

Flutter for Beginners

An introductory guide to building cross-platform mobile
applications with Flutter and Dart 2

Alessandro Biessek

BIRMINGHAM - MUMBAI

Flutter for Beginners
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amarabha Banerjee
Acquisition Editor: Larissa Pinto
Content Development Editor: Akhil Nair
Technical Editor: Sachin Sunilkumar
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Jyoti Chauhan

First published: September 2019

Production reference: 2260220

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-608-2

www.packt.com

http://www.packt.com

To my mother, Antonina, and my father, Euclides, for their sacrifices and for exemplifying the
power of determination

– Alessandro Biessek

mapt.io

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Alessandro Biessek was born in the beautiful city of Chapecó, in the state of Santa
Catarina, southern Brazil, in 1993. He is currently working on mobile application
development for Android and iOS in his hometown. He has more than 7 years of
experience in development, from desktop development with Delphi to backend with PHP,
Node.js, Golang, mobile development with Apache Flex, and Java/Kotlin. Most of his time
is devoted to the development of Android apps. Always interested in new technologies, he
has been following the Flutter framework for a long time, shown through its growth and
adoption in recent months.

Firstly, thanks to the Flutter team for their incredible tool that is helping the developer
community to help other people.
I am grateful to all of those with whom I have had the pleasure to work with during this
project, all the reviewers, and the entire Packt team who helped me in this work.
I’d like to thank my friends, coworkers and family, especially my mother Antonina, my
father Euclides, my sister Hellen and my brother Alan, for being supportive and for
holding the fort while I worked hard on the book. Also, thanks to my graduation teachers,
who encouraged me to face challenges like this book in a more natural and brave way.
Finally, I'd like to thank you, the reader. Your support of books such as this, through your
purchase, makes it possible for everyone who wants to share their experiences to continue.

About the reviewer
Ugurcan Yildirim is an enthusiast of Android and Flutter mobile application development
frameworks. He graduated as valedictorian with a BSc degree in Computer Science from
Bilkent University, Ankara. Since 2015, he has been working as an Android Engineer at
Accenture Industry X.0, Istanbul. With Flutter's promising uptrend that started in 2018, he
began to concern himself with the peculiarities of Flutter and experiment with them. Since
then, he has contributed to the open source community of Flutter by writing articles on
Medium (@ugurcany) and giving presentations. His latest contribution is to review this
book, which he believes should be consulted and referenced by Flutter developers of any
level.

I would like to thank Packt for giving me the opportunity to contribute to the ever-
expanding Flutter universe by reviewing one of the first and most comprehensive Flutter
books published. I would also like to thank my parents and my wife, Karsu, for their
support and patience over the course of reviewing this book.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Introduction to Dart
Chapter 1: An Introduction to Dart 7

Getting started with Dart 7
The evolution of Dart 8
How Dart works 9

Dart VM and JavaScript compilation 9
Hands-on Dart 10

DartPad 10
Dart development tools 11
Hello world 12

Understanding why Flutter uses Dart 13
Adding productivity 14

Compiling Flutter apps and hot reload 14
Easy learning 15
Maturity 17

Introducing the structure of the Dart language 19
Dart operators 19

Arithmetic operators 20
Increment and decrement operators 21
Equality and relational operators 21
Type checking and casting 21
Logical operators 22
Bits manipulation 22
Null-safe and null-aware operators 23

Dart types and variables 23
final and const 23
Built-in types 24

Numbers 24
BigInt 25
Booleans 25
Collections 25
Strings 26
String interpolation 26
Literals 27

Type inference – bringing dynamism to the show 27
Control flows and looping 29
Functions 29

Function parameters 30
Data structures, collections, and generics 33

Generics 34

Table of Contents

[ii]

When and why to use generics 34
Generics and Dart literals 35

Introduction to OOP in Dart 35
Dart OOP features 36

Objects and classes 37
Encapsulation 38
Inheritance and composition 38
Abstraction 38
Polymorphism 39

Summary 39
Further reading 40

Chapter 2: Intermediate Dart Programming 41
Dart classes and constructors 42

The enum type 43
The cascade notation 44
Constructors 44

Named constructors 45
Factory constructors 46

Field accessors – getters and setters 47
Static fields and methods 48
Class inheritance 50

The toString() method 51
Interfaces, abstract classes, and mixins 51

Abstract classes 52
Interfaces 53
Mixins – adding behavior to a class 54
Callable classes, top-level functions, and variables 56

Callable classes 57
Top-level functions and variables 58

Understanding Dart libraries and packages 58
Importing and using a library 59

Importing show and hide 60
Importing prefixes to libraries 61
Importing path variants 62

Creating Dart libraries 63
Library member privacy 64
The library definition 65

A single-file library 65
Splitting libraries into multiple files 66
A multiple-file library – the export statement 69

Dart packages 72
Application packages versus library packages 72

Package structures 73
Stagehand – the Dart project generator 75
The pubspec file 77
Package dependencies – pub 79

Specifying dependencies 80

Table of Contents

[iii]

The version constraint 81
The source constraint 82

Introducing async programming with Futures and Isolates 84
Dart Futures 84
Dart Isolates 88

Introducing unit testing with Dart 89
The Dart test package 90
Writing unit tests 90

Summary 93

Chapter 3: An Introduction to Flutter 94
Comparisons with other mobile app development frameworks 95

The problems Flutter wants to solve 95
Differences between existing frameworks 96

High performance 97
Full control of the UI 97
Dart 99
Being backed by Google 100

Fuchsia OS and Flutter 100
Open source framework 101
Developer resources and tooling 101

Flutter compilation (Dart) 103
Development compilation 104
Release compilation 104
Supported platforms 104

Flutter rendering 105
Web-based technologies 106
Framework and OEM widgets 107
Flutter – rendering by itself 108

Widgets introduction 108
Composability 109
Immutability 109
Everything is a widget 109

The widget tree 110
Hello Flutter 111

pubspec file 114
Running the generated project 117

lib/main.dart file 117
Flutter run 117

Summary 120

Section 2: The Flutter User Interface - Everything is
a Widget
Chapter 4: Widgets: Building Layouts in Flutter 122

Stateful versus stateless widgets 122
Stateless widgets 123

Table of Contents

[iv]

Stateful widgets 124
Stateful and stateless widgets in code 124

Stateless widget in code 126
Stateful widgets in code 127

Inherited widgets 130
Widget key property 132

Built-in widgets 132
Basic widgets 132

The Text widget 133
The Image widget 133
Material Design and iOS Cupertino widgets 135

Buttons 136
Scaffold 136
Dialogs 137
Text fields 137
Selection widgets 138
Date and time pickers 138
Other components 138

Understanding built-in layout widgets 139
Containers 139
Styling and positioning 140
Other widgets (gestures, animations, and transformations) 140

Creating a UI with widgets (favor manager app) 141
The app screens 141

The app code 141
Favors app home screen 143

The layout code 145
The request favor screen 153

The layout code 154
Creating custom widgets 157
Summary 159

Chapter 5: Handling User Input and Gestures 160
Handling user gestures 160

Pointers 161
Gestures 162

Tap 162
Double tap 163
Press and hold 164
Drag, pan, and scale 164

Horizontal drag 164
Vertical drag 165
Pan 166
Scale 166

Gestures in material widgets 167
Input widgets 168

FormField and TextField 168
Using a controller 169
Accessing FormField state 169

Table of Contents

[v]

Form 170
Accessing Form state 171

Using a key 171
Using InheritedWidget 171

Validating Input (Forms) 173
Validating user input 173

Custom input and FormField 174
Creating custom inputs 174
Custom input widget example 175

Creating an Input widget 176
Turn the widget into a FormField widget 177

Putting it all together 179
Favors screen 179

Tap gestures on the favor tab 181
Tap gestures on FavorCards 182

Making FavorsPage a StatefulWidget 182
Refuse action handling 184
Do action handling 185

Tap on Request a favor button 186
The Requesting a favor screen 187

The close button 188
The SAVE button 188

Validating input using the Form widget 188
Summary 190

Chapter 6: Theming and Styling 191
Theme widgets 191

Theme widget 192
ThemeData 193

Brightness 194
Theming in practice 195
Platform class 197

Material Design 198
MaterialApp widget 199
Scaffold widget 201
Custom theme 203

iOS Cupertino 205
CupertinoApp 206
Cupertino in practice 206

Using custom fonts 208
Importing fonts to the Flutter project 208
Overriding the default font in the app 210

Dynamic styling with MediaQuery and LayoutBuilder 211
LayoutBuilder 211
MediaQuery 214

MediaQuery example 214
Additional responsive classes 218

Table of Contents

[vi]

Summary 218

Chapter 7: Routing: Navigating between Screens 219
Understanding the Navigator widget 219

Navigator 220
Overlay 220

Navigation stack/history 221
Route 221

RouteSettings 221
MaterialPageRoute and CupertinoPageRoute 222
Putting it all together 222
The WidgetsApp way 226

Named routes 228
Moving to named routes 229

Arguments 230
Retrieving results from Route 231

Screen transitions 232
PageRouteBuilder 233

Custom transitions in practice 233
Hero animations 235

The Hero widget 235
Implementing Hero transitions 236

Summary 244

Section 3: Developing Fully Featured Apps
Chapter 8: Firebase Plugins 246

Firebase overview 246
Setting up Firebase 247
Connecting the Flutter app to Firebase 252

Configuring an Android app 252
Configuring iOS app 255
FlutterFire 255

Adding the FlutterFire dependency to the Flutter project 255
Firebase authentication 256

Enabling Authentication services in Firebase 257
Authentication screen 259
Logging in with Firebase 260

Sending verification code 261
Verifying the SMS code 263
Updating the profile and login status 264

NoSQL database with Cloud Firestore 265
Enabling Cloud Firestore on Firebase 266
Cloud Firestore and Flutter 268
Loading favors from Firestore 269
Updating favors on Firebase 272
Saving a favor on Firebase 272

Table of Contents

[vii]

Cloud Storage with Firebase Storage 275
Introduction to Firebase Storage 275
Adding Flutter Storage dependencies 276
Uploading files to Firebase 276

Ads with Firebase AdMob 280
AdMob account 281
Creating an AdMob account 282
AdMob in Flutter 285

Side note on Android 287
Side note on iOS 287

Showing ads in Flutter 287
ML with Firebase ML Kit 290

Adding ML Kit to Flutter 290
Using the label detector in Flutter 291

Summary 294

Chapter 9: Developing Your Own Flutter Plugin 295
Creating a package/plugin project 295

Flutter packages versus Dart packages 296
Starting a Dart package project 296
Starting a Flutter plugin package 298

A plugin project structure 298
MethodChannel 300
Implementing the Android plugin 301
Implementing the iOS plugin 302
The Dart API 303
An example of plugin package 304
Using the plugin 304

Adding documentation to the package 305
Documentation files 306
Library documentation 306
Generating documentation 307

Publishing a package 308
Plugin project development recommendations 308
Summary 309

Chapter 10: Accessing Device Features from the Flutter App 310
Launching a URL from the app 310

Displaying a link 311
The flutter_linkify plugin 312

Launching a URL 314
The url_launcher plugin 314

Managing app permissions 315
Managing permissions on Flutter 316

Using the permission_handler plugin 317
Importing a contact from the phone 317

Table of Contents

[viii]

Importing a contact with contact_picker 318
Contact permission with permission_handler 320

Contact permission on Android 320
Contact permission on iOS 321
Checking and requesting permission in Flutter (permission_handler) 321

Integrating the phone's camera 322
Taking pictures with image_picker 323
Camera permission with permission_handler 323

Camera permission on Android 324
Camera permission on iOS 324
Requesting camera permission in Flutter (permission_handler) 325

Summary 326

Chapter 11: Platform Views and Map Integration 327
Displaying a map 328

Platform views 329
Enabling platform views on iOS 330

Creating a platform view widget 330
Creating an Android view 331
Creating an iOS view 333
Usage of a platform view widget 334

Getting started with the google_maps_flutter plugin 336
Displaying a map with the google_maps_flutter plugin 338

Enabling the Maps API on Google Cloud Console 338
Google Maps API integration on Android 341
Google Maps API integration on iOS 341
Displaying a map on Flutter 342

Adding markers to the map 343
The Marker class 344
Adding markers in the GoogleMap widget 345

Adding map interactions 347
Adding markers dynamically 347
GoogleMapController 348
Getting GoogleMapController 348
Animating a map camera to a location 349

Using the Google Places API 349
Enabling the Google Places API 350
Getting started with the google_maps_webservice plugin 351
Getting a place address using the google_maps_webservice plugin 351

Summary 354

Section 4: Advanced Flutter - Resources to Complex
Apps
Chapter 12: Testing, Debugging, and Deployment 356

Flutter testing – unit and widget testing 356
Widget tests 357

Table of Contents

[ix]

The flutter_test package 357
The testWidgets function 357

Widget test example 358
Debugging Flutter apps 360

Observatory 360
Additional debugging features 363
DevTools 363

Profiling Flutter apps 365
The Observatory profiler 365
Profile mode 366

Performance overlay 367
Inspecting the Flutter widget tree 368

Widget inspector 369
The Flutter inspector in DevTools 369

Preparing apps for deployment 370
Release mode 371
Releasing apps for Android 371

AndroidManifest and build.gradle 371
AndroidManifest – permissions 372
AndroidManifest – meta tags 372
AndroidManifest – application name and icon 373
build.gradle – application ID and versions 374
build.gradle – signing the app 375

Releasing apps for iOS 377
App Store Connect 377
Xcode 378

Xcode – application details and Bundle ID 378
Xcode – AdMob 378
Xcode – signing the app 378

Summary 379

Chapter 13: Improving User Experience 380
Accessibility in Flutter and adding translations to apps 380

Flutter's support for accessibility 381
Flutter internationalization 381

The intl package 382
The intl_translation package 382
The flutter_localizations package 382

Adding localizations to a Flutter app 382
Dependencies 383
The AppLocalization class 383
Generating .arb files with intl_translation 385
Using translated resources 387

Communication between native and Flutter with platform channels 389
Platform channel 390
Message codecs 391

Creating background processes 392
The Flutter compute() function 392

Table of Contents

[x]

SendPort and ReceivePort 393
IsolateNameServer 394

A compute() example 394
Full background process 395
Init the calculation 397

The background isolate 398
Adding Android-specific code to run Dart code in the background 400

The HandsOnBackgroundProcessPlugin class 400
The BackgroundProcessService class 402

The PluginRegistrantCallback property 405
Adding iOS-specific code to run Dart code in the background 406

The SwiftHandsOnBackgroundProcessPlugin class 407
Summary 412

Chapter 14: Widget Graphic Manipulations 413
Transforming widgets with the Transform class 413

The Transform widget 414
Understanding the Matrix4 class 415

Exploring the types of transformations 415
Rotate transformation 416
Scale transformation 417
Translate transformation 418
Composed transformations 420

Applying transformations to your widgets 421
Rotating widgets 421
Scaling widgets 422
Translating widgets 422
Applying multiple transformations 423

Using custom painters and canvas 424
The Canvas class 424

Canvas transformations 425
Canvas ClipRect 425
Methods 425
The Paint object 426

The CustomPaint widget 426
CustomPaint construction details 426

The CustomPainter object 428
The paint method 428
The shouldRepaint method 428

A practical example 429
Defining a widget 430
Defining CustomPainter 431

Overriding the shouldRepaint method 431
Overriding the paint method 432

The radial chart variant 435
Defining a widget 436
Defining CustomPainter 436

Table of Contents

[xi]

Summary 440

Chapter 15: Animations 441
Introducing Animations 441

The Animation<T> class 441
AnimationController 443

TickerProvider and Ticker 444
CurvedAnimation 444
Tween 445

Using animations 445
Rotate animation 446
Scale animation 450
Translate animation 452
Multiple transformations and custom Tween 453

Custom Tween 455
Using AnimatedBuilder 458

The AnimatedBuilder class 458
Revisiting our animation 459

Using AnimatedWidget 462
The AnimatedWidget class 463
Rewriting the animation with AnimatedWidget 463

Summary 464

Other Books You May Enjoy 465

Index 468

Preface
Flutter for Beginners helps you to enter the Flutter framework world and build awesome
mobile applications. I'll take you from an introduction to the Dart language to an in-depth
exploration of all the Flutter blocks needed to make a high-level app. Together, we will
build a fully featured app. With clear code examples, you will learn how to start a small
Flutter project, add some widgets, apply styles and themes, connect with remote services
such as Firebase, get user input, add some animations to improve the user experience, and
more. In addition, you will learn how to add advanced features, map integrations, work
with platform-specific code with native programming languages, and create fantastic UIs
with personalized animations. In short, this book will prepare you for the future of mobile
development with this amazing framework.

Who this book is for
This book is for developers looking to learn Google's revolutionary framework, Flutter,
from scratch. No knowledge of Flutter or Dart is required. However, basic programming
language knowledge will be helpful.

What this book covers
Chapter 1, An Introduction to Dart, introduces the basics of the Dart language.

Chapter 2, Intermediate Dart Programming, looks at object-oriented programming features
and advanced concepts from Dart, libraries, packages and asynchronous programming.

Chapter 3, An Introduction to Flutter, introduces you to the world of Flutter.

Chapter 4, Widgets: Building Layouts in Flutter, looks at how to build layouts in Flutter.

Chapter 5, Handling User Input and Gestures, shows you how to handle user input with
Flutter widgets.

Preface

[2]

Chapter 6, Theming and Styling, teaches you how to apply different styles to Flutter
widgets.

Chapter 7, Routing: Navigating between Screens, explores how to add navigation to app
screens.

Chapter 8, Firebase Plugins, covers how to use Firebase plugins in Flutter apps.

Chapter 9, Developing Your Own Flutter Plugin, explains how to create your own Flutter
plugins.

Chapter 10, Accessing Device Features from the Flutter App, dives into how to interact with
device features such as cameras and contact lists.

Chapter 11, Platform Views and Map Integration, shows you how to add map views to Flutter
applications.

Chapter 12, Testing, Debugging, and Deployment, delves into Flutter tools for improving
productivity.

Chapter 13, Improving User Experience, explores how to improve user experience using
features such as background Dart execution and internationalization.

Chapter 14, Widget Graphic Manipulations, gets into how to create unique visuals with
graphic manipulations.

Chapter 15, Animations, gives you an insight into how to add animations to Flutter
widgets.

To get the most out of this book
You will be introduced to the requirements as we move through the chapters. To get
started, you need to have access to a browser so you can access the DartPad website and
play with Dart code.

To professionally develop and publish iOS apps, you need a developer license (paid
annually), a Mac, and at least one device to test the applications. All this is not strictly
necessary for the purpose of learning Flutter, but it might be useful to you.

The entire installation process and the requirements of the Flutter environment are
available on the official website (https:/ / flutter. dev/ docs/ get- started/ install), but
do not worry: you can start with the bare minimum and install any extras only when
necessary.

https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install

Preface

[3]

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Flutter- for- Beginners. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781788996082_ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Flutter-for-Beginners
https://github.com/PacktPublishing/Flutter-for-Beginners
https://github.com/PacktPublishing/Flutter-for-Beginners
https://github.com/PacktPublishing/Flutter-for-Beginners
https://github.com/PacktPublishing/Flutter-for-Beginners
https://github.com/PacktPublishing/Flutter-for-Beginners
https://github.com/PacktPublishing/Flutter-for-Beginners
https://github.com/PacktPublishing/Flutter-for-Beginners
https://github.com/PacktPublishing/Flutter-for-Beginners
https://github.com/PacktPublishing/Flutter-for-Beginners
https://github.com/PacktPublishing/Flutter-for-Beginners
https://github.com/PacktPublishing/Flutter-for-Beginners
https://github.com/PacktPublishing/Flutter-for-Beginners
https://github.com/PacktPublishing/Flutter-for-Beginners
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788996082_ColorImages.pdf

Preface

[4]

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "It evaluates and returns the value of expression2: expression1 ??
expression2."

A block of code is set as follows:

main() {
 var yeahDartIsGreat = "Obviously!";
 var dartIsGreat = yeahDartIsGreat ?? "I don't know";
 print(dartIsGreat); // prints Obviously!
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

main() {
 var someInt = 1;
 print(reflect(someInt).type.reflectedType.toString()); // prints: int
}

Any command-line input or output is written as follows:

dart code.dart

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Also, the floating action button at the bottom end should redirect you to the Request a
favor screen."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Introduction to Dart

In this section, you will gain an understanding of the core Flutter framework, explore the
basics of the Dart language, learn how to set up your own environment, and finally, learn
how to get started with it.

The following chapters are included in this section:

Chapter 1, An Introduction to Dart
Chapter 2, Intermediate Dart Programming
Chapter 3, An Introduction to Flutter

1
An Introduction to Dart

The Dart language is present at the core of the Flutter framework. A modern framework
such as Flutter requires a high-level modern language to be capable of providing the best
experience to the developer and making it possible to create awesome mobile applications.
Understanding Dart is fundamental to working with Flutter; developers need to know the
origins of the Dart language, how the community is working on it, its strengths, and why it
is the chosen programming language to develop with Flutter. In this chapter, you will
review the basics of the Dart language and be provided with some links to resources that
can help you on your Flutter journey. You will review Dart built-in types and operators,
and how Dart works with object-oriented programming (OOP). By understanding what
the Dart language provides, you will be able to comfortably experiment with the Dart
environment by yourself and expand your knowledge.

We will be covering the following topics in this chapter:

Getting to know the principles and tools of the Dart language
Understanding why Flutter uses Dart
Learning the basics of the Dart language structure
Introducing OOP with Dart

Getting started with Dart
The Dart language, developed by Google, is a programming language that can be used to
develop web, desktop, server-side, and mobile applications. Dart is the programming
language used to code Flutter apps, enabling it to provide the best experience to the
developer for the creation of high-level mobile applications. So, let's explore what Dart
provides and how it works so we can later apply what we learn in Flutter.

An Introduction to Dart Chapter 1

[8]

Dart aims to aggregate the benefits of most of the high-level languages with mature
language features, including the following:

Productive tooling: This includes tools to analyze code, integrated development
environment (IDE) plugins, and big package ecosystems.
Garbage collection: This manages or deals with memory deallocation (mainly
memory occupied by objects that are no longer in use).
Type annotations (optional): This is for those who want security and consistency
to control all of the data in an application.
Statically typed: Although type annotations are optional, Dart is type-safe and
uses type inference to analyze types in runtime. This feature is important for
finding bugs during compile time.
Portability: This is not only for the web (transpiled to JavaScript), but it can be
natively compiled to ARM and x86 code.

The evolution of Dart
Unveiled in 2011, Dart has been evolving ever since. Dart saw its stable release in 2013, with
major changes included in the release of Dart 2.0 toward the end of 2018:

It was focused on web development in its conception, with the main aim of
replacing JavaScript: However, now Dart is focused on mobile development
areas as well as on Flutter.
It tried solving JavaScript's problems: JavaScript doesn't provide the robustness
that many consolidated languages do. So, Dart was launched as a mature
successor to JavaScript.
It offers the best performance and better tools for large-scale projects: Dart has
modern and stable tooling provided by IDE plugins. It's been designed to get the
best possible performance while keeping the feel of a dynamic language.
It is molded to be robust and flexible: By keeping the type annotations optional
and adding OOP features, Dart balances the two worlds of flexibility and
robustness.

Dart is a great modern cross-platform, general-purpose language that continually improves
its features, making it more mature and flexible. That's why the Flutter framework team
chose the Dart language to work with.

An Introduction to Dart Chapter 1

[9]

How Dart works
To understand where the language's flexibility came from, we need to know how we can
run Dart code. This is done in two ways:

Dart Virtual Machines (VMs)
JavaScript compilations

Have a look at the following diagram:

Dart VM and JavaScript compilation
Dart code can be run in a Dart-capable environment. A Dart-capable environment provides
essential features to an app, such as the following:

Runtime systems
Dart core libraries
Garbage collectors

The execution of Dart code operates in two modes—Just-In-Time (JIT) compilation or
Ahead-Of-Time (AOT) compilation:

A JIT compilation is where the source code is loaded and compiled to native
machine code by the Dart VM on the fly. It is used to run code in the command-
line interface or when you are developing a mobile application in order to use
features such as debugging and hot reloading.

An Introduction to Dart Chapter 1

[10]

An AOT compilation is where the Dart VM and your code are precompiled and
the VM works more like a Dart runtime system, providing a garbage collector
and various native methods from the Dart software development kit (SDK) to
the application.

Dart contributes to Flutter's most famous feature, hot reload, which is
based on the Dart JIT compiler, allowing fast interactions with live code
swaps. See the Understanding why Flutter uses Dart section for details.

Hands-on Dart
The way Flutter is designed is heavily influenced by the Dart language. So, knowing this
language is crucial for success in the framework. Let's start by writing some code to
understand the basics of the syntax and the available tools for Dart development.

DartPad
The easiest way to start coding is to use the DartPad tool (https:/ /dartpad. dartlang. org/
). It is a great online tool to learn and experiment with Dart's language features. It supports
Dart's core libraries, except for VM libraries such as dart:io.

This is what the tool looks like:

https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/

An Introduction to Dart Chapter 1

[11]

Dart development tools
DartPad is the perfect way to start experimenting with the language without any extra
effort. Since you will soon want to learn advanced things such as writing on files or using
custom libraries, you'll need to have a development environment configured for that.

Flutter is based on Dart and you can develop Dart code by having a
Flutter development environment. To find out how to configure a Flutter
development environment, just refer to the official website for the
installation tutorial (https:/ /dart. dev/tools/ sdk#install).

The most common IDEs used for Dart and Flutter development are Visual Studio Code or
VS Code (for the web and Flutter), and Android Studio or any JetBrains IDE such
as WebStorm (which is web-focused). All of the Dart functionalities of these IDEs are based
on official tools, so it doesn't matter what you choose—the provided tools will be mostly
the same. The Dart SDK provides specialized tools for each development ecosystem, such
as web and server-side programming.

The standalone Dart SDK ships with the following tools:

dart (https:/ / dart. dev/ tools/ dart- vm): This is the standalone Dart VM; this
executes Dart code. To execute a Dart script, run the following command:

dart code.dart

dart2js (https:/ / dart. dev/ tools/ dart2js): This is the original Dart-to-
JavaScript compiler.
dartanalyzer (https:/ / github. com/ dart- lang/ sdk/ tree/ master/ pkg/
analyzer_ cli#dartanalyzer): This statically analyzes code (as a typical linter),
helping to catch errors early.

Lint, or a linter, is a tool that analyzes source code to flag errors, bugs,
stylistic errors, and suspicious constructs.

dartdoc (https:/ / github. com/ dart- lang/ dartdoc#dartdoc): This generates
the API reference documentation.
pub (https:/ / dart. dev/ tools/ pub/ cmd): This is a package manager. It is a tool
that can be used for the management of libraries and packages.
dartfmt (https:/ / github. com/ dart- lang/ dart_ style#readme): This applies
style guidelines to Dart code.

https://dart.dev/tools/sdk#install
https://dart.dev/tools/sdk#install
https://dart.dev/tools/sdk#install
https://dart.dev/tools/sdk#install
https://dart.dev/tools/sdk#install
https://dart.dev/tools/sdk#install
https://dart.dev/tools/sdk#install
https://dart.dev/tools/sdk#install
https://dart.dev/tools/sdk#install
https://dart.dev/tools/sdk#install
https://dart.dev/tools/sdk#install
https://dart.dev/tools/dart-vm
https://dart.dev/tools/dart-vm
https://dart.dev/tools/dart-vm
https://dart.dev/tools/dart-vm
https://dart.dev/tools/dart-vm
https://dart.dev/tools/dart-vm
https://dart.dev/tools/dart-vm
https://dart.dev/tools/dart-vm
https://dart.dev/tools/dart-vm
https://dart.dev/tools/dart-vm
https://dart.dev/tools/dart-vm
https://dart.dev/tools/dart-vm
https://dart.dev/tools/dart-vm
https://dart.dev/tools/dart2js
https://dart.dev/tools/dart2js
https://dart.dev/tools/dart2js
https://dart.dev/tools/dart2js
https://dart.dev/tools/dart2js
https://dart.dev/tools/dart2js
https://dart.dev/tools/dart2js
https://dart.dev/tools/dart2js
https://dart.dev/tools/dart2js
https://dart.dev/tools/dart2js
https://dart.dev/tools/dart2js
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/sdk/tree/master/pkg/analyzer_cli#dartanalyzer
https://github.com/dart-lang/dartdoc#dartdoc
https://github.com/dart-lang/dartdoc#dartdoc
https://github.com/dart-lang/dartdoc#dartdoc
https://github.com/dart-lang/dartdoc#dartdoc
https://github.com/dart-lang/dartdoc#dartdoc
https://github.com/dart-lang/dartdoc#dartdoc
https://github.com/dart-lang/dartdoc#dartdoc
https://github.com/dart-lang/dartdoc#dartdoc
https://github.com/dart-lang/dartdoc#dartdoc
https://github.com/dart-lang/dartdoc#dartdoc
https://github.com/dart-lang/dartdoc#dartdoc
https://github.com/dart-lang/dartdoc#dartdoc
https://github.com/dart-lang/dartdoc#dartdoc
https://dart.dev/tools/pub/cmd
https://dart.dev/tools/pub/cmd
https://dart.dev/tools/pub/cmd
https://dart.dev/tools/pub/cmd
https://dart.dev/tools/pub/cmd
https://dart.dev/tools/pub/cmd
https://dart.dev/tools/pub/cmd
https://dart.dev/tools/pub/cmd
https://dart.dev/tools/pub/cmd
https://dart.dev/tools/pub/cmd
https://dart.dev/tools/pub/cmd
https://dart.dev/tools/pub/cmd
https://dart.dev/tools/pub/cmd
https://github.com/dart-lang/dart_style#readme
https://github.com/dart-lang/dart_style#readme
https://github.com/dart-lang/dart_style#readme
https://github.com/dart-lang/dart_style#readme
https://github.com/dart-lang/dart_style#readme
https://github.com/dart-lang/dart_style#readme
https://github.com/dart-lang/dart_style#readme
https://github.com/dart-lang/dart_style#readme
https://github.com/dart-lang/dart_style#readme
https://github.com/dart-lang/dart_style#readme
https://github.com/dart-lang/dart_style#readme
https://github.com/dart-lang/dart_style#readme
https://github.com/dart-lang/dart_style#readme
https://github.com/dart-lang/dart_style#readme
https://github.com/dart-lang/dart_style#readme

An Introduction to Dart Chapter 1

[12]

For web development, Dart adds some tools (with additional installation steps at https:/ /
dart.dev/tools):

webdev (https:/ / dart. dev/ tools/ webdev) and build_runner (https:/ /dart.
dev/tools/ webdev): Both of these tools are used for building and serving web
apps, with build_runner being used in testing or when more configuration is
required than webdev provides.
dartdevc (https:/ / dart. dev/ tools/ dartdevc): This is powered for dev Dart-
to-JavaScript compiler-like integration with Chrome tools.

dart2js is also a web-focused tool, although it ships with the standard
SDK. For server-side development, the standard SDK tools are the only
ones we need.

All of the IDE plugins use these tools behind the scenes, so you can take advantage of the
full toolset for Dart development.

Hello world
The following code is a basic Dart script, so let's take a look:

main() { // the entrypoint of an Dart app
 var a = 'world'; // declaring and initializing variable
 print('hello $a'); // call function to print to display output
}

This code contains some basic language features that need highlighting:

Every Dart app must have an entry point top-level function (you can refer
to Chapter 2, Intermediate Dart Programming, for more information on top-level
functions), that is, the main() function.

If you choose to run this code locally on your preconfigured machine with
Dart SDK, save the contents to a Dart file, and then run it with a Dart tool
in a Terminal, for example, dart hello_world.dart. This will execute
the main function of the Dart script.

As we have seen before, although Dart is type-safe, type annotations are
optional. Here, we declare a variable with no type and assign a String literal to
it.

https://dart.dev/tools
https://dart.dev/tools
https://dart.dev/tools
https://dart.dev/tools
https://dart.dev/tools
https://dart.dev/tools
https://dart.dev/tools
https://dart.dev/tools
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/webdev
https://dart.dev/tools/dartdevc
https://dart.dev/tools/dartdevc
https://dart.dev/tools/dartdevc
https://dart.dev/tools/dartdevc
https://dart.dev/tools/dartdevc
https://dart.dev/tools/dartdevc
https://dart.dev/tools/dartdevc
https://dart.dev/tools/dartdevc
https://dart.dev/tools/dartdevc
https://dart.dev/tools/dartdevc
https://dart.dev/tools/dartdevc

An Introduction to Dart Chapter 1

[13]

A String literal can be surrounded with single or double quotes, for example,
'hello world' or "hello world".
To display output on the console, you can use the print() function (which is
another top-level function).
With the string interpolation technique, the $a statement inside a String literal
resolves the value of the a variable. Dart calls the object's toString() method.

We'll explore more about string interpolation later in this chapter, in the
Dart types and variables section, when we talk about the string type.

We can use the //comment syntax to write single-line comments. Dart also has
multiline comments with the /* comment */ syntax, as follows:

// this is a single line comment

/*
 This is a long multiline comment
*/

Note the return type of the main function; as it was omitted in the example, it assumes the
special dynamic type, which we will explore later.

Understanding why Flutter uses Dart
The Flutter framework aims to be a game-changer in mobile app development, providing
all of the tools needed by the developer to make awesome applications with no drawbacks
in performance and scalability. Flutter has, in its core structure, multiple concepts focused
on app performance and the user interface. To deliver the best output to the developing
world with high performance that compares to the official native SDKs, Flutter uses the
support of Dart to provide tools that contribute to developer productivity in the
development phase and to build applications optimized for publication.

As we have seen before in the Getting started with Dart section, Dart is mature enough and
robust with many tools that contribute to Flutter's success. Let's understand why Dart was
the perfect choice for the Flutter framework.

An Introduction to Dart Chapter 1

[14]

Adding productivity
Dart is not only a language, not in concept at least. The Dart SDK comes with a set of tools
(seen in the previous Dart development tools section) that Flutter benefits from to help with
common tasks during the development phase, such as the following:

The Dart JIT and AOT compilers
Profiling, debugging, and logging with the Dart DevTools and Observatory
(more in Chapter 12, Testing, Debugging, and Deployment).
Static code analysis with its built-in analyzer: https:/ / dart. dev/guides/
language/ analysis- options

Compiling Flutter apps and hot reload
When you're writing or debugging code, you will be using the Dart VM with JIT. This helps
to utilize features such as profiling tools, hot reloading (you can refer to Chapter 3, An
Introduction to Flutter), and more.

When building your app for release, the code will be compiled in AOT and your app will
ship with a tiny version of the Dart VM (which is more like a runtime library) with Dart
SDK capabilities such as core libraries and garbage collectors.

This difference, at first, does not seems to be important from the developer's point of view,
as we want to simply write and run the app, right? However, when it comes to
productivity, this becomes one of the most fundamental Dart strengths used by Flutter.

Flutter's hot reload is one of its most famous features and shows the promised productivity
in action. It relies on JIT compilation to make live Dart code swaps while running the app,
so we can change our application code and see the result almost in real time. With IDE
plugins, this becomes even faster as, after saving a change, the plugin dispatches the reload
and the result is seen quickly.

In Chapter 3, An Introduction to Flutter, we will check out hot reload and
other features in more detail.

No image can describe the potential of this incredible feature. So, after checking out
Chapter 3, An Introduction to Flutter, I suggest you run the Flutter starter project to have
first contact with this incredible feature.

https://dart.dev/guides/language/analysis-options
https://dart.dev/guides/language/analysis-options
https://dart.dev/guides/language/analysis-options
https://dart.dev/guides/language/analysis-options
https://dart.dev/guides/language/analysis-options
https://dart.dev/guides/language/analysis-options
https://dart.dev/guides/language/analysis-options
https://dart.dev/guides/language/analysis-options
https://dart.dev/guides/language/analysis-options
https://dart.dev/guides/language/analysis-options
https://dart.dev/guides/language/analysis-options
https://dart.dev/guides/language/analysis-options
https://dart.dev/guides/language/analysis-options
https://dart.dev/guides/language/analysis-options

An Introduction to Dart Chapter 1

[15]

Another very cool Dart tool is the Dart analyzer:

This tool helps to figure out potential problems with types and the recommended syntax
before running the code.

DevTools also adds an important value to the productivity offered by the
Flutter framework; find out more information in Chapter 12, Testing,
Debugging, and Deployment.

Easy learning
Dart is a new language for many developers, and learning a new framework and a new
language at the same time can be challenging. However, Dart makes this task simple by not
reinventing concepts, just fine-tuning them and trying to make them as effective as possible
for designated tasks.

An Introduction to Dart Chapter 1

[16]

Dart is inspired by many modern and mature languages such as Java, JavaScript, C#, Swift,
and Kotlin, as you can see here:

With this in mind, reading Dart code, even without knowing the language deeply, is
possible. Also, take a look at the official documentation start page:

An Introduction to Dart Chapter 1

[17]

The documentation and guides are very clear and informative; in addition, the awesome
community helps the developer to learn without any headaches.

Check out the official Dart guides on learning: https:/ /dart. dev/ guides.

Maturity
Despite being a relatively new language, Dart is not poor or lacking in resources. On the
contrary, in version 2, it already has various modern language resources that help the
developer to write effective high-level code.

One perfect feature to exemplify this is the async-await feature:

This enables the developer to write non-blocking calls with a very simple syntax, allowing
the application to continue to render with no drawbacks.

https://dart.dev/guides
https://dart.dev/guides
https://dart.dev/guides
https://dart.dev/guides
https://dart.dev/guides
https://dart.dev/guides
https://dart.dev/guides
https://dart.dev/guides
https://dart.dev/guides

An Introduction to Dart Chapter 1

[18]

As Dart focuses on the developer, another important thing for mobile and web developers
is building user interfaces. With this in mind, the Dart syntax is easy to understand when
you think in UI terms. Let's see an example:

These screenshots are taken from the official Dart website: dart.dev.

The collection if operator that can be seen in the preceding screenshot is one great example
of a new feature that is easy to understand even if you are new to Dart.

Dart is evolving alongside Flutter, and these are only some of the important strengths the
language provides to the framework. As long as you realize Dart is easy to learn and
contributes to Flutter's power, the challenge of learning a new language together with a
new framework becomes easier and even enjoyable.

In this book, we are not going to dive too deep into the details of the Dart syntax. You can
check the source code of this chapter on GitHub for syntax examples and use this as a study
guide or a learning path for the language. Later, you can explore specific syntax or features
while you advance in your Flutter framework journey.

https://dart.dev/

An Introduction to Dart Chapter 1

[19]

Introducing the structure of the Dart
language
If you already know some programming languages inspired by the old C language or have
some experience of JavaScript, much of the Dart syntax will be easy for you to understand.
Dart provides the most typical operators for manipulating variables. Its built-in types are
the most common ones found in high-level programming languages, with a few
particularities. Also, control flows and functions are very similar to typical ones. Let's
review some of the structure of the Dart programming language before diving into Flutter.

If you already know Dart, you can use this section as a review of the Dart syntax;
otherwise, you can check out this introduction and refer to the Dart language tour for a
quick and easy learning guide on Dart: https:/ /dart. dev/ guides/ language/ language-
tour.

Dart operators
In Dart, operators are nothing more than methods defined in classes with a special syntax.
So, when you use operators such as x == y, it is as though you are invoking the
x.==(y) method to compare equality.

As you might have noted, we are invoking a method on x, which means x
is an instance of a class that has methods. In Dart, everything is an Object
instance; any type you define is also an Object instance. There's more on
that in the Introduction to OOP in Dart section.

This concept means that operators can be overridden so that you can write your own logic
for them. Again, if you have some experience in Java, C#, JavaScript, or similar languages,
you can skip most of the operators, as they are very similar in several languages.

We are not going to go into every specific Dart syntax detail in this book.
You can refer to the source code on GitHub for many examples of the Dart
syntax.

https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour

An Introduction to Dart Chapter 1

[20]

Dart has the following operators:

Arithmetic
Increment and decrement
Equality and relational
Type checking and casting
Logical operators
Bits manipulation
Null-safe and null-aware (modern programming languages provide this operator
to facilitate null value handling)

Let's look at each one in more detail.

Arithmetic operators
Dart comes with many typical operators that work like many languages; this includes the
following:

+: This is for the addition of numbers.
-: This is for subtraction.
*: This is for multiplication.
/: This is for division.
~/: This is for integer division. In Dart, any simple division with / results in a
double value. To get only the integer part, you would need to make some kind
of transformation (that is, type cast) in other programming languages; however,
here, the integer division operator does this task.
%: This is for modulo operations (the remainder of integer division).
-expression: This is for negation (which reverses the sign of expression).

Some operators have different behavior depending on the left operand type; for example,
the + operator can be used to sum variables of the num type, but also to concatenate strings.
This is because they were implemented differently in the corresponding classes as pointed
out before.

Dart also provides shortcut operators to combine an assignment to a
variable after another operation. The arithmetic or assignment shortcut
operators are +=, -=, *=, /=, and ~/=.

An Introduction to Dart Chapter 1

[21]

Increment and decrement operators
The increment and decrement operators are also common operators and are implemented
in number type, as follows:

++var or var++ to increment 1 into var
--var or var-- to decrement 1 from var

The Dart increment and decrement operators don't have anything different to typical
languages. A good application of increment and decrement operators is for count
operations on loops.

Equality and relational operators
The equality Dart operators are as follows:

==: For checking whether operands are equal
!=: For checking whether operands are different

For relational tests, the operators are as follows:

>: For checking whether the left operand is greater than the right one
<: For checking whether the left operand is less than the right one
>=: For checking whether the left operand is greater than or equal to the right one
<=: For checking whether the left operand is less than or equal to the right one

In Dart, unlike Java and many other languages, the == operator does not
compare memory references but rather the content of the variable.

Type checking and casting
Dart has optional typing, as you already know, so type checking operators may be handy
for checking types at runtime:

is: For checking whether the operand has the tested type
is!: For checking whether the operand does not have the tested type

An Introduction to Dart Chapter 1

[22]

The output of this code will be different depending on the context of the execution. In
DartPad, the output is true for the check of the double type; this is due to the way
JavaScript treats numbers and, as you already know, Dart for the web is precompiled to
JavaScript for execution on web browsers.

There's also the as keyword, which is used for typecasting from a supertype to a subtype,
such as converting num into int.

The as keyword is also used to specify a prefix for the libraries using
imports (you can read more about this in Chapter 2, Intermediate Dart
Programming).

Logical operators
Logical operators in Dart are the common operators applied to bool operands; they can be
variables, expressions, or conditions. Additionally, they can be combined with complex
expressions by combining the results of the expressions. The provided logical operators are
as follows:

!expression: To negate the result of an expression, that is, true to false and
false to true
||: To apply logical OR between two expressions
&&: To apply logical AND between two expressions

Bits manipulation
Dart provides bitwise and shift operators to manipulate individual bits of numbers, usually
with the num type. They are as follows:

&: To apply logical AND to operands, checking whether the corresponding bits are
both 1
|: To apply logical OR to operands, checking whether at least one of the
corresponding bits is 1
^: To apply logical XOR to operands, checking whether only one (but not both)
of the corresponding bits is 1
~operand: To invert the bits of the operand, such as 1s becoming 0s and 0s

becoming 1
s

An Introduction to Dart Chapter 1

[23]

<<: To shift the left operand in x bits to the left (this shifts 0s from the right)
>>: To shift the left operand in x bits to the right (discarding the bits from the
left)

Like arithmetic operators, the bitwise ones also have shortcut assignment operators, and
they work in the exact same way as the previously presented ones; they are <<=, >>=, &=,
^=, and |=.

Null-safe and null-aware operators
Following the trend on modern OOP languages, Dart provides a null-safe syntax that
evaluates and returns an expression according to its null/non-null value.

The evaluation works in the following way: if expression1 is non-null, it returns its value;
otherwise, it evaluates and returns the value of expression2: expression1 ??
expression2.

In addition to the common assignment operator, =, and the ones listed in the corresponding
operators, Dart also provides a combination between the assignment and the null-aware
expression; that is, the ??= operator, which assigns a value to a variable only if its current
value is null.

Dart also provides a null-aware access operator, ?., which prevents accessing null object
members.

Dart types and variables
You probably already know how to declare a simple variable, that is, by using the var
keyword followed by the name. One thing to note is that when we do not specify the
variable's initial value, it assumed null no matter its type.

final and const
A variable will never intend to change its value after it is assigned, and you can use
the final and const ways for declaring this:

final value = 1;

An Introduction to Dart Chapter 1

[24]

The value variable cannot be changed once it's initialized:

const value = 1;

Just like the final keyword, the value variable cannot be changed once it's initialized, and
its initialization must occur together with a declaration.

In addition to this, the const keyword defines a compile-time constant. As a compile-time
constant, the const values are known at compile time. They also can be used to make
object instances or Lists immutable, as follows:

const list = const [1, 2, 3]
// and
const point = const Point(1,2)

This will set the value of both variables during compile time, turning them into completely
immutable variables.

Built-in types
Dart is a type-safe programming language, so types are mandatory for variables. Although
types are mandatory, type annotations are optional, which means that you don't need to
specify the type of a variable when declaring it. Dart performs type inference, and we will
examine more of this in the Type inference – bringing dynamism to the show section.

Here are the built-in data types in Dart:

Numbers (such as num, int, and double)
Booleans (such as bool)
Collections (such as lists, arrays, and maps)
Strings and runes (for expressing Unicode characters in a string)

Numbers
Dart represents numbers in two ways:

Int: 64-bit signed non-fractional integer values such as -263 to 263-1.
Double: Dart represents fractional numeric values with a 64-bit double-precision
floating-point number.

Both of them extend the num type. Additionally, we have many handy functions in
the dart:math library to help with calculations.

An Introduction to Dart Chapter 1

[25]

In JavaScript, numbers are compiled to JavaScript Numbers, and allow the
values -253 to 253-1.

Additionally, note that num, double, and int types cannot be extended or
implemented.

BigInt
Dart also has the BigInt type for representing arbitrary precision integers, which means
that the size limit is the running computer's RAM. This type can be very useful depending
on the context; however, it does not have the same performance as num types and you
should consider this when deciding to use it.

JavaScript has the concept of safe integers, which Darts follows when transpiling to it.
However, as JavaScript uses double-precision to represent even integers, we do not have an
overflow when doing (maxInt * 2).

Now, you might consider putting BigInt everywhere you would use integers to be free of
overflows, but remember, BigInt does not have the same performance as int types,
making it unsuitable for all contexts.

Additionally, if you want to know how Dart VM handles numbers
internally, take a look at the Further reading section at the end of this
chapter.

Booleans
Dart provides the two well-known literal values for the bool type: true and false.

Boolean types are simple truth values that can be useful for any logic. One thing you may
have noticed, but that I want to reinforce, is about expressions.

We already know that operators, such as > or ==, for example, are nothing more than
methods with a special syntax defined in classes, and, of course, they have a return value
that can be evaluated in conditions. So, the return type of all these expressions is bool and,
as you already know, Boolean expressions are important in any programming language.

Collections
In Dart, lists are considered to be the same as arrays in other programming languages with
some handy methods to manipulate elements.

An Introduction to Dart Chapter 1

[26]

Lists have the [index] operator to access elements at the given index and, additionally, the
+ operator can be used to concatenate two lists by returning a new list with the left operand
followed by the right one.

Another important thing about Dart lists is the length constraint. This is in the way we
define the preceding lists, making them grow as needed by using the add method, which
will grow to append the element.

Another way to define the list is by setting its length on creation. Lists with a fixed size
cannot be expanded, so it's the developer's responsibility to know where and when to use
fixed size lists, as it can throw exceptions if you try to append or access invalid elements.

Dart Maps are dynamic collections for storing values on a key basis, where the retrieval
and modification of a value is always performed by using its associated key. Both the key
and value can have any type; if we do not specify the key-value types, they will be inferred
by Dart as Map<dynamic,dynamic>, with its keys and values of the dynamic type. We'll
explain more about dynamic types later.

Strings
In Dart, strings are a sequence of characters (UTF-16 code) that are mainly used to represent
text. Dart strings can be single or multiple lines. You can match single or double quotes
(typically for single lines), and multiline strings by matching triple quotes.

We can use the + operator to concatenate strings. The string type implements
useful operators other than the plus (+) one. It implements the multiplier (*) operator
where the string gets repeated a specified number of times, and the [index] operator
retrieves the character at the specified index position.

String interpolation
Dart has a useful syntax to interpolate the value of Dart expressions within strings: ${},
which works as follows:

main() {
 String someString = "This is a String";
 print("The string value is: $someString ");
 // prints The string value is: This is a String

 print("The length of the string is: ${someString.length} ");
 // prints The length of the string is: 16
}

An Introduction to Dart Chapter 1

[27]

As you may have noticed, when we are inserting just a variable and not an expression
value into the string, we can omit the braces and just add $identifier directly.

Dart also has the runes concept to represent UTF-32 bits. For more details,
check out the Dart language tour: https:/ /dart. dev/ guides/ language/
language- tour.

Literals
You can use the [] and {} syntaxes to initialize variables such as lists and maps,
respectively. These are some examples of literals provided by the Dart language for
creating objects of the provided built-in types:

Type Literal example
int 10, 1, -1, 5, and 0
double 10.1, 1.2, 3.123, and -1.2
bool true and false
String "Dart", 'Dash', and """multiline String"""

List [1,2,3] and ["one", "two", "three"]
Map {"key1": "val1", "b": 2}

A literal is a notation to represent a fixed value in programming
languages. You have likely already used some of these before.

Type inference – bringing dynamism to the show
In the previous examples, we demonstrated two ways of declaring variables: by using the
type of the variable, such as int and String, or by using the var keyword.

So, now you may be wondering how Dart knows what type of variable it is if you don't
specify it in a declaration.

https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour

An Introduction to Dart Chapter 1

[28]

From the Dart documentation (https:/ / dart. dev/ guides/ language/ effective- dart/
documentation), consider the following statement:

"The analyzer can infer types for fields, methods, local variables, and most generic type
arguments. When the analyzer doesn't have enough information to infer a specific type, it
uses the dynamic type."

This means that, when you declare a variable, the Dart analyzer will infer the type based on
the literal or the object constructor.

Here is an example:

import 'dart:mirrors';

main() {
 var someInt = 1;
 print(reflect(someInt).type.reflectedType.toString()); // prints: int
}

As you can see, in this example we have only the var keyword. We didn't specify any type,
but as we used an int literal (1), the analyzer tool could infer the type successfully.

Local variables get the type inferred by the analyzer in the initialization. In the preceding
example, trying to assign a string value to someInt would fail.

So, let's consider the following code:

main() {
 var a; // here we didn't initialized var so its
 // type is the special dynamic
 a = 1; // now a is an int
 a = "a"; // and now a String

 print(a is int); // prints false
 print(a is String); // prints true
 print(a is dynamic); // prints true
 print(a.runtimeType); // prints String
}

As you may have noticed, a is a String type and a dynamic type. dynamic is a special
type and it can assume any type at runtime; therefore, any value can be cast to dynamic
too.

Dart can infer types for fields, method returns, and generic type arguments; we'll explore
each one in more detail in their respective sections in this book.

https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation

An Introduction to Dart Chapter 1

[29]

The Dart analyzer also works on collections and generics; for the map and
list examples in this chapter, we used the literal initializer for both, so
their types were inferred.

Control flows and looping
We've reviewed how to use Dart variables and operators to create conditional expressions.
To work with variables and operators, we typically need to implement some control flow to
make our Dart code take the appropriate direction in our logic.

Dart provides some control flow syntax that is very similar to other programming
languages; it is as follows:

if-else

switch/case

Looping with for, while, and do-while
break and continue
asserts

Exceptions with try/catch and throw

The Dart syntax for these control flows does not have any important particularities that
need to be reviewed in detail. Please refer to the official language tour on control flows for
details: https:// dart. dev/ guides/ language/ language- tour#control- flow- statements.

Functions
In Dart, Function is a type, like String or num. This means that they can also be assigned
to fields or local variables, or passed as parameters to other functions; consider the
following example:

String sayHello() {
 return "Hello world!";
}

void main() {
 var sayHelloFunction = sayHello; // assigning the function
 // to the variable
 print(sayHelloFunction()); // prints Hello world!
}

https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements
https://dart.dev/guides/language/language-tour#control-flow-statements

An Introduction to Dart Chapter 1

[30]

In this example, the sayHelloFunction variable stores the sayHello function itself and
does not invoke it. Later on, we can invoke it by adding () to the variable name just as
though it was a function.

Trying to invoke a non-function variable could result in a compiler error.

The function return type can be omitted as well, so the Dart analyzer infers the type from
the return statement. If no return statement is provided, it assumes return null. If you
want to tell it that it doesn't have a return, you should mark it as void:

sayHello() { // The return type stills String
 return "Hello world!";
}

Another way to write this function is by using the shorthand syntax, () => expression;,
which is also called the Arrow function or the Lambda function:

sayHello() => "Hello world!";

You cannot write statements in place of expression, but you can use the already
known conditional expressions (that is, ?: or ??).

In this example, the sayHello function is a top-level function. In other
words, it does not need a class to exist. Although Dart is an object-
oriented language, it is not necessary to write classes to encapsulate
functions.

Function parameters
A function can have two types of parameters: optional and required. Additionally, as with
most modern programming languages, these parameters can be named on call to make the
code more readable.

An Introduction to Dart Chapter 1

[31]

The parameter type doesn't need to be specified; in this case, the parameter assumes
the dynamic type:

Required parameters: This simple function definition with parameters is
achieved by just defining them in the same way as most other languages. In the
following function, both name and additionalMessage are required
parameters, so the caller must pass them when calling it:

sayHello(String name, String additionalMessage) => "Hello $name.
$additionalMessage";

Optional positional parameters: Sometimes, not all parameters need to be
mandatory for a function, so it can define optional parameters as well. The
optional positional parameter definition is done by using the [] syntax.
Optional positional parameters must go after all of the required parameters, as
follows:

sayHello(String name, [String additionalMessage]) => "Hello $name.
$additionalMessage";

If you run the preceding code without passing a value for additionalMessage,
you will see null at the end of the returned string. When the optional parameter
is not specified, the default value is null unless you specify default values for
them:

void main() {
 print(sayHello('my friend')); // Hello my friend. null
 print(sayHello('my friend', "How are you?"));
 // prints Hello my friend. How are you?
}

To define a default value for a parameter, you add it after the = sign right after the
parameter definition:

sayHello(String name, [String additionalMessage = "Welcome to Dart
Functions!"]) => "Hello $name. $additionalMessage";

Not specifying the parameter results in printing the default message, as follows:

void main() {
 var hello = sayHello('my friend');
 print(hello);
}

An Introduction to Dart Chapter 1

[32]

Optional named parameters: The optional named parameter definition is done
by using the { } syntax. They must also go after all of the required parameters:

sayHello(String name, {String additionalMessage}) => "Hello $name.
$additionalMessage";

The caller must specify the name of the optional named parameter, as follows:

void main() {
 print(sayHello('my friend'));
 // it stills optional, prints: Hello my friend. null

 print(sayHello('my friend', additionalMessage: "How are you?"));
 // prints: Hello my friend. How are you?
}

Named parameters are not exclusive to optional parameters; to make a named
parameter a required parameter, you can mark it with @required:

sayHello(String name, {@required String additionalMessage}) =>
"Hello $name. $additionalMessage";

Again, the caller must specify the name of the required named parameter:

void main() {
 var hello = sayHello('my friend', additionalMessage:"How are
 you?");
 // not specifying the parameter name will result in a hint on
 // the editor, or by running dartanalyzer manually on console

 print(hello); // prints "Hello my friend. How are you?"
}

Anonymous functions: Dart functions are objects and they can be passed as
parameters to other functions. We already saw this when using the forEach()
function of the iterable.

An anonymous function is a function that doesn't have a name; it is also called
lambda or closure. The forEach() function is a good example of this; we need to
pass a function to it that will be executed with each of the list collection
elements:

void main() {
 var list = [1, 2, 3, 4];
 list.forEach((number) => print('hello $number'));
}

An Introduction to Dart Chapter 1

[33]

Our anonymous function receives an item but does not specify a type; then, it just
prints the value received by the parameter.

Lexical scope: The Dart scope is determined by the layout of the code using curly
braces like many programming languages; the inner functions can access
variables all the way up to the global level:

globalFunction() {
 print("global/top-level function");
}

simpleFunction() {
 print("simple function");
 globalFunction() {
 print("Not really global");
 }

 globalFunction();
}

main() {
 simpleFunction();

 globalFunction();
}

If you examine the preceding code, globalFunction function from simpleFunction will
be used instead of the global version, because it is defined locally on its scope.

In the main function, in contrast, the global version of globalFunction function is used,
because, in this scope, the internal globalFunction function from simpleFunction is not
defined.

Data structures, collections, and generics
Dart provides multiple kinds of structures to manipulate a set of values. Dart lists are
widely used even in the most simple use cases. Generics are a concept when working with
collections of data tied to a specific type, such as List or Map, for example. They ensure a
collection will have homogeneous values by specifying the type of data it can hold.

An Introduction to Dart Chapter 1

[34]

Generics
The <..> syntax is used to specify the type supported by a collection. If you look at the
previous examples of lists and maps, you will notice that we have not specified any type.
This is because they are optional, and Dart can infer the type based on elements during the
collection initialization.

Check this chapter's source code on GitHub for examples on collections
and generics. Remember, if the Dart analyzer tool cannot infer the type, it
assumes the dynamic type.

When and why to use generics
The use of generics can help a developer to maintain and keep collection behavior under
control. When we use a collection without specifying the allowed element types, it is our
responsibility to correctly insert the elements. This, in a wider context, can become
expensive, as we need to implement validations to prevent wrong insertions and to
document it for a team.

Consider the following code example; as we have named the variable avengerNames, we
expect it to be a list of names and nothing else. Unfortunately, in the coded form, we can
also insert a number into the list, causing disorganization or confusion:

main() {
 List avengerNames = ["Hulk", "Captain America"];
 avengerNames.add(1);
 print("Avenger names: $avengerNames");
 // prints Avenger names: [Hulk, Captain America, 1]
}

However, if we specify the string type for the list, then this code would not compile,
avoiding this confusion:

main() {
 List<String> avengerNames = ["Hulk", "Captain America"];
 avengerNames.add(1);
 // Now, add() function expects an 'int' so this doesn't compile
 print("Avenger names: $avengerNames");
}

An Introduction to Dart Chapter 1

[35]

Generics and Dart literals
If you check out this chapter's list and map examples, you will see we used
the [] and {} literals to initialize them. With generics, we can specify a type during the
initialization, adding a <elementType>[] prefix for
lists and <keyType, elementType>{} for maps.

Take a look at the following example:

main() {
 var avengerNames = <String>["Hulk", "Captain America"];
 var avengerQuotes = <String, String>{
 "Captain America": "I can do this all day!",
 "Spider Man": "Am I an Avenger?",
 "Hulk": "Smaaaaaash!"
 };
}

Specifying the type of list, in this case, seems to be redundant as the Dart analyzer will infer
the string type from the literals we have provided. However, in some cases, this is
important, such as when we are initializing an empty collection, as in the following
example:

var emptyStringArray = <String>[];

If we have not specified the type of the empty collection, it could have any data type on it
as it would not infer the generic type to adopt.

To learn how Dart plays with the generics concept and the additional data
structures provided by the language, you can refer to the official language tour for
details: https:// dart. dev/ guides/ language/ language- tour#generics.

Introduction to OOP in Dart
In Dart, everything is an object, including the built-in types. Upon defining a new class,
even when you don't extend anything, it will be a descendant of an object. Dart
implicitly does this for you.

https://dart.dev/guides/language/language-tour#generics
https://dart.dev/guides/language/language-tour#generics
https://dart.dev/guides/language/language-tour#generics
https://dart.dev/guides/language/language-tour#generics
https://dart.dev/guides/language/language-tour#generics
https://dart.dev/guides/language/language-tour#generics
https://dart.dev/guides/language/language-tour#generics
https://dart.dev/guides/language/language-tour#generics
https://dart.dev/guides/language/language-tour#generics
https://dart.dev/guides/language/language-tour#generics
https://dart.dev/guides/language/language-tour#generics
https://dart.dev/guides/language/language-tour#generics
https://dart.dev/guides/language/language-tour#generics
https://dart.dev/guides/language/language-tour#generics
https://dart.dev/guides/language/language-tour#generics

An Introduction to Dart Chapter 1

[36]

Dart is called a true object-oriented language. Even functions are objects, which means that
you can do the following:

Assign a function as a value of a variable.
Pass it as an argument to another function.
Return it as a result of a function as you would do with any other type,
such as String and int.

This is known as having first-class functions because they're treated the same way as other
types.

Another important point to note is that Dart supports single inheritance on a class, similar to
Java and most other languages, which means that a class can inherit directly from
only a single class at a time.

A class can implement multiple interfaces and extend multiple
classes using mixins, which we will cover later in this chapter.

Here are the main OOP artifacts that are presented in the Dart language (we will delve
deeper into each throughout this chapter):

Class: This is a blueprint for creating an object.
Interface: This is a contract definition with a set of methods available on an
object. Although there is no explicit interface type in Dart, we can achieve the
interface purpose with abstract classes.
Enumerated class: This is a special kind of class that defines a set of common
constant values.
Mixin: This is a way of reusing a class's code in multiple class hierarchies.

Dart OOP features
Every programming language can provide the OOP paradigm in its own way, with partial
or full support, by applying some or all of the following principles:

An Introduction to Dart Chapter 1

[37]

Dart applies many of the principles with many particularities. So, let's reinforce the
available OOP techniques and structures to use this paradigm in the Dart language.

The subjects indicated here may sound new to you. They are covered in
greater depth in the next sections of this chapter. Feel free to revisit this
section later if you find it helpful.

Objects and classes
The starting point of OOP, objects, are instances of defined classes. In Dart, as has already
been pointed out, everything is an object, that is, every value we can store in a variable is an
instance of a class. Besides that, all objects also extend the Object class, directly or
indirectly:

Dart classes can have both instance members (methods and fields) and class
members (static methods and fields).
Dart classes do not support constructor overloading, but you can use the flexible
function argument specifications from the language (optional, positional, and
named) to provide different ways to instantiate a class. Also, you can have
named constructors to define alternatives.

An Introduction to Dart Chapter 1

[38]

Encapsulation
Dart does not contain access restrictions explicitly, like the famous keywords used in
Java—protected, private, and public. In Dart, encapsulation occurs at the library
level instead of at the class level (this will be discussed further in the following chapter).
The following also applies:

Dart creates implicit getters and setters for all fields in a class, so you can define
how data is accessible to consumers and the way it changes.
In Dart, if an identifier (class, class member, top-level function, or variable) starts
with an underscore(_), it's private to its library.

We will check out the definition of libraries in Chapter 2, Intermediate Dart
Programming. Here, we will also cover in more detail how privacy works
in Dart.

Inheritance and composition
Inheritance allows us to extend an object to specialized versions of some abstract type. In
Dart, by simply declaring a class, we are already extending the Object type implicitly. The
following also applies:

Dart permits single direct inheritance.
Dart has special support for mixins, which can be used to extend class
functionalities without direct inheritance, simulating multiple inheritances, and
reusing code.
Dart does not contain a final class directive like other languages; that is, a
class can always be extended (have children).

Abstraction
Following inheritance, abstraction is the process whereby we define a type and its essential
characteristics, moving to specialized types from parent ones. The following also applies:

Dart contains abstract classes that allow a definition of what something
does/provides, without caring about how this is implemented.
Dart has the powerful implicit interface concept, which also makes every class
an interface, allowing it to be implemented by others without extending it.

An Introduction to Dart Chapter 1

[39]

Polymorphism
Polymorphism is achieved by inheritance and can be regarded as the ability of an object to
behave like another; for example, the int type is also a num type. The following
also applies:

Dart allows overriding parent methods to change their original behavior.
Dart does not allow overloading in the way you may be familiar with. You
cannot define the same method twice with different arguments. You can simulate
overloading by using flexible argument definitions (that is, optional and
positional, as seen in the previous Functions section) or not use it at all.

Summary
We have finished our introduction to the Dart language, and I hope you liked what you
have read so far. In this first chapter, we presented the available tools to start your Dart
language studies, discovered what a basic Dart program looks like, and learned about the
basic Dart code structure.

We demonstrated how the Dart SDK works, and the tools it provides that help with Flutter
app development and make the Flutter framework succeed in its objectives.

We reviewed some important concepts of the Dart language with useful links to the
official language guides to support the developer. Additionally, we reviewed functions and
parameter specifications, such as named/positional and optional/required, and introduced
Dart OOP.

In the next chapter, we will advance toward the OOP concept of programming in the Dart
language and its particularities. We will also examine several important advanced Dart
features for development, especially when talking about Flutter development, such
as async programming with Futures, unit testing, and the packages and libraries concept,
which is perhaps the most important in terms of serving as the basis for Flutter app
development. So, check out the next chapter for more advanced Dart topics.

An Introduction to Dart Chapter 1

[40]

Further reading
In addition to this chapter's content, you can check the following materials for further
reference:

For more information about integer number representations in Dart, you can
read the following article, which may help you to understand how the language
treats numbers internally: https:/ /www. dartlang. org/ articles/ dart- vm/
numeric- computation.
You can read more about generic syntax here: https:/ /github. com/ dart lang/
sdk/blob/ master/ pkg/ dev_ compiler/ doc/ GENERIC_ METHODS. md.

https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://www.dartlang.org/articles/dart-vm/numeric-computation
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md
https://github.com/dart-lang/sdk/blob/master/pkg/dev_compiler/doc/GENERIC_METHODS.md

2
Intermediate Dart Programming

In this chapter, you will learn the core concept of objects in Dart, for example, how to create
object-oriented code in Dart by using its concepts, such as interfaces, implicit interfaces, and
abstract classes, as well as mixins, to add a behavior to a class.

If you are an experienced programmer or already familiar with Java or similar languages,
you can skip some parts of this chapter, as it has many similarities with the typical OOP
concepts, such as inheritance and encapsulation. Some ideas in particular are important to
verify, even if you are already familiar with the majority of OOP features, such as implicit
interfaces and mixins, as they may introduce you to new concepts.

You will also learn how to use third-party libraries to accelerate a project's development,
gain an understanding of the advanced features of the Dart language to start developing
multithreading apps by using callbacks and futures, and learn how to unit test your Dart
code.

This chapter covers the following topics:

Dart class definition syntax
Abstract classes, interfaces, and mixins
Understanding Dart libraries and packages
Adding dependencies with pubspec.yaml
Introducing async programming with Futures and Isolates
Introducing unit tests

Intermediate Dart Programming Chapter 2

[42]

Dart classes and constructors
Dart classes are declared by using the class keyword, followed by the class name, ancestor
classes, and implemented interfaces. Then, the class body is enclosed by a pair of curly
braces, where you can add class members, that include the following:

Fields: These are variables used to define the data an object can hold.
Accessors: Getters and setters, as the name suggests, are used to access the fields
of a class, where get is used to retrieve a value, and the set accessor is used to
modify the corresponding value.
Constructor: This is the creator method of a class where the object instance fields
are initialized.
Methods: The behavior of an object is defined by the actions it can take. These
are the object functions.

Refer to the following small class definition example:

class Person {
 String firstName;
 String lastName;

 String getFullName() => "$firstName $lastName";
}

main() {
 Person somePerson = new Person();
 somePerson.firstName = "Clark";
 somePerson.lastName = "Kent";
 print(somePerson.getFullName()); // prints Clark Kent
}

Now, let's take a look at the Person class declared in the preceding code and make some
observations:

To instantiate a class, we use the new (optional) keyword, followed by the
constructor invocation. As we advance in this book, you will notice that this
keyword is used less.
It does not have an ancestor class explicitly declared, but it does have one, the
object type, as already mentioned, and this inheritance happens implicitly in
Dart.
It has two fields, firstName and lastName, and a method, getFullName(),
which concatenates both by using string interpolation and then returns the data.

Intermediate Dart Programming Chapter 2

[43]

It does not have any get or set accessor declared, so how did we
access firstName and lastName to mutate it? A default get/set accessor is
defined for every field in a class.
The dot class.member notation is used to access a class member, whatever it
is—a method or a field (get/set).
We have not defined a constructor for the class, but, as you may be thinking,
there's a default empty constructor (no arguments) already provided for us.

The enum type
The enum type is a common type used by most languages to represent a set of finite
constant values. In Dart, it is no different. By using the enum keyword, followed by the
constant values, you can define an enum type:

enum PersonType {
 student, employee
}

Note that you define just the value names. enum types are special types with a set of finite
values that have an index property representing its value. Now, let's see how it works.

First, we add a field to our previously defined Person class to store its type:

class Person {
 ...
 PersonType type;
 ...
}

Then, we can use it just like any other field:

main() {
 print(PersonType.values); // prints [PersonType.student,
 //PersonType.employee]
 Person somePerson = new Person();
 somePerson.type = PersonType.employee;
 print(somePerson.type); // prints PersonType.employee
 print(somePerson.type.index); // prints 1
}

You can see that the index property is zero, based on the declaration position of the value.

Intermediate Dart Programming Chapter 2

[44]

Also, you can see that we are calling the values getter on the PersonType enum directly.
This is a static member of the enum type that simply returns a list with all of its values. We
will examine this further soon.

The cascade notation
We've seen that Dart provides the dot notation to access a class member. In addition to that,
we can also use the double dot/cascade notation, syntactic sugar, which allows us to chain
a sequence of operations on the same object:

main() {
 Person somePerson = new Person()
 ..firstName = "Clark"
 ..lastName = "Kent";

 print(somePerson.getFullName()); // prints Clark Kent
}

The result is the same as when employing the typical approach. It's just a good way to write
succinct and legible code.

The cascade syntax works by getting the first expression's return value
(new Person(), in this case) and always operates on this value, ignoring
the next expression's return values.

Next, we are going to delve deeper into each of the class components mentioned
previously, to understand how they can be used to extend a class to all of our needs.

Constructors
To instantiate a class, we use the new keyword, followed by the corresponding constructor
with parameters, if required. Now, let's change the Person class and define a constructor
with parameters on it:

class Person {
 String firstName;
 String lastName;

 Person(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

Intermediate Dart Programming Chapter 2

[45]

 String getFullName() => "$firstName $lastName";
}

main() {
 // Person somePerson = new Person(); this would not compile as we
 //defined mandatory parameters on constructor
 Person somePerson = new Person("Clark", "Kent");
 print(somePerson.getFullName());
}

The constructor is also a function in Dart and its role is to initialize the instance of the class
properly. As a function, it can have many of the characteristics of a common Dart function,
such as arguments—required or optional, and named or positional. In the preceding
example, the constructor has two mandatory arguments.

If you look in our constructor body, it uses the this keyword. Furthermore, the constructor
parameter names are the same as the field ones, which could cause ambiguity. So, to avoid
this, we prefix the object instance fields with the this keyword during the value assign
step.

Dart provides another way to write a constructor like the one provided in the example, by
using a shortcut syntax:

// ... class fields definition

// shortcut initialization syntax
Person(this.firstName, this.lastName);

We can omit the constructor body as it only sets the class field values without any
additional setup applied to it.

Named constructors
Unlike Java and many other languages, Dart does not have overloading by redefinition, so,
to define alternative constructors for a class, you need to use the named constructors:

// ... class fields definition
// other constructors

Person.anonymous() {}

Intermediate Dart Programming Chapter 2

[46]

A named constructor is how you define alternative constructors for a class. In the preceding
example, we defined an alternative constructor for a Person class without a name.

The only difference compared with a simple method is that constructors
do not have a return statement, as the only thing they have to do is to
initialize the object instance properly.

We will see named constructors in action in the chapters on Flutter, as the
framework uses these a lot to initialize widget definitions.

Factory constructors
Another useful syntax in Dart is the factory constructor, which helps to apply the factory
pattern, a creation technique that allows classes to be instantiated without specifying the
exact resulting object type. Suppose we have the following descendants of the Person class:

class Student extends Person {
 Student(firstName, lastName): super(firstName, lastName);
}

class Employee extends Person {
 Employee(firstName, lastName): super(firstName, lastName);
}

As you can observe, the descendant classes are still almost the same as the Person class, as
they do not yet add any specific functionalities.

We can define a factory constructor on the Person class to instantiate the corresponding
class based on the required type argument:

class Person {
 String firstName;
 String lastName;

 Person([this.firstName, this.lastName]);

 factory Person.fromType([PersonType type]) {
 switch (type) {
 case PersonType.employee:
 return new Employee();
 case PersonType.student:
 return new Student();
 }
 return Person();
 }

Intermediate Dart Programming Chapter 2

[47]

 String getFullName() => "$firstName $lastName";
}

enum PersonType { student, employee }

The factory constructor is specified by adding the factory keyword, followed by the
constructor definition, typically in a base class or abstract class type. In our case, the
Person class defines a factory-named constructor based on PersonType specified in the
argument. If no type is passed, it creates a simple Person class by using its default
constructor.

Another important thing to note is that the factory constructor does not replace the default
class constructor. Hence, it and its descendants can still be instantiated directly by the
caller.

Field accessors – getters and setters
As mentioned previously, getters and setters allow us to access a field on a class, and every
field has these accessors, even when we do not define them. In the preceding Person
example, when we execute somePerson.firstName = "Peter", we are calling the
firstName field's set accessor and sending "Peter" as a parameter to it. Also in the
example, the get accessor is used when we call the getFullName() method on the person,
and it concatenates both names.

We can modify our Person class to replace the old getFullName() method and add it as a
getter, as demonstrated in the following code block, for example:

class Person {
 String firstName;
 String lastName;

 Person(this.firstName, this.lastName);

 Person.anonymous() {}

 String get fullName => "$firstName $lastName";
 String get initials => "${firstName[0]}. ${lastName[0]}.";
}

main() {
 Person somePerson = new Person("clark", "kent");

 print(somePerson.fullName); // prints clark kent
 print(somePerson.initials); // prints c. k.

Intermediate Dart Programming Chapter 2

[48]

 somePerson.fullName = "peter parker";
 // we have not defined a setter fullName so it doesn't compile
}

The following important observations can be made regarding the preceding example:

We could not have defined a getter or setter with the same field names:
firstName and lastName. This would give us a compile error, as the class
member names cannot be repeated.
The initials getter would throw an error for a person instantiated by
the anonymous named constructor, as it would not have firstName and
lastName values (equates to null).
We do not need to always define the pair, get and set, together. As you can see
we have only defined a fullName getter and not a setter, so we cannot
modify fullName. (This results in a compilation error, as indicated previously.)

We could have also written a setter for fullName and defined the logic behind it to set
firstName and lastName based on that:

class Person {
 // ... class fields definition
 set fullName(String fullName) {
 var parts = fullName.split(" ");
 this.firstName = parts.first;
 this.lastName = parts.last;
 }
}

This way, someone could initialize a person's name by setting fullName and the result
would be the same. (Of course, we have not carried out any checks to establish whether the
value passed as fullName is valid, that is, not empty, with two or more values, and so on.)

Static fields and methods
As you already know, fields are nothing more than variables that hold object values, and
methods are simple functions that represent object actions. In some cases, you may want to
share a value or method between all of the object instances of a class. For this use case, you
can add the static modifier to them, as follows:

class Person {
 // ... class fields definition

 static String personLabel = "Person name:";

Intermediate Dart Programming Chapter 2

[49]

 String get fullName => "$personLabel $firstName $lastName";
 // modified to print the new static field "personLabel"
}

Hence, we can change the static field value directly on the class:

main() {
 Person somePerson = Person("clark", "kent");
 Person anotherPerson = Person("peter", "parker");

 print(somePerson.fullName); // prints Person name: clark kent
 print(anotherPerson.fullName); // prints Person name: peter park

 Person.personLabel = "name:";

 print(somePerson.fullName); // prints name: clark kent
 print(anotherPerson.fullName); // prints name: peter parker
}

The static fields are associated with the class, rather than any object instance. The same goes
for the static method definitions. We can add a static method to encapsulate the name
printing, as demonstrated in the following code block, for example:

class Person {
 // ... class fields definition
 static String personLabel = "Person name:";

 static void printsPerson(Person person) {
 print("$personLabel ${person.firstName} ${person.lastName}");
 }
}

Then, we can use this method to print a Person instance, just like we did before:

main() {
 Person somePerson = Person("clark", "kent");
 Person anotherPerson = Person("peter", "parker");

 Person.personLabel = "name:";

 Person.printsPerson(somePerson); // prints name: clark kent
 Person.printsPerson(anotherPerson); // prints name: peter park
}

Intermediate Dart Programming Chapter 2

[50]

We could modify the fullName getter on the Person class to not use the
personLabel static field, to make more sense and obtain distinct results according to our
requirements:

class Person {
 // ... class fields definition

 String get fullName => "$firstName $lastName";
}

main() {
 Person somePerson = Person("clark", "kent");
 Person anotherPerson = Person("peter", "parker");

 print(somePerson.fullName); // prints clark kent
 print(anotherPerson.fullName); // prints peter parker

 Person.printsPerson(somePerson); // prints Person name: clark kent
 Person.printsPerson(anotherPerson); // prints Person name: peter park
}

As you can see, static fields and methods allow us to add specific behaviors to classes in
general.

Class inheritance
In addition to the implicit inheritance to the Object type, Dart allows us to extend defined
classes by using the extends keyword, where all of the members of the parent class are
inherited, except the constructors.

Now, let's check out the following example, where we create a child class for the existent
Person class:

class Student extends Person {
 String nickName;

 Student(String firstName, String lastName, this.nickName)
 : super(firstName, lastName);

 @override
 String toString() => "$fullName, also known as $nickName";
}

main() {
 Student student = new Student("Clark", "Kent", "Kal-El");

Intermediate Dart Programming Chapter 2

[51]

 print(student); // same as calling student.toString()
 // prints Clark Kent, also known as Kal-El
}

The following observations can be made regarding the preceding example:

Student: The Student class defines its own constructor. However, it calls the
Person class constructor, passing the required parameters. This is done with the
super keyword.
@override: There's an overridden toString() method on the Student class.
This is where inheritance makes sense—we change the behavior of a parent class
(Object, in this case) on the child class.
print(student): As you can see in the print(student) statement, we are not
calling any method; the toString() method is called for us implicitly.

The toString() method
A great common example of overriding parent behavior is the toString() method. The
objective of this method is to return a String representation of the object:

class Student extends Person {
 // ... fullName(from Person class) and other fields
 @override
 String toString() => "$fullName, also known as $nickName";
}

main() {
 Student student = new Student("Clark", "Kent", "Kal-El");

 print("This is a student: $student");
 // prints: This is a student: Clark Kent, also known as Kal-El
 // will also call the toString() of student implicitly
}

As you can see, this makes the code cleaner, and we provide a good textual representation
of the object that can aid in understanding logs, text formatting, and more.

Interfaces, abstract classes, and mixins
In Dart, abstract classes and interfaces are closely related to one another. This is because
Dart implements interfaces in a subtly different way from most typical languages.

Intermediate Dart Programming Chapter 2

[52]

Let's take a look at abstract classes first before linking them to the topic of implicit
interfaces.

Abstract classes
In OOP, abstract classes are classes that cannot be instantiated, which makes a lot of sense,
depending on the context and the level of abstraction in a program.

For example, our Person class could be abstract if we want to make sure that it only exists
in the context of the program if it is a Student instance or another subtype:

abstract class Person {
 // ... the body was hidden for brevity
}

The only thing we need to change here is the beginning of the class definition, marking it as
abstract:

main() {
 Person student = new Student("Clark", "Kent", "Kal-El"); // works as
 //we are instantiating the subtype
 // Person p = new Person();
 // abstract classes cannot be instantiated

 print(student);
}

As you can see, we can no longer instantiate a Person class, just its subtype, Student.

An abstract class may have abstract members without an implementation, allowing it to be
implemented by the child types that extend them:

abstract class Person {
 String firstName;
 String lastName;

 Person(this.firstName, this.lastName);

 String get fullName;
}

Intermediate Dart Programming Chapter 2

[53]

The fullName getter from the preceding Person class is now abstract, as it does not have
an implementation. It is the responsibility of the child to implement this member:

class Student extends Person {
 //... other class members

 @override
 String get fullName => "$firstName $lastName";
}

The Student class implements the fullName getter because, if it did not, we would not be
able to compile the code.

Interfaces
Dart does not have the interface keyword but does allow us to use interfaces in a subtly
different way from what you may be used to. All class declarations are themselves
interfaces. This means that, when you are defining a class in Dart, you are also defining an
interface that may be implemented and not only extended by other classes. This is called
implicit interfaces in the Dart world.

On this basis, our previous Person class is also a Person interface that could be
implemented, instead of extended, by the Student class:

class Student implements Person {
 String nickName;

 @override
 String firstName;

 @override
 String lastName;

 Student(this.firstName, this.lastName, this.nickName);

 @override
 String get fullName => "$firstName $lastName";

 @override
 String toString() => "$fullName, also known as $nickName";
}

Intermediate Dart Programming Chapter 2

[54]

Note that, in general, the code does not change too much, except inasmuch as the members
are now defined in the Student class. The Person class is just a contract that the Student
class adopted and must implement.

If you want to declare an explicit interface, you just need to make an
abstract class without any implementation on it, just member definitions,
and it will be a pure interface, ready to be implemented.

Mixins – adding behavior to a class
In OOP, mixins are a way to include functionalities on a class without the need for
associations between the parts, such as inheritance.

The most common contexts where mixins can be used are in places where multiple
inheritances may be needed, as it is an easy way for classes to use common functionality.

In Dart, there are several ways in which to declare a mixin:

By declaring a class and using it as a mixin, allowing it to also be used as an
object
By declaring an abstract class, allowing it to be used as a mixin or to be inherited,
but not instantiated
By declaring it as a mixin, allowing it to be used only as a mixin

No matter how you declare a mixin, it can also be used as an interface,
since it exposes members, and that is the premise behind all of it.

Now, let's check an example of declaring a functionality that our previous Person class
could have.

For example, let's think about the professions a person could have—some people may have
specific skills and common skills. Mixins can be ideal for this use case because we can add
the skills to a profession without the need to extend a common, more generic class or
implement an interface in each one. As the implementation would probably be the same, it
would cause code duplications:

// Person class definition

class ProgrammingSkills {

Intermediate Dart Programming Chapter 2

[55]

 coding() {
 print("writing code...");
 }
}

class ManagementSkills {
 manage() {
 print("managing project...");
 }
}

In the preceding example, we created two profession skills classes, ProgrammingSkills
and ManagementSkills. Now, we can use them by adding the with keyword to the class
definition, for example:

class SeniorDeveloper extends Person with ProgrammingSkills,
ManagementSkills {
 SeniorDeveloper(String firstName, String lastName) : super(firstName,
lastName);
}

class JuniorDeveloper extends Person with ProgrammingSkills {
 JuniorDeveloper(String firstName, String lastName) : super(firstName,
lastName);
}

Both classes will have the coding() method without the need to implement it in each class,
as it is already implemented in the ProgrammingSkills mixin.

As mentioned previously, there are multiple ways of declaring a mixin. In the preceding
example, we used a simple class definition. This way, the ProgrammingSkills class can be
extended like a normal class or even implemented as an interface (losing the mixin
property):

class AdvancedProgrammingSkills extends ProgrammingSkills {
 makingCoffee() {
 print("making coffee...");
 }
}

Writing AdvancedProgrammingSkills in this way does not make it a
mixin. Mixin classes must extend the Object class and declare no
constructor.

Intermediate Dart Programming Chapter 2

[56]

Another way of writing a mixin is by using the mixin keyword:

mixin ProgrammingSkills {
 coding() {
 print("writing code...");
 }
}

mixin ManagementSkills {
 manage() {
 print("managing project...");
 }
}

Writing mixins in this way prevents unwanted behavior because mixins cannot be
extended and are intended to be used properly. The profession classes that use mixins
remain the same.

Another thing we can do is to limit the classes that can use a certain mixin. To do so, we
need to specify the superclass required by using the on keyword:

mixin ProgrammingSkills on Developer {
 coding() {
 print("writing code...");
 }
}

Mixins limited by the on keyword require the target class to have a no-
arguments constructor.

Callable classes, top-level functions, and
variables
Dart is very flexible in terms of letting the developer take control of all of the pieces of code
and, unlike many languages, there's no single way of doing something.

As Dart proposes to combine the benefits of modern OOP concepts with traditional ones,
you can always choose when and where to apply different approaches.

Intermediate Dart Programming Chapter 2

[57]

Callable classes
In the same way that Dart functions are nothing more than objects, Dart classes can behave
like functions too, that is, they can be invoked, take some arguments, and return something
as a result. The syntax for emulating a function in a class is as follows:

class ShouldWriteAProgram { // this is simple class
 String language;
 String platform;

 ShouldWriteAProgram(this.language, this.platform);

 // this special method named 'call' makes the class behave as a function
 bool call(String category) {
 if(language == "Dart" && platform == "Flutter") {
 return category != "to-do";
 }
 return false;
 }
 }

main() {
 var shouldWrite = ShouldWriteAProgram("Dart", "Flutter");

 print(shouldWrite("todo")); // prints false.
 // this function is invoking the ShouldWriteAProgram callable class
 // resulting in an implicit call to its "call" method
}

As you can see, the shouldWrite variable is an object, an instance of
the ShouldWriteAProgram class, but can also be called as a normal function passing a
parameter and using its return value. This is possible because of the existence of
the call() method defined in the class.

The call() method is a special method in Dart. Every class that defines it can behave as a
normal Dart function.

If you assign a callable class to a function type variable, it will be
implicitly converted into a function type and behave just like a normal
function.

Intermediate Dart Programming Chapter 2

[58]

Top-level functions and variables
In this chapter, we have seen that functions and variables in Dart can be tied to classes as
members—class fields and methods.

The top-level way of writing functions is also already known from Chapter 1, An
Introduction to Dart, where we wrote the most famous Dart function: the entry point of
every application, main(). For variables, the way of declaring is the same. We just leave it
out of any function scope, so that it's accessible globally on the application/package:

var globalNumber = 100;
final globalFinalNumber = 1000;

void printHello() {
 print("""Dart from global scope.
 This is a top-level number: $globalNumber
 This is a top-level final number: $globalFinalNumber
 """);
}

main() {
 // the most famous Dart top level function
 printHello(); // prints the default value

 globalNumber = 0;
 // globalFinalNumber = 0; // does not compile as this is a final variable

 printHello(); // prints the new value
}

As you can see, variables and functions do not need to be bound to a class to exist. This is
the flexibility proposed by the Dart language, bringing to the developer the ability to write
simple and consistent code, without forgetting the patterns and features of modern
languages.

Understanding Dart libraries and packages
Libraries are a way to structure a project based on modularity, which allows the developer
to split the code over multiple files and to share some piece of code or module with other
developers.

Intermediate Dart Programming Chapter 2

[59]

Many programming languages use libraries to provide this modularity to the developer,
and Dart is no different. In Dart, these libraries also have another important role besides
code structuring. That is, they determine what is visible or not to other libraries.

Before we get into the Dart package, we need to understand the smallest unit that the
library consists of. First, let's explore how to use a library inside our package and, following
this, learn how to define a library in Dart.

Importing and using a library
In Chapter 1, An Introduction to Dart, in the Functions section, we imported the meta library
to use the @required annotation on some parameters. Now, let's explore
the import statement in more detail.

To define a library, we simply create a Dart file with some code in it.

Take a look at the example_1_importing example for a clearer
visualization of the libraries and import statements. You can find the
source code of this chapter on GitHub.

In this example, we defined a simple library with the Person, Student,
and Employee classes alongside the PersonType enum:

// person_lib library - the Classes contents were truncated for brevity

class Person {
 String firstName;
 String lastName;
 PersonType type;

 Person([this.firstName, this.lastName]);

 String get fullName => "$firstName $lastName";
}

enum PersonType { student, employee }

class Student extends Person {
 Student([firstName, lastName]): super(firstName, lastName) {
 type = PersonType.student;
 }
}

https://cdp.packtpub.com/hands_on_native_mobile_development_with_google_flutter_/wp-admin/post.php?post=26&action=edit#post_24

Intermediate Dart Programming Chapter 2

[60]

class Employee extends Person {
 Employee([firstName, lastName]): super(firstName, lastName) {
 type = PersonType.employee;
 }
}

To import it, we can just add the import library_path; statement at the beginning of
the file and before any code:

import 'person_lib.dart';

void main() {

 Person person = Person("Clark", "Kent");
 // omitted the optional 'new' keyword

 Person student = Student("Clark", "Kent");

 print("Person: ${person.fullName}, type: ${person.type}");
 print("Student: ${student.fullName}, type: ${student.type}");
}

As the files are in the same directory, the import path is just the filename. After adding
the import statement, we can use any available code from it—in the same way that we did
with the Person and Student classes.

Importing show and hide
If you take a look at the preceding example, you will notice that we have not used all of the
available classes from the person_lib library. To make the code cleaner and less
susceptible to errors and naming conflicts, we can use the show keyword, which allows us
to import only the identifiers that we want to use effectively in our code:

// import 'person_lib.dart' show Person, Student;

We can also specify the identifiers we explicitly don't want to import by using
the hide keyword. In this case, we will be importing all of the identifiers from the library
except the ones after the hide keyword:

// import 'person_lib.dart' hide Employee;

Intermediate Dart Programming Chapter 2

[61]

Importing prefixes to libraries
In Dart, there's no namespace definition or something that uniquely identifies a library in
the context that it is used, so conflicts may happen when creating identifier names; that is,
libraries may define a top-level function or even a class with the same name. Although we
can use the show and hide modifiers to explicitly set what members we want to import
from a library, this is not sufficient for solving the issue because, sometimes, we may be
interested in some class or top-level function with the same name in different libraries:

Fortunately, Dart has a way to work around this. The as keyword can be added after
an import statement to set a prefix to all of the identifiers from the imported library:

import 'a.dart' as libraryA;
import 'b.dart' as libraryB;

void main() {

 libraryA.Person personA = libraryA.Person("Clark", "Kent");

 print("Person A: ${personA.fullName}");

Intermediate Dart Programming Chapter 2

[62]

 libraryB.Person personB = libraryB.Person(); // 'b' Person does not
 // have any field
 print("Person B: ${personB}");
}

As you can see, without this prefix, we don't have a way to identify which Person class to
use. The same applies to any public library identifier, such as a function or a variable. After
specifying the prefix, we need to add it to every call to a member of that library, not only
the conflicting ones.

You can find the source code of this chapter on GitHub.

If you remember from Chapter 1, An Introduction to Dart, the as keyword
is also used for typecasting from a supertype to a subtype.

Importing path variants
In the previous examples, we imported a local file library that lives in the same directory as
the library customer, so we just specified the filename.

However, that's not the case for when you are using third-party Dart packages. In this case,
the files will not exist in the same directory, so let's take a look at how we can import an
outer package Dart library.

There are several ways to specify library paths in the import statement, and we have
already used two of them: relative file import and importing from a package. Now, let's take
a look at all of them in more detail.

Let's assume that we have a package directory of a small foo package containing two
files: a.dart and b.dart. To import them, we can use multiple approaches:

A relative file path: This is similar to the method that we used in the previous
example, as the libraries were in the same folder. We can just put the relative
path to the library file we want to import, as follows:

import 'foo/a.dart';
import 'foo/b.dart';

Intermediate Dart Programming Chapter 2

[63]

An absolute file path: We can add the absolute path on the computer to a library
file by adding the file:// URI prefix to the import path:

import "file:///c:/dart_package/foo/a.dart";
import "file:///c:/dart_package/foo/b.dart";

Although possible, absolute importing is not recommended and it is a bad
way to import libraries as, in distributed development environments, it
will likely cause problems when locating files.

A URL over the web: In the same way as using an absolute file path, we can add
the URL of a website containing the source code of a library directly over
the http:// protocol:

 import "http://dartpackage.com/dart_package/foo/a.dart";

A package: This is the most common way to import a library. Here, we specify
the library path from the package root. We will explore the packages definition
later in this chapter; in the case of importing a local library, it goes from the root of
the package, down the source tree until the library file:

import 'package:my_package/foo/a.dart';
import 'package:my_package/foo/b.dart';

The package method is the recommended way to import libraries, as it works well
with local libraries (that is, your project's local files and libraries) and is the way to use the
provided libraries from third-party packages.

Feel free to revisit the example of the package after you learn what a
package is in the Dart context. You can find the source code of this chapter
on GitHub.

Creating Dart libraries
A Dart library can be composed of a single file or multiple files. In the most common and
recommended way, when you create a file, you create a small library. But, if you prefer,
you can split a library definition into multiple files. Although less common, it can be
useful depending on the context, especially when working with very interdependent
classes, for example.

Intermediate Dart Programming Chapter 2

[64]

The decision for splitting is important, not only for encapsulation but also for how library
customers will import and use them. Let's say, for example, that we have two tightly
coupled classes that need to live together for them to work. Dividing them into different
libraries will force customers to import both libraries. This is not the most practical way, so
it's very important to be careful of library splitting when creating open source libraries.

Before we get into alternative ways of defining a library, we need to take a look at library
privacy; this helps with encapsulation, making it easier to understand why we need to
properly split a library into multiple files or not.

Library member privacy
The most common way to control privacy (code encapsulation), in most languages, happens
at the class level. This is by adding some specific keyword that identifies the member level
of access, such as protected and private in the Java language. For example, consider the
following diagram:

In Dart, every identifier, by default, is accessible from any place, inside and outside the
library, except if it is prefixed with an _ (underscore) character. This means that it becomes
private to the declaring libraries, preventing it from being accessible from the outside. Take
a look at the next example, where we have used the _ prefix.

The Dart meta package provides the @protected annotation. When
added to a class member, it indicates the member should be used only
inside the class or its subtypes.

Intermediate Dart Programming Chapter 2

[65]

Additionally, note that this part of Dart is very likely to change in future versions, as a
portion of the Dart community has been influenced by Java and other object-oriented
languages, where the privacy control takes place at the class level.

The library definition
Dart has a keyword to define a library—library, as you may expect. Although optional,
this keyword is very useful when creating multiple file libraries or to create documentation
for libraries before publishing them as APIs.

Dart has the dartdoc tool for generating HTML documentation for Dart
packages. To use this tool, we have to write comments in a specific way,
and we will explore this further in the following examples.

Let's take a look at how to define a library using this keyword, and the multiple approaches
that can be taken when creating libraries to make the correct encapsulation and to make
library usage more concise.

A single-file library
The most simplistic way to define a library is by adding all the interrelated code, that is,
classes, top-level functions, and variables into one single file. For example, our
previous Person library is as follows:

class Person {
 String firstName;
 String lastName;
 PersonType _type;

 Person({this.firstName, this.lastName});

 String toString() => "($_type): $firstName $lastName";
}

enum PersonType { student, employee }

class Student extends Person {
 Student({firstName, lastName})
 : super(firstName: firstName, lastName: lastName) {
 _type = PersonType.student;
 }
}

Intermediate Dart Programming Chapter 2

[66]

class Programmer extends Person {
 Programmer({firstName, lastName})
 : super(firstName: firstName, lastName: lastName) {
 _type = PersonType.employee;
 }
}

There is nothing new to note here in the file definition, just the following two observations:

The file, by itself, is a library, so we do not need to declare anything explicitly.
The _type field is private to the library, that is, it's only accessible by code from
this same library.

Let's say that we try to use these classes from another library, as follows:

main() {
 Programmer programmer = Programmer(firstName: "Dean", lastName: "Pugh");

 // we cannot access the _type property as it is private to the
 // single_file library programmer._type = PersonType.employee;

 print(programmer);
}

As you can see, we have access to all of the public identifiers from the previously defined
library. We cannot access the _type property to set the value, although, in
the toString() method of the Person class, its value is exposed.

Although it is tempting to define all of the related code in just one file, it may become
harder to maintain, as the code and its complexity grow over time. Instead, use this for
simple types of definitions that are unlikely to change over time.

Splitting libraries into multiple files
We have seen the single-file approach to define a library, so now let's explore how to split
the library definition into multiple files to allow us to organize the project in small, reusable
pieces (which is the real purpose of using libraries).

Intermediate Dart Programming Chapter 2

[67]

To define a multiple-file library, we can use the combined part, part of,
and library statements:

part: This allows a library to specify that it's composed of small library parts.
part of: The small library part specifies which library it helps to compose.
library: This is for using the preceding part statements, as we need to
relate part files with the main part of the library.

Let's examine what the preceding example looks like by using the part statements:

// the 'main' part of the library, person_library.dart
// defined using the library keyword and listing parts below

library person;

part 'person_types.dart';
part 'student.dart';
part 'programmer.dart';

class Person {
 String firstName;
 String lastName;
 PersonType _type;

 Person({this.firstName, this.lastName});

 String toString() => "($_type): $firstName $lastName";
}

Let's make some observations about the preceding code, as follows:

The library keyword is followed by the library identifier, person, in this
case. It's good practice to name the identifier by using only lowercase characters
and the underscore character as a separator. Our example could be called
anything such as person_lib or person_library.
The library parts are listed just below the library definition.
The code itself does not change anything.

Intermediate Dart Programming Chapter 2

[68]

The part syntax is defined as follows:

The PersonType part is defined in the person_types.dart file:

part of person;

enum PersonType { student, employee }

The Student part is defined in the student.dart file:

part of person;

class Student extends Person {
 Student({firstName, lastName})
 : super(firstName: firstName, lastName: lastName) {
 _type = PersonType.student;
 }
}

The Programmer part is defined in the programmer.dart file:

part of person;

class Programmer extends Person {
 Programmer({firstName, lastName})
 : super(firstName: firstName, lastName: lastName) {
 _type = PersonType.employee;
 }
}

The implementation by itself does not change anything; the only
difference is the part of statement at the beginning of the file.

Additionally, as you can see, the _type property is also accessible in the part files, as it's
private to the person library and all of the files are in the same library.

If the part files had some fields, classes, or top-level functions and
variables prefixed with _, they would be accessible to the main library file
and other parts as well; remember, they are all in the same library.

Intermediate Dart Programming Chapter 2

[69]

Let's take a look at the following code, which uses the person library:

import 'person_lib/person_library.dart';

main() {
 // access to the Programmer class is allowed, part of the person_library
 Programmer programmer = Programmer(firstName: "Dean", lastName: "Pugh");

 // cannot access the _type property, it is private to person library
 // programmer._type = PersonType.employee;

 print(programmer);
}

Take a look at the preceding code; the person library customer does not need to change
anything, as the modifications we made are in the library's inner structure.

The part syntax is changing and is a candidate to be discontinued in the
next Dart release. If this occurs, the most likely change will be the creation
of new syntax to replace it.

A multiple-file library – the export statement
The preceding approach is not the ideal way of splitting a Dart library, as already
mentioned. This is because the syntax of the part statement is likely to change in future
versions. Additionally, you may have found it a little overdone and difficult to use if you
just want to control the visibility of library members.

We can choose to simply not create the library parts and just split the library into small
individual libraries. For the previous examples, this would result in some important
changes during implementation.

We have the previous parts as three individual libraries: person_library, programmer,
and student. Although related, they behave as individual libraries and do not know
anything except the public members of each other:

// person library defined in person_library.dart
class Person {
 String firstName;
 String lastName;
 final PersonType type;

 Person({this.firstName, this.lastName, this.type});

Intermediate Dart Programming Chapter 2

[70]

 String toString() => "($type): $firstName $lastName";
}

enum PersonType { student, employee }

The person library does not need the library identifier in this case.

The programmer library imports the person library to access its Person class:

// programmer library defined in programmer.dart

import 'person_library.dart';

class Programmer extends Person {
 Programmer({firstName, lastName})
 : super(firstName: firstName, lastName: lastName, type:
PersonType.employee);
}

In the same way, the student library imports the person library:

// student library defined in student.dart

import 'person_library.dart';

class Student extends Person {
 Student({firstName, lastName})
 : super(
 firstName: firstName,
 lastName: lastName,
 type: PersonType.student,
);
}

You can see the following from the preceding code:

The programmer and student libraries need to import the person library to
extend it.
Additionally, the type property from the Person class was made public by
removing the _ prefix. This means that it can be accessed by the other libraries.
As the type property, in this case, is not intended to change and it is initialized
in the constructor, we have made it final as well.

Let's take a look at the library customer, as follows:

import 'person_lib/programmer.dart';
import 'person_lib/student.dart';

Intermediate Dart Programming Chapter 2

[71]

main() {
 // we can access the Programmer class as it is part of the person_library
 Programmer programmer = Programmer(firstName: "Dean", lastName: "Pugh");
 Student student = Student(firstName: "Dilo", lastName: "Pugh");

 print(programmer);
 print(student);
}

The person library customer will have a small change, as now the library is split into
multiple parts, so we will need to import each library we want to use individually.

This is not a big deal when talking about small libraries, but try to think about a
more complex library structure, where importing all of the interrelated libraries
individually would add difficulty to its usage.

This is where the export statement comes in. Here, we can select the main library file and,
from there, export all of the smaller libraries related to it. In this way, the customer only
needs to import a single library and all of the smaller libraries will be available alongside it.

In our example, the best choice for using this could be the person library:

export 'programmer.dart';
export 'student.dart';

class Person { ... }

enum PersonType { ... }

In this way, the library customer would be as follows:

import 'person_lib/person_library.dart';

main() {
 // we can access the Programmer and Student class as they are exported
 // from the person_library
 Programmer programmer = Programmer(firstName: "Dean", lastName: "Pugh");
 Student student = Student(firstName: "Dilo", lastName: "Pugh");

 print(programmer);
 print(student);
}

Notice that only the import statement changes. We can use the classes from the small
libraries normally as they are exported from person_library.

Intermediate Dart Programming Chapter 2

[72]

After gaining an understanding of the Dart library concept, we can now examine how to
combine these pieces of code into something shareable and reusable: the Dart package.

Dart packages
A Dart package is the starting point of any Dart project. In previous examples, we did not
bother about it as we were using single-file syntax examples; however, in the real world, we
will always be working with packages:

The main benefit of using and creating packages is that the code can be reused and shared.
In the Dart ecosystem, this is done by the pub tool, which allows us to pull and send
dependencies to the pub.dartlang.org website and repository.

The use of a library package in a project makes it an immediate dependency, and the
used library may have its own dependencies, called transitive dependencies.

If you are playing with DartPad, it's time to change; now, you will need a
proper Dart development environment configured, as we will start to
work with packages.

In general, there are two kinds of Dart package: application packages and library
packages.

Application packages versus library packages
Not all packages are meant to be shareable; an application itself is also a package. These
packages can have dependencies on library packages normally, but they are not intended to
be used as a dependency in other projects.

https://pub.dartlang.org

Intermediate Dart Programming Chapter 2

[73]

On the other hand, library packages are the ones that contain some useful code that may be
helpful in many projects. These types can be used as a dependency and have dependencies
on others too.

Put simply, the recommended structure of a Dart package does not differ too much
between an application and a library package—their purpose and usage are different from
each other.

Package structures
The first important thing to point out about a Dart package project structure is that its
validity is asserted by the presence of a pubspec.yaml file; that is, if there's
a pubspec.yaml file in your structure, then there is a package and this is where you
properly describe it—without it, there's no package at all. This is what a typical package
looks like:

This example package was generated by using the Stagehand tool. You can
refer to the following section for more details.

For application packages, there is no required project layout to adopt (as it's not intended to
be published to the pub repository); however, as it is evolving, there's already several
recommended ways and conventions to follow. Let's take a look at the common structure of
a general Dart package. Most of the structure is conventional, and depends on your project
complexity and whether you want to share its code in some way.

Intermediate Dart Programming Chapter 2

[74]

Let's take a look at the role of each file and directory in a typical Dart package structure:

pubspec.yaml: As already pointed out, this is the fundamental package file and
it describes the package to the pub repository. We will be examining the full
structure of this file in more detail later.
The lib/ and lib/src/ directories: These are the places where the
package library source code lives. As you already know, a simple .dart file is
a small library, so everything you put in the lib directory is publicly available to
other packages. This is known as the package public API.
The src subdirectory contains, by convention, all of the internal package code,
that is, the private source code of the package that is not meant to be directly
imported by others.

Although it is possible to import a library placed in the src subdirectory,
this is not recommended, as it's intended to be an internal library
implementation and not part of the library's public API. It may change
and break the customer code.

lib/simple_package_structure.dart: A common practice is to add a single,
or a few, top-level files that export (remember the export statement) the
local src/libraries. The name of this file is typically the same as the package. If
there is more than one library, then the name must be simple enough to identify
the general purpose of the exported libraries.
test/: Unit tests and benchmark analysis are conventionally put inside
the test and benchmark directories, respectively. Additionally, the source code
inside the test folder is typically postfixed with the _test identifier.

You can refer to the An introduction to unit testing with Dart section to
understand how to write unit tests.

README.md, CHANGELOG.md, and LICENSE: These are markdown files typically
present in packages that are intended to be published in some public repository,
such as the Dart pub. These files are also very common in open source
projects. The LICENSE file, which specifies the source code copyright
information, is also sometimes present.
example/: This is important in published packages and can demonstrate how
the package can be used.
analysis_options.yaml: This is a useful file to customize the lint checks, style
analysis, and other precompile checks.

Intermediate Dart Programming Chapter 2

[75]

You can check the analysis customization tutorial on the Dart website
at https:/ / www. dartlang. org/guides/ language/ analysis- options.

Some additional files depend on the purpose of the project, including the following:

tools/: This is a directory containing scripts that can be used during
development, including utilities to manipulate images, raw files, and any kind of
script that is private to the package and useful to the developer.
doc/ and doc/api: This is where you can add some useful information about
the project. api/ subdirectory is where the dartdoc tool (presented
in Chapter 1, An Introduction to Dart) generates the API documentation based on
code comments.

In web packages, some new files and directories are included; they are as follows:

The lib/ folder is the typical destination of static web resource files, such as
images or .css files.
web/ is a directory used in web application projects. Unlike the lib/ folder,
which is meant to be library code, this code is meant to have the web application
source code and entry points (that is, the main() function).

In command-line packages, the bin directory is included:

The bin/ directory is meant to have some script that can run directly from the
command line; the Stagehand tool described next is an example of the command-
line library tool.

The Flutter project structure has some similarities to Dart packages and
we will learn about this structure in the following chapter.

Stagehand – the Dart project generator
Starting a new Dart project requires a few simple steps: create an empty folder, add
a pubspec.yaml file to it, and describe the package with a name, version, and so on.
Afterward, you add the necessary files gradually.

https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options
https://www.dartlang.org/guides/language/analysis-options

Intermediate Dart Programming Chapter 2

[76]

In general, most of the files and their structures do not change from package to package, so
creating the whole Dart package structure every time can be tedious. This is why the
Stagehand tool was created—to generate Dart scaffolding projects.

To run the Stagehand tool, we first need to install it on our system. In a properly configured
Dart environment, run the following pub command in a Terminal to install it:

pub global activate stagehand

The pub tool is present in the Dart SDK. If you have a Dart or Flutter
environment ready, you can use this tool. Otherwise, take another look
at Chapter 1, An Introduction to Dart.

This command downloads a package (Stagehand, in this case) from the pub repository and
installs it in the Dart packages cache directory in your system. This varies according to your
operating system: $HOME/.pub-cache/bin on Linux-based systems
and AppData\Roaming\Pub\Cache\bin on Windows.

To run Stagehand and any other global activated package tool from the command line, you
can use one of two ways:

The first is by preceding the tool command with the following:

pub run global

The second is by adding the Dart global packages cache directory into the
operating system path.

After properly installing and configuring the Stagehand tool, you can start generating Dart
projects:

First, create an empty folder with the desired package name.1.

Take a look at the name field description in The pubspec file section to
understand how to properly name your package.

Intermediate Dart Programming Chapter 2

[77]

Then, inside the created folder, generate the package structure using the2.
following command:

 pub run global stagehand <template>

Alternatively, if you have your path properly configured, you can use stagehand
<template>, where <template> is the desired Stagehand template to use.

You can check the available project templates on the project page of the
Dart pub website at https:/ /pub. dartlang. org/ packages/ stagehand.

The pubspec file
The pubspec file is in the heart of a Dart package, and to understand how to properly
describe the package, we need to understand how this file is structured. This file is based
on the yaml syntax, a common format used for configuration files, with a structure that
is easy to read and follow. The pubspec file is as follows:

name: simple_package_structure
description: A simple package example
version: 1.0.0
homepage: https://www.example.com
author: Alessandro Biessek <alessandrobiessek@gmail.com>

environment:
 sdk: '>=2.0.0 <3.0.0' # check the dependencies section
 # below to understand deps versioning

dependencies:
 json_serializable: ^2.0.1

dev_dependencies:
 test: ^1.0.0

Flutter projects also contain a pubspec file with some specific available
fields. For more information, you can refer to Chapter 3, An Introduction
to Flutter.

https://pub.dartlang.org/packages/stagehand
https://pub.dartlang.org/packages/stagehand
https://pub.dartlang.org/packages/stagehand
https://pub.dartlang.org/packages/stagehand
https://pub.dartlang.org/packages/stagehand
https://pub.dartlang.org/packages/stagehand
https://pub.dartlang.org/packages/stagehand
https://pub.dartlang.org/packages/stagehand
https://pub.dartlang.org/packages/stagehand
https://pub.dartlang.org/packages/stagehand
https://pub.dartlang.org/packages/stagehand
https://pub.dartlang.org/packages/stagehand
https://pub.dartlang.org/packages/stagehand

Intermediate Dart Programming Chapter 2

[78]

The file specifies the package metadata information, which is useful if you want to publish
the package. It also defines the package's third-party dependencies and the Dart SDK
version. Let's examine the pubspec fields in more detail:

name: This is the identifier of the package. It is required and should
contain only lowercase letters and digits, plus the _ character; additionally, it
should be a valid Dart identifier (that is, it cannot start with digits and cannot be
a reserved word). This is a very important property if you want to publish the
package in the pub repository, and it is good to check the existing package names
to avoid duplication.
description: While this is an optional field, it is required if you intend to
publish the package, describing in simple words the purpose of the package.
version: This is also optional for personal packages, but it is required for
publication to the pub repository. It's important to maintain consistency in the
versioning of a package that will be usable by the community.
homepage: For pub packages, this will be linked to the package's page on the pub
website. It's very important to provide one when intending to publish it.
author: Although not mandatory, it's important to provide contact information
about the creator or creators of the library. Additionally, a library can have more
than one author; in this case, the YAML list syntax can be used by setting
the authors field instead (note the optional contact information):

authors:
- Alessandro Biessek <alessandrobiessek@gmail.com>
- Alessandro Biessek

dependencies and dev_dependencies: These refer to the real purpose of
the pubspec file. A listing of third-party packages is required for the usage of the
library and the development of the library, respectively.
environment: Besides the third-party dependencies, there is one more, let's
say, the main dependency of a package, which is the Dart SDK itself. In this field,
you need to specify the target and the supported Dart SDK versions.

The environment field is the SDK dependency; it's recommended that
you specify the Dart SDK target version by using the range syntax, as the
semantic range is not compatible with older versions (that is, < 1.8.3).

The typical pubspec structure has the fields that were specified earlier. For a
complete explanation of the pubspec file and other purpose-specific fields, take a look at
the Dart website: https:/ /www. dartlang. org/tools/ pub/pubspec.

https://www.dartlang.org/tools/pub/pubspec
https://www.dartlang.org/tools/pub/pubspec
https://www.dartlang.org/tools/pub/pubspec
https://www.dartlang.org/tools/pub/pubspec
https://www.dartlang.org/tools/pub/pubspec
https://www.dartlang.org/tools/pub/pubspec
https://www.dartlang.org/tools/pub/pubspec
https://www.dartlang.org/tools/pub/pubspec
https://www.dartlang.org/tools/pub/pubspec
https://www.dartlang.org/tools/pub/pubspec
https://www.dartlang.org/tools/pub/pubspec
https://www.dartlang.org/tools/pub/pubspec
https://www.dartlang.org/tools/pub/pubspec
https://www.dartlang.org/tools/pub/pubspec
https://www.dartlang.org/tools/pub/pubspec

Intermediate Dart Programming Chapter 2

[79]

You can use the # character to start a comment in yaml.

Package dependencies – pub
Now that you understand the most important role of the pubspec file in the package when
developing Dart applications, you can add third-party package dependencies to your
project. There are important pub commands that you can work with when adding or
updating package dependencies to your project. We also need to demonstrate how to
properly specify the dependency version that we are required to use.

After you start a new Dart project, either manually or by using a generator tool such as
Stagehand, the first thing you must do is run the following command:

 pub get

For example, the following package contains only the following pubspec file:

Additionally, it contains the pubspec contents, as follows:

name: adding_dependencies

This is a minimal package description and it does not have any dependencies specified, not
even the target Dart SDK version. However, let's execute the pub get command inside
the package folder, as it will work in the same way:

pub get

We get the following successful output:

Resolving dependencies...
Got dependencies!

Intermediate Dart Programming Chapter 2

[80]

We will get a file structure like in the following screenshot:

Notice the new files generated by the command inside the .packages folder; these files
are important for the pub tool to work with the dependency packages:

.packages: This maps the dependencies in the system's pub cache (previously
mentioned in the Stagehand – the Dart project generator section). Instead of making
copies in all of your packages, the pub tool simply stores the mapping between
the package and its respective location in the system. After the package is
mapped here, it will be available for you to import inside your Dart code. This
file should not be included under the source code management system; this is
because it's generated and managed by the pub tool.

pubspec.lock: This is the auxiliary file to the pub tool that contains all of the
dependency graphs of the package, that is, it lists all of the immediate
dependencies and the transitive ones. It also contains the exact versions and
other metadata information about all of the dependencies. It is recommended
that you include this file in the source management system only if it is an
application's package; this helps a dev team, for example, to work with the exact
same dependency configuration. If you are using a library package, then it's
typically not included, as it is expected to work with a large range of
dependencies, that is, it should not be locked to specific versions.

Remember, this is all made by the pub tool, so you should not touch these
files.

Specifying dependencies
Now that you know how the pub tool resolves packages inside the project, let's take a look
at how to add dependencies to it.

Intermediate Dart Programming Chapter 2

[81]

Dependencies are specified in the dependencies field of the pubspec file. It is a YAML list
field, so you can specify as many as needed in the field. Let's suppose that we need
the json_serializable package in our project. We can specify it by simply adding to the
list, as follows:

name: adding_dependencies

dependencies:
 json_serializable:
 # another packages below

The syntax to specify a dependency is as follows:

<package>:
 <constraints>

Here, you add its name (<package>) followed by the <constraints> fields: version and
source. In this case, we did not specify any constraint, so it assumes any
available version for the version constraint and default source (pub.dartlang.org).

Note that the colon, :, after the package name is not optional; the
dependency list expects every dependency to be a YAML map value. For
more information, you can take a look at the YAML documentation
at https:/ / docs. ansible. com/ansible/ latest/ reference_ appendices/
YAMLSyntax. html.

The version constraint
The version constraint can be a concrete version number, a range, or a minimum or
maximum constraint. Let's explore how it looks in each situation:

Any/empty: Like the previous example, we can use this without a version
constraint, for example, json_serializable: or json_serializable: any.
Concrete version: We can add the specific version number we want to work
with, for example, json_serializable: 2.0.1.
Minimal bound: Here, we can add a minimum acceptable version of the package
we want in two ways: json_serializable: '>1.0.0', where we accept any
version later than the specified version (excluding the specified one),
or json_serializable: '>=1.0.0', where we accept any version
above or equal to the specified version.

http://pub.dartlang.org
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

Intermediate Dart Programming Chapter 2

[82]

Maximal bound: Like the previous minimum example but in the upper bound,
we can add a maximum acceptable version of the package that we want in two
ways: json_serializable: '<2.0.1', where we accept any
version below the specified one, or json_serializable: '<=2.0.1', where
we accept any version below or equal to the specified one.
Range: By combining minimal and maximal bounds, we can specify an
acceptable interval of versions: json_serializable: '>1.0.0
<=2.0.1', json_serializable: '>1.0.0 <2.0.1', json_serializable:
'>=1.0.0 <2.0.1', or json_serializable: '>=1.0.0 <=2.0.1'.
Semantic range: This is similar to range but, by using the caret character, we
can specify the range from a minimum acceptable version to the next breaking
change. For example, json_serializable: ^1.0.0 is the same
as json_serializable: '>=1.0.0 <2.0.0', and json_serializable:
^0.1.0 is equal to json_serializable: '>=0.1.0 <0.2.0'.

Semantic versioning helps the community usage of the libraries and it is
widely adopted. To examine it in more detail, you can visit the pub tools
page at https:/ /www. dartlang. org/ tools/ pub/ versioning.

The source constraint
The pub tool does not look only in the pub repository for packages; if you have already
used another package management system, you know that it sometimes be useful to host
your packages in other places than the public repository, such as company private packages
or your personal usage ones. For the source part of the package specification, we have four
alternatives to change where the pub tool should look for the package:

The hosted source: This is the default pub repository or another alternative http
server that implements the pub api. For example, consider the following code
block:

dependencies:
 json_serializable:
 hosted:
 name: json_serializable
 url: http://pub-packages-private-server.com # changing server

https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning
https://www.dartlang.org/tools/pub/versioning

Intermediate Dart Programming Chapter 2

[83]

As you can see, we only need to specify the hosted field if we are not using
the pub repository—that is, the default source.

The path source: Here, you can add a dependency to a package in your own
system:

dependencies:
 json_serializable:
 path: /Users/biessek/json_serializable

Although you are not allowed to share a package with this kind of dependency, it
may be useful in the development stages.

The Git source: Here, you can specify a package from a git repository:

dependencies:
 json_serializable:
 git:
 url: git://github.com/dart-lang/json_serializable.git
 path: path/to/json_serializable # if the root of package is
 # not the root of the
 # repository
 ref: master # to depend on specific commit, tag, branch

This can be useful in the development stages or if a published package source
code is not yet present in the pub repository.

The SDK source: An SDK may have its own packages that can be used as
dependencies:

dependencies:
 flutter_localizations: # a dependency available in the flutter sdk
 sdk: flutter

Until now, this way of specifying source constraints is only used for Flutter SDK
dependencies.

Package dependencies are a fundamental topic in Dart development; with these concepts in
mind, you can add useful third-party dependencies to your projects and increase your
productivity.

Intermediate Dart Programming Chapter 2

[84]

Introducing async programming with
Futures and Isolates
Dart is a single-threaded programming language, that is, all of the application code runs in
the same thread. Put simply, this means that any code may block thread execution by
performing long-time running operations such as I/O or http requests.

Although Dart is single-threaded, it can perform asynchronous operations through the use
of Futures. Additionally, to represent the result of those asynchronous operations, Dart
uses the Future object combined with the async and await keywords. Let's understand
these important concepts to develop a responsive application.

Dart Futures
The Future<T> object in Dart represents a value that will be provided sometime in the
future. It can be used to mark a method, for example, with a future result; that is, a method
returning a Future<T> object will not have the proper result value immediately, but
instead after some computation at a later point in time.

Consider the following code, where we have the main function that calls a long-running
operation:

import 'dart:io';

void longRunningOperation() {
 for (int i = 0; i < 5; i++) {
 sleep(Duration(seconds: 1));
 print("index: $i");
 }
}

main() {
 print("start of long running operation");

 longRunningOperation();

 print("continuing main body");

 for (int i = 10; i < 15; i++) {
 sleep(Duration(seconds: 1));
 print("index from main: $i");
 }

Intermediate Dart Programming Chapter 2

[85]

 print("end of main");
}

If you execute the preceding code, you will notice that it stops the main function execution
while the longRunningOperation() function is running. This is a synchronous execution
of all of the code and it will likely not fit well in all use cases.

Now, let's say that the longRunningOperation() function is an asynchronous function
and main() can continue executing without waiting for it to finish to proceed:

import 'dart:async';

Future longRunningOperation() async {
 for (int i = 0; i < 5; i++) {
 await Future.delayed(Duration(seconds: 1));
 print("index: $i");
 }
}

main() { ... } // main function is the same

We have made some changes to demonstrate how Future works properly:

The longRunningOperation() function now has the async modifier to
indicate that this will return a Future function and the Future function will be
completed at the end of the function execution. Notice that the return type is
also Future.
We replaced the sleep() call with the Future.delayed call. This demonstrates
the use of the await keyword. The await keyword works with async functions.
When calling a Future function, we may need the result of the Future function
to continue execution. In this case, we want to proceed to the print only after the
specified delay.

If you execute the preceding code, you may notice something strange; the output is as
follows:

start of long running operation
continuing main body
index from main: 10
index from main: 11
index from main: 12
index from main: 13
index from main: 14
end of main
index: 0

Intermediate Dart Programming Chapter 2

[86]

index: 1
index: 2
index: 3
index: 4

It's not a concurrent code where one code executes after another like before; here, what
changes is the order. In the preceding example, the change occurs when
the longRunningOperation() function calls await in another async function. Here, the
function is suspended and will be resumed only after a delay of 1 second. After the delay,
however, the main function is already running again as it no longer awaits for the long
operation to complete, so the longRunningOperation() code will be executed only after
the main function has finished.

One thing we can do is to make the main() function into an async function and await the
execution of longRunningOperation(). In this way, the main() function will be
suspended right when we call await longRunningOperation() and will only be
resumed after its execution. This behaves like normal synchronous code, as follows:

main() async {
 print("start of long running operation");

 await longRunningOperation();

 print("continuing main body");

 for (int i = 10; i < 15; i++) {
 sleep(Duration(seconds: 1));
 print("index from main: $i");
 }

 print("end of main");
}

As you might have noticed, the preceding functions never run really asynchronously; this is
because we await the execution of the longRunningOperation() method before
executing the rest of its code. To make them run asynchronously, we should omit
the await keyword, as follows:

main() async {
 print("start of long running operation");

 longRunningOperation();

 print("continuing main body");

 for (int i = 10; i < 15; i++) {

Intermediate Dart Programming Chapter 2

[87]

 sleep(Duration(seconds: 1));
 print("index from main: $i");
 }
 print("end of main");
}

This will make the main() method simply continue its execution, where we get the
following output:

start of long running operation
continuing main body
index: 0
index from main: 10
index: 1
index from main: 11
index: 2
index from main: 12
index: 3
index from main: 13
index: 4
index from main: 14
end of main

Dart executes both async methods in the same thread. Both functions run asynchronously
in this case, but this does not mean that they are executed in parallel.

Dart executes one operation at a time; as long as one operation is
executing, it cannot be interrupted by any other Dart code.

This execution is controlled by the Dart Event loop, which acts like a manager for
Dart Futures and asynchronous code.

You can refer to Dart's official documentation on the Event loop to
understand how this works: https:/ / dart. dev/articles/ archive/
event- loop.

To execute Dart code in parallel (that is, at the same time), we use Dart Isolates.

https://dart.dev/articles/archive/event-loop
https://dart.dev/articles/archive/event-loop
https://dart.dev/articles/archive/event-loop
https://dart.dev/articles/archive/event-loop
https://dart.dev/articles/archive/event-loop
https://dart.dev/articles/archive/event-loop
https://dart.dev/articles/archive/event-loop
https://dart.dev/articles/archive/event-loop
https://dart.dev/articles/archive/event-loop
https://dart.dev/articles/archive/event-loop
https://dart.dev/articles/archive/event-loop
https://dart.dev/articles/archive/event-loop
https://dart.dev/articles/archive/event-loop
https://dart.dev/articles/archive/event-loop

Intermediate Dart Programming Chapter 2

[88]

Dart Isolates
So, you may have been wondering, how can you execute truly parallel code and improve
performance and responsiveness? Dart Isolates are here for this. Every Dart application is
composed of at least one Isolate instance, the main Isolate instance, where all of the
application code runs. So, to create a parallel execution code, we must create a
new Isolate instance that can run in parallel with main Isolate:

Isolates can be considered to be a sort of a thread, but they do not share anything between
each other, as the name suggests. This means that they do not share memory, so we do not
need to use locks and other thread synchronization techniques here.

To communicate between isolates, that is, to send and receive data between them, we need
to exchange messages. Dart provides a way of accomplishing this.

Let's change the previous implementation to use an Isolate instance instead:

import 'dart:io';
import 'dart:isolate';

Future<void> longRunningOperation(String message) async {
 for (int i = 0; i < 5; i++) {
 await Future.delayed(Duration(seconds: 1));
 print("index: $i");
 }
}

main() {
 print("start of long running operation");

 Isolate.spawn(longRunningOperation, "Hello");

 print("continuing main body");

 for (int i = 10; i < 15; i++) {

Intermediate Dart Programming Chapter 2

[89]

 sleep(Duration(seconds: 1));
 print("index from main: $i");
 }

 print("end of main");
}

As you can see, the code displays small changes:

The longRunningOperation() function becomes an Isolate instance, that is,
it remains as a simple function.
To dispatch the Isolate process to the execution, we use the spawn() method
from the Isolate class. It takes two arguments—the function to be spawned and
a parameter to be passed to the function.

Running the preceding code, you will note a different output, as follows:

start of long running operation
continuing main body
Hello from isolate
index from main: 10
index: 0
index from main: 11
index: 1
index from main: 12
index: 2
index from main: 13
index: 3
index from main: 14
end of main

Now both of these functions' code run independently after Isolate is spawned.

When compiling to JavaScript, isolates get converted into web workers.
You can read more about web workers in the W3Schools article at https:/
/www. w3schools. com/ html/ html5_ webworkers. asp.

Introducing unit testing with Dart
In any language, we can write code that accomplishes some purpose; however, to write
performant and bug-free code, we need to use every available resource we can.

https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp

Intermediate Dart Programming Chapter 2

[90]

Unit tests are one of the things that can help us to write modular, efficient, and bug-free
code. The unit test is not the only way of testing code, of course, but it's a crucial part of
testing small pieces of software in a manner that isolates it from other parts, helping us to
focus on specific things.

Covering all of the application code with unit tests does not guarantee that it's 100% bug-
free; however, it helps us to achieve mature code progressively, and this is one of the steps
to ensuring a good development cycle, with stable releases from time to time.

Dart also provides some useful tools to work with tests; let's take a look at the starting
point of unit testing Dart code: the Dart test package.

The Dart test package
The Dart test package is not part of the SDK itself, so it has to be installed as a normal
third-party dependency. You should already know how to do this.

For reference, check the example, 4_unit_tests, in this chapter's source
code on GitHub. The test code is located inside the test/ folder.

In this example (generated with the Stagehand tool), there is a development dependency;
this is a dependency that is required only during development and not at runtime:

dev_dependencies:
 test: ^1.0.0

This enables us to use the test package's provided libraries to write unit tests.

Writing unit tests
Now, let's suppose that we want to create a function that sums two numbers:

class Calculator {
 num sumTwoNumbers(num a, num b) {
 // TODO
 }
}

Intermediate Dart Programming Chapter 2

[91]

We can write a unit test to evaluate this method implementation by using
the test package:

import 'package:test/test.dart';
import 'package:unit_tests/calculator.dart';

void main() {
 Calculator calculator;

 setUp(() {
 calculator = Calculator();
 });

 test('calculator sumTwoNumbers() sum the both numbers', () {
 expect(calculator.sumTwoNumbers(1, 2), 3);
 });
}

In the preceding example, we started by importing the test package main library that
exposes functions, for example: setUp(), test(), and expect(). Each of the functions has
specific roles, as follows:

setUp() will execute the callback we pass to it before each of the tests in the test
suite.
test() is the test by itself; it receives a description and a callback with the test
implementation.
expect() is used to make the assertions about the test. In the preceding
example, we are just asserting a sum of 1 + 2, which should result in the
number 3.

To execute a test, we use the following command:

pub run test <test_file>

In the preceding example, the command would be (from the root of the project) as follows:

pub run test test/calculator_tests.dart

Before we effectively implement the sumTwoNumbers() method, the output of the test is as
follows:

00:01 +0 -1: calculator sumTwoNumbers() sum the both numbers [E]
 Expected: <3>
 Actual: <null>

 package:test_api expect

Intermediate Dart Programming Chapter 2

[92]

 test\calculator_tests.dart 12:7 main.<fn>

00:01 +0 -1: Some tests failed.

Additionally, after properly implementing the sumTwoNumbers() method, we will see the
following:

00:01 +1: All tests passed!

You can also create groups of tests, as you might be thinking that just one test case may not
be sufficient to effectively test a unit of code. Let's suppose that we change our test suite to
have a group of sum tests, as follows:

void main() {
 Calculator calculator;

 setUp(() {
 calculator = Calculator();
 });
 group("sum tests", () {
 test('calculator sumTwoNumbers() sum the both numbers', () {
 expect(calculator.sumTwoNumbers(1, 2), 3);
 });
 test('calculator sumTwoNumbers() sum null as it was 0', () {
 expect(calculator.sumTwoNumbers(1, null), 1);
 });
 });
}

Notice the output for the preceding test:

 00:01 +1 -1: sum tests calculator sumTwoNumbers() sum null as it was 0 [E]
 NoSuchMethodError: The method '_addFromInteger' was called on null.
 Receiver: null
 Tried calling: _addFromInteger(1)
 dart:core int.+
 package:unit_tests/src/calculator_base.dart 3:14 Calculator.sumTwoNumbers
 test\calculator_tests.dart 15:25 main.<fn>.<fn>

00:01 +1 -1: Some tests failed.

There was one successful test (+1) and one failure (-1)—with the exception described right
below the failing test description. With this in mind, we can change the sumTwoNumbers()
implementation to accept a null value, as it was 0, and run the test again:

00:01 +2: All tests passed!

Intermediate Dart Programming Chapter 2

[93]

As you can see, tests can help us to prevent logic errors from occurring in production; of
course, we always might have some errors, but tests can help us to prevent as many as
possible.

This was an introduction to unit testing with Dart. You can learn about all of the
possibilities by reading the test package page on the pub website at https:/ /pub.
dartlang.org/packages/ test.

Summary
In this chapter, we have seen how the Dart language is structured in terms of the
OOP paradigm. We have seen that the language proposes to provide all of the features to
the developer when using the OOP paradigm, but also some particularities that are meant
to extend developer possibilities, such as mixins for exploring multi-inheritance benefits
and implicit interfaces that permit any class to be implemented by any other class, callable
classes to add function behavior to simple objects, and top-level functions and variables
that do not need to be bound to any class. It is very useful for utility functions that do not
depend on context.

We explored how the Dart packages are structured, how to use the pub tool to add
dependencies to the project, and use third-party packages. We have checked the multiple
ways to structure a library, and how it composes a Dart package. Additionally, we learned
how to correctly describe a package in the pubspec file to create shareable packages.
Finally, we examined async programming using futures and isolates. Also, we learned
about unit testing Dart facilities to write better code.

In the next chapter, we will begin to understand and work with the Flutter framework.
Additionally, you will keep going with the Dart knowledge that you have acquired so far.

https://pub.dartlang.org/packages/test
https://pub.dartlang.org/packages/test
https://pub.dartlang.org/packages/test
https://pub.dartlang.org/packages/test
https://pub.dartlang.org/packages/test
https://pub.dartlang.org/packages/test
https://pub.dartlang.org/packages/test
https://pub.dartlang.org/packages/test
https://pub.dartlang.org/packages/test
https://pub.dartlang.org/packages/test
https://pub.dartlang.org/packages/test
https://pub.dartlang.org/packages/test

3
An Introduction to Flutter

In this chapter, you will learn the history of the Flutter framework, how and why it was
created, and its evolution so far. You will learn how its community is contributing to it, and
how and why it has grown quickly in the last few months. You will be introduced to the
main features of Flutter, with short comparisons to other frameworks. Also, you will see
how to make a basic Flutter project. To accomplish this, we will need a proper machine
configured with Flutter and its various prerequisites.

Follow the setup instructions of the Flutter framework environment
here: https:/ /flutter. dev/ docs/ get- started/ install.

The following topics will be covered in this chapter:

Comparisons with other mobile app development frameworks
Flutter compilation
Flutter rendering
Introducing widgets
Basic Flutter project structure

https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install

An Introduction to Flutter Chapter 3

[95]

Comparisons with other mobile app
development frameworks
Although it's relatively new, Flutter has experienced a great deal of experimentation and
evolution over the years. It was called Sky, at its first appearance at the Dart Developer
Summit 2015 presented by Eric Seidel. It was presented as the evolution of some previous
Google experiments to create something better for mobiles, in terms of development and
user experience, with the main goal of rendering with high performance. Presented
as Flutter in 2016, and with its first alpha release in May 2017, it was already building for
iOS and Android systems. Then it started to mature and community adoption began
to grow. It evolved from community feedback to its first stable release at the end of 2018.

There are many mobile development frameworks out there that seek a common goal: to
build native mobile apps for Android and iOS with a single code base. Some of those
frameworks are widely adopted by the community and provide similar solutions to the
problems they purport to solve. Knowing this, we might ask the following:

Why was Flutter created?
Do we really need it?
How it is better than rival frameworks?

Let's check out how Flutter works and answer some of these questions before we get our
hands on it.

The problems Flutter wants to solve
Since the beginning of the Flutter framework, it was intended to provide a better experience
to the user through high-performance execution, but that's not the only promise of Flutter.
The development experience was also focused on addressing some of the problems of
multiple platform mobile development:

Long/more expensive development cycles: To be able to cope with market
demand, you must choose to build for a single platform, or create multiple
teams. This has some consequences in terms of cost, multiple deadlines,
and different capabilities of native frameworks.

An Introduction to Flutter Chapter 3

[96]

Multiple languages to learn: If a developer wants to develop for multiple
platforms, they must learn how to do something in one OS and programming
language, and later, the same thing on another OS and programming language.
This certainly has an impact on the developer's productivity.
Long build/compile time: Some developers may already have experienced how
build time may have an impact on productivity. In Android, for example, some
developers experience multiple long build times after a few minutes of coding
(this is evolving, and it's a lot better now, but it was already causing a lot of
pain).
Existing cross-platform solutions side effects: You adopt an existing cross-
platform framework (that is, React Native, Xamarin, Ionic, Cordova) in an
attempt to work around the preceding problems, but this could
impact performance, design, or user experience.

Now let's see how Flutter counters these problems.

Differences between existing frameworks
There are a large number of high-quality and well-accepted frameworks and technologies.
Some of them are as follows:

Xamarin
React Native
Ionic
Cordova

So, you might think it's hard for a new framework to find its place on an already full field,
but it's not. Flutter has benefits that make space for itself, not necessarily by overcoming the
other frameworks, but by already being at least on the same level as native frameworks:

High performance
Full control of the user interface
Dart language
Being backed by Google
Open source framework
Developer resources and tooling

Let's look at each of these in more detail.

An Introduction to Flutter Chapter 3

[97]

High performance
Right now, it is hard to say that Flutter's performance is always better than all of the other
frameworks in practice, but it's safe to say that it aims to be. For example, its rendering
layer was developed with a high frame rate in mind. As we will see in the Flutter
rendering section, some of the existing frameworks rely on JavaScript and HTML rendering,
which might cause overheads in performance because everything is drawn in a webview (a
visual component like a web browser). Some use Original Equipment
Manufacturer (OEM) widgets but rely on a bridge to request the OS API to render the
components, which creates a bottleneck in the application because it needs an extra step to
render the user interface (UI).

See the "Flutter Rendering " section for more details of Flutter's rendering
approach compared to others.

Some points that make Flutter's performance great:

Flutter owns the pixels: Flutter renders the application pixel by pixel (see next
section), interacting directly with the Skia graphics engine.
No extra layers or additional OS API calls: As Flutter owns the app rendering, it
does not need additional calls to use the OEM widgets.
Flutter is compiled to native code: Flutter uses the Dart AOT compiler to
produce native code. That means there's no overhead in setting up an
environment to interpret Dart code on the fly, and it runs just like a native app,
starting more quickly than frameworks that need some kind of interpreter.

Full control of the UI
The Flutter framework chooses to do all the UI by itself, rendering the visual
components directly to the canvas, as we have seen previously, requiring nothing more
than the canvas from the platform so it's not limited by rules and conventions. Most of the
time, frameworks just reproduce what the platform offers in another way. For example,
other webview-based cross-platform frameworks reproduce visual components using
HTML elements with CSS styling. Other frameworks emulate the creation of the visual
components and pass them to the device platform, which will render the OEM widgets like
a natively developed app. We are not talking about performance here, so what else does
Flutter offer by not using the OEM widgets and doing the job all by itself?

An Introduction to Flutter Chapter 3

[98]

Let's see:

Ruling all the pixels on the device: Frameworks limited by the OEM widgets
will reproduce at most what a natively developed app would, as they use only
the platform's available components. On the other hand, frameworks based on
web technologies may reproduce more than platform-specific components, but
may also be limited by the mobile web engine available on the device. By getting
the control of the UI rendering, Flutter allows the developer to create the UI in
their own way by exposing an extensible and rich Widgets API, which provides
tools that can be used to create a unique UI with no drawbacks in performance
and no limits in design.

Platform UI kits: By not using OEM widgets, Flutter can break the platform
design, but it does not. Flutter is equipped with packages that provide platform
design widgets, the Material set in Android, and Cupertino in iOS.

We will read more on platform UI Kits in Chapter 4, Widgets: Building
Layouts in Flutter.

Achievable UI design requirements: Flutter provides a clean and robust API
with the ability to reproduce layouts that are faithful to the design requirements.
Unlike web-based frameworks that rely on CSS layout rules that can be large and
complicated and even conflicting, Flutter simplifies this by adding semantic rules
that can be used to make complex but efficient and beautiful layouts.
Smoother look and feel: In addition to native widget kits, Flutter seeks to
provide a native platform experience where the application is running, so fonts,
gestures, and interactions are implemented in a platform-specific way, bringing a
natural feel for the user, like a native application.

We refer to visual components as widgets. This is also what Flutter calls
them. We will discuss more about that in the Widgets introduction section
in this chapter.

Now let's dig deep into Dart.

An Introduction to Flutter Chapter 3

[99]

Dart
Since its inception, one of Flutter's main goals was to be a high-performance alternative to
existing cross-platform frameworks. But not only that; to significantly improve the mobile
developer's experience was one of the crucial points of the project.

With this in mind, Flutter needed a programming language that allowed it to accomplish
these goals, and Dart seems to be the perfect match to the framework for the following
reasons:

Dart AOT and JIT compilation: Dart is flexible enough to provide different ways
of running the code, so Flutter uses Dart AOT with performance in mind when
compiling a release version of the application, and it uses JIT with sub-second
compilation of code in development time, aiming for fast workflows and code
changes.

Dart Just in time (JIT) and Ahead of time (AOT) compilations are
introduced when the compilation phase takes place. In AOT, code is
compiled before running. In JIT, code is compiled while running. (Check
out the Dart introduction section in the first chapter).

High performance: Due to Dart's support for AOT compilation, Flutter does not
require a slow bridge between realms (for example, non-native to native), which
makes Flutter apps start up much more quickly. Also, Flutter uses a functional-
style flow with short-lived objects, and this means a lot of short-lived allocations.
Dart garbage collection works without locks, helping with fast allocation.
Easy learning: Dart is a flexible, robust, modern, and advanced language.
Although it's still evolving, the language has a well-defined object-oriented
framework with familiar functionalities to dynamic and static languages, an
active community, and well-structured documentation.
Declarative UI: In Flutter, we use a declarative style to lay out widgets, which
means widgets are immutable and are only lightweight “blueprints”. To change
the UI, a Widget triggers a rebuild on itself and its subtree. In the opposite
imperative style (the most common), we can change specific component
properties after they are created.

An Introduction to Flutter Chapter 3

[100]

Note: Take a look at the official introduction to declarative UI from
Flutter: https:/ /flutter. dev/ docs/ get- started/ flutter- for/
declarative

Dart syntax to layout: Different from many frameworks that have a separate
syntax for layout, in Flutter, the layout is created using Dart code, aiming for
greater flexibility and ease to create a developer environment, with tools for
debugging layout rendering performance, for example.

Dart and Flutter are developed by Google, and this is important, as we will see.

Being backed by Google
Flutter is a brand new framework, and this means that it does not have a big section of the
mobile development market yet, but this is changing, and the outlook for the next few years
is highly positive.

Being backed by Google, the framework has all the tools it needs to succeed in the
community, with support from the Google team, presence at big events such as Google IO,
and investments into continuous improvement in the code base. From the launch of the
third Beta version at Google IO 2018 to the first stable release launched during the Flutter
Live Event at the end of 2018, its growth is evident:

More than 200 million users of Flutter apps.
More than 3,000 Flutter apps on the Play Store.
More than 250,000 new developers.
The 34th most popular software repository on GitHub—it was in the Top 15 at the
beginning of 2019.

Fuchsia OS and Flutter
It's not a secret anymore that Google is working on its new Fuchsia OS as a replacement for
the Android OS. One thing to pay attention to is that Fuchsia OS may be a universal Google
system to run on more just than mobile phones, and this directly affects Flutter adoption.
This is because Flutter will be the first method of developing mobile apps for the new
Fuchsia OS, and, not only this, the UI of the system is being developed with it. With the
system targeting more devices than just smartphones, as seems to be the case, Flutter will
certainly have a lot of improvements.

https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative

An Introduction to Flutter Chapter 3

[101]

The growth of the framework's adoption is directly related to the new Fuchsia OS. As it
gets closer to launch, it is important for Google to have mobile apps targeting the new
system. For example, Google has announced that Android apps will be compatible with the
new OS, making the transition to and adoption of Flutter significantly easier.

Open source framework
Having a big company such as Google behind it is fundamental to a framework such as
Flutter (see React, for example, which is maintained by Facebook). In addition, community
support becomes even more important as it becomes more popular.

By being open source, the community and Google can work together to:

Help with bug fixes and documentation through code collaboration
Create new educational content about the framework
Support documentation and usage
Make improvement decisions based on real feedback

Improving the developer experience is one of the main goals of the framework. Therefore,
in addition to being close to the community, the framework provides great tools and
resources for developers. Let's see them.

Developer resources and tooling
The focus on developers in the Flutter framework goes from documentation and learning
resources to providing tools to helping with productivity:

Documentation and learning resources: Flutter websites are rich for developers
coming from other platforms, including many examples and use cases, for
example, the famous Google Codelabs (https:/ /codelabs. developers. google.
com/?cat= Flutter).

https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter
https://codelabs.developers.google.com/?cat=Flutter

An Introduction to Flutter Chapter 3

[102]

Command-line tools and IDE integration: Dart tools that help with analyzing,
running, and managing dependencies are also part of Flutter. Besides that,
Flutter also has commands to help with debugging, deploying, inspecting layout
rendering and integration with IDEs through Dart plugins. Here's a list of the
various commands:

An Introduction to Flutter Chapter 3

[103]

Easy start: Flutter comes with the flutter doctor tool, which is a command-line
tool that guides the developer through the system setup by indicating what is
needed in order to be ready to set up a Flutter environment. This is what it looks
like:

The flutter doctor command also identifies connected devices and whether
there are any upgrades available, as you can see.

Hot reload: This is the feature that has been taking the focus in presentations
about the framework. By combining the capabilities of the Dart language (such as
JIT compilation) and the power of Flutter, it is possible for the developer to
instantly see design changes made to code in the simulator or device. In Flutter,
there is no specific tool for layout preview. Hot reload makes it unnecessary.

Now that we have learned about the benefits of Flutter, let's start looking at the software's
compilations.

Flutter compilation (Dart)
The way an application is built is fundamental to how it will perform on the target
platform. This is an important step regarding performance. Even though you do not
necessarily need to know this for every kind of application, knowing how the application is
built helps you to understand and measure possible improvements.

An Introduction to Flutter Chapter 3

[104]

As we've already pointed out, Flutter relies on the AOT compilation of Dart for release
mode and the JIT compilation of Dart for development/debug mode. Dart is one of very
few languages that's capable of being compiled to both AOT and JIT, and for Flutter this is
great.

Development compilation
During development, Flutter uses JIT compilation in development mode. This enables
important development features such as hot reload, the feature mentioned in the preceding
section. Due to the power of Dart's compiler, interactions between the code and the
simulator/device are really fast, and debugging information helps developers step into the
source code.

Release compilation
In release mode, debugging information is not necessary, and the focus is performance.
Flutter uses a technique that's common to game engines. By using AOT mode, Dart code is
compiled to native code, and the app loads the Flutter library and delegates rendering,
input, and event handling to it by using the Skia engine.

Supported platforms
By now, Flutter supports ARM Android devices running at least on Jelly Bean 4.1.x version,
and iOS devices from iPhone 4S or newer. Of course, Flutter apps can normally be run on
simulators.

Google is intending to port the Flutter runtime to the web by using the Dart capability of
compiling to JavaScript. Initially called Hummingbird, this project now is known as
"Flutter for web".

We are not going to go into more detail on Flutter's compilation aspects as
they are beyond the scope of this book. For more information, you can
read https:/ /flutter. dev/ docs/ resources/ faq#how- does- flutter-
run-my- code- on- android and https:/ /flutter. dev/ docs/ resources/
faq#how- does- flutter- run-my- code- on- ios.

https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-android
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios
https://flutter.dev/docs/resources/faq#how-does-flutter-run-my-code-on-ios

An Introduction to Flutter Chapter 3

[105]

Flutter rendering
One of the main aspects that makes Flutter unique is the way that it draws the visual
components to the screen. The big difference is how the application communicates with the
platform's SDK, what it asks the SDK to do, and what it does by itself:

The platform SDK can be seen as the interface between applications, and the operation
system and services. Each system provides its own SDK with its own capabilities and is
based on a programming language (that is, Kotlin/Java for the Android SDK and
Swift/Objective C for the iOS SDK). We have looked at some rendering approaches used by
different frameworks previously; let's take a more detailed look at them now.

An Introduction to Flutter Chapter 3

[106]

Web-based technologies
We have already seen frameworks that use webviews to reproduce a UI by combining
HTML and CSS. In terms of platform usage, it would look like this:

The application does not know how the rendering is done by the platform; the only thing it
needs is the webview widget on which it will render the HTML and CSS code.

Besides the rendering part, there is small point to notice, which is that to
access system APIs, JavaScript code needs a bridge for calling native code,
causing a small overhead in performance.

An Introduction to Flutter Chapter 3

[107]

Framework and OEM widgets
Another way of rendering widgets is by adding a layer above the platform widgets, but not
changing the way the system renders visual components effectively:

In this mode of rendering, the work is done by the SDK like a normal native app, but before
it, the layout is defined by an additional step in the framework language. Every change in
the UI causes communication between the application code and the native code that's
responsible for calling the platform's SDK, working like an intermediary. Like the previous
technique, it may cause a small overhead for the application, maybe a little bit bigger than
the previous one, because rendering occurs often, and therefore so does the
communication.

An Introduction to Flutter Chapter 3

[108]

Flutter – rendering by itself
Flutter chooses to do all the hard work by itself. The only thing it needs from the platform's
SDK is access to Services APIs and a canvas to draw the UI on:

Flutter moves the widgets and rendering to the app, from where it gets the customization
and extensibility. Through a canvas, it can draw anything and also access events to handle
user inputs and gestures by itself. The bridge in Flutter is done by platform
channels, which we will see in more detail in Chapter 13, Improving User Experience.

Widgets introduction
Understanding Flutter widgets is essential if you want to work with it. You know Flutter
takes control of rendering and does this with extensibility and customization in mind,
intending to add power to the developer's hands. Let's see how Flutter applies the widgets
idea in app development to create awesome UIs.

Widgets can be understood as the visual (but not only that) representation of parts of the
application. Many widgets are put together to compose the UI of an application. Imagine it
as a puzzle in which you define the pieces.

An Introduction to Flutter Chapter 3

[109]

The intention of widgets is to provide a way for your application be modular, scalable, and
expressive, with less code and without imposing limitations. The main characteristics of the
widgets UI in Flutter are composability and immutability.

Composability
Flutter chooses composition over inheritance, with the goal of keeping each widget simple
and with a well-defined purpose. Flexibility, which is one of the framework's goals, allows
the developer to make many combinations to achieve incredible results.

Immutability
Flutter is based on the reactive style of programming, where the widget instances are short-
lived and change their descriptions (whether visually or not) based on configuration
changes, so it reacts to changes and propagates these changes to its composing widgets,
and so on.

A Flutter widget may have a state associated with it, and when the associated state
changes, it can be rebuilt to match the representation.

The terms state and reactive are well known in the React style of programming,
disseminated by Facebook's famous React library.

Everything is a widget
Flutter widgets are everywhere in an application. Maybe not everything is a widget, but
almost everything is. Even the app is a widget in Flutter, and that's why this concept is so
important. A widget represents a part of a UI, but it does not mean it's only something that
is visible. It can be any of the following:

A visual/structural element that is a basic structural element, such as the Button
or Text widgets
A layout specific element that may define the position, margins, or padding, such
as the Padding widget
A style element that may help to colorize and theme a visual/structural element,
such as the Theme widget
An interaction element that helps to respond to interactions in different ways,
such as the GestureDetector widget

An Introduction to Flutter Chapter 3

[110]

We will be checking out usage examples of these widgets in the following
chapter.

Widgets are the basic building blocks of an interface. To build a UI properly, Flutter
organizes the widgets in a widget tree.

The widget tree
This is another important concept in Flutter layouts. It's where widgets come to life. The
widget tree is the logical representation of all the UIs widgets. It is computed during
layout (measurements and structural info) and used during rendering (frame to screen) and
hit testing (touch interactions), which are the things Flutter does best. By using a lot of
optimization algorithms, it tries to manipulate the tree as little as possible, reducing the
total amount of work spent on rendering, aiming for greater efficiency:

An Introduction to Flutter Chapter 3

[111]

Widgets are represented in the tree as nodes. It may have a state associated with it; every
change to its state results in rebuilding the widget and the child involved.

As you can see, the tree's child structure is not static, and it's defined by the widgets'
description. The children relations in widgets are what makes the UI tree; it exists by
composition, so it's common to see Flutter's built-in widgets exposing child or
children properties, depending on the purpose of the widget.

The widget tree does not work alone in the framework. It has the help of the element tree; a
tree that relates to the widget tree by representing the built widget on the screen, so every
widget will have a corresponding element in the element tree after it is built.

The element tree has an important task in Flutter. It helps to map on-screen elements to the
widget tree. Also, it determines how widget rebuilding is done in update scenarios. When a
widget changes and needs to be rebuilt, this will cause an update on the corresponding
element. The element stores the type of the corresponding widget and a reference to its
children elements. For example, in the case of repositioning a widget, the element will
check the type of the corresponding new widget, and if a match it will update itself with the
new widget description.

The element tree can be seen as a prerender auxiliary tree to the widget
tree. If you need more information on that, you can check the official
docs: https:/ /docs. flutter. io/flutter/ widgets/ Element- class. html.

Hello Flutter
It's time to start getting our hands dirty with some code. With the Flutter development
environment configured, we can start using Flutter commands. The typical way to start a
Flutter project is to run the following command:

flutter create <output_directory>

Here, output_directory will be also the Flutter project name if you do not specify it as an
argument.

https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Element-class.html

An Introduction to Flutter Chapter 3

[112]

By running the preceding command, the folder with the provided name will be generated
with a sample Flutter project in it. We will analyze the project in few moments. First, it is
good to know that there are some useful options to manipulate the resulting project from
the flutter create command. The main ones are as follows:

--org: This can be used to change the owner organization of the project. If you
already know Android or iOS development, this is the reverse domain name, and
is used to identify package names on Android and as a prefix in the iOS bundle
identifier. The default value is com.example.
-s ,--sample: Most of the official examples for widget usage have a unique ID
that you can use to quickly clone the example to your machine with this
argument.

Whenever you are exploring the Flutter docs website (https:/ /docs.
flutter. dev), you can take a sample ID from it and use it with this
argument.

-i, --ios-language and -a, --android-language: These are used to
specify the language for the native part code of the project, and are only used if
you plan to write native platform code. In Chapter 13, Improving User Experience,
we will see how to add native code to the project.
--project-name: Use this to change the project's name. It must be a valid Dart
package identifier, as we have already seen on the pubspec format description
page (https:/ /dart. dev/ tools/pub/ pubspec):

"Package names should be all lowercase, with underscores to separate
words, `just_like_this`. Use only basic Latin letters and Arabic digits: [a-
z0-9_]. Also, make sure the name is a valid Dart identifier – that it doesn't
start with digits and isn't a reserved word."

If you do not specify this parameter, it tries to use the same name as output
directory. Note that this argument must be the last in the list of arguments
provided.

https://docs.flutter.dev
https://docs.flutter.dev
https://docs.flutter.dev
https://docs.flutter.dev
https://docs.flutter.dev
https://docs.flutter.dev
https://docs.flutter.dev
https://docs.flutter.dev
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec

An Introduction to Flutter Chapter 3

[113]

Let's see a typical Flutter project structure created with the preceding command, flutter
create hello_world:

If you are thinking this looks similar to Dart packages, you might have a point. Flutter
projects are a kind of Dart package, with some peculiarities, of course. Listing the basic
structure elements, we get the following:

android/ios: This contains the platform-specific codes. If you already know the
Android project structure from Android Studio, there is no surprise here. The
same goes for XCode iOS projects.
hello_flutter.iml: This is a typical IntelliJ project file, which contains
the JAVA_MODULE information used by the IDE.
lib directory: This is the main folder of a Flutter application; the generated
project should contains at least a main.dart file to start work on. We will be
checking this file in detail in a few steps.
pubspec.yaml and pubspec.lock: If you remember Chapter 2, Intermediate
Dart Programming, this pubspec.yaml file is what defines a Dart package. That's
what is happening here, and this is one of the main files of the project, where you
list the application dependencies, and in Flutter's case, more than that. We will be
looking at this in more details in Chapter 4, Widgets: Building Layouts in Flutter.

An Introduction to Flutter Chapter 3

[114]

README.md: This file typically has a description of the project, and it is very
common in open source projects.
test directory: This contains all the test-related files of the project. Here, we can
add unit tests, like we have seen before, and also widget tests by using Flutter-
specific packages.

In most of this book, we use command-line tools directly from the
Terminal. Plus, for information purposes, the IDE used is Visual Studio
Code. Remember, the IDEs use these tools behind the scenes to interact
with the project.

pubspec file
The pubspec file in Flutter is similar to a simple Dart package. Besides that, it contains an
additional section for configurations specific to Flutter. Let's see the pubspec.yaml file's
contents in details:

name: hello_flutter
description: A new Flutter project.
version: 1.0.0+1

The beginning of the file is simple. As we already know, the name property is defined when
we execute the pub create command, followed by the default project description.

You can specify the description during the flutter create command
by using the --description argument.

The version property follows the Dart package conventions: the version number, plus an
optional build version number separated by +. In addition to that, Flutter allows you to
override these values during the build. We will take a more detailed look at that in Chapter
12, Testing, Debugging, and Deployment, in the App deployment section.

Then we have the dependencies section of the pubspec file:

environment:
 sdk: ">=2.0.0-dev.68.0 <3.0.0"

dependencies:
 flutter:
 sdk: flutter

An Introduction to Flutter Chapter 3

[115]

 # The following adds the Cupertino Icons font to your application.
 # Use with the CupertinoIcons class for iOS style icons.
 cupertino_icons: ^0.1.2

dev_dependencies:
 flutter_test:
 sdk: flutter

Now, have a look at the explanation of the preceding code:

We start with the environment property with the Dart SDK version constraints
defined. You are OK to use the version provided by the tool because it's followed
by the Flutter SDK updates as well.

The Dart SDK comes embedded in the Flutter SDK, so you do not have to
install them separately.

Then we have the dependencies property, which starts with the main
dependency of a Flutter application, the Flutter SDK itself, which contains many
of Flutter's core packages.
As an additional dependency, the generator adds the cupertino_icons
package, which contains icon assets used by the built-in Flutter Cupertino
widgets (there's more on that in the next chapter).
The dev_dependencies property contains only the flutter_test package
dependency provided by the Flutter SDK itself, and contains Flutter-specific
extensions to the already-known Dart test package.

In the final block of the file, there's a dedicated flutter section:

flutter:

 uses-material-design: true

 # To add assets to your application, add an assets section, like this:
 # assets:
 # - images/a_dot_burr.jpeg
 # - images/a_dot_ham.jpeg
 # ...
 # To add custom fonts to your application, add a fonts section here,
 # fonts:
 # - family: Schyler
 # fonts:
 # - asset: fonts/Schyler-Regular.ttf

An Introduction to Flutter Chapter 3

[116]

 # - asset: fonts/Schyler-Italic.ttf
 # style: italic
 #

This flutter section allows us to configure resources that are bundled in the application
to be used during runtime, such as images, fonts, and a JSON file, typically, any non-
source code file that helps in the app's composition:

uses-material-design: We will see the Material widgets provided by
Flutter in the next chapter. In addition to them, we can also use Material Design
icons (https:/ /material. io/ tools/ icons/ ? style= baseline), which are in a
custom font format. For this to work properly, we need to activate this property
(set it to true) so the icons are included in the application.
assets: This property is used to list the resource paths that will be bundled with
the final application. Check the following code for more details on how to use it.
The assets files can be organized in any way; what matters for Flutter is the
path of the files. You specify the path of the file relative to the project's root. This
is used later in Dart code when you need to refer to an asset file. Here's an
example:

assets:
 - images/home_background.jpeg

To add an image to be used later, we add the path in the assets list, or if we
want to add all files inside the directory, we just specify the directory path:

assets:
 - images/

This includes all files inside the directory. Note the / character at the end.

fonts: This property allows us to add custom fonts to the application. There's
more on that in Chapter 6, Theming and Styling, in the Custom fonts section.

We will be checking how to load different assets in the course of the book
whenever we need to. Also, you can read more on asset specification
details on the Flutter docs website: https:/ /flutter. io/ docs/
development/ ui/ assets- and- images.

https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images
https://flutter.io/docs/development/ui/assets-and-images

An Introduction to Flutter Chapter 3

[117]

Running the generated project
The generated project uses the default Flutter template to create the project. This
application has a counter to demonstrate the React style of programming in Flutter. We will
be checking the details in the next chapter, when we talk about the different widgets that
we can use to compose our application. In the hello_flutter example we created earlier
using the flutter create command, MyApp is the root widget of the application.

lib/main.dart file
The main file of the generated project is the entry point of the Flutter application:

void main() => runApp(MyApp());

The main function by itself is the Dart entry point of an application. What makes the Flutter
application take the scene is the runApp function called by passing a widget as a parameter,
which will be the root widget of the application (the application itself).

Flutter run
To execute a Flutter application, we must have a connected device or simulator. The check
is done by using the already-known flutter doctor and flutter emulators tools. The
following command lets you know the existing Android and iOS emulators that can be
used to run the project:

 flutter emulators

You will get something similar to the following screenshot:

An Introduction to Flutter Chapter 3

[118]

You can check how to manage your Android emulators on https:/ /
developer. android. com/ studio/ run/ managing- avds. For iOS device
simulators, you should use the XCode Simulator developer tool. There's
more information on the Apple documentation website (https:/ /
developer. apple. com/ library/ archive/ documentation/ IDEs/
Conceptual/ iOS_ Simulator_ Guide/ GettingStartedwithiOSSimulator/
GettingStartedwithiOSSimulator. html).

After asserting that we have a device connected that can run the app, we can use the
following command:

flutter run

Refer to the following screenshot:

https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html

An Introduction to Flutter Chapter 3

[119]

This command starts the debugger and makes the hot reload functionality available, as you
can see. The first time the application is run might take a little longer than subsequent
executions:

An Introduction to Flutter Chapter 3

[120]

The application is up and running; you can see a debug mark in the top-right corner. That
means it's not a release version running, as you already know; this is the development
version of the app, with hot reload and debug facilities.

The preceding example was run on an iPhone 6s simulator. The same
result would be achieved by using an Android emulator, or an Android
virtual device (AVD).

Summary
In this chapter, we finally started playing with the Flutter framework. First, we learned
some important concepts about Flutter, mainly the concepts of widgets. We saw that
widgets are the central part of the Flutter world, where the Flutter team continually works
to improve existing widgets and add new ones. This is because the widget concept is
everywhere, from rendering performance to the final result on screen.

We also saw how to start a Flutter application project with the framework tools, the basic
project structure of files, and the peculiarities of the pubspec file. At the end, we saw how
to run a project on an emulator.

You can find the source code for this chapter on GitHub.

In the next chapter, we will delve deeper into types of widgets, such as stateful and
stateless, and how and when they can be used. Also, we will learn about the built-in
widgets and start a Flutter application project that we will follow for the rest of the book, in
which we will cumulatively apply the knowledge acquired in each chapter.

2
Section 2: The Flutter User

Interface - Everything is a
Widget

In this section, you will learn about the Flutter way of working with the UI, user data input,
and the resources available to create rich UIs.

In this section, we will cover the following chapters:

Chapter 4, Widgets: Building Layouts in Flutter
Chapter 5, Handling User Input and Gestures
Chapter 6, Theming and Styling
Chapter 7, Routing: Navigating between Screens

4
Widgets: Building Layouts in

Flutter
In this chapter, you will learn about the central concepts of widgets, the differences
between stateless and stateful widgets, the most common widgets in Flutter and how to
add them to your application, and how to create complete interfaces from built-in widgets
or custom widgets developed by yourself.

The following topics will be covered in this chapter:

Stateful/stateless widgets
Built-in widgets
Understanding built-in layout widgets
Creating custom widgets

Stateful versus stateless widgets
From Chapter 3, An Introduction to Flutter, we have seen that widgets play an important
role in Flutter application development. They are the pieces that form the UI; they are the
code representation of what is visible to the user.

UIs are almost never static; they change frequently, as you know. Although immutable by
definition, widgets are not meant to be final – after all, we are dealing with a UI, and a UI
will certainly change during the life cycle of any application. That's why Flutter provides us
with two types of widgets: stateless and stateful.

The big difference between these is in the way the widget is built. It's the developer's
responsibility to choose which kind of widget to use in each situation when composing the
UI, in order to make the most of the power in the widget rendering layer of Flutter.

Widgets: Building Layouts in Flutter Chapter 4

[123]

Flutter also has the concept of inherited widgets
(the InheritedWidget type), which is also a kind of widget but is a little
bit different from the other two types that we've mentioned. We will
check it out after we've explored the hello_flutter
example from Chapter 3, An Introduction to Flutter, in detail.

Stateless widgets
A typical UI will be composed of many widgets, and some of them will never change their
properties after being instantiated. They do not have a state; that is, they do not change by
themselves through some internal action or behavior. Instead, they are changed by external
events on parent widgets in the widgets tree. So, it's safe to say that stateless widgets give
control of how they are built to some parent widget in the tree. The following is a
representation of a stateless widget:

So, the child widget will receive its description from the parent widget and will not change
it by itself. In terms of code, this means that stateless widgets have only final properties
defined during construction, and that's the only thing that needs to be built on the device
screen.

We will be exploring the source code in detail in a moment, when we take
the default generated Flutter project from the Flutter create tool used in
the previous chapter.

Widgets: Building Layouts in Flutter Chapter 4

[124]

Stateful widgets
Unlike stateless widgets, which receive a description from their parents that persist during
the widgets' lifetime, stateful widgets are meant to change their descriptions dynamically
during their lifetimes. By definition, stateful widgets are also immutable, but they have a
company State class that represents the current state of the widget. It is shown in the
following diagram:

By holding the state of the widget in a separate State object, the framework may rebuild it
whenever needed without losing its current associated state. The element in the elements
tree holds a reference of the corresponding widget and also the State object associated
with it. The State object will notify when the widget needs to be rebuilt and then cause an
update in the elements tree, too.

Stateful and stateless widgets in code
In the previous chapter, we generated a Flutter project by using the following command:

flutter create

Widgets: Building Layouts in Flutter Chapter 4

[125]

That project was created with the default arguments from the default Flutter template,
yielding a small application with a counter that shows the number of times the plus (+)
button has been tapped:

The Flutter demo application from the preceding screenshot is useful for showing both
widget types in practice.

Widgets: Building Layouts in Flutter Chapter 4

[126]

Stateless widget in code
Let's start by looking at stateless widgets in code. The very first stateless widget in the
application is the application class itself:

class MyApp extends statelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Demo',
 theme: ThemeData(
 primarySwatch: Colors.blue,
),
 home: MyHomePage(title: 'Flutter Demo Home Page'),
);
 }
}

As you can see, the MyApp class extends statelessWidget and overrides
the build(BuildContext) method. This method describes a UI part; that is, it builds the
widgets subtree below it. In the preceding case, MyApp is the root of the widget tree and,
therefore, it builds all the widgets down the tree. In this case, its direct child is
MaterialApp. According to the documentation, this is defined as follows:

"A convenience widget that wraps a number of widgets that are commonly required for
material design applications."

BuildContext is an argument provided to the build method as a useful way to interact
with the widget tree that allows to access important ancestral information that helps to
describe the widget being built. Remember, the description depends only on this contextual
information and the widget properties defined in the constructor.

We will look at material design widgets in detail soon, when we explore
the available built-in widgets, and also in Chapter 6, Theming and Styling.

In addition to other properties, MaterialApp contains the home property, which specifies
the first widget displayed as the home page of the application. Here, home is the
MyHomePage widget, which is the stateful widget of this example.

Widgets: Building Layouts in Flutter Chapter 4

[127]

By using the Navigator class, MaterialApp allows you to define
widgets to be displayed for specific routes with a logical history of
navigation, by managing the back stack (we will be checking out routes
and page navigation in Chapter 7, Routing: Navigating between Screens).

Stateful widgets in code
MyHomePage is a stateful widget, and so it is defined with a State object,
_MyHomePageState, which contains properties that affect how the widget looks:

class MyHomePage extends statefulWidget {
 MyHomePage({Key key, this.title}) : super(key: key);
 final String title;

 @override
 _MyHomePageState createState() => _MyHomePageState();
}

By extending statefulWidget, MyHomePage must return a valid State object in its
createState() method. In our example, it returns an instance of _MyHomePageState.

Normally, stateful widgets define their corresponding State classes in
the same file. Also, state is typically private to the widget library, as
external clients do not need to interact with it directly.

The following _MyHomePageState class represents the State object of the MyHomePage
widget:

class _MyHomePageState extends State<MyHomePage> {
 int _counter = 0;

 void _incrementCounter() {
 setState(() {
 _counter++;
 });
 }

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text(widget.title),
),
 body: Center(

Widgets: Building Layouts in Flutter Chapter 4

[128]

 child: Column(
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 Text(
 'You have pushed the button this many times:',
),
 Text(
 '$_counter',
 style: Theme.of(context).textTheme.display1,
),
],
),
),
 floatingActionButton: FloatingActionButton(
 onPressed: _incrementCounter,
 tooltip: 'Increment',
 child: Icon(Icons.add),
), // This trailing comma makes auto-formatting nicer.
);
 }
}

A valid widget state is a class that extends the framework State class, which is defined in
the documentation as follows:

"The logic and internal state for a statefulWidget."

The state of the MyHomePage widget is defined by a single property, _counter. The
_counter property retains the number of presses of the increment button at the bottom-
right corner of the screen. This time, the State widget's descendant class is responsible
for building the widget. It is composed of a Text widget that displays the _counter value.

Text is a built-in widget used to display text on the screen. More on built-
in widgets will be covered in the next section.

A stateful widget is meant to change its appearance during its lifetime – that is, what
defines it will change – and so it needs to be rebuilt to reflect such changes. Here, the
change occurs in the _incementCounter() method, which is called every time the
increment button is tapped.

Widgets: Building Layouts in Flutter Chapter 4

[129]

Notice the usage of the onPressed property of the FloatingActionButton widget.
FloatingActionButton is the material design floating action button, and this property
receives a function callback that will be executed on press:

Flutter Demo Home Page (This is an image of Flutter Demo Home Page. The other (overlapped) information is not important here

How does the framework know when something in the widget changes and it needs to
rebuild it? setState is the answer. This method receives a function as a parameter where
you should update the widget's corresponding State (that is, the
_incrementCounter method). By calling setState, the framework is notified that it
needs to rebuild the widget. In the previous example, it is called to reflect the new value of
the _counter property.

Widgets: Building Layouts in Flutter Chapter 4

[130]

Inherited widgets
Besides statelessWidget and statefulWidget, there is one more type of widget in the
Flutter framework, InheritedWidget. Sometimes, one widget may need to have access to
data up the tree, and in such a case, we would need to replicate the information down to
the interested widget. This process is shown in the following diagram:

Let's suppose some of the widgets down the tree need to access the title property from
the root widget. To do that, with statelessWidget or statefulWidget, we would need
to replicate the property in the corresponding widgets and pass it down through the
constructor. It can be annoying to replicate the property on all child widgets so that the
value reaches the interested widget.

Widgets: Building Layouts in Flutter Chapter 4

[131]

To address this problem, Flutter provides the InheritedWidget class, an auxiliary kind of
widget that helps to propagate information down the tree as shown in the following
diagram:

By adding an InheritedWidget to the tree, any widget below it can access the data it
exposes by using the inheritFromWidgetOfExactType(InheritedWidget) method of
BuildContext class that receives an InheritedWidget type as parameter and uses the
tree to find the first ancestral widget of the requested type.

There are some very common appearances of the usage of
InheritedWidget in Flutter. One of the most common uses is from the
Theme class, which helps to describe colors for a whole application. We
will look at it in Chapter 5, Handling User Input and Gestures.

Widgets: Building Layouts in Flutter Chapter 4

[132]

Widget key property
If you take a look at both constructors of statelessWidget and statefulWidget classes,
you will notice a parameter named key. This is an important property for widgets in
Flutter. It helps in the rendering from the widgets tree to the element tree. Besides the type
and a reference to the corresponding widget, this element also holds the key that identifies
the widget in the tree. The key property helps to preserve the state of a widget between
rebuilds. The most common usage of key is when we are dealing with collections of
widgets that have the same type; so, without keys, the element tree would not know which
state corresponds to which widget, as they would all have the same type. For example,
whenever a widget changes its position or level in the widgets tree, matching is done in the
elements tree to see what needs to be updated in the screen to reflect the new widget
structure. When a widget has a state, it needs the corresponding state to be moved around
with it. In brief, that is what a key helps the framework to do. By holding the key value, the
element in question will know the corresponding widget state that needs to be with it.

We will be using keys in our app further on this book. If you need to find
more details on how key affects the widget and the available types of keys
now, please check out the official docs' introduction to keys: https:/ /
flutter. io/ docs/ development/ ui/ widgets- intro#keys.

Built-in widgets
Flutter has a big focus on UI, and because of this, it contains a large catalog of widgets to
allow the construction of customized interfaces according to your needs.

The available widgets of Flutter go from simple ones, such as the Text widget in the Flutter
counter application example, to complex widgets that help to design dynamic UI with
animations and multiple gesture handling.

Basic widgets
The basic widgets in Flutter are a good starting point, not only for their ease of use, but also
because they demonstrate the power and flexibility of the framework, even in simple cases.

We will not be studying all the available widgets because it would break this book's focus,
so we will be listing only some of them for your knowledge and we will be using some of
them in practice so that you can learn the basics to explore further.

https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys
https://flutter.io/docs/development/ui/widgets-intro#keys

Widgets: Building Layouts in Flutter Chapter 4

[133]

The Text widget
Text displays a string of text allowing styling:

Text(
 "This is a text",
)

The most common properties of the Text widget are as follows:

style: A class that composes the styling of text. It exposes properties that allow
changing the text color, background, font family (allowing the usage of a custom
font from assets; see Chapter 3, An Introduction to Flutter), line height, font size,
and so on.
textAlign: Controls the text horizontal alignment, giving options such as center
aligned or justified, for example.
maxLines: Allows specifying a maximum number of lines for the text that will
be truncated if the limit is exceeded.
overflow: Will define how the text will be truncated on overflows, giving
options such as specifying a max-lines limit. It can be by adding an ellipsis at the
end, for example.

To see all the available Text widget properties, please check the official
Text widget docs page: https:/ / docs. flutter. io/ flutter/ widgets/
Text- class. html.

The Image widget
Image displays an image from different sources and formats. From the docs, the supported
image formats are JPEG, PNG, GIF, animated GIF, WebP, animated WebP, BMP, and
WBMP:

Image(
 image: AssetImage(
 "assets/dart_logo.jpg"
),
)

https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html
https://docs.flutter.io/flutter/widgets/Text-class.html

Widgets: Building Layouts in Flutter Chapter 4

[134]

The Image property from the widget specifies ImageProvider. The image to be shown can
come from different sources. The Image class contains different constructors for different
ways of loading images:

Image (https:/ / api. flutter. dev/ flutter/ widgets/ Image/ Image. html), for
obtaining an image from ImageProvider (https:/ /api. flutter. dev/ flutter/
painting/ ImageProvider- class. html), like the previous example.
Image.asset (https:/ / api. flutter. dev/ flutter/ widgets/ Image/ Image.
asset.html) creates AssetImage, which is for obtaining an image
from AssetBundle (https:/ /api. flutter. dev/flutter/ services/
AssetBundle- class. html) using the asset key. An example is as follows:

Image.asset(
 'assets/dart_logo.jpg',
)

Image.network (https:/ / api. flutter. dev/ flutter/ widgets/ Image/ Image.
network. html) creates NetworkImage to obtain an image from a URL:

 Image.network(
 'https://picsum.photos/250?image=9',
)

Image.file (https:/ / api. flutter. dev/ flutter/ widgets/ Image/ Image. file.
html) creates FileImage to obtain an image from a file (https:/ / api.flutter.
dev/flutter/ dart- io/ File- class. html):

 Image.file(
 File(file_path)
)

Image.memory (https:/ / api. flutter. dev/ flutter/ widgets/ Image/ Image.
memory.html) creates MemoryImage to obtain an image from Uint8List
(https:/ / api. flutter. dev/ flutter/ dart- typed_ data/ Uint8List- class. html):

 Image.memory(
 Uint8List(image_bytes)
)

https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/widgets/Image/Image.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/painting/ImageProvider-class.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/widgets/Image/Image.asset.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/services/AssetBundle-class.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.network.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/widgets/Image/Image.file.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/dart-io/File-class.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/widgets/Image/Image.memory.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html
https://api.flutter.dev/flutter/dart-typed_data/Uint8List-class.html

Widgets: Building Layouts in Flutter Chapter 4

[135]

Besides the Image property, there are some other commonly used properties:

height/width: To specify the size constraints of an image
repeat: To repeat the image to cover the available space
alignment: To align the image in a specific position within its bounds
fit: To specify how the image should be inscribed into the available space

To see all the available Image widget properties, please go to the official
image widget docs page: https:/ / docs. flutter. io/ flutter/ widgets/
Image- class. html.

Material Design and iOS Cupertino widgets
Many of the widgets in Flutter are descended in some way from a platform-specific
guideline: Material Design or iOS Cupertino. This helps the developer to follow platform-
specific guidelines in the easiest possible way.

If you do not know the Material Design or iOS Cupertino guidelines, then
it's a good time to get to know them:

Material Design: https:/ / material. io/ guidelines/ material- design/
introduction. html.
iOS Cupertino: https:/ /developer. apple. com/ design/ human-
interface- guidelines/ ios/overview/ themes/ .

Flutter, for example, does not have a Button widget; instead, it provides alternative button
implementations for Google Material Design and iOS Cupertino guidelines.

We are not going to get deeper on each widget property or behavior, as
these can be easily studied by running examples or visiting the docs. Also,
you can check the Flutter Gallery app on Google Play (https:/ /play.
google. com/ store/ apps/ details? id= io. flutter. demo. gallery) to find
a short and cool demonstration of the available widgets.

https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://docs.flutter.io/flutter/widgets/Image-class.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery
https://play.google.com/store/apps/details?id=io.flutter.demo.gallery

Widgets: Building Layouts in Flutter Chapter 4

[136]

Buttons
On the Material Design side, Flutter implements the following button components:

RaisedButton: A Material Design raised button. A raised button consists of a
rectangular piece of material that hovers over the interface.
FloatingActionButton: A floating action button is a circular icon button that
hovers over content to promote a primary action in the application.
FlatButton: A flat button is a section printed on a Material widget that reacts to
touches by splashing/rippling with color.
IconButton: An icon button is a picture printed on a Material widget that reacts
to touches by splashing/rippling.

Ink, from the Material Design guidelines website, can be explained as follows:

 "Component that provides a radial action in the form of a visual ripple
expanding outward from the user's touch."

DropDownButton: Shows the currently selected item and an arrow that opens a
menu for selecting another item.
PopUpMenuButton: Displays a menu when pressed.

For iOS Cupertino style, Flutter provides the CupertinoButton class.

Due to Material Design's guidelines, elevation, ink effects, and light
effects, Material Design widgets are a bit more expensive than Cupertino
widgets. Not to the point of worrying, but it's interesting to know.

Scaffold
Scaffold implements the basic structure of a Material Design or iOS Cupertino visual
layout. For Material Design, the Scaffold widget can contain multiple Material Design
components:

body: The primary content of the scaffold. Its displayed below AppBar, if any.
AppBar: An app bar consists of a toolbar and potentially other widgets.
TabBar: A Material Design widget that displays a horizontal row of tabs. This is
generally used as part of AppBar.

Widgets: Building Layouts in Flutter Chapter 4

[137]

TabBarView: A page view that displays the widget that corresponds to the
currently selected tab. Typically used in conjunction with TabBar and used as
a body widget.
BottomNavigationBar: Bottom navigation bars make it easy to explore and
switch between top-level views in a single tap.
Drawer: A Material Design panel that slides in horizontally from the edge of a
scaffold to show navigation links in an application.

In iOS Cupertino, the structure is different with some specific transitions and behaviors.
The available iOS Cupertino classes are CupertinoPageScaffold
and CupertinoTabScaffold, which are composed typically with the following:

CupertinoNavigationBar: A top navigation bar. It's typically used with
CupertinoPageScaffold.
CupertinoTabBar: A bottom tab bar that is typically used with
CupertinoTabScaffold.

Dialogs
Both Material Design and Cupertino dialogs are implemented by Flutter. On the Material
Design side, they are SimpleDialog and AlertDialog; on the Cupertino side, they
are CupertinoDialog and CupertinoAlertDialog.

Text fields
Text fields are also implemented in both guidelines, by the TextField widget in Material
Design and by the CupertinoTextField widget in iOS Cupertino. Both of them display
the keyboard for user input. Some of their common properties are as follows:

autofocus: Whether the TextField should be focused automatically (if nothing
else is already focused)
enabled: To set the field as editable or not
keyboardType: To change the type of keyboard displayed to the user when
editing

To see all the available TextField and CupertinoTextField widget
properties, please go to the official widgets docs page: https:/ /docs.
flutter. io/ flutter/ material/ TextField- class. html and https:/ /
docs. flutter. io/ flutter/ cupertino/ CupertinoTextField- class. html.

https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html
https://docs.flutter.io/flutter/cupertino/CupertinoTextField-class.html

Widgets: Building Layouts in Flutter Chapter 4

[138]

Selection widgets
The available control widgets for selection in Material Design are as follows:

Checkbox allows the selection of multiple options in a list.
Radio allows a single selection in a list of options.
Switch allows the toggle (on/off) of a single option.
Slider allows the selection of a value in a range by moving the slider thumb.

On the iOS Cupertino side, some of these widget functionalities do not exist; however,
there are some alternatives available:

CupertinoActionSheet: An iOS-style modal bottom action sheet to choose an
option among many.
CupertinoPicker: Also a picker control. It's used to select an item in a short list.
CupertinoSegmentedControl: Behaves like a radio button, where the selection
is a single item from an options list.
CupertinoSlider: Similar to Slider in Material Design.
CupertinoSwitch: This is also similar to Material Design's Switch.

Date and time pickers
For Material Design, Flutter provides date and time pickers through showDatePicker and
showTimePicker functions, which builds and displays the Material Design dialog for the
corresponding actions. On the iOS Cupertino side, the CupertinoDatePicker
and CupertinoTimerPicker widgets are provided, following the previous
CupertinoPicker style.

Other components
There are also design-specific components that are unique to each platform. Material
Design, for example, has the concept of Cards, which are defined as follows in the
documentation:

 "A sheet of Material used to represent some related information."

On the other side of things, Cupertino-specific widgets may have unique transitions present
in the iOS world.

Widgets: Building Layouts in Flutter Chapter 4

[139]

For more details, feel free to check the Flutter widgets catalog on
the flutter.io website: https:/ /flutter. io/docs/ development/ ui/
widgets.

Understanding built-in layout widgets
Some widgets seem not to appear on screen to the user, but if they are in the widget tree,
they will be there somehow, affecting how a child widget looks (such as how it is
positioned or styled, for example).

To position a button in the bottom corner of the screen, for example, we could specify a
position related to the screen, but as you may have noticed, buttons and other widgets do
not have a Position property. So, you might be asking yourself, "How are widgets organized
on the screen?" The answer is widgets again. That's right! Flutter provides widgets to
compose the layout itself, with positioning, sizing, styling, and so on.

Containers
Displaying a single widget onscreen is not a good way to organize a UI. We will usually lay
out a list of widgets that are organized in a specific way; to do so, we use container widgets.

The most common containers in Flutter are the Row and Column widgets. They have a
children property that expects a list of widgets to be displayed in a specific direction (that
is, a horizontal list for Row, or a vertical list for Column).

Another widely used widget is the Stack widget, which organizes children in layers,
where one child can overlap another child partially or totally.

If you have developed some kind of mobile application before, you may have already used
lists and grids. Flutter provides classes for both of them: namely, the ListView and
GridView widgets. Also, other less typical but nonetheless important container widgets are
available, such as Table, for example, which organizes children in a tabular layout.

https://flutter.io/docs/development/ui/widgets
https://flutter.io/docs/development/ui/widgets
https://flutter.io/docs/development/ui/widgets
https://flutter.io/docs/development/ui/widgets
https://flutter.io/docs/development/ui/widgets
https://flutter.io/docs/development/ui/widgets
https://flutter.io/docs/development/ui/widgets
https://flutter.io/docs/development/ui/widgets
https://flutter.io/docs/development/ui/widgets
https://flutter.io/docs/development/ui/widgets
https://flutter.io/docs/development/ui/widgets
https://flutter.io/docs/development/ui/widgets
https://flutter.io/docs/development/ui/widgets
https://flutter.io/docs/development/ui/widgets

Widgets: Building Layouts in Flutter Chapter 4

[140]

Styling and positioning
The task of positioning a child widget in a container, such as a Stack widget, for example,
is done by using other widgets. Flutter provides widgets for very specific tasks. Centering a
widget inside a container is done by wrapping it into a Center widget. Aligning a child
widget relative to a parent can be done with the Align widget, where you specify the
desired position through its alignment property. Another useful widget is Padding,
which allows us to specify a space around the given child. The functionalities of these
widgets are aggregated in the Container widget, which combines those common
positioning and styling widgets to apply them to a child directly, making the code much
cleaner and shorter.

Other widgets (gestures, animations, and
transformations)
Flutter provides widgets for anything related to UI. For example, gestures such as scrolling
or touches will all be related to a widget that manages gestures. Animations and
transformations, such as scaling and rotation, are also all managed by specific widgets. We
will be checking out some of them in detail in the following chapters, when we develop
parts of a small application.

We are not able to explore all the available widgets and all the possible combinations of
them. We will start our journey by developing a small application in the following section,
where we will explore some of the available widgets in all of the categories so that you can
visualize how to use some of them. Most importantly, you will learn about the
fundamentals of creating layouts in Flutter. Once that's done, learning about new and
specific widgets will be an easy task.

During the writing of this book, Flutter is evolving another great
feature, Platform View, which allows us to utilize any native interfaces
that are already available in iOS and Android. Read more in Chapter
11, Platform Views and Map Integration, in the Displaying a map section.

Widgets: Building Layouts in Flutter Chapter 4

[141]

Creating a UI with widgets (favor manager
app)
Now that we know some of the available widgets from Flutter, it is time to start the small
application that we will build during the course of the book.

The application we're going to develop will be a favor manager app. It will be a small
network where a friend may ask a favor of another friend, and that friend may accept or
refuse to do the favor. By accepting, the favor enters in the user's favors-to-do list. It's like a
to-do app where tasks to do are proposed by the user's friends and only accepted or rejected
by the user. In this app, we will explore many concepts that may help in application
development.

In the following chapters, we will be adding functionalities to the application, gradually
learning about all the different pieces that compose a Flutter app.

The app screens
The Friend Favors app will consist of two screens. In both of them, we will be using Material
Design components provided by Flutter. The first screen will be a list of favors, and the
second one will be a form for asking a favor of a friend. For now, we will be using in-
memory lists; that is, the information will not be stored anywhere other than the app.

The app code
The app code is not fully functional yet. It's small enough to show up the layout. It builds
a MaterialApp widget instance that sets the home screen to the favors list page,
called FavorsPage:

class MyApp extends statelessWidget {
 // using mock values from mock_favors dart file for now
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Demo',
 home: FavorsPage(
 pendingAnswerFavors: mockPendingFavors,
 completedFavors: mockCompletedFavors,
 refusedFavors: mockRefusedFavors,
 acceptedFavors: mockDoingFavors,
),

Widgets: Building Layouts in Flutter Chapter 4

[142]

);
 }
}

MaterialApp is a widget that provides useful tools for the whole application. One of them
is the Theme widget, which allows us to change our app styles and colors following the
Material Design guidelines. Another useful tool is the Navigator widget, which manages a
set of application widgets in a navigation stack-like way, where we can navigate to a screen
by pushing it on the navigator or navigate back. We will be using both widgets in the
app. Navigator is already applied here when we set the home property of
the MaterialApp widget. Navigator works in a route-to-widget fashion; that is, there are
a few ways to define specific routes pointing to specific widgets, and when we navigate to a
route, it will be capable of navigating to the corresponding widget. By setting the
home property with some widget, we are saying the Navigator to use this widget is the '/'
route.

As you can see, the FavorsPage widget has some constructor parameters
filled. Keep reading to see what they are.

In this first stage, we will be looking at the app layout initial structure, which will evolve to
the end of the book with new styles and widgets. In the next chapter, you will be learning
how to add some user input methods using taps and form fields. Later on, in Chapter
6, Theming and Styling, we will see how to customize the look of the app by using the
material theme. So, let's start by taking a look at screen layouts.

Widgets: Building Layouts in Flutter Chapter 4

[143]

Favors app home screen
The first screen of the app is the home screen, which will consist of four tabs listing favors
and their statuses:

Pending favors: Favors requested by some friends that we have not answered
yet
In-progress/doing favors: The accepted favors; that is, the favors we are doing
right now:

Widgets: Building Layouts in Flutter Chapter 4

[144]

Completed favors: The already-completed favors
Refused favors: A list of favors that we refused to do (not accepted):

Widgets: Building Layouts in Flutter Chapter 4

[145]

The list will contain all the favors of the app, separated by categories, as listed. At the top of
the layout, we have a TabBar instance that will be used to change the tab to the desired list.
Following that, on each tab, we have a list of Card items, which contain actions
corresponding to its category.

We have created Friend and Favor classes to represent the app data. You
can have a closer look at this in the chapter source code
(the hands_on_layouts directory) for this book. Here, they are simple
data classes that do not contain any advanced business logic.

Also, the floating action button at the bottom end of the screen should redirect to the
Request a favor screen, where the user will be able to ask a favor of some friends.

The layout code
First of all, we will define our home page as a statelessWidget instance, as we now care
only about layout and do not have any actions to be managed that would result in a state
change. That is why the parent widget, MyApp, passes values to the defined list fields.
Remember, when a widget is stateless, its description is defined by the parent widget
during its creation. This is shown in the following code:

class FavorsPage extends statelessWidget {
 // using mock values from mock_favors dart file for now
 final List<Favor> pendingAnswerFavors;
 final List<Favor> acceptedFavors;
 final List<Favor> completedFavors;
 final List<Favor> refusedFavors;

 FavorsPage({
 Key key,
 this.pendingAnswerFavors,
 this.acceptedFavors,
 this.completedFfavors,
 this.refusedFavors,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {...} // for brevity
}

Widgets: Building Layouts in Flutter Chapter 4

[146]

As shown in the preceding code, the widget is defined by the favors-specific lists. Also,
notice the key parameter. Although it is not really needed here, it is good practice to define
the parameter.

Let's take a look at the build() method to see what composes the widget:

 @override
 Widget build(BuildContext context) {
 return DefaultTabController(
 length: 4,
 child: Scaffold(
 appBar: AppBar(
 title: Text("Your favors"),
 bottom: TabBar(
 isScrollable: true,
 tabs: [
 _buildCategoryTab("Requests"),
 _buildCategoryTab("Doing"),
 _buildCategoryTab("Completed"),
 _buildCategoryTab("Refused"),
],
),
),
 body: TabBarView(
 children: [
 _favorsList("Pending Requests", pendingAnswerFavors),
 _favorsList("Doing", acceptedFavors),
 _favorsList("Completed", completedFavors),
 _favorsList("Refused", refusedFavors),
],
),
 floatingActionButton: FloatingActionButton(
 onPressed: () {},
 tooltip: 'Ask a favor',
 child: Icon(Icons.add),
),
),
);
 }

Widgets: Building Layouts in Flutter Chapter 4

[147]

The first widget present in the FavorsPage widget subtree is the DefaultTabController
widget, which handles the tab changing for us. After that, we have a Scaffold widget,
which implements the basic structure of Material Design. Here, we are already using some
of those elements, including the app bar and the floating action button. This widget is very
useful for designing apps that follow the Material Design as it provides useful properties
based on the guidelines:

In AppBar, we have added a title with the help of a Text widget. In some cases,
we may also add actions or a custom layout to it. Here, we added a
TabBar instance right at the bottom of the app bar that will show the available
tabs.
In FloatingActionButton, we also have not changed too much; we only added
an icon by using the Icon widget, which contains a Material Design icon
provided by the framework.
The body property of the Scaffold widget is where we design the layout itself.
It is defined as follows: a TabBarView widget displays the corresponding widget
for the selected tab in the DefaultTabController instance defined
previously. Its children property is what requires attention; it matches the tabs
of the tab bar and returns the corresponding widget of each tab.

The Tab bar items are created by the _buildCategoryChip() method, as follows:

class FavorsPage extends statelessWidget {
 // ... fields, build method and others
 Widget _buildCategoryTab(String title) {
 return Tab(
 child: Text(title),
);
 }
}

As you can see, the function creates a category tab item by simply building a
 Tab > Text subtree, where title is the item identifier.

Widgets: Building Layouts in Flutter Chapter 4

[148]

In the same way, each favor list section is defined in its own method, _favorsList():

class FavorsPage extends statelessWidget {
 // ... fields, build method and others

 Widget _favorsList(String title, List<Favor> favors) {
 return Column(
 mainAxisSize: MainAxisSize.max,
 children: <Widget>[
 Padding(
 child: Text(title),
 padding: EdgeInsets.only(top: 16.0),
),
 Expanded(
 child: ListView.builder(
 physics: BouncingScrollPhysics(),
 itemCount: favors.length,
 itemBuilder: (BuildContext context, int index) {
 final favor = favors[index];
 return Card(
 key: ValueKey(favor.uuid),
 margin: EdgeInsets.symmetric(vertical: 10.0,
 horizontal: 25.0),
 child: Padding(
 child: Column(
 children: <Widget>[
 _itemHeader(favor),
 Text(favor.description),
 _itemFooter(favor)
],
),
 padding: EdgeInsets.all(8.0),
),
);
 },
),
),
],
);
 }
}

The favor section widget is represented by a Column widget that has two child widgets:

A Text widget (with a Padding parent) containing the section title, as before
A ListView instance that will contain each of the favor items

Widgets: Building Layouts in Flutter Chapter 4

[149]

This list is built in a distinct way from the preceding ones. Here, we have used
the ListView.builder() named constructor. This list constructor expects itemCount
and itemBuilder instances, which we define using the list passed as an argument in the
call to _favorsList():

itemCount is simply the size of the list.
itemBuilder must be a function that returns the widget corresponding to the
item in a specific position. This function receives BuildContext, like the
build() method of the widget, and also an index position (here, we used the
index argument to get the corresponding favor from the favors list).

This form of item building is optimal for big lists, lists that grow during the life cycle, or
even infinite-scroll lists (which you might already have seen in some apps), because it
builds items only if they are needed, preventing the waste of computational resources.

Changing the favors list physics with (physics:
BouncingScrollPhysics()) causes the list to have the scroll bouncing
effect seen in iOS lists.

The itemBuilder function value builds a Card widget for every favor in the favors
argument list by getting the corresponding item with final favor = favors[index];.
The remaining part of the builder is as follows:

return Card(
 key: ValueKey(favor.uuid),
 margin: EdgeInsets.symmetric(vertical: 10.0, horizontal: 25.0),
 child: Padding(
 child: Column(
 children: <Widget>[
 _itemHeader(favor),
 Text(favor.description),
 _itemFooter(favor)
],
),
 padding: EdgeInsets.all(8.0),
),
);

When we talk about list items, we will always need a key to the widget, at least when we
add tap event handling to it. This is because lists in Flutter may recycle many elements
during scroll events, and by adding a key, we will assert that the specific widget has a
specific state associated with it.

Widgets: Building Layouts in Flutter Chapter 4

[150]

The new part here is the margin property of the Card widget, which adds a margin to the
widget. In this case, we add 10.0 dip for the top and bottom, and 25.0 for the left and
right. Its body child is split into three parts:

First, there is the header, which shows the friend that has made the favor request,
defined in the _itemHeader() function:

 Row _itemHeader(Favor favor) {
 return Row(
 children: <Widget>[
 CircleAvatar(
 backgroundImage: NetworkImage(
 favor.friend.photoURL,
),
),
 Expanded(
 child: Padding(
 padding: EdgeInsets.only(left: 8.0),
 child: Text("${favor.friend.name} asked you to...
 ")),
)
],
);
 }

The header is defined as a Row > [CircleAvatar, Expanded] subtree. It starts
with a Row definition (works like the Column widget, but in the horizontal axis)
that has a CircleAvatar instance, a circle image that represents a user. Here, we
have used the NetworkImage provider; we simply pass a image URL to it and let
it load for us. The remaining space of the Row widget is used by Text with some
Padding on it that shows the friend's name.

Secondly, there is the content, which is just a Text widget with the favor
description.
Finally, there is the footer, which contains the available actions for the favor
request depending on the favor category, defined in the _itemFooter()
function:

 Widget _itemFooter(Favor favor) {
 if (favor.isCompleted) {
 final format = DateFormat();
 return Container(
 margin: EdgeInsets.only(top: 8.0),
 alignment: Alignment.centerRight,
 child: Chip(

Widgets: Building Layouts in Flutter Chapter 4

[151]

 label: Text("Completed at:
 ${format.format(favor.completed)}"),
),
);
 }
 if (favor.isRequested) {
 return Row(
 mainAxisAlignment: MainAxisAlignment.end,
 children: <Widget>[
 FlatButton(
 child: Text("Refuse"),
 onPressed: () {},
),
 FlatButton(
 child: Text("Do"),
 onPressed: () {},
)
],
);
 }
 if (favor.isDoing) {
 return Row(
 mainAxisAlignment: MainAxisAlignment.end,
 children: <Widget>[
 FlatButton(
 child: Text("give up"),
 onPressed: () {},
),
 FlatButton(
 child: Text("complete"),
 onPressed: () {},
)
],
);
 }

 return Container();
 }

Widgets: Building Layouts in Flutter Chapter 4

[152]

The _itemFooter() function returns a widget depending on the favor status.
The favor statuses are defined by getters in the Favor class:

In the request phase (the favor has not been accepted or refused yet), we
return a Row widget with two material FlatButton instances on it with the
corresponding available actions: refuse or do. FlatButton is a Material
Design button that does not have an elevation or background color on it.
For the doing phase, we return a Row widget with rejected or complete
actions as FlatButtons.
For the completed status, we display the completed date and time formatted
using the DateFormat class from Dart inside a Chip widget to differentiate
from the rest of the text.
In the refused status, we return a Container widget with no size
constraints; this is an empty container (it does not take up space on a
layout).

You can use the EdgeInsets helper class methods whenever you are
defining padding or margin. It has useful methods for this. Check out the
official documentation page: https:/ / api.flutter. dev/ flutter/
painting/ EdgeInsets- class. html.

As we have seen in the favor lists implementation, there are various widgets composing the
layout. Notice however, that we are not handling any user action here; we will be checking
in on all that in the next chapter. Let's take a look at the request favor screen.

Notice the onPressed property on FlatButton; it defines the action
when the user taps on it. We will be looking at this in Chapter 5, Handling
User Input and Gestures, so keep going!

https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html
https://api.flutter.dev/flutter/painting/EdgeInsets-class.html

Widgets: Building Layouts in Flutter Chapter 4

[153]

The request favor screen
The request favor screen will be the place where the user-app interaction occurs. For now,
we will be looking only at the layout of this screen. As the book goes on, we will be joining
the pieces to select the friend to ask the favor, and also save the favor to the Firebase remote
database:

Widgets: Building Layouts in Flutter Chapter 4

[154]

The request favor screen widget also contains a Material Design Scaffold widget with an
app bar that contains actions this time. The body of the Scaffold widget contains fields
that will have input information from the user for the creation of a favor request.

The layout code
The RequestFavorPage widget is also stateless right now as we care only about its layout
currently:

class RequestFavorPage extends statelessWidget {
 final List<Friend> friends;

 RequestFavorPage({Key key, this.friends}) : super(key: key);

 @override
 Widget build(BuildContext context) {...} // for brevety
}

As you can see, the only thing in the widget description is the friends list, which must be
provided by the parent widget as this is a statelessWidget instance right now.

To find out how to navigate between screens (that is, from the favors list
to the Request a favor screen), jump to Chapter 7, Routing: Navigating
between Screens, where we talk about routing and navigation.

The build() method of the widget begins as follows:

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text("Requesting a favor"),
 leading: CloseButton(),
 actions: <Widget>[
 FlatButton(
 child: Text("SAVE"), textColor: Colors.white, onPressed: ()
 {}),
],
),
 body: ... // continues below
 ...

Widgets: Building Layouts in Flutter Chapter 4

[155]

appBar here contains two new properties:

The leading property, which is a widget displayed before the title. In this case,
we use a CloseButton widget that is a button integrated with the material
Navigator widget (more on that in Chapter 7, Routing: Navigating between
Screens).
The actions property, which receives a list of widgets to display after the title;
in this case, we display a FlatButton instance using which we will save the
favor request.

The body of Scaffold defines the layout in a Column widget. It contains two new
properties: the first is mainAxisSize, which defines the size in the vertical axis; here we
use MainAxisSize.min so it only takes up as much space as is necessary. The second
is crossAxisAlignment, which defines where to align the children in the horizontal axis.
By default, Column aligns its children horizontally in the center. Using this property, we
may change this behavior. There are three child widgets in Column that will take the user
input:

A DropdownButtonFormField widget that lists the DropdownMenuItem widget
items in a popup when pressed:

...
 DropdownButtonFormField(
 items: friends
 .map(
 (f) => DropdownMenuItem(
 child: Text(f.name),
),
)
 .toList(),
),
...

Here, we use the map() method from the Dart Iterable type, where each
element from the list (friends, in this case) is mapped to a new
DropdownMenuItem widget. So, each element from the friends list will be
displayed as a widget item in the drop-down list.

Widgets: Building Layouts in Flutter Chapter 4

[156]

A TextFormField widget that allows the input of text by typing on the
keyboard:

 TextFormField(
 maxLines: 5,
 inputFormatters: [LengthLimitingTextInputFormatter(200)],
),

The TextFormField widget allows text input. By adding inputFormatters to
it, we can configure how it looks on the screen. Here we just limit the total length
of the typed text to 200 characters by using the
LengthLimitingTextInputFormatter class, which is provided by
the flutter/services library.

Check out all of the provided utilities from the flutter/services
package at the package's webpage: https:/ /api. flutter. dev/flutter/
services/ services- library. html.

A DateTimePickerFormField widget that allows the user to select a
DateTime instance and maps it to a DateTime Dart type:

 DateTimePickerFormField(
 inputType: InputType.both,
 format: DateFormat("EEEE, MMMM d, yyyy 'at' h:mma"),
 editable: false,
 decoration: InputDecoration(
 labelText: 'Date/Time', hasFloatingPlaceholder: false),
 onChanged: (dt) {},
),

The DateTimePickerFormField widget is not a built-in widget from Flutter. This is a
third-party plugin from the datetime_picker_formfield library. Here, we define some
properties to change how it appears:

inputType: Whether to select date, time, or both.
format: A DateFormat Dart type to define the string representation format of
the value.
editable: Whether the widget is to be manually editable by the user.
decoration: Used to define a decoration for the input field in a Material Design
way. Note that we have not defined it for other input fields.
onChanged: Callback called with the new value selected by the user.

https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html
https://api.flutter.dev/flutter/services/services-library.html

Widgets: Building Layouts in Flutter Chapter 4

[157]

To find out about all the available options and how to use the
DateTimePickerFormField widget, please visit https:/ /pub. dartlang.
org/packages/ datetime_ picker_ formfield.

Besides the input fields, there are also some Container and Text widgets in the Column to
help in the formatting and design of the screen. Take a look at the chapter source code for
the full layout code.

Creating custom widgets
When creating UIs with Flutter, we will always have to create some custom widgets; we
cannot and do not want to escape from it. After all, the composition of widgets for building
unique interfaces is what Flutter enables so well.

In the application, we have created some of the layout already, and the only custom
widgets we have created are the FavorsPage and RequestFavorPage widgets.

You may have noted as well that due to the way of composing layouts in Flutter, the code
may become huge and hard to maintain. To address this, we have created small methods
that split the creation of the widget into parts to build up the full layout.

Splitting widgets into small methods is good for helping the code become smaller, but it's
not as good for Flutter. In our case, we do not have a complex layout yet, so this is OK, but
in the case of a complex layout where the widget tree can change many times, having
widgets as built-in methods will not help the framework to optimize the rendering process.

To help the framework to optimize the rendering process, we should instead split our
methods into small, purposeful widgets. So, the Widget tree | Element tree operations will
be optimized. Remember, the type of widget helps the framework to know when a widget
changes and needs to be rebuilt, impacting the whole rendering process. So, let's revisit
our FavorsPage widget and convert the small widget methods into new custom small
widgets.

The _favorsList() method (see the attached source code) can be refactored into a
new FavorsList widget. Then, the itemBuilder property of the FavorsList widget can
be refactored to return a FavorCardItem widget that returns the card item:

class FavorCardItem extends statelessWidget {
 final Favor favor;

 const FavorCardItem({Key key, this.favor}) : super(key: key);

https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield
https://pub.dartlang.org/packages/datetime_picker_formfield

Widgets: Building Layouts in Flutter Chapter 4

[158]

 @override
 Widget build(BuildContext context) {
 return Card(
 key: ValueKey(favor.uuid),
 margin: EdgeInsets.symmetric(vertical: 10.0, horizontal: 25.0),
 child: Padding(
 child: Column(
 children: <Widget>[
 _itemHeader(favor),
 Text(favor.description),
 _itemFooter(favor)
],
),
 padding: EdgeInsets.all(8.0),
),
);
 }
 Widget _itemHeader(Favor favor) { ... } // for brevity
 Widget _itemFooter(Favor favor) { ... }// for brevity
}

The only thing that changes is the adding of a new class with the proper final fields that
matter for the widget rendering; the build() method is almost the same as the
previous _buildFavorsList() method.

Notice that the favor card item still contains the header and footer parts as
methods, _itemHeader() and _itemActions() respectively. This way, they are small
enough to not harm the rendering process. But remember, splitting them into widgets
would not hurt either.

With this technique of using the splitting widget, we will be giving the framework just
enough information about our widgets, and they will behave like built-in widgets and be
able to be optimized like built-in widgets.

I recommend that you read this interesting blog post on widget
performance: https:/ / iirokrankka. com/ 2018/ 12/11/ splitting-
widgets- to- methods- performance- antipattern/ .

https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/
https://iirokrankka.com/2018/12/11/splitting-widgets-to-methods-performance-antipattern/

Widgets: Building Layouts in Flutter Chapter 4

[159]

Summary
In this chapter, we have seen each of the available Flutter widget types and
their differences. stateless widgets do not get rebuilt frequently by the framework; on
the other hand, stateful widgets get rebuilt every time its associated State object
changes (which could be when the setState() function is used, for example). We have
also seen that Flutter comes with many widgets that can be combined to build unique UIs,
and that they also do not need to be visual components on the user's screen; they can be
layout, styling, and even data widgets, such as InheritedWidget. We have started the
development of a small app that we will continue to develop in the next few chapters; we
will be adding specific functions to it while we present new important concepts about
Flutter.

In the next chapter, we will check out how to add user interaction to the app by adding
responses to user taps and data input that later will be stored in Firebase.

5
Handling User Input and

Gestures
With the use of widgets, it is possible to create an interface that's rich in visual resources
that also allows user interaction through gestures and data entry. In this chapter, you will
get to learn about the widgets used to handle user gestures, receive and validate user input,
along with how to create our own custom inputs.

The following topics will be covered in this chapter:

Handling user gestures
Understanding input widgets
Learning input validation
Creating custom inputs

Handling user gestures
A mobile application would be nothing without some kind of interactivity. The Flutter
framework allows the handling of user gestures in every possible way, from simple taps to
drag and pan gestures. The screen events in Flutter's gesture system are separated into two
layers, as follows:

Pointer layers: These are the layers that have pointer events which represent user
interactions, with details such as touch location and movement on the device
screen.

Handling User Input and Gestures Chapter 5

[161]

Gestures: Gestures in Flutter are interaction events at the highest level of
definition, and you might already have seen some of them in action, such as taps,
drags, and scale, for example. Also, they are the most typical way of
implementing event handling.

Pointers
Flutter starts event handling in a low-level layer (pointer layers), where you can handle
every pointer event and decide how to control it, such as with a drag or single tap.

The Flutter framework implements event dispatching on the widget tree by following a
sequence of events:

PointerDownEvent is where the interaction begins, with a pointer coming into
contact with a certain location of the device screen. Here, the framework searches
the widget tree for the widget that exists in the location of the pointer on the
screen. This action is called a hit test.
Every following event is dispatched to the innermost widget that matches the
location, and then raised up the widget tree from the parent widgets to the root.
This propagation of event actions cannot be interrupted. The event could
be PointerMoveEvent, where the location of the pointer is changed. It could
also be PointerUpEvent or PointerCancelEvent.
An interaction might finish with PointerUpEvent or PointerCancelEvent.
The former here is where the pointer stops being in contact with the screen, while
the latter means that the application doesn't receive any more events about the
pointer (the event is not complete).

Flutter provides the Listener class, which can be used to detect the pointer interaction
events that we've previously discussed. You can wrap a widget tree with this widget to
handle pointer events on its widget subtree.

Check out the Listener class documentation page at https:/ /api.
flutter. dev/ flutter/ widgets/ Listener- class. html.

https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html
https://api.flutter.dev/flutter/widgets/Listener-class.html

Handling User Input and Gestures Chapter 5

[162]

Gestures
Although possible, it is not always practical to handle pointer events by ourselves using the
Listener widget. Instead, the events can be handled on the second layer of the Flutter
gesture system. The gestures are recognized from multiple pointer events, and even
multiple individual pointers (multitouch). There are multiple kinds of gestures that can be
handled:

Tap: A single tap/touch on the device screen.
Double tap: A double quick tap on the same location on the device screen.
Press and long press: A press on the device screen, similar to tap, but contacting
the screen for a long period of time before release.
Drag: A press that starts with a pointer contacting the screen in some location,
which is then moved and stops contacting at another location on the device
screen.
Pan: Similar to drag events. In Flutter, they are different in direction; pan
gestures cover both horizontal and vertical drags.
Scale: Two pointers used for a drag move to employ a scale gesture. This is also
similar to a zoom gesture.

Like the Listener widget for pointer events, Flutter provides the GestureDetector
widget, which contains callbacks for all of the preceding events. We should use them
according to the effect we want to achieve.

Tap
Let's see how to implement the tap event using the GestureDetector widget's onTap
callback:

// part of tap_event_example.dart (full source code in the attached files)

class _TapWidgetExampleState extends State<TapWidgetExample> {
 int _counter = 0;

 @override
 Widget build(BuildContext context) {
 return GestureDetector(
 onTap: () {
 setState(() {
 _counter++;
 });
 },

Handling User Input and Gestures Chapter 5

[163]

 child: Container(
 color: Colors.grey,
 child: Center(
 child: Text(
 "Tap count: $_counter",
 style: Theme.of(context).textTheme.display1,
),
),
),
);
 }
}

This is the state implementation of a widget that holds the example. It has a single counter
to show how many taps were performed on the screen. In this example, the onTap property
holds a callback that updates the widget state after a tap on the screen, by incrementing the
_counter value.

You can find the source code of Chapter 5, Handling User Input and
Gestures, on GitHub.

Double tap
The double tap callback is very similar in code:

// part of doubletap_event_example.dart (full source code in the attached
files)

GestureDetector(
 onDoubleTap: () {
 setState(() {
 _counter++;
 });
 },
 child: ... // for brevity
);

The only difference from the previous item is the property assigned, onDoubleTap, that
will be called every time double taps are quickly performed at the same location on the
screen.

Handling User Input and Gestures Chapter 5

[164]

Press and hold
Again, the difference from the previous examples is minimal:

// part of press_and_hold_event_example.dart (full source code in the
attached files)

GestureDetector(
 onLongPress: () {
 setState(() {
 _counter++;
 });
 },
 child: ... // for brevity
);

The only difference from the previous item is the property assigned, onLongPress, which
will be called every time a tap is performed and held for some time – a long press – before
being released from the screen.

Drag, pan, and scale
Drag, pan, and scale gestures are similar, and in Flutter we have to decide which one to use
in each situation, as they cannot be used all together in the same GestureDetector
widget.

Drag gestures are separated into vertical and horizontal gestures. Even the callbacks are
separated in Flutter.

Horizontal drag
Let's see how the horizontal version looks in code:

// part of drag_event_example.dart (full source code in the attached files)

GestureDetector(
 onHorizontalDragStart: (DragStartDetails details) {
 setState(() {
 _move = Offset.zero;
 _dragging = true;
 });
 },
 onHorizontalDragUpdate: (DragUpdateDetails details) {
 setState(() {
 _move += details.delta;

Handling User Input and Gestures Chapter 5

[165]

 });
 },
 onHorizontalDragEnd: (DragEndDetails details) {
 setState(() {
 _dragging = false;
 _dragCount++;
 });
 },
 child: ... // for brevity
)

This time, we need a bit more work than for tap events. In the example, we have three
properties present in the state:

_dragging: Used to update the text viewed by the user while dragging.
_dragCount: This accumulates the total number of drag events made from start
to end.
_move: That accumulates the offset of the dragging that is applied to the Text
using the translate constructor of the Transform widget.

We will be checking a bit more on Transform widgets on Chapter 14,
Widget Graphic Manipulations.

As you can see, the drag callbacks receive parameters related to each event
– DragStartDetails, DragUpdateDetails, and DragEndDetails – that contains values
that may help on each stage of the dragging.

Vertical drag
The vertical version of drag is almost the same as the horizontal version. The significant
differences are in the callback properties, which are
onVerticalDragStart, onVerticalDragUpdate, and onVerticalDragEnd.

What changes for vertical and horizontal callbacks in terms of code is the
delta property value of the DragUpdateDetails class. For horizontal, it
will only have the horizontal part of the offset changed, and for vertical,
the opposite is the case.

Handling User Input and Gestures Chapter 5

[166]

Pan
The pan version is also very similar. The significant differences this time are in addition to
the callback properties, which are now onPanStart, onPanUpdate, and onPanEnd. For
pan drags, both axis offsets are evaluated; that is, both delta values
in DragUpdateDetails are present, so the dragging has no limitation on direction.

You can find the source code of
the gestures/lib/example_widgets/pan_example_event.dart
file on GitHub.

Scale
The scale version is nothing more than panning on more than one pointer. Let's see what
the scale version of panning looks like:

// part of scale_event_example.dart (full source code in the attached
files)

GestureDetector(
 onScaleStart: (ScaleStartDetails details) {
 setState(() {
 _scale = 1.0;
 _resizing = true;
 });
 },
 onScaleUpdate: (ScaleUpdateDetails details) {
 setState(() {
 _scale = details.scale;
 });
 },
 onScaleEnd: (ScaleEndDetails details) {
 setState(() {
 _resizing = false;
 _scaleCount++;
 });
 },
 child: ... // for brevity
)

Handling User Input and Gestures Chapter 5

[167]

The code here is very similar to the previous ones. We have three properties in the state:

_resizing: This is used to update the text viewed by the user while resizing
using the scale gesture.
_scaleCount: This accumulates the total number of scale events made from start
to end.
_scale: This stores the scale value from the ScaleUpdateDetails parameter,
and that later is applied to the Text widget using the scale constructor of
the Transform widget.

As you can see, the scale callbacks look very similar to drag callbacks in that they also
receive parameters related to each event – ScaleStartDetails, ScaleUpdateDetails,
and ScaleEndDetails – which contain values that may help on each stage of the scale
event.

Gestures in material widgets
Material Design and iOS Cupertino widgets have many gestures abstracted to some
property by using the GestureDetector widget internally in their code. For example,
material widgets such as RaisedButton use the InkWell widget beside the tap event. It
does the splash effect on the target widget. Also, the onPressed property of
RaisedButton exposes the tap functionality that can be used to implement the action of
the button. Consider the following example:

// part of main.dart file (attached "input" directory example)
RaisedButton(
 onPressed: () {
 print("Running validation");
 // ... validate
 },
 child: Text("validate"),
)

A Text child is displayed in the RaisedButton and its press is handled in the onPressed
method, as stated previously.

Handling User Input and Gestures Chapter 5

[168]

Input widgets
Having gestures managed is a good start point of interaction with the user, but it's
obviously not enough. Getting user data is what adds content to many applications.

Flutter provides many input data widgets to help the developer to get different kinds of
information from the user. We already have seen some of them in Chapter 4, Widgets:
Building Layouts in Flutter, including TextField, and different kinds of Selector and
Picker widgets.

Although we can manage all the data input by the user by ourselves (let's say, in a root
widget that holds all the input fields), this can get cumbersome, because it could lead to us
having many fields and so we would probably end up increasing code complexity. Splitting
all the input widgets into small pieces helps, but does not resolve everything.

Flutter provides two widgets to help organize input in code, validate it, and provide
feedback promptly to the user. These are the Form and FormField widgets.

FormField and TextField
The FormField widget works as a base class to create our own form field, used to integrate
the Form widget. Its functions are as follows:

To help the process of setting and retrieving the current input value
To validate the current input value
To provide feedback from validations

FormField can live without Form widgets, but this isn't typical – only when we have, let's
say, a single FormField onscreen.

Many built-in input widgets from Flutter come with a corresponding FormField widget
implementation. For example, TextField widget has the TextFormField. The
TextFormField widget helps with access to the TextField value and also adds Form
related behaviors to it (such as, validation).

A TextField widget lets the user enter text with a keyboard. The TextField widget
exposes the onChanged method, which can be used to listen for changes in its current
value. Another way to listen for changes is by using a controller (see the Using a controller
section).

Handling User Input and Gestures Chapter 5

[169]

Using a controller
When used isolated from a Form, that is, by using the TextField widget, we need to use
its controller property to access its value. This is done with
the TextEditingController class:

 final _controller = TextEditingController.fromValue(
 TextEditingValue(text: "Initial value"),
);

After instantiating the TextEditingController, we set it into the controller
property of the TextField widget so that it "controls" the text widget:

TextField(
 controller: _controller,
);

As you can see, we can set an initial value for the TextField as well.

TextEditingController is notified whenever the TextField widget has a new value.
To listen to changes, we need to add a listener to our _controller:

_controller.addListener(_textFieldEvent);

_textFieldEvent must be a function that will be called every time the TextField widget
changes.

Check the full example in the attached chapter files.

Accessing FormField state
If we are using the TextFormField widget, things get simpler:

final _key = GlobalKey<FormFieldState<String>>();
...
TextFormField(
 key: _key,
);

Handling User Input and Gestures Chapter 5

[170]

We can add a key to our TextFormField that later can be used to access the widget's
current state through the key.currentState value, which will contain the updated value
of the field.

The specialized type of key refers to the kind of data the input field works with. In the
preceding example this is String, because it is a TextField widget, so the key depends
on the particular widget used.

The FormFieldState<String> class also provides other useful methods and properties to
deal with FormField:

validate() will call the widget's validator callback, which should check its
current value and return an error message, or null if it's valid.
hasError and errorText result from previous validations using the preceding
function. In material widgets, for example, this adds some small text near to the
field, providing proper feedback to the user about the error.
save() will call the widget's onSaved callback. This is the action that happens
when the input is done by the user (when it is being saved).
reset() will put the field in its initial state, with the initial value (if any),
clearing validation errors as well.

Form
Having a FormFieldWidget helps us access and validate its information individually. But,
to address the problem of having too many fields, we can use the Form widget. The Form
widget groups the FormFieldWidget instances logically, allowing us to perform
operations including accessing field information and validating it in a more straightforward
manner.

The Form widget allows us to run the following methods on all descendant fields easily:

save(): This will call all FormField instances' save method and will work as
before. This is like a batch saving of all the fields.
validate(): This will call all FormField instances' validate method, causing all
the errors to appear all at once.
reset(): This will call all FormField instances' reset method. This will bring the
whole Form to its initial state.

Handling User Input and Gestures Chapter 5

[171]

Accessing Form state
Providing access to the current form state-associated object is useful so that we can init its
validation, save its contents, or reset it from anywhere in the widgets tree (that is, a button
press). There are two ways of accessing the Form widget's associated State.

Using a key
The Form widget is used with the companion of a key of the FormState type, that contains
helpers to manage all of the children of its FormField instances:

final _key = GlobalKey<FormFieldState<String>>();
...
Form(
 key: _key,
 child: Column(
 children: <Widget>[
 TextFormField(),
 TextFormField(),
],
),
);

Then, we can use the key to retrieve the Form associated state and call its validation with
_key.currentState.validate(). Now, let's have a look at the second option.

Using InheritedWidget
The Form widget comes with a helpful class to dispense with the need to add a key to it and
still get its benefits.

Each Form widget in the tree has an associated InheritedWidget with it. Form and many
other widgets expose this in a static method called of(), where we pass BuildContext,
and it looks up the tree to find the corresponding State we are looking for. Knowing this, if
we need to access the Form widget somewhere below it in the tree, we can use Form.of(),
and we gain access to the same functions as we would have if we using the key property:

// part of input/main.dart example (full source code attached)
// build() in InputFormInheritedStateExamplesWidget class

Form(
 child: Column(
 mainAxisSize: MainAxisSize.min,
 children: <Widget>[
 TextFormField(

Handling User Input and Gestures Chapter 5

[172]

 validator: (String value) {
 return value.isEmpty ? "cannot be empty" : null;
 },
),
 TextFormField(),
 Builder(
 builder: (BuildContext context) => RaisedButton(
 onPressed: () {
 print("Running validation");
 final valid = Form.of(context).validate();
 print("valid: $valid");
 },
 child: Text("validate"),
),
)
],
),
);
...

Pay special attention to the Builder widget used to render RaisedButton. As we have
seen before, the inherited widget can be looked upon the tree. Consider the following usage
of RaisedButton directly in the Column widget, as follows:

Column(
children: [
// ... other childs, removed for brevity
 TextFormField(),
 RaisedButton(
 onPressed: () {
 print("Running validation");
 final valid = Form.of(context).validate(); // this would not work
 // (wrong context)
 print("valid: $valid");
 },
 child: Text("validate"),
)
],
...

When we use Form.of(context), we pass the current widget context. In the preceding
example, the context used in the onPressed callback will be
the InputFormInheritedStateExamplesWidget context, and so, looking up the tree will
not successfully find a Form widget. By using the Builder widget, we delegate its build to
a callback, this time using the correct context (the child one), and when it looks up the tree,
it will successfully find the FormState instance.

Handling User Input and Gestures Chapter 5

[173]

Validating Input (Forms)
Handling multiple FormField widgets is OK when talking about few values, but when the
quantity of data grows, organizing it onscreen, validating everything properly, and
providing user feedback promptly can all become harder. That's why Flutter provides the
Form widget.

Validating user input
Validating user input is one of the main functions of the Form widget. In order to make the
data input entered by the user consistent, it is fundamental to check it, as the user probably
does not know all the allowed values.

The Form widget, combined with FormField instances, helps the developer to show an
appropriate error message if some input values need to be corrected before saving the form
data through its save() function.

We already have seen, in the previous Form examples, how to validate the Form field
values:

Create a Form widget with a FormField on it.1.
Define the validation logic on each FormField validator property:2.

 TextFormField(
 validator: (String value) {
 return value.isEmpty ? "The value cannot be empty" : null;
 },
)

Call validate() on FormState by using its key, or the Form.of method3.
discussed previously. This will call each child FormField validate() method,
and where the validation is successful, it will return true, and false otherwise.
validate() returns a bool so we can manipulate its result and do our logic4.
based on it.

Handling User Input and Gestures Chapter 5

[174]

Custom input and FormField
We have seen how the Form and FormField widgets help with input manipulation and
validation. Also, we know that Flutter comes with a series of input widgets that are
FormField variants, and so, contains helper functions to access and validate data, for
example.

The extensibility and flexibility of Flutter is everywhere in the framework. So, creating
custom fields is logically possible, where we can add our own input method, expose
validation through validator callback, and also use the save() and reset() methods.

Creating custom inputs
Creating a custom input in Flutter is as simple as creating a normal widget, with the
additional methods described earlier. We normally do this by extending
the FormField<inputType> widget, where inputType is the value type of the input
widget.

So, the typical process is as follows:

Create a custom widget that extends Stateful widget (to keep track of the1.
value) and accepts input from the user by encapsulating another input widget, or
by customizing the whole process, such as by using gestures.
Create a widget that extends FormField that basically displays the input widget2.
created in the previous step and also exposes its fields.

Handling User Input and Gestures Chapter 5

[175]

Custom input widget example
Later, in Chapter 8, Firebase Plugins, we will see how to add authentication to our app. For
now, we will be creating a custom widget that will be similar to the one used in that step.
The authentication will be based on the Firebase auth services which uses a phone
number; the phone number provided receives a six-digits verification code that must match
the server value in order to successfully log in. For now, that's all the information we need
to know for the creation of the custom input widget. This is what it's going to look like:

The widget will be a simple six-digit input widget, which will later become a FormField
widget and expose the save(), reset(), and validate() methods.

Handling User Input and Gestures Chapter 5

[176]

Later, on the login screen, we will be using the Flutter
community code_input plugin to replace this widget. More info can be
found at https:/ /pub. dartlang. org/ packages/ code_ input.

Creating an Input widget
We start by creating a normal custom widget. Here, we expose some properties. Bear in
mind that in a real application, we would probably expose more than the properties
exposed here, but it's enough for this example:

class VerificationCodeInput extends StatefulWidget {
 final BorderSide borderSide;
 final onChanged;
 final controller;

 ... // other parts removed for brevity
}

The only important property exposed here is controller. We will see the reason in a few
moments. First, let's check the associated State class:

class _VerificationCodeInputState extends State<VerificationCodeInput> {
 @override
 Widget build(BuildContext context) {
 return TextField(
 controller: widget.controller,
 inputFormatters: [
 WhitelistingTextInputFormatter(RegExp("[0-9]")),
 LengthLimitingTextInputFormatter(6),
],
 textAlign: TextAlign.center,
 decoration: InputDecoration(
 border: OutlineInputBorder(
 borderSide: widget.borderSide,
),
),
 keyboardType: TextInputType.number,
 onChanged: widget.onChanged,
);
 }
}

https://pub.dartlang.org/packages/code_input
https://pub.dartlang.org/packages/code_input
https://pub.dartlang.org/packages/code_input
https://pub.dartlang.org/packages/code_input
https://pub.dartlang.org/packages/code_input
https://pub.dartlang.org/packages/code_input
https://pub.dartlang.org/packages/code_input
https://pub.dartlang.org/packages/code_input
https://pub.dartlang.org/packages/code_input
https://pub.dartlang.org/packages/code_input
https://pub.dartlang.org/packages/code_input
https://pub.dartlang.org/packages/code_input
https://pub.dartlang.org/packages/code_input
https://pub.dartlang.org/packages/code_input
https://pub.dartlang.org/packages/code_input

Handling User Input and Gestures Chapter 5

[177]

As you can see, the widget is simply a TextField with some predefined customization:

WhitelistingTextInputFormatter allows us to specify a regex expression
with the allowed characters for the input. By setting the keyboard type
with keyboardType: TextInputType.number we can also limit the allowed
characters to numbers.
LengthLimitingTextInputFormatter specifies a maximum character limit for
the input.
Also, a border is added through the OutlineInputBorder class.

Take note of the important part of this code: controller: widget.controller. Here,
we are setting the controller of the TextField widget to be our own controller so we can
take control of its value.

Turn the widget into a FormField widget
To turn the widget into a FormField widget, we start by creating a widget that extends the
FormField class, which is a StatefulWidget with some Form facilities.

This time, let's start by checking out the new widget's associated State object. Let's do it by
breaking it into parts:

// initial part of _VerificationCodeFormFieldState
 final TextEditingController _controller = TextEditingController(text: "");

 @override
 void initState() {
 super.initState();
 _controller.addListener(_controllerChanged);
 }

From the preceding code, you can check it has a single _controller field, which
represents the controller used by the FormField widget. It must be in the State so it
persists against layout changes. As you can see, it is initialized in the initState()
function. This is called the first time the widget object is inserted on the widgets tree. Here,
we add a listener to it, so we can know when the value is changed in the
_controllerChanged listener.

Handling User Input and Gestures Chapter 5

[178]

The remainder of the widget is as follows:

 void _controllerChanged() {
 didChange(_controller.text);
 }

 @override
 void reset() {
 super.reset();
 _controller.text = "";
 }

 @override
 void dispose() {
 _controller?.removeListener(_controllerChanged);
 super.dispose();
 }

There are also other important methods that we must override to make it work properly:

With initState(), we can find its opposite equivalent in the dispose()
method. Here, we stop to listen for changes in the controller.
The reset() method is overridden, so we can set the _controller.text to
empty, making the input field clear again.
The _controllerChanged() listener notifies the super
FormFieldState state via its didChange() method, so it can update its state
(via setState()) and notify any Form widget that contains it about the change.

Now let's examine the FormField widget code to see how it works:

class VerificationCodeFormField extends FormField<String> {
 final TextEditingController controller;

 VerificationCodeFormField({
 Key key,
 FormFieldSetter<String> onSaved,
 this.controller,
 FormFieldValidator<String> validator,
 }) : super(
 key: key,
 validator: validator,
 builder: (FormFieldState<String> field) {
 _VerificationCodeFormFieldState state = field;
 return VerificationCodeInput(
 controller: state.controller,
);

Handling User Input and Gestures Chapter 5

[179]

 },
);

 @override
 FormFieldState<String> createState() =>
_VerificationCodeFormFieldState();
}

The new part here is in the constructor. The FormField widget contains the builder
callback that should build its associated input widget. It passes the current state of the
object so we can build the widget and retain the current info. As you can see, we use this to
pass the controller constructed in the state, so it persists even when the field is rebuilt.

That's how we maintain the widget and State synchronized, and also integrate with the
Form class.

You can check the full source code of this custom FormField widget in
the verification_code_input_widget.dart file of the input
examples project.

Putting it all together
Now that we know how to use gesture events and input widgets to add user interaction to
our app screens, it's time to increment our app with these functions. Let's revisit our screens
to add some gestures and input validations to them.

Favors screen
The first screen of the app lists different favors and their statuses. Besides the listing, the
only actions the user can do are as follows:

Handling User Input and Gestures Chapter 5

[180]

Favors screen (This is an image of the favors screen. The other (blurred out and overlapped) information is not important here.

Focus on the selected favor category section. This is already done for us by the1.
DefaultTabController widget (there is a ListView widget that will handle
swipe/scroll gestures internally).

Handling User Input and Gestures Chapter 5

[181]

Refuse or Do the requested favors. For example, a favor was requested by a2.
friend, and the user may accept or reject it. So, tapping on one of the buttons
makes the favor change its status to Refused or Doing.
Similarly to the preceding case, but this time an accepted favor request is3.
pending completion, and these buttons allow the user to give up or complete a
favor; that is, tapping on them makes the favor status change to Refused and
Completed, respectively.
Last, we have the Request a favor button, which basically opens a second app4.
screen when tapped, allowing us to request a favor from some of our friends.

As you can see from the preceding gestures, we will be dealing with tap, scroll,
and swipe gestures. All of them can be done with the GestureDetector directly, but, as
we are using Button and ListView widgets, this changes a little bit. Remember, Flutter's
built-in widgets are also composed of a lot of other built-in widgets, so we will be dealing
with GestureDetector indirectly.

In practice, we will be handling taps by ourselves, as the other gestures are handled by the
widgets that we have used: scrolling with ListView, and swipes and taps with TabBar
and TabView.

Tap gestures on the favor tab
As we discussed previously, the DefaultTabController changes the currently visible tab
widget when the user taps on the tab bar or swipes to the left or right on the view. By using
this widget, we do not need to specify a controller in the TabBar and TabView
descendants.

For more details about the TabController widget, check out the
documentation page at https:/ /docs. flutter. io/flutter/ material/
TabController- class. html.

https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html
https://docs.flutter.io/flutter/material/TabController-class.html

Handling User Input and Gestures Chapter 5

[182]

Tap gestures on FavorCards
From the FavorCardItem widget's favor property, we can manipulate its status by
changing its accepted and completed field values. However, it will not remove the item
from the current list and add it to the new target list. To do that, we would need to access
the current list, remove the favor item from there, and add it into the new list, depending
on the button pressed.

We could use our global favors list directly in the card item's onPressed method, but this
would imply distributing business logic through the widgets, which seems fine now, but
can get messy easily.

So, where should we handle this action effectively? We could handle all of these actions in
the FavorsPage widget, which contains all of the favors lists. But wait – FavorsPage is a
StatelessWidget, the favors lists are loaded into its constructor method, and as it's
stateless, they will be loaded on every rebuild of the widget, losing our changes to it.

Making FavorsPage a StatefulWidget
The first step to make our app interactive is to change FavorsPage to be
a StatefulWidget:

class FavorsPage extends StatefulWidget {
 FavorsPage({
 Key key,
 }) : super(key: key);

 @override
 State<StatefulWidget> createState() => FavorsPageState();
}

The first thing we change is the ancestor of FavorsPage, and now its only job is to return a
FavorsPageState instance in the createState() method:

class FavorsPageState extends State<FavorsPage> {
 // using mock values from mock_favors dart file for now
 List<Favor> pendingAnswerFavors;
 List<Favor> acceptedFavors;
 List<Favor> completedFavors;
 List<Favor> refusedFavors;

 @override
 void initState() {
 super.initState();

Handling User Input and Gestures Chapter 5

[183]

 pendingAnswerFavors = List();
 acceptedFavors = List();
 completedFavors = List();
 refusedFavors = List();

 loadFavors();
 }

 void loadFavors() {
 pendingAnswerFavors.addAll(mockPendingFavors);
 acceptedFavors.addAll(mockDoingFavors);
 completedFavors.addAll(mockCompletedFavors);
 refusedFavors.addAll(mockRefusedFavors);
 }

 @override
 Widget build(BuildContext context) { ... } // hidden for brevety
}

Now the State object holds the information that needs to be persisted between rebuilds,
and this object will be the location of all the actions for the favors. Although not optimal, it
will at least be centralized in one single place. I would say we need some kind of
architecture to do this properly: MVP, MVVM, BloC, and Redux are some examples.
However, to keep things simple, we will use the approach we've taken here.

You can check the official state management guide as an initial step for
app architecture, along with some architecture alternatives, available
at https:/ / flutter. dev/ docs/development/ data- and-backend/ state-
mgmt and https:/ / medium. com/ flutter- community/ flutter- app-
architecture- 101- vanilla- scoped- model- bloc- 7eff7b2baf7e.

So, let's start by handling the pending request actions. They were defined
as Refuse or Do. To handle them, we need to pass a handler to the onPressed property of
our already defined FlatButton widgets in the FavorCardItem.

From the button's onPressed method, we need to somehow access FavorsPageState to
perform those actions. This can be done with the ancestorStateOfType() method from
the BuildContext class, which looks up the tree for a State object of the given type:

// part of FavorsPageState class
static FavorsPageState of(BuildContext context) {
 return context.ancestorStateOfType(TypeMatcher<FavorsPageState>());
}

https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://flutter.dev/docs/development/data-and-backend/state-mgmt
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e
https://medium.com/flutter-community/flutter-app-architecture-101-vanilla-scoped-model-bloc-7eff7b2baf7e

Handling User Input and Gestures Chapter 5

[184]

A common pattern to provide this function is by adding a static method on the given type,
called of, that will make the call to the framework function. This is done to provide
a shorthand way of accessing the state with less code.

Refuse action handling
This is how the Refuse button looks after using the aforementioned functionality:

// part of hands_on_input/lib/main.dart FavorCardItem class
// _itemFooter method
 FlatButton(
 child: Text("Refuse"),
 onPressed: () {
 FavorsPageState.of(context).refuseToDo(favor);
 // we have changed _itemFooter to get the context so we
 // can use it to fetch the favors page state
 },
)

By calling FavorsPageState.of(context), we get access to the current state of the
FavorsPageState type associated with the context.

To apply the change, we call the refuseToDo(favor) method from the
FavorsPageState class that is implemented as follows:

void refuseToDo(Favor favor) {
 setState(() {
 pendingAnswerFavors.remove(favor);

 refusedFavors.add(favor.copyWith(
 accepted: false
));
 });
}

Handling User Input and Gestures Chapter 5

[185]

As you can note, the setState() method is used here to notify the framework to rebuild
the interested widgets. Inside of its callback, we remove the favor from the pending list
and add a modified version of it to the refused list. The modified version is obtained by
making a copy of the original favor and changing its accepted property. This is how the
copyWith method from the Favor class looks in the code:

Favor copyWith({
 String uuid,
 String description,
 DateTime dueDate,
 bool accepted,
 DateTime completed,
 Friend friend,
 }) {
 return Favor(
 uuid: uuid ?? this.uuid,
 description: description ?? this.description,
 dueDate: dueDate ?? this.dueDate,
 accepted: accepted ?? this.accepted,
 completed: completed ?? this.completed,
 friend: friend ?? this.friend,
);
 }

Note that it uses the null-aware (??) operator to create a new Favor instance with the
original values (if set), or the ones received as arguments.

The copyWith() method is very common in the Flutter world, so try to
get used to it. It is present in many of the Flutter framework's widgets and
classes. It's not mandatory, but it's a good pattern.

Do action handling
This is how the "Do" button looks after using the preceding technique:

 FlatButton(
 child: Text("Do"),
 onPressed: () {
 FavorsPageState.of(context).acceptToDo(favor);
 },
)

Handling User Input and Gestures Chapter 5

[186]

And the corresponding acceptToDo(favor) method is done as follows:

void acceptToDo(Favor favor) {
 setState(() {
 pendingAnswerFavors.remove(favor);

 acceptedFavors.add(favor.copyWith(accepted: true));
 });
}

As you can see, it is almost the same as the refuseToDo() method; the only differences are
in the target list and accepted status.

The Give up and Complete actions are also very similar to the previous
ones. Please check out the attached source files to see how they look.

Tap on Request a favor button
When the user taps on the floating action button with the plus sign at the bottom of the
page, they should see the RequestFavorPage widget on the screen:

Navigator.of(context).push(
 MaterialPageRoute(
 builder: (context) => RequestFavorPage(
 friends: mockFriends,
),
),
);

We do this by using the Navigator widget, which shows up a new widget on the screen.
For now, you can see the gesture was handled like another button. Check out Chapter
7, Routing: Navigating Between Screens, for more details on how this widget works.

Handling User Input and Gestures Chapter 5

[187]

The Requesting a favor screen
The Requesting a favor screen has a few gestures of its own to handle:

Handling User Input and Gestures Chapter 5

[188]

This is how the process works:

The close button is already handled by the CloseButton widget, along with the1.
Navigator widget (this is handled internally for us).
The SAVE button will validate the input information from the user, and send the2.
favor request to a friend.

The close button
The CloseButton widget is integrated with Navigator. It pops the last pushed widget
from it, returning to the previous one. We do not have to implement a gesture on it. By
using the Navigator to push the widget on the screen, we can use the close button to
remove it.

The SAVE button
The SAVE button will be responsible for validating and saving new favor requests.
Saving will be covered in Chapter 8, Firebase Plugins, when we talk about Firebase
integration.

The RequestFavorPage widget needs to be converted to a StatefulWidget as well, as
we will need to hold information and manipulate the new favor requests with actions. This
will be the place where we will store the favor later on Firebase.

Again, we use this to centralize all the favor-related actions in our app.
Application architecture such as MVP, MVVM, or BloC could be the
solution for a real application.

Validating input using the Form widget
We must add the Form widget to our layout to be capable of validating all the fields at once
during saving. This is done by simply wrapping our form field widgets with a Form
widget. We also set the key property of our Form with a GlobalKey instance (_formKey in
the State object of the following code) so that we can use it later in the save() method:

class RequestFavorPageState extends State<RequestFavorPage> {
 final _formKey = GlobalKey<FormState>();

 @override
 Widget build(BuildContext context) {

Handling User Input and Gestures Chapter 5

[189]

 // returns the widget subtree wrapped in a Form. hidden for brevity.
 }
}

The save() method looks similar to previous ones:

FlatButton(
 child: Text("SAVE"),
 textColor: Colors.white,
 onPressed: () {
 RequestFavorPageState.of(context).save(); // we could call save()
 // method directly as we
 // are in the same class.
 // Intentionally left for
 // exemplification.
 },
)

It looks up the tree for the corresponding state and asks it to save. The save() method does
the hard work:

void save() {
 if (_formKey.currentState.validate()) {
 // store the favor request on firebase
 Navigator.pop(context);
 }
}

OK, right now, it does nothing much; it only calls the validation for the corresponding form
that walks through all the form fields and validates them, as you already know.

Check the chapter's attached source code files to check the validation
code for the form fields.

Handling User Input and Gestures Chapter 5

[190]

Summary
In this chapter, we have seen how gesture handling works in the Flutter framework, along
with the methods for handling gestures, such as tap, double tap, pan, and zoom, for
example. We have seen some widgets that use GestureDetector by itself to handle
gestures. We also have seen how to use the Form and FormField widgets to properly
handle user data input.

Lastly, we have grabbed our project and made some additions to the event handling of the
actions on favors, which helped us to make the app more interactive.

In the next chapter, we will be learning how to add some color to our widgets, use themes,
and get into more practical applications of Material Design and Cupertino widgets by
making our favors app more attractive.

6
Theming and Styling

Creating UIs with built-in themes and styles will make an application look professional and
easy to use. In addition, the framework allows the creation of customized and unique
themes and styles. In order to do that, you will learn how to customize an app's look by
adding custom fonts, using themes, and exploring the famous platform standards, namely
iOS Cupertino and Google Material Design. Additionally, you will see how to use media
queries for dynamic styling.

Every app must have its own identity. Our Favors app, for example, needs to have its own
colors and styles. Knowing how to apply styles, colors, and custom fonts is fundamental to
achieve this in any app.

The following topics will be covered in this chapter:

Theme widgets
Material Design
iOS Cupertino
Using custom fonts
Dynamic styling with MediaQuery and LayoutBuilder

Theme widgets
Developing an application goes beyond good features. It is also about the user experience
that the app offers.

The composability of Flutter widgets helps in this part of development. By defining single
responsibility for each widget type, we can choose to define themes and styles that apply to
a single widget, to all widgets in a subtree, or to the entire application.

Theming and Styling Chapter 6

[192]

By using the Theme widget, we can customize the whole look and feel of an application
with custom colors for text, error messages, highlights, and also custom fonts. Flutter also
uses this widget in its own widgets. MaterialApp is a great example of how the
framework internal widgets are composed: it uses the Theme widget internally to customize
the look of the Material Design-based widgets such as AppBars and Buttons. Let's check
out how to use Theme widgets in practice to apply different styles to other Flutter widgets.

Theme widget
In Flutter, everything is a widget, and we can construct the user interface by adding
widgets using the child and children properties of each widget. The Theme widget
behaves like any other; it defines properties and can have a child.

The Theme widget also works with the InheritedWidget technique, so every descending
widget can access it by using Theme.of(context), which internally makes a call to the
helper inheritFromWidgetOfExactType method from the BuildContext class. That's
how Material Design widgets use the Theme widget to style themselves:

Theming and Styling Chapter 6

[193]

So, the theme data is applied to descending widgets but can be overridden in local parts of
the widget tree. In the preceding diagram, the theme with the number 2 will override the
theme with the number 1 defined at the very beginning of the tree. The number 2 subtree
will have a different theme from the rest of the tree.

Also, with this structure, it is possible to create a complete new theme for some widgets, or
to inherit from a base theme and change only some properties to affect the subtree.

When you're styling widgets with iOS Cupertino, there is also the
CupertinoTheme and CupertinoThemeData equivalents to Theme and
ThemeData, respectively, which are present in the Material Design widget
suite.

The ThemeData class helps the Theme widget on the styling task. Let's see it in details.

ThemeData
The Theme widget contains a property called data, which accepts a ThemeData value that
holds all the information about the styling, theme brightness, colors, font, and so on.

During the writing of this book, alternatives to iOS Cupertino guidelines
are being developed and are not present in the stable channel of Flutter.
(The code in this book uses the stable channel.)

By using ThemeData class properties, you will be able to customize all of the application-
related styles, such as colors, typography, and specific components. When theming, you
can choose to follow Material Design guidelines from Google that targets app design for
mobile, web, and desktop devices, or iOS Cupertino that are specific to the Apple's
platform.

Both design guidelines have singularities due to the target platforms. The choice of whether
to follow the Material Design, iOS Cupertino guidelines, or none of them is yours. Flutter
has Theme-based widgets designed for both, so you can apply the guidelines accurately or
design in your own unique way.

We will be exploring Material Design and iOS Cupertino guidelines
further in the subsequent sections.

Theming and Styling Chapter 6

[194]

Coloring is an important subject in widget theming. For example, if you increase the
contrast of text over the background to emphasize a piece of the UI, then it is required to
use the correct colors. Brightness is one of the key properties of the ThemeData class that
will help in manipulating colors. Let's take a look.

Brightness
One important property of a theme is brightness. Defining this property is as important
as defining theme colors. As its name suggests, it exposes the brightness of the application's
theme. With this property, the frameworks can determine text, buttons, and highlight
colors to achieve enough contrast between background and foreground content.

This is what the ThemeData class docs (https:/ /api. flutter. dev/ flutter/ material/
ThemeData-class. html) say about it:

"The brightness of the overall theme of the application. Used by widgets such as buttons to
determine what color to pick when not using the primary or accent color."

It helps to contrast between text, buttons, and the background of materials (with Material
Design widgets). The ThemeData class has a fallback() constructor that returns a light
theme through the Brightness.light value. You can use its dark() and light()
constructors to try this out yourselves.

When choosing the primary and accent colors, it's important to experiment with the
corresponding primaryColorBrightness and accentColorBrightness. Flutter
estimates the brightness based on some calculations of the luminosity of the colors, but it's
always good to experiment and check.

Many other ThemeData properties relate to styling directly, that's why
we are not exploring those further. Feel free to check all the
properties available in the ThemeData class at https:/ /docs. flutter. io/
flutter/ material/ ThemeData- class. html.

Now, let's dive into some theming.

https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://api.flutter.dev/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html
https://docs.flutter.io/flutter/material/ThemeData-class.html

Theming and Styling Chapter 6

[195]

Theming in practice
Styling widgets in Flutter can be done in a few ways, and everything related to styles is
based on a Theme widget. It is time to check out how this works. Let's say, for example, that
we have a simple app, as follows:

class MyAppDefaultTheme extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Container(
 color: Colors.red,
 child: Center(
 child: Text(
 "Simple Text",
 textDirection: TextDirection.ltr,
),
),
);
 }
}

As you can see, we are just using a Container widget as our root widget without
a Theme widget. So, we can assume we do not have any styles applied to its descendant
widgets. Also, the textDirection property is new at this point. When using
the MaterialApp widget in our layout, it provides a default textDirection value for
us implicitly. More on that in the next section.

We can, for example, use the Theme widget to change the style of a Text widget. The
ThemeData class contains the textTheme property, which contains the Text style
configuration following the Material Design guidelines:

Text(
 "Simple Text",
 textDirection: TextDirection.ltr,
 style: Theme.of(context).textTheme.display1,
),

Theming and Styling Chapter 6

[196]

The style property of the Text widget accepts a TextStyle value that we can get from
the Theme widget. However, as you may remember, we have not specified a Theme widget
in our app tree. In the preceding example, this works because the Theme.of method
returns a ThemeData widget fallback when one isn't defined. If you execute the code, you
will see that the Text widget is displayed with a larger font size than the default; this is
because we're using the display1 style from Material Design.

We can also customize the styling; here's an example:

class MyAppCustomTheme extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Container(
 color: Colors.blue,
 child: Center(
 child: Theme(
 data: Theme.of(context).copyWith(
 textTheme: Theme.of(context).textTheme.copyWith(
 display1: TextStyle(
 color: Colors.yellow,
),
),
),
 child: Text(
 "Simple Text",
 textDirection: TextDirection.ltr,
 style: Theme.of(context).textTheme.display1,
),
),
),
);
 }
}

In this case, we add a Theme widget right before the Text widget and customize it by using
its copyWith method:

We make a copy of the default Theme widget from the app, and change only its
textTheme property. The copyWith function is not mandatory, however, it is
seen very often when developing Flutter apps, so get used to it!
Like before, this time we make a copy of textTheme from the base theme and
only change its display1 property to a new Text style object.

Theming and Styling Chapter 6

[197]

We expect to see yellow text, but that's not what we see, right? This is because we are using
the context parameter from the root tree level, which will look up the tree and will not
find a Theme instance, returning the fallback, as we saw in our first example. To make this
work, we can use the Builder widget, which will delegate the Text widget building:

Builder(
 builder: (context) => Text(
 "Simple Text",
 textDirection: TextDirection.ltr,
 style: Theme.of(context).textTheme.display1,
),
)

This works because the Builder widget delegates the build to occur in a lower level of the
tree, passing its context instance to the lower level, which will find the correct
Theme instance when it looks up the tree. So, when we run the preceding code, the Text
widget is displayed with the correct display1 style, which is almost the same as the
default text style, only its color is different, now yellow.

The previous examples were defined in different app classes. You can find
the source code of themes/lib/main.dart on GitHub and try it out for
yourself by commenting out the previous runApp function and
uncommenting the one that you want to test.

As theming refers to app styling, we always need to care about the underlying platform the
app is being executed; let's see how the Platform class can help on this.

Platform class
When developing mobile apps for multiple platforms, we may need to make different
designs for different targets. To do that, we can use the Platform class, which helps us get
information about the environment, mainly the target operating system, through its getters:

isAndroid

isFuchsia

isIOS

isLinux

isMacOS

isWindows

Theming and Styling Chapter 6

[198]

With these getters, we can make our whole widget tree have specific implementations for
each platform. Here's an example:

// part of theme/lib/main.dart example

class PlatformSpecificWidgets extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Platform.isAndroid
 ? MaterialApp(
 theme: ThemeData(primaryColor: Colors.grey),
)
 : CupertinoApp(
 theme: CupertinoThemeData(primaryColor:
 CupertinoColors.lightBackgroundGray),
);
 }
}

As you can see, based on the target platform, we switch our app widget (and theme as well)
to MaterialApp and ThemeData (for Android), or CupertinoApp
and CupertinoThemeData for any other target platform.

Check out the documentation website, https:/ /docs. flutter. io/
flutter/ dart- io/ Platform- class. html, to learn more about this
important class.

We have seen how to use Theme widget and helper classes, like the ThemeData and
Platform class to apply styles to our widgets. Material Design and iOS Cupertino
guidelines are present in the basis of many widgets in Flutter. Let's see its fundamentals to
be able to follow these specifications efficiently.

Material Design
Material Design is the Google design guidelines to help developers to build high-quality
digital experiences. It is present in Flutter and is still evolving along with the platform, with
the addition of new widgets that follow Material Design component specifications.

The importance of Material Design styles for the Flutter platform is evident. There is
already a section of the Material Design guidelines website dedicated to it (https:/ /
material.io/develop/ flutter/).

https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://docs.flutter.io/flutter/dart-io/Platform-class.html
https://material.io/develop/flutter/
https://material.io/develop/flutter/
https://material.io/develop/flutter/
https://material.io/develop/flutter/
https://material.io/develop/flutter/
https://material.io/develop/flutter/
https://material.io/develop/flutter/
https://material.io/develop/flutter/
https://material.io/develop/flutter/
https://material.io/develop/flutter/
https://material.io/develop/flutter/

Theming and Styling Chapter 6

[199]

The main Material Design widgets in Flutter are MaterialApp and Scaffold. Both help
developers to design an app following the Material Design guidelines without too much
work.

If you want to know what Material Design is in detail, please check
out https:/ /material. io/ .

The first basic widget for applying Material guidelines in Flutter apps is the MaterialApp
widget. Let's see how it works in detail.

MaterialApp widget
The Theme widget is not the only way to theme an application. The MaterialApp widget is
the only other widget that also accepts a ThemeData value through its theme property.
Along with theme, MaterialApp adds helper properties for localization, for example, and
also navigation between screens, which we will check out in Chapter 7, Routing: Navigating
Between Screens.

By adding a MaterialApp widget as the root widget of the app, you are stating your
intention to follow Material Design guidelines, and that is the purpose of it, right?

Now that it knows that you will be following Material Design guidelines, the framework
will be slightly different in relation to the default theme. In the following code, we do not
specify a style for our text:

class MaterialAppDefaultTheme extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 home: Container(
 color: Colors.white,
 child: Center(
 child: Text(
 "Simple Text",
 // textDirection: TextDirection.ltr, don't need
 // now thanks to materialapp
),
),
),
);
 }
}

https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/

Theming and Styling Chapter 6

[200]

In this code, we have stated our intention to follow Material Design guidelines by adding
the MaterialApp widget as our root widget. It will produce a fallback to an unattractive
DefaultTextStyle style to advise the developer that they are not using Material Design
effectively in the Text widgets. The result of the previous code is as follows:

Theming and Styling Chapter 6

[201]

In other words, we should always wrap Text widgets inside some Material Design based
widget to apply the typography styles proposed by the guidelines properly.
The Material widget is the simplest example; it has a DefaultTextStyle property and
other typical Material Design properties, such as elevation for the shadow effect from the
guidelines.

Note that we also did not provide a textDirection property of the Text widget this time.
One of the functions of MaterialApp is to allow us to apply internationalization to
our app, and textDirection is based on the ambient Locale.

We will be looking at how to work with localization in Chapter
13, Improving the User Experience.

By using the MaterialApp widget, we have seen how to init the following Material
Design guidelines. Another important widget to help on this task is the Scaffold widget.
Let's see how to use it in the next section.

Scaffold widget
We saw in Chapter 4, Widgets: Building Layouts in Flutter, that the Scaffold widget has
properties that help to construct the layout with a Material Design look. Its purpose is as
important as the MaterialApp widget; it helps the developer to follow the Material Design
guidelines by simply adding the corresponding widgets to its properties. Our Favors app
main screen follows some Material Design aspects.

Theming and Styling Chapter 6

[202]

Let's see:

Theming and Styling Chapter 6

[203]

Here, we have used some Material Design components and also the Scaffold widget.
Some of the pieces used are as follows:

The app bar shown at the top of the app typically contains a title and user context
actions, such as filters or settings. In this example, through the appbar property
of the Scaffold widget, we show an AppBar widget that has a title and a
TabBar to display tabs.
The floating action button is one of the most famous Material Design components;
it's a floating round button typically displayed in the bottom-right corner of the
screen. In this example, it contains the main action of the app, Request a favor,
following the Material Design guidelines.

Now that we have seen how the default theme looks like in some widgets, let's see how to
build our own custom theme with colors of our choice.

Custom theme
Our Favors app has not used any properties of Theme or ThemeData until now. It's time to
customize the style of the app to make it more attractive. This is what it's going to look like
after we refactor its styles:

Your favors page (This is an image of Your favors page. The other (blurred out) information is not important here)

Theming and Styling Chapter 6

[204]

We will start by creating a custom lightTheme definition. There are a few ways of coloring
our app; one way is to set custom colors to each of the color properties in the ThemeData
class (it has properties for each of the Material Design available widgets, such as cards or
buttons). The key is to experiment with the color properties and the guidelines.

Remember, you can always overwrite the app's Theme definition in the
widget tree (with a different card color, for example) by wrapping it in
another Theme widget.

Now, let's define ThemeData:

final lightTheme = ThemeData(
 primarySwatch: Colors.lightGreen,
 primaryColor: Colors.lightGreen.shade600,// not necessary when
 // primarySwatch is defined
 // as above
 accentColor: Colors.orangeAccent.shade400,
 primaryColorBrightness: Brightness.dark,
 cardColor: Colors.lightGreen.shade100,
);

We have defined a new ThemeData widget that is light green by default, and we have
modified its primarySwatch property. We have used a color based on the Material palette,
where we can define some colors and the whole scheme will be derived from this swatch.
Although the default theme is light (light background/dark texts), we have set
primaryColorBrightness to Brightness.dark so that text that appears on top of a
background is white by default.

Also, notice that we have defined the theme in a new Dart file to help with code
organization. So, we need to import it in order to use it in our application:

return MaterialApp(
 theme: lightTheme,
 home: FavorsPage(),
);

As you may expect, the app uses the imported lightTheme through its theme property.

For the color scheme definition of the application, we have used the color
tool from Material Design website. Take a look at https:/ / material. io/
tools/ color/ for more information. Another tip: if you are using macOS
for development, the Material Theme Editor can help you make your own
theme. Check it out at https:/ / material. io/ tools/ theme- editor/ .

https://material.io/tools/color/
https://material.io/tools/color/
https://material.io/tools/color/
https://material.io/tools/color/
https://material.io/tools/color/
https://material.io/tools/color/
https://material.io/tools/color/
https://material.io/tools/color/
https://material.io/tools/color/
https://material.io/tools/color/
https://material.io/tools/color/
https://material.io/tools/theme-editor/
https://material.io/tools/theme-editor/
https://material.io/tools/theme-editor/
https://material.io/tools/theme-editor/
https://material.io/tools/theme-editor/
https://material.io/tools/theme-editor/
https://material.io/tools/theme-editor/
https://material.io/tools/theme-editor/
https://material.io/tools/theme-editor/
https://material.io/tools/theme-editor/
https://material.io/tools/theme-editor/
https://material.io/tools/theme-editor/
https://material.io/tools/theme-editor/
https://material.io/tools/theme-editor/

Theming and Styling Chapter 6

[205]

Changing the colors is not enough to change the look of the app. Another thing we can do
is to change the text styles and use Material Design styles. As we have seen before, this is
done by using the style property of Text widgets. So, after making some changes, our
favors cards could emphasize some parts of the text.

In the list headers, for example, we have added a style to make it bigger:

 final titleStyle = Theme.of(context).textTheme.title;

We get the titleStyle style from the application theme and apply it directly to the Text
widget:

Text(
 title,
 style: titleStyle,
)

The same is done for other Text widgets in the app. As you could see in our Favors app
example, modifying our widget's styles is easy by using Theme widget and helper
classes. You can check out the source code of this chapter on GitHub for more details, and
we encourage you to experiment with some values for practice.

Now that you know the basics of Material Design, let's introduce iOS Cupertino to have
some comparative information.

iOS Cupertino
The aim of making an application look native is important on Flutter. With this in mind, a
lot of effort is made to bring the Cupertino side of the framework to the same level of
coverage as the Material Design side. During the writing of this book, many Cupertino
widgets have been added to the framework.

The idea is that their behavior is faithful to native apps, so this is not an easy task. The
community has an important role in this task by using the components and giving
feedback.

Like Material Design widgets, CupertinoApp, CupertinoPageScaffold,
and CupertinoTabScaffold are the main Cupertino widgets of available in Flutter.

We're not entering the CupertinoPageScaffold
and CupertinoTabScaffold widgets in details here. You can check
these and all the available Cupertino widgets in details https:/ /flutter.
io/docs/ development/ ui/ widgets/ cupertino.

https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino
https://flutter.io/docs/development/ui/widgets/cupertino

Theming and Styling Chapter 6

[206]

The iOS Cupertino alternative to MaterialApp widget is the CupertinoApp widget; let's
see its key properties and how it compares to MaterialApp widget.

CupertinoApp
CupertinoApp behaves the same way for Cupertino as MaterialApp does for Material
Design. It adds striking features and facilities for the developer to follow the design
patterns of Cupertino. For example, it makes the app use, by default, a bouncing scroll
that's typical in iOS, a custom font that's different from Android, and more.

Along with theme, CupertinoApp adds helper properties for localization, for example, and
also navigation between screens, which we will explore in Chapter 7, Routing: Navigating
Between Screens.

This works the same way as Material Design. We can choose to use CupertinoApp or not.
So, we still be able to use the CupertinoTheme and CupertinoThemeData widgets the
same way as we would do for Material Design. What changes from one to another in
practice are its available properties.

As this is very similar to the previous section; we are not going to go into
detail here. You can experiment with the themes and take a look at the
attached cupertino_theme folder for small examples of how to use it.

Although it's not recommended, we can always mix everything in code, making some parts
follow Material Design and some follow Cupertino. We can create two app classes, one for
Material Design and one for Cupertino. We can even create a generic app class that changes
the widget layout based on the platform (the Platform class).

Let's experiment with some of the iOS Cupertino widgets in our Favors app.

Cupertino in practice
Our Favors app is designed to use Material Design components, but we can choose to make
it look more native in iOS by using Cupertino widgets. This can be done with a
combination of conditions during the build of our widgets using the Platform class.

Theming and Styling Chapter 6

[207]

We can, for example, design a Cupertino alternative for the first favors screen:

Theming and Styling Chapter 6

[208]

As you can see in the iOS Cupertino variant, we have the navigation bar at the bottom of
the screen instead. OK, this does not look very good, but the important thing is the idea of
making custom layouts based on the target platform. Flutter gives you the tools; you must
use them properly.

You can find the source code of the hands_on_cupertino_theme
example on GitHub to see all the conditions and changes made to use
Cupertino widgets. The theme part is omitted as it works in a very similar
way to Material Design.

We need to make a check on target platform and build different widgets depending on it.
This can be quite complicated, so an alternative is to develop separated widget classes for
each platform and to not mix up all the code, which helps with organization.

In our example, we have only made the first screen in order to illustrate how the tree can be
conditioned based on the platform. The Favors app will have the same style on both
platforms. Now, let's see how to use custom fonts to give a brand focus on applications.

Using custom fonts
Material Design and Cupertino provide good fonts for application design, but sometimes
it's useful to change the default font to one that's more brand/product focused.

As the font is specified in Theme widget, we can add it to the root application theme, and
then it's applied to the whole application. If you prefer to specify the font per widget, this is
also possible. The first step to use a custom font in Flutter applications is to import font files
into the project.

Importing fonts to the Flutter project
This time, we will be using our Favors app directly to show the example. We will be
importing and using a custom font as the default font for the whole application.

To do that, we can put the font files in a project sub-directory and later, declare these font
files in the pubspec.yaml file. In this example, we will be using the Ubuntu fonts found on
the Google Fonts website.

Theming and Styling Chapter 6

[209]

Check out the different fonts available at https:/ /fonts. google. com/.

The first step is adding the files to the project directory. It is common practice to put font
files in a fonts/ or assets/ sub-directory of the Flutter project. Here, we will be using a
fonts/ directory:

After that, we need to declare the font assets in the pubspec.yaml file so the framework
will know where to find the desired font during text styling:

// pubspec.yaml file - the full source code can be found in hands_on_fonts
example folder
// .. hidden for brevity
flutter:
 uses-material-design: true
 fonts:
 - family: Ubuntu
 fonts:
 - asset: fonts/Ubuntu-Regular.ttf
 - asset: fonts/Ubuntu-Italic.ttf
 style: italic
 - asset: fonts/Ubuntu-Medium.ttf
 weight: 500
 - asset: fonts/Ubuntu-Bold.ttf
 weight: 700

https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/

Theming and Styling Chapter 6

[210]

As you can see, we have defined the font in a few sections:

The family field names the font in the framework context. It does not need to
match the font filenames. It will be used to refer to it in code, so be consistent.
After that, we have a fonts field followed by a list of asset fields of the
imported font. All of the specified assets will be included in the application asset
bundle. We need to specify each asset with details corresponding to its style:

weight: This determines the weight of the font in the asset. It
corresponds to the FontWeight enum values applied during
layout, so specify it properly.
style: This determines whether the asset file corresponds to a
normal font outline or an italic variant. These values correspond to
the FontStyle enum.

Check out the documentation for how to specify the weight and
style properties correctly and the typical values of each type: https:/ /
api.flutter. dev/ flutter/ dart- ui/ FontWeight- class.
html and https:/ / api. flutter. dev/ flutter/ dart- ui/FontStyle-
class. html.

After importing the font into the project, let's apply the font to our Text widgets.

Overriding the default font in the app
The next step is to make the font active in the application. We can do that in the root theme
inside a MaterialApp and CupertinoApp widget, or, if we prefer, we can add a font
directly to a Text widget through its style property:

final lightTheme = ThemeData(
 fontFamily: "Ubuntu",
 primarySwatch: Colors.lightGreen,
 primaryColor: Colors.lightGreen.shade600,
 accentColor: Colors.orangeAccent.shade400,
 primaryColorBrightness: Brightness.dark,
 cardColor: Colors.lightGreen.shade100,
);

Our app now uses the Ubuntu font family by default in all widgets that contain text.
Remember, this behavior can be overridden in small sections of the app, if you prefer, by
using Theme widgets or changing the style property of Text widgets directly.

https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontWeight-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html
https://api.flutter.dev/flutter/dart-ui/FontStyle-class.html

Theming and Styling Chapter 6

[211]

If you try to use a bold variant weight of a custom font family that is not
declared in the pubspec.yaml file, the framework will use the more
generic files for the font and will attempt to extrapolate outlines for the
requested weight and style.

As you can see, you can apply a custom font to the whole application by simply importing
the desired font and declaring it in the project. Another important aspect in theming and
styling is to adapt layouts for different devices. MediaQuery and LayoutBuilder widgets
can help on this task. Let's take a look.

Dynamic styling with MediaQuery and
LayoutBuilder
Adapting a layout to a platform may help us to cater to a bigger audience. But another
thing to realize is the massive number of different devices, which poses other challenges to
developers.

Developing to support multiple screen sizes is a challenge that will always be present in the
life of a developer, so we need mechanisms to adapt to this in the best way. Flutter, again,
gives us the tools that we need to understand the ecosystem the app is running so that we
can act on it.

To help with this task, the main classes Flutter provides are LayoutBuilder and
MediaQuery.

LayoutBuilder
The LayoutBuilder widget provides a builder property of the LayoutWidgetBuilder
type. Although it's similar to the Builder widget, LayoutWidgetBuilder comes with
additional info about the parent widget size inside a BoxConstraints value.

With this information, the build method can be changed according to the available space.
So, in different devices there will be a different amount of space available in the root widget
of the tree, which may limit its children's sizes as well. By using this widget, we can choose
whether or not to show some parts of the layout.

This widget is dependent on the parent widget's size, so it gets rebuilt every time the size
changes. This can occur in different ways on mobile devices. The simplest example is when
the app orientation changes, that is, when the user rotates the phone.

Theming and Styling Chapter 6

[212]

Let's check out how to respond to a size change on the screen. In this example, we will
change the way two widgets are displayed based on the available space. So, the widgets are
displayed one on top of the other when there is not sufficient room for them (we evaluate
this using the BoxContraints instance given by the LayoutBuilder widget), or side-by-
side when there is more space available (such as in the landscape position):

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 home: LayoutBuilder(
 builder: (BuildContext context, BoxConstraints constraints) {
 // build the layout based on constraints values
 }
)
)
 }
}

As you can see, we have added a LayoutBuilder widget, and we can build the layout
based on the given constraints:

if (constraints.maxWidth <= 500) {
 return Column(
 mainAxisSize: MainAxisSize.max,
 children: <Widget>[
 Expanded(
 child: Container(
 color: Colors.green,
 child: Center(child: Text("1")),
),
),
 Expanded(
 child: Container(
 color: Colors.blue,
 child: Center(child: Text("2")),
),
),
],
);
}

Conditionally, we display a Column widget when the available width is less than 500. And
when we have enough room we change the returned widget:

return Row(
 mainAxisSize: MainAxisSize.max,

Theming and Styling Chapter 6

[213]

 children: <Widget>[
 Expanded(
 child: Container(
 color: Colors.yellow,
 child: Center(child: Text("1")),
),
),
 Expanded(
 child: Container(
 color: Colors.purple,
 child: Center(child: Text("2")),
),
),
],
);

In this case, we return a Row widget, as we have sufficient space (greater than 500).

This is how it looks in different orientations:

Theming and Styling Chapter 6

[214]

As you can see, we make changes to the layout based not solely on orientation, but on the
available width. Another way to respond to changes in available size is by using the
MediaQuery class. Now, let's see how the MediaQuery alternative works.

MediaQuery
MediQuery is an InheritedWidget descendant that contains information about the size of
the whole screen, and not only the parent widget. As an InheritedWidget widget, this
also provides the previously introduced MediaQuery.of method, which looks up the tree
for a MediaQuery instance.

Its use is conditioned by the presence of an instance in the context. This can be easily done
by adding a WidgetsApp instance as our root widget. WidgetsApp is not platform-specific,
like MaterialApp or CupertinoApp, which use this class in their internal implementation.

Let's see how to use MediaQuery class to make a responsive layout.

MediaQuery example
Our Favors app is not responsive in terms of screen size so far. It displays a vertical list of
cards that fills the available space on the screen. For typical smartphones it looks good, but
this is how it looks on devices with a bigger screen:

Theming and Styling Chapter 6

[215]

As you can see, each card fills each row, and they are a lot larger than necessary. We can
change this according to the screen size and make the list display more items if there is
more space than we need to display a card.

By using the MediaQuery class, we have made a calculation to change the number of
cards displayed per row:

// part of hands_on_mediaquery/lib/main.dart file

class FavorsList extends StatelessWidget {
 // ... hidden for brevity
 @override
 Widget build(BuildContext context) {
 return Column(
 mainAxisSize: MainAxisSize.max,
 children: <Widget>[
 Padding(
 child: Text(
 title,
 style: titleStyle,

Theming and Styling Chapter 6

[216]

),
 padding: EdgeInsets.only(top: 16.0),
),
 Expanded(
 child: _builldCardsList(context),
),
],
);
 }

In the preceding code, by wrapping the favors list into an Expanded widget, all
the available space of the Column widget is occupied, and we let the logic of resizing with
MediaQuery to the _buildCardsList() method as follows:

const kFavorCardMaxWidth = 450.0; // a maximum card width

class FavorsList extends StatelessWidget {
 // ... hidden for brevity

 Widget _builldCardsList(BuildContext context) {
 final screenWidth = MediaQuery.of(context).size.width;
 final cardsPerRow = max(screenWidth ~/ kFavorCardMaxWidth, 1);
 // max() function from dart:math package
 if (screenWidth > 400) {
 return GridView.builder(
 physics: BouncingScrollPhysics(),
 itemCount: favors.length,
 scrollDirection: Axis.vertical,
 itemBuilder: (BuildContext context, int index) {
 final favor = favors[index];
 return FavorCardItem(favor: favor);
 },
 gridDelegate: SliverGridDelegateWithFixedCrossAxisCount(
 childAspectRatio: 2.8,
 crossAxisCount: cardsPerRow,
),
);
 }
 return ListView.builder(
 physics: BouncingScrollPhysics(),
 itemCount: favors.length,
 itemBuilder: (BuildContext context, int index) {
 final favor = favors[index];
 return FavorCardItem(favor: favor);
 },
);
 }
}

Theming and Styling Chapter 6

[217]

For the resizing to work properly, we have made some changes
to FavorCardItem to make the layout more adaptable to the layout
changes. You can find the source code
of hands_on_mediaquery example on GitHub.

In the preceding code, you can see that we can divide the available screen width (taken
from MediaQuery.of(context).size.width) by the desired maximum width of a card
(kFavorCardMaxWidth) and store it into the cardsPerRow variable. Later, we use it to
check if there is room for one more card in a row. Then, if there's room, we list the cards
using a GridView widget displaying cardsPerRow columns. If there's no room for more
than a single card, we display a ListView widget as before. This is the result:

There are some other Flutter widgets available for this task, so maybe a better approach
would be to use a container other than a list to display the cards in a more flexible way.
Other classes may help on layout adjustments. Let's see some of them in the next section.

Theming and Styling Chapter 6

[218]

Additional responsive classes
There are a few other widgets that help with the task of creating responsive layouts:

CustomMultiChildLayout gives you the freedom to choose how a set of child
widgets are laid out on the screen using a delegate
class: MultiChildLayoutDelegate.
FittedBox changes its child size and position according to a specific fit. Have a
look at https:/ / docs. flutter. io/ flutter/ painting/ BoxFit- class. html to see
the available values.
AspectRatio attempts to force the size of its child according to a specific aspect
ratio.

By using all these available classes, we can make our Flutter layouts adaptative. We are able
to style our widgets and make the whole app customizable.

Summary
Customizing apps, in terms of styles, is fundamental for creating a unique experience for
the user and achieving the app's goals. Knowing the Flutter framework classes that help on
this task is crucial to the development of any app, including our Favors app.

In this chapter, we have seen some ways to change the style of our applications. By using
the Theme and ThemeData widgets we can specify styles that will change all the widgets
below them in the tree. Also, by using the available app classes, MaterialApp and
CupertinoApp, we can change the style of the whole application in a simple way.

We have seen how to add a custom font family to our application so that we can change the
default look of our texts and labels. Lastly, we have seen that it's possible to change how
our app looks in different sizes or orientations by using the MediaQuery and
LayoutBuilder classes, or even specifically for the target platform by using the Platform
class.

In the next chapter, we will learn how navigation between screens works in Flutter, and
how to use the Navigator property to change what is visible to the user.

https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://docs.flutter.io/flutter/painting/BoxFit-class.html

7
Routing: Navigating between

Screens
Mobile apps are typically organized on multiple screens. In Flutter, the route corresponding
to a screen is managed by the Navigator widget of the application. The Navigator
widget manages the navigation stack, pushing a new route or popping to the previous one.
In this chapter, you will learn how to use the Navigator widget to manage your app
routes and how to add transition animations between screens.

The following topics will be covered in this chapter:

Understanding the Navigator widget
Understanding routes
Learning about transitions
Exploring Hero animations

Understanding the Navigator widget
Mobile applications will often contain more than one screen. If you are an Android or iOS
developer, you probably know about Activity or ViewController classes that represent
screens on those platforms respectively.

An important class in navigation between screens in Flutter is the Navigator widget that is
responsible for managing screen changes with a logical history idea.

A new screen in Flutter is just a new widget that is placed in front of another. This is
managed by the concept of Routes, which defines possible navigation in the app. As you
may already have guessed, the Route class is a helper for Flutter to work on the navigation
workflow.

Routing: Navigating between Screens Chapter 7

[220]

The main players in the navigation layer are as follows:

Navigator: The Route manager
Overlay: Navigator uses this to specify appearances of the routes
Route: A navigation endpoint

Navigator
The Navigator widget is the main player in the task of moving from one screen to another.
Most of the time, we will be switching screens and passing data between them, which is
another important task for the Navigator widget.

Navigation in Flutter is made in a stack structure. The stack structure is suitable for this task
because its concept is very similar to a screen's behavior:

We have one element at the top of the stack. In Navigator, the top-most element
on the stack is the currently visible screen of the app.
The last element inserted is the first to be removed from the stack (commonly
referred to as last in first out (LIFO)). The last screen visible is the first that is
removed.
Like stack, the Navigator widget's main methods are push() and pop().

Overlay
In its implementation, Navigator uses the Overlay widget. The following is from the
documentation:

"Overlays let independent child widgets appear on top of other widgets by inserting them
into the overlay's Stack."

The overlay lets each of these widgets manage their participation in the overlay
using OverlayEntry objects.

We'll go through a few steps to check that the most common way to use a Navigator and
its Overlay is with the app widgets - WidgetsApp, MaterialApp, and CupertinoApp -
which provide multiple ways to manage navigation through the Navigator widget.

Routing: Navigating between Screens Chapter 7

[221]

Navigation stack/history
As you already may have noticed, the push() method adds a new screen to the top of the
navigation stack. Pop(), in turn, removes it from the navigation stack.

So, in summary, the navigation stack is the stack of screens that entered the scene thanks to
the Navigator widget's push() method.

The navigation stack is also known as navigation history.

Route
The navigation stack elements are Routes, and there are multiple ways to define them in
Flutter.

When we want to navigate to a new screen, we define a new Route widget to it, in addition
to some parameters defined as a RouteSettings instance.

RouteSettings
This is a simple class that contains information about the route relevant to the Navigator
widget. The main properties it contains are as follows:

name: Identifies the route uniquely. We will explore it in detail in the next
section.
arguments: With this, we can pass anything to the destination route.

You can check more details about this class in documents: https:/ / docs.
flutter. io/ flutter/ widgets/ RouteSettings- class. html.

https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html
https://docs.flutter.io/flutter/widgets/RouteSettings-class.html

Routing: Navigating between Screens Chapter 7

[222]

MaterialPageRoute and CupertinoPageRoute
The Route class is a high-level abstraction through the navigation feature. However, we
will not use it directly, as we have seen that a screen is a route in Flutter. Different
platforms may require screen changes to behave differently. In Flutter, there are alternative
implementations in a platform-adaptive way. This job is done with MaterialPageRoute
and CupertinoPageRoute, which adapt to Android and iOS respectively. So, we must
decide when developing an application whether to use the Material Design or iOS
Cupertino transitions, or both, depending on the context.

Putting it all together
It is time to check out how to use the Navigator widget in practice. Let's create a basic
flow to navigate to a second screen and back. It will look something like this:

Routing: Navigating between Screens Chapter 7

[223]

The basic way to use a Navigator widget is like any other—by adding it to the widget tree:

class NavigatorDirectlyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Directionality(
 child: Navigator(
 onGenerateRoute: (RouteSettings settings) {
 return MaterialPageRoute(
 builder: (BuildContext context) => _screen1(context));
 },
),
 textDirection: TextDirection.ltr,
);
 }
 _screen1(BuildContext context) {...} // hidden for brevity
 _screen2(BuildContext context) {...} // hidden for brevity
}

The Directionality widget was added here so that we could show
Text widgets. Remember, WidgetsApp and variations manage this and
more for us.

The Navigator widget contains an onGenerateRoute property, a callback that is
responsible for creating a Route widget based on a RouteSettings object passed as an
argument.

In the preceding example, you can see that we did not use the settings argument; instead,
we returned a default route. The most common approach would check the settings' name
property, which works as the identifier of the route. The framework uses the '/' name as
the initial route by default and will make an initial call to the callback, passing this as an
argument. So, the preceding example uses the _screen1 returned widget as the initial
route.

Check the Named routes section later in this chapter for more details and
examples of route names.

Routing: Navigating between Screens Chapter 7

[224]

The result from the onGenerateRoute callback is a Route object. We have used
the MaterialPageRoute type here. In its most basic implementation, we should pass an
onGenerateRoute callback to it too. It should return a widget to be displayed as the
Route. You might be asking: why not use a child property to add the child widget directly? Its
creation depends on the context in which it is built, as the Navigator widget may create
this Route widget in different contexts.

But if you check the following code, you will see that we can navigate from one screen to
another by clicking the corresponding button. We can see this in the _screen1 method, for
example:

 Widget _screen1(BuildContext context) {
 return Container(
 color: Colors.green,
 child: Column(
 mainAxisSize: MainAxisSize.max,
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 Text("Screen 1"),
 RaisedButton(
 child: Text("Go to Screen 2"),
 onPressed: () {
 Navigator.of(context).push(
 MaterialPageRoute(
 builder: (BuildContext context) {
 return _screen2(context);
 },
),
);
 },
)
],
),
);
 }

Here, you can check that the Navigator widget is accessed by using its Navigator.of
static method. You will be familiar with this by now and, as you might be guessing, this is
the way we access the corresponding Navigator ancestor from a specific context, and yes,
we can have many Navigator widgets in a tree. That is great, as we can have different
pieces of independent navigation in subsections of an application.

Routing: Navigating between Screens Chapter 7

[225]

Back to the example, let's have a look at the RaisedButton widget's onPressed callback,
where we push a new Route into the navigation. From here, the value we pass to the push
method is similar to the one returned from the onGenerateRoute callback in the
previously added Navigator.

To summarize, our top Navigator widget uses the onGenerateRoute callback just to
initialize the navigation by providing the initial Route. Later on, screen buttons were
added to push a new Route to the navigation, using the push() method from the
Navigator widget:

// button on screen 2 to navigate back
onPressed: () {
 Navigator.of(context).pop();
},
// _NavigatorDirectlyAppState

The _screen2 widget is almost equal to _screen1; the only difference is that it pops itself
from the navigation and goes back to the _screen1 widget.

There is a problem with the preceding example, though. If we press the back button on
Android, for example, while on Screen 2, we should go back to Screen 1 as a result, but that
is not the case. As we have added the Navigator widget by ourselves, the system is not
aware of it: we need to manage it by ourselves as well.

To manage the back button, we need to use WidgetsBindingObserver, which can be used
to react to lifecycle messages related to a Flutter application. As you can see in the source
codes on GitHub (in the navigation directory), we first converted our app to Stateful
and added WidgetsBindingObserver as a mixin to our State class. We also started the
observer in initState() with WidgetsBinding.instance.addObserver(this); and
stopped the observer with WidgetsBinding.instance.removeObserver(this); on
dispose(). With this setup, we can override the didPopRoute() method
from WidgetsBindingObserver and manage what happens when the system tells the app
to pop a route. The didPopRoute() method is described as follows in the documentation:

"[It is] called when the system tells the app to pop the current route. For example, on
Android, this is called when the user presses the back button."

Routing: Navigating between Screens Chapter 7

[226]

Inside the didPopRoute() method, we need to pop a Route from our Navigator widget.
However, we cannot access Navigator through its static of method, as we do not have the
context below this here. We can alternatively add a key to Navigator and access its state
here:

// navigation_directly.dart
class _NavigatorDirectlyAppState extends State<NavigatorDirectlyApp> {
 final _navigatorKey = GlobalKey<NavigatorState>();
 // ... other fields and methods

 // part of build method
 Navigator(
 key: _navigatorKey,
 ...
)
}

And we can add the didPopRoute() method as well:

@override
Future<bool> didPopRoute() {
 return Future.value(_navigatorKey.currentState.pop());
}

Here, we have used the pop() method from the Navigator state to pop the top-most route
from the navigation. As this method expects a true return if the observer was managed
from the pop route notification, we return it from the Navigator pop values as well, so
that when there are no more Routes from it to pop, the default behavior still happens (it
quits the app).

The WidgetsApp way
As we have seen before, this is not the most practical way to use Navigator in our
applications: we have many things to manage that could be avoided.

The typical way to use it is through the app widgets. They offer some properties and
methods to include navigation in the application:

builder: The builder property allows us to add an alternative path to the
Navigator, which is added by the WidgetsApp.
home: Lets us specify the widget equivalent to the first route in the app (normally
'/').

Routing: Navigating between Screens Chapter 7

[227]

initialRoute: Allows us to change the initial route of the app (defaults to '/').
navigatorKey and navigatorObserver: Allows us to specify corresponding
values to the built Navigator widget.
onGenerateRoute: Creates widgets based on the name of the route settings,
such as the one used in the previous example. It is the callback to create
Routes from a RouteSettings argument.
onUnknownRoute: Specifies a callback to generate a Route for when there is a
failure in a Route building process (for example, a path not found).
pageRouteBuilder: Similar to onGenerateRoute, but specialized on
the PageRoute type.
routes: Accepts a Map<String, WidgetBuilder>, where we can add a list of
routes of our app with its corresponding building blocks.

Writing the previous example is easier as we can skip all the Navigator-specific
implementations, like the back button observer or the navigator key:

class NavigatorWidgetsApp extends StatefulWidget {
 @override
 _NavigatorWidgetsAppState createState() => _NavigatorWidgetsAppState();
}

class _NavigatorWidgetsAppState extends State<NavigatorWidgetsApp> {
 @override
 Widget build(BuildContext context) {
 return WidgetsApp(
 color: Colors.blue,
 home: Builder(
 builder: (context) => _screen1(context),
),
 pageRouteBuilder: <Void>(RouteSettings settings, WidgetBuilder
 builder) {
 return MaterialPageRoute(builder: builder, settings: settings);
 },
);
 }
 _screen1(BuildContext context) {...} // hidden for brevity
 _screen2(BuildContext context) {...} // hidden for brevity
}

Routing: Navigating between Screens Chapter 7

[228]

As you can see, the preceding implementation is much simpler than the first one; we just
specify the home and pageRouteBuilder property from the app, and the rest works
automatically:

In home, we set the initial route of the navigation. We add it in a builder to
delegate its creation for a low level in the tree, so when it looks up to find a
Navigator, it will work.
In pageRouteBuilder, we set which kind of PageRoute object should be built
when navigating between routes.

We can make it even better by using named routes. See the next section.
Also, check the WidgetsApp documentation for details on how to use
these properties combined, at: https:/ /docs. flutter. io/ flutter/
widgets/ WidgetsApp- class. html. The same applies for MaterialApp
and CupertinoApp.
The full source code of these examples can be found in the navigation
project in the chapter examples directory.

Named routes
The route name is an important piece of navigation. It is the identification of the route with
its manager, the Navigator widget.

We can define a series of routes with names associated with each of them. It provides a
level of abstraction to the meaning of a route and a screen. By the way, they can be used in
a path structure; in other words, they can be seen as subroutes.

Have a look at the home property of the WidgetsApp. It implicitly sets the
home route widget for the Navigator widget. It is referred to as the '/'
path.

https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html
https://docs.flutter.io/flutter/widgets/WidgetsApp-class.html

Routing: Navigating between Screens Chapter 7

[229]

Moving to named routes
Our previous example using the WidgetsApp widget is very simple, but we can turn it into
a more organized way of doing things. By using named routes, we can do the following:

Organize the screens in a clear way
Centralize the creation of screens
Pass parameters to screens

Let's check it out:

// navigation_widgetsapp_named_routes.dart
class _NavigatorNamedRoutesWidgetsAppState extends
State<NavigatorNamedRoutesWidgetsApp> {
 @override
 Widget build(BuildContext context) {
 return WidgetsApp(
 color: Colors.blue,
 routes: {
 '/': (context) => _screen1(context),
 '/2': (context) => _screen2(context),
 },
 pageRouteBuilder: <Void>(RouteSettings settings, WidgetBuilder
 builder) {
 return MaterialPageRoute(builder: builder, settings: settings);
 },
);
 }
}

From the preceding example, you can see that we used the routes property to set a routing
table for the Navigator to know what to build for each path.

We can still use the home property if we want to, as shown in the following example:

WidgetsApp(
 home: Builder(
 builder: (context) => _screen1(context),
),
 routes: {
 '/2': (context) => _screen2(context),
 },
 ...
)

Routing: Navigating between Screens Chapter 7

[230]

Notice that when doing that, we should not add the '/' route to the routes map.

Another benefit of using named routes is in pushing new routes. We can use the
pushNamed method when we want to navigate to Screen 2 from Screen 1:

Navigator.of(context).pushNamed('/2');

This way, we do not need to create the Route object in every call; it will use our previously
defined builder in the routes map of routesWidgetsApp.

Arguments
The pushNamed method also accepts arguments, to pass to the new Route:

Navigator.of(context).pushNamed('/2', arguments: "Hello from screen 1");

In this case, we need to use onGenerateRoute from WidgetsApp so that we have access to
these arguments through the RouteSettings object:

// navigation_widgetsapp_named_routes_arguments.dart
class _NavigatorNamedRoutesArgumentsAppState
 extends State<NavigatorNamedRoutesArgumentsApp> {
 @override
 Widget build(BuildContext context) {
 return WidgetsApp(
 color: Colors.blue,
 onGenerateRoute: (settings) {
 if(settings.name == '/') {
 return MaterialPageRoute(
 builder: (context) => _screen1(context)
);
 } else if(settings.name == '/2') {
 return MaterialPageRoute(
 builder: (context) => _screen2(context, settings.arguments)
);
 }
 },
);
 }
 ...
}

After that, we use the argument normally found in in the _screen2 builder, to display an
additional message.

Routing: Navigating between Screens Chapter 7

[231]

When using the Routes creation on demand, it looks easier to pass
arguments, as you will build the widget at the time you need and can
customize the creation by passing arguments as you need.

Retrieving results from Route
When a route is pushed to the navigation, we may want to expect something back from it—
for example, when we ask for something from the user in a new route, we can take the
value returned via the pop() method's result parameter.

The push method and its variants return a Future. The Future resolves when the route is
popped and the value of Future is the pop() method's result parameter.

We have seen that we can pass arguments to a new Route. As the inverse path is also
possible, instead of sending a message to the second screen, we can take a message when it
pops back.

In Screen 2, we just make sure to return something when doing the pop from Navigator:

// part of navigation_widgetsapp_navigation_result.dart
class _NavigatorResultAppState
 extends State<NavigatorResultApp> {

 Widget _screen2(BuildContext context) {
 // ... hidden for brevety
 RaisedButton(
 child: Text("Back to Screen 1"),
 onPressed: () {
 Navigator.of(context).pop("Good bye from screen 2");
 },
),
 ...
}

The second argument in the pop method is the result from the route.

In the caller screen, we need to take the result back:

// part of navigation_widgetsapp_navigation_result.dart
class _NavigatorResultAppState
 extends State<NavigatorResultApp> {

 Widget _screen1(BuildContext context) {
 // ... hidden for brevety

Routing: Navigating between Screens Chapter 7

[232]

 RaisedButton(
 child: Text("Go to Screen 2"),
 onPressed: () async {
 final message = await Navigator.of(context).pushNamed('/2') ??
 "Came from back button";
 setState(() {
 _message = message;
 });
 },
),
 ...
 }
}

Please check out the source code of this chapter on GitHub for the full
example.

The result of push is a Future we need to take using the await keyword. Here, we just set
it to a new _message variable that is displayed in a text.

If you do not remember how to work with Future, take a look back
at Chapter 2, Intermediate Dart Programming, in the Futures and
async section.

Screen transitions
Changing screens needs to be smooth from a user experience perspective. We have seen
that Navigator widgets work on an Overlay to manage Routes. The transition between
routes is also managed at this level.

As we have seen, MaterialPageRoute and CupertinoPageRoute are classes that add a
modal route to the overlay with a platform-adaptive transition between the old and new
Route.

On Android, for example, the entrance transition for the page slides the page upward and
fades it in. The exit transition does the same in reverse. On iOS, the page slides in from the
right and exits in reverse. Flutter also lets us customize this behavior by adding our own
transitions between screens.

Routing: Navigating between Screens Chapter 7

[233]

PageRouteBuilder
PageRouteBuilder is the definition of a Route creation. The documentation provides the
following definition:

 "A utility class for defining one-off page routes in terms of callbacks."

If you remember, WidgetsApp contains a pageRouteBuilder property where we define
which PageRoute should be used by our app, and where the transitions are normally
defined.

PageRouteBuilder contains multiple callbacks and properties to help in the PageRoute
definition. Here are some examples:

transitionsBuilder: The builder callback for the transition, where we build
the transition from the previous route to a new route
transitionDuration: The duration of the transition
barrierColor and barrierDismissible: This defines partially covered routes
of model and not full-screen

Check the full docs for more details on the PageRouteBuilder
class: https:/ /docs. flutter. io/flutter/ widgets/ PageRouteBuilder-
class. html.

Custom transitions in practice
We can create a custom transition and apply it globally in our application using
pageRouteBuilder:

// part of navigation_transition.dart
class _NavigatorTransitionAppState extends State<NavigatorTransitionApp> {
 @override
 Widget build(BuildContext context) {
 return WidgetsApp(
 color: Colors.blue,
 routes: {
 '/': (context) => _screen1(context),
 '/2': (context) => _screen2(context),
 },
 pageRouteBuilder: <Void>(RouteSettings settings, WidgetBuilder
 builder) {
 return PageRouteBuilder(

https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html
https://docs.flutter.io/flutter/widgets/PageRouteBuilder-class.html

Routing: Navigating between Screens Chapter 7

[234]

 transitionsBuilder:
 (BuildContext context, animation, secondaryAnimation, widget) {
 return new SlideTransition(
 position: new Tween<Offset>(
 begin: const Offset(-1.0, 0.0),
 end: Offset.zero,
).animate(animation),
 child: widget,
);
 },
 pageBuilder: (BuildContext context, _, __) => builder(context),
);
 },
);
 }
 ...
}

By doing this, we change the default transition from a MaterialPageRoute class to our
custom slide transition. We do this as follows:

Our pageRouteBuilder now returns a PageRouteBuilder instance.
We implement its pageBuilder callback to return our widgets normally, by
calling the builder callback.
We implement its transitionBuilder callback to return a new widget,
typically an AnimatedWidget instance or similar. Here, we return a
SlideTransition widget that encapsulates the animation logic for us: a
transition from left to right, until it becomes fully visible.

We have not checked out animations in details yet. Jump to Chapter
15, Animations, to find out more about it.

Another way of implementing custom transitions is by on-demand creation of the Route
object. In this case, a good approach would be to extend the PageRouteBuilder class and
create a reusable transition.

Routing: Navigating between Screens Chapter 7

[235]

Hero animations
The name Hero may look strange at first, but everyone that has used a mobile application
has already seen this kind of animation. If you develop for mobile platforms, perhaps you
have already heard of, or worked with, shared elements; that is, elements that persist
between screens. This is the definition of a Hero.

Flutter contains ways to facilitate the creation of this kind of movement. That's why we can
see how the Hero animations work even before we get deeper into the subject of animations
itself.

The most important player this time is the Hero widget. Typically, it is just a single piece of
the UI for which it makes sense to fly from one Route to another.

The Hero widget
In Flutter, a Hero is a widget that flies between screens. Here is an example:

Routing: Navigating between Screens Chapter 7

[236]

The Hero, in reality, is not the same object from screen to screen. However, from the user's
perspective, it is. The idea is to make a widget that lives between screens and just changes
its appearance in some way. As in the preceding screenshot, the element scales up and
moves at the same time the new screen appears. This is what we learn from the three
images in the preceding screenshot:

This is when we tap on a list item. For example, the transition starts while the1.
detailed screen is shown.
A cut-scene from the transition process. Here, the Hero widget will change its2.
position and size until it matches the final result (3).
The final screen, with the Hero from step 1, with a new size.3.

The Flutter documentation contains great explanations and examples
about the Hero animation. Don't hesitate to check it out, at: https:/ /
flutter. dev/ docs/ development/ ui/ animations/ hero- animations.

Implementing Hero transitions
We are going to change our Favors app to have a Hero animation between the Your favors
list screen and the Requesting favor screen, so that when we tap on the Request a favor
floating button, there will be a smooth transition between it and the next page. The same
effect works when going back from the Requesting favor to the Your favors screen:

https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code
https://flutter.dev/docs/development/ui/animations/hero-animations#radial-hero-animation-code

Routing: Navigating between Screens Chapter 7

[237]

Your favors (This is an image of Your favors. The other (overlapped) information is not important here)

We start the change by adding a Hero widget to our tree. It should wrap the widgets
involved in the animation:

class FavorsPageState extends State<FavorsPage> {
 // ...
 @override
 Widget build(BuildContext context) {
 // ...
 floatingActionButton: FloatingActionButton(
 heroTag: "request_favor",
 child: FloatingActionButton(
 onPressed: () {
 Navigator.of(context).push(
 MaterialPageRoute(
 builder: (context) => RequestFavorPage(
 friends: mockFriends,
),
),
);
 },

Routing: Navigating between Screens Chapter 7

[238]

 tooltip: 'Ask a favor',
 child: Icon(Icons.add),
),
),
...
}

The most important thing to notice here is simplicity. Our
FloatingActionButton contains a heroTag tag property that makes it behave like a
Hero widget, which means that it can animate a transition to another screen. For the second
screen, we just need to repeat the process:

// part of RequestFavorPageState build method
 @override
 Widget build(BuildContext context) {
 return Hero(
 tag: "request_favor",
 child: Scaffold(
 // rest of scaffold
),
);
 }
...

Check out the hands_on_hero file on GitHub.

Pay attention to the tag property: this is where the magic occurs. The following is from the
Flutter website:

"It's essential that both hero widgets are created with the same tag, typically an object that
represents the underlying data."

Also, it's recommended that the Hero widgets have virtually identical widget trees, or even
better, be the same widget, for the best animation results.

In our previous example, we were animating our FloatingActionButton to the whole
Requesting favor screen widget. That makes a cool effect from the button to the new
screen. However, it does not show the best capability from the Hero animation – sharing
elements between screens. Also, the FloatingActionButton widget and the target
Scaffold widget does not have anything in common in its widgets subtree, which causes
our effect to not be the best one possible, according to the documentation.

Routing: Navigating between Screens Chapter 7

[239]

Let's stick to another example. Suppose we have a details screen for our favors, and when
the user taps on a FavorCardItem, it shows the corresponding favor in full screen,
animating this transition with a Hero widget. This is what the effect will looks like:

I know it may not look cool in the screenshots, but take a look at the
attached code to see the potential of the Hero widget.

To have the avatar and the text animating to the new screen during the transition, we need
to create two Heroes, one for the image and one for the description. This is what we have
changed in the FavorCardItem widget:

class FavorCardItem extends StatelessWidget {
...
 @override
 Widget build(BuildContext context) {
 ...
 _itemHeader(context, favor),
 Hero(

Routing: Navigating between Screens Chapter 7

[240]

 tag: "description_${favor.uuid}",
 child: Text(
 favor.description,
 style: bodyStyle,
),
),
 _itemFooter(context, favor)
 ...
 }
...
}

In the same way, we have modified the _itemHeader method to have a Hero widget
wrapping our avatar:

Widget _itemHeader(BuildContext context, Favor favor) {
...
 Hero(
 tag: "avatar_${favor.uuid}",
 child: CircleAvatar(
 backgroundImage: NetworkImage(
 favor.friend.photoURL,
),
),
),
...
}

Pay attention to the tag property of Hero. We have specified it by using the favor's uuid
value to make the Hero uniquely identifiable in the context.

To launch the Favor details screen, we need a small change in our FavorsList widget:

class FavorsList extends StatelessWidget {
...
 @override
 Widget build(BuildContext context) {
 ...
 Expanded(
 child: ListView.builder(
 physics: BouncingScrollPhysics(),
 itemCount: favors.length,
 itemBuilder: (BuildContext context, int index) {
 final favor = favors[index];
 return InkWell(
 onTap: () {
 Navigator.push(
 context,

Routing: Navigating between Screens Chapter 7

[241]

 PageRouteBuilder(
 // transitionDuration: Duration(seconds: 3),
 // uncomment to see it transition slower
 pageBuilder: (_, __, ___) =>
 FavorDetailsPage(favor: favor),
),
);
 },
 child: FavorCardItem(favor: favor),
);
 },
),
),
 ...
 }
...
}

We have wrapped our FavorCardItem into an InkWell widget to handle taps on it. When
the user taps on it, a new Route will be pushed to the Navigator to display
the FavorDetailsPage widget.

We have used PageRouteBuilder this time, instead of
MaterialPageRoute, as we do not want Material effects in this
transition. Check the PageRouteBuilder documentation for details,
at: https:/ / api. flutter. dev/flutter/ widgets/ PageRouteBuilder-
class. html.

The last part to take a look at is the FavorDetailsPage widget. Here, we create the final
look of the favor details screen, and by wrapping the favor avatar and description into
Hero widgets, we have an awesome transition. This is how its build() method looks:

// part of hands_on_hero/lib/main.dart
class _FavorDetailsPageState extends State<FavorDetailsPage> {
@override
 Widget build(BuildContext context) {
 final bodyStyle = Theme.of(context).textTheme.display1;
 return Scaffold(
 body: Card(
 child: Padding(
 padding: EdgeInsets.symmetric(vertical: 10.0, horizontal: 25.0),
 child: Column(
 mainAxisSize: MainAxisSize.min,
 crossAxisAlignment: CrossAxisAlignment.stretch,
 children: <Widget>[
 _itemHeader(context, widget.favor),

https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html
https://api.flutter.dev/flutter/widgets/PageRouteBuilder-class.html

Routing: Navigating between Screens Chapter 7

[242]

 Container(height: 16.0),
 Expanded(
 child: Center(
 child: Hero(
 tag: "description_${widget.favor.uuid}",
 child: Text(
 widget.favor.description,
 style: bodyStyle,
),
),
),
),
],
),
),
),
);
 }
}

And, in the same way, the _itemHeader() is defined as follows:

 Widget _itemHeader(BuildContext context, Favor favor) {
 final headerStyle = Theme.of(context).textTheme.display2;

 return Column(
 mainAxisSize: MainAxisSize.min,
 crossAxisAlignment: CrossAxisAlignment.center,
 children: <Widget>[
 Hero(
 tag: "avatar_${favor.uuid}",
 child: CircleAvatar(
 radius: 60,
 backgroundImage: NetworkImage(
 favor.friend.photoURL,
),
),
),
 Container(height: 16.0),
 Text(
 "${favor.friend.name} asked you to... ",
 style: headerStyle,
),
],
);
 }

Routing: Navigating between Screens Chapter 7

[243]

As you can see, it looks similar to the FavorCardItem widget, aiming to have minimal
differences in the tree to get a better transition result. Also, note that the main thing to be
concerned about is the tag property of Hero, which must match the origin tag for the effect
to work.

Please check out the attached source code of this chapter for the full
example.

Navigator still has its importance here, as do the push or pop actions that trigger the Hero
animation (by signaling that the route is changing).

Besides the tag property, Hero contains other properties to enable the customization of the
flight:

transitionOnUserGestures: To enable/disable the Hero animation on user
gestures such as back on Android
createRectTween and flightShuttleBuilder: Callbacks to change the
transition appearance
placeholderBuilder: A callback to return a widget that can be shown in the
source Hero's place during the transition

In Chapter 15, Animations, as we develop our understanding of
animations, you will be able to work with these properties like a natural.

Hero animations are easy to implement in Flutter, as you can see, and even a default
animation provided by the framework can be enough to create a good effect on some pieces
of layout.

Check the documentation on the Hero widget: https:/ /docs. flutter.
io/flutter/ widgets/ Hero- class. html, and try it out.

https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html
https://docs.flutter.io/flutter/widgets/Hero-class.html

Routing: Navigating between Screens Chapter 7

[244]

Summary
In this chapter, we have seen how to add navigation between our screens. First, we got to
know the Navigator widget, the main player when it comes to navigation in Flutter. We
have seen how it composes the navigation stack or history by using the Overlay class.

We have also seen another important piece of navigation, Route, and how to define it for
use in our applications. We checked out different approaches to implement the navigation,
with the most typical way being with the WidgetsApp widget.

Finally, we have seen how to customize transitions between screens to change the default
platform-specific moves from Material and iOS Cuperitno apps, and also how to use Hero
animations to share elements between transitions to create cool effects.

In the next chapter, we will be taking our favors application to a higher level by integrating
it with Firebase services.

3
Section 3: Developing Fully

Featured Apps
To develop a professional app, the developer needs to add features that encompass a
number of advanced and custom mechanisms, using plugins to extend the framework as
needed.

The following chapters are included in this section:

Chapter 8, Firebase Plugins
Chapter 9, Developing Your Own Flutter Plugin
Chapter 10, Accessing Device Features from the Flutter App
Chapter 11, Platform Views and Map Integration

8
Firebase Plugins

Developers commonly create modular codes that can be used in multiple apps. That's not
different in the Flutter world; the community is very involved in the success of the
framework and a lot of great plugins are available to developers. In this chapter, you will
get to know and learn how to use the interesting Firebase plugins, such as Auth,
Cloud Firestore, and ML Kit, to create a fully featured app without a complex backend.

The following topics will be covered in this chapter:

Configuring Firebase project
Firebase authentication
Cloud Firestore
Firebase Storage
Firebase AdMob
Firebase ML Kit

Firebase overview
Firebase is a Google product that provides multiple technologies for multiple platforms. If
you are a mobile or web developer, you will be familiar with this amazing platform.

Firebase Plugins Chapter 8

[247]

Among its offered technologies, the important ones are as follows:

Hosting: Enables the deployment of single-page applications, progressive web
applications, or static sites.
Real-time database: A NoSQL (non-relational database) database on the cloud.
With this, we can store and synchronize data in real time.
Cloud Firestore: A powered NoSQL database, with a focus on big and scalable
applications that provide advanced query support compared to the real-time
database.
Cloud functions: Functions triggered by many Firebase products, such as
previous ones, and also by the user (using the SDK). We can develop scripts to
react to changes in database, user authentication, and more.
Performance monitoring: Collect and analyze information about the applications
from the user perspective.
Authentication: Facilitates the development of the authentication layer of an
application, improving user experience, and security. It enables the usage of
multiple authentication providers, such as email/password, phone
authentication, and also, Google, Facebook, and other login systems.
Firebase Cloud Messaging: Cloud messaging to exchange messages between
applications and server, available on Android, iOS, and web.
AdMob: Displays ads to monetize applications.
Machine learning kit: Tools to implant advanced machine learning (ML)
resources in any application.

Flutter contains a variety of plugins to work with Firebase. We will be using some of them
in the next sections to integrate our application with these awesome services.

Setting up Firebase
We will be adding some of the Firebase technologies to our previously developed Favors
app, such as Firebase authentication and Cloud Firestore. The steps, however, are always
the same for any Flutter application.

The first step to connect an application to Firebase is creating a Firebase app project.

Firebase Plugins Chapter 8

[248]

We do this on the Firebase console tool (https:/ / console. firebase. google. com/). This
tool allows us to manage all of our Firebase projects, enable/disable specific technologies,
and monitor usage:

This is the initial screen of the Firebase console where you can see the recent1.
projects and also add a new project:

https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/

Firebase Plugins Chapter 8

[249]

The process of initiating a Firebase project is simple and easy to follow, as shown2.
in the following screenshot:

The project will generate within a few seconds like so:3.

Firebase Plugins Chapter 8

[250]

After the project is created, you will be redirected to the project screen, as shown4.
here:

Firebase Plugins Chapter 8

[251]

The following screen shows all the options regarding the project and also the5.
setup shortcut to project settings:

Here, we configure our project apps, as we can have multiple applications per project (that
is, one for each mobile platform) and also check the project credentials used to set up the
SDK on Flutter.

Firebase Plugins Chapter 8

[252]

Connecting the Flutter app to Firebase
As we have seen before, it is possible to configure multiple applications from multiple
platforms to connect with a Firebase project. In the Firebase project page, we have the
option to add apps for iOS, Android, and web.

We need to configure two applications in Firebase—one for iOS and one for Android, as
though we were developing mobile-native applications. So, if you already have done this
setup before for any application, the following section might look simple.

Configuring an Android app
We can configure an Android app through the Android configuration assistant shortcut in
the general project page seen previously:

Firebase Plugins Chapter 8

[253]

That brings the configuration page to the Android app shown in the following screenshot:

Here, the important setting is the package name that is checked in the Firebase SDK. The
signing certificate is also important for auth; we will cover that shortly.

You can find the package name of your Android app in
the android/app/build.gradle file, through the applicationId
property.

After the registration, a google-services.json file is generated and should be added to
our application project. In Android, it should be located in the android/app directory.

Firebase Plugins Chapter 8

[254]

The final step is to add the Firebase SDK to the Gradle files. In Android, Gradle can be seen
as the pubspec Flutter equivalent. One of its responsibilities is to manage the app
dependencies:

First, we add the google-services dependency to classpath in1.
the android/build.gradle file like so:

buildscript {
 repositories {
 google() // add this if not present
 ...
 }

 dependencies {
 ...
 classpath 'com.google.gms:google-services:3.2.1' // add
 // this
 // line
 }
}

After that, in android/app/build.gradle, we need to activate the plugin and2.
add a dependency on 'androidx.annotation' lib, as shown in the following
code:

// part of android/app/build.gradle
...
dependencies {
 implementation 'androidx.annotation:annotation:1.0.2'
 ...
}

// firebase
// Add the following line to the bottom of the file:
apply plugin: 'com.google.gms.google-services'

The androix.annotation library is not directly related to Firebase. We
should add it, though, as some libraries need it internally, such as the ones
from Firebase.

Finally, by running the following command, we will be all set up in the Android3.
environment:

 flutter packages get

Firebase Plugins Chapter 8

[255]

Configuring iOS app
For the iOS version, the process looks very similar. Starting with the configuration in the
Firebase console, we set the package name like we did for Android.

After that, we can download the generated GoogleService-Info.plist (iOS equivalent
to google-services.json) file and add it to the project iOS ios/Runner directory. It's
important to do this in Xcode by opening the iOS project on it and dragging the file into
Xcode so that it gets registered for inclusion during builds.

The step of adding the GoogleService-Info.plist file is changing,
depending on Flutter plugins' versions. Check out the most appropriate
way here: https:/ / firebase. google. com/docs/ flutter/ setup.

Unlike Android, there is no need to add specific iOS dependencies for Firebase. The next
step is to work in the Flutter context.

FlutterFire
Flutter applications rely on a set of Flutter plugins to access Firebase services.
FlutterFire contains specific implementations for target iOS and Android platforms.

Check out the FlutterFire plugins page for more info about recent versions
of Firebase plugins: https:/ /firebaseopensource. com/projects/
flutter/ plugins/ .

Adding the FlutterFire dependency to the Flutter project
We should add the core plugin to our project as the initial fundamental dependency as
shown in the following code:

part of pubspec.yaml
dependencies:
 ...
 firebase_core: 0.2.5 # Firebase Core

https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebaseopensource.com/projects/flutter/plugins/
https://firebaseopensource.com/projects/flutter/plugins/
https://firebaseopensource.com/projects/flutter/plugins/
https://firebaseopensource.com/projects/flutter/plugins/
https://firebaseopensource.com/projects/flutter/plugins/
https://firebaseopensource.com/projects/flutter/plugins/
https://firebaseopensource.com/projects/flutter/plugins/
https://firebaseopensource.com/projects/flutter/plugins/
https://firebaseopensource.com/projects/flutter/plugins/
https://firebaseopensource.com/projects/flutter/plugins/
https://firebaseopensource.com/projects/flutter/plugins/
https://firebaseopensource.com/projects/flutter/plugins/
https://firebaseopensource.com/projects/flutter/plugins/

Firebase Plugins Chapter 8

[256]

Besides that, we should add any Firebase dependencies as needed. Furthermore, we should
add firebase_auth to work with phone authentication:

part of pubspec.yaml
dependencies:
 ...
 firebase_core: 0.3.4 # Firebase Core

Note on Android:
As we are using the latest versions of the Firebase plugins that are based
on AndroidX versions of dependencies, our app project was migrated to
AndroidX. Due to AndroidX compatibility issues, I recommend you to
check out more here: https:/ /flutter. dev/docs/ development/
packages- and- plugins/ androidx- compatibility.

Running the flutter packages get command finishes the setup process, meaning we
are now able to start working with the plugins.

If you find it easier, you can follow the official Firebase documentation
steps for Firebase initialization in Flutter: https:/ /firebase. google. com/
docs/ flutter/ setup.

Firebase authentication
As we have seen before, Firebase contains a collection of useful technologies and we need
to configure each one that we might need for our project. Let's configure the authentication
layer of our app. The authentication layer is fundamental for our app; if you remember, the
user favor requests are made to friends, and for this to happen, we need the user to be
capable of sending the request to a specific user. We do this identification by using the
user's phone number as its identity. We need to do that in the following steps:

Add the Firebase auth plugin to the project1.
As pointed out before, we simply need to add the firebase_auth plugin2.
dependency to our pubspec, as shown in the following code:

part of pubspec.yaml
dependencies:
 ...
 firebase_core: 0.3.4 # Firebase Core
 firebase_auth: 0.8.4+5 # Firebase Auth // add this

https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://flutter.dev/docs/development/packages-and-plugins/androidx-compatibility
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/flutter/setup

Firebase Plugins Chapter 8

[257]

Enable phone authentication for our Firebase project in the Firebase console3.
Create the auth screen4.
Check whether the user is logged in, and if they are not, redirect to the login page5.

Enabling Authentication services in Firebase
To enable Authentication services in Firebase, we need to visit the Authentication section
in the Firebase console as shown in the following screenshot:

After enabling it, we can add a test phone number during development so we do not affect
resource usage for other users, as shown here:

Firebase Plugins Chapter 8

[258]

It is important for you to set up a test phone number and verification code. During
development, your Android app is signed with a Debug certificate. This way, on the login
screen, when you are prompted to enter the phone number, it will only work with the
previously listed phone numbers. Also, instead of receiving the verification code, you
simply type the one registered there.

After this setup, we can start to work on Flutter code.

Firebase Plugins Chapter 8

[259]

For authentication with real numbers and receiving a verification code,
you must sign your app in release mode. More on release mode later on
in Chapter 12, Testing, Debugging, and Deployment.

Authentication screen
In this screen, we are not going to talk about layout details. The only new widget here is the
Stepper widget, from Material Design. The general idea is the user enters their phone
number, receives a validation code, and after confirming it, gets logged in. We also have
used our custom input from Chapter 5, Handling User Input and Gestures:

Firebase Plugins Chapter 8

[260]

As you can see, the layout is simple and the Stepper widget helps on the login workflow,
going step by step through the following:

User fills in their phone number1.
User fills in the verification code (received by SMS)2.
User fills in the display name and profile image3.

You can check out more about this widget on its material.io
page: https:/ /material. io/archive/ guidelines/ components/
steppers. html.

Logging in with Firebase
You can check the fullscreen code in the attached hands_on_firebase project. The main
functions here are _sendVerificationCode() and _executeLogin() from
LoginPageState.

If you check the attached source code, you will notice that we have added the following
two <Step>s to our Stepper widget:

Send verification code: In this first step, the user fills in their phone number to1.
retrieve a verification code.
Enter the retrieved 6-digit verification code: To confirm the user's identity. After2.
that, the user gets logged in.

Besides the Stepper widget properties, let's concentrate on its onStepContinue field,
which is as shown here:

// part of LoginPageState build method. The Stepper callback:
onStepContinue: () {
 if (_currentStep == 0) {
 _sendVerificationCode();
 } else if (_currentStep == 1) {
 _executeLogin();
 } else {
 _saveProfile();
 }
},

https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html
https://material.io/archive/guidelines/components/steppers.html

Firebase Plugins Chapter 8

[261]

This field expects a callback that is called when the user presses the Continue button of
each step. As we retain the currently active step in the _currentStep field, we know
which action to perform. So, let's see how each action is performed.

We have customized the look of step actions; check
the _stepControlsBuilder method on the LoginPageState class to
see it in detail. Also, check out the documentation of this Stepper
property: https:/ /docs. flutter. io/flutter/ material/ Stepper/
controlsBuilder. html.

Sending verification code
The first stage of phone authentication is when the server (Firebase, in our case) sends a
verification code through SMS to the phone number the user entered.

This is done by using the Firebase SDK method called verifyPhoneNumber, which
requests the server to start a phone authentication as shown here:

// _sendVerificationCode method (LoginPageState) login_page.dart

void _sendVerificationCode() async {
 final PhoneCodeSent codeSent = (String verId, [int forceCodeResend]) {
 _verificationId = verId;
 _goToVerificationStep();
 };

 final PhoneVerificationCompleted verificationSuccess = (FirebaseUser
user) {
 _loggedIn();
 };

 final PhoneVerificationFailed verificationFail = (AuthException
exception) {
 goBackToFirstStep();
 };

 final PhoneCodeAutoRetrievalTimeout autoRetrievalTimeout = (String verId)
{
 this._verificationId = verId;
 };

 await FirebaseAuth.instance.verifyPhoneNumber(
 phoneNumber: _phoneNumber,
 codeSent: codeSent,
 verificationCompleted: verificationSuccess,

https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html
https://docs.flutter.io/flutter/material/Stepper/controlsBuilder.html

Firebase Plugins Chapter 8

[262]

 verificationFailed: verificationFail,
 codeAutoRetrievalTimeout: autoRetrievalTimeout,
 timeout: Duration(seconds: 0),
);
}

The verifyPhoneNumber method executes asynchronously (another with
async and returns Future), so the await keyword is needed before the
call.

The following are some important things to notice in the previous code:

FirebaseAuth.instance reflects the single instance of the Firebase auth SDK
that makes the bridge between Flutter and native Firebase auth libraries
There are multiple callbacks to implement and properties to set on the
authentication API call; namely these:

phoneNumber: The phone number to send the verification code to
codeSent: Called when the code is sent to phoneNumber
verificationCompleted: Called when the code is auto-retrieved
by the Firebase auth SDK
verificationFailed: Called when some error occurs during
phone number verification
timeout: Maximum time for the library to wait for an auto-
retrieval, 0 means disabled
codeAutoRetrievalTimeout: Called when the
timeout specified is reached meaning auto-retrieval did not work
properly (unless it is set to 0)

When the codeSent callback is invoked, it will make the Stepper widget move
to the second step, where the user should input their verification code

It is fundamental for you to inspect the FlutterFire site and also the
documentation of the firebase_auth plugin for an understanding of the
preceding properties: https:/ /pub. dartlang. org/packages/ firebase_
auth.

Also, we have auto-retrieval disabled as it is not fully working at the time
of writing this book; you can change the callbacks to test for yourself.

https://pub.dartlang.org/packages/firebase_auth
https://pub.dartlang.org/packages/firebase_auth
https://pub.dartlang.org/packages/firebase_auth
https://pub.dartlang.org/packages/firebase_auth
https://pub.dartlang.org/packages/firebase_auth
https://pub.dartlang.org/packages/firebase_auth
https://pub.dartlang.org/packages/firebase_auth
https://pub.dartlang.org/packages/firebase_auth
https://pub.dartlang.org/packages/firebase_auth
https://pub.dartlang.org/packages/firebase_auth
https://pub.dartlang.org/packages/firebase_auth
https://pub.dartlang.org/packages/firebase_auth
https://pub.dartlang.org/packages/firebase_auth
https://pub.dartlang.org/packages/firebase_auth

Firebase Plugins Chapter 8

[263]

Verifying the SMS code
The second step is to verify the user has retrieved the correct code, and by doing so, should
log in to the application. This is done in the signInWithCredential method as shown
here:

// _executeLogin method (LoginPageState) login_page.dart

 void _executeLogin() async {
 setState(() {
 _showProgress = true;
 });

 await FirebaseAuth.instance.signInWithCredential(
 PhoneAuthProvider.getCredential(
 verificationId: _verificationId, smsCode: _smsCode,
));

 FirebaseAuth.instance.currentUser().then((user) {
 if (user != null) {
 goToProfileStep();
 }
 });
 }

As you can see, this is a simple call to the signInWithCredential method from the
Firebase auth plugin that expects the following two arguments:

verificationId: This is the identifier of the whole login process. Take a look at
the previous callbacks where we receive this and store it for later use here. This
identifies the login so that we do not need to send all the information (phone
number, in this case) again.
smsCode: The code the user entered for validation; if both are valid, the login will
succeed.

If you perform some tests, you will notice the app is not showing
messages to the user to notify them of login errors (such as for an incorrect
verification code). In a real-world app, this is not the ideal behavior. Take
a look at the callbacks and try to improve the behavior.

Firebase Plugins Chapter 8

[264]

Updating the profile and login status
The Firebase user object contains more than phone numbers, it contains a set of
information for another method of login, such as email, for example, and also contains
properties that help to define the user's profile, such as a display name and photo
URL. Here, in the last step of the login process, we can save the user profile with its
displayName so that other users can identify easily. This is done in the _saveProfile()
method as shown here:

// part of LoginPageState class
void _saveProfile() async {
 setState(() {
 _showProgress = true;
 });

 final user = await FirebaseAuth.instance.currentUser();

 final updateInfo = UserUpdateInfo();
 updateInfo.displayName = _displayName;

 await user.updateProfile(updateInfo);

 // ... the last part is explained below
 }

The currentUser() method is useful for any action related to the logged in user. In this
case, we get it and update the requested info (the display name, for now).
UserUpdateInfo is a helper class to store the update data; in the next section, we will be
using one more property of it to store the user profile picture URL.

As we know the user is logged in, we can redirect to the Favors page using the well-known
Navigator class as follows:

// final part of _saveProfile() LoginPage
Navigator.of(context).pushReplacement(
 MaterialPageRoute(
 builder: (context) => FavorsPage(),
),
);

Firebase Plugins Chapter 8

[265]

This screen is the initial screen of our app. However, we should not ask the user to fill all
the information every time. Before anything, we must check whether the user is already
logged in, and if they are, simply redirect as we did before. We can do that by using
the FirebaseAuth.instance.currentUser() method again. A great place to check this
is the initState() method of the LoginPageState class:

// part of login_page.dart
class LoginPageState extends State<LoginPage> {
...
 @override
 void initState() {
 super.initState();

 FirebaseAuth.instance.currentUser().then((user) {
 if (user != null) {
 Navigator.of(context).pushReplacement(
 MaterialPageRoute(
 builder: (context) => FavorsPage(),
),
);
 }
 });
 }
...
}

As you can see, if the current Firebase user is not null, we know that we can redirect the
navigation to the next screen just like before.

What would be good user feedback if the current user is null? Have a
think and find out.

That's it for phone authentication; in the next section, we are going to store our favors on
the Cloud Firestore backend.

NoSQL database with Cloud Firestore
Cloud Firestore from Firebase is a flexible and scalable NoSQL cloud database. It helps us
in the development of real-time applications with synchronization technologies between
clients that make our app fast and functional.

Firebase Plugins Chapter 8

[266]

In this chapter, we are going to make some changes to our Favors app. We will do the
following:

Transfer our Favors listing to Firebase
See how to add rules so that a user cannot access another user's favors
Send/store a favor request to another user/friend in Cloud Firestore

Enabling Cloud Firestore on Firebase
The first step, if you remember, is enabling the necessary services on Firebase. In this case,
we want to enable the Cloud Firestore technology on Firebase:

Firebase Plugins Chapter 8

[267]

We enable it like any other Firebase service. One important thing regarding data is to do
with security. Firebase provides rule mechanisms so that we can configure the level to
access any information stored in our database. In the creation prompt, this is the only thing
we configure:

In our application, we are not going to define any rules for simplicity; that is why we chose
test mode. I strongly recommend that you read more about these rules, as they are very
important for real applications: https:/ /firebase. google. com/ docs/ firestore/
security/rules-structure? authuser= 0:

https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0
https://firebase.google.com/docs/firestore/security/rules-structure?authuser=0

Firebase Plugins Chapter 8

[268]

After that, we can start the development of storing and loading favors on the Cloud
Firestore database.

Cloud Firestore and Flutter
As we have seen before, FlutterFire provides a set of plugins for different technologies.
This also is true for the Cloud Firestore plugin. So, the first step is to add their necessary
dependencies to our pubspec.yaml as shown here:

dependencies:
 cloud_firestore: ^0.9.5 # Cloud Firestore

After getting the necessary dependencies with flutter packages get, we are ready to
change our favors storage.

Firebase Plugins Chapter 8

[269]

Loading favors from Firestore
We use Firestore through the Firestore class from the cloud_firestore Dart library.
In initState() function of the FavorsPageState, we add a call
to watchFavorsCollection().

Collections are just a group of documents. In our app, we have a single
collection called favors that store all of the favor documents from the app.
A document is a record in a collection. They are commonly represented as
JSON objects.

In watchFavorsCollection(), we start loading favors from Firebase as shown here:

 // part of favors_page.dart watchFavorsCollection
class FavorsPageState extends State<FavorsPage> {

 @override
 void initState() {
 super.initState();
 ...
 pendingAnswerFavors = List();
 acceptedFavors = List();
 completedFavors = List();
 refusedFavors = List();
 friends = Set();

 watchFavorsCollection();
 }

 void watchFavorsCollection() async {
 final currentUser = await FirebaseAuth.instance.currentUser();

 Firestore.instance
 .collection('favors') // 1
 .where('to', isEqualTo: currentUser.phoneNumber) // 2
 .snapshots() //3
 .listen((snapshot) {}) //4
 ...
 }
}

A typical Firebase query can have many formats; this one does the following:

It starts by specifying the targeted collection—favors.1.
It add a where condition to filter the favors that are sent only to the current user's2.
phone number.

Firebase Plugins Chapter 8

[270]

snapshots() creates a stream of snapshots.3.
listen((snapshot) {}) is where we listen for changes on the snapshots; that4.
is, we subscribe to the snapshot changes. On every change on the database that
affects the query, the function passed to listen() will be called. The callback
code to the listen() function is as follows:

// part of watchFavorsCollection
void watchFavorsCollection() async {
final currentUser = await FirebaseAuth.instance.currentUser();

Firestore.instance
 .collection('favors')
 .where('to', isEqualTo: currentUser.phoneNumber)
 .snapshots()
 .listen((snapshot) {
 List<Favor> newCompletedFavors = List();
 List<Favor> newRefusedFavors = List();
 List<Favor> newAcceptedFavors = List();
 List<Favor> newPendingAnswerFavors = List();
 Set<Friend> newFriends = Set();

 snapshot.documents.forEach((document) {
 Favor favor = Favor.fromMap(document.documentID,
 document.data);
 if (favor.isCompleted) {
 newCompletedFavors.add(favor);
 } else if (favor.isRefused) {
 newRefusedFavors.add(favor);
 } else if (favor.isDoing) {
 newAcceptedFavors.add(favor);
 } else {
 newPendingAnswerFavors.add(favor);
 }

 newFriends.add(favor.friend);
 });

 // update our lists
 setState(() {
 this.completedFavors = newCompletedFavors;
 this.pendingAnswerFavors = newPendingAnswerFavors;
 this.refusedFavors = newRefusedFavors;
 this.acceptedFavors = newAcceptedFavors;
 this.friends = newFriends;
 });
 });
}

Firebase Plugins Chapter 8

[271]

As you can see, every time the part of the collection where our query is looking changes
through the insertion, editing, of deletion of a favor, the callback will be called and the
following will occur:

A new list of each favor type is created.
A favor is created through a new fromMap defined constructor as shown here:

 Favor.fromMap(String uid, Map<String, dynamic> data)
 : this(
 uuid: uid,
 description: data['description'],
 dueDate: DateTime.fromMillisecondsSinceEpoch
 (data['dueDate']),
 accepted: data['accepted'],
 completed: data['completed'] != null
 ? DateTime.fromMillisecondsSinceEpoch
 (data['completed'])
 : null,
 friend: Friend.fromMap(data['friend']),
 to: data['to'],
);

The fromMap constructor receives an ID (the document ID) and a Map instance with the
corresponding fields. As you can see, it's a simple usage of the default constructor with
parameters from the data coming from Firebase:

The same thing is done for the Friend object. Check out the Favor class
for that example.

Depending on the status of favor, it is inserted in the corresponding list.
In addition to that, a set of friends is created, and every friend from favor is
added to the set. As Sets allow a single occurrence of each object, no repeated
friends will be present.

Check the Friend class. For the proper usage in the Set collection the
equals operator (==) and hashCode method were overridden for the
correct evaluation.

At the end, the lists of the State instance are updated to cause a rebuild of the
layout.

Firebase Plugins Chapter 8

[272]

Updating favors on Firebase
Before, when using mock data, we only needed to change our lists in memory. Now, we
need to update our corresponding favor documents on Firebase so that this will trigger our
previously defined callback, which will cause a rebuild and update our layouts.

We create a new method that will be used on every favor
change, _updateFavorOnFirebase():

 void _updateFavorOnFirebase(Favor favor) async {
 await Firestore.instance
 .collection('favors') // 1
 .document(favor.uuid) // 2
 .setData(favor.toJson()); // 3
 }

The beginning of the Firestore call is almost always the same: we get the Firestore instance,
then we complete the following steps:

We go to the favors collection.1.
Then we get the reference of the favor document that we want to update.2.
The last step is to send the data in JSON format to be updated in the3.
corresponding document. The toJson() method is a simple converter to store
on Firebase.

Check out the hands_on_firebase attached source code for the full code
of conversions to and from Firebase.

The _updateFavorOnFirebase method is used on previously defined methods:
complete, giveUp, acceptToDo, and refuseToDo. That's all we need to update on
Firebase and reflect changes on the app layout.

Saving a favor on Firebase
In the RequestFavorPageState class, we need to add the code to insert a new favor in
our favor collection in Firestore. This is done on the previous _save() method, which,
until now, did not save anything:

// part of request_favors_page.dart file
 void save(BuildContext context) async {
 if (_formKey.currentState.validate()) {

Firebase Plugins Chapter 8

[273]

 _formKey.currentState.save(); // 1
 final currentUser = await FirebaseAuth.instance.currentUser();
 //2

 await _saveFavorOnFirebase(
 Favor(
 to: _selectedFriend.number,
 description: _description,
 dueDate: _dueDate,
 friend: Friend(
 name: currentUser.displayName,
 number: currentUser.phoneNumber,
 photoURL: currentUser.photoUrl,
),
),
); //3

 Navigator.pop(context); //4
 }
 }

The save process is defined as follows:

We validate and save the Form fields. That is, we store the value of the text fields1.
of description, due date, and friend as variables to use later. There are other ways
of getting form fields values; this one is a simple and clean one.
We get the current logged-in user, as we need the current user info to populate2.
the favor request, so that the requested friend will know who is asking them for a
favor.
We call a new _saveFavorOnFirebase() utility method that makes the3.
Firebase call, with a new Favor instance created with the values coming
from Form as shown here:

 _saveFavorOnFirebase(Favor favor) async {
 await Firestore.instance
 .collection('favors')
 .document() // without passing any document id
 .setData(favor.toJson());
 }

Firebase Plugins Chapter 8

[274]

As you can see, the call is very similar to the previous update code. The only
thing different is that we are not walking to a specific document on
the document() method call. This will cause Firestore to generate a new unique
ID, then map to a new document where we set data later.

After saving, we pop the route so that we go back to the previous screen.4.

Maybe we could have treated any errors occurring in the saving process
so that the user might try again later, what do you think? This is a good
time to get your hands dirty and improve the code.

With these changes, we are now storing and fetching favors from Cloud Firestore, as shown
in the following screenshot:

We did not write any backend code here, and as a bonus, we also have real-time changes
reflected in our app, making it great for contexts involving multiple users.

Firebase Plugins Chapter 8

[275]

Cloud Storage with Firebase Storage
Firebase Storage is a great platform for storing files on the cloud. The most typical use cases
are storing pictures or videos from users, but there are no limitation; you can store any kind
of data needed in your application. The needs of the application are attended with this
powerful storage mechanism.

Introduction to Firebase Storage
Like previous services, Firebase Storage has an introductory step where it explains the need
to secure data, as shown here:

Firebase Plugins Chapter 8

[276]

The storage service is enabled with a default rule definition, where only authenticated
requests can make write and read calls. This is enough for our application.

Again, for real-world applications, it is recommended to create the best
rules you can do help to protect user-specific data: https:/ /firebase.
google. com/ docs/ storage/ security.

After this introductory step, we can add Flutter-specific libraries and start the development
step.

Adding Flutter Storage dependencies
In addition to previous plugins, FlutterFire provides a plugin for Firebase Storage. We
need to add the dependency to our pubspec.yaml, as shown in the following code:

dependencies:
 firebase_storage: ^2.1.0 # Cloud Firestore

After getting dependencies with flutter packages get, we are ready to use Firebase
Storage in our project.

Uploading files to Firebase
We are going to add the functionality of uploading files to Firebase Storage to our Favors
app. In the Profile section of login process, after the user is successfully logged in, we can
add a feature so the user can add an image to his/her profile.

https://firebase.google.com/docs/storage/security
https://firebase.google.com/docs/storage/security
https://firebase.google.com/docs/storage/security
https://firebase.google.com/docs/storage/security
https://firebase.google.com/docs/storage/security
https://firebase.google.com/docs/storage/security
https://firebase.google.com/docs/storage/security
https://firebase.google.com/docs/storage/security
https://firebase.google.com/docs/storage/security
https://firebase.google.com/docs/storage/security
https://firebase.google.com/docs/storage/security
https://firebase.google.com/docs/storage/security
https://firebase.google.com/docs/storage/security
https://firebase.google.com/docs/storage/security

Firebase Plugins Chapter 8

[277]

You can check out this section of the app in the last part of the login screen, as shown in the
following screenshot:

Firebase Plugins Chapter 8

[278]

We also have added another useful library, image_picker, to the dependencies, so we can
get an image from the camera and upload it to Firebase Storage for use as a user profile
picture.

To check the camera usage and image_picker plugin in detail,
read Chapter 10, Accessing Device Features from the Flutter
App, particularly Integrating phone camera section.

We need to change our _saveProfile() method in the login screen. Here, we add the
code needed to upload the selected picture to Firebase Storage, and after that, we store the
URL in the user's profile information as follows:

// part of login_page.dart

 void _saveProfile() async {
 setState(() {
 _showProgress = true;
 });

 final user = await FirebaseAuth.instance.currentUser();

 final updateInfo = UserUpdateInfo();
 updateInfo.displayName = _displayName;
 updateInfo.photoUrl = await uploadPicture(user.uid);

 await user.updateProfile(updateInfo);

 Navigator.of(context).pushReplacement(
 MaterialPageRoute(
 builder: (context) => FavorsPage(),
),
);
 }

As you can see, the only thing was the change to the updateInfo object using
its photoUrl property. The saving part is still the same. uploadPicture() is the
interesting part:

 uploadPicture(String userUid) async {
 StorageReference ref = FirebaseStorage.instance
 .ref()
 .child('profiles')
 .child('profile_$userUid'); // 1

 StorageUploadTask uploadTask = ref.putFile(_imageFile,

Firebase Plugins Chapter 8

[279]

StorageMetadata(contentType: 'image/png')); // 2

 StorageTaskSnapshot lastSnapshot = await uploadTask.onComplete; // 3

 return await lastSnapshot.ref.getDownloadURL(); // 4
 }

The upload task to Firebase Storage is divided into the following small steps:

First, we create a reference to a new object on Storage. As you can see, we1.
chain child() calls, creating a folder called Profiles and a file with the user ID
in its name.
After that, we create a storage upload task that will initialize the upload to2.
Firebase. Note the StorageMetadata parameter; we create an image content
type as it's an image that's being stored.
Here we await the Future reference of the upload task, getting the last snapshot3.
of the task (the result).
At the end, we get the file URL; this is a download URL of the Firebase file so4.
that we can access the file from Storage.

The list of files is accessible in the Firebase console as shown here:

Firebase Plugins Chapter 8

[280]

In the Favors page, nothing changes. As before, the profile picture is loaded
in CircleAvatar with NetworkImage, only if the friend's photoURL property is given (not
null):

// part of favors page FavorCardItem class
 CircleAvatar(
 backgroundImage: favor.friend.photoURL != null
 ? NetworkImage(
 favor.friend.photoURL,
)
 : AssetImage('assets/default_avatar.png'),
),

As you can see, we have a fallback for the case of a user without a profile picture. That is it
for Storage in our Favors app. There are a lot of capabilities that are yet to be explored.

In the next section, we are going to explore the Firebase AdMob plugin.

Ads with Firebase AdMob
Google AdMob is a technology of mobile publicity to generate revenue. Adding ads to
applications is a common method of monetization and a good solution for free applications.

We can easily integrate AdMob into our application with the usage of FlutterFire plugins.
The registration and usage of AdMob are slightly different from those for previous plugins
that we have seen; we need to create another account for this.

Firebase Plugins Chapter 8

[281]

AdMob account
In truth, AdMob is kept separate from the Firebase console. Although we have an AdMob
section in the console, we don't have more than links to AdMob documentations and the
start page:

Firebase Plugins Chapter 8

[282]

In the apps.admob.com page, we can create and manage all of our applications.

Note that Firebase projects and AdMob apps are not explicitly
connected until you link the application and Firebase project/app
manually. This may change by the time you are reading this book. Right
now, everything is all separated: apps from AdMob are
registered separately from Firebase and we need to link them manually.

Creating an AdMob account
In the previous link, we have the possibility to create our AdSense and AdMob account.
You can follow the steps in the page to create a new account as follows:

http://apps.admob.com

Firebase Plugins Chapter 8

[283]

After that, we are ready to manage our applications. In the case of Flutter, we create two
applications—one for Android and one for iOS:

We manage our apps and we get a unique app ID for each of the applications.

The creation of the applications in the AdMob portal is simply done by
following the config steps. Make sure you create one application for each
platform.

Firebase Plugins Chapter 8

[284]

You will get the following window after successfully adding your app to AdMob:

We will be using these app IDs to display banners in our application.

After creating the AdMob app, we can link the app with the Google AdMob portal as
shown here:

Firebase Plugins Chapter 8

[285]

Just follow the dialog workflow and link the iOS/Android AdMob app with the
corresponding Firebase app in the project, as shown in the following screenshot:

This will mean that the analytics data collected on Firebase will help your AdMob. This lets
your Analytics data flow to AdMob to enhance product features and monetization.

AdMob in Flutter
Like for previous FlutterFire plugins, we need to add the dependency for AdMob to
our pubspec.yaml, as follows:

dependencies:
 firebase_admob: ^0.8.0+4 # AdMob

After getting dependencies with flutter packages get, we are ready to use Firebase
AdMob in our project.

The FirebaseAdMob class is our starting point to add banners to the application. Unlike
previously seen Firebase plugins that get all the information needed to run from the
google-services.json (Android) and GoogleService-info.plist (iOS) files, in this
case, we need an additional setting before we can use the plugin effectively.

Firebase Plugins Chapter 8

[286]

We need to manually initialize the plugin with our application IDs. This can be done at any
point. In our Favors app, for example, we can do this in the main method as shown here:

void main() {
 FirebaseAdMob.instance.initialize(
 appId: Platform.isAndroid
 ? 'ca-app-pub-3940256099942544~3347511713' // replace with your
Android app id
 : 'ca-app-pub-3940256099942544~1458002511', // replace with your
iOS app id
);
 runApp(MyApp());
}

As you can see, we initialize the plugin by providing our registered app ID (important for
release). In the previous example, we are using just test IDs. This is the same value as
present in the library's FirebaseAdMob.testAppId property. We can test our banners in
the following two ways:

By using test ads provided by Google. With this, we use a set of mock ads, with
no real traffic in our application ads.

This setting is really important, as generating invalid traffic to our apps
can result in account invalidation. So make sure you are using testing ads
during development; find out more here: https:/ /developers. google.
com/admob/ android/ test- ads and after, change it to real app ID with test
devices.

By adding testing devices with our real IDs. This is the preferred option, as it
means we have the real look of the ads.

When using Android emulators or iOS simulators, they are automatically
configured as test devices. For real devices, the first time you run a
properly configured AdMob app, the test device ID will appear in LogCat
(Android) or Console log (iOS). Use this ID to mark your device as a test
device. Check out more here: https:/ / developers. google. com/ admob/
ios/test- ads and https:/ / developers. google. com/ admob/ android/
test- ads.

https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/ios/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads
https://developers.google.com/admob/android/test-ads

Firebase Plugins Chapter 8

[287]

Side note on Android
In Android, there is an additional step. We need to add the same AdMob app ID used to
initialize the FirebaseAdMob plugin into AndroidManifest.xml with the following code:

<!-- AndroidManifest.xml -->
 <application>
 <meta-data
 android:name="com.google.android.gms.ads.APPLICATION_ID"
 android:value="ca-app-pub-3940256099942544~3347511713"/>
 </application>

This is done by adding the <meta-data> value containing the same app ID previously
configured.

Side note on iOS
In iOS, we also need to add the same AdMob app ID used to initialize the FirebaseAdMob
plugin into the Info.plist file with the following code:

<!-- Info.plist -->
<plist version="1.0">
<dict>
...
 <key>GADApplicationIdentifier</key>
 <string>ca-app-pub-3940256099942544~1458002511</string> // replace with
 // your iOS app
 // id
...
</dict>

This is done by adding an entry to the <dict> section containing the same app ID that was
previously configured for iOS.

Showing ads in Flutter
After properly configuring the initialization of the AdMob plugin, we can start displaying
different kinds of ads, like banners for example. Ads, unlike many Flutter views, are
displayed in a different way from widgets. They do not have a node in the tree.

We will be changing our RequestFavorPageState to display ads. We will be displaying a
BannerAd at the bottom of the screen and a fullscreen InterstitialAd after saving a
request.

Firebase Plugins Chapter 8

[288]

We need to keep a reference to ads when we show them to be capable of disposing of them
later. So, first we add them as fields in our state with the following code:

// RequestFavorPageState class

 InterstitialAd _interstitialAd;
 BannerAd _bannerAd;

In the initState() function, we prepare the ads as follows:

 _bannerAd = BannerAd(
 adUnitId: BannerAd.testAdUnitId,
 size: AdSize.banner,
)
 ..load()
 ..show();

 _interstitialAd = InterstitialAd(
 adUnitId: InterstitialAd.testAdUnitId,
)..load();

You can check more ad types here: https:/ /pub. dartlang. org/
packages/ firebase_ admob.

We have a few things to consider when defining the ads; see this:

adUnitId is the main property of an ad, from the AdMob docs:

"An ad unit is one or more Google ads displayed as a result of one piece of the
AdSense ad code."

We use testAdUnitId from the Ad classes to create mock ads; that is,
simple test ads. You can create/configure ad units on the AdMob portal.

The load() function is the start call of the ads; this will make the ad ready for
displaying.
The show() function makes the ad visible (waiting if load is not completed).
Another important property is targetingInfo; it helps us to target ads. Check
the MobileAdTargetingInfo class for more info. In this class, we can also
define test devices (previously mentioned in AdMob in Flutter section).

https://pub.dartlang.org/packages/firebase_admob
https://pub.dartlang.org/packages/firebase_admob
https://pub.dartlang.org/packages/firebase_admob
https://pub.dartlang.org/packages/firebase_admob
https://pub.dartlang.org/packages/firebase_admob
https://pub.dartlang.org/packages/firebase_admob
https://pub.dartlang.org/packages/firebase_admob
https://pub.dartlang.org/packages/firebase_admob
https://pub.dartlang.org/packages/firebase_admob
https://pub.dartlang.org/packages/firebase_admob
https://pub.dartlang.org/packages/firebase_admob
https://pub.dartlang.org/packages/firebase_admob
https://pub.dartlang.org/packages/firebase_admob
https://pub.dartlang.org/packages/firebase_admob

Firebase Plugins Chapter 8

[289]

As you can see, we display the banner ad at the start, right after loading it. Later in the
save() method, the interstitial Ad is also shown with the following code:

// save method
await _interstitialAd.show();

As you can see, the ads are displayed with a test mark; you can use real ads by creating Ad
units and using test devices:

In the next section, we will be covering another technology, Firebase ML Kit, which helps
us to integrate machine learning tools in our apps.

Firebase Plugins Chapter 8

[290]

ML with Firebase ML Kit
Firebase ML Kit helps to add ML features to our app without the need of ML experience
it. There's no need to have deep knowledge of neural networks or model optimization to
get started.

Firebase ML Kit provides multiple tools, which are as follows:

Text recognition (OCR): Recognizes text on photos. Available as on-device and
cloud-based functionality.
Face detection: Detects faces in an image, identifies key facial features, and gets
the contours of detected faces. Available as on-device functionality.
Barcode scanning: Scans multiple types of barcodes. Available as on-device.
Image labeling: Recognizes entities in an image. Available as on-device and
cloud-based functionality.
Landmark recognition: Recognizes well-known landmarks in an
image. Available as cloud-based functionality.
Language identification: Determines the language of a string of text. Available
as on-device functionality.
Custom model inference: Uses a custom TensorFlow Lite (https:/ /www.
tensorflow. org/ lite) model with ML Kit. Available as on-device functionality.

The on-device tools are APIs that run offline and process data quickly. Cloud-based APIs,
on the other hand, rely on Google Cloud Platform to provide results with high accuracy.

Adding ML Kit to Flutter
Like for previous FlutterFire plugins, we need to add the dependency for ML Kit to
our pubspec.yaml as follows:

dependencies:
 firebase_ml_vision: ^0.6.0 # ML Vision

After getting the dependencies with flutterpackages get, we are ready to use Firebase
ML Kit in our project.

https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite

Firebase Plugins Chapter 8

[291]

Using the label detector in Flutter
As we have seen, we have multiple tools provided by Firebase ML Kit; in this example, we
will be running the label detector on image, so that the image will be interpreted and the
library will give us info about what the image might be of. This can be useful for the
preprocessing and filtering of images.

Depending on the service we want to use, we need to add specific libraries at system level.
For image labeling, we need to add a labeling library (OCR) at the native level of our
project.

In Android, this is done in the android/app/build.gradle file, basically by
downloading the native code that allows the entity resolution in an image as follows:

dependencies {
 ...
 api 'com.google.firebase:firebase-ml-vision-image-label-model:16.2.0'
}

This is another step, but it's optional. We can add this to AndroidManifest.xml like so:

<application ...>
 ...
 <meta-data
 android:name="com.google.firebase.ml.vision.DEPENDENCIES"
 android:value="ocr" />
 <!-- To use multiple models: android:value="ocr,label,barcode,face" -->
</application>

In iOS, the basis is the same, we add this through pods (pods are equivalent to plugins in
Flutter).

In the ios directory, run pod init if you do not have a Podfile file on it.

Note: Podfile would be likely to exist if you try to run the Flutter app on
iOS, as during build, it will get the corresponding pods for Flutter plugins.
So, Podfile might already have some contents.

Then add the dependency for image labeling in Podfile with the following code:

pod 'Firebase/MLVisionLabelModel'

Then, execute with the following command:

 pod install

Firebase Plugins Chapter 8

[292]

All the needed configuration for each technology can be seen in detail on
the plugin page: https:/ /pub. dartlang. org/ packages/ firebase_ ml_
vision.

After the dependencies are added, we can detect entities in an image.

As a simple case, we will be detecting the labels for the user profile image. This is done by
changing the behavior of the capture button; after capturing the image, we run the code of
_labelImage().

The _labelImage() method looks like this:

// part of login_page.dart

 _labelImage() async {
 if (_imageFile == null) return;

 setState(() {
 _labeling = true;
 });

 final FirebaseVisionImage visionImage =
 FirebaseVisionImage.fromFile(_imageFile); //1

 final LabelDetector labelDetector =
 FirebaseVision.instance.labelDetector(); //2

 List<Label> labels = await labelDetector.detectInImage(visionImage);
 //3

 setState(() {
 _labels = labels;
 _labeling = false;
 });
 }

To make the entities detection, we run a few steps:

 We instantiate FirebaseVisionImage from the captured image1.
Then we instantiate a Firebase LabelDetector2.
We process the image with LabelDetector; this will return a collection of3.
Label objects that are displayed later

https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision
https://pub.dartlang.org/packages/firebase_ml_vision

Firebase Plugins Chapter 8

[293]

Remember, all the processed info has a confidence value associated with
it.

Capturing a simple image from the Android emulator camera app with a room and some
furniture, we get a few labels, as shown here:

Firebase Plugins Chapter 8

[294]

As you can see, it detects many of the entities in the image with a high confidence value.
This is important info in machine learning; all calculated values have a confidence value.

With this, we conclude the integration of image labeling in our app.

Summary
In this chapter, we have seen the great Firebase tools that help us to develop fully featured
apps with advanced technologies. We have added authentication via phone with SMS code
validation to our app by using the Firebase auth plugin. Later, we changed the favors list
and made it so that requests are sent to the Cloud Firestore service. The Firebase Storage
plugin was used to send user profile images to the Firebase Storage backend, where we can
store any kind of files for usage in our applications. As a bonus, we had an introduction to
the AdMob service with the Firebase AdMob plugin and to ML Kit through the Firebase
ML vision plugin. We have seen how to configure and manage our apps in the Firebase
console and the AdMob portal.

We can also create our own plugins to use in our Flutter applications. In the next chapter,
we will check out the process of plugin creation, from implementation to publication in the
pub repository.

9
Developing Your Own Flutter

Plugin
Like using community plugins, a developer may want to share some usable modular code
with the community or have it in their own toolbox. This way, the creation and sharing of
packages is totally facilitated with the Flutter framework. In this chapter, you will learn
how to create a small plugin project to learn the fundamentals of the process, add some
documentation, and publish it to contribute to the community.

The following topics will be covered in this chapter:

Creating a package/plugin project
Plugin project structure
Documentation in packages
Publishing a package
Plugin development recommendations

Creating a package/plugin project
As we have seen, developing full-featured Flutter apps relies on using one or more
packages shared by the community in the Flutter/Dart ecosystems. Developing everything
from scratch would be impractical for most applications, as we would have to
repeatedly develop platform-specific code, which makes the development cycle longer and
slower.

The Flutter and Dart ecosystems provide tools to help this contribution occur with no
difficulties. The process of developing and publishing a package is done in the Flutter
environment.

Developing Your Own Flutter Plugin Chapter 9

[296]

In this chapter, we are going to generate a simple Flutter plugin project and analyze its
structure. The generated plugin contains a Flutter example that has a single method to get
the platform version, that is, the currently running operating system version. This is a
simple plugin that does not have anything special, but is a good introduction to the plugin
projects.

Flutter packages versus Dart packages
In Chapter 2, Intermediate Dart Programming, we have seen how Dart packages look and
how they are managed by the pub tool. In Flutter it's no different; Flutter packages are
nothing more than Dart packages that may contain Flutter-specific functionality and thus
have a dependency on the Flutter framework.

There are two kinds of Flutter package:

Dart packages: There are simple Dart packages that may provide useful libraries
that do not depend on the Flutter framework and therefore can be used in any
Dart environment: web, desktop, server, and so on. Flutter-specific packages that
have a dependency on Flutter framework can only be used in a Flutter context.
Plugin packages: There are packages that contain platform-dependent
implementations (Java/Kotlin in Android and ObjC/Swift in iOS) of its features,
and the Dart part is nothing more than an API that translates calls to the Flutter
level of the application. If you inspect the packages used in our Favors
application, such as the Firebase packages or image_picker, you will see they
are plugin packages that contain platform-native implementations with an API
written in Dart.

Starting a Dart package project
To create a Dart package in Flutter, we will use the well-known Flutter create tool. One of
the arguments of this tool (--template) determines the kind of package that we are
creating: an app package, a Dart package, or a plugin package. We use the --template
argument to create a new Dart package:

flutter create --template=package simple_package

Developing Your Own Flutter Plugin Chapter 9

[297]

This will generate a project called simple_package that contains a simple Dart package
project. The generated project structure is as simple as a Dart package and does not have
anything specific to Flutter:

As you can see, it does not contain the typical android and ios folders, as we do not need
them for simple Dart packages.

Even pubspec.yaml does not have anything special, except for the Flutter sdk
dependency:

name: simple_package
description: A new Flutter package project.
version: 0.0.1
author:
homepage:

environment:
 sdk: ">=2.1.0 <3.0.0"

dependencies:
 flutter:
 sdk: flutter

dev_dependencies:
 flutter_test:
 sdk: flutter

flutter:
...

Developing Your Own Flutter Plugin Chapter 9

[298]

If we wanted to make the package so that it wasn't Flutter-specific, we could remove the
Flutter framework part and work on it as a Dart package. Like the
flutter_test dependency, for example, it is not really necessary for Dart-only packages.

Remember: for simple Dart packages, you can use the https:/ /github.
com/dart- lang/ stagehand Dart project generator. So, when writing
simple Dart packages, we would use stagehand, Flutter- specific packages,
and we use the Flutter create tool.

We will not be going into detail regarding the implementation of this kind of package, as
it's a simple Dart package.

Now let's discuss plugin packages.

Starting a Flutter plugin package
To create a plugin package in Flutter, we again use the Flutter create tool with the plugin
template this time:

flutter create --template=plugin hands_on_platform_version -a kotlin -i
swift

By default, the plugin template uses ObjC for iOS and Java for Android.
Remember: to change to Swift or Kotlin, you can specify the iOS language
using the -i argument and the Android language using -a.

This will generate a project called hands_on_platform_version that contains a Flutter
package project. The generated project structure is similar to a Flutter app package.

A plugin project structure
In the previous section, we generated a plugin project to start analyzing. Now let's take a
look at specific parts of it. The project is the default plugin example from Flutter; the only
thing it does is return the platform OS version of the running device.

https://github.com/dart-lang/stagehand
https://github.com/dart-lang/stagehand
https://github.com/dart-lang/stagehand
https://github.com/dart-lang/stagehand
https://github.com/dart-lang/stagehand
https://github.com/dart-lang/stagehand
https://github.com/dart-lang/stagehand
https://github.com/dart-lang/stagehand
https://github.com/dart-lang/stagehand
https://github.com/dart-lang/stagehand
https://github.com/dart-lang/stagehand
https://github.com/dart-lang/stagehand

Developing Your Own Flutter Plugin Chapter 9

[299]

There are some differences, though:

The contents of the ios/ and android/ folders does not contain native
applications that start the Flutter runtime. Instead, it simply contains native
classes that are entry points to specific native implementations. We will check
this in detail later.
The example/ directory is a simple Flutter application package—yes, a
subpackage inside the plugin package.
lib/hands_on_show_toast.dart is a Dart API for the plugin:

// pubspec.yaml

name: hands_on_platform_version
description: A new flutter plugin project.
version: 0.0.1
author:
homepage:

environment:
 sdk: ">=2.1.0 <3.0.0"

dependencies:
 flutter:
 sdk: flutter

dev_dependencies:
 flutter_test:
 sdk: flutter

flutter:
 plugin:
 androidPackage: com.example.hands_on_platform_version
 pluginClass: HandsOnPlatformVersionPlugin

As you can see, the pubspec file is also similar to a simple Flutter application package. The
difference is in the plugin section inside the flutter section. This part defines the
package as a plugin package identifying the native code that will compose the real
implementation in a specific platform context.

Developing Your Own Flutter Plugin Chapter 9

[300]

MethodChannel
Flutter communication between the client (Flutter) and the host (native) application
occurs through platform channels. The MethodChannel class is responsible for sending
messages (method invocations) to the platform side. On the platform side,
MethodChannel on Android (API) and FlutterMethodChannel on iOS (API) enable
receiving method calls and sending a result back:

The platform channel technique allows the decoupling of the UI code from the platform-
specific code. The host listens on the platform channel, and receives a message. It can use
platform APIs to make the implementation of logic and sends back a response to the client,
the Flutter portion of the app.

Developing Your Own Flutter Plugin Chapter 9

[301]

To understand how the message exchange occurs, you can check out
the https:/ / flutter. dev/ docs/ development/ platform- integration/
platform- channels page. It contains examples of platform channels and
message types.

Implementing the Android plugin
As we have seen, the default project template generates a small code that gets the platform
version. Let's take a look at the generated code in HandsOnPlatformVersionPlugin.kt,
which is in the Android subproject com.example.hands_on_platform_version
package. This single file is the entrypoint of the plugin:

// HandsOnPlatformVersionPlugin.kt

class HandsOnPlatformVersionPlugin: MethodCallHandler {
 companion object {
 fun registerWith(registrar: Registrar) { // 1
 val channel = MethodChannel(registrar.messenger(),
 "hands_on_platform_version")
 channel.setMethodCallHandler(HandsOnPlatformVersionPlugin())
 }
 }

 override fun onMethodCall(call: MethodCall, result: Result) { // 2
 if (call.method == "getPlatformVersion") { // 3
 result.success("Android ${android.os.Build.VERSION.RELEASE}")
 //4
 } else {
 result.notImplemented() // 5
 }
 }
}

The invocation of a plugin method runs as follows:

This first static method is used by the Flutter framework to prepare the plugin to1.
be accessible from a Dart context. It basically creates a MethodChannel instance
and sets the method handler as the current class. In summary, it sets up the
linkage between Dart and native code.

https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels

Developing Your Own Flutter Plugin Chapter 9

[302]

We will check the MethodChannel type in detail in Chapter 13, Improving
User Experience, where we will see how to add native codes to application
projects, not only plugin packages.

The onMethodCall method is called whenever the corresponding Dart API2.
needs the native code to run; that is, on the Dart side, it will request the
framework to run a native code with a specific registered name and parameters.
There are two arguments in the method:

MethodCall: Describes the request
Result: Passes back results to a Dart context

The first step to run a specific code is to check what the caller wants to be3.
executed. In this case, there is a check by the method name. A plugin might have
many methods; that is why it is needed.
Using the Result object, we deliver the result of the method, using the4.
success callback to pass back the requested value.
The notImplemented() callback, also from the Result class, can be used to5.
notify the caller that the requested method does not have a corresponding
implementation. In the same way, there is the error callback for handling errors.

Implementing the iOS plugin
On the iOS side, the Swift code looks similar to the Kotlin code:

// SwiftHandsOnPlatformVersionPlugin.swift

public class SwiftHandsOnPlatformVersionPlugin: NSObject, FlutterPlugin {
 public static func register(with registrar: FlutterPluginRegistrar) {
 // 1
 let channel = FlutterMethodChannel(name: "hands_on_platform_version",
 binaryMessenger: registrar.messenger())
 let instance = SwiftHandsOnPlatformVersionPlugin()
 registrar.addMethodCallDelegate(instance, channel: channel)
 }

 public func handle(_ call: FlutterMethodCall, result: @escaping
 FlutterResult) {
 result("iOS " + UIDevice.current.systemVersion)
 }
}

Developing Your Own Flutter Plugin Chapter 9

[303]

The process looks similar to Android, but there are some small differences:

The handle method is the iOS equivalent of onMethodCall in Kotlin. Note that
it does not check the method call from the FlutterMethodCall argument.
Although it is alright for a single method plugin, it is always good to check the
caller method to make it clear what this is handling.
FlutterResult is used to send data back to Dart context. There are also
constant types for equivalent error, and not implemented cases: FlutterError
and FlutterMethodNotImplemented.

The Dart API
So, now that we have checked the native implementation of the plugin, we need to
understand how Flutter communicates with it from the Dart context. The generated Dart
API file lib/hands_on_platform_version.dart is the entry point for consumer apps.
The consumer packages will import this library to use the plugin. Let's check the API file:

// hands_on_platform_version.dart

class HandsOnPlatformVersion {
 static const MethodChannel _channel =
 const MethodChannel('hands_on_platform_version'); // 1

 static Future<String> get platformVersion async { // 2
 final String version = await
_channel.invokeMethod('getPlatformVersion'); // 3
 return version;
 }
}

The HandsOnPlatformVersion class is public, as you can see, and it contains a single
method that exposes native implementations:

The first thing that is created is MethodChannel—the bridge between Dart and1.
native platform code.
The platformVersion method is exposed to consumers.2.
The invokeMethod() of MethodChannel is used to call a specific method by3.
name, getPlatformVersion in this case. This method resolves to a
Future with the result from the native code.

Developing Your Own Flutter Plugin Chapter 9

[304]

An example of plugin package
The example/ directory contains a simple Flutter application that depends on the created
plugin. Check out the pubspec.yaml file:

// example/pubspec.yaml

name: hands_on_platform_version_example
description: Demonstrates how to use the hands_on_platform_version plugin.
publish_to: 'none'

environment:
 sdk: ">=2.1.0 <3.0.0"

dependencies:
 flutter:
 sdk: flutter

 cupertino_icons: ^0.1.2

dev_dependencies:
 flutter_test:
 sdk: flutter

 hands_on_platform_version:
 path: ../

flutter:
 uses-material-design: true

It is a common Flutter application pubspec.yaml file, except for the last item on
the dev_dependencies list. There is a dependency on
the hands_on_platform_version plugin with the path specification variant.

As we have seen in Chapter 2, Intermediate Dart Programming, remember
that you can specify a plugin dependency from the pub repository, paths,
or source repositories.

Using the plugin
To use the plugin package, we start by importing it into our Dart libraries,like any other
plugin:

import 'package:hands_on_platform_version/hands_on_platform_version.dart';

Developing Your Own Flutter Plugin Chapter 9

[305]

The usage follows with the plugin method invocation:

await HandsOnPlatformVersion.platformVersion;

The full example retains the platform version in the _platformVersion field and calls the
native code in the initPlatformState() method:

 Future<void> initPlatformState() async { // 1
 String platformVersion;
 try { // 2
 platformVersion = await HandsOnPlatformVersion.platformVersion;
 } on PlatformException {
 platformVersion = 'Failed to get platform version.';
 }

 if (!mounted) return; // 3

 setState(() {
 _platformVersion = platformVersion; // 4
 });
 }

We can highlight some points here:

The method calling is async as platform messages are asynchronous
Platform messages may fail, so we use a try/catch PlatformException that
helps to inspect errors
This check helps discarding the result from the platform if the widget is removed
from the tree by then
The state is updated so the widget is rebuilt and displays the retrieved platform
version from the plugin

Adding documentation to the package
Flutter plugins are important pieces in app development. The Flutter ecosystem is growing
and, day by day, brand-new useful plugins are shared with the community. However,
useful plugins must clearly describe how they should be used properly. This is done with
concrete documentation.

Developing Your Own Flutter Plugin Chapter 9

[306]

Documentation files
If you check out the pub repository site (pub.dev), you will see important information about
the package. This information is collected from specific files present in the project:

pubspec.yaml: This file contains details about the package:

name: hands_on_platform_version_example
description: Demonstrates how to use the hands_on_platform_version
plugin.
version: 0.0.1
author: Alessandro Biessek <alessandrobiessek@gmail.com>
homepage: the plugin homepage
....

This info is useful so that clients of the library know who created it and what it
does.

README.md: This is short documentation about the usage of the package and
other important things
LICENSE: This is the license for the usage of the package
CHANGELOG.md: This logs the changes in each version of the package
example/: This is a practical example on how to use the package

Library documentation
Another important piece of package documentation is on the Dart level. The consumer
needs to know every available method, its arguments, and return types to know how to
take the most from the library.

We will create library documentation in Dart APIs by adding documentation comments in
libraries directives (see Chapter 2, Intermediate Dart Programming) with the /// syntax:

/// This is a doc comment and may be added to any member of a library.

https://pub.dev/

Developing Your Own Flutter Plugin Chapter 9

[307]

This can be applied to library members as well, such as methods, variables, and classes.
Even private members may have documentation comments that may be helpful for
understanding different pieces of the library.

Check out the official tips for writing good documentation for your Flutter
packages: https:/ / www. dartlang. org/ guides/ language/ effective-
dart/ documentation.

Generating documentation
When you publish a package, API documentation is automatically generated (as long as
you use the comment type mentioned earlier) and published to dartdocs.org. You can, if
necessary, generate the API documentation locally.

First, configure the Flutter root environment in the following way:

export FLUTTER_ROOT=~/dev/flutter (on macOS or Linux)

set FLUTTER_ROOT=~/dev/flutter (on Windows)

You can generate a package documentation by running the following:

cd ~/dev/mypackage

$FLUTTER_ROOT/bin/cache/dart-sdk/bin/dartdoc (on macOS or Linux)

%FLUTTER_ROOT%\bin\cache\dart-sdk\bin\dartdoc (on Windows)

During the writing of this book, there is an open issue regarding the
previous command on Windows; please do have a look: https:/ / github.
com/dart- lang/ dartdoc/ issues/ 1949.

By default, the documentation is generated under the doc/api directory as static HTML
files.

https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
https://www.dartlang.org/guides/language/effective-dart/documentation
http://dartdocs.org
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949
https://github.com/dart-lang/dartdoc/issues/1949

Developing Your Own Flutter Plugin Chapter 9

[308]

Publishing a package
Publishing a package is the last step to make it available to the Flutter community. All the
publication is done by the pub tool. The command to make the publication is as follows:

flutter packages pub publish --dry-run

The --dry-run argument works like a pre-publication step, where the pub tool will make
a validation process but does not actually upload the package. After everything is good, we
can remove the --dry-run part:

flutter packages pub publish

This will effectively publish the package to the pub site so that every source code is
published to the pub repository. Only hidden files and ignored ones (in case of using Git)
are not uploaded.

You can see more about the publish command here: https:/ /www.
dartlang. org/ tools/ pub/ publishing.

Plugin project development
recommendations
Flutter plugins are great for accelerating app development. Contributing to the community
by sharing a plugin is also great; however, there are few points to consider when planning
to publish a plugin to make it really useful and accepted:

Support multiple platforms: Plugins that target a single platform go wrong from
the start. Since Flutter is a cross-platform framework, we need to think this
way, since the plugins will be used to create applications that will run on
multiple platforms.
Write good documentation: Flutter provides tools to make it easy to create and
publish a package with all the documentation; the only task required is to write
this document.
Search for existing plugins first: Maybe you are thinking of developing another
plugin on Flutter, but you should search in pub first to check whether it's already
developed by other developers so that you can use and even contribute to it:

https://www.dartlang.org/tools/pub/publishing
https://www.dartlang.org/tools/pub/publishing
https://www.dartlang.org/tools/pub/publishing
https://www.dartlang.org/tools/pub/publishing
https://www.dartlang.org/tools/pub/publishing
https://www.dartlang.org/tools/pub/publishing
https://www.dartlang.org/tools/pub/publishing
https://www.dartlang.org/tools/pub/publishing
https://www.dartlang.org/tools/pub/publishing
https://www.dartlang.org/tools/pub/publishing
https://www.dartlang.org/tools/pub/publishing
https://www.dartlang.org/tools/pub/publishing
https://www.dartlang.org/tools/pub/publishing
https://www.dartlang.org/tools/pub/publishing
https://www.dartlang.org/tools/pub/publishing

Developing Your Own Flutter Plugin Chapter 9

[309]

Writing a good, focused plugin can be really helpful to other developers. Do not hesitate to
check out the existing plugin source code and learn how to make great tools for the
community.

Summary
In this chapter, we have seen what a Flutter plugin package looks like, and how it differs
compared to the Flutter application and simple Dart packages. We have seen that Flutter
plugins go down to native code by using MethodChannels, which provide good
mechanisms to interop with the system directly.

We saw how to start a plugin package project in Flutter and how to properly document it to
make it useful and understandable for the community. And lastly, we learned how to make
a package public on the pub repository so that other developers can make use of it.

In the next chapter, we are going to continue diving into specific platform code by
integrating different features that are unique to each system, such as importing a contact,
using the camera, and managing app permissions.

10
Accessing Device Features

from the Flutter App
Mobile applications do not live alone in the device and user context, and this is true for
every level of applications, from simpler single-purpose applications to more complex
ones. An application may need to access hardware features such as Bluetooth, the camera,
import a contact to let the user interact with friends, or share content to other apps and
users. So, a developer needs to make the application aware of the user and the device.

In this chapter, you will learn how to integrate an app to the user context, such
as displaying and launching a URL, managing platform permissions, launching a phone's
camera, and importing a contact.

The following topics will be covered in this chapter:

Launching a URL from the app
Managing app permissions
Importing a contact from a phone
Integrating the phone's camera

Launching a URL from the app
Until now, we have seen how we can use Flutter plugins to add specific features to apps. In
the Favors app, for the user profile picture, for example, we have used a plugin that
launches the camera app and awaits for an image file: the image_picker plugin. This
plugin acts as a bridge for us, and the camera app is independent from the underlying
system, as we do not need to know how to launch the camera app and how to take the
image file, we just ask it to do the hard work for us.

Accessing Device Features from the Flutter App Chapter 10

[311]

Taking a profile picture is a good use of a plugin, as in a future version of the app, we could
allow the user to import the image from the gallery and use it in the same way.
The image_picker plugin used does this job as well.

Now let's imagine another use case: a user asks a favor from another user that involves
accessing a URL to get more context about the favor. For example, if someone asks you to
buy a product from an e-commerce website, it's good to share the link to the product so that
there isn't any misunderstanding.

Adding the open link functionality to the app can be made with the help of a plugin,
url_launcher. The point is, for many features of our apps, we do not need to know how
the platform works under the hood, as there are many useful Flutter plugins available to us.

Check out the code for launching URLs from the app on GitHub in
the Chapter11|hands_on_url_handler directory.

Displaying a link
First of all, the user must identify the link in a text to click on. In a mobile context, we need
to make the things as simple as possible, so, as you may know, it is not suitable to add
another field to the favors request to add a link to the favor. Take a look at a chat app you
may be using right now; you can type a URL into it, and when you send it to another user,
it automatically appears as clickable text, and you do not need to perform any action; you
just type.

In our app, we can turn URL links added to a favor description into clickable links in the
favor cards. You may be thinking to write the code with this functionality, as it would not
be hard to do the following:

Parse the favor description to the found links.
Create multiple TextSpans to change its styling.
Handle taps with Flutter gestures.

TextSpans can be used when we want to apply different styles to parts of
text. Check the TextSpan widget documentation for more
details: https:/ /api. flutter. dev/ flutter/ painting/ TextSpan- class.
html.

https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html
https://api.flutter.dev/flutter/painting/TextSpan-class.html

Accessing Device Features from the Flutter App Chapter 10

[312]

Although it's simple, coding this will take time that you could be investing in the app.
That's why it is good to use plugins whenever possible: it increases productivity.

The flutter_linkify plugin
There is, of course, a plugin that does the job of styling links in text for us,
flutter_linkify. It does the job described in the previous section and presents this to us
through the Linkify widget. It parses a text looking for links, and uses spans to
differentiate between simple text and links, and, as a bonus, it exposes useful features:

The onOpen property, which expects a callback to handle a click on a link
The humanizing property, which displays a link without HTTP/HTTPS

We have changed our Favors app to show the links from the description of the request in
the favor cards.

The request part doesn't need any modification, as the user types the link
normally in the text.

The changes to make the links appear and be clickable are minimal:

First, we add the plugin as a dependency:1.

dependencies:
 flutter_linkify: ^2.1.0 # Flutter Linkify plugin

After that, in the FavorCardItem widget, we swap its description Text child to2.
the new Linkify widget

This is what it looked like before:

// in the build method of FavorCardItem class, favor description
 Text(
 favor.description,
 style: bodyStyle,
),

This is what it looked like now:

import 'package:flutter_linkify/flutter_linkify.dart'; // import plugin
library

// in the build method of FavorCardItem class, favor description

Accessing Device Features from the Flutter App Chapter 10

[313]

 Linkify(
 text: favor.description,
 humanize: true,
),

This will make the link clickable and with a distinct style:

Text that starts with http:// or https:// appears as a link and is clickable. The next step
is to handle the click to open the target URL.

Accessing Device Features from the Flutter App Chapter 10

[314]

Launching a URL
Now that we have the links displaying and actionable in the app, we need to make them
work properly. If you are an Android or iOS developer, you may know how to launch a
URL, the valid schemes, and how to achieve this. In Flutter, as you may expect, this
functionality must be handled in platform-specific ways.

You can check out the supported URL schemes for each platform for iOS
at: https:/ / developer. apple. com/ library/ archive/ featuredarticles/
iPhoneURLScheme_ Reference/ Introduction/ Introduction. html and for
Android at: https:/ /developer. android. com/guide/ components/
intents- common. html.

Again, thanks to the work of the Flutter community, we can do this level of integration
with the help of the previously presented url_launcher plugin.

The url_launcher plugin
The url_launcher plugin acts as a bridge to the platform-native link handlers so that we
do not need to worry about platform-level details.

The usage of the plugin is reduced to few functions, launch(url) being the main one. The
launch function retrieves a URL as an argument and takes care of the launching
that's particular to each system.

In Android, it will build an intent for the system to handle through a browser app (or
display a webview for web schemes if forceWebView is set to true). In iOS, web-scheme
URLs are handled by default in a view controller owned by the app.

We integrate the plugin in the FavorCardItem handleLinkClick function, where we
simply call the launch(url) function, passing the URL that comes from the Linkify
callback:

// description element
Linkify(
 text: favor.description,
 humanize: true,
 onOpen: handleLinkClick,
),
...
// click handling
handleLinkClick(LinkableElement link) async {
 if (await canLaunch(link.url)) { // 1

https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/guide/components/intents-common.html

Accessing Device Features from the Flutter App Chapter 10

[315]

 await launch(link.url); // 2
 }
}

As you can see, the plugin abstracts much of the work for us. We just need to call its
function with the right argument:

First, we check whether the device is capable of launching the URL with the1.
canLaunch function. This will assert that the device has an app installed that's
able to handle the URL scheme.
Last, and if possible, we launch the URL; this will dispatch the intention to the2.
corresponding platform.

To have an idea of what is implemented under the hood for each system, I
recommend you take a look at the native part of the plugin source code.

Managing app permissions
Android and iOS systems have their own security policies involving user information or
device hardware. The purpose of permission is to protect the privacy of a user. An app,
whether native or not, must request permission to access user data, such as the camera, for
example.

In iOS's recent versions, you must include the usage description in the
ios/Runner/Info.plist file keys for the types of data the app needs to access, or it will
crash. To access the camera, for example, it must include NSCameraUsageDescription.

You can check out the available permissions for iOS here: https:/ /
developer. apple. com/ library/ archive/ documentation/ General/
Reference/ InfoPlistKeyReference/ Articles/ CocoaKeys. html#/ /apple_
ref/doc/ uid/ TP40009251- SW1.

In Android, the android/app/src/main/AndroidManifest.xml file is where
permissions are listed. Android has the concept of system permissions besides user ones;
for your app to access the internet, for example to fetch data from Firebase, it must
have android.permission.INTERNET added by default on the Flutter template.

https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW1

Accessing Device Features from the Flutter App Chapter 10

[316]

Check out the official Android guide on permissions to learn more about
how they work on the system here: https:/ /developer. android. com/
guide/ topics/ permissions/ overview.

So, the key difference is, in Android, every user-based resource has permission, and you
must add it to the manifest file, and also request the permission using the system
provided APIs. In iOS, you need to add a description to every user-sensitive resource in
Info.plist so that a prompt will be shown by the system for the user to accept or deny it.

Managing permissions on Flutter
As both systems have their own permission management, we need to take this into account
when making use of protected resources. In Flutter, we need to go down to the platform
level to request the necessary permissions.

As you have seen in our Favors app, we have not worried with permissions until now; the
only existing setting regarding this is the link in the AndroidManifest.xml file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.handson">
 <uses-permission android:name="android.permission.INTERNET"/>
 ...
</manifest>

The internet permission is not added by default in the AndroidManifest
file. The Flutter framework uses this for debugging and hot reloading.

Thanks to the Flutter community, we have a few plugins to help us with this task. A good
example is the permission_handler plugin.

https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview

Accessing Device Features from the Flutter App Chapter 10

[317]

Using the permission_handler plugin
The permission_handler plugin provides a high-level API to request and check the
status of permissions. The plugin exposes a set of permissions in
the PermissionGroup enum and makes a simplification over each one on its respective
platform. Each permission group is mapped down to the corresponding permission in the
system. The main provided methods from the plugin are as follows:

requestPermissions: To request access to a particular resource
checkPermissionStatus: To check the access status to a particular resource
openAppSettings: To open the app settings so the user can see/change a
particular resource

For Android, there is also the shouldShowRequestPermissionRationale method.

You can check out the available methods and the map of permissions in
the plugin page here: https:/ /pub. dartlang. org/ packages/ permission_
handler.

Importing a contact from the phone
From the user perspective, inserting a phone number manually to make a favor request is
not the preffered method, as it is susceptible to mistakes.

Importing a contact from the user's phone is a platform-specific task that, of course, has
similarities. The final point is to launch the platform's contact selector and get a single
contact from it.

The pub repository contains a set of plugins that help with this task. Some of them are as
follows:

contact_picker: Supports picking a phone number from the phone's contact
list
contacts_service: Provides an API that allows us to pick a contact and also
manage them

If you remember, our Favors app allows the user to request a favor from another user by
adding the phone number of the targeted friend. Importing the contact from the phone's
contact list is the best way to do it.

https://pub.dartlang.org/packages/permission_handler
https://pub.dartlang.org/packages/permission_handler
https://pub.dartlang.org/packages/permission_handler
https://pub.dartlang.org/packages/permission_handler
https://pub.dartlang.org/packages/permission_handler
https://pub.dartlang.org/packages/permission_handler
https://pub.dartlang.org/packages/permission_handler
https://pub.dartlang.org/packages/permission_handler
https://pub.dartlang.org/packages/permission_handler
https://pub.dartlang.org/packages/permission_handler
https://pub.dartlang.org/packages/permission_handler
https://pub.dartlang.org/packages/permission_handler
https://pub.dartlang.org/packages/permission_handler
https://pub.dartlang.org/packages/permission_handler

Accessing Device Features from the Flutter App Chapter 10

[318]

Importing a contact with contact_picker
The contact_picker plugin is suitable for the task, and we will be using this to import
contact into the favor request phase.

The first step is to include the plugin as a dependency in pubspec.yaml file and run
the flutter packages get command as well:

dependencies:
 contact_picker: ^0.0.2

Then, we need to change the Request a favor screen. We add an Import button to the right
side of the friend's drop-down list:

Accessing Device Features from the Flutter App Chapter 10

[319]

In the onPressed action of the import button, we are going to redirect the user to the
contacts screen so they can select a contact.

Let's take a look at the code. First, we add two fields to the RequestFavorPageState
class:

// request_favors_page.dart

class RequestFavorPageState extends State<RequestFavorPage> {
 final ContactPicker _contactPicker = ContactPicker();
 Friend _importedFriend;
 ...
}

Here is what the two fields will help us with:

_contactPicker provides the plugin functionality.
_importedFriend stores the imported friend from the contacts, if any.

With this, we will be able to import a contact easily. After that, we add the
onPressed callback for the Import contact button:

onPressed: () {
 _importContact();
},

Then we import a contact using the _importContact() method:

void _importContact() async {
 Contact contact = await _contactPicker.selectContact(); // 1
 if (contact != null) {
 setState(() {
 _importedFriend = Friend(
 name: contact.fullName,
 number: contact.phoneNumber.number,
); // 2
 });
 }
}

The import of a contact is carried out in a few steps:

First, we launch the contact selector by using the selectContact method from1.
the ContactPicker class from the plugin.
After checking that the user has selected a contact (contact!= null), we create2.
a new Friend instance based on the selected contact info.

Accessing Device Features from the Flutter App Chapter 10

[320]

The final step is handling the saving of the favor where we need to get the friend's info
from _importedFriend, as we did with _selectedFriend from the friend's drop-down
list:

void save(BuildContext context) async {
 ...
 await _saveFavorOnFirebase(
 Favor(
 to: _importedFriend?.number ?? _selectedFriend?.number,
 ...
)
)
 ...
}

The only needed modification was in the 'to' property of the new Favor that will point to
the _importedFriend or _selectedFriend value.

As you may be thinking, phone contacts are a user resource, and are therefore protected
information. The user must allow the application to read or write contacts.

Contact permission with permission_handler
Although contact information is a user-protected resource, we do not need any specific
permission to import a contact by using the contact_picker plugin because we are not
reading it directly, but through platform-specific APIs.

We are going to see, however, how request permission to use contacts, as this can be useful
in the future.

If you remember, each platform has its own way to handle permissions, and we need to
implement permission requests based on this.

Contact permission on Android
In Android, we need to add the contact permission request in AndroidManifest file, so
let's change the android/app/src/(main|debug|profile)/AndroidManifest.xml
file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.handson">
 ...
 <uses-permission android:name="android.permission.READ_CONTACTS" />

Accessing Device Features from the Flutter App Chapter 10

[321]

 <uses-permission android:name="android.permission.WRITE_CONTACTS" />
</manifest>

By adding READ_CONTACTS permission, we declare to the Android system that we need to
access the user contacts list; WRITE_CONTACTS, as you might have deduced, declares the
need to write new contacts to the system.

The behavior of this record depends on the version of the system the app
is installed on. Check out this here: https:/ /developer. android. com/
training/ permissions/ requesting.

Contact permission on iOS
In iOS, we need to provide an appropriate description of the Info.plist file so that the
user knows why the app needs the requested permission. This is done in the
ios/Runner/Info.plist file:

<dict>
 ...
 <key>NSContactsUsageDescription</key>
 <string>You can import a friend from a list of contacts.</string>
</dict>

When the app tries to access contacts in iOS, the system will ask for the user's permission
by showing the provided description.

Checking and requesting permission in Flutter
(permission_handler)
Suppose our app needs permission to access contacts in order to make a favor request (for
example, if we wanted to display all the contacts inside our app for the user to select
one). We create the _checkPermissions function to check and request the permission, if
needed, and follow these steps:

First, we get the status of the permission from the API:1.

void _checkPermissions() async {
 PermissionStatus status = await PermissionHandler()
 .checkPermissionStatus(PermissionGroup.contacts);

https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting

Accessing Device Features from the Flutter App Chapter 10

[322]

Then, we test whether the status is different than granted, that is, it has not2.
already been granted by the user:

if (status != PermissionStatus.granted)

Lastly, if the permission is not granted (status !=3.
PermissionStatus.granted), we request it:

await
PermissionHandler().requestPermissions([PermissionGroup.contacts]);
}

In summary, _checkPermissions will get the current permission status, and if it is not
granted, it will request it. A suitable place to call this function is in the Contact
import button, before we import the contact:

void _importContact() async {
 await _checkPermissions();
 ...
}

In our case, the result of the _checkPermissions() is only illustrative, as we do not need
the permission.

Integrating the phone's camera
The camera feature is present in many apps, and integrating with it can be done in few
ways. We could, for example, implement the code on our own, but thanks to the
community, Flutter provides multiple plugins to access the camera. Some of the most well-
known plugins are as follows:

camera: With this plugin, we can display the camera preview directly on Flutter,
take photos, or record video.
image_picker: This plugin tries to simplify the task a lot; we only ask it to give
us a photo from the camera or gallery, and it takes care of the rest.

If you remember, in Chapter 8, Firebase Plugins, we managed to send a user profile picture
to Firebase Storage, and we have used the image_picker plugin to get an image file from
the camera. So, let's review how this works in detail.

Accessing Device Features from the Flutter App Chapter 10

[323]

Taking pictures with image_picker
Flutter does not communicate with the camera API directly, as this is a platform-level
resource. The image_picker plugin, as its name suggests, helps with picking an image. It
enables importing image files from the gallery and taking new pictures using the camera.

First, we add the dependency to the pubspec.yaml file and get it with the flutter
packages get command:

dependencies:
 image_picker: ^0.5.0 # Image picker

We control image picking in the same place as the user enters their display name after
login, in the final step of the Stepper widget. When the user presses the small avatar
image, the camera opens to take a picture:

// login_page.dart

// part of LoginScreenState class
void _importImage() async {
 final image = await ImagePicker.pickImage(source: ImageSource.camera);
 setState(() {
 _imageFile = image;
 });
}

This is done with the ImagePicker class. We use its pickImage() method to start the
camera and take a picture (all managed by the plugin) that resolves the captured image to a
file for our usage.

You can find the source code of login_page.dart on GitHub for a full
example on how to use the image_picker plugin. Also, it is important
that you check the plugin's documentation, at https:/ / pub.dartlang.
org/packages/ image_ picker, as it requires some configuration to work.

Camera permission with permission_handler
The plugin by itself handles permission requesting but, in this case, we will again use
the permission_handler plugin to check and ask the camera for permission.

https://pub.dartlang.org/packages/image_picker
https://pub.dartlang.org/packages/image_picker
https://pub.dartlang.org/packages/image_picker
https://pub.dartlang.org/packages/image_picker
https://pub.dartlang.org/packages/image_picker
https://pub.dartlang.org/packages/image_picker
https://pub.dartlang.org/packages/image_picker
https://pub.dartlang.org/packages/image_picker
https://pub.dartlang.org/packages/image_picker
https://pub.dartlang.org/packages/image_picker
https://pub.dartlang.org/packages/image_picker
https://pub.dartlang.org/packages/image_picker
https://pub.dartlang.org/packages/image_picker
https://pub.dartlang.org/packages/image_picker

Accessing Device Features from the Flutter App Chapter 10

[324]

Camera permission on Android
In Android, we need to declare the camera permission in the AndroidManifest file as we
did for the contacts, so we change
the android/app/src/(main|debug|profile)/AndroidManifest.xml file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.handson">
 ...
 <uses-permission android:name="android.permission.CAMERA" />

</manifest>

By adding the CAMERA permission, we declare to the Android system that we need to access
the camera. Additionally, we can use another Android manifest tag:

<manifest ...>
 <uses-feature
 android:name="android.hardware.camera"
 android:required="false" />
</manifest>

The uses-feature tag will declare that our app needs the camera to work properly (again,
in our case, this is not really true; the required argument can be set to true if needed). If
true, the app will only be available to devices that have a camera available.

Camera permission on iOS
As we did for contacts, in iOS, we need to provide an appropriate description in
the Info.plist file so that the user knows why the app needs the camera permission.
Refer to the code from the ios/Runner/Info.plist file:

<dict>
 ...
 <key>NSCameraUsageDescription</key>
 <string>You can add a profile picture right from the camera</string>
 <key>NSPhotoLibraryUsageDescription</key>
 <string>This app requires access to the photo library.</string>
 <key>NSMicrophoneUsageDescription</key>
 <string>This app does not require access to the microphone.</string>
</dict>

Accessing Device Features from the Flutter App Chapter 10

[325]

When the app tries to access the camera in iOS, the system will ask for the user's permission
by showing the provided description.

Requesting camera permission in Flutter
(permission_handler)
In the profile settings after login, we can add a profile picture. To request permission to
access the camera, the process is very similar to requesting access to the user's contacts.

We create a function to check and request permission, if needed:

void _checkPermissions() async {
 PermissionStatus status = await PermissionHandler()
 .checkPermissionStatus(PermissionGroup.camera); // 1
 if (status != PermissionStatus.granted) { // 2
 await PermissionHandler().requestPermissions([PermissionGroup.camera]);
 // 3
 }
 }

The method is very similar to the check completed in the contact import example:

We get the status of the camera permission from the API.1.
We test whether the status is different than granted (if the permission was2.
already granted by the user).
Lastly, if the permission is not granted, we request it.3.

A suitable place to call this function is in the profile image selection stage, inside
the _importImage() method:

void _importImage() async {
await _checkPermissions();
 ...
}

Although we need the camera permission, the image_picker plugin has already requested
it for us, so it will work as well.

Accessing Device Features from the Flutter App Chapter 10

[326]

Summary
In this chapter, we saw how to use plugins to utilize phone features such as camera,
contacts, and launching a URL. We have seen that the Flutter community provides a set of
plugins for all of the features needed.

We used the url_launcher and flutter_linkify plugins to show a link to the user in
the Favor app's description. After this, we added the permission_handler plugin to
manage app permissions. We also used the contact_picker plugin to import a contact
from the user's contacts list, and, by using the permission_handler plugin, we added a
contact permission check and request.

Later, the image_picker plugin was used in the same way to retrieve the user's profile
picture on login and, again, we used the permission_handler plugin to check and
request camera permission.

In Chapter 11, Platform Views and Map Integration, we will continue to integrate Flutter
plugins. This time, we will see how to use maps, so keep reading to check out map
integration with Flutter apps.

11
Platform Views and Map

Integration
Displaying maps is a frequent feature of mobile applications nowadays, relying on the
user's position and the location of places around them. In this chapter, you will learn how
to integrate Google Maps in Flutter applications; this will allow you to add markers and
interactions by using the Google Places API.

The following topics will be covered in this chapter:

Displaying a map
Adding a marker to the map
Adding map interactions
Using the Google Places API

Platform Views and Map Integration Chapter 11

[328]

Displaying a map
Displaying a map in the application is the first step in making a map-based application, so
let's start by creating an application that displays a map and we will later add features to it.
The Flutter framework does not contain a map widget directly in its core SDK; this is
supported instead with the official google_maps_flutter plugin, which we will use to
display a map like this:

Platform Views and Map Integration Chapter 11

[329]

At the time of writing this book, google_maps_flutter is in developers' preview; that is,
the plugin relies on Flutter's new mechanism for embedding Android and iOS views and, as
that mechanism is currently in developers' preview, this plugin should also be considered
in developers' preview.

Displaying a map in Flutter apps requires some adjustments to the default application. So,
let's begin by understanding what these adjustments are and then add support to platform
views.

Platform views
Flutter's PlatformView is a widget that embeds an Android/iOS native view and
integrates it in the Flutter widget tree. Platform views are stateful widgets that control the
resources associated with the platform's native view. As for embedding, this kind of view is
an expensive task, so it should be used with caution, and only if really necessary. You can
use it to display maps, for example, as Flutter does not have an equivalent widget that
displays a map on its own.

Platform views are important pieces in frameworks such as Flutter, as they enable you to
fill some gaps during the evolution of the framework. However, there are some points
associated with this that you may need to consider before using it:

On Android, it requires API level 20 or greater
On iOS, it requires some additional steps to set up the feature (see the following
sections)
Again, embedding views is expensive for the framework and should be avoided
whenever possible
PlatformView fills up all of the available space of the parent, similar to the
container widget
PlatformView takes part in the widget tree like any other widget

This feature was presented during the Flutter 1.0 release and, at the time
of writing, is still evolving on both Android and iOS platforms, so
keep following its status on Flutter repository-related issues: https:/ /
github. com/ flutter/ flutter/ labels/ a%3A%20platform- views.

https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views
https://github.com/flutter/flutter/labels/a%3A%20platform-views

Platform Views and Map Integration Chapter 11

[330]

Enabling platform views on iOS
In the early versions of the platform views features, it was only supported on Android. At
the time of writing this book, the iOS implementation of embedding UIKitView is still in
release preview. So, we need to change the application's ios/Runner/Info.plist file and
add a specific setting:

<plist version="1.0">
<dict>
 ...
 <key>io.flutter.embedded_views_preview</key>
 <string>YES</string>
</dict>
</plist>

This will enable the functionality for iOS apps so that we can use the preview feature in our
application.

A list of open issues about embedding iOS views is available
on GitHub: https:/ / github. com/ flutter/ flutter/ issues? q=
is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-

views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform- ios%22.

Creating a platform view widget
When we create a platform view widget, we basically create a Flutter wrapper of a native
iOS/Android view. The process of creating a platform view is similar to plugins and
requires adding native code to an application.

To keep things simple, we create a plugin project; see Chapter 9, Developing Your Own
Flutter Plugin, to remember how to create a plugin project. In this project, we define a new
view, HandsOnTextView, which is a native text displaying view (TextView on Android
and UITextView on iOS).

Check the hands_on_platform_views file on GitHub for the complete
plugin code.

https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+platform-views%22+label%3A%22%E2%8C%BA%E2%80%AC+platform-ios%22

Platform Views and Map Integration Chapter 11

[331]

To begin with, after the plugin project is created, we define the Dart API. This is the code
that makes the bridge from Dart to native code. We create a HandsOnTextView widget.

As you can see, its build method has the following important parts:

Depending on the platform type, Theme.of(context).platform, we
instantiate a AndroidView or UiKitView widget.
Their properties are similar, and we define the viewType widget we want to
create, its parameters (creationParams), and the parameters codec
(creationParamsCodec):

viewType: A view type is used by the Flutter platform view
system to indicate which native view we are intending to use,
similar to a plugin system.
creationParams: These are the arguments that we want to pass
down to the native view creation—the text to be shown, in our
case.
creationParamsCodec: This defines which method of parameter
data transfer will occur while sending creationParams to the
native code.

This is all for the Dart side of the platform view. Now we need to define the view in
corresponding platforms.

In Chapter 13, Improving User Experience, we will check how to add native
code to the application. You may also find some helpful information there
to help you understand how the platform view works.

Creating an Android view
Creating and registering platform views on each platform is a very similar process; we just
need to manage the differences in languages and native view APIs. The simplest way to
start platform view creation is to register it into the platform views registry, very similar to
what is done when creating a Flutter plugin. Also, as we are dealing with a plugin project,
this is done together with the plugin registration:

class HandsOnPlatformViewsPlugin{
 companion object {
 @JvmStatic
 fun registerWith(registrar: Registrar) {
 registrar
 .platformViewRegistry()

Platform Views and Map Integration Chapter 11

[332]

 .registerViewFactory(
 "com.example.handson/textview",
 HandsOnTextViewFactory());
 }
 }
}

We register a view factory identifying it with a type/key, so that, when instantiating a
platform view, the Flutter engine is able to find the corresponding factory and delegate the
view creation to it. The view factory, by the way, is responsible for instantiating views from
specific types. As you can see, we registered a view factory for the
com.example.handson/textview type. We get the PlatformViewRegistry instance
with the platformViewRegistry() method, and through it, we added our factory to the
registry so when someone asks for the registered type, the construction will be delegated to
this HandsOnTextViewFactory factory instance.

HandsOnTextViewFactory looks as follows:

class HandsOnTextViewFactory :
PlatformViewFactory(StandardMessageCodec.INSTANCE) {

 override fun create(context: Context, id: Int, args: Any): PlatformView
{
 val params = args as Map<String, Any> // 1

 val text = if (params.containsKey("text")) { // 2
 params["text"] as String? ?: ""
 } else ""

 return HandsOnTextView(context, text) // 3
 }
}

The factory class must extend PlatformViewFactory and implement the create method.
This method is responsible for the creation of the specified view type, which goes as
follows:

It receives args as a parameter and can use this to configure the view1.
It gets the text value from a Map received in the parameter2.
Finally, it returns a HandsOnTextView instance3.

Notice the StandardMessageCodec.INSTANCE value passed to the parent class of the
factory. This must have the same type of creationParamsCodec defined in Dart, so the
framework is able to transfer the arguments from Dart-side to native.

Platform Views and Map Integration Chapter 11

[333]

The HandsOnTextView class is the native view class:

class HandsOnTextView internal constructor(context: Context, text: String)
: PlatformView {
 private val textView: TextView = TextView(context)

 init {
 textView.text = text
 }

 override fun getView(): View {
 return textView
 }

 override fun dispose() {}
}

As you can see, it must implement the framework's PlatformView interface. The interface
requires two methods, getView and dispose:

getView() must return an Android view to be embedded in the Flutter context.
The dispose() method is called when the view is detached from the Flutter
context. We can use this to clear any resource or reference to prevent memory
leaks.

Creating an iOS view
In iOS, the process is very similar to Android, but there are a few points on syntax that
differ. We register the factory like we did earlier, in the Creating an Android view section:

public class SwiftHandsOnPlatformViewsPlugin: NSObject, FlutterPlugin {
 public static func register(with registrar: FlutterPluginRegistrar) {
 let viewFactory = HandsOnTextViewFactory()
 registrar.register(viewFactory, withId: "com.example.handson/textview")
 }
}

Then, we make the HandsOnTextViewFactory class able to return the iOS version of the
view:

public class HandsOnTextViewFactory: NSObject, FlutterPlatformViewFactory {

 public func create(
 withFrame frame: CGRect,
 viewIdentifier viewId: Int64,

Platform Views and Map Integration Chapter 11

[334]

 arguments args: Any?
) -> FlutterPlatformView {
 return HandsOnTextView(frame, viewId: viewId, args: args)
 }

 public func createArgsCodec() -> FlutterMessageCodec & NSObjectProtocol
{
 return FlutterStandardMessageCodec.sharedInstance()
 }
}

Here, the factory must implement the FlutterPlatformViewFactory protocol, with both
the create and createArgsCodec methods:

create() must return an iOS view to be embedded in the Flutter context,
like getView() from the Android version.
createArgsCodec() must return the
corresponding creationParamsCodec version. As we did earlier, we use the
standard codec, FlutterStandardMessageCodec.sharedInstance(), in iOS.

In our case, we are passing just a string to the native side. We could have
used StringCodec as the message codec but, for the sake of our example, we used the
standard codec instead.

Check the message codec document, https:/ / docs. flutter. io/ flutter/
services/ MessageCodec- class. html, for all of the possible codec types.

Now, let's have a look at how to use a platform widget.

Usage of a platform view widget
The usage of a platform widget is as simple as using an ordinary widget. Apart from the
specific configuration previously provided for the iOS platform, there is nothing more
needed. We just use it as a normal widget:

 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 home: Container(
 alignment: Alignment.center,
 color: Colors.red,
 child: SizedBox(

https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html
https://docs.flutter.io/flutter/services/MessageCodec-class.html

Platform Views and Map Integration Chapter 11

[335]

 height: 100,
 child: HandsOnTextView(
 text: "Text from Platform view",
),
),
),
);
 }

Check the hands_on_platform_views example on GitHub for the
complete plugin code.

After that, the platform widget looks like any other widget:

Platform Views and Map Integration Chapter 11

[336]

Wrapping the platform view into SizedBox limits its dimensions; otherwise, it would take
all of the available space. However, this is not mandatory; the AndroidView and
UiKitView classes are responsible for making the platform views present into the widget
hierarchy in other widgets.

It is important to note that embedding platform views is an expensive
operation as the Flutter engine needs to manage the resources required by
each of them. So, using platform views should be avoided when a Flutter
equivalent is possible.

Getting started with the google_maps_flutter
plugin
As said before, the google_maps_flutter plugin relies on the platform views to display
maps on Flutter apps, as you have seen in the previous section.

Like the platform views feature, this plugin is still under active evolution,
so you may need to check for changes in the plugin page: https:/ /pub.
dartlang. org/ packages/ google_ maps_ flutter.

The plugin exposes the GoogleMap widget, and that is all this is about. Besides that, the
widget exposes common map functionalities that are important to make it fully
customizable and interactive. The main ones are as follows:

mapType: This is to change the style of map tiles to display, for
example, MapType.normal displays traffic and terrain information
and MapType.Satellite displays aerial photos.

Check all of the available types in the MapType documentation
page: https:/ /pub. dartlang. org/ documentation/ google_ maps_
flutter/ latest/ google_ maps_ flutter/ MapType- class. html.

https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/packages/google_maps_flutter
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/MapType-class.html

Platform Views and Map Integration Chapter 11

[337]

markers: This allows us to add markers on top of the map (see the Adding
markers to the map section).
myLocationEnabled: This is to enable the My Location layer on the map. It
enables the possibility to show an indicator at the current device location, as well
as a My Location button for the user to be capable of focusing on the current
known location, if possible.

Enabling My Location requires us to also add location permissions to both
native platforms of our app. Check the previous chapter's Managing app
permissions section to remember how to do it.

initialCameraPosition: This is to configure the initial visible portion of the
map.
cameraTargetBounds: This is to change the geographical bounding box for the
camera target, that is, the focused part of the map.
rotateGesturesEnabled, scrollGesturesEnabled, tiltGesturesEnabled
, and zoomGesturesEnabled: These enable/disable corresponding gestures.

This plugin also exposes some callbacks for us to be able to respond to specific map events:

onMapCreated: Called when the map is structurally ready
onTap: Called when a tap occurs on the map
onCameraMoveStarted, onCameraMove and onCameraIdle: Called on
corresponding camera events

You can check all of the available properties of the GoogleMap class
on https:/ /pub. dartlang. org/ documentation/ google_ maps_ flutter/
latest/ google_ maps_ flutter/ GoogleMap- class. html.

https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/GoogleMap-class.html

Platform Views and Map Integration Chapter 11

[338]

Displaying a map with the google_maps_flutter
plugin
The GoogleMaps plugin can be used to display a map in Flutter, like this:

The first step needed is to add the plugin dependency in the pubspec.yaml file and install
it with the flutter packages get command:

dependencies:
 ...
 google_maps_flutter: ^0.5.3

Platform Views and Map Integration Chapter 11

[339]

Enabling the Maps API on Google Cloud Console
Before using the GoogleMap widget, we need to get a valid Maps API key from the Google
Maps platform. The process is done in the Maps Platform on Google Cloud Console,
https://cloud.google. com/ maps- platform:

Let's see how the process works:

Select the GET STARTED option. We are guided through the process of1.
enabling the API. First, we select the APIs we want to enable:

https://cloud.google.com/maps-platform
https://cloud.google.com/maps-platform
https://cloud.google.com/maps-platform
https://cloud.google.com/maps-platform
https://cloud.google.com/maps-platform
https://cloud.google.com/maps-platform
https://cloud.google.com/maps-platform
https://cloud.google.com/maps-platform
https://cloud.google.com/maps-platform
https://cloud.google.com/maps-platform
https://cloud.google.com/maps-platform
https://cloud.google.com/maps-platform
https://cloud.google.com/maps-platform

Platform Views and Map Integration Chapter 11

[340]

And then, we select the project for which we want to enable the Maps API:2.

After that, we need to enable billing for the project. Google Maps Platform is free3.
to use but needs a billing account to be linked to the project. After
creating/enabling the billing account for the project, we enable the API:

And finally, we get the API key to be used in our mobile application:4.

Platform Views and Map Integration Chapter 11

[341]

The API key can be accessed later, on the API's explorer on Google Cloud
Console.

This key is used to initialize the map plugin on both platforms, in a similar way to how we
did it before for AdMob and Firebase.

Google Maps API integration on Android
For the Android platform, we need to change the
android/src/main/AndroidManifest.xml file and add a meta-data tag containing the
API key we got from the Maps Console:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.hands_on_maps">
 <application ... >
 <meta-data android:name="com.google.android.geo.API_KEY"
 android:value="YOUR KEY HERE"/>
 </application>
</manifest>

Google Maps API integration on iOS
In iOS, we change the ios/Runner/AppDelegate.swift file by adding the code
responsible for setting the API key on the plugin:

import UIKit
import Flutter
import GoogleMaps

@UIApplicationMain
@objc class AppDelegate: FlutterAppDelegate {
 override func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?
) -> Bool {
 GMSServices.provideAPIKey("YOUR KEY HERE")
 GeneratedPluginRegistrant.register(with: self)
 return super.application(application, didFinishLaunchingWithOptions:
 launchOptions)
 }
}

Platform Views and Map Integration Chapter 11

[342]

Remember, on iOS we need to opt-into the embedded views preview
version by adding the specific setting on the Info.plist file (see the
previous Platform views section).

Displaying a map on Flutter
After properly initializing the plugin on either platform, we can use the GoogleMap widget
on our app. In a minimal implementation, we just need to add it to our layout:

// part of MapPage widget
@override
Widget build(BuildContext context) {
 ...
 return GoogleMap(
 initialCameraPosition: CameraPosition(
 target: LatLng(51.178883, -1.826215),
 zoom: 10.0
),
);
 ...
}
...

The only mandatory property to be set in the GoogleMap widget
is initialCameraPosition, which will position the visualization of the map in
a target location defined in the CameraPosition instance. The CameraPosition class
also supports the zoom, tilt, and bearing properties.

Platform Views and Map Integration Chapter 11

[343]

With this set up, we can see GoogleMap in action:

As you can see again, the widget fills up all of the available space, a behavior defined
by PlatformView. Also, by default, map interactions such as zoom and move are enabled.
We can change these with the previously seen gesture-related GoogleMap widget
properties.

Platform Views and Map Integration Chapter 11

[344]

Adding markers to the map
Displaying a map in the application is just the starting point of creating a map-based app.
Adding information about places, for example, is one of the most common tasks when
working with maps. Let's see how we can add markers to the previously created map by
using the Marker class provided by the plugin.

The Marker class
Marker, as mentioned in the documentation, simply marks a geographical location on the
map. It adds context information over the map, such as identifying a place, checkpoint, or
point of interest.

Markers typically are defined with an icon, and single or multiple actions in its
click event. The following properties are some of the most used when adding markers to
a map:

position: Although not mandatory by the plugin itself, it identifies the
geographical location of the marker on the map, so it is almost always required
 icon: This is a marker icon in the BitmapDescriptor format

Check out more information about the BitmapDescriptor class on the
plugin documentation page: https:/ /pub. dartlang. org/ documentation/
google_ maps_ flutter/ latest/ google_ maps_ flutter/ BitmapDescriptor-
class. html.

markerId: This is a unique identifier of the marker on the map
infoWindow: This is the Google Maps information window that is displayed
when the marker is tapped

Note from the documentation:

"A marker icon is drawn oriented against the device's screen rather than the map's
surface, that is, it will not necessarily change orientation due to map rotations, tilting, or
zooming."

https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html
https://pub.dartlang.org/documentation/google_maps_flutter/latest/google_maps_flutter/BitmapDescriptor-class.html

Platform Views and Map Integration Chapter 11

[345]

Adding markers in the GoogleMap widget
As we have seen before, the GoogleMap widget exposes the markers property, which
expects a Set collection of Marker instances to be passed to it. Let's see how to add
markers by setting the markers property:

First, we add a _markers field to the MapPage class to hold a random set of1.
markers (Marker instances):

class MapPage extends StatelessWidget {
 final _markers = {
 Marker(
 position: LatLng(51.178883, -1.826215),
 markerId: MarkerId('1'),
 infoWindow: InfoWindow(title: 'Stonehenge'),
 icon: BitmapDescriptor.defaultMarker
),
 Marker(
 position: LatLng(41.890209, 12.492231),
 markerId: MarkerId('2'),
 infoWindow: InfoWindow(title: 'Colosseum'),
 icon: BitmapDescriptor.defaultMarker
),
 Marker(
 position: LatLng(36.106964, -112.112999),
 markerId: MarkerId('3'),
 infoWindow: InfoWindow(title: 'Grand Canyon'),
 icon: BitmapDescriptor.defaultMarker
),
 };
 ...
}

And then, we just need to set the markers property on the GoogleMap widget:2.

 @override
 Widget build(BuildContext context) {
 return GoogleMap(
 initialCameraPosition:
 CameraPosition(target: LatLng(51.178883, -1.826215),
 zoom: 10.0),
 markers: _markers,
);
 }

Platform Views and Map Integration Chapter 11

[346]

If we tap on a marker, the corresponding InfoWindow object is displayed with the title set:

As you saw, adding markers to the GoogleMap widget is as simple as displaying the map
itself, as it follows the Flutter paradigm of rebuilding the widget with the description
provided in its construction (that is, markers).

Note for the curious: These markers are some of the 17 stunning places to
visit with Google Maps found on lifehack.org: https:/ /www. lifehack.
org/articles/ lifestyle/ 17- stunning- places- visit- with- google-
maps. html.

http://lifehack.org
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html
https://www.lifehack.org/articles/lifestyle/17-stunning-places-visit-with-google-maps.html

Platform Views and Map Integration Chapter 11

[347]

Adding map interactions
Adding markers to the map helps to enrich the contextual information involved in it;
however, this is far from enough for a real map-based app. Handling events or changing
the map according to user needs is also fundamental. Let's see how we can add markers
dynamically to the map and use the GoogleMapController class to interact with the map
camera programmatically.

Adding markers dynamically
As said before, we need to pass the markers during the GoogleMap widget construction, so
the first step is to make our MapPage widget a StatefulWidget widget and rebuild its
subtree every time we want to add a new marker.

After that, we need to add a button to the layout so that we can add the marker after the
initial build. The onPressed button callback calls _addMarkerOnCameraCenter, as
follows::

 void _addMarkerOnCameraCenter() {
 setState(() {
 _markers.add(Marker(
 markerId: MarkerId("${_markers.length + 1}"),
 infoWindow: InfoWindow(title: "Added marker"),
 icon: BitmapDescriptor.defaultMarker,
 position: _cameraCenter,
));
 });
 }

As you can see, it uses the setState method to cause a rebuild of the widget and adds
Marker to the _markers set. The only new part here is the position: _cameraCenter
assignment on Marker.

The _cameraCenter value is a property in the state that tracks the center location of the
camera in the GoogleMap widget. It is retrieved using the onCameraMove callback of the
widget, as follows:

GoogleMap(
 ...
 onCameraMove: _cameraMove,
),

Platform Views and Map Integration Chapter 11

[348]

And the value is simply stored, as mentioned previously:

void _cameraMove(CameraPosition position) {
 _cameraCenter = position.target;
}

This way, every time the user presses the button, a marker is added at the center target
location on the map. Although it's not a real-world use case, this is a practical starting point
of interacting with the map.

Take a look at the hands_on_maps example on GitHub to
check MapPage as stateful widget code and the small layout changes to
display a button.

GoogleMapController
Another level of interaction we can do is provided by the GoogleMapController class,
which works in a very similar way to well-known controllers, such
as TextEditingController.

The GoogleMapController class aims to expose control methods of the GoogleMap
widget. Right now, the only available methods are the following:

animateCamera: This starts an animated change of the map camera position
moveCamera: This changes the map camera position without animating

Getting GoogleMapController
In contrast with other controllable widgets, we do not provide a controller to the
GoogleMap widget by ourselves. Instead, this will be provided to us through
the previously seen onMapCreated callback. So, we just need to store it, as follows:

GoogleMap(
 ...
 onMapCreated: (controller) {
 _mapController = controller;
 },
),

_mapController is an instance field of the MapPage widget that we will be using to
interact with the map camera.

Platform Views and Map Integration Chapter 11

[349]

Animating a map camera to a location
We have added a row of buttons which the user can press to focus on a specific place. By
tapping on one of these buttons, a new method will be called, _animateMapCameraTo, for
Stonehenge, for example:

RaisedButton(
 child: Text("Stonehenge"),
 onPressed: () {
 _animateMapCameraTo(_stonehengePosition);
 },
),

The new method is responsible for requesting the camera update:

 void _animateMapCameraTo(LatLng position) {
 _mapController.animateCamera(CameraUpdate.newLatLng(position));
 }

As you can see, through the GoogleMapController instance retrieved before, we can
dispatch a camera animation to a new location on the map.

The code for other buttons are very similar. Again, check
hands_on_maps on GitHub for full details of the map integration
example.

Using the Google Places API
From the official website (https:/ / developers. google. com/ places/ web- service/ intro),
we can see the following:

"The Places API is a service that returns information about places using HTTP requests.
Places are defined within this API as establishments, geographic locations, or prominent
points of interest."

This service can be used in several ways to get information about places:

Get a list of places based on a user's location or a search string
Get detailed information about a specific place, including user reviews

https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro

Platform Views and Map Integration Chapter 11

[350]

Access to the millions of place-related photos stored in Google's Place database
Query prediction service for text-based geographic searches, returning suggested
queries as users type, and automatically filling in the name and/or address of a
place as users type

In this section, we will be using the API to get detailed information (that is, the name) of a
place added by the user through our previously created Place marker button.

Enabling the Google Places API
Like the Google Maps SDK, the Places API needs to be enabled on the Google Developer
Console, https:// console. developers. google. com/apis/ library/ places- backend.
googleapis.com:

Check out that you are in the right project and click the ENABLE button. This will make the
Places API available through the same API key used before.

https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com
https://console.developers.google.com/apis/library/places-backend.googleapis.com

Platform Views and Map Integration Chapter 11

[351]

Getting started with the
google_maps_webservice plugin
The google_maps_webservice plugin is a Dart community plugin that offers a client the
Google Places API. With this plugin, we can make calls to the Google web service without
the need to create the requests by ourselves.

The plugin exposes the calls as methods of its GoogleMapsPlaces class. This class offers
methods such as getDetailsByPlaceId, for example, which calls the details endpoint
of the web service and wraps the response in a PlacesDetailsResponse class.

Check the plugin page to learn about all of the available methods of the
web service: https:/ /pub. dartlang. org/packages/ google_ maps_
webservice.

Getting a place address using
the google_maps_webservice plugin
First of all, we need to add the plugin as a dependency in our project's pubspec.yaml file
and get it with the flutter packages get command:

dependencies:
 google_maps_webservice: ^0.0.12

After that, we can start using the plugin. The first thing we need to do is create
a GoogleMapsPlaces class instance so that we have access to the provided methods:

 @override
 void initState() {
 super.initState();

 _googleMapsPlaces = GoogleMapsPlaces(
 apiKey: 'API_KEY',
);
 }

We do this in the initState method so that we can use it right after the map is displayed
to the user. _googleMapsPlaces is a field inside the state of the MapPage widget.

https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice
https://pub.dartlang.org/packages/google_maps_webservice

Platform Views and Map Integration Chapter 11

[352]

Then, we define a method that will query a place name based on a latitude/longitude
pair:

 Future<PlacesSearchResponse> _queryLatLngNearbyPlaces(LatLng position)
async {
 return await _googleMapsPlaces.searchNearbyWithRadius(
 Location(position.latitude, position.longitude),
 1000,
);
 }

The method uses the searchNearbyWithRadius method of the GoogleMapsPlaces class.
This queries on the Google web service for places near a specific location, ranked by their
prominence/importance, with the closest places coming first.

To use the created method, we change our _addMarkerOnCameraCenter function to query
the place's address before adding it to the map:

 void _addMarkerOnCameraCenter() async {
 final places = await _queryLatLngNearbyPlaces(_cameraCenter);
 final firstMatchName =
 places.results.length > 0 ? places.results.first.name : "";

 setState(() {
 _markers.add(Marker(
 markerId: MarkerId("${_markers.length + 1}"),
 infoWindow: InfoWindow(
 title: "Added marker - $firstMatchName"
),
 icon: BitmapDescriptor.defaultMarker,
 position: _cameraCenter,
));
 });
}

As you can see, there are few modifications from the previous version. Here are the
modifications:

The method is now async, as the plugin returns a Future result and we want to
await it
We get the first match of the query (only its address), if any
We add the name information in the InfoWindow title property

Platform Views and Map Integration Chapter 11

[353]

And, after we add a marker to the map, it now contains the name of the location:

There are many more ways to integrate the Google Places API into an application: this was
just a simple one. With this, we finish map integration on Flutter apps. Keep following the
plugin updates as this feature is still evolving with the framework.

Platform Views and Map Integration Chapter 11

[354]

Summary
In this chapter, we have seen the basics of using maps in Flutter with the great
google_maps_flutter plugin. We have seen that it relies on the platform view feature
that enables us to display native views inside the Flutter context. We have seen how we can
create these views by ourselves using the framework structure.

We have seen the available properties of the GoogleMap widget and how to manipulate it
to display markers on it, and move the camera using the GoogleMapController class.

Finally, we used the Google Places API to get information about a location and display it on
the marker using an InfoWindow class.

In the next chapter, we will take a look at Flutter's available tools for advanced app
development.

4
Section 4: Advanced Flutter -
Resources to Complex Apps

Complex and unique apps involve features that the developer needs to understand how to
achieve, such as writing platform-native code and customizing framework resources
according to their needs.

The following chapters are included in this section:

Chapter 12, Testing, Debugging, and Deployment
Chapter 13, Improving User Experience
Chapter 14, Widget Graphic Manipulations
Chapter 15, Animations

12
Testing, Debugging, and

Deployment
Flutter provides great tools to help the developer to reach his/her objectives on the
platform, from test API to IDE tools and plugins. In this chapter, you will learn how to add
tests to create a bug-free app, debug to find and solve specific issues, profile your app
performance to find bottlenecks, and inspect the UI widgets. Also, you will learn how to
prepare the app for deployment on App Store and Google Play.

The following topics will be covered in this chapter:

Testing Flutter widgets
Debugging Flutter apps
Performance profiling of Flutter apps
Inspecting the Flutter widget tree
Preparing app for deployment

Flutter testing – unit and widget testing
Testing mobile apps manually is fundamental as long as we need to add features to an app
continuously. There are multiple ways to test a Flutter app, each one with some level of
benefit involved and they do not differ too much from testing other software applications.

The well-known unit and integration tests are possible with Flutter. Additionally, we can
write widget tests to test widgets in isolation. Let's see how we can write widget and
integration tests to make sure our applications are working correctly.

You can review Chapter 2, Intermediate Dart Programming, Writing unit
tests section, as Flutter unit tests are nothing more than Dart unit tests.

Testing, Debugging, and Deployment Chapter 12

[357]

Widget tests
Widget tests are used to validate widgets in an isolated way. They look very similar to unit
tests but focus on widgets.

The main goal is to check widget interactions and whether widgets look as expected. As
widgets live in the widget tree inside the Flutter context, widget tests require the
framework environment to be executed. That is why Flutter provides tools for writing
widget tests through the flutter_test package.

The flutter_test package
The flutter_test package is shipped with the Flutter SDK, is built on top of the test
package, and provides a set of tools for helping us to write and run widget tests.

As said before, widget tests need to be executed in the widget environment and Flutter
helps with this task with the WidgetTester class. This class encapsulates the logic for us to
build and interact with the widget being tested and the Flutter environment.

We do not need to instantiate this class by ourselves as the framework provides the
testWidgets() function. The testWidgets() function is similar to the Dart test()
function seen before in Chapter 2, Intermediate Dart Programming, Writing unit tests section.
The difference is the Flutter context, this function sets up a WidgetTester instance to
interact with the environment, as mentioned earlier.

The testWidgets function
 This function is the entry point of any widget test in Flutter:

void testWidgets(String description, WidgetTesterCallback callback, { bool
skip: false, Timeout timeout })

We will be checking it in action using a few steps. First, let's check its signature:

description: This helps to document the test; that is, it describes what widget
features are being tested.
callback : This is WidgetTesterCallback. This callback receives a
WidgetTester instance so that we can interact with the widget and make our
validations. This is the body of the test, where we write our test logic.
skip: We can skip the test when running multiple tests by setting this flag.
timeout: This is the maximum time the test callback can run.

Testing, Debugging, and Deployment Chapter 12

[358]

Widget test example
When we generate a Flutter project, we have the flutter_test package dependency
added for us automatically and a sample test is generated in the test/directory. Let's check it
out.

First, in pubspec.yaml, there is the flutter_test package dependency added:

dev_dependencies:
 flutter_test:
 sdk: flutter

Note that the package version is not specified. Also, the origin is
configured as the Flutter SDK.

Then, we can check the basic widget test in the test/widget_test.dart file:

void main() {
 testWidgets('Counter increments smoke test', (WidgetTester tester) async
{
 await tester.pumpWidget(MyApp());
 expect(find.text('0'), findsOneWidget);
 expect(find.text('1'), findsNothing);

 await tester.tap(find.byIcon(Icons.add));
 await tester.pump();

 expect(find.text('0'), findsNothing);
 expect(find.text('1'), findsOneWidget);
 });
}

This sample widget test validates the behavior of the famous Flutter counter app. The test
goes as follows:

The test is defined with a description and the previously
seen WidgetTesterCallback property. Also, note the callback has the async
modifier, like the WidgetTester methods as it returns a Future type.
It all begins with a widget: await tester.pumpWidget(MyApp ()). This
renders the UI from the given widget - MyApp, in this case.
If we need to rebuild the widget at some point, we can use the tester.pump()
method.

Testing, Debugging, and Deployment Chapter 12

[359]

In widget tests, two additional pieces are important and very common, find and
expect():

The Finder class is what allows us to search specific widgets in
the tree. The find constant provides tools (Finders) for us to
search and look upon the widget tree for specific widgets.

Check all available Finders provided by find: https:/ /api.
flutter. dev/ flutter/ flutter_ driver/ CommonFinders- class.
html.

The expect() method is used in conjunction with Matchers to
make assertions on widgets found with the help of Finders.
Matcher helps to validate the found widget characteristic with an
expected value.

Let's analyze the previous widget test assertions:

At the beginning, there is an assertion for the presence of a single widget with the1.
0 text and none with 1:

expect(find.text('0'), findsOneWidget);
expect(find.text('1'), findsNothing);

Then, tap() is executed, followed by a pump() request. The tap occurs on a2.
widget that contains the Icons.add icon:

 await tester.tap(find.byIcon(Icons.add));
 await tester.pump()

The final step is to verify the correct text is shown again. But this time,3.
the findsOneWidget constant is used to verify that only the text, 1, is visible:

expect(find.text('0'), findsNothing);
expect(find.text('1'), findsOneWidget);

https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html
https://api.flutter.dev/flutter/flutter_driver/CommonFinders-class.html

Testing, Debugging, and Deployment Chapter 12

[360]

Like the find constant, multiple Matchers are available; findsNothing
and findsOneWidget are only some of them.

Check all available Matchers in the flutter_test library
documentation: https:/ /api.flutter. dev/ flutter/ flutter_ test/
flutter_ test- library. html.

Debugging Flutter apps
Debugging is an important piece of software development. Small mistakes, strange
behaviors, and complex bugs can be solved with the help of debugging. With this, we can
do the following:

Make logic assertions
Determine needed improvements
Find memory leaks
Make flow analysis

Flutter provides multiple tools to help with this task. As we have seen previously in
Chapter 1, An Introduction to Dart, Dart contains a set of tools to help with the developer's
job.

We are not evaluating a specific IDE for Flutter development and you may guess that
debugging is not possible without it. However, the Dart tooling is also prepared for this.

Observatory
Flutter debugging is based on the Dart Observatory tool. Dart Observatory is present in the
Dart SDK and helps with profiling and debugging Dart applications such as Flutter apps.

https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html

Testing, Debugging, and Deployment Chapter 12

[361]

When a Flutter app is started in debug mode (remember the JIT compilation from Chapter
1, An Introduction to Dart), this tool is automatically run, enabling debugging and profiling
on the app. By using the flutter run command, you will have the address:port part of
the output after the Hot Reload message. This address is the Observatory UI address; we
can access it through many web browsers and this is what it looks like:

There are some web browser with limitations on displaying the
Observatory tool. Please check out the existing issue regarding
this: https:/ /github. com/ dart- lang/ sdk/ issues/ 34107.

It prints different information about the app running, such as the Flutter version, used
memory, class hierarchy, and logs. Also, an important additional tool can be used, the
debug tool:

https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107
https://github.com/dart-lang/sdk/issues/34107

Testing, Debugging, and Deployment Chapter 12

[362]

In this page, as you can see, we have access to all of the debugging functionalities, such as
the following:

Adding and removing breakpoints
Run step by step, line by line
Switch and manage isolates

Check all available Observatory UI functionalities and a full usage tutorial
at https:/ / dart- lang. github. io/ observatory/ get- started. html.

When you use some IDE like Visual Studio Code or Android Studio/IntelliJ, you will not be
using tools such as the Observatory UI directly. IDEs use Dart Observatory under the hood
to expose its functionalities through the IDE interface.

https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html
https://dart-lang.github.io/observatory/get-started.html

Testing, Debugging, and Deployment Chapter 12

[363]

Additional debugging features
Dart provides additional features to help with advanced debugging with variants of the
common tools that can make the debugging process even more useful. These are as follows:

The debugger() statement: Also called programmatic breakpoints, this is where
we can add a breakpoint only if an expected condition is true:

void login(String username, String password) {
 debugger(when: password == null);
 ...
}

In this example, a breakpoint will occur only if the condition in the
when parameter is true, that is, only if the password argument is null. Let's say
this is an unexpected value: pausing the execution at this point may help to see
why it occurs and how to react to it. This is very useful for tracing unexpected
states and logic fails.

debugPrint() and print(): print() is a method to log information into the
flutter log console. When we use the flutter run command, its log output is
redirected to the console and we can see anything that comes from print() and
debugPrint() calls. The only difference between these calls is that
the debugPrint() version avoids log dropping by Android kernel (Flutter logs
are only a wrapper to adb logcat).

You can read more about Flutter logs at https:/ /flutter. dev/ docs/
testing/ debugging#print- and- debugprint- with- flutter- logs.

asserts: assert() is used to break app execution when a condition is not
satisfied. It is similar to the debugger() method, but instead of pausing
execution, it interrupts the execution by throwing AssertionError.

DevTools
Dart DevTools is defined in the documentation as follows:

"A suite of performance tools for Dart and Flutter."

https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs
https://flutter.dev/docs/testing/debugging#print-and-debugprint-with-flutter-logs

Testing, Debugging, and Deployment Chapter 12

[364]

This is intended to be the next version of the Observatory tools. IDEs are already
integrating this suite in their internals, and it is similar to Observatory, as you can see:

As you can see, it has some tools that can help with performance analysis of Flutter
applications, just like Observatory. You can enable/install it by running the following
command in a terminal:

pub global activate devtools

Or, you can run the following:

flutter packages pub global activate devtools

After that, we can run the tool with this command:

pub global run devtools

Or, we can use the following:

flutter packages pub global run devtools

Testing, Debugging, and Deployment Chapter 12

[365]

Access the displayed page in a web browser, and you will have something similar to the
following screenshot:

As you can see, we need to provide the port of the running app (the Observatory port, like
before) for the DevTool to be able to inspect the application measurements.

Check the DevTools documentation page for details on installation steps
for different operating systems and IDEs: https:/ /flutter. github. io/
devtools/ .
Also note that, at the time of writing this book, the DevTools suite is still
in release preview and may change by the time you read this.

Profiling Flutter apps
Flutter aims to provide high-performance apps with high frame rate and smoothness. Like
debugging that can help to find bugs and more, profiling is another useful tool that may
help developers to find bottlenecks in an application, prevent memory leaks, or improve
app performance.

The Observatory tool is, again, the bridge that allows us to inspect Flutter app performance.
Like the debugger, this section of the tool is also wrapped into IDEs when we use them.

The Observatory profiler
As previously seen, Observatory exposes multiple tools to the developer to measure app
performance and prevent any possible problems related to it. This is done with the
exposition of multiple metrics, as you can see:

https://flutter.github.io/devtools/
https://flutter.github.io/devtools/
https://flutter.github.io/devtools/
https://flutter.github.io/devtools/
https://flutter.github.io/devtools/
https://flutter.github.io/devtools/
https://flutter.github.io/devtools/
https://flutter.github.io/devtools/
https://flutter.github.io/devtools/
https://flutter.github.io/devtools/
https://flutter.github.io/devtools/

Testing, Debugging, and Deployment Chapter 12

[366]

Memory, CPU usage, and other information are available through the monitor so that we
can evaluate different aspects of the application.

Profile mode
When we execute our Flutter application in default debug mode with the flutter run
command, we cannot expect the same performance as the release mode. As we already
know, Flutter executes in debug mode using the JIT Dart compiler as the app runs, unlike
the release and profile modes, where the app code is pre-compiled using the AOT Dart
compiler.

To make performance evaluations, we need to make sure the app is running at its
maximum capability; that's why Flutter provides different execution methods: debug,
profile, and release.

In profile mode, the application is compiled in a very similar way to release mode, and this
is clearly understandable, as we need to know how the app will perform in real scenarios.
The only overhead added to the app is the required ones to make the profiling enabled
(that is, the Observatory can connect to the application process).

Another important aspect of profiling is the necessity of a physical device. Simulators and
emulators do not reflect the real performance of real devices. As the hardware is different,
app metrics can be influenced and the analysis might be correct.

Testing, Debugging, and Deployment Chapter 12

[367]

To run an app in profile mode, we should add the --profile flag to the run command
(remember, it's only available on real devices):

flutter run --profile

Running in this mode, we have all of the needed information to inspect the app's
performance in general. Another useful tool the profile mode enables is the performance
overlay.

IDEs also offer profile mode through their particular interfaces, so when
you see this mode in the chosen IDE, you know what it means.

Performance overlay
The performance overlay is visual feedback displayed in the app. It provides multiple
helpful performance statics. Specifically, it displays information about rendering time. Here
is an example of performance overlay being displayed:

Performance overlay (This is an image of Performance overlay. The other (overlapped) information is not important here.)

Testing, Debugging, and Deployment Chapter 12

[368]

Two graphs are displayed representing the time to render frames taken by the two
threads, UI and GPU. The current frame is displayed in a vertical green bar. Additionally,
we can see the last 300 frames and have an idea about critical rendering stages.

Flutter uses multiple threads to do its job. UI and GPU contain the display work of the
framework, and that's why both are shown in the performance overlay. The UI thread is
where our Dart code is executed, where logic and widget description building occurs,
where the framework creates a layer tree for the GPU thread to work, where the graphics
are brought to life, and where the Skia graphics library runs.

Additionally, to those threads, Flutter also contains the Platform thread, where the plugin
code runs, and the I/O thread, where expensive I/O tasks are run. Both threads do not
appear on the platform overlay.

You can check some of the possible improvements that performance
overlay can help with at https:/ /flutter. dev/docs/ testing/ ui-
performance#the- performance- overlay.

Inspecting the Flutter widget tree
With debugging and profiling, we can discover and resolve many issues and performance
problems before they occur in production. Added to that, we can measure an app's cost of
execution progressively during development.

Both tools do the job of offering metrics to us and, with that, we can inspect pieces of
code carefully, but how about the layout? We can, for sure, measure performance frame by
frame based on time of rendering our widget tree, as we have seen before with the help of
performance overlay. But how about checking whether our tree is taking more space than
needed—that is, has more widgets than needed—or whether a widget is being created at
the right time/level.

The Flutter inspector can help with this task. Again, with the great DevTools, we can access
this functionality.

https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay
https://flutter.dev/docs/testing/ui-performance#the-performance-overlay

Testing, Debugging, and Deployment Chapter 12

[369]

Widget inspector
The widget inspector is another of the great suite of tools that may help the developer with
optimization tasks. This tool provides a detailed visualization of the widget tree.

The Flutter inspector in DevTools
On supported IDEs, the plugin already offers ways to access the widget inspector, using the
Flutter widget inspector tool under the hood. It is also accessible in the DevTools suite:

As you can see, the widget tree is presented and we can access all details about widgets. For
web developers, this will look very similar to element explorer in web developer tools, like
the one in Chrome, for instance.

Like profiler and debugger tools, exploring the widget tree in details can be extremely
helpful to find out layout issues that would be difficult without visualization of the tree.

Also, looking at the previous screenshot, we had a small hint to turn on tracking widget
creation. When we skip this flag, the tool will show a deeper tree than we might expect; this
is why it exposes intermediate widgets besides the ones that we define in our application.
When we enable it, the tree will look much simpler:

Testing, Debugging, and Deployment Chapter 12

[370]

With this, we have a tree that looks much more like the one defined in our code, making it
easier to track issues. Also, we have widget property details that also assist in finding small
layout problems.

Preparing apps for deployment
Flutter aims to offer the best possible resources for the developer to work, and so, things
such as different builds for development, profiling, and releasing makes sense.

When preparing an app for release, things such as on-the-fly compiling provided by Dart
JIT does not make sense; instead, the best thing is to have a smaller, optimized, and
performant app provided by the Dart AOT compiler.

Releasing an app on Google Play Store and App Store requires valid publisher accounts. So,
refer to the documentation of both platforms to know how to publish to stores after
creating a release version of your app.

Google has a one-time $25 registration fee, which you need to pay before you can upload an
app. You can sign in at https:/ /play. google. com/ apps/ publish/ signup/ .

App Store has a $99 membership fee per year. You can find details and sign in at https:/ /
developer.apple. com/ support/ compare- memberships/ .

https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/

Testing, Debugging, and Deployment Chapter 12

[371]

Release mode
In release mode, debugging information is stripped out from the app and the compilation is
realized with performance in mind. Remember, in release mode, like the profile, the
application can only be run on physical devices, for the same reasons too.

To compile in release mode, we just need to add the --release flag to the flutter run
command and have a physical device connected. Although we can do so, we typically do
not use the flutter run command with the --release flag. Instead, we use this flag
with the flutter build command to have a built app file in the target Android/iOS
formats for distribution.

Releasing apps for Android
In Android, .apk is the format expected to be published in the Google Play Store. When we
run the flutter build apk or flutter build appbundle commands, we generate the
file ready for deployment.

The Android app bundle format is also supported partially at the time of
writing this book.

Before we generate the file for deployment and publishing in any store, we need to make
sure all of the information is correct (that is, the name and package), all needed assets are
provided and make all platform-specific adjustments.

Let's start by preparing our Favors app for release on Google Play so that we can review all
of the final steps to publishing a Flutter app.

AndroidManifest and build.gradle
In Android, the meta information about the app is provided in
both the AndroidManifest.xml and build.gradle files, so we need to review and
make some adjustments in both.

Testing, Debugging, and Deployment Chapter 12

[372]

Also, remember to configure the project properly in the Firebase console and add
the google-services.json file to the project (you can use the same generated for
Chapter 8, Firebase Plugins).

AndroidManifest – permissions
One important step we need to do is to review the permissions requested in the
AndroidManifest.xml file. Asking only for the permissions you need is a good and
recommended practice, as your app may be analyzed and your publication may be revoked
if you request more permissions than required.

In our Favors app, this is what the manifest permissions look like:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.handson">

 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <uses-permission android:name="android.permission.WRITE_CONTACTS"/>
 <uses-permission android:name="android.permission.CAMERA" />
 <uses-feature
 android:name="android.hardware.camera"
 android:required="false" />
 ...
</manifest>

Besides permissions, there is also the uses-feature tag (see Chapter 10, Accessing Device
Features from the Flutter App), which can limit installation on devices with a specific feature
available (this is not our case), so it's important to review it too.

The android.permission.INTERNET permission is used by the Flutter framework with
the Observatory tool, so, if your application works offline, you can remove this during
release builds (this is not our case, as we use Firebase technologies).

AndroidManifest – meta tags
Another very important step is to review the meta tags added to the app for working with
services such as AdMob or Google Maps. In our Favors app, AdMob was the only key
added, so we can review the value to make sure the service will work with the correct key
as well:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.handson">
 ...
 <application>

Testing, Debugging, and Deployment Chapter 12

[373]

 ...
 <meta-data
 android:name="com.google.android.gms.ads.APPLICATION_ID"
 android:value="ADMOB-KEY"/>
 </application>
</manifest>

Remember, in AdMob, we can use test keys during development so that our tests are not
evaluated as misuse of the API.

AndroidManifest – application name and icon
Until now, in our tests, when we launch the application, you can see the app icon is a
Flutter logo. For release, we need to swap it with our awesome unique icon to make sure
our users distinguish our app among millions.

The icon and name are defined in the manifest application tag. By default, the icon refers
to the default Flutter icon, as you can see:

<manifest ...>
 ...
 <application
 android:name="io.flutter.app.FlutterApplication"
 android:label="Hands On: Favors app"
 android:icon="@mipmap/ic_launcher">

</manifest>

So, we make two changes in this tag:

We change the label value to the final name of our app, the name by which our
users will recognize our app.
We can also switch the app icon (replacing the default Flutter logo) with the icon
value:

In Android, image resources such as the icon, are located in
the android/app/src/main/res/ directory. Under this
directory, there are many folders with variants of a resource, for
specific regions, screen sizes, system versions, and so on.

The icon for the Favors app was generated in the Android Asset Studio
tool. It helps us to follow Android guidelines and generate multiple icon
variants: https:/ /romannurik. github. io/AndroidAssetStudio/ index.
html.

https://romannurik.github.io/AndroidAssetStudio/index.html
https://romannurik.github.io/AndroidAssetStudio/index.html
https://romannurik.github.io/AndroidAssetStudio/index.html
https://romannurik.github.io/AndroidAssetStudio/index.html
https://romannurik.github.io/AndroidAssetStudio/index.html
https://romannurik.github.io/AndroidAssetStudio/index.html
https://romannurik.github.io/AndroidAssetStudio/index.html
https://romannurik.github.io/AndroidAssetStudio/index.html
https://romannurik.github.io/AndroidAssetStudio/index.html
https://romannurik.github.io/AndroidAssetStudio/index.html
https://romannurik.github.io/AndroidAssetStudio/index.html
https://romannurik.github.io/AndroidAssetStudio/index.html
https://romannurik.github.io/AndroidAssetStudio/index.html
https://romannurik.github.io/AndroidAssetStudio/index.html

Testing, Debugging, and Deployment Chapter 12

[374]

We need to replace the ic_launcher.png file in each of the
mipmap-xxxdpi folders to make a full replacement of the app
icon.

Check the Material Design guidelines on icons to make sure you create
an awesome icon for your app: https:/ /material. io/ design/
iconography/ .

After changing the name and replacing the icon, we can review the build.gradle file to
make the final adjustments for the deployment.

build.gradle – application ID and versions
The application ID value is what makes an app unique in Play Store and the Android
system. A good practice is to use the organization domain as the package and have the app
name following it. In our case, we are using com.example.handson as the application ID.
Make sure to review this value, as it cannot be changed after you upload the app to the
store.

You can find this code in the android/app/build.gradle file, inside the
defaultConfig section:

defaultConfig {
 applicationId "com.example.handson"
 minSdkVersion 16
 targetSdkVersion 28
 multiDexEnabled true
 versionCode flutterVersionCode.toInteger()
 versionName flutterVersionName
 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

As you can see, we can change more settings than just changing applicationId. In
Flutter, SDK versions are typically changed in two cases:

If the framework requirements change
If we use some library that requires a higher minimum SDK version

We can, for sure, change it to our own required value if we want, but
make sure to follow the framework requirements.

https://material.io/design/iconography/
https://material.io/design/iconography/
https://material.io/design/iconography/
https://material.io/design/iconography/
https://material.io/design/iconography/
https://material.io/design/iconography/
https://material.io/design/iconography/
https://material.io/design/iconography/
https://material.io/design/iconography/
https://material.io/design/iconography/
https://material.io/design/iconography/

Testing, Debugging, and Deployment Chapter 12

[375]

build.gradle – signing the app
The signing step is the final but most important step before releasing an app to the public,
even if you do not want to publish in the Google Play Store. It is the signing that confirms
the ownership of the application—briefly, whoever has the signature owns the app. You
need this so you can publish updates to your app, for example.

Start by taking a look at the buildTypes section of the build.gradle file:

buildTypes {
 release {
 signingConfig signingConfigs.debug
 }
}

It contains the signingConfig property, pointing to a default signing configuration. We
need to change this to our own signing configuration for the reasons mentioned before. We
do this by performing these steps:

We generate our developer keystore file (you can use the same keystore for1.
multiple apps). This is done with the following command:

keytool -genkey -v -keystore DESTINATION_FILEPATH -keyalg RSA -
keysize 2048 -validity 10000 -alias key

Follow the prompts and this will generate keystore in
the DESTINATION_FILEPATH path, for example, <your users dir/my-
release-key.keystore>. You should reference this file in the
build.gradle file now.

Create an android/key.properties file with the following content:2.

storePassword=<password used for generating key>
keyPassword=<password used for generating key>
keyAlias=key
storeFile=key store file path(i.e. </your users dir/my-release-
key.keystore>)

Then, in build.gradle, we load this new key.properties file and create a3.
new signingConfig class for it:

def keystoreProperties = new Properties()
def keystorePropertiesFile = rootProject.file('key.properties')
if (keystorePropertiesFile.exists()) {
 keystoreProperties.load(new
FileInputStream(keystorePropertiesFile))

Testing, Debugging, and Deployment Chapter 12

[376]

}

android{
 ...

 signingConfigs {
 release {
 keyAlias keystoreProperties['keyAlias']
 keyPassword keystoreProperties['keyPassword']
 storeFile file(keystoreProperties['storeFile'])
 storePassword keystoreProperties['storePassword']
 }
 }
}

Just add the snippet before the android section and then, declare the signing4.
configuration in the signingConfigs subsection. Finally, replace the
signingConfig property in the release option in the previous buildTypes
section with the new one:

android {
 ...
 buildTypes {
 release {
 signingConfig signingConfigs.release
 }
 }
}

Now, when we use the flutter build apk or flutter run --release commands, the
app will be signed with our own key.

After making these adjustments, we are ready to build and distribute our app. Just a final
step: check the app versionCode and versionName values; they get filled automatically
from the pubspec.yaml file. So, reviewing this file may be important too.

After building a .apk with the flutter build apk command, we can install it on a
connected physical device with the flutter install command. Also, the file to be
published in the Play Store is available at: build/app/outputs/apk/app.apk.

You can also work on minification and obfuscation of the code to improve
the app size and protect against reverse engineering: https:/ / github.
com/flutter/ flutter/ wiki/Obfuscating- Dart- Code.

https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code
https://github.com/flutter/flutter/wiki/Obfuscating-Dart-Code

Testing, Debugging, and Deployment Chapter 12

[377]

Releasing apps for iOS
Releasing apps in iOS can be more complex when compared to Android. Although you can
test on your own device when developing, making an app public requires you to have a
valid Apple Developer account with the ability to publish on App Store, as it's the only
supported app publishing channel.

Like Android, first, we need to review some information about the app in the Xcode project
settings, like we did in AndroidManifest.xml. And after that, we will be able to create an
app archive ready for publishing on the App Store.

Also, check the presence of the GoogleService-Info.plist file in the ios/Runner
directory (see Chapter 8, Firebase Plugins, to remember how to import it inside Xcode).

App Store Connect
In Android, we do not need to configure anything in the Play Store Console before we have
the apk ready for publishing. After we have it, we can create a registry on the Play Console;
fill the description, details, and marketing settings; then, we upload our apk file and
publish.

Remember, you need to be enrolled in a developer program to be able to
publish on the App Store. (This also applies to register an app on App
Store Connect). Also, check the official guide for more
information: https:/ /help. apple. com/ app- store- connect/ #/
dev2cd126805.

In iOS, the process is different. The upload and publishing are managed inside Xcode, so to
upload the app, we first create a record on the App Store Connect, fill descriptions, and
then, on Xcode, we build and upload our iOS app. To register the app, perform these steps:

Every iOS application is associated with a Bundle ID, a unique identifier1.
registered to Apple. First, we create a record in App IDs
(https://idmsa.apple.com/IDMSWebAuth/signin?appIdKey=
891bd3417a7776362562d2197f89480a8547b108fd934911bcbea0110d07f757&path=

%2Faccount%2Fresources%2F&rv=1), filling the Bundle ID, which is the iOS
equivalent to Android's applicationId.
Then, we create an app in the App Store Connect portal, selecting the Bundle ID2.
we registered in the previous step. (For our Favors app, it's almost the same
value as Android's applicationId).

After realizing these steps in App Store Connect, we finish the process in Xcode.

https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/app-store-connect/#/dev2cd126805
https://idmsa.apple.com/IDMSWebAuth/signin?appIdKey=891bd3417a7776362562d2197f89480a8547b108fd934911bcbea0110d07f757&path=%2Faccount%2Fresources%2F&rv=1
https://idmsa.apple.com/IDMSWebAuth/signin?appIdKey=891bd3417a7776362562d2197f89480a8547b108fd934911bcbea0110d07f757&path=%2Faccount%2Fresources%2F&rv=1
https://idmsa.apple.com/IDMSWebAuth/signin?appIdKey=891bd3417a7776362562d2197f89480a8547b108fd934911bcbea0110d07f757&path=%2Faccount%2Fresources%2F&rv=1

Testing, Debugging, and Deployment Chapter 12

[378]

Xcode
In Xcode, we need to make some changes to make the app ready for deployment. We need
to change the application icon, public name, and Bundle ID. This is very similar to what we
did in Android.

Xcode – application details and Bundle ID
In the General tab of the Runner project, we can edit the application Display Name, which
is the name of our app. We similarly set the Android name Hands On: Favors app and
set the Bundle ID to com.biessek.handson.favorsapp.

Note also the Version and Build values; they are similar to version name and version code in
Android respectively. For each upload to App Store, be it Store or TestFlight, we need to
increase the version value in the pubspec.yaml file.

In the Deployment Target, we can set the minimum required iOS version, 8.0, by
default—the minimum version Flutter supports.

Xcode – AdMob
Unlike the configuration in the AndroidManifest.xml file, we do not need to update our
AdMob ID in iOS. In this case, the ID value is retrieved from the one passed to the
FirebaseAdMob SDK initialization in Dart itself:

 FirebaseAdMob.instance.initialize(
 appId: 'YOUR_ADMOB_APP_ID'
);

Xcode – signing the app
Like on Android, we need a way to assert the ownership of the application. Xcode manages
it for us; we do not need to touch any file directly. When we register as an Apple Developer
and enroll in the Apple Developer Program, we have all of this ready.

After these settings, we can build an iOS version of the app as we did for Android, with
the flutter build ios command. Then, we need one last step in Xcode to release our
app:

In Xcode, select Product | Archive to produce a build archive.1.
Then, select the build archive you just produced with the flutter build ios2.
command.

Testing, Debugging, and Deployment Chapter 12

[379]

Click the Validate… button. If any issues are reported, address them and3.
produce another build.
After the archive has been successfully validated, click Upload to App Store…..4.

After that, we have an iOS app ready for publishing. We can either publish it on
TestFlight (a private test app with trusted users) or in the App Store.

Read the official documentation to know which one to choose: https:/ /
help. apple. com/ Xcode/ mac/current/ #/dev442d7f2ca.

Summary
In this chapter, we saw an introduction to Flutter widget tests. We saw how they can be
used to test widgets individually and how they are structured with the WidgetTester
class in the testWidgets function.

We also saw how we can use Flutter tools to explore application performance in detail, and
the available tools to inspect memory and CPU usage such as the Observatory UI and
performance overlay. Then, we saw the evolution of tools with the brand new DevTools
suite.

Finally, we explored the steps to make our app ready for deployment by checking
information and details, changing the app icon visible to the user, and performing
platform-specific steps to build an app ready for publishing.

In the next chapter, we will review some important subjects related to native code with
platform channels and check how to make your app ready for internationalization.

https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca

13
Improving User Experience

If you want your application to reach a high level, you need to keep it open to continuous
interaction with user context, even though it is not currently running. In addition,
developing an internationalized and fully accessible app allows it to grow progressively. In
this chapter, you'll learn how to create processes executed in the background, translate your
app into the target language, and add accessibility features that improve the usability of the
app.

The following topics will be covered in this chapter:

Accessibility in Flutter
Adding translations to apps
Communication between native and Flutter with platform channels
Creating background processes
Adding Android-specific code to run Dart code in the background
Adding iOS-specific code to run Dart code in the background

Accessibility in Flutter and adding
translations to apps
Adding internationalization to a mobile application contributes to growth in the market,
reaching a larger proportion of the public. In the same way, making an app accessible is an
important step to reach as many people as possible and providing a better user experience.
Flutter provides ways to make apps more accessible with components focused on users
with some form of disability.

Improving User Experience Chapter 13

[381]

Flutter's support for accessibility
Implementing accessibility correctly in mobile apps enhances the user experience, and
helps to increase the number of installs while decreasing the number of uninstalls. Flutter
has components to provide accessibility support:

Contrast: Flutter exposes tools so the developer can colorize widgets
appropriately with sufficient contrast.

Check the W3C recommended contrast specifications: https:/ /www. w3.
org/TR/ UNDERSTANDING- WCAG20/ visual- audio- contrast- contrast. html.

Large fonts: In Flutter, text widgets respect this OS setting when determining
font sizes. They are scaled up if the user desires it.

In Android and iOS, we can enable large fonts through accessibility
settings in the OS configurations.

Screen readers: TalkBack in Android and VoiceOver in iOS enable visually
impaired users to get spoken feedback about the contents of the screen.

Flutter provides the Semantics widget for the developer to allow the
description of the meaning of the widgets so that screen readers can work
properly. Check out the widget documentation: https:/ /api. flutter.
dev/flutter/ widgets/ Semantics- class. html.

Flutter internationalization
Flutter provides widgets and classes that help with internationalization and the Flutter
libraries themselves are internationalized. This is done with the help of three packages,
intl, intl_translation, and flutter_localizations. Let's check out these packages
and examine how they help with the internationalization task.

https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/widgets/Semantics-class.html

Improving User Experience Chapter 13

[382]

The intl package
The Dart intl package is the basis of translations in Dart, as stated on its page on pub:

"This package provides internationalization and localization facilities, including message
translation, plurals and genders, date/number formatting and parsing, and bidirectional
text."

With this package, we have mechanisms to load translations from .arb files. This format is
also supported by the Google Translators Toolkit. Each .arb file contains a single JSON
table that maps from resource IDs to localized values.

The intl_translation package
The intl_translation package is based on intl. It is needed only in the development
phase and contains a tool to generate and parse translations from/to .arb files. With this
package, we can translate our messages in the .arb format and then import them into Dart
for using with the intl package.

The flutter_localizations package
The flutter_localizations package provides a set of 52 languages (at the time of
writing this book) to be used with Flutter widgets. By default, Flutter widgets are only
provided with English US localizations, so, to support other languages, the
flutter_localizations package can be used.

Adding localizations to a Flutter app
Localization in Flutter is, like any other thing, a widget. We're going to use the
flutter_localizations package to set up translations of a simple app that displays a
single message, Hello Flutter. We are going to support English, Spanish, and Italian.

Improving User Experience Chapter 13

[383]

Dependencies
The first step is to add localization dependencies to the pubspec.yaml file and fetch them
with the flutter packages get command:

dependencies:
 ...
 flutter_localizations:
 sdk: flutter
dev_dependencies:
 intl_translation: ^0.17.3
...

As mentioned before, the first one is the additional Flutter localization package to use its
built-in widgets, and the second gives us the tools to generate Dart code with the messages
from .arb files.

The AppLocalization class
The next step is to create a class that encapsulates the app's localized values.
The AppLocalizations class, for example, would be very similar in all apps, except the
string resources involved. This is what it looks like:

// part of app_localization.dart
import 'l10n/messages_all.dart';

class AppLocalizations {
 static Future<AppLocalizations> load(Locale locale) {
 final String name =
 locale.countryCode == null ? locale.languageCode :
locale.toString();
 final String localeName = Intl.canonicalizedLocale(name);

 return initializeMessages(localeName).then((bool _) {
 Intl.defaultLocale = localeName;
 return new AppLocalizations();
 });
 }

 static AppLocalizations of(BuildContext context) {
 return Localizations.of<AppLocalizations>(context, AppLocalizations);
 }

 String get title {
 return Intl.message(
 'Hello Flutter',

Improving User Experience Chapter 13

[384]

 name: 'title',
 desc: 'The application title'
);
 }

 String get hello {
 return Intl.message('Hello', name: 'hello');
 }
}

AppLocalizations is used to encapsulates the resources. It can be broken down into four
main pieces:

The load function: This will load the string resources from the desired Locale,
as you can see in the parameter.
The of function: This will be a helper like for any other InheritedWidget, to
facilitate access to any string from any part of the app code.
get functions: These will list the available resources translated into our app.
Note the Intl.message wrapper in the return; that will make the intl tool look
up this class and populate the initializeMessages for us with the
translations.
initializeMessages: This method will be generated by the intl tool. Note
the import "l10n/messages_all.dart" file that will be generated in the next
steps contains the method that effectively loads the translated messages.

In addition to this class, we need to create another class responsible for providing the
AppLocalizations resources to the app. This is what it looks like:

class AppLocalizationsDelegate extends
LocalizationsDelegate<AppLocalizations> {
 const AppLocalizationsDelegate();

 @override
 bool isSupported(Locale locale) {
 return ['en', 'es', 'it'].contains(locale.languageCode);
 }

 @override
 Future<AppLocalizations> load(Locale locale) {
 return AppLocalizations.load(locale);
 }

 @override
 bool shouldReload(LocalizationsDelegate<AppLocalizations> old) {
 return false;

Improving User Experience Chapter 13

[385]

 }
}

It also can be broken down into three main pieces:

The load function: Here is the information from the documentation:

"The load method must return an object that contains a collection of related
resources (typically defined with one method per resource)."

We return our AppLocalizations.load class.

isSupported: As the name suggests, it returns true if the app has support
for receivedlocale.
shouldReload: Basically, if this method returns true, then all of the app
widgets will be rebuilt after the loading of resources. You will typically want to
return true if your app changes Locale dynamically.

Generating .arb files with intl_translation
After defining these classes, we need to create our message translations. As you can see in
the AppLocalizations class, there are only two string resources to be translated: title and
hello. As said before, the translation process is done with .arb files. So, we must define
.arb files for each of the supported languages (English, Spanish, and Italian, in our case),
and those files must contain the string resources translated into the target language.

Creating each of these files can be tedious, so we can use the intl_translation tool to
generate those files. First, we create a directory to store the new files—lib/l10n, in this
example. Then, we generate the .arb files with the following command:

flutter pub pub run intl_translation:extract_to_arb --output-dir=lib/l10n
lib/app_localization.dart

The last parameter refers to the file containing the app localization
class—lib/app_localization.dart, in our case.

Improving User Experience Chapter 13

[386]

This command will generate a file called the intl_messages.arb file in lib/i10n, and
this file serves as a template for our translations:

{
 "@@last_modified": "2019-04-22T21:32:20.153408",
 "title": "Hello world App",
 "@title": {
 "description": "The application title",
 "type": "text",
 "placeholders": {}
 },
 "hello": "Hello",
 "@hello": {
 "type": "text",
 "placeholders": {}
 }
}

We can create the desired translations based on this file by copying it, renaming
it intl_<language_code> files, and translating the required resources:

Check out the GitHub for the source code of all of the files and a full
example.

After that, with everything translated, we need to make it ready for use in our application.
The process is the inverse of generating .arb files:

flutter pub pub run intl_translation:generate_from_arb --output-
dir=lib/l10n lib/app_localization.dart lib/l10n/intl_en.arb
lib/l10n/intl_es.arb lib/l10n/intl_it.arb

Now we have the generated Dart code containing the translated resources. We will not
touch this code directly when we need to add resources; we make it into the
app_localization.dart and .arb files.

Improving User Experience Chapter 13

[387]

Remember, the AppLocalization class uses initializeMessages from
the messages_all.dart file. Now, it's ready to provide localized resources to the app.

Using translated resources
With all files generated and all resources translated and ready for use, we now need to
properly use them in the application. To do this, we need to set a few properties of the
MaterialApp class. This is what our app class looks like:

class MyApp extends StatelessWidget {
 // This widget is the root of your application.
 @override
 Widget build(BuildContext context) {
 return new MaterialApp(
 localizationsDelegates: [
 AppLocalizationsDelegate(),
 GlobalMaterialLocalizations.delegate,
 GlobalWidgetsLocalizations.delegate
],
 supportedLocales: [Locale("en"), Locale("es"), Locale("it")],
 onGenerateTitle: (BuildContext context) =>
 AppLocalizations.of(context).title,
 theme: new ThemeData(
 primarySwatch: Colors.blue,
),
 home: new MyHomePage(),
);
 }
}

We need to set the localizationsDelegates and supportedLocales properties. You
repeat supportedLocales of your delegates and set the localizationDelegates array
with AppLocalizationsDelegate, plus GlobalDelegates from
the flutter_localizations package.

From the documentation, note the following:

"The elements of the localizationsDelegates list are factories that produce collections of
localized values. GlobalMaterialLocalizations.delegate provides localized strings and other
values for the Material Components library. GlobalWidgetsLocalizations.delegate defines
the default text direction, either left to right or right to left, for the widgets library."

So, both GlobalWidgetsLocalizations and GlobalMaterialLocalizations are
likely mandatory if we want to make our app completely localized.

Improving User Experience Chapter 13

[388]

This step loads our resources into our app. Now, to effectively use them, we make use of
the of method in our AppLocalizations class:

class MyHomePage extends StatelessWidget {
 MyHomePage({Key key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text(AppLocalizations.of(context).title),
),
 body: Center(
 child: Text(
 AppLocalizations.of(context).hello,
 style: Theme.of(context).textTheme.display1,
),
),
);
 }
}

With this method, we have access to our instance and all of the gets of resources we
defined before. That's all to make the app localized, as you can see we get different
messages for different device locales:

Improving User Experience Chapter 13

[389]

Now that we have finished with Flutter internationalization, let's move onto
communication between native code and Flutter.

Communication between native and Flutter
with platform channels
Flutter has been gaining more and more adopters since 2018 with the release of its first
stable version. One of the strongest reasons for this adoption is the facilities provided to
develop a beautiful, dynamic, and smooth UI. However, that's not all a mobile application
may need; it also has a function to perform and we need to deal with the different host
platform's APIs, as many features depend on it, such as the following:

Bluetooth, camera, sensors, and location
User permissions
Notifications
Storing files and preferences
Sharing information with other apps

The interchange between the Flutter world and platform needs to be as imperceptible as
possible so that the developer does not feel discouraged in using the framework.

Until now, we have used some plugins to implement features that depend on an
underlying platform implementation to execute. Plugins, and even the application
itself, may need to communicate somehow with the platform code for all of this to work.
All of this is managed by the Flutter engine, so to communicate our Flutter apps code with
native Swift/Objective-C and Kotlin/Java code, we will be dealing with platform channels.

In Chapter 9, Developing Your Own Flutter Plugin, when we saw how to develop our own
Flutter plugin, we had an introduction to method channels. Method channels are, by
definition, a specialization of a Flutter platform channel. So, let's see in detail how all of this
works and review method channels as a basis for the few next sections.

Improving User Experience Chapter 13

[390]

Platform channel
Flutter apps are hosted in a typical native app, that is, when you run a Flutter app, there is
a native iOS or Android app running with UI delegations to Flutter. As you already know,
Flutter renders all of the UI by itself, and for this to work, the Flutter native layer has all of
the code needed to set up an Android View or iOS UIViewController in which the
framework can work.

Some mobile frameworks rely on code generation to make a conversion from some generic
top-level language into the native ones, where you almost always write code only in the
framework-specific language that later gets converted into native (Kotlin/Java and
Swift/Objective-C). This makes it hard for the framework to keep its API as up-to-date as
the hosts' platforms, and as Flutter intends to be present in many platforms, it would be
even harder for it to accomplish this and evolve at the same time.

To supply this need, Flutter relies on a flexible message passing style, called a platform
channel. Let's review its structure:

Improving User Experience Chapter 13

[391]

This is the Flutter platform channel architecture view. The official website is: https:/ /
flutter.dev/docs/ development/ platform- integration/ platform- channels.

As illustrated in this diagram, MethodChannels are used to send/receive messages. The
diagram demonstrates how the platform channels work in general:

The Flutter app sends messages to the host/native (iOS or Android) portion of
the app over a platform channel.
The host/native portion of the app listens on the platform channel, receives a
message, and processes it through its own implementation, using the system-
provided APIs and, finally, sends back a result to the calling Flutter portion of
the app.

Like plugins, PlatformViews, seen previously in Chapter 11, Platform
Views and Map Integration, also relies on the platform channel mechanism
to exchange data.

Message codecs
As we have seen so far, the MethodChannel is the main example and most commonly used
platform channel because it abstracts many of the complexities of translating data from
Dart into native programming languages and vice versa.

There are also other ways of communicating between native and Flutter,
such as BasicMessageChannel. Check out the official tutorial on
platform channels for more details: https:/ / flutter. dev/ docs/
development/ platform- integration/ platform- channels.

This is made possible with the usage of Flutter standard message codecs. Message codecs
are responsible for the task of translating data from one language into another. There is a
variety of message codes available and we can, if necessary, create our own. They are as
follows:

BinaryCodec: These are unencoded binary messages represented
using ByteData. On Android, messages will be represented using
java.nio.ByteBuffer. On iOS, messages will be represented using NSData.
JSONMessageCodec: These are UTF-8 encoded JSON messages. On Android,
messages are decoded using the org.json library. On iOS, messages are
decoded using the NSJSONSerialization library.

https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels

Improving User Experience Chapter 13

[392]

StringCodec: These are UTF-8 encoded String messages. On Android, messages
will be represented using java.util.String. On iOS, messages will be
represented using NSString.
StandardMessageCodec: This uses the Flutter standard binary
encoding. Decoded values will use List<dynamic> and Map<dynamic,
dynamic>, irrespective of content. The message values get translated from Dart
types into Android/iOS types.

Check out the official documentation on the StandardMessageCodec
class to see how values are mapped from Dart to native and vice
versa: https:/ / api. flutter. dev/ flutter/ services/
StandardMessageCodec- class. html.

MethodChannels uses the Flutter-provided StandardMessageCodec under the hood, by
default, to perform the serialization/deserialization of data when we send/receive messages
with it.

Creating background processes
In Chapter 2, Intermediate Dart Programming, we saw the Dart approach to concurrent
programming: isolates. With this, we can create independent workers that are similar to
threads, but do not share memory and communicate with each other only via messages.

In mobile application context, we need to care about concurrency as well. As long
operations may cause lag on rendering and so on, Flutter provides an easy way to spawn
an isolate, the compute() function.

The Flutter compute() function
The compute() method is intended to be a facilitator for the task of spawning a new
isolate, sending a message to it, and getting a response back. Its signature goes as follows:

Future<R> compute <Q, R>(ComputeCallback<Q, R> callback, Q message, {
String debugLabel })

https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html
https://api.flutter.dev/flutter/services/StandardMessageCodec-class.html

Improving User Experience Chapter 13

[393]

A few parameters describe the request to the new isolate:

callback: This is a top-level function to be executed in the new Isolate.
Note ComputeCallback. There are generic type annotations <Q, R>; the first
one, Q, denotes the input type of the callback, and R denotes the result type of the
computation.
Note from the documentation says:

"The callback argument must be a top-level function, not a closure or an
instance or static method of a class."

message: This is the parameter value of the Q type, which will be sent
to callback.
Note from the documentation says:

"There are limitations on the values that can be sent and received to and from
isolates. These limitations constrain the values of Q and R that are possible."

debugLabel: This can be used during development, giving a name to the isolate
for better differentiation on the Observatory UI tool during profiling.

The compute() function is ideal for computations that may take longer than few
milliseconds to complete, which may cause some frames to be lost. There are also
alternatives for short-term computations. Remember the use of Futures in Chapter
2, Intermediate Dart Programming.

SendPort and ReceivePort
As pointed out before, the message passed to the compute() function and the return value
from it must respect some limitations. Those limitations come from the isolates
communication layer. Isolates, as said before, communicate with each other through the
messages. These messages are sent and received through SendPort and
ReceivePort instances.

To send a message to an isolate port, we first need to obtain a ReceivePort instance
corresponding to it. The ReceivePort class exposes a sendPort getter that is bound to
the isolate, so we can send messages to it. How does an isolate get ReceivePort from
another isolate? It does so through the IsolateNameServer class.

Improving User Experience Chapter 13

[394]

IsolateNameServer
The IsolateNameServer class is a global register of Dart isolates, from which we can
register and look up for SendPorts and ReceivePorts. Simply said, an isolate can
register its ReceivePort through the IsolateNameServer.registerPortWithName
method and other isolates can obtain the corresponding SendPort with
the IsolateNameServer.lookupPortByName() method.

A compute() example
As said before, to create an isolate to perform long processes, we use the
compute() function. We can have any kind of implementation in the isolate callback,
which will be passed to the compute function. The only requirement is that it has to be a
top-level function. For example, see the following code:

import 'dart:io';

void backgroundCompute(args) {
 print('background compute callback');
 print('calculating fibonacci from a background process');

 int first = 0;
 int second = 1;
 for (var i = 2; i <= 50; i++) {
 var temp = second;
 second = first + second;
 first = temp;
 sleep(Duration(milliseconds: 200));
 print("first: $first, second: $second.");
 }

 print('finished calculating fibo');
}

This method calculates the first 50 Fibonacci numbers and prints to the device logs. As you
can see, it contains a sleep call, which is a blocking call; this means that no asynchronous
operations can be processed in the isolate while it is blocked.

We can execute an isolate to run this callback anywhere in a Flutter application by running
the following:

compute(backgroundCompute, null);

Improving User Experience Chapter 13

[395]

This very useful function abstracts all of the setup needed to run and communicate with a
new isolate. We dispatch it, with or without any parameters, and retrieve an optional
response back.

An important aspect to note, though, is that the new isolate is a child of the main Flutter
application isolate and so, if the application gets terminated (that is, when user swipes it
out on the applications tray), the child isolate is also terminated.

Full background process
Although very useful, the compute() function may not be the thing we need in all cases.
As pointed out before, the child isolate created by the compute() function gets terminated
whenever the parent isolate terminates.

In some situations, we may want to execute some code totally independent of the main
application, as in the following examples:

We might do so when receiving push notifications and updating information.
We do not need the application to be running to receive and process remote push
notifications.
Another example is when listening for user location changes or entering in
geofences.
Fetching server information from a feed is another example.
Finally, we might do so when uploading files to the server. Depending on the
size of files, operations may need a long time to run.

For use cases where we need a code to run independently of the application UI, we can
create headless isolates, that is, an isolate that is not bound to the main application isolate
and, if the main isolate gets terminated, it does not affect its execution.

Up until the point of writing this book, there is no default API for handling those use cases,
so plugin authors and developers that need this kind of feature in their application need to
deal with low-level foundations of the Flutter engine to create a background isolate and
establish communication between layers.

Improving User Experience Chapter 13

[396]

To create a background process, we can split responsibilities in languages and application
layers. We also need to check what we can/cannot do with the framework and the
underlying platform. Let's take it in order:

First, we need to define a Flutter background isolate entry point, similar to the1.
main() function of our application. The background isolate needs to have its
main-like function.
With this entry point defined, we can start the background isolate. From the2.
application perspective, we do the following:

We dispatch a request through a method call to the native side of our
app signaling to initiate the new isolate
On the native side, we create the structure needed and run the new
isolate independently of the application that made the request
With the background isolate ready and running, we notify the native
side, so it knows that it can communicate to the isolate

From the application, we can start making requests to the native side that will3.
process things related to the Flutter structure and delegate to the background
isolate.

This process seems to be a lot more complex than needed, and although not simple, the
Flutter community aims to improve this as soon as possible to make the task of background
processing in Dart simpler.

Take a look at Flutter issues at: https:/ /github. com/ flutter/ flutter/
issues for updates on the background processing alternatives.

https://github.com/flutter/flutter/issues
https://github.com/flutter/flutter/issues
https://github.com/flutter/flutter/issues
https://github.com/flutter/flutter/issues
https://github.com/flutter/flutter/issues
https://github.com/flutter/flutter/issues
https://github.com/flutter/flutter/issues
https://github.com/flutter/flutter/issues
https://github.com/flutter/flutter/issues
https://github.com/flutter/flutter/issues
https://github.com/flutter/flutter/issues
https://github.com/flutter/flutter/issues

Improving User Experience Chapter 13

[397]

The communication can be simplified as follows:

The direct communication between main and background isolates is optional and hard to
maintain as we need to take care of running aspects. The most simple way until now is to
make requests, or even use an operating system that triggers to dispatch the background to
isolate independent of the main application isolate.

Let's create an example using the same Fibonacci algorithm as before. This time, we start
the isolate from the application, just like before, but if we terminate the application (that is,
by swiping it out of the applications tray), the logs will still print to the device logs as the
process will still be running in the background.

Init the calculation
From the application, when we click on the calculate button, it should initialize the process
we have seen before. The first step is to invoke a method through a method channel. We
have created the example in a plugin structure, so it will be easy for you to change it and
even use it in your applications. The plugin will be responsible for abstracting the isolate
creation process so that it will be transparent to the application. Its only method is
calculateInBackgroundProcess, which is called from the application:

HandsOnBackgroundProcess.calculateInBackgroundProcess();

Check out the hands_on_background_process example on GitHub for
the complete source code.

Improving User Experience Chapter 13

[398]

This previous code invokes the plugin method that's responsible for initiating the process
that goes as follows:

const pluginChannel = MethodChannel('com.example.handson/plugin_channel');

class HandsOnBackgroundProcess {
 static void calculateInBackgroundProcess() async {
 final callbackHandle = PluginUtilities.getCallbackHandle(
 backgroundIsolateMain
);

 await pluginChannel.invokeMethod(
 "initBackgroundProcess",
 [callbackHandle.toRawHandle()]
);
 }
}

As you can see, first of all, we define a method channel named
com.example.handson/plugin_channel for the plugin calls; this is typically the first
step in plugins. Then, in the calculateInBackgroundProcess() method, we do the
following:

We get a handle to the new background isolate entry point. We use
the PluginUtilities.getCallbackHandle utility provided by the framework
to get the identifier of the callback to pass to the native side of the application.
This way, later, on the native side, we can retrieve this callback and run the
background isolate with it as the entry point.
After getting the handle, we invoke the "initBackgroundProcess" method,
passing the handle to it. This method will do the isolate job mentioned before.

Let's take a look at the Dart entry point of the isolate first and then check the code needed to
make it work properly.

The background isolate
The Dart callback passed down to the native part of the plugin through the handle seen
before is responsible for calculating the Fibonacci, like before. However, it is not exactly the
same:

void backgroundIsolateMain() {
 print('background isolate entry point running');
 const backgroundchannel = MethodChannel(
 'com.example.handson/background_channel'

Improving User Experience Chapter 13

[399]

);
 WidgetsFlutterBinding.ensureInitialized();

 backgroundchannel.setMethodCallHandler((MethodCall call) async {
 if (call.method == 'calculate') {
 print('calculating fibonacci from a background process');

 int first = 0;
 int second = 1;
 for (var i = 2; i <= 50; i++) {
 var temp = second;
 second = first + second;
 first = temp;
 sleep(Duration(milliseconds: 500));
 print("first: $first, second: $second.");
 }

 print('finished calculating fibo');
 backgroundchannel.invokeMethod("calculationFinished");
 }
 });
 backgroundchannel.invokeMethod("backgroundIsolateInitialized");
}

As you can see, it has some changes:

The background isolate starts by setting up a method channel, not the same as1.
before. Now, we create one named
com.example.handson/background_channel. It is used to establish
communication with the native code executed on the background (service on
Android and background execution on iOS).
Set the handler for the calculate method, so that the native code can invoke it2.
to start the calculation. Although it's not really needed in this case (we could start
calculation right in the entry point body), it's good for exemplification.
After setting up the method channel, we notify the native side with a call to3.
backgroundIsolateInitialized. After this, all is ready on the Dart side.

For the Dart side of the background execution, we need to implement just once. Then, for
each of the platforms (Android/iOS), we should set up the environment for this isolate to
run.

Improving User Experience Chapter 13

[400]

Adding Android-specific code to run Dart
code in the background
In Android, there is the concept of Services, which are the ideal way of running
application code in the background, independently of the main application execution. So,
basically, we need to create a Service method, bind the new background isolate, and run.

Read the official documentation about Android Services: https:/ /
developer. android. com/ reference/ android/ app/ Service.

The HandsOnBackgroundProcessPlugin class
The first step is to set up the plugin, just like we already did in Chapter 9, Developing Your
Own Flutter Plugin. It starts with an implementation of the static registerWith method
that notifies the Flutter engine with the existence of the plugin instance:

class HandsOnBackgroundProcessPlugin(
 private val context: Context
) : MethodChannel.MethodCallHandler{
 companion object {
 ...
 @JvmStatic
 fun registerWith(registrar: PluginRegistry.Registrar) {
 val channel = MethodChannel(
 registrar.messenger(),
 "com.example.handson/plugin_channel"
)
 val plugin = HandsOnBackgroundProcessPlugin(
 registrar.context()
)
 channel.setMethodCallHandler(plugin)
 }
 }
 ...
}

https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service

Improving User Experience Chapter 13

[401]

As you can see, it configures the method channel, called
com.example.handson/plugin_channel, that is used to initialize the calculation
through the initBackgroundProcess method:

override fun onMethodCall(call: MethodCall, result: MethodChannel.Result?)
{
 val args = call.arguments() as? ArrayList<*>
 if (call.method == "initBackgroundProcess") {
 val callbackHandle = args?.get(0) as? Long ?: return
 executeBackgroundIsolate(context, callbackHandle)
 }
}

To handle the initBackgroundProcess method, it fetches the callback handle coming
from Dart. To fetch it properly, it is parsed to the Long type (int in Dart) according to the
StandardMessageCodec class.

The execution of the background isolate is done in two steps. The first is done in
executeBackgroundIsolate(), as follows:

...
private fun executeBackgroundIsolate(context: Context, callbackHandle:
Long) {
 val preferences = context.getSharedPreferences(
 SHARED_PREFERENCES_KEY,
 IntentService.MODE_PRIVATE
)
 preferences.edit().putLong(ARG_CALLBACK_KEY, callbackHandle).apply()

 startBackgroundService(context)
}
...

First, the method stores the handle value in a SharedPreferences file. Then, it requests
the execution of the background service through the startBackgroundService()
method:

Shared preferences are used in Android to store key-value data in a simple and
private way. It is used here because we cannot pass parameters to Service
constructors as they must not get arguments.

Improving User Experience Chapter 13

[402]

You can check out more on shared preferences in the official
documentation: https:/ /developer. android. com/ training/ data-
storage/ shared- preferences.

startBackgroundService() simply makes the request to the Android system
to initialize the background service:

...
private fun startBackgroundService(context: Context) {
 val intent = Intent(
 context,
 BackgroundProcessService::class.java
)
 context.startService(intent)
}
...

The remaining part of the job is done in the BackgroundProcessService class.

The BackgroundProcessService class
The BackgroundProcessService class is the Android service that will be running while
our isolate is being executed. As it is in the background, the application may be closed and
the isolate will be running normally.

Again, it is important to check the Android Service documentation
mentioned before to understand how the life cycle works.

Service execution is all managed by the Android system; we do not have full control of it,
so we need to react to events provided by the system to execute our isolate based on the
Service state.

It all starts with the onCreate method, when the system creates our Service method and
we can set up all of the resources needed for it to run. It is a good place to start our
background isolate:

class BackgroundProcessService : Service(), MethodChannel.MethodCallHandler
{
 override fun onCreate() {
 super.onCreate()

https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences

Improving User Experience Chapter 13

[403]

 createNotification()
 FlutterMain.ensureInitializationComplete(applicationContext, null)
 startBackgroundIsolate()
 }
 ...
}

As you can see, it does more than just initialize our isolate. Let's break it down:

First, we set up a notification through the createNotification() method. The1.
notification is placed on the Android status bar and it makes our service run in
the foreground mode. Basically, Services that run in the background are more
likely to be killed by the system in the case of a lack of resources. Foreground
services, in contrast, have a higher priority in the system and are less likely to be
terminated in this case.
Then, we use2.
the FlutterMain.ensureInitializationComplete(applicationContext,
null) call, which asserts the Flutter engine is set up and we can use things such
as platform channels.
Finally, we start the isolate with the startBackgroundIsolate() call.3.

The startBackgroundIsolate() method is the main and most complex method in this
class. It is responsible for setting up the structure needed for the background isolate to run.
It goes as follows:

 private fun startBackgroundIsolate() {
 val preferences = applicationContext.getSharedPreferences(
 SHARED_PREFERENCES_KEY,
 MODE_PRIVATE
)
 val callbackHandle = preferences.getLong(ARG_CALLBACK_KEY, 0L)
 if (callbackHandle == 0L) return
 val callback =
 FlutterCallbackInformation.lookupCallbackInformation(
 callbackHandle
) ?: return

 sBackgroundFlutterView = FlutterNativeView(this, true)
 val path = FlutterMain.findAppBundlePath(applicationContext)
 val args = FlutterRunArguments()
 args.bundlePath = path
 args.entrypoint = callback.callbackName
 args.libraryPath = callback.callbackLibraryPath

 sBackgroundFlutterView?.runFromBundle(args)

Improving User Experience Chapter 13

[404]

 backgroundChannel = MethodChannel(
 sBackgroundFlutterView,
 "com.example.handson/background_channel"
)
 backgroundChannel?.setMethodCallHandler(this)

 sPluginRegistrantCallback?.registerWith(
 sBackgroundFlutterView?.pluginRegistry
)
 }

This method initializes and registers a new background plugin instance in the Flutter
engine just like it's done in normal applications. The process is a little bit trickier, so let's see
how we will go about it:

First, we get the Dart callback that is the entry point of the new background1.
isolate. To accomplish this, we get the handle from the stored shared preferences
and use
the FlutterCallbackInformation.lookupCallbackInformation method
to retrieve the callback information needed to run it.
Then, we instantiate a new FlutterNativeView method. This view is used to2.
have a proper environment for the new isolate to run. In Android, that's how the
Flutter engine works. Remember, View is passed to our Dart side for the
application work on it. Note the second parameter passed to
the FlutterNativeView constructor, true, meaning the view will run in the
background and does not need a surface to draw on.
To finally execute the isolate, we use the runFromBundle() method from3.
the FlutterNativeView instance we saw before. This method needs
a FlutterRunArguments instance to identify what it will run.
Our args variable holds the information we got from callback, such as its
callbackName and callbackLibraryPath, to find our isolate entry point.
After running the background isolate, we create an instance to the background4.
method channel named com.example.handson/background_channel, just
like we did in the Dart side.
The final step is to register the plugin instance in the Flutter registry with the5.
help of the sPluginRegistrantCallback property. This property must be
passed manually to the Service class somehow. Why? Flutter
automatically registers the plugin in the main thread when you use it (remember
the static registerWith method we need to implement for our
plugins). PluginRegistrantCallback is the way we do it manually. Through
this, we can register a plugin anywhere, such as places where registerWith is
not looked up (our Service, in this case).

Improving User Experience Chapter 13

[405]

Check out the documentation to find out more about threads in Android:
https:/ /flutter. dev/ docs/get- started/ flutter- for/ android-
devs#how- do- you- move- work- to-a- background- thread.

The PluginRegistrantCallback property
We pass the PluginRegistrantCallback instance to the Service class in the example
project. We create a descendant of the FlutterApplication class, which will serve as our
registrant callback to the service:

class Application: FlutterApplication(),
PluginRegistry.PluginRegistrantCallback {
 override fun onCreate() {
 super.onCreate()
 Log.w("BACKGROUND", "application")
 BackgroundProcessService.setPluginRegistrant(this)
 }

 override fun registerWith(registry: PluginRegistry?) {
 GeneratedPluginRegistrant.registerWith(registry)
 }
}

As you can see, we pass the application instance to the Service instance so it will be able
to register in the Flutter engine. We also need to set our application class in
AndroidManifest.xml for this to work:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.hands_on_background_process_example">
 <application
 android:name=".Application"
 android:label="hands_on_background_process_example"
 >
 ...
</manifest>

After setting up the plugin and the background isolate, we need to communicate with it to
start the calculations. All we need to do is to handle method calls from the background
method channel we have defined:

 override fun onMethodCall(call: MethodCall, result: MethodChannel.Result?)
{
 if (call.method == "backgroundIsolateInitialized") {
 backgroundChannel?.invokeMethod("calculate", null)

https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-you-move-work-to-a-background-thread

Improving User Experience Chapter 13

[406]

 } else if (call.method == "calculationFinished") {
 sBackgroundFlutterView?.destroy()
 sBackgroundFlutterView = null
 shutdownService()
 } else {
 } // 'calculate' method from this channel, handled on the Dart isolate.
}

Our BackgroundProcessService instance is defined as the method handler of the
background method channel calls:

The method named backgroundIsolateInitialized is called from the
background isolate when it's ready and, in response to this, we start the
calculation invoking calculate in the same channel.
Also, whenever the calculation finishes and the Dart background isolate calls the
calculationFinished method, our FlutterNativeView instance that holds
the isolate is destroyed and the service stopped with a call to the
shutdownService() method, which simply removes the notification defined
before and kills the service.

That's all for the Android implementation; with this, even if we terminate our application
by swiping it out of the applications tray, the background isolate will be running until it
finishes.

Adding iOS-specific code to run Dart code in
the background
Things are different in iOS. Background execution is way more restricted than with
Android. The Service concept does not exist, and we have a few moments that we can run
code in background.

The majority of use cases are covered by UIBackgroundModes, where an application can
define the supported background modes and then is allowed to run specific kinds of
background execution. We can, for example, do the following:

Have the Audio and AirPlay background mode that sets the app as capable of
playing audible content to the user or recording audio while in the background.
Receive location updates in background mode.
Newsstand is a download mode, where the application can download
and process magazine or newspaper content in the background.

Improving User Experience Chapter 13

[407]

Check the official background execution guide from the iOS
documentation: https:/ /developer. apple. com/ library/ archive/
documentation/ iPhone/ Conceptual/ iPhoneOSProgrammingGuide/
BackgroundExecution/ BackgroundExecution. html.

Much of the work is similar to Android, except for the Service part. So, let's start with the
plugin definition.

The SwiftHandsOnBackgroundProcessPlugin
class
The registration and setup of the plugin is done in a similar way to
the HandsOnBackgroundProcessPlugin class. This time, in the register() static
function, we have the following:

public static func register(with registrar: FlutterPluginRegistrar) {
 let channel = FlutterMethodChannel(
 name: "com.example.handson/plugin_channel",
 binaryMessenger: registrar.messenger()
)
 let instance = SwiftHandsOnBackgroundProcessPlugin(
 registrar: registrar
)
 registrar.addMethodCallDelegate(instance, channel: channel)
}

Like in the Android version, it configures the method channel called
com.example.handson/plugin_channel, which is used to initialize the calculation
through the initBackgroundProcess method, as you can see:

 public func handle(
 _ call: FlutterMethodCall,
 result: @escaping FlutterResult
) {
 if (call.method == "initBackgroundProcess") {
 guard let args = call.arguments as? NSArray else {
 return
 }
 guard let handle = args[0] as? Int64 else {
 return
 }
 executeBackgroundIsolate(handle: handle)
 }
 }

https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html

Improving User Experience Chapter 13

[408]

In this case, as we do not have separation as a service, we start the execution of the
background isolate right from the call.

The execution of the background isolate in the executeBackgroundIsolate() method
goes as follows:

private func executeBackgroundIsolate(handle: Int64) {
 _backgroundRunner = FlutterEngine.init(
 name: "BackgroundProcess",
 project: nil,
 allowHeadlessExecution: true
)
 guard let info = FlutterCallbackCache.lookupCallbackInformation(
 handle
) else {
 return
 }
 let entrypoint = info.callbackName
 let uri = info.callbackLibraryPath
 _backgroundRunner!.run(
 withEntrypoint: entrypoint,
 libraryURI: uri
)

 _backgroundChannel = FlutterMethodChannel(
 name: "com.example.handson/background_channel",
 binaryMessenger: _backgroundRunner!
)
 _registrar.addMethodCallDelegate(
 self,
 channel: _backgroundChannel!
)
 SwiftHandsOnBackgroundProcessPlugin._registerPlugins?(
 _backgroundRunner!
)
}

We can, again, break down the execution into several steps:

First, we store an instance of the FlutterEngine class in the1.
_backgroundRunner property. This instance will be our Flutter plugin that will
be the bridge, like FlutterNativeView was on Android.

Improving User Experience Chapter 13

[409]

Then, we get our entry point from the callback handle through2.
the FlutterCallbackCache.lookupCallbackInformation() utility. All of
the information is equal to the one we get in Android. Here, we use entrypoint
and uri to run the background isolate through
the _backgroundRunner!.run(withEntrypoint: entrypoint,
libraryURI: uri) call.
After running the isolate the final part is very similar to Android. We create the3.
channel named com.example.handson/background_channel for the
communication and we set its handler as the plugin instance itself.
Finally, we register the plugin in the background through the4.
_registerPlugins callback, just like PluginRegistrantCallback in
Android.

This last step is not really needed in iOS. There is not another background
thread running beside our application. It is moved to a background state
but the plugin still getting registered normally. If our application were
executed in some UIBackgroundMode key like mentioned before, this
registration would still be important.

After launching the background isolate, we can, again, handle calls from the background
channel:

public func handle(_ call: FlutterMethodCall, result: @escaping
FlutterResult) {

 if (call.method == "initBackgroundProcess") {
 // ... seen previously
 } else if (call.method == "backgroundIsolateInitialized") {
 self.taskID = UIApplication.shared.beginBackgroundTask {
 self.taskID = .invalid
 }
 _backgroundChannel?.invokeMethod("calculate", arguments: nil)
 } else if (call.method == "calculationFinished") {
 if(self.taskID != nil && self.taskID != .invalid) {
 UIApplication.shared.endBackgroundTask(self.taskID!)
 self.taskID = .invalid
 }
 // end background task
 }
}

Improving User Experience Chapter 13

[410]

Although it's different, the basic idea of method handling is similar:

When the method named backgroundIsolateInitialized is called, we1.
invoke the corresponding calculate method, so it performs calculations and
logs to the Flutter console. Before that, we register an iOS background task. This
will notify the system we need a little bit more time to conclude our work and
prevent it from getting finished before expected. Remember, iOS is very
restrictive in background tasks.
In a call to calculationFinished, we simply notify the system our task is2.
finished with UIApplication.shared.endBackgroundTask(self.taskID!)
and is safe to move our app to the suspended state.

It's fundamental for you to understand why and when this can be used:
https:/ /developer. apple. com/ documentation/ uikit/ core_ app/
managing_ your_ app_ s_ life_cycle/ preparing_ your_ app_to_ run_ in_the_
background/ extending_ your_ app_s_ background_ execution_ time.

Just like in Android, the iOS background plugin is registered as well. We do this with
the _registerPlugins callback. It's passed down to the plugin over
the setPluginRegistrantCallback() static function that gets called in the application
AppDelegate class, very similar to Android:

@UIApplicationMain
@objc class AppDelegate: FlutterAppDelegate {
 override func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?
) -> Bool {
 GeneratedPluginRegistrant.register(with: self)
 SwiftHandsOnBackgroundProcessPlugin.setPluginRegistrantCallback(
 registerPlugins: registerPlugins
)
 return super.application(
 application,
 didFinishLaunchingWithOptions: launchOptions
)
 }
}

https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/core_app/managing_your_app_s_life_cycle/preparing_your_app_to_run_in_the_background/extending_your_app_s_background_execution_time

Improving User Experience Chapter 13

[411]

A little bit different from Android, the registerPlugins function is a top-level function,
as follows:

func registerPlugins(registry: FlutterPluginRegistry) {
 GeneratedPluginRegistrant.register(with: registry)
}

As you can see, it is similar to one defined in the Android application, which is used to
register the plugins through the GeneratedPluginRegistrant.register utility.

Check out more about threading in iOS: https:/ / flutter. dev/ docs/ get-
started/ flutter- for/ ios- devs#threading- -asynchronicity.

After this, our app behaves similarly to Android, and we have printed all of our logs, even
in a background state:

https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity
https://flutter.dev/docs/get-started/flutter-for/ios-devs#threading--asynchronicity

Improving User Experience Chapter 13

[412]

Summary
In this chapter, we saw advanced methods to make our application more user friendly and
interactive. We started by learning the available tools focused on user accessibility provided
by the Flutter framework.

Then, we checked how we can add translations to Flutter apps, by generating .arb files,
creating multiple translations, importing them to Dart, and applying them to our
MaterialApp class.

Finally, we took a look at background processing options with Flutter, going from the very
useful compute() function to a background service on Android and background modes on
iOS. We also saw the characteristics and limitations on each platform in this aspect.

In the next chapter, we are going to take a look at widget graphic manipulations and how
we can transform widgets and draw custom shapes to the Canvas.

14
Widget Graphic Manipulations

Using widgets as they are by default is sufficient to make a nice-looking Flutter app, but
extending the widgets with transformations in layout, such as opacity, rotations, and
decorations, can make the UX improve further. In this chapter, you will learn how to add
those transformations to a widget. Also, you will learn how to modify a widget by adding
graphical transformations to it with the Transform class and use the canvas to draw a
custom widget.

The following topics will be covered in this chapter:

Transforming widgets with the Transform class
Exploring the types of transformations
Adding transformations to your widgets
Using custom painters and the Canvas

Transforming widgets with the Transform
class
Sometimes, we need to change a widget's appearance. In response to user input or to make
cool effects in the layout, we may need to move the widget around the screen, change its
size, or even distort it a little bit.

If you've ever tried to make this in native programming languages, you may have found
some difficulties. Flutter, as you remember, is highly focused on UI design and proposes to
make the developer's life easier.

Widget Graphic Manipulations Chapter 14

[414]

The Transform widget
The Transform widget is one of the best examples of the Flutter framework's power
and consistency. It's a single-purpose widget that simply applies a graphic transformation
to its child and nothing more. Having widgets focused on one single purpose is
fundamental to a better layout structure, and Flutter does it very well.

The Transform widget, as its name suggests, does a single task: it transforms its
underlying child. Although its task is very complex, it abstracts most part of this
complexity to the developer. Let's have a look at its constructor:

const Transform({
 Key key,
 @required Matrix4 transform,
 Offset origin,
 AlignmentGeometry alignment,
 bool transformHitTests: true,
 Widget child
})

As you can see, besides the typical key property, this widget does not need many
arguments to do its job. Let's see these arguments:

transform: This is the only mandatory (@required annotation) property used
to describe the transformation that will be applied to the child widget.
A Matrix4 object, this is a four-dimension (4D) matrix that describes the
transformation in a mathematical way. There will be more details later.
origin: This is the origin of the coordinate system at which to apply the
transform matrix. The origin is specified by the Offset type, representing, in
this case, a point (x,y) in the Cartesian system that is relative to the upper-left
corner of the render widget.
alignment: Like origin, it can be used to manipulate the position of the
applied transform matrix. We can use this to specify origin in a more flexible
way, as origin requires us to use real position values. Nothing prevents you
from using both origin and alignment at the same time.
transformHitTests: This specifies whether hit tests (that is, taps) are
evaluated in the transformed version of the widget.
child: This is the child widget to which the transformation will be applied.

Widget Graphic Manipulations Chapter 14

[415]

Understanding the Matrix4 class
In the foundation of geometrical transformations, there is mathematics. In Flutter,
transformations are represented in a 4D matrix. Besides methods such as matrix addition or
multiplication, the Matrix4 class contains methods that help with the construction and
manipulation of geometric transformations. Some of them are as follows:

rotation: rotateX(), rotateY(), and rotateZ() are some examples of
methods that rotate the matrix through a specific axis.
scale: scale(), with some variants, is used to apply a scale on the matrix using
double values of the corresponding axes (x, y, and z) or through vector
representations with the Vector3 and Vector4 classes.
translation: Just like before, we can translate the matrix using the
translate() method with specific x, y, or z values and Vector3 and Vector4
instances.
skew: This is used to skew the matrix around the X axis with skewX() or Y axis
with skewY().

Check the Matrix4 official documentation for all of the available
possibilities this class offers: https:/ / api.flutter. dev/ flutter/ vector_
math/ Matrix4- class. html. Remember, it is the basis of the
transformations applied with the Transform widget.

Exploring the types of transformations
Although the Matrix4 and Transform widget can already be seen as simple,
the Transform class provides even more facilities to the developer through its factory
constructors. There are many of them for each of the possible transformations, making it
extremely easy to apply a transformation to a widget without any deeper knowledge of
geometric calculations. They are as follows:

Transform.rotate(): Constructs a Transform widget that rotates its child
around its center
Transform.scale(): Constructs a Transform widget that scales its
child uniformly
Transform.translate(): Constructs a Transform widget that translates its
child by an x,y offset

https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html
https://api.flutter.dev/flutter/vector_math/Matrix4-class.html

Widget Graphic Manipulations Chapter 14

[416]

Rotate transformation
The rotation transformation appears in situations where we want to simply make our
widget rotate. By using the Transform.rotate() constructor, we can get effects like this:

The Transform.rotate constructor variant can be used to achieve this, so let's see what it
looks like:

Transform.rotate({
 Key key,
 @required double angle,
 Offset origin,
 AlignmentGeometry alignment: Alignment.center,
 bool transformHitTests: true,
 Widget child
})

Widget Graphic Manipulations Chapter 14

[417]

As you can see, it does not differ too much from the default Transform constructor. The
differences are as follows:

Absence of the transform property: We are using the rotate() variant
because we want to apply a rotation, so we do not need to specify the whole
matrix to this. We simply use the angle property instead.
Angle: This specifies the desired rotation in clockwise radians.
Origin: By default, the rotation is applied relative to the center of the child.
However, we can use the origin property to manipulate the origin of the
rotation, like if we were translating the center of the widget by the origin offset,
causing the rotation to be relative to another point if we want to.

Scale transformation
The scale transformation appears in situations where we want to simply cause our widget
to change its size, either by increasing or decreasing its scale. We can get something like
this:

Widget Graphic Manipulations Chapter 14

[418]

This kind of transformation is typically done by using
the Transform.scale() constructor. Let's see what it looks like:

Transform.scale({
 Key key,
 @required double scale,
 Offset origin,
 AlignmentGeometry alignment: Alignment.center,
 bool transformHitTests: true,
 Widget child
})

As you can see, just like the rotate() factory constructor, this variant does not differ too
much from the default one:

Absence of the transform property: Here, again, we use the scale property
instead of the whole transformation matrix.
Scale: This is what we use to specify the desired scale in double format, 1.0
being the widget's original size. It represents the scalar to be applied to each x
and y axis.
Alignment: By default, the scale is applied relative to the center of the child.
Here, we can use the alignment property to change the origin of the scale.
Again, we can combine the alignment and origin properties to get the desired
result.

Translate transformation
The translate transformation is more likely to appear in animations (see Chapter
15, Animations). By using the Transform.translate() constructor, we move the widget
around the screen:

Widget Graphic Manipulations Chapter 14

[419]

And this is what the Transform.translate() factory constructor looks like:

Transform.translate({
 Key key,
 @required Offset offset,
 bool transformHitTests: true,
 Widget child
})

Widget Graphic Manipulations Chapter 14

[420]

Here, we have even fewer properties compared to previous transformations. The
differences are as follows:

The absence of the transform and alignment properties: The transformation
will be applied by the offset value, so we do not need the transform matrix.
Offset: This time, offset simply specifies the translation to be applied on the
child widget; this is different from the previous transformations, where it affects
the origin point of the applied transformation.

Composed transformations
We can, and most probably will, combine a number of the previously seen transformations
to achieve unique effects, such as rotating at the same time as we move and scale a widget,
as in the following example:

Widget Graphic Manipulations Chapter 14

[421]

Composing transformations can be done in two ways:

Using the default Transform widget constructor and generating our desired
transformation using the Matrix4 provided methods to compose it
Using multiple Transform widgets in a nested way with the rotate(),
scale() and translate() factory constructors, achieving the same effect, but
causing our widgets tree to be bigger than needed

Applying transformations to your widgets
As we have seen until now, Transform widget can help us to modify the widget's natural
appearances. Applying transformations to widgets is as simple as adding a Transform
widget as the parent of the widget we want to modify. Let's check the alternatives we can
use to apply transformations to widgets.

Rotating widgets
As pointed out before, we can use the Transform.rotate() constructor to add a
Transform widget to the widget tree responsible for rotating its child. We can use
something like this:

Transform.rotate(
 angle: -45 * (math.pi / 180.0),
 child: RaisedButton(
 child: Text("Rotated button"),
 onPressed: () {},
),
);

We add a widget that is rotated 315º clockwise (the same as -45º counter-clockwise). The
exact same result is achieved using the Transform widget's default constructor and a
Matrix4 transformation instead:

Transform(
 transform: Matrix4.rotationZ(-45 * (math.pi / 180.0)),
 alignment: Alignment.center,
 child: RaisedButton(
 child: Text("Rotated button"),
 onPressed: () {},
),
);

Widget Graphic Manipulations Chapter 14

[422]

The arguments we need to provide in order to get the same result are as follows:

transform with the rotation through the z axis
alignment of the transformation

Scaling widgets
To scale widgets, we use the typical Transform.scale(), constructor. To scale up a
widget, for example, we can use it as follows:

Transform.scale(
 scale: 2.0,
 child: RaisedButton(
 child: Text("scaled up"),
 onPressed: () {},
),
);

And to get the same result using the default Transform constructor, we use the following:

Transform(
 transform: Matrix4.identity()..scale(2.0, 2.0),
 alignment: Alignment.center,
 child: RaisedButton(
 child: Text("scaled up"),
 onPressed: () {},
),
);

In a very similar way to the rotation, we must specify both the origin of the transformation
with the alignment property and the Matrix4 instance describing the scale
transformation.

Translating widgets
In a very similar way, we use the Transform.translate() constructor by adding
a Transform widget as a parent of the widget we want to move around:

Transform.translate(
 offset: Offset(100, 300),
 child: RaisedButton(
 child: Text("translated to bottom"),
 onPressed: () {},

Widget Graphic Manipulations Chapter 14

[423]

),
);

The default constructor can also be used with Matrix4 specifying the translation:

Transform(
 transform: Matrix4.translationValues(100, 300, 0),
 child: RaisedButton(
 child: Text("translated to bottom"),
 onPressed: () {},
),
);

We only need to specify the transform property with the Matrix4 instance describing the
translation.

Applying multiple transformations
As previously pointed out, we have two ways to add multiple transformations to widgets.
The first is by adding multiple Transform widgets above the desired widget:

Transform.translate(
 offset: Offset(70, 200),
 child: Transform.rotate(
 angle: -45 * (math.pi / 180.0),
 child: Transform.scale(
 scale: 2.0,
 child: RaisedButton(
 child: Text("multiple transformations"),
 onPressed: () {},
),
),
),
);

As you can see, we add a Transform widget as a child to another Transform widget,
composing the transformation. Although simpler to read, this method has a drawback: we
add more widgets than needed to the widget tree.

When we add multiple transformations to a widget at the same time, we
have to pay attention to the order of transformations. Experiment by
yourself: exchanging the Transform widgets' positions will cause
different results.

Widget Graphic Manipulations Chapter 14

[424]

As an alternative, we can use the default Transform constructor with the composed
transformation with the Matrix4 object instead:

Transform(
 alignment: Alignment.center,
 transform: Matrix4.translationValues(70, 200, 0)
 ..rotateZ(-45 * (math.pi / 180.0))
 ..scale(2.0, 2.0),
 child: RaisedButton(
 child: Text("multiple transformations"),
 onPressed: () {},
),
);

Just like before, we specify the alignment of the transformation as the center of the child
widget and then the Matrix4 instance to describe it. As you can see, it is very similar to the
multiple Transform widgets version but without nested widgets causing a deeper widget
tree.

Using custom painters and canvas
Flutter aims to provide the best possible tools for the developer to construct application
user interfaces with no limitations. By now, you are probably already convinced of this,
with the numerous widgets it provides, the facility of extending those widgets, and the
universe of possibilities that the framework offers.

The simplicity that Flutter brings to the UI composition does not end with widgets. How
about changing the widget look? I'm not talking about extending with a Transform widget
by translating or rotating it. We can create a widget with its own unique appearance, its
own shape, and its own behaviors. That is possible with the help of three main classes:
CustomPaint, CustomPainter, and Canvas.

The Canvas class
If you've ever programmed some kind of UI in any language, you might have heard or
worked with some kind of Canvas. As its name suggests, it provides ways to
paint things. Canvas can be seen as the space we work on, by drawing shapes with our
defined styles such as lines, circles, and rectangles.

Widget Graphic Manipulations Chapter 14

[425]

Flutter Canvas does not work as a literal canvas. Basically, it is just an interface for
recording graphical operations to be drawn on the next rendering frame.

Canvas transformations
All operations we do on Canvas, such as drawing a line or a rectangle, are oriented in a
coordinate system, just like any other UI drawing system. This coordinate system has an
origin. By default, this is defined by the CustomPaint widget that owns Canvas. The
important thing to note is that, because of this characteristic, all of the operations we do
on Canvas are affected by its current transformation. Whenever we want, we can
transform the canvas to affect the subsequent operations.

Initially, Canvas has no transformation, that is, its transformation matrix
are a Matrix4 identity instance.

Canvas ClipRect
Like transformations, Canvas does have a current clip region, meaning that we can clip
part of the canvas to be drawn. This is useful when we want just to draw part of a complex
shape without caring too much about calculations.

By default, the clip region of Canvas is infinite, so all of the regions are
valid.

Methods
As pointed out before, Canvas works by recording drawing operations to the next painting
frame. To do that, it exposes many methods to allow us to draw various shapes. Let's
examine the most common ones:

drawArc(): Used to draw closed arcs or circle segments
drawCircle(): Used to draw circles with a determined radius
drawImage(): Used to draw an image into the Canvas
drawLine(): Used to draw lines into the Canvas

Widget Graphic Manipulations Chapter 14

[426]

drawRect(): Used to draw rectangles into the Canvas
rotate(): Adds a rotation transformation to the current Canvas transformation
scale(): Adds a scale transformation to the current canvas transformation
translate(): Adds a translation to the current canvas transformation

Check out the Canvas class documentation for more methods and further
details: https:/ /docs. flutter. io/flutter/ dart- ui/Canvas- class.
html.

The Paint object
The Paint object is a description of the style to use when drawing on Canvas. It lets us
define things such as colors and stroke width. All of the canvas drawing methods retrieve a
Paint object as the parameter. We can reuse the same Paint instance on multiple drawing
calls.

The CustomPaint widget
The Canvas object is not available anywhere in Flutter; this can cause confusion. Whenever
we want to draw things by hand, we need to use the CustomPaint widget. The main
purpose of this widget is to provide a Canvas object for us to work on.

Having a Canvas and a CustomPaint widget is not enough to draw on. The
purpose of CustomPaint is to provide Canvas and delegate a CustomPainter object that
will be responsible for drawing on it.

CustomPaint construction details
The CustomPaint widget simply works as the bridge between the widget tree (by being a
widget) and a lower-level painting layer with access to Canvas. To create this, we must
have a CustomPainter instance as it does not make sense to have CustomPaint without a
painter.

https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html
https://docs.flutter.io/flutter/dart-ui/Canvas-class.html

Widget Graphic Manipulations Chapter 14

[427]

To create a CustomPaint widget, we first add it to our widget tree just like we do for other
widgets. Let's take a look at its constructor first to understand it:

const CustomPaint({
 Key key,
 CustomPainter painter,
 CustomPainter foregroundPainter,
 Size size: Size.zero,
 bool isComplex: false,
 bool willChange: false,
 Widget child
})

There are a few properties we need to take a look at to understand how it works:

painter: The painter implementation that draws content on the canvas
foregroundPainter: The painter implementation that draws content on the
canvas after the child is painted
size: If the child property is not null, the size of the child is used and this value
is ignored; otherwise, this specifies the size needed for the draw
isComplex and willChange: Hints to the compositor's raster cache, helping
with the analysis of rendering costs
child: A child to be below in the widget tree, like any other widget

We can see the painter-related properties in the following screenshot:

This illustrates the order of drawing: first, the painter operations are made, then
the child, and finally, foregroundPainter (if any) draws in front of the child.

Widget Graphic Manipulations Chapter 14

[428]

The CustomPainter object
We know the importance of the CustomPainter (or painter) object. As pointed out
previously, the painter is responsible for drawing something on Canvas. Whenever we
want to create our own unique drawing logic, we need to extend the CustomPainter class
and override two fundamental methods: paint() and shouldRepaint().

The paint method
The paint() method is where the CustomPainter does its job. It gets called whenever the
widget is requested to redraw. This is what it looks like:

void paint (
 Canvas canvas,
 Size size
)

The only two arguments it receives are as follows:

canvas, where we draw effectively by using its draw*() methods
size defines the bounds of the drawing, which we should consider

Paint operations should remain inside the given area. This is what the documentation says:

"Graphical operations outside the bounds may be silently ignored, clipped, or not clipped."

The shouldRepaint method
This is an important method, especially for the Flutter engine. This is what it looks like:

bool shouldRepaint (
 covariant CustomPainter oldDelegate
)

It receives just the oldDelegate argument, which corresponds to the last delegate
(this CustomPainter class instance) that was responsible for painting
onto CustomPaint. Whenever it returns false, then the paint call might be optimized
away (this does not mean the paint will not be called). We should compare the old and
current delegate to see whether any data related to the paint is different, and then return
true in this case.

Widget Graphic Manipulations Chapter 14

[429]

A practical example
It's time to see how we can use the Canvas and CustomPaint widget to create a widget
that has its own painting. In this example, we are going to create chart widgets—a pie and
radial chart, to be more specific. Pie charts are a useful kind of circular statistical graphic,
which is divided into slices to illustrate numerical proportions.

We are going to start with the pie chart widget, where we retrieve slice values and draw
them proportionally in a circle. This is what it is going to look like:

Now, let's define the new PieChart widget with the help of the Canvas and
CustomPaint classes.

Widget Graphic Manipulations Chapter 14

[430]

Defining a widget
To start with, we typically define a widget, to maintain a minimal level of organization. We
define the PieChart widget here; this will be a StatelessWidget descendant. This
widget should abstract the paint layer and expose just what is needed by other widgets. In
our case, this is what the PieChart properties look like:

class PieChart extends StatelessWidget {
 final List<int> values;
 final List<Color> colors;
 ...
}

The only properties that describe the widget are values and colors:

values: This List represents each of the section values. Here, we use int values
for simplicity, but it could be any type to work with any logic.
colors: This List contains the colors that should be used to paint each of the
sections in the chart.

Now, let's take a look at the build() method of this widget:

 @override
 Widget build(BuildContext context) {
 return Row(
 children: <Widget>[
 Expanded(
 child: CustomPaint(
 painter: PieChartPainter(
 values,
 colors
),
),
),
],
);
 }

Widget Graphic Manipulations Chapter 14

[431]

There are a few things we need to pay attention to here:

The CustomPaint widget needs a size to exist, as all of its painting logic should
be done in a finite canvas. As we have seen before, the CustomPaint widget
defines its size by its child constraints. In our case, we do not have a child, so it
needs to be constrained in some way. We could have limited its size by
using SizedBox, for example, but it would not be ideal. Instead, we put it inside
a Row widget, filling its available horizontal space by surrounding it with an
Expanded widget.
The CustomPaint widget takes our custom painter, PieChartPainter, through
the painter property.

That's all that's needed for the widget, as the hard work will be done by the
PieChartPainter class.

Defining CustomPainter
Defining our CustomPainter descendant class is the most important step here. As said
before, in this example, we defined a painter that takes a list of int values and, based on
that, draws a pie like a circle with proportional slices.

As said before, we need to override two methods from CustomPainter to make this work.
Let's see how we define them.

Overriding the shouldRepaint method
In our example, values and colors describe the drawing, so whenever either of them
change, we need to repaint our widget. So, we need to reflect this in the shouldRepaint
method, as follows:

// part of pie_chart.dart file PieChartPainter class

@override
bool shouldRepaint(PieChartPainter oldDelegate) {
 return !ListEquality().equals(oldDelegate.values, values) ||
 !ListEquality().equals(oldDelegate.colors, colors);
}

Widget Graphic Manipulations Chapter 14

[432]

Overriding the paint method
The paint method is responsible for drawing our chart. This is how we define it:

// part of pie_chart.dart file PieChartPainter class

 @override
 void paint(Canvas canvas, Size size) {
 var center = Offset(size.width / 2, size.height / 2);
 var radius = (size.width * 0.75) / 2;

 Rect chartRect = Rect.fromCircle(
 center: center,
 radius: radius,
);

 int total = values.reduce((a, b) => a + b);

 _paintCircle(canvas, total, chartRect);
 }

Let's break it down:

First, we need to define our pie extensions. With the given size parameter, we1.
can set the center of our chart and the radius, which is half of 75 percent of the
available space, (var radius = (size.width * 0.75) / 2;), to preserve
some space around the chart.
Then, we create a Rect instance from the given center and radius properties.2.
This rectangle will be useful when we draw the arcs of each slice (see the
_paintCircle method explanation later).
The total value we get by summing up all of the values of the given slice. This3.
will also be useful when we draw each of the slice arcs.
Finally, we can draw the pie chart on the canvas.4.

The _paintCircle() method is initially defined as follows:

void _paintCircle(Canvas canvas, int total, Rect chartRect) {
 Paint sectionPaint = Paint()..style = PaintingStyle.fill;

 double startAngle = -90;
 for (var i = 0; i < values.length; i++) {
 final value = values[i];
 final color = colors[i];

 double sweepAngle = ((value * 360.0) / total);

Widget Graphic Manipulations Chapter 14

[433]

 sectionPaint.color = color;
 canvas.drawArc(
 chartRect,
 startAngle * _toRadians,
 sweepAngle * _toRadians,
 true,
 sectionPaint,
);

 startAngle += sweepAngle;
 }
}

The sections of the chart are drawn sequentially. We need to know in which angle to start a
slice and where it goes up to, as a circle has 360º sweep angles. The drawArc method
from Canvas is based on specifying a start angle for the arc and its corresponding sweep
angle. We can get each of the slice's sweep angles by using a simple rule of
three calculation based on the total previously calculated.

The rule of three is a mathematical rule that allows us to solve direct and
inverse proportion problems.

With this in mind, let's see how we draw each of the slice arcs and form the whole chart:

First, we define startAngle. We chose -90º to start drawing the arcs. Using a1.
clock face analogy, this is equivalent to 12 o'clock. If we have chosen 0º to start,
this would be equivalent to 3 o'clock or, as stated in the drawArc method
documentation:

"...zero radians being the point on the right hand side of the oval that crosses the
horizontal line that intersects the center of the rectangle and with positive
angles going clockwise around the oval."

Widget Graphic Manipulations Chapter 14

[434]

Finally, we pass through each of the values to draw each of the arcs:2.
First, we calculate the arc sweep angle, which is nothing more than the1.
angle of an arc in the given circle. As said before, this is obtained from
a simple rule of three, where we question: If the total value is
equivalent to 360º sweep angle, what is the sweep angle (how much
degrees) of the current slice value?
Then, we set the color of our Paint object to the current slice color.2.
Our Paint object defined before has the PaintingStyle.fill style,
which means the shape drawn with this paint will be filled with the
given color. In our case, that is exactly what we want.
Lastly, we draw an arc that starts at the given startAngle property3.
and has sweepAngle (check out the following explanation).

Let's see how we can use the drawArc method from the Canvas class to draw our slices.
This is what the drawArc method looks like:

void drawArc (
 Rect rect,
 double startAngle,
 double sweepAngle,
 bool useCenter,
 Paint paint
)

Let's take a look at the values we passed to this function:

rect is used to guide the draw. The arc will be drawn inside the given rectangle,
with its sweep angle relative to the rectangle center.
startAngle defines where to start drawing the arc. Remember, 0º is equivalent
to 3 o'clock.
sweepAngle defines how much the arc takes from the oval. We calculate this
with total and each of the slice values.
useCenter helps us to manipulate how the arc is drawn, as mentioned in the
documentation:

"If its true, the arc is closed back to the center, forming a circle sector.
Otherwise, the arc is not closed, forming a circle segment."

Paint defines how our arc is drawn. Here, we make the arc filled with
the PaintingStyle.fill style and set its color with the given slice color.

Widget Graphic Manipulations Chapter 14

[435]

As you can see, we need to convert the angle values into radians before
sending them to the drawArc function.

The radial chart variant
To help you to understand the potential of using the CustomPaint widgets, let's create
another widget, this time to draw a radial chart, like this:

The radial representation is very similar to the pie chart; the only difference is that it has a
label in its center showing the total of the values.

Widget Graphic Manipulations Chapter 14

[436]

Defining a widget
The RadialChart widget is very similar to the PieChart widget defined before, with the
same parameters and the same fundamental objective. The only thing we need to take a
look at here is its build() method:

// part of radial_chart.dart RadialChart widget

 @override
 Widget build(BuildContext context) {
 return Row(
 children: <Widget>[
 Expanded(
 child: CustomPaint(
 painter: RadialChartPainter(
 values,
 colors,
 Theme.of(context).textTheme.display1,
 Directionality.of(context),
),
),
),
],
);
 }

As you can see, the difference is in the value passed to the painter property of
the CustomPaint widget. Here, we use a new RadialChartPainter class that has its own
paint() implementation. Besides the values and colors, we pass two additional
parameters to it:

TextStyle, which will be used to draw the total value label
A TextDirection instance that is needed to draw texts in the correct orientation

Defining CustomPainter
The RadialChartPainter class, like the RadialChart widget, differs in very specific
parts from PieChartPainter, which was defined before. At first glance, its paint()
method is almost the same as in the from pie chart:

// part of radial_chart.dart RadialChartPainter class

 @override
 void paint(Canvas canvas, Size size) {
 var center = Offset(size.width / 2, size.height / 2);

Widget Graphic Manipulations Chapter 14

[437]

 var radius = size.width * 0.75 / 2;

 Rect chartRect = Rect.fromCircle(
 center: center,
 radius: radius,
);

 int total = values.reduce((a, b) => a + b);

 _paintTotal(canvas, total, chartRect);
 _paintCircle(canvas, total, chartRect);
 }

As you can see, the only difference is the additional call to _paintTotal(canvas,
total, chartRect);.

Before we check this new method, let's first see what changes in the _paintCircle()
method:

// part of radial_chart.dart RadialChartPainter class
 void _paintCircle(Canvas canvas, int total, Rect chartRect) {
 Paint sectionPaint = Paint()
 ..style = PaintingStyle.stroke
 ..strokeWidth = 30.0;

 double startAngle = -90;
 for (var i = 0; i < values.length; i++) {
 final value = values[i];
 final color = colors[i];

 double sweepAngle = ((value * 360.0) / total);

 sectionPaint.color = color;
 canvas.drawArc(
 chartRect,
 (startAngle + 2) * _toRadians,
 (sweepAngle - 2)* _toRadians,
 false,
 sectionPaint,
);

 startAngle += sweepAngle;
 }
 }

Widget Graphic Manipulations Chapter 14

[438]

As you can see, almost everything is the same, with just a few points to note:

We have changed our sectionPaint style to PaintingStyle.stroke; this
way, the shape drawn with this paint will not be filled—instead, it will only have
its outline drawn. That's why we set the strokeWidth property also.
As you might have noted, before sending the angle values to the drawArc
function, we first add 2° to the startAngle and subtract 2° from the
sweepAngle value, leaving a little space between the slices to have a better
visual result.
Finally, we pass false to the useCenter parameter to form not a filled circle,
but an arc segment.

That's all we have changed to get a radial chart like this:

Widget Graphic Manipulations Chapter 14

[439]

Finally, looking at the text painting, we have the _paintTotal() method:

 void _paintTotal(Canvas canvas, int total, Rect chartRect) {
 final totalPainter = TextPainter(
 maxLines: 1,
 text: TextSpan(
 style: textStyle,
 text: "$total",
),
 textDirection: textDirection,
);

 totalPainter.layout(maxWidth: chartRect.width);
 totalPainter.paint(
 canvas,
 chartRect.center.translate(
 -totalPainter.width / 2.0,
 -totalPainter.height / 2.0,
),
);
 }

To draw a text into the canvas, we will follow these steps:

First, we instantiate a TextPainter object, which defines how a text will look1.
when drawn, just like the Paint class does for shapes. In our case, we define it to
be a single line and have its style and textDirection retrieved from the
RadialChart widget.
Then, we make sure to call the layout() function from the TextPainter2.
instance. This call will compute the visual position of the glyphs for painting the
text.
With the known text size, we can position it correctly in the final step. To3.
position the text exactly in the center of the chart, we simply translate the center
of the chart rectangle by half of the text size.

That's all for our CustomPaint widget. As you may have noticed, our charts look very
similar to each other. The biggest difference is in the defined painter. We can abstract these
to a single widget, where we can retrieve the desired chart type and just change the painter
that we send to the CustomPaint widget.

Widget Graphic Manipulations Chapter 14

[440]

Summary
In this chapter, we got to know how to change how our widgets look by using the
Transform class and its available transformations, such as scaling, translating, and
rotating. We also saw how we can compound transformation by using the Matrix4 class
directly.

We learned how the Canvas class can be used to take control of the widgets drawn and
how we can use this to create our own paintings.

Finally, we saw how the CustomPaint widget can be useful to create our own widgets that
have not just unique functionalities, but also unique appearances defined by
a CustomPainter descendant.

In the final chapter, we will check out how to animate widgets, making use of the
transformations learned here.

15
Animations

The built-in Flutter animations can be combined and extended to satisfy developer needs in
the UX. In this chapter, you will learn a lot more about animations, using Tween
animations to manage an animation timeline and curve, and useing AnimatedBuilder and
AnimatedWidget to add and combine beautiful animations.

The following topics will be covered in this chapter:

Getting to know the basics of Animations
Using Animations
Using AnimatedBuilder
Using AnimatedWidget

Introducing Animations
In Flutter, animations are widely supported, and the framework provides multiple ways of
animating widgets. Also, there are built-in ready-to-use animations that we only need to
plug into widgets to make them animate. Although Flutter abstracts many of the
complexities that animations involve, there are some important concepts we need to
understand before diving into the subject of animations.

The Animation<T> class
In Flutter, animations consist of a status and a value with the T type. The animation status
corresponds to its state (that is, if it's running or completed); its value corresponds to its
current value, and it is intended to change during the animation execution.

Animations Chapter 15

[442]

Besides holding that information about the animation, this class exposes callbacks so other
classes can know how the animations are running, and the animation's current status and
value too.

An Animation<T> class instance is only responsible for holding and exposing those values.
It does not know anything about visual feedback, what is drawn on screen, or how to draw
it (that is, build() functions).

One of the most common kinds of animation you will see is the Animation<double> type
representation, as the double value can easily be used to manipulate any kind of value in
the sense of proportional space.

The Animation class generates a sequence (not necessarily linear) of values between
determined minimum and maximum values. This process is also known as
interpolation and, as said before, this interpolation is not only linear—it can be defined as a
step function or a curve. Flutter provides multiple functions and facilities for operating
animations. They are as follows:

AnimationController: Despite what its name suggests, it is not used to control
animation objects, but helps in the control task of itself, as it extends
the Animation class and still is an animation.
CurvedAnimation: This is an animation that applies Curve to another
animation.
Tween: This helps to create a linear interpolation between a beginning and end
value.

The Animation class exposes ways of accessing its state and value during a running cycle.
Through status listeners, we can know when an animation begins, ends, or goes in the
reverse direction. By using its addStatusListener() method, we can, for example,
manipulate our widgets in response to animation start or end events. In the same way, we
can add value listeners with the addListener() method so we get notified every time the
animation value changes, and we can rebuild our widgets by using setState() {}.

Animations Chapter 15

[443]

AnimationController
AnimationController is one of the most used Flutter animation classes. It is derived
from Animation<double> class and adds some fundamental methods for manipulating
animations. The Animation class is the basis of animation in Flutter; as said before, it does
not have any animation control-related methods. AnimationController adds these
controls to the animation concept, such as the following:

Play and stop controls: AnimationController adds the ability to play the
animation forward, backward, or stop it
Duration: Real animations have a finite time to play, that is, they play for a while
and finish, or repeat
Allows setting the animation current value: This causes a stop of the animation
and notifies the status and value listeners
Allows defining the upper and lower bound of the animation: This is so that
we can know the deemed values before and after playing the animation

Let's check the AnimationController constructor and analyze its main properties:

AnimationController({
 double value,
 Duration duration,
 String debugLabel,
 double lowerBound: 0.0,
 double upperBound: 1.0,
 AnimationBehavior animationBehavior: AnimationBehavior.normal,
 @required TickerProvider vsync
})

As you can see, some properties are self-explanatory, but let's review them:

value: This is the initial value of the animation, and it defaults to lowerBound if
not specified.
duration: This is the duration of the animation.
debugLabel: This is a string to help during debugging. It identifies the controller
in debug output.
lowerBound: This cannot be null; it is the smallest value of the animation in
which it is deemed to be dismissed, typically the start value when running.
upperBound: Also, this cannot be null; it is the largest value of the animation at
which it is deemed to be complete, typically the end value when running.

Animations Chapter 15

[444]

animationBehavior: This configures how AnimationController behaves
when animations are disabled. If it's AnimationBehavior.normal, the
animation duration will be reduced, and if
it's AnimationBehavior.preserve, AnimationController will preserve its
behavior.
vsync: This is a TickerProvider instance the controller will use to obtain a
signal whenever a frame triggers.

Check all of the available methods for running animations with the
AnimationController class: https:/ /api. flutter. dev/ flutter/
animation/ AnimationController- class. html.

TickerProvider and Ticker
The TickerProvider interface describes objects capable of providing Ticker objects.

Tickers are used by any class that needs to know when the next frame is going to be built.
They are commonly used indirectly via AnimationControllers. When using the State
class, we can extend with
TickerProviderStateMixin or SingleTickerProviderStateMixin to
have TickerProvider and use it with AnimationController objects.

CurvedAnimation
The CurvedAnimation class is used to define the progression of an Animation class as a
non-linear curve. We can use this to modify an existing animation by changing its
interpolation method. It is also useful when we want to use a different curve when playing
an animation forward then in reverse mode, by using its curve and reverseCurve
properties respectively.

The Curves class defines many curves ready to use in our animation rather the
Curves.linear one.

https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html
https://api.flutter.dev/flutter/animation/AnimationController-class.html

Animations Chapter 15

[445]

Check out the Curves documentation page to see, in detail, how each of
the curves behave: https:/ / api. flutter. dev/ flutter/ animation/
Curves- class. html

Tween
Besides all of these classes, we have one that can help in specific tasks regarding the range
of the animation. As we have seen, by default, the simple start and end values of animation
are 0.0 and 1.0 respectively. We can, by using Tweens, change the range or type of
AnimationController without modifying it. Tweens can be of any type, and we can also
create our custom Tween class if we want. The point is, Tweens returns values at periods
between the beginning and the end, which you can pass as props to whatever you're
animating, so it's always getting updated; for example, we can change the size of a widget,
position, opacity, color, and so on by using specific Tweens for each one.

We also have other Tween descendant classes available such as the CurveTween class that
can modify an animation curve, or ColorTween, which creates interpolation between
Colors.

Using animations
When working with animations, we are not always going to be creating exactly the same
animation objects, but we can find some similarities in use cases. Tween objects are useful
for changing the type and range of an animation. We will be, most of the time, composing
animations with AnimationController, CurvedAnimation, and Tween instances.

Before we use a custom Tween implementation, let's revisit our widget transformations
from the last chapter by applying the transformation in an animated way. We will get the
same final effect but in a smooth and better way.

https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html

Animations Chapter 15

[446]

Rotate animation
Instead of changing the button rotation directly, we can instead make it progressive by
using the AnimationController class:

Check out the hands_on_animations example on GitHub for the
complete examples.

In this example, we are creating our widget in a very similar way to before (in Chapter 14,
Widget Graphic Manipulations):

_rotationAnimationButton() {
 return Transform.rotate(
 angle: _angle,
 child: RaisedButton(
 child: Text("Rotated button"),
 onPressed: () {
 if (_animation.status == AnimationStatus.completed) {
 _animation.reset();
 _animation.forward();
 }
 },
),
);
 }

Animations Chapter 15

[447]

As you can see, there are two important things to notice:

The angle value is now defined with an _angle property instead of directly
assigning to a literal
In the onPressed property, we check whether _animation is completed, and if
it is, we repeat it from the beginning

Now, let's see how the animation part is done. So, we need to know how to create
our AnimationController object and make it run. Let's take a look at our example class
first:

class _RotationAnimationsState extends State<RotationAnimations> with
SingleTickerProviderStateMixin {
 double _angle = 0.0;
 AnimationController _animation;
 ...
}

A few things are important to notice in this class:

We have the StatefulWidget object called RotationAnimations, to make use
of the SingleTickerProviderStateMixin class we've previously seen and
provide the required Ticker object for our controller to run.
Besides that, we have the _angle property, used to define our button's current
angle. We can use the setState() method to cause it to be built with a new
angle.
And finally, we have our _animation object, to hold an animation and allow us
to manage it.

The initState() function from our State class is the perfect place to set up the
animation and start it:

 @override
 void initState() {
 super.initState();

 _animation = createRotationAnimation();
 _animation.forward();
 }

Animations Chapter 15

[448]

As you can see, we define our animation through the createRotationAnimation()
method and make it run by calling its forward() function. Now, let's see how the
animation is defined:

createRotationAnimation() {
 var animation = AnimationController(
 vsync: this,
 debugLabel: "animations demo",
 duration: Duration(seconds: 3),
);

 animation.addListener(() {
 setState(() {
 _angle = (animation.value * 360.0) * _toRadians;
 });
 });

 return animation;
 }

We can break up the creation of the animation into two important parts:

There's the animation definition itself, where we set the animation
debugLabel property for debugging purposes; the vsync, so that it can have a
Ticker and know when to produce a new animation value; and finally, the
animation duration.
The second important step is to listen for the animation value changes. Here,
whenever the animation has a new value, we get and multiply it by 360 degrees,
so that we get a proportional rotation value.

As you can see, we can generate our desired values based on double animation values, so,
most of the time, Animation<double> will be enough to play with animations.

Animations Chapter 15

[449]

If we wanted to, we could add a different curve to the animation by using CurveTween, for
example, as you can see in the createBounceInRotationAnimation() method:

 createBounceInRotationAnimation() {
 var controller = AnimationController(
 vsync: this,
 debugLabel: "animations demo",
 duration: Duration(seconds: 3),
);

 var animation = controller.drive(CurveTween(
 curve: Curves.bounceIn,
));

 animation.addListener(() {
 setState(() {
 _angle = (animation.value * 360.0) * _toRadians;
 });
 });

 return controller;
 }

Here, we create another Animation instance by using the controller's drive() method and
passing the desired curve with a CurveTween object. Notice that we have added listeners to
the new animation object instead of the controller, as we want values relative to the curve.

An important point to notice is that we have to dispose of our AnimationController
class instance at the end of the lifetime of our State class to prevent leaks:

 @override
 void dispose() {
 _animation.dispose();
 super.dispose();
 }

This must be done for every kind of animation we do, as we will always be working with
AnimationController.

Now, let's see how to create scale animations.

Animations Chapter 15

[450]

Scale animation
To create a scale animation and have a better effect than changing the scale attribute
directly, we can use the AnimationController class again:

This time, to build our RaisedButton widget with a scale, we define a Transform widget
with the well-known Transform.scale constructor:

 _scaleAnimationButton() {
 return Transform.scale(
 scale: _scale,
 child: RaisedButton(
 child: Text("Scaled button"),
 onPressed: () {
 if (_animation.status == AnimationStatus.completed) {
 _animation.reverse();
 } else if (_animation.status == AnimationStatus.dismissed) {
 _animation.forward();
 }
 },
),
);
 }

Animations Chapter 15

[451]

Notice that, now, we use a _scale property in place and take a look at the change in
the onPressed method. Here, we play the animation in reverse mode by using
the reverse() function of AnimationController if it is completed, and play forward if it
is at its initial state (that is, after reversing it).

The creation of an animation object occurs in a very similar way to rotation animation, but
there are slight modifications to the controller construction:

 createScaleAnimation() {
 var animation = AnimationController(
 vsync: this,
 lowerBound: 1.0,
 upperBound: 2.0,
 debugLabel: "animations demo",
 duration: Duration(seconds: 2),
);

 animation.addListener(() {
 setState(() {
 _scale = animation.value;
 });
 });

 return animation;
 }

As you can see, now we change the controller's lowerBound and upperBound values to
make more sense in our case, as we want the button to grow until its size is twice as big,
and we do not want it to be smaller than its initial size (scale = 1.0). Besides that, we
change our animation value listener just to get the value from the animation without any
calculations.

Animations Chapter 15

[452]

Translate animation
Just like before, we can accomplish a better look in our translation transformation and make
it smoother by using AnimationController:

The construction of our widget is similar to before; the only exception is the usage of
the Transform.translate() construction. Now, we have a different value type than
double. Let's see what we need to change to make an Offset animation:

 createTranslateAnimation() {
 var controller = AnimationController(
 vsync: this,
 debugLabel: "animations demo",
 duration: Duration(seconds: 2),
);

Animations Chapter 15

[453]

 var animation = controller.drive(Tween<Offset>(
 begin: Offset.zero,
 end: Offset(70, 200),
));

 animation.addListener(() {
 setState(() {
 _offset = animation.value;
 });
 });

 return controller;
 }

As you can see, here, we used a different approach to modify our widget offset. We used a
Tween<Offset> instance, passed down to the AnimationController object through the
drive() method, just like we did with CurveTween before. This works because the
Offset class overrides mathematical operators such as subtraction and addition:

// part of geometry.dart file from dart:ui package
class Offset extends OffsetBase {
...
 Offset operator -(Offset other) => new Offset(dx - other.dx, dy -
 other.dy);
 Offset operator +(Offset other) => new Offset(dx + other.dx, dy +
 other.dy);
...
}

This makes the calculation of intermediate offsets (animation values) possible and then the
interpolation between two Offset values can be achieved.

Check the source code of the Offset class for details: https:/ /github.
com/flutter/ engine/ blob/ master/ lib/ui/ geometry. dart. Also, note
that to create custom interpolations, we typically write custom Tweens;
see the next example for more details.

Multiple transformations and custom Tween
If you remember, we can compose multiple transformations by using the Matrix4 class.
For animations, things are similar; we can combine animations, run one after another, and
play them—it's all in our hands. To create a composed animation, we can simply create
multiple transformation values based on a single Animation object.

https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart
https://github.com/flutter/engine/blob/master/lib/ui/geometry.dart

Animations Chapter 15

[454]

By doing that, we can achieve something like this:

Thinking in a simple way, we can follow these steps:

We can simply have multiple values defined in our class, like this:1.

class _ComposedAnimationsState extends State<ComposedAnimations>
 with SingleTickerProviderStateMixin {
 Offset _offset = Offset.zero;
 double _scale = 1.0;
 double _angle = 0.0;
 ...
}

And whenever the animation value changes, we can calculate our values based2.
on it:

animation.addListener(() {
 setState(() {
 _offset = Offset(animation.value * 70, animation.value *
 200);
 _scale = 1.0 + animation.value;
 _angle = 360 * animation.value;
 });
 });
}

Animations Chapter 15

[455]

And then, we apply the values we have calculated at each step of animation3.
execution in our build() method:

 _composedAnimationButton() {
 return Transform.translate(
 offset: _offset,
 child: Transform.rotate(
 angle: _angle * _toRadians,
 child: Transform.scale(
 scale: _scale,
 child: RaisedButton(
 child: Text("multiple animation"),
 onPressed: () {
 if (_animation.status == AnimationStatus.completed) {
 _animation.reverse();
 } else if (_animation.status ==
 AnimationStatus.dismissed) {
 _animation.forward();
 }
 },
),
),
),
);
 }

This works, and for simple cases it's best to keep it like this, as we have fewer objects to take
care of and a single animation to play.

To make it more maintainable, however, it's better to separate the value calculation from
the animation itself. That's how we can use Tweens; remember the Offset example, where
it is calculated and we simply get the value ready for use.

Custom Tween
To create a custom Tween class, first, we need to define our value object. Here, we have
opted for grouping the transformation values:

class ButtonTransformation {
 final double scale;
 final double angle;
 final Offset offset;

 // this none getter returns a initial state of transformation
 // with default scale, no rotation or translation
 static ButtonTransformation get none => ButtonTransformation(

Animations Chapter 15

[456]

 scale: 1.0,
 angle: 0.0,
 offset: Offset.zero,
);
}

And then, we extend the Tween class with our defined type:

class CustomTween extends Tween<ButtonTransformation> {

 CustomTween({ButtonTransformation begin, ButtonTransformation end}):
 super(begin: begin, end: end,);

 @override
 lerp(double t) {
 return super.lerp(t);
 }
}

We need to define our custom Tween lerp() method (lerp stands for linear interpolation),
which is responsible for returning the intermediate ButtonTransformation value
between begin and end, based on the t value.

By taking a look into the default Tween class's lerp() implementation, we can see it is very
simple:

// part of tween.dart Tween class

@protected
T lerp(double t) {
 assert(begin != null);
 assert(end != null);
 return begin + (end - begin) * t;
}

It calculates the lerp() value by using the +, -, and * operators on the type T objects. This
means we can simply implement those operators in our ButtonTransformation and
Tween will work as it does with any other type:

class ButtonTransformation {
 ...
 ButtonTransformation operator -(ButtonTransformation other) =>
 ButtonTransformation(
 scale: scale - other.scale,
 angle: angle - other.angle,
 offset: offset - other.offset,
);

Animations Chapter 15

[457]

 ButtonTransformation operator +(ButtonTransformation other) =>
 ButtonTransformation(
 scale: scale + other.scale,
 angle: angle + other.angle,
 offset: offset + other.offset,
);

 ButtonTransformation operator *(double t) => ButtonTransformation(
 scale: scale * t,
 angle: angle * t,
 offset: offset * t,
);
}

Now, the Tween class is able to generate intermediate ButtonTransformation values as
well. We can then use the generated animation values just like before:

 createCustomTweenAnimation() {
 var controller = AnimationController(
 vsync: this,
 debugLabel: "animations demo",
 duration: Duration(seconds: 3),
);

 var animation = controller.drive(CustomTween(
 begin: ButtonTransformation.none, // initial state of the animation
 end: ButtonTransformation(
 angle: 360.0,
 offset: Offset(70, 200),
 scale: 2.0,
)));

 animation.addListener(() {
 setState(() {
 _buttonTransformation = animation.value;
 });
 });

 return controller;
 }

As you can see, the big difference is in the usage of our CustomTween property. Note that
we always need to define begin and end values, as Tweens are based on a range defined
by the corresponding interpolation.

Animations Chapter 15

[458]

With those examples, we have seen how to use and apply the most important animations in
Flutter. In the next sections, we will see alternative ways of applying animations to our
widgets.

We can build multiple simultaneous animations using separate
Animation objects, typically by setting the same AnimationController
as their parent. They are guaranteed to be in sync as we will be using the
same Ticker object.

Using AnimatedBuilder
Looking at the code that we wrote in the last section, there is nothing wrong with it: it's not
too complex or big. However, looking closely, we can see a small problem with it, our
button animation is mixed up with other widgets. As long as our code does not scale and
get more complex, this is fine, but we know this is not the case most of the time, so we
might have a real problem.

The AnimatedBuilder class can help us with the task of separating responsibilities; our
widget, whether it is RaisedButton or anything else, does not need to know it is rendered
in animation, and breaking down the build method to widgets that each have a single
responsibility can be seen as one of the fundamental lemmas in the Flutter framework.

The AnimatedBuilder class
The AnimatedBuilder widget exists so that we can build complex widgets that wish to
include animation as part of a larger build function. Just like any other widget, it is included in
the widgets tree and has a child property. Let's check its constructor:

const AnimatedBuilder({
 Key key,
 @required Listenable animation,
 @required TransitionBuilder builder,
 Widget child
})

Animations Chapter 15

[459]

As you can see, we have a few important properties here, besides the well-known key
property:

animation: This is the proper animation as a Listenable object.
Listenable is a type that holds a list of listeners and notifies them whenever the
object changes. As you may already be thinking, AnimatedBuilder will listen
for animation updates, so we do not need to do it manually with
the addListener() method anymore.
builder: This is where we modify the child widget based on the animation
values.
child: This is the widget that exists regardless of the animation. So, we construct
this widget as we would do without the animation.

Revisiting our animation
To break down our code, modify our animation, and make it more maintainable, we start
separating what we need for each responsibility. Typically, three things are needed:

The animation itself: Here, we do not need to change anything. Our
AnimationController will still be the same.
Add the AnimatedBuilder widget to our build() method: We will be
extracting much of the code related to the animation of the button to make it
clear.
The child widget: In our case, it is just RaisedButton that changes according to
the progress of the animation:

class _AnimationBuilderAnimationsState extends
State<AnimationBuilderAnimations>
 with SingleTickerProviderStateMixin {
 AnimationController _controller;
 Animation<ButtonTransformation> _animation;

 @override
 void initState() {
 super.initState();

 _animation = createAnimation();
 _controller.forward();
 }
 ...
}

Animations Chapter 15

[460]

As you can see, we have a few changes here:

We do not have a ButtonTransformation field anymore, as it will be managed
in our new widget.
We separate the AnimationController from our Animation object. This is
very common and better than making type casting everywhere.
And finally, there's just a small detail in the createAnimation() method:

 createAnimation() {
 _controller = AnimationController(
 vsync: this,
 debugLabel: "animations demo",
 duration: Duration(seconds: 3),
);

 return _controller.drive(CustomTween(
 begin: ButtonTransformation.none,
 end: ButtonTransformation(
 angle: 360.0,
 offset: Offset(70, 200),
 scale: 2.0,
)));
 }

We do not need to listen for animation updates anymore (we do not have
an addListener() call), as this is done directly by the AnimatedBuilder widget.

Then, we modify the build() method to use a new widget:

 @override
 Widget build(BuildContext context) {
 return Container(
 color: Colors.grey,
 child: Center(
 child: ButtonTransition(
 animation: _animation,
 child: RaisedButton(
 child: Text("AnimatedBuilder animation"),
 onPressed: () {
 if (_controller.status == AnimationStatus.completed) {
 _controller.reverse();
 } else if (_controller.status == AnimationStatus.dismissed) {
 _controller.forward();
 }
 },
),
),

Animations Chapter 15

[461]

),
);
 }

As you can see, the animation is clearly separated from the creation of RaisedButton. We
instantiate and pass it to a new widget called ButtonTransition, together with our
_animation object. Let's see this brand new widget:

class ButtonTransition extends StatelessWidget {
 final Animation<ButtonTransformation> _animation;
 final RaisedButton child;

 const ButtonTransition({
 Key key,
 @required Animation<ButtonTransformation> animation,
 this.child,
 }) : _animation = animation,
 super(key: key);

 @override
 Widget build(BuildContext context) {
 return AnimatedBuilder(
 animation: _animation,
 child: child,
 builder: (context, child) => Transform(
 transform: Matrix4.translationValues(
 _animation.value.offset.dx,
 _animation.value.offset.dy,
 0,
)
 ..rotateZ(_animation.value.angle * _toRadians)
 ..scale(_animation.value.scale, _animation.value.scale),
 child: child,
),
);
 }
}

Basically, ButtonTransition handles the modification of its child (RaisedButton)
without touching it. The important steps of this build() method are as follows:

First, we add an AnimatedBuilder widget to the widget tree.1.
The child class passed to it will be passed back to us in the builder method2.
with optimizations in mind. The whole child subtree does not need to be rebuilt
every time the animation gets updated. Holding it and just placing again helps
the framework to rebuild only the needed widgets in the builder method.

Animations Chapter 15

[462]

The documentation says:

"Using this pre-built child is entirely optional, but can improve performance
significantly in some cases and is, therefore, a good practice."

The builder method constructs the tree below it with the3.
required animation changes. Note that we do not have to worry about listening
to the animation changes; this builder method will be called whenever the
animation is updated.

Although the final visual result is the same, breaking things down into small parts with
single responsibilities is an important concept that improves the maintainability of the code
and can lead to better performance.

Using AnimatedWidget
Separating our animation from widgets with the help of the AnimatedBuilder widget is
incredibly easy and can bring up may benefits, as we have seen. Flutter offers another
interesting alternative that does the same thing as the AnimatedBuilder widget with a
simpler syntax.

This is common when dealing with a well-structured framework such as Flutter; there is
typically more than one way of doing something, and it does not mean that there are
significant differences between one way or another. AnimatedWidget and
AnimatedBuilder are great examples of this. Both aim to separate the animation part from
the widget building part.

While the AnimatedBuilder widget delegates the creation of the widget to a builder
method, AnimatedWidget defines everything needed with relation to the animation and
we simply need to override its build() method to reflect animation updates. At the
end, AnimatedBuilder is itself an AnimatedWidget class.

Animations Chapter 15

[463]

The AnimatedWidget class
AnimatedWidget is an abstract class and, as we said before, we need to override its
build() method directly to reflect animation changes. Its constructor is defined as
follows:

const AnimatedWidget({
 Key key,
 @required Listenable listenable
})

As you can see, the only required property is the Listenable object so that it can listen to
animation updates. The whole widget build logic is the responsibility of its descending
class.

Rewriting the animation with AnimatedWidget
Using AnimatedWidget in our case would require us to simply modify our
ButtonTransition widget. However, as you remember, there is a concept behind this. To
follow this, we need to extend the AnimatedWidget class and transform our widget into an
animated button in its build() method.

We start by defining our new AnimatedWidget based widget:

class AnimatedButton extends AnimatedWidget {
 final RaisedButton button;

 const AnimatedButton({
 Key key,
 @required Listenable animation,
 this.button,
 }) : super(
 key: key,
 listenable: animation,
);

 @override
 Widget build(BuildContext context) {
 Animation<ButtonTransformation> animation = listenable;
 return Transform(
 transform: Matrix4.translationValues(
 animation.value.offset.dx,
 animation.value.offset.dy,
 0,
)

Animations Chapter 15

[464]

 ..rotateZ(animation.value.angle * _toRadians)
 ..scale(animation.value.scale, animation.value.scale),
 child: button,
);
 }
}

Now, we have defined our AnimatedButton widget derived from the AnimatedWidget
class. We can highlight two fundamental points here:

The only thing we need to pass to the super AnimatedWidget class is the
animation object, so it can listen to animation updates and rebuild itself at the
right time.
In the build() method, we access the animation from the listenable property
of the superclass and use the animation value just like before.

Choosing when to use AnimatedBuilder and AnimatedWidget may appear confusing at
first, but keeping in mind that both can bring up the same benefits helps with this decision.
Start by breaking down your widgets with a single responsibility in mind, and taking such
decisions will become natural.

Summary
In this final chapter, we dived into Flutter animations. We learned the fundamental
 concepts of animation, which are concept mainly defined by the Animation class.

We covered important classes that the framework provides, including
AnimationController, CurvedAnimation, and Tween. We also revisited our
Tranformation examples and added animations to them by using the concepts learned in
this chapter. Finally, we saw how to create our own custom Tween objects.

Lastly, we saw how to use AnimatedBuilder and AnimatedWidget to make our
animation code cleaner and easier to understand.

That's all, folks. In this book, I have tried to go over some basic but fundamental concepts of
this incredible platform. I hope you enjoyed and learned something: that's what motivates
us to continue.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

React Native Cookbook - Second Edition
Dan Ward

ISBN: 978-1-78899-192-6

Build UI features and components using React Native
Create advanced animations for UI components
Develop universal apps that run on phones and tablets
Leverage Redux to manage application flow and data
Expose both custom native UI components and application logic to React Native
Employ open-source third-party plugins to create React Native apps more
efficiently

https://www.packtpub.com/application-development/react-native-cookbook-second-edition

Other Books You May Enjoy

[466]

Xamarin.Forms Projects
Johan Karlsson, Daniel Hindrikes

ISBN: 978-1-78953-750-5

Set up a machine for Xamarin development
Get to know about MVVM and data bindings in Xamarin.Forms
Understand how to use custom renderers to gain platform-specific
access
Discover Geolocation services through Xamarin Essentials
Create an abstraction of ARKit and ARCore to expose as a single API
for the game
Learn how to train a model for image classification with Azure
Cognitive Services

https://www.packtpub.com/application-development/xamarinforms-projects

Other Books You May Enjoy

[467]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
abstract classes 51, 52, 53
abstraction 38
Ahead-Of-Time (AOT) 9
Android app
 configuring 252, 253, 254
Android plugin
 implementing 301, 302
Android Services
 reference link 400
Android view
 creating 331, 332, 333
Android virtual device (AVD) 120
Android-specific code
 adding, to execute Dart code in background 400
 BackgroundProcessService class 402, 404
 HandsOnBackgroundProcessPlugin class 400,

401, 402
Android
 apps, releasing for 371
 camera permission, declaring 324
 contact permission, adding 320
AndroidManifest
 about 371, 372
 application icon 373, 374
 application name 373, 374
 meta tags 372
 permissions 372
AnimatedBuilder class
 about 458, 459
 animation, revisiting 459, 461, 462
 using 458
AnimatedWidget class
 about 463
 used, for rewriting animation 463
 using 462

AnimationController class
 about 443
 concept 443
 properties 443
 reference link 444
animations
 about 441
 animation class 441, 442
 custom Tween 453, 454
 multiple transformations 453, 454, 455
 rotate animation 446, 447, 448, 449
 scale animation 450, 451
 translate animation 452
 using 445
AOT compilation 10
app code 142
app permissions
 managing 315
 managing, on Flutter 316
 managing, on Flutter with permission_handler

plugin 317
app screens
 app code 141, 142
 favors app, home screen 143, 145
 request favor screen 153, 154
App Store Connect 377
application packages
 about 72
 versus library packages 73
apps
 preparing, for deployment 370
 release mode 371
 releasing, for Android 371
 releasing, for iOS 377
arithmetic operators 20
async programming
 with Dart futures 84

[469]

 with Dart isolates 84

B
background execution, from iOS
 reference link 407
background isolate 398
background processes
 about 395, 396, 397
 calculation, initializing 397, 398
 compute() example 394, 395
 creating 392
 Flutter compute() function 392, 393
BackgroundProcessService class
 about 402, 404
 PluginRegistrantCallback property 405, 406
BitmapDescriptor class
 reference link 344
bitwise operators
 manipulating 22, 23
BoxFit enum
 reference link 218
brightness property 194
build.gradle
 about 371, 372
 app, signing 375, 376
 application ID and versions 374
built-in data types
 about 24
 BigInt type 25
 Booleans 25
 collections 25
 literals 27
 numbers 24
 string interpolation 26
 strings 26
built-in layout widgets
 about 139
 container widgets 139
built-in widgets
 about 132
 Image widget 133, 134, 135
 iOS Cupertino widgets 135
 Material Design widgets 135
 Text widget 133

C
callable classes 56, 57
camera permission
 declaring, on Android 324
 declaring, on iOS 324
 requesting, in Flutter 325
 requesting, with permission_handler plugin 323
canvas class, methods
 reference link 426
canvas class
 about 424, 425
 canvas ClipRect 425
 canvas transformation 425
 methods 425
 Paint object 426
canvas
 using 424
caret character 82
cascade notation 44
class inheritance
 about 50, 51
 toString() method 51
classes 37
Cloud Firestore
 about 268
 enabling, on Firebase 266, 267
 favors, loading 269, 271
 favors, saving on Firebase 272, 274
 favors, updating on Firebase 272
 used, with NoSQL database 265, 266
Cloud Storage
 with Firebase Storage 275
collections 269
CommonFinders class
 reference link 359
composed transformation 420, 421
composition 38
compute() example 394, 395
constructors
 about 42, 44, 45
 factory constructors 46, 47
 named constructors 45, 46
contact permission
 adding, on Android 320

[470]

 adding, on iOS 321
 adding, with permission_handler 320
 checking, in Flutter 321, 322
contact
 importing, from phone 317
 importing, with contact_picker plugin 318, 320
contact_picker plugin
 used, for importing contact 318, 320
container widgets
 about 139
 child widget, positioning 140
 child widget, styling 140
contrast specifications
 reference link 381
control flows 29
control flows, language tour
 reference link 29
Cupertino widgets
 reference link 205
Cupertino
 about 98
 practice 206, 207, 208
CupertinoApp 206
CupertinoPageRoute 222
CupertinoTextField class
 reference link 137
current clip region 425
current transformation 425
CurvedAnimation 444
Curves class
 reference link 444
custom fonts
 default font, overriding in app 210, 211
 importing, to Flutter project 208, 209, 210
 using 208
custom inputs widgets
 about 174
 creating 174
 example 175
custom theme 203, 205
custom Tween 455, 456, 458
custom widgets
 creating 157, 158
CustomPaint object
 about 428

 paint method 428
 shouldRepaint method 428
CustomPaint widget
 about 426
 construction details 426
 defining 430, 431
 descendant class, defining 431
 example 429
 paint method, overriding 432, 433, 434
 properties 427
 radial chart variant 435
 shouldRepaint method, overriding 431

D
Dart API 303
Dart classes
 about 42, 43
 accessors 42
 cascade notation 44
 class inheritance 50, 51
 constructor 42
 enum type 43, 44
 fields 42
 getters and setters, filed accessors 47, 48
 methods 42
 static fields 48, 49, 50
 static methods 48, 49, 50
Dart code
 AOT compilation 10
 JIT compilation 9
Dart development tools 11
Dart futures
 about 84, 85, 86, 87
 used, in async programming 84
Dart isolates
 about 88, 89
 used, in async programming 84
Dart language, structure
 about 19
 collections 33
 control flows 29
 Dart operators 19, 20
 Dart types 23
 Dart variables 23
 data structures 33

[471]

 function 29, 30
 generics 33
 looping 29
Dart language
 reference link 19
Dart libraries
 about 58
 creating 63, 64
 importing 59, 60
 library member privacy 64, 65
 library, definition 65
 path variants, importing 62, 63
 prefixes, importing 61, 62
 show and hide, importing 60
 using 59, 60
Dart Maps 26
Dart operators
 about 19, 20
 arithmetic operators 20
 bitwise operators, manipulating 22, 23
 decrement operators 21
 equality operators 21
 increment operators 21
 logical operators 22
 null-aware operators 23
 null-safe operators 23
 relational operators 21
 type casting operators 21, 22
 type checking operators 21, 22
Dart package, project structure
 file and directory 74
Dart package
 about 59, 72
 application packages 72
 application packages, versus library packages

72

 library packages 72
 package dependencies 79, 80
 project structure 73, 75
 project, initiating 296, 297, 298
 pubspec file 77, 78
 stagehand 75, 76, 77
 versus Flutter package 296
Dart script
 code 12, 13

Dart SDK
 tools 11
Dart test package 90
Dart types
 about 23
 built-in data types 24
 type inference 27, 28
Dart variables
 about 23
 final and const 23
Dart Virtual Machines (VMs) 9
Dart, benefits
 about 8
 garbage collection 8
 portability 8
 productive tooling 8
 statically typed 8
 type annotations 8
Dart, web development
 tools 12
Dart
 about 7
 evolution 8
 hands-on 10
 learning 15, 16
 maturity 17, 18
 OOP in 35
 OOP, features in 36
 used, for unit testing 90
 using, in Flutter framework 13
 working 9
DartPad tool
 about 10
 reference link 10
data 193
decrement operators 21
DevTools
 about 363, 364, 365
 Flutter inspector 369, 370
 reference link 365
document 269
documentation files 306
documentation
 adding, to package 305
 generating 307

[472]

drag gestures
 horizontal version drag 164
 pan version drag 166
 scale version drag 166, 167
 vertical version drag 165
Dynamic styling
 used, with MediaQuery 211
 with LayoutBuilder 211
 with MediaQuery 211
dynamic type 31

E
EdgeInsets class
 reference link 152
encapsulation 38
enum type 43, 44
equality operators 21

F
factory constructors 46, 47
favor tab
 tap gestures 181
FavorCards
 tap gestures 182
favors app, home screen
 about 143, 145
 layout code 145, 146, 147, 148, 149, 150, 152
favors screen 179, 181
Firebase AdMob
 account 281, 282
 account, creating 282, 283, 284, 285
 ads 280
 ads, displaying in Flutter 287, 288, 289
 in Flutter 285
 side note, on Android 287
 side note, on iOS 287
Firebase console tool
 reference link 248
Firebase ML Kit
 adding, to Flutter 290
 barcode scanning 290
 custom model inference 290
 image labeling 290
 label detector, used in Flutter 291, 292, 293,

294

 landmark recognition 290
 language identification 290
 Text recognition (OCR) 290
 used, in machine learning (ML) 290
Firebase Storage
 about 275, 276
 dependencies, adding 276
 files, uploading 276, 277, 278, 280
 used, in Cloud Storage 275
Firebase, technologies
 AdMob 247
 authentication 247
 cloud firestore 247
 cloud function 247
 firebase cloud messaging 247
 hosting 247
 machine learning kit 247
 performance monitoring 247
 realtime database 247
Firebase
 authentication 256, 257
 authentication screen 259
 authentication services, enabling 257, 258
 Flutter app, connecting to 252
 login status, updating 264, 265
 login with 260, 261
 overview 246
 profile, updating 264, 265
 setting up 247, 248, 249, 250, 251
 SMS code, verifying 263
 verification code, sending 261, 262
firebase_auth plugin
 reference link 262
first-class functions 36
Flutter and native
 communication between, with platform channel

389

Flutter app
 .arb files, generating with intl_translation 385,

386, 387
 about 389
 Android app, configuring 252, 253, 254
 AppLocalization class 383, 384
 compiling 14, 15
 connecting, to Firebase 252

[473]

 debugging 360
 debugging features 363
 dependencies 383
 DevTools 363, 364, 365
 FlutterFire plugin 255
 iOSapp, configuring 255
 localization, adding 382
 Observatory 360, 361, 362
 Observatory profiler 365
 profile mode 366, 367
 profiling 365
 translated resources, using 387, 388
Flutter compilation
 about 103, 104
 development compilation 104
 release compilation 104
 supported platforms 104
Flutter compute() function
 about 392, 393
 ReceivePort 393
 SendPort 393
Flutter development environment
 reference link 11
flutter doctor tool 103
Flutter framework
 Dart, using 13
 Flutter apps, compiling 14, 15
 Flutter hot reload, compiling 14, 15
 productivity, adding 14
Flutter Gallery
 installation link 135
Flutter hot reload
 compiling 14, 15
Flutter inspector
 in DevTools 369, 370
Flutter internationalization
 about 381
 flutter_localizations package 382
 intl package 382
 intl_translation package 382
Flutter issues
 reference link 396
Flutter logs
 reference link 363
Flutter package

 Dart packages 296
 plugin packages 296
 plugin packages, creating 298
 reference link 307
 versus Dart package 296
Flutter rendering
 about 105, 108
 framework 107
 OEM widgets 107
 web-based technologies 106
Flutter repository-related issues
 reference link 329
Flutter widget tree
 inspecting 368
 widget inspector 369
Flutter's gesture system
 gestures 161, 162
 pointer layers 160, 161
Flutter, accessibility components
 contrast 381
 large fonts 381
 screen readers 381
Flutter/Dart ecosystems 295
Flutter
 about 100, 101, 111, 112, 113, 114, 268
 accessibility 380, 381
 app permissions, managing on 316
 contact permission, checking 321, 322
 contact permission, requesting 321, 322
 executing 117, 118, 119, 120
 generated project, executing 117
 lib/main.dart file 117
 pubspec file 114, 116
 translations, adding to app 380
flutter_localizations package 382
flutter_test library
 reference link 360
flutter_test package
 about 357
 testWidgets function 357
FlutterFire dependency
 adding, to Flutter project 255, 256
FlutterFire plugin
 reference link 255
fonts

[474]

 reference link 209
FontStyle enum
 reference link 210
Form widget
 about 170
 InheritedWidget, using 171, 172
 key, using 171
 state, accessing 171
 used, for validating input 188
FormField state
 accessing 169, 170
FormField widget
 about 174
 Form state, accessing 171
 widget, turning into 177, 178, 179
Fuchsia OS 100, 101
function 29, 30
function parameters
 about 30
 anonymous functions 32
 lexical scope 33
 optional named parameters 32
 optional positional parameters 30, 31
 required parameters 30, 31

G
generics concept
 reference link 35
generics
 about 34, 35
 Dart literals, using 35
 need for 34
gestures
 double tap 163
 drag 164
 in material widgets 167
 pan 164
 press and hold 164
 scale 164
 tap 162
getters 47, 48
Google Developer Console
 reference link 350
Google Maps API integration
 on Android 341

 on iOS 341
Google Places API
 enabling 350
 google_maps_webservice plugin 351
 place address, obtaining with

google_maps_webservice plugin 351, 352,
353

 using 349
Google Translators Toolkit 382
google_maps_flutter plugin
 about 336, 337
 Google Maps API integration, on Android 341
 Google Maps API integration, on iOS 341
 map, displaying on Flutter 342, 343
 Maps API, enabling on Google Cloud Console

339, 340
 reference link 336
 used, for displaying map 338
GoogleMap class
 reference link 337
GoogleMapController
 about 348
 obtaining 348

H
HandsOnBackgroundProcessPlugin class 400,

401, 402
headless isolates 395
Hero animation 235
Hero transition
 implementing 236, 238, 240, 242, 243
Hero widget
 about 235, 236
 reference link 243
horizontal version drag 164
hot reload 14
Hummingbird 104

I
Image class, constructors
 references 134
Image widget 133, 134, 135
image_picker
 used, for taking pictures 323
implicit interfaces 38, 53

[475]

increment operators 21
inheritance 38
inherited widgets 122, 130, 131
Input (Forms)
 user input, validating 173
 validating 173
input widgets
 about 168
 creating 176, 177
 FormField widget 168
 TextField widget 168
input
 validating, Form widget used 188
integrated development environment (IDE) 8
interfaces 51, 53, 54
internationalization 201
interpolation 442
intl package 382
intl_translation package 382
iOS Cupertino widgets
 about 135, 205, 206
 reference link 135
iOS plugin
 implementing 302, 303
iOS view
 creating 333
iOS views, issues
 reference link 330
iOS, threading
 reference link 411
iOS-specific code
 adding, to execute Dart code in background 406
 SwiftHandsOnBackgroundProcessPlugin class

407, 408, 409, 411
iOS
 apps, releasing for 377
 camera permission, declaring 324
 contact permission, adding 321
iOSapp
 configuring 255
IsolateNameServer class 394

J
JavaScript compilation 9
JIT compilation 9

Just-In-Time (JIT) 9

L
lambda 32
last in first out (LIFO) 220
LayoutBuilder
 about 211, 213, 214
 dynamic styling, using 211
library documentation 306, 307
library member privacy 64, 65
library packages 72
library
 defining 65
 multiple-file library, export statement 69, 70, 71
 single-file library 65, 66
 splitting, into multiple files 66, 67, 68, 69
logical operators 22
looping 29

M
machine learning (ML)
 about 247
 with Firebase ML Kit 290
map camera
 animating, to location 349
map interactions
 adding 347
 GoogleMapController 348
 GoogleMapController, obtaining 348
 map camera, animating to location 349
 markers, adding 347, 348
map
 displaying 328, 329
 displaying, on Flutter 342, 343
 displaying, with google_maps_flutter plugin 338
 google_maps_flutter plugin 336, 337
 markers, adding 344
 platform view widget 329
 platform view widget, creating 330, 331
Maps API
 enabling, on Google Cloud Console 339, 340
Maps Platform
 reference link 339
MapType
 reference link 337

[476]

Marker class 344
markers
 adding, to GoogleMap widget 345, 346
 adding, to map 344
 Marker class 344
Material Design widgets, color tool
 reference link 204
Material Design widgets, components
 about 138
 buttons 136
 date and time pickers 138
 dialogs 137
 scaffold 136, 137
 selection widgets 138
 text fields 137
Material Design widgets, for Flutter platform
 reference link 198
Material Design widgets, icons
 reference link 116
Material Design widgets
 about 135, 198
 custom theme 203, 204, 205
 MaterialApp widget 199, 201
 reference link 135
 Scaffold widget 201, 203
MaterialApp widget 199, 201
MaterialPageRoute 222
Matrix4 class
 about 415
 reference link 415
MediaQuery
 about 214
 dynamic styling, using 211
 example 214, 217
 responsive classes 218
message codecs
 about 391, 392
 reference link 334
method channels 389
method invocations 300
MethodChannel 300
mixins
 about 51
 behavior, adding to class 54, 55, 56
mobile app development frameworks

 by Google 100
 comparison 95
 Dart 99, 100
 developer resources 101, 102, 103
 existing frameworks, difference between 96
 Flutter, problems solving 95, 96
 high performance 97
 open source framework 101
 tooling 101, 102, 103
 UI, control 97

N
named routes
 about 228
 arguments 230
 overview 229, 230
 results, retrieving from Route 231, 232
native and Flutter
 communication between, with platform channel

389

navigation history 221
navigation layer
 components 220
navigation stack 221
Navigator widget
 about 219, 220
 implementing 222, 223, 224, 225, 226
NoSQL database
 about 266
 with Cloud Firestore 265
null-aware operators 23
null-safe operators 23

O
object-oriented programming (OOP)
 in Dart 35
objects 37
Observatory profiler 365
Observatory UI address 361
Observatory
 about 360, 361, 362
 reference link 362
Offset class
 reference link 453
OOP, artifacts

[477]

 class 36
 enumerated class 36
 interface 36
 mixins 36
OOP, features
 abstraction 38
 composition 38
 encapsulation 38
 in Dart 36
 inheritance 38
 objects and classes 37
 polymorphism 39
Original Equipment Manufacturer (OEM) 97
Overlay widget 220
overloading 39

P
package dependencies
 about 79, 80
 source constraint 82, 83
 specifying 80, 81
 version constraint 81
package public API 74
package/plugin project
 creating 295, 296
package
 documentation files 306
 documentation, adding 305
 library documentation 306, 307
 publishing 308
PageRouteBuilder class
 about 233
 custom transition, in practice 233
 reference link 233
painters
 using 424
pan version 166
path variants
 absolute file path 63
 package 63
 relative file path 62
 URL, over web 63
performance overlay
 about 367, 368
 reference link 368

permission_handler
 used, for adding contact permission 320
 used, for requesting camera permission 323
phone's camera
 integrating 322
pictures
 taking, with image_picker 323
platform channels
 about 389, 390
 message codecs 391, 392
 reference link 391
 used, in communication between Flutter and

native 389
platform class
 about 197, 198
 reference link 198
platform view widget
 about 140, 329
 Android view, creating 331, 332, 333
 creating 330, 331
 enabling, on iOS 330
 iOS view, creating 333
 usage 334, 336
plugin package
 example 304
 using 304, 305
plugin project development
 recommendations 308, 309
plugin project structure
 about 298, 299
 Android plugin, implementing 301, 302
 Dart API 303
 iOS plugin, implementing 302, 303
 MethodChannel 300
PluginRegistrantCallback property 405, 406
pointer layers 161
polymorphism 39
profile mode, Flutter app
 performance overlay 367, 368
pubspec file 77, 78, 114, 116

R
radial chart variant
 about 435
 RadialChart widget, defining 436

[478]

 RadialChartPainter class, defining 436, 438,
439

ReceivePort 393
relational operators 21
release mode 371
Request a favor button
 user, tapping on 186
request favor screen
 about 153, 154
 layout code 154, 155, 156, 157
Requesting a favor screen
 about 187, 188
 close button 188
 SAVE button 188
rotate animation 446, 447, 448, 449
rotate transformation 416
rotate() factory constructor
 properties 418
Route widget 221
RouteSettings class
 reference link 221
RouteSettings instance 221
runes concept 27

S
Scaffold widget 201, 203
scale animation 450, 451
scale transformation 417
scale version drag 166, 167
screen transitions
 about 232
 PageRouteBuilder class 233
SendPort 393
Services APIs 108
setters 47, 48
single-file library 65, 66
Skia graphics engine 97
software development kit (SDK) 10
source constraint
 about 82, 83
 Git source 83
 hosted source 82
 path source 83
 SDK source 83
stagehand 75, 76, 77

stateful widgets
 about 124
 in code 124, 125, 127, 129
 versus stateless widgets 122
stateless widgets
 about 123
 in code 124, 125, 126
 versus stateful widgets 122
static code analysis, built-in analyzer
 reference link 14
static fields 48, 49, 50
static methods 48, 49, 50
status listeners 442
stepper widget
 reference link 260
SwiftHandsOnBackgroundProcessPlugin class

407, 408, 409, 411
syntactic sugar 44

T
TalkBack 381
tap gestures, on FavorCards
 about 182
 do action, handling 185, 186
 FavorsPage, modifying to StatefulWidget 182,

183, 184
 refuse action, handling 184, 185
tap gestures
 on favor tab 181
TensorFlow Lite
 reference link 290
Text widget 133
Text widget, properties
 reference link 133
TextField class
 reference link 137
TextField widget
 controller, using 169
theme widget
 about 191, 192, 193
 brightness property 194
 platform class 197, 198
 ThemeData property 193
 theming 195, 196, 197
ThemeData class

[479]

 reference link 193
ThemeData property 193
threads, in Android
 reference link 404
Ticker interface 444
TickerProvider interface 444
top-level functions 56, 58
toString() method 51
Transform class
 used, for transforming widget 413
Transform constructor
 properties 417
Transform widget 414
Transform.translate() factory constructor
 properties 420
transformation
 applying, to widget 421
transformations, types
 composed transformation 420, 421
 exploring 415
 rotate transformation 416
 scale transformation 417
 translate transformation 418
transitive dependencies 72
translate animation 452
translate transformation 418
true object-oriented language 36
Tween 445
type casting operators 21, 22
type checking operators 21, 22
type inference 27, 28

U
UI, with widgets
 app screens 141
 creating 141
unit testing, in Flutter app 356
unit testing
 with Dart 89
unit tests
 writing 90, 91, 92, 93
URL, from app
 flutter_linkify plugin 312, 313
 launching 310, 311
 link, displaying 311

URL, from Flutter app
 launching 314
 url_launcher plugin 314, 315
user gestures
 handling 160
user interface (UI) 97

V
variables 56, 58
version constraint
 about 81, 82
 any/empty 81
 concrete version 81
 minimal bound 81
 range 82
 semantic range 82
vertical version drag 165
Virtual Machines (VMs) 9
VoiceOver 381

W
widget inspector 369
widget key property 132
widget testing, in Flutter app
 about 356, 357
 example 358, 359, 360
 flutter_test package 357
widget
 about 108, 109, 110
 composability 109
 for animations 140
 for gestures 140
 for transformations 140
 immutability 109
 multiple transformation, applying 423, 424
 rotating 421, 422
 scaling 422
 transformation, applying 421
 transforming, with Transform class 413
 translating 422
 tree 110, 111
 turning, into FormField widget 177, 178, 179
 used, for creating UI 141
WidgetsApp 226, 227, 228

X
Xcode
 about 378

 AdMob 378
 application details 378
 apps, signing 378, 379
 Bundle ID 378

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Introduction to Dart
	Chapter 1: An Introduction to Dart
	Getting started with Dart
	The evolution of Dart
	How Dart works
	Dart VM and JavaScript compilation

	Hands-on Dart
	DartPad
	Dart development tools
	Hello world

	Understanding why Flutter uses Dart
	Adding productivity
	Compiling Flutter apps and hot reload

	Easy learning
	Maturity

	Introducing the structure of the Dart language
	Dart operators
	Arithmetic operators
	Increment and decrement operators
	Equality and relational operators
	Type checking and casting
	Logical operators
	Bits manipulation
	Null-safe and null-aware operators

	Dart types and variables
	final and const
	Built-in types
	Numbers
	BigInt
	Booleans
	Collections
	Strings
	String interpolation
	Literals

	Type inference – bringing dynamism to the show

	Control flows and looping
	Functions
	Function parameters

	Data structures, collections, and generics
	Generics
	When and why to use generics
	Generics and Dart literals

	Introduction to OOP in Dart
	Dart OOP features
	Objects and classes
	Encapsulation
	Inheritance and composition
	Abstraction
	Polymorphism

	Summary
	Further reading

	Chapter 2: Intermediate Dart Programming
	Dart classes and constructors
	The enum type
	The cascade notation
	Constructors
	Named constructors
	Factory constructors

	Field accessors – getters and setters
	Static fields and methods
	Class inheritance
	The toString() method

	Interfaces, abstract classes, and mixins
	Abstract classes
	Interfaces
	Mixins – adding behavior to a class
	Callable classes, top-level functions, and variables
	Callable classes
	Top-level functions and variables

	Understanding Dart libraries and packages
	Importing and using a library
	Importing show and hide
	Importing prefixes to libraries
	Importing path variants

	Creating Dart libraries
	Library member privacy
	The library definition
	A single-file library
	Splitting libraries into multiple files
	A multiple-file library – the export statement

	Dart packages
	Application packages versus library packages

	Package structures
	Stagehand – the Dart project generator
	The pubspec file
	Package dependencies – pub
	Specifying dependencies
	The version constraint
	The source constraint

	Introducing async programming with Futures and Isolates
	Dart Futures
	Dart Isolates

	Introducing unit testing with Dart
	The Dart test package
	Writing unit tests

	Summary

	Chapter 3: An Introduction to Flutter
	Comparisons with other mobile app development frameworks
	The problems Flutter wants to solve
	Differences between existing frameworks
	High performance
	Full control of the UI
	Dart
	Being backed by Google
	Fuchsia OS and Flutter

	Open source framework
	Developer resources and tooling

	Flutter compilation (Dart)
	Development compilation
	Release compilation
	Supported platforms

	Flutter rendering
	Web-based technologies
	Framework and OEM widgets
	Flutter – rendering by itself

	Widgets introduction
	Composability
	Immutability
	Everything is a widget
	The widget tree

	Hello Flutter
	pubspec file
	Running the generated project
	lib/main.dart file
	Flutter run

	Summary

	Section 2: The Flutter User Interface - Everything is a Widget
	Chapter 4: Widgets: Building Layouts in Flutter
	Stateful versus stateless widgets
	Stateless widgets
	Stateful widgets
	Stateful and stateless widgets in code
	Stateless widget in code
	Stateful widgets in code

	Inherited widgets
	Widget key property

	Built-in widgets
	Basic widgets
	The Text widget
	The Image widget
	Material Design and iOS Cupertino widgets
	Buttons
	Scaffold
	Dialogs
	Text fields
	Selection widgets
	Date and time pickers
	Other components

	Understanding built-in layout widgets
	Containers
	Styling and positioning
	Other widgets (gestures, animations, and transformations)

	Creating a UI with widgets (favor manager app)
	The app screens
	The app code
	Favors app home screen
	The layout code

	The request favor screen
	The layout code

	Creating custom widgets
	Summary

	Chapter 5: Handling User Input and Gestures
	Handling user gestures
	Pointers
	Gestures
	Tap
	Double tap
	Press and hold
	Drag, pan, and scale
	Horizontal drag
	Vertical drag
	Pan
	Scale

	Gestures in material widgets

	Input widgets
	FormField and TextField
	Using a controller
	Accessing FormField state

	Form
	Accessing Form state
	Using a key
	Using InheritedWidget

	Validating Input (Forms)
	Validating user input

	Custom input and FormField
	Creating custom inputs
	Custom input widget example
	Creating an Input widget
	Turn the widget into a FormField widget

	Putting it all together
	Favors screen
	Tap gestures on the favor tab
	Tap gestures on FavorCards
	Making FavorsPage a StatefulWidget
	Refuse action handling
	Do action handling

	Tap on Request a favor button

	The Requesting a favor screen
	The close button
	The SAVE button
	Validating input using the Form widget

	Summary

	Chapter 6: Theming and Styling
	Theme widgets
	Theme widget
	ThemeData
	Brightness

	Theming in practice
	Platform class

	Material Design
	MaterialApp widget
	Scaffold widget
	Custom theme

	iOS Cupertino
	CupertinoApp
	Cupertino in practice

	Using custom fonts
	Importing fonts to the Flutter project
	Overriding the default font in the app

	Dynamic styling with MediaQuery and LayoutBuilder
	LayoutBuilder
	MediaQuery
	MediaQuery example

	Additional responsive classes

	Summary

	Chapter 7: Routing: Navigating between Screens
	Understanding the Navigator widget
	Navigator
	Overlay
	Navigation stack/history

	Route
	RouteSettings

	MaterialPageRoute and CupertinoPageRoute
	Putting it all together
	The WidgetsApp way

	Named routes
	Moving to named routes
	Arguments

	Retrieving results from Route

	Screen transitions
	PageRouteBuilder
	Custom transitions in practice

	Hero animations
	The Hero widget
	Implementing Hero transitions

	Summary

	Section 3: Developing Fully Featured Apps
	Chapter 8: Firebase Plugins
	Firebase overview
	Setting up Firebase
	Connecting the Flutter app to Firebase
	Configuring an Android app
	Configuring iOS app
	FlutterFire
	Adding the FlutterFire dependency to the Flutter project

	Firebase authentication
	Enabling Authentication services in Firebase
	Authentication screen
	Logging in with Firebase
	Sending verification code
	Verifying the SMS code
	Updating the profile and login status

	NoSQL database with Cloud Firestore
	Enabling Cloud Firestore on Firebase
	Cloud Firestore and Flutter
	Loading favors from Firestore
	Updating favors on Firebase
	Saving a favor on Firebase

	Cloud Storage with Firebase Storage
	Introduction to Firebase Storage
	Adding Flutter Storage dependencies
	Uploading files to Firebase

	Ads with Firebase AdMob
	AdMob account
	Creating an AdMob account
	AdMob in Flutter
	Side note on Android
	Side note on iOS

	Showing ads in Flutter

	ML with Firebase ML Kit
	Adding ML Kit to Flutter
	Using the label detector in Flutter

	Summary

	Chapter 9: Developing Your Own Flutter Plugin
	Creating a package/plugin project
	Flutter packages versus Dart packages
	Starting a Dart package project
	Starting a Flutter plugin package

	A plugin project structure
	MethodChannel
	Implementing the Android plugin
	Implementing the iOS plugin
	The Dart API
	An example of plugin package
	Using the plugin

	Adding documentation to the package
	Documentation files
	Library documentation
	Generating documentation

	Publishing a package
	Plugin project development recommendations
	Summary

	Chapter 10: Accessing Device Features from the Flutter App
	Launching a URL from the app
	Displaying a link
	The flutter_linkify plugin

	Launching a URL
	The url_launcher plugin

	Managing app permissions
	Managing permissions on Flutter
	Using the permission_handler plugin

	Importing a contact from the phone
	Importing a contact with contact_picker
	Contact permission with permission_handler
	Contact permission on Android
	Contact permission on iOS
	Checking and requesting permission in Flutter (permission_handler)

	Integrating the phone's camera
	Taking pictures with image_picker
	Camera permission with permission_handler
	Camera permission on Android
	Camera permission on iOS
	Requesting camera permission in Flutter (permission_handler)

	Summary

	Chapter 11: Platform Views and Map Integration
	Displaying a map
	Platform views
	Enabling platform views on iOS

	Creating a platform view widget
	Creating an Android view
	Creating an iOS view
	Usage of a platform view widget

	Getting started with the google_maps_flutter plugin
	Displaying a map with the google_maps_flutter plugin
	Enabling the Maps API on Google Cloud Console
	Google Maps API integration on Android
	Google Maps API integration on iOS
	Displaying a map on Flutter

	Adding markers to the map
	The Marker class
	Adding markers in the GoogleMap widget

	Adding map interactions
	Adding markers dynamically
	GoogleMapController
	Getting GoogleMapController
	Animating a map camera to a location

	Using the Google Places API
	Enabling the Google Places API
	Getting started with the google_maps_webservice plugin
	Getting a place address using the google_maps_webservice plugin

	Summary

	Section 4: Advanced Flutter - Resources to Complex Apps
	Chapter 12: Testing, Debugging, and Deployment
	Flutter testing – unit and widget testing
	Widget tests
	The flutter_test package
	The testWidgets function

	Widget test example

	Debugging Flutter apps
	Observatory
	Additional debugging features
	DevTools

	Profiling Flutter apps
	The Observatory profiler
	Profile mode
	Performance overlay

	Inspecting the Flutter widget tree
	Widget inspector
	The Flutter inspector in DevTools

	Preparing apps for deployment
	Release mode
	Releasing apps for Android
	AndroidManifest and build.gradle
	AndroidManifest – permissions
	AndroidManifest – meta tags
	AndroidManifest – application name and icon
	build.gradle – application ID and versions
	build.gradle – signing the app

	Releasing apps for iOS
	App Store Connect
	Xcode
	Xcode – application details and Bundle ID
	Xcode – AdMob
	Xcode – signing the app

	Summary

	Chapter 13: Improving User Experience
	Accessibility in Flutter and adding translations to apps
	Flutter's support for accessibility
	Flutter internationalization
	The intl package
	The intl_translation package
	The flutter_localizations package

	Adding localizations to a Flutter app
	Dependencies
	The AppLocalization class
	Generating .arb files with intl_translation
	Using translated resources

	Communication between native and Flutter with platform channels
	Platform channel
	Message codecs

	Creating background processes
	The Flutter compute() function
	SendPort and ReceivePort
	IsolateNameServer

	A compute() example
	Full background process
	Init the calculation
	The background isolate

	Adding Android-specific code to run Dart code in the background
	The HandsOnBackgroundProcessPlugin class
	The BackgroundProcessService class
	The PluginRegistrantCallback property

	Adding iOS-specific code to run Dart code in the background
	The SwiftHandsOnBackgroundProcessPlugin class

	Summary

	Chapter 14: Widget Graphic Manipulations
	Transforming widgets with the Transform class
	The Transform widget
	Understanding the Matrix4 class

	Exploring the types of transformations
	Rotate transformation
	Scale transformation
	Translate transformation
	Composed transformations

	Applying transformations to your widgets
	Rotating widgets
	Scaling widgets
	Translating widgets
	Applying multiple transformations

	Using custom painters and canvas
	The Canvas class
	Canvas transformations
	Canvas ClipRect
	Methods
	The Paint object

	The CustomPaint widget
	CustomPaint construction details

	The CustomPainter object
	The paint method
	The shouldRepaint method

	A practical example
	Defining a widget
	Defining CustomPainter
	Overriding the shouldRepaint method
	Overriding the paint method

	The radial chart variant
	Defining a widget
	Defining CustomPainter

	Summary

	Chapter 15: Animations
	Introducing Animations
	The Animation<T> class
	AnimationController
	TickerProvider and Ticker

	CurvedAnimation
	Tween

	Using animations
	Rotate animation
	Scale animation
	Translate animation
	Multiple transformations and custom Tween
	Custom Tween

	Using AnimatedBuilder
	The AnimatedBuilder class
	Revisiting our animation

	Using AnimatedWidget
	The AnimatedWidget class
	Rewriting the animation with AnimatedWidget

	Summary

	Other Books You May Enjoy
	Index

