to	address	such	coding	issues	early	in	the
development	phase	by	both	automated	and	manual	code	reviews.

Note
A	lot	of	alternatives	are	available	with	better	coding	quality	to	solve	the	previous	coding
issue.	These	include	using	the	standard	JPA	QueryBuilder	or	the	dynamic	construction	of
the	required	query.

Excessive	application	logging
Logging	is	very	useful	in	the	troubleshooting	applications,	especially	in	the	production
environment,	where	understanding	old	user	actions	or	transactions	is	usually	impossible
without	having	meaningful	logging.

Logging	must	strictly	follow	the	best	practices	guidelines	or	it	will	impact	our	application
performance.	If	we	look	back	at	our	HighCPU	example,	we	can	see	that	all	the	threads	are
blocked,	waiting	to	obtain	the	lock	over	the	logging	System.out	object.

Special	attention	should	be	paid	when	logging	the	XML	structures.	It	will	degrade	the
application	performance	severely,	so	it	shouldn’t	be	added	without	the	if(debugEnabled)
condition	unless	it	is	not	in	a	common	scenario.

It	is	important	to	ensure	that	the	logging	configurations	are	correctly	deployed	in	the
production	environment,	as	sometimes	the	performance	issue	is	simply	the	incorrect
enablement	of	the	application	debug	level.

Note
In	Chapter	11,	Performance	Tuning	Tips,	we	will	discuss	the	best	practices	of	logging.

Database	performance	issues
A	database	is	one	of	the	biggest	concerns	in	the	enterprise	application	performance	where
sometimes	the	data	grows	to	a	huge	size	and	gradually	affects	the	application
performance.	Different	database	issues	can	affect	the	application	performance	as	follows:

Using	an	old	database	version
Using	an	old	JDBC	driver	library
Missing	table	indexes	in	frequently	used	tables	(SQL	tuning	principals)
ORM	layer	tuning	(such	as	JPA	caching	and	index	preallocation)
Missing	batch	or	bulk	database	operations	in	massive	database	manipulations
Missing	regular	database	housekeeping

Our	main	concern	here	is	regular	database	housekeeping,	which	is	essentially	required	and
should	be	planned	while	designing	the	application,	not	when	the	performance	issues	show
up!	This	housekeeping	includes	the	following	examples:

Having	frequent	backups
Partitioning	the	large	tables
Cleaning	the	different	table	spaces,	for	example,	temporary	and	undo	table	space
Archiving	the	old	records

When	the	database	size	exceeds	the	handling	limit,	it	will	impact	the	application
performance	and	it	will	be	very	difficult	to	manage	all	tuning	techniques	without	having	a
service	outage.	Database	size	issue	is	unique	for	the	production	environment	and	can’t	be
replicated	in	other	environments	due	to	the	big	difference	between	the	production
environment	and	other	environments.

Having	database	performance	issues	require	the	assurance	of	performing	the	following
steps:

Checking	the	database	performance	report	periodically	such	as	the	Oracle	AWR
report
Tuning	the	database	to	suit	the	application
Getting	low	performing	queries	and	identifying	issues	through	the	database-specific
analysis	tools,	for	example,	the	SQL	execution	plan
Monitoring	database	server	performance	and	fixing	any	issues
Using	the	latest	database	drivers
Performing	any	necessary	housekeeping	activities
Adding	a	caching	layer	if	it	does	not	already	exist
Changing	the	application	persistent	methodology	such	as	using	batch	or	bulk	loading
techniques	for	large	data	insertion	instead	of	separate	updates

Bulk	database	manipulations	should	be	used.	Using	the	database-supporting	bulk
operations	in	cases	where	there	are	a	lot	of	database	operations	converts	the	fine-tuning
operations	into	course-gained	operations	and	can	improve	the	application	performance.

Going	back	to	our	example	application	and	profile,	it	uses	JProfiler	while	executing	the
performance	testing	(using	Apache	JMeter).	We	can	see	the	following	database	Hot

Spots:

The	interesting	find	in	the	preceding	screenshot	is	that	it	informs	us	that	we	have	a	coding
issue.	We	have	concluded	this	because	of	the	number	of	calls	of	different	queries	as	it
appears	in	the	Events	column.	If	we	are	hitting	the	database	by	thousands	of	calls	for	just
six	product	catalogs,	we	clearly	have	bad	coding	issues	that	need	to	be	fixed	first	before
we	continue	working	on	any	performance	improvement	or	database	tuning.

It	is	worth	mentioning	that	one	of	the	database-related	issues	is	the	data	loading	policy	in
either	eager	or	lazy	loading	techniques.	In	each	application,	we	need	to	consider	the
selection	of	the	proper	way	to	handle	each	transactional	scenario	according	to	the	size	of
data,	type	of	data,	frequency	of	data	changes,	and	whether	data	caching	is	used	or	not.

Missing	proactive	tuning
In	any	enterprise	system	architecture,	different	application	components	usually	have	the
performance	tuning	suggestions	that	fit	each	application	type.	Such	a	tuning	should	be
done	in	advance	(that	is,	proactively)	and	not	after	facing	performance	issues.

We	can	definitely	further	tune	these	components	in	cases	of	performance	issues	according
to	application	performance	results.	But	as	a	baseline,	we	should	be	doing	the	required
tuning	in	advance.	An	example	of	such	tuning	is	the	operating	system	tuning,	application
server	tuning,	JVM	tuning,	database	tuning,	and	so	on.

Note
We	will	discuss	different	aspects	of	performance	tuning	outside	our	application	in	Chapter
9,	Tuning	an	Application’s	Environment,	and	some	miscellaneous	coding	tuning	topics	in
Chapter	11,	Performance	Tuning	Tips.

Client-side	performance	issues
Performance	issues	on	the	client	side	means	either	a	JavaScript	coding	issue	or	slow
loading	of	different	resources.	Rarely	do	we	need	to	consider	cascading	style	sheets
(CSS).

With	the	advance	of	web	technologies,	a	lot	of	developers	now	rely	on	the	Ajax
technology	to	do	a	lot	of	things	in	the	application	interface	such	as	loading	and	submitting
contents.	Some	frameworks	come	with	components	that	support	the	Ajax	calls,	such	as
JSF	and	ADF.

The	initial	set	of	questions	that	we	need	to	answer	when	we	face	client-side	performance
issue	is	as	follows:

Is	the	issue	related	to	the	browser	type?
Is	it	related	to	the	page	size	or	resources	size?
What	happens	if	we	disable	JavaScript	in	the	browser?
Did	this	issue	occur	in	the	performance	testing	tool?

Tip
Performance	testing	tools	such	as	Apache	JMeter	won’t	execute	the	JavaScript	code,
so	don’t	rely	on	these	tools	to	catch	JavaScript	issues.	Instead,	we	will	use	this	as	an
advantage	because	having	performance	issues	in	browsers	but	not	in	JMeter	suggests
that	we	are	facing	the	most	probable	JavaScript	issue.

A	good	thing	is	that	all	browsers	these	days	have	integrated	tools	that	can	be	used	to
troubleshoot	rendering	content.	Usually,	they	are	named	Developer	tools.	Also,	they	have
additional	useful	third-party	plugins	that	can	be	used	for	the	same	purpose.

We	can	also	use	the	external	tools	(they	also	have	plugins	for	different	browsers),	such	as
DynaTrace	or	Fiddler.

Chrome	developer	tools
If	you	execute	the	ExampleTwo	application	in	the	Chrome	browser,	press	F12	or	select
Developer	tools	from	the	Tools	menu,	and	then	reload	the	website	again.

Note
This	example	is	uses	Chrome	Version	30.0.x	m.

Download	the	latest	Chrome	browser	from
https://www.google.com/intl/en/chrome/browser/.

Network	analysis
We	can	see	that	a	lot	of	useful	information	is	available	and	it	is	organized	in	different	tabs.
If	we	select	the	Network	tab,	we	can	see	the	loading	time	of	different	resources,	as	shown
in	the	following	screenshot.	This	facilitates	identifying	if	a	certain	resource	takes	time	to
load	or	if	it	has	a	large	size:

If	we	move	the	cursor	over	any	of	these	Timeline	figures,	we	will	see	more	details	about
the	DNS	lookup	and	latency,	or	we	can	click	on	any	row	to	open	it	for	more	details.	In	the
following	screenshot,	we	can	see	one	request	detail	organized	in	different	tabs,	including
the	Headers,	Preview,	Response,	Cookies,	and	Timing	details:

https://www.google.com/intl/en/chrome/browser/

JavaScript	profiling
Open	the	Chrome	browser	and	navigate	to	any	website,	for	example,	the	Packt	Publishing
website,	http://www.packtpub.com.

Now,	switch	to	the	Profiles	tab,	click	on	the	Start	button,	and	refresh	the	page	by	pressing
F5.	Once	the	page	is	completely	loaded,	click	on	the	Stop	button.

Now,	we	have	just	profiled	the	JavaScript	code.	The	profiling	data	will	be	under	the	name
Profile	1	and	we	will	see	the	JavaScript	code	performance	with	every	method	CPU	time.
A	link	is	available	for	the	corresponding	script	source	code	if	this	is	our	application
JavaScript	method,	as	shown	in	the	following	screenshot:

A	lot	of	display	features	are	available,	for	example,	if	we	click	on	the	toggle	button,	%,	it
will	show	the	actual	time	spent	rather	than	the	relative	percentage	time.

http://www.packtpub.com

These	useful	tools	will	help	identify	the	heaviest	JavaScript	methods	that	need	some
tuning.

Speed	Tracer
Speed	Tracer	is	a	Chrome	plugin	tool	that	helps	to	identify	and	fix	potential	performance
issues.	It	shows	different	visualized	metrics	with	recommendation	hints.

As	it	instruments	the	low-level	points	in	the	browser,	it	can	help	in	identifying	and
locating	different	issues	related	to	different	phases,	such	as	the	JavaScript	parsing	and
execution,	CSS,	DOM	event	handling,	resource	loading,	and	XMLHttpRequest	callbacks.
Refer	to	the	following	screenshot:

Here	is	an	example	of	tool	recommendation	hints.	There	are	all	Info	level	hints	meaning
there	are	no	major	issues,	as	shown	in	the	following	screenshot:

Note
Speed	Tracer	can	be	downloaded	from	the	following	URL:

https://developers.google.com/web-toolkit/speedtracer/.

https://developers.google.com/web-toolkit/speedtracer/

Internet	Explorer	developer	tools
The	developer	tools	are	available	in	Internet	Explorer.	If	we	press	F12,	it	will	open	similar
developer	tools.	Select	the	Network	tab,	click	on	the	Start	capturing	button,	and	then
open	the	same	page,	that	is,	http://www.packtpub.com.

We	can	see	nearly	the	same	tabs	that	exist	in	the	Chrome	developer	tools	but	to	the	left,
and	we	can	start	profiling	and	reloading	the	page	to	obtain	the	JavaScript	profiling
snapshot.	The	following	screenshot	is	taken	from	Internet	Explorer	Version	11.0.x:

http://www.packtpub.com

Firefox	developer	tools
In	Firefox,	we	can	select	Toggle	Tools	from	the	Web	Developer	menu	option	to	open	the
tools.	The	tools	have	the	same	features	that	exist	in	IE	and	Chrome.	The	following
screenshot	shows	the	developer	tools	in	Firefox	(the	screenshot	is	taken	from	Firefox
Version	24.0,	which	is	a	portable	version):

Navigating	time	specifications
W3C	is	sponsoring	a	new	specification	for	an	interface	for	web	applications	to	get
different	timing	information;	the	specifications	define	a	new	interface
PerformanceTiming,	which	can	be	used	to	get	different	timings.	A	sample	usage	for	this
interface,	once	implemented	in	different	browsers	(as	it	is	not	supported	yet),	will	look
like	the	following	code:

<head>

<script	type="text/javascript">

function	onLoad()	{

		var	now	=	new	Date().getTime();

		var	loadTime	=	now-performance.timing.navigationStart;

		alert("Page	loading	time:	"	+	loadTime);

}

</script>

</head>

<body	onload="onLoad()">

Note
For	more	information	about	these	specifications,	check	the	specification	documentation	at
the	following	URL:

https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/NavigationTiming/Overview.html

https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/NavigationTiming/Overview.html

Summary
In	this	chapter,	we	learned	briefly	how	to	determine	performance	issue	locations	and
covered	some	of	the	common	enterprise	applications	performance	issues.

We	tried	to	classify	these	common	issues	into	different	groups,	and	then	we	discussed
some	samples	from	each	group	category	in	more	detail.	The	important	point	here	is	to	be
able	to	use	these	issues	as	models	or	templates	of	typical	application	performance	issues,
so	we	can	frame	any	performance	issue	in	these	templates.

Finally,	we	discussed	how	to	diagnose	client-side	performance	issues	using	existing
browser	embedded	tools.

In	subsequent	chapters,	we	will	go	in-depth	on	how	to	read	application	profiling	snapshots
and	retrieve	the	required	diagnostic	information	from	different	profiling	aspects,	CPU,
threading,	and	memory,	so	we	can	diagnose	performance	issues	that	we	have	covered	in
this	chapter.

In	the	next	chapter,	Chapter	6,	CPU	Time	Profiling,	we	will	start	with	discussing	CPU	and
time	profiling	and	how	to	diagnose	different	application	bottlenecks/HotSpots	using
different	profiling	tools	such	as	NetBeans,	Eclipse,	and	JProfiler.

Chapter	6.	CPU	Time	Profiling
In	this	and	the	subsequent	two	chapters,	we	will	detail	Java	profilers	from	three	main
perspectives:	CPU	time,	threading,	and	memory	profiling.

In	this	chapter,	we	will	cover	CPU	time	profiling	to	understand	and	interpret	the	output	of
different	profilers,	its	significance,	what	we	need	to	focus	on	when	reading	a	profiling
session’s	results,	and	finally,	how	to	prepare	our	fix	for	different	readings	by	defining	a
fixing	strategy.

In	this	chapter,	we	will	cover	the	following	topics:

Using	different	profilers	to	get	the	CPU	time	profiling	results
Reading	and	interpreting	the	CPU	profiling	results
Analyzing	method	time	versus	call	frequency
Identifying	potential	performance	issues
Learning	how	to	measure	and	how	to	fix	the	performance	of	an	algorithm
Defining	our	first	performance	fixing	strategy

When	to	use	CPU	profiling
Before	we	discuss	CPU	time	profiling,	we	need	to	understand	the	underlying	objective	of
CPU	profiling.	When	faced	with	an	application	performance	issue,	the	first	step	is	to
identify	the	type	of	performance	issue.

If	it	is	clearly	an	issue	of	insufficient	memory,	we	can	directly	perform	the	required
memory	analysis.	When	the	issue	is	unclear,	the	best	way	to	identify	its	nature	is	CPU
profiling.

In	CPU	time	profiling,	we	must	focus	on	identifying	the	processes	that	consume	the	most
execution	time	so	that	we	can	reduce	it	and	improve	the	application’s	performance.	The
issues	can	be	with	the	code	logic,	interface	(for	example,	database	transaction),	blocking
(for	example,	waiting	for	a	remote	call	or	object	monitor),	threading,	and	so	on.

CPU	profiling	should	also	be	used	during	the	development	stage	to	ensure	that	we	have	a
well-performing	application	before	delivering	the	code;	this	should	be	one	of	our
proactive	measures	in	creating	a	well-performing	enterprise	application.

In	this	chapter,	we	will	discuss	the	various	CPU	profiling	aspects	along	with	how	to
perform	CPU	profiling	and	analyze	the	profiling	results.

Different	CPU	profiling	options
As	discussed	in	Chapter	4,	Monitoring	Java	Applications,	Java	profilers	have	many
different	modes	and	the	most	commonly	used	ones	are	as	follows:

Event-based:	This	is	the	mode	where	the	profiler	captures	the	application’s	events
such	as	as	method	calls,	class	loading,	thread	changes,	and	so	on.
Instrumental-based:	This	is	the	mode	where	the	profiler	instruments	the	application
with	additional	instructions	to	gather	more	information.	This	causes	the	highest
impact	on	the	application’s	execution	time	compared	to	the	other	types.
Sampling-based	(statistical):	This	is	the	mode	where	the	profiler	probes	the	target
program’s	program	counter	(PC)	at	regular	intervals	using	operating	system
interrupts.	Sampling	profiles	are	less	accurate	but	facilitate	a	near	normal	execution
time	of	the	target	application.

Most	of	the	existing	profilers	provide	support	for	different	profiling	modes,	in	particular,
the	sampled	and	instrumented	modes.

Before	we	discuss	how	to	read	our	application’s	profiling	results,	let’s	look	at	the	different
available	options	to	perform	CPU	time	profiling	in	NetBeans,	JMC,	and	JProfiler	as
examples	of	Java	profilers.

Using	a	NetBeans	profiler
We	already	discussed	how	to	use	the	NetBeans	profiler	to	profile	both	Java	standalone	and
enterprise	applications	in	Chapter	4,	Monitoring	Java	Applications.

The	main	difference	between	the	two	application	types	is	that	in	the	case	of	web-based
applications,	the	application	server	(for	example,	GlassFish)	will	start	in	the	profiling
mode.	Next,	the	application	will	be	deployed	and	the	profiling	will	record	all	the
interactions	with	the	application	server.	However,	if	it	is	a	Java	project,	then	the
application	will	be	executed	directly	in	the	profiling	mode.

We	can	also	attach	the	NetBeans	profiler	to	any	running	Java	process,	a	standalone	or	web
application,	by	using	the	Attach	Profiler	option	in	NetBeans’	Profile	menu.	Now	we	will
explore	how	to	profile	both	applications.

Note
We	discussed	NetBeans’	profiler	calibration	in	Chapter	4,	Monitoring	Java	Applications.
This	calibration	should	be	performed	once	for	each	installed	JDK,	and	it	should	be
recalibrated	only	if	certain	changes	occur	in	the	system’s	configuration.

Profiling	a	Java	application
First,	let’s	start	NetBeans	and	select	our	previous	project	HighCPU.	Next,	select	Profile
Project.	A	pop-up	will	ask	us	to	select	a	profile	option.	The	three	available	options	are
Monitor,	CPU,	and	Memory.	Select	the	CPU	option	to	see	the	different	available	options
in	CPU	profiling	as	shown	in	the	following	screenshot:

As	shown	in	the	preceding	screenshot,	the	two	main	options	are	Quick	(sampled)

profiling	and	Advanced	(instrumented)	profiling,	which	are	available	for	most	of	the
profiler	tools.

Each	option	has	different	settings,	for	example,	setting	a	filter	means	defining	the	classes
we	want	to	include	in	the	profiling	session.

Note
An	example	used	in	Chapter	4,	Monitoring	Java	Applications,	is	HighCPU.	You	can
download	it	from	the	code	bundle	of	this	book	available	at	http://www.packtpub.com/.

In	both	modes,	if	we	click	on	Advanced	settings,	we	see	the	current	profiling	settings	for
each	mode.	We	can	see	the	configuration’s	name	below	the	CPU	icon	(or
Monitor/Memory	icon)	on	the	left-hand	side	of	the	profiling	dialog.	We	can	change	these
predefined	configurations	by	clicking	on	Create	Custom…,	where	we	can	use	existing
configurations	and	modify	them	as	per	our	usage.	Now,	click	on	Create	Custom…,
choose	the	existing	configuration	template,	and	click	on	OK.	We	can	now	see	the	newly
created	custom	configuration	available	with	editable	configurations.

Select	Advanced	settings	to	edit	and	customize	the	configuration	according	to	your
requirements.	For	example,	you	can	change	the	default	sampling	rate	(10	ms)	as	shown	in
the	following	screenshot:

http://www.packtpub.com/

Changing	the	sampling	frequency	according	to	our	profiling	needs	is	an	important	aspect
to	control	the	output	of	a	sampled	profiling	mode.

We	can	delete	this	new	template	by	right-clicking	on	it	and	clicking	on	Delete	from	the
context	menu.

The	overhead	indicator	represents	the	general	overhead	from	the	current	settings,	which
can	be	monitored	when	adding	or	removing	different	setting	options.

We	can	also	set	up	a	filter	to	profile	only	certain	classes;	it	can	provide	us	with	the
following	different	options:

Profile	all	classes
Profile	only	project	classes
Quick	filter…
Exclude	Java	core	classes

By	selecting	Quick	filter…,	we	can	define	inclusion	or	exclusion	filters	for	different
classes.	This	is	very	useful	in	the	following	situations:

When	the	scope	is	limited	to	certain	application	areas
When	dealing	with	a	large	number	of	libraries
When	troubleshooting	a	specific	issue	(as	part	of	issue	isolation)

To	add	a	custom	filter,	use	the	simple	osa.ora.*	format,	which	means	that	all	the	classes
are	present	in	the	osa.ora	package.	Alternatively,	we	can	use	the	exact	class	name
osa.ora.HighCPU	to	filter	the	sole	class.

Profiling	a	web	application
Following	the	same	steps	performed	when	profiling	a	Java	application,	let’s	open	the
ExampleTwo	project	in	NetBeans	as	an	example	of	web	applications.	Select	the	project,	go
to	the	Profile	menu,	and	click	on	Profile	Project.	The	same	pop-up	window	will	be
displayed.	From	the	CPU	tab,	select	the	Quick	(sampled)	mode	and	click	on	the	Run
button.

Note
The	example	we	used	in	Chapter	5,	Recognizing	Common	Performance	Issues,	is
ExampleTwo.	You	can	download	it	with	its	database	script	and	JMeter	load	test	script	from
the	code	bundle	of	this	book,	available	at	http://www.packtpub.com/.

NetBeans	will	start	the	GlassFish	application	server	in	the	profiling	mode,	and	the	browser
will	open	with	our	application’s	main	page.	The	following	two	lines	will	appear	in	the
GlassFish	logs,	indicating	that	the	server	has	started	in	the	profiling	mode	and	the
profiling	agent	is	connected	to	NetBeans:

Profiler	Agent:	Waiting	for	connection	on	port	5140	(Protocol	version:	14)

Profiler	Agent:	Established	connection	with	the	tool

On	the	Profiler	window,	click	on	the	Live	Results	icon	to	open	the	Live	Results	tab,	and
being	using	the	application.	With	every	interaction,	we	will	see	that	a	change	occurs	in	the

http://www.packtpub.com/

profiling	results.	We	can	also	save	a	snapshot	by	clicking	on	the	Take	Snapshot	icon	(or
by	pressing	Ctrl	+	F2)	as	shown	in	the	following	screenshot:

Typically,	when	profiling	web	applications,	we	need	to	execute	load	testing	to	identify	the
HotSpot	areas.	Also,	it	is	better	to	use	the	sampled	mode	to	reduce	the	overhead	on	the
application	server	or	the	instrumented	mode	(with	the	class	filter).

Note
Don’t	expect	to	see	identical	results	in	your	profiling	session	as	the	profiling	results
depend	on	too	many	factors,	including	the	hardware	profile,	a	machine’s	CPU	utilization,
disk	I/O	speed,	other	running	applications,	and	so	on.

Open	JMeter	and	execute	the	Test	online	catalog	test	plan	we	have	created	in	Chapter
5,	Recognizing	Common	Performance	Issues.	After	the	test	plan	is	executed,	we	will	see
the	HotSpot	methods	in	our	application	as	shown	in	the	following	screenshot:

We	see	that	the	top	HotSpot	methods	are	related	to	updating	the	stock	and	loading	the
product	catalog	methods.	We	will	discuss	these	HotSpots	later	in	this	chapter.

Now,	save	a	snapshot	of	the	Live	Results.	It	will	open	a	new	window.	Go	to	the	new

window	and	navigate	to	the	Combined	tab.	The	tab	will	display	the	application	server
threads	with	their	corresponding	HotSpot	areas	as	shown	in	the	following	screenshot:

Also	note	that	VM	telemetry	shows	the	memory	consumption	and	auto	resize	for	the	heap
memory	size	because	this	application	has	a	memory	leakage,	as	discussed	in	the	Chapter
5,	Recognizing	Common	Performance	Issues.

Using	Java	Mission	Control	(JMC)
Now	let’s	try	using	JMC	to	retrieve	the	application’s	CPU	profiling	results.	We	have	two
options—either	perform	online	profiling	with	JMC	GUI	or	offline	profiling.	The	main
difference	is	that	if	the	GUI	is	connected,	then	we	can	specify	the	different	recording
settings	for	it.	On	the	other	hand,	in	the	case	of	offline	profiling,	we	will	send	our	profiling
settings	as	parameters.	Now,	let’s	try	to	perform	some	offline	profiling	using	JMC.

From	inside	NetBeans,	select	the	HighCPU	project,	right-click	on	and	select	Properties,	go
to	the	Run	tab,	and	add	the	following	in	VM	options:

-XX:+UnlockCommercialFeatures	-XX:+FlightRecorder	-

XX:StartFlightRecording=duration=30s,filename=d:/recording.jfr

The	UnlockCommercialFeatures	parameter	allows	us	to	use	the	flight	recorder,	which	is	a
commercial	feature	in	Java.	In	the	last	parameter,	we	started	the	recording	and	specified
the	recording	duration	as	30	seconds,	which	will	be	saved	in	the	specified	file,
recording.jfr.

Note
Commercial	features	in	Java	are	subjected	to	license	agreements	and	shouldn’t	be	used	in
a	production	environment	without	a	proper	license.	For	more	details,	refer	to	the	Oracle
license	documentation	at
http://www.oracle.com/technetwork/java/javase/terms/license/index.html.

Now,	when	we	run	the	application,	we	will	see	the	following	lines	in	the	application	logs:

Started	recording	1.	The	result	will	be	written	to:

D:\	recording.jfr

Once	the	application	completes	the	execution,	start	JMC	and	open	the	recording.jfr	file
from	the	File	menu.	Next,	click	on	Open	file	and	select	the	file.	We	will	see	our
application’s	profiling	results.	Let’s	check	the	CPU	utilization	in	this	recorded	file	by
selecting	Code	and	click	on	the	Call	Tree	tab	as	shown	in	the	following	screenshot:

http://www.oracle.com/technetwork/java/javase/terms/license/index.html

As	we	can	see	in	the	results,	JMC	CPU	profiling	points	to	the	Arrays.sort()	method	as
the	hottest	spot	in	our	profiling	results,	consuming	approximately	77	percent	of	the	total
execution	time.

To	profile	a	web	application	using	JMC,	add	the	same	parameters	in	the	application	server
start	script.	For	example,	in	the	GlassFish	application	server,	add	the	following	parameters
in	the	VM	options	section	in	the	domain.xml	file	to	enable	the	commercial	features:

<jvm-options>-XX:+UnlockCommercialFeatures</jvm-options>

<jvm-options>-XX:+FlightRecorder</jvm-options>

We	can	also	add	the	same	parameters	from	inside	NetBeans	by	right-clicking	on	our
NetBeans	web	project	and	selecting	Properties.	Then	go	to	the	Run	parameters	and	add
the	following	in	VM	Options:

-XX:+UnlockCommercialFeatures	-XX:+FlightRecorder

From	inside	JMC,	connect	to	the	GlassFish	server	by	expanding	the	GlassFish	process	in
JMC’s	JVM	Browser,	right-clicking	on	Flight	recorder,	and	selecting	the	Start	Flight
Recording	context	menu	option.

Using	JProfiler
Now	let’s	attach	JProfiler	to	both	projects	to	explore	the	different	options	available	for
CPU	profiling.	Let’s	first	start	with	the	HighCPU	project	(and	later	in	this	chapter,	we	will
profile	the	ExampleTwo	project).	From	inside	NetBeans,	select	the	HighCPU	project	and
right-click	on	it.	Then,	select	Project	Properties,	go	to	the	Run	tab,	and	add	the
following	JVM	command	line	(the	path	follows	the	JProfiler	installation	path):

-agentpath:D:/PROGRA~1/JPROFI~2/bin/windows/jprofilerti.dll=port=8849

Now	open	JProfiler	and	from	Start	Center,	go	to	the	New	Session	tab	and	select	New
Session.	Then,	select	Attach	to	profiled	JVM	and	click	on	OK.	The	Session	Settings
window	will	be	displayed	and	will	ask	for	the	initial	profiling	settings,	which	is	the
sampled	or	instrumented	mode.	Select	either	because	we	can	change	this	in	the	next	step.
The	settings	dialog	will	open	with	several	different	options.	Select	CPU	recording	from
the	Initial	recording	profile	in	the	Startup	section.	The	profiling	settings	are	shown	in
the	following	screenshot:

If	we	check	JProfiler	profiling	options,	we	can	identify	the	following	options	with	what

we	saw	in	the	NetBeans	profiler:

Using	the	sampled	or	instrumented	mode
Defining	a	new	configuration
Defining	filter	criteria	similar	to	those	defined	in	the	NetBeans	filter

Other	options	are	also	available,	such	as	controlling	the	database	profiling	options	or
adding	different	JEE	probes	such	as	Servlet,	JNDI,	JMS,	WebServices,	classloader,	and	so
on,	as	shown	in	the	following	screenshot:

With	these	abundant	options,	we	can	customize	our	profiling	session	according	to	our
troubleshooting	issues.	For	example,	we	can	expand	the	JEE	&	Probes	option	as	shown
in	the	following	screenshot:

We	will	see	that	the	result	can	be	split	according	to	the	request	parameter.	So	if	we	face
issues	with	certain	request	parameters/users,	we	can	identify	these	issues	instead	of
grouping	all	the	user	requests,	which	might	causes	the	issue	to	disappear	in	the
accumulated	data.

Reading	and	interpreting	CPU	profiling
results
Now	if	we	execute	instrumental	(or	sampling)	profiling,	we	will	see	the	following	basic
sections	in	the	snapshot	of	any	profiling	result.

The	call	tree	view
This	section	includes	the	call	stack	trace	of	the	invoked	methods,	which	are	listed
according	to	the	set	filter.	The	level	of	information	will	depend	on	the	profiling	mode	and
any	other	selected	options.

The	HotSpots	view
This	section	includes	the	most	time-consuming	methods,	which	are	listed	according	to	the
defined	profiler	rules.	We	can	change	these	rules	in	JProfiler.

The	following	are	the	important	values	that	we	need	to	look	into:

Total/inherent	method	time
Method	invocation	count/events
Average	time	spent	by	each	method	call

Also,	it	can	be	useful	to	arrange	them	by	class	or	package	to	isolate	the	issue	in	the
utilities	or	libraries	used.

The	following	should	be	considered	before	we	conclude	any	thing:

Method	time	in	the	sampled	profiling	mode
Relative	time	(percentage)	in	the	instrumental	profiling	mode
Invocation	count	available	only	in	the	instrumental	profiling	mode

The	NetBeans	profiling	snapshot	for	our	project	looks	like	the	following	screenshot	(The
invocation	count	displayed	in	the	screenshot	means	that	profiling	was	performed	in	the
instrumented	mode.):

The	NetBeans	profiling	results	are	displayed	in	three	different	view	options:	Call	Tree,
Hot	Spots,	and	Combined	view.	The	Combined	view	is	a	combination	of	both	views
(see	the	previous	screenshots).

Using	the	sampled	mode,	we	see	that	the	following	are	the	top	HotSpot	methods:

Arrays.sort()	consumes	around	57	percent	of	the	total	time	spent	in	this	method
alone	(38	seconds)
Thread.sleep()takes	up	around	17	percent

After	that,	the	two	HotSpot	methods	are	related	to	the	random	integer	generation,
illustrated	in	the	following	screenshot:

If	we	tried	to	do	the	same	in	JProfiler,	we	will	see	the	same	results	by	navigating	to	CPU
views	|	Call	Tree,	as	shown	in	the	following	screenshot:

As	shown	in	the	preceding	screenshot,	the	Call	Tree	view	filters	the	Runnable	threads
only	at	the	Methods	level.	It	also	shows	the	invocations	beside	the	method	average	time.
We	can	change	the	current	view	by	selecting	different	display	options	such	as	filtering
them	according	to	the	thread’s	status	(Runnable,	Waiting,	Blocked,	and	so	on).	We	can
also	display	them	at	the	Methods	level	or	aggregate	them	at	the	Class	or	Package	levels,
and	so	on.

In	the	previous	screenshot,	for	example,	the	Arrays.sort()	method	takes	around	19.9
percent	of	the	total	execution	time	caused	by	its	invocation	in	about	1,000	different
invocations.	The	results	here	are	different	than	the	previous	ones	because	the	profiling
mode	and	the	applied	filter	show	only	the	Runnable	threads.

The	Thread.sleep()	method	does	not	appear	because	the	thread	is	not	running	and	we
show	only	the	Runnable	threads	in	the	previous	screenshot.

Another	tab	shows	the	Hot	Spots	results.	If	we	open	it,	we	will	see	the	different
application	HotSpots	ordered	by	the	consumed	inherent	time,	and	not	the	average	time,	as
shown	in	the	following	screenshot:

The	preceding	screenshot	shows	the	Hot	Spots	results	for	the	All	thread	groups	status.
We	can	use	the	drop-down	options	to	change	the	current	view	to	specify	a	certain	thread
status	to	be	displayed,	for	example,	Runnable.

Analyzing	the	method	time	versus	the
method	invocation	count
Now	let’s	analyze	the	CPU	profiling	results	according	to	what	we	have	seen	in	the
previous	sections.	We	can	pick	and	discuss	some	of	the	following	possible	combinations
of	high	inherent	time,	that	is,	the	HotSpot	method:

High	self-time
High	invocation	events
High	self-time	and	invocation	events

Note
The	self-time	of	a	method	is	the	time	spent	by	the	method	itself.	Usually,	it	refers	to
the	average	time	calculated	according	to	the	invocations.

The	inherent	time	of	a	method	includes	the	total	time	spent	in	all	calls	to	this
method,	which	is	equal	to	the	method’s	self-time	multiplied	by	the	number	of
invocations	or	events.

The	hot	spot	method	types
We	can	classify	the	hot	spot	methods	into	the	following	types	according	to	the	root	cause
of	the	performance	issue.

Methods	with	high	self-time
This	is	a	simple	type	of	hot	spot	method,	where	the	method	itself	is	the	root	cause	of	the
issue.	So,	we	need	to	dig	deeper	into	the	method	to	identify	the	bottle	neck.	With	this
method,	we	have	the	following	two	types	of	issues:

If	this	method	is	a	part	of	our	code,	then	the	issue	has	mostly	to	do	with	the	algorithm
and	logic
If	the	method	is	outside	our	code,	then	the	usage/logic	from	the	caller	is	wrong	or
there	is	an	underperforming	library
If	the	logic	is	complex,	because	the	method	is	performing	a	complex	task,	then	we
must	consider	revisiting	this	logic	to	find	a	more	simplified	one

Bad	database	queries	can	cause	the	self-time	of	the	related	method	to	be	high.	However,
fortunately,	this	can	be	identified	by	either	profilers	or	database	trace/reports.	For
example,	if	we	look	at	JProfiler,	we	can	see	a	dedicated	section	for	database	profiling	that
supports	different	frameworks/libraries,	such	as	JPA/Hibernate,	HBase,	and	JDBC,	and
shows	the	location	for	all	the	calls	for	each	database	statement	so	that	we	can	trace	these
hot	spots	(we	will	see	this	later	in	this	chapter).

Methods	with	high	invocation	events
High	invocation	events	for	bad/normal	performing	code	can	lead	to	hot	spot	areas	in	an
application.	A	method’s	self-time	can	be	normal,	but	the	large	number	of	calls/invocations
will	cause	such	a	hot	spot	to	appear	(with	high	inherent	time).	This	is	mostly	due	to	the
logic	of	the	method	caller.

Methods	with	high	self-time	and	invocation	events
These	methods	show	the	lowest	performance	and	and	the	method	itself	is	invoked	too
many	times,	which	leads	to	a	hot	spot	area	in	our	application.

Identifying	a	hot	spot	type
The	correct	identification	of	the	application’s	hot	spot	type	will	point	to	the	correct
solution.	This	will	answer	two	important	questions:	does	the	method	itself	have
performance	issues?	Or,	is	it	the	application’s	logic	that’s	causes	the	method	to	be	invoked
too	many	times?	The	first	will	require	the	method’s	logic	to	be	fixed,	but	the	second	will
require	the	application	logic	to	be	changed	to	reduce	the	number	of	method	invocations;
sometimes	both	are	required.

If	we	profile	our	ExampleTwo	application	by	JProfiler	while	executing	the	JMeter	load
testing,	then	the	hot	spots	will	be	visible	for	our	application	(in	the	load	testing	scenarios
covered).	This	is	illustrated	in	the	following	screenshot:

We	can	expand	the	hot	nodes	to	see	more	information	or	we	can	switch	to	the	Hot	Spots
tab	to	see	them	in	a	clear	view.	The	useful	information	about	this	application’s
performance	can	be	seen	in	the	database	section,	where	we	can	get	information	for	both
JDBC	and	JPA.	This	is	illustrated	in	the	following	screenshot:

In	the	database	hot	spots,	we	see	that	the	top	hot	spot	statement	is	UPDATE	product_stock
SET	stock_size	=	?	WHERE	(id	=	?).	We	have	clarified	before	that	this	is	due	to	the
application’s	bad	logic,	which	updates	the	stock	when	a	product	is	added	to	the	basket,	and
re-adds	it	when	the	user’s	session	has	expired.

The	second	hot	spot	query	is	SELECT	id,	name,	parent_category	FROM	category,
which	is	repeated	more	than	17,000	times	due	to	the	application’s	bad	logic	to	load	the
category	details	of	the	product	with	each	user	request.

We	can	switch	to	the	JPA	section	to	identify	one	more	hot	spot	related	to	updating	the
product	stock,	which	is	similar	to	our	first	hot	spot.	This	hot	spot	points	to	the	two
locations	(add	to	basket	and	session	destroy	listener)	where	we	used	JPA	calls	to	update
the	stock.

Fixing	the	application	logic	will	resolve	all	these	hot	spots.	The	following	screenshot
shows	the	JPA	hot	spots:

One	of	the	good	features	in	JProfiler	is	the	ability	to	use	Java	EE	probes,	where	we	can
isolate	certain	component	performance	issues.

Try	to	execute	ExampleOne	and	run	JMeter	load	testing	while	JProfiler	is	attached	and	the
servlet	probe	is	enabled	(to	enable	it,	go	to	JEE	&	Probes,	select	Servlets,	and	check	the
Enabled	checkbox).	We	will	then	see	the	servlets	performance	figures	as	shown	in	the
following	screenshot	(JSPs	being	translated	to	servlets	are	included):

Note
The	example	we	used	in	Chapter	3,	Getting	Familiar	with	Performance	Testing,	is
ExampleOne	is.	You	can	download	it	from	the	code	bundle	of	this	book	available	at
http://www.packtpub.com/.

It	shows	the	Inherent	time,	Average	time,	and	the	number	of	Events.	As	we	can	see	in
the	results,	the	time	taken	by	LoginServlet	is	the	largest.	This	makes	sense	because	it	will
hit	the	database	with	each	request	to	authenticate	the	user.	But	for	other	servlets,	if	the
user	is	not	already	logged	in,	then	the	user	will	be	redirected	to	the	error	page	without
executing	much	logic	in	these	servlets.	To	confirm	this	conclusion,	take	a	look	at	the
database	hot	spots	shown	in	the	following	screenshot:

http://www.packtpub.com/

The	number	of	authentication	query	events	that	confirm	our	conclusion	is	1,500	times,
while	the	update	user	role	occurs	only	676	times	(because	of	the	invalid	login	trials	and	no
update	statement	being	fired	if	the	same	user	profile	is	set).	The	following	screenshot
shows	the	hot	spots	in	our	application:

Identifying	potential	performance	issues
In	the	previous	section,	we	diagnosed	different	hot	spot	areas	and	classified	them	into
different	types	(either	the	method’s	self-time	or	the	invocation	count	is	high,	or	both).
Now	let’s	describe	some	examples	of	the	potential	root	causes	of	these	hot	spots.

Algorithmic/logic	issues
When	the	application	logic	is	generally	the	root	cause	of	the	performance	issue,	there	can
be	many	variants	such	as	unnecessary	loops,	underperforming	algorithms,	repeated
calculations,	and	no	caching.

If	we	look	at	our	online	shopping	project,	ExampleTwo,	we	see	some	samples	of	this
ineffective	application	logic,	shown	as	follows:

Product[]	allProducts	=	

catalogSessionBean.loadAllActiveProductCatalogByCriteria(new	

SearchCriteria());

for	(Product	allProduct	:	allProducts)	{

		if(allProduct.getId()==productId){

				outputStream.write(allProduct.getImage());

				outputStream.close();

				return;

		}

}

In	this	logic,	instead	of	getting	the	product	by	its	ID,	we	get	all	the	catalog	products	and
then	loop	the	entire	list	to	retrieve	our	target	product,	so	we	can	serialize	its	image!

Another	similar	example	is	decreasing	the	stock	by	one	for	the	product	added	to	the
basket.	It	continues	to	looping	all	the	stock	elements	till	it	finds	the	product	stock.	The
optimal	way	is	to	get	this	product	stock	using	the	product	ID	in	one	step:

ProductStock[]	stocks	=	catalogSessionBean.loadAllStocks();

for	(ProductStock	stock	:	stocks)	{

		if	(stock.getProductId().getId()==id)	{

				if(catalogSessionBean.updateStock(stock,-1)){

						basketBean.addToBasket(id);

..

..

The	preceding	code	is	useless	and	represents	a	ineffective	application	logic	to	do	the
required	task.

There	are	several	examples	in	this	project	that	are	similar	to	these	useless	loops,	but	we
need	to	look	at	the	examples	that	represent	the	application’s	logic	errors.	One	of	them	is
the	add	to	basket	transaction,	which	decreases	the	product	stock	by	one,	the	other	one	is
the	session	destroy	listener,	which	re-adds	this	to	the	stock	(because	the	users	didn’t	buy
it).

This	is	a	typical	example	of	an	underperforming	application	logic,	where	we	add	a	lot	of
useless	code	that	represents	either	a	business	requirement	error	or	a	design	fault.	We	see
similar	issues	in	faulty	application	designs	(and	in	few	cases,	misunderstand	the
requirements	or	fail	to	explain	the	project’s	workflow	to	the	business	team	during	the
requirements	gathering	phase).

Regardless	of	the	actual	reason	we	highlighted	before,	performance	issues	caused	by
design	faults	will	require	a	lot	of	changes	to	the	project	and	shouldn’t	be	done	as	a

production	performance	fix.	This	is	because	it	needs	extensive	testing	and	analysis	to
avoid	a	missing	scenario	(of	course,	in	our	project,	it	is	simple	fix	because	it	is	just	a
sample	application).

Caching	issues
Caching	is	one	of	the	main	reasons	for	poor	application	performance.	Caching	is	not	only
for	database	queries	or	external	calls	but	also	for	repeated	calculations,	in	particular,	for
derived	data.

Constructing	the	product	tree/hierarchy	in	our	product	catalog	is	an	example.	The
following	diagram	shows	the	recursive	relation	using	a	product	category	tree:

To	construct	a	product	tree,	add	the	product	category	and	then	loop	it	till	we	get	its	parents
tree.	For	example,	if	we	have	a	Samsung	S5,	we	can	see	the	following	category	hierarchy:

Samsung	S5	>	Samsung	Mobiles	>	Mobiles	>	Phones	>	Electronics	and	Computers

We	can	construct	this	and	cache	the	results	in	our	application	cache	so	that	there	is	no
need	to	identify	the	product’s	full	category	tree	with	each	customer	request.

Incorrect	caching	is	also	a	contributing	factor	in	an	application’s	poor	performance,	where
the	resource	loading	time	increases	(in	comparison	to	no	caching)	as	it	requires	hitting	the
cache,	loading	the	resource,	and	adding	it	back	to	the	cache.

Resourcing	issues
Dealing	with	networking	and	different	I/O	operations	usually	represents	the	slowest	parts
in	our	application.	Communication	with	any	remote	system	where	the	response	time	is	not
constant	can	impact	our	application’s	performance.

Interfacing	with	the	database	storage	to	load	different	resources	is	a	major	part	of	our
application’s	tuning	effort.	This	is	the	main	challenge	for	most	present-day	enterprise
applications,	especially	in	an	enterprise	application	with	significantly	expanding	data.

Threading	issues
When	the	application	performs	lengthy	operations,	make	use	of	the	hardware	processing
power	to	decrease	the	time	taken	for	such	operations.

Profiling	the	application	will	point	to	these	areas,	that	is,	where	concurrent
implementation	is	required	or	incorrectly	implemented.	However,	the	concurrent
processing	of	the	application	logic	requires	a	lot	of	conditions.	For	example,	there	should
be	no	dependency	on	the	distributed	tasks,	otherwise,	concurrent	threads	will	wait	for	each
other.

In	the	Chapter	7,	Thread	Profiling,	we	will	navigate	through	different	multithreading
issues.

In	general,	treating	an	execution	as	a	background	activity	is	also	a	way	to	resolve	these
extensive	operations.	However,	this	won’t	fit	every	case	and	needs	to	be	tailored	to	the
required	task.

Fixing	algorithmic/logic	performance
Algorithm	complexity	(time/space)	is	the	main	evaluating	factor	for	any	algorithm.	Here,
time	refers	to	the	duration	required	to	execute	instructions/steps,	while	space	refers	to	the
space	occupied	by	its	data	structure.	Both	are	directly	related	to	the	performance	of	an
algorithm.

When	using	an	algorithm	to	resolve	a	problem	in	our	application,	search	for	the	most
efficient	way	to	achieve	that.	This	means	we	have	to	use	an	algorithm	with	minimal
possible	steps.	If	we	already	have	an	algorithm/logic,	and	need	to	optimize	its
performance,	we	first	need	to	perform	the	following	steps:

Understand	the	logic	(its	inputs	and	outputs)	and	why	this	logic	is	required
Evaluate	the	logic’s	performance
Find	the	areas	that	need	improvement
Evaluate	different	solutions	(fix	the	logic	or	find	other	alternatives)
Resolve	poorly	performing	areas
Measure	the	logic’s	performance	after	its	resolution

We	will	discuss	simplified	ways	to	evaluate	an	algorithm’s	performance.

Simple	algorithmic	evaluation
Before	we	detail	our	fixing	strategy,	let’s	first	understand	what	we	mean	by	algorithm	and
logic	fixing	strategy.	We	begin	with	something	that	can	refresh	our	mind	a	bit—the
famous	interview	question	of	the	two	eggs.

The	puzzle	is	about	having	two	identical	eggs	and	access	to	a	100-storeyed	building.	We
need	to	find	out	the	highest	possible	floor	from	which	the	egg	will	not	be	broken	when
dropped	out	of	a	window	from	that	floor.	The	two	eggs	here	represent	the	two	possible
trials	to	identify	this	floor.

The	simplest	solution	is	to	start	with	floor	number	one	and	sequentially	move	up	till	the
egg	is	broken.	This	way,	we	can	identify	the	floor	number	using	just	one	egg,	as	shown	in
the	following	logic.

int	thresholdFloor	=	0;

for(int	i=1;i<101;i++){

			if(egg.drop(i)==true)	{	//broken	at	i	floor

				thresholdFloor=i;

				break;

		}

}

This	solution	represents	what	we	call	a	poor	application	algorithm.	In	the	worst	case
scenario,	if	the	eggs	can	only	be	broken	by	dropping	it	from	the	100th	floor,	then	we	need
100	trials	to	find	the	answer!

We	can	enhance	the	solution	and	move	up	every	two	floors	(or	more).	If	the	egg	breaks,
then	we	can	try	with	the	lower	floors	(an	odd	floor)	and	identify	the	threshold	floor.	This
way,	with	51	trials	(that	is,	in	the	worst	case),	if	the	egg	breaks	at	99th	floor,	we	can
modify	the	logic	shown	as	follows:

int	thresholdFloor	=	0;

for(int	i=2;i<101;i=i+2){

		if(egg.drop(i)==true)	{	//broken

				if(egg2.drop(i-1)==true)	{

						thresholdFloor=i-1;

						break;

				}	else	{

						thresholdFloor=i;

					break;

				}

		}

}

Similarly,	we	can	use	a	binary	search	starting	with	50,	then	either	75	or	25,	and	so	on.
Unfortunately,	if	the	egg	breaks	on	the	50th	floor	(first	trial	in	binary	search),	we	will	need
to	go	through	49	floors.	This	will	give	us	around	50	trials	in	the	worst	case	scenario,
which	is	not	good	because	this	is	not	a	typical	binary	search	problem.

Can	we	improve	this	logic	a	bit	more?	What	if	we	tried	to	use	10	steps	at	a	time	instead	of

two?	Then	if	the	egg	is	broken,	we	can	loop	at	an	interval	of	10	floors	from	the	bottom	to
the	top.	In	the	worst	case,	we	will	have	around	19	steps	(that	is,	if	the	egg	breaks	at	floor
99).	The	following	is	the	corresponding	logic:

int	thresholdFloor	=	0;

for(int	i=10;i<101;i=i+10){

		if(egg.drop(i)==true)	{	//broken

				thresholdFloor=i;

				for(int	x=i-9;x<i;x++){

						if(egg2.drop(x)==true)	{

								thresholdFloor=x;

								break;

						}

				}

				Break;

		}

}

Tuning	an	application’s	logic	to	perform	the	required	task	in	the	shortest	possible	steps	or
with	minimal	impact	on	different	resources	is	what	we	call	fixing	the	algorithm.	We	have
seen	examples	where	loading	the	whole	collection	and	looping	them	was	not	required.	It	is
better	to	load	the	required	resource	directly	without	investing	too	much	cost	on	the
application’s	performance.

In	other	words,	always	search	for	the	worst	case	scenario	while	developing	the	application
logic.	Sometimes	the	ideal	or	common	scenario	should	be	considered	as	well.	For
example,	in	our	two	eggs	puzzle,	an	egg	might	break	on	the	lower	floors.	This	makes
sense	and	a	majority	of	cases	could	follow.	However,	we	should	always	create	a	good
balance	between	the	majority	common	cases	and	worst	case	scenarios	and	pick	what	suits
our	application.

Thus,	the	best	solution	in	this	puzzle	using	mathematical	calculations	is	to	minimize	the
maximum	drops.	This	allows	all	the	scenarios	to	have	the	same	number	of	trials	(proving
this	is	out	of	our	scope).	The	following	table	shows	the	detailed	solution	steps:

Drop Floor Action	if	broken

1 14 Loop	1-13

2 27 Loop	15-26

3 39 Loop	28-38

4 50 Loop	40-49

5 60 Loop	51-59

6 69 Loop	61-68

7 77 Loop	70-76

8 84 Loop	78-83

9 90 Loop	85-89

10 95 Loop	91-94

11 99 Loop	96-98

12 100 No	action

The	advantage	of	this	solution	is	that	we	have	reduced	the	most	time-consuming	worst
case	scenario	(which	was	around	19	in	a	10-step	solution)	to	14-15	steps	only.	Can	you
think	of	the	solution	if	we	have	1000	floors?

Evaluating	an	algorithm’s	complexity
In	this	section,	we	will	discuss	the	evaluation	of	our	logic	based	on	an	algorithm’s
complexity	and	the	big	O	(or	big	Oh)	annotation,	but	in	a	simplified	way,	without	any
mathematics.	An	algorithm’s	evaluation	includes	three	aspect:	best	case,	worst	case,	and
average	case	scenarios.	We	can	refer	to	the	time	as	the	required	steps	to	achieve	a	solution.

An	algorithm’s	performance	can	vary	with	each	of	these	cases,	and	usually,	we	use	either
the	worst	case	or	average	case	scenario	in	our	evaluation.

To	understand	the	difference	between	the	three	cases,	let’s	assume	we	are	searching	for	an
object	in	an	array	of	size	n.	The	best	case	scenario	is	to	find	this	object	as	the	first	object
in	our	search,	the	worst	case	is	to	find	it	at	the	end	of	our	search,	and	the	average	case	is	to
find	it	in	the	middle	of	our	search.

The	big	O	notation	is	widely	used	to	evaluate	algorithms	using	their	asymptotic	growth
(that	is,	growth	rate).	It	describes	the	relation	between	the	input	size	and	the	processing
time	and	classifies	the	logic’s	functions	into	different	orders	(levels),	hence	the	name.

To	obtain	the	big	O	value	of	our	algorithm,	we	need	to	follow	the	ensuing	simplified
steps/rules:

Clearly	define	the	input(s)	and	output(s)	of	the	logic
Understand	the	logic	well
Convert	our	logic	into	a	function	f(n),	where	n	is	the	logic	input.
Remove	all	the	function	terms	except	the	one	with	the	highest	growth	rate
Remove	any	constant	factors	that	do	not	depend	on	n

Since	this	is	not	a	book	for	algorithm	complexity,	we	will	map	some	of	these	basic	steps
into	a	simple	piece	of	code	to	understand	how	we	can	roughly	measure	the	estimated	time
for	a	function.

Let’s	assume	we	need	to	measure	the	big	O	for	the	following	code:

int	sum1=	0;

int	sum2=	0;

for(int	i	=	0;	i	<	n;	i++)	{																O(n)

		sum1	+=	i;																																	c1

		System.out.println("total	="	+	sum1);						c2

}

for(int	i	=	0;	i	<	n;	i++)	{																O(n2)

		for(int	j	=	0;	j	<	n;	j++)	{

				if(j%2==0)	{																													max(c3,c4)

						sum2+=methodA(j);																						c3

				}	else	{

						sum2+=methodB(j);																						c4

				}

System.out.println("total	="	+	sum2);								c5

		}

}

return	sum1+sum2;																												c6

The	input	to	this	algorithm	is	n	and	the	output	is	the	sum	of	different	calculations	related
to	the	value	of	this	number.	To	calculate	the	big	O	for	such	an	algorithm,	we	need	to
calculate	the	following	different	sections	first:

In	the	first	for	loop,	the	iterations	are	equal	to	n	and	the	internal	executions	of	the
sum	and	println	statements	are	constant	values	for	each	loop.	So,	the	big	O	for	this
section	is	O(n*(c1+c2)),	and	as	both	c1	and	c2	are	not	dependent	on	the	value	of	n,
according	to	our	rules,	we	can	remove	or	neglect	them.	Hence,	the	outcome	is	O(n)
(that	is,	linear	complexity).
The	second	for	loop	contains	two	nested	for	loops;	each	one	is	executed	n	times.
This	produces	the	number	of	steps	equal	to	n2.	We	also	have	an	inner	if	condition
that	has	two	alternatives	(methodA	and	methodB).	We	need	to	select	the	longest	time
taken	by	both.	This	evaluates	as	max(c3,c4).	If	we	assumed	that	both	c3	and	c4	are
constant,	we	can	drop	them	as	well	based	on	our	rules	(the	same	applies	to	the
println	method).	The	outcome	of	all	this	is	O(n2).

Now	the	algorithm	is	evaluated	as	O(n)+	O(n2)+c6,	which	can	be	reduced	to	O(n2)	(that
is,	quadratic	complexity).	As	per	our	rules,	keep	only	the	term	with	the	highest	growth
rate.	This	is	because	with	the	big	values	of	n,	the	n2	term	will	be	the	dominant	factor.

Let’s	now	assume	that	methodA	assessment	is	not	constant	but	evaluated	as	O(n).	This
allows	the	second	loop	section	to	result	as	O(n2	*	max(n,c))=O(n2	*	n)=O(n3).	Thus,	the
big	O	will	have	the	value	O(n3)	(that	is,	cubic	complexity).

This	is	a	simplified	explanation	of	how	to	map	our	logic	into	different	required	steps	so
that	we	can	assess	which	logic	is	much	better.	Let’s	pick	one	example	from	our	code	as
follows:

Product[]	allProducts	=		

catalogSessionBean.loadAllActiveProductCatalogByCriteria(new	

SearchCriteria());	//n

for	(Product	allProduct	:	allProducts)	{																							//n

		if(allProduct.getId()==productId){																										//c1

				outputStream.write(allProduct.getImage());

				outputStream.close();

				return;

		}

}

If	we	assumed	that	loading	all	the	categories	is	a	function	that	depends	on	the	product’s
list	size	that	is	evaluated	as	O(n),	in	the	worst	case	scenario,	the	for	loop	will	find	the
product	at	the	end	of	the	list	so	that	the	complexity	is	O(n)	as	well.	The	inner	loop	logic	is
assumed	to	be	a	constant	(c1).	So	the	whole	complexity	can	be	expressed	as	O(n*n*c1),
which	will	evaluate	as	O(n2).	Let’s	now	modify	the	code	a	bit	and	reassess	the	complexity,
as	follows:

Product	product	=	catalogSessionBean.findProductById(productId);//n

if(product	!=null){										//c1

		outputStream.write(product.getImage());

		outputStream.close();

		return;

}

In	the	preceding	modified	code,	assuming	to	find	the	product	using	the	indexed	product	ID
column	will	take	O(log(n)),	which	is	the	worst	case	for	B-Tree	search	(used	to	retrieve	the
indexed	database	column).

The	if	condition’s	logic	complexity	is	constant	(c1),	so	the	overall	complexity	is
O(log(n)*c1),	which	will	be	evaluated	as	O(log(n)).	This	is	definitely	more	efficient	than
the	old	code	with	O(n2).

Another	aspect	here	is	the	memory	usage	in	the	first	solution	that	requires	the	loading	of
all	the	products	compared	to	that	of	selected	products	in	the	second	solution.

Most	of	the	known	algorithms	have	identified	the	complexity	and	we	need	not	waste	any
time	calculating	their	performance.	For	example,	the	selection,	insertion,	bubble,	and
quick	sorts	have	their	worst	case	equal	to	O(n2),	while	merge	and	heap	sorts	have	their
worst	case	as	O(n	log	n).

If	we	have	our	own	logic	that	does	not	map	to	an	existing	algorithm,	we	need	to	define
exactly	what	we	need	to	achieve	(that	is,	inputs	and	outputs)	and	answer	certain	questions
related	to	the	problem	domain	so	that	we	can	find	the	best	solution	for	our	problem.

The	following	are	example	questions:

Why	do	we	need	this?	Can	we	remove	all	this	logic?	Can	we	do	this	in	another	way?
What	are	the	possible	alternatives?	For	example,	can	we	get	the	list	ordered	and
ready	for	search?	Can	we	search	the	database	using	the	indexed	columns?
Can	we	combine	two	algorithms	(for	example,	sorting	and	binary	search)	to	fix	the
problem	more	efficiently?

The	analysis	gives	us	a	simplified	way	to	evaluate	different	solutions	and	have	the	most
optimized	logic	for	our	problem.

Note
We	have	covered	here	the	simplified	view	of	evaluating	an	application	logic.	You	may
further	read	on	algorithm	complexity	analysis	to	understand	how	to	deal	with	different
application	algorithms.

Our	first	performance	fixing	strategy
The	correct	identification	of	code	hot	spots	areas	is	our	way	of	fixing	them.	We	explored
different	behavior	for	application	bottlenecks	or	hot	spots	and	grouped	them	into	different
root	causes.	Then,	according	to	the	root	causes,	we	can	propose	our	fix.

In	the	subsequent	chapters,	we	will	modify	this	strategy	a	little,	but	for	now,	because	we
have	learned	different	CPU	time	profiling	readings,	let’s	draft	our	fixing	strategy.

In	the	following	diagram,	we	have	to	answer	the	first	question,	which	determines	our
strategy	flow:	Is	the	method	performance	bad?	or	is	it	the	method	invocation	count?:

Fixing	the	application	logic/algorithm
This	should	be	our	first	step,	as	mentioned	before.	The	issue	could	have	been	caused	by
method	logic	or	an	application	design	fault	that	causes	huge	method	invocations.

In	our	examples,	instead	of	loading	all	the	collections	to	get	the	required	object,	we	will
retrieve	what	we	actually	need	by	using	its	ID.

Also,	instead	of	adding/removing	products	to/from	a	basket,	impacting	the	product	stock
volume,	this	should	be	handled	in	the	cached	in-memory	product	stock	in	the	centralized
location	and	should	only	be	committed	to	the	database	if	the	order	has	been	placed.	This	is
an	application	design	change	rather	than	method	tuning.

Poor	application	logic	includes	bad	programming	practices,	such	as	using	wrong
collections,	inefficient	string	manipulations,	and	excessive	logging	(especially	for	XML
logging).

We	need	to	perform	the	code	inspection	if	the	level	of	detail	does	not	appear	in	the
profiling	snapshot.

Adding	support	for	caching
If	the	hot	spot	area	is	due	to	performing	some	calculations	that	can	be	cached	or	even	done
in	advance,	that	is,	prior	to	a	customer	request,	then	we	can	typically	cache	these
calculations.	Also	if	it	is	involved	with	loading	data	from	external	systems	such	as
database	or	integrated	system,	we	need	to	cache	this	data	as	well	whenever	it	is	possible.

Caching	generally	can	be	implemented	on	two	levels:	implicit	caching	that	comes	with
the	product,	for	example,	database	caching,	and	explicit	application	caching,	which	we
implement	and	customize	according	to	our	application	needs	and	we	need	to	handle	all	its
configurations	and	policies.

In	all	these	cases,	we	need	to	implement	the	cache	appropriately.	This	means	we	need	to
select	a	suitable	caching	size,	pick	the	proper	invalidation	policy	that	fits	our	application
and	data	type,	select	a	good	replacement	policy,	monitor	the	cache,	and	deploy	it	correctly.

Caching	is	one	of	the	magic	bullets	that	improve	an	application’s	performance;	however,	if
not	implemented	correctly,	it	could	worsen	the	situation.	It	could	even	deceive	us	and
disturb	the	customer’s	transactions	if	we	cached	something	that	shouldn’t	be	cached.

It	is	worth	mentioning	that	adding	caching	support	is	one	of	the	decisions	that	needs	to	be
made	carefully	as	it	can	complicate	the	application	design,	mainly	because	of	the
invalidation	of	the	cache,	object	versioning,	and	locking	strategy.

Note
In	Chapter	10,	Designing	High-performance	Enterprise	Applications,	we	discuss	caching
design	aspects	in	more	detail.

Optimizing	the	performance	of	resources
If	the	method	has	no	issue	but	the	interfacing	resource	does,	for	example,	a	database
query,	check	the	performance	of	this	system/resource	and	see	what	can	be	fixed	outside
our	code	to	resolve	the	current	performance	issue.

The	most	common	example	is	the	need	to	add	a	database	table	column	index	for	the	most
common-used	queries	(by	guidance	of	a	query	execution	plan).

We	can	also	change	the	database	interactions,	for	example,	using	batch	inserts/updates
instead	of	single	database	statements.	Also,	in	cases	of	huge	data	manipulations,	we	can
try	to	use	the	bulk	upload	feature	available	in	most	of	the	existing	database	engines.

Implementing	concurrency	or	multithreading
This	is	a	good	option	to	consider	to	improve	the	performance	by	introducing	concurrent
processing	into	our	low-performing	code,	if	not	already	in	place.	We	shouldn’t	jump	to
this	solution,	except	after	performing	the	maximum	possible	tuning	of	the	code	first.	This
should	be	done	carefully,	taking	into	our	consideration	that	not	all	the	application	logic
can	run	concurrently,	especially	if	data	dependency	exists.

We	need	to	follow	the	ensuing	steps	to	implement	multithreading	in	our	application:

1.	 Identify	the	code	areas	that	need	parallel	execution
2.	 Understand	data	dependency
3.	 Distribute	the	tasks	among	different	threads	with	minimal	data	dependency
4.	 Collect	the	results	of	all	the	tasks

The	implementation	should	use	one	of	the	managed	concurrency	features	in	Java	EE	7,
discussed	in	Chapter	2,	Understanding	Java	Fundamentals.

Using	asynchronous	methods
One	of	the	possible	ways	to	resolve	the	performance	issue	is	to	push	the	logic	from	the
bottleneck	method	to	an	asynchronous	method	(that	is,	move	some	of	the	logic	to	run
behind	the	scene	and	respond	to	the	customer	without	waiting	for	the	execution)	so	that
the	performance	is	improved	from	the	customer’s	perspective.

Definitely	not	all	application	scenarios	will	fit	this	approach.	This	also	shouldn’t	be	done
unless	all	other	ways	to	resolve	the	issue	don’t	produce	any	performance	gain.	This	is
because	pushing	poor	performing	tasks	behind	the	scene	will	consume	the	application’s
resources	and	subsequently,	impact	the	application’s	performance.

In	some	cases,	we	need	to	put	this	request	in	a	queue	for	later	processing	so	that	it	doesn’t
get	lost.	Most	common	scenarios	for	this	is	dealing	with	external	systems	such	as	e-mail,
JMS,	and	WebServices.	These	systems’	response	time	remains	undetermined	and	can
affect	our	application’s	response	time	to	the	customers.	So	adding	the	request	to	a	local
queue,	implementing	a	retry	mechanism,	and	later	notifying	the	customer	with	the
progress	can	resolve	these	cases.

Note
As	a	general	optimization	rule,	we	need	to	configure	and	tune	different	timeout	settings
for	all	application	interfacing	layers,	for	example,	database	connection	timeout,
transaction	timeout,	and	so	on.

In	JEE	7,	many	application	components	support	out-of-the-box	asynchronous	invocations,
such	as	Servlets	and	EJBs.	We	discussed	this	in	detail	in	Chapter	2,	Understanding	Java
Fundamentals.

Summary
In	this	chapter,	we	covered	CPU	time	analysis	using	profilers.	We	used	NetBeans,	JMC,
and	JProfiler.	We	started	with	how	to	read	and	interpret	CPU	profiling	results,	then	we
covered	the	application’s	hot	spots	due	to	method	self-time	and/or	invocation	counts.

We	also	covered	some	possible	root	causes	for	hot	spot	areas	using	simple	examples	and
defined	the	first	draft	of	our	performance	fixing	strategy.

In	the	subsequent	two	chapters,	we	will	cover	the	missing	parts	related	to	concurrency	and
memory	profiling	so	that	we	can	complete	our	strategy	more	generically.

In	the	next	chapter,	Chapter	7,	Thread	Profiling,	we	will	detail	thread	profiling	by
covering	different	tools	and	how	to	read	and	interpret	the	profiling	results.	Then,	we	will
pick	some	common	potential	threading	issues	for	further	discussion	and	update	our	draft
fixing	strategy	a	bit	more.

Chapter	7.	Thread	Profiling
In	this	chapter,	we	continue	what	we	started	in	Chapter	6,	CPU	Time	Profiling,	by
analyzing	the	output	of	different	profiler	tools.	In	the	previous	chapter,	we	discussed	the
CPU	and	time	profiling	results,	and	in	this	one,	we	elaborate	on	thread	profiling.

We	also	cover	some	related	topics	such	as	reading	thread	dumps	and	detecting	the	root
cause	of	why	an	application	hangs.

In	this	chapter,	we	cover	the	following	topics:

How	to	read	and	interpret	thread	profiling	results
Using	thread	dumps
Identifying	potential	threading	issues
Detecting	an	application’s	hang	location
Further	improvements	to	our	fixing	strategy

Determining	when	to	use	thread	profiling
Thread	profiling	is	mainly	concerned	with	exploring	the	different	states	of	an	application
thread	during	the	profiling	period.	This	determines	whether	our	application	is	healthy.

It	helps	us	determine	issues	that	prevent	different	application	threads	from	performing	the
required	tasks.	So,	for	example,	if	threads	are	blocked	most	of	the	time,	the	application
execution	power	is	reduced.

In	web	applications,	each	user	gets	one	or	more	threads	in	each	request	to	retrieve	the
required	data	from	the	application.	These	threads	are	taken	from	the	application	server
thread	pool	to	serve	the	user.	They	are	then	returned	to	the	pool,	where	they	are	idle	and
ready	to	serve	another	user	request.

If,	for	some	reason,	the	thread	takes	a	considerable	amount	of	time	to	serve	a	user	request,
their	return	to	the	pool	is	delayed.

When	most	of	the	application	threads	are	engaged	in	users’	requests,	the	application’s
ability	to	respond	to	new	users	diminishes.	To	avoid	this	situation,	we	need	to	optimize
our	response	to	the	user	(that	is,	the	requester)	so	that	the	threads	can	immediately	return
to	the	pool	to	serve	new	requests.

One	of	the	factors	that	could	lead	to	this	situation	is	thread	competition	for	different
resources.	This	is	another	aspect	that	we	look	into	during	thread	profiling.

Exploring	the	different	thread	profiling
options
In	the	previous	chapter,	we	discussed	the	CPU	and	time	profiling	by	discussing	the
available	profiling	options.	We	start	this	chapter	with	the	different	thread	profiling	options
available	in	NetBeans,	JProfiler,	and	Java	Mission	Control.

Thread	monitoring	using	NetBeans
Start	the	NetBeans	IDE,	select	our	project	HighCPU	and	from	the	Profile	menu,	click	on
Profile	Project.	A	pop-up	dialog	box	will	open,	displaying	the	three	available	options.
Select	Monitor	to	see	the	different	available	options	for	thread	profiling	as	shown	in	the
following	screenshot:

As	we	can	see	in	the	previous	screenshot,	the	three	main	options	available	in	the	NetBeans
thread	profiling	are	as	follows:

Enable	threads	monitoring
Sample	threads	states
Enable	lock	contention	monitoring

We	see	that	the	overhead	is	not	affected	by	selecting	the	different	options	available.	This	is
good	for	our	profiling	results.

Threads	monitoring	is	used	to	monitor	the	threads	when	an	application	starts.	Sample
threads	states	updates	the	thread	states	periodically	and	Enable	lock	contention
monitoring	shows	the	threads’	lock	contention	(that	is,	competition	between	the	threads
and	the	object’s	monitor).

Note
The	HighCPU	project	is	the	example	cited	in	Chapter	4,	Monitoring	Java	Applications.	You
can	download	it	from	the	Packt	website.

Select	all	the	options	and	execute	the	application.	We	get	a	snapshot	of	our	profiling
results	to	understand	the	different	profiling	options.	Let’s	start	by	using	only	five	threads
as	the	thread	pool	size	in	the	HighCPU	project,	as	shown	in	the	following	code,	so	that	we

can	trace	all	our	application	threads	easily:

public	class	HighCPU	{

…

		ExecutorService	execSvc	=	Executors.newFixedThreadPool(5);

…

}

The	profiling	results	will	look	similar	to	what	is	shown	in	the	following	screenshot	(thread
color	reflects	its	status):

As	is	shown,	the	profiling	results	show	the	five	threads	of	our	thread	pool	with	thread	IDs:
from	pool-1-thread-1	to	pool-1-thread-5.	If	we	look	back	at	the	remaining	application
threads	in	the	preceding	screenshot,	we	identify	the	following	threads:

main:	This	thread	is	the	main	application	thread
Finalizer:	This	thread	is	responsible	for	the	object’s	finalization,	pulls	objects	that
are	waiting	for	finalization,	and	calls	the	finalize()	method	of	these	objects
Reference	Handler:	This	is	a	memory	management	thread	that	is	responsible	for
handling	different	object	references
DestroyJavaVM:	This	thread	is	responsible	for	the	JVM	termination
Attach	Listener:	This	thread	listens	for	the	client’s	agent	and	attaches	the	request	to
the	JVM	for	the	purpose	of	profiling	and	debugging
Signal	Dispatcher:	This	thread	is	responsible	for	routing	fired	events	(the	OS
signals)	to	their	own	components

All	these	threads	are	the	system’s	or	JVM	threads	(that	is,	the	daemon	threads)	that	control
the	application’s	behavior	or	perform	background	activities	such	as	memory	management.
The	remaining	threads	are	the	application	threads	(that	is,	user	threads),	including	the
parent	thread	for	all	the	user	threads.

Note

Daemon	thread	versus	user	thread

In	Java,	we	have	two	types	of	threads:	the	daemon	threads,	which	perform	background
activities	such	as	garbage	collection,	and	the	user	threads,	which	are	created	from	the
parent	thread	(it	is	also	a	user	thread).

As	the	main	thread	is	a	user	thread,	by	default,	all	the	threads	created	from	inside	it	are
user	threads.	To	create	a	daemon	thread,	a	call	to	setDaemon(true)	must	be	invoked	before
starting	the	thread	execution;	otherwise,	IllegalThreadStateException	will	be	thrown.

The	main	difference	between	both	types,	other	than	the	function,	is	that	JVM	does	not
wait	for	the	termination	of	the	daemon	threads,	that	is,	it	terminates	once	the	last	user
thread	ends	the	execution.

We	also	see	the	different	available	thread	states	as	follows:

Running	(green):	This	denotes	that	the	thread	is	running
Sleeping	(purple):	This	shows	that	the	thread	is	sleeping	in	response	to	the	call	of	the
Thread.sleep()	method
Wait	(yellow):	This	indicates	that	the	thread	is	waiting	in	response	to	the	call	of	the
object.wait()	method
Park	(orange):	This	implies	that	the	thread	is	parking	and	waiting	for	permission	to
continue	with	the	execution
Monitor	(red):	This	means	the	thread	is	blocked	and	waiting	for	an	object	monitor

If	we	look	back	at	our	thread	profiling	results,	we	identify	that	our	application	was	a
healthy	one	and	most	of	the	execution	time	is	spent	in	the	thread	running	status.	From	the
thread	profiling	perspective,	this	is	our	primary	target	in	performance	tuning.

We	move	to	the	next	tab,	Table,	where	thread	details	are	displayed	with	the	percent	of
time	spent	on	each	thread	status.	In	the	details	section,	this	information	is	graphically
represented.

Let’s	now	set	the	thread	pool	size	back	to	200	using	the	following	code:

ExecutorService	execSvc	=	Executors.newFixedThreadPool(200);

Profile	the	application	again	(select	Enable	lock	contention	monitoring).	We	see	the
blocked	or	monitor	status	dominating	the	thread	results	in	the	Lock	Contention	results	as
shown	in	the	following	screenshot:

In	the	Lock	Contention	view,	if	we	expand	each	thread,	it	will	point	to	the	monitor
object,	which	causes	these	waits	to	get	its	lock/monitor;	in	our	case,
java.io.PrintStream.

From	this	exercise,	we	conclude	that	increasing	the	thread	pool	size	invokes	competition
over	the	PrintStream	object.	This	reduced	the	application’s	speed,	as	most	of	the	thread
execution	time	was	spent	in	waiting	to	obtain	this	object	monitor.	So	we	always	need	to
set	a	proper	size	for	our	thread	pool,	as	we	will	see	later	in	this	chapter.

Thread	monitoring	using	JProfiler
Let’s	now	attach	JProfiler	to	this	project	to	explore	the	different	options	available	for
thread	profiling.	From	inside	NetBeans,	select	HighCPU	from	the	Project	Explorer	view,
open	the	Project	properties	window,	and	add	the	following	VM	Option	for	the	JProfiler
agent	in	the	Run	section	(this	will	vary	according	to	your	installation	path):

-agentpath:D:/PROGRA~1/JPROFI~2/bin/windows/jprofilerti.dll=port=8849

If	we	execute	the	project	now,	we	see	the	following	messages	in	the	Output	window,
which	means	the	project	is	waiting	for	the	JProfiler	connection	to	resume	its	execution:

JProfiler>	Protocol	version	38

JProfiler>	Using	JVMTI…

JProfiler>	Waiting	for	a	connection	from	the	JProfiler	GUI…

Now	open	JProfiler	and	from	Start	Center,	navigate	to	the	New	Session	tab	and	select
New	Session.	Then,	select	Attach	to	profiled	JVM	and	click	on	OK.	The	Session
settings	window	will	show	up	and	ask	for	the	initial	profiling	settings	to	be	either	in	the
sampled	or	instrumental	mode.

Select	any	mode	and	proceed	to	the	next	settings	dialog	box.	Click	on	OK	to	start
profiling	the	application.	Now,	click	on	the	Threads	tab	(Thread	History).	We	see
JProfiler’s	thread	profiling	results	as	is	shown	in	following	screenshot:

If	we	switch	to	the	Monitors	&	Locks	tab	and	click	on	Current	Monitors,	we	see	a	lot	of

threads	in	the	blocking	status	waiting	to	obtain	the	monitor.	The	table	shows	details	for
Owning	Thread	and	Waiting	Thread	with	their	own	stack	trace	as	shown	in	the
following	screenshot:

In	the	preceding	screenshot,	we	can	easily	locate	the	monitor	lock	issue	because	the	stack
trace	views	suggest	the	blocking	section	in	the	run()	method,	which	is	in	the
java.io.PrintStream.println(java.lang.String)	method.	If	we	open	the	source	code
of	this	Java	SE	method,	we	see	a	synchronized	statement	inside	the	println	method	in	the
java.io.PrintStream	object.	Refer	to	the	following	code:

public	void	println(String	x)	{

		synchronized	(this)	{

				print(x);

				newLine();

		}

}

Another	graphical	representation	of	the	blocked	monitor	objects	is	available.	Click	on
Current	Locking	Graph.	The	following	screenshot	shows	one	monitor	object
java.io.PrintStream	with	all	threads	connected	to	it:

Thread	monitoring	using	Java	Mission	Control
Similar	to	the	other	profiler	tools,	we	perform	profiling	in	Java	Mission	Control	(jmc)	by
attaching	it	to	any	running	Java	process.	However,	we	need	to	add	the	following	JVM
parameter	to	enable	the	commercial	flight	recorder	feature	in	the	running	JVM:

-XX:+UnlockCommercialFeatures	-XX:+FlightRecorder

If	we	are	profiling	web	application,	the	application	server	must	be	configured	with	these
parameters	so	that	we	can	use	the	JMC	with	this	application	server’s	JVM.

We	then	use	one	of	the	two	available	options:	Flight	Recorder	or	MBean	Server.	The
JMC	Flight	Recorder	option	has	several	effective	graphical	representation	views,
covering	most	of	the	areas	in	our	Java	application.	One	of	these	views	is	the	Thread	tab,
where	we	see	a	lot	of	different	features	available.	The	next	screenshot	is	obtained	using
the	offline	flight	recording	of	our	HighCPU	project	by	adding	the	following	third
parameter:

-XX:StartFlightRecording=duration=30s,filename=d:/recording.jfr

Refer	to	the	following	screenshot:

As	shown	in	the	previous	screenshot,	we	have	several	different	options	for	thread	data,

including	Overview,	Hot	Threads,	Contention,	Latencies,	Thread	Dumps,	and	Lock
Instances.

These	features	are	similar	to	those	discussed	in	the	previous	tools.	For	example,	if	we
open	the	Latencies	tab,	we	see	that	during	the	recoding	period,	the	application	thread
latencies	are	mostly	in	the	blocked	status	and	some	are	waiting	for	the	monitor	as	shown
in	the	following	screenshot:

If	we	switch	to	the	Lock	Instances	tab,	we	see	almost	all	the	threads	are	waiting	for	the
java.io.PrintStream	object	as	shown	in	the	following	screenshot:

Reading	the	thread	profiling	results
Now	let’s	open	the	ExampleTwo	application,	profile	it	using	the	NetBeans	profiler,	and
execute	the	JMeter	load	testing.

Note
The	ExampleTwo	application	is	the	example	we	used	in	Chapter	5,	Recognizing	Common
Performance	Issues.	You	can	download	the	application	with	its	load	test	plan	from	the
Packt	website.

Once	we	finish	executing	the	performance	test,	we	pick	one	of	the	http-listener	threads
to	check	the	thread	status.	As	is	shown	in	the	following	screenshot,	the	thread	is	parked
and	waiting	for	the	requests.	Also,	during	the	performance	testing,	the	thread	was	healthy,
ranging	from	the	running	and	waiting	status.	Finally,	the	thread	is	back	to	the	parking	state
and	waiting	for	the	next	user	requests	(as	in	the	thread	lifetime	graph	at	the	bottom	of	the
screenshot):

Let’s	now	modify	our	project	a	bit.	In	the	ProductCatalogSessionBean	class,	add	the
following	static	variable:

private	static	Object	MY_LOCK=new	Object();

Modify	the	logic	in	the	updateStock()	method	to	synchronize	this	new	object	and	add	the
sleep	thread	for	2	seconds	to	simulate	a	long	processing	logic	(Note	that	the	method’s
synchronized	statement	is	useless	here;	you	be	asking,	why?):

public	synchronized	boolean	updateStock(ProductStock	stock,int	delta)	{

		synchronized(MY_LOCK)	{

				try	{

						Thread.sleep(2000);

				}	catch	(InterruptedException	ex)	{}

				...

				...

		}

}

Now,	profile	the	project	again	in	the	monitor	mode	by	clicking	on	Enable	lock	contention
monitoring,	and	re-execute	the	load	test	so	that	we	can	have	the	new	profiling	results.

During	the	load	test	execution,	execute	the	following	command	twice	to	thrice	(change	the
filename	each	time):

jstack	PID	>	thread_dump_1.txt

In	the	preceding	command,	PID	is	the	GlassFish	server	process	ID,	so	we	can	get	the
thread	dumps	of	our	application	during	the	load	test.	(We	explain	the	thread	dump	in
further	detail	later	in	this	chapter.	The	JDK	tool	jstack	is	available	in	the	JDK	bin	folder.)

Once	the	load	test	execution	ends,	open	the	Lock	Contention	view	and	the	Threads	view
by	dragging	it	into	a	separate	window	so	that	we	can	simultaneously	see	both	views	as
shown	in	the	following	screenshot:

In	the	Lock	Contention	view,	the	http-listener	threads	(these	serve	the	user’s	requests)
are	listed	in	the	Lock	Contention	list.	If	we	expand	any	of	them,	we	see	that	the	lock	is
around	the	Object	class	(that	is,	the	MY_LOCK	object).

In	the	Threads	view,	we	see	the	http-listener-1(2)	thread	as	an	example.	The	thread	is
blocked	during	most	of	its	execution	time	and	waiting	for	a	monitor.	If	we	look	at	the
timeline	of	this	thread,	we	see	that	the	thread	starts	with	the	Park	status,	waiting	to	serve

the	user’s	requests,	and	then	is	mostly	blocked	during	the	load	test.	It	then	goes	back	to	the
Park	status	when	the	load	test	execution	is	finished.

In	spite	of	the	large	value	that	the	thread	profiling	has,	as	shown	in	this	analysis,	the
quickest	way	to	deal	with	the	thread	profiling	of	enterprise	applications	is	to	use	frequent
thread	dumps	and	analyze	them.	Let’s	examine	the	thread	dumps	we	get	during	the
execution	of	the	load	test.	We	see	the	following	highlighted	thread	dump	extract:

"http-listener-1(5)"	daemon	prio=6	tid=0x063e3400	nid=0x26f4	waiting	for	

monitor	entry	[0x0772e000]

		java.lang.Thread.State:	BLOCKED	(on	object	monitor)

		at	

osa.ora.dao.ProductCatalogSessionBean.updateStock(ProductCatalogSessionBean

.java:123)

		-	waiting	to	lock	<0x1e4ba5b8>	(a	java.lang.Object)

		-	locked	<0x1f0cddd8>	(a	osa.ora.dao.ProductCatalogSessionBean)

		"http-listener-1(4)"	daemon	prio=6	tid=0x063e2c00	nid=0x1324	waiting	on	

condition	[0x0756e000]

		java.lang.Thread.State:	TIMED_WAITING	(sleeping)

		at	java.lang.Thread.sleep(Native	Method)

		at	

osa.ora.dao.ProductCatalogSessionBean.updateStock(ProductCatalogSessionBean

.java:123)

		-	locked	<0x1e4ba5b8>	(a	java.lang.Object)

		-	locked	<0x1f1018c8>	(a	osa.ora.dao.ProductCatalogSessionBean)

We	select	two	threads	from	the	thread	dumps	as	an	example.	One	thread	is	BLOCKED	and
the	other	is	TIMID_WAITING	(sleeping).	The	thread	dumps	give	us	an	idea	about	the
current	status	of	our	application	threads.	In	the	next	section,	we	see	how	to	get	thread
dumps	and	analyze	them	in	detail.

Dealing	with	thread	dumps
A	thread	dump	is	a	snapshot	of	the	current	executing	threads	with	their	stack	trace.	It	gives
us	an	overview	of	the	current	threads	being	executed,	and	by	taking	subsequent	snapshots,
we	get	an	idea	about	the	different	activities	that	consume	these	threads.

There	are	many	ways	to	get	thread	dumps,	including	the	use	of	an	application	server
admin	console,	command	lines,	different	tools,	and	MBeans.

Regardless	of	how	we	obtain	thread	dumps,	reading	them	is	almost	the	same	even	with
some	differences	between	each	of	the	JVM	implementations.	Let’s	try	to	explore	the
different	available	options	to	get	a	thread	dump	and	then	describe	its	content.

Taking	a	thread	dump	using	the	operating	system
commands
We	can	use	some	options	from	the	operating	system	to	produce	a	thread	dump	for	the
executing	Java	process.	In	this	section,	we	discuss	the	different	ways	to	do	so	in	Windows
and	Linux.

Using	the	keyboard	shortcut	Ctrl	+	Pause	Break
This	combination	produces	the	thread	dump	of	the	current	executing	application	in	the
standard	output	stdout	in	case	the	application	starts	with	the	following	command	line:

java	-jar	HighCPU.jar

Press	Ctrl	+	Pause	Break	and	refer	to	the	following	output:

Full	thread	dump	Java	HotSpot(TM)	Client	VM	(24.45-b08	mixed	mode,	

sharing):

"pool-1-thread-40"	prio=6	tid=0x041cc400	nid=0x134c	runnable	[0x04fee000]

			java.lang.Thread.State:	RUNNABLE

		at	java.util.DualPivotQuicksort.sort(Unknown	Source)

		at	java.util.Arrays.sort(Unknown	Source)

		at	osa.ora.MyThread.run(HighCPU.java:46)

		at	java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown	Source)

		at	java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown	Source)

		at	java.lang.Thread.run(Unknown	Source)

"pool-1-thread-39"	prio=6	tid=0x041cc000	nid=0xbd0	runnable	[0x04ecf000]

			java.lang.Thread.State:	RUNNABLE

		at	osa.ora.MyThread.run(HighCPU.java:44)

		at	java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown	Source)

...

...

"main"	prio=6	tid=0x00b2b800	nid=0x259c	waiting	on	condition	[0x002ff000]

			java.lang.Thread.State:	TIMED_WAITING	(sleeping)

		at	java.lang.Thread.sleep(Native	Method)

		at	osa.ora.HighCPU.main(HighCPU.java:25)

"VM	Thread"	prio=10	tid=0x009ebc00	nid=0x1d84	runnable	

"VM	Periodic	Task	Thread"	prio=10	tid=0x00a79c00	nid=0x215c	waiting	on	

condition	

Heap

...

...

As	is	shown,	when	we	execute	this	command,	the	results	include	an	overview	of	the	heap
memory	states	at	the	end.

Instead	of	having	this	printed	out	in	stdout	(for	example,	the	console	or	file	in	case	the
application	output	is	directed	to	a	file),	we	use	another	way	to	redirect	only	the	JVM
output	to	a	separate	file	using	the	following	JVM	parameter:

java	-XX:+UnlockDiagnosticVMOptions	-XX:+LogVMOutput	-XX:LogFile=jvm.log	-

jar	HighCPU.jar

The	previous	configurations	will	direct	all	the	JVM	output	logs	to	the	jvm.log	file.

We	also	inform	the	JVM	to	print	the	concurrent	locks	owned	by	each	thread	using	the
JVM	command,	-XX:+PrintConcurrentLocks.	The	output	will	look	as	follows:

"pool-1-thread-6"	prio=6	tid=0x01936c00	nid=0x2188	waiting	for	monitor	

entry	[0x

03eaf000]

			java.lang.Thread.State:	BLOCKED	(on	object	monitor)

								at	java.io.PrintStream.println(PrintStream.java:755)

								-	waiting	to	lock	<0x28e700f0>	(a	java.io.PrintStream)

								at	osa.ora.MyThread.run(HighCPU.java:47)

								at	

java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExec

utor.java:886)

								at	

java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor

.java:908)

								at	java.lang.Thread.run(Thread.java:662)

			Locked	ownable	synchronizers:

								-	<0x28e75318>	(a	

java.util.concurrent.locks.ReentrantLock$NonfairSync)

Note	that	the	algorithm	for	thread	deadlock	detection	is	executed	when	we	use	a	thread
dump	in	the	Java	HotSpot	VM.	The	deadlock	detail	will	be	printed	at	the	end	of	the	thread
dump	in	the	following	format:

Found	one	Java-level	deadlock:

=============================

"Thread-1":

		waiting	to	lock	monitor	0x178c766c	(object	0x0390e5f8,	a	

osa.ora.beans.Account),

		which	is	held	by	"Thread-0"

"Thread-0":

		waiting	to	lock	monitor	0x178c694c	(object	0x0390e610,	a	

osa.ora.beans.Account),

		which	is	held	by	"Thread-1"

Java	stack	information	for	the	threads	listed	above:

===

"Thread-1":

		at	osa.ora.beans.Account.transfer(Account.java:56)

		-	waiting	to	lock	<0x0390e5f8>	(a	osa.ora.beans.Account)

		-	locked	<0x0390e610>	(a	osa.ora.beans.Account)

		at	osa.ora.beans.Transfer.run(Transfer.java:39)

		at	java.lang.Thread.run(Thread.java:744)

"Thread-0":

		at	osa.ora.beans.Account.transfer(Account.java:56)

		-	waiting	to	lock	<0x0390e610>	(a	osa.ora.beans.Account)

		-	locked	<0x0390e5f8>	(a	osa.ora.beans.Account)

		at	osa.ora.beans.Transfer.run(Transfer.java:39)

		at	java.lang.Thread.run(Thread.java:744)

Found	1	deadlock.

We	get	the	preceding	result	by	executing	our	DeadLockApp	project	and	the	BankOperation
class	from	the	command	line,	which	will	produce	deadlock	and	cause	the	application	to
hang;	then	press	Control	+	Pause	Break	to	use	the	thread	dump.

Note
DeadLockApp	is	the	example	we	used	in	Chapter	2,	Understanding	Java	Fundamentals.
You	can	download	it	from	the	Packt	website.

The	same	lock	detection	algorithm	is	available	in	the	JRockit	virtual	machine	thread
dump.	It	detects	circular	locks	(that	is,	deadlock)	as	well	as	blocked	and	open	lock	chains.

Sending	SIGQUIT	to	the	Java	process
In	the	Linux	OS,	we	send	a	SIGQUIT	signal	to	a	Java	process	as	follows:

$	kill	-3	PID

In	the	preceding	command,	PID	is	the	Java	process	ID.	This	will	printed	out	the	thread
dump	in	stdout.

Taking	a	thread	dump	using	the	JDK	tools
The	JDK	contains	many	tools	that	can	be	used	to	produce	thread	dumps,	including
jstack,	Java	VisualVM,	and	Java	Mission	Control.

Thread	dump	using	jstack
The	JDK	has	a	tool	to	generate	the	thread	dump,	jstack,	whose	simple	application	can	get
the	thread	dump	of	any	executing	Java	process	using	the	following	format:

jstack	[-l]	PID

In	the	preceding	command,	PID	is	the	Java	process	ID	and	the	–l	parameter	displays
additional	information	about	the	locks.	We	also	direct	the	output	into	a	text	file	using	the
directive	operator,	>.	For	example,	refer	to	the	following	command:

jstack	1000	>	thread_dump.txt

Thread	dump	using	the	Java	VisualVM
We	use	jvisualvm	to	capture	thread	dumps	by	right-clicking	on	the	Java	process
(application)	and	selecting	Thread	Dump	from	the	context	menu	as	shown	in	the
following	screenshot:

This	will	produce	a	thread	dump.	The	context	menu	also	has	the	options	to	generate	the
heap	dump	and	application	snapshot.	The	following	screenshot	shows	the	thread	dump
content:

Taking	thread	dumps	using	an	application’s	server
admin	console/tools
We	use	either	an	application	server’s	admin	console	or	its	packaged	tools	to	get	the
required	thread	dumps.	For	example,	if	we	use	the	WebLogic	application	server,	there	are
many	ways	to	get	the	thread	dumps.

Some	of	the	available	ways	are	as	follows:

Thread	dumps	using	the	administration	console:	Navigate	to	Server	and	select	the
server	name.	Then	navigate	to	the	Monitoring	tab	and	select	the	Dump	threads
stack.	A	thread	dump	will	show	up	in	the	current	browser	window.

Note
The	only	drawback	of	this	method	is	that	it	sometimes	leads	to	a	truncated	or
incomplete	thread	dump,	as	it	shows	the	thread	dump	in	the	browser	window	and	we
need	to	copy	it	into	a	text	file	for	analysis.

Thread	dumps	using	the	JRockit	command:	We	can	get	the	thread	dump	by
executing	the	jrcmd	command	and	passing	print_threads	as	a	parameter	as	shown
in	the	following	command:

jrcmd	PID	print_threads

Thread	dumps	using	the	WebLogic	service	command:	The	WebLogic	service
command	tool,	wlsve,	is	introduced	in	the	WebLogic	Version	10.3.6.	It	can	be	used	in
the	following	format	to	produce	the	required	thread	dump:

wlsve	-dump	-svcname:<service_name>

In	the	preceding	command,	service_name	refers	to	the	WebLogic	service	name.

Taking	a	thread	dump	using	profiler	tools
Almost	all	the	profiler	tools	have	the	ability	to	take	thread	dumps.	We	show	how	you	can
do	this	using	both	JProfiler	and	JMC	as	follows:

Thread	dump	using	JProfiler:	In	the	Threads	section,	there	is	a	tab	named	Thread
Dump,	where	we	can	click	on	the	icon	to	generate	the	thread	dump.	It	will	display	all
existing	threads	with	their	stack	traces.
Thread	dump	using	Java	Mission	Control:	Using	JMC,	we	generate	thread	dumps
by	navigating	to	the	Threads	section	and	clicking	on	the	Thread	Dump	tab	similar
to	what’s	shown	in	the	following	screenshot:

Reading	and	analyzing	the	thread	dumps
Usually,	during	performance	troubleshooting	in	enterprise	applications,	we	take	frequent
thread	dumps	for	analysis.	If	there	is	no	useful	information,	we	can	perform	complete
thread	monitoring	(that	is,	profiling)	as	part	of	our	application	profiling.

The	main	reason	we	start	with	thread	dumps	is	because	obtaining	thread	dumps	is	easier
and	does	not	require	any	agent	to	be	attached	to	the	application	server.

Understanding	the	thread	dump	structure
If	we	understand	the	thread	dump	structure	well,	we	are	able	to	make	the	best	use	of	it.
The	following	is	the	basic	structure	of	the	standard	JVM	thread	dump:

A	header	line	for	each	thread
Stack	trace	for	each	thread	following	the	header
A	blank	line	separating	each	thread	from	the	following	thread

The	header	comprises	the	following	parts:

Header Example

Thread	name "pool-2-thread-1"

Is	it	a	thread	daemon? daemon

Thread	priority	(prio) prio=6

Thread	ID	(tid) tid=0x1b57d400

Native	thread	ID	(nid) nid=0x1ecc

Thread	status waiting	on	condition

Address	range	of	the	thread	stack [0x1e8df000]

The	following	list	is	a	short	description	of	these	different	fields:

Thread	name:	This	field	is	for	the	the	thread’s	name
Daemon	flag:	This	field	indicates	whether	a	thread	is	a	daemon	thread	or	not,	if	there
is	a	value	“daemon”	that’s	means	it	is	a	daemon	thread,	otherwise	user	thread.
Thread	priority:	This	field	contains	a	numeric	value	that	shows	the	thread	priority
Thread	ID:	This	field	is	the	address	of	a	thread	structure	in	the	memory
ID	of	the	native	thread	(nid):	This	field	is	the	thread	ID	in	the	operating	system	and
maps	to	the	process	ID	in	the	Linux	OS	and	to	the	Windows	thread	in	the	Windows
OS
Thread	state:	This	field	shows	the	current	state	of	the	thread	during	the	thread	dump
extraction
Address	range:	This	field	is	an	estimate	of	the	valid	stack	region	of	the	thread

The	available	thread	states	that	can	be	printed	in	the	thread	dumps	are	summarized	in	the
following	table:

Status Description

RUNNABLE This	means	the	thread	is	currently	being	executed

BLOCKED	(on	object
monitor)

This	indicates	if	the	thread	is	blocked	and	waiting	for	an	object	monitor,	for	example,	a
synchronized	block

WAITING	(on	object
monitor,	on	condition)

This	denotes	that	the	thread	is	waiting	for	another	thread	to	perform	an	action,	namely	the
Object.wait()	method	on	an	object

TIMED_WAITING

(sleeping,	parking)
This	shows	that	the	thread	is	waiting	for	another	thread	to	perform	an	action	for	a	specified
waiting	time,	namely	the	Thread.sleep()	or	LockSupport.park()	method

NEW
This	indicates	that	thread	hasn’t	started	yet,	so	it	does	not	appear	in	the	thread	dump	(in	most
of	the	implementations)

TERMINATED This	means	the	thread	has	exited;	it	does	not	usually	appears	in	the	thread	dump

Analyzing	the	thread	dumps
To	use	thread	dumps	in	our	analysis,	we	take	subsequent	thread	dumps	and	analyze
different	thread	states.	Optimally,	we	take	thread	dumps	when	replicating	the	performance
issues	or	during	load	testing.

The	frequency	of	thread	dumps	should	be	tailored	to	the	performance	issue.	So,	if	a
transaction	takes	12	seconds,	thread	dumps	must	be	scheduled	every	5	seconds	during
issue	replication.	So	we	can	determine	what	the	threads	are	doing	across	different	thread
dumps.

Locating	where	threads	are	consuming	more	execution	time	that	required	will	help
identify	the	areas	to	be	fixed.	For	example,	if	some	threads	are	performing	XML
processing	across	different	subsequent	snapshots,	we	have	a	performance	issue	related	to
the	XML	processing	or	invalid	code	that	performs	extra	XML	processing.

The	advantage	of	using	thread	dumps	in	performance	tuning	can	be	summarized	as
follows:

It	is	easy	to	obtain	the	thread	dump	using	many	different	methods
It	does	not	cause	any	impact	or	overhead	on	the	application’s	execution
It	does	not	require	attaching	an	agent	to	the	application’s	server
It	can	be	taken	from	production	servers	without	security	concerns
It	can	be	analyzed	without	much	understanding	of	the	application
Good	analysis	can	be	performed	using	some	of	the	available	tools

The	main	goals	we	need	to	focus	on	while	performing	the	thread	dump	analysis	are	as
follows:

Detecting	deadlocks	where	threads	are	waiting	for	the	locks	that	are	held	by	each
other,	that	is,	circular	locks.	This	can	be	simply	detected	by	identifying	what	different
threads	are	blocked	for.	An	example	of	this	is	the	DeadLockApp	project.
Rough	detection	of	HotSpot	areas	by	taking	consecutive	thread	dumps.	This	will	be
detected	by	seeing	the	same	threads	in	the	same	areas	or	waiting	for	certain	objects
(that	is,	long	running	threads	performing	the	same	action	or	waiting	for	the	same
locks).	An	example	of	this	is	the	ExampleTwo	project	after	adding	the	static	lock
object.
A	quick	overview	of	the	application	status,	where	we	can	identify	the	available
threads,	the	thread	locks,	and	so	on.

Using	Thread	Dump	Analyzer
One	of	the	advantages	of	using	the	thread	dumps	is	that	we	can	use	some	tools	that
perform	advanced	analysis	of	taken	thread	dumps;	one	example	for	these	tools	is	Thread
Dump	Analyzer	(TDA).

Note
TDA	can	be	downloaded	from	the	following	URL:	https://java.net/projects/tda

The	advantage	of	using	such	tools	is	that	it	makes	the	thread	dump	readable	and	we	can
quickly	conclude	the	results.	The	following	screenshot	shows	the	TDA	analysis	of	three
files	obtained	during	the	execution	of	the	load	testing	in	the	ExampleTwo	project:

The	tool	can	also	detect	the	long	running	threads	for	us,	which	can	help	in	identifying	the
HotSpot	areas	in	our	application,	especially	if	we	use	thread	dumps	with	a	suitable
frequency	to	the	tracked	issues.

In	fact,	this	thread	dump	is	just	a	way	to	detect	applications’	performance	issues,	but	we

https://java.net/projects/tda

won’t	depend	on	thread	dumps	to	identify	the	HotSpot	areas	in	our	application,	as	we	have
already	seen	other	accurate	ways,	such	as	CPU	profiling	and	HotSpot	detections.

Exploring	potential	threading	issues
Threading	issues	are	not	common	in	Java	Enterprise	applications	in	comparison	to	the
standalone	applications;	a	web	application	is	a	multithreaded	application	by	nature	and
each	user	request	is	served	by	a	separate	thread.	This	means	threading	issues	in	web
applications	are	mostly	related	to	thread	safety	or	concurrency-related	issues.

Generally,	we	classify	threading	issues	into	performance	issues	(thread	blocking)	and
functional	issues	(data	corruption).	Both	these	issues	are	related	to	each	other.	In	the	next
section,	we	will	discuss	threading	performance	issues.

Threading	performance	issues
Threading	performance	issues	affect	the	application’s	performance.	The	next	section	will
cover	the	examples	of	these	issues.

Threading	deadlock
If	we	have	threads’	circular	dependency	on	acquiring	the	monitor	of	different	objects,	we
can	have	a	deadlock.	Deadlocks	can	be	resolved	in	many	ways	such	as	using	the	explicit
Lock	interface.	In	some	cases,	it	will	require	changes	to	the	underlying	application’s
design	or	algorithm	to	resolve	them.

Deadlocks	are	easily	identified	using	the	deadlock	detection	algorithm	for	a	thread	dump
using	thread	analyzing	tools	or	even	by	inspecting	thread	dumps	manually.	We	can	also
use	the	profiler	tools	to	diagnose	thread	deadlocks.

Blocked/starving/stuck	threads
If	we	have	some	threads	holding	up	the	monitoring	of	objects	for	a	long	time,	and	other
threads	are	waiting	to	be	monitored,	we	can	have	the	blocked	threads.	It	can	be	extended
up	to	starvation;	this	occurs	commonly	when	dealing	with	external	resources.

We	can	identify	the	blocked	threads	by	performing	the	thread	profiling,	as	seen	previously,
or	by	taking	subsequent	thread	dumps.

The	WebLogic	application	server	can	stop	the	execution	of	threads	that	exceed	certain
configured	time	and	log	them	as	stuck	threads	with	their	full	stack	trace.	We	can	analyze
them	and	identify	why	such	threads	take	this	long	(the	default	Weblogic	stuck	thread	value
is	600	seconds).

Low/over	threading
Certain	parts	of	our	application	can	require	extensive	processing	that	can	be	ideally
distributed	among	many	threads.	To	fasten	this	processing,	the	distributed	tasks/data	must
be	independent	to	utilize	the	benefits	of	this	concurrent	execution.

At	the	same	time,	creating	too	many	threads	(in	particular,	the	standalone	application)	can
harm	the	application’s	performance	more	than	we	can	expect.	In	our	example,	HighCPU,
we	concluded	the	same	(using	five	threads	is	faster	than	using	200	threads	in	our
experiment)	mainly	because	of	thread	blocking	over	common	resources	(such	as
java.io.PrintStream).

In	fact,	this	is	not	a	big	concern	in	web	applications.	However,	as	a	high-level	rule,	for	any
Java	application	to	best	utilize	the	CPU	power	and	reduce	the	context	switching	overhead,
concurrent	executing	threads	should	ideally	match	the	number	of	cores	in	our	CPU,	that	is,
Runtime.getRuntime().availableProcessors()±1.	The	more	the	threads,	the	more
context	switching.

If	threads	are	not	competing	over	resources	(as	in	web	applications),	we	can	increase	the
thread	size,	maybe	to	double	or	triple	the	number	of	cores	or	even	more.	The	limiting
factor	in	web	applications	is	usually	the	available	memory	size.	This	is	because	each

thread	requires	allocated	memory	for	its	stack	plus	the	memory	related	to	runtime	object
allocation	(heap	memory).

We	will	discuss	this	in	more	detail	in	Chapter	8,	Memory	Profiling.	While	dealing	with
memory	profiling,	we	must	be	cautious	when	creating	too	many	threads	in	our	application,
as	this	can	push	the	application	toward	instability,	especially	if	unmanaged	threads	are
used.	(We	will	discuss	this	later	in	this	chapter.)

Threading	memory	issues
One	of	the	potential	issues	in	multithreading	is	memory	errors.	Threads	use	two	main
aspects	of	memory:	the	thread	stack	and	heap.	Each	thread	has	its	own	stack	size,	which	is
configured	by	the	–Xss	JVM	parameter.	The	default	value	is	1	MB;	the	value	is	usually
tuned	according	to	the	application	needs.

At	the	same	time,	threads	share	the	heap	for	all	runtime	variables,	so	creating	too	many
threads	can	cause	a	memory	issue.	We	will	discuss	the	different	reasons	for
OutOfMemoryError	in	Chapter	8,	Memory	Profiling.

Note
To	identify	any	JVM	flag	value,	we	can	use	one	of	the	following	ways:

java	-XX:+PrintFlagsFinal	during	the	JVM	startup
jinfo	<option>	<pid>	to	connect	to	any	running	JVM	(from	the	JDK	tools)

The	<option>	parameter	is	one	of	the	following	values:

-flag	<name>:	This	value	is	used	to	print	the	named	VM	flag	value
-flag	[+|-]<name>:	This	value	is	used	to	enable	or	disable	the	named	VM	flag
-flag	<name>=<value>:	This	value	is	used	to	set	the	named	VM	flag	to	a	given
value

Refer	to	the	following	example:

jinfo	-flag	ThreadStackSize	7880

If	the	output	of	the	tool	is	-XX:ThreadStackSize=0,	it	means	the	default	JVM	stack	size
for	this	operating	system.

Using	unmanaged	threads
Unmanaged	threads	is	a	traditional	web	application	issue.	Invoking	an	unmanaged	thread
is	prohibited	by	different	Java	specifications.	People	used	to	use	an	application	server’s
custom	libraries	to	avoid	using	threads	directly.

In	Java	EE	7,	this	issue	has	been	resolved	by	introducing	the	managed	threads	concept	in
the	Java	EE	specifications.	Unmanaged	threads	have	a	lot	of	issues,	including	thread	safe
variables,	locks,	security	vulnerabilities,	and	so	on.

Also,	unmanaged	threads	contribute	to	performance	overhead	because	of	the	cost
associated	with	creating	these	threads,	while	in	the	managed	thread	pool,	the	container
recycles	these	threads.

An	additional	benefit	of	using	the	managed	threads	is	that	it	lets	the	container	manage	the
available	resources	efficiently	by	having	a	managed	thread	pool.	Thus,	we	do	not
encounter	out-of-memory	errors	easily.

Detecting	the	root	cause	of	a	hung	application
An	application	can	hang	for	various	reasons,	including	over-utilization	of	the	CPU	(100
percent),	memory	utilization,	thread	deadlocks,	and	so	on.

To	identify	the	CPU	utilization	issue,	we	can	get	the	CPU	states	using	a	command-line
tool,	such	as	the	typeperf	or	top	command	(as	clarified	in	Chapter	4,	Monitoring	Java
Applications),	or	by	using	CPU	and	time	profiling	results	(as	seen	in	Chapter	6,	CPU	Time
Profiling).

For	memory	issues,	we	can	use	a	heap	memory	dump,	profile	application	memory,	or	the
different	utility	commands,	as	we	will	see	in	Chapter	8,	Memory	Profiling.

Finally,	for	deadlocks	or	unknown	reasons,	we	can	use	one	of	the	following	methods	to
determine	the	location	of	the	hang.

Detecting	the	hang	location	using	thread	dumps
As	we	discussed	earlier,	thread	dump	can	point	to	the	deadlocks	at	the	end	of	the	thread
dump	using	the	deadlock	detection	algorithm,	or	we	can	do	this	analysis	manually	or	by
using	a	tool,	such	as	TDA.

Detecting	the	hang	location	using	profilers
When	the	application	hangs,	the	hung	method’s	time	will	keep	increasing	in	the	profilers,
so	we	can	determine	the	hang	location	(not	in	all	profilers).

Let’s	try	to	execute	our	DeadLockApp	in	the	profiling	mode	using	JProfiler.	Select	the
instrumental	mode.	We	can	see	that	the	method	time	is	increasing	for	the	application	that
has	hung.	In	the	following	screenshot,	two	subsequent	shots	with	the	increasing	method
time	is	shown,	suggesting	the	root	cause	method	of	the	hung	application:

Also,	if	we	switch	to	the	Monitor	and	Locks	tab,	and	click	on	Current	Locking	Graph,

we	will	see	the	following	typical	deadlock	graphical	representation	that	can	help	us	in
diagnosing	our	locking	root	cause:

Enhancing	our	fixing	strategy
Let’s	modify	our	draft	fixing	strategy,	which	we	introduced	in	previous	chapter,	to	reflect
our	understanding	of	the	threading	issues.	Some	parts	related	to	threading	already	existed
in	the	strategy,	such	as	Use	multithreading	or	Push	it	asynchronous.

We	will	only	add	the	resolving	thread	blocking/deadlock	and	give	it	a	higher	priority	over
the	method	logic/design	analysis,	which	is	the	possible	root	cause	for	both	and	needs	to	be
excluded	before	we	proceed	with	these	aspects,	as	shown	in	the	following	modified
diagram:

Fixing	thread	deadlocks	and	thread	blocking
When	diagnosing	the	thread	deadlock	or	blocking,	we	should	focus	on	resolving	the
following	aspects	before	we	highlight	a	HotSpot	method:

Fixing	thread	blocking	by	modifying	the	number	of	threads,	changing	shared
resources,	pooling	the	resources,	redesigning	the	threading	data	distribution	and
dependencies,	and	so	on.
Deadlocks	can	be	resolved	by	using	the	explicit	locking	instead	of	the	implicit
locking	or	any	other	ways	of	synchronization.	Also,	we	need	to	check	whether	we
really	need	this	locking.

We	now	have	a	much	more	mature	draft	strategy	that	will	be	completed	in	the	next	chapter
after	discussing	the	memory	issues	and	different	ways	to	diagnose	and	resolve	them.

Summary
In	this	chapter,	we	covered	thread	analysis	using	different	profilers.	We	used	the	NetBeans
profiler,	JMC,	and	JProfiler.	We	learned	how	to	read	and	interpret	thread	profiling.

We	also	covered	how	to	take	thread	dumps	using	different	methods	(JDK	tools,
application	server,	and	so	on)	and	how	to	read	and	analyze	thread	dumps	manually	or
using	an	analyzer	tool	(TDA).

We	also	discussed	some	threading	issues	and	the	ways	to	identify	and	resolve	these	issues.
Finally,	we	updated	our	draft	strategy.

In	Chapter	8,	Memory	Profiling,	we	will	discuss	memory	profiling,	how	to	read	and
interpret	the	profiling	results,	deal	with	the	memory	heap	dump,	and	use	Object	Query
Language	(OQL).	We	will	also	discuss	some	memory	issues,	including	out-of-memory
errors.

Chapter	8.	Memory	Profiling
This	is	the	third	chapter	in	the	series	of	chapters	that	explain	the	different	profiling
aspects.	We	covered	CPU	time	profiling	in	Chapter	6,	CPU	Time	Profiling,	and	thread
profiling	in	Chapter	7,	Thread	Profiling.

In	this	chapter,	we	will	cover	memory	profiling;	this	will	include	essential	topics	such	as
garbage	collection,	heap	dumps,	and	Object	Query	Language	(OQL).

At	the	end	of	this	chapter,	we	will	have	our	mature	performance	fixing	strategy	for	Java
enterprise	applications.

The	following	topics	will	be	covered	in	this	chapter:

Reading	and	interpreting	memory	profiling	results	from	different	profiling	tools
Dealing	with	heap	dumps
Using	OQL	to	query	heap	dumps
Understanding	garbage	collection	logs	and	using	visualizing	tools
Identifying	potential	memory	issues
Exploring	different	reasons	for	OutOfMemoryError	scenarios
Updating	our	performance	fixing	strategy

When	to	use	memory	profiling?
Memory	profiling	is	important	in	the	enterprise	application	performance	assessment,	in
particular,	to	detect	any	potential	memory	leaks.	This	inefficient	memory	utilization	can
have	a	direct	impact	on	the	application’s	performance.

We	mentioned	when	discussing	different	performance	testing	aspects	in	Chapter	3,	Getting
Familiar	with	Performance	Testing,	that	during	performance	testing	of	our	application,
memory	and	CPU	utilization	should	be	monitored,	and	if	there	are	any	abnormal	findings
identified,	investigations	should	be	done	to	prevent	any	performance	issues	in	the
production	environment.

The	following	three	aspects	need	to	be	considered	regarding	memory	performance
monitoring:

Memory	profiling
Taking	heap	dump	for	analysis
Garbage	collection	activities	inspection

We	will	see	the	importance	of	each	of	these	three	factors	in	our	performance	tuning	during
our	discussion.

Different	memory	profiling	options
In	Chapter	2,	Understanding	Java	Fundamentals,	we	discussed	memory	structure	in	JVM
and	identified	the	roles	of	many	parts	in	the	memory,	typically	in	Java	HotSpot	VM
memory.

In	this	chapter,	we	will	discuss	memory	profiling	and	will	mainly	look	into	the	following
topics:

Memory	utilization	(free	versus	available	space)
Allocated	objects	(size	and	locations)
Garbage	collection	activities	(and	GC	pauses)
Memory	snapshots	and	leaks	(using	heap	dumps)

We	will	go	through	the	preceding	topics	in	this	chapter,	but	let’s	first	start	with	the
different	available	profiling	options	in	different	profilers,	as	we	did	in	the	previous	two
chapters.

Memory	profiling	using	NetBeans
After	we	start	NetBeans	IDE	and	select	our	HighCPU	project,	select	Profile	Project.	A
pop-up	dialog	will	open	asking	you	to	select	one	of	the	three	available	options.	Let’s	select
the	Memory	option	to	see	the	different	available	memory	profiling	options	in	NetBeans;
this	is	illustrated	in	the	following	screenshot:

As	we	can	see	in	the	previous	screenshot,	the	options	we	need	to	select	for	CPU	profiling
are	either	Quick	(sampled)	or	Advanced	(instrumented).	In	the	sampled	mode,	we
won’t	be	able	to	trace	an	object’s	full	life	cycle	or	stack	trace	for	allocations.	Both	modes
enable	us	to	trace	memory	leaks	and	determine	the	exact	location	for	this	leakage.

The	overhead	is	markedly	affected	by	selecting	the	instrumented	mode	and	checking
Record	full	object	lifecycle	and	Record	stack	trace	for	allocations.

Note
HighCPU	is	the	example	we	used	in	Chapter	4,	Monitoring	Java	Applications.	You	can
download	it	from	the	code	bundle	of	this	book,	which	is	available	at
http://www.packtpub.com/.

Let’s	take	a	snapshot	of	our	profiling	results	so	that	we	can	understand	different	profiling
options:

http://www.packtpub.com/

As	we	can	see	in	the	profiling	snapshot,	if	we	look	into	the	VM	telemetry	overview	graph
(on	the	left	side),	we	can	see	that	the	size	of	the	used	heaps	keeps	growing	and	then
decreases	in	accordance	with	the	garbage	collection	activity	(saw-tooth	appearance)	till
the	application	starts	to	terminate	and	the	used	heaps	go	down.

If	we	look	at	the	third	graph,	we	will	see	that	the	count	of	threads	grows	till	it	reaches	the
maximum	limit,	which	is	the	pool	size	(200),	then	it	terminates	with	the	end	of	application
execution.

In	the	middle	graph,	we	can	see	the	surviving	generation	size	and	the	relative	time	spent
on	garbage	collection.

In	the	Live	Allocated	Objects	column,	we	can	see	the	Thread	class	on	the	top,	since	this
small	application	is	just	doing	thread	pooling	and	some	array	manipulations.	The	Live
Bytes	column	represents	the	size	occupied	by	this	object	in	the	memory,	while	the	Live
Objects	column	represents	the	current	number	of	instances	of	this	class	in	the	memory.

Now,	let’s	open	our	MemoryIssues	project,	which	contains	some	classes	that	produce
different	OutOfMemoryError	scenarios,	so	that	we	can	trace	the	associated	extreme
symptoms	during	memory	profiling.

Note
The	MemoryIssues	project	can	be	downloaded	from	the	code	bundle	of	this	book,	which	is

available	at	http://www.packtpub.com/.

If	we	examine	the	main	class	in	the	MemoryIssues.java	project,	we	can	see	the	following
code	that	determines	which	OutOfMemoryError	scenario	to	invoke	based	on	the	input
arguments;	we	can	also	execute	any	of	these	classes	directly	as	each	of	them	already	has	a
main	method:

												switch	(args[0])	{

														case	"0":

																new	ManyObjects().addObject();

																break;

														case	"1":

																new	BigArrays().createArrays();

																break;

														case	"2":

																new	StackOverflow().callIt(10,	10);

																break;

														case	"3":

																new	TooManyThreads().createThreads();

																break;

												}

Let’s	perform	memory	profiling	for	the	project	after	setting	the	run	argument	as	0	(or	by
profiling	the	ManyObjects.java	class	directly).

Note
To	set	the	runtime	argument	in	a	Java	project	in	NetBeans,	go	to	Project	Properties,
select	Run,	and	add	the	required	arguments	to	the	Arguments	field.

We	can	see	the	following	memory	consumption	snapshot:

In	the	preceding	screenshot,	we	can	see	that	the	used	heap	keeps	growing	until	it	hits	a
good	percentage	of	the	heap	size	and	then	the	heap	expands.	This	is	repeated	four	times
(each	jump	in	the	heap	size	graph	represents	resizing	of	the	heap	to	a	new	larger	size)	till
no	further	scaling	is	allowed	(that	is,	the	maximum	heap	size	is	reached)	and	an	out	of
memory	error	is	thrown,	as	shown	in	the	following	output	messages:

http://www.packtpub.com/

Exception	in	thread	"main"	java.lang.OutOfMemoryError:	Java	heap	space

		at	java.util.Arrays.copyOf(Arrays.java:2245)

		at	java.util.Arrays.copyOf(Arrays.java:2219)

The	heap	settings	have	some	parameters	that	control	this	auto-resizing	including	-Xms	and
-Xmx.	They	represent	the	initial	heap	size	and	the	maximum	allowed	heap	size,
respectively.	We	will	discuss	this	in	the	next	chapter.

The	effect	of	memory	consumption	can	be	reflected	in	the	relative	time	spent	on	garbage
collection	as	seen	in	the	graph	on	the	right	(in	the	previous	screenshot).	The	garbage
collection	activities	increase	to	do	their	best	in	order	to	free	the	heap	memory	for	the
application.

Let’s	now	check	the	garbage	collection	activities	in	details.	In	Project	Properties,	in	the
Run	tab,	add	the	-verbose:gc	parameter	to	VM	Options.	Then,	execute	the	application
again	so	that	we	can	see	the	following	garbage	collection	log	messages	in	the	output
console:

[GC	4416K->3047K(15872K),	0.0070249	secs]

[GC	7463K->4704K(15872K),	0.0111856	secs]

[GC	9067K->8448K(15872K),	0.0163446	secs]

[GC	12864K->11821K(16256K),	0.0118403	secs]

[Full	GC	11821K->10773K(16256K),	0.0404765	secs]

		...

		...

[Full	GC	253439K->253439K(253440K),	0.8030233	secs]

[Full	GC	253439K->253356K(253440K),	0.9967519	secs]

[Full	GC	253439K->253439K(253440K),	0.9940063	secs]

java.lang.OutOfMemoryError:	Java	heap	space

Dumping	heap	to	java_pid3944.hprof…

We	will	discuss	how	to	read	garbage	collection	logs	in	a	separate	section	later	in	this
chapter.	But	for	now,	we	will	briefly	explain	the	garbage	collector	logs.	The	collector
started	by	running	the	minor	collections	(represented	by	GC	in	the	logs),	which	means	that
the	garbage	collector	collected	garbage	for	the	young	generations	only,	but	when	the	heap
size	started	to	get	depleted,	it	invoked	the	full	garbage	collection	activities	(that	is,	Full
GC	in	the	logs)	hoping	to	free	more	memory	space	till	the	application	is	terminated	with
OutOfMemoryError.

We	need	to	compare	the	preceding	screenshot	with	another	profiling	screenshot,	which	is	a
result	of	executing	another	memory	example.	From	the	Projects	explorer	window	of
NetBeans,	select	the	MemoryIssues	project,	expand	it,	and	select	the
TooManyThreads.Java	Java	class,	then	right-click	on	it	and	select	Profile	File.

In	this	class,	we	are	trying	to	create	too	many	threads,	and	as	we	mentioned	in	Chapter	7,
Thread	Profiling,	each	Java	thread	needs	a	stack	allocated	for	it	in	the	memory.

As	this	class	is	trying	to	create	too	many	threads,	the	area	allocated	for	the	thread’s	native
stack	will	be	depleted	and	OutOfMemoryError	will	be	thrown,	as	shown	in	the	following
output	messages:

Exception	in	thread	"main"	java.lang.OutOfMemoryError:	unable	to	create	new	

native	thread

		at	java.lang.Thread.start0(Native	Method)

		at	java.lang.Thread.start(Thread.java:713)

If	we	examine	the	high-level	memory	graph,	we	can	see	the	following	screenshot:

You	can	see	that	the	used	heap	consumption	is	very	small	(less	than	10	MB),	which	is	the
same	for	the	surviving	generation	consumption.	So,	apparently,	there	is	no	memory	issue.
However,	if	we	look	at	the	third	graph,	we	can	see	that	the	number	of	threads	is	hitting
4000,	which	consumes	the	memory	area	allocated	for	thread	stacks.

Now	let’s	do	a	quick	exercise	in	order	to	understand	the	concept	of	stack.	Go	to	Project
Properties	and	add	the	following	code	to	VM	Options:

-XX:ThreadStackSize=50

This	will	change	the	size	of	the	stack	allocated	for	each	thread	from	the	default	value	(1
MB)	to	only	50	KB,	which	will	allow	us	to	generate	many	more	threads	before	the
memory	gets	consumed	(with	this	limited	stack	size,	out	of	stack	space	errors	can	be
frequently	thrown).

When	we	profile	the	application	to	see	the	impact	of	this	change,	the	thread	count	hits
more	than	20,000	threads	before	the	OutOfMemoryError	gets	thrown,	as	we	can	see	in	the
following	screenshot	of	Telemetry	Overview:

We	can	also	specify	the	stack	size	of	the	thread	when	we	create	the	thread	from	the	code
using	the	following	constructor:

public	Thread(ThreadGroup	group,	Runnable	target,	String	name,long	

stackSize)

It	is	important	to	understand	here	that	the	specified	stack	size	is	not	mandatory	for	JVM
and	it	has	the	freedom	to	take	this	only	as	a	suggestion	(as	per	the	Java	documentation).
This	is	especially	the	case	if	we	specified	an	unreasonably	low	value	for	the	platform.
Instead,	the	virtual	machine	may	use	some	platform-specific	minimum	value.	The	same	is
the	case	for	unreasonably	high	values;	it	can	use	a	platform-specific	maximum	value.

Also,	it’s	worth	mentioning	here	that	the	stack	memory	size	is	not	the	only	deterministic
factor	for	the	number	of	threads,	as	the	maximum	threads	that	can	be	created	per	process
is	an	operating	system	configuration	that	need	to	be	properly	configured	in	the	operating
system	if	our	application	needs	to	create	a	huge	number	of	threads.	We	won’t	discuss	this
as	it	is	not	common	in	enterprise	applications	and	is	not	recommended	either.

Memory	profiling	using	JProfiler
To	attach	the	MemoryIssues	project	to	JProfiler,	we	need	to	add	the	required	JVM
parameter	for	the	JProfiler	agent.	From	the	Projects	explorer	view,	open	Project
Properties,	and	under	the	Run	section,	add	the	following	in	VM	Options	for	the	JProfiler
agent	(the	path	of	this	agent	will	vary	according	to	your	installation	path):

-agentpath:D:/PROGRA~1/JPROFI~2/bin/windows/jprofilerti.dll=port=8849

If	we	execute	the	project	now,	we	can	see	the	following	(or	similar)	messages	in	the
Output	window,	which	means	that	the	project	is	waiting	for	the	JProfiler	connection	to
resume	execution:

JProfiler>	Protocol	version	38…

JProfiler>	Waiting	for	a	connection	from	the	JProfiler	GUI…

Now,	open	JProfiler	and	from	Start	Center,	go	to	the	New	Session	tab	and	select	New
Session.	Then,	select	Attach	to	profiled	JVM,	and	click	on	Ok.	The	Session	settings
window	will	be	displayed	asking	for	the	initial	profiling	settings,	that	is,	either	the
sampled	or	instrumental	mode.

Select	the	sampled	mode,	proceed	to	the	next	setting	dialog	box,	and	click	on	the	OK
button	to	start	profiling	the	application.

We	have	three	tabs	in	JProfiler	for	memory	profiling	details:	Live	Memory,	Heap
Walker,	and	Telemetries.	We	will	discuss	heap	walker	in	the	next	section	of	this	chapter
while	we	are	discussing	heap	dumps.

Open	the	Live	Memory	view	to	see	the	different	memory	elements	that	consume	the
heap,	as	shown	in	the	following	screenshot:

In	the	previous	screenshot,	we	can	see	the	Instance	count	of	the	objects	of
java.lang.String	that	we	keep	adding	to	a	list	of	arrays.	The	following	is	the	code	for
this	method:

public	void	addObject()	{

		ArrayList	list	=	new	ArrayList();

		while	(true)	{

				list.add(new	String("Osama	Oransa"));

		}

}

This	can	be	spotted	by	switching	to	Allocation	Call	Tree.

As	we	can	see,	the	addObject()	method	is	responsible	for	allocating	more	than	7	million
objects,	which	consumes	a	memory	size	of	212	MB.

If	we	switch	to	the	Telemetries	tab	and	select	Memory,	we	can	see	a	detailed	graph	of
memory	utilization,	as	shown	in	the	following	screenshot.	We	can	also	select	required
memory	space	in	our	JVM	to	explore.

The	preceding	graph	shows	the	gradual	consumption	of	heap	space	(used	heap	keeps
growing)	and	the	auto-sizing	of	the	heap	size	(each	jump	in	heap	size	represents	heap
resizing)	until	it	reaches	the	maximum	heap	size	configured	for	our	application	(this	is
configured	by	the	-Xmx	JVM	parameter).

If	we	select	the	Recorded	throughput	tab,	we	can	see	the	recorded	objects	per	unit	time
(seconds),	as	shown	in	the	following	screenshot,	without	any	freed	objects	activity	at	all.
This	potentially	means	we	have	a	memory	leak	where	created	objects	are	not	freed.

This	usually	happens	when	we	still	have	a	reference	to	this	object	or	wrong	override	of	the
finalize()	method	in	the	leaked	object	class.

Another	interesting	view	is	the	GC	activity,	where	the	garbage	activity	is	visualized	in	a
nice	graph.	This	helps	us	to	understand	what	the	garbage	collector	was	trying	to	do,	as	we
can	see	it	nearly	hits	100	percent	just	before	the	application	throws	the	OutOfMemoryError
exception.

Garbage	collection	activity	roughly	reflects	the	level	of	memory	consumption,	as	shown	in
the	following	screenshot:

Analyzing	memory	profiling	results
Memory	profiling	analysis,	mainly	contains	the	following	four	aspects:

Memory	spaces	analysis	as	seen	in	the	telemetric	graphs	in	NetBeans	and	JProfiler
Detailed	object	statistics,	as	we	saw	in	the	live	memory	allocation	tables
Garbage	collection	logs	or	visualized	logs
Heap	dump	analysis

We	will	discuss	heap	dump	analysis	in	a	separate	section	in	this	chapter.	Now	let’s	go
through	the	other	three	aspects	one	by	one.

Analyzing	memory	space	graphs
Memory	profiling	graphs	are	useful	to	identify	memory	consumption	by	the	application,
as	we	can	see	in	the	following	screenshot	of	the	telemetry	graph:

The	graph	displays	the	total	heap	versus	the	used	heap;	it	also	reflects	the	application’s
heap	memory	utilization.

Monitoring	the	used	application	memory	over	a	long	period	is	depicted	by	the	saw-tooth
appearance	shown	in	the	previous	graph.	This	is	because	with	each	increase	in	the
memory	utilization,	it	activates	the	garbage	collector	to	free	more	memory.

The	more	the	garbage	collector	activity,	the	more	the	application’s	pause	time,	which	is
something	we	don’t	want	to	have.

If	the	heap	memory	keeps	growing	without	the	saw-tooth	appearance,	then	it	usually
means	that	the	garbage	collector	is	unable	to	free	memory,	and	potential	memory	leakage
exists.	Sometimes,	this	can	happen	with	a	sudden	increase	in	the	application	traffic	(that
is,	peak	time)	where	most	of	the	objects	are	live	and	referenced	objects.

If	the	heap	memory	auto-resizing	(up	and	down	scaling)	is	not	efficient,	we	need	to	revisit
the	JVM	tuning	parameters.	We	will	see	this	in	the	next	chapter	where	we	will	discuss
JVM	tuning.

Finally,	thread	graphs	are	important,	as	we	saw	during	the	MemoryIssues	application
profiling,	where	the	number	of	threads	exceeds	the	memory	space	allocated	for	thread
stacks.	This	requires	the	following	things:

Revisiting	the	application	logic	that	fires	this	huge	number	of	threads
Adjusting	the	application	memory	requirements	(that	is,	capacity	planning)
Tuning	the	JVM	thread	stack	size

Analyzing	detailed	object	statistics
We	have	two	important	aspects	here—class	instance	count	versus	occupied	size.	Let’s	start
by	highlighting	the	following	few	points:

Number	of	live	objects:	This	represents	the	total	count	of	live	objects	that	belongs	to
this	class
Number	of	live	bytes:	This	represents	the	total	number	of	bytes	that	belong	to	the
object	of	this	class
Total	allocations:	This	represents	the	number	of	times	a	new	object	is	allocated	from
this	class

The	most	important	aspect	here	is	the	total	live	objects,	which	represent	the	current	objects
that	are	still	referenced	in	the	memory.	If,	for	certain	objects,	this	number	is	high	or
unexplained,	then	this	could	potentially	mean	that	it	is	a	memory	leaked	object.

The	object	size	is	another	important	factor;	along	with	the	objects	count,	we	can	calculate
the	average	size	of	a	single	non-primitive	object.	This	should	match	our	expectations	or
there	could	be	potential	issues	within	the	object	itself	(that	is,	internal	object	leakage).

For	more	analysis,	we	need	to	look	at	the	allocation	call	tree	to	determine	the	leak
locations	in	the	code.	JProfiler	also	provides	a	view	to	show	the	allocation	HotSpots	and
determine	the	number	of	allocations	and	the	size	of	the	allocation,	as	we	saw	earlier.

Using	heap	dumps	is	useful	to	analyze	the	memory	leakage,	as	we	will	see	later	in	this
chapter.

Analyzing	garbage	collection	activity	logs	(HotSpot
JVM)
We	have	the	following	three	different	ways	to	analyze	garbage	collection	activity:

Examining	the	memory	utilization	graphs	to	roughly	understand	the	GC	efforts	(we
already	covered	this	point	earlier)
Reading	garbage	collection	activity	logs
Monitoring	the	visualized	GC	activities	(we	saw	this	in	JProfiler	and	we	will	discuss
here	how	to	use	jvisualvm	to	do	the	same)

Now,	we	will	cover	how	to	read	garbage	collection	activity	logs	and	how	to	visualize	this
activity.

Reading	garbage	collection	activity	logs	(HotSpot	VM)
When	we	executed	the	MemoryIssues	application	with	-verbose:gc	earlier	in	this	chapter,
we	got	the	following	results	in	the	console	log	(this	is	for	HotSpot	JVM):

[GC	163972K->163916K(237748K),	0.1814933	secs]

[Full	GC	229516K->214339K(237748K),	0.8321936	secs]

Let’s	explore	the	different	sections	in	these	log	statements	by	defining	the	general	log
structure,	as	follows:

Occupied	space	before	->	occupied	space	after	(total	committed	space	size),	

time	taken	in	space	activity

The	first	line	is	for	a	minor	garbage	collection	activity	(that	is,	young	generation	only)	and
the	second	line	is	for	a	full	garbage	collection	activity	(that	is,	including	the	old	generation
as	well).	The	following	diagram	describes	how	to	read	these	details:

The	total	heap	size	represents	the	committed	memory	size	without	including	even	one	of
the	survivor	spaces	(as	only	one	is	usable	at	a	time)	and	the	permanent	gen	space.

Before	we	continue	here,	we	need	to	explain	the	difference	between	virtual	and
committed	size.	Committed	size	is	the	current	size	of	the	memory	where	this	space	can	be
used	for/by	Java	objects	without	requesting	additional	memory	from	the	operating	system.
Virtual	memory	is	the	maximum	configured	memory	that	may	not	be	completely	allocated
to	JVM	yet.

This	is	controlled	by	the	-Xms	(initial	heap	size)	and	-Xmx	(maximum	heap	size)
parameters	plus	the	memory	sizing	policy	parameters,	MinHeapFreeRatio	and
MaxHeapFreeRatio,	where	the	memory	expands	or	contracts	according	to	the	defined	heap
free	ratio	with	the	default	values	as	40	percent	and	70	percent	for	both	parameters.

So,	if	we	are	using	the	default	values	and	the	utilization	of	the	memory	is	between	40
percent	and	70	percent,	then	no	heap	memory	resizing	should	be	expected.	The	same	is	the
case	if	we	set	both	the	initial	and	the	max	size	with	the	same	value	(this	is	an	important
memory	performance	tuning	tip).

We	can	get	more	information	printed	on	the	console	by	using	the	additional	JVM
parameter	-XX:+PrintGCDetails.

The	following	is	an	example	of	two	log	lines	after	we	execute	our	application	using	the	-
XX:+PrintGCDetails	parameter:

[GC[DefNew:	73279K->73279K(73280K),	0.0000160	secs][Tenured:	154677K-

>137075K(162760K),	0.3357701	secs]	227957K->187895K(236040K),	[Perm	:	120K-

>120K(12288K)],	0.3359294	secs]	[Times:	user=0.33	sys=0.00,	real=0.34	secs]

[Full	GC[Tenured:	173880K->173880K(174784K),	0.4236182	secs]	252536K-

>252535K(253440K),	[Perm	:	120K->120K(12288K)],	0.4236572	secs]	[Times:	

user=0.41	sys=0.00,	real=0.42	secs]

Now,	we	can	see	that	the	additional	information	about	different	memory	spaces	is	added	to
the	log.	In	the	first	line,	it	starts	with	the	young	generation,	tenured	space,	and	then
permanent	generation.	In	the	second	line,	because	it	is	a	full	garbage	collection,	it	starts
with	the	tenured	space,	moves	to	total	heap,	and	then	permanent	generation,	as	shown	in
the	following	diagram:

The	difference	between	user	time,	sys	time,	and	real	time	represents	the	following:

User	time:	This	is	the	time	spent	in	garbage	collection	while	executing	user-mode
code	(non-system	calls)
Sys	time:	This	is	the	time	spent	in	garbage	collection	during	system	calls

Real	time:	This	is	the	total	time	spent	from	the	start	of	GC	till	the	end,	including	the
time	spent	in	other	process	during	the	execution	of	this	garbage	collection	activity

The	real	time	in	the	serial	collector	should	be	equal	to	sys+user	as	long	as	the	system’s
performance	is	healthy	from	both	the	CPU	and	memory	aspects,	while	in	concurrent
collectors	it	should	be	typically	less	than	sys+user	with	the	same	healthy	conditions.

If	the	real	time	is	very	high	compared	to	the	sys+user	value;	this	could	mean	that	the
machine’s	memory	is	not	enough	for	the	application,	so	a	lot	of	time	is	spent	on	virtual
memory	paging.	This	is	common	when	we	over-utilize	the	machine	by	many	applications
and	services.

We	can	also	go	one	step	further	and	add	the	following	JVM	parameter	to	log	more	garbage
collection	information:	-XX:+PrintGCApplicationConcurrentTime	and	-
XX:+PrintGCApplicationStoppedTime.	These	will	print	the	following	additional
messages	in	the	log:

Total	time	for	which	application	threads	were	stopped:	0.4265617	seconds

Application	time:	0.6008938	seconds

This	means	that	the	application	is	stopped	at	only	0.42	seconds,	while	the	application	was
running	for	0.6	seconds.

The	importance	of	all	these	log	messages	is	that	we	can	use	them	as	guidance	to	our
memory	tuning	effort	including	machine	memory,	JVM	memory	tuning,	and	garbage
collection	tuning.

We	will	discuss	different	JVM	tuning	aspects	in	the	next	chapter,	Chapter	9,	Tuning	an
Application’s	Environment.

Visualizing	the	garbage	collection	activity
Java	VisualVM	is	a	powerful	and	simple	tool	to	use.	We	can	use	it	to	get	memory	profiling
results	similar	to	what	we	get	from	other	profiler	tools,	but	the	most	characteristic	feature
of	this	tool	is	the	availability	to	add	useful	plugins	that	can	further	help	us	understand	our
application	behavior.

One	of	these	plugins	is	Visual	GC.	We	already	described	how	to	install	plugins	in	Java
VisualVM	in	Chapter	4,	Monitoring	Java	Applications.

The	amazing	thing	in	this	plugin	is	visualizing	garbage	collection	in	a	way	that	lets	anyone
watch	it	for	a	few	minutes	to	master	the	garbage	collection	activity	inside	JVM.	One	can
see	many	activities	such	as	the	Eden	space	that	grows	with	time,	then	garbage	is	collected,
one	of	the	survivor	spaces	becomes	empty,	all	survivor	objects	moves	into	the	other
survivor	space,	and	so	on.

We	can	also	align	the	garbage	activity	and	time	spent	on	these	changes	and	see	the	effect
of	garbage	collection	on	the	Eden	space	in	particular.	The	following	screenshot	shows	an
illustration	of	this	useful	plugin:

In	the	preceding	screenshot,	the	same	pattern	we	described	earlier	as	saw-tooth	also	exists
here	(but	it	can	be	seen	if	we	imagine	Old	space,	Eden	space,	and	S0/S1	as	one	space).

The	graphical	representation	is	much	more	efficient	in	explaining	the	garbage	collection
activities	but	usually	the	availability	of	the	logs	are	much	easier.	This	is	why	you	need	to
master	reading	the	GC	logs.

Note
Other	tools	that	provide	GC	activity	visualization	include	the	following:

IBM	GCMV,	which	can	be	found	at
https://www.ibm.com/developerworks/java/jdk/tools/gcmv/.
HP	JMeter,	which	can	be	found	at
https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?
productNumber=HPJMETER.

https://www.ibm.com/developerworks/java/jdk/tools/gcmv/
https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPJMETER

Dealing	with	memory	heap	dumps
As	we	explained	earlier,	heap	memory	is	a	part	of	the	memory	that	is	used	for	allocation
of	runtime	objects,	and	it	is	shared	among	all	application	threads.	This	heap	is	classified
into	old	and	young	generations,	where	the	young	generation	is	further	divided	into	Eden
space	and	two	survivor	spaces.

A	heap	dump	is	a	snapshot	of	the	current	heap	memory	content,	which	is	saved	in	a	file.	It
helps	us	to	identify	memory	leaks	and	reasons	behind	memory	consumption.	Different
tools	allow	us	to	navigate	and	search	inside	the	heap	dump	using	OQL,	that	is,	the
language	that	can	be	used	to	query	objects.

The	heap	dump	file	uses	the	hprof	binary	file	format,	so	it	usually	ends	with	either	.hprof
or	.bin.

Tip
Because	heap	dump	is	dumping	all	heap	content	into	a	file,	it	should	be	handled	carefully
and	with	high	security	precautions	as	it	may	contain	a	user’s	confidential	data,	such	as
personal	information	and	credit	card	details.

There	are	many	different	ways	to	get	heap	dumps.	We	will	show	some	of	these	ways	here
including	the	command-line	tools	and	profiling	tools.

Taking	heap	dumps	on	the	occurrence	of	JVM
OutOfMemoryError
This	is	a	JVM	feature	that	can	generate	heap	dumps	once	OutOfMemoryError	is	thrown.
The	required	configuration	is	the	following	JVM	parameters:

-XX:+HeapDumpOnOutOfMemoryError	to	inform	the	JVM	to	dump	the	heap	in	case	

of	out	of	memory.

-XX:HeapDumpPath=filename	to	inform	the	JVM	with	the	exact	location	to	

place	the	heap	dump	file.

The	following	is	an	example	of	OutOfMemoryError:

java	-XX:+HeapDumpOnOutOfMemoryError		-XX:HeapDumpPath=./dump.hprof	-jar	

MemoryIssues.jar	0

java.lang.OutOfMemoryError:	Java	heap	space

Dumping	heap	to	./dump.hprof…

Heap	dump	file	created	[277552186	bytes	in	3.689	secs]

Exception	in	thread	"main"	java.lang.OutOfMemoryError:	Java	heap	space	

				at	osa.ora.outofmemory.ManyObjects.addObject(ManyObjects.java:28)

				at	osa.ora.MemoryIssues.main(MemoryIssues.java:26)

Because	we	have	informed	JVM	to	dump	the	heap	in	the	dump.hprof	file	with	the
occurrence	of	OutOfMemoryError,	it	dumps	the	heap	memory	into	this	file	when	an	out	of
memory	error	is	thrown.

Taking	heap	dumps	using	the	JDK	tools
JDK	contains	many	tools	that	can	be	used	to	produce	heap	dumps.	These	are	either
command-line	tools	or	profiling	tools,	for	example,	we	can	use	jmap,	Java	VisualVM,	and
Java	Mission	Control.

Taking	heap	dump	using	jmap
We	can	dump	the	heap	content	into	a	file	using	the	jmap	command,	which	uses	the
following	syntax	(PID	is	a	Java	process	ID):

jmap	-dump:[live,]format=b,file=filename	PID

If	we	use	the	live	optional	parameter,	it	will	generate	the	dump	file	for	live	objects	in	the
heap	(that	is,	objects	that	are	still	referenced	by	the	application).

Note
To	get	the	Java	process	ID,	we	can	use	task	manager	in	Windows	OS	or	the	ps	command
in	UNIX	OS.	We	can	also	use	the	JDK	command-line	utility	named	jps,	which	can
produce	a	list	of	the	currently	running	Java	processes	with	the	name	beside	the	process	ID,
as	follows:

>jps

13944	jar

14044	Jps

We	can	use	the	jhat	JDK	tool	to	read	the	heap	dump	file	using	the	following	syntax:

jhat	[options]	<heap-dump-file>

We	discussed	the	usage	of	this	tool	to	navigate	inside	the	heap	dump	earlier	in	Chapter	4,
Monitoring	Java	Applications.

Taking	heap	dumps	using	Java	VisualVM
Using	jvisualvm	is	a	straightforward	and	simple	way	to	capture	the	heap	dumps	by	right-
clicking	on	the	Java	process	(our	application)	and	selecting	Heap	Dump	from	the	context
menu	as	shown	in	the	following	screenshot:

This	produces	a	heap	dump	that	is	loaded	in	the	jvisualvm	GUI.	The	following	screenshot
shows	the	different	instances	of	classes	in	the	heap	and	the	occupied	size;	clicking	on	any
class	will	open	the	details	of	the	instances	of	that	particular	class	in	the	Instances	tab:

We	can	also	use	jvisualvm	to	configure	the	currently	running	process	(that	is,	JVM)	and
dump	the	heap	on	OutOfMemoryError	(OOME)	by	using	the	context	menu,	as	we	can
see	in	the	previous	screenshot	(we	can	also	disable	this	by	using	the	same	context	menu).

Taking	heap	dumps	using	the	JRockit	command	utility
Using	the	JRockit	command	(jrcmd)	to	get	heap	dumps	in	a	Java	application	that	is
running	on	JRockit	VM	can	be	done	by	using	the	following	format:

jrcmd	processId	hprofdump	filename=dumpFileName

e.g.	jrcmd		1001		hprofdump	filename=	file.hprof

Note
This	will	throw	IOException	if	the	target	process	is	not	running	on	JRockit	VM.

Taking	heap	dumps	using	the	profiler	tools
Similar	to	thread	dump,	all	profiler	tools	have	the	ability	to	take	heap	dumps.	We	will
show	how	we	can	do	this	using	NetBeans,	Eclipse,	and	JProfiler.

Taking	heap	dumps	using	the	NetBeans	profiler
Using	the	NetBeans	profiler,	we	can	generate	heap	dumps	during	profiling	of	any	Java
application	by	clicking	on	the	Dump	Heap	icon.	The	heap	dump	is	saved	and	heap	dump
navigator	opens	(it	is	similar	to	JVisualVM	GUI),	as	seen	in	following	screenshot:

Taking	heap	dumps	using	Eclipse	Memory	Analyzer	Tool	(MAT)
This	Eclipse-based	memory	analyzer	can	be	used	as	a	standalone	tool	or	as	a	plugin	inside
Eclipse.	The	tool	can	be	used	to	take	heap	dumps	by	navigating	to	File	|	Acquire	heap
dump	and	selecting	any	running	Java	process.	We	can	also	open	a	heap	dump	that	is
created	by	other	tools	by	navigating	to	File	|	Open	heap	dump.

MAT	contains	a	good	feature	known	as	analysis	report,	where	the	tool	analyzes	the	heap
dump	and	provides	a	list	of	issues	that	exist	in	the	heap	dump.

If	we	execute	this	report	against	our	MemoryIssues	heap	dump	(by	clicking	on	Leak
Suspect),	we	can	get	a	report	that	points	to	the	creation	of	our	String	object	in	the
ManyObjects.addObject()	method,	as	shown	in	the	following	screenshot:

If	we	follow	the	See	stacktrace	link,	it	will	point	to	the	stack	trace	of	the	memory
leakage,	as	shown	in	the	following	code:

main

		at	java.lang.Thread.sleep(J)V	(Native	Method)

		at	java.lang.Thread.sleep(JI)V	(Thread.java:340)

		at	osa.ora.outofmemory.ManyObjects.addObject()V	(ManyObjects.java:32)

		at	osa.ora.outofmemory.ManyObjects.main([Ljava/lang/String;)V	

(ManyObjects.java:20)

The	tool	also	supports	running	OQL	and	it	has	an	OQL	editor	for	that.	It	also	supports
exporting	content	into	different	formats	such	as	HTML,	CSV,	or	text.	So	in	general,	it	is	a
powerful	tool	to	deal	with	memory	heap	dump	files.

Note
To	download	Eclipse	MAT,	you	can	download	the	plugin	from	inside	your	Eclipse	by
using	Update	Manager	and	providing	the	following	URL	(for	Version	1.3.1):

http://download.eclipse.org/mat/1.3.1/update-site/

Alternatively,	you	can	download	the	standalone	analyzer	from
http://www.eclipse.org/mat/downloads.php.

Taking	heap	dumps	using	JProfiler
There	is	an	icon	to	take	heap	dumps	from	the	Heap	walker	tab.	Once	we	click	on	the

http://download.eclipse.org/mat/1.3.1/update-site/
http://www.eclipse.org/mat/downloads.php

icon,	a	pop	up	will	appear	asking	for	some	additional	options;	click	on	OK.	Then,	the
heap	dump	will	be	generated	and	open	in	the	same	heap	walker	window	so	that	we	can
navigate	inside	it,	as	shown	in	the	following	screenshot:

One	of	the	good	features	of	JProfiler	is	that	it	can	keep	JVM	alive,	so	we	can	navigate
inside	the	heap	walker	view.	This	can	be	configured	by	navigating	to	Customize	Profile
Settings	|	Miscellaneous	and	checking	the	Keep	VM	alive	checkbox.

In	the	next	section,	we	will	learn	how	to	read	heap	dumps,	how	to	build	different	OQL
queries,	and	how	to	use	them	to	query	the	dump	content.

Analyzing	the	heap	dump
Let’s	start	analyzing	the	heap	dump	by	understanding	how	the	heap	dump	file	is	displayed
in	most	of	the	heap	walker	tools.

Navigating	inside	a	heap	dump	using	visual	tools
If	we	look	back	to	the	previous	screenshots	of	heap	walkers,	we	can	see	that	the	content	of
the	heap	is	organized	by	displaying	the	class	of	objects	that	have	instances	in	the	heap
with	a	sum	of	the	total	instances	plus	the	size	occupied	by	these	instances.

Note	that	arrays	in	Java	are	considered	as	objects.	If	we	select	one	of	these	classes,	we	can
navigate	inside	the	different	class	instances	and	see	the	different	available	information
including	the	different	instance	attribute	values	and	so	on.

When	we	use	the	JProfiler	Heap	walker,	we	can	see	a	lot	of	useful	information	such	as
allocation	of	these	objects	in	particular	when	the	instrumental	profiling	mode	is	selected.
So,	let’s	profile	the	MemoryIssues	project	using	JProfiler	with	the	Run	parameter	set	to	0
so	that	we	can	create	a	lot	of	String	objects	in	the	heap.

Remember	to	configure	the	Keep	JVM	alive	option	so	that	JVM	does	not	terminate	when
OutOfMemoryError	is	thrown.

Once	the	profiling	starts,	click	on	the	Take	heap	snapshot	icon	in	the	Heap	walker	tab;	it
will	take	a	few	seconds	before	it	shows	the	current	content	in	the	heap.	We	will	see
java.lang.String	at	the	top	of	the	classes	as	we	are	creating	a	lot	of	objects	from	it.	We
can	select	it	and	go	to	the	Allocations	tab	to	see	where	these	objects	are	being	created,	as
shown	in	the	following	screenshot:

As	we	can	see	in	the	JProfiler	alert,	to	get	more	accurate	information,	we	need	to	use	the
instrumented	mode.

We	can	also	navigate	to	the	different	instances	and	see	different	attributes	by	selecting	the
References	tab.	Again,	this	is	a	security	concern	while	using	the	heap	dump	and	we
should	be	careful	when	dealing	with	and	distributing	production	heap	dumps,	as	shown	in

the	following	screenshot:

Query	heap	dumps	using	OQL
Now,	we	need	to	understand	OQL	and	how	we	can	use	it	to	perform	a	search	inside	the
heap	dump.	This	is	useful	when	the	issues	are	not	as	clear	as	the	example	we	used.

In	Chapter	4,	Monitoring	Java	Applications,	we	showed	you	how	to	use	OQL	in	jhat	to
query	the	heap	dump.	Now	let’s	try	to	do	the	same	using	JVisualVM,	which	is	more
efficient	in	dealing	with	heap	dumps.

Open	jvisualvm	and	among	the	running	Java	processes,	select	one	process	(for	example,
the	NetBeans	process),	then	right-click	on	it	and	select	Heap	Dump	from	the	context
menu.	The	heap	dump	will	open	with	the	same	components	that	we	are	familiar	with	so
far:	Summary,	Classes,	Instances	(of	the	selected	class),	and	OQL	Console.

Navigate	inside	the	available	classes	in	the	heap	dump	classes	section	and	pick	one	class
(for	example,	java.lang.String)	so	that	we	can	use	OQL	to	query	this	class.

The	following	is	the	general	syntax	of	any	query	in	OQL:

select	<JavaScript	expression	to	select>	[from	[instanceof]	<class	name>	

<identifier>	[where	<JavaScript	boolean	expression	to	filter>]]

As	we	can	see,	only	the	select	statement	is	mandatory	while	from	and	where	are	optional;
the	select	statement	uses	the	JavaScript	expression	for	selection.

Using	simple	OQL	queries
Now	let’s	look	at	the	following	query	examples	and	expected	outcome	of	executing	them
in	the	heap	dump:

select	result	from	java.lang.String	result:	This	will	select	all	the	String
instances	in	the	heap	dump
select	result.value	from	java.lang.String	result:	This	will	select	all	values
of	the	String	instances
select	result.value.length	from	java.lang.String	result:	This	will	select
only	the	length	of	the	String	instances
select	result.value.length	from	java.lang.String	result	where

result.value.length>33:	This	will	limit	the	previous	search	results	to	all	the	String
objects	with	values	more	than	33	characters
select	result	from	[C	result	where	result.length	>=	100:	This	will	return
the	char[]	objects	with	size	more	or	equal	to	100	(for	int[],	we	can	use	[I	and	for
float[],	we	can	use	[F)

Using	OQL	built-in	objects	and	functions
These	functions	can	help	us	to	query	the	heap	dump	and	filter	what	we	need	to	look	into	in
a	more	efficient	way	than	using	the	explorer	way	or	generic	queries.

Using	a	built-in	heap	object

OQL	has	a	built-in	object,	which	is	a	heap	object	that	refers	to	the	current	heap	dump.	The
heap	object	has	some	useful	functions	that	we	can	use	and	build	our	queries.	The

following	are	some	examples	of	built-in	heap	objects:

select	heap.classes():	This	will	return	all	classes	in	the	heap	so	that	we	can	filter
them
select	heap.objects():	This	will	return	all	objects	in	the	heap
select	heap.findClass("java.lang.String"):	This	can	be	used	as	an	alternative
to	find	a	specific	class	in	the	heap,	for	instance,	java.lang.String

Other	available	functions	are	findObject,	forEachClass,	forEachObject,	and	so	on.

Using	built-in	functions	on	individual	objects

The	following	are	some	example	of	these	built-in	functions:

select	sizeof(floats)	from	[F	floats:	This	will	return	the	size	of	all	the	float
arrays
select	referrers(string)	from	java.lang.String	string:	This	will	return	all
the	String	referrers	in	the	current	heap	dump
select	filter(heap.classes(),	"/java.io./(it.name)"):	This	function	filters
and	displays	all	the	classes	in	the	java.io	package

A	lot	of	other	functions	such	as	map,	sort,	and	filter	are	available	as	well.

The	following	jvisualvm	screenshot	shows	how	to	use	OQL	to	perform	a	search	inside
the	heap	dump	of	a	running	NetBeans	IDE	process:

Note
For	more	information	on	how	to	use	OQL	and	the	complete	list	of	all	supported	built-in
functions,	we	can	check	the	complete	manual	of	OQL	at
http://localhost:7000/oqlhelp/	after	executing	the	following	JHat	command:

jhat	any_dump_file

Potential	memory	performance	issues
In	the	previous	sections,	we	discussed	how	to	get	and	read	different	memory	profiling
results	so	that	we	can	understand	the	memory	map	of	our	application.	So	far,	we	covered
the	following	topics:

Reading	and	configuring	GC	logs
Reading	and	querying	heap	dumps	using	OQL
Reading	memory	profiling	results

Now,	it	is	time	to	see	the	sequence	that	we	need	to	follow,	what	exactly	we	can	get	from
dealing	with	each	of	these	memory	analysis	options,	and	when	to	use	each	of	them.

First	of	all,	we	need	to	check	the	allocated	memory	for	our	application	and	see	whether	or
not	it	is	enough	based	on	the	application’s	requirements,	and	the	current	memory
utilization.

It	is	common	to	see	memory	issues	if	the	allocated	memory	is	not	suitable	for	the
application	or	the	hardware	is	over-utilized	by	a	lot	of	applications.

Possibly	in	the	near	future,	using	Java	multitenancy	could	improve	the	ability	to	run	many
Java	applications	on	the	same	machine	with	a	more	efficient	memory	utilization.

Note
Java	multitenancy	refers	to	the	ability	of	JVM	to	be	shared	among	different	applications,
which	reduces	the	wasted	memory	to	load	the	same	resources	in	many	JVM(s).	The
concept	is	mainly	targeting	the	cloud	environment	where	the	shared	resources	concept	is
widely	applied.

IBM	is	releasing	this	in	its	SDK	for	Java	8.	To	read	more	about	this	concept,	go	to
http://www.ibm.com/developerworks/library/j-multitenant-java/index.html.

Basically,	using	GC	logs	is	useful	in	all	situations	as	it	gives	us	a	good	understanding	of
our	application	memory	utilization	and	guides	our	tuning	efforts	at	the	same	time.

We	can	change	the	required	level	of	detail	according	to	our	needs;	the	good	thing	is	that	it
will	not	affect	the	application’s	performance	compared	to	attaching	a	profiling	tool	to	the
application.

The	other	advantage	of	using	GC	logs	over	operating	system	memory	analysis	is	that	it
gives	a	good	breakdown	of	different	JVM	spaces.

If	we	either	find	an	issue	with	using	the	operating	system	tools,	application	server	admin
console,	monitoring	tools,	garbage	collection	logs,	or	we	already	have	a	memory	issue	that
causes	the	application	to	be	unstable,	then	it	is	the	right	time	to	perform	memory	profiling
to	understand	the	low-level	details	of	the	application	memory.

If	we	can’t	attach	a	profiler	or	the	server	is	frequently	throwing	an	OutOfMemoryError
exception,	then	we	should	typically	use	the	heap	dump	in	our	investigations	as	it	fits	these
types	of	memory	issues,	that	is,	OutOfMemoryError	or	memory	leakage.

http://www.ibm.com/developerworks/library/j-multitenant-java/index.html

Application	memory	leakage	(session	leakage
versus	global	leakage)
When	we	have	memory	leakage	in	our	application,	the	impact	might	be	variable	according
to	the	leakage	scope.	So,	if	we	have	a	leakage	located	in	the	session	scope,	then	this
impact	is	usually	limited	to	the	number	of	sessions	that	we	are	active	on.

But	the	leakage	is	not	severe	as	the	session	will	timeout	and	all	the	scoped	objects	will	be
garbage	collected.	The	only	exception	to	this	is	when	the	leakage	is	huge	to	such	a	degree
that	it	can	impact	the	application	memory.

The	most	critical	application	memory	leakage	is	global	memory	leakage	where	the
situation	gets	worse	with	time	as	the	leakage	has	no	controlling	factor	to	reduce	its	impact
(as	the	session	times	out).

Global	memory	leakage	can	happen	potentially	in	the	following	locations:

Static	class	members
Instance	variables	in	long	living	components,	for	example,	Servlet
Singleton	objects
Application/context	scope

When	we	perform	memory	profiling,	we	can	see	that	the	leakage	objects	are	retained	more
than	the	expected	volume/count.

We	need	to	identify	the	exact	location	that	allocates	these	objects	so	that	we	can	determine
where	exactly	this	leakage	happened.	We	can	also	use	heap	dumps	for	this	purpose.

Sometimes	the	leakage	is	not	consistent	(that	is,	related	to	certain	values	or	conditions).	In
that	case,	exploring	the	values	in	the	leaked	objects	or	other	objects	can	help	us	in
determining	the	exact	scenario	that	caused	this	leakage.

Improper	caching	implementation
Caching,	as	we	discussed	earlier	in	Chapter	5,	Recognizing	Common	Performance	Issues,
is	an	important	element	in	enterprise	application	performance	but	if	it	is	not	implemented
and	customized	(tailored)	as	per	the	application	needs,	then	it	can	impact	the	application’s
performance	rather	than	improving	it.

Detailed	caching	statistics	are	required	to	help	us	diagnose	different	caching	issues.	Also,
profiling	the	application	might	show	too	many	or	too	few	caching	objects	compared	to
what	is	actually	expected.

Too	many	or	few	hits/calls	to	the	caching	methods	in	CPU	profiling	will	point	to	improper
caching	(if	we	are	using	remote	caching,	then	the	caching	methods	are	our	interfacing
methods	with	that	remote	cache).

In	Chapter	10,	Designing	High-performance	Enterprise	Applications,	we	will	discuss
design	considerations	related	to	the	application	caching	implementation.

Memory	issues	of	objects	that	contain	the	finalize()
method
When	classes	implement	the	finalize()	method,	potential	memory	issues	can	happen	if
the	speed	of	the	finalizer	thread	cannot	cope	with	the	created	objects	(for	example,
during	peak	times).

The	main	reason	for	this	is	objects	that	contain	the	finalize()	method	are	not	claimed	by
the	garbage	collector;	instead	they	are	queued	for	the	finalizer	thread	(daemon	thread),
which	pulls	them	one	by	one	and	call	their	finalize()	method.

We	shouldn’t	override	the	Class	finalize()	method	except	when	there	is	a	strong
justification	and	there	is	no	other	way	to	achieve	what	is	required.

If	we	have	to	do	that,	it	is	essential	to	write	an	optimized	code	in	the	finalize()	method
and	not	revive	the	object	again	by	storing	a	reference	to	the	this	object,	otherwise	the
garbage	collector	won’t	be	able	to	claim	the	object	during	subsequent	execution	as
object’s	finalize()	method	is	called	only	once.

Invalid	contract	for	the	equals()	and	hashCode()
methods
In	Java,	if	any	two	objects	are	equal,	then	their	hash	code	values	mush	be	equal	as	well.	If
we	override	the	hashCode()	method,	we	must	override	the	equals()	method	as	well.

The	hashCode()	method	returns	an	integer-unique	representation	of	the	object	and	this
method	must	return	the	same	value	for	the	object	with	each	subsequent	call.

When	dealing	with	collections	such	as	HashMap	or	HashSet,	if	we	examine	the	HashMap
internal	getEntry(Object	key)	method	source	code,	we	can	see	that	the	following	logic
is	used	to	return	the	required	entry	by	the	key:

if	(e.hash	==	hash	&&	((k	=	e.key)	==	key	||	(key	!=	null	&&	

key.equals(k))))

		return	e;

The	method	first	checks	whether	the	hash	code	matches	or	not.	If	it	does,	then	it	calls	the
equals()	method	to	verify	that.	This	means	we	must	implement	the	equals()	method	if
we	need	to	override	the	hashCode()	method.	Otherwise,	the	objects	added	to	such
collection	types	won’t	be	retrievable.	Hence,	we	will	keep	adding	the	same	objects
multiple	times	to	the	collection	and	the	object	will	not	be	identified	as	the	same	object,
which	will	lead	to	memory	leakage.

Different	reasons	for	OOME
Since	memory	is	divided	into	different	areas	in	our	JVM	(that	is,	HotSpot	JVM),	any
generation/area	that	can’t	accommodate	its	content	will	throw	OutOfMemoryError.	So	we
can	list	the	following	reasons	for	this	error:

JVM	stack
Native	method	stack
Heap	(different	areas)
Method	area
Runtime	constant	pool	area
Operating	system	memory	(when	the	requested	memory	can’t	be	obtained)

One	additional	reason	for	OutOfMemoryError	is	that	if	the	garbage	collector	(parallel)
spends	too	much	time	(more	than	98	percent)	in	performing	the	garbage	collection	and	it
only	recovers	less	than	2	percent,	then	the	JVM	will	throw	OutOfMemoryError;	this	feature
can	be	disabled	by	using	the	following	JVM	parameter:

XX:-UseGCOverheadLimit

We	have	added	some	examples	for	OutOfMemoryError	in	our	application	MemoryIssues.
So,	you	can	try	to	execute	them	to	see	the	different	reasons	why	these	errors	are	thrown
and	the	reflection	on	memory	profiling,	heap	dumps,	and	GC	logs.

Adding	memory	performance	issues	to
our	fixing	strategy
To	add	memory	performance	issues	to	our	investigation	and	fixing	strategy,	we	have	to
inject	it	from	two	different	aspects:	one	is	related	to	OutOfMemoryError	and	another	one	is
related	to	memory	leakage	and	improper	caching.

Fortunately,	improper	caching	is	reflected	in	CPU	profiling	and	we	already	added	it	in	our
draft	strategy.	So,	we	do	not	need	to	mention	it	here	again	(as	it	impacts	the	method
invocations	count).

We	have	added	OutOfMemoryError	in	a	separate	path,	so	we	can	investigate	and	fix	a	plan
different	from	the	other	normal	issues	that	are	related	to	code	logic/flow.

We	have	also	added	a	few	modifications	to	our	previous	version	including	driver/native
code	issues,	tuning	the	application,	and	so	on.

It	is	still	a	simple	strategy	to	go	through	and	can	be	considered	as	the	high-level	guide	to
troubleshoot	our	performance	issues.	We	won’t	complicate	this	strategy	any	more	as	it
contains	the	high-level	milestones	that	we	need	to	cover	here.

All	the	application	tuning	effort,	such	as	JVM	memory	and	garbage	collection	tuning,	will
be	discussed	in	the	next	chapter.

The	following	diagram	represents	the	final	structure	of	our	performance	fixing	strategy:

Fixing	memory	leakage	issues
It	is	clear	that	we	always	need	to	fix	the	root	cause	in	our	performance	issues.	Yet,	in	all
other	types	of	performance	issues,	we	can	find	a	temporary	work-around	for	the	issue	by
doing	some	tuning	or	scaling	of	our	application.	In	memory	issues,	in	particular,	we	can’t
use	this	temporary	fix	as	it	will	fail	at	a	certain	point.

Fortunately,	the	diagnosis	of	this	nightmare	is	straightforward—by	taking	heap	dumps	or
performing	memory	profiling.	In	some	cases,	if	the	heap	dump	is	huge	and	we	are	not
even	able	to	open	it	by	different	heap	walker	applications,	then	we	can	try	to	take	the	heap
dump	early	before	the	heap	gets	expanded,	but	if	this	is	not	useful	to	catch	the	actual
leakage	root	cause,	then	we	can	simply	decrease	our	application	maximum	heap	size	(the
-Xms	JVM	parameter)	so	that	we	can	have	a	smaller	heap	dumps.

By	completing	this	chapter,	we	have	now	covered	all	application	profiling	aspects	using
different	tools,	how	to	interpret	the	results,	how	to	think	in	possible	fixes,	and	so	on.

We	have	also	covered	the	general	investigation	road	map	in	web	applications	using	both
horizontal	and	vertical	dimensions	and	we	have	defined	a	small	fixing	strategy	for	the
code	part	of	the	application.	This	should	be	enough	to	troubleshoot	any	enterprise
application	performance	issues.

We	must	now	start	to	practice	what	we	have	learned	by	profiling	different	applications	that
we	have	and	trying	to	get	some	results	and	optimization	recommendations.

Practicing	this	high-level	strategy	(or	even	your	own	modified	strategy)	is	essential	at	this
point	in	the	book	to	master	the	application	performance	tuning.	One	must	not	only	practice
but	also	focus	on	the	important	information	and	neglect	other	irrelevant	information,	as	we
did	when	we	discussed	reading	and	interpreting	different	profiling	results.

	 “Without	strategy,	execution	is	aimless.	Without	execution,	strategy	is	useless.” 	

	 —Morris	Chang

In	the	next	chapter	of	this	book,	Chapter	9,	Tuning	an	Application’s	Environment,	we	will
round	off	our	Java	EE	performance	tuning	knowledge	by	discussing	how	to	tune	different
application	components	from	outside	the	application	such	as	JVM,	application	server,	and
operating	system.	In	Chapter	10,	Designing	High-performance	Enterprise	Applications,
we	will	discuss	design	considerations	for	high-performing	enterprise	applications.	In
Chapter	11,	Performance	Tuning	Tips,	we	will	learn	about	some	fine-tuning	performance
tips.	Then,	finally,	we	will	go	through	an	example	application	to	troubleshoot	its
performance	in	Chapter	12,	Tuning	a	Sample	Application.

Summary
In	this	chapter,	we	covered	different	aspects	of	memory	analysis	using	different	profiler
tools,	such	as	NetBeans	profiler,	jvisualvm,	JProfiler,	Eclipse	MAT,	jhat,	and	jmap.

We	covered	the	most	important	aspects	in	memory	profiling:	how	to	use	the	profiling
tools,	how	to	read	and	interpret	the	results,	and	how	to	propose	the	fix.

We	also	covered	how	to	take	and	use	heap	dumps,	how	to	query	heap	dumps	using	OQL,
and	how	to	read	garbage	collection	logs.

We	completed	our	fixing	strategy	from	all	the	important	aspects,	so	we	can	use	it	as	a
high-level	plan	for	our	Java	applications	and	enterprise	applications	performance
troubleshooting.

In	the	next	chapter,	Chapter	9,	Tuning	an	Application’s	Environment,	we	will	cover	how	to
tune	the	application	environment;	this	environment	should	be	tailored	to	suit	our
application.	We	will	discuss	the	tuning	of	JVM,	application	server,	and	operating	system.
All	these	components	can	markedly	affect	our	application	performance	if	not	taken	early
into	our	consideration	during	performance	tuning.

Chapter	9.	Tuning	an	Application’s
Environment
In	this	chapter,	we	will	discuss	the	performance	tuning	around	the	application,	and	in	the
next	two	chapters,	we	will	discuss	the	performance	tuning	inside	the	application	from	both
the	design	and	coding	perspectives.

In	this	chapter,	we	will	focus	on	the	application’s	environment,	including	the	JVM,
application	server,	and	operating	system.	In	each	of	these	areas,	we	will	pick	one	or	two
examples	and	focus	on	the	improvement	areas.

We	will	cover	the	following	topics	in	this	chapter:

The	JVM	tuning
Tuning	the	HotSpot	and	JRockit	JVM
Application	server’s	tuning
GlassFish	and	Weblogic	application	server’s	tuning
Web	server’s	tuning
Apache	and	Oracle	web	server’s	tuning
Operating	system	and	hardware	tuning	directions

Understanding	environment	tuning
In	Chapter	1,	Getting	Started	with	Performance	Tuning,	we	discussed	the	different	layers
that	comprise	our	enterprise	application.	These	layers	include	the	Code	and	script
application	on	top	of	the	pyramid,	followed	by	the	used	application	Framework,
libraries,	and	drivers.	We	also	have	the	Application	and	database	servers,	Java
Virtual	Machine	–	JVM,	and	Operating	System	–	OS	layer.

The	operating	system	might	be	installed	on	Virtual	Machine	–	VM	(optional),	which
adds	an	additional	layer	before	the	system	hardware,	as	shown	in	the	following	diagram:

In	this	chapter,	we	are	going	to	discuss	the	tuning	efforts	for	some	of	the	enterprise
application	layers,	which	are	not	part	of	our	code,	including	the	JVM,	application	server,
and	operating	system.

In	this	chapter,	we	will	focus	on	the	common	and	general	items	and	simplify	them	as
much	as	possible.	This	will	enable	us	to	deal	with	any	other	implementations/vendors.

To	achieve	this	goal,	we	are	going	to	focus	on	the	common	things	that	need	to	be	tuned	in
most	of	the	similar	applications.	So,	for	example,	when	we	discuss	application	servers,	we
will	pick	the	Oracle	GlassFish	server	being	the	Java	EE	reference	implementation	server
and	discuss	the	common	tuning	aspects,	such	as	connection	pool	settings,	precompile
JSPs,	and	so	on.

These	general	aspects	are	required	in	all	the	application	servers,	such	as	the	Weblogic

application	server,	JBoss	application	server,	and	IBM	Websphere	application	server.

They	will	give	us	a	good	orientation	about	the	tuning	aspects	in	different	application
components,	but	won’t	replace	each	product	documentation.

Tuning	the	JVM
The	JVM	performance	keeps	improving	with	subsequent	Java	releases.	One	of	the	big
improvements	in	the	JVM	is	the	ability	to	auto-tune	itself	according	to	certain	defined
ergonomics	rules.	This	reduces	the	efforts	needed	from	our	side	to	tune	it.

This	auto-tuning	mainly	depends	on	the	machine	hardware	class,	yet	some	efforts	still
require	to	ensure	the	optimal	outcome	of	our	JVM.

Having	a	high	performing	JVM	is	critical	for	our	enterprise	applications,	so	let’s	see	the
different	aspects	of	the	JVM	performance	tuning,	which	are	as	follows:

Selection	of	the	JVM	type	(client	or	server)
Memory	size	tuning	(heap	size	and	different	generational	space	size)
Memory	management	tuning	(initial	size,	maximum	size,	and	auto-scaling)
Garbage	collection	tuning	(type	of	collection,	collection	throughput,	and	pause	time)

We	have	two	main	performance	metrics,	throughput	and	pause	time,	to	measure	the
efficiency	of	our	application	garbage	collector.

Note
Throughput	is	the	percentage	of	the	total	application	execution	time	that	is	not	spent	on
garbage	collection	activity.

Pause	time	is	the	time	when	the	application	does	not	respond	since	the	garbage	collection
is	taking	place.

Tuning	the	Java	HotSpot	virtual	machine
Tuning	the	JVM	represents	important	aspects	in	the	Java	Enterprise	application	tuning.
This	tuning	should	be	done	in	the	following	three	stages:

The	initial	tuning	of	the	JVM	should	be	done	according	to	our	application	by
following	the	tuning	guidelines	in	the	application	server	documentation
During	the	performance	testing	phase,	by	tuning	the	JVM	and	adjusting	its
configuration	according	to	our	application	performance	results
After	monitoring	the	application	performance	and	analyzing	the	different	JVM
aspects	as	memory	and	GC	in	the	production	environment

In	this	section,	we	will	discuss	the	JVM	tuning	using	the	different	available	JVM
parameters.

Understanding	the	different	types	of	the	JVM	parameters
The	JVM	parameters	can	be	classified	into	the	following	two	main	categories:

Standard	parameters:	These	parameters	are	available	in	all	the	JVMs	regardless	of
the	implementation	vendor;	examples	of	these	parameters	are	-server,	-client,	-
classpath,	-jar,	and	so	on
Non-standard	parameters:	These	parameters	are	not	guaranteed	to	be	available	in
all	the	implementations	and	they	start	with	–X,	for	example,	-Xms,	-Xmx,	-Xmn,	and	so
on

We	should	note	that	some	of	the	non-standard	parameters	are	subject	to	change	in	the
subsequent	JVM	releases,	so	they	are	marked	with	–XX,	for	example,	-
XX:MaxGCPauseMillis=n,	-XX:ParallelGCThreads=n,	-XX:+PrintGCDetails,	and	so	on.

Note
For	more	information	about	the	different	HotSpot	JVM	options,	refer	to	the	Oracle
documentations	at	http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-
140102.html.

Selecting	the	HotSpot	JVM	type
Java	HotSpot	provides	two	different	modes	for	the	JVM:	one	is	suitable	for	servers	and
the	other	one	for	the	client	machines.	Both	the	modes	share	the	same	runtime	codebase	but
the	main	differences	is	the	compiler	type,	either	the	client	or	server	compiler,	and	some
other	JVM	tuning	aspects.

The	server	mode	is	optimized	for	the	best	application	runtime	performance,	but	its	starting
time	is	not	significant	in	comparison	to	the	client	mode,	which	runs	on	the	client	machines
where	the	start	time	is	important,	for	example,	a	Java	applet.

Note
Java	compilers	are	built	using	Just-In-Time	(JIT)	compilers,	but	different	JVMs	improve
the	efficiency	of	this	compiler	by	performing	a	global	scan,	so	it	detects	HotSpots	and

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

performs	method	inlining	and	dynamic	optimizations.

For	example,	when	the	method	is	called	the	first	time	it	gets	compiled,	and	with
subsequent	calls	if	it	becomes	a	HotSpot,	some	optimization	techniques	are	applied	in
parallel	with	the	application	execution	to	improve	these	HotSpots	whenever	possible.	This
is	done	so	that	the	optimization	effort	is	not	wasted	on	rarely	used	methods.

Another	example	is	method	inlining,	where	the	compiler	can	determine	which	method
needs	to	be	inlined.	This	has	the	benefit	of	removing	the	method	call	overhead.	Most	of
the	final	and	short	methods	are	suitable	for	method	inlining	but	the	compiler	still
determines	which	method	to	inline,	including	the	virtual	method	being	smart	enough	to	do
this	after	global	code	analyzing.

We	can	summarize	the	difference	between	both	modes	as	follows:

Client	mode:	This	mode	has	small	footprints	(small	memory	size)	and	a	faster
startup	time,	hence	it	is	suitable	for	client	applications
Server	mode:	This	mode	has	a	large	footprint,	(slows	the	startup	time)	more	advance
optimized	compilers,	and	many	optimization	policies,	and	is	typically	designed	for
server	applications

Tuning	memory	size
The	JVM	has	a	lot	of	parameters	that	are	available	to	control	the	memory	size	and
memory	behavior.	The	main	parameters	that	control	the	memory	size	are	as	follows:

Initial	heap	memory	size:	-Xms
Maximum	heap	memory	size:	-Xmx

As	we	mentioned	earlier,	the	memory	footprints	are	affected	by	running	machine
ergonomics	and	our	configurations	(for	example,	the	JVM	type).	Still,	we	can	override	any
configuration	by	supplying	our	own	tuning	parameters.	The	following	diagram	shows	the
different	HotSpot	VM	memory	structures:

The	initial	heap	size	is	the	memory	allocated	and	ready	to	be	used	by	our	application.	This
is	called	the	committed	heap	size.	The	maximum	heap	size	is	the	maximum	size	the
memory	can	be	expanded	to,	which	is	called	the	virtual	heap	size.

In	Chapter	8,	Memory	Profiling,	we	saw	how	the	memory	expanded	and	collapsed
according	to	the	current	heap	utilization,	which	affected	the	value	of	committed	heap	with

each	memory	resizing.

Sometimes,	we	need	to	specify	both,	the	initial	and	maximum	heap	size	with	the	same
value.	This	nullifies	the	expansion/collapse	effects	(memory	auto-sizing);	otherwise,	the
memory	will	keep	resizing	according	to	the	following	two	parameters:

-XX:MinHeapFreeRatio=n

-XX:MaxHeapFreeRatio=n

These	two	parameters	control	when	the	expansion	or	collapse	occurs	and	at	the	same	time,
to	which	degree.	So,	once	the	heap	utilization	increases	and	the	minimal	heap	free	ratio	is
reached	(default	40	percent),	auto-expansion	occurs	to	keep	the	current	utilization	within
the	minimal	and	maximum	free	ratio.

The	same	occurs	for	MaxHeapFreeRatio.	If	it	exceeds	70	percent	(the	default	value),
collapsing	of	the	memory	will	take	place	to	maintain	this	ratio,	as	long	as	the	current
committed	heap	size	is	more	than	the	initial	heap	size,	and	the	initial	heap	size	does	not
equal	to	the	maximum	heap	size.

We	should	be	aware	that	the	maximum	heap	size	set	should	be	less	than	the	available
memory	on	the	machine	to	avoid	performance	impact	due	to	page	faults	and	thrashing	(by
using	virtual	memory	on	storage),	if	we	look	at	the	following	parameters:

-Xmnsize	or	-XX:NewSize=n	

-XX:MaxNewSize=n

The	preceding	parameters	have	the	same	effect	as	that	of	auto-sizing	but	limited	to	the	size
of	the	young	generation	memory.	Also,	by	setting	both	parameters	to	the	same	value,	we
will	fix	the	value	of	the	young	generation	size	and	remove	the	auto-sizing	feature	of	the
young	generation.

The	default	size	of	the	young	generation	is	calculated	as	a	ratio	of	the	heap	using	the
following	parameter:

-XX:NewRatio=n

We	can	specify	the	ratio	of	the	old/young	generations	(if	we	set	this	as	4,	this	means	size
of	the	old	generation	space	is	four	times	the	size	of	the	young	generation	space).

The	other	available	parameters	for	memory	sizing	are	as	follows:

-XX:SurvivorRatio=n

-XX:MaxPermSize=n

Setting	the	survivor	ratio	defines	the	ratio	between	Eden	and	a	single	survivor	space.	If	we
set	this	to	32	(the	default),	each	survivor	space	is	1/32	the	size	of	an	Eden	space.

The	MaxPermSize	parameter	sets	the	size	of	the	permanent	generation,	which	mainly	holds
the	classes	and	methods	metadata.

Thread	stack	size	is	an	important	factor	and	can	be	controlled	by	the	following	JVM
parameter:

-XX:ThreadStackSize=n

The	preceding	parameter	is	an	important	tuning	parameter	where	we	can	determine	the
memory	allocated	for	each	thread	stack.	This	parameter	controls	the	application’s
maximum	thread	count	along	with	the	operating	system	configurations.	We	already	tested
the	impact	of	this	parameter	in	Chapter	8,	Memory	Profiling.

Tuning	garbage	collection
Tuning	garbage	collection	includes	two	main	activities:	using	the	proper	garbage	collector
policy	and	defining	targets	for	collector	performance	metrics.

Using	proper	garbage	collection	policy

In	Chapter	2,	Understand	Java	Fundamentals,	we	explored	the	different	available
collectors	in	the	Java	HotSpot	VM,	including	G1	introduced	in	Java	SE	7	(update	4).
Here,	we	will	discuss	some	guidelines	to	properly	select	the	collector	policy.

If	there	is	no	issue	in	the	application,	let	the	JVM	select	the	proper	collector	policy	as	part
of	ergonomics.	The	–server	mode	will	pick	G1	as	the	first	option.

If	the	application	deals	with	less	data	or	is	running	on	a	single	processor	and	the	JVM
selected	garbage	collector	is	not	performing	well,	then	consider	switching	to	a	serial
collector	using	the	following	parameter:

-XX:+UseSerialGC

If	the	application	deals	with	a	big	set	of	data	and	is	not	performing	well,	try	to	use	G1	if
it’s	not	already	in	use	(or	upgrade	the	Java	version	to	use).	Consider	the	concurrent	mark
sweep	if	G1	is	not	supported	or	not	performing	as	expected.	Usually,	we	use	it	with	the
incremental	mode	for	better	performance	(as	it	reduces	the	application	pause	times)	as
follows:

-XX:+UseG1GC

-XX:+UseConcMarkSweepGC

-XX:+CMSIncrementalMode

If	switching	the	collector	type	doesn’t	resolve	the	current	issue,	try	to	tune	the	collector
further	by	setting	performance	goals/targets	for	it	or	try	to	change	its	behavior,	as	we	will
discuss	in	the	next	section.

Setting	GC	performance	targets

Garbage	collectors	have	some	sort	of	targets	to	achieve.	To	set	the	GC	pause	time,	we	can
use	the	following	parameter:

-XX:MaxGCPauseMillis=n

The	collector	will	try	to	meet	this	specified	pause	time	(it	is	not	mandatory	though).
Another	parameter,	which	is	also	useful	to	specify	the	ratio	between	the	time	spent	in	the
GC	to	the	application	execution	time	is	as	follows:

-XX:GCTimeRatio=n

Other	parameters	available	to	change	or	tune	the	collector	behavior	are	as	follows:

For	G1	collector:	-XX:G1HeapRegionSize=n

This	parameter	determines	the	size	of	the	small	regions	the	G1	operates	in	(it	should
be	between	1	Mb	and	32	Mb)

For	parallel	collector	and	concurrent	mark	sweep:	-XX:ParallelGCThreads=n
and	-XX:ConcGCThreads=n

These	parameters	are	used	to	determine	the	number	of	threads	used	for	GC	activities

This	is	a	simplified	overview	of	the	different	tuning	aspects	in	Java	HotSpot	VM	from
both,	the	memory	and	garbage	collection	aspects.

Tuning	the	JRockit	virtual	machine
The	Oracle	JRockit	VM	is	different	in	comparison	to	the	Oracle	HotSpot	VM	in	the
following	main	areas:

The	JRockit	VM	memory	structure	supports	continuous	heap	and	generational	heap
while	the	HotSpot	VM	only	supports	generational	heap.
The	JRockit	VM	generational	heap	is	divided	into	two	sections:	Nursery	and
Tenured.	The	Nursery	area	has	a	small	subarea	for	newly	allocated	objects	just
before	the	garbage	collection	cycle,	Keep	Area.	This	means	there	are	no	survivor
spaces,	so	moving	the	old	objects	inside	the	heap	is	reduced	by	one	or	more	steps.
JRockit	has	a	TLA	to	allocate	small	thread	objects;	large	objects	are	allocated	directly
in	the	heap.
Classes	are	considered	as	objects	and	allocated	in	the	heap	and	subjected	to	garbage
collection	as	well	(no	perm	generation).
Different	garbage	collection	modes	and	optimization	options.
JRockit	has	a	real-time	version	for	critical	applications	named	Oracle	JRockit	Real
Time.

The	following	diagram	shows	the	structure	of	the	JVM	for	the	JRockit	generational	heap
memory:

The	preceding	diagram	shows	a	high-level	structure	of	the	generational	JRockit	heap,
where	it	contains	two	main	sections,	one	for	the	old/large	objects,	which	is	under	Tenured
space,	and	another	one	for	object	allocations,	which	is	under	Nursery	space.	The
Nursery	space	contains	Keep	area	for	just	the	allocated	objects	(so	it	is	not	considered
for	garbage	collection),	and	TLAs	are	reserved	for	each	thread	allocation.	If	TLA	is	full,
the	thread	area	can	be	expanded	into	the	nursery	(TLA	is	not	shown	in	the	diagram).

This	means	the	tuning	of	the	JRockit	VM	is	different	than	that	of	the	HotSpot	VM.	We
will	describe	how	to	tune	this	JRockit	VM	in	general.

Tuning	JRockit	memory	size
Similar	to	the	HotSpot	VM,	the	same	parameters	are	used	to	determine	the	heap	size,	-Xms
and	–Xmx.

The	recommendation	is	to	keep	both	parameters	with	the	same	value	to	reduce	the	auto-
sizing	overhead.	Also,	–Xns	determines	the	size	of	the	nursery	area.

To	increase	the	thread	local	areas,	use	the	following	parameter:

-XXtlaSize:min=size,preferred=size

This	sets	the	minimal	and	preferred	size	of	TLA.	The	recommendation	is	to	increase	it	in
multithreading	applications,	allowing	larger	objects	to	be	allocated	for	each	thread	but
should	be	used	carefully	to	avoid	memory	fragmentation.

Tuning	JRockit	garbage	collection
Garbage	collection	strategy	mostly	follows	the	mark	and	sweep	model	for	the	heap	and	if
the	nursery	area	exists	(that	is,	generational	mode),	then	a	generational	garbage	collection
is	used.

Another	setting	is	available	to	set	the	garbage	collection	mode	among	the	following
modes:

-Xgc:throughput

-Xgc:pausetime

-Xgc:deterministic

The	last	mode	is	only	available	in	JRockit	Real	Time	and	it	optimizes	the	garbage
collection	towards	a	short	and	determined	pause	time.

The	other	two	options	optimize	the	collector	towards	the	required	goal,	either	maximum
application	throughput	or	shortest	pause	time.

To	set	the	target	pause	time,	we	can	use	the	following	parameter:

-XpauseTarget:time

As	the	garbage	collector	is	of	the	compacting	type,	this	can	impact	on	performance	by
increasing	the	pause	time.	Some	options	also	available	to	tune	this	as	well,	including	the
following	parameter:

-XXcompaction:percentage=percentage

-XXcompaction:maxReferences=value

The	first	option	to	determine	the	percentage	of	the	heap	should	be	compacted	with	each
old	garbage	collection.	This	should	be	set	carefully	as	it	has	direct	impact	to	the	pause
time.

The	second	option	restricts	the	maximum	number	of	referenced	objects	in	the	compacting
area.	If	the	number	is	exceeded,	the	compacting	is	cancelled	(as	it	will	be	moving	a	large
memory	area	that	can	increase	the	pause	time	as	well).

We	should	also	be	careful	while	using	this	parameter,	as	setting	it	to	a	small	value	will
stop	the	compacting	and	will	produce	memory	fragmentation.	With	more	memory
fragmentation,	the	JVM	will	be	forced	to	compact	the	whole	heap,	which	would
potentially	lead	to	a	long	pause	time.

The	last	parameter	is	used	to	inform	JRockit	to	execute	performance	optimization	as	early
as	possible	by	running	the	bottleneck	detector	in	high	frequency	from	the	beginning	(then
decrease	the	frequency	later)	and	utilize	the	memory	aggressively,	as	follows:

-XXaggressive:memory

Note
For	more	information	about	the	JRockit	VM	performance	tuning,	you	can	read	the	Oracle
online	documentation	at	http://docs.oracle.com/cd/E15289_01/doc.40/e15060/toc.htm

http://docs.oracle.com/cd/E15289_01/doc.40/e15060/toc.htm

Tuning	application	servers
Tuning	application	servers	is	an	essential	step	for	any	enterprise	application.	There	are	a
lot	of	areas	that	must	be	tuned	and	tailored	according	to	our	application.	We	will	discuss
some	of	these	areas	here	and	focus	on	both,	the	GlassFish	and	Weblogic	servers.

As	we	did	in	the	JVM	performance	tuning,	we	will	focus	on	the	generic	and	common
tuning	elements	here	and	try	to	simplify	them	so	we	can	understand	our	tuning	strategy
when	dealing	with	any	application	server	other	than	these	mentioned	servers.

The	importance	of	application	server	tuning	is	that	it	contains	the	different	containers	of
our	application	component,	for	example,	web	container,	EJB	container,	JMS	container
(that	is,	JMS	server),	and	so	on.

It	also	contains	and	manages	the	different	application	resources,	for	example,	JMS,
connection	pools,	thread	pools,	persistent	stores,	and	so	on.

Tuning	the	Oracle	GlassFish	application	server
The	following	general	items	should	be	configured	to	improve	the	performance	of	our
enterprise	applications	on	the	GlassFish	server.	We	will	go	through	the	configuration	as
specified	in	the	GlassFish	4	performance	tuning	guide.

Deployment	tuning	options
The	settings	that	need	to	be	tuned	for	the	application	deployment	in	the	production
environment	are	as	follows;	the	settings	can	be	adjusted	during	deployment	of	our
application	from	the	application	server	admin	console:

Disable	auto-deployment:	This	option	will	reduce	the	impact	of	interval	reload
checks.	It	should	normally	be	disabled	on	production,	as	this	is	not	the	common	way
to	deploy	the	application	in	production.
Disable	auto-reloading:	This	option	is	useful	when	we	need	to	change	something	in
the	deployed	application.	In	the	test	and	development	environment,	we	can	make	use
of	it	but	in	production	it	is	rarely	used,	so	it	is	better	to	disable	it	and	remove	the
check	on	the	resource	modification	each	time.
Precompile	JSP:	This	option	will	remove	the	time	spent	on	compiling	the	pages	for
the	first	request	(during	warm	up).	The	impact	will	be	increased	deployment	time,	but
the	benefit	is	a	better	user	experience.

Web	container	tuning	options
We	must	mainly	take	care	of	the	following	two	settings:

Set	proper	session	timeout:	The	value	of	the	session	timeout	must	fit	the	application
requirements.	Too	short	or	too	long	a	timeout	has	an	impact	on	the	application
performance	(memory	utilization	and	garbage	collection).	Also,	it	has	a	direct	impact
on	the	user	experience	if	we	set	it	to	a	very	short	period.
Disable	dynamic	JSP	reloading:	This	setting	is	not	required	in	the	production
servers,	so	it’s	better	to	disable	it	to	improve	the	performance.

EJB	container	tuning	options
A	lot	of	different	settings	can	be	tuned.	Usually,	we	won’t	need	to	change	most	of	them.
Some	of	these	settings	are	as	follows:

Optimize	EJB	pool	size:	By	setting	the	minimal	pool	size,	maximum	pool	size,	and
pool	resize	values	according	to	the	application	needs
Optimize	EJB	pool	idle	timeout:	This	is	an	important	setting	as	it	specifies	the
maximum	time	each	bean	instance	is	allowed	to	be	idle	for	in	the	pool	before	it	gets
destroyed	and	removed	(the	default	is	600	seconds)
Optimize	EJB	cache:	By	setting	the	caching	parameters,	maximum	cache	size,
resize	value,	removal	timeout,	removal	policy,	cache	idle	timeout,	and	refresh	period

The	following	removal	policies	are	supported	in	the	GlassFish	EJB	container:

The	default	value,	Not	Recently	Used	(NRU)

First	In,	First	Out	(FIFO)
Least	Recently	Used	(LRU)

We	already	discussed	these	caching	policies	in	Chapter	5,	Recognizing	Common
Performance	Issues.

Thread	pool	tuning	options
The	thread	pool	can	be	tuned	by	setting	the	min	and	max	value	of	the	thread	pool	size.	The
values	of	these	options	depend	on	the	application’s	average	requests	and	the	average	time
spent	on	each	request.

The	recommended	value	for	the	maximum	size	should	be	between	100	and	500	according
to	the	hardware	server	profile.	Also,	setting	both,	the	minimum	and	maximum	options
with	the	same	value	should	be	considered	unless	the	application	traffic	and	load	varies
markedly	over	the	day.

JDBC	connection	pool	tuning	options
The	aspects	mentioned	below	the	following	screenshot	can	be	tuned	for	the	JDBC
connections:

Refer	to	the	following	aspects:

Optimizing	pool	size	settings:	This	aspect	sets	the	minimal,	maximum,	and	resize
quantity.	These	settings	should	be	configured	according	to	the	application’s	nature	of
dealing	with	the	database	and	number	of	supported	concurrent	users.

Optimizing	connection	timeout:	We	need	to	set	the	idle	timeout	(the	maximum	time
the	connection	remains	idle	before	the	connection	is	closed	and	removed	from	the
pool)	and	the	maximum	wait	time	(the	time	the	caller	should	wait	for	before	getting
the	connection	timeout	error).	Setting	this	maximum	wait	time	to	zero	means
blocking	the	caller	thread	until	a	connection	is	available,	and	this	is	recommended	for
better	performance.
Optimizing	connection	validation:	If	database	connectivity	is	reliable,	then	disable
connection	validation;	otherwise,	the	server	will	validate	the	connection	whenever
the	pool	returns	a	connection.
Optimizing	transaction	isolation	level:	Do	not	specify	the	transaction	isolation
level,	if	possible,	and	use	the	default	isolation	level	in	the	JDBC	driver	to	avoid	any
performance	overhead	in	the	JDBC	driver.

Tuning	file	cache	components
The	GlassFish	file	cache	component	is	used	to	cache	the	static	files,	such	as	images,	CSS,
HTML,	text	files,	and	so	on.	The	two	settings	that	control	the	file	cache	component	are
max	count	of	cached	files	and	max	age.

The	cached	max	file	counts	need	to	be	tuned	by	selecting	a	value	between	the	high	value
that	can	consume	high	memory	and	the	low	value	that	removes	the	benefit	of	using	this
caching	service.

The	max	age	component	should	match	the	frequency	of	updating	the	information	on	our
website,	that	is,	the	cached	files.

Tuning	DNS	caching
The	tuning	DNS	caching	setting	should	be	enabled	so	that	it	improves	the	performance,
since	it	will	remove	the	DNS	lookup	overhead.

Tuning	logging	information
Logging	can	affect	the	application	performance.	If	it	does	not,	follow	the	logging	best
practices.	From	the	application	server	perspective,	we	need	to	consider	the	following
points:

Tune	the	log	level	of	GlassFish	and	the	different	deployed	applications
Disable	access	logs	if	not	really	required	for	troubleshooting	(or	if	they	can	be
obtained	from	another	component)
Change	the	logfiles	location	to	be	in	a	separate	hard	drive

This	is	a	simplified	overview	of	some	of	the	GlassFish	tuning	areas	that	will	be	mostly
similar	to	the	tuning	of	other	application	servers.

Note
For	more	details	on	GlassFish	Version	4.0	performance	tuning	details,	check	the
documentation	guide	at	https://glassfish.java.net/docs/4.0/performance-tuning-guide.pdf.

https://glassfish.java.net/docs/4.0/performance-tuning-guide.pdf

Tuning	the	Oracle	Weblogic	application	server
The	same	settings	that	we	discussed	with	GlassFish	tuning	are	also	available	in	different
forms	on	the	Weblogic	server,	yet	Weblogic	has	many	more	advanced	settings	for	the
application	performance	monitoring	and	tuning.

We	will	list	here	a	few	areas	that	we	didn’t	deal	with	in	the	GlassFish	tuning	section	as	an
example	of	the	variation	between	different	application	servers’	performance	tuning.	Also,
they	provide	additional	aspects	that	we	need	to	consider	when	dealing	with	other
application	servers.

Tuning	the	internal	applications’	deployment
Weblogic	has	many	internal	applications	that	get	deployed	during	server	startup.	They	are
not	required	for	our	application.	In	this	case,	we	can	change	the	default	behavior	in	our
production	server	from	deploying	it	on	startup	to	on-demand	access,	in	particular	when	we
need	to	reduce	the	server	memory	footprint.

Tuning	network	components
An	example	of	network	tuning	is	selecting	the	proper	muxer.	The	Java	muxer	is	platform
independent	but	slower	than	the	native	muxer,	so	it	is	ideal	to	use	the	native	muxer.	But	if
we	have	RMI	clients,	the	only	way	to	support	this	is	by	using	the	Java	muxer.

Note
Muxer	is	a	software	module	in	Weblogic	that	reads	incoming	server	requests	and	outgoing
client	responses.	Three	types	of	muxer	are	available	to	use:	Java,	native,	and	non-blocking
IO	muxer.

Also,	memory	chunck	optimization	can	be	done	by	increasing	the	memory	chunk	size,
pool	size,	and	partition	count	that	can	improve	the	performance	if	the	application	handles
a	large	amount	of	data	per	request	(the	default	value	is	4	KB	with	a	2048	pool	size	in	4
different	partitions).

Note
Chunk	is	the	memory	unit	of	the	Weblogic	network	layer	reserved	memory	(client/server
side);	it	is	used	to	read/write	data	from/to	sockets.

Tuning	stuck	thread	configuration
Weblogic	has	the	ability	to	detect	whether	a	thread	is	continuously	working	for	a	set	of
time	and	log	it	as	a	stuck	thread	since	this	thread	is	not	able	to	complete	its	request	or
serve	a	new	request.

Tuning	this	is	important	according	to	the	nature	of	the	application.	Also,	it	is	useful	when
troubleshooting	spikes	during	performance	testing	to	understand	where	these	threads
spend	time.	We	do	this	so	we	can	set	the	value	of	the	thread	that	is	stuck	to	something	that
is	less	than	the	spikes’	values	in	order	to	get	them	logged	to	analyze	the	root	cause	of	the
spikes’	performance.	This	is	applicable	if	we	are	not	able	to	get	thread	dumps	in	the	exact

time	of	these	spikes.

Note
To	read	more	about	the	number	of	options	that	are	available	for	performance	tuning	on
Weblogic	Server	12c,	check	the	Oracle	online	documentation:
http://docs.oracle.com/cd/E24329_01/web.1211/e24390.pdf

http://docs.oracle.com/cd/E24329_01/web.1211/e24390.pdf

Tuning	web	servers	(HTTP	servers)
Most	of	the	enterprise	applications	have	a	web	server	placed	up	front	of	its	application
layer.	They	are	used	for	many	reasons,	such	as	serving	static	site	content,	load	balancing,
security	reasons,	for	example,	part	of	the	demilitarized	zone	(DMZ),	and	so	on.

The	previous	diagram	shows	a	simplified	deployment	architecture	with	multiple	DMZ
zones,	up	front	web	servers,	and	a	backend	system	consisting	of	the	application	servers
and	the	database	server.

Note
DMZ	is	a	network	architecture	where	external	facing	services	are	on	either	physical	or
logical	network	(or	subnetwork).	This	gives	more	security	since	any	attack	can	only	get
access	to	these	exposed	services,	and	the	internal	network	is	protected	and	can	only	be
accessed	from	this	DMZ	zone.

Among	the	existing	web	servers,	the	most	commonly	used	web	server	is	Apache	web
server.	Other	vendors	also	provide	different	web	servers	that	some	of	them	already	use
Apache	web	server	in	its	core	(wrapper	servers)	as	Oracle	web	server.

In	this	section,	we	will	discuss	some	points	around	the	Apache	web	server	performance
tuning	to	understand	our	strategy	when	we	deal	with	web	servers’	performance	tuning.

Tuning	the	Apache	web	server	(Apache	HTTP
server)
Before	we	start	performance	tuning	of	the	Apache	web	server,	we	must	understand	the
different	operating	modes.	Apache	server	is	a	Multi-process/Multi-thread-based	(MPM)
server.	Some	of	the	MPMs	are	platform-specific,	for	example,	mpm_netware,	mpmt_os2,
and	mpm_winnt.

For	Unix-based	systems,	the	following	MPM	modes	can	be	used:

Worker	MPM:	This	mode	uses	multiple	child	processes	with	many	threads;	each
thread	handles	one	connection	at	a	time,	and	worker	fits	high-traffic	servers	because
it	has	a	smaller	memory	footprint.
Event	MPM:	This	mode	is	threaded	as	the	worker	mode	but	is	designed	to	allow
more	requests	simultaneously	by	delegating	some	processing	work	to	the	supporting
threads	and	freeing	up	the	main	threads	to	work	on	new	requests.
Prefork	MPM:	This	mode	uses	multiple	child	processes	with	one	thread	each;	each
process	handles	one	connection	at	a	time.

It	uses	more	memory	than	the	worker	mode,	but	since	it	is	not	thread-based,	it	is	not
recommended	to	be	used.	But	it	has	advantages	over	the	worker	mode	as	it	can	be
used	with	non-thread-safe	third-party	modules	and	is	easier	to	be	used	for	debugging
on	platforms	with	poor	thread	debugging	support.

We	can	further	tune	the	selected	mode	by	using	the	following	configurations:

Removing	the	unnecessary	or	unused	modules	by	commenting	out	the	associated
LoadModule	directive;	this	will	help	to	improve	the	request	processing	time
Switching	off	dynamically	added	modules	to	reduce	the	associated	memory	by
adding	-DDYNAMIC_MODULE_LIMIT=0	when	building	our	Apache	web	server
Allocating	as	much	memory	as	possible	to	the	server	to	decrease	the	latency;	we	need
to	avoid	memory	swap,	otherwise	the	performance	will	be	degraded	markedly
Switch	HostnameLookups	off	(this	is	the	default	value);	if	we	need	to	read	the	log
with	different	IPs,	there	is	a	utility	that	comes	with	the	server	named	logresolve,
which	can	be	used	to	read	access	logs	in	a	more	readable	way

Note
Logresolve	is	a	program	that	resolves	IP	addresses	in	Apache’s	access	log	files;	it	can
be	downloaded	from	the	following	location:
http://httpd.apache.org/docs/2.4/programs/logresolve.html.

Disable	AllowOverride	(for	the	.htaccess	files)	whenever	possible	and	if	we	need
to	use	AllowOverride,	we	must	limit	the	permit	to	the	required	directories	only,	as
shown	in	the	following	code:

DocumentRoot	/www/htdocs

<Directory	/>

		AllowOverride	None

http://httpd.apache.org/docs/2.4/programs/logresolve.html

</Directory>

Whenever	possible,	set	FollowSymLinks	everywhere,	and	don’t	try	to	set
SymLinksIfOwnerMatch

Reduce	content	negotiation	if	possible,	for	example,	instead	of	using
DirectoryIndex,	use	it	with	all	the	possible	names	allowed	as	follows:

DirectoryIndex	index.html	index.cgi

Always	enable	the	send	file	and	if	we	have	some	performance	instability,	in
particular	with	an	NFS-mounted	filesystem,	disable	it	only	for	that	directory	as
follows:

EnableSendfile	off

Minimize	KeepAliveTimeout	(less	than	60	seconds)	when	keepAlive	is	used,	so	that
the	Apache	server	does	not	wait	too	much	for	subsequent	requests	(the	default	is	5
seconds)

An	important	Apache	performance	tuning	option	is	the	ability	to	compress	the	output	from
the	server	and	decompress	the	compressed	input	from	the	client.	This	reduces	the	size	of
the	transmitted	data	and	hence	improves	the	bandwidth	of	the	application	and	speeds	up
the	communication	between	the	client	and	the	server.

This	option	is	available	through	the	Apache	module,	mod_deflate,	which	is	a	filter
module	that	can	work	as	an	output	filter.	In	this	case,	the	output	data	will	be	compressed
and	the	client	browser	will	decompress	it,	and	if	it	is	added	as	an	input	filter,	the	client	can
send	the	compressed	body	and	it	will	decompress	them	before	processing.

This	is	configured	by	ensuring	that	the	module	is	already	loaded	in	httpd.conf	using	the
following	parameters:

LoadModule	deflate_module	modules/mod_deflate.so

In	the	deflate.conf	file,	add	the	required	filters	for	different	content	types	using	the
following	configuration	directives:

SetOutputFilter\AddOutputFilter	DEFLATE	(for	output	filter).

SetInputFilter\AddInputFilter	DEFLATE	(for	input	filter).

Also,	we	can	specify	this	by	the	type	of	content	using	another	directive:

AddOutputFilterByType	DEFLATE	text/html.

Unfortunately,	there	is	critically	identified	security	vulnerability	when	using	this	HTTP-
level	compression	with	TLS/SSL,	which	is	named	as	the	BREACH	attack.

Note
For	more	information	about	the	BREACH	attack,	refer	to	the	following	website:
http://breachattack.com/.

Another	important	tuning	aspect	in	the	Apache	server	is	pushing	the	browsers	to	load	the
different	resources	from	the	local	cache	as	long	as	they	are	not	frequently	changeable.

http://breachattack.com/

This	is	done	by	using	the	Apache	module	mod_expires,	which	enables	us	to	override	the
HTTP	headers,	cache-control	max-age,	and	expires,	so	reduce	the	load	over	the	server
and	enable	the	client	to	load	the	resources	quickly.	We	need	to	ensure	this	module	is
loaded	using	the	following	parameter	in	httpd.conf:

LoadModule	expires_module	modules/mod_expires.so

Now,	configure	the	required	changes	in	the	expire.conf	file	using	the	two	directives:
ExpiresDefault	and	ExpiresByType.	The	syntax	for	both	the	directives	is	as	follows:

ExpiresDefault	"base	[plus	num	type]	[num	type]	..."

ExpiresByType	type/encoding	"base	[plus	num	type]	[num	type]	..."

Where	base	is	one	of	access,	now	(equivalent	to	'access')	and	modification.

The	plus	keyword	is	optional	and	num	should	be	an	integer	value.

Type	is	one	of	years,	months,	weeks,	days,	hours,	minutes,	and	seconds.

An	example	of	how	to	use	these	configurations	is	as	follows:

ExpiresByType	text/html	"access	plus	20	days"

ExpiresByType	image/png	"modification	plus	48	hours	30	minutes"

These	are	some	examples	of	the	Apache	web	server	tuning	configurations	and	mostly
apply	in	other	vendors,	especially	those	that	use	the	Apache	server	in	the	core.

Note
For	more	information	about	the	Apache	2.4	performance	tuning,	you	can	read	the
following	Apache	online	documentation:

http://httpd.apache.org/docs/2.4/misc/perf-tuning.html

http://httpd.apache.org/docs/2.4/misc/perf-tuning.html

Tuning	the	Oracle	web	server	(Oracle	HTTP
server)
The	Oracle	web	server	is	based	on	the	Apache	server,	so	most	of	the	configurations	are
already	the	same	as	in	the	Apache	web	server.

Similar	to	the	Apache	server,	Oracle	web	server	supports	different	modes	that	should	be
selected	according	to	the	operating	system	as	follows:

The	worker	mode	uses	the	MPM	made	on	platforms	other	than	Microsoft	Windows
(default	mode)
The	WinNT	mode	consists	of	a	parent	process	and	a	child	process;	the	parent	process
is	the	control	process	and	the	child	process	creates	threads	to	handle	requests	(this	is
for	Windows	only)
The	prefork	mode	uses	processes	instead	of	threads	and	is	considered	the	least
efficient	mode

When	the	sever	starts	to	run,	the	main	process	starts	to	execute,	which	executes	many
child	processes	as	specified	by	the	StartServers	attribute	with	a	maximum	number	as	in
ServerLimit	(this	is	for	non-Windows	servers).

After	this,	each	process	creates	threads	using	ThreadsPerChild	with	the	upper	limit	as
ThreadLimit.	These	threads	include	multiple	worker	threads	and	one	listener	thread	to
transfer	requests	to	the	workers.

The	process	then	maintains	the	number	of	threads	by	using	MinSpareThreads	(minimum
number	of	idle	threads)	and	MaxSpareThreads	(maximum	number	of	idle	threads).

Let’s	now	explore	some	of	the	tuning	configurations	(most	of	them	exist	in	the	Apache
server	as	well)	as	follows:

Setting	the	maximum	number	of	clients	that	can	connect	simultaneously	using	the
MaxClients	parameter	with	the	default	value	as	150,	but	this	can	be	increased	up	to
8,000	as	long	as	the	resources	can	support	it	(note	that	in	the	recent	Apache	releases,
the	parameter	is	named	MaxRequestWorkers	but	MaxClients	is	still	supported).	This
parameter	is	only	used	in	non-Windows	servers.
Setting	the	startup	process	if	we	expect	always	load	once	the	application	is	up	and
running.	This	can	be	achieved	by	StartServers	with	the	default	value	as	2.	This	is
controlled	by	ServerLimit,	which	specifies	the	maximum	number	of	clients	and	has
the	priority	over	StartServers.
Setting	the	number	of	threads	per	process	by	using	ThreadsPerChild,	this	is
controlled	by	the	maximum	thread	counts	that	can	be	created	under	each	process	to
serve	customer	requests	using	ThreadLimit.	The	default	value	is	64	except	in
Windows	1920.
Control	the	thread/workers	pool	by	using	MinSpareThreads	and	MaxSpareThreads.
Limit	the	number	of	enabled	modules	by	removing	them	out	of	the	httpd.conf	file,
as	each	request	will	pass	on	the	different	handlers	till	it	finds	a	suitable	handler.	Also,
static	pages	will	go	through	all	the	handlers	till	they	get	picked	by	the	default	handler.

Tune	the	file	description	limit	by	tuning	the	hard	limit	of	the	operating	system’s	file
descriptor	(this	is	the	operating	system	configuration	as	we	will	see	later).

Note
For	more	information	about	the	Oracle	web	server	tuning	12c,	refer	to	the	following
Oracle	documentation:	http://docs.oracle.com/middleware/1212/core/ASPER.pdf.

http://docs.oracle.com/middleware/1212/core/ASPER.pdf

Tuning	the	operating	system	and
hardware
If	we	look	back	to	our	application	pyramidal	model	in	the	early	pages	of	this	chapter,	we
can	see	that	we	are	now	discussing	the	basement	layer	of	that	model,	so	that	this	layer
performance	impact	is	propagated	to	all	the	other	layers.

If	a	virtual	machine	is	used,	the	impact	of	the	operating	system	and	the	virtual	machine’s
own	performance	is	doubled	(it	is	out	of	the	scope	of	this	book	to	discuss	virtual	machine
performance	optimization).

The	next	section	covers	the	main	points	that	we	need	to	take	care	of	when	dealing	with	the
operating	system	and	hardware	tuning.

Capacity	planning	and	hardware	optimization
A	lot	of	important	factors	contribute	to	our	decision	to	scale	the	application	hardware.
Among	these	factors,	we	can	list	the	following	important	points:

Understanding	the	current	hardware	capacity
The	existing	application	utilization
The	application	bottleneck	areas	(that	is,	CPU,	memory,	network,	and	so	on)
The	application	traffic	forecast

The	preceding	factors	can	help	us	understand	where	the	current	hardware	needs	to	be
scaled	in	either	vertical	or	horizontal	scaling.	For	example,	if	the	bottleneck	is	located	in	a
specific	component	(that	is,	memory),	scaling	this	component	vertically	can	fix	the	issue
(for	example,	add	more	RAM).

Scaling	it	horizontally	might	improve	it.	Also,	if	the	system	reaches	its	full	capacity,
consider	scaling	it	horizontally	to	improve	its	performance.	So,	the	most	important	factor
in	the	application	scaling	decision	is	the	application	monitoring	results.	Some	of	the	use
cases	for	hardware	scaling	are	as	follows:

If	the	CPU	utilization	is	high	and	bottleneck	is	on	CPU,	then	changing	to	multicores
or	adding	more	servers	should	be	considered	(if	no	more	code	tuning	is	possible).
Also,	moving	some	running	applications	on	to	different	hardware	(changing
architecture)	should	be	considered.
If	the	limitation	is	for	the	memory	to	support	more	sessions	or	more	concurrent	users,
add	more	RAM	to	the	system.	Also,	avoid	using	virtual	memory,	as	swapping	will
severely	degrade	the	performance.	It	is	good	to	have	virtual	memory	in	the	legacy
systems	that	does	not	support	large	memory	RAMs.
The	disk	I/O	speed	must	be	assessed	and	if	it	is	not	good,	replace	it	with	more	speed
disks.	Also,	enough	disk	space	should	be	allocated,	and	it	is	preferred	if	logfiles	and
non-important	files	are	located	in	different	disk	drivers/partitions.
Network	bandwidth	should	be	sufficient	not	only	to	serve	customer	requests	but	to
also	synchronize	between	cluster	nodes,	for	example,	session	replication,	disaster
recovery	replication,	and	so	on.
Performance	optimization	of	cluster	configurations	is	always	required	to	improve	the
application	performance	so	we	can	get	the	best	outcome	from	this	cluster-like
scalability	and	failover.

The	scalability	decision	in	all	cases	shouldn’t	be	made	based	on	wrong	application
behavior.	So,	if	we	have	a	memory	leak	in	our	application,	the	solution	is	not	to	scale	its
memory.	We	should	fix	all	application	issues	before	we	decide	that	a	certain	component	in
our	system	is	the	limiting	factor	for	our	application	scalability.

It	is	worth	mentioning	here	that	all	the	scalability	changes	must	be	performance	tested	and
proved	to	be	adding	value	to	the	application	performance.	This	is	of	course	for	both,	end-
to-end	performance	testing	and	isolated	component	performance	testing.	So,	performance
testing	covers	two	important	areas,	deciding	where	to	scale	and	if	scaling	improves	the
performance	as	desired	or	not.	We	already	covered	performance	testing	in	detail	in

Chapter	3,	Getting	Familiar	with	Performance	Testing.

Operating	system	configurations	optimization
Performance	tuning	of	an	operating	system	must	follow	the	specified	tuning	guidelines	for
the	JVM,	application	servers,	web	servers,	and	network	elements,	according	to	the
platform	operating	system	being	used.

It	is	out	of	our	book’s	scope	to	discuss	operating	system	and	network	tuning.	A	couple	of
examples	for	the	operating	system	configuration	tuning	are	as	follows:

File	Descriptor	Setting:	By	setting	this	configuration,	the	maximum	number	of	open
files	property	(in	UNIX,	by	the	command	ulimit)
TCP	tuning:	By	this	configuration,	adjusting	the	TCP	wait	time	value,	the	TCP
queue	size,	connection	hash	size,	and	so	on	if	required

Now	that	we	are	at	the	end	of	this	chapter,	it	is	important	to	completely	understand	the
high-level	guidelines	and	directions	that	we	need	to	follow	when	we	are	targeting	to	tune
our	application	environment.	This	will	help	us	while	thinking	of	any	enterprise	application
performance	issue.	But	for	detailed	steps,	you	can	refer	to	the	specific	vendor
documentation	for	more	information.

Summary
In	this	chapter,	we	briefly	covered	the	tuning	aspects	in	the	enterprise	application
environment,	starting	from	the	most	important	aspect,	which	is	the	JVM	tuning.	We
dissected	the	HotSpot	JVM	in	detail	and	covered	some	gaps	and	differences	when	we
discussed	the	JRockit	JVM	performance	tuning.

We	also	discussed	the	application	server	tuning	and	selected	the	basic	server,	GlassFish
being	the	reference	implementation	server	as	an	example	for	the	basic	required	tuning	in
the	different	enterprise	application	components.	We	also	highlighted	some	points	in	the
Weblogic	server	as	an	example	of	other	areas	that	we	need	to	look	into.

We	covered	the	Apache	web	server	as	an	example	of	the	HTTP	web	servers	and	discussed
a	few	areas	for	performance	tuning.	We	gave	a	few	hints	about	the	Oracle	web	server
being	based	on	the	Apache	web	server,	and	then	highlighted	a	few	points	for	the	operating
system	and	hardware	scaling	directions,	which	must	be	based	on	the	vendor’s
recommendations	and	application	monitoring	results.

In	Chapter	10,	Designing	High-performance	Enterprise	Applications,	we	will	discuss	the
importance	of	the	application	design	from	the	performance	aspect	and	the	different	design
decisions	and	their	performance	impact.	We	will	also	discuss	data	caching	on	different
layers	to	improve	the	performance	of	our	applications.

Chapter	10.	Designing	High-performance
Enterprise	Applications
Design	is	our	key	to	a	good	performing	enterprise	application.	Some	design	decisions	can
cost	us	a	lot	in	application	performance	and	should	be	avoided	whenever	possible.

In	this	chapter,	we	will	try	to	cover	some	of	the	design	areas	that	we	should	consider	while
designing	our	enterprise	applications.	We	will	discuss	data	caching	in	more	detail,	since	it
is	one	of	the	magic	pillars	for	performance	improvement.

The	following	is	the	list	of	topics	that	we	will	cover	in	this	chapter:

Design	decisions	and	performance	impact
Performance	anti-pattern	decisions
Performance	aspects	in	Service	Oriented	Architecture	(SOA)
Performance	of	RESTful	web	services
Data	caching	techniques
Cloud	performance	considerations

Potential	performance	impact	of	different
design	decisions
Design	decisions	are	always	difficult	since	they	are	taken	under	a	lot	of	different
considerations	and	restrictions,	including	fulfilling	both	functional	and	non-functional
requirements,	project	budget,	available	software	license,	infrastructure,	team	skills,
product	roadmap,	previous	experience,	and	so	on.

We	won’t	discuss	the	non-technical	constraints	such	as	budget	or	team	skills	here,	but	we
will	focus	on	the	technical	aspects	of	these	decisions.

Tip
Before	we	start	discussing	the	different	design	decisions,	it	is	important	to	realize	that
there	is	no	single	point	of	view	in	design	decisions.	When	it	comes	to	design,	there	is
nothing	absolutely	wrong	or	absolutely	right.	However,	the	design	direction	could	be
relatively	better	or	worse	by	evaluating	the	pros	and	cons	of	each	design	direction	in	the
context	of	our	project.	Therefore,	in	this	chapter,	we	will	focus	more	on	the	common	and
general	opinions	regarding	these	design	decisions	and	reflect	our	own	experience.

Performance	is	one	of	the	most	important	aspects	of	non-functional	requirements.	Before
we	discuss	the	different	design	decisions,	we	need	to	highlight	that	the	non-functional
requirements	must	be	measurable	so	that	the	application	design	can	match	these
requirements.

We	shouldn’t	accept	vague	or	non-measurable	goals,	such	as	the	system	should	be
performing	well	during	load	time.	This	is	an	example	of	a	general	non-measurable
requirement	statement;	instead,	the	requirement	should	define	exactly	what	the	required
performance	of	the	system	is	(that	is,	response	time)	and	what	is	the	load	time	or	number
of	concurrent	users?	We	need	to	do	the	same	for	other	non-functional	requirements	like
scalability	where	we	need	to	have	a	well-defined	scaling	measurement.

In	this	section,	we	will	discuss	the	high-level	considerations	in	different	design	decisions
from	the	performance	perspective.	Then,	we	will	pick	some	points	to	discuss	in	more
detail	in	the	next	sections	of	this	chapter.

Potential	performance	impact	of	the	application
layer’s	decisions
The	application	architecture	must	consider	the	required	performance	of	the	application
while	designing	the	whole	application	architecture	and	during	the	design	of	each	layer	in
the	application.	Also,	defining	the	number	of	application	layers	should	be	considered	from
the	performance	point	of	view.

The	layered	architecture	in	JEE	promotes	flexibility	mainly	due	to	loose	coupling	and
separation	of	concerns	in	application	layers,	for	example,	a	typical	enterprise	application
could	contain	the	following	layers:

The	following	are	the	different	components	of	a	typical	enterprise	application,	as	shown	in
the	preceding	diagram:

Presentation	layer:	This	layer	contains	the	UI	elements	and	presentation	logic	along
with	some	required	validations.
Service	layer:	This	layer	contains	the	services	that	are	exposed	either	internally	or
externally.	It	could	be	implemented	in	two	ways:	tightly	coupled	with	the
presentation	layer	using	direct	method	calls	or	loosely	coupled	using	EJBs,
SOAP/REST	web	services,	JMS,	and	so	on.
Business	layer:	This	layer	contains	the	application’s	business	logic,	entities,	and
workflows,	and	it	is	responsible	for	interacting	with	the	data	layer.
Data	layer:	This	layer	encapsulates	and	interacts	with	the	data	sources	and	represents
the	data	that	is	used	by	the	business	layer.
Data	sources:	This	layer	consist	of	different	application	data	sources	such	as
database,	different	files,	external	services/systems,	and	so	on.
Integration	layer:	This	layer	integrates	with	other	systems	that	are	usually	made	by
using	a	middleware	application	in	the	service	layer.

Adapter:	These	are	components	that	might	be	required	when	we	need	to	interact
with	legacy	systems	or	old	technologies.

The	different	components	of	the	application	can	be	distributed	into	different	zones	by
using	the	Demilitarized	Zone	(DMZ)	concept,	which	is	a	basic	security	architecture
consideration.	Generally,	one	or	two	DMZs	are	used,	but	sometimes	more.

Each	application	zone	must	be	redundant	with	the	load	balancing	feature	and	the	failover
technique	so	that	the	application	can	withstand	high	traffic	load	and	any	unexpected
production	issues.

Note
DMZ	is	a	physical	or	logical	subnetwork	that	is	characterized	by	exposed	services	to
another	less	trusted	network.	The	aim	of	this	zone	is	to	add	another	layer	of	security	to	the
internal	network,	as	external	network	attacks	can	only	have	direct	access	to	these	exposed
services	in	the	DMZ	but	not	to	the	internal	network.

DMZ	is	built	using	different	firewall	architectures,	and	in	some	enterprise	applications,
more	than	one	DMZ	is	used	for	more	security.

One	important	factor	in	the	application	architecture	is	data	replication	for	both	geo-
redundancy	and	disaster-recovery	environments.	Without	having	a	good	performing	data
replication	method	between	these	environments,	using	these	environments	during	critical
situations	will	be	of	less	value.

We	also	need	to	have	distributed	caching	as	an	essential	component	to	improve	the
enterprise	application	performance,	yet	it	should	be	tailored	according	to	our	application’s
exact	needs.	The	best	type	of	data	caching	is	the	lookup	and	static	data.

If	transactional	data	needs	to	be	cached,	it	needs	to	be	done	in	a	centralized	manner	as	we
do	not	know	the	actual	application	instance	that	will	make	use	of	the	cached	data.	This
centralized	distributed	caching	is	a	complex	type	of	caching,	and	it	needs	some	sort	of
global	locking	mechanism,	as	we	will	see	later	in	this	chapter	when	we	discuss	data
caching.

Potential	performance	impact	of	a	component’s
selection	decisions
Selecting	different	application	components	requires	some	deep	analysis	of	the
requirements,	component	capabilities,	performance	of	the	components,	supporting
interfaces,	and	so	on.

The	selection	of	different	system	components	is	not	an	isolated	task	as	it	overlaps	with
other	decisions—in	particular,	the	integration	strategy.

Each	system	component	must	be	dedicated	to	a	specific	task,	limiting	the	interaction
between	the	system’s	internal	components	to	exchange	the	required	messages	or	data	(that
is,	apply	the	separation	of	concerns	rule).

It	is	important	that	when	we	select	system	components,	we	do	not	focus	only	on	the
requirements.	We	need	to	think	about	some	of	the	following	additional	aspects	of	these
components:

Scalability:	This	refers	to	the	ability	to	scale	up	the	component.	We	can	add	more
servers	to	scale	it	horizontally	or	add	more	hardware	resources	(for	example,	more
memory)	to	scale	it	vertically.	Scalability	must	be	defined	in	a	measurable	way	and
should	be	taken	into	consideration	from	the	early	architecture	stage.	Unfortunately,
this	is	commonly	missed,	which	causes	us	a	painful	cost	in	later	stages	of	the	project.
Expandability:	This	refers	to	the	ability	of	the	component	to	expand	and	provide
support	to	additional	requirements	in	the	future	without	the	need	to	replace	it	or	do
major	changes.
Flexibility:	If	the	component	can	support	different	interfaces/protocols,	then	the
component	is	flexible	in	our	architecture	and	can	integrate	with	other	components	in
many	different	ways.	This	promotes	loose	coupling	and	allows	performance	tuning	to
use	the	best	performing	protocol.
Customizable:	This	is	an	important	feature	from	the	performance	perspective.	It
refers	to	the	ability	to	switch	off	certain	unnecessary	modules/features	to	improve	the
performance.	We	saw	this	during	the	tuning	of	the	Apache	web	server	where	we	can
remove	some	modules	from	the	server	to	enable	more	efficient	server	memory
utilization.

Potential	performance	impact	of	integration
decisions
Integration	decisions	are	directly	related	to	the	application	performance—in	particular,	the
integration	layer	of	the	middleware	component.	The	performance	of	this	layer	is	the	main
factor	that	affects	the	enterprise	application	performance.

From	the	integration	point	of	view,	the	first	question	we	need	to	answer	is	the	number	of
integration	layers:	how	many	layers	are	present	in	our	system?	The	role	of	each	layer
should	be	well	defined	by	having	clear	defined	inputs	and	output	from	each
layer/component.	This	is	what	we	call	separation	of	concerns,	which	aims	to	reduce	the
internal	communication	overhead.

The	layers	or	the	components	should	also	be	loosely	coupled	to	allow	the	replacement	of
any	component	without	impacting	other	components.

Integration	protocols	must	be	standard	portable	protocols	such	as	XML,	JSON,	JMS,	FTP,
JDBC,	and	HTTP.	These	standard	protocols	can	allow	easy	integration,	but	the
performance	is	not	as	good	compared	to	native	integration,	for	example,	using	direct
method	calls	or	local	EJB	calls.

After	defining	each	layer	function	and	integration	protocols,	we	need	to	keep	the
interaction	granularity	in	the	medium	range.	For	example,	using	very	fine-tuned	or	very
coarse	objects	on	interaction	calls	can	degrade	the	application	performance	as	it	either
requires	many	calls	to	achieve	the	task	or	returns	a	huge	amount	of	unnecessary	data.

The	integration	mode	is	an	important	performance	factor,	as	selecting	synchronous
interaction	is	not	usually	a	good	decision	in	all	transaction	types.	Sometimes,
asynchronous	interaction	is	required	for	lengthy	or	external	calls.

The	integration	layer	must	be	highly	available;	this	is	not	a	luxury	for	this	layer	as	this
layer	is	considered	as	the	backbone	of	the	application.	The	performance	of	this	layer	must
be	measured	separately	from	other	components	to	assess	the	overhead	of	this	layer	and
improve	its	performance.

Transaction	propagation	is	one	of	the	important	aspects	of	the	integration	design:	how	do
we	propagate	transaction	between	different	components?	The	aim	is	to	minimize	the	use
of	long	global	transactions	(WS-AtomicTransaction,	that	is,	two-phase	commit)	in	favor
of	local	or	short	component	transactions	whenever	this	is	possible.

Another	way	to	support	prolonged	transaction	is	to	implement	a	rollback	logic	(WS-
BusinessActivity)	whenever	the	integrated	system	components	fails	at	a	certain	level.
We	can	execute	the	rollback	steps	from	the	failure	point.

Caching	is	an	essential	feature	in	the	integration	layer	to	speed	up	the	application
transactions.	Most	integration	service	buses	provide	this	feature	out	of	the	box	to	speed	up
the	integration,	which	is	very	useful	when	the	data	is	not	changing	frequently.

Caching	can	also	be	done	at	the	API	level	by	caching	the	service	results.	All	caching	must

be	implemented	correctly	to	gain	better	performance.	We	will	discuss	caching	in	detail
later	in	this	chapter.

Potential	performance	impact	of	security	decisions
Security	is	an	essential	non-functional	requirement,	in	particular,	for	enterprise
applications	that	deal	with	sensitive	information	such	as	personal	information	and	health
and	payment	details.

Selection	of	security	measures	can	affect	the	application	performance.	If	we	take	access
controls	checks	as	an	example,	they	might	require	additional	checks	with	each	user
transaction	or	request.	Typically,	generating	access	tokens	for	users	and	caching	these
tokens	can	speed	up	such	interactions.

The	SSL	protocol	should	be	used	when	the	user	wants	to	log	in	to	our	application,	and	we
don’t	need	to	secure	the	connection	in	most	of	the	cases	before	the	login	step.

Some	applications	restrict	the	access	to	certain	whitelisted	IP	addresses.	This	adds
additional	checks	on	each	user	request	and	should	be	limited	to	administrative	transactions
rather	than	customer	transactions	(it	doesn’t	add	much	to	the	application	security).

Data	encryption	is	essential	for	some	sensitive	data	such	as	passwords,	payment	details,
and	health	information.	Other	data	of	less	value	might	be	optionally	encrypted	or	just
encoded.	Encryption	is	a	slow	process	so	selection	of	both	the	data	that	needs	to	be
encrypted	and	the	encryption	algorithm	should	be	carefully	done.

Some	database	engines	already	provide	a	transparent,	secure	wallet	solution	for	such
classified	confidential	data.

Splitting	the	user’s	data	from	transactional	data	is	another	recommended	security	measure
where	data	is	split	over	many	different	database	schemas.	So,	having	access	to	any	of
these	schemas	reveals	data	that	is	anonymous	or	depersonalized.	This	can	affect	the
application	performance	by	retrieving	data	from	different	data	sources	without	the	ability
to	join	queries	over	these	data	sources.

Caching	of	data	plus	an	efficient	well-structured	data	split	are	the	best	ways	to	minimize
the	performance	impact	(that	is,	correct	selection	of	the	split	tables	to	minimize	any
required	query	joins).

Using	a	parameterized	prepared	statement	to	guard	against	SQL	injection	can	speed	up	the
execution	in	most	of	the	cases	because	the	statement	is	compiled.	Also,	caching	against
the	parameters	of	the	statement	becomes	much	easier	rather	than	caching	against	the
whole	query.

Note
The	SQL	injection	security	flaw	can	happen	when	a	user’s	input	is	used	without	any
processing	to	construct	SQL	queries,	for	example,	select	userId	from	users_table
where	username='"+usernameStr+"'	and	password='"+passwordStr+"'";.

If	the	user	enters	any	value	in	the	username	field	and	enters	'	or	1=1	in	the	password	field,
the	query	will	return	the	entire	table	data	based	on	the	1=1	condition.	This	will	result	in
(usually)	authentication	of	the	user	with	the	first	returned	user	from	the	query	results.

To	avoid	such	security	vulnerability,	we	should	either	use	a	bind	variable	or	escape	the
user’s	input	(the	'	character	in	the	previous	example).

We	should	always	use	a	prepared	statement	with	bind	variables,	and	such	programming
practice	should	be	prohibited	completely	to	avoid	both	performance	and	security	impact.

Cross-site	Scripting	(XSS)	and	Cross-site	Request	Forgery	(CRRF)	are	important
security	vulnerabilities.	Measures	to	protect	the	users	from	these	attacks	can	affect	the
performance	depending	on	the	nature	of	these	measures.	For	example,	generating	dynamic
parameter	names	for	each	response	and	only	accepting	requests	with	these	can	have	minor
overhead	on	the	application	performance	to	check	if	the	user’s	request	matches	the
generated	parameter	names.

Auditing	is	an	important	security	concept	where	we	store	the	information	required	to
identify	who	made	what,	when,	and	why.	If	we	could	push	this	feature	to	be	asynchronous,
it	could	improve	the	application’s	response	time.

So	as	a	general	comment	regarding	security,	we	have	to	pay	some	performance	overhead
as	a	side	effect	and	we	should	not	permit	any	violation	to	the	security	principles	to
improve	the	application	performance.	What	we	are	recommending	here	is	to	just	do	it	in
the	right	way—classify	the	application	data	according	to	its	sensitivity	and	implement	the
required	security	measures	according	to	this	classification.	The	customer’s	security	is	the
first	priority	in	all	enterprise	applications.

	 “Things	which	matter	most	must	never	be	at	the	mercy	of	things	which	matter	least.” 	

	 —Johann	Wolfgang	von	Goethe

Potential	performance	impact	of	framework	and
UI	decisions
Java	enterprise	applications	can	be	developed	using	many	standard	set	of	existing
frameworks	such	as	JSF,	Servlet	and	JSP,	EJB,	and	JPA.	Various	readymade	frameworks
such	as	as	Spring,	Struts	2,	and	Portal	can	also	be	used.

The	selection	of	the	used	Java	frameworks	is	mainly	taken	according	to	the	framework
capabilities,	performance,	learning	curve,	and	supportability,	so	we	need	to	assess	and
evaluate	all	these	aspects	before	selecting	which	application	framework	to	use.

User	interface	decisions	also	have	some	impact	according	to	what	is	required.	For
example,	using	UI	technology	such	as	Flex,	Flash,	and	JavaFX	as	the	user	interface	is	not
the	same	as	using	HTML	5.	Each	technology	has	its	pros	and	cons	and	performance	is	one
of	the	aspects	that	needs	to	be	assessed	before	taking	such	a	decision.

Another	UI	option	that	develops	a	single	interface	for	all	client	devices	can	be	a	valid
option	with	the	current	improvement	of	the	browser	capabilities	of	smartphones.	However,
another	approach	is	to	create	application	content	that	is	optimized	for	display	on	different
client	device’s	configurations,	which	is	better	from	both	performance	and	user	experience
point	of	view.

Potential	performance	impact	of	application
interaction	decisions
Here,	interactions	refer	to	either	synchronous	or	asynchronous	transaction	types.	The
design	should	identify	the	transactions	that	take	time	to	be	asynchronous	operations
mostly	by	using	some	sort	of	messaging	solutions	or	callback	methods.

We	can	also	use	Ajax	calls	for	client	interactions	(Web	2.0)	or	complete	page	navigation
approach	(traditional	web).	The	advantage	of	using	Ajax	is	that	we	can	retrieve	a	small	set
of	data	from	the	server	instead	of	a	whole	web	page	with	each	request,	which	reduces	the
network	traffic	and	server	load	in	addition	to	the	better	user	experience	of	having	a
desktop-like	behavior	in	our	web	applications.

Potential	performance	impact	of	regulatory
decisions
We	can	describe	these	decisions	as	restrictive	decisions,	for	example,	some	regulation
requires	the	retention	of	data	for	various	periods	due	to	different	reasons	like	product
insurance	or	customer	rights.	For	enterprise	applications,	this	requires	not	only	enough
storage	capacity	but	the	more	the	data	we	keep,	the	more	is	the	performance	impact	on	our
SQL	queries.

The	best	way	to	handle	such	restriction	is	to	have	a	separate	data	replica	other	than	the
current	operational	data	store	and	keep	the	operational	data	as	minimal	as	possible	so	that
the	performance	of	the	enterprise	application	is	not	affected	by	this	huge	data	retention.

Other	requirements	such	as	fraud	detection	and	customer	credit	authorization	should	be
designed	in	an	asynchronous	way	if	they	have	potential	impact	on	the	application
performance.

Potential	performance	impact	of	some
miscellaneous	decisions
Some	miscellaneous	design	decisions	can	affect	the	application	performance	in	the
following	ways:

Backward	compatibility:	In	applications	that	provide	services	to	the	customers,
background	compatibility	with	previous	versions	of	the	application	services	is
usually	required	to	support	customers’	existing	applications.	In	that	case,	we	might
create	separate	versions	of	these	services	and	focus	on	improving	the	performance	of
the	newly	introduced	versions	to	motivate	the	customers	to	move	to	these	new
versions,	which	facilitates	the	deprecations	of	the	old	services	in	the	future.
Elasticity:	With	the	introduction	of	cloud	concepts’.	the	term	elasticity	has	become
an	important	target	for	enterprise	applications	in	which	the	application	can	expand	to
support	users	during	load	times	and	collapse	during	low	traffic	times.	Deploying	the
application	in	a	cloud	environment	provides	this	feature	out	of	the	box	without	much
effort,	but	the	application	should	be	designed	to	fit	the	cloud	environment	to	make
use	of	the	cloud	benefits	including	elasticity.
Architecture	bottlenecks:	A	good	performing	architecture	with	one	or	two
bottlenecks	means	all	the	architecture	is	useless.	This	is	one	of	the	performance
killers	when	we	have	good	performing	components	with	one	or	more	areas	of	low
performance.	If	these	low	performing	areas	are	critical	or	in	the	heart	of	the
application	(such	as	integration	bus),	the	whole	application	performance	will	be
affected.
KISS	(Keep	it	simple,	stupid)	rule:	One	of	the	important	rules	in	software	design	is
to	keep	everything	simple	and	straightforward	(not	stupid	literally!).	Complicating
the	application	design	usually	results	in	low	performance	and	difficult
troubleshooting	of	performance	issues.

All	these	are	samples	of	different	design	decisions	and	the	potential	performance	impact
on	our	application,	and	we	need	to	consider	them	when	building	our	application
architecture	and	designing	it.

Avoiding	performance	anti-patterns
Anti-patterns	are	patterns	that	are	similar	to	design	patterns	in	the	aspect	that	they
document	best	solutions	to	common	issues	in	specific	context,	but	they	differ	in	the	aspect
that	their	use	or	misuse	produces	negative	consequences	to	the	application.

As	we	are	discussing	performance	anti-patterns,	this	means	the	use	of	these	patterns	will
mostly	degrade	the	application	performance	or	at	least	will	not	produce	the	expected
performance	results.

Anti-patterns	can	be	classified	into	the	following	two	major	types:

Software	process	anti-patterns	such	as	missing	proactive	performance	management	or
inefficient	performance	testing
Technical	anti-patterns,	including	patterns	in	different	software	cycle	stages	such	as
design,	implementation,	and	testing

Let’s	see	some	examples	of	these	technical	anti-patterns	and	briefly	discuss	them.

Because	design	patterns	represent	design	solutions	that	resolve	common	design	issues
whenever	we	have	the	opportunity	to	apply	these	patterns,	it	would	be	better	for	the
application	performance	instead	of	wasting	the	time	on	thinking	of	solutions	or	fixes	for
these	issues.

Not	following	the	common	design	patterns	and	best	practices	is	performance	anti-pattern.
Of	course,	this	is	a	general	rule	that	has	many	exceptions	as	sometimes	the	designed
solution	has	a	better	performance.

Note
To	read	more	about	Java	EE	design	patterns,	you	can	refer	to	Core	J2EE	Patterns	Best
Practices	and	Design	Strategies	by	Dan	Malks,	Deepak	Alur,	and	John	Crupi,	and
Patterns	of	Enterprise	Application	Architecture	by	Martin	Fowler.

If	design	and	coding	best	practices	are	not	followed,	it	will	result	in	potential	performance
anti-patterns.	One	example	here	is	having	the	user’s	input	validation	in	both	client	(using
JavaScript)	and	server	sides;	when	we	neglect	doing	this	validations	of	user	inputs	or
delay	it	to	a	later	step	in	the	transaction	flow,	then	this	causes	unnecessary	processing	that
consumes	server	resources	before	we	might	reject	the	processing	(or	throw	exception	to
the	user)	because	of	some	validation	errors.

The	same	is	the	case	in	the	integration	layer;	we	need	to	validate	the	messages	before	we
start	processing	them	to	avoid	wasting	the	time	processing	any	invalid	messages.

In	Chapter	5,	Recognizing	Common	Performance	Issues,	we	have	listed	some	common
performance	issues.	These	issues	are	typically	performance	anti-patterns	and	some	of
them	are	as	follows:

Improper	memory	management	such	as	memory	leakage	or	missing	garbage
collection	tuning.
Improper	caching	technique	that	is	not	suitable	for	the	application	data.

Incorrect	database	manipulations.
Using	synchronous	transaction	in	places	that	require	asynchronous	transaction	(for
example,	long	operations).
Using	a	linear	algorithm,	which	causes	the	application	to	perform	well	with	low	load,
but	degrade	with	high	loads.	This	should	be	avoided	and	our	algorithms	shouldn’t
degrade	with	application	load	by	selecting	algorithms	that	scale	efficiently.

Missing	tuning	of	different	application	environment	components,	is	described	in	the
previous	chapter,	Chapter	9,	Tuning	an	Application’s	Environment.	Tuning	of	different
components	such	as	JVM	and	the	application	server	should	be	considered	as	part	of	our
application	deployment	performance	improvement.	If	we	missed	this	step,	then	it	is	a
performance	anti-pattern.

Coding	issues	including	spaghetti-like	code	and	using	large	Java	classes	are	critical
performance	anti-patterns	where	we	won’t	be	able	to	reuse	or	optimize	such	code	without
spending	big	efforts	and	in	some	cases,	it	is	just	easier	to	rewrite	this	spaghetti	code	again
in	a	more	efficient	way	than	try	to	fix	it!

In	the	next	chapter,	Chapter	11,	Performance	Tuning	Tips,	we	will	discuss	some
performance	tuning	tips	and	coding	best	practices.

Missing	application	documentations,	including	inline	code	comments	and	Java-docs,	are
also	considered	as	performance	anti-patterns	as	fixing	performance	issues	that	we	can	face
in	production	environments	requires	understanding	what	the	code	is	doing	well	to	fix	it	in
safe	way.	So,	even	if	this	is	a	documentation	issue	and	is	not	causing	a	direct	performance
issue,	it	will	restrict	the	ability	to	provide	a	safe	solution	to	performance	issues	without
wasting	time	trying	to	analyze	the	code.

These	are	a	few	examples	of	performance	anti-patterns	that	need	to	be	considered.	Avoid
falling	in	these	patterns	to	protect	our	application	from	undesired	performance	issues.

Performance	aspects	of	Service	Oriented
Architecture	(SOA)
SOA	is	the	most	commonly	used	architecture	in	the	enterprise	applications	these	days.	The
architecture	is	composed	of	three	main	different	components:	service	provider,	service
consumer,	and	service	broker	(service	registry).	The	interaction	between	these	three
components	results	in	what	is	called	SOA.

The	following	are	the	main	advantages	of	this	architecture:

Loose	coupling	between	both	service	provider	and	consumer
Reusability	of	services	and	easy	orchestration	of	different	services
Easy	migration/upgrade/replacement	of	services
Standardization	of	contract,	transaction,	and	security

The	following	diagram	depicts	the	basic	explanation	of	SOA	and	can	be	found	in	any	book
or	article	discussing	SOA:

The	broker	role	varies	according	to	the	application	nature.	It	can	provide	all	the
information	about	the	available	services	and	their	contracts	to	the	client,	or	it	can	provide
just	the	dynamic	or	static	routing	services.

The	service	itself	could	be	any	application	service.	Most	common	services	are	the	XML-
or	SOAP-based	web	service.	The	service	registry	is	usually	implemented	by	either	a
service	repository	(UDDI)	or	a	service	bus	that	has	its	own	service	registry	(service
repository).

The	main	concerns	of	SOA	are	performance,	scalability,	and	availability.	The	following
are	the	reasons	behind	these	concerns:

Using	XML	interfaces	in	communication	produces	overhead	for
marshalling/unmarshalling	the	objects	(that	is,	converting	to/from	XML)	as
compared	to	native	communications.

The	aggregation	of	services	and	orchestration	increases	the	final	accumulated
response	time	of	web	services.
System	availability	is	the	product	of	all	the	service	availabilities.	So,	if	we	need	the
system	to	be	98	percent	available	and	we	have	two	web	independent	services	and
each	has	its	own	availability	as	98	percent,	then	the	system’s	overall	availability	will
be	around	96	percent	and	we	will	not	achieve	the	required	system	availability.

In	this	section,	we	will	highlight	some	points	regarding	the	performance	of	SOA
applications	from	different	areas	with	a	short	description	of	the	performance	impact.

Let’s	start	with	service	dynamic	call	creation,	which	is	fully	supported	in	Java.	Using	this
complete	dynamic	invocation	is	not	recommended	and	not	practical	to	use	as	well.	The
best	way	is	to	have	a	well-defined	service	contract	that	is	shared	between	both	the	service
provider	and	consumer,	or	to	delegate	this	to	a	service	bus	layer	that	performs	the	required
level	of	abstraction	and	does	the	required	transformations.	Otherwise,	a	lot	of	extensive
operations	will	be	required	on	the	consumer	side	to	parse	a	dynamic	web	service	output
and	analyze	its	relations.

Implementing	service	caching	is	a	good	performance	feature	that	can	be	supported	at
different	levels.	Two	levels	of	service	caching	can	be	supported	for	better	service
performance:	service	data	caching	and	service	response/result	caching.	They	are	explained
as	follows:

Service	data	caching:	In	this	type,	we	cache	the	service	internal	data	that	is	used	for
processing	the	coming	user’s	requests.	Consider,	for	example,	a	weather	forecast
service—the	data	of	the	weather	forecast	for	the	coming	month	in	Cairo.	We	can
cache	this	data	and	whenever	a	user	requests	the	weather	forecast	for	a	specific	day,
the	service	does	not	have	to	hit	the	database	to	retrieve	this	information	but	instead
return	it	from	the	cache.	This	will	in	turn	improve	the	service	response	time.
Service	response	caching:	In	this	type,	the	service	caller	caches	the	service	response.
For	example,	retrieving	the	weather	forecast	of	a	city	in	a	defined	period	does	not
require	the	processing	of	another	similar	call	to	the	web	service	within	a	short	period
as	the	answer	will	be	the	same.	By	using	service	response	caching,	the	average
service	response	time	becomes	much	better,	and	the	best	place	to	add	this	caching	is
in	the	routing	service	bus.

Using	service	dynamic	binding	is	usually	achieved	by	the	application	backbone	service
bus,	which	is	responsible	for	binding	the	service	calls	to	the	current	running	services	and
avoids	the	invoking	of	down	services	or	slow-responding	services.	This	improves	the
application	performance.

Service	dynamic	balancing,	which	is	done	by	using	a	load	balancer	or	typically	by	a
service	bus	that	routes	service	calls	to	different	services,	can	improve	the	performance	by
dynamically	distributing	the	calls	over	different	services	so	that	we	can	get	the	best
performance	out	of	each	service.

Service	granularity	is	an	important	factor	that	we	have	already	discussed	earlier	in	Chapter
5,	Recognizing	Common	Performance	Issues.	When	we	design	our	web	services,	we	need

to	design	the	services	with	moderate-sized	data	objects	for	both	the	service	inputs	and
outputs	so	that	we	can	reduce	the	overhead	that	is	required	if	we	used	small	or	very	large
objects.

For	example,	having	fine-tuned	services	(small	service	output	objects)	requires	massive
calls	in	each	transaction	to	retrieve	the	full	required	data,	while	having	coarse-gained
services	forces	us	to	pay	unnecessary	overhead	to	retrieve	information	that	we	might	not
need/use.	This	important	design	concept	should	be	followed	to	have	a	stable	application
performance.

A	flexible	service	contract	is	an	important	aspect	of	web	service	performance.	With	a
dynamic	contract	for	each	service	invocation,	we	can	customize	the	response	data
according	to	the	required	subset	of	data.	This	flexibility	can	be	achieved	mainly	using	one
of	the	following	ways:

Optional	directive	in	service	input/output	parameter’s	internal	fields	and	the	caller
should	send	some	parameter	to	the	service	indicating	the	required	level	of	data.	For
elements,	we	use	minOccurs="0"	as	shown	in	the	following	example:
<xsd:element	name="feature"	type="xsd:string"	minOccurs="0"	/>

For	attributes,	we	use	the	use="optional"	directive	as	shown	in	the	following
example:

<xsd:attribute	name="number"	type="xsd:integer"	use="optional"/>

An	output	map	for	all	optional	values	in	the	service	response.	This	map	is	filled	with
the	required	data	according	to	the	input	parameters.
Using	data	objects,	the	standard	implementation	for	data	objects	is	Service	Data
Object	(SDO)	and	Java	data	object	(JDO).	Both	are	used	to	abstract	the	service
data	by	providing	simple	APIs	to	manipulate	the	data	from	different	data	sources.

An	SOA	service	is	stateless	in	nature;	stateless	services	are	much	better	at	scalability
compared	to	stateful	services,	which	consume	the	resources	and	increase	the	service
implementation	complexity	to	persist	the	client	status	and	exchange	some	sort	of	session
identifier	(or	token)	with	the	client	so	that	all	subsequent	requests	go	to	the	same	user
service	session.

It	is	not	recommended	to	use	the	stateful	services	from	a	performance	perspective	as	they
limit	the	ability	to	dynamically	route	the	client	calls	to	different	services	according	to	the
service	load	(unless	they	store	user	data	in	a	shared	location,	such	as	cache,	memory,	or
database).

Invoking	the	services	using	concurrent	requests	is	an	efficient	way	to	decrease	the
transactional	time	required	to	retrieve	data	using	the	same	web	service.	However,	without
having	an	upper	limit	to	the	concurrent	calls	from	different	users	or	clients,	the	service	can
go	out	of	service	with	few	number	of	users	invoking	a	huge	number	of	concurrent	calls.	In
that	case,	we	need	to	add	some	restrictions	to	the	total	number	of	calls	the	client	can
invoke	per	time	unit,	which	we	refer	to	as	service	throttling.

Close	monitoring	of	different	services	is	required	to	diagnose	any	services	that	do	not

meet	the	SLA	response.	If	the	service	bus	is	intelligent	enough,	it	can	route	the	calls	to
another	better	performing	service.	One	of	the	advantage	of	SOA	is	that	we	can	optimize
the	performance	and	deploy	a	new	version	of	the	web	service	and	switch	the	system	to	use
it	without	interrupting	the	current	application	execution.

Performance	aspects	of	Resource
Oriented	Architecture	(ROA)
ROA	is	the	architecture	that	is	based	on	the	concept	of	resources.	These	resources	must
comply	with	RESTful	features,	which	can	be	summarized	as	for	each	resource,	the
resource	should	have	a	resource	identifier	that	is	mapped	to	a	unique	URI;	this	URI	is
used	to	communicate	with	this	resource.	We	can	get	different	representations	of	that
resource	according	to	our	application	requirements.

Note
The	REST	term	comes	from	the	expression	REpresentational	State	Transfer,	which
represents	an	architectural	style	that	was	first	introduced	by	Roy	Fielding	in	his	doctoral
dissertation.

RESTful	web	services	are	web	services	that	implement	the	RESTful	concept	with	the
following	six	basic	aspects	that	define	their	own	RESTful	communication:

It	is	built	on	the	concept	of	mapping	application	entities	into	resources
Each	resource	is	identified	by	a	unique	URI
Interactions	with	these	resources	are	done	by	using	a	standard	set	of	methods,	for
instance,	HTTP	methods	(that	is,	POST,	GET,	PUT,	and	DELETE)	that	map	to	the
Create,	Retrieve,	Update	and	Delete	(CRUD)	operations	of	the	resource
Resource	can	take	many	representations	according	to	the	required	format	in	both
request	and	response	(JSON,	XML,	image,	text,	and	so	on)
Response	contains	URIs	of	resources	linked	to	this	resource
The	communication	is	stateless	in	nature

Note
Uniform	Resource	Identifier	(URI)	is	any	string	of	characters	used	to	identify	a
name	or	a	resource.	URI	can	be	classified	into	a	locator	(URL)	and	name	(URN),	or
both.

The	following	diagram	shows	the	six	different	features	of	this	RESTful	communication:

A	RESTful	web	service	is	described	by	a	standard	format	named	WADL,	which	is	an
XML	structure	that	works	as	a	service	contract	similar	to	WSDL	role	in	SOAP	services.

Note
Web	Application	Description	Language	(WADL)	contains	the	description	of	the
following	items:

Set	of	available	resources
Relationships	between	resources
Methods	that	can	be	applied	to	each	resource
The	HTTP	methods	that	can	be	applied	to	each	resource
The	expected	inputs	and	outputs
The	supported	formats	and	resource	representation	formats	of	the	inputs	and	outputs
The	supported	MIME	types	and	data	schemas	in	use

For	more	details,	refer	to	the	W3C	WADL	documentation	at
http://www.w3.org/Submission/wadl/.

The	advantages	of	RESTful	web	services	from	the	client’s	perspective	are	that	they	can	be
bookmarkable,	they	are	easy	to	experiment	in	a	browser	and	are	language	independent,
and	have	a	choice	of	data	representation	according	to	the	client	requirements.	From	the
server’s	perspective,	the	benefits	are	reduced	coupling,	easy	horizontal	scaling,	and	easy
implementation	of	caching,	which	can	contribute	to	improve	the	performance	of	a
RESTful	web	service.

A	RESTful	web	service	can	be	consumed	as	a	service	in	SOA	or	can	be	used	to	build	an
ROA	where	architecture	is	built	on	the	concept	of	resources	throughout	the	application.

The	RESTful	concept	has	now	become	a	hot	topic	in	the	world	of	Internet	of	Things
(IoT)	where	each	resource	in	our	life	can	be	connected	to	the	Internet	and	either	share
information	(collected	by	its	sensors)	or	execute	an	action	(change	its	state),	or	do	both.

http://www.w3.org/Submission/wadl/

The	common	representation	forms	for	RESTful	web	services	are	JSON	and	XML.

Note
JavaScript	Object	Notation	(JSON)	is	a	lightweight,	text-based,	and	human-readable
computer	data	interchange	format.	It	is	filed	by	RFC	4627.

The	content-type	used	for	this	type	is	application/json,	and	filename	extension	is
.json.	The	main	usage	of	this	format	is	for	serialization	and	transmitting	structured	data
over	a	network	connection	commonly	in	Ajax	calls.	For	more	information,	refer	to	the
online	documentation	of	JSON	at	http://json.org.

From	performance	comparison,	many	people	believe	that	ROA	(RESTful	web	services)	is
faster	than	SOA	(SOAP-based	web	services)	due	to	the	following	reasons:

The	ease	of	scaling	in	ROA	services
Claims	that	JSON	serialization	is	faster	and	more	efficient	than	XML	serialization
(ROA	can	also	use	XML	as	the	representation	form)
Direct	binding	to	the	HTTP	protocol	without	the	need	of	an	additional	layer,	such	as	a
SOAP	envelope

The	second	point	in	particular	is	vague	as	it	depends	on	many	factors	such	as	data	size,
which	makes	this	claim	false.	The	performance	of	XML	serialization	is	also	dependent	on
the	implementation	and	parser	type,	for	example,	SAX	parsers	are	efficient	and	reduces
the	overhead	of	XML	processing.

Also,	in	spite	of	the	advantage	of	both	(such	as	loose	coupling	and	language
implementation	independency	between	service	provider	and	consumer,	for	example,	Java
and	.NET),	we	can’t	claim	that	XML	processing	is	faster	than	JSON.	Also,	we	can’t
compare	both	with	the	performance	of	direct	method	calls	or	local	EJB	calls.

Recently,	some	initiatives	were	proposed	to	improve	the	XML	processing	speed.	One	of
these	initiatives	is	Efficient	XML	Interchange	(EXI),	which	is	a	W3C	initiative	that	aims
to	change	the	XML	encoding	into	an	internationally	recognized	standard	for	an	efficient
interchange	of	XML.

The	motivation	is	to	decrease	the	overhead	of	XML	manipulation	(for	example,
generating,	parsing,	transmitting,	storing,	and	accessing	XML-based	data)	by	introducing
another	non-textual	XML	encoding.	This	might	improve	the	XML	performance.

Note
To	read	more	about	encoding	and	its	details,	refer	to	the	W3C	documentation	at
http://www.w3.org/XML/EXI/.

We	should	deal	with	SOAP	and	REST	not	as	competitors	but	as	complementary
technologies	and	alternative	solutions	that	we	can	use	and	mix	for	the	best	outcome	of	our
application.	A	lot	of	people	support	one	technique	over	the	other,	which	is	not	wrong,	but
we	need	to	think	in	a	different	way.

REST	is	simple,	easy	to	implement,	and	efficient	to	use	for	integration	with	different

http://json.org
http://www.w3.org/XML/EXI/

client	types	(for	example,	smartphones)	without	much	effort.	SOA	is	much	more	mature,
standardized,	and	has	more	options	for	security,	reliability,	and	distributed	transaction
handling.

SOAP	is	more	capable	of	handling	workflow	and	service	orchestration	compared	to	REST,
which	fits	more	in	point-to-point	communication	(yet	it	can	also	be	used	in	workflow).	So,
mixing	both	in	our	architecture	will	get	the	benefits	of	both	the	technologies.

The	performance	is	generally	better	in	REST	(mainly	because	of	scalability)	but	it	actually
depends	on	many	things,	including	the	used	technology	for	serialization	and	the
transmitted	data	volume.

We	can	use	REST	services	in	areas	where	performance	matters	and	scalability	is	our	main
concern,	as	scaling	in	REST	is	much	easier	and	more	efficient.

Also,	REST	has	the	advantage	that	it	can	return	the	related	objects	as	embedded	links	so
that	the	caller	has	the	option	to	decide	when	to	load	them	(in	SOAP,	we	can	achieve	this
using	optional	fields).	We	can	use	SOAP	services	where	security	matters	and	more	service
reliability	and	transactional	handling	is	required.

Let’s	now	do	an	interesting	performance	comparison	between	two	simple	examples	of
SOAP	and	REST	web	services	returning	the	same	set	of	data.	(Note	that	the	results	are
specific	to	our	application	and	we	can’t	generalize	the	results	without	extensive	testing
using	different	data	volumes	and	different	serialization	implementations.)

Open	our	ExampleThree	project	in	NetBeans	after	installing	the	required	database	schema
and	execute	it	on	the	application	server,	for	example,	the	Glassfish	application	server.

Note
To	get	the	ExampleThree	project,	you	can	download	it	from	http://www.packtpub.com/,
along	with	its	database	schema	and	Apache	JMeter	test	plan.

To	test	if	the	application	is	correctly	running	and	ensure	that	all	web	services	are	ready	to
use,	we	can	use	the	browser	and	try	the	following	URL	to	test	the	RESTful	web	service
(port	8080	can	be	different	according	to	your	application	server	used	port):
http://localhost:8080/ExampleThree/webresources/osa.ora.beans.empolyee/1001

Then,	use	the	following	URL	to	test	the	SOAP	web	service	(this	URL	is	for	Glassfish):
http://localhost:8080/SOAPWebService/SOAPWebService?Tester

Now	open	Apache	JMeter	and	load	REST-SOAP	test	plan.jmx.	This	test	plan	is	simple
and	is	composed	of	a	configuration	element	to	load	different	user	IDs,	test	the	RESTful
web	service,	to	test	the	SOAP	web	service,	and	finally	test	result	elements.

The	test	plan	is	shown	in	the	following	screenshot:

http://www.packtpub.com/

Before	we	execute	our	load	test,	let’s	have	a	quick	look	at	the	code	of	both	web	services.
The	following	is	the	code	of	our	RESTful	web	service	method	for	the	HTTP	GET	method:

@GET

@Path("{id}")

@Produces({"application/json"})

public	Empolyee	find(@PathParam("id")	Integer	id)	{

		System.out.println("id="+id);

		return	super.find(id);

}

In	the	preceding	code,	we	configured	the	response	of	the	GET	method	to	be	in	JSON
format	only	and	the	method	takes	the	id	parameter	as	a	path	input	parameter	and	returns
the	Employee	object	that	corresponds	to	that	ID.

In	the	SOAP	web	service,	the	code	is	simple.	It	gets	the	Employee	object	that	corresponds
to	the	input	parameter	id	(no	validation	or	exception	handling	in	the	code	of	both	SOAP
and	REST	web	services).	The	following	is	the	code	for	the	SOAP	web	service:

@WebMethod(operationName	=	"getEmplyeeData")

public	Empolyee	getEmployeeData(@WebParam(name	=	"id")	int	id)	{

		System.out.println("id="+id);

		return	em.find(Empolyee.class,id);

}

Now,	let’s	execute	our	load	testing	to	get	the	performance	comparison	between	both	the
service	types.

As	we	can	see	in	the	following	screenshot,	the	performance	of	both	the	services	is	almost
the	same:

Using	this	small	piece	of	data,	we	can	analyze	that	SOAP	is	slightly	better	in	our	results.
This	means	that	performance	measurement	is	the	best	way	to	decide	which	one	to	use
from	a	performance	perspective.

We	can	repeat	the	load	test	after	modifying	the	RESTful	service	to	use	XML	as	the

representation	form	instead	of	using	JSON.	The	code	is	as	follows:

@GET

@Path("{id}")

@Produces({"application/xml"})

public	Empolyee	find(@PathParam("id")	Integer	id)	{

		System.out.println("id="+id);

		return	super.find(id);

}

Now,	execute	the	test	and	compare	the	results	with	the	previous	results.

We	can	conclude	from	this	test	that	other	requirements	such	as	security,	transaction
handling,	reliability,	and	scalability	are	much	more	important	factors	to	decide	which	type
of	web	service	we	need	to	use	in	our	application.

Dissecting	performance	aspects	of	data
caching
Data	caching	is	an	important	performance	improvement	element	in	any	enterprise
application.	We	have	discussed	data	caching	issues	in	Chapter	5,	Recognizing	Common
Performance	Issues.	In	this	section,	we	will	continue	our	discussion	about	data	caching.

Data	caching	versus	no	caching
This	is	the	first	question	that	we	need	to	answer;	the	answer	is	not	difficult	and	is	mostly
related	to	the	nature	of	the	data.	In	most	cases,	we	can	do	caching	for	every	type	of	data.
However,	in	real-time	data	or	data	that	has	a	short	lifespan	(rapidly	changeable),	caching
seems	to	be	a	wrong	decision	as	it	allows	the	access	of	a	stale	version	of	the	data	or	it
slows	down	the	application	performance	because	it	increases	the	required	hits.	For
example,	instead	of	hitting	the	data	source	once,	we	start	by	hitting	the	cache	to	get	the
object	that	is	already	invalidated,	and	then	we	load	it	from	the	data	source	and	finally	we
store	it	back	in	the	cache.	Because	the	objects	are	invalidated	very	quickly,	we	do	not	get
any	benefits	from	that	cache,	so	we	should	minimize	the	use	of	the	cache	for	this	data
type.	If	the	data	has	a	reasonably	long	life	span	without	changes,	then	it	is	typically
eligible	for	caching.

Also,	when	a	lot	of	calculations	are	involved	in	preparing	the	objects,	it	is	better	to	cache
such	data	to	avoid	doing	the	calculations	again	in	subsequent	calls.

Caching	concurrency	and	performance
Access	to	shared/distributed	cached	data	using	multiple	application	instances	will	need
some	sort	of	locking	mechanism	especially	for	transactional	data,	which	has	frequent
changes	during	user’s	activities.	We	have	two	different	ways	to	obtain	the	lock	over	the
cached	data	that	we	need	to	change:

Optimistic	locking:	The	application	instance	updates	the	data	and	cached	data
version	as	long	as	it	has	the	data	version	that	is	similar	to	the	cached	data	version.
This	fits	more	with	the	application	data	that	does	not	frequently	change.
Pessimistic	locking:	The	application	instance	starts	by	obtaining	the	lock	over	the
data	it	needs	to	change.	If	it	obtains	the	lock	successfully,	then	it	can	change	the	data
and	the	version	and	release	the	lock.	If	it	can’t	obtain	the	data	lock,	it	will	wait	till	it
can	get	that	lock.	This	affects	the	application	performance	and	is	suitable	in	case	the
data	frequently	changes.

Versioning	of	the	application	data	is	a	way	to	ensure	that	the	application	data	version
matches	the	same	version	in	the	cache,	and	we	should	increase	the	data	version	with	each
update	so	that	if	any	instance	has	an	old	version,	it	can’t	update	the	cache	(or	persistent
store)	with	new	changes	unless	it	obtains	the	following:

The	latest	object	version
The	object	lock	by	either	optimistic	or	pessimistic	lock

Different	levels	of	application	data	caching
Caching	can	have	multiple	levels	according	to	the	requirement	and	data	type;	one	level	is
the	component	caching,	which	could	be	built-in	out	of	the	box	caching	such	as	the
database	query	caching.	We	do	not	need	any	effort	to	get	this	type	of	caching,	so	repeating
the	same	query	against	the	database	in	subsequent	times	will	be	faster	being	returned	from
the	cache	(usually	local	in-memory	caching).

If	we	are	talking	about	a	component	that	retrieves	data	from	a	database,	we	can	implement
component	data	caching	to	avoid	performance	impact	from	using	the	JDBC	connection	to
hit	the	database	(already	supported	in	ORM	libraries,	such	as	JPA).

Another	layer	of	caching	can	be	implemented	outside	the	component	processing	logic	in	a
separate	layer	such	as	the	service	bus.	It	can	improve	the	performance	of	the	application
under	the	assumption	that	if	the	service	inputs	are	the	same,	the	output	will	be	the	same.
This	will	improve	the	performance	by	removing	the	time	wasted	on	networking,
processing,	and	database/component	cache	interaction.

Caching	can	also	be	on	the	client	side	using	the	client	browser	or	client	application
(desktop	or	smart	phone	application).	To	use	the	browser	in	caching	our	application	data,
we	need	to	specify	the	caching	parameters	in	the	HTTP	headers:	cache-control	max-age
and	expires	parameters.	This	usually	fits	the	static	data	elements	such	as	images,
JavaScript	files,	CSS,	and	so	on	that	do	not	change	as	frequently	as	application	resources.

Caching	can	be	local,	remote,	and	distributed.	The	distributed	type	of	caching	is	the	most
complex	one	and	it	enables	the	application	to	cache	more	data	by	scaling	across	many
servers.

Nowadays,	with	the	high	speed	of	network	cards,	the	networking	latency	is	almost
nullified,	which	makes	the	distributed	caching	the	best	caching	option	for	enterprise
applications	especially	when	we	need	to	reduce	the	local	caching	impact	in	our	application
server’s	memory.

The	good	thing	about	distributed	caching	is	that	we	can	still	deal	with	it	as	a	single	remote
cache,	and	all	cache	distribution	are	transparent	to	our	cache	access	code	and	most	of	the
cache	implementations	allow	auto-scaling	of	the	cache	without	affecting	the	cache
retrieval	time.

The	following	diagram	summarize	a	database	interaction	flow,	showing	the	different
caching	options	in	our	application	from	the	backend	to	the	frontend,	starting	from	data
source	caching	to	service	caching,	service	bus	caching,	network	caching	(can	be	placed	on
different	locations),	and	finally	client/browser	caching:

Caching	an	invalidation/expiration	algorithm
The	cache	invalidation	algorithm	determines	how	the	objects	in	the	cache	are	removed
even	if	the	cache	is	not	full	yet.

Usually	it	is	a	time-based	policy	where	we	specify	the	maximum	time	allowed	for	objects
to	remain	inside	the	cache.	The	following	are	the	three	common	expiration	policies	used
by	defining	either	absolute	or	relative	expiration	time:

Defining	the	maximum	age	since	the	object	is	added	to	the	cache
Defining	the	maximum	age	since	the	object	is	not	used	(idle	time)
Defining	a	certain	time	for	cache	expiration	(for	example,	cache	invalidation	daily	at
3	A.M	where	less	traffic	over	the	application	is	expected)

The	idea	behind	selecting	the	proper	expiration	policy	is	mainly	dependent	on	the	nature
of	the	cached	data.	As	a	general	rule,	if	the	data	is	session-based,	then	the	best	way	is	to
use	the	idle	time	so	that	the	data	is	removed	after	the	session	is	invalidated	and	the	data	is
no	longer	required.	However,	if	the	data	is	global	data,	then	using	a	maximum	cache	age	is
a	better	option.

To	avoid	having	stale	objects	in	the	cache,	the	expiration	time	needs	to	be	accurately
configured	according	to	data	change	expectations.

One	issue	related	to	cache	expiration	that	might	affect	the	application	performance	is
when	the	configured	expiration	time	is	the	same	for	all	objects	and	our	application	loads
the	objects	in	bulk	operations	(or	loads	them	nearly	at	the	same	time).	In	that	case,	the
objects	will	be	invalidated	from	the	cache	in	the	same	time,	which	causes	the	application
performance	to	be	spiky	during	that	period.

A	workaround	is	proposed	to	overcome	this	issue;	one	way	is	to	configure	the	expiration
at	a	specific	time	characterized	by	having	a	low	application	load	(for	example,	midnight)
and	reload	the	cache	content	again	after	that	(cache	refresh).

Another	way	is	to	use	random	expiration	delta	values	for	each	cached	object,	which
changes	the	cache	expiration	to	be	random	so	that	it	does	not	affect	the	application
performance.

One	concern	in	data	caching	is	the	relation	between	objects;	do	we	need	to	invalidate	the
cache	if	related	cached	objects	are	invalidated	or	not?	For	example,	if	the	customer	object
is	invalidated,	does	it	make	any	sense	to	keep	its	related	orders	data?

Two	cache	models	exist.	The	relational	model,	which	keeps	the	relation	between	the
different	objects,	and	the	independent	model,	which	only	stores	each	object	independent	of
other	related	objects.	Most	of	the	caching	implementations	are	done	by	using	key-value
pairs	(that	is,	the	independent	model),	since	it	is	easier	and	reduces	the	caching
complexity.	Therefore,	the	caching	performance	becomes	better.

Caching	data	store	interaction
Cache	component	can	encapsulate	the	data	source	from	the	application	by	using	read-
through	and	write-through	techniques,	where	the	cache	component	is	placed	inline
between	the	application	and	its	data	source.	This	reduces	the	application	complexity	since
the	application	only	has	to	handle	a	single	communication	with	the	cache	as	its	data
source.	All	updated	data	goes	to	the	cache	as	well	which	in	turn	updates	the	data	store
with	the	new	changes.	This	improves	the	application	performance	by	removing	the
database	bottlenecks.

Note
Read-through	means	the	application	reads	from	the	data	store	through	the	cache.

Write-through	means	the	application	writes	to	the	store	by	writing	into	the	cache.

Write-behind	is	a	variant	of	write-through	where	the	cache	updates	the	data	store
asynchronously	so	that	the	application	does	not	need	to	wait	this	update	operation.

The	issue	of	using	this	pattern	is	that	hitting	the	cache	to	load	an	object	for	the	first	time
will	be	a	slow	operation	if	the	object	does	not	exist	in	the	cache	as	the	cache	will	need	to
hit	the	data	store	to	retrieve	this	object.	Subsequent	calls	can	get	benefits	from	this	first
overhead	as	long	as	the	object	remains	in	the	cache.

To	remove	this	initial	overhead,	we	can	use	the	preload	technique	to	load	the	data	from	the
data	store	into	the	cache	in	a	periodic	way	so	that	the	objects	can	be	retrieved	directly
from	the	cache	without	the	need	to	hit	the	data	store	with	each	application	request.	This
will	improve	the	application	performance.

The	issue	with	this	preload	approach	is	that	we	can’t	predict	which	objects	we	need	to
preload	in	the	cache,	so	we	might	need	to	either	guess	that	(using,	for	example,	the	last
creation	or	modification	time	as	an	indicator	for	the	most	recently	used	data)	or	load	all
data.

Hiding	the	data	store	or	data	source	from	the	application	restricts	the	application’s	ability
to	execute	custom	or	complex	queries	against	this	data	source.	This	means	the	application
will	still	need	to	hit	the	database	in	certain	cases	to	do	these	complex	queries.

The	performance	recommendation	here	for	that	scenario	is	to	execute	these	queries	to
retrieve	the	object’s	keys	and	fetch	the	objects	from	the	cache.

If	the	application	cache	is	using	the	write-through	technique,	then	our	application	will	wait
the	update	for	both	the	cache	and	the	database.	This	will	give	a	slower	response	compared
to	the	traditional	direct	access	to	the	database.

Since	cache	components	support	the	concept	of	write-behind	(which	is	a	good	alternative),
using	that	technique,	the	caching	component	updates	the	data	in	the	cache	and	handles	the
data	store/database	updates	asynchronously.	This	makes	the	cached	object’s	updates
available	to	the	application	immediately,	without	the	need	to	waste	time	waiting	for	the
database	updates.	This	produces	better	application	performance.

Nothing	is	absolutely	perfect	as	this	technique	has	the	risk	of	application	inconsistency	if
the	object	updates	failed	during	synchronization	back	to	the	database.

The	following	diagram	summarizes	the	three	different	caching	models	(strategies)	that	we
can	use	in	our	application:

We	can	describe	these	models	as	follows:

Model	I:	This	is	a	side-cache	(or	cache-aside)	model,	where	the	application	has	the
full	control	and	it	communicates	with	the	data	store	to	retrieve	and	update	data,	and
the	application	communicates	with	the	cache	to	retrieve	and	store	objects.
Model	II:	This	is	an	inline	cache	model	where	the	application	uses	the	read/write-
through	techniques,	and	also	delegates	the	data	store	manipulation	to	the	cache
component.	The	cache	can	optionally	use	the	write-behind	strategy	to	speed	up	the
application	performance.
Model	III:	This	is	a	hybrid	cache	model	of	the	first	and	second	model,	where	both
application	and	cache	can	retrieve	and	update	data	from	the	data	store.

The	selection	of	the	application	caching	model	depends	on	the	application	performance
requirement,	application	deployment,	size,	and	type	of	the	data.

Model	I	is	the	most	commonly	used	model,	but	Model	II	is	usually	better	in	terms	of
performance,	especially	if	the	data	can	be	preloaded	(maybe	through	warm-up)	and	write-

behind	is	enabled.

Caching	replacement	policies
Cache	replacement	policy	is	the	policy	that	handles	the	replacement	of	cached	objects	in
the	cache	with	new	objects	when	there	are	no	more	rooms	in	the	cache.

Usually	the	cache	(as	in	Memcached)	will	first	try	to	see	if	executing	the	expiration
policy	will	release	any	space	for	the	new	object(s)	or	not.	If	still	enough	space	is	not	there,
it	executes	the	replacement	policy	to	find	an	object	in	the	cache	that	is	eligible	for
replacement	with	the	new	coming	object.	This	is	called	cache	evictions.

Note
Memcached	is	a	free	open	source	distributed	memory	caching	system.	An	in-memory
key-value	store	can	be	downloaded	from	http://memcached.org/.

Defining	which	replacement	policy	to	use	varies	according	to	our	application	nature.	If	the
policy	is	not	properly	selected,	it	might	reduce	the	benefits	of	using	the	cache.	We	will
discuss	here	some	of	the	following	commonly	used	policies:

First-in-first-out	(FIFO):	When	a	new	object	needs	to	be	stored	in	full	cache,	the
oldest	object	is	removed	in	favor	to	this	new	object.	This	means	only	recent	objects
are	kept	inside	the	cache.

This	policy	is	not	fair	enough	to	all	cache	cases	as	it	doesn’t	consider	if	the	removed
object	is	active	and	is	being	accessed	or	not,	but	it	fits	the	situation	like	claimed
vouchers	where	removal	of	the	oldest	(that	is,	used)	voucher	make	sense.

Least-frequently	used	(LFU):	In	this	type,	the	cache	picks	the	least-used	object	and
replaces	it.	This	policy	requires	storing	the	count	of	access	times	for	each	object	in
the	cache,	so	it	can	determine	which	objects	are	least	used	and	replaces	them	with	the
new	object.

The	drawback	of	this	method	is	that	it	doesn’t	consider	if	the	removed	object	is	still
being	accessed	or	not.

Least-recently	used	(LRU):	This	policy	picks	the	object	that	is	less	used	during	a
defined	recent	period	and	replaces	it	with	the	new	objects,	so	the	cache	will	keep
information	such	as	the	last	access	time	of	all	cached	objects.	This	is	the	most
commonly	used	technique.
Most-recently	used	(MRU):	This	is	the	opposite	of	the	previous	LRU	policy.	It
removes	the	most	recently	used;	this	fits	the	application	where	items	are	no	longer
needed	after	the	access,	such	as	used	exam	or	promotion	vouchers.

Note
Evictions	number	refers	to	the	total	number	of	objects	that	are	removed	from	the
cache	to	free	up	some	memory	for	the	new	items	to	the	cache	because	the	cache	has
reached	its	maximum	size.

http://memcached.org/

Data	caching	performance	evaluation
Assessment	of	caching	performance	should	be	a	part	of	our	performance	tuning.	Using	the
cache	statistics	is	very	critical	to	understand	the	cache	performance.	The	following	are	the
most	important	key	indicators	for	cache	performance:

Cache	utilization:	This	is	a	good	indicator	for	cache	efficiency	but	not	the	most
important	item	as	it	depends	on	the	time	we	access	the	cache	statistics	as	some	cache
elements	might	get	expired	before	we	access	the	cache.
Cache	hit	rate:	This	represents	the	ratio	in	which	the	cache	hits	match	(find)	the
required	cached	object.	It	is	the	main	measure	for	cache	effectiveness	together	with
the	retrieval	cost.
Cache	miss	rate:	This	is	the	ratio	in	which	the	cache	hits	do	not	find	the	required
object	in	the	cache.

Other	parameters	could	also	be	used	as	cache	access	time	and	cache	throughput	are
useful	as	well,	and	sometimes	it	is	useful	to	assess	the	cache	statistics	regarding	the
memory	consumption,	CPU	utilization,	and	any	other	useful	information.

Tuning	of	the	cache	includes	all	the	topics	that	we	already	covered	like	which	expiration
and	replacement	policies	to	use,	which	cache	model	to	use,	whether	to	use	local	or
distributed	caching,	whether	to	add	additional	layer	of	caching,	cache	locking,	whether	to
disable	caching,	cache	component	specific	tuning,	and	so	on.

This	covers	the	cache-related	performance	concerns	that	we	need	to	consider	when	we	are
designing	and	implementing	a	cache	in	our	enterprise	applications.

Performance	considerations	in	cloud
deployment
Cloud	computing	is	a	common	deployment	model	these	days	especially	in	medium-sized
enterprise	applications.	Some	large	enterprises	also	moved	their	applications	into	the
cloud,	while	the	majority	still	prefer	to	keep	their	own	deployment	infrastructure	for	many
different	reasons	such	as	data	security	and	to	have	the	full	control	over	the	application’s
infrastructure.

Cloud	computing	has	many	advantages	from	the	performance	perspective.	However,
before	we	can	discuss	the	application	performance	in	the	cloud,	let’s	list	here	the
following	main	advantages	of	deploying	our	enterprise	application	into	the	cloud:

It	utilizes	a	large	number	of	pooled	computing	resources
It	maximizes	the	hardware	utilization	by	having	virtualized	computing	resources
It	provides	elastic	scaling	up	or	down	according	to	the	application	load	and	needs
(Elasticity)
It	allows	automatic	creation	or	removal	of	application	virtual	machines	(no	manual
work)
The	pay-as-you-go	payment	model	of	the	used	resources

The	main	advantage	of	using	a	cloud	for	the	cloud	provider	is	to	utilize	the	pooled
virtualized	resources,	while	the	main	benefits	to	the	deployed	application	owner	are
automatic	elasticity	and	pay-as-you-go	payment	model.	This	is	of	great	value,	especially
in	emerging	services	that	lack	expectation	of	user’s	traffic.	So,	instead	of	getting	small-
scale	resources,	which	can	affect	the	user’s	experience	(in	case	a	large	number	of	users	are
interested	in	this	service),	or	buying	a	large-scale	infrastructure	(that	costs	a	lot	while	the
users	might	not	be	interesting	in	this	service),	we	can	have	the	application	deployed	using
this	elastic	cloud	deployment	model.

The	cloud	provides	the	option	to	go	with	a	few	resources	that	are	elastic	and	expand	with
the	user’s	load	and	shrink	when	they	are	no	longer	needed.	This	makes	the	idea	(that	is,
the	new	service)	cost	effective	and	reduces	the	associated	risks.

Looking	at	these	points	from	the	performance	perspective,	we	can	see	elasticity	as	the
main	performance-adding	value,	but	we	shouldn’t	forget	that	we	are	in	a	cloud
environment	where	application	performance	can	be	affected	by	the	shared	virtualized
resource’s	performance.

Now,	let’s	discuss	some	performance	considerations	that	are	required	when	deploying	our
applications	into	a	cloud	environment.	A	cloud	application	must	be	designed	for	the	cloud,
which	means	that	the	decision	to	deploy	an	application	to	the	cloud	is	not	that	easy	and
should	involve	changes	to	the	application	to	fit	the	cloud	environment.	After	the
expansion	of	the	cloud	technologies,	it	is	better	now	to	design	the	application	for	the	cloud
from	the	beginning;	follow	cloud	design	patterns	and	utilize	the	available	cloud	services.

The	most	important	factor	to	consider	during	designing	any	enterprise	application	for	the

cloud	is	the	ability	to	scale	without	any	issue.	As	some	people	have	a	lot	of	concerns	about
the	public	cloud	security,	the	concept	of	hybrid	and	private	clouds	have	emerged	where
either	the	whole	cloud	architecture	is	created	in	the	private	premises,	or	only	the	part	of
the	cloud	that	contains	sensitive	information	is	created	in	hybrid	cloud.

Another	type	is	Virtual	Private	Cloud	(VPC)	where	the	public	cloud	gives	a	secure,
isolated	cloud	pooled	resources	connected	to	enterprise	private	network	by	VPN	so	that
the	enterprise	application	can	expand	into	these	resources.

The	link	between	public	and	private	resources	in	either	hybrid	or	VPC	should	have	good
bandwidth.	Otherwise,	this	can	produce	a	performance	bottleneck	that	reduces	the	benefits
of	using	these	deployment	models.

Another	point	to	consider	here	is	the	virtual	machine	type	and	the	operating	system	used,
which	can	contribute	to	the	cloud	performance.	Three	main	virtualization	models	exist:
full-virtualization,	para-virtualization,	and	hardware	virtualization.	As	in	the	Intel	VT
and	AMD-V	processors,	hardware	virtualization	provides	the	most	efficient	way	to
virtualize	the	host	machines.

Machine	type	has	an	important	role	in	cloud	performance.	This	includes	the	machine	CPU
power,	memory	size,	and	driver	I/O	speed.	All	these	factors	are	not	guaranteed	when	the
hardware	is	shared	among	different	virtual	machines,	yet	some	cloud	providers	provide
some	ways	to	increase	the	portion	of	the	processing	power	given	to	the	application	based
on	the	application	needs.

Some	providers	have	the	ability	to	upgrade	the	machine	type	as	well	according	to	the
application	needs,	which	is	usually	determined	by	understanding	the	application	behavior
(for	example,	CPU	utilization)	using	cloud	performance	monitoring	tools.

In	the	cloud	environment,	we	can	use	different	database	types.	We	have	the	option	to	use
either	NoSQL	database	(actually	non-relational	database)	or	use	traditional	RDBMS
(relational	database).

The	decision	is	not	easy	to	answer	as	NoSQL,	being	in-memory	database,	has	many
advantages	such	as	good	performance,	easy	scalability,	simplicity	(it	avoids	table	joins	as
in	rational	database),	and	flexibility	(changes	are	easy	and	no	predesigned	schema	is
required).	RDBMS	is	much	more	mature	in	transactional	handling,	data	model	mapping,
and	supporting	of	complex	queries.

The	comparison	has	a	lot	of	other	parameters	that	we	need	to	consider,	but	the	most
important	factors	are	the	application	data	nature	and	database	scaling	ability	in	the	cloud,
which	is	more	efficient	in	NoSQL	database.

Some	companies	now	provide	solutions	to	use	a	hybrid	SQL-NoSQL	model	where	we	can
use	SQL	as	frontend	queries	for	NoSQL	database	(this	can	facilitate	the	application
migration	to	the	cloud).

Data	caching	is	usually	provided	as	a	service	in	the	cloud	(caching	as-a-service)	that	we
need	to	consider	to	improve	our	application	performance.	We	have	already	discussed	the
different	caching	techniques	in	this	chapter.	The	only	valid	recommendation	here	is	to	use

centralized	caching	and	not	local	caching	so	that	we	don’t	have	many	versions	of	cached
objects	in	different	application	instances,	which	makes	the	application	inconsistent,	and
we	don’t	need	to	implement	cache	synchronization	mechanism,	which	utilizes
unnecessary	CPU	power.

Summary
In	this	chapter,	we	briefly	covered	the	different	design	and	architecture	considerations	that
are	required	when	we	make	different	design	decisions.	We	have	classified	these	decisions
into	architecture	layers,	integration,	component	selection,	interaction,	security,	regulatory,
and	miscellaneous	decisions.

We	also	explored	in	more	detail	the	SOA	performance	consideration	for	the	SOA	services
in	particular	and	compared	it	with	the	ROA	services.	Then,	we	gave	a	quick	performance
measurement	for	a	simple	application	that	uses	both	SOAP	and	RESTful	web	services.

We	also	discussed	data	caching	in	more	detail,	since	it	is	an	important	performance
improvement	factor	in	our	enterprise	application.	Finally,	we	discussed	some	of	the
performance	design	aspects	of	the	cloud	environment.

In	the	next	chapter,	Chapter	11,	Performance	Tuning	Tips,	we	will	move	from	the	design
discussion	to	different	development	techniques	and	performance	considerations,	such	as
agile	and	Test-Driven	Development	(TDD).

We	will	also	discuss	some	development	performance	tips	such	as	tuning	tips	of	Java	EE
components,	database	tuning	tips,	miscellaneous	best	practices	topics	(for	example,
exception	handling,	logging,	and	so	on),	and	using	the	javap	tool	to	analyze	the	compiled
Java	code.

Chapter	11.	Performance	Tuning	Tips
In	this	chapter,	we	will	share	some	performance	tuning	tips.	This	chapter	begins	by
covering	the	performance	considerations	in	the	Agile	methodology	and	test-driven
development	(TDD)	as	two	common	development	approaches.

We	will	discuss	the	performance	tuning	tips	for	the	different	Java	EE	components	and
some	general	Java	performance	tuning	tips,	mostly	at	micro-optimization	level,	and	will
explain	the	correlation	between	written	code	and	compiled	code	using	the	javap	tool.

The	list	of	topics	that	we	will	cover	in	this	chapter	is	as	follows:

Performance	and	development	processes
Performance	tips	for	Java	EE	components
Java	performance	tuning,	for	example,	string	handling,	I/O	operations,	and	Java
collections
Logging	and	exception	handling	best	practices
Using	the	javap	tool	to	analyze	the	compiled	code
Database	performance	tips
Client-side	optimization

Performance	and	development	processes
In	this	section,	we	will	provide	a	brief	overview	of	the	performance	considerations	for	the
Agile	development	methodology,	the	benefits	of	using	TDD,	and	the	importance	of	code
review	for	our	application’s	performance.

Agile	and	performance
The	Agile	development	methodology	is	the	preferred	development	strategy	by	many
software	houses.	Agile	iterations	(that	is,	sprints)	are	usually	short	and	include	the
development	of	a	set	of	prioritized	requirements	selected	from	the	application	requirement
backlog.

We	will	briefly	discuss	a	few	points	related	to	Agile	and	the	application’s	performance.

Application	performance	requirements	should	be	included	as	part	of	each	feature’s
requirement	(user	story),	so	the	development	team	can	consider	these	requirements	when
designing	and	implementing	these	features.

These	performance	requirements	should	be	submitted	to	the	performance	testing	team	in
the	early	phases	of	each	sprint	so	that	they	understand	the	requirements	and	how	the	test
scenarios	are	designed.	This	also	gives	them	sufficient	time	to	validate	the	requirements.

Some	of	the	performance	requirements	are	global	requirements	that	are	defined	at	the
beginning	of	the	project	and	other	requirements	can	be	tailored	to	match	the	sprint
features.	This	is	because	in	Agile	sprint,	usually	we	do	not	implement	the	whole
functionality	of	the	feature;	the	performance	testing	of	such	a	feature	should	be	deferred
till	the	feature	development	is	completed.

The	advantage	of	the	performance	testing	in	Agile	is	that	the	scope	of	the	changes	in	each
sprint	is	limited	to	new	sprint	features.	So	usually,	fixing	the	performance	issues	during
each	of	the	Agile	iterations	is	straightforward.	The	performance	issues	become	more
complex	if	the	performance	testing	result	is	neglected	for	some	iterations,	in	which	case
the	scope	will	be	wider	than	it	should	be.

Performance	testing	should	be	a	continuous	operation	during	each	sprint,	particularly
when	using	a	continuous	integration	(CI)	environment,	where	we	can	execute	regression
testing	including	performance	testing	(for	previous	sprints’	features).

In	this	case,	we	can	be	confident	that	nothing	is	broken	in	the	previous	sprints’
functionality	from	a	performance	perspective.	Once	the	delivery	of	our	new	features	is
complete	and	their	performance	scenarios	are	developed,	we	can	focus	more	on	these	new
features	in	our	performance	testing.

Note
An	example	of	a	continuous	integration	tool	is	Jenkins,	which	has	a	performance	plugin
to	capture	different	reports	from	both	JUnit	and	Apache	JMeter	and	consolidate	the
results.	For	more	information,	visit	the	project’s	website	https://jenkins-ci.org/.

When	performance	testing	identifies	performance	issues,	it	should	be	fixed	before
releasing	or	accepting	this	sprint.	In	some	cases,	if	the	required	changes	to	fix	these	issues
are	not	minor,	the	changes	can	be	submitted	to	the	requirement	backlog	as	a	technical
requirement	with	high	priority,	so	it	can	be	picked	in	one	of	the	coming	sprints.

The	main	idea	behind	this	approach	is	to	avoid	losing	the	sprint	timelines	and	business

https://jenkins-ci.org/

commitment.	If	the	performance	issues	need	major	changes	(for	example,	design
changes),	which	can	impact	the	project	delivery	plan,	this	approach	gives	the	development
team	more	time	to	prepare	the	optimal	fix.

It	is	essential	to	track	the	effects	of	the	changes	on	the	application’s	performance	over
different	iterations	so	that	we	can	trace	transactions	performance	trends,	identify	any
deviation	at	an	early	stage,	and	address	the	deviation	by	adding	these	trends	to	the	backlog
as	investigation	tasks.

Performance	and	test-driven	development	(TDD)
TDD	is	a	recently	used	development	methodology,	where	the	implementation	starts	by
writing	the	test	cases	before	having	the	actual	implementation.	These	tests	are	written
according	to	the	application	design	and	requirements,	so	it	guides	the	implementation	in
the	right	direction.

TDD	is	flexible,	efficient,	and	less	error	prone	since	it	is	more	oriented	toward	testing	the
code	from	the	beginning.	This	helps	in	producing	high-quality	code	that	fulfills	the
requirements.

Of	course,	writing	the	test	cases	before	the	actual	implementation	is	difficult	and	needs	a
lot	of	training	to	organize	the	development	team’s	thoughts	to	use	this	approach.

The	most	challenging	area	here	is	the	test	cases	that	cover	the	non-functional
requirements,	which	do	not	usually	follow	the	test	case	patterns	of	pass	or	failed.	We
should	be	able	to	convert	some	of	these	requirements	into	actual	test	methods.

Different	proposals	to	execute	performance	tests	as	part	of	the	development	test	cases	(in
TDD)	include	using	the	following	methods:

Adding	code	hocks,	for	example,	the	StopWatch	and	MemoryMonitor	classes.	These
hocks	measure	the	required	performance	data.
Parsing	the	logfiles	with	performance	log	entries.	This	requires	strict	logging	formats
in	all	the	required	methods.
Using	interceptors/aspect	programming.

In	all	these	methods,	we	compare	the	obtained	performance	results	with	our	performance
requirements	(that	is,	benchmark)	for	each	transaction.

Note
The	MemoryMonitor	class	is	designed	to	measure	the	total	memory	before	and	after
execution.	This	class	indicates	the	method	memory	consumption	and	possible	memory
leakage.

The	StopWatch	class	is	designed	to	provide	mainly	the	start()	and	stop()	methods	to
measure	the	performance	of	certain	parts	in	our	applications.	The	main	idea	behind	this
class	is	to	measure	the	time	in	milliseconds	at	the	start	and	end,	and	get	the	delta.	An
example	of	this	class	is	available	at	https://commons.apache.org/proper/commons-
lang/javadocs/api-2.6/org/apache/commons/lang/time/StopWatch.html.

The	advantage	of	using	TDD	from	the	performance	perspective	is	the	ability	to	control	the
application’s	performance	and	the	early	detection	of	any	deviation.	Definitely,	we	won’t
be	able	to	test	all	the	performance	requirements	from	the	code,	but	the	majority	of
performance	transactional	requirements	can	be	achieved	by	using	this	development
strategy,	while	the	remaining	will	be	addressed	in	the	performance	testing	stage.

https://commons.apache.org/proper/commons-lang/javadocs/api-2.6/org/apache/commons/lang/time/StopWatch.html

Manual	and	automated	code	review
Code	review	using	code	analyzer	tools,	such	as	FindBugs,	PMD,	CheckStyle,
Dependency	Finder,	and	SonarQube,	can	help	improve	the	quality	of	the	code,	which
usually	directly	impacts	the	code’s	performance.	Good	quality	code	also	allows	easier
troubleshooting	of	performance	issues	in	the	code,	which	helps	in	producing	clean	and
correct	performance	fixes.

Note
PMD	is	a	source	code	static	analyzer.	Refer	to	http://pmd.sourceforge.net/.

FindBugs	is	a	static	analyzer	to	look	for	bugs	in	the	Java	code.	Refer	to
http://findbugs.sourceforge.net/.

Checkstyle	is	a	development	tool	to	help	programmers	write	the	Java	code	that	adheres	to
a	coding	standard.	Refer	to	http://checkstyle.sourceforge.net/.

Dependency	Finder	is	a	suite	of	tools	to	analyze	the	compiled	Java	code.	Refer	to
http://depfind.sourceforge.net/.

All	these	plugins	can	be	downloaded	for	the	NetBeans	IDE	using	the	Kenai	project
available	at	https://kenai.com/projects/sqe/pages/Home.

SonarQube	is	an	open	source	code	analyzer	project.	Refer	to	http://www.sonarqube.org/.

Installing	the	code	analysis	tools	can	be	part	of	a	continuous	integration	environment	or
the	development	IDE,	which	is	better	because	all	of	these	tools	already	have	different
plugins	for	different	IDEs,	including	Eclipse,	NetBeans,	and	so	on.

In	NetBeans,	if	we	click	on	the	Tools	menu	and	select	Plugins,	it	will	open	a	list	of	the
available	NetBeans	plugins	ready	for	download	and	installation.	Now,	select	PMD	from
the	list	(if	it	is	available)	and	click	on	the	Install	button.	NetBeans	will	open	Terms	and
conditions	for	this	plugin.	Accept	the	conditions	to	start	installing	the	PMD	plugin.	After
completing	the	installation,	you	might	need	to	restart	NetBeans	so	that	the	installed	plugin
is	ready	for	use.

Note
If	PMD	and	other	plugins	do	not	exist	in	NetBeans	7.x,	navigate	to	the	Plugins	menu,	and
in	the	Settings	tab,	click	on	the	Add	button	to	add
http://deadlock.netbeans.org/hudson/job/sqe/lastStableBuild/artifact/build/full-sqe-
updatecenter/updates.xml.	Name	it	Hudson	tools.	All	these	plugins	will	be	available	in
the	Plugins	tab	after	this	step.

To	customize	the	PMD	rules,	navigate	to	the	Tools	menu,	select	Options,	and	then	click
on	the	Miscellaneous	tab	and	select	PMD.	A	pop-up	dialog	box	will	show	up	with	the
different	PMD	configurations	as	shown	in	the	following	screenshot:

http://pmd.sourceforge.net/
http://findbugs.sourceforge.net/
http://checkstyle.sourceforge.net/
http://depfind.sourceforge.net/
https://kenai.com/projects/sqe/pages/Home
http://www.sonarqube.org/
http://deadlock.netbeans.org/hudson/job/sqe/lastStableBuild/artifact/build/full-sqe-updatecenter/updates.xml

Select	the	PMD	rules	from	the	available	rules.	An	example	of	these	rules,	as	shown	in	the
preceding	screenshot,	is	to	use	System.arraycopy()	instead	of	the	loop	and	copy	different
array	items.	This	definitely	is	more	efficient	and	better	in	performance.

Select	any	Java	code	from	our	previous	projects	and	execute	them	by	navigating	to	Tools	|
PMD	to	get	the	PMD	analysis	results	(or	from	the	Context	menu,	click	on	Tools	and
select	PMD).

Using	these	tools	doesn’t	mean	we	should	neglect	a	manual	code	review,	which	can	catch
exceptions	leading	to	potential	issues	that	are	otherwise	not	easily	detected.	As	part	of
project	development	process,	we	must	allocate	suitable	time	for	team	peer	reviews	and
technical	leader	team	reviews.

It	is	also	worth	mentioning	that	we	need	to	involve	the	performance	team	in	performance
code	review.	If	the	code	changes	are	huge	(usually	in	the	waterfall	development
methodology),	we	can	select	certain	parts	of	the	code	for	a	performance	review,	including
those	parts	that	have	a	higher	probability	of	performance	issues	or	which	have	clear	SLA

requirements.

Having	this	in	place	as	part	of	our	development	process	will	help	to	improve	the	project’s
code	quality,	reduce	the	required	effort	during	the	performance	testing	stage,	and	finally,
facilitate	the	fixing	of	emerging	performance	issues.

Java	EE	performance	tuning	tips
Performance	tuning	tips	are	general	guidelines	to	improve	performance.	Some	of	these
tips	get	change	with	each	new	Java	version,	so	we	have	to	revisit	our	beliefs	with	each
new	Java	version.

Most	of	these	tips	can	be	classified	as	micro-optimization	techniques,	which	might	not
produce	tangible	performance	improvements	in	our	application.

Modern	IDEs	already	suggest	some	of	these	optimization	techniques	to	warn	developers
regarding	required	changes	when	writing	the	code.	Also,	automatic	code	analyzer	tools	(as
we	clarified	in	the	previous	section)	can	apply	some	of	these	recommendation	tips.

Finally,	the	JIT	compiler	considerably	improves	the	written	code	by	different	optimization
techniques,	as	inlining	the	final	methods,	neglecting	the	dead	code,	and	other	methods	can
vary	with	each	JVM	type,	for	example,	HotSpot	(client	and	server)	and	JRockit.

In	the	next	section,	we	will	discuss	a	few	performance	tuning	tips	for	some	of	the	basic
components	in	Java	EE	as	web	services,	JSP,	JPA,	EJB,	and	so	on.

Web	service	(WS)	performance	tuning	tips
We	discussed	the	web	service	performance	recommendations	in	Chapter	10,	Designing
High-performance	Enterprise	Applications.	We	summarize	here	some	of	the	web	service
performance	tips.

Use	medium	object	data	in	web	services	(avoid	fine-	or	coarse-tuned	web	services)	and
avoid	using	complex	objects	as	they	will	take	time	during	serialization.

Perform	the	orchestration	in	the	same	web	service	layer,	that	is,	do	not	orchestrate
different	web	services	using	another	web	service	layer.	Instead,	create	a	new	web	service
that	performs	this	orchestration	in	the	same	level	using	local	calls	(for	example,	the	local
EJB	calls)	to	different	web	services	(in	case	we	are	the	owner	of	all	the	orchestrated
services).

Minimize	the	extended	transaction	handling	and	implement	WS-BusinessActivity	if	we
need	to	support	transaction	across	many	web	services.

Use	different	levels	of	web	service	caching:	web	service	data	caching	and	web	service
result	caching.

Always	use	service	bus	dynamic	routing	and	load	balancing	for	a	well-distributed	load
across	different	web	service	instances.

It	is	better	to	implement	the	web	services	as	a	stateless	services	and	in	the	case	of
prolonged	processing	operations,	we	can	use	queue	and/or	asynchronous	callbacks.

Limit	the	use	of	SOAP	with	Attachments	(SwA),	reduce	the	number	of	used	web	service
handlers,	and	only	use	the	handlers	for	global	actions	as	security	and	logging.

The	last	recommendation	is	to	support	different	web	service	flavors,	that	is,	SOAP	and
REST,	so	clients	can	utilize	the	web	services	according	to	their	capabilities	and	needs.

EJB	performance	tuning	tips
EJB	is	scalable	in	nature.	It	is	used	to	design	an	application	that	can	withstand	the	load	in
an	efficient	and	scalable	manner,	with	a	pool	that	can	increase	and	decrease	according	to
the	application	load.

The	new	modifications	to	Enterprise	JavaBeans	in	the	recent	Java	EE	release	includes	the
supporting	of	local	asynchronous	invocations.	So	we	can	use	it	in	a	more	efficient	way	in
long	transactions.

Configuring	and	tuning	enterprise	JavaBeans	caching	can	improve	the	application’s
performance,	and	destroying	the	stateful	session	beans	once	they	are	no	longer	required	is
an	important	performance	consideration	for	memory	management.

Use	container-managed	transactions	whenever	possible	for	more	efficiency	and	to	avoid
improper	handling	user	management	transactions	in	the	user	management	transaction.

Always	tune	the	Enterprise	beans	performance	using	application	server	tuning	guidelines
as	cache	configurations.	An	example	of	these	tuning	configurations	is	the	use	of	pass-by-
reference	rather	than	pass-by-value	to	speed	up	the	lookup	of	enterprise	beans	if	they	are
co-located	and	there	is	no	local	interface	(EJB	versions	before	3.0).

Servlets	and	JSP	performance	tuning	tips
Servlets	are	the	basic	web	components	in	our	enterprise	application	(JSPs	are	compiled	to
servlets).	Here	we	will	discuss	some	development	performance	tuning	tips.

When	we	want	to	redirect	the	user	to	a	page,	it	is	preferable	to	use	the	server-side
redirection,	RequestDispatcher.forward(),	rather	than	using	the	client-side	redirection,
HttpServletResponse.sendRedirect(),	which	goes	to	the	client	browser	and	hits	the
server	back.

Set	a	proper	buffer	size	in	JSP,	which	fits	the	volume	of	the	transmitted	data.	Note	that
setting	the	autoflush	directive	as	false	will	throw	an	exception	once	the	buffer	is	full:

<%@page	buffer="8kb"	autoflush="true"	%>

Use	the	proper	application	scope	while	storing	different	application	objects.	If	we	need	the
object	throughout	the	application’s	lifespan,	we	can	use	the	application	scope.	If	we	want
it	to	be	available	only	during	a	user	session,	we	can	use	the	session	scope.

We	also	have	a	page	scope	for	using	the	object	across	the	same	page,	and	request	scope
where	the	object	exists	only	in	the	scope	of	request	object.	For	more	details	on	the
different	application	scopes,	refer	to	Chapter	2,	Understanding	Java	Fundamentals.

If	the	JSP	page	does	not	use	the	session	object,	we	can	ask	the	context	not	to	inject	the
session	object	for	the	current	JSP	using	the	session	directive	as	follows:

<%@page	session="false"%>

Configure	the	session	timeout	to	a	reasonable	time	according	to	our	application’s	nature
and	try	to	reduce	it	to	the	smallest	possible	value;	the	timeout	can	be	later	tailored	based
on	a	user’s	average	time	spent	on	the	application.

Cache	global	calculations	to	avoid	repeating	the	calculations.	For	static	content,
preferably,	cache	on	the	client	side	using	the	HTML	header	caching	directives.

Reduce	the	complexity	of	the	application	data	model	and	try	to	stick	to	a	uniform	method
of	accessing	them	inside	the	JSPs,	that	is,	either	use	JSTL	(which	is	recommended)	or	use
the	scriptlet	code;	however,	do	not	mix	both	in	the	same	JSP	page.	Ideally,	it	should	be
consistent	across	all	the	application	pages	as	well.

When	using	a	database-specific	resource	bundle,	implementing	data	caching	is	essential	if
not	provided	out	of	the	box	as	in	JPA.

Avoid	using	a	single	threaded	servlet,	which	is	deprecated	in	Java	EE	7	(servlet	that
implements	the	SingleThreadModel	interface),	as	it	can	lead	to	synchronization	issues.

From	the	application	server	configurations,	always	enable	pre-compile	JSP	and	disable
JSP	autoloading	as	no	changes	to	the	JSP	files	are	expected	in	the	production	environment.

It	is	also	essential	to	follow	all	the	best	practices	for	Java	coding,	including	what	has
already	been	mentioned	in	this	book	(such	as	using	managed	thread	pools)	or	what	we	will
discuss	in	the	next	section.

JSF	performance	tuning	tips
JSF	provides	a	lot	of	object	scopes.	We	need	to	use	the	proper	scope	with	each	object.
Usually,	use	the	scope	only	where	the	object	is	required.	New	scopes	are	added	in	latest
JSF	version,	for	example,	FlowScope,	which	can	be	used	in	pages	such	as	the	wizard	page.

Decreasing	the	page	complexity	is	another	way	to	improve	the	JSF	performance.	Also,
from	the	performance	perspective,	using	Facelet	(in	JSF	2.0	and	later)	is	better	than	JSP.

The	specification	also	adds	support	for	the	stateless	views,	where	the	UIComponent	state
for	the	components	is	not	saved.	This	can	improve	the	performance	if	no	persistent	status
is	required	for	such	components.	This	is	supported	only	in	the	views	based	on	Facelet.

Always	keep	the	view	getter	method	as	simple	as	possible;	if	it	requires	any	logic,	then
possibly	precalculate	the	logic	and	keep	the	getter	method	as	simple	as	possible.

JSF	configuration	tuning	parameters	include	both	common	and	specific	implementation
parameters.	Refer	to	the	following	example:

javax.faces.FACELETS_REFRESH_PERIOD	or

facelets.REFRESH_PERIOD	(for	backward	compatibility	with	old	Facelets	tag	

libraries).

The	preceding	configuration	can	be	used	to	disable	the	compiler	checks	for	the	Facelet
pages’	modifications	(by	setting	to	-1).	Recompiling	the	changed	Facelet	pages	is	useful
in	the	development	time	but	not	common	in	the	production	environment.

JPA	performance	tuning	tips
Java	persistent	APIs	refer	to	the	standard	specifications	for	an	object-relational	model.	A
lot	of	implementations	are	available.	The	performance	tuning	of	this	layer	includes
common	items	for	different	implementations	and	other	specific	items	for	specific
implementations.

For	example,	use	the	proper	loading	strategy	from	either	lazy	loading	or	eager	data
loading	according	to	our	data	size	and	usage;	for	small	data	volume,	eager	loading	always
make	sense.

The	same	applies	if	the	data	is	being	used	extensively	in	most	of	the	application
transactions.	Lazy	loading	usually	fits	huge	data	or	user-specific	data,	where	we	need	to
pay	the	cost	on	demand	basis	(that	is,	on	the	user’s	requests).

Query	results	pagination	is	also	an	important	JPA	feature.	The	importance	of	this	feature	is
to	avoid	memory	issues	when	the	returned	data	is	huge.

The	JPA	provides	two	methods	to	control	this	pagination:	setMaxResults(int
maxResult)	and	setFirstResult(int	startPosition)	in	the	Query	object.

We	should	also	customize	that	usage	according	to	our	application	user’s	behavior.	So	for
example,	in	the	order	management	system,	most	of	the	users	will	be	interested	to	navigate
to	the	latest	submitted	orders.	In	this	case,	we	need	to	return	only	a	subset	of	the	recent
orders	(ordered	by	date),	and	only	a	few	users	will	navigate	and	use	the	pagination	to
retrieve	more	data.

We	can	also	use	data	chunking	to	return	the	required	data	only	from	the	database	side,
instead	of	filtering	in	the	application	side	using	the	IN	keyword	and	adding	the	list	of	IDs
to	the	query.

Increasing	the	index	pre-allocation	size	can	speed	up	the	creation	of	new	objects.	Also	try
to	minimize	the	usage	of	composite	primary	keys	for	different	entities.

Enabling	entity	caching	is	important	to	improve	the	performance,	but	if	we	are	working	in
the	cluster	environment,	disable	the	JPA	caching	or	decrease	the	caching	timeout	to	avoid
the	stale	objects.	The	exact	value	of	the	timeout	depends	on	the	application	data	nature.
Refer	to	the	following	code:

@Entity	

@Cacheable(true)

public	class	Order	

As	entity	caching	is	working	on	primary	key/entity	id,	we	can	also	enable	the	query-
level	caching	for	better	performance.	One	way	to	do	that	is	by	adding	a	hint	to	the	named
query	as	follows:

hints={@QueryHint(name="eclipselink.query-results-cache",	value="true")}

Yet	using	the	external	cache	in	a	clustered	environment	is	preferred	to	remove	the
possibilities	of	stale	objects	and	data	inconsistency,	as	discussed	in	Chapter	10,	Designing

High-performance	Enterprise	Applications.

Also,	using	batch	interaction	by	sending	a	group	of	inserts/updates/deletes	to	the	database
in	a	single	transaction	by	setting	"eclipselink.jdbc.batch-writing"="JDBC"	in
persistence.xml,	we	can	also	specify	the	size	of	the	batch	using	another	property,
"eclipselink.jdbc.batch-writing.size"="2000".	(We	will	discuss	the	JDBC	batch
processing	later	in	this	chapter	when	discussing	the	database	tuning.)

Use	the	read-only	entities	when	the	entities	are	not	going	to	be	modified,	such	as	entities
for	lookup	data	(for	example,	e-mail	templates).	This	can	be	done	using	the	@ReadOnly
annotation	on	the	level	of	the	entity.

Finally,	it	is	preferred	to	access	the	JPA	from	stateless	session	beans	as	a	façade	layer	to
get	benefits	from	different	resource	injections	and	EJB	transactional	and	security	handling,
and	encapsulate	all	JPA	access	logic.

Note
More	details	on	JPA	performance	tuning	can	be	found	at	the	EclipseLink	documentation
at	http://www.eclipse.org/eclipselink/documentation/2.5/solutions/toc.htm.

http://www.eclipse.org/eclipselink/documentation/2.5/solutions/toc.htm

Java	performance	tuning	tips
In	this	section,	we	will	discuss	some	general	Java	performance	tuning	tips,	including
string	manipulation,	dealing	with	the	Java	collections,	using	the	synchronized	code,	and
logging	and	exception	handling	best	practices.

String	manipulation	performance	tuning	tips
Different	classes	and	techniques	are	involved	in	the	string	manipulation	in	the	Java
application.	We	will	discuss	the	string	creation,	string	concatenation,	and	the	usage	of	the
StringBuilder	and	StringBuffer	classes.

String	creation	tips
String	creation	can	take	many	forms	either	by	using	the	direct	assignment	operator	or	the
new	String()	constructor.	The	interesting	fact	is	that	creating	the	String	object	using	the
assignment	operator	(that	is,	string	literal)	is	much	more	faster	than	using	the	constructor
call.	Refer	to	the	following	code:

String	myStr	=	"";		

String	myStr	=	"Osama	Oransa";

The	new	String()	method	is	slower	as	it	doesn’t	use	the	string	pool	area,	where	the
unique	string	values	are	stored	(interned	strings).	So,	while	creating	a	literal	string,	JVM
searches	in	the	pool	area.	If	it	finds	an	existing	one,	it	returns	a	reference	to	it.

Since	a	String	object	is	an	immutable	object,	modifying	this	interned	object	will	result	in
creating	a	new	String	object	rather	than	changing	the	existing	value,	which	allows	the
sharing	of	the	same	string	values:

String	myStr	=	new	String("");

String	myStr	=	new	String	("Osama	Oransa");

The	interned	string	concept	explains	the	impact	of	using	==	to	compare	the	two	String
objects	versus	using	the	equals()	method.	If	both	the	String	objects	contain	the	same
value	and	are	interned,	using	==	will	return	true	(same	reference	values).	Since	we	do	not
guarantee	that	all	our	String	objects	are	interned,	we	should	always	use	the	equals()
method	for	the	string	comparison.

To	force	the	new	String()	method	to	use	the	interned	string	area,	we	can	use	the
intern()	method	in	the	String	object.

String	concatenation	tips
String	concatenation	operations	are	important	performance	tuning	areas,	where	they
include	the	creation	of	the	new	String	objects.	Java	supports	different	ways	of	string
concatenations,	which	include	using	the	+	operator,	the	String.concat()	method,
StringBuilder.append(),	and	StringBuffer.append().

Let’s	see	some	examples	and	the	performance	impact	of	using	these	types	of	operations	as
per	Java	SE	7.

Many	people	believe	that	using	the	+	operator	for	the	string	concatenation	is	a	slow
operation.	This	is	true,	but	not	in	all	cases,	so	consider	the	following	code	example:

String	myStr	=	"My	"+"	Name"+"	is	Osama";

This	one	is	really	fast	as	Java	will	use	a	single	constant	to	replace	all	these	literal	values

and	replace	this	constant	with	a	direct	assignment	operation,	which	makes	this	approach
definitely	faster	than	using	any	other	way	to	implement	this	as	StringBuilder:

int	i=3;

String	myStr	=	"My	"+"	Name"+"	is	Osama"+	i;

This	preceding	example	is	replaced	during	compilation	by	the	StringBuilder	operation,
as	StringBuilder	is	created	with	the	full-string	literal	values	and	the	append(i)	method
is	called	to	append	the	i	variable.	This	approach	is	still	an	efficient	way	to	concatenate	the
String	objects.

The	following	invocation	does	not	have	good	performance	and	is	considered	the	worst
performance	option	to	concatenate	the	String	objects:

String	myStr	=	"";

for(int	i=0;i<20;i++){

		myStr	+=	i;

}

With	each	loop,	a	new	StringBuilder	object	will	be	created	to	implement	this
concatenation	operation.	Instead,	the	best	way	to	implement	it	is	using	the	following
optimized	code:

		StringBuilder	strBuilder	=	new	StringBuilder();

		for(int	i=0;i<20;i++){

						strBuilder.append(i);

		}

		String	myStr	=	strBuilder.toString();

The	difference	between	StringBuilder	and	StringBuffer	is	that	StringBuffer	is	thread
safe,	while	StringBuilder	is	not.	So,	if	we	are	using	the	object	in	a	local	method	and	no
thread	safety	is	concerned,	it	is	better	to	use	StringBuilder	because	it	is	faster.	Whereas
if	many	threads	are	modifying	the	object	(that	is,	not	a	local	method	object),	it	is	better	to
use	StringBuffer	to	avoid	concurrency	issues.

Using	the	String.concat()	method	is	an	alternative	way,	but	the	concat()	method
accepts	only	the	String	object.	In	this	case,	we	have	to	convert	the	concatenated	value
into	a	String	object	first	using	the	String.valueOf()	method	as	follows:

String	myStr="";

for(int	i=0;i<20;i++){

		myStr	=	myStr.concat(String.valueOf(i));

}

This	is	still	slower	than	using	StringBuilder	as	it	involves	the	following	parameters:

Constructing	a	new	String	object	created	by	the	valueOf()	method
Creating	new	Char[]	for	the	concat()	method
Creating	a	new	String	object	with	char[]
Returning	the	new	String	object

The	JVM	String	tuning	parameters
The	Java	HotSpot	VM	comes	with	some	tuning	parameters	for	string	manipulations.	Refer

to	the	following	example:

-XX:+UseStringCache

The	preceding	flag	enables	the	caching	of	the	commonly	allocated	strings.	Refer	to	the
following	parameter:

-XX:+UseCompressedStrings

The	preceding	flag	allows	the	usage	of	byte[]	for	strings	(not	char[]),	which	can	be
represented	as	pure	ASCII	(added	in	Java	6	update	21).	Refer	to	the	following	parameter:

-XX:+OptimizeStringConcat

The	preceding	flag	optimizes	the	string	concatenation	operations	wherever	possible
(added	in	Java	6	update	20).	The	flag	attempts	to	detect	the	size	of	char[]	to	allocate	in
StringBuilder	and	StringBuffer	based	on	the	appended	string	value.

Some	of	these	flags	are	only	available	in	the	server	type	of	the	HotSpot	VM	such	as	-
XX:+OptimizeStringConcat	and	some	of	them	come	with	the	default	value	false,	such	as
XX:+UseStringCache.	In	all	cases,	firstly,	we	need	to	ensure	these	flags	exist	in	our	Java
version	before	we	can	decide	to	use	them.	We	can	identify	this	by	executing	the	following
command:

java	-XX:+PrintFlagsFinal

The	preceding	command	will	print	all	the	existing	flags,	so	we	can	determine	whether	the
flag	we	need	to	use	exists.

Java	collections	and	performance
Dealing	with	the	Java	collections	can	affect	performance	in	different	aspects.	We	will
discuss	some	of	these	aspects	as	follows:

Have	we	selected	the	required	collection?
Do	we	need	the	collection	to	be	thread	safe?
Is	the	collection	performance	acceptable?	Do	we	have	alternatives?
Do	we	have	any	collection	memory	leakages?
What	is	the	collection	size	expansion	policy	and	performance?

The	proper	selection	of	the	required	collection	is	not	only	a	functional	aspect	but	also	has
essential	performance	considerations.	Many	people	tend	to	use	different	collections	and
change	them	across	the	application	as	per	their	needs,	which	adds	performance	overhead.

Therefore,	it	is	better	to	understand	the	requirements	and	the	ways	we	are	going	to	use	this
collection	across	the	application.	Then,	we	select	the	proper	collection	to	use;	for	example,
instead	of	using	Array	and	converting	it	into	ArrayList	and	then	into	HashMap	(using	the
objects	keys)	in	different	locations	in	the	applications,	it	would	be	much	better	to	use	one
type	of	the	collection	that	suits	our	application.

Another	point	that	is	related	to	the	selection	of	the	proper	collection	type	is	thread	safety,
if	the	collection	is	used	locally	(that	is,	only	accessed	by	a	single	thread	at	a	time),	there’s
no	need	to	use	the	synchronized	collection.	So	for	instance,	using	Vector	(replaced	now
with	CopyOnWriteArrayList),	which	is	the	synchronized	collection,	shouldn’t	be	a	locally
used	collection.	Instead,	ArrayList	would	better	suit	our	needs.	Collection
synchronization	is	performance	overhead	and	we	should	only	pay	this	overhead	to	gain	the
benefits	of	thread	safety.

Another	factor	is	understanding	the	different	available	options	with	each	Java	new	release.
For	example,	we	should	no	longer	use	the	Vector,	Stack,	and	Hashtable	collections.
Instead,	we	should	use	for	the	single-thread	access,	ArrayList,	Deque,	and	HashMap.	For
the	thread-safe	access,	we	can	use	CopyOnWriteArrayList,	ConcurrentLinkedDeque,	and
ConcurrentHashMap.

Another	noteworthy	mention	is	that	we	shouldn’t	permit	any	memory	leakage	while
dealing	with	different	collections.	The	application	design	must	ensure	that	we	have	a	way
to	remove	the	added	items.	So	for	any	add	method,	there	should	be	corresponding	remove
method	calls.	For	example,	if	we	have	a	collection	that	stores	a	user’s	objects,	we	must
ensure	that	we	remove	these	items	explicitly	when	the	user	logs	out	or	when	there	is	a
session	timeout;	otherwise,	memory	leakage	will	occur.

Using	synchronized	blocks
Most	of	the	enterprise	applications	have	certain	parts	in	the	code	that	can’t	be	accessed
except	by	a	single	thread	at	a	time.	In	this	case,	we	use	the	synchronized	Java	key	word.
In	Chapter	2,	Understanding	Java	Fundamentals,	we	saw	how	to	use	explicit	locking	by
using	the	Lock	interface	instead	of	using	implicit	locking;	this	is	a	good	alternative.

If	we	need	to	use	the	synchronized	blocks	or	methods,	minimize	the	synchronized	code
block	using	one	of	the	following	strategies:

Use	synchronization	over	a	lock	object	and	minimize	the	lock	in	a	small	part	of	the
code	that	can’t	be	accessed	by	different	threads:

synchronized	(lockObject)	{

		//minimal	code	that	needs	synchronization

}

Another	advantage	of	using	this	limited	synchronization	model	is	that	it	allows	us	to
have	many	synchronized	blocks	in	the	same	class	without	impacting	each	other	(in
comparison	with	synchronized	over	the	this	or	class	objects).

Extract	a	small	private	method	that	contains	the	small	piece	of	a	code	that	needs	to
be	synchronized	and	use	the	synchronized	keyword	to	tag	this	method.	This	is	better
than	synchronizing	over	the	whole	method	but	not	better	than	the	lockObject
synchronization.	It	fits	more	when	the	class	does	not	have	any	other	synchronization
locations.

The	I/O	operations	and	performance
The	I/O	operations	are	considered	as	performance	killer	operations.	We	can	adopt	the
following	guidelines	to	minimize	the	performance	impact	of	these	operations:

Use	buffered	read/write	objects	(for	example,	BufferedInputStream,
MappedByteBuffer)	and	tune	the	buffer	size,	if	required,	according	to	the	average
size	of	the	files	need	to	read/write
Use	asynchronous	methods	to	access	the	files	instead	of	providing	the	files	access	in
the	transaction’s	critical	path
Cache	the	file’s	contents	and	specify	the	cache	expiration	according	to	the	frequency
of	changes	in	the	file
Write	the	file’s	contents	to	the	memory	during	transactions	and	synchronize	back	to
the	disk	to	speed	up	the	transaction	time	or	use	the	new	IO	Java	capabilities	such	as
MappedByteBuffer,	which	do	a	similar	job
Move	any	file	structure	validation	into	a	separate	process	(outside	the	application)	or
thread	(inside	the	application)	so	that	the	application	does	not	spend	time	during	the
transaction	when	performing	the	required	validation	of	the	file
Use	Java	SE	7	NIO.2	for	better	performance

In	Java	EE	7,	a	non-blocking	I/O	support	is	introduced	for	servlets	and	filters	when	they
process	a	user’s	requests	in	the	asynchronous	mode.	So	if	we	implement	asynchronous
components,	we	need	to	use	this	new	feature	to	make	the	best	use	of	the	user’s	threads.

Note
For	more	information	on	Java	NIO.2,	check	the	online	Oracle	documentation	at
http://docs.oracle.com/javase/7/docs/technotes/guides/io/.

http://docs.oracle.com/javase/7/docs/technotes/guides/io/

Exception	handling	and	performance
Exception	handling	is	an	important	feature	in	Java	language.	What	we	need	to	highlight	is
some	incorrect	ways	of	implementing	exception	handling	that	might	impact	the
application’s	performance.

On	the	top	of	this	list	is	using	the	exception	as	method	return	flags,	which	is	not	a	good
way.	Consider	the	following	example:

public	void	checkUserExist(String	username){

		//login	logic	here

		if(user	not	found)	throw	new	Exception("not	exist");

		else	if(user	is	not	active)	throw	new	Exception("not	active");

		else	throw	new	Exception("not	known	issue");

}

This	is	bad	coding	behavior	with	a	negative	impact	on	the	application’s	performance	due
to	the	overhead	of	creating	the	exceptions	and	its	stack	trace.	Instead	it	should	be	replaced
with	other	flags	as	returning	boolean	or	int	value	flags.

The	same	issue	is	usually	faced	when	developers	create	their	own	custom	exception
classes	and	use	them	to	cluster	different	exception	into	different	types.	Usually,	this	does
not	add	any	value,	except	that	it	logs	the	exception	with	a	different	name;	for	example,
BusinessException	and	TechnicalException.

So	unless	we	are	going	to	deal	with	these	exceptions	differently,	and	as	long	as	logging	is
enough	in	these	cases,	tagging	these	exceptions	is	a	waste	of	time.	The	only	exception	to
this	rule	is	when	we	are	building	a	library	or	communicating	this	meaningful	exception	to
the	application’s	clients	(for	example,	web	service	exceptions):

logger.error("Business	exception:	user	can't	buy	2	orders!",ex);

Use	the	new	Java	language	enhancements	in	Java	7,	such	as	using	multiple	exceptions	in
the	catch	block:

try{

	…

}catch(IOException	|	IllegalAccessError	ex){

		//handle	exception..

}

Also,	use	the	new	and	improved	try	resources	syntax	as	we	don’t	need	to	pay	close
attention	to	the	open	resources.

These	resources	should	implement	the	java.lang.AutoCloseable	interface	used	with	this
new	try	resources	enhancement:

try	(BufferedReader	bufferReader	=	new	BufferedReader(new	

FileReader(filePath)))	{

		//read	from	the	buffer	reader	..

}catch(Exception	ex){

		//handle	exception	…

}

//no	need	for	a	final	block

If	we	are	using	the	old	try/catch/finally	format,	make	sure	to	release	or	close	any
resources	in	the	final	block	as	this	can	impact	the	application’s	performance	and	cause
resources	leakages.

Do	not	throw	the	exception	into	too	many	levels,	for	example,	data	layer,	business	layer,
business	delegate	layer,	and	so	on.	This	produces	a	lot	of	performance	overhead.	The
exception	should	be	handled	where	it	occurs	and	if	this	is	not	possible,	then	throw	it	into	a
higher	level.

Propagating	the	exception	away	from	its	source	will	cause	inefficient	handling	and	usually
ends	up	by	displaying	the	error	message	or	repeating	the	whole	transaction.

Logging	of	the	exception	should	include	logging	of	the	exception	object	itself,	so	we	can
troubleshoot	issues	more	efficiently.

Finally,	avoid	the	nightmare,	that	is,	when	the	developer	decides	to	eat	the	exception	by
having	an	empty	catch	block,	which	makes	any	investigation	impossible;	therefore,	such
practice	should	be	forbidden!

Application	logging	and	performance
The	best	practices	of	application	logging	must	be	strictly	followed,	otherwise,	the	logging
will	impact	the	application’s	performance	or	it	will	become	useless.	Here,	we	will	list
some	of	these	best	practices.

Use	logging	levels	according	to	the	exact	scenario,	for	example,	FATAL	is	used	for	severe
application	issues	such	as	an	application	can’t	connect	to	the	database	and	using	the	ERROR
level	for	unrecoverable	errors	where	the	application	flow	usually	stops.

While	the	WARN	level	means	that	something	has	happened	that	we	need	to	pay	attention	to,
the	application	flow	can	continue;	we	log	it	to	either	take	action	later	or	to	understand	the
impact.

The	INFO	level	is	used	to	log	important	information	messages	(for	example,	order
submitted),	while	the	DEBUG	level	is	used	to	log	different	development	messages	(for
example,	the	enter	or	leave	method).	The	TRACE	level	is	used	for	detailed	debugging
messages	that	might	impact	the	application’s	performance	and	is	only	used	by	the
development	team	for	troubleshooting	activities.

Java	logging	uses	alternative	levels	that	have	the	same	meaning:	SEVERE	(the	highest
value),	WARNING,	INFO,	CONFIG,	FINE,	FINER,	and	FINEST	(the	lowest	value).

After	understanding	the	meaning	and	usage	of	different	logging	levels,	we	must	only	log
messages	if	the	corresponding	level	is	enabled	to	avoid	unnecessary	processing;	refer	to
the	following	example:

logger.debug("The	total	number	of	records	=	"	+	calculateRecords(records)	

);

Instead	of	performing	string	processing	(using	StringBuilder	as	we	saw	before)	and
invoking	the	calculate	method	while	the	logging	debug	is	not	enabled,	it	is	better	to	follow
the	best	practice	by	checking	whether	the	logging	level	is	enabled:

if(logger.isDebugEnabled())	{

		logger.debug("The	total	number	of	records	=	"	+	calculateRecords(records)	

);

}

It	is	worth	mentioning	that	some	people	believe	that	exporting	logging	into	a	separate
method	will	resolve	this	problem;	however,	this	is	not	true—it	might	worsen	it	even	more:

debugMyMessages("The	total	number	of	records	=	"	+	

calculateRecords(records));

...

private	void	debugMyMessages(String	message)	{

		if(logger.isDebugEnabled())	{

				logger.debug(message);

		}

}

This	syntax	will	result	in	the	same	performance	overhead	of	invoking	the	calculate
method,	construct	the	String	object,	push	the	message	into	the	stack,	and	call	the	method

that	performs	the	logging-level	check!	So	this	approach	should	be	avoided.	The
motivation	behind	this	code	style	is	when	the	code	analyzer	warns	about	the	number	of	if-
conditions	inside	the	method.

Logging	messages	must	be	expressive,	that	is,	all	useful	information	should	be	included,
and	in	particular,	the	trace	level	must	be	able	to	help	us	identify	any	execution	anomalies.
It	is	also	recommended	to	log	both	method	input	parameters	and	return	values.

An	important	logging	aspect	is	to	keep	the	logging	behavior	consistent	across	the
application	code	so	that	we	can	make	best	use	of	this	logging.

Also,	avoid	eating	the	exception	and	logging	other	messages	that	do	not	help	us	to
understand	the	exception’s	root	cause.	Instead	log	the	exception	object	so	that	the	full-
exception	stack	trace	can	identify	the	root	cause	of	this	exception.	The	following	pattern
should	be	completely	avoided:

try	{

…

}	catch(Exception	ex)	{

		logger.error("Error	during	order	submission!");

}

Logging	must	not	affect	the	application’s	performance	or	functionality,	for	example,	the
logging	message	shouldn’t	throw	a	null	pointer	exception:

If(logger.infoEnabled()){

		logger.info("order	submitted	successfully,	id:"+order.getId()+	…+…	

+",order	address	2:"+	order.getAddress2().getDetails());

}

order.submit();

In	cases	where	order	Address2	is	not	mandatory	and	can	be	null,	the	application
functionality	will	be	broken	and	the	order	will	not	be	submitted	by	this	informative
message!

Another	impact	on	the	application’s	performance	is	that	logging	extensive	data,	for
example,	large	XML	structures,	can	cause	the	application’s	performance	to	deteriorate
markedly:

logger.info("order	submitted	=	"	+	order.toXML());

We	should	also	tune	the	logging	message	information	by	configuring	the	level	of
information	that	we	need,	for	example,	timestamp,	class	name,	method	name,	and	so	on.
This	includes	both	application’s	logging	and	server	access	logs,	and	is	usually	done	by
configuring	the	logger	appender.

If	we	can	push	the	logging	into	asynchronous	calls,	it	can	improve	the	application’s
performance.

Note
Log4J	2	supports	asynchronous	logging.	For	more	information,	refer	to
http://logging.apache.org/log4j/2.x/manual/async.html

http://logging.apache.org/log4j/2.x/manual/async.html

Finally,	we	need	to	use	a	standard	way	of	logging	in	our	application,	for	example,	using
Apache	Log4J	(and	Log4J	2),	Java	logging,	Apache	Commons	Logging,	or	Simple
Logging	Facade	for	Java	(SLF4J).	The	advantage	of	using	these	standard	logging
libraries	is	that	they	are	performance	optimized	for	enterprise	application	logging,	and
everyone	is	aware	of	how	to	configure	and	use	these	libraries.

Also,	some	of	these	libraries	provide	useful	advantages	for	the	application;	for	example,
Log4J	2	can	automatically	reload	its	configuration	once	modified.	This	allows	easy
troubleshooting	of	the	application’s	issues,	as	we	can	switch	certain	logging	levels	on/off
in	our	troubleshooting	area.

Using	the	javap	tool	to	understand	micro-
optimizations
The	javap	tool	is	one	of	the	JDK	tools	used	to	disassemble	class	files.	The	benefits	of
using	this	tool	is	to	understand	how	the	compiler	deals	with	our	code	in	case	we	have
doubts	about	some	of	the	micro-optimization	techniques.

The	syntax	of	the	tool	is	as	follows:

javap	[options]		<classes>

We	can	add	many	classes	and	separate	them	using	spaces.	The	most	important	options	are
as	follows:

The	method	has	one	flag	that	specifies	that	the	method	access	is	public	(ACC_PUBLIC)
-l:	This	option	is	to	print	line	and	local	variable	tables
-public:	This	option	is	to	show	only	public	classes	and	members
-protected:	This	option	is	to	show	only	protected	and	public	classes	and	members
-package:	This	option	is	to	show	only	package,	protected,	and	public	classes	and
members
-private/–p:	This	option	is	to	show	all	classes	and	members
-s:	This	option	is	to	print	internal	type	signatures
-constants:	This	option	is	to	show	static	final	constants
-c:	This	option	is	to	print	disassembled	code
-verbose:	This	option	is	to	print	stack	size,	number	of	locals,	and	arguments	for
methods

The	bytecode	instructions	can	be	found	in	JVM	specifications.	We	do	not	need	to
understand	these	instructions	in	detail;	a	quick	overview	is	enough.

Let’s	take	a	look	at	the	simple	Java	class	example	to	understand	the	tool	output	to	use	it	in
our	own	investigations	and	how	a	Java	compiler	deals	with	and	optimizes	our	written	Java
code.	The	following	code	is	simply	prints	out	a	hello	message	and	concatenates	the	array
elements:

package	osa.ora;

public	class	TestClass	{

		public	static	void	main(String[]	args){

				TestClass	test=new	TestClass();

				test.hello("Osama");

				test.concatArray(12);

		}

		public	void	hello(String	name)	{

				String	s	=	"Hello	,"+"	Your	Name	is	"+	name;

		}

		public	void	concatArray(int	arraySize)	{

				String	s="";

				for(int	i=0;i<arraySize;i++){

						s+=i;

				}

		}

}

Compile	the	following	code	using	the	Java	compiler,	javac:

javac	TestClass.java

Now,	execute	the	javap	command	without	any	parameters:

javap	TestClass.class

Compiled	from	"TestClass.java"

public	class	osa.ora.TestClass	{

		public	osa.ora.TestClass();

		public	static	void	main(java.lang.String[]);

		public	void	hello(java.lang.String);

		public	void	concatArray(int);

}

This	command	is	just	listing	the	class	outlines.	Now	let’s	try	to	execute	the	javap
command	with	additional	options	to	get	more	details	on	the	class	bytecode	as	follows:

javap	-c	-s	-v	/osa/ora/TestClass.class

This	will	produce	a	detailed	disassembled	output	of	this	class.	We	will	extract	one	method
here	to	look	into	to	understand	how	to	read	this	compiled	code:

		public	void	hello(java.lang.String);

				flags:	ACC_PUBLIC

				Code:

						stack=2,	locals=3,	args_size=2

									0:	new											#7							//	class	java/lang/StringBuilder

									3:	dup

									4:	invokespecial	#8							//	Method	java/lang/StringBuilder.

"<init>":()V

									7:	ldc											#9							//	String	Hello	,	Your	Name	is

									9:	invokevirtual	#10						//	Method	java/lang/StringBuilder.

append:(Ljava/lang/String;)Ljava/lang/StringBuilder;

								12:	aload_1

								13:	invokevirtual	#10						//	Method	java/lang/StringBuilder.

append:(Ljava/lang/String;)Ljava/lang/StringBuilder;

								16:	invokevirtual	#11						//	Method	java/lang/StringBuilder.

toString:()Ljava/lang/String;

								19:	astore_2

								20:	return

We	can	simplify	the	previous	class	code	instructions	using	the	following	points:

The	code	starts	with	creating	a	new	object	from	the	StringBuilder	class	(new	#7)
Invoke	the	StringBuilder.init()	method	(invokevirutal	#8)
Load	the	constant	string	Hello,	Your	Name	is	(by	ldc	#9)	into	this	class	using	the
StringBuilder.append()	method	(invokevirutal	#10)
Load	the	name	parameter	from	the	stack	(aload_1)	and	concatenate	the	name
parameter	into	this	StringBuilder	instance	using	the	append()	method
(invokevirutal	#10)

Finally,	convert	the	StringBuilder	into	the	String	object	by	calling	the	toString()
method	(invokevirutal	#11)	and	return

Looking	at	the	constant	pool	table.	We	can	see	the	following	entry	#9	referenced	by	the
ldc	instruction:

		#9	=	String													#47												//		Hello	,	Your	Name	is

We	can	see	the	invokevirtual	instruction,	which	invokes	the	different	methods	that	are
referenced	in	the	constant	table,	for	example,	the	following	invokevirtual	#10.	Refer	to
the	StringBuilder.append()	method	(which	is	in	turn	reference	method	#48	in
StringBuilder	class	#7):

#10	=	Methodref				#7.#48	//		java/lang/StringBuilder.append:(Lj

ava/lang/String;)Ljava/lang/StringBuilder;

The	StringBuilder	class	is	referenced	by	the	item	number	#7	in	the	same	table:

			#7	=	Class								#46					//		java/lang/StringBuilder

So	when	the	code	creates	the	new	instance,	it	references	this	class	as	#7	(new	#7).

This	gives	us	a	good	overview	of	how	to	read	the	compiled	code.	We	need	to	highlight
two	points	here,	which	we	already	discussed	in	the	String	performance	discussion:

"Hello	,"+"	Your	Name	is	"	is	converted	into	a	single	literal	value	"Hello	,	Your
Name	is	"

Concatenating	the	name	to	the	static	string,	that	is,	the	+	name	is	converted	to
StringBuilder	using	two	append()	method	calls;	one	is	to	add	the	literal	string
values	and	the	other	is	to	add	the	name	variable	content

This	example	gives	us	an	idea	of	how	to	make	use	of	javap	to	understand	our	micro-
optimization	techniques	by	isolating	the	code	into	a	small	class	for	analysis.

The	full	list	of	different	class	instructions	can	be	found	in	the	virtual	machine
specifications	if	we	want	to	gain	a	deeper	understanding	of	the	class	file	format	and	the
different	instructions	listed.

Note
For	more	information	about	javap,	refer	to	Oracle’s	online	documentation:

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javap.html

To	get	more	details	about	the	class	file	structure	and	different	instructions	in	Java	virtual
machine	(Java	SE	7),	refer	to	Oracle’s	online	documentations:

http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.10.1.9

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javap.html
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.10.1.9

Database	performance	tuning	tips
Database	performance	is	considered	as	the	most	critical	factor	in	our	application’s
performance,	and	most	of	a	transaction’s	latency	is	caused	by	the	database.	In	this	section,
we	will	provide	some	performance	recommendations	when	dealing	with	the	database	from
the	development	perspective.

Always	stick	to	using	a	server-managed	connection	pooling	when	accessing	the	database
and	avoid	using	direct	connections	to	the	database.

The	connection	should	be	released	immediately	after	finishing	our	database	interaction.
Also,	it	is	recommended	that	you	use	prepared	statements	as	it	gets	compiled	and	hence,	is
more	efficient	to	use	when	executing	the	same	query	many	times	with	different
parameters.

If	we	are	using	the	Object-relational	mapping	(ORM)	library,	we	need	to	make	use	of
the	different	capabilities	that	exist	in	the	used	ORM	framework.	Each	framework	has	its
own	best	practices	and	performance	recommendations,	as	we	saw	while	discussing	JPA
performance	tips.	In	general,	we	need	to	stick	to	these	recommendations	for	better
performance.

Database	machine	optimization	is	important	in	the	aspects	of	allocated	memory,	CPU
power,	and	the	number	of	cores.	Also,	database	tuning	effort	is	required	to	create	essential
table	indices	to	speed	up	different	application	queries.

Use	table	row-locking	and	avoid	entire	table-locking.	Also	increase	database	buffer	size
for	better	performance.

Monitoring	the	database	performance	on	a	regular-basis	is	a	basic	operational	requirement
so	we	can	address	any	issue	as	it	happens.

Database-specific	performance	tuning	recommendations	should	be	followed	according	to
the	database	provider	recommendations.

Making	use	of	the	available	database	functionality,	for	example,	loading	data	from	a
remote	database	in	Oracle	can	be	achieved	by	executing	a	query	against	a	remote	database
link.	This	can	be	accelerated	if	we	use	a	materialized	view	that	utilizes	this	link,	which	can
be	refreshed	in	a	frequency	that	matches	the	speed	of	data	changes	(for	example,	nightly
job).	Thus,	during	runtime,	the	application	will	execute	the	queries	against	this
materialized	view,	but	not	from	the	remote	database.

Using	Oracle	database	optimizer	hints	are	useful	to	force	the	database	optimizer	to	use	a
certain	index	or	execute	the	query	in	parallel:

SELECT	/*+	PARALLEL(2)	*/	id,	name	FROM	users;

Also,	using	a	SQL	statement	execution	plan	(according	to	the	database	engine)	to
understand	our	application	queries	and	optimize	them	accordingly	is	essential	during	both
development	and	production	time,	where	the	data	size	can	change	the	execution	plan	and
reveal	a	different	cost	of	execution.

Note
A	database	link	is	a	schema	object	in	one	database	that	enables	us	to	access	objects	on
another	database.

A	materialized	view	is	a	replica	of	a	target	master	from	a	single	point	in	time	(that	is,	a
snapshot).

Optimizer	hints	can	be	used	with	SQL	statements	to	alter	execution	plans;	for	example,
SELECT	/*+	INDEX(index_name)	*/	*	FROM	table_name;.

A	database	statement’s	execution	plan	is	the	sequence	of	operations	performed	to	run	this
statement.	Each	database	has	its	own	format	to	get	this	execution	plan,	for	example,	in
Oracle,	we	can	get	it	by	executing	EXPLAIN	PLAN:

EXPLAIN	PLAN	FOR	SELECT	last_name	FROM	employees;

We	can	use	batch	load	and	bulk	load	operations	to	speed	up	the	loading	of	data	into	the
database,	for	example,	the	following	Java	code	inserts	a	batch	with	1,000	rows:

				private	void	saveInDBUsingBatch(String	name,	int	count)	{

								int	batchLimit	=	1000;

								Connection	con	=	null;

								try	{

												Class.forName(DRIVER);	

												con	=	DriverManager.getConnection(DB_URL,	USER,PASSW0RD);

												con.setAutoCommit(false);

												String	sql	=	

"insert	into	\"TEST_TABLE\"(id,	value)	VALUES	(?,	?)";

												PreparedStatement		insertStatement	=

												con.prepareStatement(sql);

												for(int	i=0;	i	<	count;	i++){

																insertStatement.setInt(1,	i);

																insertStatement.setString(2,	name);

																insertStatement.addBatch();

																batchLimit--;

																if	(batchLimit	==	0)	{

																				insertStatement.executeBatch();

																				insertStatement.clearBatch();

																				batchLimit	=	1000;

																}

																insertStatement.clearParameters();

												}

												//for	the	remaining	ones

												insertStatement.executeBatch();

												//commit	your	updates

												con.commit();

								}catch(Exception	ex){

												//handle	error

								}finally	{

												con.setAutoCommit(true);

												con.close();

								}

				}

The	saveInDBUsingBatch	method	takes	a	name	parameter	and	inserts	it	in	the	database
table	equal	to	number	of	times	that	match	the	other	count	parameter.	The	method,	instead
of	hitting	the	database	with	each	insert	statement,	creates	batch	inserts	and	hits	the
database	once	per	1,000	inserts,	which	can	speed	up	the	application’s	interaction	with	the
database.

The	other	way	to	do	this	is	using	the	bulk	load	facility	provided	by	most	of	the	database
engines.	It	is	usually	used	for	bulk	inserting	huge	data	in	a	short	period	of	time.	The	data
is	formatted	according	to	the	database	table	structure	in	a	file	format	or	by	streaming
directly	into	the	database.

For	example,	Oracle	uses	SQL	loader	that	require	two	files:	control	and	data	(that	can	be
combined	into	a	single	file).	Also,	the	Postgres	database	supports	bulk	load	using	a	file	or
by	streaming	directly	to	the	database	using	the	CopyAPI	copyIn()	method	in	the
following	format:

((PGConnection)	con).getCopyAPI().copyIn(statement,	inputStream);

In	MySQL,	we	can	do	the	same	by	using	the	LOAD	DATA	INFILE	statement:

LOAD	DATA	INFILE	'myData.txt'	INTO	TABLE	my_data_table;

Note
For	more	information	about	the	Oracle	bulk	load	utility,	visit
http://docs.oracle.com/cd/E27559_01/dev.1112/e27150/bulkload.htm.

For	more	information	about	Postgres	CopyManager,	refer	to	the	Postgres	documentation:

http://jdbc.postgresql.org/documentation/publicapi/org/postgresql/copy/CopyManager.html

For	more	information	about	the	LOAD	DATA	INFILE	syntax,	refer	to	MySQL	database:

http://dev.mysql.com/doc/refman/5.7/en/load-data.html

This	is	an	overview	of	database	performance	tuning	tips,	which	we	need	to	consider
during	designing	and	developing	database	interactions	within	our	applications.

http://docs.oracle.com/cd/E27559_01/dev.1112/e27150/bulkload.htm
http://jdbc.postgresql.org/documentation/publicapi/org/postgresql/copy/CopyManager.html
http://dev.mysql.com/doc/refman/5.7/en/load-data.html

Client-side	optimization
We	will	end	this	chapter	by	discussing	a	few	points	that	we	need	to	consider	in	our
presentation	layer	that	are	related	to	client-side	performance	tuning	tips.

In	Chapter	9,	Tuning	an	Application’s	Environment,	we	discussed	static	content	caching	in
a	user’s	browser	using	HTTP	caching	header	directives	(for	example,	cache-control,
max_age).	Zipping	the	contents	is	another	valid	option	to	speed	up	the	transfer,	and	reduce
the	required	network	bandwidth	that	can	improve	the	performance.

Using	Ajax	also	can	speed	up	the	interactivity	by	reducing	the	required	output	from	the
server.

Other	recommendations	to	improve	the	presentation	layer	performance	include	combining
the	CSS	and	JavaScript	files	so	that	we	have	the	minimal	possible	number	of	files.	Also,
we	could	move	the	CSS	files	to	the	top	of	the	page	whenever	possible	so	that	the	page
does	not	wait	until	the	files	are	downloaded	to	be	rendered.

Avoid	embedding	the	CSS	and	JavaScript	code	in	the	page;	instead	put	them	into	separate
files	so	that	they	can	get	cached	in	the	client	browser’s	cache.

PageSpeed	Insights	is	a	tool	provided	by	Google	to	analyze	web	page	performance	and
provide	some	suggestions.	We	can	use	it	to	evaluate	our	pages	structure	and	improve	the
performance.	The	following	figure	shows	the	page	analysis	output	for	my	personal	blog
(both	desktop	and	mobile	versions),	osama-oransa.blogspot.com:

http://osama-oransa.blogspot.com

We	can	expand	each	of	these	recommendations	to	see	what	exactly	is	being	recommended
to	improve	the	page’s	performance.

Note
Google	PageSpeed	Insights	is	available	at
http://developers.google.com/speed/pagespeed/insights/.

http://developers.google.com/speed/pagespeed/insights/

Summary
In	this	chapter,	we	covered	the	Agile	development	methodology	and	the	related
performance	considerations.	We	discussed	some	performance	consideration	when	using
test-driven	development	(TDD)	as	our	development	strategy.

We	highlighted	the	importance	of	performing	code	reviews	either	manually	or	using	static
code	analyzer	tools,	and	went	through	different	performance	recommendations	in	many
development	areas,	including	different	Java	EE	components	such	as	JSF,	JPA,	EJB,	and	so
on.

We	also	provided	fine-tuning	tips	such	as	string	manipulations,	using	different	Java
collections,	I/O	operations,	logging	and	exception	handling	best	practices.

We	covered	some	tips	to	improve	database	transactions	and	some	client-side
recommendations	to	improve	our	application’s	presentation	layer	performance.

As	most	of	these	recommendations	are	almost	micro-optimization	techniques,	we	showed
the	use	of	the	javap	JDK	tool	to	analyze	the	compilation	results	of	our	Java	code	to
comprehend	the	outcome	and	tune	it	accordingly	in	combination	with	other	ways,	which
in	turn	gives	us	a	good	understanding	of	our	application’s	performance	as	profiling.

In	the	next	chapter,	Chapter	12,	Tuning	a	Sample	Application,	we	will	proceed	to	the	last
station	in	our	book,	where	we	will	get	a	sample	application	and	conduct	performance
analyses,	including	performance	testing	and	profiling,	and	performance	improvement,	so
that	we	can	practice	a	part	of	what	we	learned	in	this	book.

Chapter	12.	Tuning	a	Sample	Application
In	this	chapter,	we	are	going	to	demonstrate	the	performance	tuning	activities	of	a	small
application	so	that	we	can	practice	some	of	the	activities	that	we	have	learned	in	this	book.
This	will	include	code	review,	performance	testing,	profiling	the	application,	identification
of	some	performance	issues,	and	discussion	of	possible	fixes.	We	will	then	summarize	our
conclusion	at	the	end.

The	following	is	a	list	of	topics	that	we	will	cover	in	this	chapter:

Application	functionality	overview
Performance	testing	our	application
Profiling	the	application	and	detecting	performance	issues
Application	performance	code	review
Resolving	some	of	the	identified	issues
Result	and	conclusion

Reaching	our	final	destination
As	we	have	reached	the	final	chapter,	we	need	to	practice	some	of	the	areas	that	we
covered	earlier	in	this	book.	Practicing	performance	tuning	is	essential	in	order	to	gain	the
required	experience	to	work	smoothly	during	performance	tuning	of	an	enterprise
application.

In	this	book,	we	tried	to	cover	the	maximum	possible	topics	that	we	would	need	when	we
deal	with	Java	enterprise	application	performance	tuning.	We	also	focused	on	how	to	think
while	dealing	with	performance	issues,	how	to	organize	our	thoughts	to	draft	our
investigation	plan,	how	to	utilize	the	existing	monitoring	tools,	and	so	on.

The	main	challenge	here	is	how	to	practically	use	this	knowledge	and	turn	what	we	have
learned	into	an	actual	experience.

We	can	ideally	start	by	executing	the	performance	testing	of	any	of	our	old	projects.	We
can	first	identify	the	areas	of	slow	transactions,	execute	isolated	performance	testing	on
these	transactions	while	performing	some	profiling	to	understand	the	root	causes	of
performance	issues,	and	finally	we	can	try	to	fix	the	root	causes	of	the	issues	and	repeat
the	cycle.	By	repeating	this	activity	many	times	with	many	different	projects,	we	can	gain
our	own	self-experience	that	we	can	utilize	in	troubleshooting	more	mature	enterprise
applications.

In	this	chapter,	we	will	try	to	perform	some	parts	of	this	self-learning	experience	together
so	that	we	can	continue	doing	our	own	experiments	using	the	same	approach.

No	single	book	can	cover	everything	about	performance	tuning,	but	we	did	our	best	in	this
book	to	cover	the	most	common	areas	that	enable	us	to	establish	our	own	solid
foundations.	We	can	make	use	of	these	foundations	to	go	through	any	new	areas	that	we
are	going	to	hit	in	the	future.	Of	course,	tracking	the	performance	recommendation	is	a
continuous	process	where	changes	happen	from	one	Java	version	to	another,	from	one
framework	version	to	another,	and	so	on.	Fortunately,	the	changes	are	not	usually	in	the
core	part,	and	at	the	end,	this	is	the	unavoidable	cost	we	need	to	pay	to	work	in
performance	tuning.	Now,	let’s	start	our	practice	in	this	chapter.

	 “I	cannot	teach	anybody	anything.	I	can	only	make	them	think.” 	

	 —Socrates

Setting	up	the	ExcellentSurvey	application
To	set	up	the	ExcellentSurvey	application,	we	need	to	perform	the	following	steps:

1.	 Download	the	application	and	database	scripts.
2.	 Import	the	database	scripts;	this	will	install	the	Survey	schema	in	the	MySQL

database.
3.	 Create	the	database	user	test	if	it	does	not	already	exist	in	MySQL	(the	test	user’s

password	should	be	set	as	test).
4.	 Grant	all	database	privileges	to	our	database	user	test	over	the	Survey	schema.
5.	 Open	the	ExcellentSurvey	application	in	NetBeans	7.x.
6.	 Build	the	application	and	run	it.
7.	 Ensure	that	the	e-mail	settings	are	configured	correctly	from	the	ExcellentSurvey

admin	GUI.	Log	in	to	the	system	using	admin	as	the	username	and	admin	as
password,	select	Configure	the	System,	and	then	populate	all	the	required	e-mail
configurations,	as	shown	in	the	following	screenshot:

Note
If	you	want	to	use	your	Gmail	account,	you	can	use	the	same	configurations	as	in	the
previous	screenshot	and	insert	your	Gmail	username	and	password	in	the	appropriate
fields.

8.	 Ensure	that	the	e-mails	of	all	the	users	point	to	a	valid	e-mail	address,	from	user1	to
user10,	by	changing	the	e-mail	address	in	the	user	database	table	with	the	help	of

the	following	script:

update	survey.`user`	u	set	u.email='your.email@mail.com'	where	u.name	

like	'user%';

9.	 Take	a	backup	of	the	database	so	that	we	can	use	this	backup	as	our	baseline	database
snapshot,	which	we	will	import	before	we	start	any	performance	testing.

Once	the	server	starts	and	the	application	gets	deployed,	open	the	following	application
link	(if	the	default	browser	doesn’t	open	it	automatically):
http://localhost:8080/ExcellentSurvey/

If	the	application	gets	deployed	successfully,	the	login/register	page	will	show	up	in	the
browser.	Try	to	log	in	using	admin/admin	or	user/user	(default	populated).

Note
To	get	the	ExcellentSurvey	project,	you	can	download	its	code	along	with	its	database
schema	from	the	code	bundle	of	this	book,	which	is	available	at
http://www.packtpub.com/.

http://www.packtpub.com/

Functional	overview	of	the
ExcellentSurvey	application
The	ExcellentSurvey	application	is	a	simple	application	that	creates	custom	surveys,	either
public	or	private,	and	allows	users	to	share	these	created	surveys	with	different	users	to
participate	in	them.

The	idea	of	creating	a	survey	depends	mainly	on	asking	the	users	to	provide	different
evaluation	type	questions,	for	example,	yes/no,	values	from	1	to	10,	agree/disagree,	and	so
on.

The	following	screenshot	represents	one	of	the	surveys	created	using	this	application:

It	is	important	from	a	performance	perspective	to	understand	the	application’s	capabilities
and	the	used	technologies	so	that	we	can	understand	what	we	are	dealing	with.

The	ExcellentSurvey	application	has	the	following	main	features:

Log	in	(GUI	functionality)
Register	(GUI	only)
Create	a	survey	(GUI	and	web	service)
Manage	a	survey,	such	as	activate	survey,	close	survey,	delete	survey,	and	get	survey

report	(GUI	and	web	service)
Participate	in	a	survey	(GUI	and	web	service)
Configure	systems	(admin	user	in	the	GUI	only)

The	application	uses	the	following	Java	EE	7	technologies:

JSPs,	servlets,	and	filters:	JSPs	are	used	as	our	application	view	layer,	servlets	are
used	as	the	view	controller,	and	a	filter	class	is	used	as	an	intercepting	filter	for
security
EJBs	(stateless	session	beans):	These	are	used	in	the	business	delegate,	business
objects,	and	DAO	layer
JPA:	This	is	used	as	the	persistence	layer	in	the	application
Java	mail	APIs:	These	are	used	to	send	e-mails	to	different	application	users
SOAP	web	services:	These	are	used	to	expose	the	application	services	to	different
clients	that	can	consume	the	services	to	provide	their	own	services

The	code	is	well	organized	in	the	following	different	layers:

Presentation	tier:	This	uses	JSP	as	a	view	and	servlet	as	a	controller
Business	Delegate	(BD)	layer:	This	is	an	abstraction	layer	for	the	business	layer
(stateless	session	beans)
Web	Service	(WS)	layer:	This	uses	the	business	delegate	layer	to	access	the	business
objects	(stateless	session	beans)
Business	layer:	This	uses	the	business	objects	(stateless	session	beans)
Data	Access	layer	(DAO):	This	abstracts	the	data	sources	from	the	business	layers
(stateless	session	beans);	this	layer	has	a	helper	layer	to	actually	interact	with	the
resources
DAO	helper:	This	layer	helps	the	DAO	layer	to	encapsulate	all	access	to	the
persistence	layer	(facade	pattern)
Persistence	layer:	This	uses	JPA,	which	abstracts	the	data	source	(database	access)

The	following	diagram	represents	the	different	layers	inside	this	application	starting	from
Presentation	tier	till	the	Persistence	layer:

The	following	is	a	generic	sequence	diagram	that	represents	the	system’s	interactions
between	the	internal	layers	of	the	application	when	it	receives	a	user’s	request:

The	user	interacts	with	the	application	view	(GUI),	which	sends	the	user’s	action	to	the
controller.	The	controller	is	responsible	to	invoke	the	business	object	via	the	abstraction
layer	(business	delegate	layer)	and	dispatch	the	user’s	request	to	the	appropriate	view.

System	registration	ends	by	sending	an	e-mail	to	the	registered	e-mail	address,	which
contains	a	link	to	activate	the	registration	account.	Once	activated,	the	user	can	log	in	to
the	application.

Understanding	the	different	application	flows	is	an	essential	step	to	build	the
corresponding	performance	test	plan	for	the	performance	testing	team.	Understanding	the
internal	flow	in	the	application	will	help	to	understand	the	system	behavior	and	profiling
results,	while	understanding	the	technologies	used	in	the	application	can	help	us	to
provide	the	optimal	performance	resolution.

ExcellentSurvey	performance	assessment
In	this	section,	we	will	create	a	performance	testing	plan	for	the	application,	execute	it,
and	get	the	performance	results.	We	will	select	the	Create	Survey	option	for	our
performance	testing	as	a	sample	of	our	application’s	transactions.	The	following	points
give	a	description	of	what	the	flow	of	this	transaction	includes:

1.	 A	user	login	page	will	be	displayed,	where	the	user	is	asked	to	log	in.
2.	 If	the	login	is	successful,	then	a	home	page	with	different	menu	options	will	be

displayed;	if	the	login	fails,	then	the	user	is	redirected	to	the	login	page	again.
3.	 The	user	is	then	asked	to	select	the	Create	Survey	menu	option.
4.	 The	first	step	is	displayed,	which	contains	the	general	survey	fields	such	as	the	title,

description,	number	of	questions,	whether	it	is	public	or	restricted,	and	e-mails	of	the
target	audience.

5.	 The	second	step	is	then	displayed	once	we	click	on	the	Continue	button.	The	user
should	select	the	survey	questions,	description	for	each	question,	and	question	type
from	among	the	eight	different	types.

6.	 Once	we	click	on	the	Submit	button,	the	confirmation	page	or	error	page	will	be
displayed.

7.	 If	the	confirmation	is	successful,	an	e-mail	will	be	sent	to	the	survey	owner	(that	is,
creator).

8.	 The	user	goes	to	the	home	page	by	clicking	on	the	Home	Page	button	(optional	step).
9.	 The	user	logs	out	by	clicking	on	the	Logout	icon	on	the	home	page	(optional	step).

The	application	has	a	business	rule	to	prevent	the	creation	of	more	than	15	surveys	for
each	user,	so	we	will	design	the	performance	test	script	to	invoke	17	creation	requests	with
the	expectation	that	2	of	them	will	be	routed	to	the	error	page	because	of	this	rule.

Let’s	assume	that	our	application’s	performance	SLA	is	less	than	1	second	in	the	90th
percentile	for	all	application	transactions	under	an	application	load	of	10	concurrent	users.

We	will	also	use	10	users	who	are	already	registered	in	the	system	and	1	user	who	is	not
registered	(that	is,	user11).	So,	we	expect	the	transactions	associated	with	this	user	to	be
routed	to	the	index	page	(login	page)	every	time.

We	will	need	to	create	the	following	survey_users.csv	file	to	use	it	inside	our	test	script
in	order	to	store	users’	credentials:

user1,user1

user2,user2

…

…

user10,user10

user11,user11

The	test	script	will	look	like	the	following	screenshot:

The	test	plan	includes	testing	the	application	flow	that	starts	when	the	user	logs	in	and
creates	a	new	survey	and	ends	when	the	user	logs	out.	It	also	includes	some	random	timers
to	slow	down	the	transaction	flow	as	the	user	will	need	some	time	to	enter	survey-specific
data.

Note
To	get	this	test	plan,	you	can	record	it	using	what	we	learned	in	Chapter	3,	Getting
Familiar	with	Performance	Testing,	which	we	recommend,	and	once	created,	you	can
download	our	version	and	compare	it	to	your	version	(for	example,	our	test	plan	does	not
have	success	assertions).

Alternatively,	our	test	plan	can	be	downloaded	from	http://www.packtpub.com/.

After	executing	each	performance	test,	we	need	to	restore	the	environment	so	that	we	can
compare	the	results	after	optimizing	the	application.	The	simplest	way	is	to	restore	the
database	schema	after	each	execution.

Note

http://www.packtpub.com/

Before	we	can	start	the	performance	test	execution,	we	need	to	ensure	the	following:

Ensure	that	the	filename	for	usernames	and	passwords	is	correctly	configured	in	the
CSV	load	module	of	the	load	test	in	our	test	plan.
Make	a	database	backup	and	name	it	baseline	database	so	that	we	can	restore	the
database	after	each	execution.	This	will	ensure	that	we	have	the	same	database
baseline	with	each	performance	test	so	we	can	compare	the	performance	test	results.

The	following	table	shows	our	performance	test	results	(the	transaction	time	is	measured
in	milliseconds):

Looking	at	these	results,	we	can	identify	that	the	CreateServlet	transaction	has	been
performing	bad	and	its	90th	percentile	response	time	is	around	9	seconds	(9348
milliseconds).	This	represents	two	different	steps,	create	survey	step	1	and	create	survey
step	2,	which	explains	why	the	total	samples	for	this	transaction,	which	is	374	is	double
the	number	of	samples	for	other	transactions,	which	is	187.

The	90th	percentile	response	times	for	all	the	other	transactions	are	within	the	application
performance	SLA,	which	is	less	than	1	second.

Performance	investigation	plan
After	we	have	identified	the	transactions	that	have	performed	poorly	by	executing	the
performance	test,	we	need	to	make	a	plan	to	follow	so	that	we	can	organize	our	activities
till	we	identify	the	root	cause	of	the	performance	issue.

As	we	stated	before,	we	need	to	investigate	in	both	horizontal	and	vertical	dimensions	so
that	we	can	locate	the	exact	location	of	our	performance	issue.	As	our	application	is	a
simple	web	application	that	is	deployed	on	our	local	machine,	we	have	only	one	node	that
contains	the	following	tiers:

Client	tier
Server	tier
Database	tier

All	these	tiers	are	deployed	on	the	same	machine.	Now,	let’s	put	the	vertical	dimension	in
each	of	these	tiers	as	follows:

In	the	client	tier,	we	can	use	browser	developer	tools	to	see	if	there	are	any	additional
issues	in	the	application	on	the	client	side,	for	example,	JavaScript	code,	resource
loading	time,	and	so	on.	Note	that	JMeter	does	not	execute	any	JavaScript	code,	so
the	already	identified	performance	issues	are	not	related	to	JavaScript.
In	the	server	tier,	we	have	the	application,	JVM,	the	application	server,	and	the
operating	system.	To	investigate	these	layers,	we	need	to	add	our	monitoring/profiler
tools	to	identify	any	potential	issues.	We	can	investigate	the	layers	of	the	server	tier
with	the	help	of	the	following	points:

For	the	application,	we	can	profile	the	application,	get	the	thread	dump,	get	the
heap	dump	(if	required),	and	so	on.
For	the	JVM,	we	need	to	get	memory	and	garbage	collection	statistics.
For	the	application	server,	we	need	to	get	some	monitoring	results	using	either
the	application	server	administrative	console	or	external	monitoring	tools.	We
also	need	to	get	server	logs	to	check	if	there	are	any	issues	in	the	application
(including	access	logs).
For	the	operating	system,	we	need	to	get	CPU,	memory,	and	I/O	data.

In	the	database	tier,	we	need	to	have	either	a	database	monitoring	tool	or	a	database
performance	report.	The	MySQL	administrative	console	already	contains	a	section
for	the	database	server	health	check	where	we	can	see	the	connection	health,	memory
health,	and	other	useful	information.

We	do	not	have	any	network	components	here	as	everything	is	located	on	the	same
machine.

All	these	things	need	to	be	done	while	executing	the	application	performance	testing.	We
have	already	covered	how	to	do	these	things	in	this	book.

Profiling	our	ExcellentSurvey	application
We	will	now	profile	our	application.	As	we	clarified	earlier,	we	need	to	first	restore	the
database	schema	so	that	we	can	work	on	the	baseline	again.	We	will	then	restart	our
application	server,	attaching	one	of	the	profilers,	which	we	have	already	learned	how	to	do
earlier	in	Chapter	4,	Monitoring	Java	Applications,	and	finally	we	will	execute	our
performance	test	to	get	the	profiling	results.

Usually,	it	is	recommended	to	use	the	sampling	mode	as	it	won’t	affect	the	application
performance,	but	the	instrumental	mode	can	reveal	more	information.	So,	it	is	better	to
start	with	sampling,	and	if	the	information	is	not	enough,	we	can	perform	instrumental
profiling	to	certain	selected	areas/transactions	of	our	application.

Tip
At	this	moment,	you	can	try	to	perform	the	profiling	yourself	and	then	compare	your
results	with	our	results.	Feel	free	to	use	any	profiling	tool	as	long	as	you	can	use	it
efficiently.

Getting	CPU	profiling	results
Here,	we	will	attach	JProfiler	in	the	instrumental	mode	to	get	the	maximum	information
for	demonstration;	the	advantage	of	using	JProfiler	is	that	we	will	have	application,	JVM,
and	operating	system	statistics.	So,	to	complete	our	investigation	plan,	we	will	need	to	do
the	following:

Check	the	client-side	performance	using	the	browser’s	developer	tools
Check	the	application	server	logs
Add	monitoring	elements	to	the	GlassFish	application	server	using	its	admin	console
Check	the	database	health	using	MySQL	administrative	tools

Let’s	start	with	the	CPU	profiling	results,	which	are	shown	in	the	following	screenshot:

The	previous	screenshot	shows	the	same	performance	issue	that	exists	in	the	create	survey
transaction.	If	we	expand	this	a	bit	more,	we	can	see	the	following	main	areas	of	bad
performance:

In	this	expanded	view,	we	can	see	the	two	main	transactions	that	cause	this	slow
performance	in	CommonDAO.sendMail()	and	DAOHelper.createNewSurvey()	(the	arrows
point	to	both,	with	more	than	60	percent	of	the	time	spent	on	both	methods).

If	we	switch	to	the	Hot	spot	tab,	we	can	see	the	following	HotSpot	areas	in	our
transactions:

In	the	Hot	spot	tab	(filtered	by	the	calling	class	option),	we	can	see	the	same	list	of
HotSpot	methods	(that	is,	CommonDAO.sendMail()	and	DAOHelper.createNewSurvey()).
We	can	also	see	the	log()	method,	doFilter()	method,	and	proccessRequest()	method
in	CreateServlet;	other	than	these	methods,	all	the	other	methods	are	not	considered	as
HotSpot	areas.

Note
You	can	download	this	JProfiler	instrumental	snapshot	from	http://www.packtpub.com/.

http://www.packtpub.com/

Getting	memory	and	thread	profiling	results
If	we	check	the	memory	usage,	garbage	collection	activities,	thread	states,	and	monitor
sections,	we	can	see	that	they	all	look	normal.	The	following	memory	telemetry	view
shows	the	normal	sawtooth	appearance	of	the	heap	memory	used	by	the	application:

We	can	also	take	frequent	thread	dumps	to	see	that	the	threads	are	almost	waiting	for
execution,	which	means	that	the	application	is	healthy	with	respect	to	thread	utilization.

Getting	database	CPU	profiling	results
Now,	let’s	move	into	the	database	interaction	tab	to	see	if	there	is	any	HotSpot	in	the
database	interface	area,	as	shown	in	the	following	screenshot:

As	we	can	see,	one	query	consumes	around	98	percent	of	the	time	with	around	only	700
events;	this	is	the	hottest	spot	in	our	application	so	far:

The	JPA	view	looks	almost	normal.	In	the	top	JPA	HotSpots,	we	can	see	the	insert
statements	for	both	Questions	and	SurveyQuestions.	In	spite	of	the	average	time	and
total	time	being	good,	both	the	statements	are	repeated	around	3,000	times	to	insert	all
survey	questions.

We	can	also	see	that	the	NotificationTemplate	objects	are	loaded	around	150	times,
which	corresponds	to	the	number	of	surveys	created.

Profiling	performance	findings
Now,	let’s	summarize	our	findings	while	looking	at	the	code	to	understand	the
performance	issues	and	plan	to	resolve	them.

Detected	HotSpot	methods
The	following	methods	will	describe	the	detected	HotSpot	methods	from	our	profiling
results	analysis:

EmailSender.sendEmail():	This	method	contains	the	code	to	send	e-mails,	such	as
Session.getInstance(props,	auth)	and	Transport.send(msg).	Both	are	blocking
calls	that	will	wait	for	the	remote	system	to	respond	(e-mail	server).
DAOHelper.createNewSurvey():	This	method	contains	the	following	findings:

Call	to	the	synchronized	method	getUserSurveyCount(userId)
Three	calls	to	the	synchronized	method	generatedId(String	key,	int	size)
Some	debugging	messages	at	the	INFO	level	without	checking	whether	the	level
is	enabled	or	not

LoginFilter.log():	This	method	is	invoked	many	times	to	log	some	messages.
Some	messages	already	check	if	the	debug	is	enabled	and	others	do	not,	which	is	not
correct;	particularly	in	this	critical	component,	where	all	users’	requests	pass	through.

Detected	HotSpot	database	statements
The	following	is	the	detected	HotSpot	database	SQL	statement:

SQL	Statement	that	updates	the	autogen	table:	This	statement	takes	more	than	one
second	to	update	the	table,	which	is	used	to	generate	different	insert	entities’	keys

Potential	wrong	logic	issues
The	following	four	issues	do	not	impact	the	application’s	performance	but	represent
inefficient	implementation	as	concluded	from	the	execution	count,	and	could	possibly
impact	the	application	in	the	long	run:

SQL	Statement	that	do	insert	in	questions	and	survey	questions	tables:	Each	of
these	insert	statements	are	repeated	around	3,000	times	to	insert	different	exam
questions.	These	statements	do	not	cause	any	performance	issue	with	the	current
scale	of	our	performance	testing.
SQL	query	that	retrieves	the	notification	templates:	This	query	retrieves	the	same
notification	template	150	times,	which	is	equal	to	the	number	of	surveys	created.	In
spite,	it	returns	the	same	notification	template	every	time.
SQL	query	that	retrieves	the	question	rating	types:	This	query	retrieves	the
question	rating	type	150	times.	This	is	a	static	list	that	needs	to	be	retrieved	only	once
and	then	cached.
SQL	query	that	counts	user’s	surveys:	The	SELECT	count(*)	FROM	survey	s
where	owner_id=?	query	gets	executed	more	than	808	times	to	ensure	no	one	from
the	11	test	users	will	exceed	the	survey	creation	limit,	which	is	equal	to	15	surveys
per	user.	In	spite	of	the	fact	that	the	overall	performance	impact	is	not	noticeable,	we
still	need	to	look	into	such	issues	to	avoid	potential	impact	when	the	data	size	grows
up,	and	also	for	educational	purposes	to	understand	how	to	deal	with	similar
situations.

ExcellentSurvey	issues	and	possible
resolutions
In	this	section,	we	will	discuss	each	of	our	findings	using	source	code	inspection	and
discuss	how	to	fix	the	different	performance	issues	identified.

Tip
At	this	moment,	you	can	try	to	scan	the	code	of	the	identified	performance	issues	and	do
your	own	analysis	and	possible	resolutions,	and	then	compare	your	results	with	our
results.

You	may	review	our	fixing	strategy	as	well	from	Chapter	8,	Memory	Profiling.

Fixing	the	EmailSender.sendEmail()	HotSpot
method
The	issue	here	is	clear	that	the	application	hangs	while	waiting	for	a	response	from	the
mail	server.	What	we	can	do	here	is	push	mail	sending	as	an	asynchronous	operation,	so
that	our	application	responds	back	to	the	user	and	the	mail	is	sent	in	a	background	thread.

This	used	to	be	implemented	before	Java	EE	7	by	creating	a	new	thread	around	the
method	call,	but	fortunately,	in	the	Java	EE	specifications,	we	can	do	this	by	using	a
managed	thread	factory,	which	we	can	use	to	create	managed	threads.

The	following	are	the	required	changes	in	the	CommonDAO	class:

@Resource

ManagedThreadFactory	threadFactory;

And	inside	the	commonDAO.sendMail	method,	we	need	to	wrap	the	call	to	the
emailSender.sendMail	method	with	the	following	code:

Thread	mailThread	=	threadFactory.newThread(new	Runnable()	{

		@Override

		public	void	run()	{

				emailSender.sendMail(toUserEmail,	subject,	body,	myImage,	file,	

isPicture);

		}

});	

mailThread.start();

We	can	also	use	ManagedExecutotrService	to	better	manage	the	results	of	sending	e-
mails.	In	other	words,	if	we	need	to	confirm	that	the	e-mail	was	really	sent	or	not,	the	code
should	look	like	the	following	(we	need	to	change	the	emailSender.sendMail()	method
so	that	it	returns	a	Boolean	value	in	order	to	indicate	if	the	mail	was	successfully	sent	or
not):

@Resource

ManagedExecutorService	executorService;

Future<Boolean>	result	=	executorService.submit(new	Callable<Boolean>()	{

		@Override

		public	Boolean	call()	throws	Exception	{

				return	emailSender.sendMail(toUserEmail,	subject,	body,	myImage,	file,	

isPicture);

		}

});

//and	get	the	status	from	the	Future	object.

We	will	use	the	managed	thread	factory	as	we	do	not	need	to	ensure	that	the	mail	has	been
delivered.

The	sendEmail()	method	has	a	debug	message	that	needs	to	have	an	additional	check	on
the	debug	level	before	it	logs	the	message.

Another	finding	is	the	non-efficient	way	of	sending	mails.	Each	time,	we	have	to	create
the	mail	session	object	and	then	use	the	transport	to	send	the	message;	instead,	we	can

create	the	session	object	once	in	the	initialization	section	on	the	EmailSender	class,	as
follows:

public	void	init(Configuration[]	configs)	{

		Authenticator	auth	=	new	SMTPAuthenticator();

		session	=	Session.getInstance(props,	auth);

		initialized	=	true;

}

By	modifying	the	code	in	this	way,	we	create	the	mail	session	once	and	reuse	it	to	send
mails.	We	could	also	tune	it	more	by	defining	the	transport	and	connecting	it	so	that	we
can	call	send	e-mail	directly	without	having	to	authenticate	each	time.	This	has	the
drawback	that	the	mail	server	connection	will	be	terminated	after	a	certain	period	or
certain	number	of	e-mails,	and	we	will	need	to	reopen	the	transport	connection	again.
So,	before	sending	any	mail,	we	check	if	transport.isConnected()	is	connected	or	not;
otherwise,	we	connect	it	again.

In	case	an	exception	occurs,	we	set	the	e-mail	initialization	back	to	false.	So,	in
subsequent	calls,	we	open	a	new	session	and	connect	the	transport	again,	but	this	will
cause	a	failure	when	sending	some	e-mails.	The	following	is	an	example	for	this
improvement:

session	=	Session.getInstance(props,	auth);

transport	=	session.getTransport("smtp");

transport.connect();

initialized	=	true;

This	issue	alerts	us	that	there	is	no	retry	mechanism	implemented	to	send	e-mails,	and	the
best	way	to	handle	both	asynchronous	communication	and	the	retry	mechanism	is	to
implement	a	queue	to	place	the	e-mails	that	need	to	be	sent.	A	separate	thread/process	can
pick	e-mails	from	this	queue	and	remove	them	from	the	queue	once	they	are	successfully
sent;	this	is	a	design	change	that	needs	to	be	considered	in	this	application.

Fixing	the	DAOHelper.createNewSurvey()	HotSpot
method
The	DAOHelper.createNewSurvey()	method	initiates	by	checking	the	user’s	survey	count.
From	a	business	perspective,	we	won’t	be	able	to	remove	the	first	check	on	the	user’s
survey	count	as	the	user	can	open	many	concurrent	sessions.	So	ideally,	we	must	keep	this
check,	but	we	can	move	it	to	the	business	layer	being	a	business	rule.	We	will	discuss	later
how	to	improve	this	check.

The	createNewSurvey()	method	contains	another	two	or	three	time	calls	to	a
synchronized	method,	generatedId(String	key,	int	size),	which	represents	a	lack	of
knowledge	in	how	JPA	handles	the	auto-incremental	keys	in	the	MySQL	database.

We	need	to	simply	create	the	object	and	persist	it.	Once	persisted,	we	can	use	its	ID	in
subsequent	insert	statements.	In	that	case,	we	won’t	need	the	autogen	table	at	all,	so	we
won’t	need	to	call	this	synchronized	method.

Now,	let’s	amend	the	following	code	in	the	createNewSurvey	method	to	improve	the
method	performance:

int	id	=	0;//generatedId("SURVEY",	1);

int	questionId	=	0;//generatedId("QUESTION",	surveyVO.getNoOfQuestions());

int	emailId	=	0;//surveyVO.getSurveyEmails()	!=	null	?	generatedId("EMAIL",	

surveyVO.getSurveyEmails().length)	:	0;

			

em.persist(survey);

em.flush();

id=survey.getId();

...

em.persist(newQuestion);

em.flush();

//associate	survey	to	questions

SurveyQuestions	surveyMapQuestion	=	new	SurveyQuestions(new	

SurveyQuestionsPK(id,	newQuestion.getId()),surveyQuestion.getSequence());

In	the	preceding	code,	we	have	commented	out	the	call	to	the	generatedId()	method	that
gets	the	ID(s)	from	the	autogen	table,	and	if	we	need	to	use	the	IDs	in	the	subsequent
insert	statements,	we	get	these	IDs	from	the	persisted	objects.

If	these	tables	(that	is,	the	Survey	and	Question	tables)	were	joined	using	actual	database
foreign	keys,	then	we	can	just	add	question	objects	on	the	survey	object	and	the	ORM	will
handle	this	for	us.	So,	another	way	to	improve	this	method	performance	is	to	let	ORM
handle	this	on	behalf	of	us	by	defining	the	correct	relations	on	the	database	level	and
regenerating	the	JPA	entity	beans	again.

Fixing	the	LoginFilter.log()	HotSpot	method
As	we	clarified	in	Chapter	11,	Performance	Tuning	Tips,	we	must	stick	to	logging	best
practices.	This	means,	in	our	application,	we	need	to	surround	each	logging	statement	with
a	check	on	the	level	of	the	logging	before	we	actually	waste	time	constructing	the	logging
messages,	which	usually	concatenate	different	strings.

Another	issue	with	the	existing	application	logging	is	that	it	uses	the	INFO	level	in
locations	where	we	should	use	the	DEBUG	level.	Therefore,	we	have	to	use	a	proper	logging
level;	otherwise,	the	logging	will	become	useless	and	potentially	impact	the	application’s
performance.

Fixing	the	HotSpot	autogen	table	update	statement
By	fixing	the	previous	CreateSurvey	method,	this	HotSpot	method	will	be	removed
partially	from	our	list;	yet,	it	will	be	used	in	other	transactions,	for	example,	to	register	a
user	and	audit	trail.

We	need	to	fix	this	for	the	createAuditTrail()	method,	which	is	used	in	the	login	and
create	survey	transactions.	We	can	fix	the	following	code	in	the	createAuditTrail
method:

public	void	createAuditTrail(AuditTrailVO	auditVO)	{

		AuditTrail	newTrail	=	new	AuditTrail();

			int	id	=	0;//generatedId("AUDIT",	1);

}

Now,	we	need	to	do	the	same	fix	of	removing	the	autogen	table	to	register	users	(to	get
the	users’	IDs)	and	create	a	survey	report	(to	get	the	reports’	IDs).	So,	we	can	drop	this
autogen	table	from	our	schema.

We	will	tag	the	generatedId()	method	as	deprecated	as	a	temporary	first	step	solution	till
we	can	assess	the	code	better	before	removing	it	completely	(conservative	approach):

@Deprecated

private	synchronized	int	generatedId(String	key,	int	size)	{

...

}

Later,	we	will	need	to	delete	this	generatedId()	method,	drop	the	autogen	table,	and
delete	the	Autogen	JPA	entity	bean.

Fixing	HotSpot	statements	to	insert	questions	and
survey	questions
If	the	insert	statements	are	causing	performance	issues,	we	will	have	to	fix	them.	But	with
the	current	performance	test	results,	the	performance	is	acceptable.

One	of	the	possible	ways	to	fix	this	potential	issue	is	to	use	batch	inserts	instead	of	an
individual	insert	statement.	To	do	this,	we	need	to	perform	the	following	steps:

1.	 Add	the	required	JPA	configurations	in	the	persistence.xml	file,	as	follows:

"eclipselink.jdbc.batch-writing"="JDBC"

"eclipselink.jdbc.batch-writing.size"="1000"

2.	 We	can	further	tune	the	batch	size	according	to	the	performance	results.
3.	 Change	the	logic	in	the	code	to	be	similar	to	the	following	pseudocode:

for	(QuestionVO	surveryQuestion	:	

surveyVO.getSurveryQuestions())	{

		Questions	newQuestion	=	new	Questions();

		newQuestion.set…//	fill	its	data

		em.persist(newQuestion);

}

for	(QuestionVO	surveryQuestion	:

surveyVO.getSurveryQuestions())	{

		SurveyQuestions	surveyQuestion	=	new	SurveyQuestions();

		surveyQuestion.set…//	fill	its	data

		em.persist(surveyQuestion);

}

em.flush();

The	current	small	number	of	survey	questions	will	gain	only	a	minor	improvement	from
such	code	changes	since	batch	processing	is	useful	in	cases	where	we	have	a	huge	number
of	insert	statements.	So,	we	will	skip	this	item	from	our	fixes.

Fixing	HotSpot	queries	that	get	the	notification
templates/question	rating	types
We	need	to	cache	notification	template	query	results	so	that	subsequent	calls	get	the
notification	template	from	the	cache	instead	of	hitting	the	database	(JPA	already	supports
caching	the	results).

The	same	fix	needs	to	be	applied	to	question	rating	types	as	rating	types	are	static	list	that
do	not	change	and	no	need	to	reload	this	list	with	each	survey	creation.	The	following
actions	need	to	be	performed	in	order	to	fix	the	performance	of	these	queries:

Use	the	latest	JPA	version	to	make	use	of	the	latest	optimizations.
Use	the	@ReadOnly	annotation	with	these	beans	as	they	shouldn’t	change	in	the
application	(unless	we	have	an	administrative	module	in	our	application	to	update
both).
Add	the	@Cacheable	or	@Cache	annotation	to	use	the	L2	shared	cache	for	these	beans
in	the	application.	The	alternative	to	this	JPA	cache	is	to	have	an	internal/external
cache	support.

Since	both	the	queries	(that	is,	notification	templates	and	question	rating	types	queries)	do
not	cause	an	actual	impact	on	the	application’s	performance,	we	won’t	fix	them	at	this
stage.

Fixing	the	HotSpot	query	that	counts	user	surveys
The	HotSpot	query	that	counts	user	surveys	gets	executed	more	than	808	times	to	ensure
that	no	one	from	the	10	test	users	exceeds	the	survey	creation	limit,	which	is	15
surveys/users.	If	we	examine	the	code,	we	can	see	that	this	query	is	fired	from	the
following	four	different	locations:

It	is	fired	from	LoginServlet	to	load	the	user’s	survey	count	so	that	we	can
show/hide	the	Create	Survey	menu	option,	as	shown	in	the	following	code:

int	surveyCount=surveyBD.getUserSurveyCount(userAccount);

userAccount.setCountOfSurvey(surveyCount);

It	is	fired	from	CreateServlet	to	prevent	the	user	from	accessing	this	servlet,	as
shown	in	the	following	code:

int	surveyCount=surveyBD.getUserSurveyCount(userAccount);

if(surveyCount>=IConstant.MAX_USER_SURVEYS){

		request.getRequestDispatcher("/error.jsp").forward(request,	

response);

		return;

}

userAccount.setCountOfSurvey(surveyCount);

It	is	fired	from	CreateServlet	after	the	successful	creation	of	the	survey.	The
counter	is	fixed	in	the	user’s	object	in	the	session,	so	we	can	show/hide	the	menu
option	of	creating	a	new	survey,	as	shown	in	the	following	code:

surveyCount=surveyBD.getUserSurveyCount(userAccount);

userAccount.setCountOfSurvey(surveyCount);

It	is	fired	from	DAOHelper	to	check	the	count	of	surveys	before	creating	a	new	survey,
as	shown	in	the	following	code:

if(getUserSurveyCount(userId)>=IConstant.MAX_USER_SURVEYS){

		return	null;

}

The	logic	makes	sense,	but	the	main	objection	to	this	logic	is	that	it	should	be	moved	into
the	business	layer	as	this	represents	a	business	rule	and	shouldn’t	be	placed	in	the
controller	layer	or	data	access	layer.	Also,	it	is	better	to	use	a	configuration	table	for	such
values.

The	enhancement	can	be	done	by	removing	the	query	overhead	of	scanning	the	table	for
user	surveys	(especially	when	the	amount	of	data	increases),	so	we	can	add	the	number	of
user-created	surveys	in	a	column	in	the	user’s	table	(or	an	associated	table).

The	overhead	of	having	synchronization	on	updating	this	value	with	each	created	survey	is
worth	the	removal	of	potential	performance	overhead	when	the	data	grows	in	that	table.
Also,	it	will	remove	the	required	first	query	as	the	value	can	be	selected	with	the	login
query,	but	we	should	take	care	and	decrease	the	counter	when	the	user	deletes	any	survey.

If	we	neglect	all	the	previous	comments	and	decide	to	keep	the	existing	logic,	we	can	still

tune	this	HotSpot	by	removing	the	two	calls	in	CreateServlet,	or	one	of	them	at	least.
For	example,	the	call	after	a	survey	creation	can	be	replaced	by	an	incremental	statement
to	the	current	surveys’	count,	as	shown	in	the	following	code:

//surveyCount=surveyBD.getUserSurveyCount(userAccount);

userAccount.setCountOfSurvey(surveyCount+1);

Performance	code	review
As	an	important	step,	we	need	to	evaluate	our	code	from	a	performance	perspective.

Tip
You	may	now	review	the	project	code	and	record	your	code	review	findings	and	compare
your	findings	with	the	list	that	will	follow.

The	following	are	the	samples	of	code	review	comments	that	we	identified	after	reviewing
the	application	code:

Logging	best	practice	is	not	followed.
Exception	handling	is	poor	except	in	the	web	service	layer.
No	user	input	validation,	which	is	not	a	good	practice	for	the	application’s
performance	as	it	causes	unnecessary	load	over	the	application.	This	might	turn	to	be
invalid	at	the	end	and	throw	an	error	to	the	customer.

It	is	always	a	good	practice	to	perform	this	validation	in	the	presentation	layer
using	JavaScript	validation	plus	server-side	validation	to	ensure	that	the
validation	is	not	bypassed

No	split	of	the	CSS	and	JavaScript	code	in	separate	files,	so	we	won’t	be	able	to
make	use	of	browser	caching	of	these	files.
Resource	bundle	is	not	used,	which	makes	it	difficult	to	change	the	interface	text	as
labels,	error	messages,	and	so	on.	This	makes	the	application	code	changes	difficult
because	we	need	to	trace	the	source	of	each	hardcoded	message.	The	best	examples
are	the	error	messages	that	are	created	in	the	application	servlets.
Mixing	JSTL	with	Scriptlet	in	some	of	the	application	JSP	pages,	which	makes	it
difficult	to	understand	and	fix	these	pages	without	errors.

The	following	code	snippet	is	an	example	of	this	from	the	page
submitquestions.jsp:

<c:forEach	begin="1"	end="<%=	survey.getNoOfQuestions()	%>"	

var="current">

Some	values	that	can	be	configured	are	hardcoded	in	the	application	as	the	maximum
user’s	surveys	count.	This	can	be	placed	in	the	configuration	table	and	loaded	and
cached	during	application	startup	instead	of	being	hardcoded.
The	creation	of	audit	trail	records	(and	sending	e-mails)	can	be	pushed
asynchronously.
Poor	inline	comments,	which	make	any	changes	in	the	code	difficult	and	risky.
Some	layers	perform	actions	that	do	not	belong	to	them,	for	example,	the	controller
or	DAO	validate	a	business	rule	about	the	maximum	number	of	user	surveys	allowed.
This	confuses	the	performance	fixes	and	widens	the	scope	of	the	required	changes.

We	can	also	perform	some	application	functional	reviews	to	detect	application	features
that	can	be	added	to	improve	the	performance	so	we	can	recommend	adding	them.	For
example,	currently,	the	application	does	not	have	any	edit	survey	functionalities.

Yet,	this	does	not	seem	to	be	related	to	application	performance,	but	if	we	assumed	that
the	user	needs	to	modify	one	question	without	providing	this	functionality,	the	user	will	hit
the	application	to	delete	the	old	survey	and	create	a	new	one.	We	can	avoid	this	if	we
provide	the	edit	survey	feature.

Testing	the	application	after	our	fixes
After	fixing	some	of	the	listed	issues	(we	won’t	fix	all	the	issues	such	as	logging	issues),
we	need	to	perform	some	functional	testing	to	ensure	that	everything	is	okay.	We	can	then
kick	off	another	performance	test	to	get	the	new	performance	results.

Note
You	can	download	the	application	after	applying	our	performance	fixes	from
http://www.packtpub.com/.

We	need	to	restore	the	database	schema	to	its	baseline	before	we	kick	off	the	performance
test	again.	The	following	table	represents	our	performance	test	results:

As	we	can	see	in	these	numbers,	the	CreateServlet	90th	percentile	response	time
dropped	from	9,348	milliseconds	to	only	146	milliseconds!	This	is	around	a	98.5	percent
improvement	of	this	transaction.	Is	it	enough?	The	answer	mainly	depends	on	the
transaction	SLA,	and	the	main	purpose	of	performance	tuning	is	to	reach	the	response
time	SLA.

Note
Try	to	profile	the	application	again	to	see	the	performance	improvements	of	our	HotSpot
areas	after	applying	different	performance	fixes.

Also,	try	to	draft	your	first	performance	analysis	report,	which	includes	most	of	what	we
discussed	here	and	cover	all	the	application	performance	aspects.

http://www.packtpub.com/

Result	and	conclusion
After	improving	our	application	performance	in	the	create	survey	transaction,	we	can
complete	our	exercise	by	covering	other	application	transactions	to	ensure	all	application
transactions	are	performed	within	the	acceptable	SLA.

We	need	to	perform	regression	testing	before	we	execute	our	performance	testing	to
ensure	we	didn’t	break	any	application	functionality	with	our	performance	fixes.
Performance	fixes	also	need	to	follow	the	normal	application	life	cycle,	which	passed
through	different	testing	and	quality	phases.

To	summarize	what	we	did	in	the	previous	sections,	we	executed	a	load	test	to	get	low
performance	transactions.	Then,	we	investigated	these	transactions	using	profiler	and	code
inspection.	We	then	identified	some	performance	issues	and	did	some	analysis	on	how	to
fix	them.	We	finally	proposed	some	fixes	and	did	both	functional	and	performance	testing
to	validate	our	results.

If	the	performance	fixes	are	correct	and	produce	the	required	performance	gain	(that	is,
they	meet	the	SLA),	we	can	stop	the	cycle;	otherwise,	we	can	keep	performing	the
optimization	till	we	meet	the	required	SLA,	and	this	is	what	we	have	referred	to	in	the	first
chapter	of	this	book	by	following	the	cycle	of	the	learning	model.

Now,	let’s	review	what	we	started	this	book	with,	which	is	the	art	of	performance	tuning.
We	defined	six	basic	components	composing	the	art	of	performance	tuning,	as	shown	in
the	following	diagram:

In	this	book,	we	have	covered	all	of	the	following	six	components:

Way	of	thinking	mainly	in	Chapter	1,	Getting	Started	with	Performance	Tuning;
Chapter	5,	Recognizing	Common	Performance	Issues;	Chapter	9,	Tuning	an
Application’s	Environment;	Chapter	10,	Designing	High-performance	Enterprise
Applications;	and	Chapter	11,	Performance	Tuning	Tips
Understanding	basic	Java/JVM	concepts	and	Understanding	Java	EE	and	used
framework	in	Chapter	2,	Understanding	Java	Fundamentals
Mastering	performance	diagnostic	tools	in	Chapter	3,	Getting	Familiar	with
Performance	Testing;	Chapter	4,	Monitoring	Java	Applications;	Chapter	6,	CPU
Time	Profiling;	Chapter	7,	Thread	Profiling;	and	Chapter	8,	Memory	Profiling
Understanding	environment	in	Chapter	9,	Tuning	an	Application’s	Environment
Finally,	we	did	some	practice	on	performance	tuning	in	this	chapter	and	other
chapters	of	this	book

As	a	final	statement	in	this	chapter,	I’d	like	to	list	some	of	the	following	personal
recommendations	to	anyone	going	to	work	in	performance	tuning:

Practice	what	we	have	learned	in	this	book
Always	understand	the	application	domain,	framework,	and	technology	before	you
start	working	on	performance	tuning
Understand	the	difference	between	each	Java	framework	version	and	keep	yourself
updated	with	latest	performance	recommendations

Try	to	use	and	master	a	wide	range	of	application	monitoring/profiling	tools	to	have
some	sort	of	flexibility
Don’t	be	afraid	of	failure;	always	consider	failure	as	our	roadmap	to	learn,
experience,	and	be	successful
Do	not	be	arrogant	with	your	knowledge	as	there	is	a	clear	difference	between
arrogance	and	self-confidence

	 “And	you	have	not	been	given	of	knowledge	of	everything,	except	a	little” 	

	 —The	Noble	Qur’an

Summary
In	this	chapter,	we	practiced	some	application	performance	tuning.	We	started	the	chapter
by	exploring	our	sample	application	functionality	and	the	used	technologies	as	an	essential
step	to	understand	what	we	are	dealing	with.

We	selected	a	few	transactions	to	measure	(login/create	survey/logout),	and	developed	a
limited	scope	performance	testing	script.	We	then	executed	it	to	get	our	performance	test
results.

We	performed	an	analysis	and	drafted	our	investigation	plan.	We	profiled	the	application,
did	a	code	inspection	to	propose	some	performance	fixes,	and	finally	tested	the	application
to	ensure	that	our	fixes	resolve	the	performance	issues	without	impacting	the	application
functionality.	So,	we	explored	a	simplified	end-to-end	scenario	of	how	to	deal	with	Java
enterprise	application	performance	tuning.

And	yes,	this	is	the	end	of	our	book,	but	not	the	end	of	our	performance	tuning	journey.
It’s	just	the	beginning…

Index
A

adapter	component	/	Potential	performance	impact	of	the	application	layer’s
decisions
Agent_OnAttach()	function	/	Agent	start-up
Agent_OnLoad()	function	/	Agent	start-up
Agile	development	methodology

performance	considerations	/	Performance	and	development	processes,	Agile
and	performance
and	performance	/	Agile	and	performance

aging	policy
about	/	An	example	of	improper	caching	techniques

algorithmic	complexity
evaluating	/	Evaluating	an	algorithm’s	complexity

algorithmic	performance
fixing	/	Fixing	algorithmic/logic	performance
simple	evaluation	/	Simple	algorithmic	evaluation
algorithm	complexity,	evaluating	/	Evaluating	an	algorithm’s	complexity

algorithmic	performance	issues
about	/	Algorithmic	performance	issues,	Algorithmic/logic	issues
examples	/	Algorithmic/logic	issues

anti-patterns
about	/	Avoiding	performance	anti-patterns

Apache	Commons	Logging	/	Application	logging	and	performance
Apache	JMeter

about	/	Starting	with	Apache	JMeter
installing,	URL	/	Starting	with	Apache	JMeter
used,	for	building	performance	test	/	Starting	with	Apache	JMeter
testing	with	/	Testing	with	JMeter
used,	for	testing	web	services	/	Using	JMeter	to	test	web	services
used,	for	testing	web	application	/	Using	JMeter	to	test	a	web	application
used,	for	testing	database	scripts	/	Using	JMeter	to	test	database	scripts

Apache	JMeter,	database	scripts	test
JDBC	connection	configuration	/	Configuring	the	JDBC	connection
JDBC	request	sampler	addition	/	Adding	a	JDBC	request	sampler
CSV	dataset	configuration,	adding	/	Adding	a	CSV	dataset	configuration
listeners,	adding	to	capture	test	results	/	Adding	listeners	to	capture	test	results

Apache	JMeter,	testing	web	services
thread	group	creation	/	Creating	a	thread	group
SOAP	sampler	creation	/	Creating	the	SOAP	sampler
listeners	creation	/	Creating	listeners,	Adding	the	CSV	dataset	configuration,
Getting	the	final	results

Apache	JMeter,	web	application	test
scenarios,	recording	/	Recording	our	testing	scenarios

Apache	JMeter	test	plan	components
thread	groups	(users)	/	Different	components	of	the	JMeter	test	plan
request	samplers	/	Different	components	of	the	JMeter	test	plan
logical	controllers	/	Different	components	of	the	JMeter	test	plan
listeners	(test	results)	/	Different	components	of	the	JMeter	test	plan
configuration	element	/	Different	components	of	the	JMeter	test	plan
execution	order	/	The	execution	order	of	components

Apache	Log4J	/	Application	logging	and	performance
Apache	web	server

tuning	/	Tuning	the	Apache	web	server	(Apache	HTTP	server)
application

profiling,	to	locate	performance	issue	/	Profiling	the	application
post	fixing,	tests	/	Testing	the	application	after	our	fixes

application’s	server	admin	console/tools
used,	for	obtaining	thread	dump	/	Taking	thread	dumps	using	an	application’s
server	admin	console/tools

application	algorithm
fixing	/	Fixing	the	application	logic/algorithm

application	components
selecting	/	Potential	performance	impact	of	a	component’s	selection	decisions

application	data
versioning	/	Caching	concurrency	and	performance

application	data	caching
multiple	levels	/	Different	levels	of	application	data	caching

application	layer	decision
performance	impact	/	Potential	performance	impact	of	the	application	layer’s
decisions

application	logging
and	performance	/	Application	logging	and	performance

application	logging	levels	/	Application	logging	and	performance
FATAL	/	Application	logging	and	performance
used,	according	to	scenario	/	Application	logging	and	performance
WARN	/	Application	logging	and	performance
INFO	/	Application	logging	and	performance
DEBUG	/	Application	logging	and	performance
TRACE	/	Application	logging	and	performance

application	memory	leakage
about	/	Application	memory	leakage	(session	leakage	versus	global	leakage)

application	requirement	backlog
about	/	Agile	and	performance

Application	scope
about	/	Different	application	scopes

application	scopes
about	/	Different	application	scopes
Request	/	Different	application	scopes
Session	/	Different	application	scopes
Application	/	Different	application	scopes
Flow	/	Different	application	scopes
View	/	Different	application	scopes
Flash	/	Different	application	scopes
Dependent	/	Different	application	scopes
Conversation	/	Different	application	scopes

Application	Server	(AS)	/	Understanding	the	different	layers	of	an	enterprise
application
application	server	issue

confirming	/	Application	server	issue
application	servers

tuning	/	Tuning	application	servers
Oracle	GlassFish,	tuning	/	Tuning	the	Oracle	GlassFish	application	server,	EJB
container	tuning	options,	Thread	pool	tuning	options,	Tuning	file	cache
components,	Tuning	logging	information
Oracle	Weblogic,	tuning	/	Tuning	the	Oracle	Weblogic	application	server,
Tuning	stuck	thread	configuration

application	threads
main	/	Thread	monitoring	using	NetBeans
Finalizer	/	Thread	monitoring	using	NetBeans
Reference	Handler	/	Thread	monitoring	using	NetBeans
DestroyJavaVM	/	Thread	monitoring	using	NetBeans
Attach	Listener	/	Thread	monitoring	using	NetBeans
Signal	Dispatcher	/	Thread	monitoring	using	NetBeans

Arrays.sort()	method	/	The	HotSpots	view
asynchronous	JMS	message

sending	/	Sending	asynchronous	JMS	messages
asynchronous	methods

using	/	Using	asynchronous	methods
asynchronous	processing

performed,	on	servlet	or	filter	/	Asynchronous	servlet	and	filter
asynchronous	servlet

and	filter	/	Asynchronous	servlet	and	filter
auditing

about	/	Potential	performance	impact	of	security	decisions
Automatic	Workload	Repository	(AWR)	/	Database	servers

B
Batch	applications	1.0	(JSR	352)

features	/	Batch	Applications	1.0	(JSR	352)
URL	/	Batch	Applications	1.0	(JSR	352)

Bean	Validation	1.1	(JSR	349)
features	/	Bean	Validation	1.1	(JSR	349)
pseudo-code	example	/	Bean	Validation	1.1	(JSR	349)
URL	/	Bean	Validation	1.1	(JSR	349)

behavior
and	attitude,	while	working	on	performance	tuning	/	Tuning	yourself	before
tuning	the	application,	Respect	roles	and	responsibilities,	Protect	your	reputation

blocked	threads
about	/	Blocked/starving/stuck	threads

BLOCKED	thread	state	/	Understanding	the	thread	dump	structure
BREACH	attack

URL	/	Tuning	the	Apache	web	server	(Apache	HTTP	server)
Business	Delegate	(BD)	layer	/	Functional	overview	of	the	ExcellentSurvey
application
Business	layer	/	Functional	overview	of	the	ExcellentSurvey	application
business	layer	/	Potential	performance	impact	of	the	application	layer’s	decisions

C
-cf	FileName	parameter	/	The	Microsoft	Windows	tools
-config	FileName	parameter	/	The	Microsoft	Windows	tools
-constants	option	/	Using	the	javap	tool	to	understand	micro-optimizations
-c	option	/	Using	the	javap	tool	to	understand	micro-optimizations
-c	{	Path	[path	…]	|	-cf	FileName	}	parameter	/	The	Microsoft	Windows	tools
cache	evictions

about	/	Caching	replacement	policies
cache	hit	rate

about	/	An	example	of	improper	caching	techniques
cache	invalidation

about	/	An	example	of	improper	caching	techniques
cache	miss	rate

about	/	An	example	of	improper	caching	techniques
caching

about	/	Improper	caching	implementation,	Potential	performance	impact	of
integration	decisions

caching	issues
about	/	Caching	issues

caching	models
Model	I	/	Caching	data	store	interaction
Model	II	/	Caching	data	store	interaction
Model	III	/	Caching	data	store	interaction

caching	performance
key	indicators	/	Data	caching	performance	evaluation
assessing	/	Data	caching	performance	evaluation

caching	replacement	policies
about	/	An	example	of	improper	caching	techniques
FIFO	/	An	example	of	improper	caching	techniques
LFU	/	An	example	of	improper	caching	techniques
LRU	/	An	example	of	improper	caching	techniques
MRU	/	An	example	of	improper	caching	techniques
aging	policy	/	An	example	of	improper	caching	techniques

caching	support
addition	/	Adding	support	for	caching
implicit	caching	/	Adding	support	for	caching
explicit	application	caching	/	Adding	support	for	caching

call	tree	view	section
about	/	The	call	tree	view

capacity	terminology
about	/	Performance	testing	terminologies

capacity	testing
about	/	Capacity	testing

Cascading	Style	Sheets	(CSS)	/	Client	side,	Client-side	performance	issues
CDI

about	/	Bean	Validation	1.1	(JSR	349)
CDI	1.1	(JSR	346)

features	/	Context	and	Dependency	Injection	–	CDI	1.1	(JSR	346)
pseudo-code	example	/	Context	and	Dependency	Injection	–	CDI	1.1	(JSR	346)
URL	/	Context	and	Dependency	Injection	–	CDI	1.1	(JSR	346)

Checkstyle
about	/	Manual	and	automated	code	review
URL	/	Manual	and	automated	code	review

Chrome	browser
URL	/	Chrome	developer	tools

Chrome	developer	tools
about	/	Chrome	developer	tools
network	analysis	/	Network	analysis
JavaScript	profiling	/	JavaScript	profiling
Speed	Tracer	/	Speed	Tracer

chunck
about	/	Tuning	network	components

class	value	/	The	monitoring	tool	for	Java	virtual	machine	statistics
client-side	optimization

about	/	Client-side	optimization
client-side	performance	issue

confirming	/	Client	side
about	/	Client-side	performance	issues
fixing,	Chrome	developer	tools	used	/	Chrome	developer	tools,	Network
analysis,	JavaScript	profiling,	Speed	Tracer
fixing,	Internet	Explorer	developer	tools	used	/	Internet	Explorer	developer	tools
fixing,	Firefox	developer	tools	used	/	Firefox	developer	tools
timing	specifications,	navigation	/	Navigating	time	specifications

client	mode
about	/	Selecting	the	HotSpot	JVM	type

cloud	(caching	as-a-service)
about	/	Performance	considerations	in	cloud	deployment

Cloud	computing
about	/	Performance	considerations	in	cloud	deployment
advantages	/	Performance	considerations	in	cloud	deployment

cloud	computing
about	/	Performance	testing	in	a	cloud	environment

cloud	deployment
performance	/	Performance	considerations	in	cloud	deployment

cloud	environment,	performance	testing
about	/	Performance	testing	in	a	cloud	environment
advantages	/	Performance	testing	in	a	cloud	environment

CMS
about	/	Understanding	the	Java	garbage	collection	policies

CMS	GC	steps
mark	step	/	Serial	versus	parallel	collector
sweep	step	(concurrent)	/	Serial	versus	parallel	collector

code
and	script	analysis	/	Code	and	script	analysis

code	analyzer	tools
FindBugs	/	Manual	and	automated	code	review
PMD	/	Manual	and	automated	code	review
CheckStyle	/	Manual	and	automated	code	review
Dependency	Finder	/	Manual	and	automated	code	review
SonarQube	/	Manual	and	automated	code	review

code	review
about	/	Manual	and	automated	code	review
performing	/	Manual	and	automated	code	review

committed	memory	size
about	/	Reading	garbage	collection	activity	logs	(HotSpot	VM)

committed	size
about	/	Reading	garbage	collection	activity	logs	(HotSpot	VM)

common	performance	issues
threading	performance	issues	/	Threading	performance	issues
memory	performance	issues	/	Memory	performance	issues
algorithmic	issues	/	Algorithmic	performance	issues
Work	as	designed	performance	issue	/	Work	as	designed	performance	issues
interfacing	issues	/	Interfacing	performance	issues
miscellaneous	/	Miscellaneous	performance	issues
fake	issues	/	Fake	performance	issues

compacting	GC
versus	non-compacting	GC	/	Compacting	versus	non-compacting,	Compacting
phase

compacting	GC	phases
summary	phase	/	Summary	phase
compacting	phase	/	Compacting	phase

Compiler	value	/	The	monitoring	tool	for	Java	virtual	machine	statistics
component	selection	decisions

performance	impact	/	Potential	performance	impact	of	a	component’s	selection
decisions

concurrency
implementing	/	Implementing	concurrency	or	multithreading
caching	/	Caching	concurrency	and	performance

concurrency,	Java
about	/	Understanding	concurrency	in	Java
achieving,	processes	used	/	Process	versus	thread

achieving,	threads	used	/	Process	versus	thread
advantage	/	Process	versus	thread
disadvantages	/	Process	versus	thread

concurrency	utilities
using	/	Using	the	Java	concurrency	utilities
thread	pool,	creating	/	Creating	a	thread	pool
Lock	interface	/	Using	explicit	locking	with	the	Lock	interface
concurrent	resources	/	Concurrent	resources	and	utilities,	The
ManagedScheduledExecutorService	class,	The	ManagedThreadFactory	class

Concurrency	utilities	1.0	(JSR	236)
ManagedExecutorService	/	Concurrency	Utilities	1.0	(JSR	236)
ManagedScheduledExecutorService	/	Concurrency	Utilities	1.0	(JSR	236)
ContextService	/	Concurrency	Utilities	1.0	(JSR	236)
ManagedThreadFactory	/	Concurrency	Utilities	1.0	(JSR	236)
URL	/	Concurrency	Utilities	1.0	(JSR	236)

concurrent	resources
about	/	Concurrent	resources	and	utilities
ManagedExecutorService	class	/	The	ManagedExecutorService	class
ManagedScheduledExecutorService	class	/	The
ManagedScheduledExecutorService	class
ManagedThreadFactory	class	/	The	ManagedThreadFactory	class

configuration	elements
CSV	dataset	config	/	Different	components	of	the	JMeter	test	plan
HTTP	cookie	manager	/	Different	components	of	the	JMeter	test	plan

configuration	xml	file	path	parameter	/	Building	our	script	using	JProfiler	triggers
context.complete()	method	/	Asynchronous	servlet	and	filter
context	switching

about	/	An	example	of	thread	blocking
continuous	integration	(CI)	environment

about	/	Agile	and	performance
Conversation	scope

about	/	Different	application	scopes
cool-down	time

about	/	Test	users
CopyAPI	copyIn()	command

using	/	Database	performance	tuning	tips
count	parameter	/	The	monitoring	tool	for	Java	virtual	machine	statistics
CPU	option	/	Using	the	NetBeans	profiler
CPU	profiling

underlying	objective,	determining	/	When	to	use	CPU	profiling
CPU	profiling	options

event	based	/	Different	CPU	profiling	options
instrumental	based	/	Different	CPU	profiling	options
sampling	based	(statistical)	/	Different	CPU	profiling	options

NetBeans	profiler,	using	/	Using	a	NetBeans	profiler,	Profiling	a	Java
application,	Profiling	a	web	application
JMC,	using	/	Using	Java	Mission	Control	(JMC)
JProfiler,	using	/	Using	JProfiler

CPU	profiling	results
interpreting	/	Reading	and	interpreting	CPU	profiling	results,	The	HotSpots
view
reading	/	Reading	and	interpreting	CPU	profiling	results,	The	HotSpots	view
analyzing	/	Analyzing	the	method	time	versus	the	method	invocation	count,
Methods	with	high	self-time,	Identifying	a	hot	spot	type

CPU	profiling	result	sections
call	tree	view	/	The	call	tree	view
hot	spots	view	/	The	HotSpots	view

createAuditTrail()	method	/	Fixing	the	HotSpot	autogen	table	update	statement
Cross-site	Request	Forgery	(CRRF)	/	Potential	performance	impact	of	security
decisions
Cross-site	Scripting	(XSS)	/	Potential	performance	impact	of	security	decisions
CSV	dataset	config

about	/	Different	components	of	the	JMeter	test	plan
CSV	dataset	configuration

adding	/	Adding	a	CSV	dataset	configuration
CSVs

about	/	Different	components	of	the	JMeter	test	plan
URL	/	Different	components	of	the	JMeter	test	plan

customizable	feature,	system	components	/	Potential	performance	impact	of	a
component’s	selection	decisions

D
-dump	tool

about	/	The	JVM	memory	map	tool
syntax	/	The	JVM	memory	map	tool

daemon	thread
versus	user	thread	/	Thread	monitoring	using	NetBeans

DAO	helper	/	Functional	overview	of	the	ExcellentSurvey	application
DAOHelper.createNewSurvey()	hot	spot	method

fixing	/	Fixing	the	DAOHelper.createNewSurvey()	HotSpot	method
DAOHelper.createNewSurvey()	method	/	Detected	HotSpot	methods
Data	Access	layer	(DAO)	/	Functional	overview	of	the	ExcellentSurvey	application
database	link

about	/	Database	performance	tuning	tips
database	performance

about	/	Database	performance	tuning	tips
database	performance	issues

about	/	Database	performance	issues
database	performance	tuning

tips	/	Database	performance	tuning	tips
Database	Server	(DB)	/	Understanding	the	different	layers	of	an	enterprise
application
database	server	issue

confirming	/	Database	server	issue
data	caching

versus	no	caching	/	Data	caching	versus	no	caching
data	encryption

about	/	Potential	performance	impact	of	security	decisions
data	layer	/	Potential	performance	impact	of	the	application	layer’s	decisions
data	sources	layer	/	Potential	performance	impact	of	the	application	layer’s	decisions
data	store	interaction

caching	/	Caching	data	store	interaction
DEBUG	level

using	/	Application	logging	and	performance
Demilitarized	Zone	(DMZ)	/	Potential	performance	impact	of	the	application	layer’s
decisions
demilitarized	zone	(DMZ)	/	Tuning	web	servers	(HTTP	servers)
Dependency	Finder

URL	/	Manual	and	automated	code	review
about	/	Manual	and	automated	code	review

Dependent	scope
about	/	Different	application	scopes

deployment	tuning	options,	Oracle	GlassFish
auto-deployment,	disabling	/	Deployment	tuning	options

auto-reload,	disabling	/	Deployment	tuning	options
JSP,	precompiling	/	Deployment	tuning	options

design	decisions
about	/	Potential	performance	impact	of	different	design	decisions
performance	impact	/	Potential	performance	impact	of	different	design	decisions

detailed	object	statistics
analyzing	/	Analyzing	detailed	object	statistics

developer	tools	/	Client	side
development	processes

and	performance	/	Performance	and	development	processes
agile	/	Agile	and	performance
TDD	/	Performance	and	test-driven	development	(TDD)

discovery	phase
performance	issues,	classifying	by	/	Classifying	performance	issues	by	the
discovery	phase,	Requirement	phase	and	design-time	issues,	Production-time
issues

DNS	caching
tuning	/	Tuning	logging	information

draft	fixing	strategy
enhancing	/	Enhancing	our	fixing	strategy
thread	deadlocks,	fixing	/	Fixing	thread	deadlocks	and	thread	blocking
thread	blocking	fix	/	Fixing	thread	deadlocks	and	thread	blocking

E
EclipseLink	documentation

URL	/	JPA	performance	tuning	tips
Eclipse	MAT

URL,	for	downloading	/	Taking	heap	dumps	using	Eclipse	Memory	Analyzer
Tool	(MAT)

Eclipse	Memory	Analyzer	Tool	(MAT)
used,	for	taking	heap	dump	/	Taking	heap	dumps	using	Eclipse	Memory
Analyzer	Tool	(MAT)

Eclipse	tools/plugins
about	/	The	Eclipse	tools/plugins
JVM	monitor	/	The	JVM	monitor
TPTP	/	The	Test	and	Performance	Tools	Platform

Eden	space
about	/	The	Java	HotSpot	virtual	machine	generations

/	Visualizing	the	garbage	collection	activity
Efficient	XML	Interchange	(EXI)	/	Performance	aspects	of	Resource	Oriented
Architecture	(ROA)
EJB	3.2	(JSR	345)

improvements	/	Enterprise	JavaBeans	–	EJB	3.2	(JSR	345)
URL	/	Enterprise	JavaBeans	–	EJB	3.2	(JSR	345)

EJB	container	tuning	options
EJB	pool	size,	optimizing	/	EJB	container	tuning	options
EJB	pool	idle	timeout,	optimizing	/	EJB	container	tuning	options
EJB	cache,	optimizing	/	EJB	container	tuning	options

EJB	performance	tuning	tips
about	/	EJB	performance	tuning	tips

EmailSender.sendEmail()	hot	spot	method
fixing	/	Fixing	the	EmailSender.sendEmail()	HotSpot	method

EmailSender.sendEmail()	method	/	Detected	HotSpot	methods
enterprise	application

presentation	layer	/	Potential	performance	impact	of	the	application	layer’s
decisions
service	layer	/	Potential	performance	impact	of	the	application	layer’s	decisions
business	layer	/	Potential	performance	impact	of	the	application	layer’s
decisions
data	layer	/	Potential	performance	impact	of	the	application	layer’s	decisions
data	sources	layer	/	Potential	performance	impact	of	the	application	layer’s
decisions
integration	layer	/	Potential	performance	impact	of	the	application	layer’s
decisions
adapter	component	/	Potential	performance	impact	of	the	application	layer’s
decisions

enterprise	application	layers
about	/	Understanding	the	different	layers	of	an	enterprise	application

environment	tuning
about	/	Understanding	environment	tuning

equals()	method
about	/	Invalid	contract	for	the	equals()	and	hashCode()	methods

ERROR	level
using	/	Application	logging	and	performance

ExcellentSurvey	application
setting	up	/	Setting	up	the	ExcellentSurvey	application
functional	overview	/	Functional	overview	of	the	ExcellentSurvey	application
features	/	Functional	overview	of	the	ExcellentSurvey	application
Java	EE	7	technologies,	using	/	Functional	overview	of	the	ExcellentSurvey
application
code,	organizing	/	Functional	overview	of	the	ExcellentSurvey	application
Presentation	tier	/	Functional	overview	of	the	ExcellentSurvey	application
Business	Delegate	(BD)	layer	/	Functional	overview	of	the	ExcellentSurvey
application
Web	Service	(WS)	layer	/	Functional	overview	of	the	ExcellentSurvey
application
Business	layer	/	Functional	overview	of	the	ExcellentSurvey	application
Data	Access	layer	(DAO)	/	Functional	overview	of	the	ExcellentSurvey
application
DAO	helper	/	Functional	overview	of	the	ExcellentSurvey	application
Persistence	layer	/	Functional	overview	of	the	ExcellentSurvey	application
performance	assessment	plan,	creating	/	ExcellentSurvey	performance
assessment
performance	investigation	plan,	creating	/	Performance	investigation	plan
client	tier	/	Performance	investigation	plan
server	tier	/	Performance	investigation	plan
profiling	/	Profiling	our	ExcellentSurvey	application
CPU	profiling	results,	obtaining	/	Getting	CPU	profiling	results
memory	results,	obtaining	/	Getting	memory	and	thread	profiling	results
thread	profiling,	obtaining	/	Getting	memory	and	thread	profiling	results
database	CPU	profiling	results,	obtaining	/	Getting	database	CPU	profiling
results
issues,	fixing	/	ExcellentSurvey	issues	and	possible	resolutions,	Fixing	the
EmailSender.sendEmail()	HotSpot	method,	Fixing	the	LoginFilter.log()	HotSpot
method,	Fixing	HotSpot	statements	to	insert	questions	and	survey	questions,
Fixing	HotSpot	queries	that	get	the	notification	templates/question	rating	types,
Fixing	the	HotSpot	query	that	counts	user	surveys

ExcellentSurvey	application	issues
DAOHelper.createNewSurvey()	hot	spot	method	/	Fixing	the
EmailSender.sendEmail()	HotSpot	method

exception	handling
and	performance	/	Exception	handling	and	performance

excessive	application	logging
about	/	Excessive	application	logging

excessive	serialization
about	/	Excessive	serialization	performance	impact
performance	symptoms	/	Performance	symptoms
examples	/	An	example	of	excessive	serialization,	Object	size	impact,	Web
services	granularity	impact

execution	plan,	database	statement
about	/	Database	performance	tuning	tips

expandability,	system	components	/	Potential	performance	impact	of	a	component’s
selection	decisions
expiration	algorithm

caching	/	Caching	an	invalidation/expiration	algorithm
explicit	lock

using,	with	Lock	interface	/	Using	explicit	locking	with	the	Lock	interface
Expression	language	3.0	(JSR	341)

enhancements	/	Expression	language	3.0	(JSR	341)
URL	/	Expression	language	3.0	(JSR	341)

extra	unnecessary	logic
about	/	Unnecessary	application	logic
examples	/	Unnecessary	application	logic

F
-finalizerinfo	tool

about	/	The	JVM	memory	map	tool
syntax	/	The	JVM	memory	map	tool

-f	{csv|tsv|bin}	parameter	/	The	Microsoft	Windows	tools
fake	performance	issues

about	/	Fake	performance	issues
examples	/	Fake	performance	issues

FATAL	level
using	/	Application	logging	and	performance

FIFO	policy
about	/	An	example	of	improper	caching	techniques

file	cache	components
tuning	/	Tuning	file	cache	components

finalize()	method
about	/	Memory	issues	of	objects	that	contain	the	finalize()	method

FindBugs
URL	/	Manual	and	automated	code	review
about	/	Manual	and	automated	code	review

Firefox	developer	tools
about	/	Firefox	developer	tools

First-In-First-Out	(FIFO)	/	Caching	replacement	policies
fixing	strategy

memory	performance	issues,	adding	to	/	Adding	memory	performance	issues	to
our	fixing	strategy

Flash	scope
about	/	Different	application	scopes

flexibility,	system	components	/	Potential	performance	impact	of	a	component’s
selection	decisions
flexible	service	contract

about	/	Performance	aspects	of	Service	Oriented	Architecture	(SOA)
performing	/	Performance	aspects	of	Service	Oriented	Architecture	(SOA)

Flow	scope
about	/	Different	application	scopes

frame	/	JVM	stack
full-virtualization	/	Performance	considerations	in	cloud	deployment

G
G1

about	/	Understanding	the	Java	garbage	collection	policies,	The	Garbage-first
collector	–	G1
working	/	The	Garbage-first	collector	–	G1

garbage	collection,	HotSpot	JVM
tuning	/	Tuning	garbage	collection
proper	collector	policy,	selecting	/	Using	proper	garbage	collection	policy
performance	targets,	setting	/	Setting	GC	performance	targets

garbage	collection,	JRockit	VM
tuning	/	Tuning	JRockit	garbage	collection

garbage	collection	activity
visualizing	/	Visualizing	the	garbage	collection	activity

garbage	collection	activity	logs
analyzing	/	Analyzing	garbage	collection	activity	logs	(HotSpot	JVM)
reading	/	Reading	garbage	collection	activity	logs	(HotSpot	VM)

garbage	collection	options
concurrent	versus	stop-the-world	/	Concurrent	versus	stop-the-world
serial	versus	parallel	collector	/	Serial	versus	parallel	collector
compacting	versus	non-compacting	/	Compacting	versus	non-compacting,
Compacting	phase
G1	collector	/	The	Garbage-first	collector	–	G1

garbage	collectors
serial	collector	/	Understanding	the	Java	garbage	collection	policies
CMS	/	Understanding	the	Java	garbage	collection	policies
G1	/	Understanding	the	Java	garbage	collection	policies

GC
about	/	Understanding	the	Java	garbage	collection	policies

Gccapacity	value	/	The	monitoring	tool	for	Java	virtual	machine	statistics
Gccause	value	/	The	monitoring	tool	for	Java	virtual	machine	statistics
GC	logs

about	/	Potential	memory	performance	issues
Gcnewcapacity	value	/	The	monitoring	tool	for	Java	virtual	machine	statistics
gcnew	value	/	The	monitoring	tool	for	Java	virtual	machine	statistics
Gcoldcapacity	value	/	The	monitoring	tool	for	Java	virtual	machine	statistics
gcold	value	/	The	monitoring	tool	for	Java	virtual	machine	statistics
Gcpermcapacity	value	/	The	monitoring	tool	for	Java	virtual	machine	statistics
gcutil	value	/	The	monitoring	tool	for	Java	virtual	machine	statistics
gc	value	/	The	monitoring	tool	for	Java	virtual	machine	statistics
generalOption	parameter	/	The	monitoring	tool	for	Java	virtual	machine	statistics
global	memory	leakage

versus	session	memory	leakage	/	Application	memory	leakage	(session	leakage
versus	global	leakage)

about	/	Application	memory	leakage	(session	leakage	versus	global	leakage)
Google	PageSpeed	Insights

URL	/	Client-side	optimization

H
-heap	tool

about	/	The	JVM	memory	map	tool
syntax	/	The	JVM	memory	map	tool

-histo	tool
about	/	The	JVM	memory	map	tool
syntax	/	The	JVM	memory	map	tool

hardware	scaling
factors	/	Capacity	planning	and	hardware	optimization
use	cases	/	Capacity	planning	and	hardware	optimization

hardware	tuning
capacity	planning	and	hardware	optimization	/	Capacity	planning	and	hardware
optimization
OS	configurations	optimization	/	Operating	system	configurations	optimization

hardware	virtualization	/	Performance	considerations	in	cloud	deployment
hashCode()	method

about	/	Invalid	contract	for	the	equals()	and	hashCode()	methods
heap	area

about	/	Heap	area
heap	dump

taking,	on	occurrence	of	JVM	OutOfMemoryError	/	Taking	heap	dumps	on	the
occurrence	of	JVM	OutOfMemoryError
taking,	JDK	tools	used	/	Taking	heap	dumps	using	the	JDK	tools
taking,	jmap	used	/	Taking	heap	dump	using	jmap
taking,	Java	VisualVM	used	/	Taking	heap	dumps	using	Java	VisualVM
taking,	JRockit	command	used	/	Taking	heap	dumps	using	the	JRockit	command
utility
taking,	profiler	tools	used	/	Taking	heap	dumps	using	the	profiler	tools
taking,	NetBeans	profiler	used	/	Taking	heap	dumps	using	the	NetBeans	profiler
taking,	Eclipse	Memory	Analyzer	Tool	(MAT)	used	/	Taking	heap	dumps	using
Eclipse	Memory	Analyzer	Tool	(MAT)
taking,	JProfiler	used	/	Taking	heap	dumps	using	JProfiler
analyzing	/	Analyzing	the	heap	dump
navigating,	visual	tools	used	/	Navigating	inside	a	heap	dump	using	visual	tools
querying,	OQL	used	/	Query	heap	dumps	using	OQL

heap	memory
about	/	Dealing	with	memory	heap	dumps

hot	spot	autogen	table	update	statement
fixing	/	Fixing	the	HotSpot	autogen	table	update	statement

hot	spot	database	statements
Statement	that	updates	the	autogen	table	/	Detected	HotSpot	database	statements

hot	spot	methods
EmailSender.sendEmail()	/	Detected	HotSpot	methods

DAOHelper.createNewSurvey()	/	Detected	HotSpot	methods
LoginFilter.log()	/	Detected	HotSpot	methods

hot	spot	method	types
high	self-time	methods	/	Methods	with	high	self-time
high	invocation	event	methods	/	Methods	with	high	invocation	events
high	self-time	and	invocation	event	methods	/	Methods	with	high	self-time	and
invocation	events

hot	spot	statements
fixing,	to	insert	questions	/	Fixing	HotSpot	statements	to	insert	questions	and
survey	questions
fixing,	to	survey	questions	/	Fixing	HotSpot	statements	to	insert	questions	and
survey	questions

hot	spots	view	methods
Arrays.sort()	/	The	HotSpots	view
Thread.sleep()	/	The	HotSpots	view

hot	spots	view	section
about	/	The	HotSpots	view
methods	/	The	HotSpots	view

hot	spot	type
identifying	/	Identifying	a	hot	spot	type

HP	JMeter
URL	/	Visualizing	the	garbage	collection	activity

hprof	binary	file	format
about	/	Dealing	with	memory	heap	dumps

HTTP	cookie	manager
about	/	Different	components	of	the	JMeter	test	plan

HTTP	server	side	performance	issue
detecting	/	HTTP	server	side	(web	servers)

hung	application
root	cause,	detecting	/	Detecting	the	root	cause	of	a	hung	application
hang	location,	detecting	with	thread	dumps	/	Detecting	the	hang	location	using
thread	dumps
hang	location,	detecting	with	profilers	/	Detecting	the	hang	location	using
profilers

I
I/O	operations

and	performance	/	The	I/O	operations	and	performance
IBM	GCMV

URL	/	Visualizing	the	garbage	collection	activity
IDE	monitoring	tools

about	/	The	IDE	monitoring	tools
improper	caching	implementation	/	Improper	caching	implementation
improper	caching	issue	types

disabled	caching	/	No	caching	(disabled	caching)
too	small	caching	size	/	Too	small	caching	size
too	big	caching	size	/	Too	big	caching	size
wrong	caching	policy	use	/	Using	the	wrong	caching	policy

improper	data	caching
about	/	Improper	data	caching
issue	types	/	Improper	caching	issue	types,	Too	small	caching	size,	Using	the
wrong	caching	policy
performance	symptoms	/	Performance	symptoms
example	/	An	example	of	improper	caching	techniques

improper	synchronous	code
about	/	Synchronous	where	asynchronous	is	required
performance	symptoms	/	Performance	symptoms
example	/	An	example	of	improper	synchronous	code

INFO	level
using	/	Application	logging	and	performance

inherent	time
about	/	Analyzing	the	method	time	versus	the	method	invocation	count

integrated	system	issue
confirming	/	Integrated	systems

integration	decisions
performance	impact	/	Potential	performance	impact	of	integration	decisions

integration	layer	/	Potential	performance	impact	of	the	application	layer’s	decisions
inter-process	communication	(IPC)	resources	/	Process	versus	thread
interaction	decisions

performance	impact	/	Potential	performance	impact	of	application	interaction
decisions

Interceptors	1.2	(JSR	318)
improvements	/	Interceptors	1.2	(JSR	318)
pseudo-code	example	/	Interceptors	1.2	(JSR	318)
URL	/	Interceptors	1.2	(JSR	318)

interfacing	performance	issues
about	/	Interfacing	performance	issues

internal	applications	deployment

tuning	/	Tuning	the	internal	applications’	deployment
Internet	Explorer	developer	tools

about	/	Internet	Explorer	developer	tools
Internet	of	Things	(IoT)	/	Performance	aspects	of	Resource	Oriented	Architecture
(ROA)
interval[s|ms]	parameter	/	The	monitoring	tool	for	Java	virtual	machine	statistics
invalidation	algorithm

caching	/	Caching	an	invalidation/expiration	algorithm
iostat	command

about	/	The	Unix/Linux	tools
isolation	testing

about	/	Isolation	testing
iteration	terminology

about	/	Performance	testing	terminologies

J
-J	tool

about	/	The	JVM	memory	map	tool
syntax	/	The	JVM	memory	map	tool

Java	collections
and	performance	/	Java	collections	and	performance

Java	data	object	(JDO)	/	Performance	aspects	of	Service	Oriented	Architecture
(SOA)
Java	EE	7	features

about	/	Discussing	the	new	Java	EE	7	features
Bean	Validation	1.1	(JSR	349)	/	Bean	Validation	1.1	(JSR	349)
JSON-P	1.0	(JSR	353)	/	Java	API	for	JSON	processing	–	JSON-P	1.0	(JSR	353)
JAX-RS	2.0	(JSR	339)	/	Java	API	for	RESTful	web	services	–	JAX-RS	2.0	(JSR
339)
Java	Servlet	3.1	(JSR	340)	/	Java	Servlet	3.1	(JSR	340)
CDI	1.1	(JSR	346)	/	Context	and	Dependency	Injection	–	CDI	1.1	(JSR	346)
Interceptors	1.2	(JSR	318)	/	Interceptors	1.2	(JSR	318)
EJB	3.2	(JSR	345)	/	Enterprise	JavaBeans	–	EJB	3.2	(JSR	345)
JMS	2.0	(JSR	343)	/	Java	Message	Service	–	JMS	2.0	(JSR	343)
Concurrency	utilities	1.0	(JSR	236)	/	Concurrency	Utilities	1.0	(JSR	236)
Batch	applications	1.0	(JSR	352)	/	Batch	Applications	1.0	(JSR	352)
JPA	2.1	(JSR	338)	/	Java	Persistence	APIs	–	JPA	2.1	(JSR	338)
JSF	2.2	(JSR	344)	/	JavaServer	Faces	–	JSF	2.2	(JSR	344)
Expression	language	3.0	(JSR	341)	/	Expression	language	3.0	(JSR	341)
JTA	1.2	(JSR	907)	/	Java	Transaction	APIs	–	JTA	1.2	(JSR	907)
WebSocket	1.0	(JSR	356)	/	Java	API	for	WebSocket	1.0	(JSR	356)

Java	EE	7	technologies
JSPs	/	Functional	overview	of	the	ExcellentSurvey	application
servlets	/	Functional	overview	of	the	ExcellentSurvey	application
filters	/	Functional	overview	of	the	ExcellentSurvey	application
EJBs	(stateless	session	beans)	/	Functional	overview	of	the	ExcellentSurvey
application
JPA	/	Functional	overview	of	the	ExcellentSurvey	application
Java	mail	APIs	/	Functional	overview	of	the	ExcellentSurvey	application
SOAP	web	services	/	Functional	overview	of	the	ExcellentSurvey	application

Java	EE	7	tutorial
URL	/	More	information	about	Java	EE	7

Java	EE	concurrency	features
about	/	The	important	Java	EE	concurrency	features
SingleThreadModel	interface	/	The	SingleThreadModel	interface
asynchronous	servlet	and	filter	/	Asynchronous	servlet	and	filter
non-blocking	I/O	APIs	/	The	new	Java	EE	non-blocking	I/O	APIs
session	beans	asynchronous	method	invocation	/	Session	beans	asynchronous

method	invocation
singleton	session	bean	/	A	singleton	session	bean
asynchronous	JMS	message,	sending	/	Sending	asynchronous	JMS	messages

Java	EE	performance	tuning	tips
about	/	Java	EE	performance	tuning	tips
WS	performance	tuning	tips	/	Web	service	(WS)	performance	tuning	tips
EJB	performance	tuning	tips	/	EJB	performance	tuning	tips
Servlets	performance	tuning	tips	/	Servlets	and	JSP	performance	tuning	tips
JSP	performance	tuning	tips	/	Servlets	and	JSP	performance	tuning	tips
JSF	performance	tuning	tips	/	JSF	performance	tuning	tips
JPA	performance	tuning	tips	/	JPA	performance	tuning	tips

Java	Flight	Recorder
about	/	Oracle	Java	Mission	Control

Java	framework
performance	impact	/	Potential	performance	impact	of	framework	and	UI
decisions

Java	HotSpot	virtual	machine
tuning	/	Tuning	the	Java	HotSpot	virtual	machine
type,	selecting	/	Selecting	the	HotSpot	JVM	type
memory	size,	tuning	/	Tuning	memory	size
garbage	collection,	tuning	/	Tuning	garbage	collection,	Using	proper	garbage
collection	policy

Java	HotSpot	virtual	machine	generations
about	/	The	Java	HotSpot	virtual	machine	generations
permanent	generation	(Perm	Gen)	/	The	Java	HotSpot	virtual	machine
generations

Java	HotSpot	virtual	machine	modes
server	/	Selecting	the	HotSpot	JVM	type
client	/	Selecting	the	HotSpot	JVM	type

Java	logging	/	Application	logging	and	performance
Java	Mission	Control	(jmc)	/	The	JDK	monitoring	tools
Java	monitoring	tools

about	/	Exploring	the	Java	monitoring	tools
JDK	monitoring	tools	/	The	JDK	monitoring	tools
application	servers	monitoring	tools	/	The	monitoring	tools	for	application
servers
IDE	monitoring	tools	/	The	IDE	monitoring	tools
standalone	monitoring	tools	/	The	standalone	monitoring	tools
multifunction	monitoring	tools	/	The	multifunction	monitoring	tools

Java	multitenancy	/	Potential	memory	performance	issues
Java	performance	tuning	tips

string	manipulation	tips	/	String	manipulation	performance	tuning	tips,	String
concatenation	tips
Java	collections,	dealing	with	/	Java	collections	and	performance

synchronized	blocks,	using	/	Using	synchronized	blocks
I/O	operations	/	The	I/O	operations	and	performance
exception	handling	implementation	/	Exception	handling	and	performance
application	logging	/	Application	logging	and	performance

javap	tool
used,	for	understanding	micro-optimizations	/	Using	the	javap	tool	to	understand
micro-optimizations
syntax	/	Using	the	javap	tool	to	understand	micro-optimizations

JavaScript	Object	Notation	(JSON)
about	/	Performance	aspects	of	Resource	Oriented	Architecture	(ROA)

Java	Servlet	3.1	(JSR	340)
features	/	Java	Servlet	3.1	(JSR	340)
pseudo-code	example	/	Java	Servlet	3.1	(JSR	340)
URL	/	Java	Servlet	3.1	(JSR	340)

Java	Specification	Requests	(JSRs)	/	Discussing	the	new	Java	EE	7	features
Java	Virtual	Machine	(JVM)	/	Understanding	the	different	layers	of	an	enterprise
application
Java	Virtual	Machine	Debug	Interface	(JVMDI)	/	JVM	TI
Java	Virtual	Machine	Profiler	Interface	(JVMPI)	/	JVM	TI
Java	VisualVM

about	/	Java	VisualVM,	Visualizing	the	garbage	collection	activity
running	/	Java	VisualVM
using	/	Java	VisualVM
used,	for	generating	thread	dump	/	Thread	dump	using	the	Java	VisualVM
used,	for	taking	heap	dump	/	Taking	heap	dumps	using	Java	VisualVM

JAX-RS	2.0	(JSR	339)
features	/	Java	API	for	RESTful	web	services	–	JAX-RS	2.0	(JSR	339)
pseudo-code	example	/	Java	API	for	RESTful	web	services	–	JAX-RS	2.0	(JSR
339)
URL	/	Java	API	for	RESTful	web	services	–	JAX-RS	2.0	(JSR	339)

jconsole	tool
about	/	The	Java	monitoring	and	management	console	tool
syntax	/	The	Java	monitoring	and	management	console	tool
running	/	The	Java	monitoring	and	management	console	tool

JDBC	connection
configuring	/	Configuring	the	JDBC	connection

JDBC	connection	pool	tuning	options
about	/	JDBC	connection	pool	tuning	options
pool	size	settings,	optimizing	/	JDBC	connection	pool	tuning	options
connection	timeout,	optimizing	/	JDBC	connection	pool	tuning	options
connection	validation,	optimizing	/	JDBC	connection	pool	tuning	options
transaction	isolation	level,	optimizing	/	JDBC	connection	pool	tuning	options

JDBC	request	sampler
adding	/	Adding	a	JDBC	request	sampler

JDK	monitoring	tools
about	/	The	JDK	monitoring	tools

JDK	tools
about	/	Understanding	the	different	JDK	tools
troubleshooting	tools	/	Understanding	the	different	JDK	tools,	The	JVM
memory	map	tool,	The	Java	heap	analysis	tool
monitoring	tools	/	Understanding	the	different	JDK	tools,	The	monitoring	tool
for	Java	virtual	machine	statistics
profiler	tools	/	Understanding	the	different	JDK	tools,	The	Java	monitoring	and
management	console	tool,	Java	VisualVM,	Oracle	Java	Mission	Control
used,	for	obtaining	thread	dump	/	Taking	a	thread	dump	using	the	JDK	tools,
Thread	dump	using	the	Java	VisualVM
jstack	/	Thread	dump	using	jstack
Java	VisualVM	/	Thread	dump	using	the	Java	VisualVM
used,	for	taking	heap	dump	/	Taking	heap	dumps	using	the	JDK	tools

JDK	tools	details
URL	/	Further	reading

Jenkins
about	/	Agile	and	performance
URL	/	Agile	and	performance

jhat	tool
about	/	The	Java	heap	analysis	tool
using	/	The	Java	heap	analysis	tool

jmap
used,	for	taking	heap	dump	/	Taking	heap	dump	using	jmap

jmap	tool
about	/	The	JVM	memory	map	tool
usage	and	syntax	/	The	JVM	memory	map	tool
example	/	The	JVM	memory	map	tool

JMC
used,	for	CPU	profiling	/	Using	Java	Mission	Control	(JMC)
used,	for	monitoring	threads	/	Thread	monitoring	using	Java	Mission	Control

JMC	Flight	Recorder	option
about	/	Thread	monitoring	using	Java	Mission	Control

JMS	2.0	(JSR	343)
improvements	/	Java	Message	Service	–	JMS	2.0	(JSR	343)
pseudo-code	example	/	Java	Message	Service	–	JMS	2.0	(JSR	343)
URL	/	Java	Message	Service	–	JMS	2.0	(JSR	343)

JMX
about	/	The	Java	monitoring	and	management	console	tool

JPA	2.1	(JSR	338)
features	/	Java	Persistence	APIs	–	JPA	2.1	(JSR	338)
pseudo-code	example	/	Java	Persistence	APIs	–	JPA	2.1	(JSR	338)
URL	/	Java	Persistence	APIs	–	JPA	2.1	(JSR	338)

JPA	performance	tuning	tips
about	/	JPA	performance	tuning	tips
URL	/	JPA	performance	tuning	tips

jpenable	command-line	utility
using	/	Building	our	script	using	JProfiler	triggers

JProfiler
about	/	Advanced	profiler	–	JProfiler
free	license,	URL	/	Advanced	profiler	–	JProfiler
using	/	Advanced	profiler	–	JProfiler
used,	for	CPU	profiling	/	Using	JProfiler
used,	for	monitoring	threads	/	Thread	monitoring	using	JProfiler
using,	for	memory	profiling	/	Memory	profiling	using	JProfiler
used,	for	taking	heap	dump	/	Taking	heap	dumps	using	JProfiler

JProfiler	8.x
URL	/	Advanced	profiler	–	JProfiler

JProfiler	details
URL	/	Further	reading

JProfiler	triggers
used,	for	building	script	/	Building	our	script	using	JProfiler	triggers
JVM	startup	/	Building	our	script	using	JProfiler	triggers
JVM	exit	/	Building	our	script	using	JProfiler	triggers
Timer	/	Building	our	script	using	JProfiler	triggers
Out	of	memory	exception	/	Building	our	script	using	JProfiler	triggers
CPU	load	threshold	/	Building	our	script	using	JProfiler	triggers
Heap	usage	threshold	/	Building	our	script	using	JProfiler	triggers
Method	invocation	/	Building	our	script	using	JProfiler	triggers
creating,	steps	/	Building	our	script	using	JProfiler	triggers

JRockit	command
used,	for	taking	heap	dump	/	Taking	heap	dumps	using	the	JRockit	command
utility

JRockit	Mission	Control	(JRMC)
about	/	Oracle	Java	Mission	Control

JRockit	VM
tuning	/	Tuning	the	JRockit	virtual	machine
memory	size,	tuning	/	Tuning	JRockit	memory	size
garbage	collection,	tuning	/	Tuning	JRockit	garbage	collection

JRockit	VM	generational	heap	sections
Nursery	area	/	Tuning	the	JRockit	virtual	machine
Tenured	area	/	Tuning	the	JRockit	virtual	machine

JSF	2.2	(JSR	344)
features	/	JavaServer	Faces	–	JSF	2.2	(JSR	344)
pseudo-code	example	/	JavaServer	Faces	–	JSF	2.2	(JSR	344)
URL	/	JavaServer	Faces	–	JSF	2.2	(JSR	344)

JSF	performance	tuning	tips

about	/	JSF	performance	tuning	tips
JSON-P	1.0	(JSR	353)

pseudo-code	example	/	Java	API	for	JSON	processing	–	JSON-P	1.0	(JSR	353)
URL	/	Java	API	for	JSON	processing	–	JSON-P	1.0	(JSR	353)

JSP	performance	tuning	tips
about	/	Servlets	and	JSP	performance	tuning	tips

jstack
used,	for	generating	thread	dump	/	Thread	dump	using	jstack

jstat	tool
used,	for	monitoring	JVM	statistics	/	The	monitoring	tool	for	Java	virtual
machine	statistics
syntax	/	The	monitoring	tool	for	Java	virtual	machine	statistics
statOption	values	/	The	monitoring	tool	for	Java	virtual	machine	statistics

jstat	tool	syntax	parameters
generalOption	/	The	monitoring	tool	for	Java	virtual	machine	statistics
outputOptions	/	The	monitoring	tool	for	Java	virtual	machine	statistics
vmid	/	The	monitoring	tool	for	Java	virtual	machine	statistics
interval[s|ms]	/	The	monitoring	tool	for	Java	virtual	machine	statistics
count	/	The	monitoring	tool	for	Java	virtual	machine	statistics

JTA	1.2	(JSR	907)
features	/	Java	Transaction	APIs	–	JTA	1.2	(JSR	907)
pseudo-code	example	/	Java	Transaction	APIs	–	JTA	1.2	(JSR	907)
URL	/	Java	Transaction	APIs	–	JTA	1.2	(JSR	907)

Just-In-Time	(JIT)	compilers	/	Selecting	the	HotSpot	JVM	type
JVM

tuning	/	Tuning	the	JVM
Java	HotSpot	virtual	machine,	tuning	/	Tuning	the	Java	HotSpot	virtual	machine

JVM	implementations
client	virtual	machine	/	The	JVM	specifications
server	virtual	machine	/	The	JVM	specifications

JVM	monitor
about	/	The	JVM	monitor
URL	/	The	JVM	monitor

JVM	parameters	classification
standard	parameters	/	Understanding	the	different	types	of	the	JVM	parameters
non-standard	parameters	/	Understanding	the	different	types	of	the	JVM
parameters

JVM	performance	tuning
aspects	/	Tuning	the	JVM

JVM	specifications
URL	/	PC	registers

JVM	stack
about	/	JVM	stack

JVM	string	tuning	parameters

using	/	The	JVM	String	tuning	parameters
JVM	TI

about	/	JVM	TI

K
Keep	Area

about	/	Tuning	the	JRockit	virtual	machine
Keep	It	Simple	and	Stupid	(KISS)

about	/	Keep	it	simple
Kenai	project

URL	/	Manual	and	automated	code	review

L
-l	option	/	Using	the	javap	tool	to	understand	micro-optimizations
last	access	time

about	/	An	example	of	improper	caching	techniques
latency	terminology

about	/	Performance	testing	terminologies
learning	cycle

about	/	The	cycle	of	learning
Least-Frequently	Used	(LFU)	/	Caching	replacement	policies
Least-recently	Used	(LRU)	/	Caching	replacement	policies
LFU	policy

about	/	An	example	of	improper	caching	techniques
listeners

creating	/	Creating	listeners
assertion,	adding	on	response	/	Adding	an	assertion	on	response
CSV	dataset	configuration,	adding	/	Adding	the	CSV	dataset	configuration
final	results,	obtaining	/	Getting	the	final	results
adding,	to	capture	test	results	/	Adding	listeners	to	capture	test	results

listeners	(test	results)
about	/	Different	components	of	the	JMeter	test	plan

load	testing
about	/	Load	testing

Lock	interface
explicit	lock,	using	with	/	Using	explicit	locking	with	the	Lock	interface

logic	issues,	performance	findings	/	Potential	wrong	logic	issues
LoginFilter.log()	hot	spot	method

fixing	/	Fixing	the	LoginFilter.log()	HotSpot	method
LoginFilter.log()	method	/	Detected	HotSpot	methods
low	threading

about	/	Low/over	threading
LRU	policy

about	/	An	example	of	improper	caching	techniques

M
ManagedExecutorService	class

about	/	The	ManagedExecutorService	class
using,	sample	code	/	The	ManagedExecutorService	class

ManagedScheduledExecutorService	class
about	/	The	ManagedScheduledExecutorService	class
using,	sample	code	/	The	ManagedScheduledExecutorService	class

ManagedThreadFactory	class
about	/	The	ManagedThreadFactory	class
using,	sample	code	/	The	ManagedThreadFactory	class

MAT
about	/	The	Eclipse	tools/plugins

materialized	view
about	/	Database	performance	tuning	tips

MaxPermSize	parameter	/	Tuning	memory	size
MBeans

about	/	The	Java	monitoring	and	management	console	tool
MBean	server

about	/	Oracle	Java	Mission	Control
Memcached

about	/	Caching	replacement	policies
URL	/	Caching	replacement	policies

memory	chunck	optimization
about	/	Tuning	network	components

memory	heap	dumps
dealing	with	/	Dealing	with	memory	heap	dumps

memory	leakage
about	/	Memory	leakage
performance	symptoms	/	Performance	symptoms
example	/	An	example	of	memory	leakage

memory	leakage	issues
fixing	/	Fixing	memory	leakage	issues

MemoryMonitor	class	/	Performance	and	test-driven	development	(TDD)
Memory	option	/	Using	the	NetBeans	profiler
memory	performance	issues

about	/	Memory	performance	issues,	Memory	performance	issues
memory	leakage	/	Memory	performance	issues,	Memory	leakage,	An	example
of	memory	leakage
improper	caching	/	Memory	performance	issues,	Improper	data	caching,	Too
small	caching	size,	An	example	of	improper	caching	techniques
insufficient	memory	allocation	/	Memory	performance	issues
adding,	to	fixing	strategy	/	Adding	memory	performance	issues	to	our	fixing
strategy

memory	performance	monitoring
aspects	/	When	to	use	memory	profiling?

memory	potential	performance	issues
about	/	Potential	memory	performance	issues
application	memory	leakage	/	Application	memory	leakage	(session	leakage
versus	global	leakage)
improper	caching	implementation	/	Improper	caching	implementation
memory	issues	of	objects,	with	finalize()	method	/	Memory	issues	of	objects	that
contain	the	finalize()	method
invalid	contract,	for	equals()	method	/	Invalid	contract	for	the	equals()	and
hashCode()	methods
invalid	contract,	for	hashCode()	method	/	Invalid	contract	for	the	equals()	and
hashCode()	methods
OOME,	reasons	/	Different	reasons	for	OOME

memory	profiling
about	/	When	to	use	memory	profiling?
options	/	Different	memory	profiling	options
NetBeans	used	/	Memory	profiling	using	NetBeans
JProfiler	used	/	Memory	profiling	using	JProfiler
results,	analyzing	/	Analyzing	memory	profiling	results
memory	spaces	graphs,	analyzing	/	Analyzing	memory	space	graphs
detailed	object	statistics,	analyzing	/	Analyzing	detailed	object	statistics
garbage	collection	activity	logs,	analyzing	/	Analyzing	garbage	collection
activity	logs	(HotSpot	JVM)

memory	profiling	analysis
aspects	/	Analyzing	memory	profiling	results

memory	size,	HotSpot	JVM
tuning	/	Tuning	memory	size

memory	size,	JRockit	VM
tuning	/	Tuning	JRockit	memory	size

memory	spaces	graphs
analyzing	/	Analyzing	memory	space	graphs

memory	structure
about	/	Understanding	memory	structure	in	the	JVM
in	JVM	specifications	/	The	JVM	specifications,	Heap	area,	Native	method
stacks	(C	stacks)
in	Java	HotSpot	virtual	machine	/	Memory	structure	in	the	Java	HotSpot	virtual
machine,	The	Java	HotSpot	virtual	machine	generations

memory	structure,	Java	HotSpot	virtual	machine
generational	collection	/	Generational	memory	structure,	The	Java	HotSpot
virtual	machine	generations

memory	structure,	JVM	specifications
heap	area	/	Heap	area
method	area	and	runtime	constant	pool	/	Method	area	and	runtime	constant	pool

JVM	stack	/	JVM	stack
native	method	stacks	(C	stacks)	/	Native	method	stacks	(C	stacks)
pc	registers	/	PC	registers

method	area
and	runtime	constant	pool	/	Method	area	and	runtime	constant	pool

method	inlining
about	/	Selecting	the	HotSpot	JVM	type

method	invocation	count
versus	method	time,	analyzing	/	Analyzing	the	method	time	versus	the	method
invocation	count,	Methods	with	high	self-time,	Identifying	a	hot	spot	type

method	time
versus	method	invocation	count,	analyzing	/	Analyzing	the	method	time	versus
the	method	invocation	count,	Methods	with	high	self-time,	Identifying	a	hot	spot
type
self-time	/	Analyzing	the	method	time	versus	the	method	invocation	count
inherent	time	/	Analyzing	the	method	time	versus	the	method	invocation	count

micro-optimizations
understanding,	javap	tool	used	/	Using	the	javap	tool	to	understand	micro-
optimizations

Microsoft	Windows	tools
about	/	The	Microsoft	Windows	tools
Resource	Monitor	/	The	Microsoft	Windows	tools
Typeperf	command-line	utility	/	The	Microsoft	Windows	tools

miscellaneous	decisions
performance	impact	/	Potential	performance	impact	of	some	miscellaneous
decisions

miscellaneous	performance	issues
about	/	Miscellaneous	performance	issues

Model	I,	caching	models	/	Caching	data	store	interaction
Model	II,	caching	models	/	Caching	data	store	interaction
Model	III,	caching	models	/	Caching	data	store	interaction
monitoring	tools,	application	servers

about	/	The	monitoring	tools	for	application	servers
Monitor	option	/	Using	the	NetBeans	profiler
Most-Recently	Used	(MRU)	/	Caching	replacement	policies
MPM	modes,	Unix-based	systems

Worker	MPM	/	Tuning	the	Apache	web	server	(Apache	HTTP	server)
Event	MPM	/	Tuning	the	Apache	web	server	(Apache	HTTP	server)
Prefork	MPM	/	Tuning	the	Apache	web	server	(Apache	HTTP	server)

MPM	server
about	/	Tuning	the	Apache	web	server	(Apache	HTTP	server)

MRU	policy
about	/	An	example	of	improper	caching	techniques

multifunction	monitoring	tools

about	/	The	multifunction	monitoring	tools
multithreading

implementing	/	Implementing	concurrency	or	multithreading
muxer

about	/	Tuning	network	components
types	/	Tuning	network	components

N
native	method	stacks	(C	stacks)

about	/	Native	method	stacks	(C	stacks)
NetBeans

using,	for	memory	profiling	/	Memory	profiling	using	NetBeans
NetBeans	profiler

about	/	Starting	with	the	NetBeans	profiler
calibration,	running	/	The	NetBeans	profiler	calibration
using	/	Using	the	NetBeans	profiler
used,	for	CPU	time	profiling	/	Using	a	NetBeans	profiler
used,	for	profiling	Java	application	/	Profiling	a	Java	application
used,	for	profiling	web	application	/	Profiling	a	web	application
used,	for	monitoring	threads	/	Thread	monitoring	using	NetBeans

NetBeans	profiler
used,	for	taking	heap	dump	/	Taking	heap	dumps	using	the	NetBeans	profiler

NetBeans	profiler	details
URL	/	Further	reading

network	components
tuning	/	Tuning	network	components

networking	components
examining	/	Networking	components

NEW	thread	state	/	Understanding	the	thread	dump	structure
no	caching

versus	data	caching	/	Data	caching	versus	no	caching
non-blocking	I/O	APIs

about	/	The	new	Java	EE	non-blocking	I/O	APIs
using	/	The	new	Java	EE	non-blocking	I/O	APIs

non-compacting	GC
versus	compacting	GC	/	Compacting	versus	non-compacting,	Compacting	phase

notification	template	hot	spot	query
fixing	/	Fixing	HotSpot	queries	that	get	the	notification	templates/question
rating	types

Nursery	Space
about	/	Tuning	the	JRockit	virtual	machine

O
-o	FileName	parameter	/	The	Microsoft	Windows	tools
Object-relational	mapping	(ORM)

about	/	Database	performance	tuning	tips
object	monitor

exploring	/	Exploring	an	object	monitor
offline	parameter	/	Building	our	script	using	JProfiler	triggers
offline	profiling	mode

using	/	Using	the	offline	profiling	mode
advantages	and	uses	/	Using	the	offline	profiling	mode
JProfiler	triggers,	used	for	building	script	/	Building	our	script	using	JProfiler
triggers

OOME
about	/	Taking	heap	dumps	using	Java	VisualVM
reasons	/	Different	reasons	for	OOME

Operating	System	(OS)	/	Understanding	the	different	layers	of	an	enterprise
application
operating	system	monitoring	tools

about	/	The	operating	system	monitoring	tools
Microsoft	Windows	tools	/	The	Microsoft	Windows	tools
Unix/Linux	tools	/	The	Unix/Linux	tools,	An	example	of	high	CPU	utilization

Optimistic	locking
about	/	Caching	concurrency	and	performance

OQL
about	/	The	Java	heap	analysis	tool,	Dealing	with	memory	heap	dumps
used,	for	querying	heap	dump	/	Query	heap	dumps	using	OQL
built-in	heap	object,	using	/	Using	a	built-in	heap	object
built-in	functions,	using	on	individual	objects	/	Using	built-in	functions	on
individual	objects

OQL	queries
using	/	Using	simple	OQL	queries

Oracle	GlassFish	application	server
tuning	/	Tuning	the	Oracle	GlassFish	application	server
deployment	tuning	options	/	Deployment	tuning	options
web	container	tuning	options	/	Web	container	tuning	options
EJB	container	tuning	options	/	EJB	container	tuning	options
thread	pool	tuning	options	/	Thread	pool	tuning	options
JDBC	connection	pool	tuning	options	/	JDBC	connection	pool	tuning	options
file	cache	components,	tuning	/	Tuning	file	cache	components
DNS	caching,	tuning	/	Tuning	DNS	caching
logging	information,	tuning	/	Tuning	logging	information

Oracle	Java	Mission	Control
about	/	Oracle	Java	Mission	Control

MBean	server	feature	/	Oracle	Java	Mission	Control
Flight	recorder	feature	/	Oracle	Java	Mission	Control
using	/	Oracle	Java	Mission	Control

Oracle	Weblogic	application	server
tuning	/	Tuning	the	Oracle	Weblogic	application	server
internal	applications	deployment,	tuning	/	Tuning	the	internal	applications’
deployment
network	components,	tuning	/	Tuning	network	components
stuck	thread	configuration,	tuning	/	Tuning	stuck	thread	configuration

Oracle	web	server
tuning	/	Tuning	the	Oracle	web	server	(Oracle	HTTP	server)

OS
and	hardware,	tuning	/	Tuning	the	operating	system	and	hardware,	Capacity
planning	and	hardware	optimization,	Operating	system	configurations
optimization

OS	commands
used,	for	obtaining	thread	dump	/	Taking	a	thread	dump	using	the	operating
system	commands,	Using	the	keyboard	shortcut	Ctrl	+	Pause	Break
SIGQUIT,	sending	to	Java	process	/	Sending	SIGQUIT	to	the	Java	process

OS	configuration,	tuning	examples
File	Descriptor,	setting	/	Operating	system	configurations	optimization
TCP	tuning	/	Operating	system	configurations	optimization

OS	configurations
optimization	/	Operating	system	configurations	optimization

OutOfMemoryError
about	/	Taking	heap	dumps	on	the	occurrence	of	JVM	OutOfMemoryError
heap	dump,	taking	on	occurence	of	/	Taking	heap	dumps	on	the	occurrence	of
JVM	OutOfMemoryError

outputOptions	parameter	/	The	monitoring	tool	for	Java	virtual	machine	statistics
over	threading

about	/	Low/over	threading

P
-package	option	/	Using	the	javap	tool	to	understand	micro-optimizations
-permstat	tool

about	/	The	JVM	memory	map	tool
syntax	/	The	JVM	memory	map	tool

-private/-p	option	/	Using	the	javap	tool	to	understand	micro-optimizations
-protected	option	/	Using	the	javap	tool	to	understand	micro-optimizations
-public	option	/	Using	the	javap	tool	to	understand	micro-optimizations
para-virtualization	/	Performance	considerations	in	cloud	deployment
parallel	GC

versus	serial	GC	/	Serial	versus	parallel	collector
pc	register

about	/	PC	registers
performance

evaluating	/	Project	milestones	and	performance
caching	/	Caching	concurrency	and	performance
and	development	processes	/	Performance	and	development	processes,	Agile
and	performance,	Performance	and	test-driven	development	(TDD),	Manual	and
automated	code	review
and	agile	/	Agile	and	performance
and	TDD	/	Performance	and	test-driven	development	(TDD)

performance	anti-patterns
using	/	Avoiding	performance	anti-patterns
software	process	anti-patterns	/	Avoiding	performance	anti-patterns
technical	anti-patterns	/	Avoiding	performance	anti-patterns
performance	issues	/	Avoiding	performance	anti-patterns

performance	assessment	plan
creating,	of	ExcellentSurvey	application	/	ExcellentSurvey	performance
assessment

performance	baseline
about	/	Performance	benchmarking	and	baseline

performance	benchmarking
about	/	Performance	benchmarking	and	baseline

performance	code
reviewing	/	Performance	code	review

performance	counters
about	/	The	Microsoft	Windows	tools

performance	findings
hot	spot	methods	/	Detected	HotSpot	methods
hot	spot	database	statements	/	Detected	HotSpot	database	statements
logic	issues	/	Potential	wrong	logic	issues

performance	fixing	cycle
about	/	Performance	fixing	cycle

performance	fixing	strategy
about	/	Our	first	performance	fixing	strategy
application	logic/algorithm,	fixing	/	Fixing	the	application	logic/algorithm
caching	support	addition	/	Adding	support	for	caching
resource	performance,	optimizing	/	Optimizing	the	performance	of	resources
concurrency	or	multithreading,	implementing	/	Implementing	concurrency	or
multithreading
asynchronous	methods,	using	/	Using	asynchronous	methods

performance	goals
about	/	When	to	stop	tuning?

performance	handling	tactics
about	/	Performance-handling	tactics
proactive	measures	(preventive)	/	Proactive	measures	(preventive)
reactive	measures	(curative)	/	Reactive	measures	(curative)

performance	issue	isolation
client-side	/	Client	side
HTTP	server	side	/	HTTP	server	side	(web	servers)
application	server	issue	/	Application	server	issue
database	server	issue	/	Database	server	issue
integrated	system	/	Integrated	systems
networking	components	/	Networking	components
code	and	script	analysis	/	Code	and	script	analysis
application	profiling	/	Profiling	the	application

performance	issues
about	/	Understanding	performance	issues
types	/	Understanding	performance	issues
classifying,	by	discovery	phase	/	Classifying	performance	issues	by	the
discovery	phase,	Requirement	phase	and	design-time	issues,	Development-time
issues,	Production-time	issues
classifying,	by	root	phase	/	Classifying	performance	issues	by	the	root	phase,
Design/architecture	phase	issues,	Operational	and	environmental-specific	issues
handling,	tactics	/	Performance-handling	tactics,	Proactive	measures
(preventive),	Understanding	the	different	layers	of	an	enterprise	application,	The
three	pillars	required	for	performance	tuning,	Getting	ready	with	the	required
performance	tools,	Being	ready	to	deal	with	performance	issues	at	any	time
cycle	of	learning	/	The	cycle	of	learning
isolating	/	Isolating	the	issue

performance	issues	classification,	discovery	phase
requirement	phase	/	Requirement	phase	and	design-time	issues
design-time	issues	/	Requirement	phase	and	design-time	issues
development-time	issues	/	Development-time	issues
testing-time	issues	/	Testing-time	issues
production-time	issues	/	Production-time	issues

performance	issues	classification,	root	phase

requirement	phase	issues	/	Requirement	phase	issues
design/architecture	phase	issues	/	Design/architecture	phase	issues
development	phase	issues	/	Development	phase	issues
testing	phase	issues	/	Testing	phase	issues
operational	issues	/	Operational	and	environmental-specific	issues
environmental-specific	issues	/	Operational	and	environmental-specific	issues

performance	test	environment
selecting	/	Selecting	the	performance	test	environment

performance	testing
dissection	/	Dissecting	performance	testing
objectives	/	Dissecting	performance	testing
in	cloud	environment	/	Performance	testing	in	a	cloud	environment

performance	testing	aspects
about	/	Exploring	performance	testing	aspects
test	environment	selection	/	Selecting	the	performance	test	environment
project	milestones	/	Project	milestones	and	performance
performance	evaluation	/	Project	milestones	and	performance
rules	and	responsibilities,	defining	/	Defining	different	rules	and	responsibilities
test	types	/	Performance	testing	types
test	components	/	Performance	testing	components,	Test	users,	Preparing	the	test
environment	prior	to	test	execution,	Test	quality	assurance
test	tools	/	Performance	testing	tools
benchmarking	and	baseline	/	Performance	benchmarking	and	baseline
isolation	test	/	Isolation	testing
fix	cycle	/	Performance	fixing	cycle
performance	goals	/	When	to	stop	tuning?

performance	testing	components
test	data	/	Test	data
test	users	/	Test	users
test	scenarios	/	Test	scenarios

performance	testing	terminologies
about	/	Performance	testing	terminologies
capacity	/	Performance	testing	terminologies
response	time	/	Performance	testing	terminologies
latency	/	Performance	testing	terminologies
throughput	/	Performance	testing	terminologies
resource	utilization	/	Performance	testing	terminologies
iteration	/	Performance	testing	terminologies
scalability	/	Performance	testing	terminologies
stability	/	Performance	testing	terminologies
thinking	time	/	Performance	testing	terminologies

performance	testing	tools
using	/	Performance	testing	tools

performance	testing	types

load	testing	/	Load	testing
stress	testing	/	Stress	testing
capacity	testing	/	Capacity	testing

performance	tuning
about	/	Understanding	the	art	of	performance	tuning
components	/	Understanding	the	art	of	performance	tuning
overview	/	Reaching	our	final	destination
results	/	Result	and	conclusion
recommendations	/	Result	and	conclusion

performance	tuning	components
Understand	Env	/	Understanding	the	art	of	performance	tuning
Understand	Java/JVM	/	Understanding	the	art	of	performance	tuning
Understand	Java	EE	/	Understanding	the	art	of	performance	tuning
Mastering	Tools	/	Understanding	the	art	of	performance	tuning
Way	of	thinking	element	/	Understanding	the	art	of	performance	tuning

performance	tuning	pillars
about	/	The	three	pillars	required	for	performance	tuning
performance	process,	defining	/	Define	the	performance	process
performance	tools,	getting	ready	/	Getting	ready	with	the	required	performance
tools
performance	issues,	facing	/	Being	ready	to	deal	with	performance	issues	at	any
time

Persistence	layer	/	Functional	overview	of	the	ExcellentSurvey	application
Pessimistic	locking

about	/	Caching	concurrency	and	performance
PMD

about	/	Manual	and	automated	code	review
URL	/	Manual	and	automated	code	review

PMD	rules
customizing	/	Manual	and	automated	code	review

potential	performance	issues
identifying	/	Identifying	potential	performance	issues
algorithmic/logic	issues	/	Algorithmic/logic	issues
caching	issues	/	Caching	issues
resourcing	issues	/	Resourcing	issues
threading	issues	/	Threading	issues

presentation	layer	/	Potential	performance	impact	of	the	application	layer’s	decisions
Presentation	tier	/	Functional	overview	of	the	ExcellentSurvey	application
Printcompilation	value	/	The	monitoring	tool	for	Java	virtual	machine	statistics
proactive	tactics

about	/	Proactive	measures	(preventive)
proactive	tuning

about	/	Missing	proactive	tuning
process

used,	for	achieving	concurrency	/	Process	versus	thread
versus	thread	/	Process	versus	thread

profile	patterns
about	/	Different	profiling	patterns,	What	we	need	to	know	from	this	section

profile	patterns	classification
sampling	versus	instrumental	/	Different	profiling	patterns
attach	versus	start	for	profiling	/	Different	profiling	patterns
local	versus	remote	/	Different	profiling	patterns
filtered	versus	non-filtered	classes	/	Different	profiling	patterns
online	versus	offline	/	Different	profiling	patterns
web	server	versus	standalone	/	Different	profiling	patterns

profiler	agent
about	/	Profiler	agent
running,	command-line	options	used	/	The	command-line	options
starting,	start-up()	function	used	/	Agent	start-up

profiler	modes
event	based	/	Profilers	modes
instrumental	based	/	Profilers	modes
sampling	based	(statistical)	/	Profilers	modes

profilers
about	/	Understanding	the	profiling	tools
modes	/	Profilers	modes
JVM	TI	/	JVM	TI
agent	/	Profiler	agent
profile	patterns	/	Different	profiling	patterns,	What	we	need	to	know	from	this
section

profiler	tools
used,	for	obtaining	thread	dump	/	Taking	a	thread	dump	using	profiler	tools
used,	for	taking	heap	dump	/	Taking	heap	dumps	using	the	profiler	tools

program	counter	(PC)	/	Different	CPU	profiling	options
project	milestones

about	/	Project	milestones	and	performance
Proof	Of	Concept	(POC)

about	/	Requirement	phase	and	design-time	issues
ps/pgrep/pstree	command

about	/	The	Unix/Linux	tools

Q
-qx	[object]	parameter	/	The	Microsoft	Windows	tools
-q	[object]	parameter	/	The	Microsoft	Windows	tools
question	rating	types	hot	spot	query

fixing	/	Fixing	HotSpot	queries	that	get	the	notification	templates/question
rating	types

R
@ReadOnly	annotation	/	JPA	performance	tuning	tips
reactive	tactics

about	/	Reactive	measures	(curative)
enterprise	application	layers	/	Understanding	the	different	layers	of	an	enterprise
application
performance	tuning	pillars	/	The	three	pillars	required	for	performance	tuning,
Define	the	performance	process,	Being	ready	to	deal	with	performance	issues	at
any	time

Read-through
about	/	Caching	data	store	interaction

ReentrantLock	attribute	/	Using	explicit	locking	with	the	Lock	interface
regulatory	decisions

performance	impact	/	Potential	performance	impact	of	regulatory	decisions
remoteness	negligence

about	/	Neglecting	remoteness
performance	symptoms	/	Performance	symptoms
example	/	An	example	of	using	remote	calls	as	local	calls

replacement	policy
caching	/	Caching	replacement	policies
First-In-First-Out	(FIFO)	/	Caching	replacement	policies
Least-Frequently	Used	(LFU)	/	Caching	replacement	policies
Least-recently	Used	(LRU)	/	Caching	replacement	policies
Most-Recently	Used	(MRU)	/	Caching	replacement	policies

request	samplers
about	/	Different	components	of	the	JMeter	test	plan

Request	scope
about	/	Different	application	scopes

resource	performance
optimizing	/	Optimizing	the	performance	of	resources

resource	utilization	terminology
about	/	Performance	testing	terminologies

resourcing	issues
about	/	Resourcing	issues

response	time	terminology
about	/	Performance	testing	terminologies

REST
advantages	/	Performance	aspects	of	Resource	Oriented	Architecture	(ROA)

RESTful	web	services
about	/	Performance	aspects	of	Resource	Oriented	Architecture	(ROA)
features	/	Performance	aspects	of	Resource	Oriented	Architecture	(ROA)
advantages	/	Performance	aspects	of	Resource	Oriented	Architecture	(ROA)

RESTful	WS	development

facilitating,	JAX-RS	2.0	(JSR	339)	used	/	Java	API	for	RESTful	web	services	–
JAX-RS	2.0	(JSR	339)

REST	services
using	/	Performance	aspects	of	Resource	Oriented	Architecture	(ROA)

ROA
about	/	Performance	aspects	of	Resource	Oriented	Architecture	(ROA)
performance	/	Performance	aspects	of	Resource	Oriented	Architecture	(ROA)
and	SOA,	performance	comparison	/	Performance	aspects	of	Resource	Oriented
Architecture	(ROA)

root	phase
performance	issues,	classifying	by	/	Classifying	performance	issues	by	the	root
phase,	Design/architecture	phase	issues,	Operational	and	environmental-specific
issues

rules
and	responsibilities,	defining	/	Defining	different	rules	and	responsibilities

RUNNABLE	thread	state	/	Understanding	the	thread	dump	structure

S
-s	computer_name	parameter	/	The	Microsoft	Windows	tools
-sc	samples	parameter	/	The	Microsoft	Windows	tools
-si	interval	[mm*]	ss	parameter	/	The	Microsoft	Windows	tools
-s	option	/	Using	the	javap	tool	to	understand	micro-optimizations
sar	command

about	/	The	Unix/Linux	tools
saturation

about	/	Performance	testing	terminologies
saveInDBUsingBatch	method

about	/	Database	performance	tuning	tips
name	parameter	/	Database	performance	tuning	tips
count	parameter	/	Database	performance	tuning	tips

scalability,	system	components	/	Potential	performance	impact	of	a	component’s
selection	decisions
scalability	terminology

about	/	Performance	testing	terminologies
script

building,	JProfiler	triggers	used	/	Building	our	script	using	JProfiler	triggers
security	decisions

performance	impact	/	Potential	performance	impact	of	security	decisions
selected	performance	issues

unnecessary	application	logic	/	Unnecessary	application	logic
excessive	application	logging	/	Excessive	application	logging
database	issues	/	Database	performance	issues
absent	proactive	tuning	/	Missing	proactive	tuning

self-time
about	/	Analyzing	the	method	time	versus	the	method	invocation	count

separation	of	concerns
about	/	Potential	performance	impact	of	integration	decisions

serial	collector
about	/	Understanding	the	Java	garbage	collection	policies

serial	GC
versus	parallel	GC	/	Serial	versus	parallel	collector

server	mode
about	/	Selecting	the	HotSpot	JVM	type

service	caching
implementing	/	Performance	aspects	of	Service	Oriented	Architecture	(SOA)
service	data	caching	/	Performance	aspects	of	Service	Oriented	Architecture
(SOA)
service	response/result	caching	/	Performance	aspects	of	Service	Oriented
Architecture	(SOA)

service	data	caching	/	Performance	aspects	of	Service	Oriented	Architecture	(SOA)

Service	Data	Object	(SDO)	/	Performance	aspects	of	Service	Oriented	Architecture
(SOA)
service	dynamic	binding

using	/	Performance	aspects	of	Service	Oriented	Architecture	(SOA)
service	layer	/	Potential	performance	impact	of	the	application	layer’s	decisions
service	response/result	caching	/	Performance	aspects	of	Service	Oriented
Architecture	(SOA)
service	throttling

about	/	Performance	aspects	of	Service	Oriented	Architecture	(SOA)
Servlets	performance	tuning	tips

about	/	Servlets	and	JSP	performance	tuning	tips
session	beans	asynchronous	method	invocation

about	/	Session	beans	asynchronous	method	invocation
using	/	Session	beans	asynchronous	method	invocation

session	ID	parameter	/	Building	our	script	using	JProfiler	triggers
session	memory	leakage

versus	global	memory	leakage	/	Application	memory	leakage	(session	leakage
versus	global	leakage)

session	scope
about	/	Different	application	scopes

simple	algorithmic	evaluation
about	/	Simple	algorithmic	evaluation
performing	/	Simple	algorithmic	evaluation

Simple	Logging	Facade	for	Java	(SLF4J)	/	Application	logging	and	performance
SingleThreadModel	interface

about	/	The	SingleThreadModel	interface
singleton	session	bean

creating	/	A	singleton	session	bean
using	/	A	singleton	session	bean

SLAs
about	/	Requirement	phase	and	design-time	issues

SOA
about	/	Performance	aspects	of	Service	Oriented	Architecture	(SOA)
performance	/	Performance	aspects	of	Service	Oriented	Architecture	(SOA)
advantages	/	Performance	aspects	of	Service	Oriented	Architecture	(SOA)
using	/	Performance	aspects	of	Service	Oriented	Architecture	(SOA)
and	ROA,	performance	comparison	/	Performance	aspects	of	Resource	Oriented
Architecture	(ROA)

Soak/Endurance	Testing
about	/	Load	testing

SOAP	sampler
creating	/	Creating	the	SOAP	sampler

SOAP	with	Attachments	(SwA)
about	/	Web	service	(WS)	performance	tuning	tips

SOA	service
characteristics	/	Performance	aspects	of	Service	Oriented	Architecture	(SOA)

software	process	anti-patterns	/	Avoiding	performance	anti-patterns
SonarQube

about	/	Manual	and	automated	code	review
URL	/	Manual	and	automated	code	review

Speed	Tracer
URL	/	Speed	Tracer

spike	load
about	/	Stress	testing

stability	terminology
about	/	Performance	testing	terminologies

standalone	application
versus	web	applications	/	Standalone	applications	versus	web	applications,
Thick	client	application	–	client-server	model,	Thin	client	application	–	web-
based	model
characteristics	/	The	standalone	application

standalone	monitoring	tools
about	/	The	standalone	monitoring	tools

start-up()	function
used,	for	profiler	agent	start-up	/	Agent	start-up

statOption	values
class	/	The	monitoring	tool	for	Java	virtual	machine	statistics
Compiler	/	The	monitoring	tool	for	Java	virtual	machine	statistics
Printcompilation	/	The	monitoring	tool	for	Java	virtual	machine	statistics
gc	/	The	monitoring	tool	for	Java	virtual	machine	statistics
gcutil	/	The	monitoring	tool	for	Java	virtual	machine	statistics
Gccapacity	/	The	monitoring	tool	for	Java	virtual	machine	statistics
Gccause	/	The	monitoring	tool	for	Java	virtual	machine	statistics
gcnew	/	The	monitoring	tool	for	Java	virtual	machine	statistics
Gcnewcapacity	/	The	monitoring	tool	for	Java	virtual	machine	statistics
gcold	/	The	monitoring	tool	for	Java	virtual	machine	statistics
Gcoldcapacity	/	The	monitoring	tool	for	Java	virtual	machine	statistics
Gcpermcapacity	/	The	monitoring	tool	for	Java	virtual	machine	statistics

stop-the-world	GC
versus	concurrent	GC	/	Concurrent	versus	stop-the-world

StopWatch	class
about	/	Performance	and	test-driven	development	(TDD)
example,	URL	/	Performance	and	test-driven	development	(TDD)

stress	testing
about	/	Stress	testing

String()	method	/	String	creation	tips
String.concat()	method

using	/	String	concatenation	tips

String.valueOf()	method
using	/	String	concatenation	tips

StringBuffer	operation
versus	StringBuilder	operation	/	String	concatenation	tips

StringBuilder.append()	method
about	/	Using	the	javap	tool	to	understand	micro-optimizations

StringBuilder.init()	method
about	/	Using	the	javap	tool	to	understand	micro-optimizations

StringBuilder	class	/	Using	the	javap	tool	to	understand	micro-optimizations
StringBuilder	operation

versus	StringBuffer	operation	/	String	concatenation	tips
string	manipulation	performance	tuning	tips

string	creation	tips	/	String	creation	tips
string	concatenation	tips	/	String	concatenation	tips
JVM	string	tuning	parameters	/	The	JVM	String	tuning	parameters

String	object	/	String	creation	tips
Stubbing

about	/	Development-time	issues
stuck	thread	configuration

tuning	/	Tuning	stuck	thread	configuration
survivor	spaces	/	Visualizing	the	garbage	collection	activity
synchronized	code	block

using	/	Using	synchronized	blocks
minimizing,	strategies	/	Using	synchronized	blocks

synchronized	keyword
using	/	Using	synchronized	blocks

system	components
selecting	/	Potential	performance	impact	of	a	component’s	selection	decisions

system	components,	aspects
scalability	/	Potential	performance	impact	of	a	component’s	selection	decisions
expandability	/	Potential	performance	impact	of	a	component’s	selection
decisions
flexibility	/	Potential	performance	impact	of	a	component’s	selection	decisions
customizable	feature	/	Potential	performance	impact	of	a	component’s	selection
decisions

T
task	manager

about	/	Taking	heap	dump	using	jmap
tcpdump	command

about	/	The	Unix/Linux	tools
TDA

used,	for	analysing	thread	dump	/	Using	Thread	Dump	Analyzer
URL	/	Using	Thread	Dump	Analyzer

TDD
performance	considerations	/	Performance	and	test-driven	development	(TDD)
advanrage	/	Performance	and	test-driven	development	(TDD)

technical	anti-patterns	/	Avoiding	performance	anti-patterns
Tenured	Space

about	/	Tuning	the	JRockit	virtual	machine
TERMINATED	thread	state	/	Understanding	the	thread	dump	structure
test	automation

about	/	Test	automation
test	data

about	/	Test	data
test	environment

preparing,	prior	to	test	execution	/	Preparing	the	test	environment	prior	to	test
execution

test	quality	assurance
about	/	Test	quality	assurance

test	scenarios
about	/	Test	scenarios

test	users
about	/	Test	users
VUsers	/	Test	users

thick	client	application(client-server	model)
characteristics	/	Thick	client	application	–	client-server	model

thin	client	applications(web-based	model)
characteristics	/	Thin	client	application	–	web-based	model

thinking	time	terminology
about	/	Performance	testing	terminologies

Thread.sleep()	method	/	The	HotSpots	view
thread	blocking

about	/	Blocking	threads
performance	symptoms	/	Performance	symptoms
example	/	An	example	of	thread	blocking
fixing	/	Fixing	thread	deadlocks	and	thread	blocking

thread	deadlock
about	/	Thread	deadlock

thread	deadlocks
fixing	/	Fixing	thread	deadlocks	and	thread	blocking

thread	dump
about	/	Dealing	with	thread	dumps
obtaining	/	Dealing	with	thread	dumps
obtaining,	OS	commands	used	/	Taking	a	thread	dump	using	the	operating
system	commands,	Using	the	keyboard	shortcut	Ctrl	+	Pause	Break
obtaining,	JDK	tools	used	/	Taking	a	thread	dump	using	the	JDK	tools,	Thread
dump	using	the	Java	VisualVM
obtaining,	application’s	server	admin	console/tools	used	/	Taking	thread	dumps
using	an	application’s	server	admin	console/tools
obtaining,	profiler	tools	used	/	Taking	a	thread	dump	using	profiler	tools
reading	/	Reading	and	analyzing	the	thread	dumps,	Understanding	the	thread
dump	structure
analyzing	/	Analyzing	the	thread	dumps,	Using	Thread	Dump	Analyzer
using,	advantages	/	Analyzing	the	thread	dumps

thread	dump	analysis
main	goals	/	Analyzing	the	thread	dumps

thread	dump	structure
understanding	/	Understanding	the	thread	dump	structure,	Analyzing	the	thread
dumps

thread	group
creating	/	Creating	a	thread	group

thread	groups	(users)
about	/	Different	components	of	the	JMeter	test	plan

thread	header	parts
Thread	name	/	Understanding	the	thread	dump	structure
Daemon	flag	/	Understanding	the	thread	dump	structure
Thread	priority	/	Understanding	the	thread	dump	structure
Thread	ID	/	Understanding	the	thread	dump	structure
nid	/	Understanding	the	thread	dump	structure
Thread	state	/	Understanding	the	thread	dump	structure
Address	range	/	Understanding	the	thread	dump	structure

threading	deadlock
about	/	Threading	deadlock

threading	issues
about	/	Threading	issues,	Exploring	potential	threading	issues
performance	issues	/	Threading	performance	issues,	Threading	memory	issues,
Using	unmanaged	threads
hung	application,	root	cause	detection	/	Detecting	the	root	cause	of	a	hung
application,	Detecting	the	hang	location	using	profilers

threading	memory	issues
about	/	Threading	memory	issues,	Using	unmanaged	threads

threading	performance	issues

about	/	Threading	performance	issues,	Threading	performance	issues
blocking	threads	/	Blocking	threads,	Performance	symptoms,	An	example	of
thread	blocking
thread	deadlock	/	Thread	deadlock
deadlocks	/	Threading	deadlock
blocked/starving/stuck	threads	/	Blocked/starving/stuck	threads
low/over	threading	/	Low/over	threading
memory	issues	/	Threading	memory	issues,	Using	unmanaged	threads
unmanaged	threads	/	Using	unmanaged	threads

ThreadLocalRandom	class	/	Using	explicit	locking	with	the	Lock	interface
thread	pool

creating	/	Creating	a	thread	pool
thread	pool	tuning	options

about	/	Thread	pool	tuning	options
thread	profiling

about	/	Determining	when	to	use	thread	profiling
usage	conditions	/	Determining	when	to	use	thread	profiling
options	/	Exploring	the	different	thread	profiling	options

thread	profiling	options
threads,	monitoring	with	NetBeans	/	Thread	monitoring	using	NetBeans
threads,	monitoring	with	JProfiler	/	Thread	monitoring	using	JProfiler
threads,	monitoring	with	jmc	/	Thread	monitoring	using	Java	Mission	Control

thread	profiling	results
reading	/	Reading	the	thread	profiling	results

threads
used,	for	achieving	concurrency	/	Process	versus	thread

thread	states
Running	(green)	/	Thread	monitoring	using	NetBeans
Sleeping	(purple)	/	Thread	monitoring	using	NetBeans
Wait	(yellow)	/	Thread	monitoring	using	NetBeans
Park	(orange)	/	Thread	monitoring	using	NetBeans
Monitor	(red)	/	Thread	monitoring	using	NetBeans

thread	states	printed	in	thread	dumps
RUNNABLE	/	Understanding	the	thread	dump	structure
BLOCKED	/	Understanding	the	thread	dump	structure
WAITING	/	Understanding	the	thread	dump	structure
TIMED_WAITING	/	Understanding	the	thread	dump	structure
NEW	/	Understanding	the	thread	dump	structure
TERMINATED	/	Understanding	the	thread	dump	structure

throughput	terminology
about	/	Performance	testing	terminologies

TIMED_WAITING	thread	state	/	Understanding	the	thread	dump	structure
timing	specifications

navigation	/	Navigating	time	specifications

top	command
about	/	The	Unix/Linux	tools

TPTP
about	/	The	Test	and	Performance	Tools	Platform
URL	/	The	Test	and	Performance	Tools	Platform

TRACE	level
using	/	Application	logging	and	performance

tryLock	method	/	Using	explicit	locking	with	the	Lock	interface
Typeperf	command-line	utility

about	/	The	Microsoft	Windows	tools
syntax	/	The	Microsoft	Windows	tools
syntax	parameters	/	The	Microsoft	Windows	tools

Typeperf	syntax	parameters
-c	{	Path	[path	…]	|	-cf	FileName	}	/	The	Microsoft	Windows	tools
-cf	FileName	/	The	Microsoft	Windows	tools
-f	{csv|tsv|bin}	/	The	Microsoft	Windows	tools
-si	interval	[mm*]	ss	/	The	Microsoft	Windows	tools
-o	FileName	/	The	Microsoft	Windows	tools
-q	[object]	/	The	Microsoft	Windows	tools
-qx	[object]	/	The	Microsoft	Windows	tools
-sc	samples	/	The	Microsoft	Windows	tools
-config	FileName	/	The	Microsoft	Windows	tools
-s	computer_name	/	The	Microsoft	Windows	tools

U
UI	decisions

performance	impact	/	Potential	performance	impact	of	framework	and	UI
decisions

Uniform	Resource	Identifier	(URI)	/	Performance	aspects	of	Resource	Oriented
Architecture	(ROA)
Unix/Linux	tools

about	/	The	Unix/Linux	tools
ps/pgrep/pstree	/	The	Unix/Linux	tools
top	command	/	The	Unix/Linux	tools
vmstat	command	/	The	Unix/Linux	tools
iostat	command	/	The	Unix/Linux	tools
sar	command	/	The	Unix/Linux	tools
tcpdump	command	/	The	Unix/Linux	tools
high	CPU	utilization,	example	/	An	example	of	high	CPU	utilization

UnlockCommercialFeatures	parameter	/	Using	Java	Mission	Control	(JMC)
unmanaged	threads

using	/	Using	unmanaged	threads
updateStock()	method

used,	for	synchronizing	object	/	Reading	the	thread	profiling	results
user	story

about	/	Agile	and	performance
user	thread

versus	daemon	thread	/	Thread	monitoring	using	NetBeans
user’s	survey	count	hot	spot	query

fixing	/	Fixing	the	HotSpot	query	that	counts	user	surveys

V
-verbose	option	/	Using	the	javap	tool	to	understand	micro-optimizations
vertical	dimension	nodes

exploring,	in	horizontal	dimension	nodes	/	Exploring	vertical	dimension	nodes
in	horizontal	dimension	nodes,	Application	servers,	Middleware	integration
servers,	CPU	utilization,	Storage	I/O	performance
client	side	/	Client	side
network	components	/	Network	components
HTTP	servers	(web	servers)	/	HTTP	servers	(web	servers)
application	servers	/	Application	servers
database	servers	/	Database	servers
middleware	integration	servers	/	Middleware	integration	servers
operating	system	and	hardware	/	Operating	system	and	hardware
CPU	utilization	/	CPU	utilization
network	traffic	/	Network	traffic
memory	usage	/	Memory	usage
storage	I/O	performance	/	Storage	I/O	performance

View	scope
about	/	Different	application	scopes

virtualization	models
full-virtualization	/	Performance	considerations	in	cloud	deployment
hardware	virtualization	/	Performance	considerations	in	cloud	deployment
para-virtualization	/	Performance	considerations	in	cloud	deployment

Virtual	Machine	(VM)	/	Understanding	the	different	layers	of	an	enterprise
application
Virtual	Private	Cloud	(VPC)	/	Performance	considerations	in	cloud	deployment
virtual	size

about	/	Reading	garbage	collection	activity	logs	(HotSpot	VM)
Visual	GC

about	/	Visualizing	the	garbage	collection	activity
visual	tools

used,	for	navigating	inside	heap	dump	/	Navigating	inside	a	heap	dump	using
visual	tools

vmid	parameter	/	The	monitoring	tool	for	Java	virtual	machine	statistics
vmstat	command

about	/	The	Unix/Linux	tools
VUsers

about	/	Test	users

W
W3C	WADL	documentation

URL	/	Performance	aspects	of	Resource	Oriented	Architecture	(ROA)
WAITING	thread	state	/	Understanding	the	thread	dump	structure
warm-up	time

about	/	Test	users
Web	Application	Description	Language	(WADL)

about	/	Performance	aspects	of	Resource	Oriented	Architecture	(ROA)
web	applications

performance	tuning	/	Dealing	with	web	applications’	performance	tuning
web	applications,	performance	tuning	dimensions

horizontal	dimension	(node-to-node)	/	Horizontal	dimension	(node-to-node)
vertical	dimension	(intra-node)	/	Vertical	dimension	(intranode)

web	application	test	scenarios
thread	groups,	creating	/	Creating	thread	groups
configuration	element,	creating	/	Creating	a	configuration	element
recording	controller	creation	/	Creating	a	recording	controller
workbench	server,	creating	/	Creating	a	workbench	server	(HTTP(s)	Test	Script
Recorder)
browser	settings,	updating	/	Updating	browser	settings
recording	/	Start	recording	our	journeys/scenarios
cookie	control,	adding	/	Adding	cookie	control
CSV	dataset,	adding	/	Adding	a	CSV	dataset
variables,	adding	to	requests	/	Adding	variables	to	our	requests
suitable	thinking	time	addition	/	Adding	suitable	thinking	time
response	assertions,	adding	/	Adding	response	assertions
results	view,	adding	/	Adding	results	view
test	plan	execution	/	Executing	our	test	plan	and	getting	the	results

web	container	tuning	options
session	timeout,	setting	/	Web	container	tuning	options
disable	dynamic	JSP	reloading	/	Web	container	tuning	options

web	servers	(HTTP	servers)
tuning	/	Tuning	web	servers	(HTTP	servers)
Apache,	tuning	/	Tuning	the	Apache	web	server	(Apache	HTTP	server)
Oracle,	tuning	/	Tuning	the	Oracle	web	server	(Oracle	HTTP	server)

Web	Service	(WS)	layer	/	Functional	overview	of	the	ExcellentSurvey	application
WebSocket	1.0	(JSR	356)

features	/	Java	API	for	WebSocket	1.0	(JSR	356)
pseudo-code	example	/	Java	API	for	WebSocket	1.0	(JSR	356)
URL	/	Java	API	for	WebSocket	1.0	(JSR	356)

work	as	designed	performance	issues
about	/	Work	as	designed	performance	issues,	Work	as	designed	performance
issues

improper	synchronous	code	/	Synchronous	where	asynchronous	is	required
remoteness,	neglecting	/	Neglecting	remoteness
excessive	serialization	/	Excessive	serialization	performance	impact,	Object	size
impact,	Web	services	granularity	impact

Write-behind
about	/	Caching	data	store	interaction

Write-through
about	/	Caching	data	store	interaction

WS	performance	tuning	tips
about	/	Web	service	(WS)	performance	tuning	tips

X
-XX*ConcGCThreads=n	parameter	/	Setting	GC	performance	targets
-XX*G1HeapRegionSize=n	parameter	/	Setting	GC	performance	targets
XX*ParallelGCThreads=n	parameter	/	Setting	GC	performance	targets

	Java EE 7 Performance Tuning and Optimization
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Getting Started with Performance Tuning
	Understanding the art of performance tuning
	Understanding performance issues
	Classifying performance issues by the discovery phase
	Requirement phase and design-time issues
	Development-time issues
	Testing-time issues
	Production-time issues
	Classifying performance issues by the root phase
	Requirement phase issues
	Design/architecture phase issues
	Development phase issues
	Testing phase issues
	Operational and environmental-specific issues
	Performance-handling tactics
	Proactive measures (preventive)
	Reactive measures (curative)
	Understanding the different layers of an enterprise application
	The three pillars required for performance tuning
	Define the performance process
	Getting ready with the required performance tools
	Being ready to deal with performance issues at any time
	The cycle of learning
	Tuning yourself before tuning the application
	Be a true leader
	Use your power
	Be responsible
	Trust your team
	Keep it simple
	Respect roles and responsibilities
	Understand the application domain and context
	Protect your reputation
	Standalone applications versus web applications
	The standalone application
	Thick client application – client-server model
	Thin client application – web-based model
	Dealing with web applications' performance tuning
	The two dimensions of web applications' performance tuning
	Horizontal dimension (node-to-node)
	Vertical dimension (intranode)
	Exploring vertical dimension nodes in horizontal dimension nodes
	Client side
	Network components
	HTTP servers (web servers)
	Application servers
	Database servers
	Middleware integration servers
	Operating system and hardware
	CPU utilization
	Network traffic
	Memory usage
	Storage I/O performance
	Summary
	2. Understanding Java Fundamentals
	Discussing the new Java EE 7 features
	Bean Validation 1.1 (JSR 349)
	Java API for JSON processing – JSON-P 1.0 (JSR 353)
	Java API for RESTful web services – JAX-RS 2.0 (JSR 339)
	Java Servlet 3.1 (JSR 340)
	Context and Dependency Injection – CDI 1.1 (JSR 346)
	Interceptors 1.2 (JSR 318)
	Enterprise JavaBeans – EJB 3.2 (JSR 345)
	Java Message Service – JMS 2.0 (JSR 343)
	Concurrency Utilities 1.0 (JSR 236)
	Batch Applications 1.0 (JSR 352)
	Java Persistence APIs – JPA 2.1 (JSR 338)
	JavaServer Faces – JSF 2.2 (JSR 344)
	Expression language 3.0 (JSR 341)
	Java Transaction APIs – JTA 1.2 (JSR 907)
	Java API for WebSocket 1.0 (JSR 356)
	Understanding memory structure in the JVM
	The JVM specifications
	Heap area
	Method area and runtime constant pool
	JVM stack
	Native method stacks (C stacks)
	PC registers
	Memory structure in the Java HotSpot virtual machine
	Generational memory structure
	The Java HotSpot virtual machine generations
	Understanding the Java garbage collection policies
	Different GC options
	Concurrent versus stop-the-world
	Serial versus parallel collector
	Compacting versus non-compacting
	Summary phase
	Compacting phase
	The Garbage-first collector – G1
	Different application scopes
	Understanding concurrency in Java
	Process versus thread
	Exploring an object monitor
	Using the Java concurrency utilities
	Creating a thread pool
	Using explicit locking with the Lock interface
	Concurrent resources and utilities
	The ManagedExecutorService class
	The ManagedScheduledExecutorService class
	The ManagedThreadFactory class
	The important Java EE concurrency features
	The SingleThreadModel interface
	Asynchronous servlet and filter
	The new Java EE non-blocking I/O APIs
	Session beans asynchronous method invocation
	A singleton session bean
	Sending asynchronous JMS messages
	More information about Java EE 7
	Summary
	3. Getting Familiar with Performance Testing
	Dissecting performance testing
	Exploring performance testing aspects
	Selecting the performance test environment
	Project milestones and performance
	Defining different rules and responsibilities
	Performance testing types
	Load testing
	Stress testing
	Capacity testing
	Performance testing components
	Test data
	Test users
	Test scenarios
	Preparing the test environment prior to test execution
	Test automation
	Test quality assurance
	Performance testing tools
	Performance benchmarking and baseline
	Isolation testing
	Performance fixing cycle
	When to stop tuning?
	Performance testing terminologies
	Performance testing in a cloud environment
	Starting with Apache JMeter
	Different components of the JMeter test plan
	The execution order of components
	Testing with JMeter
	Using JMeter to test web services
	Creating a thread group
	Creating the SOAP sampler
	Creating listeners
	Adding an assertion on response
	Adding the CSV dataset configuration
	Getting the final results
	Using JMeter to test a web application
	Recording our testing scenarios
	Creating thread groups
	Creating a configuration element
	Creating a recording controller
	Creating a workbench server (HTTP(s) Test Script Recorder)
	Updating browser settings
	Start recording our journeys/scenarios
	Adding cookie control
	Adding a CSV dataset
	Adding variables to our requests
	Adding suitable thinking time
	Adding response assertions
	Adding results view
	Executing our test plan and getting the results
	Using JMeter to test database scripts
	Configuring the JDBC connection
	Adding a JDBC request sampler
	Adding a CSV dataset configuration
	Adding listeners to capture test results
	Summary
	4. Monitoring Java Applications
	Exploring the Java monitoring tools
	The operating system monitoring tools
	The Microsoft Windows tools
	The Unix/Linux tools
	An example of high CPU utilization
	The Java monitoring tools
	The JDK monitoring tools
	The monitoring tools for application servers
	The IDE monitoring tools
	The standalone monitoring tools
	The multifunction monitoring tools
	Understanding the profiling tools
	Profilers modes
	JVM TI
	Profiler agent
	The command-line options
	Agent start-up
	Different profiling patterns
	What we need to know from this section
	Understanding the different JDK tools
	The monitoring tool for Java virtual machine statistics
	The JVM memory map tool
	The Java heap analysis tool
	The Java monitoring and management console tool
	Java VisualVM
	Oracle Java Mission Control
	Starting with the NetBeans profiler
	The NetBeans profiler calibration
	Using the NetBeans profiler
	The Eclipse tools/plugins
	The JVM monitor
	The Test and Performance Tools Platform
	Advanced profiler – JProfiler
	Using the offline profiling mode
	Building our script using JProfiler triggers
	Further reading
	Summary
	5. Recognizing Common Performance Issues
	Going through a slow response time umbrella
	Isolating the issue
	Client side
	HTTP server side (web servers)
	Application server issue
	Database server issue
	Integrated systems
	Networking components
	Code and script analysis
	Profiling the application
	Common performance issues
	Threading performance issues
	Memory performance issues
	Algorithmic performance issues
	Work as designed performance issues
	Interfacing performance issues
	Miscellaneous performance issues
	Fake performance issues
	Threading performance issues
	Blocking threads
	Performance symptoms
	An example of thread blocking
	Thread deadlock
	Memory performance issues
	Memory leakage
	Performance symptoms
	An example of memory leakage
	Improper data caching
	Improper caching issue types
	No caching (disabled caching)
	Too small caching size
	Too big caching size
	Using the wrong caching policy
	Performance symptoms
	An example of improper caching techniques
	Work as designed performance issues
	Synchronous where asynchronous is required
	Performance symptoms
	An example of improper synchronous code
	Neglecting remoteness
	Performance symptoms
	An example of using remote calls as local calls
	Excessive serialization performance impact
	Performance symptoms
	An example of excessive serialization
	Object size impact
	Web services granularity impact
	Selected performance issues
	Unnecessary application logic
	Excessive application logging
	Database performance issues
	Missing proactive tuning
	Client-side performance issues
	Chrome developer tools
	Network analysis
	JavaScript profiling
	Speed Tracer
	Internet Explorer developer tools
	Firefox developer tools
	Navigating time specifications
	Summary
	6. CPU Time Profiling
	When to use CPU profiling
	Different CPU profiling options
	Using a NetBeans profiler
	Profiling a Java application
	Profiling a web application
	Using Java Mission Control (JMC)
	Using JProfiler
	Reading and interpreting CPU profiling results
	The call tree view
	The HotSpots view
	Analyzing the method time versus the method invocation count
	The hot spot method types
	Methods with high self-time
	Methods with high invocation events
	Methods with high self-time and invocation events
	Identifying a hot spot type
	Identifying potential performance issues
	Algorithmic/logic issues
	Caching issues
	Resourcing issues
	Threading issues
	Fixing algorithmic/logic performance
	Simple algorithmic evaluation
	Evaluating an algorithm's complexity
	Our first performance fixing strategy
	Fixing the application logic/algorithm
	Adding support for caching
	Optimizing the performance of resources
	Implementing concurrency or multithreading
	Using asynchronous methods
	Summary
	7. Thread Profiling
	Determining when to use thread profiling
	Exploring the different thread profiling options
	Thread monitoring using NetBeans
	Thread monitoring using JProfiler
	Thread monitoring using Java Mission Control
	Reading the thread profiling results
	Dealing with thread dumps
	Taking a thread dump using the operating system commands
	Using the keyboard shortcut Ctrl + Pause Break
	Sending SIGQUIT to the Java process
	Taking a thread dump using the JDK tools
	Thread dump using jstack
	Thread dump using the Java VisualVM
	Taking thread dumps using an application's server admin console/tools
	Taking a thread dump using profiler tools
	Reading and analyzing the thread dumps
	Understanding the thread dump structure
	Analyzing the thread dumps
	Using Thread Dump Analyzer
	Exploring potential threading issues
	Threading performance issues
	Threading deadlock
	Blocked/starving/stuck threads
	Low/over threading
	Threading memory issues
	Using unmanaged threads
	Detecting the root cause of a hung application
	Detecting the hang location using thread dumps
	Detecting the hang location using profilers
	Enhancing our fixing strategy
	Fixing thread deadlocks and thread blocking
	Summary
	8. Memory Profiling
	When to use memory profiling?
	Different memory profiling options
	Memory profiling using NetBeans
	Memory profiling using JProfiler
	Analyzing memory profiling results
	Analyzing memory space graphs
	Analyzing detailed object statistics
	Analyzing garbage collection activity logs (HotSpot JVM)
	Reading garbage collection activity logs (HotSpot VM)
	Visualizing the garbage collection activity
	Dealing with memory heap dumps
	Taking heap dumps on the occurrence of JVM OutOfMemoryError
	Taking heap dumps using the JDK tools
	Taking heap dump using jmap
	Taking heap dumps using Java VisualVM
	Taking heap dumps using the JRockit command utility
	Taking heap dumps using the profiler tools
	Taking heap dumps using the NetBeans profiler
	Taking heap dumps using Eclipse Memory Analyzer Tool (MAT)
	Taking heap dumps using JProfiler
	Analyzing the heap dump
	Navigating inside a heap dump using visual tools
	Query heap dumps using OQL
	Using simple OQL queries
	Using OQL built-in objects and functions
	Using a built-in heap object
	Using built-in functions on individual objects
	Potential memory performance issues
	Application memory leakage (session leakage versus global leakage)
	Improper caching implementation
	Memory issues of objects that contain the finalize() method
	Invalid contract for the equals() and hashCode() methods
	Different reasons for OOME
	Adding memory performance issues to our fixing strategy
	Fixing memory leakage issues
	Summary
	9. Tuning an Application's Environment
	Understanding environment tuning
	Tuning the JVM
	Tuning the Java HotSpot virtual machine
	Understanding the different types of the JVM parameters
	Selecting the HotSpot JVM type
	Tuning memory size
	Tuning garbage collection
	Using proper garbage collection policy
	Setting GC performance targets
	Tuning the JRockit virtual machine
	Tuning JRockit memory size
	Tuning JRockit garbage collection
	Tuning application servers
	Tuning the Oracle GlassFish application server
	Deployment tuning options
	Web container tuning options
	EJB container tuning options
	Thread pool tuning options
	JDBC connection pool tuning options
	Tuning file cache components
	Tuning DNS caching
	Tuning logging information
	Tuning the Oracle Weblogic application server
	Tuning the internal applications' deployment
	Tuning network components
	Tuning stuck thread configuration
	Tuning web servers (HTTP servers)
	Tuning the Apache web server (Apache HTTP server)
	Tuning the Oracle web server (Oracle HTTP server)
	Tuning the operating system and hardware
	Capacity planning and hardware optimization
	Operating system configurations optimization
	Summary
	10. Designing High-performance Enterprise Applications
	Potential performance impact of different design decisions
	Potential performance impact of the application layer's decisions
	Potential performance impact of a component's selection decisions
	Potential performance impact of integration decisions
	Potential performance impact of security decisions
	Potential performance impact of framework and UI decisions
	Potential performance impact of application interaction decisions
	Potential performance impact of regulatory decisions
	Potential performance impact of some miscellaneous decisions
	Avoiding performance anti-patterns
	Performance aspects of Service Oriented Architecture (SOA)
	Performance aspects of Resource Oriented Architecture (ROA)
	Dissecting performance aspects of data caching
	Data caching versus no caching
	Caching concurrency and performance
	Different levels of application data caching
	Caching an invalidation/expiration algorithm
	Caching data store interaction
	Caching replacement policies
	Data caching performance evaluation
	Performance considerations in cloud deployment
	Summary
	11. Performance Tuning Tips
	Performance and development processes
	Agile and performance
	Performance and test-driven development (TDD)
	Manual and automated code review
	Java EE performance tuning tips
	Web service (WS) performance tuning tips
	EJB performance tuning tips
	Servlets and JSP performance tuning tips
	JSF performance tuning tips
	JPA performance tuning tips
	Java performance tuning tips
	String manipulation performance tuning tips
	String creation tips
	String concatenation tips
	The JVM String tuning parameters
	Java collections and performance
	Using synchronized blocks
	The I/O operations and performance
	Exception handling and performance
	Application logging and performance
	Using the javap tool to understand micro-optimizations
	Database performance tuning tips
	Client-side optimization
	Summary
	12. Tuning a Sample Application
	Reaching our final destination
	Setting up the ExcellentSurvey application
	Functional overview of the ExcellentSurvey application
	ExcellentSurvey performance assessment
	Performance investigation plan
	Profiling our ExcellentSurvey application
	Getting CPU profiling results
	Getting memory and thread profiling results
	Getting database CPU profiling results
	Profiling performance findings
	Detected HotSpot methods
	Detected HotSpot database statements
	Potential wrong logic issues
	ExcellentSurvey issues and possible resolutions
	Fixing the EmailSender.sendEmail() HotSpot method
	Fixing the DAOHelper.createNewSurvey() HotSpot method
	Fixing the LoginFilter.log() HotSpot method
	Fixing the HotSpot autogen table update statement
	Fixing HotSpot statements to insert questions and survey questions
	Fixing HotSpot queries that get the notification templates/question rating types
	Fixing the HotSpot query that counts user surveys
	Performance code review
	Testing the application after our fixes
	Result and conclusion
	Summary
	Index

