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1. This is the only mention of this word in this book.

Preface

For years, functional programming has been considered the realm of a small band of
specialists who consistently claimed superiority to the masses while being unable to
spread the wisdom of their approach. The main reason I’ve written this book is to
challenge both the idea that there’s an innate superiority in the functional style and the
belief that its approach should be relegated to a small band of specialists!

For the last two years in the London Java Community, I’ve been getting developers to
try out Java 8 in some form or another. I’ve found that many of our members enjoy the
new idioms and libraries that it makes available to them. They may reel at the termi‐
nology and elitism, but they love the benefits that a bit of simple functional program‐
ming provides to them. A common thread is how much easier it is to read code using
the new Streams API to manipulate objects and collections, such as filtering out albums
that were made in the UK from a List of all albums.

What I’ve learned when running these kinds of events is that examples matter. People
learn by repeatedly digesting simple examples and developing an understanding of pat‐
terns out of them. I’ve also noticed that terminology can be very off-putting, so anytime
there’s a hard-sounding concept, I give an easy-to-read explanation.

For many people, what Java 8 offers by way of functional programming is incredibly
limited: no monads,1 no language-level lazy evaluation, no additional support for im‐
mutability. As pragmatic programmers, this is fine; what we want is the ability to write
library-level abstractions so we can write simple, clean code that solves business prob‐
lems. We’re even happier if someone else has written these libraries for us and we can
just focus on doing our daily jobs.
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Why Should I Read This Book?
In this book we’ll explore:

• How to write simpler, cleaner, and easier-to-read code—especially around collec‐
tions

• How to easily use parallelism to improve performance
• How to model your domain more accurately and build better DSLs
• How to write less error-prone and simpler concurrent code
• How to test and debug your lambda expressions

Developer productivity isn’t the only reason why lambda expressions have been added
to Java; there are fundamental forces in our industry at work here as well.

Who Should Read This Book?
This book is aimed squarely at Java developers who already have core Java SE skills and
want to get up to speed on the big changes in Java 8.

If you’re interested in reading about lambda expressions and how they can improve
your lot as a professional developer, read on! I don’t assume you know about lambda
expressions themselves, or any of the core library changes; instead, I introduce concepts,
libraries, and techniques from scratch.

Although I would love for every developer who has ever lived to go and buy this book,
realistically, it’s not appropriate for everyone. If you don’t know any Java at all, this isn’t
the book for you. At the same time, though lambda expressions in Java are very well
covered here, I don’t explain how they are used in any other languages.

I don’t provide a basic introduction to the use of several facets of the Java SE, such as
collections, anonymous inner classes, or the event handling mechanism in Swing. I
assume that you already know about all of these elements.

How to Read This Book
This book is written in an example-driven style: very soon after a concept is introduced,
you’ll see some code. Occasionally you might see something in the code that you’re not
100% familar with. Don’t worry—it’ll be explained very soon afterward, frequently in
the next paragraph.

This approach also lets you try out the ideas as you go along. In fact, at the end of most
chapters there are further examples for you to practice on your own. I highly recommend
that you try doing these katas as you get to the end of the chapter. Practice makes perfect,
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and—as every pragmatic programmer knows—it’s really easy to fool yourself into
thinking that you understand some code when in reality you’ve missed a detail.

Because the use of lambda expressions is all about abstracting complexity away into
libraries, I introduce a bunch of common library niceties as I go along. Chapters 2
through 6 cover the core language changes and also the improved libraries that JDK 8
brings.

The final three chapters are about applying functional programming in the wild. I’ll talk
about a few tricks that make testing and debugging code a bit easier in Chapter 7.
Chapter 8 explains how existing principles of good software design also apply to lambda
expressions. Then I talk about concurrency and how to use lambda expressions to write
concurrent code that’s easy to understand and maintain in Chapter 9. These chapters
also introduce third-party libraries, where relevant.

It’s probably worth thinking of the opening four chapters as the introductory material
—things that everyone will need to know to use Java 8 properly. The latter chapters are
more complex, but they also teach you how to be a more complete programmer who
can confidently use lambda expressions in your own designs. There are also exercises
as you go along, and the answers to these can be found on GitHub. If you practice the
exercises as you go along, you’ll soon master lambda expressions.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.
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This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/RichardWarburton/java-8-lambdas-exercises.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Java 8 Lambdas by Richard Warburton
(O’Reilly). Copyright 2014 Richard Warburton, 978-1-449-37077-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
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from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/java_8_lambdas.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction

Before we begin our exploration of what lambda expressions are and how we can use
them, you should at least understand why they exist to begin with. In this chapter, I’ll
cover that and also explain the structure and motivation of this book.

Why Did They Need to Change Java Again?
Java 1.0 was released in January 1996, and the world of programming has changed quite
a bit since then. Businesses are requiring ever more complex applications, and most
programs are executed on machines with powerful multicore CPUs. The rise of Java
Virtual Machines (JVM), with efficient runtime compilers has meant that programmers
can focus more on writing clean, maintainable code, rather than on code that’s efficiently
using every CPU clock cycle and every byte of memory.

The elephant in the room is the rise of multicore CPUs. Programming algorithms in‐
volving locks is error-prone and time-consuming. The java.util.concurrent package
and the wealth of external libraries have developed a variety of concurrency abstractions
that begin to help programmers write code that performs well on multicore CPUs.
Unfortunately, we haven’t gone far enough—until now.

There are limits to the level of abstractions that library writers can use in Java today. A
good example of this is the lack of efficient parallel operations over large collections of
data. Java 8 allows you to write complex collection-processing algorithms, and simply
by changing a single method call you can efficiently execute this code on multicore
CPUs. In order to enable writing of these kinds of bulk data parallel libraries, however,
Java needed a new language change: lambda expressions.

Of course there’s a cost, in that you must learn to write and read lambda-enabled code,
but it’s a good trade-off. It’s easier for programmers to learn a small amount of new
syntax and a few new idioms than to have to handwrite a large quantity of complex
thread-safe code. Good libraries and frameworks have significantly reduced the cost

1



and time associated with developing enterprise business applications, and any barrier
to developing easy-to-use and efficient libraries should be removed.

Abstraction is a concept that is familiar to us all from object-oriented programming.
The difference is that object-oriented programming is mostly about abstracting over
data, while functional programming is mostly about abstracting over behavior. The real
world has both of these things, and so do our programs, so we can and should learn
from both influences.

There are other benefits to this new abstraction as well. For many of us who aren’t writing
performance-critical code all the time, these are more important wins. You can write
easier-to-read code—code that spends time expressing the intent of its business logic
rather than the mechanics of how it’s achieved. Easier-to-read code is also easier to
maintain, more reliable, and less error-prone.

You don’t need to deal with the verbosity and readbility issues surrounding anonymous
inner classes when writing callbacks and event handlers. This approach allows pro‐
grammers to work on event processing systems more easily. Being able to pass functions
around easily also makes it easier to write lazy code that initializes values only when
necessary.

In addition, the language changes that enable the additional collection methods, de
fault methods, can be used by everyday programmers who are maintaining their own
libraries.

It’s not your grandfather’s Java any longer, and that’s a good thing.

What Is Functional Programming?
Functional programming is a term that means different things to different people. At
the heart of functional programming is thinking about your problem domain in terms
of immutable values and functions that translate between them.

The communities that have developed around different programming languages each
tend to think that the set of features that have been incorporated into their language are
the key ones. At this stage, it’s a bit too early to tell how Java programmers will define
functional programming. In a sense, it’s unimportant; what we really care about is writ‐
ing good code rather than functional code.

In this book, I focus on pragmatic functional programming, including techniques that
can be used and understood by most developers and that help them write programs that
are easier to read and maintain.

2 | Chapter 1: Introduction



Example Domain
Throughout the book, examples are structured around a common problem domain:
music. Specifically, the examples represent the kind of information you might see on
albums. Here’s a brief summary of the terms:
Artist

An individual or group who creates music

• name: The name of the artist (e.g., “The Beatles”)
• members: A set of other artists who comprise this group (e.g., “John Lennon”);

this field might be empty
• origin: The primary location of origin of the group (e.g., “Liverpool”).

Track
A single piece of music

• name: The name of the track (e.g., “Yellow Submarine”)

Album
A single release of music, comprising several tracks

• name: The name of the album (e.g., “Revolver”)
• tracks: A list of tracks
• musicians: A list of artists who helped create the music on this album

This domain is used to illustrate how to use functional programming techniques within
a normal business domain or Java application. You may not consider it the perfect
example subject, but it’s simple, and many of the code examples in this book will bear
similarity to those that you may see in your business domain.

Example Domain | 3





CHAPTER 2

Lambda Expressions

The biggest language change in Java 8 is the introduction of lambda expressions—a
compact way of passing around behavior. They are also a pretty fundamental building
block that the rest of this book depends upon, so let’s get into what they’re all about.

Your First Lambda Expression
Swing is a platform-agnostic Java library for writing graphical user interfaces (GUIs). It
has a fairly common idiom in which, in order to find out what your user did, you register
an event listener. The event listener can then perform some action in response to the
user input (see Example 2-1).

Example 2-1. Using an anonymous inner class to associate behavior with a button click
button.addActionListener(new ActionListener() {
    public void actionPerformed(ActionEvent event) {
        System.out.println("button clicked");
    }
});

In this example, we’re creating a new object that provides an implementation of the
ActionListener class. This interface has a single method, actionPerformed, which is
called by the button instance when a user actually clicks the on-screen button. The
anonymous inner class provides the implementation of this method. In Example 2-1,
all it does is print out a message to say that the button has been clicked.

This is actually an example of using code as data—we’re giving the
button an object that represents an action.

5



Anonymous inner classes were designed to make it easier for Java programmers to pass
around code as data. Unfortunately, they don’t make it easy enough. There are still four
lines of boilerplate code required in order to call the single line of important logic. Look
how much gray we get if we color out the boilerplate:

button.addActionListener(new ActionListener() {
    public void actionPerformed(ActionEvent event) {
        System.out.println("button clicked");
    }
});

Boilerplate isn’t the only issue, though: this code is fairly hard to read because it obscures
the programmer’s intent. We don’t want to pass in an object; what we really want to do
is pass in some behavior. In Java 8, we would write this code example as a lambda
expression, as shown in Example 2-2.

Example 2-2. Using a lambda expression to associate behavior with a button click
button.addActionListener(event -> System.out.println("button clicked"));

Instead of passing in an object that implements an interface, we’re passing in a block of
code—a function without a name. event is the name of a parameter, the same parameter
as in the anonymous inner class example. -> separates the parameter from the body of
the lambda expression, which is just some code that is run when a user clicks our button.

Another difference between this example and the anonymous inner class is how we
declare the variable event. Previously, we needed to explicitly provide its type—Actio

nEvent event. In this example, we haven’t provided the type at all, yet this example still
compiles. What is happening under the hood is that javac is inferring the type of the
variable event from its context—here, from the signature of addActionListener. What
this means is that you don’t need to explicitly write out the type when it’s obvious. We’ll
cover this inference in more detail soon, but first let’s take a look at the different ways
we can write lambda expressions.

Although lambda method parameters require less boilerplate code
than was needed previously, they are still statically typed. For the sake
of readability and familiarity, you have the option to include the type
declarations, and sometimes the compiler just can’t work it out!

How to Spot a Lambda in a Haystack
There are a number of variations of the basic format for writing lambda expressions,
which are listed in Example 2-3.
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Example 2-3. Some different ways of writing lambda expressions
     Runnable noArguments = () -> System.out.println("Hello World");  

     ActionListener oneArgument = event -> System.out.println("button clicked");  

     Runnable multiStatement = () -> {  
        System.out.print("Hello");
        System.out.println(" World");
     };

     BinaryOperator<Long> add = (x, y) -> x + y;  

     BinaryOperator<Long> addExplicit = (Long x, Long y) -> x + y;  

 shows how it’s possible to have a lambda expression with no arguments at all. You
can use an empty pair of parentheses, (), to signify that there are no arguments. This is
a lambda expression implementing Runnable, whose only method, run, takes no argu‐
ments and is a void return type.

 we have only one argument to the lambda expression, which lets us leave out the
parentheses around the arguments. This is actually the same form that we used in
Example 2-2.

Instead of the body of the lambda expression being just an expression, in  it’s a full
block of code, bookended by curly braces ({}). These code blocks follow the usual rules
that you would expect from a method. For example, you can return or throw exceptions
to exit them. It’s also possible to use braces with a single-line lambda, for example to
clarify where it begins and ends.

Lambda expressions can also be used to represent methods that take more than one
argument, as in . At this juncture, it’s worth reflecting on how to read this lambda
expression. This line of code doesn’t add up two numbers; it creates a function that adds
together two numbers. The variable called add that’s a BinaryOperator<Long> isn’t the
result of adding up two numbers; it is code that adds together two numbers.

So far, all the types for lambda expression parameters have been inferred for us by the
compiler. This is great, but it’s sometimes good to have the option of explicitly writing
the type, and when you do that you need to surround the arguments to the lambda
expression with parentheses. The parentheses are also necessary if you’ve got multiple
arguments. This approach is demonstrated in .

The target type of a lambda expression is the type of the context in
which the lambda expression appears—for example, a local variable
that it’s assigned to or a method parameter that it gets passed into.

How to Spot a Lambda in a Haystack | 7



What is implicit in all these examples is that a lambda expression’s type is context de‐
pendent. It gets inferred by the compiler. This target typing isn’t entirely new, either. As
shown in Example 2-4, the types of array initializers in Java have always been inferred
from their contexts. Another familiar example is null. You can know what the type of
null is only once you actually assign it to something.

Example 2-4. The righthand side doesn’t specify its type; it is inferred from the context
    final String[] array = { "hello", "world" };

Using Values
When you’ve used anonymous inner classes in the past, you’ve probably encountered
a situation in which you wanted to use a variable from the surrounding method. In
order to do so, you had to make the variable final, as demonstrated in Example 2-5.
Making a variable final means that you can’t reassign to that variable. It also means
that whenever you’re using a final variable, you know you’re using a specific value that
has been assigned to the variable.

Example 2-5. A final local variable being captured by an anonymous inner class
final String name = getUserName();
button.addActionListener(new ActionListener() {
    public void actionPerformed(ActionEvent event) {
        System.out.println("hi " + name);
    }
});

This restriction is relaxed a bit in Java 8. It’s possible to refer to variables that aren’t
final; however, they still have to be effectively final. Although you haven’t declared
the variable(s) as final, you still cannot use them as nonfinal variable(s) if they are to
be used in lambda expressions. If you do use them as nonfinal variables, then the com‐
piler will show an error.

The implication of being effectively final is that you can assign to the variable only
once. Another way to understand this distinction is that lambda expressions capture
values, not variables. In Example 2-6, name is an effectively final variable.

Example 2-6. An effectively final variable being captured by an anonymous inner class
String name = getUserName();
button.addActionListener(event -> System.out.println("hi " + name));

I often find it easier to read code like this when the final is left out, because it can be
just line noise. Of course, there are situations where it can be easier to understand code
with an explicit final. Whether to use the effectively final feature comes down to
personal choice.
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If you assign to the variable multiple times and then try to use it in a lambda expression,
you’ll get a compile error. For example, Example 2-7 will fail to compile with the error
message: local variables referenced from a lambda expression must be final
or effectively final.

Example 2-7. Fails to compile due to the use of a not effectively final variable
String name = getUserName();
name = formatUserName(name);
button.addActionListener(event -> System.out.println("hi " + name));

This behavior also helps explain one of the reasons some people refer to lambda ex‐
pressions as “closures.” The variables that aren’t assigned to are closed over the sur‐
rounding state in order to bind them to a value. Among the chattering classes of the
programming language world, there has been much debate over whether Java really has
closures, because you can refer to only effectively final variables. To paraphrase Shake‐
speare: A closure by any other name will function all the same. In an effort to avoid such
pointless debate, I’ll be referring to them as “lambda expressions” throughout this book.
Regardless of what we call them, I’ve already mentioned that lambda expressions are
statically typed, so let’s investigate the types of lambda expressions themselves: these
types are called functional interfaces.

Functional Interfaces
A functional interface is an interface with a single abstract method
that is used as the type of a lambda expression.

In Java, all method parameters have types; if we were passing 3 as an argument to a
method, the parameter would be an int. So what’s the type of a lambda expression?

There is a really old idiom of using an interface with a single method to represent a
method and reusing it. It’s something we’re all familiar with from programming in
Swing, and it is exactly what was going on in Example 2-2. There’s no need for new
magic to be employed here. The exact same idiom is used for lambda expressions, and
we call this kind of interface a functional interface. Example 2-8 shows the functional
interface from the previous example.

Example 2-8. The ActionListener interface: from an ActionEvent to nothing
public interface ActionListener extends EventListener {
    public void actionPerformed(ActionEvent event);
}
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Figure 2-1. The ActionListener interface showing an ActionEvent going in and nothing
(void) coming out

ActionListener has only one abstract method, actionPerformed, and we use it to
represent an action that takes one argument and produces no result. Remember, because
actionPerformed is defined in an interface, it doesn’t actually need the abstract key‐
word in order to be abstract. It also has a parent interface, EventListener, with no
methods at all.

So it’s a functional interface. It doesn’t matter what the single method on the interface
is called—it’ll get matched up to your lambda expression as long as it has a compatible
method signature. Functional interfaces also let us give a useful name to the type of the
parameter—something that can help us understand what it’s used for and aid readability.

The functional interface here takes one ActionEvent parameter and doesn’t return
anything (void), but functional interfaces can come in many kinds. For example, they
may take two parameters and return a value. They can also use generics; it just depends
upon what you want to use them for.

From now on, I’ll use diagrams to represent the different kinds of functional interfaces
you’re encountering. The arrows going into the function represent arguments, and if
there’s an arrow coming out, it represents the return type. For example, an ActionLis
tener would look like Figure 2-1.

Over time you’ll encounter many functional interfaces, but there is a core group in the
Java Development Kit (JDK) that you will see time and time again. I’ve listed some of
the most important functional interfaces in Table 2-1.

Table 2-1. Important functional interfaces in Java
Interface name Arguments Returns Example

Predicate<T> T boolean Has this album been released yet?

Consumer<T> T void Printing out a value

Function<T,R> T R Get the name from an Artist object

Supplier<T> None T A factory method

UnaryOperator<T> T T Logical not (!)

BinaryOperator<T> (T, T) T Multiplying two numbers (*)
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I’ve talked about what types functional interfaces take and mentioned that javac can
automatically infer the types of parameters and that you can manually provide them,
but when do you know whether to provide them? Let’s look a bit more at the details of
type inference.

Type Inference
There are certain circumstances in which you need to manually provide type hints, and
my advice is to do what you and your team find easiest to read. Sometimes leaving out
the types removes line noise and makes it easier to see what is going on. Sometimes
leaving them in can make it clearer what is going on. I’ve found that at first they can
sometimes be helpful, but over time you’ll switch to adding them in only when they are
actually needed. You can figure out whether they are needed from a few simple rules
that I’ll introduce in this chapter.

The type inference used in lambdas is actually an extension of the target type inference
introduced in Java 7. You might be familiar with Java 7 allowing you to use a diamond
operator that asks javac to infer the generic arguments for you. You can see this in
Example 2-9.

Example 2-9. Diamond inference for variables
Map<String, Integer> oldWordCounts = new HashMap<String, Integer>();  
Map<String, Integer> diamondWordCounts = new HashMap<>();  

For the variable oldWordCounts  we have explicitly added the generic types, but dia
mondWordCounts  uses the diamond operator. The generic types aren’t written out—
the compiler just figures out what you want to do by itself. Magic!

It’s not really magic, of course. Here, the generic types to HashMap can be inferred from
the type of diamondWordCounts  . You still need to provide generic types on the variable
that is being assigned to, though.

If you’re passing the constructor straight into a method, it’s also possible to infer the
generic types from that method. In Example 2-10, we pass a HashMap as an argument
that already has the generic types on it.

Example 2-10. Diamond inference for methods
useHashmap(new HashMap<>());

...

private void useHashmap(Map<String, String> values);

In the same way that Java 7 allowed you to leave out the generic types for a constructor,
Java 8 allows you to leave out the types for whole parameters of lambda expressions.
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Again, it’s not magic: javac looks for information close to your lambda expression and
uses this information to figure out what the correct type should be. It’s still type checked
and provides all the safety that you’re used to, but you don’t have to state the types
explicitly. This is what we mean by type inference.

It’s also worth noting that in Java 8 the type inference has been im‐
proved. The earlier example of passing new HashMap<>() into a use
Hashmap method actually wouldn’t have compiled in Java 7, even
though the compiler had all the information it needed to figure things
out.

Let’s go into a little more detail on this point with some examples.

In both of these cases we’re assigning the variables to a functional interface, so it’s easier
to see what’s going on. The first example (Example 2-11) is a lambda that tells you
whether an Integer is greater than 5. This is actually a Predicate—a functional inter‐
face that checks whether something is true or false.

Example 2-11. Type inference
Predicate<Integer> atLeast5 = x -> x > 5;

A Predicate is also a lambda expression that returns a value, unlike the previous
ActionListener examples. In this case we’ve used an expression, x > 5, as the body of
the lambda expression. When that happens, the return value of the lambda expression
is the value its body evaluates to.

You can see from Example 2-12 that Predicate has a single generic type; here we’ve
used an Integer. The only argument of the lambda expression implementing Predi
cate is therefore inferred as an Integer. javac can also check whether the return value
is a boolean, as that is the return type of the Predicate method (see Figure 2-2).

Example 2-12. The predicate interface in code, generating a boolean from an Object
public interface Predicate<T> {
    boolean test(T t);
}

Figure 2-2. The Predicate interface diagram, generating a boolean from an Object
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Let’s look at another, slightly more complex functional interface example: the BinaryOp
erator interface, which is shown in Example 2-13. This interface takes two arguments
and returns a value, all of which are the same type. In the code example we’ve used, this
type is Long.

Example 2-13. A more complex type inference example
BinaryOperator<Long> addLongs = (x, y) -> x + y;

The inference is smart, but if it doesn’t have enough information, it won’t be able to
make the right decision. In these cases, instead of making a wild guess it’ll just stop what
it’s doing and ask for help in the form of a compile error. For example, if we remove
some of the type information from the previous example, we get the code in
Example 2-14.

Example 2-14. Code doesn’t compile due to missing generics
BinaryOperator add = (x, y) -> x + y;

This code results in the following error message:

Operator '&#x002B;' cannot be applied to java.lang.Object, java.lang.Object.

That looks messy: what is going on here? Remember that BinaryOperator was a func‐
tional interface that had a generic argument. The argument is used as the type of both
arguments, x and y, and also for its return type. In our code example, we didn’t give any
generics to our add variable. It’s the very definition of a raw type. Consequently, our
compiler thinks that its arguments and return values are all instances of java.lang.Ob
ject.

We will return to the topic of type inference and its interaction with method overloading
in “Overload Resolution” on page 45, but there’s no need to understand more detail until
then.

Key Points
• A lambda expression is a method without a name that is used to pass around be‐

havior as if it were data.
• Lambda expressions look like this: BinaryOperator<Integer> add = (x, y) → x
+ y.

• A functional interface is an interface with a single abstract method that is used as
the type of a lambda expression.
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Exercises
At the end of each chapter is a series of exercises to give you an opportunity to practice
what you’ve learned during the chapter and help you learn the new concepts. The an‐
swers to these exercises can be found on GitHub.

1. Questions about the Function functional interface (Example 2-15).

Example 2-15. The function functional interface
public interface Function<T, R> {
    R apply(T t);
}

a. Can you draw this functional interface diagrammatically?
b. What kind of lambda expressions might you use this functional interface for if

you were writing a software calculator?
c. Which of these lambda expressions are valid Function<Long,Long> implemen‐

tations?
x -> x + 1;
(x, y) -> x + 1;
x -> x == 1;

2. ThreadLocal lambda expressions. Java has a class called ThreadLocal that acts as a
container for a value that’s local to your current thread. In Java 8 there is a new
factory method for ThreadLocal that takes a lambda expression, letting you create
a new ThreadLocal without the syntactic burden of subclassing.
a. Find the method in Javadoc or using your IDE.
b. The Java DateFormatter class isn’t thread-safe. Use the constructor to create a

thread-safe DateFormatter instance that prints dates like this: “01-Jan-1970”.
3. Type inference rules. Here are a few examples of passing lambda expressions into

functions. Can javac infer correct argument types for the lambda expressions? In
other words, will they compile?
a. Runnable helloWorld = () -> System.out.println("hello world");

b. The lambda expression being used as an ActionListener:
JButton button = new JButton();
button.addActionListener(event ->
  System.out.println(event.getActionCommand()));

c. Would check(x -> x > 5) be inferred, given the following overloads for check?
interface IntPred {
    boolean test(Integer value);
}
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boolean check(Predicate<Integer> predicate);

boolean check(IntPred predicate);

You might want to look up the method argument types in Javadoc or
in your IDE in order to determine whether there are multiple valid
overloads.
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CHAPTER 3

Streams

The language changes introduced in Java 8 are intended to help us write better code.
New core libraries are a key part of that, so in this chapter we start to look at them. The
most important core library changes are focused around the Collections API and its
new addition: streams. Streams allow us to write collections-processing code at a higher
level of abstraction.

The Stream interface contains a series of functions that we’ll explore throughout this
chapter, each of which corresponds to a common operation that you might perform on
a Collection.

From External Iteration to Internal Iteration
A lot of the examples in this chapter and the rest of the book refer to
domain classes, which were introduced in “Example Domain” on page
3.

A common pattern for Java developers when working with collections is to iterate over
a collection, operating on each element in turn. For example, if we wanted to add up
the number of musicians who are from London, we would write the code in Example 3-1.

Example 3-1. Counting London-based artists using a for loop
int count = 0;
for (Artist artist : allArtists) {
    if (artist.isFrom("London")) {
        count++;
    }
}
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There are several problems with this approach, though. It involves a lot of boilerplate
code that needs to be written every time you want to iterate over the collection. It’s also
hard to write a parallel version of this for loop. You would need to rewrite every for
loop individually in order to make them operate in parallel.

Finally, the code here doesn’t fluently convey the intent of the programmer. The boil‐
erplate for loop structure obscures meaning; to understand anything we must read
though the body of the loop. For a single for loop, doing this isn’t too bad, but when
you have a large code base full of them it becomes a burden (especially with nested
loops).

Looking under the covers a little bit, the for loop is actually syntactic sugar that wraps
up the iteration and hides it. It’s worth taking a moment to look at what’s going on under
the hood here. The first step in this process is a call to the iterator method, which
creates a new Iterator object in order to control the iteration process. We call this
external iteration. The iteration then proceeds by explicitly calling the hasNext and next
methods on this Iterator. Example 3-2 demonstrates the expanded code in full, and
Figure 3-1 shows the pattern of method calls that happen.

Example 3-2. Counting London-based artists using an iterator
int count = 0;
Iterator<Artist> iterator = allArtists.iterator();
while(iterator.hasNext()) {
    Artist artist = iterator.next();
    if (artist.isFrom("London")) {
        count++;
    }
}

Figure 3-1. External iteration

External iteration has some negative issues associated with it, too. First, it becomes hard
to abstract away the different behavioral operations that we’ll encounter later in this
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chapter. It is also an approach that is inherently serial in nature. The big-picture issue
here is that using a for loop conflates what you are doing with how you are doing it.

An alternative approach, internal iteration, is shown in Example 3-3. The first thing to
notice is the call to stream(), which performs a similar role to the call to iterator()
in the previous example. Instead of returning an Iterator to control the iteration, it
returns the equivalent interface in the internal iteration world: Stream.

Example 3-3. Counting London-based artists using internal iteration
long count = allArtists.stream()
                       .filter(artist -> artist.isFrom("London"))
                       .count();

Figure 3-2 depicts the flow of method calls with respect to the library; compare it with
Figure 3-1.

Figure 3-2. Internal iteration

A Stream is a tool for building up complex operations on collec‐
tions using a functional approach.

We can actually break this example into two simpler operations:

• Finding all the artists from London
• Counting a list of artists

Both of these operations correspond to a method on the Stream interface. In order to
find artists from London, we filter the Stream. Filtering in this case means “keep only
objects that pass a test.” The test is defined by a function, which returns either true or
false depending on whether the artist is from London. Because we’re practicing func‐

From External Iteration to Internal Iteration | 19



tional programming when using the Streams API, we aren’t changing the contents of
the Collection; we’re just declaring what the contents of the Stream will be. The
count() method counts how many objects are in a given Stream.

What’s Actually Going On
When I wrote the previous example, I broke it up into two simpler operations: filtering
and counting. You may think that this is pretty wasteful—when I wrote the for loop in
Example 3-1, there was only one loop. It looks like you would need two here, as there
are two operations. In fact, the library has been cleverly designed so that it iterates over
the list of artists only once.

In Java, when you call a method it traditionally corresponds to the computer actually
doing something; for example, System.out.println("Hello World"); prints output
to your terminal. Some of the methods on Stream work a little bit differently. They are
normal Java methods, but the Stream object returned isn’t a new collection—it’s a recipe
for creating a new collection. So just think for a second about what the code in
Example 3-4 does. Don’t worry if you get stuck—I’ll explain in a bit!

Example 3-4. Just the filter, no collect step
allArtists.stream()
          .filter(artist -> artist.isFrom("London"));

It actually doesn’t do very much at all—the call to filter builds up a Stream recipe, but
there’s nothing to force this recipe to be used. Methods such as filter that build up the
Stream recipe but don’t force a new value to be generated at the end are referred to as
lazy. Methods such as count that generate a final value out of the Stream sequence are
called eager.

The easiest way of seeing that is if we add in a println statement as part of the filter in
order to print out the artists’ names. Example 3-5 is a modified version of Example 3-4
with such a printout. If we run this code, the program doesn’t print anything when it’s
executed.

Example 3-5. Not printing out artist names due to lazy evaluation
allArtists.stream()
          .filter(artist -> {
              System.out.println(artist.getName());
              return artist.isFrom("London");
          });

If we add the same printout to a stream that has a terminal step, such as the counting
operation from Example 3-3, then we will see the names of our artists printed out
(Example 3-6).
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Example 3-6. Printing out artist names
long count = allArtists.stream()
                       .filter(artist -> {
                           System.out.println(artist.getName());
                           return artist.isFrom("London");
                       })
                       .count();

So, if you ran Example 3-6 with the members of The Beatles as your list of artists, then
you would see Example 3-7 printed out on your command line.

Example 3-7. Sample output showing the members of The Beatles being printed
John Lennon
Paul McCartney
George Harrison
Ringo Starr

It’s very easy to figure out whether an operation is eager or lazy: look at what it returns.
If it gives you back a Stream, it’s lazy; if it gives you back another value or void, then it’s
eager. This makes sense because the preferred way of using these methods is to form a
sequence of lazy operations chained together and then to have a single eager operation
at the end that generates your result. This is how our counting example operates, but
it’s the simplest case: only two operations.

This whole approach is somewhat similar to the familiar builder pattern. In the builder
pattern, there are a sequence of calls that set up properties or configuration, followed
by a single call to a build method. The object being created isn’t created until the call
to build occurs.

I’m sure you’re asking, “Why would we want to have the differentiator between lazy and
eager options?” By waiting until we know more about what result and operations are
needed, we can perform the computations more efficiently. A good example is finding
the first number that is > 10. We don’t need to evaluate all the elements to figure this
out—only enough to find our first match. It also means that we can string together lots
of different operations over our collection and iterate over the collection only once.

Common Stream Operations
At this point, it’s worth just having a look back at some common Stream operations in
order to get more of a feel of what’s available in the API. As we will cover only a few
important examples, I recommend looking at the Javadoc for the new API to see what
else is available.
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collect(toList())

collect(toList()) is an eager operation that generates a list from
the values in a Stream.

The values in the Stream that are operated on are derived from the initial values and
the recipe produced by the sequence of Stream calls. In fact, collect is a very general
and powerful construct, and we’ll look into its other uses in more detail in Chapter 5.
Here’s an example of this operation:

List<String> collected = Stream.of("a", "b", "c")  
                               .collect(Collectors.toList());  

assertEquals(Arrays.asList("a", "b", "c"), collected);  

This example shows how collect(toList()) can be used to build a result list out of a
Stream. It’s important to remember, as discussed in the previous section, that because
many Stream functions are lazy, you do need to use an eager operation such as col
lect at the end of a sequence of chained method calls.

This example also shows the general format for all the examples in this section. It starts
by taking a Stream from a List . There is some operation, followed by collecting into
a list . Finally, we perform an assert to show you what the results are equal to .

You can think of the opening call to stream and the closing call to a collect or other
terminal method as bun methods. They aren’t the actual filling of our stream burger,
but they do help us see where the operations begin and end.

map

If you’ve got a function that converts a value of one type into anoth‐
er, map lets you apply this function to a stream of values, producing
another stream of the new values.

You’ll probably notice fairly soon that you’ve been doing some kind of map operations
for years already. Say you are writing Java code that takes a list of strings and converts
them to their uppercase equivalents. You would loop over all the values in the list and
call toUppercase on each element. You would then add each of the resulting values into
a new List. Example 3-8 is code written in this style.
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Example 3-8. Converting strings to uppercase equivalents using a for loop
List<String> collected = new ArrayList<>();
for (String string : asList("a", "b", "hello")) {
    String uppercaseString = string.toUpperCase();
    collected.add(uppercaseString);
}

assertEquals(asList("A", "B", "HELLO"), collected);

map is one of the most commonly used Stream operations (see Figure 3-3). You could
probably have guessed this, given how frequently you have implemented something
similar to the aforementioned for loop. Example 3-9 is the same example of turning a
list of strings into their uppercase equivalents using the stream framework.

Figure 3-3. The map operation

Example 3-9. Converting strings to uppercase equivalents using map
List<String> collected = Stream.of("a", "b", "hello")
                               .map(string -> string.toUpperCase())  
                               .collect(toList());

assertEquals(asList("A", "B", "HELLO"), collected);

The lambda expression passed into map  both takes a String as its only argument and
returns a String. It isn’t necessary for both the argument and the result to be the same
type, but the lambda expression passed in must be an instance of Function (Figure 3-4).
This is a generic functional interface with only one argument.

Figure 3-4. The Function interface
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filter

Any time you’re looping over some data and checking each element,
you might want to think about using the new filter method on
Stream (see Figure 3-5).

Figure 3-5. The filter operation

We’ve already looked at a filter example, so you may want to skip this section if you
feel familiar with the concept. Still here? Good! Suppose we’ve got a list of strings and
we want to find all the strings that start with a digit. So, "1abc" would be accepted and
"abc" wouldn’t. We might write some code that loops over a list and uses an if statement
to see what the first character is, something like the code in Example 3-10.

Example 3-10. Looping over a list and using an if statement
List<String> beginningWithNumbers = new ArrayList<>();
for(String value : asList("a", "1abc", "abc1")) {
    if (isDigit(value.charAt(0))) {
        beginningWithNumbers.add(value);
    }
}

assertEquals(asList("1abc"), beginningWithNumbers);

I’m sure you’ve written some code that looks like this: it’s called the filter pattern. The
central idea of filter is to retain some elements of the Stream, while throwing others
out. Example 3-11 shows how you would write the same code in a functional style.

Example 3-11. Functional style
List<String> beginningWithNumbers
  = Stream.of("a", "1abc", "abc1")
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          .filter(value -> isDigit(value.charAt(0)))
          .collect(toList());

assertEquals(asList("1abc"), beginningWithNumbers);

Much like map, filter is a method that takes just a single function as an argument—
here we’re using a lambda expression. This function does the same job that the expres‐
sion in the if statement did earlier. Here, it returns true if the String starts with a digit.
If you’re refactoring legacy code, the presence of an if statement in the middle of a for
loop is a pretty strong indicator that you really want to use filter.

Because this function is doing the same job as the if statement, it must return either
true or false for a given value. The Stream after the filter has the elements of the Stream
beforehand, which evaluated to true. The functional interface for this type of function
is our old friend from the previous chapter, the Predicate (shown in Figure 3-6).

Figure 3-6. The Predicate interface

flatMap

flatMap (see Figure 3-7) lets you replace a value with a Stream and
concatenates all the streams together.

Figure 3-7. The flatMap operation
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You’ve already seen the map operation, which replaces a value in a Stream with a new
value. Sometimes you want a variant of map in which you produce a new Stream object
as the replacement. Frequently you don’t want to end up with a stream of streams,
though, and this is where flatMap comes in handy.

Let’s look at a simple example. We’ve got a Stream of lists of numbers, and we want all
the numbers from these in sequences. We can solve this problem using an approach like
the one in Example 3-12.

Example 3-12. Stream list
List<Integer> together = Stream.of(asList(1, 2), asList(3, 4))
                               .flatMap(numbers -> numbers.stream())
                               .collect(toList());

assertEquals(asList(1, 2, 3, 4), together);

In each case, we replace the List with a Stream using the stream method, and flat
Map does the rest. Its associated functional interface is the same as map’s—the Function
—but its return type is restricted to streams and not any value.

max and min
A pretty common operation that we might want to perform on streams is finding the
maximum or minimum element. Fortunately, this case is very well covered by the max
and min operations that are provided by the Streams API. As a demonstration of these
operations, Example 3-13 provides some code that finds the shortest track on an album.
In order to make it easier to see that we’ve got the right result, I’ve explicitly listed the
tracks on this album in the code snippet; I’ll admit that it’s not the best-known album.

Example 3-13. Finding the shortest track with streams
List<Track> tracks = asList(new Track("Bakai", 524),
                            new Track("Violets for Your Furs", 378),
                            new Track("Time Was", 451));

Track shortestTrack = tracks.stream()
                            .min(Comparator.comparing(track -> track.getLength()))
                            .get();

assertEquals(tracks.get(1), shortestTrack);

When we think about maximum and minimum elements, the first thing we need to
think about is the ordering that we’re going to be using. When it comes to finding the
shortest track, the ordering is provided by the length of the tracks.

In order to inform the Stream that we’re using the length of the track, we give it a
Comparator. Conveniently, Java 8 has added a static method called comparing that lets

26 | Chapter 3: Streams

www.allitebooks.com

http://www.allitebooks.org


us build a comparator using keys. Previously, we always encountered an ugly pattern in
which we had to write code that got a field out of both the objects being compared, then
compare these field values. Now, to get the same element out of both elements being
compared, we just provide a getter function for the value. In this case we’ll use length,
which is a getter function in disguise.

It’s worth reflecting on the comparing method for a moment. This is actually a function
that takes a function and returns a function. Pretty meta, I know, but also incredibly
useful. At any point in the past, this method could have been added to the Java standard
library, but the poor readability and verbosity issues surrounding anonymous inner
classes would have made it impractical. Now, with lambda expressions, it’s convenient
and concise.

It’s now possible for max to be called on an empty Stream so that it returns what’s known
as an Optional value. An Optional value is a bit like an alien: it represents a value that
may exist, or may not. If our Stream is empty, then it won’t exist; if it’s not empty, then
it will. Let’s not worry about the details of Optional for the moment, since we’ll be
discussing it in detail in “Optional” on page 55. The only thing to remember is that we
can pull out the value by calling the get method.

A Common Pattern Appears
max and min are both forms of a more general pattern of coding. The easiest way to see
this is by taking our code from Example 3-13 and rewriting it into a for loop: we’ll then
extract the general pattern. Example 3-14 performs the same role as Example 3-13: it
finds the shortest track on an album, but using a for loop.

Example 3-14. Finding the shortest track with a for loop
List<Track> tracks = asList(new Track("Bakai", 524),
                            new Track("Violets for Your Furs", 378),
                            new Track("Time Was", 451));

Track shortestTrack = tracks.get(0);
for (Track track : tracks) {
    if (track.getLength() < shortestTrack.getLength()) {
        shortestTrack = track;
    }
}

assertEquals(tracks.get(1), shortestTrack);

The code starts by initializing our shortestTrack variable with the first element of the
list. Then it goes through the tracks. If there’s a shorter track, it replaces the shortest
Track. At the end, our shortestTrack variable contains its namesake. Doubtless you’ve
written thousands of for loops in your coding career, and many of them follow this
pattern. The pseudocode in Example 3-15 characterizes the general form.
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Example 3-15. The reduce pattern
Object accumulator = initialValue;
for(Object element : collection) {
    accumulator = combine(accumulator, element);
}

An accumulator gets pushed through the body of the loop, with the final value of the
accumulator being the value that we were trying to compute. The accumulator starts
with an initialValue and then gets folded together with each element of the list by
calling combine.

The things that differ between implementations of this pattern are the initialValue
and the combine function. In the original example, we used the first element in the list
as our initialValue, but it doesn’t have to be. In order to find the shortest value, our
combine returned the shorter track of out of the current element and the accumulator.

We’ll now take a look at how this general pattern can be codified by an operation in the
Streams API itself.

reduce
Use the reduce operation when you’ve got a collection of values and you want to generate
a single result. In earlier examples, we used the count, min, and max methods, which are
all in the standard library because they are common use cases. All of these are forms of
reduction.

Let’s demonstrate the reduce operation by adding up streams of numbers. The overall
pattern is demonstrated in Figure 3-8. We start with a count of 0—the count of an empty
Stream—and fold together each element with an accumulator, adding the element to
the accumulator at every step. When we reach the final Stream element, our accumulator
has the sum of all the elements.
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Figure 3-8. Implementing addition using the reduce operation

Example 3-16 shows what is going on in code. The lambda expression, known as a
reducer, performs the summing and takes two arguments. acc is the accumulator and
holds the current sum. It is also passed in the current element in the Stream.

Example 3-16. Implementing sum using reduce
int count = Stream.of(1, 2, 3)
                  .reduce(0, (acc, element) -> acc + element);

assertEquals(6, count);

The lambda expression returns the new acc value, which is the previous acc added to
the current element. The type of the reducer is a BinaryOperator, which we encountered
in Chapter 2.

“Primitives” on page 42 also refers to an implementation of sum with‐
in the standard library, which is recommended instead of the ap‐
proach shown in this example in real code.

Table 3-1 shows the intermediate values for these variables for each element in the
Stream. In fact, we could expand all the function applications that reduce to produce
the code in Example 3-17.

Example 3-17. Expanding the application of reduce
    BinaryOperator<Integer> accumulator = (acc, element) -> acc + element;
    int count = accumulator.apply(
                    accumulator.apply(
                        accumulator.apply(0, 1),
                    2),
                3);
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Table 3-1. Evaluating a sum reduce
element acc Result

N/A N/A 0

1 0 1

2 1 3

3 3 6

Let’s look at the equivalent imperative Java code, written in Example 3-18, so we can see
how the functional and imperative versions match up.

Example 3-18. Imperative implementation of summing
int acc = 0;
for (Integer element : asList(1, 2, 3)) {
    acc = acc + element;
}
assertEquals(6, acc);

In the imperative version, we can see that the accumulator is a variable we update on
every loop iteration. We also update it by adding the element. The loop is external to
the collection and all updates to the variable are managed manually.

Putting Operations Together
With so many different operations related to the Stream interface, it can sometimes
seem like you’re wandering around a labyrinth looking for what you want. So let’s work
through a problem and see how it breaks down into simple Stream operations.

Our first problem to solve is, for a given album, to find the nationality of every band
playing on that album. The artists who play each track can be solo artists or they can be
in a band. We’re going to use domain knowledge and artistic license to pretend that a
band is really an artist whose name begins with The. This isn’t exactly right, but it’s pretty
close!

The first thing to recognize is that the solution isn’t just the simple application of any
individual API call. It’s not transforming the values like a map, it’s not filtering, and it’s
not just getting a single value out of a Stream at the end. We can break the problem
down into parts:

1. Get all the artists for an album.
2. Figure out which artists are bands.
3. Find the nationalities of each band.
4. Put together a set of these values.
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Now it’s easier to see how these steps fit into the API:

1. There’s a nice getMusicians method on our Album class that returns a Stream.
2. We use filter to trim down the artists to include only bands.
3. We use map to turn the band into its nationality.
4. We use collect(toList()) to put together a list of these nationalities.

When we put everything together, it ends up like this:

Set<String> origins = album.getMusicians()
                           .filter(artist -> artist.getName().startsWith("The"))
                           .map(artist -> artist.getNationality())
                           .collect(toSet());

This example shows the idiom of chaining operations a bit more clearly. The calls to
musicians, filter, and map all return Stream objects, so they are lazy, while the col
lect method is eager. The map method is another function that takes just a lambda and
whose purpose is to apply the function to every element in the Stream, returning a new
Stream.

Our domain class here is actually quite convenient for us, in that it returns a Stream
when we want to get a list of the musicians on our album. In your existing domain
classes, you probably don’t have a method that returns streams—you return existing
collection classes such as List or Set. This is OK; all you need to do is call the stream
method on your List or Set.

Now is probably a good time to think about whether you really want to expose List
and Set objects in your domain model, though. Perhaps a Stream factory would be a
better choice. The big win of only exposing collections via Stream is that it better en‐
capsulates your domain model’s data structure. It’s impossible for any use of your do‐
main classes to affect the inner workings of your List or Set simply by exposing a
Stream.

It also encourages users of your domain class to write code in a more modern Java 8
style. It’s possible to incrementally refactor to this style by keeping your existing getters
and adding new Stream-returning getters. Over time, you can rewrite your legacy code
until you’ve finally deleted all getters that return a List or Set. This kind of refactoring
feels really good once you’ve cleared out all the legacy code!

Refactoring Legacy Code
Having talked a bit about refactoring already, let’s look at an example of some legacy
collections code that uses loops to perform a task and iteratively refactor it into a stream-
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based implementation. At each step of the refactor, the code continues to pass its tests,
though you’ll either have to trust me on that one or test it yourself!

This example finds the names of all tracks that are over a minute in length, given some
albums. Our legacy code is shown in Example 3-19. We start off by initializing a Set
that we’ll store all the track names in. The code then iterates, using a for loop, over all
the albums, then iterates again over all the tracks in an album. Once we’ve found a track,
we check whether the length is over 60 seconds, and if it is the name gets added to a Set
of names.

Example 3-19. Legacy code finding names of tracks over a minute in length
public Set<String> findLongTracks(List<Album> albums) {
    Set<String> trackNames = new HashSet<>();
    for(Album album : albums) {
        for (Track track : album.getTrackList()) {
            if (track.getLength() > 60) {
                String name = track.getName();
                trackNames.add(name);
            }
        }
    }
    return trackNames;
}

We’ve stumbled across this code in our code base and noticed that it has a couple of
nested loops. It’s not quite clear what the purpose of this code is just from looking at it,
so we decide to undertake our refactor. (There are lots of different approaches to re‐
factoring legacy code for using streams—this is just one. In fact, once you are more
familiar with the API itself, it’s pretty likely that you won’t need to proceed in such small
steps. It serves educational purposes here to go a bit slower than you would in your
professional job.)

The first thing that we’re going to change is the for loops. We’ll keep their bodies in the
existing Java coding style for now and move to using the forEach method on Stream.
This can be a pretty handy trick for intermediate refactoring steps. Let’s use the stream
method on our album list in order to get the first stream. It’s also good to remember
from the previous section that our domain already has the getTracks method on the
album, which provides us a Stream of tracks. The code after we’ve completed step 1 is
listed in Example 3-20.

Example 3-20. Refactor step 1: finding names of tracks over a minute in length
public Set<String> findLongTracks(List<Album> albums) {
    Set<String> trackNames = new HashSet<>();
    albums.stream()
          .forEach(album -> {
              album.getTracks()
                   .forEach(track -> {
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                       if (track.getLength() > 60) {
                           String name = track.getName();
                           trackNames.add(name);
                       }
                   });
          });
    return trackNames;
}

In step 1, we moved to using streams, but we didn’t really get their full potential. In fact,
if anything the code is even less pretty than it was to begin with—d’oh! So, it’s high time
we introduced a bit more stream style into our coding. The inner forEach call looks like
a prime target for refinement.

We’re really doing three things here: finding only tracks over a minute in length, getting
their names, and adding their names into our name Set. That means we need to call
three Stream operations in order to get the job done. Finding tracks that meet a criterion
sounds like a job for filter. Transforming tracks into their names is a good use of
map. For the moment we’re still going to add the tracks to our Set, so our terminal
operation will still be a forEach. If we split out the inner forEach block, we end up with
Example 3-21.

Example 3-21. Refactor step 2: finding names of tracks over a minute in length
public Set<String> findLongTracks(List<Album> albums) {
    Set<String> trackNames = new HashSet<>();
    albums.stream()
          .forEach(album -> {
              album.getTracks()
                   .filter(track -> track.getLength() > 60)
                   .map(track -> track.getName())
                   .forEach(name -> trackNames.add(name));
          });
    return trackNames;
}

Now we’ve replaced our inner loop with something a bit more streamy, but we still have
this pyramid of doom in our code. We don’t really want to have nested stream operations;
we want one simple and clean sequence of method calls.

What we really want to do is find a way of transforming our album into a stream of
tracks. We know that whenever we want to transform or replace code, the operation to
use is map. This is the more complex case of map, flatMap, for which the output value is
also a Stream and we want them merged together. So, if we replace that forEach block
with a flatMap call, we end up at Example 3-22.

Refactoring Legacy Code | 33



Example 3-22. Refactor step 3: finding names of tracks over a minute in length
public Set<String> findLongTracks(List<Album> albums) {
    Set<String> trackNames = new HashSet<>();

    albums.stream()
          .flatMap(album -> album.getTracks())
          .filter(track -> track.getLength() > 60)
          .map(track -> track.getName())
          .forEach(name -> trackNames.add(name));

    return trackNames;
}

That looks a lot better, doesn’t it? Instead of two nested for loops, we’ve got a single
clean sequence of method calls performing the entire operation. It’s not quite there yet,
though. We’re still creating a Set by hand and adding every element in at the end. We
really want the entire computation to just be a chain of Stream calls.

I haven’t yet shown you the recipe for this transformation, but you’ve met one of its
friends. Just as you can use collect(toList()) to build up a List of values at the end,
you can also use collect(toSet()) to build up a Set of values. So, we replace our final
forEach call with this collect call, and we can now delete the trackNames variable,
arriving at Example 3-23.

Example 3-23. Refactor step 4: finding names of tracks over a minute in length
public Set<String> findLongTracks(List<Album> albums) {
    return albums.stream()
                 .flatMap(album -> album.getTracks())
                 .filter(track -> track.getLength() > 60)
                 .map(track -> track.getName())
                 .collect(toSet());
}

In summary, we’ve taken a snippet of legacy code and refactored it to use idiomatic
streams. At first we just converted to introduce streams and didn’t introduce any of the
useful operations on streams. At each subsequent step, we moved to a more idiomatic
coding style. One thing that I haven’t mentioned thus far but that was very helpful when
actually writing the code samples is that at each step of the way I continued to run unit
tests in order to make sure the code worked. Doing so is very helpful when refactoring
legacy code.

Multiple Stream Calls
Rather than chaining the method calls, you could force the evaluation of each function
individually following a sequence of steps. Please don’t do this. Example 3-24 shows our
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earlier origins of bands example written in that style. The original example is shown in
Example 3-25 in order to make the comparison easier.

Example 3-24. Stream misuse
List<Artist> musicians = album.getMusicians()
                              .collect(toList());

List<Artist> bands = musicians.stream()
                              .filter(artist -> artist.getName().startsWith("The"))
                              .collect(toList());

Set<String> origins = bands.stream()
                           .map(artist -> artist.getNationality())
                           .collect(toSet());

Example 3-25. Idiomatically chained stream calls
Set<String> origins = album.getMusicians()
                           .filter(artist -> artist.getName().startsWith("The"))
                           .map(artist -> artist.getNationality())
                           .collect(toSet());

There are several reasons why the version in Example 3-24 is worse than the idiomatic,
chained version:

• It’s harder to read what’s going on because the ratio of boilerplate code to actual
business logic is worse.

• It’s less efficient because it requires eagerly creating new collection objects at each
intermediate step.

• It clutters your method with meaningless garbage variables that are needed only as
intermediate results.

• It makes operations harder to automatically parallelize.

Of course, if you’re writing your first few Stream-based examples, it’s perfectly normal
to write code that’s a little bit like this. But if you find yourself writing blocks of operations
like this often, you should stand back and see whether you can refactor them into a more
concise and readable form.

If at this stage you feel uncomfortable with the amount of method
chaining in the API, that’s entirely natural. With more experience and
more time these concepts will begin to feel quite natural, and it’s not
a reason to write Java code that splits up chains of operations as in
Example 3-24. Ensuring that you format the code line by line, as you
would when using the builder pattern, will boost your comfort level
as well.
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Higher-Order Functions
What we’ve repeatedly encountered throughout this chapter are what functional pro‐
grammers call higher-order functions. A higher-order function is a function that either
takes another function as an argument or returns a function as its result. It’s very easy
to spot a higher-order function: just look at its signature. If a functional interface is used
as a parameter or return type, you have a higher-order function.

map is a higher-order function because its mapper argument is a function. In fact, nearly
all the functions that we’ve encountered on the Stream interface are higher-order func‐
tions. In our earlier sorting example, we also used the comparing function. comparing
not only took another function in order to extract an index value, but also returns a new
Comparator. You might think of a Comparator as an object, but it has only a single
abstract method, so it’s a functional interface.

In fact, we can make a stronger statement than that. Comparator was invented when a
function was needed, but all Java had at the time was objects, so we made a type of class
—an anonymous class—that we could treat like a function. Being an object was always
accidental. Functional interfaces are a step in the direction that we actually want.

Good Use of Lambda Expressions
When I first introduced lambda expressions, I gave the example of a callback that printed
something out. That’s a perfectly valid lambda expression, but it’s not really helping us
write simpler and more abstract code because it’s still telling the computer to perform
an operation. Removing the boilerplate was nice, but it’s not the only improvement we
get with lambda expressions in Java 8.

The concepts introduced in this chapter let us write simpler code, in the sense that they
describe operations on data by saying what transformation is made rather than how the
transformation occurs. This gives us code that has less potential for bugs and expresses
the programmer’s intent directly.

Another aspect of getting to the what and not the how is the idea of a side effect–free
function. These are important because we can understand the full implications of what
the functions are doing just by looking at what values they return.

Functions with no side effects don’t change the state of anything else in the program or
the outside world. The first lambda expression in this book had side effects because it
printed some output on the console—an observable side effect of the function. What
about the following example?

    private ActionEvent lastEvent;

    private void registerHandler() {
        button.addActionListener((ActionEvent event) -> {
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            this.lastEvent = event;
        });
    }

Here we save away the event parameter into a field. This is a more subtle way of gen‐
erating a side effect: assigning to variables. You may not see it directly in the output of
your program, but it does change the program’s state. There are limits to what Java lets
you do in this regard. Take a look at the assignment to localEvent in this code snippet:

ActionEvent localEvent = null;
button.addActionListener(event -> {
    localEvent = event;
});

This example tries to assign the same event parameter into a local variable. There’s no
need to send me errata emails—I know this won’t actually compile! That’s actually a
deliberate choice on behalf of the designers: an attempt to encourage people to use
lambda expressions to capture values rather than capturing variables. Capturing values
encourages people to write code that is free from side effects by making it harder to do
so. As mentioned in Chapter 2, even though local variables don’t need the final keyword
in order to be used in lambda expressions, they still need to be effectively final.

Whenever you pass lambda expressions into the higher-order functions on the Stream
interface, you should seek to avoid side effects. The only exception to this is the forE
ach method, which is a terminal operation.

Key Points
• Internal iteration is a way of iterating over a collection that delegates more control

over the iteration to the collection.
• A Stream is the internal iteration analogue of an Iterator.
• Many common operations on collections can be performed by combining methods

on Stream with lambda expressions.

Exercises
You can find the answers to these exercises on GitHub.

1. Common Stream operations. Implement the following:
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a. A function that adds up numbers, i.e., int addUp(Stream<Integer> numbers)
b. A function that takes in artists and returns a list of strings with their names and

places of origin
c. A function that takes in albums and returns a list of albums with at most three

tracks
2. Iteration. Convert this code sample from using external iteration to internal itera‐

tion:
    int totalMembers = 0;
    for (Artist artist : artists) {
        Stream<Artist> members = artist.getMembers();
        totalMembers += members.count();
    }

3. Evaluation. Take a look at the signatures of these Stream methods. Are they eager
or lazy?
a. boolean anyMatch(Predicate<? super T> predicate);

b. Stream<T> limit(long maxSize);

4. Higher-order functions. Are these Stream functions higher order, and why?
a. boolean anyMatch(Predicate<? super T> predicate);

b. Stream<T> limit(long maxSize);

5. Pure functions. Are these lambda expressions side effect-free, or do they mutate
state?

x -> x + 1

Here’s the example code:
AtomicInteger count = new AtomicInteger(0);
List<String> origins = album.musicians()
                            .forEach(musician -> count.incAndGet();)

a. The lambda expression passed into forEach in the example.
6. Count the number of lowercase letters in a String (hint: look at the chars method

on String).
7. Find the String with the largest number of lowercase letters from a

List<String>. You can return an Optional<String> to account for the empty list
case.
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Advanced Exercises
1. Write an implementation of the Stream function map using only reduce and lambda

expressions. You can return a List instead of a Stream if you want.
2. Write an implementation of the Stream function filter using only reduce and

lambda expressions. Again, you can return a List instead of a Stream if you want.

Advanced Exercises | 39





CHAPTER 4

Libraries

I’ve talked about how to write lambda expressions but so far haven’t covered the other
side of the fence: how to use them. This lesson is important even if you’re not writing a
heavily functional library like streams. Even the simplest application is still likely to have
application code that could benefit from code as data.

Another Java 8 change that has altered the way that we need to think about libraries is
the introduction of default methods and static methods on interfaces. This change
means that methods on interfaces can now have bodies and contain code.

I’ll also fill in some gaps in this chapter, covering topics such as what happens when you
overload methods with lambda expressions and how to use primitives. These are im‐
portant things to be aware of when you’re writing lambda-enabled code.

Using Lambda Expressions in Code
In Chapter 2, I described how a lambda expression is given the type of a functional
interface and how this type is inferred. From the point of view of code calling the lambda
expression, you can treat it identically to calling a method on an interface.

Let’s look at a concrete example framed in terms of logging frameworks. Several com‐
monly used Java logging frameworks, including slf4j and log4j, have methods that
log output only when their logging level is set to a certain level or higher. So, they will
have a method like void debug(String message) that will log message if the level is
at debug.

Unfortunately, calculating the message to log frequently has a performance cost asso‐
ciated with it. Consequently, you end up with a situation in which people start explicitly
calling the Boolean isDebugEnabled method in order to optimize this performance
cost. A code sample is shown in Example 4-1. Even though a direct call to debug would
have avoided logging the text, it still would had to call the expensiveOperation method
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and also concatenate its output to the message String, so the explicit if check still ends
up being faster.

Example 4-1. A logger using isDebugEnabled to avoid performance overhead
Logger logger = new Logger();
if (logger.isDebugEnabled()) {
    logger.debug("Look at this: " + expensiveOperation());
}

What we actually want to be able to do is pass in a lambda expression that generates a
String to be used as the message. This expression would be called only if the Logger
was actually at debug level or above. This approach would allow us to rewrite the pre‐
vious code example to look like the code in Example 4-2.

Example 4-2. Using lambda expressions to simplify logging code
Logger logger = new Logger();
logger.debug(() -> "Look at this: " + expensiveOperation());

So how do we implement this method from within our Logger class? From the library
point of view, we can just use the builtin Supplier functional interface, which has a
single get method. We can then call isDebugEnabled in order to find out whether to
call this method and pass the result into our debug method if it is enabled. The resulting
code is shown in Example 4-3.

Example 4-3. The implementation of a lambda-enabled logger
    public void debug(Supplier<String> message) {
        if (isDebugEnabled()) {
            debug(message.get());
        }
    }

Calling the get() method in this example corresponds to calling the lambda expression
that was passed into the method to be called. This approach also conveniently works
with anonymous inner classes, which allows you maintain a backward-compatible API
if you have consumers of your code who can’t upgrade to Java 8 yet.

It’s important to remember that each of the different functional interfaces can have a
different name for its actual method. So, if we were using a Predicate, we would have
to call test, or if we were using Function, we would have to call apply.

Primitives
You might have noticed in the previous section that we skimmed over the use of prim‐
itive types. In Java we have a set of parallel types—for example, int and Integer—where
one is a primitive type and the other a boxed type. Primitive types are built into the
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language and runtime environment as fundamental building blocks; boxed types are
just normal Java classes that wrap up the primitives.

Because Java generics are based around erasing a generic parameter—in other words,
pretending it’s an instance of Object—only the boxed types can be used as generic
arguments. This is why if you want a list of integer values in Java it will always be
List<Integer> and not List<int>.

Unfortunately, because boxed types are objects, there is a memory overhead to them.
For example, although an int takes 4 bytes of memory, an Integer takes 16 bytes. This
gets even worse when you start to look at arrays of numbers, as each element of a prim‐
itive array is just the size of the primitive, while each element of a boxed array is actually
an in-memory pointer to another object on the Java heap. In the worst case, this might
make an Integer[] take up nearly six times more memory than an int[] of the same
size.

There is also a computational overhead when converting from a primitive type to a
boxed type, called boxing, and vice versa, called unboxing. For algorithms that perform
lots of numerical operations, the cost of boxing and unboxing combined with the ad‐
ditional memory bandwidth used by allocated boxed objects can make the code signif‐
icantly slower.

As a consequence of these performance overheads, the streams library differentiates
between the primitive and boxed versions of some library functions. The mapToLong
higher-order function and ToLongFunction, shown in Figure 4-1, are examples of this
effort. Only the int, long, and double types have been chosen as the focus of the prim‐
itive specialization implementation in Java 8 because the impact is most noticeable in
numerical algorithms.

Figure 4-1. ToLongFunction

The primitive specializations have a very clear-cut naming convention. If the return
type is a primitive, the interface is prefixed with To and the primitive type, as in ToL
ongFunction (shown in Figure 4-1). If the argument type is a primitive type, the name
prefix is just the type name, as in LongFunction (Figure 4-2). If the higher-order func‐
tion uses a primitive type, it is suffixed with To and the primitive type, as in mapToLong.
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Figure 4-2. LongFunction

There are also specialized versions of Stream for these primitive types that prefix the
type name, such as LongStream. In fact, methods like mapToLong don’t return a
Stream; they return these specialized streams. On the specialized streams, the map im‐
plementation is also specialized: it takes a function called LongUnaryOperator, visible
in Figure 4-3, which maps a long to a long. It’s also possible to get back from a primitive
stream to a boxed stream through higher-order function variations such as mapToObj
and the boxed method, which returns a stream of boxed objects such as Stream<Long>.

Figure 4-3. LongUnaryOperator

It’s a good idea to use the primitive specialized functions wherever possible because of
the performance benefits. You also get additional functionality available on the speci‐
alized streams. This allows you to avoid having to implement common functionality
and to use code that better conveys the intent of numerical operations. You can see an
example of how to use this functionality in Example 4-4.

Example 4-4. Using summaryStatistics to understand track length data
public static void printTrackLengthStatistics(Album album) {
    IntSummaryStatistics trackLengthStats
            = album.getTracks()
                   .mapToInt(track -> track.getLength())
                   .summaryStatistics();

    System.out.printf("Max: %d, Min: %d, Ave: %f, Sum: %d",
                      trackLengthStats.getMax(),
                      trackLengthStats.getMin(),
                      trackLengthStats.getAverage(),
                      trackLengthStats.getSum());
}

Example 4-4 prints out a summary of track length information to the console. Instead
of calculating that information ourselves, we map each track to its length, using the
primitive specialized mapToInt method. Because this method returns an IntStream, we
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can call summaryStatistics, which calculates statistics such as the minimum, maxi‐
mum, average, and sum values on the IntStream.

These values are available on all the specialized streams, such as DoubleStream and
LongStream. It’s also possible to calculate the individual summary statistics if you don’t
need all of them through the min, max, average, and sum methods, which are all also
available on all three primitive specialized Stream variants.

Overload Resolution
It’s possible in Java to overload methods, so you have multiple methods with the same
name but different signatures. This approach poses a problem for parameter-type in‐
ference because it means that there are several types that could be inferred. In these
situations javac will pick the most specific type for you. For example, the method call
in Example 4-5, when choosing between the two methods in Example 4-6, prints out
String, not Object.

Example 4-5. A method that could be dispatched to one of two methods
overloadedMethod("abc");

Example 4-6. Two methods that are overloaded
private void overloadedMethod(Object o) {
    System.out.print("Object");
}

private void overloadedMethod(String s) {
    System.out.print("String");
}

A BinaryOperator is special type of BiFunction for which the arguments and the return
type are all the same. For example, adding two integers would be a BinaryOperator.

Because lambda expressions have the types of their functional interfaces, the same rules
apply when passing them as arguments. We can overload a method with the BinaryOp
erator and an interface that extends it. When calling these methods, Java will infer the
type of your lambda to be the most specific functional interface. For example, the code
in Example 4-7 prints out IntegerBinaryOperator when choosing between the two
methods in Example 4-8.

Example 4-7. Another overloaded method call
overloadedMethod((x, y) -> x + y);
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Example 4-8. A choice between two overloaded methods
private interface IntegerBiFunction extends BinaryOperator<Integer> {

}

private void overloadedMethod(BinaryOperator<Integer> lambda) {
    System.out.print("BinaryOperator");
}

private void overloadedMethod(IntegerBiFunction lambda) {
    System.out.print("IntegerBinaryOperator");
}

Of course, when there are multiple method overloads, there isn’t always a clear “most
specific type.” Take a look at Example 4-9.

Example 4-9. A compile failure due to overloaded methods
overloadedMethod((x) -> true);

private interface IntPredicate  {
    public boolean test(int value);
}

private void overloadedMethod(Predicate<Integer> predicate) {
    System.out.print("Predicate");
}

private void overloadedMethod(IntPredicate predicate) {
    System.out.print("IntPredicate");
}

The lambda expression passed into overloadedMethod is compatible with both a normal
Predicate and the IntPredicate. There are method overloads for each of these options
defined within this code block. In this case, javac will fail to compile the example,
complaining that the lambda expression is an ambiguous method call: IntPredicate
doesn’t extend any Predicate, so the compiler isn’t able to infer that it’s more specific.

The way to fix these situations is to cast the lambda expression to either IntPredi
cate or Predicate<Integer>, depending upon which behavior you want to call. Of
course, if you’ve designed the library yourself, you might conclude that this is a code
smell and you should start renaming your overloaded methods.

In summary, the parameter types of a lambda are inferred from the target type, and the
inference follows these rules:

• If there is a single possible target type, the lambda expression infers the type from
the corresponding argument on the functional interface.

• If there are several possible target types, the most specific type is inferred.
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• If there are several possible target types and there is no most specific type, you must
manually provide a type.

@FunctionalInterface
Although I talked about the criteria for what a functional interface actually is back in
Chapter 2, I haven’t yet mentioned the @FunctionalInterface annotation. This is an
annotation that should be applied to any interface that is intended to be used as a func‐
tional interface.

What does that really mean? Well, there are some interfaces in Java that have only a
single method but aren’t normally meant to be implemented by lambda expressions.
For example, they might assume that the object has internal state and be interfaces with
a single method only coincidentally. A couple of good examples are java.lang.Compa
rable and java.io.Closeable.

If a class is Comparable, it means there is a defined order between instances, such as
alphabetical order for strings. You don’t normally think about functions themselves as
being comparable objects because they lack fields and state, and if there are no fields
and no state, what is there to sensibly compare?

For an object to be Closeable it must hold an open resource, such as a file handle that
needs to be closed at some point in time. Again, the interface being called cannot be a
pure function because closing a resource is really another example of mutating state.

In contrast to Closeable and Comparable, all the new interfaces introduced in order to
provide Stream interoperability are expected to be implemented by lambda expressions.
They are really there to bundle up blocks of code as data. Consequently, they have the
@FunctionalInterface annotation applied.

Using the annotation compels javac to actually check whether the interface meets the
criteria for being a functional interface. If the annotation is applied to an enum, class,
or annotation, or if the type is an interface with more than one single abstract method,
then javac will generate an error message. This is quite helpful for being able to catch
errors easily when refactoring your code.

Binary Interface Compatibility
As you saw in Chapter 3, one of the biggest API changes in Java 8 is to the collections
library. As Java has evolved, it has maintained backward binary compatibility. In prac‐
tical terms, this means that if you compiled a library or application with Java 1 through
7, it’ll run out of the box in Java 8.
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Of course, there are still bugs from time to time, but compared to many other pro‐
gramming platforms, binary compatibility has been viewed as a key Java strength. Bar‐
ring the introduction of a new keyword, such as enum, there has also been an effort to
maintain backward source compatibility. Here the guarantee is that if you’ve got source
code in Java 1-7, it’ll compile in Java 8.

These guarantees are really hard to maintain when you’re changing such a core library
component as the collections library. As a thought exercise, consider a concrete example.
The stream method was added to the Collection interface in Java 8, which means that
any class that implements Collection must also have this method on it. For core library
classes, this problem can easily be solved by implementing that method (e.g., adding a
stream method to ArrayList).

Unfortunately, this change still breaks binary compatibility because it means that any
class outside of the JDK that implements Collection—say, MyCustomList—must also
have implemented the stream method. In Java 8 MyCustomList would no longer com‐
pile, and even if you had a compiled version when you tried to load MyCustomList into
a JVM, it would result in an exception being thrown by your ClassLoader.

This nightmare scenario of all third-party collections libraries being broken has been
averted, but it did require the introduction of a new language concept: default methods.

Default Methods
So you’ve got your new stream method on Collection; how do you allow MyCustom
List to compile without ever having to know about its existence? The Java 8 approach
to solving the problem is to allow Collection to say, “If any of my children don’t have
a stream method, they can use this one.” These methods on an interface are called default
methods. They can be used on any interface, functional or not.

Another default method that has been added is the forEach method on Iterable, which
provides similar functionality to the for loop but lets you use a lambda expression as
the body of the loop. Example 4-10 shows how this could be implemented in the JDK.

Example 4-10. An example default method, showing how forEach might be
implemented
default void forEach(Consumer<? super T> action) {
    for (T t : this) {
        action.accept(t);
    }
}

Now that you’re familiar with the idea that you can use lambda expressions by just calling
methods on interfaces, this example should look pretty simple. It uses a regular for loop
to iterate over the underlying Iterable, calling the accept method with each value.
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If it’s so simple, why mention it? The important thing is that new default keyword right
at the beginning of the code snippet. That tells javac that you really want to add a
method to an interface. Other than the addition of a new keyword, default methods
also have slightly different inheritance rules to regular methods.

The other big difference is that, unlike classes, interfaces don’t have instance fields, so
default methods can modify their child classes only by calling methods on them. This
helps you avoid making assumptions about the implementation of their children.

Default Methods and Subclassing
There are some subtleties about the way that default methods override and can be
overridden by other methods. Let’s look the simplest case to begin with: no overriding.
In Example 4-11, our Parent interface defines a welcome method that sends a message
when called. The ParentImpl class doesn’t provide an implementation of welcome, so
it inherits the default method.

Example 4-11. The Parent interface; the welcome method is a default
public interface Parent {

    public void message(String body);

    public default void welcome() {
        message("Parent: Hi!");
    }

    public String getLastMessage();

}

When we come to call this code, in Example 4-12, the default method is called and our
assertion passes.

Example 4-12. Using the default method from client code
@Test
public void parentDefaultUsed() {
    Parent parent = new ParentImpl();
    parent.welcome();
    assertEquals("Parent: Hi!", parent.getLastMessage());
}

Now we can extend Parent with a Child interface, whose code is listed in Example 4-13.
Child implements its own default welcome method. As you would intuitively expect,
the default method on Child overrides the default method on Parent. In this exam‐
ple, again, the ChildImpl class doesn’t provide an implementation of welcome, so it
inherits the default method.

Default Methods | 49



Example 4-13. Child interface that extends Parent
public interface Child extends Parent {

    @Override
    public default void welcome() {
        message("Child: Hi!");
    }

}

You can see the class hierarchy at this point in Figure 4-4.

Figure 4-4. A diagram showing the inheritance hierarchy at this point

Example 4-14 calls this interface and consequently ends up sending the string "Child:
Hi!".

Example 4-14. Client code that calls our Child interface
@Test
public void childOverrideDefault() {
    Child child = new ChildImpl();
    child.welcome();
    assertEquals("Child: Hi!", child.getLastMessage());
}

Now the default method is a virtual method—that is, the opposite of a static method.
What this means is that whenever it comes up against competition from a class method,
the logic for determining which override to pick always chooses the class. A simple
example of this is shown in Examples 4-15 and 4-16, where the welcome method of
OverridingParent is chosen over that of Parent.
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Example 4-15. A parent class that overrides the default implementation of welcome
public class OverridingParent extends ParentImpl {

    @Override
    public void welcome() {
        message("Class Parent: Hi!");
    }

}

Example 4-16. An example of a concrete method beating a default method
@Test
public void concreteBeatsDefault() {
    Parent parent = new OverridingParent();
    parent.welcome();
    assertEquals("Class Parent: Hi!", parent.getLastMessage());
}

Here’s a situation, presented in Example 4-18, in which you might not expect the con‐
crete class to override the default method. OverridingChild inherits both the wel
come method from Child and the welcome method from OverridingParent and doesn’t
do anything itself. OverridingParent is chosen despite OverridingChild (the code in
Example 4-17), being a more specific type because it’s a concrete method from a class
rather than a default method (see Figure 4-5).

Example 4-17. Again, our child interface overrides the default welcome method
public class OverridingChild extends OverridingParent implements Child {

}

Example 4-18. An example of a concrete method beating a default method that is more
specific
@Test
public void concreteBeatsCloserDefault() {
    Child child = new OverridingChild();
    child.welcome();
    assertEquals("Class Parent: Hi!", child.getLastMessage());
}
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Figure 4-5. A diagram showing the complete inheritance hierarchy

Put simply: class wins. The motivation for this decision is that default methods are
designed primarily to allow binary compatible API evolution. Allowing classes to win
over any default methods simplifies a lot of inheritance scenarios.

Suppose we had a custom list implementation called MyCustomList and had imple‐
mented a custom addAll method, and the new List interface provided a default ad
dAll that delegated to the add method. If the default method wasn’t guaranteed to be
overridden by this addAll method, we could break the existing implementation.

Multiple Inheritance
Because interfaces are subject to multiple inheritance, it’s possible to get into situations
where two interfaces both provide default methods with the same signature. Here’s an
example in which both a Carriage and a Jukebox provide a method to rock—in each
case, for different purposes. We also have a MusicalCarriage, which is both a Juke
box (Example 4-19) and a Carriage (Example 4-20) and tries to inherit the rock method.

Example 4-19. Jukebox
public interface Jukebox {

    public default String rock() {
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        return "... all over the world!";
    }

}

Example 4-20. Carriage
public interface Carriage {

    public default String rock() {
        return "... from side to side";
    }

}

public class MusicalCarriage implements Carriage, Jukebox {
}

Because it’s not clear to javac which method it should inherit, this will just result in the
compile error class MusicalCarriage inherits unrelated defaults for rock()
from types Carriage and Jukebox. Of course, it’s possible to resolve this by imple‐
menting the rock method, shown in Example 4-21.

Example 4-21. Implementing the rock method
public class MusicalCarriage
        implements Carriage, Jukebox {

    @Override
    public String rock() {
        return Carriage.super.rock();
    }

}

This example uses the enhanced super syntax in order to pick Carriage as its preferred
rock implementation. Previously, super acted as a reference to the parent class, but by
using the InterfaceName.super variant it’s possible to specify a method from an in‐
herited interface.

The Three Rules
If you’re ever unsure of what will happen with default methods or with multiple in‐
heritance of behavior, there are three simple rules for handling conflicts:

1. Any class wins over any interface. So if there’s a method with a body, or an abstract
declaration, in the superclass chain, we can ignore the interfaces completely.

Multiple Inheritance | 53



2. Subtype wins over supertype. If we have a situation in which two interfaces are
competing to provide a default method and one interface extends the other, the
subclass wins.

3. No rule 3. If the previous two rules don’t give us the answer, the subclass must either
implement the method or declare it abstract.

Rule 1 is what brings us compatibility with old code.

Tradeoffs
These changes raise a bunch of issues regarding what an interface really is in Java 8, as
you can define methods with code bodies on them. This means that interfaces now
provide a form of multiple inheritance that has previously been frowned upon and
whose removal has been considered a usability advantage of Java over C++.

No language feature is always good or always bad. Many would argue that the real issue
is multiple inheritance of state rather than just blocks of code, and as default methods
avoid multiple inheritance of state, they avoid the worst pitfalls of multiple inheritance
in C++.

It can also be very tempting to try and work around these limitations. Blog posts have
already cropped up trying to implement full-on traits with multiple inheritance of state
as well as default methods. Trying to hack around the deliberate restrictions of Java 8
puts us back into the old pitfalls of C++.

It’s also pretty clear that there’s still a distinction between interfaces and abstract classes.
Interfaces give you multiple inheritance but no fields, while abstract classes let you
inherit fields but you don’t get multiple inheritance. When modeling your problem
domain, you need to think about this tradeoff, which wasn’t necessary in previous ver‐
sions of Java.

Static Methods on Interfaces
We’ve seen a lot of calling of Stream.of but haven’t gotten into its details yet. You may
recall that Stream is an interface, but this is a static method on an interface. This is
another new language change that has made its way into Java 8, primarily in order to
help library developers, but with benefits for day-to-day application developers as well.

An idiom that has accidentally developed over time is ending up with classes full of
static methods. Sometimes a class can be an appropriate location for utility code, such
as the Objects class introduced in Java 7 that contained functionality that wasn’t specific
to any particular class.

54 | Chapter 4: Libraries



Of course, when there’s a good semantic reason for a method to relate to a concept, it
should always be put in the same class or interface rather than hidden in a utility class
to the side. This helps structure your code in a way that’s easier for someone reading it
to find the relevant method.

For example, if you want to create a simple Stream of values, you would expect the
method to be located on Stream. Previously, this was impossible, and the addition of a
very interface-heavy API in terms of Stream finally motivated the addition of static
methods on interfaces.

There are other methods on Stream and its primitive specialized var‐
iants. Specifically, range and iterate give us other ways of generat‐
ing our own streams.

Optional
Something I’ve glossed over so far is that reduce can come in a couple of forms: the one
we’ve seen, which takes an initial value, and another variant, which doesn’t. When the
initial value is left out, the first call to the reducer uses the first two elements of the
Stream. This is useful if there’s no sensible initial value for a reduce operation and will
return an instance of Optional.

Optional is a new core library data type that is designed to provide a better alternative
to null. There’s quite a lot of hatred for the old null value. Even the man who invented
the concept, Tony Hoare, described it as “my billion-dollar mistake.” That’s the trouble
with being an influential computer scientist—you can make a billion-dollar mistake
without even seeing the billion dollars yourself!

null is often used to represent the absence of a value, and this is the use case that
Optional is replacing. The problem with using null in order to represent absence is
the dreaded NullPointerException. If you refer to a variable that is null, your code
blows up. The goal of Optional is twofold. First, it encourages the coder to make ap‐
propriate checks as to whether a variable is null in order to avoid bugs. Second, it
documents values that are expected to be absent in a class’s API. This makes it easier to
see where the bodies are buried.

Let’s take a look at the API for Optional in order to get a feel for how to use it. If you
want to create an Optional instance from a value, there is a factory method called of.
The Optional is now a container for this value, which can be pulled out with get, as
shown in Example 4-22.
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Example 4-22. Creating an Optional from a value
Optional<String> a = Optional.of("a");
assertEquals("a", a.get());

Because an Optional may also represent an absent value, there’s also a factory method
called empty, and you can convert a nullable value into an Optional using the ofNulla
ble method. Both of these are shown in Example 4-23, along with the use of the isPre
sent method (which indicates whether the Optional is holding a value).

Example 4-23. Creating an empty Optional and checking whether it contains a value
Optional emptyOptional = Optional.empty();
Optional alsoEmpty = Optional.ofNullable(null);

assertFalse(emptyOptional.isPresent());

// a is defined above
assertTrue(a.isPresent());

One approach to using Optional is to guard any call to get() by checking isPre
sent(). A neater approach is to call the orElse method, which provides an alternative
value in case the Optional is empty. If creating an alternative value is computationally
expensive, the orElseGet method should be used. This allows you to pass in a Suppli
er that is called only if the Optional is genuinely empty. Both of these methods are
demonstrated in Example 4-24.

Example 4-24. Using orElse and orElseGet
assertEquals("b", emptyOptional.orElse("b"));
assertEquals("c", emptyOptional.orElseGet(() -> "c"));

Not only is Optional used in new Java 8 APIs, but it’s also just a regular class that you
can use yourself when writing domain classes. This is definitely something to think
about when trying to avoid nullness-related bugs such as uncaught exceptions.

Key Points
• A significant performance advantage can be had by using primitive specialized

lambda expressions and streams such as IntStream.
• Default methods are methods with bodies on interfaces prefixed with the keyword
default.

• The Optional class lets you avoid using null by modeling situations where a value
may not be present.
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Exercises
1. Given the Performance interface in Example 4-25, add a method called getAllMu

sicians that returns a Stream of the artists performing and, in the case of groups,
any musicians who are members of those groups. For example, if getMusicians
returns The Beatles, then you should return The Beatles along with Lennon,
McCartney, and so on.

Example 4-25. An interface denoting the concept of a musical performance
/** A Performance by some musicians - e.g., an Album or Gig. */
public interface Performance {

    public String getName();

    public Stream<Artist> getMusicians();

}

2. Based on the resolution rules described earlier, can you ever override equals or
hashCode in a default method?

3. Take a look at the Artists domain class in Example 4-26, which represents a group
of artists. Your assignment is to refactor the getArtist method in order to return
an Optional<Artist>. It contains an element if the index is within range and is an
empty Optional otherwise. Remember that you also need to refactor the getAr
tistName method, and it should retain the same behavior.

Example 4-26. The Artists domain class, which represents more than one Artist
public class Artists {

    private List<Artist> artists;

    public Artists(List<Artist> artists) {
        this.artists = artists;
    }

    public Artist getArtist(int index) {
        if (index < 0 || index >= artists.size()) {
            indexException(index);
        }
        return artists.get(index);
    }

    private void indexException(int index) {
        throw new IllegalArgumentException(index +
                                           " doesn't correspond to an Artist");
    }
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    public String getArtistName(int index) {
        try {
            Artist artist = getArtist(index);
            return artist.getName();
        } catch (IllegalArgumentException e) {
            return "unknown";
        }
    }

}

Open Exercises
1. Look through your work code base or an open source project you’re familiar with

and try to identify classes that have just static methods that could be moved to static
methods on interfaces. It might be worth discussing with your colleagues whether
they agree or disagree with you.
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CHAPTER 5

Advanced Collections and Collectors

There’s a lot more to the collections library changes than I covered in Chapter 3. It’s
time to cover some of the more advanced collections changes, including the new Col
lector abstraction. I’ll also introduce method references, which are a way of using
existing code in lambda expressions with little to no ceremony. They pay huge dividends
when it comes to writing Collection-heavy code. More advanced topics within the
collections library will also be covered, such as element ordering within streams and
other useful API changes.

Method References
A common idiom you may have noticed is the creation of a lambda expression that calls
a method on its parameter. If we want a lambda expression that gets the name of an
artist, we would write the following:

artist -> artist.getName()

This is such a common idiom that there’s actually an abbreviated syntax for this that
lets you reuse an existing method, called a method reference. If we were to write the
previous lambda expression using a method reference, it would look like this:

Artist::getName

The standard form is Classname::methodName. Remember that even though it’s a meth‐
od, you don’t need to use brackets because you’re not actually calling the method. You’re
providing the equivalent of a lambda expression that can be called in order to call the
method. You can use method references in the same places as lambda expressions.

You can also call constructors using the same abbreviated syntax. If you were to use a
lambda expression to create an Artist, you might write:

(name, nationality) -> new Artist(name, nationality)
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We can also write this using method references:

Artist::new

This code is not only shorter but also a lot easier to read. Artist::new immediately tells
you that you’re creating a new Artist without your having to scan the whole line of
code. Another thing to notice here is that method references automatically support
multiple parameters, as long as you have the right functional interface.

It’s also possible to create arrays using this method. Here is how you would create a
String array:

String[]::new

We’ll be using method references from this point onward where appropriate, so you’ll
be seeing a lot more examples very soon. When we were first exploring the Java 8
changes, a friend of mine said that method references “feel like cheating.” What he meant
was that, having looked at how we can use lambda expressions to pass code around as
if it were data, it felt like cheating to be able to reference a method directly.

It’s OK—it’s not cheating! You have to bear in mind that every time you write a lambda
expression that looks like x -> foo(x), it’s really doing the same thing as just the method
foo on its own. All method references do is provide a simpler syntax that takes advantage
of this fact.

Element Ordering
One topic I haven’t discussed so far that pertains to collections is how elements are
ordered in streams. You might be familiar with the concept that some types of Collec
tion, such as List, have a defined order, and collections like HashSet don’t. The situation
with ordering becomes a little more complex with Stream operations.

A Stream intuitively presents an order because each element is operated upon, or en‐
countered, in turn. We call this the encounter order. How the encounter order is defined
depends on both the source of the data and the operations performed on the Stream.

When you create a Stream from a collection with a defined order, the Stream has a
defined encounter order. As a consequence, Example 5-1 will always pass.

Example 5-1. The ordering assumption in this test will always work
    List<Integer> numbers = asList(1, 2, 3, 4);

    List<Integer> sameOrder = numbers.stream()
                                     .collect(toList());
    assertEquals(numbers, sameOrder);
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If there’s no defined order to begin, the Stream produced by that source doesn’t have a
defined order. A HashSet is an example of a collection without a defined ordering, and
because of that Example 5-2 isn’t guaranteed to pass.

Example 5-2. The ordering assumption here isn’t guaranteed
    Set<Integer> numbers = new HashSet<>(asList(4, 3, 2, 1));

    List<Integer> sameOrder = numbers.stream()
                                     .collect(toList());

    // This may not pass
    assertEquals(asList(4, 3, 2, 1), sameOrder);

The purpose of streams isn’t just to convert from one collection to another; it’s to be
able to provide a common set of operations over data. These operations may create an
encounter order where there wasn’t one to begin with. Consider the code presented in
Example 5-3.

Example 5-3. Creating an encounter order
    Set<Integer> numbers = new HashSet<>(asList(4, 3, 2, 1));

    List<Integer> sameOrder = numbers.stream()
                                     .sorted()
                                     .collect(toList());

    assertEquals(asList(1, 2, 3, 4), sameOrder);

The encounter order is propagated across intermediate operations if it exists; for ex‐
ample, if we try to map values and there’s a defined encounter order, then that encounter
order will be preserved. If there’s no encounter order on the input Stream, there’s no
encounter order on the output Stream. Consider the two snippets of code in
Example 5-4. We can only make the weaker hasItem assertions on the HashSet example
because the lack of a defined encounter order from HashSet continues through the map.

Example 5-4. The ordering assumption in this test will always work
    List<Integer> numbers = asList(1, 2, 3, 4);

    List<Integer> stillOrdered = numbers.stream()
                                        .map(x -> x + 1)
                                        .collect(toList());

    // Reliable encounter ordering
    assertEquals(asList(2, 3, 4, 5), stillOrdered);

    Set<Integer> unordered = new HashSet<>(numbers);

    List<Integer> stillUnordered = unordered.stream()
                                            .map(x -> x + 1)
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                                            .collect(toList());

    // Can't assume encounter ordering
    assertThat(stillUnordered, hasItem(2));
    assertThat(stillUnordered, hasItem(3));
    assertThat(stillUnordered, hasItem(4));
    assertThat(stillUnordered, hasItem(5));

Some operations are more expensive on ordered streams. This problem can be solved
by eliminating ordering. To do so, call the stream’s unordered method. Most operations,
however, such as filter, map, and reduce, can operate very efficiently on ordered
streams.

This can cause unexpected behavior, for example, forEach provides no guarantees as
to encounter order if you’re using parallel streams. (This will be discussed in more detail
in Chapter 6.) If you require an ordering guarantee in these situations, then forEachOr
dered is your friend!

Enter the Collector
Earlier, we used the collect(toList()) idiom in order to produce lists out of streams.
Obviously, a List is a very natural value to want to produce from a Stream, but it’s not
the only value that you might want to compute. Perhaps you want to generate a Map or
a Set. Maybe you think it’s worth having a domain class that abstracts the concept you
want?

You’ve already learned that you can tell just from the signature of a Stream method
whether it’s an eagerly evaluated terminal operation that can be used to produce a value.
A reduce operation can be very suitable for this purpose. Sometimes you want to go
further than reduce allows, though.

Enter the collector, a general-purpose construct for producing complex values from
streams. These can be used with any Stream by passing them into the collect method.

The standard library provides a bunch of useful collectors out of the box, so let’s look
at those first. In the code examples throughout this chapter the collectors are statically
imported from the java.util.stream.Collectors class.

Into Other Collections
Some collectors just build up other collections. You’ve already seen the toList collector,
which produces java.util.List instances. There’s also a toSet collector and a toCol
lection collector, which produce instances of Set and Collection. I’ve talked a lot so
far about chaining Stream operations, but there are still times when you’ll want to pro‐
duce a Collection as a final value—for example:

62 | Chapter 5: Advanced Collections and Collectors



• When passing your collection to existing code that is written to use collections
• When creating a final value at the end of a chain of collections
• When writing test case asserts that operate on a concrete collection

Normally when we create a collection, we specify the concrete type of the collection by
calling the appropriate constructor:

List<Artist> artists = new ArrayList<>();

But when you’re calling toList or toSet, you don’t get to specify the concrete imple‐
mentation of the List or Set. Under the hood, the streams library is picking an appro‐
priate implementation for you. Later in this book I’ll talk about how you can use the
streams library to perform data parallel operations; collecting the results of parallel
operations can require a different type of Set to be produced than if there were no
requirement for thread safety.

It might be the case that you wish to collect your values into a Collection of a specific
type if you require that type later. For example, perhaps you want to use a TreeSet
instead of allowing the framework to determine what type of Set implementation you
get. You can do that using the toCollection collector, which takes a function to build
the collection as its argument (see Example 5-5).

Example 5-5. Collecting into a custom collection using toCollection
stream.collect(toCollection(TreeSet::new));

To Values
It’s also possible to collect into a single value using a collector. There are maxBy and minBy
collectors that let you obtain a single value according to some ordering. Example 5-6
shows how to find the band with the most members. It defines a lambda expression that
can map an artist to the number of members. This is then used to define a comparator
that is passed into the maxBy collector.

Example 5-6. Finding the band with the most members
public Optional<Artist> biggestGroup(Stream<Artist> artists) {
    Function<Artist,Long> getCount = artist -> artist.getMembers().count();
    return artists.collect(maxBy(comparing(getCount)));
}

There’s also a minBy, which does what it says on the tin.

There are also collectors that implement common numerical operations. Let’s take a
look at these by writing a collector to find the average number of tracks on an album,
as in Example 5-7.
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Example 5-7. Finding the average number of tracks for a list of albums
public double averageNumberOfTracks(List<Album> albums) {
    return albums.stream()
                 .collect(averagingInt(album -> album.getTrackList().size()));
}

As usual, we kick off our pipeline with the stream method and collect the results. We
then call the averagingInt method, which takes a lambda expression in order to convert
each element in the Stream into an int before averaging the values. There are also
overloaded operations for the double and long types, which let you convert your ele‐
ment into these type of values.

Back in “Primitives” on page 42, we talked about how the primitive specialized variants
of streams, such as IntStream, had additional functionality for numerical operations.
In fact, there are also a group of collectors that offer similar functionality, in the vein of
averagingInt. You can add up the values using summingInt and friends. SummarySta
tistics is collectible using summarizingInt and its combinations.

Partitioning the Data
Another common operation that you might want to do with a Stream is partition it into
two collections of values. For example, if you’ve got a Stream of artists, then you might
wish to get all the artists who are solo artists—that is, who have no fellow band members
—and all the artists who are bands. One approach to doing this is to perform two dif‐
ferent filters, one looking for solo artists and the other for bands.

This approach has a couple of downsides, though. First, you’ll need two streams in order
to perform these two stream operations. Second, if you’ve got a long sequence of oper‐
ations leading up to your filters, these will need to be performed twice over each stream.
This also doesn’t result in clean code.

Consequently, there is a collector, partitioningBy, that takes a stream and partitions
its contents into two groups (see Figure 5-1). It uses a Predicate to determine whether
an element should be part of the true group or the false group and returns a Map from
Boolean to a List of values. So, the Predicate returns true for all the values in the true
List and false for the other List.

64 | Chapter 5: Advanced Collections and Collectors



Figure 5-1. The partitioningBy collector

We can use these features to split out bands (artists with more than one member) from
solo artists. In this case, our partitioning function tells us whether the artist is a solo act.
Example 5-8 provides an implementation.

Example 5-8. Partitioning a stream of artists into bands and solo artists
public Map<Boolean, List<Artist>> bandsAndSolo(Stream<Artist> artists) {
    return artists.collect(partitioningBy(artist -> artist.isSolo()));
}

We can also write this using method references, as demonstrated in Example 5-9.

Example 5-9. Partitioning up a stream of artists into bands and solo artists using a
method reference
public Map<Boolean, List<Artist>> bandsAndSoloRef(Stream<Artist> artists) {
    return artists.collect(partitioningBy(Artist::isSolo));
}

Grouping the Data
There’s a natural way to generalize partitioning through altering the grouping operation.
It’s more general in the sense that instead of splitting up your data into true and false
groups, you can use whatever values you want. Perhaps some code has given you a
Stream of albums and you want to group them by the name of their main musician. You
might write some code like Example 5-10.

Example 5-10. Grouping albums by their main artist
public Map<Artist, List<Album>> albumsByArtist(Stream<Album> albums) {
    return albums.collect(groupingBy(album -> album.getMainMusician()));
}

As with the other examples, we’re calling collect on the Stream and passing in a
Collector. Our groupingBy collector (Figure 5-2) takes a classifier function in order
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to partition the data, just like the partitioningBy collector took a Predicate to split it
up into true and false values. Our classifier is a Function—the same type that we use
for the common map operation.

Figure 5-2. The groupingBy collector

You might be familiar with group by from using SQL; here we have
a method with a similar concept, but implemented in the idioms of
the streams library.

Strings
A very common reason for collecting streams of data is to generate strings at the end.
Let’s suppose that we want to put together a formatted list of names of the artists involved
in an album. So, for example, if our input album is Let It Be, then we’re expecting our
output to look like "[George Harrison, John Lennon, Paul McCartney, Ringo
Starr, The Beatles]".

If we were to implement this before Java 8, we might have come up with something like
Example 5-11. Here, we use a StringBuilder to accumulate the values, iterating over
the list. At each step, we pull out the names of the artists and add them to the String
Builder.

Example 5-11. Formatting artist names using a for loop
StringBuilder builder = new StringBuilder("[");
for (Artist  artist : artists) {
    if (builder.length() > 1)
        builder.append(", ");

    String name = artist.getName();
    builder.append(name);
}
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builder.append("]");
String result = builder.toString();

Of course, this isn’t particularly great code. It’s pretty hard to see what it’s doing without
walking through it step by step. With Java 8 we can write Example 5-12, which makes
our intent much clearer using streams and collectors.

Example 5-12. Formatting artist names using streams and collectors
String result =
    artists.stream()
              .map(Artist::getName)
              .collect(Collectors.joining(", ", "[", "]"));

Here, we use a map to extract the artists’ names and then collect the Stream using
Collectors.joining. This method is a convenience for building up strings from
streams. It lets us provide a delimiter (which goes between elements), a prefix for our
result, and a suffix for the result.

Composing Collectors
Although the collectors we’ve seen so far are quite powerful, they become significantly
more so when composed with other collectors.

Previously we grouped albums by their main artist; now let’s consider the problem of
counting the number of albums for each artist. A simple approach would be to apply
the previous grouping and then count the values. You can see how that works out in
Example 5-13.

Example 5-13. A naive approach to counting the number of albums for each artist
Map<Artist, List<Album>> albumsByArtist
    = albums.collect(groupingBy(album -> album.getMainMusician()));

Map<Artist, Integer>  numberOfAlbums = new HashMap<>();
for(Entry<Artist, List<Album>> entry : albumsByArtist.entrySet()) {
    numberOfAlbums.put(entry.getKey(), entry.getValue().size());
}

Hmm, it might have sounded like a simple approach, but it got a bit messy. This code
is also imperative and doesn’t automatically parallelize.

What we want here is actually another collector that tells groupingBy that instead of
building up a List of albums for each artist, it should just count them. Conveniently,
this is already in the core library and is called counting. So, we can rewrite the example
into Example 5-14.
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Example 5-14. Using collectors to count the number of albums for each artist
public Map<Artist, Long> numberOfAlbums(Stream<Album> albums) {
    return albums.collect(groupingBy(album -> album.getMainMusician(),
                                     counting()));
}

This form of groupingBy divides elements into buckets. Each bucket gets associated with
the key provided by the classifier function: getMainMusician. The groupingBy opera‐
tion then uses the downstream collector to collect each bucket and makes a map of the
results.

Let’s consider another example, in which instead of building up a grouping of albums,
we just want their names. Again, one approach is to take our original collector and then
fix up the resulting values in the Map. Example 5-15 shows how we might do that.

Example 5-15. A naive approach to finding the names of every album that an artist has
produced
public Map<Artist, List<String>> nameOfAlbumsDumb(Stream<Album> albums) {
    Map<Artist, List<Album>> albumsByArtist =
            albums.collect(groupingBy(album ->album.getMainMusician()));

    Map<Artist, List<String>>  nameOfAlbums = new HashMap<>();
    for(Entry<Artist, List<Album>> entry : albumsByArtist.entrySet()) {
        nameOfAlbums.put(entry.getKey(), entry.getValue()
                                              .stream()
                                              .map(Album::getName)
                                              .collect(toList()));
    }
    return nameOfAlbums;
}

Again, we can produce nicer, faster, and easier-to-parallelize code using another col‐
lector. We already know that we can group our albums by the main artist using the
groupingBy collector, but that would output a Map<Artist, List<Album>>. Instead of
associating a list of albums with each Artist, we want to associate a list of strings, each
of which is the name of an album.

In this case, what we’re really trying to do is perform a map operation on the list from
the Artist to the album name. We can’t just use the map method on streams because
this list is created by the groupingBy collector. We need a way of telling the grouping
By collector to map its list values as it’s building up the result.

Each collector is a recipe for building a final value. What we really want is a recipe to
give to our recipe—another collector. Thankfully, the boffins at Oracle have thought of
this use case and provided a collector called mapping.
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The mapping collector allows you to perform a map-like operation over your collector’s
container. You also need to tell your mapping collector what collection it needs to store
the results in, which you can do with the toList collector. It’s turtles, I mean collectors,
all the way down!

Just like map, this takes an implementation of Function. If we refactor our code to use
a second collector, we end up with Example 5-16.

Example 5-16. Using collectors to find the names of every album that an artist has pro‐
duced
public Map<Artist, List<String>> nameOfAlbums(Stream<Album> albums) {
    return albums.collect(groupingBy(Album::getMainMusician,
                                     mapping(Album::getName, toList())));
}

In both of these cases, we’ve used a second collector in order to collect a subpart of the
final result. These collectors are called downstream collectors. In the same way that a
collector is a recipe for building a final value, a downstream collector is a recipe for
building a part of that value, which is then used by the main collector. The way you can
compose collectors like this makes them an even more powerful component in the
streams library.

The primitive specialized functions, such as averagingInt or summarizingLong, are
actually duplicate functionality over calling the method on the specialized stream them‐
selves. The real motivation for them to exist is to be used as downstream collectors.

Refactoring and Custom Collectors
Although the built-in Java collectors are good building blocks for common operations
around streams, the collector framework is very generic. There is nothing special or
magic about the ones that ship with the JDK, and you can build your own collectors
very simply. That’s what we’ll look at now.

You may recall when we looked at strings that we could write our example in Java 7,
albeit inelegantly. Let’s take this example and slowly refactor it into a proper String-
joining collector. There’s no need for you to use this code—the JDK provides a perfectly
good joining collector—but it is quite an instructive example both of how custom
collectors work and of how to refactor legacy code into Java 8.

Example 5-17 is a reminder of our Java 7 String-joining example.

Example 5-17. Using a for loop and a StringBuilder to pretty-print the names of artists
StringBuilder builder = new StringBuilder("[");
for (Artist  artist : artists) {
    if (builder.length() > 1)
        builder.append(", ");
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    String name = artist.getName();
    builder.append(name);
}
builder.append("]");
String result = builder.toString();

It’s pretty obvious that we can use the map operation to transform the Stream of artists
into a Stream of String names. Example 5-18 is a refactoring of this code to use streams
and map.

Example 5-18. Using a forEach and a StringBuilder to pretty-print the names of artists
StringBuilder builder = new StringBuilder("[");
artists.stream()
       .map(Artist::getName)
       .forEach(name -> {
           if (builder.length() > 1)
               builder.append(", ");

           builder.append(name);
       });
builder.append("]");
String result = builder.toString();

This has made things a bit clearer in the sense that the mapping to names shows us what
has been built up a bit more quickly. Unfortunately, there’s still this very large forE
ach block that doesn’t fit into our goal of writing code that is easy to understand by
composing high-level operations.

Let’s put aside our goal of building a custom collector for a moment and just think in
terms of the existing operations that we have on streams. The operation that most closely
matches what we’re doing in terms of building up a String is the reduce operation.
Refactoring Example 5-18 to use that results in Example 5-19.

Example 5-19. Using a reduce and a StringBuilder to pretty-print the names of artists
StringBuilder reduced =
    artists.stream()
           .map(Artist::getName)
           .reduce(new StringBuilder(), (builder, name) -> {
                   if (builder.length() > 0)
                       builder.append(", ");

                   builder.append(name);
                   return builder;
               }, (left, right) -> left.append(right));

reduced.insert(0, "[");
reduced.append("]");
String result = reduced.toString();
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I had hoped that last refactor would help us make the code clearer. Unfortunately, it
seems to be just as bad as before. Still, let’s see what’s going on. The stream and map calls
are the same as in the previous example. Our reduce operation builds up the artist
names, combined with ", " delimiters. We start with an empty StringBuilder—the
identity of the reduce. Our next lambda expression combines a name with a builder.
The third argument to reduce takes two StringBuilder instances and combines them.
Our final step is to add the prefix at the beginning and the suffix at the end.

For our next refactoring attempt, let’s try and stick with reduction but hide the mess—
I mean, abstract away the details—behind a class that we’ll call a StringCombiner. Im‐
plementing this results in Example 5-20.

Example 5-20. Using a reduce and a custom StringCombiner to pretty-print the names
of artists
StringCombiner combined =
        artists.stream()
               .map(Artist::getName)
               .reduce(new StringCombiner(", ", "[", "]"),
                       StringCombiner::add,
                       StringCombiner::merge);

String result = combined.toString();

Even though this looks quite different from the previous code example, it’s actually doing
the exact same thing under the hood. We’re using reduce in order to combine names
and delimiters into a StringBuilder. This time, though, the logic of adding elements
is being delegated to the StringCombiner.add method and the logic of combining two
different combiners is delegated to StringCombiner.merge. Let’s take a look at these
methods now, beginning with the add method in Example 5-21.

Example 5-21. The add method of a StringCombiner returns itself with a new element
appended
public StringCombiner add(String element) {
    if (areAtStart()) {
        builder.append(prefix);
    } else {
        builder.append(delim);
    }
    builder.append(element);
    return this;
}

add is implemented by delegating operations to an underlying StringBuilder instance.
If we’re at the start of the combining operations, then we append our prefix; otherwise,
we append the string that fits between our elements (the delimiter). We follow this up
by appending the element. We return the StringCombiner object because this is the
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value that we’re pushing through our reduce operation. The merging code, provided in
Example 5-22, delegates to appending operations on the StringBuilder.

Example 5-22. The merge method of a StringCombiner combines the results of both
StringCombiners
public StringCombiner merge(StringCombiner other) {
    builder.append(other.builder);
    return this;
}

We’re nearly done with the reduce phase of refactoring, but there’s one small step re‐
maining. We’re going to inline the toString to the end of the method call chain so that
our entire sequence is method-chained. This is simply a matter of lining up the re
duce code so that it’s ready to be converted into the Collector API (see Example 5-23).

Example 5-23. Using a reduce and delegating to our custom StringCombiner
String result =
    artists.stream()
            .map(Artist::getName)
            .reduce(new StringCombiner(", ", "[", "]"),
                    StringCombiner::add,
                    StringCombiner::merge)
            .toString();

At this stage, we have some code that looks vaguely sane, but it’s quite hard to reuse this
same combining operation in different parts of our code base. So we’re going to refactor
our reduce operation into a Collector, which we can use anywhere in our application.
I’ve called our Collector the StringCollector. Let’s refactor our code to use it in
Example 5-24.

Example 5-24. Collecting strings using a custom StringCollector
String result =
    artists.stream()
           .map(Artist::getName)
           .collect(new StringCollector(", ", "[", "]"));

Now that we’re delegating the whole of the String-joining behavior to a custom col‐
lector, our application code doesn’t need to understand anything about the internals of
StringCollector. It’s just another Collector like any in the core framework.

We begin by implementing the Collector interface (Example 5-25). Collector is
generic, so we need to determine a few types to interact with:

• The type of the element that we’ll be collecting, a String
• Our accumulator type, StringCombiner, which you’ve already seen
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• The result type, also a String

Example 5-25. How to define a collector over strings
public class StringCollector implements Collector<String, StringCombiner, String> {

A Collector is composed of four different components. First we have a supplier, which
is a factory for making our container—in this case, a StringCombiner. The analogue to
this is the first argument provided to the reduce operation, which was the initial value
of the reduce (see Example 5-26).

Example 5-26. A supplier is a factory for making our container
public Supplier<StringCombiner> supplier() {
    return () -> new StringCombiner(delim, prefix, suffix);
}

Let’s step through this in diagram form while we’re walking through the code so that
we can see how things fit together. Because collectors can be collected in parallel, we
will show a collecting operation where two container objects (e.g., StringCombiners)
are used in parallel.

Each of the four components of our Collector are functions, so we’ll represent them
as arrows. The values in our Stream are circles, and the final value we’re producing will
be an oval. At the start of the collect operation our supplier is used to create new con‐
tainer objects (see Figure 5-3).

Figure 5-3. Supplier

Our collector’s accumulator performs the same job as the second argument to reduce.
It takes the current element and the result of the preceding operation and returns a new
value. We’ve already implemented this logic in the add method of our StringCombin
er, so we just refer to that (see Example 5-27).
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Example 5-27. An accumulator is a function to fold the current element into the collec‐
tor
    public BiConsumer<StringCombiner, String> accumulator() {
        return StringCombiner::add;
    }

Our accumulator is used to fold the stream’s values into the container objects
(Figure 5-4).

Figure 5-4. Accumulator

The combine method is an analogue of the third method of our reduce operation. If we
have two containers, then we need to be able to merge them together. Again, we’ve
already implemented this in a previous refactor step, so we just use the StringCombin
er.merge method (Example 5-28).

Example 5-28. A combiner merges together two containers
    public BinaryOperator<StringCombiner> combiner() {
        return StringCombiner::merge;
    }

During the collect operation, our container objects are pairwise merged using the de‐
fined combiner until we have only one container at the end (Figure 5-5).

Figure 5-5. Combiner
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You might remember that the last step in our refactoring process, before we got to
collectors, was to put the toString method inline at the end of the method chain. This
converted our StringCombiner into the String that we really wanted (Figure 5-6).

Figure 5-6. Finisher

Our collector’s finisher method performs the same purpose. We’ve already folded our
mutable container over a Stream of values, but it’s not quite the final value that we want.
The finisher gets called here, once, in order to make that conversion. This is especially
useful if we want to create an immutable final value, such as a String, but our container
is mutable.

In order to implement the finisher for this operation, we just delegate to the to
String method that we’ve already written (Example 5-29).

Example 5-29. A finisher produces the final value returned by the collect operation
    public Function<StringCombiner, String> finisher() {
        return StringCombiner::toString;
    }

We create our final value from the one remaining container.

There’s one aspect of collectors that I haven’t described so far: characteristics. A char‐
acteristic is a Set of objects that describes the Collector, allowing the framework to
perform certain optimizations. It’s defined through a characteristics method.

At this juncture, it’s worth reminding ourselves that this code has been written as an
educational exercise and differs a little bit from the internal implementation of the
joining collector. You may also be thinking that the StringCombiner class is looking
quite useful. Don’t worry—you don’t need to write that either! Java 8 contains a
java.util.StringJoiner class that performs a similar role and has a similar API.

The main goals of going through this exercise are not only to show how custom col‐
lectors work, but also to allow you to write your own collector. This is especially useful
if you have a domain class that you want to build up from an operation on a collection
and none of the standard collectors will build it for you.
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In the case of our StringCollector, the container that we were using to collect values
was different from the final value that we were trying to create (a String). This is es‐
pecially common if you’re trying to collect immutable values rather than mutable ones,
because otherwise each step of the collection operation would have to create a new value.

It’s entirely possible for the final value that you’re collecting to be the same as the con‐
tainer you’ve been folding your values into all along. In fact, this is what happens when
the final value that you’re collecting is a Collection, such as with the toList collector.

In this case, your finisher method needs to do nothing to its container object. More
formally, we can say that the finisher method is the identity function: it returns the
value passed as an argument. If this is the case, then your Collector will exhibit the
IDENTITY_FINISH characteristic and should declare it using the characteristics
method.

Reduction as a Collector
As you’ve just seen, custom collectors aren’t that hard to write, but if you’re thinking
about writing one in order to collect into a domain class it is worth examining the
alternatives. The most obvious is to build one or more collection objects and then pass
them into the constructor of your domain class. This is really simple and suitable if your
domain class is a composite containing different collections.

Of course, if your domain class isn’t just a composite and needs to perform some cal‐
culation based on the existing data, then that isn’t a suitable route. Even in this situation,
though, you don’t necessarily need to build up a custom collector. You can use the
reducing collector, which gives us a generic implementation of the reduction operation
over streams. Example 5-30 shows how we might write our String-processing example
using the reducing collector.

Example 5-30. Reducing is a convenient way of making custom collectors
String result =
        artists.stream()
                .map(Artist::getName)
                .collect(Collectors.reducing(
                    new StringCombiner(", ", "[", "]"),
                    name -> new StringCombiner(", ", "[", "]").add(name),
                    StringCombiner::merge))
                .toString();

This is very similar to the reduce-based implementation I covered in Example 5-20,
which is what you might expect given the name. The key difference is the second ar‐
gument to Collectors.reducing; we are creating a dedicated StringCombiner for each
element in the stream. If you are shocked or disgusted at this, you should be! This is
highly inefficient and one of the reasons why I chose to write a custom collector.
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Collection Niceties
The introduction of lambda expressions has also enabled other collection methods to
be introduced. Let’s have a look at some useful changes that have been made to Map.

A common requirement when building up a Map is to compute a value for a given key.
A classic example of this is when implementing a cache. The traditional idiom is to try
and retrieve a value from the Map and then create it, if it’s not already there.

If we defined our cache as Map<String, Artist> artistCache and were wanting to
look up artists using an expensive database operation, we might write something like
Example 5-31.

Example 5-31. Caching a value using an explicit null check
public Artist getArtist(String name) {
    Artist artist = artistCache.get(name);
    if (artist == null) {
        artist = readArtistFromDB(name);
        artistCache.put(name, artist);
    }
    return artist;
}

Java 8 introduces a new computeIfAbsent method that takes a lambda to compute the
new value if it doesn’t already exist. So, we can rewrite the previous block of code into
Example 5-32.

Example 5-32. Caching a value using computeIfAbsent
public Artist getArtist(String name) {
    return artistCache.computeIfAbsent(name, this::readArtistFromDB);
}

You may want variants of this code that don’t perform computation only if the value is
absent; the new compute and computeIfPresent methods on the Map interface are useful
for these cases.

At some point in your career, you might have tried to iterate over a Map. Historically,
the approach was to use the values method to get a Set of entries and then iterate over
them. This tended to result in fairly hard-to-read code. Example 5-33 shows an approach
from earlier in the chapter of creating a new Map counting the number of albums asso‐
ciated with each artist.

Example 5-33. An ugly way to iterate over all entries of a Map
Map<Artist, Integer>  countOfAlbums = new HashMap<>();
for(Map.Entry<Artist, List<Album>> entry : albumsByArtist.entrySet()) {
    Artist artist = entry.getKey();
    List<Album> albums = entry.getValue();
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    countOfAlbums.put(artist, albums.size());
}

Thankfully, a new forEach method has been introduced that takes a BiConsumer (two
values enter, nothing leaves) and produces easier-to-read code through internal itera‐
tion, which I introduced in “From External Iteration to Internal Iteration” on page 17.
An equivalent code sample is shown in Example 5-34.

Example 5-34. Using internal iteration over all entries of a Map
Map<Artist, Integer>  countOfAlbums = new HashMap<>();
albumsByArtist.forEach((artist, albums) -> {
    countOfAlbums.put(artist, albums.size());
});

Key Points
• Method references are a lightweight syntax for referring to methods and look like

this: ClassName::methodName.
• Collectors let us compute the final values of streams and are the mutable analogue

of the reduce method.
• Java 8 provides out-of-the-box support for collecting into many collection types

and the ability to build custom collectors.

Exercises
1. Method references. Take a look back at the examples in Chapter 3 and try rewriting

the following using method references:
a. The map to uppercase
b. The implementation of count using reduce
c. The flatMap approach to concatenating lists

2. Collectors.
a. Find the artist with the longest name. You should implement this using a Col

lector and the reduce higher-order function from Chapter 3. Then compare
the differences in your implementation: which was easier to write and which
was easier to read? The following example should return "Stuart Sutcliffe":

Stream<String> names = Stream.of("John Lennon", "Paul McCartney",
    "George Harrison", "Ringo Starr", "Pete Best", "Stuart Sutcliffe");
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b. Given a Stream where each element is a word, count the number of times each
word appears. So, if you were given the following input, you would return a Map
of [John → 3, Paul → 2, George → 1]:

Stream<String> names = Stream.of("John", "Paul", "George", "John",
                                 "Paul", "John");

c. Implement Collectors.groupingBy as a custom collector. You don’t need to
provide a downstream collector, so just implementing the simplest variant is
fine. If you look at the JDK source code, you’re cheating! Hint: you might want
to start with public class GroupingBy<T, K> implements Collector<T,
Map<K, List<T>>, Map<K, List<T>>>. This is an advanced exercise, so you
might want to attempt it last.

3. Map enhancements.
Efficiently calculate a Fibonacci sequence using just the computeIfAbsent method
on a Map. By “efficiently,” I mean that you don’t repeatedly recalculate the Fibonacci
sequence of smaller numbers.
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CHAPTER 6

Data Parallelism

I’ve previously made a lot of references to the idea that it’s easier to write parallel code
in Java 8. This is because we can use lambda expressions in combination with the streams
library, introduced in Chapter 3, to say what we want our program to do, regardless of
whether it’s sequential or parallel. I know that sounds a lot like what you’ve been doing
in Java for years, but there’s a difference between saying what you want to compute and
saying how to compute it.

The big shift between external and internal iteration (also discussed in Chapter 3) did
make it easier to write simple and clean code, but here’s the other big benefit: now we
don’t have to manually control the iteration. It doesn’t need to be performed sequentially.
We express the what and, by changing a single method call, we can get a library to figure
out the how.

The changes to your code are surprisingly unobtrusive, so the majority of this chapter
won’t be talking about how your code changes. Instead, I’ll explain why you might want
to go parallel and when you’ll get performance improvements. It’s also worth noting
that this chapter isn’t a general text on performance in Java; we’ll just be looking at the
easy wins provided in Java 8.

Parallelism Versus Concurrency
After a quick scan over the table of contents of this book, you might have noticed this
chapter with the word parallelism in the title and also Chapter 9, which has concurren‐
cy in the title. Don’t worry—I haven’t repeated the same material in an attempt to justify
charging you more for this book! Concurrency and parallelism are different things that
can be leveraged to achieve different aims.

Concurrency arises when two tasks are making progress at overlapping time periods.
Parallelism arises when two tasks are happening at literally the same time, such as on a
multicore CPU. If a program is undertaking two tasks and they are being given small
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slices of a single CPU core’s time, then it is exhibiting concurrency but not parallelism.
This difference is shown in Figure 6-1.

Figure 6-1. Comparison of concurrency and parallelism

The goal of parallelism is to reduce the runtime of a specific task by breaking it down
into smaller components and performing them in parallel. This doesn’t mean that you
won’t do as much work as you would if you were running them sequentially—you are
just getting more horses to pull the same cart for a shorter time period. In fact, it’s usually
the case that running a task in parallel requires more work to be done by the CPU than
running it sequentially would.

In this chapter, we’re looking at a very specific form of parallelism called data parallel‐
ism. In data parallelism, we achieve parallelism by splitting up the data to be operated
on and assigning a single processing unit to each chunk of data. If we’re to extend our
horses-pulling-carts analogy, it would be like taking half of the goods inside our cart
and putting them into another cart for another horse to pull, with both horses taking
an identical route to the destination.

Data parallelism works really well when you want to perform the same operation on a
lot of data. The problem needs be decomposed in a way that will work on subsections
of the data, and then the answers from each subsection can be composed at the end.

Data parallelism is often contrasted with task parallelism, in which each individual
thread of execution can be doing a totally different task. Probably the most commonly
encountered task parallelism is a Java EE application container. Each thread not only
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can be dealing with processing a different user, but also could be performing different
tasks for a user, such as logging in or adding an item to a shopping cart.

Why Is Parallelism Important?
Historically, we could all rely on the clock frequency of a CPU getting faster over time.
Intel’s 8086 processor, introduced in 1979, started at a 5 MHz clock rate, and by the time
the Pentium chip was introduced in 1993 speeds had reached 60 MHz. Improved se‐
quential performance continued through the early 2000s.

Over the last decade, however, mainstream chip manufacturers have been moving in‐
creasingly toward heavily multicore processors. At the time of writing, it’s not uncom‐
mon for servers to be shipping with 32 or 64 cores spread over several physical pro‐
cessing units. This trend shows no sign of abating soon.

This influences the design of software. Instead of being able to rely on improved CPU
clock speeds to increase the computational capacity of existing code, we need to be able
to take advantage of modern CPU architectures. The only way to do this is by writing
parallel programs.

I appreciate you’ve probably heard this message before. In fact, it’s one that’s been blasted
out by many conference speakers, book authors, and consultants over the years. The
implications of Amdahl’s Law were what really made me take note of the importance
of parallelism.

Amdahl’s Law is a simple rule that predicts the theoretical maximum speedup of a pro‐
gram on a machine with multiple cores. If we take a program that is entirely serial and
parallelize only half of it, then the maximum speedup possible, regardless of how many
cores we throw at the problem, is 2×. Given a large number of cores—and we’re already
into that territory—the execution time of a problem is going to be dominated by the
serial part of that problem.

When you start to think of performance in these terms, optimizing any job that is bound
by computational work rapidly becomes a matter of ensuring that it effectively utilizes
the available hardware. Of course, not every job is bound by computational work, but
in this chapter we’ll be focusing on that kind of problem.

Parallel Stream Operations
Making an operation execute in parallel using the streams library is a matter of changing
a single method call. If you already have a Stream object, then you can call its paral
lel method in order to make it parallel. If you’re creating a Stream from a Collec
tion, you can call the parallelStream method in order to create a parallel stream from
the get-go.
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Let’s look at a simple example in order to make things concrete. Example 6-1 calculates
the total length of a sequence of albums. It transforms each album into its component
tracks, then gets into the length of each track, and then sums them.

Example 6-1. Serial summing of album track lengths
public int serialArraySum() {
    return albums.stream()
                 .flatMap(Album::getTracks)
                 .mapToInt(Track::getLength)
                 .sum();
}

We go parallel by making the call to parallelStream, as shown in Example 6-2; all the
rest of the code is identical. Going parallel just works.

Example 6-2. Parallel summing of album track lengths
public int parallelArraySum() {
    return albums.parallelStream()
                 .flatMap(Album::getTracks)
                 .mapToInt(Track::getLength)
                 .sum();
}

I know the immediate instinct upon hearing this is to go out and replace every call to
stream with a call to parallelStream because it’s so easy. Hold your horses for a mo‐
ment! Obviously it’s important to make good use of parallelism in order to get the most
from your hardware, but the kind of data parallelism we get from the streams library is
only one form.

The question we really want to ask ourselves is whether it’s faster to run our Stream-
based code sequentially or in parallel, and that’s not a question with an easy answer. If
we look back at the previous example, where we figure out the total running time of a
list of albums, depending upon the circumstances we can make the sequential or parallel
versions faster.

When benchmarking the code in Examples 6-1 and 6-2 on a 4-core machine with 10
albums, the sequential code was 8× faster. Upon expanding the number of albums to
100, they were both equally fast, and by the time we hit 10,000 albums, the parallel code
was 2.5× faster.

Any specific benchmark figures in this chapter are listed only to make
a point. If you try to replicate these results on your hardware, you
may get drastically different outcomes.
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The size of the input stream isn’t the only factor to think about when deciding whether
there’s a parallel speedup. It’s possible to get varying performance numbers based upon
how you wrote your code and how many cores are available. We’ll look at this in a bit
more detail in “Performance” on page 89, but first let’s look at a more complex example.

Simulations
The kinds of problems that parallel stream libraries excel at are those that involve simple
operations processing a lot of data, such as simulations. In this section, we’ll be building
a simple simulation to understand dice throws, but the same ideas and approach can be
used on larger and more realistic problems.

The kind of simulation we’ll be looking at here is a Monte Carlo simulation. Monte Carlo
simulations work by running the same simulation many times over with different ran‐
dom seeds on every run. The results of each run are recorded and aggregated in order
to build up a comprehensive simulation. They have many uses in engineering, finance,
and scientific computing.

If we throw a fair die twice and add up the number of dots on the winning side, we’ll
get a number between 2 and 12. This must be at least 2 because the fewest number of
dots on each side is 1 and there are two dice. The maximum score is 12, as the highest
number you can score on each die is 6. We want to try and figure out what the probability
of each number between 2 and 12 is.

One approach to solving this problem is to add up all the different combinations of dice
rolls that can get us each value. For example, the only way we can get 2 is by rolling 1
and then 1 again. There are 36 different possible combinations, so the probability of the
two sides adding up to 2 is 1 in 36, or 1/36.

Another way of working it out is to simulate rolling two dice using random numbers
between 1 and 6, adding up the number of times that each result was picked, and dividing
by the number of rolls. This is actually a really simple Monte Carlo simulation. The
more times we simulate rolling the dice, the more closely we approximate the actual
result—so we really want to do it a lot.

Example 6-3 shows how we can implement the Monte Carlo approach using the streams
library. N represents the number of simulations we’ll be running, and at  we use the
IntStream range function to create a stream of size N. At  we call the parallel method
in order to use the parallel version of the streams framework. The twoDiceThrows
function simulates throwing two dice and returns the sum of their results. We use the
mapToObj method in  in order to use this function on our data stream.

Example 6-3. Parallel Monte Carlo simulation of dice rolling
public Map<Integer, Double> parallelDiceRolls() {
    double fraction = 1.0 / N;
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    return IntStream.range(0, N)                         
                    .parallel()                          
                    .mapToObj(twoDiceThrows())           
                    .collect(groupingBy(side -> side,    
                        summingDouble(n -> fraction)));  
}

At  we have a Stream of all the simulation results we need to combine. We use the
groupingBy collector, introduced in the previous chapter, in order to aggregate all results
that are equal. I said we were going to count the number of times each number occured
and divide by N. In the streams framework, it’s actually easier to map numbers to 1/N
and add them, which is exactly the same. This is accomplished in  through the sum
mingDouble function. The Map<Integer, Double> that gets returned at the end maps
each sum of sides thrown to its probability.

I’ll admit it’s not totally trivial code, but implementing a parallel Monte Carlo simulation
in five lines of code is pretty neat. Importantly, because the more simulations we run,
the more closey we approximate the real answer, we’ve got a real incentive to run a lot
of simulations. This is also a good use for parallelism as it’s an implementation that gets
good parallel speedup.

I won’t go through the implementation details, but for comparison Example 6-4 lists
the same parallel Monte Carlo simulation implemented by hand. The majority of the
code implementation deals with spawning, scheduling, and awaiting the completion of
jobs within a thread pool. None of these issues needs to be directly addressed when
using the parallel streams library.

Example 6-4. Simulating dice rolls by manually implementing threading
public class ManualDiceRolls {

    private static final int N = 100000000;

    private final double fraction;
    private final Map<Integer, Double> results;
    private final int numberOfThreads;
    private final ExecutorService executor;
    private final int workPerThread;

    public static void main(String[] args) {
        ManualDiceRolls roles = new ManualDiceRolls();
        roles.simulateDiceRoles();
    }

    public ManualDiceRolls() {
        fraction = 1.0 / N;
        results = new ConcurrentHashMap<>();
        numberOfThreads = Runtime.getRuntime().availableProcessors();
        executor = Executors.newFixedThreadPool(numberOfThreads);
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        workPerThread = N / numberOfThreads;
    }

    public void simulateDiceRoles() {
        List<Future<?>> futures = submitJobs();
        awaitCompletion(futures);
        printResults();
    }

    private void printResults() {
        results.entrySet()
               .forEach(System.out::println);
    }

    private List<Future<?>> submitJobs() {
        List<Future<?>> futures = new ArrayList<>();
        for (int i = 0; i < numberOfThreads; i++) {
            futures.add(executor.submit(makeJob()));
        }
        return futures;
    }

    private Runnable makeJob() {
        return () -> {
            ThreadLocalRandom random = ThreadLocalRandom.current();
            for (int i = 0; i < workPerThread; i++) {
                int entry = twoDiceThrows(random);
                accumulateResult(entry);
            }
        };
    }

    private void accumulateResult(int entry) {
        results.compute(entry, (key, previous) ->
            previous == null ? fraction
                             : previous + fraction
        );
    }

    private int twoDiceThrows(ThreadLocalRandom random) {
        int firstThrow = random.nextInt(1, 7);
        int secondThrow = random.nextInt(1, 7);
        return firstThrow + secondThrow;
    }

    private void awaitCompletion(List<Future<?>> futures) {
        futures.forEach((future) -> {
            try {
                future.get();
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
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        });
        executor.shutdown();
    }

}

Caveats
I said earlier that using parallel streams “just works,” but that’s being a little cheeky. You
can run existing code in parallel with little modification, but only if you’ve written
idiomatic code. There are a few rules and restrictions that need to be obeyed in order
to make optimal use of the parallel streams framework.

Previously, when calling reduce our initial element could be any value, but for this
operation to work correctly in parallel, it needs to be the identity value of the combining
function. The identity value leaves all other elements the same when reduced with them.
For example, if we’re summing elements with our reduce operation, the combining
function is (acc, element) -> acc + element. The initial element must be 0, because
any number x added to 0 returns x.

The other caveat specific to reduce is that the combining function must be associative.
This means that the order in which the combining function is applied doesn’t matter as
long the values of the sequence aren’t changed. Confused? Don’t worry! Take a look at
Example 6-5, which shows how we can rearrange the order in which we apply + and *
to a sequence of values and get the same result.

Example 6-5. + and * are associative
(4 + 2) + 1 = 4 + (2 + 1) = 7
(4 * 2) * 1 = 4 * (2 * 1) = 8

One thing to avoid is trying to hold locks. The streams framework deals with any nec‐
essary synchronization itself, so there’s no need to lock your data structures. If you do
try to hold locks on any data structure that the streams library is using, such as the
source collection of an operation, you’re likely to run into trouble.

I explained earlier that you could convert any existing Stream to be a parallel stream
using the parallel method call. If you’ve been looking at the API itself while reading
the book, you may have noticed a sequential method as well. When a stream pipeline
is evaluated, there is no mixed mode: the orientation is either parallel or sequential. If
a pipeline has calls to both parallel and sequential, the last call wins.
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Performance
I briefly mentioned before that there were a number of factors that influenced whether
parallel streams were faster or slower than sequential streams; let’s take a look at those
factors now. Understanding what works well and what doesn’t will help you to make an
informed decision about how and when to use parallel streams. There are five important
factors that influence parallel streams performance that we’ll be looking at:
Data size

There is a difference in the efficiency of the parallel speedup due to the size of the
input data. There’s an overhead to decomposing the problem to be executed in
parallel and merging the results. This makes it worth doing only when there’s
enough data that execution of a streams pipeline takes a while. We explored this
back in “Parallel Stream Operations” on page 83.

Source data structure
Each pipeline of operations operates on some initial data source; this is usually a
collection. It’s easier to split out subsections of different data sources, and this cost
affects how much parallel speedup you can get when executing your pipeline.

Packing
Primitives are faster to operate on than boxed values.

Number of cores
The extreme case here is that you have only a single core available to operate upon,
so it’s not worth going parallel. Obviously, the more cores you have access to, the
greater your potential speedup is. In practice, what counts isn’t just the number of
cores allocated to your machine; it’s the number of cores that are available for your
machine to use at runtime. This means factors such as other processes executing
simultaneously or thread affinity (forcing threads to execute on certain cores or
CPUs) will affect performance.

Cost per element
Like data size, this is part of the battle between time spent executing in parallel and
overhead of decomposition and merging. The more time spent operating on each
element in the stream, the better performance you’ll get from going parallel.

When using the parallel streams framework, it can be helpful to understand how prob‐
lems are decomposed and merged. This gives us a good insight into what is going on
under the hood without having to understand all the details of the framework.

Let’s take a look at how a concrete example is decomposed and merged. Example 6-6
shows some code that performs parallel integer addition.
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Example 6-6. Parallel integer addition
private int addIntegers(List<Integer> values) {
    return values.parallelStream()
                 .mapToInt(i -> i)
                 .sum();
}

Under the hood, parallel streams back onto the fork/join framework. The fork stage
recursively splits up a problem. Then each chunk is operated upon in parallel. Finally,
the join stage merges the results back together.

Figure 6-2 shows how this might apply to Example 6-6.

Figure 6-2. Decomposing and merging using fork/join

Let’s assume that the streams framework is splitting up our work to operate in parallel
on a four-core machine:

1. Our data source is decomposed into four chunks of elements.
2. We perform leaf computation work in parallel on each thread in Example 6-6. This

involves mapping each Integer to an int and also summing a quarter of the values
in each thread. Ideally, we want to spend as much of our time as possible in leaf
computation work because it’s the perfect case for parallelism.

3. We merge the results. In Example 6-6 this is just a sum operation, but it might involve
any kind of reduce, collect, or terminal operation.

Given the way problems are decomposed, the nature of the initial source is extremely
important in influencing the performance of this decomposition. Intuitively, the ease
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with which we can repeatedly split a data structure in half corresponds to how fast it
can be operated upon. Splitting in half also means that the values to be operated upon
need to split equally.

We can split up common data sources from the core library into three main groups by
performance characteristics:
The good

An ArrayList, an array, or the IntStream.range constructor. These data sources
all support random access, which means they can be split up arbitrarily with ease.

The okay
The HashSet and TreeSet. You can’t easily decompose these with perfect amounts
of balance, but most of the time it’s possible to do so.

The bad
Some data structures just don’t split well; for example, they may take O(N) time to
decompose. Examples here include a LinkedList, which is computationally hard
to split in half. Also, Streams.iterate and BufferedReader.lines have unknown
length at the beginning, so it’s pretty hard to estimate when to split these sources.

The influence of the initial data structure can be huge. To take an extreme example,
benchmarking a parallel sum over 10,000 integers revealed an ArrayList to be 10 times
faster than a LinkedList. This isn’t to say that your business logic will exhibit the same
performance characteristics, but it does demonstrate how influential these things can
be. It’s also far more likely that data structures such as a LinkedList that have poor
decompositions will also be slower when run in parallel.

Ideally, once the streams framework has decomposed the problem into smaller chunks,
we’ll be able to operate on each chunk in its own thread, with no further communication
or contention between threads. Unfortunately, reality can get the way of the ideal at
times!

When we’re talking about the kinds of operations in our stream pipeline that let us
operate on chunks individually, we can differentiate between two types of stream op‐
erations: stateless and stateful. Stateless operations need to maintain no concept of state
over the whole operation; stateful operations have the overhead and constraint of main‐
taining state.

If you can get away with using stateless operations, then you will get better parallel
performance. Examples of stateless operations include map, filter, and flatMap; sor
ted, distinct, and limit are stateful.
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Performance-test your own code. The advice in this section offers
rules of thumb about what performance characteristics should be
investigated, but nothing beats measuring and profiling.

Parallel Array Operations
Java 8 includes a couple of other parallel array operations that utilize lambda expressions
outside of the streams framework. Like the operations on the streams framework, these
are data parallel operations. Let’s look at how we can use these operations to solve prob‐
lems that are hard to do in the streams framework.

These operations are all located on the utility class Arrays, which also contains a bunch
of other useful array-related functionality from previous Java versions. There is a sum‐
mary in Table 6-1.

Table 6-1. Parallel operations on arrays
Name Operation

parallelPrefix Calculates running totals of the values of an array given an arbitrary function

parallelSetAll Updates the values in an array using a lambda expression

parallelSort Sorts elements in parallel

You may have written code similar to Example 6-7 before, where you initialize an array
using a for loop. In this case, we initialize every element to its index in the array.

Example 6-7. Initializing an array using a for loop
public static double[] imperativeInitilize(int size) {
    double[] values = new double[size];
    for(int i = 0; i < values.length;i++) {
        values[i] = i;
    }
    return values;
}

We can use the parallelSetAll method in order to do this easily in parallel. An example
of this code is shown in Example 6-8. We provide an array to operate on and a lambda
expression, which calculates the value given the index. In our example they are the same
value. One thing to note about these methods is that they alter the array that is passed
into the operation, rather than creating a new copy.

Example 6-8. Initializing an array using a parallel array operation
public static double[] parallelInitialize(int size) {
    double[] values = new double[size];
    Arrays.parallelSetAll(values, i -> i);
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    return values;
}

The parallelPrefix operation, on the other hand, is much more useful for performing
accumulation-type calculations over time series of data. It mutates an array, replacing
each element with the sum of that element and its predecessors. I use the term “sum”
loosely—it doesn’t need to be addition; it could be any BinaryOperator.

An example operation that can be calculated by prefix sums is a simple moving average.
This takes a rolling window over a time series and produces an average for each instance
of that window. For example, if our series of input data is 0, 1, 2, 3, 4, 3.5, then
the simple moving average of size 3 is 1, 2, 3, 3.5. Example 6-9 shows how we can
use a prefix sum in order to calculate a moving average.

Example 6-9. Calculating a simple moving average
public static double[] simpleMovingAverage(double[] values, int n) {
    double[] sums = Arrays.copyOf(values, values.length);  
    Arrays.parallelPrefix(sums, Double::sum);  
    int start = n - 1;
    return IntStream.range(start, sums.length)  
                    .mapToDouble(i -> {
                        double prefix = i == start ? 0 : sums[i - n];
                        return (sums[i] - prefix) / n;  
                    })
                    .toArray();  
}

It’s quite complex, so I’ll go through how this works in a few steps. The input parameter
n is the size of the time window we’re calculating our moving average over. At  we take
a copy of our input data. Because our prefix calculation is a mutating operation, we do
this to avoid altering the original source.

In  we apply the prefix operation, adding up values in the process. So now our sums
variable holds the running total of the sums so far. For example, given the input 0, 1,
2, 3, 4, 3.5, it would hold 0.0, 1.0, 3.0, 6.0, 10.0, 13.5.

Now that we have the complete running totals, we can find the sum over the time
window by subtracting the running total at the beginning of the time window. The
average is this divided by n. We can do this calculation using the existing streams library,
so let’s use it! We kick off the stream in  by using Intstream.range to get a stream
ranging over the indices of the values we want.

At  we subtract away the running total at the start and then do the division in order
to get the average. It’s worth noting that there’s an edge case for the running total at
element n – 1, where there is no running total to subtract to begin with. Finally, at ,
we convert the Stream back to an array.
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Key Points
• Data parallelism is a way to split up work to be done on many cores at the same

time.
• If we use the streams framework to write our code, we can utilize data parallelism

by calling the parallel or parallelStream methods.
• The five main factors influencing performance are the data size, the source data

structure, whether the values are packed, the number of available cores, and how
much processing time is spent on each element.

Exercises
1. The code in Example 6-10 sequentially sums the squares of numbers in a Stream.

Make it run in parallel using streams.

Example 6-10. Sequentially summing the squares of numbers in a list
    public static int sequentialSumOfSquares(IntStream range) {
        return range.map(x -> x * x)
                    .sum();
    }

2. The code in Example 6-11 multiplies every number in a list together and multiplies
the result by 5. This works fine sequentially, but has a bug when running in parallel.
Make the code run in parallel using streams and fix the bug.

Example 6-11. A buggy way of multiplying every number in a list together and
multiplying the result by 5
public static int multiplyThrough(List<Integer> linkedListOfNumbers) {
    return linkedListOfNumbers.stream()
                  .reduce(5, (acc, x) -> x * acc);
}

3. The code in Example 6-12 also calculates the sum of the squares of numbers in a
list. You should try to improve the performance of this code without degrading its
quality. I’m only looking for you to make a couple of simple changes.

Example 6-12. Slow implementation of summing the squares of numbers in a list
    public int slowSumOfSquares() {
        return linkedListOfNumbers.parallelStream()
                                  .map(x -> x * x)
                                  .reduce(0, (acc, x) -> acc + x);
    }
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Make sure to run the benchmark code multiple times when tim‐
ing. The sample code provided on GitHub comes with a bench‐
mark harness that you can use.
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CHAPTER 7

Testing, Debugging, and Refactoring

The rising popularity of techniques such as refactoring, test-driven development
(TDD), and continuous integration (CI) mean that if we’re going to use lambda ex‐
pressions in our day-to-day programming, we need to understand how to test code
using them and written with them.

A wealth of material has been written on how to test and debug computer programs,
and this chapter isn’t going to revisit all that material. If you’re interested in learning
how to do TDD properly, I highly recommend the books Test-Driven Development by
Kent Beck and Growing Object-Oriented Software, Guided by Tests by Steve Freeman
and Nat Pryce (both from Addison-Wesley).

I am going to cover techniques specific to using lambda expressions in your code, and
when you might not want to (directly) use lambda expressions at all. I’ll also talk about
some appropriate techniques for debugging programs that heavily use lambda expres‐
sions and streams.

We’re first going to look at some examples of how to refactor an existing code base into
using lambda expressions. I’ve talked a bit already about how to do local refactoring
operations, such as replacing a for loop with a stream operation. Here we’ll take a more
in-depth look at how non-collection code can be improved.

Lambda Refactoring Candidates
The process of refactoring code to take advantage of lambdas has been given the snazzy
name point lambdafication (pronounced lambda-fi-cation, practitioners of this process
being “lamb-di-fiers” or “responsible developers”). It’s a process that has happened
within the Java core libraries for Java 8. When you’re choosing how to model the internal
design of your application, it’s also really worth considering which API methods to
expose in this way.
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There are a few key heuristics that can help you out when identifying an appropriate
place to lambdify your application or library code. Each of these can be considered a
localized antipattern or code smell that you’re fixing through point lambdification.

In, Out, In, Out, Shake It All About
In Example 7-1, I’ve repeated our example code from Chapter 4 about logging state‐
ments. You’ll see that it’s pulling out the Boolean value from isDebugEnabled only to
check it and then call a method on the Logger. If you find that your code is repeatedly
querying and operating on an object only to push a value back into that object at the
end, then that code belongs in the class of the object that you’re modifying.

Example 7-1. A logger using isDebugEnabled to avoid performance overhead
Logger logger = new Logger();
if (logger.isDebugEnabled()) {
    logger.debug("Look at this: " + expensiveOperation());
}

Logging is a good example of where this has historically been difficult to achieve, because
in different locations you’re trying to provide different behavior. In this case, the be‐
havior is building up a message string that will differ depending upon where in your
program you’re logging and what information you’re trying to log.

This antipattern can be easily solved by passing in code as data. Instead of querying an
object and then setting a value on it, you can pass in a lambda expression that represents
the relevant behavior by computing a value. I’ve also repeated the code solution in
Example 7-2, as a reminder. The lambda expression gets called if we’re at a debug level
and the logic for checking this call remains inside of the Logger itself.

Example 7-2. Using lambda expressions to simplify logging code
Logger logger = new Logger();
logger.debug(() -> "Look at this: " + expensiveOperation());

Logging is also a demonstration of using lambda expressions to do better object-
oriented programming (OOP). A key OOP concept is to encapsulate local state, such
as the level of the logger. This isn’t normally encapsulated very well, as isDebugEna
bled exposes its state. If you use the lambda-based approach, then the code outside of
the logger doesn’t need to check the level at all.

The Lonely Override
In this code smell, you subclass solely to override a single method. The ThreadLocal
class is a good example of this. ThreadLocal allows us to create a factory that generates
at most one value per thread. This is an easy way of ensuring that a thread-unsafe class
can be safely used in a concurrent environment. For example, if we need to look up an
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artist from the database but want to do it once per thread, then we might write something
like the code in Example 7-3.

Example 7-3. Looking up an artist from the database
ThreadLocal<Album> thisAlbum = new ThreadLocal<Album> () {
    @Override protected Album initialValue() {
        return database.lookupCurrentAlbum();
    }
};

In Java 8 we can use the factory method withInitial and pass in a Supplier instance
that deals with the creation, as shown in Example 7-4.

Example 7-4. Using the factory method
ThreadLocal<Album> thisAlbum
    = ThreadLocal.withInitial(() -> database.lookupCurrentAlbum());

There are a few reasons why the second example would be considered preferable to the
first. For a start, any existing instance of Supplier<Album> can be used here without
needing to be repackaged for this specific case, so it encourages reuse and composition.

It’s also shorter to write, which is an advantage if and only if all other things are equal.
More important, it’s shorter because it’s a lot cleaner: when reading the code, the signal-
to-noise ratio is lower. This means you spend more time solving the actual problem at
hand and less time dealing with subclassing boilerplate. It also has the advantage that
it’s one fewer class that your JVM has to load.

It’s also a lot clearer to anyone who tries to read the code what its intent is. If you try to
read out loud the words in the second example, you can easily hear what it’s saying. You
definitely can’t say this of the first example.

Interestingly, this wasn’t an antipattern previously to Java 8—it was the idiomatic way
of writing this code, in the same way that using anonymous inner classes to pass around
behavior wasn’t an antipattern, just the only way of expressing what you wanted in Java
code. As the language evolves, so do the idioms that you use when programming.

Behavioral Write Everything Twice
Write Everything Twice (WET) is the opposite of the well-known Don’t Repeat Your‐
self (DRY) pattern. This code smell crops up in situations where your code ends up in
repetitive boilerplate that produces more code that needs to be tested, is harder to re‐
factor, and is brittle to change.

Not all WET situations are suitable candidates for point lambdification. In some situa‐
tions, couple duplication can be the only alternative to having an overly closely coupled
system. There’s a good heuristic for situations where WET suggests it’s time to add some
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point lambdification into your application. Try adding lambdas where you want to per‐
form a similar overall pattern but have a different behavior from one variant to another.

Let’s look at a more concrete example. On top of our music domain, I’ve decided to add
a simple Order class that calculates useful properties about some albums that a user
wants to buy. We’re going to count the number of musicians, number of tracks, and
running time of our Order. If we were using imperative Java, we would write some code
like Example 7-5.

Example 7-5. An imperative implementation of our Order class
public long countRunningTime() {
    long count = 0;
    for (Album album : albums) {
        for (Track track : album.getTrackList()) {
            count += track.getLength();
        }
    }
    return count;
}

public long countMusicians() {
    long count = 0;
    for (Album album : albums) {
        count += album.getMusicianList().size();
    }
    return count;
}

public long countTracks() {
    long count = 0;
    for (Album album : albums) {
        count += album.getTrackList().size();
    }
    return count;
}

In each case, we’ve got the boilerplate code of adding some code for each album to the
total—for example, the length of each track or the number of musicians. We’re failing
at reusing common concepts and also leaving ourselves more code to test and maintain.
We can shorten and tighten this code by rewriting it using the Stream abstraction and
the Java 8 collections library. Example 7-6 is what we would come up with if we directly
translated the imperative code to streams.

Example 7-6. A refactor of our imperative Order class to use streams
public long countRunningTime() {
    return albums.stream()
            .mapToLong(album -> album.getTracks()
                                     .mapToLong(track -> track.getLength())
                                     .sum())
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            .sum();
}

public long countMusicians() {
    return albums.stream()
            .mapToLong(album -> album.getMusicians().count())
            .sum();
}

public long countTracks() {
    return albums.stream()
            .mapToLong(album -> album.getTracks().count())
            .sum();
}

It still suffers from the same reuse and readability issues, because there are certain ab‐
stractions and commonalities that are only expressible in domain terms. The streams
library won’t provide a method for you to count the number of a certain thing per album
—that’s the kind of domain method that you should be writing yourself. It’s also the kind
of domain method that was very hard to write before Java 8 because it’s doing a different
thing for each method.

Let’s think about how we’re going to implement such a function. We’re going to return
a long with the count of some feature for all the albums. We also need to take in some
kind of lambda expression that tells us what the number for each album is. This means
we need a method parameter that returns us a long for each album; conveniently, there
is already a ToLongFunction in the Java 8 core libraries. As shown in Figure 7-1, it is
parameterized by its argument type, so we’re using ToLongFunction<Album>.

Figure 7-1. ToLongFunction

Now that we’ve made these decisions, the body of the method follows naturally. We take
a Stream of the albums, map each album to a long, and then sum them. When we
implement the consumer-facing methods such as countTracks, we pass in a lambda
expression with behavior specific to that domain method. In this case, we’re mapping
the album to the number of tracks. Example 7-7 is what our code looks like when we’ve
converted the code to use this domain-appropriate method.

Example 7-7. A refactor of our Order class to use domain-level methods
public long countFeature(ToLongFunction<Album> function) {
    return albums.stream()
            .mapToLong(function)

Lambda Refactoring Candidates | 101



            .sum();
}

public long countTracks() {
    return countFeature(album -> album.getTracks().count());
}

public long countRunningTime() {
    return countFeature(album -> album.getTracks()
                                      .mapToLong(track -> track.getLength())
                                      .sum());
}

public long countMusicians() {
    return countFeature(album -> album.getMusicians().count());
}

Unit Testing Lambda Expressions
Unit testing is a method of testing individual chunks of code to en‐
sure that they are behaving as intended.

Usually, when writing a unit test you call a method in your test code that gets called in
your application. Given some inputs and possibly test doubles, you call these methods
to test a certain behavior happening and then specify the changes you expect to result
from this behavior.

Lambda expressions pose a slightly different challenge when unit testing code. Because
they don’t have a name, it’s impossible to directly call them in your test code.

You could choose to copy the body of the lambda expression into your test and then
test that copy, but this approach has the unfortunate side effect of not actually testing
the behavior of your implementation. If you change the implementation code, your test
will still pass even though the implementation is performing a different task.

There are two viable solutions to this problem. The first is to view the lambda expression
as a block of code within its surrounding method. If you take this approach, you should
be testing the behavior of the surrounding method, not the lambda expression itself.
Let’s take look Example 7-8, which gives an example method for converting a list of
strings into their uppercase equivalents.

Example 7-8. Converting strings into their uppercase equivalents
public static List<String> allToUpperCase(List<String> words) {
    return words.stream()
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                .map(string -> string.toUpperCase())
                .collect(Collectors.<String>toList());
}

The only thing that the lambda expression in this body of code does is directly call a
core Java method. It’s really not worth the effort of testing this lambda expression as an
independent unit of code at all, since the behavior is so simple.

If I were to unit test this code, I would focus on the behavior of the method. For example,
Example 7-9 is a test that if there are multiple words in the stream, they are all converted
to their uppercase equivalents.

Example 7-9. Testing conversion of words to uppercase equivalents
@Test
public void multipleWordsToUppercase() {
    List<String> input = Arrays.asList("a", "b", "hello");
    List<String> result = Testing.allToUpperCase(input);
    assertEquals(asList("A", "B", "HELLO"), result);
}

Sometimes you want to use a lambda expression that exhibits complex functionality.
Perhaps it has a number of corner cases or a role involving calculating a highly important
function in your domain. You really want to test for behavior specific to that body of
code, but it’s in a lambda expression and you’ve got no way of referencing it.

As an example problem, let’s look at a method that is slightly more complex than con‐
verting a list of strings to uppercase. Instead, we’ll be converting the first character of a
string to uppercase and leaving the rest as is. If we were to write this using streams and
lambda expressions, we might write something like Example 7-10. Our lambda expres‐
sion doing the conversion is at .

Example 7-10. Convert first character of all list elements to uppercase
public static List<String> elementFirstToUpperCaseLambdas(List<String> words) {
    return words.stream()
            .map(value -> {  
                char firstChar = Character.toUpperCase(value.charAt(0));
                return firstChar + value.substring(1);
            })
            .collect(Collectors.<String>toList());
}

Should we want to test this, we’d need to fire in a list and test the output for every single
example we wanted to test. Example 7-11 provides an example of how cumbersome this
approach becomes. Don’t worry—there is a solution!
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Example 7-11. Testing that in a two-character string, only the first character is convert‐
ed to uppercase
@Test
public void twoLetterStringConvertedToUppercaseLambdas() {
    List<String> input = Arrays.asList("ab");
    List<String> result = Testing.elementFirstToUpperCaseLambdas(input);
    assertEquals(asList("Ab"), result);
}

Don’t use a lambda expression. I know that might appear to be strange advice in a book
about how to use lambda expressions, but square pegs don’t fit into round holes very
well. Having accepted this, we’re bound to ask how we can still unit test our code and
have the benefit of lambda-enabled libraries.

Do use method references. Any method that would have been written as a lambda ex‐
pression can also be written as a normal method and then directly referenced elsewhere
in code using method references.

In Example 7-12 I’ve refactored out the lambda expression into its own method. This
is then used by the main method, which deals with converting the list of strings.

Example 7-12. Converting the first character to uppercase and applying it to a list
public static List<String> elementFirstToUppercase(List<String> words) {
    return words.stream()
                .map(Testing::firstToUppercase)
                .collect(Collectors.<String>toList());
}

public static String firstToUppercase(String value) {  
    char firstChar = Character.toUpperCase(value.charAt(0));
    return firstChar + value.substring(1);
}

Having extracted the method that actually performs string processing, we can cover all
the corner cases by testing that method on its own. The same test case in its new, sim‐
plified form is shown in Example 7-13.

Example 7-13. The two-character test applied to a single method
@Test
public void twoLetterStringConvertedToUppercase() {
    String input = "ab";
    String result = Testing.firstToUppercase(input);
    assertEquals("Ab", result);
}
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Using Lambda Expressions in Test Doubles
A pretty common part of writing unit tests is to use test doubles to describe the expected
behavior of other components of the system. This is useful because unit testing tries to
test a class or method in isolation of the other components of your code base, and test
doubles allow you to implement this isolation in terms of tests.

Even though test doubles are frequently referred to as mocks, actual‐
ly both stubs and mocks are types of test double. The difference is
that mocks allow you to verify the code’s behavior. The best place to
understand more about this is Martin Fowler’s article on the subject.

One of the simplest ways to use lambda expressions in test code is to implement light‐
weight stubs. This is really easy and natural to implement if the collaborator to be stub‐
bed is already a functional interface.

In “Behavioral Write Everything Twice” on page 99, I discussed how to refactor our
common domain logic into a countFeature method that used a lambda expression to
implement different counting behavior. Example 7-14 shows how we might go about
unit testing part of its behavior.

Example 7-14. Using a lambda expression as a test double by passing it to countFeature
    @Test
    public void canCountFeatures() {
        OrderDomain order = new OrderDomain(asList(
                newAlbum("Exile on Main St."),
                newAlbum("Beggars Banquet"),
                newAlbum("Aftermath"),
                newAlbum("Let it Bleed")));

        assertEquals(8, order.countFeature(album -> 2));
    }

The expected behavior is that the countFeature method returns the sum of some num‐
ber for each album it’s passed. So here I’m passing in four different albums, and the stub
in my test is returning a count of 2 features for each album. I assert that the method
returns 8—that is, 2×4. If you expect to pass a lambda expression into your code, then
it’s usually the right thing to have your test also pass in a lambda expression.

Most test doubles end up being the result of more complex expectation setting. In these
situations, frameworks such as Mockito are often used to easily generate test doubles.
Let’s consider a simple example in which we want to produce a test double for a List.
Instead of returning the size of the List, we want to return the size of another List.
When mocking the size method of the List, we don’t want to specify just a single
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answer. We want our answer to perform some operation, so we pass in a lambda ex‐
pression (Example 7-15).

Example 7-15. Using a lambda expression in conjunction with the Mockito library
List<String> list = mock(List.class);

when(list.size()).thenAnswer(inv -> otherList.size());

assertEquals(3, list.size());

Mockito uses an Answer interface that lets you provide alternative implementation be‐
havior. In other words, it already supports our familiar friend: passing code as data. We
can use a lambda expression here because Answer is, conveniently, a functional interface.

Lazy Evaluation Versus Debugging
Using a debugger typically involves stepping through statements of your program or
attaching breakpoints. Sometimes you might encounter situations using the streams
library where debugging becomes a little bit more complex, because the iteration is
controlled by the library and many stream operations are lazily evaluated.

In the traditional imperative view of the world, in which code is a sequence of actions
that achieve a goal, introspecting state after or before an action makes perfect sense. In
Java 8, you still have access to all your existing IDE debugging tools, but sometimes you
need to tweak your approach a little in order to achieve good results.

Logging and Printing
Let’s say you’re performing a series of operations on a collection and you’re trying to
debug the code; you want to see what the result of an individual operation is. One thing
you could do is print out the collection value after each step. This is pretty hard with
the Streams framework, as intermediate steps are lazily evaluated.

Let’s take a look at how we might log intermediate values by taking a look at an imperative
version of our nationality report from Chapter 3. In case you’ve forgotten, and who
doesn’t sometimes, this is code that tries to find the country of origin for every artist on
an album. In Example 7-16 we’re going to log each of the nationalities that we find.

Example 7-16. Logging intermediate values in order to debug a for loop
Set<String> nationalities = new HashSet<>();
for (Artist artist : album.getMusicianList()) {
    if (artist.getName().startsWith("The")) {
        String nationality = artist.getNationality();
        System.out.println("Found nationality: " + nationality);
        nationalities.add(nationality);
    }
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}
return nationalities;

Now we could use the forEach method to print out the values from the stream, which
would also cause it to be evaluated. However, this way has the downside that we can’t
continue to operate on that stream, because streams can only be used once. If we really
want to use this approach, we need to recreate the stream. Example 7-17 shows how
ugly this can get.

Example 7-17. Using a naive forEach to log intermediate values
album.getMusicians()
     .filter(artist -> artist.getName().startsWith("The"))
     .map(artist -> artist.getNationality())
     .forEach(nationality -> System.out.println("Found: " + nationality));

Set<String> nationalities
    = album.getMusicians()
           .filter(artist -> artist.getName().startsWith("The"))
           .map(artist -> artist.getNationality())
           .collect(Collectors.<String>toSet());

The Solution: peek
Fortunately, the streams library contains a method that lets you look at each value in
turn and also lets you continue to operate on the same underlying stream. It’s called
peek. In Example 7-18, we have rewritten the previous example using peek in order to
print out the stream values without having to repeat the pipeline of stream operations.

Example 7-18. Using peek to log intermediate values
Set<String> nationalities
    = album.getMusicians()
           .filter(artist -> artist.getName().startsWith("The"))
           .map(artist -> artist.getNationality())
           .peek(nation -> System.out.println("Found nationality: " + nation))
           .collect(Collectors.<String>toSet());

It’s also possible to use the peek method to output to existing logging systems such as
log4j, java.util.logging, or slf4j in exactly the same way.

Midstream Breakpoints
Logging is just one of many tricks that the peek method has up its sleeve. To allow us
to debug a stream element by element, as we might debug a loop step by step, a break‐
point can be set on the body of the peek method.

The Solution: peek | 107



In this case, peek can just have an empty body that you set a breakpoint in. Some de‐
buggers won’t let you set a breakpoint in an empty body, in which case I just map a value
to itself in order to be able to set the breakpoint. It’s not ideal, but it works fine.

Key Points
• Consider how lambda expressions can help when refactoring legacy code: there are

common patterns.
• If you want to unit test a lambda expression of any complexity, extract it to a regular

method.
• The peek method is very useful for logging out intermediate values when debug‐

ging.
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CHAPTER 8

Design and Architectural Principles

The critical design tool for software development is a mind well educated in design
principles. It is not…technology.

— Craig Larman

I’ve already established that lambda expressions are a fairly simple change to the Java
language and that there are a bunch of ways that we can use them within the standard
JDK libraries. Most Java code isn’t written by the core JDK developers—it’s written by
people like you. In order to use lambda expressions in the most beneficial way possible,
you need to start introducing them into your existing code base. They are just another
tool in the belt of a professional Java developer, no different from an interface or a class.

In this chapter, we’re going to explore how to use to use lambda expressions to imple‐
ment the SOLID principles that provide guidelines toward good object-oriented pro‐
gramming. There are also many existing design patterns that can be improved by the
use of lambda expressions, and we’ll take a look at a smattering of those.

When coding with teammates at work, I’m sure you’ve come across a situation where
you’ve implemented some feature or fixed a bug, and you were pretty happy with the
way that you had done it, but soon after someone else took a look at the same code—
perhaps during a code review—and they weren’t so happy with it! It’s pretty common
to have this kind of disagreement over what really constitutes good code or bad code.

Most of the time when people are disagreeing, they are pushing a matter of opinion.
The reviewer would have done it another way. It’s not necessarily that he is right or
wrong, or that you are right or wrong. When you welcome lambdas into your life, there’s
another topic to think about. It’s not that they are a difficult feature or a big point of
contention as much as they are just another design issue that people can discuss or
disagree on.
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This chapter is here to help! I’ll try to put forth some well-grounded principles and
patterns upon which you can compose maintainable and reliable software—not just to
use the shiny new JDK libraries, but to use lambda expressions in your own domain
architecture and applications.

Lambda-Enabled Design Patterns
One of the other bastions of design we’re all familiar with is the idea of design pat‐
terns. Patterns document reusable templates that solve common problems in software
architecture. If you spot a problem and you’re familiar with an appropriate pattern, then
you can take the pattern and apply it to your situation. In a sense, patterns codify what
people consider to be a best-practice approach to a given problem.

Of course, no practice is ever the best practice forever. A common example is the once-
popular singleton pattern, which enforces the creation of only one instance of an object.
Over the last decade, this has been roundly criticized for making applications more
brittle and harder to test. As the Agile software movement has made testing of appli‐
cations more important, the issues with the singleton pattern have made it an antipat‐
tern: a pattern you should never use.

In this section, I’m not going to talk about how patterns have become obsolete. We’re
instead going to look at how existing design patterns have become better, simpler, or in
some cases implementable in a different way. In all cases, the language changes in Java
8 are the driving factor behind the pattern changing.

Command Pattern
A command object is an object that encapsulates all the information required to call
another method later. The command pattern is a way of using this object in order to
write generic code that sequences and executes methods based on runtime decisions.
There are four classes that take part in the command pattern, as shown in Figure 8-1:
Receiver

Performs the actual work

Command
Encapsulates all the information required to call the receiver

Invoker
Controls the sequencing and execution of one or more commands

Client
Creates concrete command instances
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Figure 8-1. The command pattern

Let’s look at a concrete example of the command pattern and see how it improves with
lambda expressions. Suppose we have a GUI Editor component that has actions upon
it that we’ll be calling, such as open or save, like in Example 8-1. We want to imple‐
ment macro functionality—that is, a series of operations that can be recorded and then
run later as a single operation. This is our receiver.

Example 8-1. Common functions a text editor may have
public interface Editor {

    public void save();

    public void open();

    public void close();

}

In this example, each of the operations, such as open and save, are commands. We need
a generic command interface to fit these different operations into. I’ll call this interface
Action, as it represents performing a single action within our domain. This is the in‐
terface that all our command objects implement (Example 8-2).

Example 8-2. All our actions implement the Action interface
public interface Action {

    public void perform();

}

We can now implement our Action interface for each of the operations. All these classes
need to do is call a single method on our Editor and wrap this call into our Action
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interface. I’ll name the classes after the operations that they wrap, with the appropriate
class naming convention—so, the save method corresponds to a class called Save. Ex‐
amples 8-3 and 8-4 are our command objects.

Example 8-3. Our save action delegates to the underlying method call on Editor
public class Save implements Action {

    private final Editor editor;

    public Save(Editor editor) {
        this.editor = editor;
    }

    @Override
    public void perform() {
        editor.save();
    }
}

Example 8-4. Our open action also delegates to the underlying method call on Editor
public class Open implements Action {

    private final Editor editor;

    public Open(Editor editor) {
        this.editor = editor;
    }

    @Override
    public void perform() {
        editor.open();
    }
}

Now we can implement our Macro class. This class can record actions and run them as
a group. We use a List to store the sequence of actions and then call forEach in order
to execute each Action in turn. Example 8-5 is our invoker.

Example 8-5. A macro consists of a sequence of actions that can be invoked in turn
public class Macro {

    private final List<Action> actions;

    public Macro() {
        actions = new ArrayList<>();
    }

    public void record(Action action) {
        actions.add(action);
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    }

    public void run() {
        actions.forEach(Action::perform);
    }

}

When we come to build up a macro programmatically, we add an instance of each
command that has been recorded to the Macro object. We can then just run the macro
and it will call each of the commands in turn. As a lazy programmer, I love the ability
to define common workflows as macros. Did I say “lazy”? I meant focused on improving
my productivity. The Macro object is our client code and is shown in Example 8-6.

Example 8-6. Building up a macro with the command pattern
Macro macro = new Macro();
macro.record(new Open(editor));
macro.record(new Save(editor));
macro.record(new Close(editor));
macro.run();

How do lambda expressions help? Actually, all our command classes, such as Save and
Open, are really just lambda expressions wanting to get out of their shells. They are blocks
of behavior that we’re creating classes in order to pass around. This whole pattern be‐
comes a lot simpler with lambda expressions because we can entirely dispense with these
classes. Example 8-7 shows how to use our Macro class without these command classes
and with lambda expressions instead.

Example 8-7. Using lambda expressions to build up a macro
Macro macro = new Macro();
macro.record(() -> editor.open());
macro.record(() -> editor.save());
macro.record(() -> editor.close());
macro.run();

In fact, we can do this even better by recognizing that each of these lambda expressions
is performing a single method call. So, we can actually use method references in order
to wire the editor’s commands to the macro object (see Example 8-8).

Example 8-8. Using method references to build up a macro
Macro macro = new Macro();
macro.record(editor::open);
macro.record(editor::save);
macro.record(editor::close);
macro.run();
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The command pattern is really just a poor man’s lambda expression to begin with. By
using actual lambda expressions or method references, we can clean up the code, re‐
ducing the amount of boilerplate required and making the intent of the code more
obvious.

Macros are just one example of how we can use the command pattern. It’s frequently
used in implementing component-based GUI systems, undo functions, thread pools,
transactions, and wizards.

There is already a functional interface with the same structure as our
interface Action in core Java—Runnable. We could have chosen to
use that in our macro class, but in this case it seemed more appro‐
priate to consider an Action to be part of the vocabulary of our do‐
main and create our own interface.

Strategy Pattern
The strategy pattern is a way of changing the algorithmic behavior of software based
upon a runtime decision. How you implement the strategy pattern depends upon your
circumstances, but in all cases the main idea is to be able to define a common problem
that is solved by different algorithms and then encapsulate all the algorithms behind the
same programming interface.

An example algorithm we might want to encapsulate is compressing files. We’ll give our
users the choice of compressing our files using either the zip algorithm or the gzip
algorithm and implement a generic Compressor class that can compress using either
algorithm.

First we need to define the API for our strategy (see Figure 8-2), which I’ll call Compres
sionStrategy. Each of our compression algorithms will implement this interface. They
have the compress method, which takes and returns an OutputStream. The returned
OutputStream is a compressed version of the input (see Example 8-9).
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Figure 8-2. The strategy pattern

Example 8-9. Defining a strategy interface for compressing data
public interface CompressionStrategy {

    public OutputStream compress(OutputStream data) throws IOException;

}

We have two concrete implementations of this interface, one for gzip and one for ZIP,
which use the built-in Java classes to write gzip (Example 8-10) and ZIP (Example 8-11)
files.

Example 8-10. Using the gzip algorithm to compress data
public class GzipCompressionStrategy implements CompressionStrategy {

    @Override
    public OutputStream compress(OutputStream data) throws IOException {
        return new GZIPOutputStream(data);
    }

}

Example 8-11. Using the zip algorithm to compress data
public class ZipCompressionStrategy implements CompressionStrategy {

    @Override
    public OutputStream compress(OutputStream data) throws IOException {
        return new ZipOutputStream(data);
    }

}
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Now we can implement our Compressor class, which is the context in which we use our
strategy. This has a compress method on it that takes input and output files and writes
a compressed version of the input file to the output file. It takes the CompressionStrat
egy as a constructor parameter that its calling code can use to make a runtime choice
as to which compression strategy to use—for example, getting user input that would
make the decision (see Example 8-12).

Example 8-12. Our compressor is provided with a compression strategy at construction
time
public class Compressor {

    private final CompressionStrategy strategy;

    public Compressor(CompressionStrategy strategy) {
        this.strategy = strategy;
    }

    public void compress(Path inFile, File outFile) throws IOException {
        try (OutputStream outStream = new FileOutputStream(outFile)) {
            Files.copy(inFile, strategy.compress(outStream));
        }
    }
    }

If we have a traditional implementation of the strategy pattern, then we can write client
code that creates a new Compressor with whichever strategy we want (Example 8-13).

Example 8-13. Instantiating the Compressor using concrete strategy classes
Compressor gzipCompressor = new Compressor(new GzipCompressionStrategy());
gzipCompressor.compress(inFile, outFile);

Compressor zipCompressor = new Compressor(new ZipCompressionStrategy());
zipCompressor.compress(inFile, outFile);

As with the command pattern discussed earlier, using either lambda expressions or
method references allows us to remove a whole layer of boilerplate code from this pat‐
tern. In this case, we can remove each of the concrete strategy implementations and
refer to a method that implements the algorithm. Here the algorithms are represented
by the constructors of the relevant OutputStream implementation. We can totally dis‐
pense with the GzipCompressionStrategy and ZipCompressionStrategy classes when
taking this approach. Example 8-14 is what the code would look like if we used method
references.

Example 8-14. Instantiating the Compressor using method references
Compressor gzipCompressor = new Compressor(GZIPOutputStream::new);
gzipCompressor.compress(inFile, outFile);
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Compressor zipCompressor = new Compressor(ZipOutputStream::new);
zipCompressor.compress(inFile, outFile);

Observer Pattern
The observer pattern is another behavioral pattern that can be improved and simplified
through the use of lambda expressions. In the observer pattern, an object, called the
subject, maintains a list of other objects, which are its observers. When the state of the
subject changes, its observers are notified. It is heavily used in MVC-based GUI toolkits
in order to allow view components to be updated when state changes in the model
without coupling the two classes together.

Seeing GUI components update is a bit boring, so the subject that we’ll be observing is
the moon! Both NASA and some aliens want to keep track of things landing on the
moon. NASA wants to make sure its Apollo astronauts have landed safely; the aliens
want to invade Earth when NASA is distracted.

Let’s start by defining the API of our observers, which I’ll give the name LandingOb
server. This has a single observeLanding method, which will be called when something
lands on the moon (Example 8-15).

Example 8-15. An interface for observing organizations that land on the moon
public interface LandingObserver {

    public void observeLanding(String name);

}

Our subject class is the Moon, which keeps a list of LandingObserver instances, notifies
them of landings, and can add new LandingObserver instances to spy on the Moon object
(Example 8-16).

Example 8-16. Our Moon domain class—not as pretty as the real thing
public class Moon {

    private final List<LandingObserver> observers = new ArrayList<>();

    public void land(String name) {
        for (LandingObserver observer : observers) {
            observer.observeLanding(name);
        }
    }

    public void startSpying(LandingObserver observer) {
        observers.add(observer);
    }
    }
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We have two concrete implementations of the LandingObserver class that represent the
aliens’ (Example 8-17) and NASA’s views (Example 8-18) of the landing event. As men‐
tioned earlier, they both have different interpretations of what this situation brings them.

Example 8-17. The aliens can observe people landing on the moon
public class Aliens implements LandingObserver {

    @Override
    public void observeLanding(String name) {
        if (name.contains("Apollo")) {
            System.out.println("They're distracted, lets invade earth!");
        }
    }

}

Example 8-18. NASA can also observe people landing on the moon
public class Nasa implements LandingObserver {
    @Override
    public void observeLanding(String name) {
        if (name.contains("Apollo")) {
            System.out.println("We made it!");
        }
    }
}

In a similar vein to the previous patterns, in our traditional example our client code
specifically wires up a layer of boilerplate classes that don’t need to exist if we use lambda
expressions (see Examples 8-19 and 8-20).

Example 8-19. Client code building up a Moon using classes and things landing on it
Moon moon = new Moon();
moon.startSpying(new Nasa());
moon.startSpying(new Aliens());

moon.land("An asteroid");
moon.land("Apollo 11");

Example 8-20. Client code building up a Moon using lambdas and things landing on it
Moon moon = new Moon();

moon.startSpying(name -> {
    if (name.contains("Apollo"))
        System.out.println("We made it!");
});

moon.startSpying(name -> {
    if (name.contains("Apollo"))
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        System.out.println("They're distracted, lets invade earth!");
});

moon.land("An asteroid");
moon.land("Apollo 11");

One thing to think about with both the observer and the strategy patterns is that whether
to go down the lambda design route or the class route depends a lot on the complexity
of the strategy or observer code that needs to be implemented. In the cases I’ve presented
here, the code is simple in nature, just a method call or two, and fits the new language
features well. In some situations, though, the observer can be a complex class in and of
itself, and in those situations trying to squeeze a lot of code into one method can lead
to poor readability.

In some respects, trying to squeeze a lot of code into one method leads
to poor readability is the golden rule governing how to apply lamb‐
da expressions. The only reason I haven’t pushed this so much is that
it’s also the golden rule of writing normal methods!

Template Method Pattern
A pretty common situation when developing software is having a common algorithm
with a set of differing specifics. We want to require the different implementations to
have a common pattern in order to ensure that they’re following the same algorithm
and also to make the code easier to understand. Once you understand the overall pattern,
you can more easily understand each implementation.

The template method pattern is designed for these kinds of situations. Your overall
algorithm design is represented by an abstract class. This has a series of abstract methods
that represent customized steps in the algorithm, while any common code can be kept
in this class. Each variant of the algorithm is implemented by a concrete class that over‐
rides the abstract methods and provides the relevant implementation.

Let’s think through a scenario in order to make this clearer. As a bank, we’re going to
be giving out loans to members of the public, companies, and employees. These cate‐
gories have a fairly similar loan application process—you check the identity, credit his‐
tory, and income history. You get this information from different sources and apply
different criteria. For example, you might check the identity of a person by looking at
an existing bill to her house, but companies have an official registrar such as the SEC
in the US or Companies House in the UK.

We can start to model this in code with an abstract LoanApplication class that controls
the algorithmic structure and holds common code for reporting the findings of the loan
application. There are then concrete subclasses for each of our different categories of
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applicant: CompanyLoanApplication, PersonalLoanApplication, and EmployeeLoa
nApplication. Example 8-21 shows what our LoanApplication class would look like.

Example 8-21. The process of applying for a loan using the template method pattern
public abstract class LoanApplication {

    public void checkLoanApplication() throws ApplicationDenied {
        checkIdentity();
        checkCreditHistory();
        checkIncomeHistory();
        reportFindings();
    }

    protected abstract void checkIdentity() throws ApplicationDenied;

    protected abstract void checkIncomeHistory() throws ApplicationDenied;

    protected abstract void checkCreditHistory() throws ApplicationDenied;

    private void reportFindings() {

CompanyLoanApplication implements checkIdentity by looking up information in a
company registration database, such as Companies House. checkIncomeHistory would
involve assessing existing profit and loss statements and balance sheets for the firm.
checkCreditHistory would look into existing bad and outstanding debts.

PersonalLoanApplication implements checkIdentity by analyzing the paper state‐
ments that the client has been required to provide in order to check that the client’s
address exists. checkIncomeHistory involves assessing pay slips and checking whether
the person is still employed. checkCreditHistory delegates to an external credit pay‐
ment provider.

EmployeeLoanApplication is just PersonalLoanApplication with no employment
history checking. Conveniently, our bank already checks all its employees’ income his‐
tories when hiring them (Example 8-22).

Example 8-22. A special case of an an employee applying for a loan
public class EmployeeLoanApplication extends PersonalLoanApplication {

    @Override
    protected void checkIncomeHistory() {
        // They work for us!
    }

}

With lambda expressions and method references, we can think about the template
method pattern in a different light and also implement it differently. What the template
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method pattern is really trying to do is compose a sequence of method calls in a certain
order. If we represent the functions as functional interfaces and then use lambda ex‐
pressions or method references to implement those interfaces, we can gain a huge
amount of flexibility over using inheritance to build up our algorithm. Let’s look at how
we would implement our LoanApplication algorithm this way, in Example 8-23!

Example 8-23. The special case of an employee applying for a loan
public class LoanApplication {

    private final Criteria identity;
    private final Criteria creditHistory;
    private final Criteria incomeHistory;

    public LoanApplication(Criteria identity,
                           Criteria creditHistory,
                           Criteria incomeHistory) {

        this.identity = identity;
        this.creditHistory = creditHistory;
        this.incomeHistory = incomeHistory;
    }

    public void checkLoanApplication() throws ApplicationDenied {
        identity.check();
        creditHistory.check();
        incomeHistory.check();
        reportFindings();
    }

    private void reportFindings() {

As you can see, instead of having a series of abstract methods we’ve got fields called
identity, creditHistory, and incomeHistory. Each of these fields implements our
Criteria functional interface. The Criteria interface checks a criterion and throws a
domain exception if there’s an error in passing the criterion. We could have chosen to
return a domain class from the check method in order to denote failure or success, but
continuing with an exception follows the broader pattern set out in the original imple‐
mentation (see Example 8-24).

Example 8-24. A Criteria functional interface that throws an exception if our applica‐
tion fails
public interface Criteria {

    public void check() throws ApplicationDenied;

}
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The advantage of choosing this approach over the inheritance-based pattern is that
instead of tying the implementation of this algorithm into the LoanApplication hier‐
archy, we can be much more flexible about where to delegate the functionality to. For
example, we may decide that our Company class should be responsible for all criteria
checking. The Company class would then have a series of signatures like Example 8-25.

Example 8-25. The criteria methods on a Company
    public void checkIdentity() throws ApplicationDenied;

    public void checkProfitAndLoss() throws ApplicationDenied;

    public void checkHistoricalDebt() throws ApplicationDenied;

Now all our CompanyLoanApplication class needs to do is pass in method references
to those existing methods, as shown in Example 8-26.

Example 8-26. Our CompanyLoanApplication specifies which methods provide each
criterion
public class CompanyLoanApplication extends LoanApplication {

    public CompanyLoanApplication(Company company) {
        super(company::checkIdentity,
              company::checkHistoricalDebt,
              company::checkProfitAndLoss);
    }

}

A motivating reason to delegate the behavior to our Company class is that looking up
information about company identity differs between countries. In the UK, Companies
House provides a canonical location for registering company information, but in the
US this differs from state to state.

Using functional interfaces to implement the criteria doesn’t preclude us from placing
implementation within the subclasses, either. We can explicitly use a lambda expression
to place implementation within these classes, or use a method reference to the current
class.

We also don’t need to enforce inheritance between EmployeeLoanApplication and
PersonalLoanApplication to be able to reuse the functionality of EmployeeLoanAppli
cation in PersonalLoanApplication. We can pass in references to the same methods.
Whether they do genuinely subclass each other should really be determined by whether
loans to employees are a special case of loans to people or a different type of loan. So,
using this approach could allow us to model the underlying problem domain more
closely.
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Lambda-Enabled Domain-Specific Languages
A domain-specific language (DSL) is a programming language focused on a particular
part of a software system. They are usually small and frequently less expressive than a
general-purpose language, such as Java, for most programming tasks. DSLs are highly
specialized: by trading off being good at everything, they get to be good at something.

It’s usual to split up DSLs into two different categories: internal and external. An external
DSL is one that is written separately from the source code of your program and then
parsed and implemented separately. For example, Cascading Style Sheets (CSS) and
regular expressions are commonly used external DSLs.

Internal DSLs are embedded into the programming language that they are written in.
If you’ve used mocking libraries, such as JMock or Mockito, or a SQL builder API such
as JOOQ or Querydsl, then you’ll be familiar with internal DSLs. In one sense, they’re
just regular libraries that have an API designed to be fluent. Despite their simplicity,
internal DSLs are valued because they can be a powerful tool for making your code more
succinct and easier to read. Ideally, code written in a DSL reads like statements made
within the problem domain that it is reflecting.

The introduction of lambda expressions makes it easier to implement DSLs that are
fluent and adds another tool to the belt of those wanting to experiment in the DSL arena.
We’ll investigate those issues by building a DSL for performing behavior-driven devel‐
opment (BDD) called LambdaBehave.

BDD is a variant of test-driven development (TDD) that shifts the emphasis onto talking
about the behavior of the program rather than simply the tests that it needs to pass. Our
design is inspired by the JavaScript BDD framework Jasmine, which has been getting
heavy use in frontend circles. Example 8-27 is a simple Jasmine suite that shows you
how to create tests using Jasmine.

Example 8-27. Jasmine
describe("A suite is just a function", function() {
  it("and so is a spec", function() {
    var a = true;

    expect(a).toBe(true);
  });
});

I appreciate that if you’re not familiar with JavaScript, this may seem confusing. We will
be going through the concepts at a gentler pace as we build a Java 8 equivalent next. Just
remember that the syntax for a lambda expression in JavaScript is function() { … }.

Let’s take a look at each of the concepts in turn:

• Each spec describes a single behavior that your program exhibits.
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• An expectation is a way of describing the behavior of the application. You will find
expectations in specs.

• Groups of specs are combined into a suite.

Each of these concepts has an equivalent in a traditional testing framework, such as
JUnit. A spec is similar to a test method, an expectation is similar to an assertion, and
a suite is similar to a test class.

A DSL in Java
Let’s look at an example of what we’re aiming for with our Java-based BDD framework.
Example 8-28 is a specification of some of the behaviors of a Stack.

Example 8-28. Some stories to specify a Stack
public class StackSpec {{

    describe("a stack", it -> {

        it.should("be empty when created", expect -> {
            expect.that(new Stack()).isEmpty();
        });

        it.should("push new elements onto the top of the stack", expect -> {
            Stack<Integer> stack = new Stack<>();
            stack.push(1);

            expect.that(stack.get(0)).isEqualTo(1);
        });

        it.should("pop the last element pushed onto the stack", expect -> {
            Stack<Integer> stack = new Stack<>();
            stack.push(2);
            stack.push(1);

            expect.that(stack.pop()).isEqualTo(2);
        });

    });

}}

We start off our suite of specifications using the describe verb. Then we give our suite
a name that tells us what it’s describing the behavior of; here, we’ve picked "a stack".

Each of specifications reads as closely to an English sentence as possible. They all start
with the prefix it.should, with it referring to the object whose behavior we’re de‐
scribing. There is then a plain English sentence that tells us what the behavior is that
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we’re thinking about. We can then describe expectations of the behavior of our object,
which all start with the expect.that prefix.

When we check our specifications, we get a simple command-line report that tells us
which pass or fail. You’ll notice that “pop the last element pushed onto the stack” ex‐
pected pop to be equal to 2, not 1, so it has failed:

a stack
    should pop the last element pushed onto the stack[expected:  but was: ]
    should be empty when created
    should push new elements onto the top of the stack

How We Got There
So now that you’ve seen the kind of fluency we can get in our DSLs using lambda
expressions, let’s have a look at how I implemented the framework under the hood.
Hopefully this will give you an idea of how easy it is to implement this kind of framework
yourself.

The first thing I saw when I started describing behavior was the describe verb. This is
really just a statically imported method. It creates an instance of our Description class
for the suite and delegates handling the specification to it. The Description class cor‐
responds to the it parameters in our specification language (see Example 8-29).

Example 8-29. The describe method that starts the definition of a specification
public static void describe(String name, Suite behavior) {
    Description description = new Description(name);
    behavior.specifySuite(description);
}

Each suite has its code description implemented by the user using a lambda expression.
This means that we need a Suite functional interface, shown in Example 8-30, to rep‐
resent a suite of specifications. You’ll notice it also takes a Description object as an
argument, which we passed into it from the describe method.

Example 8-30. Each suite of tests is a lambda expression implementing this interface
public interface Suite {

    public void specifySuite(Description description);

}

Not only are suites represented by lambda expressions in our DSL, but so are individual
specifications. They also need a functional interface, which I’ll call Specification
(Example 8-31). The variable called expect in our code sample is an instance of our
Expect class, which I’ll describe later.
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Example 8-31. Each specification is a lambda expression implementing this interface
public interface Specification {

    public void specifyBehaviour(Expect expect);

}

The Description instance we’ve been passing around comes in handy at this point. We
want our users to be able to fluently name their specifications with the it.should clause.
This means our Description class needs a should method (see Example 8-32). This is
where the real work gets done, as this is the method that actually executes the lambda
expression by calling its specifySuite method. Specifications will tell us they have
failed by throwing the standard Java AssertionError, and we consider any other Throw
able to be an error.

Example 8-32. Our specification lambda expressions get passed into the should method
public void should(String description, Specification specification) {
    try {
        Expect expect = new Expect();
        specification.specifyBehaviour(expect);
        Runner.current.recordSuccess(suite, description);
    } catch (AssertionError cause) {
        Runner.current.recordFailure(suite, description, cause);
    } catch (Throwable cause) {
        Runner.current.recordError(suite, description, cause);
    }
}

When our specifications want to describe an actual expectation, they use the ex
pect.that clause. This means that our Expect class needs to have a method called that
for users to call, shown in Example 8-33. This wraps up the object that gets passed in
and can then expose fluent methods such as isEqualTo that throw the appropriate
assertions if there’s a specification failure.

Example 8-33. The start of the fluent expect chain
public final class Expect {

    public BoundExpectation that(Object value) {
        return new BoundExpectation(value);
    }

    // Rest of class omitted

You may have noticed one more detail that I’ve so far ignored and that has nothing to
do with lambda expressions. Our StackSpec class didn’t have any methods directly
implemented on it, and I wrote the code inside. I’ve been a bit sneaky here and used
double braces at the beginning and end of the class definition:
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public class StackSpec {{
    ...
}}

These start an anonymous constructor that lets us execute an arbitrary block of Java
code, so it’s really just like writing out the constructor in full, but with a bit less boiler‐
plate. I could have written the following instead:

public class StackSpec {
    public StackSpec() {
        ...
    }
}

There’s a lot more work involved in implementing a complete BDD framework, but the
purpose of this section is just to show you how to use lambda expressions to create more
fluent domain-specific languages. I’ve covered the parts of the DSL that interact with
lambda expressions in order to give you a flavor of how to implement this kind of DSL.

Evaluation
One aspect of fluency is the idea that your DSL is IDE-friendly. In other words, you can
remember a minimal amount of knowledge and then use code completion to fill in the
gaps in memory. This is why we use and pass it the Description and Expect objects.
The other alternative would have been to have static imports for methods called it or
expect, which is an approach used in some DSLs. If you pass the object into your lambda
expression rather than requiring a static import, it makes it easier for a competent IDE
user to code complete his way to working code.

The only thing a user needs to remember is the call to describe. The benefits of such
an approach might not be obvious purely from reading this text, but I encourage you
to test out the framework in a small sample project and see for yourself.

The other thing to notice is that most testing frameworks provide a bunch of annotations
and use external magic or reflection. We didn’t need to resort to such tricks. We can
directly represent behavior in our DSLs using lambda expressions and treat these as
regular Java methods.

Lambda-Enabled SOLID Principles
The SOLID principles are a set of basic principles for designing OO programs. The
name itself is a acronym, with each of the five principles named after one of the letters:
Single responsibility, Open/closed, Liskov substitution, Interface segregation, and De‐
pendency inversion. The principles act as a set of guidelines to help you implement code
that is easy to maintain and extend over time.
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Each of the principles corresponds to a set of potential code smells that can exist in your
code, and they offer a route out of the problems that they cause. Many books have been
written on this topic, and I’m not going to cover the principles in comprehensive detail.
I will, however, look at how three of the principles can be applied in the context of
lambda expressions. In the Java 8 context, some of the principles can be extended beyond
their original limitations.

The Single Responsibility Principle
Every class or method in your program should have only a single reason to change.

An inevitable fact of software development is that requirements change over time.
Whether because a new feature needs to be added, your understanding of your problem
domain or customer has changed, or you need things to be faster, over time software
must evolve.

When the requirements of your software change, the responsibilities of the classes and
methods that implement these requirements also change. If you have a class that has
more than one responsibility, when a responsibility changes the resulting code changes
can affect the other responsibilities that the class possesses. This possibly introduces
bugs and also impedes the ability of the code base to evolve.

Let’s consider a simple example program that generates a BalanceSheet. The program
needs to tabulate the BalanceSheet from a list of assets and render the BalanceSheet
to a PDF report. If the implementer chose to put both the responsibilities of tabulation
and rendering into one class, then that class would have two reasons for change. You
might wish to change the rendering in order to generate an alternative output, such as
HTML. You might also wish to change the level of detail in the BalanceSheet itself. This
is a good motivation to decompose this problem at the high level into two classes: one
to tabulate the BalanceSheet and one to render it.

The single responsibility principle is stronger than that, though. A class should not just
have a single responsibility: it should also encapsulate it. In other words, if I want to
change the output format, then I should have to look at only the rendering class and
not at the tabulation class.

This is part of the idea of a design exhibiting strong cohesion. A class is cohesive if its
methods and fields should be treated together because they are closely related. If you
tried to divide up a cohesive class, you would result in accidentally coupling the classes
that you have just created.

Now that you’re familiar with the single responsibility principle, the question arises,
what does this have to do with lambda expressions? Well Lambda expressions make it
a lot easier to implement the single responsibility principle at the method level. Let’s
take a look at some code that counts the number of prime numbers up to a certain value
(Example 8-34).
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Example 8-34. Counting prime numbers with multiple responsibilities in a method
public long countPrimes(int upTo) {
    long tally = 0;
    for (int i = 1; i < upTo; i++) {
        boolean isPrime = true;
        for (int j = 2; j < i; j++) {
            if (i % j == 0) {
                isPrime = false;
            }
        }
        if (isPrime) {
            tally++;
        }
    }
    return tally;
}

It’s pretty obvious that we’re really doing two things in Example 8-34:we’re counting
numbers with a certain property and we’re checking whether a number is a prime. As
shown in Example 8-35, we can easily refactor this to split apart these two responsibil‐
ities.

Example 8-35. Counting prime numbers after refactoring out the isPrime check
public long countPrimes(int upTo) {
    long tally = 0;
    for (int i = 1; i < upTo; i++) {
        if (isPrime(i)) {
            tally++;
        }
    }
    return tally;
}

private boolean isPrime(int number) {
    for (int i = 2; i < number; i++) {
        if (number % i == 0) {
            return false;
        }
    }
    return true;
}

Unfortunately, we’re still left in a situation where our code has two responsibilities. For
the most part, our code here is dealing with looping over numbers. If we follow the
single responsibility principle, then iteration should be encapsulated elsewhere. There’s
also a good practical reason to improve this code. If we want to count the number of
primes for a very large upTo value, then we want to be able to perform this operation in
parallel. That’s right—the threading model is a responsibility of the code!
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We can refactor our code to use the Java 8 streams library (see Example 8-36), which
delegates the responsibility for controlling the loop to the library itself. Here we use the
range method to count the numbers between 0 and upTo, filter them to check that
they really are prime, and then count the result.

Example 8-36. Refactoring the prime checking to use streams
public long countPrimes(int upTo) {
    return IntStream.range(1, upTo)
                    .filter(this::isPrime)
                    .count();
}

private boolean isPrime(int number) {
    return IntStream.range(2, number)
                    .allMatch(x -> (number % x) != 0);
}

If we want to speed up the time it takes to perform this operation at the expense of using
more CPU resources, we can use the parallelStream method without changing any of
the other code (see Example 8-37).

Example 8-37. The streams-based prime checking running in parallel
public long countPrimes(int upTo) {
    return IntStream.range(1, upTo)
                    .parallel()
                    .filter(this::isPrime)
                    .count();
}

private boolean isPrime(int number) {
    return IntStream.range(2, number)
            .allMatch(x -> (number % x) != 0);
}

So, we can use higher-order functions in order to help us easily implement the single
responsibility principle.

The Open/Closed Principle
Software entities should be open for extension, but closed for modification.

— Bertrand Meyer

The overarching goal of the open/closed principle is similar to that of the single re‐
sponsibility principle: to make your software less brittle to change. Again, the problem
is that a single feature request or change to your software can ripple through the code
base in a way that is likely to introduce new bugs. The open/closed principle is an effort
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to avoid that problem by ensuring that existing classes can be extended without their
internal implementation being modified.

When you first hear about the open/closed principle, it sounds like a bit of a pipe dream.
How can you extend the functionality of a class without having to change its imple‐
mentation? The actual answer is that you rely on an abstraction and can plug in new
functionality that fits into this abstraction. Let’s think through a concrete example.

We’re writing a software program that measures information about system performance
and graphs the results of these measurements. For example, we might have a graph that
plots how much time the computer spends in user space, kernel space, and performing
I/O. I’ll call the class that has the responsibility for displaying these metrics MetricDa
taGraph.

One way of designing the MetricDataGraph class would be to have each of the new
metric points pushed into it from the agent that gathers the data. So, its public API would
look something like Example 8-38.

Example 8-38. The MetricDataGraph public API
class MetricDataGraph {

    public void updateUserTime(int value);

    public void updateSystemTime(int value);

    public void updateIoTime(int value);

}

But this would mean that every time we wanted to add in a new set of time points to
the plot, we would have to modify the MetricDataGraph class. We can resolve this issue
by introducing an abstraction, which I’ll call a TimeSeries, that represents a series of
points in time. Now our MetricDataGraph API can be simplified to not depend upon
the different types of metric that it needs to display, as shown in Example 8-39.

Example 8-39. Simplified MetricDataGraph API
class MetricDataGraph {

    public void addTimeSeries(TimeSeries values);

}

Each set of metric data can then implement the TimeSeries interface and be plugged
in. For example, we might have concrete classes called UserTimeSeries, SystemTimeS
eries, and IoTimeSeries. If we wanted to add, say, the amount of CPU time that gets
stolen from a machine if it’s virtualized, then we would add a new implementation of
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TimeSeries called StealTimeSeries. MetricDataGraph has been extended but hasn’t
been modified.

Higher-order functions also exhibit the same property of being open for extension,
despite being closed for modification. A good example of this is the ThreadLocal class
that we encountered earlier. The ThreadLocal class provides a variable that is special in
the sense that each thread has a single copy for it to interact with. Its static withIni
tial method is a higher-order function that takes a lambda expression that represents
a factory for producing an initial value.

This implements the open/closed principle because we can get new behavior out of
ThreadLocal without modifying it. We pass in a different factory method to withIni
tial and get an instance of ThreadLocal with different behavior. For example, we can
use ThreadLocal to produce a DateFormatter that is thread-safe with the code in
Example 8-40.

Example 8-40. A ThreadLocal date formatter
// One implementation
ThreadLocal<DateFormat> localFormatter
    = ThreadLocal.withInitial(() -> new SimpleDateFormat());

// Usage
DateFormat formatter = localFormatter.get();

We can also generate completely different behavior by passing in a different lambda
expression. For example, in Example 8-41 we’re creating a unique identifier for each
Java thread that is sequential.

Example 8-41. A ThreadLocal identifier
// Or...
AtomicInteger threadId = new AtomicInteger();
ThreadLocal<Integer> localId
    = ThreadLocal.withInitial(() -> threadId.getAndIncrement());

// Usage
int idForThisThread = localId.get();

Another interpretation of the open/closed principle that doesn’t follow in the traditional
vein is the idea that immutable objects implement the open/closed principle. An im‐
mutable object is one that can’t be modified after it is created.

The term “immutability” can have two potential interpretations: observable immuta‐
bility or implementation immutability. Observable immutability means that from the
perspective of any other object, a class is immutable; implementation immutability
means that the object never mutates. Implementation immutability implies observable
immutability, but the inverse isn’t necessarily true.
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A good example of a class that proclaims its immutability but actually is only observably
immutable is java.lang.String, as it caches the hash code that it computes the first
time its hashCode method is called. This is entirely safe from the perspective of other
classes because there’s no way for them to observe the difference between it being com‐
puted in the constructor every time or cached.

I mention immutable objects in the context of a book on lambda expressions because
they are a fairly familiar concept within functional programming, which is the same
area that lambda expressions have come from. They naturally fit into the style of pro‐
gramming that I’m talking about in this book.

Immutable objects implement the open/closed principle in the sense that because their
internal state can’t be modified, it’s safe to add new methods to them. The new methods
can’t alter the internal state of the object, so they are closed for modification, but they
are adding behavior, so they are open to extension. Of course, you still need to be careful
in order to avoid modifying state elsewhere in your program.

Immutable objects are also of particular interest because they are inherently thread-safe.
There is no internal state to mutate, so they can be shared between different threads.

If we reflect on these different approaches, it’s pretty clear that we’ve diverged quite a
bit from the traditional open/closed principle. In fact, when Bertrand Meyer first in‐
troduced the principle, he defined it so that the class itself couldn’t ever be altered after
being completed. Within a modern Agile developer environment it’s pretty clear that
the idea of a class being complete is fairly outmoded. Business requirements and usage
of the application may dictate that a class be used for something that it wasn’t intended
to be used for. That’s not a reason to ignore the open/closed principle though, just a
good example of how these principles should be taken as guidelines and heuristics rather
than followed religiously or to the extreme.

A final point that I think is worth reflecting on is that in the context of Java 8, interpreting
the open/closed principle as advocating an abstraction that we can plug multiple classes
into or advocating higher-order functions amounts to the same thing. Because our ab‐
straction needs to be represented by either an interface or an abstract class upon which
methods are called, this approach to the open/closed principle is really just a usage of
polymorphism.

In Java 8, any lambda expression that gets passed into a higher-order function is rep‐
resented by a functional interface. The higher-order function calls its single method,
which leads to different behavior depending upon which lambda expression gets passed
in. Again, under the hood we’re using polymorphism in order to implement the open/
closed principle.
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The Dependency Inversion Principle
Abstractions should not depend on details; details should depend on abstractions.

One of the ways in which we can make rigid and fragile programs that are resistant to
change is by coupling high-level business logic and low-level code that is designed to
glue modules together. This is because these are two different concerns that may change
over time.

The goal of the dependency inversion principle is to allow programmers to write high-
level business logic that is independent of low-level glue code. This allows us to reuse
the high-level code in a way that is abstract of the details upon which it depends. This
modularity and reuse goes both ways: we can substitute in different details in order to
reuse the high-level code, and we can reuse the implementation details by layering al‐
ternative business logic on top.

Let’s look at a concrete example of how the dependency inversion principle is tradi‐
tionally used by thinking through the high-level decomposition involved in imple‐
menting an application that builds up an address book automatically. Our application
takes in a sequence of electronic business cards as input and accumulates our address
book in some storage mechanism.

It’s fairly obvious that we can separate this code into three basic modules:

• The business card reader that understands an electronic business card format
• The address book storage that stores data into a text file
• The accumulation module that takes useful information from the business cards

and puts it into the address book

We can visualize the relationship between these modules as shown in Figure 8-3.

Figure 8-3. Dependencies

In this system, while reuse of the accumulation model is more complex, the business
card reader and the address book storage do not depend on any other components. We
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can therefore easily reuse them in another system. We can also change them; for ex‐
ample, we might want to use a different reader, such as reading from people’s Twitter
profiles, or we might want to store our address book in something other than a text file,
such as a database.

In order to give ourselves the flexibility to change these components within our system,
we need to ensure that the implementation of our accumulation module doesn’t depend
upon the specific details of either the business card reader or the address book storage.
So, we introduce an abstraction for reading information and an abstraction for writing
information. The implementation of our accumulation module depends upon these
abstractions. We can pass in the specific details of these implementations at runtime.
This is the dependency inversion principle at work.

In the context of lambda expressions, many of the higher-order functions that we’ve
encountered enable a dependency inversion. A function such as map allows us to reuse
code for the general concept of transforming a stream of values between different spe‐
cific transformations. The map function doesn’t depend upon the details of any of these
specific transformations, but upon an abstraction. In this case, the abstraction is the
functional interface Function.

A more complex example of dependency inversion is resource management. Obviously,
there are lots of resources that can be managed, such as database connections, thread
pools, files, and network connections. I’ll use files as an example because they are a
relatively simple resource, but the principle can easily be applied to more complex re‐
sources within your application.

Let’s look at some code that extracts headings from a hypothetical markup language
where each heading is designated by being suffixed with a colon (:). Our method is
going to extract the headings from a file by reading the file, looking at each of the lines
in turn, filtering out the headings, and then closing the file. We shall also wrap any
Exception related to the file I/O into a friendly domain exception called a HeadingLoo
kupException. The code looks like Example 8-42.

Example 8-42. Parsing the headings out of a file
public List<String> findHeadings(Reader input) {
    try (BufferedReader reader = new BufferedReader(input)) {
        return reader.lines()
                     .filter(line -> line.endsWith(":"))
                     .map(line -> line.substring(0, line.length() - 1))
                     .collect(toList());
    } catch (IOException e) {
        throw new HeadingLookupException(e);
    }
}
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Unfortunately, our heading-finding code is coupled with the resource-management and
file-handling code. What we really want to do is write some code that finds the headings
and delegates the details of a file to another method. We can use a Stream<String> as
the abstraction we want to depend upon rather than a file. A Stream is much safer and
less open to abuse. We also want to be able to a pass in a function that creates our domain
exception if there’s a problem with the file. This approach, shown in Example 8-43,
allows us to segregate the domain-level error handling from the resource management–
level error handling.

Example 8-43. The domain logic with file handling split out
public List<String> findHeadings(Reader input) {
    return withLinesOf(input,
                       lines -> lines.filter(line -> line.endsWith(":"))
                                     .map(line -> line.substring(0, line.length()-1))
                                     .collect(toList()),
                       HeadingLookupException::new);
}

I expect that you’re now wondering what that withLinesOf method looks like! It’s shown
in Example 8-44.

Example 8-44. The definition of withLinesOf
private <T> T withLinesOf(Reader input,
                          Function<Stream<String>, T> handler,
                          Function<IOException, RuntimeException> error) {

    try (BufferedReader reader = new BufferedReader(input)) {
        return handler.apply(reader.lines());
    } catch (IOException e) {
        throw error.apply(e);
    }
}

withLinesOf takes in a reader that handles the underlying file I/O. This is wrapped up
in BufferedReader, which lets us read the file line by line. The handler function rep‐
resents the body of whatever code we want to use with this function. It takes the Stream
of the file’s lines as its argument. We also take another handler called error that gets
called when there’s an exception in the I/O code. This constructs whatever domain
exception we want. This exception then gets thrown in the event of a problem.

To summarize, higher-order functions provide an inversion of control, which is a form
of dependency inversion. We can easily use them with lambda expressions. The other
thing to note with the dependency inversion principle is that the abstraction that we
depend upon doesn’t have to be an interface. Here we’ve relied upon the existing
Stream as an abstraction over raw reader and file handling. This approach also fits into
the way that resource management is performed in functional languages—usually a
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higher-order function manages the resource and takes a callback function that is applied
to an open resource, which is closed afterward. In fact, if lambda expressions had been
available at the time, it’s arguable that the try-with-resources feature of Java 7 could
have been implemented with a single library function.

Further Reading
A lot of the discussion in this chapter has delved into broader design issues, looking at
the whole of your program rather than just local issues related to a single method. This
is an area that we’ve just touched the surface of due to the lambda expressions focus of
this book. There are a number of other books covering related topic areas that are worth
investigating if you’re interested in more detail.

The SOLID principles have long been emphasized by “Uncle” Bob Martin, who has both
written and presented extensively on the topic. If you want to osmose some of his
knowledge for free, a series of articles on each of the principles is available on the Object
Mentor website, under the topic “Design Patterns.”

If you are interested in a more comprehensive understanding of domain-specific lan‐
guages, both internal and external, Domain-Specific Languages by Martin Fowler with
Rebecca Parsons (Addison-Wesley) is recommended reading.

Key Points
• Lambda expressions can be used to make many existing design patterns simpler

and more readable, especially the command pattern.
• There is more flexibility to the kind of domain-specific languages you can create

with Java 8.
• New opportunities open up for applying the SOLID principles in Java 8.

Further Reading | 137

http://www.objectmentor.com/resources/publishedArticles.html
http://www.objectmentor.com/resources/publishedArticles.html




CHAPTER 9

Lambda-Enabled Concurrency

I’ve already talked a bit about data parallelism, but in this chapter I’m going to cover
how we can use lambda expressions to write concurrent applications that efficiently
perform message passing and nonblocking I/O.

Some of the examples in this chapter are written using the Vert.x and RxJava frame‐
works. The principles are more general, though, and can be used in other frameworks
and in your own code without you necessarily needing frameworks at all.

Why Use Nonblocking I/O?
When I introduced parallelism, I talked a lot about trying to use a lot of cores efficiently.
That approach is really helpful, but when trying to process a lot of data, it’s not the only
threading model that you might want to use.

Let’s suppose you’re trying to write a chat service that handles a very high number of
users. Every time a user connects to your service, a TCP connection to your server is
opened. If you follow a traditional threading model, every time you want to write some
data to your user, you would call a method that sends the user the data. This method
call would block the thread that you’re running on.

This approach to I/O, called blocking I/O, is fairly common and fairly easy to understand
because the interaction with users follows a normal sequential flow of control through
your program. The downside is that when you start looking at scaling your system to a
significant number of users, you need to start a significant number of threads on your
server in order to service them. That approach just doesn’t scale well.

Nonblocking I/O—or, as it’s sometimes called, asynchronous I/O—can be used to process
many concurrent network connections without having an individual thread service each
connection. Unlike with blocking I/O, the methods to read and write data to your chat
clients return immediately. The actual I/O processing is happening in a separate thread,
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and you are free to perform some useful work in the meantime. How you choose to use
these saved CPU cycles may range from reading more data from another client to ticking
over your Minecraft server!

I’ve so far avoided presenting any code to show the ideas because the concept of blocking
versus nonblocking I/O can be implemented in a number of different ways in terms of
the API. The Java standard library presents a nonblocking I/O API in the form of NIO
(New I/O). The original version of NIO uses the concept of a Selector, which lets a
thread manage multiple channels of communication, such as the network socket that’s
used to write to your chat client.

This approach never proved particularly popular with Java developers and resulted in
code that was fairly hard to understand and debug. With the introduction of lambda
expressions, it becomes idiomatic to design and develop APIs that don’t have these
deficiencies.

Callbacks
To demonstrate the principles of this approach, we’re going to implement a dead simple
chat application—no bells and no whistles. In this application, users can send and re‐
ceive messages to and from each other. They are required to set names for themselves
when they first connect.

We’re going to implement the chat application using the Vert.x framework and introduce
the necessary techniques as we go along. Let’s start by writing some code that receives
TCP connections, as demonstrated in Example 9-1.

Example 9-1. Receiving TCP connections
public class ChatVerticle extends Verticle {

    public void start() {
        vertx.createNetServer()
             .connectHandler(socket -> {
                 container.logger().info("socket connected");
                 socket.dataHandler(new User(socket, this));
             }).listen(10_000);

        container.logger().info("ChatVerticle started");
    }

}

You can think of a Verticle as being a bit like a Servlet—it’s the atomic unit of de‐
ployment in the Vert.x framework. The entry point to the code is the start method,
which is a bit like a main method in a regular Java program. In our chat app, we just use
it to set up a server that accepts TCP connections.
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We pass in a lambda expression to the connectHandler method, which gets called
whenever someone connects to our chat app. This is a callback and works in a similar
way to the Swing callbacks I talked about way back in Chapter 1. The benefit of this
approach is that the application doesn’t control the threading model—the Vert.x frame‐
work can deal with managing threads and all the associated complexity, and all we need
to do is think in terms of events and callbacks.

Our application registers another callback using the dataHandler method. This is a
callback that gets called whenever some data is read from the socket. In this case, we
want to provide more complex functionality, so instead of passing in a lambda expres‐
sion we use a regular class, User, and let it implement the necessary functional interface.
The callback into our User class is listed in Example 9-2.

Example 9-2. Handling user connections
public class User implements Handler<Buffer> {

    private static final Pattern newline = Pattern.compile("\\n");

    private final NetSocket socket;
    private final Set<String> names;
    private final EventBus eventBus;

    private Optional<String> name;

    public User(NetSocket socket, Verticle verticle) {
        Vertx vertx = verticle.getVertx();

        this.socket = socket;
        names = vertx.sharedData().getSet("names");
        eventBus = vertx.eventBus();
        name = Optional.empty();
    }

    @Override
    public void handle(Buffer buffer) {
        newline.splitAsStream(buffer.toString())
               .forEach(line -> {
                   if (!name.isPresent())
                       setName(line);
                   else
                       handleMessage(line);
               });
    }

    // Class continues...

The buffer contains the data that has been written down the network connection to
us. We’re using a newline-separated, text-based protocol, so we want to convert this to
a String and then split it based upon those newlines.
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We have a regular expression to match newline characters, which is a
java.util.regex.Pattern instance called newline. Conveniently, Java’s Pattern class
has had a splitAsStream method added in Java 8 that lets us split a String using the
regular expression and have a stream of values, consisting of the values between each
split.

The first thing our users do when they connect to our chat server is set their names. If
we don’t know the user’s name, then we delegate to the logic for setting the name; other‐
wise, we handle our message like a normal chat message.

We also need a way of receiving messages from other users and passing them on to our
chat client so the recipients can read them. In order to implement this, at the same time
that we set the name of the current user we also register another callback that writes
these messages (Example 9-3).

Example 9-3. Registering for chat messages
eventBus.registerHandler(name, (Message<String> msg) -> {
    sendClient(msg.body());
});

This code is actually taking advantage of Vert.x’s event bus, which allows us to send
messages between verticles in a nonblocking fashion (see Figure 9-1). The register
Handler method allows us to associate a handler with a certain address, so when a
message is sent to that address the handler gets called with the message as its argument.
Here we use the username as the address.

Figure 9-1. Event bus sending

By registering handlers at addresses and sending messages to them, it’s possible to build
up very sophisticated and/or decoupled sets of services that react in an entirely non‐
blocking fashion. Note that within our design, we share no state.

Vert.x’s event bus lets us send a variety of types of message over it, but all of them will
be wrapped in a Message object. Point-to-point messaging is available through the
Message objects themselves; they may hold a reply handler for the sender of the Mes
sage object. Because in this case we want the actual body of the message—that is, the
text itself—we just called the body method. We’ll send this text message to the receiving
user’s chat client, implemented by writing the message down the TCP connection.
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When our application wants to send a message from one user to another, it sends that
message to the address that represents the other user (Example 9-4). Again, this is that
user’s username.

Example 9-4. Sending chat messages
eventBus.send(user, name.get() + '>' + message);

Let’s extend this very basic chat server to broadcast messages and followers. There are
two new commands that we need to implement in order for this to work:

• An exclamation mark representing the broadcast command, which sends all of its
following text to any following users. For example, if bob typed “!hello followers”,
then all of his followers would receive “bob>hello followers”.

• The follow command, which follows a specified user suffixed to the command, as
in “follow bob”.

Once we’ve parsed out the commands, we’re going to implement the broadcastMes
sage and followUser methods, which correspond to each of these commands.

There’s a different pattern of communication here as well. Instead of just having to send
messages to a single user, you now have the ability to publish to multiple users. Fortu‐
nately, Vert.x’s event bus also lets us publish a message to multiple handlers (see
Figure 9-2). This lets us use a similar overarching approach.

Figure 9-2. Event bus publishing

The only code difference is that we use the publish method on the event bus rather
than the send method. To avoid overlapping with the existing addresses whenever a
user uses the ! command, it gets published to the user’s name suffixed with .follow
ers. So, for example, when bob publishes a message it goes to any handler registered on
bob.followers (Example 9-5).

Example 9-5. Broadcasting messages to followers
private void broadcastMessage(String message) {
    String name = this.name.get();
    eventBus.publish(name + ".followers", name + '>' + message);
}
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When it comes to the handler, we want to do the same operation that we performed
earlier when registering sends: pass that message along to the client (Example 9-6).

Example 9-6. Receiving the broadcast messages
private void followUser(String user) {
    eventBus.registerHandler(user + ".followers", (Message<String> message) -> {
        sendClient(message.body());
    });
}

If you send to an address and there are multiple handlers listening on
that address, a round-robin selector is used to decide which handler
receives your message. This means that you need to be a bit careful
when registering addresses.

Message Passing Architectures
What I’ve been describing here is a message passing–based architecture that I’ve im‐
plemented using a simple chat client. The details of the chat client are much less im‐
portant than the overall pattern, so let’s talk about message passing itself.

The first thing to note is that this is a no-shared-state design. All communication be‐
tween our verticles is done by sending messages over our event bus. This means that
we don’t need to protect any shared state, so we don’t need any kind of locks or use of
the synchronized keyword in our code base at all. Concurrency is much simpler.

In order to ensure that we aren’t sharing any state between verticles, we’ve actually
imposed a few constraints on the types of messages being sent over the event bus. The
example messages that we passed over the event bus in this case were plain old Java
strings. These are immutable by design, which means that we can safely send them
between verticles. Because the receiving handler can’t modify the state of the String, it
can’t interfere with the behavior of the sender.

Vert.x doesn’t restrict us to sending strings as messages, though; we can use more com‐
plex JSON objects or even build our own binary messages using the Buffer class. These
aren’t immutable messages, which means that if we just naively passed them around,
our message senders and message handlers could share state by writing or reading
through these messages.

The Vert.x framework avoids this problem by copying any mutable message the moment
that you send it. That way the receiver gets the correct value, but you still aren’t sharing
state. Regardless of whether you’re using the Vert.x framework, it’s really important that
you don’t let your messages be an accidental source of shared state. Completely im‐
mutable messages are the simplest way of doing this, but copying the message also solves
the problem.
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The verticle model of development also lets us implement a concurrent system that is
easy to test. This is because each verticle can be tested in isolation by sending messages
in and expecting results to be returned. We can then compose a complex system out of
individually tested components without incurring as many problems in integrating the
components as we would if they were communicating via shared mutable state. Of
course, end-to-end tests are still useful for making sure that your system does what your
users expect of it!

Message passing–based systems also make it easier to isolate failure scenarios and write
reliable code. If there is an error within a message handler, we have the choice of re‐
starting its local verticle without having to restart the entire JVM.

In Chapter 6, we looked at how you can use lambda expressions in conjunction with
the streams library in order to build data parallel code. That lets us use parallelism in
order to process large amounts of data faster. Message passing and reactive program‐
ming, which we’ll look at later in this chapter, are at the other end of the spectrum. We’re
looking at concurrency situations in which we want to have many more units of I/O
work, such as connected chat clients, than we have threads running in parallel. In both
cases, the solution is the same: use lambda expressions to represent the behavior and
build APIs that manage the concurrency for you. Smarter libraries mean simpler ap‐
plication code.

The Pyramid of Doom
You’ve seen how we can use callbacks and events to produce nonblocking concurrent
code, but I haven’t mentioned the elephant in the room. If you write code with lots of
callbacks, it becomes very hard to read, even with lambda expressions. Let’s take a look
at a more concrete example in order to understand this problem better.

While developing the chat server I wrote a series of tests that described the behavior of
the verticle from the point of view of the client. The code for this is listed in the messa
geFriend test in Example 9-7.

Example 9-7. A test of whether two friends in our chat server can talk to each other
@Test
public void messageFriend() {
    withModule(() -> {
        withConnection(richard -> {
            richard.dataHandler(data -> {
                assertEquals("bob>oh its you!", data.toString());
                moduleTestComplete();
            });

            richard.write("richard\n");
            withConnection(bob -> {
                bob.dataHandler(data -> {
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                    assertEquals("richard>hai", data.toString());
                    bob.write("richard<oh its you!");
                });
                bob.write("bob\n");
                vertx.setTimer(6, id -> richard.write("bob<hai"));
            });
        });
    });
}

I connect two clients, richard and bob, then richard says “hai” to bob and bob replies
“oh it’s you!” I’ve refactored out common code to make a connection, but even then
you’ll notice that the nested callbacks are beginning to turn into a pyramid of doom.
They are stretching rightward across the screen, a bit like a pyramid sitting on its side
(don’t look at me—I didn’t come up with the name!). This is a pretty well known anti‐
pattern, which makes it hard for a user to read and understand the code. It also stretches
the logic of the code between multiple methods.

In the last chapter, I discussed how we could use lambda expressions to manage re‐
sources by passing a lambda expression into a with method. You’ll notice in this test
that I’ve used this pattern in couple of places. We’ve got a withModule method that
deploys the current Vert.x module, runs some code, and shuts the module down. We’ve
also got a withConnection method that connects to the ChatVerticle and then closes
down the connection when it’s done with it.

The benefit of using these with method calls here rather than using try-with-
resources is that they fit into the nonblocking threading model that we’re using in this
chapter. We can try and refactor this code a bit in order to make it easier to understand,
as in Example 9-8.

Example 9-8. A test of whether two friends in our chat server can talk to each other,
split into different methods
@Test
public void canMessageFriend() {
    withModule(this::messageFriendWithModule);
}

private void messageFriendWithModule() {
    withConnection(richard -> {
        checkBobReplies(richard);
        richard.write("richard\n");
        messageBob(richard);
    });
}

private void messageBob(NetSocket richard) {
    withConnection(messageBobWithConnection(richard));
}
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private Handler<NetSocket> messageBobWithConnection(NetSocket richard) {
    return bob -> {
        checkRichardMessagedYou(bob);
        bob.write("bob\n");
        vertx.setTimer(6, id -> richard.write("bob<hai"));
    };
}

private void checkRichardMessagedYou(NetSocket bob) {
    bob.dataHandler(data -> {
        assertEquals("richard>hai", data.toString());
        bob.write("richard<oh its you!");
    });
}

private void checkBobReplies(NetSocket richard) {
    richard.dataHandler(data -> {
        assertEquals("bob>oh its you!", data.toString());
        moduleTestComplete();
    });
}

The aggressive refactoring in Example 9-8 has solved the pyramid of doom problem,
but at the expense of splitting up the logic of the single test into several methods. Instead
of one method having a single responsibility, we have several sharing a responsibility
between them! Our code is still hard to read, just for a different reason.

The more operations you want to chain or compose, the worse this problem gets. We
need a better solution.

Futures
Another option when trying to build up complex sequences of concurrent operations
is to use what’s known as a Future. A Future is an IOU for a value. Instead of a method
returning a value, it returns the Future. The Future doesn’t have the value when it’s first
created, but it can be exchanged for the value later on, like an IOU.

You extract the value of the Future by calling its get method, which blocks until the
value is ready. Unfortunately, Futures end up with composability issues, just like call‐
backs. We’ll take a quick look at the issues that you can encounter.

The scenario we’ll be considering is looking up information about an Album from some
external web services. We need to find the list of tracks associated with a given Album
and also a list of artists. We also need to ensure that we have sufficient credentials to
access each of the services. So we need to log in, or at least make sure that we’re already
logged in.
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Example 9-9 is an implementation of this problem using the existing Future API. We
start out at  by logging into the track and artist services. Each of these login actions
returns a Future<Credentials> object with the login information. The Future interface
is generic, so Future<Credentials> can be read as an IOU for a Credentials object.

Example 9-9. Downloading album information from some external web services using
Futures
@Override
public Album lookupByName(String albumName) {
    Future<Credentials> trackLogin = loginTo("track");  
    Future<Credentials> artistLogin = loginTo("artist");

    try {
        Future<List<Track>> tracks = lookupTracks(albumName, trackLogin.get());  
        Future<List<Artist>> artists = lookupArtists(albumName, artistLogin.get());

        return new Album(albumName, tracks.get(), artists.get());  
    } catch (InterruptedException | ExecutionException e) {
        throw new AlbumLookupException(e.getCause());  
    }
}

At  we make our calls to look up the tracks and artists given the login credentials and
call get on both of these login credentials in order to get them out of the Futures. At 
we build up our new Album to return, again calling get in order to block on the existing
Futures. If there’s an exception, it gets thrown, so we have to propagate it through a
domain exception at .

As you’ll have noticed, if you want to pass the result of one Future into the beginning
of another piece of work, you end up blocking the thread of execution. This can be
become a performance limitation because instead of work being executed in parallel it
is (accidentally) run in serial.

What this means in the case of Example 9-9 is that we can’t start either of the calls to
the lookup services until we’ve logged into both of them. This is pretty unnecessary:
lookupTracks only needs its login credentials, and lookupArtists should only need to
wait for its login credentials. The breakdown of which actions need to wait for others
to complete is shown in Figure 9-3.

We could take the blocking get calls and drag them down into the execution body of
lookupTracks and lookupArtists. This would solve the problem, but would also result
in uglier code and an inability to reuse credentials between multiple calls.
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Figure 9-3. Both lookup actions don’t need to wait for both login actions

What we really want here is a way of acting on the result of a Future, without having to
make a blocking get call. We want to combine a Future with a callback.

Completable Futures
The solution to these issues arrives in the form of the CompletableFuture. This com‐
bines the IOU idea of a Future with using callbacks to handle event-driven work. The
key point about the CompletableFuture is that you can compose different instances in
a way that doesn’t result in the pyramid of doom.

You might have encountered the concept behind the CompletableFu
ture before; various other languages call them a deferred object or a
promise. In the Google Guava Library and the Spring Framework
these are referred to as ListenableFutures.

I’ll illustrate some usage scenarios by rewriting Example 9-9 to use CompletableFu
ture, rather than Future, as in Example 9-10.

Example 9-10. Downloading album information from some external web services using
CompletableFutures
public Album lookupByName(String albumName) {
    CompletableFuture<List<Artist>> artistLookup
        = loginTo("artist")
         .thenCompose(artistLogin -> lookupArtists(albumName, artistLogin));   

    return loginTo("track")
          .thenCompose(trackLogin -> lookupTracks(albumName, trackLogin))  
          .thenCombine(artistLookup, (tracks, artists)
              -> new Album(albumName, tracks, artists))  
          .join();  
}
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In Example 9-10 loginTo, lookupArtists, and lookupTracks all return a Completa
bleFuture instead of a Future. The key “trick” to the CompletableFuture API is to
register lambda expressions and chain higher-order functions. The methods are dif‐
ferent, but the concept is incredibly similar to the Streams API design.

At  we use the thenCompose method to transform our Credentials into a Completa
bleFuture that contains the artists. This is a bit like taking an IOU for money from a
friend and spending the money on Amazon when you get it. You don’t immediately get
a new book—you just get an email from Amazon saying that your book is on its way: a
different form of IOU.

At  we again use thenCompose and the Credentials from our Track API login in order
to generate a CompletableFuture of tracks. We introduce a new method, thenCom
bine, at . This takes the result from a CompletableFuture and combines it with an‐
other CompletableFuture. The combining operation is provided by the end user as a
lambda expression. We want to take our tracks and artists and build up an Album object,
so that’s what we do.

At this point, it’s worth reminding yourself that just like with the Streams API, we’re not
actually doing things; we’re building up a recipe that says how to do things. Our method
can’t guarantee that the CompletableFuture has completed until one of the final meth‐
ods is called. Because CompletableFuture implements Future, we could just call the
get method again. CompletableFuture contains the join method, which is called at 
and does the same job. It doesn’t have a load of the nasty checked exceptions that hin‐
dered our use of get.

You’ve probably got the basic idea of how to use CompletableFuture, but creating them
is another matter. There are two different aspects of creating a CompletableFuture:
creating the object itself and actually completing it by giving it the value that it owes its
client code.

As Example 9-11 shows, it’s pretty easy to create a CompletableFuture object. You just
call its constructor! This object can now be handed out to client code for chaining
operations. We also keep a reference to this object in order to process the work on
another thread.

Example 9-11. Completing a future by providing a value
CompletableFuture<Artist> createFuture(String id) {
    CompletableFuture<Artist> future = new CompletableFuture<>();
    startJob(future);
    return future;
}

Once we’ve performed the work that needs to be done on whatever thread we’re using,
we need to tell the CompletableFuture what value it represents. Remember that this
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work can by done through a number of different threading models. For example, we
can submit a task to an ExecutorService, use an event loop-based system such as Vert.x,
or just spin up a Thread and do work on it. As shown in Example 9-12, in order to tell
the CompletableFuture that it’s ready, you call the complete method. It’s time to pay
back the IOU.

Example 9-12. Completing a future by providing a value
future.complete(artist);

Figure 9-4. A completable future is an IOU that can be processed by handlers

Of course, a very common usage of CompletableFuture is to asynchronously run a
block of code. This code completes and returns a value. In order to avoid lots of people
having to implement the same code over and over again, there is a useful factory method
for creating a CompletableFuture, shown in Example 9-13, called supplyAsync.

Example 9-13. Example code for asynchronously creating a CompletableFuture
CompletableFuture<Track> lookupTrack(String id) {
    return CompletableFuture.supplyAsync(() -> {
        // Some expensive work is done here 
        // ...
        return track;  
    }, service);  
}

The supplyAsync method takes a Supplier that gets executed. The key point, shown at
, is that this Supplier can do some time-consuming work without blocking the current

thread—thus the Async in the method name. The value returned at  is used to complete
the CompletableFuture. At  we provide an Executor, called service, that tells the
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CompletableFuture where to perform the work. If no Executor is provided, it just uses
the same fork/join thread pool that parallel streams execute on.

Of course, not every IOU has a happy ending. Sometimes we encounter exceptional
circumstances and can’t pay our debts. As Example 9-14 demonstrates, the Completa
bleFuture API accounts for these situations by letting you completeExceptionally.
This can be called as an alternative to complete. You shouldn’t call both complete and
completeExceptionally on a CompletableFuture, though.

Example 9-14. Completing a future if there’s an error
future.completeExceptionally(new AlbumLookupException("Unable to find " + name));

A complete investigation of the CompletableFuture API is rather beyond the scope of
this chapter, but in many ways it is a hidden goodie bag. There are quite a few useful
methods in the API for composing and combining different instances of Completable
Future in pretty much any way imaginable. Besides, by now you should be familiar with
the fluent style of chaining sequences of higher-order functions to tell the computer
what to do.

Let’s take a brief look at a few of those use cases:

• If you want to end your chain with a block of code that returns nothing, such as a
Consumer or Runnable, then take a look at thenAccept and thenRun.

• Transforming the value of the CompletableFuture, a bit like using the map method
on Stream, can be achieved using thenApply.

• If you want to convert situations in which your CompletableFuture has completed
with an exception, the exceptionally method allows you to recover by registering
a function to make an alternative value.

• If you need to do a map that takes account of both the exceptional case and regular
use cases, use handle.

• When trying to figure out what is happening with your CompletableFuture, you
can use the isDone and isCompletedExceptionally methods.

CompletableFuture is really useful for building up concurrent work, but it’s not the
only game in town. We’re now going to look at a related concept that offers a bit more
flexibility in exchange for more complex code.

Reactive Programming
The concept behind a CompletableFuture can be generalized from single values to
complete streams of data using reactive programming. Reactive programming is actually
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a form of declarative programming that lets us program in terms of changes and data
flows that get automatically propagated.

You can think of a spreadsheet as a commonly used example of reactive programming.
If you enter =B1+5 in cell C1, it tells the spreadsheet to add 5 to the contents of cell B1
and put the result in C1. In addition, the spreadsheet reacts to any future changes in B1
and updates the value in C1.

The RxJava library is a port of these reactive ideas onto the JVM. We won’t be going into
the library in huge amounts of depth here, just covering the key concepts.

RxJava introduces a class called Observable that represents a sequence of events that
you can react to. It’s an IOU for a sequence. There is a strong connection between an
Observable and the Stream interface that we encountered in Chapter 3.

In both cases we build up recipes for performing work by chaining higher-order func‐
tions and use lambda expressions in order to associate behavior with these general
operations. In fact, many of the operations defined on an Observable are the same as
on a Stream: map, filter, reduce.

The big difference between the approaches is the use case. Streams are designed to build
up computational workflows over in-memory collections. RxJava, on the other hand,
is designed to compose and sequence asynchronous and event-based systems. Instead
of pulling data out, it gets pushed in. Another way of thinking about RxJava is that it is
to a sequence of values what a CompletableFuture is to a single value.

Our concrete example this time around is searching for an artist and is shown in
Example 9-15. The search method filters the results by name and nationality. It keeps
a local cache of artist names but must look up other artist information, such as nation‐
ality, from external services.

Example 9-15. Searching for an artist by name and nationality
public Observable<Artist> search(String searchedName,
                                 String searchedNationality,
                                 int maxResults) {

    return getSavedArtists()   
          .filter(name -> name.contains(searchedName))  
          .flatMap(this::lookupArtist)  
          .filter(artist -> artist.getNationality()  
                                  .contains(searchedNationality))
          .take(maxResults);  
}

At  we get an Observable of the saved artist names. The higher-order functions on
the Observable class are similar to those on the Stream interface, so at  and  we’re
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able to filter by artist name and nationality, in a similar manner as if we were using a
Stream.

At  we replace each name with its Artist object. If this were as simple as calling its
constructor, we would obviously use the map operation. But in this case we need to
compose a sequence of calls to external web services, each of which may be done in its
own thread or on a thread pool. Consequently, we need to replace each name with an
Observable representing one or more artists. So we use the flatMap operation.

We also need to limit ourselves to maxResults number of results in our search. To
implement this at , we call the take method on Observable.

As you can see, the API is quite stream-like in usage. The big difference is that while a
Stream is designed to compute final results, the RxJava API acts more like Completa
bleFuture in its threading model.

In CompletableFuture we had to pay the IOU by calling complete with a value. Because
an Observable represents a stream of events, we need the ability to push multiple values;
Example 9-16 shows how to do this.

Example 9-16. Pushing values into an Observable and completing it
observer.onNext("a");
observer.onNext("b");
observer.onNext("c");
observer.onCompleted();

We call onNext repeatedly, once for each element in the Observable. We can do this in
a loop and on whatever thread of execution we want to produce the values from. Once
we have finished with whatever work is needed to generate the events, we call onCom
pleted to signal the end of the Observable. As well as the full-blown streaming ap‐
proach, there are also several static convenience factory methods for creating Observa
ble instances from futures, iterables, and arrays.

In a similar manner to CompletableFuture, the Observable API also allows for fin‐
ishing with an exceptional event. We can use the onError method, shown in
Example 9-17, in order to signal an error. The functionality here is a little different from
CompletableFuture—you can still get all the events up until an exception occurs, but
in both cases you either end normally or end exceptionally.

Example 9-17. Notifying your Observable that an error has occurred
observer.onError(new Exception());

As with CompletableFuture, I’ve only given a flavor of how and where to use the
Observable API here. If you want more details, read the project’s comprehensive doc‐
umentation. RxJava is also beginning to be integrated into the existing ecosystem of Java
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libraries. The enterprise integration framework Apache Camel, for example, has added
a module called Camel RX that gives the ability to use RxJava with its framework. The
Vert.x project has also started a project to Rx-ify its API.

When and Where
Throughout this chapter, I’ve talked about how to use nonblocking and event-based
systems. Is that to say that everyone should just go out tomorrow and throw away their
existing Java EE or Spring enterprise web applications? The answer is most definitely
no.

Even accounting for CompletableFuture and RxJava being relatively new, there is still
an additional level of complexity when using these idioms. They’re simpler than using
explicit futures and callbacks everywhere, but for many problems the traditional block‐
ing web application development is just fine. If it ain’t broke, don’t fix it.

Of course, that’s not to say that reading this chapter was a waste of your afternoon!
Event-driven, reactive applications are growing in popularity and are frequently a great
way to model the problems in your domain. The Reactive Manifesto advocates building
more applications in this style, and if it’s right for you, then you should. There are two
scenarios in particular in which you might want to think in terms of reacting to events
rather than blocking.

The first is when your business domain is phrased in terms of events. A classic example
here is Twitter, a service for subscribing to streams of text messages. Your users are
sending messages between one another, so by making your application event-driven,
you are accurately modeling the business domain. Another example might be an ap‐
plication that tries to plot the price of shares. Each new price update can be modeled as
an event.

The second obvious use case is a situation where your application needs to perform
many I/O operations simultaneously. In these situations, performing blocking I/O re‐
quires too many threads to be spawned simultaneously. This results in too many locks
in contention and too much context switching. If you want to deal with thousands of
concurrent connections or more, it’s usually better to go nonblocking.

Key Points
• Event-driven architectures are easy to implement using lambda-based callbacks.
• A CompletableFuture represents an IOU for a value. They can be easily composed

and combined using lambdas.
• An Observable extends the idea of a CompletableFuture to streams of data.
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Exercises
There’s really only one exercise for this chapter, and it requires refactoring some code
to use a CompletableFuture. We’ll start out with the BlockingArtistAnalyzer class
shown in Example 9-18. This class takes the names of two artists, looks up the Artist
objects from the names, and returns true if the first artist has more members and false
otherwise. It is injected with an artistLookupService that may take some time to look
up the Artist in question. Because BlockingArtistAnalyzer blocks on this service
twice sequentially, the analyzer can be slow; the goal of our exercise is to speed it up.

Example 9-18. The BlockingArtistAnalyzer tells its clients which Artist has more mem‐
bers
public class BlockingArtistAnalyzer {

    private final Function<String, Artist> artistLookupService;

    public BlockingArtistAnalyzer(Function<String, Artist> artistLookupService) {
        this.artistLookupService = artistLookupService;
    }

    public boolean isLargerGroup(String artistName, String otherArtistName) {
        return getNumberOfMembers(artistName) > getNumberOfMembers(otherArtistName);
    }

    private long getNumberOfMembers(String artistName) {
        return artistLookupService.apply(artistName)
                                  .getMembers()
                                  .count();
    }

}

The first part of this exercise is to refactor the blocking return code to use a callback
interface. In this case, we’ll be using a Consumer<Boolean>. Remember that Consumer
is a functional interface that ships with the JVM that accepts a value and returns void.
Your mission, should you choose to accept it, is to alter BlockingArtistAnalyzer so
that it implements ArtistAnalyzer (Example 9-19).

Example 9-19. The ArtistAnalyzer that you need to make BlockingArtistAnalyzer im‐
plement
public interface ArtistAnalyzer {

    public void isLargerGroup(String artistName,
                              String otherArtistName,
                              Consumer<Boolean> handler);

}
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Now that we have an API that fits into the callback model, we can remove the need for
both of the blocking lookups to happen at the same time. You should refactor the
isLargerGroup method so that they can operate concurrently using the Completable
Future class.
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CHAPTER 10

Moving Forward

In many ways, Java as a language has stood the test of time well. It’s still an incredibly
popular platform and a good choice for developing enterprise business software. A vast
array of open source libraries and frameworks have been developed, solving every
problem from how to write a modular and complex web application (Spring) right down
to getting basic date and time arithmetic right (Jodatime). The tooling in space from
IDEs such as Eclipse and Intellij right through to build systems like gradle and maven
is unrivaled.

Unfortunately, over the years Java has acquired a bit of a reputation as a staid develop‐
ment choice that has failed to evolve with the times, in part because it has been popular
for a long period of time; familiarity breeds contempt. And of course, there have been
genuine issues around the evolution of Java. The decision to maintain backward com‐
patibility, despite its benefits, has complicated this.

Fortunately, the arrival of Java 8 signals not just an incremental improvement in the
language but a step change in its development. Unlike Java 6 and 7, this release doesn’t
equate to a few minor library improvements. I fully expect and hope that future releases
of Java will continue the rapid pace of improvement seen with Java 8. That’s not just
because I’ve enjoyed writing a book on the topic! I really do think that there is a long
way to go in terms of improving the fundamental task of programming: making code
easier to read, clarifying its intent, making it easier to write high-performance code. My
only regret is that there isn’t enough space in this concluding chapter to detail the full
potential of future releases.

We’re nearing the end of this book, but I hope we’re not nearing the end of your time
with Java 8. I’ve covered a bunch of different ways you can use lambda expressions:
better collections library code, data parallelism, simpler and cleaner code, and finally
concurrency. I’ve explained the why, what, and how, but it is still up to you to put
everything into practice. In this spirit, here is a series of open exercises to which there
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are no right and wrong answers. Undertaking them can help guide your ongoing learn‐
ing experience:

• Explain what lambda expressions are and why they should be of interest to another
programmer. This could be a friend or a coworker.

• Start a trial deployment of your work product on Java 8. If you’ve already got your
unit tests running under the Jenkins CI system, then it’s very easy to run the same
build under multiple Java versions.

• Start refactoring a bit of legacy code in a real product to use streams and collectors.
This could be an open source project you’re interested in or maybe even your work
product if the trial deployment went well. If you aren’t ready to move wholesale,
then perhaps prototyping things on a different branch is a good way to start.

• Do you have any concurrency problems or large-scale data-processing code? If so,
try to prototype a refactor in order to use either streams for data parallelism or
some of the new concurrency features in RxJava or CompletableFuture.

• Have a look at the design and architecture of a code base you know really well:
— Could it be implemented better at a macro level?
— Can you simplify the design?
— Can you reduce the amount of code needed to implement a feature?
— Can the code be made easier to read?
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We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.
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