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7.3     Our hot dog-detecting network, with the activations
providing input to the output neuron ŷ highlighted

7.4     Our food-detecting network, now with three softmax
neurons in the output layer
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Keras Jupyter notebook
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9.1     Histogram of the a activations output by a layer of sigmoid
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normal distribution
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10.3   This schematic diagram demonstrates how the activation
values in a feature map are calculated in a convolutional
layer
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10.11 A schematic representation of a residual module

10.12 Shown at left is the conventional representation of
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separate images by the Faster R-CNN algorithm)
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11.5   Clean, preprocessed sentence from the Project Gutenberg
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from Project Gutenberg
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representation of the word-vector space we created from
the Project Gutenberg corpus
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12.10 Fake apple sketches generated after 100 epochs of training
our GAN

12.11 Fake apple sketches after 200 epochs of training our GAN

12.12 Fake apple sketches after 1,000 epochs of training our
GAN

12.13 GAN training loss over epochs



12.14 GAN training accuracy over epochs

13.1   The objective of the Cart-Pole game is to keep the brown
pole balanced upright on top of the black cart for as long
as possible

13.2   The Cart-Pole game ends early if the pole falls toward
horizontal or the cart is navigated off-screen

13.3   The reinforcement learning loop (top; a rehashed version
of Figure 4.3, provided again here for convenience) can be
considered a Markov decision process, which is defined by
the five components S, A, R, ℙ, and γ (bottom)

13.4   Based on the discount factor γ, in a Markov decision
process more-distant reward is discounted relative to
reward that’s more immediately attainable

13.5   The policy function π enables an agent to map any state s
(from the set of all possible states S) to an action a from
the set of all possible actions A

13.6   The biggest star in the field of reinforcement learning,
Richard Sutton has long been a computer science
professor at the University of Alberta

13.7   As in Figure 13.4, here we use the Pac-Man environment
(with a green trilobite representing a DQN agent in place
of the Mr. Pac-Man character) to illustrate a
reinforcement learning concept

13.8   The performance of our DQN agent during its first 10
episodes playing the Cart-Pole game

13.9   The performance of our DQN agent during its final 10
episodes playing the Cart-Pole game

13.10 An experiment run with SLM Lab, investigating the



impact of various hyperparameters (e.g., hidden-layer
architecture, activation function, learning rate) on the
performance of a DQN agent within the Cart-Pole
environment

13.11 The broad categories of deep reinforcement learning
agents

13.12 The actor-critic algorithm combines the policy gradient
approach to reinforcement learning (playing the role of
actor) with the Q-learning approach (playing the role of
critic)

14.1   Following our pixel-by-pixel rendering of an MNIST digit
(Figure 5.3), this is an example of an image from the
Fashion-MNIST dataset

14.2   The wide and deep model architecture concatenates
together inputs from two separate legs

14.3   A plot of training loss (red) and validation loss (blue) over
epochs of model training

14.4   A strictly structured grid search (shown in the left-hand
panel) is less likely to identify optimal hyperparameters
for a given model than a search over values that are
sampled randomly over the same hyperparameter ranges
(right-hand panel)

14.5   The relative Google search frequency (from October 2015
to February 2019) of five of the most popular deep
learning libraries

14.6   Andrej Karpathy is the director of AI at Tesla, the
California-based automotive and energy firm

14.7   Trilobyte waving good-bye



Tables

2.1     Contrasting attributes of localist, one-hot representations
of words with distributed, vector-based representations

2.2     Traditional machine learning and deep learning
representations, by natural language element

8.1     Cross-entropy costs associated with selected example
inputs

11.1   Comparison of word2vec architectures

11.2   The words most similar to select test words from our
Project Gutenberg vocabulary

11.3   A confusion matrix

11.4   Four hot dog / not hot dog predictions

11.5   Four hot dog / not hot dog predictions, now with
intermediate ROC AUC calculations

11.6   Comparison of the performance of our sentiment classifier
model architectures

14.1   Fashion-MNIST categories



Examples

5.1     Software dependencies for shallow net in Keras

5.2     Loading MNIST data

5.3     Flattening two-dimensional images to one dimension

5.4     Converting pixel integers to floats

5.5     Converting integer labels to one-hot

5.6     Keras code to architect a shallow neural network

5.7     Keras code to train our shallow neural network

8.1     Keras code to architect an intermediate-depth neural
network

8.2     Keras code to compile our intermediate-depth neural
network

8.3     Keras code to train our intermediate-depth neural
network

9.1     Weight initialization with values sampled from standard
normal distribution

9.2     Architecture for a single dense layer of sigmoid neurons

9.3     Weight initialization with values sampled from Glorot
normal distribution

9.4     Additional dependencies for deep net in Keras

9.5     Deep net in Keras model architecture

9.6     Deep net in Keras model compilation



9.7     Regression model dependencies

9.8     Regression model network architecture

9.9     Compiling a regression model

9.10   Fitting a regression model

9.11   Predicting the median house price in a particular suburb
of Boston

9.12   Using TensorBoard while fitting a model in Keras

10.1   Dependencies for LeNet in Keras

10.2   Retaining two-dimensional image shape

10.3   CNN model inspired by LeNet-5

10.4   CNN model inspired by AlexNet

10.5   CNN model inspired by VGGNet

10.6   Loading the VGGNet19 model for transfer learning

10.7   Adding classification layers to transfer-learning model

10.8   Defining data generators

10.9   Train transfer-learning model

11.1   Converting a sentence to lowercase

11.2   Removing stop words and punctuation with a list
comprehension

11.3   Adding word stemming to our list comprehension

11.4   Detecting collocated bigrams

11.5   Removing capitalization and punctuation from Project
Gutenberg corpus

11.6   Detecting collocated bigrams with more conservative
thresholds

11.7   Creating a “clean” corpus that includes bigrams



11.8   Running word2vec

11.9   t-SNE for dimensionality reduction

11.10 Static two-dimensional scatterplot of word-vector space

11.11 Interactive bokeh plot of two-dimensional word-vector
data

11.12 Loading sentiment classifier dependencies

11.13 Setting dense sentiment classifier hyperparameters

11.14 Loading IMDb film review data

11.15 Printing the number of tokens in six reviews

11.16 Printing a review as a character string

11.17 Print full review as character string

11.18 Standardizing input length by padding and truncating

11.19 Dense sentiment classifier architecture

11.20 Compiling our sentiment classifier

11.21 Creating an object and directory for checkpointing model
parameters after each epoch

11.22 Fitting our sentiment classifier

11.23 Loading model parameters

11.24 Predicting ŷ for all validation data

11.25 Printing a full validation review

11.26 Plotting a histogram of validation data ŷ values

11.27 Calculating ROC AUC for validation data

11.28 Creating a ydf DataFrame of y and ŷ values

11.29 Ten cases of negative validation reviews with high ŷ scores

11.30 Ten cases of positive validation reviews with low ŷ scores

11.31 Additional CNN dependencies



11.32 Convolutional sentiment classifier hyperparameters

11.33 Convolutional sentiment classifier architecture

11.34 RNN sentiment classifier hyperparameters

11.35 RNN sentiment classifier architecture

11.36 LSTM sentiment classifier hyperparameters

11.37 LSTM sentiment classifier architecture

11.38 Bidirectional LSTM sentiment classifier architecture

11.39 Stacked recurrent model architecture

11.40 Multi-ConvNet sentiment classifier hyperparameters

11.41 Multi-ConvNet sentiment classifier architecture

12.1   Generative adversarial network dependencies

12.2   Loading the Quick, Draw! data

12.3   Discriminator model architecture

12.4   Compiling the discriminator network

12.5   Generator model architecture

12.6   Adversarial model architecture

12.7   Compiling the adversarial network

12.8   GAN training

12.9   Plotting our GAN training loss

12.10 Plotting our GAN training accuracy

13.1   Cart-Pole DQN hyperparameters

13.2   A deep Q-learning agent

13.3   DQN agent interacting with an OpenAI Gym environment

14.1   Dependencies for building a Keras layer-based deep net in
TensorFlow without loading the Keras library



Foreword

Machine learning is considered by many to be the future of
statistics and computer engineering as it reshapes customer
service, design, banking, medicine, manufacturing, and hosts of
other disciplines and industries. It is hard to overstate its
impact on the world so far and the changes it will bring about in
the coming years and decades. Of the multitude of machine
learning methods applied by professionals, such as penalized
regression, random forests, and boosted trees, perhaps the most
excitement-inducing is deep learning.

Deep learning has revolutionized computer vision and
natural language processing, and researchers are still finding
new areas to transform with the power of neural networks. Its
most profound impact is often seen in efforts to replicate the
human experience, such as the aforementioned vision and
language processing, and also audio synthesis and translations.
The math and concepts underlying deep learning can seem
daunting, unnecessarily deterring people from getting started.

The authors of Deep Learning Illustrated challenge the
traditionally perceived barriers and impart their knowledge
with ease and levity, resulting in a book that is enjoyable to
read. Much like the other books in this series—R for Everyone,
Pandas for Everyone, Programming Skills for Data Science,
and Machine Learning with Python for Everyone—this book is



welcoming and accessible to a broad audience from myriad
backgrounds. Mathematical notation is kept to a minimum and,
when needed, the equations are presented alongside
understandable prose. The majority of insights are augmented
with visuals, illustrations, and Keras code, which is also
available as easy-to-follow Jupyter notebooks.

Jon Krohn has spent many years teaching deep learning,
including a particularly memorable presentation at the New
York Open Statistical Programming Meetup—the same
community from which he launched his Deep Learning Study
Group. His mastery of the subject shines through in his writing,
giving readers ample education while at the same time inviting
them to be excited about the material. He is joined by Grant
Beyleveld and Aglaé Bassens who add their expertise in
applying deep learning algorithms and skillful drawings.

Deep Learning Illustrated combines theory, math where
needed, code, and visualizations for a comprehensive treatment
of deep learning. It covers the full breadth of the subject,
including densely connected networks, convolutional neural
nets, recurrent neural nets, generative adversarial networks,
and reinforcement learning, and their applications. This makes
the book the ideal choice for someone who wants to learn about
neural networks with practical guidance for implementing
them. Anyone can, and should, benefit from, as well as enjoy,
their time spent reading along with Jon, Grant, and Aglaé.

—Jared Lander
Series Editor



Preface

Commonly called brain cells, billions of interconnected neurons
make up your nervous system, and they enable you to sense, to
think, and to take action. By meticulously staining and
examining thin slices of brain tissue, the Spanish physician
Santiago Cajal (Figure P.1), was the first  to identify neurons
(Figure P.2), and in the early half of the twentieth century,
researchers began to shed light on how these biological cells
work. By the 1950s, scientists inspired by our developing
understanding of the brain were experimenting with computer-
based artificial neurons, linking these together to form
artificial neural networks that loosely mimic the operation of
their natural namesake.

1. Cajal, S.-R. (1894). Les Nouvelles Idées sur la Structure du Système Nerveux chez
l’Homme et chez les Vertébrés. Paris: C. Reinwald & Companie.
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Figure P.1 Santiago Cajal (1852–1934)

Figure P.2 A hand-drawn diagram from Cajal’s (1894)
publication showing the growth of a neuron (a–e) and

contrasting neurons from frog (A), lizard (B), rat (C), and
human (D) samples

Armed with this brief history of neurons, we can define the



term deep learning deceptively straightforwardly: Deep
learning involves a network in which artificial neurons—
typically thousands, millions, or many more of them—are
stacked at least several layers deep. The artificial neurons in the
first layer pass information to the second, the second to the
third, and so on, until the final layer outputs some values. That
said, as we literally illustrate throughout this book, this simple
definition does not satisfactorily capture deep learning’s
remarkable breadth of functionality nor its extraordinary
nuance.

As we detail in Chapter 1, with the advent of sufficiently
inexpensive computing power, sufficiently large datasets, and a
handful of landmark theoretical advances, the first wave of the
deep learning tsunami to hit the proverbial shore was a
standout performance in a leading machine vision competition
in 2012. Academics and technologists took note, and in the
action-packed years since, deep learning has facilitated
countless now-everyday applications. From Tesla’s Autopilot to
the voice recognition of Amazon’s Alexa, from real-time
translation between languages to its integration in hundreds of
Google products, deep learning has improved the accuracy of a
great number of computational tasks from 95 percent to 99
percent or better—the tricky few percent that can make an
automated service feel as though it works by magic. Although
the concrete, interactive code examples throughout this book
will dispel this apparent wizardry, deep learning has indeed
imbued machines with superhuman capability on complex tasks
as diverse as face recognition, text summarization, and
elaborate board games.  Given these prominent advances, it is2



unsurprising that “deep learning” has become synonymous with
“artificial intelligence” in the popular press, the workplace, and
the home.

These are exciting times, because, as you’ll discover over the
course of this book, perhaps only once in a lifetime does a single
concept disrupt so widely in such a short period of time. We are
delighted that you too have developed an interest in deep
learning and we can’t wait to share our enthusiasm for this
unprecedentedly transformative technique with you.

HOW TO READ THIS BOOK
This book is split into four parts. Part I, “Introducing Deep
Learning,” is well suited to any interested reader. This part
serves as a high-level overview that establishes what deep
learning is, how it evolved to be ubiquitous, and how it is related
to concepts like AI, machine learning, and reinforcement
learning. Replete with vivid bespoke illustrations,
straightforward analogies, and character-focused narratives,
Part I should be illuminating for anyone, including individuals
with no software programming experience.

In contrast, Parts II through IV are intended for software
developers, data scientists, researchers, analysts, and others
who would like to learn how to apply deep learning techniques
in their field. In these parts of the book, essential underlying
theory is covered in a manner that minimizes mathematical
formulas, relying instead on intuitive visuals and hands-on
examples in Python. Alongside this theory, working code run-

2. See bit.ly/aiindex18 for a review of machine performance relative to humans.
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throughs available in accompanying Jupyter notebooks
facilitate a pragmatic understanding of the principal families of
deep learning approaches and applications: machine vision
(Chapter 10), natural language processing (Chapter 11), image
generation (Chapter 12), and game playing (Chapter 13). For
clarity, wherever we refer to code, we will provide it in fixed-
width font, like this. For further readability, in code
chunks we also include the default Jupyter styling (e.g.,
numbers in green, strings in red, etc.).

If you find yourself yearning for more detailed explanations
of the mathematical and statistical foundations of deep learning
than we offer in this book, our two favorite options for further
study are:

1. Michael Nielsen’s e-book Neural Networks and Deep Learning,  which
is short, makes use of fun interactive applets to demonstrate concepts,
and uses mathematical notation similar to ours

2. Ian Goodfellow (introduced in Chapter 3), Yoshua Bengio (Figure 1.10),
and Aaron Courville’s book Deep Learning,  which comprehensively
covers the math that underlies neural network techniques

Scattered throughout this book, you will find amiable
trilobites that would like to provide you with tidbits of
unessential reading that they think you may find interesting or
helpful. The reading trilobite (as in Figure P.3) is a bookworm

3. github.com/the-deep-learners/deep-learning-illustrated

4. Nielsen, M. (2015). Neural Networks and Deep Learning. Determination Press.
Available for free at: neuralnetworksanddeeplearning.com

5. Goodfellow, I., et al. (2016). Deep Learning. MIT Press. Available for free at:
deeplearningbook.org
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who enjoys expanding your knowledge. The trilobite calling for
your attention, meanwhile (as in Figure P.4), has noticed a
passage of text that may be problematic, and so would like to
clarify the situation. In addition to trilobites habituated within
sidebars, we made liberal use of footnotes. These are likewise
not essential reading but provide quick explanations of new
terms and abbreviations, as well as citations of seminal papers
and other references for you to follow up with if you’re so
inclined.

Figure P.3 The reading trilobite enjoys expanding your
knowledge.



Figure P.4 This trilobite calls attention to tricky passages of
text. Look out for it!

For much of this book’s content, corresponding video
tutorials are also available. Although the book provided us with
an opportunity to flesh out theoretical concepts more
thoroughly, the videos enable you to become familiar with our
Jupyter notebooks from a different perspective, in which the
importance of each line of code is described verbally as it is
typed out.  The video tutorial series is spread across three titles,
each of which parallels particular chapters of the book:

6. Many of the Jupyter notebooks covered in this book are derived directly from the
videos, which were all recorded prior to writing. In some places, we decided to update
the code for the book, so while the video version and the book version of a given code
notebook align quite closely, they may not always be strictly identical.

6
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1. Deep Learning with TensorFlow LiveLessons:  Chapter 1 and Chapters
5 through 10

2. Deep Learning for Natural Language Processing LiveLessons:
Chapters 2 and 11

3. Deep Reinforcement Learning and GANs LiveLessons:  Chapters 3, 4,
12, and 13

Register your copy of Deep Learning Illustrated on the
InformIT site for convenient access to updates and
corrections as they become available. To start the
registration process, go to informit.com/register and log
in or create an account. Enter the product ISBN
(9780135116692) and click Submit. Look on the
Registered Products tab for an Access Bonus Content
link next to this product, and follow that link to access
any available bonus materials. If you would like to be
notified of exclusive offers on new editions and updates,
please check the box to receive email from us.

7. Krohn, J. (2017). Deep Learning with TensorFlow LiveLessons: Applications of
Deep Neural Networks to Machine Learning Tasks (video course). Boston: Addison-
Wesley.

8. Krohn, J. (2017). Deep Learning for Natural Language Processing LiveLessons:
Applications of Deep Neural Networks to Machine Learning Tasks (video course).
Boston: Addison-Wesley.

9. Krohn, J. (2018). Deep Reinforcement Learning and GANs LiveLessons:
Advanced Topics in Deep Learning (video course). Boston: Addison-Wesley.

7

8

9

http://informit.com/register


Acknowledgments

We’re grateful to the team at untapt, particularly Andrew
Vlahutin, Sam Kenny, and Vince Petaccio II, who supported us
while we wrote this book, with extra-special mention to the
neural-network-loving Ed Donner, who ceaselessly encourages
us to pursue our passions in the field of deep learning.

Additionally, we’re grateful to the dozens of members of the
Deep Learning Study Group  who regularly attend our
stimulating and vibrant sessions at untapt’s New York offices.
Because the book is derived from our Study Group discussions,
it is difficult to imagine how the book would otherwise have
been conceived.

Thanks to our technical reviewers for invaluable feedback
that noticeably improved the book’s content: Alex Lipatov,
Andrew Vlahutin, Claudia Perlich, Dmitri Nesterenko, Jason
Baik, Laura Graesser, Michael Griffiths, Paul Dix, and Wah
Loon Keng. Thanks to the book’s editors and managers—Chris
Zahn, Betsy Hardinger, Anna Popick, and Julie Nahil—whose
meticulousness and thoughtfulness ensured the book’s quality,
clarity, and presentation. Thanks to Jared Lander, who leads
the New York Open Statistical Programming community that
both seeded our Deep Learning Study Group and facilitated
meeting Pearson’s Debra Williams Cauley. Special thanks are

10. deeplearningstudygroup.org

10

http://deeplearningstudygroup.org


due to Debra herself, who has backed our colorful publication
ideas from the day we met her and who has been instrumental
in ensuring their success. Thanks as well to the scientists and
machine learning experts who mentored us academically, and
who continue to inspire us, particularly Jonathan Flint, Felix
Agakov, and Will Valdar.

Finally, countless thanks are due to our families and our
friends, who not only put up with us working through our time
with them on vacations and weekends, but also selflessly
motivate us as we do.



About the Authors

Jon Krohn is Chief Data Scientist at the machine learning
company untapt. He presents an acclaimed series of tutorials
published by Addison-Wesley, including Deep Learning with
TensorFlow LiveLessons and Deep Learning for Natural
Language Processing LiveLessons. Jon teaches his deep
learning curriculum in-classroom at the New York City Data
Science Academy and guest lectures at Columbia University. He
holds a doctorate in neuroscience from the University of Oxford
and, since 2010, has been publishing on machine learning in
leading peer-reviewed journals, including Advances in Neural
Information Processing Systems.

Grant Beyleveld is a data scientist at untapt, where he works
on natural language processing using deep learning. He holds a
doctorate in biomedical science from the Icahn School of



Medicine at New York City’s Mount Sinai hospital, having
studied the relationship between viruses and their hosts. He is a
founding member of deeplearningstudygroup.org.

Aglaé Bassens is a Belgian artist based in Paris. She studied
Fine Arts at The Ruskin School of Drawing and Fine Art, Oxford
University, and University College London’s Slade School of
Fine Arts. Along with her work as an illustrator, her practice
includes still life painting and murals.

http://deeplearningstudygroup.org




I: Introducing Deep Learning

Chapter 1   Biological and Machine Vision

Chapter 2   Human and Machine Language

Chapter 3   Machine Art

Chapter 4   Game-Playing Machines



1. Biological and Machine Vision

Throughout this chapter and much of this book, the visual
system of biological organisms is used as an analogy to bring
deep learning to, um . . . life. In addition to conveying a high-
level understanding of what deep learning is, this analogy
provides insight into how deep learning approaches are so
powerful and so broadly applicable.

BIOLOGICAL VISION
Five hundred fifty million years ago, in the prehistoric
Cambrian period, the number of species on the planet began to
surge (Figure 1.1). From the fossil record, there is evidence  that
this explosion was driven by the development of light detectors
in the trilobite, a small marine animal related to modern crabs
(Figure 1.2). A visual system, even a primitive one, bestows a
delightful bounty of fresh capabilities. One can, for example,
spot food, foes, and friendly-looking mates at some distance.
Other senses, such as smell, enable animals to detect these as
well, but not with the accuracy and light-speed pace of vision.
Once the trilobite could see, the hypothesis goes, this set off an
arms race that produced the Cambrian explosion: The trilobite’s
prey, as well as its predators, had to evolve to survive.

1. Parker, A. (2004). In the Blink of an Eye: How Vision Sparked the Big Bang of
Evolution. New York: Basic Books.
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Figure 1.1 The number of species on our planet began to
increase rapidly 550 million years ago, during the prehistoric
Cambrian period. “Genera” are categories of related species.

Figure 1.2 A bespectacled trilobite



In the half-billion years since trilobites developed vision, the
complexity of the sense has increased considerably. Indeed, in
modern mammals, a large proportion of the cerebral cortex—
the outer gray matter of the brain—is involved in visual
perception.  At Johns Hopkins University in the late 1950s, the
physiologists David Hubel and Torsten Wiesel (Figure 1.3)
began carrying out their pioneering research on how visual
information is processed in the mammalian cerebral cortex,
work that contributed to their later being awarded a Nobel
Prize.  As depicted in Figure 1.4, Hubel and Wiesel conducted
their research by showing images to anesthetized cats while
simultaneously recording the activity of individual neurons
from the primary visual cortex, the first part of the cerebral
cortex to receive visual input from the eyes.

Figure 1.3 The Nobel Prize-winning neurophysiologists
Torsten Wiesel (left) and David Hubel

2
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Figure 1.4 Hubel and Wiesel used a light projector to present
slides to anesthetized cats while they recorded the activity of

neurons in the cats’ primary visual cortex. In the experiments,
electrical recording equipment was implanted within the cat’s

skull. Instead of illustrating this, we suspected it would be a fair
bit more palatable to use a lightbulb to represent neuron

activation. Depicted in this figure is a primary visual cortex
neuron being serendipitously activated by the straight edge of a

slide.

2. A couple of tangential facts about the cerebral cortex: First, it is one of the more
recent evolutionary developments of the brain, contributing to the complexity of
mammal behavior relative to the behavior of older classes of animals like reptiles and
amphibians. Second, while the brain is informally referred to as gray matter because
the cerebral cortex is the brain’s external surface and this cortical tissue is gray in
color, the bulk of the brain is in fact white matter. By and large, the white matter is
responsible for carrying information over longer distances than the gray matter, so its
neurons have a white-colored, fatty coating that hurries the pace of signal



Projecting slides onto a screen, Hubel and Wiesel began by
presenting simple shapes like the dot shown in Figure 1.4 to the
cats. Their initial results were disheartening: Their efforts were
met with no response from the neurons of the primary visual
cortex. They grappled with the frustration of how these cells,
which anatomically appear to be the gateway for visual
information to the rest of the cerebral cortex, would not respond
to visual stimuli. Distraught, Hubel and Wiesel tried in vain to
stimulate the neurons by jumping and waving their arms in
front of the cat. Nothing. And then, as with many of the great
discoveries, from X-rays to penicillin to the microwave oven,
Hubel and Wiesel made a serendipitous observation: As they
removed one of their slides from the projector, its straight edge
elicited the distinctive crackle of their recording equipment to
alert them that a primary visual cortex neuron was firing.
Overjoyed, they celebrated up and down the Johns Hopkins
laboratory corridors.

The serendipitously crackling neuron was not an anomaly.

conduction. A coarse analogy could be to consider neurons in the white matter to act
as “highways.” These high-speed motorways have scant on-ramps or exits, but can
transport a signal from one part of the brain to another lickety-split. In contrast, the
“local roads” of gray matter facilitate myriad opportunities for interconnection
between neurons at the expense of speed. A gross generalization, therefore, is to
consider the cerebral cortex—the gray matter—as the part of the brain where the
most complex computations happen, affording the animals with the largest
proportion of it—such as mammals, particularly the great apes like Homo sapiens—
their complex behaviors.

3. Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s
striate cortex. The Journal of Physiology, 148, 574–91.

4. The 1981 Nobel Prize in Physiology or Medicine, shared with American
neurobiologist Roger Sperry.



Through further experimentation, Hubel and Wiesel discovered
that the neurons that receive visual input from the eye are in
general most responsive to simple, straight edges. Fittingly
then, they named these cells simple neurons.

As shown in Figure 1.5, Hubel and Wiesel determined that a
given simple neuron responds optimally to an edge at a
particular, specific orientation. A large group of simple neurons,
with each specialized to detect a particular edge orientation,
together is able to represent all 360 degrees of orientation.
These edge-orientation detecting simple cells then pass along
information to a large number of so-called complex neurons. A
given complex neuron receives visual information that has
already been processed by several simple cells, so it is well
positioned to recombine multiple line orientations into a more
complex shape like a corner or a curve.



Figure 1.5 A simple cell in the primary visual cortex of a cat
fires at different rates, depending on the orientation of a line

shown to the cat. The orientation of the line is provided in the
left-hand column, while the right-hand column shows the firing
(electrical activity) in the cell over time (one second). A vertical

line (in the fifth row from the top) causes the most electrical
activity for this particular simple cell. Lines slightly off vertical
(in the intermediate rows) cause less activity for the cell, while
lines approaching horizontal (in the topmost and bottommost



rows) cause little to no activity.

Figure 1.6 illustrates how, via many hierarchically organized
layers of neurons feeding information into increasingly higher-
order neurons, gradually more complex visual stimuli can be
represented by the brain. The eyes are focused on an image of a
mouse’s head. Photons of light stimulate neurons located in the
retina of each eye, and this raw visual information is
transmitted from the eyes to the primary visual cortex of the
brain. The first layer of primary visual cortex neurons to receive
this input—Hubel and Wiesel’s simple cells—are specialized to
detect edges (straight lines) at specific orientations. There
would be many thousands of such neurons; for simplicity, we’re
only showing four in Figure 1.6. These simple neurons relay
information about the presence or absence of lines at particular
orientations to a subsequent layer of complex cells, which
assimilate and recombine the information, enabling the
representation of more complex visual stimuli such as the
curvature of the mouse’s head. As information is passed
through several subsequent layers, representations of visual
stimuli can incrementally become more complex and more
abstract. As depicted by the far-right layer of neurons, following
many layers of such hierarchical processing (we use the arrow
with dashed lines to imply that many more layers of processing
are not being shown), the brain is ultimately able to represent
visual concepts as abstract as a mouse, a cat, a bird, or a dog.



Figure 1.6 A caricature of how consecutive layers of biological
neurons represent visual information in the brain of, for

example, a cat or a human

Today, through countless subsequent recordings from the
cortical neurons of brain-surgery patients as well as noninvasive
techniques like magnetic resonance imaging (MRI),
neuroscientists have pieced together a fairly high-resolution
map of regions that are specialized to process particular visual
stimuli, such as color, motion, and faces (see Figure 1.7).

5. Especially functional MRI, which provides insight into which regions of the
cerebral cortex are notably active or inactive when the brain is engaged in a particular
activity.
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Figure 1.7 Regions of the visual cortex. The V1 region receives
input from the eyes and contains the simple cells that detect

edge orientations. Through the recombination of information
via myriad subsequent layers of neurons (including within the
V2, V3, and V3a regions), increasingly abstract visual stimuli
are represented. In the human brain (shown here), there are

regions containing neurons with concentrations of
specializations in, for example, the detection of color (V4),

motion (V5), and people’s faces (fusiform face area).

MACHINE VISION
We haven’t been discussing the biological visual system solely
because it’s interesting (though hopefully you did find the
preceding section thoroughly interesting). We have covered the
biological visual system primarily because it serves as the
inspiration for the modern deep learning approaches to



machine vision, as will become clear in this section.

Figure 1.8 provides a concise historical timeline of vision in
biological organisms as well as machines. The top timeline, in
blue, highlights the development of vision in trilobites as well as
Hubel and Wiesel’s 1959 publication on the hierarchical nature
of the primary visual cortex, as covered in the preceding section.
The machine vision timeline is split into two parallel streams to
call attention to two alternative approaches. The middle
timeline, in pink, represents the deep learning track that is the
focus of our book. The bottom timeline, in purple, meanwhile
represents the traditional machine learning (ML) path to vision,
which—through contrast—will clarify why deep learning is
distinctively powerful and revolutionary.

The Neocognitron
Inspired by Hubel and Wiesel’s discovery of the simple and
complex cells that form the primary visual cortex hierarchy, in
the late 1970s the Japanese electrical engineer Kunihiko
Fukushima proposed an analogous architecture for machine
vision, which he named the neocognitron.  There are two
particular items to note:

6. Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological
Cynbernetics, 36, 193–202.
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Figure 1.8 Abridged timeline of biological and machine vision,
highlighting the key historical moments in the deep learning

and traditional machine learning approaches to vision that are
covered in this section

1. Fukushima referred to Hubel and Wiesel’s work explicitly in his writing.
Indeed, his paper refers to three of their landmark articles on the
organization of the primary visual cortex, including borrowing their
“simple” and “complex” cell language to describe the first and second
layers, respectively, of his neocognitron.

2. By arranging artificial neurons  in this hierarchical manner, these
neurons—like their biological inspiration in Figure 1.6—generally
represent line orientations in the cells of the layers closest to the raw
visual image, while successively deeper layers represent successively
complex, successively abstract objects. To clarify this potent property of
the neocognitron and its deep learning descendants, we go through an
interactive example at the end of this chapter that demonstrates it.

7
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LeNet-5
While the neocognitron was capable of, for example, identifying
handwritten characters,  the accuracy and efficiency of Yann
LeCun (Figure 1.9) and Yoshua Bengio’s (Figure 1.10) LeNet-5
model  made it a significant development. LeNet-5’s
hierarchical architecture (Figure 1.11) built on Fukushima’s lead
and the biological inspiration uncovered by Hubel and Wiesel.
In addition, LeCun and his colleagues benefited from superior
data for training their model,  faster processing power, and,
critically, the back-propagation algorithm.

Figure 1.9 Paris-born Yann LeCun is one of the preeminent

7. We define precisely what artificial neurons are in Chapter 7. For the moment, it’s
more than sufficient to think of each artificial neuron as a speedy little algorithm.

8. Specifically, Figure 1.19 demonstrates this hierarchy with its successively abstract
representations.

9
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figures in artificial neural network and deep learning research.
LeCun is the founding director of the New York University

Center for Data Science as well as the director of AI research at
the social network Facebook.

Figure 1.10 Yoshua Bengio is another of the leading characters
in artificial neural networks and deep learning. Born in France,
he is a computer science professor at the University of Montreal

and codirects the renowned Machines and Brains program at
the Canadian Institute for Advanced Research.



Figure 1.11 LeNet-5 retains the hierarchical architecture
uncovered in the primary visual cortex by Hubel and Wiesel and
leveraged by Fukushima in his neocognitron. As in those other

systems, the leftmost layer represents simple edges, while
successive layers represent increasingly complex features. By
processing information in this way, a handwritten “2” should,

for example, be correctly recognized as the number two
(highlighted by the green output shown on the right).

Backpropagation, often abbreviated to backprop, facilitates
efficient learning throughout the layers of artificial neurons

9. Fukushima, K., & Wake, N. (1991). Handwritten alphanumeric character
recognition by the neocognitron. IEEE Transactions on Neural Networks, 2, 355–65.

10. LeCun, Y., et al. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 2, 355–65.

11. LeNet-5 was the first convolutional neural network, a deep learning variant that
dominates modern machine vision and that we detail in Chapter 10.

12. Their classic dataset, the handwritten MNIST digits, is used extensively in Part II,
“Essential Theory Illustrated.”
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within a deep learning model.  Together with the researchers’
data and processing power, backprop rendered LeNet-5
sufficiently reliable to become an early commercial application
of deep learning: It was used by the United States Postal Service
to automate the reading of ZIP codes  written on mail
envelopes. In Chapter 10, on machine vision, you will
experience LeNet-5 firsthand by designing it yourself and
training it to recognize handwritten digits.

In LeNet-5, Yann LeCun and his colleagues had an algorithm
that could correctly predict the handwritten digits that had been
drawn without needing to include any expertise about
handwritten digits in their code. As such, LeNet-5 provides an
opportunity to introduce a fundamental difference between
deep learning and the traditional machine learning ideology. As
conveyed by Figure 1.12, the traditional machine learning
approach is characterized by practitioners investing the bulk of
their efforts into engineering features. This feature engineering
is the application of clever, and often elaborate, algorithms to
raw data in order to preprocess the data into input variables
that can be readily modeled by traditional statistical techniques.
These techniques—such as regression, random forest, and
support vector machine—are seldom effective on unprocessed
data, and so the engineering of input data has historically been
a prime focus of machine learning professionals.

13. We examine the backpropagation algorithm in Chapter 7.

14. The USPS term for postal code.
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Figure 1.12 Feature engineering—the transformation of raw
data into thoughtfully transformed input variables—often

predominates the application of traditional machine learning
algorithms. In contrast, the application of deep learning often
involves little to no feature engineering, with the majority of

time spent instead on the design and tuning of model
architectures.

In general, a minority of the traditional ML practitioner’s
time is spent optimizing ML models or selecting the most
effective one from those available. The deep learning approach
to modeling data turns these priorities upside down. The deep
learning practitioner typically spends little to none of her time
engineering features, instead spending it modeling data with
various artificial neural network architectures that process the
raw inputs into useful features automatically. This distinction
between deep learning and traditional machine learning is a
core theme of this book. The next section provides a classic
example of feature engineering to elucidate the distinction.

The Traditional Machine Learning Approach
Following LeNet-5, research into artificial neural networks,
including deep learning, fell out of favor. The consensus became



that the approach’s automated feature generation was not
pragmatic—that even though it worked well for handwritten
character recognition, the feature-free ideology was perceived to
have limited breadth of applicability.  Traditional machine
learning, including its feature engineering, appeared to hold
more promise, and funding shifted away from deep learning
research.

To make clear what feature engineering is, Figure 1.13
provides a celebrated example from Paul Viola and Michael
Jones in the early 2000s.  Viola and Jones employed
rectangular filters such as the vertical or horizontal black-and-
white bars shown in the figure. Features generated by passing
these filters over an image can be fed into machine learning
algorithms to reliably detect the presence of a face. This work is
notable because the algorithm was efficient enough to be the
first real-time face detector outside the realm of biology.

15. At the time, there were stumbling blocks associated with optimizing deep learning
models that have since been resolved, including poor weight initializations (covered
in Chapter 9), covariate shift (also in Chapter 9), and the predominance of the
relatively inefficient sigmoid activation function (Chapter 6).

16. Public funding for artificial neural network research ebbed globally, with the
notable exception of continued support from the Canadian federal government,
enabling the Universities of Montreal, Toronto, and Alberta to become powerhouses
in the field.
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Figure 1.13 Engineered features leveraged by Viola and Jones
(2001) to detect faces reliably. Their efficient algorithm found
its way into Fujifilm cameras, facilitating real-time auto-focus.

Devising clever face-detecting filters to process raw pixels
into features for input into a machine learning model was
accomplished via years of research and collaboration on the
characteristics of faces. And, of course, it is limited to detecting
faces in general, as opposed to being able to recognize a
particular face as, say, Angela Merkel’s or Oprah Winfrey’s. To
develop features for detecting Oprah in particular, or for

17. Viola, P., & Jones, M. (2001). Robust real-time face detection. International
Journal of Computer Vision, 57, 137–54.

18. A few years later, the algorithm found its way into digital Fujifilm cameras,
facilitating autofocus on faces for the first time—a now everyday attribute of digital
cameras and smartphones alike.



detecting some non-face class of objects like houses, cars, or
Yorkshire Terriers, would require the development of expertise
in that category, something that could again take years of
academic-community collaboration to execute both efficiently
and accurately. Hmm, if only we could circumnavigate all that
time and effort somehow!

ImageNet and the ILSVRC
As mentioned earlier, one of the advantages LeNet-5 had over
the neocognitron was a larger, high-quality set of training data.
The next breakthrough in neural networks was also facilitated
by a high-quality public dataset, this time much larger.
ImageNet, a labeled index of photographs devised by Fei-Fei Li
(Figure 1.14), armed machine vision researchers with an
immense catalog of training data.  For reference, the
handwritten digit data used to train LeNet-5 contained tens of
thousands of images. ImageNet, in contrast, contains tens of
millions.

19,20



Figure 1.14 The hulking ImageNet dataset was the brainchild
of Chinese-American computer science professor Fei-Fei Li and
her colleagues at Princeton in 2009. Now a faculty member at
Stanford University, Li is also the chief scientist of A.I./ML for

Google’s cloud platform.

The 14 million images in the ImageNet dataset are spread
across 22,000 categories. These categories are as diverse as
container ships, leopards, starfish, and elderberries. Since 2010,
Li has run an open challenge called ILSVRC (the ImageNet
Large Scale Visual Recognition Challenge) on a subset of the
ImageNet data that has become the premier ground for
assessing the world’s state-of-the-art machine vision

19. image-net.org

20. Deng, J., et al. (2009). ImageNet: A large-scale hierarchical image database.
Proceedings of the Conference on Computer Vision and Pattern Recognition.

http://image-net.org


algorithms. The ILSVRC subset consists of 1.4 million images
across 1,000 categories. In addition to providing a broad range
of categories, many of the selected categories are breeds of dogs,
thereby evaluating the algorithms’ ability not only to distinguish
widely varying images but also to specialize in distinguishing
subtly varying ones.

AlexNet
As graphed in Figure 1.15, in the first two years of the ILSVRC
all algorithms entered into the competition hailed from the
feature-engineering-driven traditional machine learning
ideology. In the third year, all entrants except one were
traditional ML algorithms. If that one deep learning model in
2012 had not been developed or if its creators had not competed
in ILSVRC, then the year-over-year image classification
accuracy would have been negligible. Instead, Alex Krizhevsky
and Ilya Sutskever—working out of the University of Toronto
lab led by Geoffrey Hinton (Figure 1.16)—crushed the existing
benchmarks with their submission, today referred to as AlexNet
(Figure 1.17).  This was a watershed moment. In an instant,
deep learning architectures emerged from the fringes of
machine learning to its fore. Academics and commercial
practitioners scrambled to grasp the fundamentals of artificial
neural networks as well as to create software libraries—many of
them open-source—to experiment with deep learning models on

21. On your own time, try to distinguish photos of Yorkshire Terriers from Australian
Silky Terriers. It’s tough, but Westminster Dog Show judges, as well as contemporary
machine vision models, can do it. Tangentially, these dog-heavy data are the reason
deep learning models trained with ImageNet have a disposition toward “dreaming”
about dogs (see, e.g., deepdreamgenerator.com).

21

22,23

http://deepdreamgenerator.com


their own data and use cases, be they machine vision or
otherwise. As Figure 1.15 illustrates, in the years since 2012 all
of the top-performing models in the ILSVRC have been based
on deep learning.

Figure 1.15 Performance of the top entrants to the ILSVRC by
year. AlexNet was the victor by a head-and-shoulders (40

percent!) margin in the 2012 iteration. All of the best algorithms
since then have been deep learning models. In 2015, machines

surpassed human accuracy.



Figure 1.16 The eminent British-Canadian artificial neural
network pioneer Geoffrey Hinton, habitually referred to as “the
godfather of deep learning” in the popular press. Hinton is an

emeritus professor at the University of Toronto and an
engineering fellow at Google, responsible for managing the

search giant’s Brain Team, a research arm, in Toronto. In 2019,
Hinton, Yann LeCun (Figure 1.9), and Yoshua Bengio (Figure

1.10) were jointly recognized with the Turing Award—the
highest honor in computer science—for their work on deep

learning.



Figure 1.17 AlexNet’s hierarchical architecture is reminiscent
of LeNet-5, with the first (left-hand) layer representing simple

visual features like edges, and deeper layers representing
increasingly complex features and abstract concepts. Shown at
the bottom are examples of images to which the neurons in that

layer maximally respond, recalling the layers of the biological
visual system in Figure 1.6 and demonstrating the hierarchical

increase in visual feature complexity. In the example shown
here, an image of a cat input into LeNet-5 is correctly identified

as such (as implied by the green “CAT” output). “CONV”
indicates the use of something called a convolutional layer, and



“FC” is a fully connected layer; we formally introduce these
layer types in Chapters 7 and 10, respectively.

Although the hierarchical architecture of AlexNet is
reminiscent of LeNet-5, there are three principal factors that
enabled AlexNet to be the state-of-the-art machine vision
algorithm in 2012. First is the training data. Not only did
Krizhevsky and his colleagues have access to the massive
ImageNet index, they also artificially expanded the data
available to them by applying transformations to the training
images (you, too, will do this in Chapter 10). Second is
processing power. Not only had computing power per unit of
cost increased dramatically from 1998 to 2012, but Krizhevsky,
Hinton, and Sutskever also programmed two GPUs  to train
their large datasets with previously unseen efficiency. Third is
architectural advances. AlexNet is deeper (has more layers)
than LeNet-5, and it takes advantage of both a new type of
artificial neuron  and a nifty trick  that helps generalize deep
learning models beyond the data they’re trained on. As with
LeNet-5, you will build AlexNet yourself in Chapter 10 and use it
to classify images.

22. Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with
deep convolutional neural networks. Advances in Neural Information Processing
Systems, 25.

23. The images along the bottom of Figure 1.17 were obtained from Yosinski, J., et al.
(2015). Understanding neural networks through deep visualization. arXiv:
1506.06579.

24. Graphical processing units: These are designed primarily for rendering video
games but are well suited to performing the matrix multiplication that abounds in
deep learning across hundreds of parallel computing threads.
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Our ILSVRC case study underlines why deep learning models
like AlexNet are so widely useful and disruptive across
industries and computational applications: They dramatically
reduce the subject-matter expertise required for building highly
accurate predictive models. This trend away from expertise-
driven feature engineering and toward surprisingly powerful
automatic-feature-generating deep learning models has been
prevalently borne out across not only vision applications, but
also, for example, the playing of complex games (the topic of
Chapter 4) and natural language processing (Chapter 2).  One
no longer needs to be a specialist in the visual attributes of faces
to create a face-recognition algorithm. One no longer requires a
thorough understanding of a game’s strategies to write a
program that can master it. One no longer needs to be an
authority on the structure and semantics of each of several
languages to develop a language-translation tool. For a rapidly
growing list of use cases, one’s ability to apply deep learning
techniques outweighs the value of domain-specific proficiency.
While such proficiency formerly may have necessitated a
doctoral degree or perhaps years of postdoctoral research
within a given domain, a functional level of deep learning
capability can be developed with relative ease—as by working
through this book!

25. The rectified linear unit (ReLU), which is introduced in Chapter 6.

26. Dropout, introduced in Chapter 9.

27. An especially entertaining recounting of the disruption to the field of machine
translation is provided by Gideon Lewis-Kraus in his article “The Great A.I.
Awakening,” published in the New York Times Magazine on December 14, 2016.
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TENSORFLOW PLAYGROUND
For a fun, interactive way to crystallize the hierarchical, feature-
learning nature of deep learning, make your way to the
TensorFlow Playground at bit.ly/TFplayground. When you
use this custom link, your network should automatically look
similar to the one shown in Figure 1.18. In Part II we return to
define all of the terms on the screen; for the present exercise,
they can be safely ignored. It suffices at this time to know that
this is a deep learning model. The model architecture consists of
six layers of artificial neurons: an input layer on the left (below
the “FEATURES” heading), four “HIDDEN LAYERS” (which
bear the responsibility of learning), and an “OUTPUT” layer
(the grid on the far right ranging from –6 to +6 on both axes).
The network’s goal is to learn how to distinguish orange dots
(negative cases) from blue dots (positive cases) based solely on
their location on the grid. As such, in the input layer, we are
only feeding in two pieces of information about each dot: its
horizontal position (X ) and its vertical position (X ). The dots
that will be used as training data are shown by default on the
grid. By clicking the Show test data toggle, you can also see the
location of dots that will be used to assess the performance of
the network as it learns. Critically, these test data are not
available to the network while it’s learning, so they help us
ensure that the network generalizes well to new, unseen data.

1 2



Figure 1.18 This deep neural network is ready to learn how to
distinguish a spiral of orange dots (negative cases) from blue
dots (positive cases) based on their position on the X  and X

axes of the grid on the right.

Click the prominent Play arrow in the top-left corner. Enable
the network to train until the “Training loss” and “Test loss” in

1 2



the top-right corner have both approached zero—say, less than
0.05. How long this takes will depend on the hardware you’re
using but hopefully will not be more than a few minutes.

As captured in Figure 1.19, you should now see the network’s
artificial neurons representing the input data, with increasing
complexity and abstraction the deeper (further to the right) they
are positioned—as in the neocognitron, LeNet-5 (Figure 1.11),
and AlexNet (Figure 1.17). Every time the network is run, the
neuron-level details of how the network solves the spiral
classification problem are unique, but the general approach
remains the same (to see this for yourself, you can refresh the
page and retrain the network). The artificial neurons in the
leftmost hidden layer are specialized in distinguishing edges
(straight lines), each at a particular orientation. Neurons from
the first hidden layer pass information to neurons in the second
hidden layer, each of which recombines the edges into slightly
more complex features like curves. The neurons in each
successive layer recombine information from the neurons of the
preceding layer, gradually increasing the complexity and
abstraction of the features the neurons can represent. By the
final (rightmost) layer, the neurons are adept at representing
the intricacies of the spiral shape, enabling the network to
accurately predict whether a dot is orange (a negative case) or
blue (a positive case) based on its position (its X  and X
coordinates) in the grid. Hover over a neuron to project it onto
the far-right “OUTPUT” grid and examine its individual
specialization in detail.

1 2



Figure 1.19 The network after training

QUICK, DRAW!
To interactively experience a deep learning network carrying
out a machine vision task in real time, navigate to
quickdraw.withgoogle.com to play the Quick, Draw! game. Click
Let’s Draw! to begin playing the game. You will be prompted to

http://quickdraw.withgoogle.com


draw an object, and a deep learning algorithm will guess what
you sketch. By the end of Chapter 10, we will have covered all of
the theory and practical code examples needed to devise a
machine vision algorithm akin to this one. To boot, the
drawings you create will be added to the dataset that you’ll
leverage in Chapter 12 when you create a deep learning model
that can convincingly mimic human-drawn doodles. Hold on to
your seat! We’re embarking on a fantastic ride.

SUMMARY
In this chapter, we traced the history of deep learning from its
biological inspiration through to the AlexNet triumph in 2012
that brought the technique to the fore. All the while, we
reiterated that the hierarchical architecture of deep learning
models enables them to encode increasingly complex
representations. To concretize this concept, we concluded with
an interactive demonstration of hierarchical representations in
action by training an artificial neural network in the TensorFlow
Playground. In Chapter 2, we will expand on the ideas
introduced in this chapter by moving from vision applications to
language applications.



2. Human and Machine Language

In Chapter 1, we introduced the high-level theory of deep
learning via analogy to the biological visual system. All the
while, we highlighted that one of the technique’s core strengths
lies in its ability to learn features automatically from data. In
this chapter, we build atop our deep learning foundations by
examining how deep learning is incorporated into human
language applications, with a particular emphasis on how it can
automatically learn features that represent the meaning of
words.

The Austro-British philosopher Ludwig Wittgenstein
famously argued, in his posthumous and seminal work
Philosophical Investigations, “The meaning of a word is its use
in the language.”  He further wrote, “One cannot guess how a
word functions. One has to look at its use, and learn from that.”
Wittgenstein was suggesting that words on their own have no
real meaning; rather, it is by their use within the larger context
of that language that we’re able to ascertain their meaning. As
you’ll see through this chapter, natural language processing
with deep learning relies heavily on this premise. Indeed, the
word2vec technique we introduce for converting words into
numeric model inputs explicitly derives its semantic
representation of a word by analyzing it within its contexts
across a large body of language.

1



Armed with this notion, we begin by breaking down deep
learning for natural language processing (NLP) as a discipline,
and then we go on to discuss modern deep learning techniques
for representing words and language. By the end of the chapter,
you should have a good grasp on what is possible with deep
learning and NLP, the groundwork for writing such code in
Chapter 11.

DEEP LEARNING FOR NATURAL
LANGUAGE PROCESSING
The two core concepts in this chapter are deep learning and
natural language processing. Initially, we cover the relevant
aspects of these concepts separately, and then we weave them
together as the chapter progresses.

Deep Learning Networks Learn Representations Automatically
As established way back in this book’s Preface, deep learning
can be defined as the layering of simple algorithms called
artificial neurons into networks several layers deep. Via the
Venn diagram in Figure 2.1, we show how deep learning resides
within the machine learning family of representation learning
approaches. The representation learning family, which
contemporary deep learning dominates, includes any
techniques that learn features from data automatically. Indeed,
we can use the terms “feature” and “representation”
interchangeably.

1. Wittgenstein, L. (1953). Philosophical Investigations. (Anscombe, G., Trans.).
Oxford, UK: Basil Blackwell.



Figure 2.1 Venn diagram that distinguishes the traditional
family from the representation learning family of machine

learning techniques

Figure 1.12 lays the foundation for understanding the
advantage of representation learning relative to traditional
machine learning approaches. Traditional ML typically works
well because of clever, human-designed code that transforms
raw data—whether it be images, audio of speech, or text from
documents—into input features for machine learning
algorithms (e.g., regression, random forest, or support vector
machines) that are adept at weighting features but not



particularly good at learning features from raw data directly.
This manual creation of features is often a highly specialized
task. For working with language data, for example, it might
require graduate-level training in linguistics.

A primary benefit of deep learning is that it eases this
requirement for subject-matter expertise. Instead of manually
curating input features from raw data, one can feed the data
directly into a deep learning model. Over the course of many
examples provided to the deep learning model, the artificial
neurons of the first layer of the network learn how to represent
simple abstractions of these data, while each successive layer
learns to represent increasingly complex nonlinear abstractions
on the layer that precedes it. As you’ll discover in this chapter,
this isn’t solely a matter of convenience; learning features
automatically has additional advantages. Features engineered
by humans tend to not be comprehensive, tend to be excessively
specific, and can involve lengthy, ongoing loops of feature
ideation, design, and validation that could stretch for years.
Representation learning models, meanwhile, generate features
quickly (typically over hours or days of model training), adapt
straightforwardly to changes in the data (e.g., new words,
meanings, or ways of using language), and adapt automatically
to shifts in the problem being solved.

Natural Language Processing
Natural language processing is a field of research that sits at the
intersection of computer science, linguistics, and artificial
intelligence (Figure 2.2). NLP involves taking the naturally
spoken or naturally written language of humans—such as this



sentence you’re reading right now—and processing it with
machines to automatically complete some task or to make a task
easier for a human to do. Examples of language use that do not
fall under the umbrella of natural language could include code
written in a software language or short strings of characters
within a spreadsheet.

Figure 2.2 NLP sits at the intersection of the fields of
computer science, linguistics, and artificial intelligence.

Examples of NLP in industry include:

Classifying documents: using the language within a document (e.g.,
an email, a Tweet, or a review of a film) to classify it into a
particular category (e.g., high urgency, positive sentiment, or
predicted direction of the price of a company’s stock).

Machine translation: assisting language-translation firms with
machine-generated suggestions from a source language (e.g.,
English) to a target language (e.g., German or Mandarin);
increasingly, fully automatic—though not always perfect—



translations between languages.

Search engines: autocompleting users’ searches and predicting
what information or website they’re seeking.

Speech recognition: interpreting voice commands to provide
information or take action, as with virtual assistants like Amazon’s
Alexa, Apple’s Siri, or Microsoft’s Cortana.

Chatbots: carrying out a natural conversation for an extended
period of time; though this is seldom done convincingly today, they
are nevertheless helpful for relatively linear conversations on
narrow topics such as the routine components of a firm’s customer-
service phone calls.

Some of the easiest NLP applications to build are spell
checkers, synonym suggesters, and keyword-search querying
tools. These simple tasks can be fairly straightforwardly solved
with deterministic, rules-based code using, say, reference
dictionaries or thesauruses. Deep learning models are
unnecessarily sophisticated for these applications, and so they
aren’t discussed further in this book.

Intermediate-complexity NLP tasks include assigning a
school-grade reading level to a document, predicting the most
likely next words while making a query in a search engine,
classifying documents (see earlier list), and extracting
information like prices or named entities  from documents or
websites. These intermediate NLP applications are well suited
to solving with deep learning models. In Chapter 11, for
example, you’ll leverage a variety of deep learning architectures
to predict the sentiment of film reviews.
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The most sophisticated NLP implementations are required
for machine translation (see earlier list), automated question-
answering, and chatbots. These are tricky because they need to
handle application-critical nuance (as an example, humor is
particularly transient), a response to a question can depend on
the intermediate responses to previous questions, and meaning
can be conveyed over the course of a lengthy passage of text
consisting of many sentences. Complex NLP tasks like these are
beyond the scope of this book; however, the content we cover
will serve as a superb foundation for their development.

A Brief History of Deep Learning for NLP
The timeline in Figure 2.3 calls out recent milestones in the
application of deep learning to NLP. This timeline begins in
2011, when the University of Toronto computer scientist George
Dahl and his colleagues at Microsoft Research revealed the first
major breakthrough involving a deep learning algorithm
applied to a large dataset.  This breakthrough happened to
involve natural language data. Dahl and his team trained a deep
neural network to recognize a substantial vocabulary of words
from audio recordings of human speech. A year later, and as
detailed already in Chapter 1, the next landmark deep learning
feat also came out of Toronto: AlexNet blowing the traditional
machine learning competition out of the water in the ImageNet
Large Scale Visual Recognition Challenge (Figure 1.15). For a
time, this staggering machine vision performance heralded a
focus on applying deep learning to machine vision applications.

2. Named entities include places, well-known individuals, company names, and
products.
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Figure 2.3 Milestones involving the application of deep
learning to natural language processing

By 2015, the deep learning progress being made in machine
vision began to spill over into NLP competitions such as those
that assess the accuracy of machine translations from one
language into another. These deep learning models approached
the precision of traditional machine learning approaches;
however, they required less research and development time
while conveniently offering lower computational complexity.
Indeed, this reduction in computational complexity provided
Microsoft the opportunity to squeeze real-time machine
translation software onto mobile phone processors—remarkable
progress for a task that previously had required an Internet
connection and computationally expensive calculations on a
remote server. In 2016 and 2017, deep learning models entered
into NLP competitions not only were more efficient than
traditional machine learning models, but they also began
outperforming them on accuracy. The remainder of this chapter

3. Dahl, G., et al. (2011). Large vocabulary continuous speech recognition with
context-dependent DBN-HMMs. Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing.



starts to illuminate how.

COMPUTATIONAL REPRESENTATIONS OF
LANGUAGE
In order for deep learning models to process language, we have
to supply that language to the model in a way that it can digest.
For all computer systems, this means a quantitative
representation of language, such as a two-dimensional matrix of
numerical values. Two popular methods for converting text into
numbers are one-hot encoding and word vectors.  We discuss
both methods in turn in this section.

One-Hot Representations of Words
The traditional approach to encoding natural language
numerically for processing it with a machine is one-hot
encoding (Figure 2.4). In this approach, the words of natural
language in a sentence (e.g., “the,” “bat,” “sat,” “on,” “the,” and
“cat”) are represented by the columns of a matrix. Each row in
the matrix, meanwhile, represents a unique word. If there are
100 unique words across the corpus  of documents you’re
feeding into your natural language algorithm, then your matrix
of one-hot-encoded words will have 100 rows. If there are 1,000
unique words across your corpus, then there will be 1,000 rows
in your one-hot matrix, and so on.

4. If this were a book dedicated to NLP, then we would have been wise to also
describe natural language methods based on word frequency, e.g., TF-IDF (term
frequency-inverse document frequency) and PMI (pointwise mutual information).

4
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Figure 2.4 One-hot encodings of words, such as this example,
predominate the traditional machine learning approach to

natural language processing.

Cells within one-hot matrices consist of binary values, that is,
they are a 0 or a 1. Each column contains at most a single 1, but
is otherwise made up of 0s, meaning that one-hot matrices are
sparse.  Values of one indicate the presence of a particular word
(row) at a particular position (column) within the corpus. In
Figure 2.4, our entire corpus has only six words, five of which
are unique. Given this, a one-hot representation of the words in

5. A corpus (from the Latin “body”) is the collection of all of the documents (the
“body” of language) you use as your input data for a given natural language
application. In Chapter 11, you’ll make use of a corpus that consists of 18 classic
books. Later in that chapter, you’ll separately make use of a corpus of 25,000 film
reviews. An example of a much larger corpus would be all of the English-language
articles on Wikipedia. The largest corpuses are crawls of all the publicly available
data on the Internet, such as at commoncrawl.org.

6
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our corpus has six columns and five rows. The first unique word
—the—occurs in the first and fifth positions, as indicated by the
cells containing 1s in the first row of the matrix. The second
unique word in our wee corpus is bat, which occurs only in the
second position, so it is represented by a value of 1 in the
second row of the second column. One-hot word
representations like this are fairly straightforward, and they are
an acceptable format for feeding into a deep learning model (or,
indeed, other machine learning models). As you will see
momentarily, however, the simplicity and sparsity of one-hot
representations are limiting when incorporated into a natural
language application.

Word Vectors
Vector representations of words are the information-dense
alternative to one-hot encodings of words. Whereas one-hot
representations capture information about word location only,
word vectors (also known as word embeddings or vector-space
embeddings) capture information about word meaning as well
as location.  This additional information renders word vectors
favorable for a variety of reasons that are catalogued over the
course of this chapter. The key advantage, however, is that—
analogous to the visual features learned automatically by deep
learning machine vision models in Chapter 1—word vectors
enable deep learning NLP models to automatically learn
linguistic features.

6. Nonzero values are rare (i.e., they are sparse) within a sparse matrix. In contrast,
dense matrices are rich in information: They typically contain few—perhaps even no
—zero values.
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When we’re creating word vectors, the overarching concept is
that we’d like to assign each word within a corpus to a
particular, meaningful location within a multidimensional space
called the vector space. Initially, each word is assigned to a
random location within the vector space. By considering the
words that tend to be used around a given word within the
natural language of your corpus, however, the locations of the
words within the vector space can gradually be shifted into
locations that represent the meaning of the words.

Figure 2.5 uses a toy-sized example to demonstrate in more
detail the mechanics behind the way word vectors are
constructed. Commencing at the first word in our corpus and
moving to the right one word at a time until we reach the final
word in our corpus, we consider each word to be the target
word. At the particular moment captured in Figure 2.5, the
target word that happens to be under consideration is word.
The next target word would be by, followed by the, then
company, and so on. For each target word in turn, we consider
it relative to the words around it—its context words. In our toy
example, we’re using a context-word window size of three

7. Strictly speaking, a one-hot representation is technically a “word vector” itself,
because each column in a one-hot word matrix consists of a vector representing a
word at a given location. In the deep learning community, however, use of the term
“word vector” is commonly reserved for the dense representations covered in this
section—that is, those derived by word2vec, GloVe, and related techniques.

8. As mentioned at the beginning of this chapter, this understanding of the meaning
of a word from the words around it was proposed by Ludwig Wittgenstein. Later, in
1957, the idea was captured succinctly by the British linguist J.R. Firth with his
phrase, “You shall know a word by the company it keeps.” Firth, J. (1957). Studies in
linguistic analysis. Oxford: Blackwell.
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words. This means that while word is the target word, the three
words to the left (a, know, and shall) combined with the three
words to the right (by, company, and the) together constitute a
total of six context words.  When we move along to the
subsequent target word (by), the windows of context words also
shift one position to the right, dropping shall and by as
context words while adding word and it.

Figure 2.5 A toy-sized example for demonstrating the high-
level process behind techniques like word2vec and GloVe that

convert natural language into word vectors

Two of the most popular techniques for converting natural
language into word vectors are word2vec  and GloVe.  With
either technique, our objective while considering any given
target word is to accurately predict the target word given its
context words.  Improving at these predictions, target word

9. It is mathematically simpler and more efficient to not concern ourselves with the
specific ordering of context words, particularly because word order tends to confer
negligible extra information to the inference of word vectors. Ergo, we provide the
context words in parentheses alphabetically, an effectively random order.

9
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after target word over a large corpus, we gradually assign words
that tend to appear in similar contexts to similar locations in
vector space.

Figure 2.6 provides a cartoon of vector space. The space can
have any number of dimensions, so we can call it an n-
dimensional vector space. In practice, depending on the
richness of the corpus we have to work with and the complexity
of our NLP application, we might create a word-vector space
with dozens, hundreds, or—in extreme cases—thousands of
dimensions. As overviewed in the previous paragraph, any given
word from our corpus (e.g., king) is assigned a location within
the vector space. In, say, a 100-dimensional space, the location
of the word king is specified by a vector that we can call υ
that must consist of 100 numbers in order to specify the
location of the word king across all of the available dimensions.

Human brains aren’t adept at spatial reasoning in more than
three dimensions, so our cartoon in Figure 2.6 has only three
dimensions. In this three-dimensional space, any given word
from our corpus needs three numeric coordinates to define its
location within the vector space: x, y, and z. In this cartoon
example, then, the meaning of the word king is represented by
a vector υ  that consists of three numbers. If υ  is located at

10. Mikolov, T., et al. (2013). Efficient estimation of word representations in vector
space. arXiv:1301.3781.

11. Pennington, J., et al. (2014). GloVe: Global vectors for word representations.
Proceedings of the Conference on Empirical Methods in Natural Language
Processing.

12. Or, alternatively, we could predict context words given a target word. More on
that in Chapter 11.

king

king king



the coordinates x = –0.9, y = 1.9, and z = 2.2 in the vector space,
we can use the annotation [-0.9, 1.9, 2.2] to describe this
location succinctly. This succinct annotation will come in handy
shortly when we perform arithmetic operations on word
vectors.

Figure 2.6 Diagram of word meaning as represented by a
three-dimensional vector space

The closer two words are within vector space,  the closer
their meaning, as determined by the similarity of the context
words appearing near them in natural language. Synonyms and

13



common misspellings of a given word—because they share an
identical meaning—would be expected to have nearly identical
context words and therefore nearly identical locations in vector
space. Words that are used in similar contexts, such as those
that denote time, tend to occur near each other in vector space.
In Figure 2.6, Monday, Tuesday, and Wednesday could be
represented by the orange-colored dots located within the
orange days-of-the-week cluster in the cube’s top-right corner.
Meanwhile, months of the year might occur in their own purple
cluster, which is adjacent to, but distinct from, the days of the
week; they both relate to the date, but they’re separate
subclusters within a broader dates region. As a second example,
we would expect to find programming languages clustering
together in some location within the word-vector space that is
distant from the time-denoting words—say, in the top-left
corner. Again here, object-oriented programming languages like
Java, C++, and Python would be expected to form one
subcluster, while nearby we would expect to find functional
programming languages like Haskell, Clojure, and Erlang
forming a separate subcluster. As you’ll see in Chapter 11 when
you embed words in vector space yourself, less concretely
defined terms that nevertheless convey a specific meaning (e.g.,
the verbs created, developed, and built) are also allocated
positions within word-vector space that enable them to be
useful in NLP tasks.

Word-Vector Arithmetic

13. Measured by Euclidean distance, which is the plain old straight-line distance
between two points.



Remarkably, because particular movements across vector space
turn out to be an efficient way for relevant word information to
be stored in the vector space, these movements come to
represent relative particular meanings between words. This is a
bewildering property.  Returning to our cube in Figure 2.6, the
brown arrows represent the relationship between countries and
their capitals. That is, if we calculate the direction and distance
between the coordinates of the words Paris and France and
then trace this direction and distance from London, we should
find ourselves in the neighborhood of the coordinate
representing the word England. As a second example, we can
calculate the direction and distance between the coordinates for
man and woman. This movement through vector space
represents gender and is symbolized by the green arrows in
Figure 2.6. If we trace the green direction and distance from any
given male-specific term (e.g., king, uncle), we should find
our way to a coordinate near the term’s female-specific
counterpart (queen, aunt).

A by-product of being able to trace vectors of meaning (e.g.,
gender, capital-country relationship) from one word in vector
space to another is that we can perform word-vector
arithmetic. The canonical example of this is as follows: If we
begin at υ , the vector representing king (continuing with
our example from the preceding section, this location is
described by [-0.9, 1.9, 2.2]), subtract the vector
representing man from it (let’s say υ  = [-1.1, 2.4,

14. One of your esteemed authors, Jon, prefers terms like “mind-bending” and
“trippy” to describe this property of word vectors, but he consulted a thesaurus to
narrow in on a more professional-sounding adjective.

king

man
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3.0]), and add the vector representing woman (let’s say υ
= [-3.2, 2.5, 2.6]), we should find a location near the
vector representing queen. To make this arithmetic explicit by
working through it dimension by dimension, we would estimate
the location of υ  by calculating

xqueen = xking − xman + xwoman = −0.9 + 1.1 − 3.2 = −3.0

yqueen = yking − yman + ywoman = 1.9 − 2.4 + 2.5 = 2.0

zqueen = zking − zman + zwoman = 2.2 − 3.0 + 2.6 = 1.8

All three dimensions together, then, we expect υ  to be near
[-3.0, 2.0, 1.8].

Figure 2.7 provides further, entertaining examples of
arithmetic through a word-vector space that was trained on a
large natural language corpus crawled from the web. As you’ll
later observe in practice in Chapter 11, the preservation of these
quantitative relationships of meaning between words across
vector space is a robust starting point for deep learning models
within NLP applications.

Figure 2.7 Examples of word-vector arithmetic

word2viz
To develop your intuitive appreciation of word vectors, navigate
to bit.ly/word2viz. The default screen for the word2viz tool
for exploring word vectors interactively is shown in Figure 2.8.

woman

queen

queen



Leaving the top-right dropdown box set to “Gender analogies,”
try adding in pairs of new words under the “Modify words”
heading. If you add pairs of corresponding gender-specific
words like princess and prince, duchess and duke, and
businesswoman and businessman, you should find that they
fall into instructive locations.

The developer of the word2viz tool, Julia Bazińska,
compressed a 50-dimensional word-vector space down to two
dimensions in order to visualize the vectors on an xy-coordinate
system.  For the default configuration, Bazińska scaled the x-
axis from the words she to he as a reference point for gender,
while the y-axis was set to vary from a commonfolk base toward
a royal peak by orienting it to the words woman and queen. The
displayed words, placed into vector space via training on a
natural language dataset consisting of 6 billion instances of
400,000 unique words,  fall relative to the two axes based on
their meaning. The more regal (queen-like) the words, the
higher on the plot they should be shown, and the female (she-
like) terms fall to the left of their male (he-like) counterparts.

15. We detail how to reduce the dimensionality of a vector space for visualization
purposes in Chapter 11.

16. Technically, 400,000 tokens—a distinction that we examine later.
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Figure 2.8 The default screen for word2viz, a tool for exploring
word vectors interactively

When you’ve indulged yourself sufficiently with word2viz’s
“Gender analogies” view, you can experiment with other
perspectives of the word-vector space. Selecting “Adjectives
analogies” from the “What do you want to see?” dropdown box,
you could, for example, add the words small and smallest.
Subsequently, you could change the x-axis labels to nice and
nicer, and then again to small and big. Switching to the
“Numbers say-write analogies” view via the dropdown box, you
could play around with changing the x-axis to 3 and 7.

You may build your own word2viz plot from scratch by
moving to the “Empty” view. The (word vector) world is your



oyster, but you could perhaps examine the country-capital
relationships we mentioned earlier when familiarizing you with
Figure 2.6. To do this, set the x-axis to range from west to
east and the y-axis to city and country. Word pairs that fall
neatly into this plot include london—england, paris
—france, berlin—germany and beijing—china.

While on the one hand word2viz is an enjoyable way to develop a general
understanding of word vectors, on the other hand it can also be a serious tool for
gaining insight into specific strengths or weaknesses of a given word-vector space. As
an example, use the “What do you want to see?” dropdown box to load the “Verb
tenses” view, and then add the words lead and led. Doing this, it becomes apparent
that the coordinates that words were assigned to in this vector space mirror existing
gender stereotypes that were present in the natural language data the vector space
was trained on. Switching to the “Jobs” view, this gender bias becomes even more
stark. It is probably safe to say that any large natural language dataset is going to have
some biases, whether intentional or not. The development of techniques for reducing
biases in word vectors is an active area of research.  Mindful that these biases may
be present in your data, however, the safest bet is to test your downstream NLP
application in a range of situations that reflect a diverse userbase, checking that the
results are appropriate.

Localist Versus Distributed Representations
With an intuitive understanding of word vectors under our
figurative belts, we can contrast them with one-hot
representations (Figure 2.4), which have been an established
presence in the NLP world for longer. A summary distinction is
that we can say word vectors store the meaning of words in a

17. For example, Bolukbasi, T., et al. (2016). Man is to computer programmer as
woman is to homemaker? Debiasing word embeddings. arXiv:1607.06520; Caliskan,
A., et al. (2017). Semantics derived automatically from language corpora contain
human-like biases. Science 356: 183–6; Zhang, B., et al. (2018). Mitigating unwanted
biases with adversarial learning. arXiv:1801.07593.

17



distributed representation across n-dimensional space. That is,
with word vectors, word meaning is distributed gradually
—smeared—as we move from location to location through
vector space. One-hot representations, meanwhile, are localist.
They store information on a given word discretely, within a
single row of a typically extremely sparse matrix.

To more thoroughly characterize the distinction between the
localist, one-hot approach and the distributed, vector-based
approach to word representation, Table 2.1 compares them
across a range of attributes. First, one-hot representations lack
nuance; they are simple binary flags. Vector-based
representations, on the other hand, are extremely nuanced:
Within them, information about words is smeared throughout a
continuous, quantitative space. In this high-dimensional space,
there are essentially infinite possibilities for capturing the
relationships between words.

Table 2.1 Contrasting attributes of localist, one-hot
representations of words with distributed, vector-
based representations

One-Hot Vector-Based

Not subtle Very nuanced

Manual taxonomies Automatic

Handles new words poorly Seamlessly incorporates new 
words



Subjective Driven by natural language data

Word similarity not 
represented

Word similarity = proximity in 
space

Second, the use of one-hot representations in practice often
requires labor-intensive, manually curated taxonomies. These
taxonomies include dictionaries and other specialized reference
language databases.  Such external references are unnecessary
for vector-based representations, which are fully automatic with
natural language data alone.

Third, one-hot representations don’t handle new words well.
A newly introduced word requires a new row in the matrix and
then reanalysis relative to the existing rows of the corpus,
followed by code changes—perhaps via reference to external
information sources. With vector-based representations, new
words can be incorporated by training the vector space on
natural language that includes examples of the new words in
their natural context. A new word gets its own new n-
dimensional vector. Initially, there may be few training data
points involving the new word, so its vector might not be very
accurately positioned within n-dimensional space, but the
positioning of all existing words remains intact and the model

18. For example, WordNet (wordnet.princeton.edu), which describes synonyms as
well as hypernyms (“is-a” relationships, so furniture, for example, is a hypernym of
chair).
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will not fail to function. Over time, as the instances of the new
word in natural language increases, the accuracy of its vector-
space coordinates will improve.

Fourth, and following from the previous two points, the use
of one-hot representations often involves subjective
interpretations of the meaning of language. This is because they
often require coded rules or reference databases that are
designed by (relatively small groups of) developers. The
meaning of language in vector-based representations,
meanwhile, is data driven.

Fifth, one-hot representations natively ignore word
similarity: Similar words, such as couch and sofa, are
represented no differently than unrelated words, such as couch
and cat. In contrast, vector-based representations innately
handle word similarity: As mentioned earlier with respect to
Figure 2.6, the more similar two words are, the closer they are
in vector space.

ELEMENTS OF NATURAL HUMAN
LANGUAGE

19. An associated problem not addressed here occurs when an in-production NLP
algorithm encounters a word that was not included within its corpus of training data.
This out of vocabulary problem impacts both one-hot representations and word
vectors. There are approaches—such as Facebook’s fastText library—that try to get
around the issue by considering subword information, but these approaches are
beyond the scope of this book.

20. Noting that they may nevertheless include biases found in natural language data.
See the sidebar beginning on page 31.
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Thus far, we have considered only one element of natural
human language: the word. Words, however, are made up of
constituent language elements. In turn, words themselves are
the constituents of more abstract, more complex language
elements. We begin with the language elements that make up
words and build up from there, following the schematic in
Figure 2.9. With each element, we discuss how it is typically
encoded from the traditional machine learning perspective as
well as from the deep learning perspective. As we move through
these elements, notice that the distributed deep learning
representations are fluid and flexible vectors whereas the
traditional ML representations are local and rigid (Table 2.2).

Figure 2.9 Relationships between the elements of natural
human language. The leftmost elements are building blocks for

further-right elements. As we move to the right, the more
abstract the elements become, and therefore the more complex

they are to model within an NLP application.

Table 2.2 Traditional machine learning and deep
learning representations, by natural language
element



Representatio
n

Traditional ML Deep 
Learning

Audio-
Only

Phonology All phonemes Vectors True

Morphology All morphemes Vectors False

Words One-hot 
encoding

Vectors False

Syntax Phrase rules Vectors False

Semantics Lambda calculus Vectors False

Phonology is concerned with the way that language sounds
when it is spoken. Every language has a specific set of phonemes
(sounds) that make up its words. The traditional ML approach
is to encode segments of auditory input as specific phonemes
from the language’s range of available phonemes. With deep
learning, we train a model to predict phonemes from features
automatically learned from auditory input and then represent
those phonemes in a vector space. In this book, we work with
natural language in text format only, but the techniques we
cover can be applied directly to speech data if you’re keen to do
so on your own time.

Morphology is concerned with the forms of words. Like



phonemes, every language has a specific set of morphemes,
which are the smallest units of language that contain some
meaning. For example, the three morphemes out, go, and ing
combine to form the word outgoing. The traditional ML
approach is to identify morphemes in text from a list of all the
morphemes in a given language. With deep learning, we train a
model to predict the occurrence of particular morphemes.
Hierarchically deeper layers of artificial neurons can then
combine multiple vectors (e.g., the three representing out, go,
and ing) into a single vector representing a word.

Phonemes (when considering audio) and morphemes (when
considering text) combine to form words. Whenever we work
with natural language data in this book, we work at the word
level. We do this for four reasons. First, it’s straightforward to
define what a word is, and everyone is familiar with what they
are. Second, it’s easy to break up natural language into words
via a process called tokenization  that we work through in
Chapter 11. Third, words are the most-studied level of natural
language, particularly with respect to deep learning, so we can
readily apply cutting-edge techniques to them. Fourth, and
perhaps most critically, for the NLP models we’ll be building,
word vectors simply work well: They prove to be functional,
efficient, and accurate. In the preceding section, we detail the
shortcomings of localist, one-hot representations that
predominate traditional ML relative to the word vectors used in
deep learning models.

Words are combined to generate syntax. Syntax and

21. Essentially, tokenization is the use of characters like commas, periods, and
whitespace to assume where one word ends and the next begins.
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morphology together constitute the entirety of a language’s
grammar. Syntax is the arrangement of words into phrases and
phrases into sentences in order to convey meaning in a way that
is consistent across the users of a given language. In the
traditional ML approach, phrases are bucketed into discrete,
formal linguistic categories.  With deep learning, we employ
vectors (surprise, surprise!). Every word and every phrase in a
section of text can be represented by a vector in n-dimensional
space, with layers of artificial neurons combining words into
phrases.

Semantics is the most abstract of the elements of natural
language in Figure 2.9 and Table 2.2; it is concerned with the
meaning of sentences. This meaning is inferred from all the
underlying language elements like words and phrases, as well as
the overarching context that a piece of text appears in. Inferring
meaning is complex because, for example, whether a passage is
supposed to be taken literally or as a humorous and sarcastic
remark can depend on subtle contextual differences and shifting
cultural norms. Traditional ML, because it doesn’t represent the
fuzziness of language (e.g., the similarity of related words or
phrases), is limited in capturing semantic meaning. With deep
learning, vectors come to the rescue once again. Vectors can
represent not only every word and every phrase in a passage of
text but also every logical expression. As with the language
elements already covered, layers of artificial neurons can
recombine vectors of constituent elements—in this case, to
calculate semantic vectors via the nonlinear combination of
phrase vectors.

22. These categories have names like “noun-phrase” and “verb-phrase.”
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GOOGLE DUPLEX
One of the more attention-grabbing examples of deep-learning-
based NLP in recent years is that of the Google Duplex
technology, which was unveiled at the company’s I/O
developers conference in May 2018. The search giant’s CEO,
Sundar Pichai, held spectators in rapture as he demonstrated
Google Assistant making a phone call to a Chinese-food
restaurant to book a reservation. The audible gasps from the
audience were in response to the natural flow of Duplex’s
conversation. It had mastered the cadence of a human
conversation, replete with the uh’s and hhhm’s that we sprinkle
into conversations while we’re thinking. Furthermore, the
phone call was of average audio quality and the human on the
line had a strong accent; Duplex never faltered, and it managed
to make the booking.

Bearing in mind that this is a demonstration—and not even a
live one—what nevertheless impressed us was the breadth of
deep learning applications that had to come together to
facilitate this technology. Consider the flow of information back
and forth between the two agents on the call (Duplex and the
restaurateur): Duplex needs a sophisticated speech recognition
algorithm that can process audio in real time and handle an
extensive range of accents and call qualities on the other end of
the line, and also overcome the background noise.

23. This is known as the “cocktail-party problem”—or less jovially, “multitalker
speech separation.” It’s a problem that humans solve innately, isolating single voices
from a cacophony quite well without explicit instruction on how to do so. Machines
typically struggle with this, although a variety of groups have proposed solutions. For
example, see Simpson, A., et al. (2015). Deep karaoke: Extracting vocals from musical
mixtures using a convolutional deep neural network. arXiv:1504.04658; Yu, D., et al.
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Once the human’s speech has been faithfully transcribed, an
NLP model needs to process the sentence and decide what it
means. The intention is that the person on the line doesn’t know
they’re speaking to a computer and so doesn’t need to modulate
their speech accordingly, but in turn, this means that humans
respond with complex, multipart sentences that can be tricky
for a computer to tease apart:

“We don’t have anything tomorrow, but we have the next day
and Thursday, anytime before eight. Wait no . . . Thursday
at seven is out. But we can do it after eight?”

This sentence is poorly structured—you’d never write an email
like this—but in natural conversation, these sorts of on-the-fly
corrections and replacements happen regularly, and Duplex
needs to be able to follow along.

With the audio transcribed and the meaning of the sentence
processed, Duplex’s NLP model conjures up a response. This
response must ask for more information if the human was
unclear or if the answers were unsatisfactory; otherwise, it
should confirm the booking. The NLP model will generate a
response in text form, so a text-to-speech (TTS) engine is
required to synthesize the sound.

Duplex uses a combination of de novo waveform synthesis using Tacotron  and
WaveNet,  as well as a more classical “concatenative” text-to-speech engine.  This
is where the system crosses the so-called uncanny valley:  The voice heard by the

(2016). Permutation invariant training of deep models for speaker-independent
multi-talker speech separation. arXiv:1607.00325.
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restaurateur is not a human voice at all. WaveNet is able to generate completely
synthetic waveforms, one sample at a time, using a deep neural network trained on
real waveforms from human speakers. Beneath this, Tacotron maps sequences of
words to corresponding sequences of audio features, which capture subtleties of
human speech such as pitch, speed, intonation, and even pronunciation. These
features are then fed into WaveNet, which synthesizes the actual waveform that the
restaurateur hears. This whole system is able to produce a natural-sounding voice with
the correct cadence, emotion, and emphasis. During more-or-less rote moments in the
conversation, the simple concatenative TTS engine (composed of recordings of its own
“voice”), which is less computationally demanding to execute, is used. The entire
model dynamically switches between the various models as needed.

To misquote Jerry Maguire, you had all of this at “hello.” The
speech recognition system, NLP models, and TTS engine all
work in concert from the instant the call is answered. Things
only stand to get more complex for Duplex from then on.
Governing all of this interaction is a deep neural network that is
specialized in handling information that occurs in a sequence.
This governor tracks the conversation and feeds the various
inputs and outputs into the appropriate models.

It should be clear from this overview that Google Duplex is a
sophisticated system of deep learning models that work in

24. bit.ly/tacotron

25. bit.ly/waveNet

26. Concatenative TTS engines use vast databases of prerecorded words and
snippets, which can be strung together to form sentences. This approach is common
and fairly easy, but it yields stilted, unnatural speech and cannot adapt the speed and
intonation; you can’t modulate a word to make it sound as if a question is being asked,
for example.

27. The uncanny valley is a perilous space wherein humans find humanlike simulations
weird and creepy because they’re too similar to real humans but are clearly not real
humans. Product designers endeavor to avoid the uncanny valley. They’ve learned that
users respond well to simulations that are either very robotic or not robotic at all.

28. Called a recurrent neural network. These feature in Chapter 11.
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harmony to produce a seamless interaction on the phone. For
now, Duplex is nevertheless limited to a few specific domains:
scheduling appointments and reservations. The system cannot
carry out general conversations. So even though Duplex
represents a significant step forward for artificial intelligence,
there is still much work to be done.

SUMMARY
In this chapter, you learned about applications of deep learning
to the processing of natural language. To that end, we described
further the capacity for deep learning models to automatically
extract the most pertinent features from data, removing the
need for labor-intensive one-hot representations of language.
Instead, NLP applications involving deep learning make use of
vector-space embeddings, which capture the meaning of words
in a nuanced manner that improves both model performance
and accuracy.

In Chapter 11, you’ll construct an NLP application by making
use of artificial neural networks that handle the input of natural
language data all the way through to the output of an inference
about those data. In such “end-to-end” deep learning models,
the initial layers create word vectors that flow seamlessly into
deeper, specialized layers of artificial neurons, including layers
that incorporate “memory.” These model architectures highlight
both the strength and the ease of use of deep learning with word
vectors.



3. Machine Art

In this chapter, we introduce some of the concepts that enable
deep learning models to seemingly create art, an idea that may
be paradoxical to some. The University of California, Berkeley,
philosopher Alva Noë, for one, opined, “Art can help us frame a
better picture of our human nature.”  If this is true, how can
machines create art? Or put differently, are the creations that
emerge from these machines, in fact, art? Another
interpretation—and one we like best—is that these creations are
indeed art and that programmers are artists wielding deep
learning models as brushes. We’re not the only ones who view
these works as bona fide artistry: generative adversarial
network (GAN)-produced paintings have been snapped up to
the tune of $400,000 a pop.

Over the course of this chapter, we cover the high-level
concepts behind GANs, and you will see examples of the novel
visual works they can produce. We will draw a link between the
latent spaces associated with GANs and the word-vector spaces
of Chapter 2. And we will cover a deep learning model that can
be used as an automated tool for dramatically improving the
quality of photos. But before we do any of that, let’s grab a drink

1. Noë, A. (2015, October 5). What art unveils. The New York Times.

2. Cohn, G. (2018, October 25). AI art at Christie’s sells for $432,500. The New York
Times.
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. . .

A BOOZY ALL-NIGHTER
Below Google’s offices in Montreal sits a bar called Les 3
Brasseurs, a moniker that translates from French to “The 3
Brewers.” It was at this watering hole in 2014, while a PhD
student in Yoshua Bengio’s renowned lab (Figure 1.10), that Ian
Goodfellow conceived of an algorithm for fabricating realistic-
looking images,  a technique that Yann LeCun (Figure 1.9) has
hailed as the “most important” recent breakthrough in deep
learning.

Goodfellow’s friends described to him a generative model
they were working on, that is, a computational model that aims
to produce something novel, be it a quote in the style of
Shakespeare, a musical melody, or a work of abstract art. In
their particular case, the friends were attempting to design a
model that could generate photorealistic images such as
portraits of human faces. For this to work well via the
traditional machine learning approach (Figure 1.12), the
engineers designing the model would need to not only catalog
and approximate the critical individual features of faces like
eyes, noses, and mouths, but also accurately estimate how these
features should be arranged relative to each other. Thus far,
their results had been underwhelming. The generated faces
tended to be excessively blurry, or they tended to be missing

3. Giles, M. (2018, February 21). The GANfather: The man who’s given machines the
gift of imagination. MIT Technology Review.

4. LeCun, Y. (2016, July 28). Quora. bit.ly/DLbreakthru
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essential elements like the nose or the ears.

Perhaps with his creativity heightened by a pint of beer or
two,  Goodfellow proposed a revolutionary idea: a deep learning
model in which two artificial neural networks (ANNs) act
against each other competitively as adversaries. As illustrated in
Figure 3.1, one of these deep ANNs would be programmed to
produce forgeries while the other would be programmed to act
as a detective and distinguish the fakes from real images (which
would be provided separately). These adversarial deep learning
networks would play off one another: As the generator became
better at producing fakes, the discriminator would need to
become better at identifying them, and so the generator would
need to produce even more compelling counterfeits, and so on.
This virtuous cycle would eventually lead to convincing novel
images in the style of the real training images, be they of faces
or otherwise. Best of all, Goodfellow’s approach would
circumnavigate the need to program features into the generative
model manually. As we expounded with respect to machine
vision (Chapter 1) and natural language processing (Chapter 2),
deep learning would sort out the model’s features automatically.

5



Figure 3.1 High-level schematic of a generative adversarial
network (GAN). Real images, as well as forgeries produced by

the generator, are provided to the discriminator, which is tasked
with identifying which are the genuine articles. The orange
cloud represents latent space (Figure 3.4) “guidance” that is

provided to the forger. This guidance can either be random (as
is generally the case during network training; see Chapter 12) or

selective (during post-training exploration, as in Figure 3.3).

Goodfellow’s friends were doubtful his imaginative approach
would work. So, when he arrived home and found his girlfriend
asleep, he worked late to architect his dual-ANN design. It
worked the first time, and the astounding deep learning family
of generative adversarial networks was born!

That same year, Goodfellow and his colleagues revealed
GANs to the world at the prestigious Neural Information
Processing Systems (NIPS) conference.  Some of their results

5. Jarosz, A., et al. (2012). Uncorking the muse: Alcohol intoxication facilitates
creative problem solving. Consciousness and Cognition, 21, 487–93.
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are shown in Figure 3.2. Their GAN produced these novel
images by being trained on (a) handwritten digits;  (b) photos
of human faces;  and (c) and (d) photos from across ten diverse
classes (e.g., planes, cars, dogs).  The results in (c) are markedly
less crisp than in (d), because the GAN that produced the latter
featured neuron layers specialized for machine vision called
convolutional layers,  whereas the GAN that produced the
former used a more general layer type only.

7
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Figure 3.2 Results presented in Goodfellow and colleagues’
2014 GAN paper

ARITHMETIC ON FAKE HUMAN FACES
Following on from Goodfellow’s lead, a research team led by the
American machine learning engineer Alec Radford determined
architectural constraints for GANs that guide considerably more
realistic image creation. Some examples of portraits of fake
humans that were produced by their deep convolutional GANs
are provided in Figure 3.3. In their paper, Radford and his
teammates cleverly demonstrated interpolation through, and
arithmetic with, the latent space associated with GANs. Let’s
start off by explaining what latent space is before moving on to
latent-space interpolation and arithmetic.

6. Goodfellow, I., et al. (2014). Generative adversarial networks. arXiv:1406.2661.

7. From LeCun’s classic MNIST dataset, which we use ourselves in Part II.

8. From the Hinton (Figure 1.16) research group’s Toronto Face database.

9. The CIFAR-10 dataset, which is named after the Canadian Institute for Advanced
Research that supported its creation.

10. We detail these in Chapter 10.

11. Dense layers, which are introduced in Chapter 4 and detailed in Chapter 7.
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Figure 3.3 An example of latent-space arithmetic from
Radford et al. (2016)

The latent-space cartoon in Figure 3.4 may be reminiscent of
the word-vector space cartoon in Figure 2.6. As it happens,
there are three major similarities between latent spaces and
vector spaces. First, while the cartoon is only three-dimensional
for simplicity and comprehensibility, latent spaces are n-
dimensional spaces, usually in the order of hundreds of
dimensions. The latent space of the GAN you’ll later architect
yourself in Chapter 12, for example, will have n = 100
dimensions. Second, the closer two points are in the latent
space, the more similar the images that those points represent.
And third, movement through the latent space in any particular

12. Radford, A., et al. (2016). Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv:1511.06434v2.



direction can correspond to a gradual change in a concept being
represented, such as age or gender for the case of photorealistic
faces.

By picking two points far away from each other along some
n-dimensional axis representing age, interpolating between
them, and sampling points from the interpolated line, we could
find what appears to be the same (fabricated) man gradually
appearing to be older and older.  In our latent-space cartoon
(Figure 3.4), we represent such an “age” axis in purple. To
observe interpolation through an authentic GAN latent space,
we recommend scanning through Radford and colleagues’ paper
for, as an example, smooth rotations of the “photo angle” of
synthetic bedrooms. At the time of writing, the state of the art in
GANs can be viewed at bit.ly/InterpCeleb. This video,
produced by researchers at the graphics-card manufacturer
Nvidia, provides a breathtaking interpolation through high-
quality portrait “photographs” of ersatz celebrities.
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Figure 3.4 A cartoon of the latent space associated with
generative adversarial networks (GANs). Moving along the
purple arrow, the latent space corresponds to images of a

similar-looking individual aging. The green arrow represents
gender, and the orange one represents the inclusion of glasses

on the face.

13. A technical aside: As is the case with vector spaces, this “age” axis (or any other
direction within latent space that represents some meaningful attribute) may be
orthogonal to all of the n dimensions that constitute the axes of the n-dimensional



Moving a step further with what you’ve learned, you could
now perform arithmetic with images sampled from a GAN’s
latent space. When sampling a point within the latent space,
that point can be represented by the coordinates of its location
—the resulting vector is analogous to the word vectors described
in Chapter 2. As with word vectors, you can perform arithmetic
with these vectors and move through the latent space in a
semantic way. Figure 3.3 showcases an instance of latent-space
arithmetic from Radford and his coworkers. Starting with a
point in their GAN’s latent space that represents a man with
glasses, subtracting a point that represents a man without
glasses, and adding a point representing a woman without
glasses, the resulting point exists in the latent space near to
images that represent women with glasses. Our cartoon in
Figure 3.4 illustrates how the relationships between meaning in
latent space are stored (again, akin to the way they are in word-
vector space), thereby facilitating arithmetic on points in latent
space.

STYLE TRANSFER: CONVERTING PHOTOS
INTO MONET (AND VICE VERSA)
One of the more magical applications of GANs is style transfer.

space. We discuss this further in Chapter 11.

14. Karras, T., et al. (2018). Progressive growing of GANs for improved quality,
stability, and variation. Proceedings of the International Conference on Learning
Representations.

15. To try your hand at distinguishing between real and GAN-generated faces, visit
whichfaceisreal.com.

http://whichfaceisreal.com


Zhu, Park, and their coworkers from the Berkeley Artificial
Intelligence Research (BAIR) Lab introduced a new flavor of
GAN  that enables stunning examples of this, as shown in
Figure 3.5. Alexei Efros, one of the paper’s coauthors, took
photos while on holiday in France and the researchers
employed their CycleGAN to transfer these photos into the style
of the Impressionist painter Claude Monet, the nineteenth-
century Dutch artist Vincent Van Gogh, and the Japanese
Ukiyo-e genre, among others. If you navigate to
bit.ly/cycleGAN, you’ll be delighted to discover instances of
the inverse (Monet paintings converted into photorealistic
images), as well as:

Summer scenes converted into wintry ones, and vice versa

Baskets of apples converted into baskets of oranges, and vice versa

Flat, low-quality photos converted into what appear to be ones
captured by high-end (single-lens reflex) cameras

A video of a horse running in a field converted into a zebra

A video of a drive taken during the day converted into a nighttime
one

16



Figure 3.5 Photos converted into the styles of well-known painters
by CycleGANs

MAKE YOUR OWN SKETCHES
PHOTOREALISTIC
Another GAN application out of Alexei Efros’s BAIR lab, and
one that you can amuse yourself with straightaway, is pix2pix.
If you make your way to bit.ly/pix2pixDemo, you can
interactively translate images from one type to another. Using
the edges2cats tool, for example, we sketched the three-eyed cat
in the left-hand panel of Figure 3.6 to generate the

16. Called “CycleGANs” because they retain image consistency over multiple cycles of
network training. Zhu, J.-Y., et al. (2017). Unpaired image-to-image translation using
cycle-consistent adversarial networks. arXiv:1703.10593.
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photorealistic(-ish) mutant kitty in the right-hand panel. As it
takes your fancy, you are also welcome to convert your own
creative visions of felines, shoes, handbags, and building
façades into photorealistic analogs within your browser. The
authors of the pix2pix paper call their approach a conditional
GAN (cGAN for short) because the generative adversarial
network produces an output that is conditional on the particular
input provided to it.

Figure 3.6 A mutant three-eyed cat (right-hand panel)
synthesized via the pix2pix web application. The sketch in the
left-hand panel that the GAN output was conditioned on was

clearly not doodled by this book’s illustrator, Aglaé, but one of
its other authors (who shall remain nameless).

CREATING PHOTOREALISTIC IMAGES
FROM TEXT

17. Isola, P., et al. (2017). Image-to-image translation with conditional adversarial
networks. arXiv:1611.07004.



To round out this chapter, we’d like you to take a gander at the
truly photorealistic high-resolution images in Figure 3.7. These
images were generated by StackGAN,  an approach that stacks
two GANs on top of each other. The first GAN in the
architecture is configured to produce a rough, low-resolution
image with the general shape and colors of the relevant objects
in place. This is then supplied to the second GAN as its input,
where the forged “photo” is refined by fixing up imperfections
and adding considerable detail. The StackGAN is a cGAN like
the pix2pix network in the preceding section; however, the
image output is conditioned on text input instead of an image.

Figure 3.7 Photorealistic high-resolution images output by
StackGAN, which involves two GANs stacked upon each other

18. Zhang, H., et al. (2017). StackGAN: Text to photo-realistic image synthesis with
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IMAGE PROCESSING USING DEEP
LEARNING
Since the advent of digital camera technology, image processing
(both on-device and postprocessing) has become a staple in
most (if not all) photographers’ workflows. This ranges from
simple on-device processing, such as increasing saturation and
sharpness immediately after capture, to complex editing of raw
image files in software applications like Adobe Photoshop and
Lightroom.

Machine learning has been used extensively in on-device
processing, where the camera manufacturer would like the
image that the consumer sees to be vibrant and pleasing to the
eye with minimal user effort. Some examples of this are:

Early face-recognition algorithms in point-and-shoot cameras,
which optimize the exposure and focus for faces or even selectively
fire the shutter when they recognize that the subject is smiling (as
in Figure 1.13)

Scene-detection algorithms that adjust the exposure settings to
capture the whiteness of snow or activate the flash for nighttime
photos

In the postprocessing arena a variety of automatic tools
exists, although generally photographers who are taking the
time to postprocess images are investing considerable time and
domain-specific knowledge into color and exposure correction,
denoising, sharpening, tone mapping, and touching up (to name
just a few of the corrections that may be applied).

stacked generative adversarial networks. arXiv:1612.03242v2.



Historically, these corrections have been difficult to execute
programmatically, because, for example, denoising might need
to be applied selectively to different images and even different
parts of the same image. This is exactly the kind of intelligent
application that deep learning is poised to excel at.

In a 2018 paper from Chen Chen and his collaborators at
Intel Labs,  deep learning was applied to the enhancement of
images that were taken in near total darkness, with astonishing
results (Figure 3.8). In a phrase, their deep learning model
involves convolutional layers organized into the innovative U-
Net  architecture (which we break down for you in Chapter
10). The authors generated a custom dataset for training this
model: the See-in-the-Dark dataset consists of 5,094 raw
images of very dark scenes using a short-exposure image  with
a corresponding long-exposure image (using a tripod for
stability) of the same scene. The exposure times on the long-
exposure images were 100 to 300 times those of the short-
exposure training images, with actual exposure times in the
range of 10 to 30 seconds. As demonstrated in Figure 3.8, the
deep-learning-based image-processing pipeline of U-Net (right
panel) far outperforms the results of the traditional pipeline
(center panel). There are, however, limitations as yet:

The model is not fast enough to perform this correction in real time
(and certainly not on-device); however, runtime optimization could
help here.

A dedicated network must be trained for different camera-models
and sensors, whereas a more generalized and camera-model-
agnostic approach would be favorable.

While the results far exceed the capabilities of traditional pipelines,
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there are still some artifacts present in the enhanced photos that
could stand to be improved.

The dataset is limited to selected static scenes and needs to be
expanded to other subjects (most notably, humans).

Figure 3.8 A sample image (left) processed using a traditional
pipeline (center) and the deep learning pipeline by Chen et al.

(right)

Limitations aside, this work nevertheless provides a beguiling
peek into how deep learning can adaptively correct images in
photograph postprocessing pipelines with a level of
sophistication not before seen from machines.

SUMMARY
In this chapter, we introduced GANs and conveyed that this
deep learning approach encodes exceptionally sophisticated
representations within their latent spaces. These rich visual
representations enable GANs to create novel images with

19. Chen, C., et al. (2018) Learning to see in the dark. arXiv:1805.01934.

20. Ronneberger et al. (2015) U-Net: Convolutional networks for biomedical image
segmentation. arXiv: 1505.04597.

21. That is, a short enough exposure time to enable practical handheld capture
without motion blur but that renders images too dark to be useful.



particular, granular artistic styles. The outputs of GANs aren’t
purely aesthetic; they can be practical, too. They can, as
examples, simulate data for training autonomous vehicles,
hurry the pace of prototyping in the fields of fashion and
architecture, and substantially augment the capacities of
creative humans.

In Chapter 12, after we get all of the prerequisite deep
learning theory out of the way, you’ll construct a GAN yourself
to imitate sketches from the Quick, Draw! dataset (introduced
at the end of Chapter 1). Take a gander at Figure 3.9 for a
preview of what you’ll be able to do.

22. Carter, S., and Nielsen, M. (2017, December 4). Using artificial intelligence to
augment human intelligence. Distill. distill.pub/2017/aia
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Figure 3.9 Novel “hand drawings” of apples produced by the
GAN architecture we develop together in Chapter 12. Using this

approach, you can produce machine-drawn “sketches” from
across any of the hundreds of categories involved in the Quick,

Draw! game.



4. Game-Playing Machines

Alongside the generative adversarial networks introduced in
Chapter 3, deep reinforcement learning has produced some of
the most surprising artificial-neural-network advances,
including the lion’s share of the headline-grabbing “artificial
intelligence” breakthroughs of recent years. In this chapter, we
introduce what reinforcement learning is as well as how its
fusion with deep learning has enabled machines to meet or
surpass human-level performance on a diverse range of
complex challenges, including Atari video games, the board
game Go, and subtle physical-manipulation tasks.

DEEP LEARNING, AI, AND OTHER BEASTS
Earlier in this book, we introduced deep learning with respect to
vision (Chapter 1), language (Chapter 2), and the generation of
novel “art” (Chapter 3). In doing this, we’ve loosely alluded to
deep learning’s relationship to the concept of artificial
intelligence. At this stage, as we begin to cover deep
reinforcement learning, it is worthwhile to define these terms
more thoroughly as well as the terms’ relationships to one
another. As usual, we will be assisted by visual cues—in this
case, the Venn diagram in Figure 4.1.



Figure 4.1 Venn diagram showing the relative positioning of
the major concepts covered over the course of this book

Artificial Intelligence
Artificial intelligence is the buzziest, vaguest, and broadest of
the terms we cover in this section. Taking a stab at a technical
definition regardless, a decent one is that AI involves a machine
processing information from its surrounding environment and
then factoring that information into decisions toward achieving



some desired outcome. Perhaps given this, some consider the
goal of AI to be the achievement of “general intelligence”—
intelligence as it is generally referred to with respect to broad
reasoning and problem-solving capabilities.  In practice and
particularly in the popular press, “AI” is used to describe any
cutting-edge machine capability. Presently, these capabilities
include voice recognition, describing what’s happening in a
video, question-answering, driving a car, industrial robots that
mimic human exemplars in the factory, and dominating
humans at “intuition-heavy” board games like Go. Once an AI
capability becomes commonplace (e.g., recognizing handwritten
digits, which was cutting-edge in the 1990s; see Chapter 1), the
“AI” moniker is typically dropped by the popular press for that
capability such that the goalposts on the definition of AI are
always moving.

Machine Learning
Machine learning is a subset of AI alongside other facets of AI
like robotics. Machine learning is a field of computer science
concerned with setting up software in a manner so that the
software can recognize patterns in data without the
programmer needing to explicitly dictate how the software
should carry out all aspects of this recognition. That said, the
programmer would typically have some insight into or

1. Defining “intelligence” is not straightforward, and the great debate on it is beyond
the scope of this book. A century-old definition of the term that we find amusing and
that still today has some proponents among contemporary experts is that
“intelligence is whatever IQ tests measure.” See, for example, van der Mass, H., et al.
(2014). Intelligence is what the intelligence test measures. Seriously. Journal of
Intelligence, 2, 12–15.
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hypothesis about how the problem might be solved, and would
thereby provide a rough model framework and relevant data
such that the learning software is well prepared and well
equipped to solve the problem. As depicted in Figure 1.12 and
discussed time and again within the earlier chapters of this
book, machine learning traditionally involves cleverly—albeit
manually, and therefore laboriously—processing raw inputs to
extract features that jibe well with data-modeling algorithms.

Representation Learning
Peeling back another layer of the Figure 4.1 onion, we find
representation learning. This term was introduced at the start
of Chapter 2, so we don’t go into much detail again here. To
recap briefly, representation learning is a branch of machine
learning in which models are constructed in a way that—
provided they are fed enough data—they learn features (or
representations) automatically. These learned features may
wind up being both more nuanced and more comprehensive
than their manually curated cousins. The trade-off is that the
learned features might not be as well understood nor as
straightforward to explain, although academic and industrial
researchers alike are increasingly tackling these hitches.

Artificial Neural Networks
Artificial neural networks (ANNs) dominate the field of
representation learning today. As was touched on in earlier
chapters and will be laid bare in Chapter 6, artificial neurons are

2. For example, see Kindermans, P.-J., et al. (2018). Learning how to explain neural
networks: PatternNet and PatternAttribution. International Conference on Learning
Representations.
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simple algorithms inspired by biological brain cells, especially
in the sense that individual neurons—whether biological or
artificial—receive input from many other neurons, perform
some computation, and then produce a single output. An
artificial neural network, then, is a collection of artificial
neurons arranged so that they send and receive information
between each other. Data (e.g., images of handwritten digits)
are fed into an ANN, which processes these data in some way
with the goal of producing some desired result (e.g., an accurate
guess as to what digits are represented by the handwriting).

Deep Learning
Of all the terms in Figure 4.1, deep learning is the easiest to
define because it’s so precise. We have mentioned a couple of
times already in this book that a network composed of at least a
few layers of artificial neurons can be called a deep learning
network. As exemplified by the classic architectures in Figures
1.11 and 1.17; diagramed simply in Figure 4.2; and fleshed out
fully in Chapter 7, deep learning networks have a total of five or
more layers with the following structure:

A single input layer that is reserved for the data being fed into the
network.

Three or more hidden layers that learn representations from the
input data. A general-purpose and frequently used type of hidden
layer is the dense type, in which all of the neurons in a given layer
can receive information from each of the neurons in the previous
layer (it is apt, then, that a common synonym for “dense layer” is
fully connected layer). In addition to this versatile hidden-layer
type, there is a cornucopia of specialized types for particular use
cases; we touch on the most popular ones as we make our way



through this section.

A single output layer that is reserved for the values (e.g.,
predictions) that the network yields.

Figure 4.2 Generalization of deep learning model architectures

With each successive layer in the network being able to
represent increasingly abstract, nonlinear recombinations of the
previous layers, deep learning models with fewer than a dozen
layers of artificial neurons are often sufficient for learning the
representations that are of value for a given problem being
solved with a given dataset. That said, deep learning networks
with hundreds or even upwards of a thousand layers have in
occasional circumstances been demonstrated to provide value.

As rapidly improving accuracy benchmarks and countless
competition wins since AlexNet’s 2012 victory in the ILSVRC
(Figure 1.15) have demonstrated, the deep learning approach to
modeling excels at a broad range of machine learning tasks.
Indeed, with deep learning driving so much of the

3. For example, see He, K., et al. (2016). Identity mappings in deep residual
networks. arXiv:1603.05027.
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contemporary progress in AI capabilities, the words “deep
learning” and “artificial intelligence” are used essentially
interchangeably by the popular press.

Let’s move inside the deep learning ring of Figure 4.1 to
explore classes of tasks that deep learning algorithms are
leveraged for: machine vision, natural language processing, and
reinforcement learning.

Machine Vision
Via analogy to the biological vision system, Chapter 1
introduced machine vision. There we focused on object
recognition tasks such as distinguishing handwritten digits or
breeds of dogs. Other prominent examples of applications that
involve machine vision algorithms include self-driving cars,
face-tagging suggestions, and phone unlocking via face
recognition on smartphones. More broadly, machine vision is
relevant to any AI that is going to need to recognize objects by
their appearance at a distance or navigate a real-world
environment.

Convolutional neural networks (ConvNets or CNNs for
short) are a prominent type of deep learning architecture in
contemporary machine vision applications. A CNN is any deep
learning model architecture that features hidden layers of the
convolutional type. We mentioned convolutional layers with
respect to Ian Goodfellow’s generative adversarial network
results in Figure 3.2; we will detail and deploy them in Chapter
10.

Natural Language Processing



In Chapter 2, we covered language and natural language
processing. Deep learning doesn’t dominate natural language
applications as comprehensively as it does machine vision
applications, so our Venn diagram in Figure 4.1 shows NLP in
both the deep learning region as well as the broader machine
learning territory. As depicted by the timeline in Figure 2.3,
however, deep learning approaches to NLP are beginning to
overtake traditional machine learning approaches in the field
with respect to both efficiency and accuracy. Indeed, in
particular NLP areas like voice recognition (e.g., Amazon’s
Alexa or Google’s Assistant), machine translation (including
real-time voice translation over the phone), and aspects of
Internet search engines (like predicting the characters or words
that will be typed next by a user), deep learning already
predominates. More generally, deep learning for NLP is relevant
to any AI that interacts via natural language—be it spoken or
typed—including to answer a complex series of questions
automatically.

A type of hidden layer that is incorporated into many deep
learning architectures in the NLP sphere is the long short-term
memory (LSTM) cell, a member of the recurrent neural
network (RNN) family. RNNs are applicable to any data that
occur in a sequence such as financial time series data, inventory
levels, traffic, and weather. We expound on RNNs, including
LSTMs, in Chapter 11 when we incorporate them into predictive
models involving natural language data. These language
examples provide a firm foundation even if you’re primarily
seeking to apply deep learning techniques to the other classes of
sequential data.



THREE CATEGORIES OF MACHINE
LEARNING PROBLEMS
The one remaining section of the Venn diagram in Figure 4.1
involves reinforcement learning, which is the focus of the rest of
this chapter. To introduce reinforcement learning, we contrast it
with the two other principal categories of problems that
machine learning algorithms are often leveraged to tackle:
supervised and unsupervised learning problems.

Supervised Learning
In supervised learning problems, we have both an x variable
and a y variable, where:

x represents the data we’re providing as input into our model.

y represents an outcome we’re building a model to predict. This y
variable can also be called a label.

The goal with supervised learning is to have our model learn
some function that uses x to approximate y. Supervised learning
typically involves either of two types:

Regression, where our y is a continuous variable. Examples
include predicting the number of sales of a product, or predicting
the future price of an asset like a home (an example we provide in
Chapter 9) or a share in an exchange-listed company.

Classification, where our y-values consist of labels that assign each
instance of x to a particular category. In other words, y is a so-
called categorical variable. Examples include identifying
handwritten digits (you will code up models that do this in Chapter
10) or predicting whether someone who has reviewed a film loved it
or loathed it (as you’ll do in Chapter 11).



Unsupervised Learning
Unsupervised learning problems are distinguishable from
supervised learning problems by the absence of a label y. Ergo,
in unsupervised learning problems, we have some data x that
we can put into a model, but we have no outcome y to predict.
Rather, our goal with unsupervised learning is to have our
model discover some hidden, underlying structure within our
data. An often-used example is that of grouping news articles by
their theme. Instead of providing a predefined list of categories
that the news articles belong to (politics, sports, finance, etc.),
we configure the model to group those with similar topics for us
automatically. Other examples of unsupervised learning include
creating a word-vector space (see Chapter 2) from natural
language data (you’ll do this in Chapter 11), or producing novel
images with a generative adversarial network (as in Chapter 12).

Reinforcement Learning
Returning to Figure 4.1, we’re now well positioned to cover
reinforcement learning problems, which are markedly different
from the supervised and unsupervised varieties. As illustrated
lightheartedly in Figure 4.3, reinforcement learning problems
are ones that we can frame as having an agent take a sequence
of actions within some environment. The agent could, for
example, be a human or an algorithm playing an Atari video
game, or it could be a human or an algorithm driving a car.
Perhaps the primary way in which reinforcement learning
problems diverge from supervised or unsupervised ones is that
the actions taken by the agent influence the information that the
environment provides to the agent—that is, the agent receives
direct feedback on the actions it takes. In supervised or



unsupervised problems, in contrast, the model never impacts
the underlying data; it simply consumes it.





Figure 4.3 The reinforcement learning loop. The top diagram
is a generalized version. The bottom diagram is specific to the
example elaborated on in the text of an agent playing a video
game on an Atari console. To our knowledge, trilobites can’t

actually play video games; we’re using the trilobite as a symbolic
representation of the reinforcement learning agent, which could

be either a human or a machine.

Students of deep learning often have an innate desire to divide the supervised,
unsupervised, and reinforcement learning paradigms into the traditional machine
learning versus deep learning approaches. More specifically, they seem to want to
associate supervised learning with traditional machine learning while associating
unsupervised learning or reinforcement learning (or both) with deep learning. To be
clear, there is no such association to be made. Both traditional machine learning and
deep learning techniques can be applied to supervised, unsupervised, and
reinforcement learning problems.

Let’s dive a bit further into the relationship between a
reinforcement learning agent and its environment by exploring
some examples. In Figure 4.3, the agent is represented by an
anthropomorphized trilobite, but this agent could be either
human or a machine. Where the agent is playing an Atari video
game:

The possible actions that can be taken are the buttons that can be
pressed on the video game controller.

The environment (the Atari console) returns information back to
the agent. This information comes in two delicious flavors: state
(the pixels on the screen that represent the current condition of the
environment) and reward (the point score in the game, which is
what the agent is endeavoring to maximize via gameplay).
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If the agent is playing Pac-Man, then selecting the action of
pressing the “up” button results in the environment returning an
updated state where the pixels representing the video game
character on the screen have moved upward. Prior to playing any of
the game, a typical reinforcement learning algorithm would not
even have knowledge of this simple relationship between the “up”
button and the Pac-Man character moving upward; everything is
learned from the ground up via trial and error.

If the agent selects an action that causes Pac-Man to cross paths
with a pair of delectable cherries, then the environment will return
a positive reward: an increase in points. On the other hand, if the
agent selects an action that causes Pac-Man to cross paths with a
spooky ghost, then the environment will return a negative reward:
a decrease in points.

In a second example, where the agent is driving a car,

The available actions are much broader and richer than for Pac-
Man. The agent can adjust the steering column, the accelerator, and
the brakes to varying degrees ranging from subtle to dramatic.

The environment in this case is the real world, consisting of roads,
traffic, pedestrians, trees, sky, and so on. The state then is the
condition of the vehicle’s surroundings, as perceived by a human
agent’s eyes and ears, or by an autonomous vehicle’s cameras and
lidar.

The reward, in the case of an algorithm, could be programmed to
be positive for, say, every meter of distance traveled toward a
destination; it could be somewhat negative for minor traffic
infractions, and severely negative in the event of a collision.

4. We’re not aware of video game-playing algorithms that literally press the buttons
on the game console’s controllers. They would typically interact with a video game
directly via a software-based emulation. We go through the most popular open-
source packages for doing this at the end of the chapter.

5. The laser-based equivalent of radar.
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DEEP REINFORCEMENT LEARNING
At long last, we reach the deep reinforcement learning section
near the center of the Venn diagram in Figure 4.3. A
reinforcement learning algorithm earns its “deep” prefix when
an artificial neural network is involved in it, such as to learn
what actions to take when presented with a given state from the
environment in order to have a high probability of obtaining a
positive reward.  As you’ll see in the examples coming up in the
next section, the marriage of deep learning and reinforcement
learning approaches has proved a prosperous one. This is
because:

Deep neural networks excel at processing the complex sensory
input provided by real environments or advanced, simulated
environments in order to distill relevant signals from a cacophony
of incoming data. This is analogous to the functionality of the
biological neurons of your brain’s visual and auditory cortexes,
which receive input from the eyes and ears, respectively.

Reinforcement learning algorithms, meanwhile, shine at selecting
an appropriate action from a vast scope of possibilities.

Taken together, deep learning and reinforcement learning are a
powerful problem-solving combination. Increasingly complex
problems tend to require increasingly large datasets for deep
reinforcement learning agents to wade through vast noise as
well as vast randomness in order to discover an effective policy

6. Earlier in this chapter (see Figure 4.2), we indicate that the “deep learning”
moniker applies to an artificial neural network that has at least three hidden layers.
While in general this is the case, when used by the reinforcement learning
community, the term “deep reinforcement learning” may be used even if the artificial
neural network involved in the model is shallow, that is, composed of as few as one or
two hidden layers.
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for what actions it should take in a given circumstance. Because
many reinforcement learning problems take place in a
simulated environment, obtaining a sufficient amount of data is
often not a problem: The agent can simply be trained on further
rounds of simulations.

Although the theoretical foundations for deep reinforcement
learning have been around for a couple of decades,  as with
AlexNet for vanilla deep learning (Figure 1.17), deep
reinforcement learning has in the past few years benefited from
a confluence of three tail winds:

1. Exponentially larger datasets and much richer simulated environments

2. Parallel computing across many graphics processing units (GPUs) to
model efficiently with large datasets as well as the breadth of associated
possible states and possible actions

3. A research ecosystem that bridges academia and industry, producing a
quickly developing body of new ideas on deep neural networks in
general as well as on deep reinforcement learning algorithms in
particular, to, for example, identify optimal actions across a wide variety
of noisy states

VIDEO GAMES
Many readers of this book recall learning a new video game as a
child. Perhaps while at an arcade or staring at the family’s heavy
cathode-ray-tube television set, you quickly became aware that
missing the ball in Pong or Breakout was an unproductive
move. You processed the visual information on the screen and,
yearning for a score in excess of your friends’, devised strategies

7. Tesauro, G. (1995). Temporal difference learning and TD-Gammon.
Communications of the Association for Computing Machinery, 38, 58–68.
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to manipulate the controller effectively and achieve this aim. In
recent years, researchers at a firm called DeepMind have been
producing software that likewise learns how to play classic Atari
games.

DeepMind was a British technology startup founded by
Demis Hassabis (Figure 4.4), Shane Legg, and Mustafa
Suleyman in London in 2010. Their stated mission was to “solve
intelligence,” which is to say they were interested in extending
the field of AI by developing increasingly general-purpose
learning algorithms. One of their early contributions was the
introduction of deep Q-learning networks (DQNs; noted within
Figure 4.1). Via this approach, a single model architecture was
able to learn to play multiple Atari 2600 games well—from
scratch, simply through trial and error.

In 2013, Volodymyr Mnih  and his DeepMind colleagues
published  an article on their DQN agent, a deep reinforcement
learning approach that you will come to understand intimately
when you construct a variant of it yourself line by line in
Chapter 13. Their agent received raw pixel values from its
environment, a video game emulator,  as its state information
—akin to the way human players of Atari games view a TV
screen. In order to efficiently process this information, Mnih et
al.’s DQN included a convolutional neural network (CNN), a
common tactic for any deep reinforcement learning model that
is fed visual data (this is why we elected to overlap “Deep RL”
somewhat with “Machine Vision” in Figure 4.1). The handling of
the flood of visual input from Atari games (in this case, a little
over two million pixels per second) underscores how well suited
deep learning in general is to filtering out pertinent features

8
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from noise. Further, playing Atari games within an emulator is a
problem that is well suited to deep reinforcement learning in
particular: While they provide a rich set of possible actions that
are engineered to be challenging to master, there is thankfully
no finite limit on the amount of training data available because
the agent can engage in endless rounds of play.

Figure 4.4 Demis Hassabis cofounded DeepMind in 2010 after
completing his PhD in cognitive neuroscience at University

8. Mnih obtained his doctorate at the University of Toronto under the supervision of
Geoff Hinton (Figure 1.16).

9. Mnih, V., et al. (2013). Playing Atari with deep reinforcement learning. arXiv:
1312.5602.

10. Bellemare, M., et al. (2012). The arcade learning environment: An evaluation
platform for general agents. arXiv: 1207.4708.



College London.

During training, the DeepMind DQN was not provided any
hints or strategies; it was provided only with state (screen
pixels), reward (its point score, which it is programmed to
maximize), and the range of possible actions (game-controller
buttons) available in a given Atari game. The model was not
altered for specific games, and yet it was able to outperform
existing machine learning approaches in six of the seven games
Mnih and his coworkers tested it on, even surpassing the
performance of expert human players on three. Perhaps
influenced by this conspicuous progress, Google acquired
DeepMind in 2014 for the equivalent of half a billion U.S.
dollars.

In a follow-up paper published in the distinguished journal
Nature, Mnih and his teammates at now-Google DeepMind
assessed their DQN algorithm across 49 Atari games.  The
results are shown in Figure 4.5: It outperformed other machine
learning approaches on all but three of the games (94 percent of
them), and, astonishingly, it scored above human level on the
majority of them (59 percent).
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Figure 4.5 The normalized performance scores of Mnih and
colleagues’ (2015) DQN relative to a professional game tester:

Zero percent represents random play, and 100% represents the
pro’s best performance. The horizontal line represents the
authors’ defined threshold of “human-level” play: the 75th

percentile of professionals’ scores.

BOARD GAMES
It might sound sensible that board games would serve as a
logical prelude to video games given their analog nature and
their chronological head start; however, the use of software
emulators provided a simple and easy way to interact with video
games digitally. Instead, the availability of these emulation tools
provided the means, and so the principal advances in modern
deep reinforcement learning initially took place in the realm of
video games. Additionally, relative to Atari games, the
complexity of some classical board games is much greater.
There are myriad strategies and long-plays associated with
chess expertise that are not readily apparent in Pac-Man or
Space Invaders, for example. In this section, we provide an
overview of how deep reinforcement learning strategies
mastered the board games Go, chess, and shogi despite the
data-availability and computational-complexity head winds.

AlphaGo

11. Mnih, V., et al. (2015). Human-level control through deep reinforcement learning.
Nature, 518, 529–33.

12. You can be entertained by watching the Google DeepMind DQN learn to master
Space Invaders and Pong here: bit.ly/DQNpong.



Invented several millennia ago in China, Go (illustrated in
Figure 4.6) is a ubiquitous two-player strategy board game in
Asia. The game has a simple set of rules based around the idea
of capturing one’s opponents’ pieces (called stones) by
encircling them with one’s own.  This uncomplicated premise
belies intricacy in practice, however. The larger board and the
larger set of possible moves per turn make the game much more
complex than, say, chess, for which we’ve had algorithms that
can defeat the best human players for two decades.  There are
a touch more than 2 × 10  possible legal board positions in Go,
which is far more than the number of atoms in the universe
and about a googol (10 ) more complex than chess.

Figure 4.6 The Go board game. One player uses the white
stones while the other uses the black stones. The objective is to
encircle the stones of your opponent, thereby capturing them.

13. Indeed, Go in Chinese translates literally to “encirclement board game.”
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An algorithm called Monte Carlo tree search (MCTS) can be
employed to play uncomplicated games competently. In its
purest form, MCTS involves selecting random moves  until the
end of gameplay. By repeating this many times, moves that
tended to lead to victorious game outcomes can be weighted as
favorable options. Because of the extreme complexity and sheer
number of possibilities within sophisticated games like Go, pure
MCTS approach is impractical: There are simply too many
options to search through and evaluate. Instead of pure MCTS,
an alternative approach involves MCTS applied to a much more
finite subset of actions that were curated by, for example, an
established policy of optimal play. This curated approach has
proved sufficient for defeating amateur human Go players but is
uncompetitive against professionals. To bridge the gap from
amateur- to professional-level capability, David Silver (Figure
4.7) and his colleagues at Google DeepMind devised a program
called AlphaGo that combines MCTS with both supervised
learning and deep reinforcement learning.

14. IBM’s Deep Blue defeated Garry Kasparov, arguably the world’s greatest-ever
chess player, in 1997. More on that storied match coming up shortly in this section.

15. There are an estimated 10  atoms in the observable universe.80
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Figure 4.7 David Silver is a Cambridge- and Alberta-educated
researcher at Google DeepMind. He has been instrumental in

combining the deep learning and reinforcement learning
paradigms.

Silver et al. (2016) used supervised learning on a historical database of expert human

16. Hence “Monte Carlo”: The casino-dense district of Monaco evokes imagery of
random outcomes.

17. Silver, D., et al. (2016). Mastering the game of Go with deep neural networks and
tree search. Nature, 529, 484–9.



Go moves to establish something called a policy network, which provides a shortlist of
possible moves for a given situation. Subsequently, this policy network was refined via
self-play deep reinforcement learning, wherein both opponents are Go-playing agents
of a comparable skill level. Through this self-play, the agent iteratively improves upon
itself, and whenever it improves, it is pitted against its now-improved self, producing a
positive-feedback loop of continuous advancement. Finally, the cherry atop the
AlphaGo algorithm: a so-called value network that predicts the winner of the self-play
games, thereby evaluating positions on the board and learning to identify strong
moves. The combination of these policy and value networks (more on both of these in
Chapter 13) reduces the breadth of search space for the MCTS.

AlphaGo was able to win the vast majority of games it played
against other computer-based Go programs. Perhaps most
strikingly, AlphaGo was also able to defeat Fan Hui, the then-
reigning European Go champion, five games to zero. This
marked the first time a computer defeated a professional
human player in a full play of the game. As exemplified by the
Elo ratings  in Figure 4.8, AlphaGo performed at or above the
level of the best players in the world.
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Figure 4.8 The Elo score of AlphaGo (blue) relative to Fan Hui
(green) and several Go programs (red). The approximate

human rank is shown on the right.

Following this success, AlphaGo was famously matched

18. Elo ratings enable the skill level of human and artificial game players alike to be
compared. Derived from calculations of head-to-head wins and losses, an individual
with a higher Elo score is more likely to win a game against an opponent with a lower
score. The larger the score gap between the two players, the greater the probability
that the player with the higher score will win.



against Lee Sedol in March 2016 in Seoul, South Korea. Sedol
has 18 world titles and is considered one of the all-time great
players. The five-game match was broadcast and viewed live by
200 million people. AlphaGo won the match 4-1, launching
DeepMind, Go, and the artificially intelligent future into the
public imagination.

AlphaGo Zero
Following AlphaGo, the folks at DeepMind took their work
further and created a second-generation Go player: AlphaGo
Zero. Recall that AlphaGo was initially trained in a supervised
manner; that is, expert human moves were used to train the
network first, and thereafter the network learned by
reinforcement learning through self-play. Although this is a
nifty approach, it doesn’t exactly “solve intelligence” as
DeepMind’s founders would have liked. A better approximation
of general intelligence would be a network that could learn to
play Go in a completely de novo setting—where the network is
not supplied with any human input or domain knowledge, but
improves by deep reinforcement learning alone. Enter AlphaGo
Zero.

As we’ve alluded to before, the game of Go requires
sophisticated look-ahead capabilities through vast search
spaces. That is, there are so many possible moves and such a
tiny fraction of them are good moves in the short- and longplay
of the game that performing a search for the optimal move,
keeping the likely future state of the game in mind, becomes

19. There is an outstanding documentary on this Sedol match that gave us chills:
Kohs, G. (2017). AlphaGo. United States: Moxie Pictures & Reel As Dirt.
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exceedingly complex and computationally impractical. It is for
this reason that it was thought that Go would be a final frontier
for machine intelligence; indeed, it was thought that the
achievements of AlphaGo in 2016 were a decade or more away.

Working off the momentum from the AlphaGo-Sedol match
in Seoul, researchers at DeepMind created AlphaGo Zero, which
learns to play Go far beyond the level of the original AlphaGo—
while being revolutionary in several ways.  First and foremost,
it is trained without any data from human gameplay. That
means it learns purely by trial and error. Second, it uses only
the stones on the board as inputs. Contrastingly, AlphaGo had
received 15 supplementary, human-engineered features, which
provided the algorithm key hints such as how many turns since
a move was played or how many opponent stones would be
captured. Third, a single (deep) neural network was used to
evaluate the board and decide on a next move, rather than
separate policy and value networks (as mentioned in the sidebar
on page 61; more on these coming in Chapter 13). Finally, the
tree search is simpler and relies on the neural network to
evaluate positions and possible moves.

AlphaGo Zero played almost five million games of self-play
over three days, taking an estimated 0.4s per move to “think.”
Within 36 hours, it had begun to outperform the model that
beat Lee Sedol in Seoul (retroactively termed AlphaGo Lee),
which—in stark contrast—took several months to train. At the
72-hour mark, the model was pitted against AlphaGo Lee in
match conditions, where it handily won every single one of 100

20. Silver, D., et al. (2016). Mastering the game of Go without human knowledge.
Nature 550, 354–359.
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games. Even more remarkable is that AlphaGo Zero achieved
this on a single machine with four tensor processing units
(TPUs)  whereas AlphaGo Lee was distributed over multiple
machines and used 48 TPUs. (AlphaGo Fan, which beat Fan
Hui, was distributed over 176 GPUs!) In Figure 4.9, the Elo
score for AlphaGo Zero is shown over days of training time and
compared to the scores for AlphaGo Master  and AlphaGo Lee.
Shown on the right are the absolute Elo scores for a variety of
iterations of AlphaGo and some other Go programs. AlphaGo
Zero is far and away the superior model.

Figure 4.9 Comparing Elo scores between AlphaGo Zero and
other AlphaGo variations or other Go programs. In the left-

hand plot, the comparison is over days of AlphaGo Zero
training.

21. Google built custom processor units for training neural networks, known as
tensor processing units (TPUs). They took the existing architecture of a GPU and
specifically optimized it for performing calculations that predominate the training of
neural network models. At the time of writing, TPUs were accessible to the public via
the Google Cloud Platform only.

22. AlphaGo Master is a hybrid between AlphaGo Lee and AlphaGo Zero; however, it
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A startling discovery that emerged from this research was
that the nature of the gameplay by AlphaGo Zero is qualitatively
different from that of human players and (the human gameplay-
trained) AlphaGo Lee. AlphaGo Zero began with random play
but quickly learned professional joseki—corner sequences that
are considered heuristics of distinguished play. After further
training, however, the mature model tended to prefer novel
joseki that were previously unknown to humankind. AlphaGo
Zero did spontaneously learn a whole range of classical Go
moves, implying a pragmatic alignment with these techniques.
However, the model did this in an original manner: It did not
learn the concept of shicho (ladder sequences), for example,
until much later in its training, whereas this is one of the first
concepts taught to novice human players. The authors
additionally trained another iteration of the model with human
gameplay data. This supervised model performed better
initially; however, it began to succumb to the data-free model
within the first 24 hours of training and ultimately achieved a
lower Elo score. Together, these results suggest that the data-
free, self-learned model has a style of play distinct from that of
human players—a dominating style that the supervised model
fails to develop.

AlphaZero
Having trounced the Go community, the team at DeepMind
shifted their focus to general game-playing neural networks.

uses the extra input features enjoyed by AlphaGo Lee and initializes training in a
supervised manner. AlphaGo Master famously played online anonymously in
January 2017 under the pseudonyms Master and Magister. It won all 60 of the
games it played against some of the world’s strongest Go players.



Although AlphaGo Zero is adept at playing Go, they wondered if
a comparable network could learn to play multiple games
expertly. To put this to the test, they added two new games to
their repertoire: chess and shogi.

Most readers are likely familiar with the game of chess, and
shogi—referred to by some as Japanese chess—is similar. Both
games are two-player strategy games, both take place on a grid-
format board, both culminate in a checkmate of the opponent’s
king, and both consist of a range of pieces with different moving
abilities. Shogi, however, is significantly more complex than
chess, with a larger board size (9×9, relative to 8×8 in chess)
and the fact that opponent pieces can be replaced anywhere on
the board after their capture.

Historically, artificial intelligence has had a rich interaction
with the game of chess. Over several decades, chess-playing
computer programs have been developed extensively. The most
famous is Deep Blue, conceived by IBM, which went on to beat
the world champion Garry Kasparov in 1997.  It was heavily
reliant on brute-force computing power  to execute complex
searches through possible moves, and combined this with
handcrafted features and domain-specific adaptations. Deep
Blue was fine-tuned by analyzing thousands of master games (it
was a supervised learning system!) and it was even tweaked
between games.

23. Silver, D., et al. (2017). Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. arXiv:1712.01815.

24. Deep Blue lost its first match against Kasparov in 1996, and after significant
upgrades went on to narrowly beat Kasparov in 1997. This was not the total
domination of man by machine that AI proponents might have hoped for.

23

24

25

26



Although Deep Blue was an achievement two decades ago,
the system was not generalizable; it could not perform any task
other than chess. After AlphaGo Zero demonstrated that the
game of Go could be learned by a neural network from first
principles alone, given nothing but the board and the rules of
the game, Silver and his DeepMind colleagues set out to devise a
generalist neural network, a single network architecture that
could dominate not only at Go but also at other board games.

Compared to Go, chess and shogi present pronounced
obstacles. The rules of the games are position dependent (pieces
can move differently based on where they are on the board) and
asymmetrical (some pieces can move only in one direction).
Long-range actions are possible (such as the queen moving
across the entire board), and games can result in draws.

AlphaZero feeds the board positions into a neural network
and outputs a vector of move probabilities for each possible
action, as well as a scalar  outcome value for that move. The
network learns the parameters for these move probabilities and
outcomes entirely from self-play deep reinforcement learning,
as AlphaGo Zero did. An MCTS is then performed on the
reduced space guided by these probabilities, returning a refined

25. Deep Blue was the planet’s 259th most powerful supercomputer at the time of the
match against Kasparov.

26. This tweaking was a point of contention between IBM and Kasparov after his loss
in 1997. IBM refused to release the program’s logs and dismantled Deep Blue. Their
computer system never received an official chess ranking, because it played so few
games against rated chess masters.

27. This makes expanding the training data via synthetic augmentation—an approach
used copiously for AlphaGo—more challenging.
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vector of probabilities over the possible moves. Whereas
AlphaGo Zero optimizes the probability of winning (Go is a
binary win/loss game), AlphaZero instead optimizes for the
expected outcome. During self-play, AlphaGo Zero retains the
best player to date and evaluates updated versions of itself
against that player, continually replacing the player with the
next best version. AlphaZero, in contrast, maintains a single
network and at any given time is playing against the latest
version of itself. AlphaZero was trained to play each of chess,
shogi, and Go for a mere 24 hours. There were no game-specific
modifications, with the exception of a manually configured
parameter that regulates how frequently the model takes
random, exploratory moves; this was scaled to the number of
legal moves in each game.

Across 100 competitive games, AlphaZero did not lose a
single one against the 2016 Top Chess Engine Championship
world champion Stockfish. In shogi, the Computer Shogi
Association world champion, Elmo, managed to beat AlphaZero
only eight times in 100 games. Its perhaps most worthy
opponent, AlphaGo Zero, was able to defeat AlphaZero in 40 of
their 100 games. Figure 4.10 shows the Elo scores for AlphaZero
relative to these three adversaries.

28. A single value.

29. This manually configured exploration parameter is called epsilon. It is detailed in
Chapter 13.
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Figure 4.10 Comparing Elo scores between AlphaZero and
each of its opponents in chess, shogi, and Go. AlphaZero rapidly

outperformed all three opponents.

Not only was AlphaZero superior, it was also efficient.
AlphaZero’s Elo score exceeded its greatest foes’ after only two,
four, and eight hours of training for shogi, chess, and Go,
respectively. This is a sensationally rapid rate of learning,
considering that in the case of Elmo and Stockfish, these
computer programs represent the culmination of decades of
research and fine-tuning in a focused, domain-specific manner.
The generalizable AlphaZero algorithm is able to play all three
games with aplomb: Simply switching out learned weights from
otherwise identical neural network architectures imbues each
with the same skills that have taken years to develop by other
means. These results demonstrate that deep reinforcement
learning is a strikingly powerful approach for developing
general expert gameplay in an undirected fashion.

MANIPULATION OF OBJECTS
As this chapter’s title might suggest, thus far we’ve centered our
coverage of deep reinforcement learning on its game-playing
applications. Although games offer a hot testbed for exploring
the generalization of machine intelligence, in this section we



spend a few moments expounding on practical, real-world
applications of deep reinforcement learning.

One real-world example we mention earlier in this chapter is
autonomous vehicles. As an additional example, here we
provide an overview of research by Sergey Levine, Chelsea Finn
(Figure 4.11), and labmates at the University of California,
Berkeley.  These researchers trained a robot to perform a
number of motor skills that require complex visual
understanding and depth perception, such as screwing the cap
back onto a bottle, removing a nail with a toy hammer, placing a
hanger on a rack, and inserting a cube in a shape-fitting game
(Figure 4.12).
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Figure 4.11 Chelsea Finn is a doctoral candidate at the
University of California, Berkeley, in its AI Research Lab.



Figure 4.12 Sample images from Levine, Finn, et al. (2016)
exhibiting various object-manipulation actions the robot was

trained to perform

Levine, Finn, and colleagues’ algorithm maps raw visual
input directly to the movement of the motors in the robot’s arm.
Their policy network was a seven-layer-deep convolutional
neural network (CNN) consisting of fewer than 100,000
artificial neurons—a minuscule amount in deep learning terms,
as you’ll see when you train orders-of-magnitude larger
networks later in this book. Although it would be tricky to
elaborate further on this approach before we delve much into
artificial-neural-network theory (in Part II, which is just around
the corner), there are three take-away points we’d like to
highlight on this elegant practical application of deep

30. Levine, S., Finn, C., et al. (2016). End-to-end training of deep visuomotor
policies. Journal of Machine Learning Research, 17, 1–40.



reinforcement learning. First, it is an “end-to-end” deep
learning model in the sense that the model takes in raw images
(pixels) as inputs and then outputs directly to the robot’s
motors. Second, the model generalizes neatly to a broad range
of unique object-manipulation tasks. Third, it is an example of
the policy gradient family of deep reinforcement learning
approaches, rounding out the terms featured in the Venn
diagram in Figure 4.1. Policy gradient methods are distinct from
the DQN approach that is the focus of Chapter 13, but we touch
on them then too.

POPULAR DEEP REINFORCEMENT
LEARNING ENVIRONMENTS
Over the past few sections, we talk a fair bit about software
emulation of environments in which to train reinforcement
learning models. This area of development is crucial to the
ongoing progression of reinforcement learning; without
environments in which our agents can play and explore (and
gather data!), there would be no training of models. Here we
introduce the three most popular environments, discussing
their high-level attributes.

OpenAI Gym
OpenAI Gym  is developed by the nonprofit AI research
company OpenAI.  The mission of OpenAI is to advance
artificial general intelligence (more on that in the next section!)
in a safe and equitable manner. To that end, the researchers at
OpenAI have produced and open-sourced a number of tools for
AI research, including the OpenAI Gym. This toolkit is designed
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to provide an interface for training reinforcement learning
models, be they deep or otherwise.

As captured in Figure 4.13, the Gym features a diverse array
of environments, including a number of Atari 2600 games,
multiple robotics simulators, a few simple text-based
algorithmic games, and several robotics simulations using the
MuJoCo physics engine.  In Chapter 13, you’ll install OpenAI
Gym in a single line of code and then employ an environment it
provides to train the DQN agent that you build. OpenAI Gym is
written in Python and is compatible with any deep learning
computation library, including TensorFlow and PyTorch (we
discuss the various deep learning libraries in Chapter 14; these
are two particularly popular ones).

31. github.com/openai/gym

32. openai.com

33
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Figure 4.13 A sampling of OpenAI Gym environments: (a)
CartPole, a classic control-theory problem; (b) LunarLander, a

continuous-control task run inside a two-dimensional
simulation; (c) Skiing, an Atari 2600 game; (d) Humanoid, a

three-dimensional MuJuCo physics engine simulation of a
bipedal person; (e) FetchPickAndPlace, one of several available
simulations of real-world robot arms, in this case involving one
called Fetch, with the goal of grasping a block and placing it in a
target location; and (f) HandManipulateBlock, another practical

simulation of a robotic arm, the Shadow Dexterous Hand.

DeepMind Lab
DeepMind Lab  is another RL environment, this time from the
developers at Google DeepMind (although they point out that
DeepMind Lab is not an official Google product). As can be seen
in Figure 4.14, the environment is built on top of id Software’s
Quake III Arena  and provides a sci-fi inspired three-
dimensional world in which agents can explore. The agent
experiences the environment from the first-person perspective,
which is distinct from the Atari emulators available via OpenAI
Gym.

33. OpenAI Gym uses the Arcade Learning Environment to emulate Atari 2600
games. This same framework is used in the Mnih et al. (2013) paper described in the
“Video Games” section. You can find the framework yourself at
github.com/mgbellemare/Arcade-Learning-Environment.

34. MuJoCo is an abbreviation of Multi-Joint dynamics with Contact. It is a physics
engine that was developed by Emo Todorov for Roboti LLC.
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Figure 4.14 A DeepMind Lab environment, in which positive-
reward points are awarded for capturing scrumptious green

apples

There are a variety of levels available, which can be roughly
divided into four categories:

1. Fruit-gathering levels, where the agent simply tries to find and collect
rewards (apples and melons) while avoiding penalties (lemons).

35. Beattie, C. et al. (2016). DeepMind Lab. arXiv:1612.03801.

36. Quake III Arena. (1999). United States: id Software. github.com/id-
Software/Quake-III-Arena

http://github.com/id-Software/Quake-III-Arena


2. Navigation levels with a static map, where the agent is tasked with
finding a goal and remembering the layout of the map. The agent can
either be randomly placed within a map at the start of each episode
while the goal remains stationary, an arrangement that tests initial
exploration followed by a reliance on memory to repeatedly find the
goal; or the agent can start in the same place while the goal is moved for
every episode, testing the agent’s ability to explore.

3. Navigation levels with random maps, where the agent is required to
explore a novel map in each episode, find the goal, and then repeatedly
return to the goal as many times as possible within a time limit.

4. Laser-tag levels, where the agent is rewarded for hunting and attacking
bots in an array of different scenes.

Installation of DeepMind Lab is not as straightforward as
OpenAI Gym,  but it provides a rich, dynamic first-person
environment in which to train agents, and the levels provide
complex scenarios involving navigation, memory, strategy,
planning, and fine-motor skills. These challenging
environments can test the limits of what is tractable with
contemporary deep reinforcement learning.

Unity ML-Agents
Unity is a sophisticated engine for two- and three-dimensional
video games and digital simulations. Given the game-playing
proficiency of reinforcement learning algorithms we chronicle
earlier in this chapter, it may come as no surprise that the
makers of a popular game engine are also in the business of
providing environments to incorporate reinforcement learning
into video games. The Unity ML-Agents plug-in  enables

37. First the Github repository (github.com/deepmind/lab) is cloned, and then the
software must be built using Bazel (bit.ly/installB). The DeepMind Lab

repository provides detailed instructions (bit.ly/buildDML).
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reinforcement learning models to be trained within Unity-based
video games or simulations and, perhaps more fitting with the
purpose of Unity itself, allows reinforcement learning models to
guide the actions of agents within the game.

As with DeepMind Lab, installation of Unity ML-Agents is
not a one-liner.

THREE CATEGORIES OF AI
Of all deep learning topics, deep reinforcement learning is
perhaps the one most closely tied to the popular perception of
artificial intelligence as a system for replicating the cognitive,
decision-making capacity of humans. In light of that, to wrap up
this chapter, in this section we introduce three categories of AI.

Artificial Narrow Intelligence
Artificial narrow intelligence (ANI) is machine expertise at a
specific task. Many diverse examples of ANI exist today, and
we’ve mentioned plenty already in this book, such as the visual
recognition of objects, real-time machine translation between
natural languages, automated financial-trading systems,
AlphaZero, and self-driving cars.

Artificial General Intelligence
Artificial general intelligence (AGI) would involve a single

38. github.com/Unity-Technologies/ml-agents

39. It requires the user to first install Unity (for download and installation
instructions, see store.unity.com/download) and then clone the Github repository.
Full instructions are available at the Unity ML-Agents Github repository
(bit.ly/MLagents).
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algorithm that could perform well at all of the tasks described in
the preceding paragraph: It would be able to recognize your
face, translate this book into another language, optimize your
investment portfolio, beat you at Go, and drive you safely to
your holiday destination. Indeed, such an algorithm would be
approximately indistinguishable from the intellectual
capabilities of an individual human. There are countless hurdles
to overcome in order for AGI to be realized; it is challenging to
approximate when it will be achieved, if it will be achieved at all.
That said, AI experts are happy to wave a finger in the air and
speculate on timing. In a study conducted by the philosopher
Vincent Müller and the influential futurist Nick Bostrom,  the
median estimate across hundreds of professional AI researchers
is that AGI will be attained in the year 2040.

Artificial Super Intelligence
Artificial super intelligence (ASI) is difficult to describe because
it’s properly mind-boggling. ASI would be an algorithm that is
markedly more advanced than the intellectual capabilities of a
human.  If AGI is possible, then ASI may be as well. Of course,
there are even more hurdles on the road to ASI than to AGI, the
bulk of which we can’t foresee today. Citing the Müller and
Bostrom survey again, however, AI experts’ median estimate for
the arrival of ASI is 2060, a rather hypothetical date that falls
within the life-span of many earthlings alive today. In Chapter
14, at which point you’ll be well-versed in deep learning both in
theory and in practice, we discuss both how deep learning

40. Müller, V., and Bostrom, N. (2014). Future progress in artificial intelligence: A
survey of expert opinion. In V. Müller (Ed.), Fundamental Issues of Artificial
Intelligence. Berlin: Springer.
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models could contribute to AGI as well as the present
limitations associated with deep learning that would need to be
bridged in order to attain AGI or, gasp, ASI.

SUMMARY
The chapter began with an overview relating deep learning to
the broader field of artificial intelligence. We then detailed deep
reinforcement learning, an approach that blends deep learning
with the feedback-providing reinforcement learning paradigm.
As discussed via real-world examples ranging from the board
game Go to the grasping of physical objects, such deep
reinforcement learning enables machines to process vast
amounts of data and take sensible sequences of actions on
complex tasks, associating it with popular conceptions of AI.

41. In 2015, the writer and illustrator Tim Urban provided a two-part series of posts
that rivetingly covers ASI and the related literature. It’s available at
bit.ly/urbanAI for you to enjoy.
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5. The (Code) Cart Ahead of the
(Theory) Horse

In Part I, we provided a high-level overview of deep learning by
demonstrating its use across a spectrum of cutting-edge
applications. Along the way, we sprinkled in foundational deep
learning concepts from its hierarchical, representation-learning
nature through to its relationship to the field of artificial
intelligence. Repeatedly, as we touched on a concept, we noted
that in Part II of the book we would dive into the low-level
theory and mathematics behind it. While we promise this is
true, we are going to take this final opportunity to put the fun,
hands-on coding cart ahead of the proverbial—in this case,
theory-laden—horse.

In this chapter we do a line-by-line walk-through of a
notebook of code featuring a neural network model. While you
will need to bear with us because we have not yet detailed much
of the theory underpinning the code, this serpentine approach
will make the apprehension of theory in the subsequent
chapters easier: Instead of being an abstract idea, each element
of theory we introduce in this part of the book will be rooted in a
tangible line of applied code.

PREREQUISITES



Working through the examples in this book will be easiest if you
are familiar with the basics of the Unix command line. These
are provided by Zed Shaw in Appendix A of his deceptively
enjoyable Learn Python the Hard Way.

Speaking of Python, since it is comfortably the most popular
software language in the data science community (at time of
writing, anyway), it’s the language we selected for our example
code throughout the book. Python’s prevalence extends across
the composition of stand-alone scripts through to the
deployment of machine learning models into production
systems. If you’re new to Python or you’re feeling a tad rusty,
Shaw’s book serves as an appropriate general reference, while
Daniel Chen’s Pandas for Everyone  is ideal for learning how to
apply the language to data modeling in particular.

INSTALLATION
Regardless of whether you’re planning on executing our code
notebooks via Unix, Linux, macOS, or Windows, we have made
step-by-step installation instructions available in the GitHub
repository that accompanies this book:

Click here to view code image

github.com/the-deep-learners/deep-learning-illustrated

1. Shaw, Z. (2013). Learn Python the Hard Way, 3rd Ed. New York: Addison-Wesley.
This relevant appendix, Shaw’s “Command Line Crash Course,” is available online at
learnpythonthehardway.org/book/appendixa.html.

2. Chen, D. (2017). Pandas for Everyone: Python Data Analysis. New York:
Addison-Wesley.

1

2

http://learnpythonthehardway.org/book/appendixa.html


If you’d prefer to view the completed notebooks instead of
running them on your own machine, you are more than
welcome to do that from the GitHub repo as well.

We elected to provide our code within the comfort of
interactive Jupyter notebooks.  Jupyter is a common option
today for writing and sharing scripts, particularly during
exploratory phases in which a data scientist is experimenting
with preprocessing, visualizing, and modeling her data. Our
installation instructions suggest running Jupyter from within a
Docker container.  This containerization ensures that you’ll
have all of the software dependencies you need to run our
notebooks while simultaneously preventing these dependencies
from clashing with software you already have installed on your
system.

A SHALLOW NETWORK IN KERAS
To kick off the code portion of our book, we will:

1. Detail a revered dataset of handwritten digits

2. Load these data into a Jupyter notebook

3. Use Python to prepare the data for modeling

4. Write a few lines of code in Keras, a high-level deep learning API, to
construct an artificial neural network (in TensorFlow, behind the
scenes) that predicts what digit a given handwritten sample represents

The MNIST Handwritten Digits

3. jupyter.org. We recommend familiarizing yourself with the hot keys to breeze
through Jupyter notebooks with pizzazz.

4. docker.com

3
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Back in Chapter 1 when we introduced the LeNet-5 machine
vision architecture (Figure 1.11), we mentioned that one of the
advantages Yann LeCun (Figure 1.9) and his colleagues had over
previous deep learning practitioners was a superior dataset for
training their model. This dataset of handwritten digits, called
MNIST (see the samples in Figure 5.1), came up again in the
context of being imitated by Ian Goodfellow’s generative
adversarial network (Figure 3.2a). The MNIST dataset is
ubiquitous across deep learning tutorials, and for good reason.
By modern standards, the dataset is small enough that it can be
modeled rapidly, even on a laptop computer processor. In
addition to their portable size, the MNIST digits are handy
because they occupy a sweet spot with respect to how
challenging they are to classify: The handwriting samples are
sufficiently diverse and contain complex enough details that
they are not easy for a machine-learning algorithm to identify
with high accuracy, and yet by no means do they pose an
insurmountable problem. However, as you will observe yourself
as we make our way through Part II of this book, a well-
designed deep-learning model can nearly faultlessly classify the
handwriting as the appropriate digit.



Figure 5.1 A sample of a dozen images from the MNIST
dataset. Each image contains a single digit handwritten by

either a high school student or a U.S. census worker.

The MNIST dataset was curated by LeCun (Figure 1.9),
Corinna Cortes (Figure 5.2), and the Microsoft-AI-researcher-
turned-musician Chris Burges in the 1990s.  It consists of
60,000 handwritten digits for training an algorithm, and
10,000 more for validating the algorithm’s performance on
previously unseen data. The data are a subset (a modification)

5



of a larger body of handwriting samples collected from high
school students and census workers by the U.S. National
Institute of Standards and Technology (NIST).

Figure 5.2 The Danish computer scientist Corinna Cortes is
head of research at Google’s New York office. Among her

countless contributions to both pure and applied machine
learning, Cortes (with Chris Burges and Yann LeCun) curated

the widely used MNIST dataset.

As exemplified by Figure 5.3, every MNIST digit is a 28×28-
pixel image.  Each pixel is 8-bit, meaning that the pixel
darkness can vary from 0 (white) to 255 (black), with the

5. yann.lecun.com/exdb/mnist/

6
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intervening range of integers representing gradually darker
shades of gray.

Figure 5.3 Each handwritten MNIST digit is stored as a
28×28-pixel grayscale image. See the Jupyter notebook titled
MNIST Digit Pixel by Pixel that accompanies this book for the

code we used to create this figure.

6. Python uses zero indexing, so the first row and column are denoted with 0. The

28th row and 28th column of pixels are therefore both denoted with 27.



A Schematic Diagram of the Network
In our Shallow Net in Keras Jupyter notebook,  we create an
artificial neural network to predict what digit a given
handwritten MNIST image represents. As shown in the rough
schematic diagram in Figure 5.4, this artificial neural network
features one hidden layer of artificial neurons, for a total of
three layers. Recalling Figure 4.2, with so few layers this ANN
would not generally be considered a deep learning architecture;
hence it is shallow.

Figure 5.4 A rough schematic of the shallow artificial-neural-
network architecture we’re whipping up in this chapter. We
detail the particular sigmoid and softmax flavors of artificial

neurons in Chapters 6 and 7, respectively.

7. Within this book’s GitHub repository, navigate into the notebooks directory.
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The first layer of the network is reserved for inputting our
MNIST digits. Because they are 28×28-pixel images, each one
has a total of 784 values. After we load in the images, we’ll
flatten them from their native, two-dimensional 28×28 shape to
a one-dimensional array of 784 elements.

You could argue that collapsing the images from two dimensions to one will cause us
to lose a lot of the meaningful structure of the handwritten digits. Well, if you argued
that, you’d be right! Working with one-dimensional data, however, means we can use
relatively unsophisticated neural network models, which is appropriate at this early
stage in our journey. Later, in Chapter 10, you’ll be in a position to appreciate more-
complex models that can handle multidimensional inputs.

The pixel-data inputs will be passed through a single, hidden
layer of 64 artificial neurons.  The number (64) and type
(sigmoid) of these neurons aren’t critical details at present; we
begin to explain these model attributes in the next chapter. The
key piece of information at this time is that, as we demonstrate
in Chapter 1 (see Figures 1.18 and 1.19), the neurons in the
hidden layer are responsible for learning representations of the
input data so that the network can predict what digit a given
image represents.

Finally, the information that is produced by the hidden layer
will be passed to 10 neurons in the output layer. We detail how a
softmax layer of neurons works in Chapter 7, but, in essence, we
have 10 neurons because we have 10 categories of digit to

8. “Hidden” layers are so called because they are not exposed; data impact them only
indirectly, via the input layer or the output layer of neurons.
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classify. Each of these 10 neurons outputs a probability: one for
each of the 10 possible digits that a given MNIST image could
represent. As an example, a fairly well-trained network that is
fed the image in Figure 5.3 might output that there is a 0.92
probability that the image is of a three, a 0.06 probability that
it’s a two, a 0.02 probability that it’s an eight, and a probability
of 0 for the other seven digits.

Loading the Data
At the top of the notebook we import our software
dependencies, which is the unexciting but necessary step shown
in Example 5.1.

Example 5.1 Software dependencies for shallow net
in Keras

Click here to view code image

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
from matplotlib import pyplot as plt

We import Keras because that’s the library we’re using to
fashion our neural network. We also import the MNIST dataset
because these, of course, are the data we’re working with in this
example. The lines ending in Sequential, Dense, and SGD
will make sense later; no need to worry about them at this stage.
Finally, the matplotlib line will enable us to plot MNIST
digits to our screen.



With these dependencies imported, we can conveniently load
the MNIST data in a single line of code, as in Example 5.2.

Example 5.2 Loading MNIST data

Click here to view code image

(X_train, y_train), (X_valid, y_valid) = mnist.load_data()

Let’s examine these data. As mentioned in Chapter 4, the
mathematical notation x is used to represent the data we’re
feeding into a model as input, while y is used for the labeled
output that we’re training the model to predict. With this in
mind, X_train stores the MNIST digits we’ll be training our
model on.  Executing X_train.shape yields the output
(60000, 28, 28). This shows us that, as expected, we have
60,000 images in our training dataset, each of which is a 28×28
matrix of values. Running y_train.shape, we unsurprisingly
discover we have 60,000 labels indicating what digit is
contained in each of the 60,000 training images.
y_train[0:12] outputs an array of 12 integers representing
the first dozen labels, so we can see that the first handwritten
digit in the training set (X_train[0]) is the number five, the
second is a zero, the third is a four, and so on.

Click here to view code image

9. The convention is to use an uppercase letter like X when the variable being
represented is a two-dimensional matrix or a data structure with even higher
dimensionality. In contrast, a lowercase letter like x is used to represent a single
value (a scalar) or a one-dimensional array.

9



array([5, 0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5], dtype=ui

nt8)

These happen to be the same dozen MNIST digits that were
shown earlier in Figure 5.1, a figure we created by running the
following chunk of code:

Click here to view code image

plt.figure(figsize=(5,5))

for k in range(12):
    plt.subplot(3,4, k+1)

    plt.imshow(X_train[k], cmap='Greys')

    plt.axis('off')

plt.tight_layout()

plt.show()

Akin to the training data, by examining the shape of the
validation data (X_valid.shape, y_valid.shape), we note
that there are the expected 10,000 28×28-pixel validation
images, each with a corresponding label: (10000, 28, 28),
(10000,). Investigating the values that make up an individual
image such as X_valid[0], we observe that the matrix of
integers representing the handwriting is primarily zeros (white-
space). Tilting your head, you might even be able to make out
that the digit in this example is a seven with the highest integers
(e.g., 254, 255) representing the black core of the handwritten
figure, and the outline of the figure (composed of intermediate



integers) fading toward white. To corroborate that this is indeed
the number seven, we both printed out the image using
plt.imshow(X_valid[0], cmap='Greys') (output shown
in Figure 5.5) and printed out its label using y_valid[0]
(output was 7).

Figure 5.5 The first MNIST digit in the validation dataset
(X_valid[0]) is a seven.

Reformatting the Data
The MNIST data now loaded, we come across the heading
“Preprocess data” in the notebook. We won’t, however, be
preprocessing the images by applying functions to, say, extract



features that provide hints to our artificial neural network.
Instead, we will simply be rearranging the shape of the data so
that they match up with the shapes of the input and output
layers of the network.

Thus, we’ll flatten our 28×28-pixel images into 784-element
arrays. We employ the reshape() method, as shown in
Example 5.3.

Example 5.3 Flattening two-dimensional images to
one dimension

Click here to view code image

X_train = X_train.reshape(60000, 784).astype('float32')

X_valid = X_valid.reshape(10000, 784).astype('float32')

Simultaneously, we use astype('float32') to convert the
pixel darknesses from integers into single-precision float
values.  This conversion is preparation for the subsequent step,
shown in Example 5.4, in which we divide all of the values by
255 so that they range from 0 to 1.

Example 5.4 Converting pixel integers to floats

10. The data are initially stored as uint8, which is an unsigned integer from 0 to

255. This is more memory efficient, but it doesn’t require much precision because
there are only 256 possible values. Without specifying, Python would default to a 64-
bit float, which would be overkill. Thus, by specifying a 32-bit float we can
deliberately specify a lower-precision float that is sufficient for this use case.

11. Machine learning models tend to learn more efficiently when fed standardized
inputs. Binary inputs would typically be a 0 or a 1, whereas distributions are often

normalized to have a mean of 0 and a standard deviation of 1. As we’ve done here,
pixel intensities are generally scaled to range from 0 to 1.

10
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X_train /= 255

X_valid /= 255

Revisiting our example handwritten seven from Figure 5.5 by
running X_valid[0], we can verify that it is now represented
by a one-dimensional array made up of float values as low as 0
and as high as 1.

That’s all for reformatting our model inputs X. As shown in
Example 5.5, for the labels y, we need to convert them from
integers into one-hot encodings (shortly we demonstrate what
these are via a hands-on example).

Example 5.5 Converting integer labels to one-hot

Click here to view code image

n_classes = 10

y_train = keras.utils.to_categorical(y_train, n_classes)

y_valid = keras.utils.to_categorical(y_valid, n_classes)

There are 10 possible handwritten digits, so we set n_classes
equal to 10. In the other two lines of code we use a convenient
utility function—to_categorical, which is provided within
the Keras library—to transform both the training and the
validation labels from integers into the one-hot format. Execute
y_valid to see how the label seven is represented now:

Click here to view code image

array([0., 0., 0., 0., 0., 0., 0., 1., 0., 0.], dtyp

e=float32)



Instead of using an integer to represent seven, we have an array
of length 10 consisting entirely of 0s, with the exception of a 1
in the eighth position. In such a one-hot encoding, the label zero
would be represented by a lone 1 in the first position, one by a
lone 1 in the second position, and so on. We arrange the labels
with such one-hot encodings so that they line up with the 10
probabilities being output by the final layer of our artificial
neural network. They represent the ideal output that we are
striving to attain with our network: If the input image is a
handwritten seven, then a perfectly trained network would
output a probability of 1.00 that it is a seven and a probability of
0.00 for each of the other nine classes of digits.

Designing a Neural Network Architecture
From your authors’ perspective, this is the most pleasurable bit
of any script featuring deep learning code: architecting the
artificial neural net itself. There are infinite possibilities here,
and, as you progress through the book, you will begin to develop
an intuition that guides the selection of the architectures you
might experiment with for tackling a given problem. Referring
to Figure 5.4, for the time being, we’re keeping the architecture
as elementary as possible in Example 5.6.

Example 5.6 Keras code to architect a shallow
neural network

Click here to view code image

model = Sequential()



model.add(Dense(64, activation='sigmoid', input_shape=

(784,)))

model.add(Dense(10, activation='softmax'))

In the first line of code, we instantiate the simplest type of
neural network model object, the Sequential type  and—in a
dash of extreme creativity—name the model model. In the
second line, we use the add() method of our model object to
specify the attributes of our network’s hidden layer (64
sigmoid-type artificial neurons in the general-purpose, fully
connected arrangement defined by the Dense() method)  as
well as the shape of our input layer (one-dimensional array of
length 784). In the third and final line we use the add()
method again to specify the output layer and its parameters: 10
artificial neurons of the softmax variety, corresponding to the
10 probabilities (one for each of the 10 possible digits) that the
network will output when fed a given handwritten image.

Training a Deep Learning Model
Later, we return to the model.summary() and
model.compile() steps of the Shallow Net in Keras
notebook, as well as its three lines of arithmetic. For now, we
skip ahead to the model-fitting step (shown in Example 5.7).

Example 5.7 Keras code to train our shallow neural
network

12. So named because each layer in the network passes information to only the next
layer in the sequence of layers.

13. Once more, these esoteric terms will become comprehensible over the coming
chapters.
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Click here to view code image

model.fit(X_train, y_train,

          batch_size=128, epochs=200,

          verbose=1,

          validation_data=(X_valid, y_valid))

The critical aspects are:

1. The fit() method of our model object enables us to train our artificial
neural network with the training images X_train as inputs and their
associated labels y_train as the desired outputs.

2. As the network trains, the fit() method also provides us with the
option to evaluate the performance of our network by passing our
validation data X_valid and y_valid into the validation_data
argument.

3. With machine learning, and especially with deep learning, it is
commonplace to train our model on the same data multiple times. One
pass through all of our training data (60,000 images in the current case)
is called one epoch of training. By setting the epochs parameter to 200,
we cycle through all 60,000 training images 200 separate times.

4. By setting verbose to 1, the model.fit() method will provide us
with plenty of feedback as we train. At the moment, we’ll focus on the
val_acc statistic that is output following each epoch of training.
Validation accuracy is the proportion of the 10,000 handwritten
images in X_valid in which the network’s highest probability in the
output layer corresponds to the correct digit as per the labels in
y_valid.

Following the first epoch of training, we observe that
val_acc equals 0.1010.  That is, 10.1 percent of the
images from the held-out validation dataset were correctly
classified by our shallow architecture. Given that there are 10

14, 15



classes of handwritten digits, we’d expect a random process to
guess 10 percent of the digits correctly by chance, so this is not
an impressive result. As the network continues to train,
however, the results improve. After 10 epochs of training, it is
correctly classifying 36.5 percent of the validation images—far
better than would be expected by chance! And this is only the
beginning: After 200 epochs, the network’s improvement
appears to be plateauing as it approaches 86 percent validation
accuracy. Because we constructed an uninvolved, shallow
neural-network architecture, this is not too shabby!

SUMMARY
Putting the cart before the horse, in this chapter we coded up a
shallow, elementary artificial neural network. With decent
accuracy, it is able to classify the MNIST images. Over the
remainder of Part II, as we dive into theory, unearth artificial-
neural-network best practices, and layer up to authentic deep
learning architectures, we should surely be able to classify
inputs much more accurately, no? Let’s see.

14. Artificial neural networks are stochastic (because of the way they’re initialized as
well as the way they learn), so your results will vary slightly from ours. Indeed, if you
rerun the whole notebook (e.g., by clicking on the Kernel option in the Jupyter menu
bar and selecting Restart & Run All), you should obtain new, slightly different results
each time you do this.

15. By the end of Chapter 8, you’ll have enough theory under your belt to study the
output model.fit() in all its glory. For our immediate “cart before the horse”

purposes, coverage of the validation accuracy metric alone suffices.



6. Artificial Neurons Detecting Hot
Dogs

Having received tantalizing exposure to applications of deep
learning in the first part of this book and having coded up a
functioning neural network in Chapter 5, the moment has come
to delve into the nitty-gritty theory underlying these
capabilities. We begin by dissecting artificial neurons, the units
that—when wired together—constitute an artificial neural
network.

BIOLOGICAL NEUROANATOMY 101
As presented in the opening paragraphs of this book, ersatz
neurons are inspired by biological ones. Given that, let’s take a
gander at Figure 6.1 for a précis of the first lecture in any
neuroanatomy course: A given biological neuron receives input
into its cell body from many (generally thousands) of dendrites,
with each dendrite receiving signals of information from
another neuron in the nervous system—a biological neural
network. When the signal conveyed along a dendrite reaches the
cell body, it causes a small change in the voltage of the cell
body.  Some dendrites cause a small positive change in voltage,
and the others cause a small negative change. If the cumulative
effect of these changes causes the voltage to increase from its

1



resting state of –70 millivolts to the critical threshold of –55
millivolts, the neuron will fire something called an action
potential away from its cell body, down its axon, thereby
transmitting a signal to other neurons in the network.

Figure 6.1 The anatomy of a biological neuron

To summarize, biological neurons exhibit the following three
behaviors in sequence:

1. More precisely, it causes a change in the voltage difference between the cell’s
interior and its surroundings.



1. Receive information from many other neurons

2. Aggregate this information via changes in cell voltage at the cell body

3. Transmit a signal if the cell voltage crosses a threshold level, a signal
that can be received by many other neurons in the network

We’ve aligned the purple, red, and blue colors of the text here with the colors
(indicating dendrites, cell body, and the axon, respectively) in Figure 6.1. We’ll do this
time and again throughout the book, including to discuss key equations and the
variables they contain.

THE PERCEPTRON
In the late 1950s, the American neurobiologist Frank Rosenblatt
(Figure 6.2) published an article on his perceptron, an
algorithm influenced by his understanding of biological
neurons, making it the earliest formulation of an artificial
neuron.  Analogous to its living inspiration, the perceptron
(Figure 6.3) can:

1. Receive input from multiple other neurons

2. Aggregate those inputs via a simple arithmetic operation called the
weighted sum

3. Generate an output if this weighted sum crosses a threshold level, which
can then be sent on to many other neurons within a network

2



Figure 6.2 The American neurobiology and behavior researcher Frank
Rosenblatt. He conducted much of his work out of the Cornell

Aeronautical Laboratory, including physically constructing his Mark I
Perceptron there. This machine, an early relic of artificial intelligence,

can today be viewed at the Smithsonian Institution in Washington, D.C.



Figure 6.3 Schematic diagram of a perceptron, an early artificial
neuron. Note the structural similarity to the biological neuron in Figure

6.1.

The Hot Dog / Not Hot Dog Detector
Let’s work through a lighthearted example to understand how
the perceptron algorithm works. We’re going to look at a
perceptron that is specialized in distinguishing whether a given
object is a hot dog or, well . . . not a hot dog.

A critical attribute of perceptrons is that they can only be fed
binary information as inputs, and their output is also restricted
to being binary. Thus, our hot dog-detecting perceptron must be
fed its particular three inputs (indicating whether the object
involves ketchup, mustard, or a bun, respectively) as either a 0
or a 1. In Figure 6.4:

The first input (a purple 1) indicates the object being presented to

2. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and the organization in the brain. Psychological Review, 65, 386–408.



the perceptron involves ketchup.

The second input (also a purple 1) indicates the object has mustard.

The third input (a purple 0) indicates the object does not include a
bun.

Figure 6.4 First example of a hot dog-detecting perceptron: In
this instance, it predicts there is indeed a hot dog.

To make a prediction as to whether the object is a hot dog or
not, the perceptron independently weights each of these three
inputs.  The weights that we arbitrarily selected in this (entirely
contrived) hot dog example indicate that the presence of a bun,
with its weight of 6, is the most influential predictor of whether
the object is a hot dog or not. The intermediate-weight predictor
is ketchup with its weight of 3, and the least influential
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predictor is mustard, with a weight of 2.

Let’s determine the weighted sum of the inputs: One input at
a time (i.e., elementwise), we multiply the input by its weight
and then sum the individual results. So first, let’s calculate the
weighted inputs:

1. For the ketchup input: 3 × 1 = 3

2. For mustard: 2 × 1 = 2

3. For bun: 6 × 0 = 0

With those three products, we can compute that the weighted
sum of the inputs is 5: 3 + 2 + 0. To generalize from this
example, the calculation of the weighted sum of inputs is:

n∑
i=1

wixi (6.1)

Where:

w  is the weight of a given input i (in our example, w  = 3, w  = 2,
and w  = 6).

x  is the value of a given input i (in our example, x  = 1, x  = 1, and
x  = 0).

w x  represents the product of w  and x —i.e., the weighted value of
a given input i.

∑n
i=1 indicates that we sum all of the individual weighted inputs

w x , where n is the total number of inputs (in our example, we had
three inputs, but artificial neurons can have any number of inputs).

The final step of the perceptron algorithm is to evaluate

3. If you are well accustomed to regression modeling, this should be a familiar
paradigm.

i 1 2

3

i 1 2
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whether the weighted sum of the inputs is greater than the
neuron’s threshold. As with the earlier weights, we have again
arbitrarily chosen a threshold value for our perceptron example:
4 (shown in red in the center of the neuron in Figure 6.4). The
perceptron algorithm is:

n∑
i=1

wixi

> threshold, output 1
≼ threshold, output 0

(6.2)

where

If the weighted sum of a perceptron’s inputs is greater than its
threshold, then it outputs a 1, indicating that the perceptron
predicts the object is a hot dog.

If the weighted sum is less than or equal to the threshold, the
perceptron outputs a 0, indicating that it predicts there is not a hot
dog.

Knowing this, we can wrap up our example from Figure 6.4: The
weighted sum of 5 is greater than the neuron’s threshold of 4,
and so our hot dog-detecting perceptron outputs a 1.

Riffing on our first hot dog example, in Figure 6.5 the object
evaluated by the perceptron now includes mustard only; there is
no ketchup, and it is still without a bun. In this case the
weighted sum of inputs comes out to 2. Because 2 is less than
the perceptron’s threshold, the neuron outputs 0, indicating
that it predicts this object is not a hot dog.



Figure 6.5 Second example of a hot dog-detecting perceptron:
In this instance, it predicts there is not a hot dog.

In our third and final perceptron example, shown in Figure
6.6, the artificial neuron evaluates an object that involves
neither mustard nor ketchup but is on a bun. The presence of a
bun alone corresponds to the calculation of a weighted sum of 6.
Because 6 is greater than the perceptron’s threshold, the
algorithm predicts that the object is a hot dog and outputs a 1.



Figure 6.6 Third example of a hot dog-detecting perceptron:
In this instance, it again predicts the object presented to it is a

hot dog.

The Most Important Equation in This Book
To achieve the formulation of a simplified and universal
perceptron equation, we must introduce a term called the bias,
which we annotate as b and which is equivalent to the negative
of an artificial neuron’s threshold value:

b ≡ −threshold (6.3)

Together, a neuron’s bias and its weights constitute all of its
parameters: the changeable variables that prescribe what the



neuron will output in response to its inputs.

With the concept of a neuron’s bias now available to us, we
arrive at the most widely used perceptron equation:

output { 1 if w ⋅ x + b > 0
0 otherwise

(6.4)

Notice that we made the following five updates to our initial
perceptron equation (from Equation 6.2):

1. Substituted the bias b in place of the neuron’s threshold

2. Flipped b onto the same side of the equation as all of the other variables

3. Used the array w to represent all of the w  weights from w  through to
w

4. Likewise, used the array x to represent all of the x  values from x
through to x

5. Used the dot product notation w · x to abbreviate the representation of
the weighted sum of neuron inputs (the longer form of this is shown in
Equation 6.1: ∑n

i=1 wixi)

Right at the heart of the perceptron equation in Equation 6.4
is w · x + b, which we have cut out for emphasis and placed
alone in Figure 6.7. If there is one item you note down to
remember from this chapter, it should be this three-variable
formula, which is an equation that represents artificial
neurons in general. We refer to this equation many times over
the course of this book.

i 1

n

i 1

n



Figure 6.7 The general equation for artificial neurons that we
will return to time and again. It is the most important equation

in this book.

To keep the arithmetic as undemanding as possible in our hot dog-detecting
perceptron examples, all of the parameter values we made up—the perceptron’s
weights as well as its bias—were positive integers. These parameters could, however,
be negative values, and, in practice, they would rarely be integers. Instead, parameters
are configured as float values, which are less clunky.

Finally, while all of the parameters in these examples were fabricated by us, they
would usually be learned through the training of artificial neurons on data. In Chapter 8,
we cover how this training of neuron parameters is accomplished in practice.



MODERN NEURONS AND ACTIVATION
FUNCTIONS
Modern artificial neurons—such as those in the hidden layer of
the shallow architecture we built in Chapter 5 (look back to
Figure 5.4 or to our Shallow Net in Keras notebook)—are not
perceptrons. While the perceptron provides a relatively
uncomplicated introduction to artificial neurons, it is not used
widely today. The most obvious restriction of the perceptron is
that it receives only binary inputs, and provides only a binary
output. In many cases, we’d like to make predictions from
inputs that are continuous variables and not binary integers,
and so this restriction alone would make perceptrons
unsuitable.

A less obvious (yet even more critical) corollary of the
perceptron’s binary-only restriction is that it makes learning
rather challenging. Consider Figure 6.8, in which we use a new
term, z, as shorthand for the value of the lauded w · x + b
equation from Figure 6.7.



Figure 6.8 The perceptron’s transition from outputting zero to
outputting one happens suddenly, making it challenging to

gently tune w and b to match a desired output.

When z is any value less than or equal to zero, the perceptron
outputs its smallest possible output, 0. If z becomes positive to
even the tiniest extent, the perceptron outputs its largest
possible output, 1. This sudden and extreme transition is not
optimal during training: When we train a network, we make
slight adjustments to w and b based on whether it appears the
adjustment will improve the network’s output.  With the
perceptron, the majority of slight adjustments to w and b would
make no difference whatsoever to its output; z would generally
be moving around at negative values much lower than 0 or at
positive values much higher than 0. That behavior on its own
would be unhelpful, but the situation is even worse: Every once
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in a while, a slight adjustment to w or b will cause z to cross
from negative to positive (or vice versa), leading to a whopping,
drastic swing in output from 0 all the way to 1 (or vice versa).
Essentially, the perceptron has no finesse—it’s either yelling or
it’s silent.

The Sigmoid Neuron
Figure 6.9 provides an alternative to the erratic behavior of the
perceptron: a gentle curve from 0 to 1. This particular curve
shape is called the sigmoid function and is defined by 
σ (z) = , where:

z is equivalent to w · x + b.

e is the mathematical constant beginning in 2.718. It is perhaps best
known for its starring role in the natural exponential function.

σ is the Greek letter sigma, the root word for “sigmoid.”

4. Improve here means providing output more closely in line with the true output y
given some input x. We discuss this further in Chapter 8.

1
1+e−z



Figure 6.9 The sigmoid activation function

The sigmoid function is our first example of an artificial
neuron activation function. It may be ringing a bell for you
already, because it was the neuron type that we selected for the
hidden layer of our Shallow Net in Keras from Chapter 5. As
you’ll see as this section progresses, the sigmoid function is the
canonical activation function—so much so that the Greek letter
σ (sigma) is conventionally used to denote any activation
function. The output from any given neuron’s activation
function is referred to simply as its activation, and throughout
this book, we use the variable term a—as shown along the
vertical axis in Figure 6.9—to denote it.

In our view, there is no need to memorize the sigmoid
function (or indeed any of the activation functions). Instead, we
believe it’s easier to understand a given function by playing



around with its behavior interactively. With that in mind, feel
free to join us in the Sigmoid Function Jupyter notebook from
the book’s GitHub repository as we work through the following
lines of code.

Our only dependency in the notebook is the constant e, which
we load using the statement from math import e. Next is
the fun bit, where we define the sigmoid function itself:

def sigmoid(z):
    return 1/(1+e**-z)

As depicted in Figure 6.9 and demonstrated by executing
sigmoid(.00001), near-0 inputs into the sigmoid function
will lead it to return values near 0.5. Increasingly large positive
inputs will result in values that approach 1. As an extreme
example, an input of 10000 results in an output of 1.0. Moving
more gradually with our inputs—this time in the negative
direction—we obtain outputs that gently approach 0: As
examples, sigmoid(-1) returns 0.2689, while
sigmoid(-10) returns 4.5398e-05.

Any artificial neuron that features the sigmoid function as its
activation function is called a sigmoid neuron, and the
advantage of these over the perceptron should now be tangible:
Small, gradual changes in a given sigmoid neuron’s parameters

5. The e in 4.5398e-05 should not be confused with the base of the natural

logarithm. Used in code outputs, it refers to an exponent, so the output is the
equivalent of 4.5398 × 10 .

5
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w or b cause small, gradual changes in z, thereby producing
similarly gradual changes in the neuron’s activation, a. Large
negative or large positive values of z illustrate an exception: At
extreme z values, sigmoid neurons—like perceptrons—will
output 0’s (when z is negative) or 1’s (when z is positive). As
with the perceptron, this means that subtle updates to the
weights and biases during training will have little to no effect on
the output, and thus learning will stall. This situation is called
neuron saturation and can occur with most activation
functions. Thankfully, there are tricks to avoid saturation, as
you’ll see in Chapter 9.

The Tanh Neuron
A popular cousin of the sigmoid neuron is the tanh (pronounced
“tanch” in the deep learning community) neuron. The tanh
activation function is pictured in Figure 6.10 and is defined by 
σ (z) = . The shape of the tanh curve is similar to the

sigmoid curve, with the chief distinction being that the sigmoid
function exists in the range [0 : 1], whereas the tanh neuron’s
output has the range [–1 : 1]. This difference is more than
cosmetic. With negative z inputs corresponding to negative a
activations, z = 0 corresponding to a = 0, and positive z
corresponding to positive a activations, the output from tanh
neurons tends to be centered near 0. As we cover further in
Chapters 7 through 9, these 0-centered a outputs usually serve
as the inputs x to other artificial neurons in a network, and such
0-centered inputs make (the dreaded!) neuron saturation less
likely, thereby enabling the entire network to learn more
efficiently.

ez−e−z

ez+e−z



Figure 6.10 The tanh activation function

ReLU: Rectified Linear Units
The final neuron we detail in this book is the rectified linear
unit, or ReLU neuron, whose behavior we graph in Figure 6.11.
The ReLU activation function, whose shape diverges glaringly
from the sigmoid and tanh sorts, was inspired by properties of
biological neurons  and popularized within artificial neural
networks by Vinod Nair and Geoff Hinton (Figure 1.16).  The
shape of the ReLU function is defined by a = max(0, z).

6
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Figure 6.11 The ReLU activation function

This function is uncomplicated:

If z is a positive value, the ReLU activation function returns z
(unadulterated) as a = z.

If z = 0 or z is negative, the function returns its floor value of 0, that
is, the activation a = 0.

The ReLU function is one of the simplest functions to
imagine that is nonlinear. That is, like the sigmoid and tanh
functions, its output a does not vary uniformly linearly across
all values of z. The ReLU is in essence two distinct linear
functions combined (one at negative z values returning 0, and

6. The action potentials of biological neurons have only a “positive” firing mode; they
have no “negative” firing mode. See Hahnloser, R., & Seung, H. (2000). Permitted
and forbidden sets in symmetric threshold-linear networks. Advances in Neural
Information Processing Systems, 13.

7. Nair, V., & Hinton, G. (2010). Rectified linear units improve restricted Boltzmann
machines. Proceedings of the International Conference on Machine Learning.



the other at positive z values returning z, as is visible in Figure
6.11) to form a straightforward, nonlinear function overall. This
nonlinear nature is a critical property of all activation functions
used within deep learning architectures. As demonstrated via a
series of captivating interactive applets in Chapter 4 of Michael
Nielsen’s Neural Networks and Deep Learning e-book, these
nonlinearities permit deep learning models to approximate any
continuous function.  This universal ability to approximate
some output y given some input x is one of the hallmarks of
deep learning—the characteristic that makes the approach so
effective across such a breadth of applications.

The relatively simple shape of the ReLU function’s particular
brand of nonlinearity works to its advantage. As you’ll see in
Chapter 8, learning appropriate values for w and b within deep
learning networks involves partial derivative calculus, and these
calculus operations are more computationally efficient on the
linear portions of the ReLU function relative to its efficiency on
the curves of, say, the sigmoid and tanh functions.  As a
testament to its utility, the incorporation of ReLU neurons into
AlexNet (Figure 1.17) was one of the factors behind its trampling
of existing machine vision benchmarks in 2012 and shepherding
in the era of deep learning. Today, ReLU units are the most
widely used neuron within the hidden layers of deep artificial
neural networks, and they appear in the majority of the Jupyter
notebooks associated with this book.

8. neuralnetworksanddeeplearning.com/chap4.html

9. In addition, there is mounting research that suggests ReLU activations encourage
parameter sparsity—that is, less-elaborate neural-network-level functions that tend
to generalize to validation data better. More on model generalization coming up in

8
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CHOOSING A NEURON
Within a given hidden layer of an artificial neural network, you
are able to choose any activation function you fancy. With the
constraint that you should select a nonlinear function if you’d
like to be able to approximate any continuous function with
your deep learning model, you’re nevertheless left with quite a
bit of room for choice. To assist your decision-making process,
let’s rank the neuron types we’ve discussed in this chapter,
ordering them from those we recommend least through to those
we recommend most:

1. The perceptron, with its binary inputs and the aggressive step of its
binary output, is not a practical consideration for deep learning models.

2. The sigmoid neuron is an acceptable option, but it tends to lead to
neural networks that train less rapidly than those composed of, say,
tanh or ReLU neurons. Thus, we recommend limiting your use of
sigmoid neurons to situations where it would be helpful to have a
neuron provide output within the range of [0, 1].

3. The tanh neuron is a solid choice. As we covered earlier, the 0-centered
output helps deep learning networks learn rapidly.

4. Our preferred neuron is the ReLU because of how efficiently these
neurons enable learning algorithms to perform computations. In our
experience they tend to lead to well-calibrated artificial neural networks
in the shortest period of training time.

In addition to the neurons covered in this chapter, there is a
veritable zoo of activation functions available and the list is ever

Chapter 9.

10. In Chapters 7 and 11, you will encounter a couple of these situations—most
notably, with a sigmoid neuron as the sole neuron in the output layer of a binary-
classifier network.

10



growing. At time of writing, some of the “advanced” activation
functions provided by Keras  are the leaky ReLU, the
parametric ReLU, and the exponential linear unit—all three of
which are derivations from the ReLU neuron. We encourage
you to check these activations out in the Keras documentation
and read about them on your own time. Furthermore, you are
welcome to swap out the neurons we use in any of the Jupyter
notebooks in this book to compare the results. We’d be
pleasantly surprised if you discover that they provide efficiency
or accuracy gains in your neural networks that are far beyond
the performance of ours.

SUMMARY
In this chapter, we detailed the mathematics behind the neural
units that make up artificial neural networks, including deep
learning models. We also summarized the pros and cons of the
most established neuron types, providing you with guidance on
which ones you might select for your own deep learning models.
In Chapter 7, we cover how artificial neurons are networked
together in order to learn features from raw data and
approximate complex functions.

KEY CONCEPTS
As we move through the chapters of the book, we will gradually
add terms to this list of key concepts. If you keep these
foundational concepts fresh in your mind, you should have little
difficulty understanding subsequent chapters and, by book’s

11. See keras.io/layers/advanced-activations for documentation.
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end, possess a firm grip on deep learning theory and
application. The critical concepts thus far are as follows.

parameters:

weight w

bias b

activation a

artificial neurons:

sigmoid

tanh

ReLU



7. Artificial Neural Networks

In Chapter 6, we examined the intricacies of artificial neurons.
The theme of the current chapter is the natural extension of
that: We cover how individual neural units are linked together
to form artificial neural networks, including deep learning
networks.

THE INPUT LAYER
In our Shallow Net in Keras Jupyter notebook (a schematic of
which is available in Figure 5.4), we crafted an artificial neural
network with the following layers:

1. An input layer consisting of 784 neurons, one for each of the 784 pixels
in an MNIST image

2. A hidden layer composed of 64 sigmoid neurons

3. An output layer consisting of 10 softmax neurons, one for each of the 10
classes of digits

Of these three, the input layer is the most straightforward to
detail. We start with it and then move on to discussion of the
hidden and output layers.

Neurons in the input layer don’t perform any calculations;
they are simply placeholders for input data. This placeholding is
essential because the use of artificial neural networks involves
performing computations on matrices that have predefined



dimensions. At least one of these predefined dimensions in the
network architecture corresponds directly to the shape of the
input data.

DENSE LAYERS
There are many kinds of hidden layers, but as mentioned in
Chapter 4, the most general type is the dense layer, which can
also be called a fully connected layer. Dense layers are found in
many deep learning architectures, including the majority of the
models we go over in this book. Their definition is
uncomplicated: Each of the neurons in a given dense layer
receive information from every one of the neurons in the
preceding layer of the network. In other words, a dense layer is
fully connected to the layer before it!

While they might not be as specialized nor as efficient as the
other flavors of hidden layers we dig into in Part III, dense
layers are broadly useful, because they can nonlinearly
recombine the information provided by the preceding layer of
the network.  Reviewing the TensorFlow Playground demo from
the end of Chapter 1, we’re now better positioned to appreciate
the deep learning model we built. Breaking it down layer by
layer, the network in Figures 1.18 and 1.19 has the following
layers:

1. An input layer with two neurons: one for storing the vertical position of
a given dot within the grid on the far right, and the other for storing the
dot’s horizontal position.

1. This statement assumes that the dense layer is made up of neurons with a
nonlinear activation function like the sigmoid, tanh, and ReLU neurons introduced in
Chapter 6, which should be a safe assumption.

1



2. A hidden layer composed of eight ReLU neurons. Visually, we can see
that this is a dense layer because each of the eight neurons in it is
connected to (i.e., is receiving information from) both of the input-layer
neurons, for a total of 16 (= 8 × 2) incoming connections.

3. Another hidden layer composed of eight ReLU neurons. We can again
discern that this is a dense layer because each of its eight neurons
receives input from each of the eight neurons in the preceding layer, for
a total of 64 (= 8 × 8) inbound connections. Note in Figure 1.19 how the
neurons in this layer are nonlinearly recombining the straight-edge
features provided by the neurons in the first hidden layer to produce
more-elaborate features like curves and circles.

4. A third dense hidden layer, this one consisting of four ReLU neurons
for a total of 32 (= 4 × 8) connecting inputs. This layer nonlinearly
recombines the features from the previous hidden layer to learn more-
complex features that begin to look directly relevant to the binary
(orange versus blue) classification problem shown in the grid on the
right in Figure 1.18.

5. A fourth and final dense hidden layer. With its two ReLU neurons, it
receives a total of 8 (= 2 × 4) inputs from the previous layer. The
neurons in this layer devise such elaborate features via nonlinear
recombination that they visually approximate the overall boundary
dividing blue from orange on the far-right grid.

6. An output layer made up of a single sigmoid neuron. Sigmoid is the
typical choice of neuron for a binary classification problem like this one.
As shown in Figure 6.9, the sigmoid function outputs activations that
range from 0 up to 1, allowing us to obtain the network’s estimated
probability that a given input x is a positive case (a blue dot in the
current example). Like the hidden layers, the output layer is dense, too:
Its neuron receives information from both neurons of the final hidden
layer for a total of 2 (= 1 × 2) connections.

In summary, every layer within the networks provided by the

2. By returning to playground.tensorflow.org you can observe these features closely
by hovering over these neurons with your mouse.

2
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TensorFlow Playground is a dense layer. We can call such a
network a dense network, and we’ll experiment with these
versatile creatures for the remainder of Part II.

A HOT DOG-DETECTING DENSE
NETWORK
Let’s further strengthen your comprehension of dense networks
by returning to two old flames of ours from Chapter 6: a
frivolous hot dog-detecting binary classifier and the
mathematical notation we used to define artificial neurons. As
shown in Figure 7.1, our hot dog classifier is no longer a single
neuron; in this chapter, it is a dense network of artificial
neurons. More specifically, with this network architecture, the
following differences apply:

We have reduced the number of input neurons down to two for
simplicity.

The first input neuron, x , represents the volume of ketchup
(in, say, milliliters, which abbreviates to mL) on the object
being considered by the network. (We are no longer
working with perceptrons, so we are no longer restricted to
binary inputs only.)

The second input neuron, x , represents milliliters of
mustard.

3. Elsewhere, you may find dense networks referred to as feedforward neural
networks or multilayer perceptrons (MLPs). We prefer not to use the former term
because other model architectures, such as convolutional neural networks (formally
introduced in Chapter 10), are feedforward networks (that is, any network that
doesn’t include a loop) as well. Meanwhile, we prefer not to use the latter term
because MLPs, confusingly, don’t involve the perceptron neural units we cover in
Chapter 6.

1
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We have two dense hidden layers.

The first hidden layer has three ReLU neurons.

The second hidden layer has two ReLU neurons.

The output neuron is denoted by y in the network. This is a binary
classification problem, so—as outlined in the previous section—this
neuron should be sigmoid. As in our perceptron examples in
Chapter 6, y = 1 corresponds to the presence of a hot dog and y = 0
corresponds to the presence of some other object.



Figure 7.1 A dense network of artificial neurons, highlighting
the inputs to the neuron labeled a

Forward Propagation Through the First Hidden Layer
Having described the architecture of our hot dog-detecting
network, let’s turn our attention to its functionality by focusing
on the neuron labeled a .  This particular neuron, like its
siblings a  and a , receives input regarding a given object’s
“ketchup-y-ness” and “mustard-y-ness” from x  and x ,
respectively. Despite receiving the same data as a  and a , a
treats these data uniquely by having its own unique parameters.
Remembering Figure 6.7, “the most important equation in this
book”—w · x + b—you may grasp this behavior more concretely.
Breaking this equation down for the neuron labeled a , we
consider that it has two inputs from the preceding layer: x  and
x . This neuron also has two weights: w  (which applies to the
importance of the ketchup measurement x ) and w  (which
applies to the importance of the mustard measurement x ).
With these five pieces of information we can calculate z, the
weighted input to that neuron:

z = w ⋅ x + b

z = (w1x1 + w2x2) + b
( 7.1 )

In turn, with the z value for the neuron labeled a , we can
calculate the activation a it outputs. Because the neuron labeled
a  is a ReLU neuron, we use the equation introduced with
respect to Figure 6.11:

1

1
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1 2

2 3 1

1

1

2 1

1 2

2

4. We’re using a shorthand notation for conveniently identifying neurons in this
chapter. See Appendix A for a more precise and formal notation used for neural
networks.

1
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a = max (0, z) (7.2)
To make this computation of the output of neuron a

tangible, let’s concoct some numbers and work through the
arithmetic together:

x  is 4.0 mL of ketchup for a given object presented to the network

x  is 3.0 mL of mustard for that same object

w  = –0.5

w  = 1.5

b = –0.9

To calculate z let’s start with Equation 7.1 and then fill in our
contrived values:

z = w ⋅ x + b

= w1x1 + w1x2 + b

= −0.5 × 4.0 + 1.5 × 3.0 − 0.9
= −2 + 4.5 − 0.9
= 1.6

( 7.3 )

Finally, to compute a—the activation output of the neuron
labeled a —we can leverage Equation 7.2:

a = max (0, z)
= max (0, 1.6)

= 1.6
(7.4)

As suggested by the right-facing arrow along the bottom of
Figure 7.1, executing the calculations through an artificial
neural network from the input layer (the x values) through to
the output layer (y) is called forward propagation. Just now,
we detailed the process for forward propagating through a

1

1

2
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single neuron in the first hidden layer of our hot dog-detecting
network. To forward propagate through the remaining neurons
of the first hidden layer—that is, to calculate the a values for the
neurons labeled a  and a —we would follow the same process
as we did for the neuron labeled a . The inputs x  and x  are
identical for all three neurons, but despite being fed the same
measurements of ketchup and mustard, each neuron in the first
hidden layer will output a different activation a because the
parameters w , w , and b vary for each of the neurons in the
layer.

Forward Propagation Through Subsequent Layers
The process of forward propagating through the remaining
layers of the network is essentially the same as propagating
through the first hidden layer, but for clarity’s sake, let’s work
through an example together. In Figure 7.2, we assume that
we’ve already calculated the activation value a for each of the
neurons in the first hidden layer. Returning our focus to the
neuron labeled a , the activation it outputs (a  = 1.6) becomes
one of the three inputs into the neuron labeled a  (and, as
highlighted in the figure, this same activation of a = 1.6 is also
fed as one of the three inputs into the neuron labeled a ).
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Figure 7.2 Our hot dog-detecting network from Figure 7.1, now
highlighting the activation output of neuron a , which is
provided as an input to both neuron a  and neuron a

To provide an example of forward propagation through the
second hidden layer, let’s compute a for the neuron labeled a .
Again, we employ the all-important equation w · x + b. For
brevity’s sake, we’ve combined it with the ReLU activation
function:

a = max (0, z)
= max (0, (w ⋅ x + b))

= max (0, (w1x1 + w2x2 + w3x3 + b))
(7.5)
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This is sufficiently similar to Equations 7.3 and 7.4 that it would
be superfluous to walk through the arithmetic again with
feigned values. As we propagate through the second hidden
layer, the only twist is that the layer’s inputs (i.e., x in the
equation w · x + b) do not come from outside the network;
instead they are provided by the first hidden layer. Thus, in
Equation 7.5:

x  is the value a = 1.6, which we obtained earlier from the neuron
labeled a

x  is the activation output a (whatever it happens to equal) from
the neuron labeled a

x  is likewise a unique activation a from the neuron labeled a

In this manner, the neuron labeled a  is able to nonlinearly
recombine the information provided by the three neurons of the
first hidden layer. The neuron labeled a  also nonlinearly
recombines this information, but it would do it in its own
distinctive way: The unique parameters w , w , w , and b for
this neuron would lead it to output a unique a activation of its
own.

Having illustrated forward propagation through all of the
hidden layers of our hot dog-detecting network, let’s round the
process off by propagating through the output layer. Figure 7.3
highlights that our single output neuron receives its inputs from
the neurons labeled a  and a . Let’s begin by calculating z for
this output neuron. The formula is identical to Equation 7.1,
which we used to calculate z for the neuron labeled a , except
that the (contrived, as usual) values we plug in to the variables
are different:
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z = w ⋅ x + b

= w1x1 + w2x2 + b

= 1.0 × 2.5 + 0.5 × 2.0 − 5.5
= 3.5 − 5.5
= −2.0

(7.6)

Figure 7.3 Our hot dog-detecting network, with the activations
providing input to the output neuron ŷ highlighted

The output neuron is sigmoid, so to compute its activation a
we pass its z value through the sigmoid function from Figure
6.9:



a = σ (z)

=

=

≈ 0.1192

( 7.7 )

We are lazy, so we didn’t work out the final line of this equation
manually. Instead, we used the Sigmoid Function Jupyter
notebook that we created in Chapter 6. By executing the line
sigmoid(-2.0) within it, our machine did the heavy lifting
for us and kindly informed us that a comes out to about
0.1192.

The activation a computed by the sigmoid neuron in the
output layer is a special case, because it is the final output of our
entire hot dog-detecting neural network. Because it’s so special,
we assign it a distinctive designation: ŷ. This variable is a
version of the letter y that wears an object called a caret to keep
its head warm, and so we call it “why hat.” The value
represented by ŷ is the network’s guess as to whether a given
object is a hot dog or not a hot dog, and we can express this in
probabilistic language. Given the inputs x  and x  that we fed
into the network—that is, 4.0 mL of ketchup and 3.0 mL of
mustard—the network estimates that there is an 11.92 percent
chance that an object with those particular condiment
measurements is a hot dog.  If the object presented to the
network was indeed a hot dog (y = 1), then this ŷ of 0.1192 was
pretty far off the mark. On the other hand, if the object was truly
not a hot dog (y = 0), then the ŷ is quite good. We formalize the
evaluation of ŷ predictions in Chapter 8, but the general notion

1
1 + e−z

1
1 + e−(−2.0)

1 2
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is that the closer ŷ is to the true value y, the better.

THE SOFTMAX LAYER OF A FAST FOOD-
CLASSIFYING NETWORK
As demonstrated thus far in the chapter, the sigmoid neuron
suits us well as an output neuron if we’re building a network to
distinguish two classes, such as a blue dot versus an orange dot,
or a hot dog versus something other than a hot dog. In many
other circumstances, however, you have more than two classes
to distinguish between. For example, the MNIST dataset
consists of the 10 numerical digits, so our Shallow Net in Keras
from Chapter 6 had to accommodate 10 output probabilities—
one representing each digit.

When concerned with a multiclass problem, the solution is to
use a softmax layer as the output layer of our network. Softmax
is in fact the activation function that we specified for the output
layer in our Shallow Net in Keras Jupyter notebook (Example
5.6), but we initially suggested you not concern yourself with
that detail. Now, a couple of chapters later, the time to unravel
softmax has arrived.

In Figure 7.4, we provide a new architecture that builds upon
our binary hot dog classifier. The schematic is the same—right
down to its volumes-of-ketchup-and-mustard inputs—except
that instead of having a single output neuron, we now have
three. This multiclass output layer is still dense, so each of the
three neurons receives information from both of the neurons in

5. Don’t say we didn’t warn you from the start that this was a silly example! If we’re
lucky, its outlandishness will make it memorable.



the final hidden layer. Continuing on with our proclivity for fast
food, let’s say that now:

y  represents hot dogs.

y  is for burgers.

y  is for pizza.

Note that with this configuration, there can be no alternatives to
hot dogs, burgers, or pizza. The assumption is that all objects
presented to the network belong to one of these three classes of
fast food, and one of the classes only.

Because the sigmoid function applies solely to binary
problems, the output neurons in Figure 7.4 take advantage of
the softmax activation function. Let’s use code from our
Softmax Demo Jupyter notebook to elucidate how this
activation function operates. The only dependency is the exp
function, which calculates the natural exponential of whatever
value it’s given. More specifically, if we pass some value x into it
with the command exp(x), we will get back e . The effect of
this exponentiation will become clear as we move through the
forthcoming example. We import the exp function into the
notebook by using from math import exp.

To concoct a particular example, let’s say that we presented a
slice of pizza to the network in Figure 7.4. This pizza slice has
negligible amounts of ketchup and mustard on it, and so x  and
x  are near-0 values. Provided these inputs, we use forward
propagation to pass information through the network toward
the output layer. Based on the information that the three
neurons receive from the final hidden layer, they individually
use our old friend w · x+b to calculate three unique (and, for
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the purposes of this example, contrived) z values:

z for the neuron labeled ŷ , which represents hot dogs, comes out to
-1.0.

For the neuron labeled ŷ , which represents burgers, z is 1.0.

For the pizza neuron ŷ , z comes out to 5.0.

Figure 7.4 Our food-detecting network, now with three
softmax neurons in the output layer

These values indicate that the network estimates that the object
presented to it is most likely to be pizza and least likely to be a
hot dog. Expressed as z, however, it isn’t straightforward to
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intuit how much more likely the network predicts the object to
be pizza relative to the other two classes. This is where the
softmax function comes in.

After importing our dependency, we create a list named z to
store our three z values:

z = [-1.0, 1.0, 5.0]

Applying the softmax function to this list involves a three-step
process. The first step is to calculate the exponential of each of
the z values. More explicitly:

exp(z[0]) comes out to 0.3679 for hot dog.

exp(z[1]) gives us 2.718 for burger.

exp(z[2]) gives us the much, much larger (exponentially so!)
148.4 for pizza.

The second step of the softmax function is to sum up our
exponentials:

Click here to view code image

total = exp(z[0]) + exp(z[1]) + exp(z[2])

With this total variable we can execute the third and final
step, which provides proportions for each of our three classes

6. Recall that Python uses zero indexing, so z[0] corresponds to the z of neuron ŷ .1
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relative to the sum of all of the classes:

exp(z[0])/total outputs a ŷ  value of 0.002428, indicating
that the network estimates there’s a ~0.2 percent chance that the
object presented to it is a hot dog.

exp(z[1])/total outputs a ŷ  value of 0.01794, indicating an
estimated ~1.8 percent chance that it’s a burger.

exp(z[2])/total outputs a ŷ  value of 0.9796, for an estimated
~98.0 percent chance that the object is pizza.

Given this arithmetic, the etymology of the “softmax” name
should now be discernible: The function returns z with the
highest value (the max), but it does so softly. That is, instead of
indicating that there’s a 100 percent chance the object is pizza
and a 0 percent chance it’s either of the other two fast food
classes (that would be a hard max function), the network
hedges its bets, to an extent, and provides a likelihood that the
object is each of the three classes. This leaves us to make the
decision about how much confidence we would require to accept
a neural network’s guess.

The use of the softmax function with a single neuron is a special case of softmax that
is mathematically equivalent to using a sigmoid neuron.

1

2

3

7. Confidence thresholds may vary based on your particular application, but typically
we’d simply accept whichever class has the highest likelihood. This class can, for
example, be identified with the argmax() (argument maximum) function in Python,

which returns the index position (i.e., the class label) of the largest value.

7



REVISITING OUR SHALLOW NETWORK
With the knowledge of dense networks that you’ve developed
over the course of this chapter, we can return to our Shallow
Net in Keras notebook and understand the model summary
within it. Example 5.6 shows the three lines of Keras code we
use to architect a shallow neural network for classifying MNIST
digits. As detailed in Chapter 5, over those three lines of code we
instantiate a model object and add layers of artificial neurons to
it. By calling the summary() method on the model, we see the
model-summarizing table provided in Figure 7.5. The table has
three columns:

Layer (type): the name and type of each of our layers

Output Shape: the dimensionality of the layer

Param #: the number of parameters (weights w and biases b)
associated with the layer

Figure 7.5 A summary of the model object from our Shallow
Net in Keras Jupyter notebook

The input layer performs no calculations and never has any of
its own parameters, so no information on it is displayed
directly. The first row in the table, therefore, corresponds to the



first hidden layer of the network. The table indicates that this
layer:

Is called dense_1; this is a default name because we did not
designate one explicitly

Is a Dense layer, as we specified in Example 5.6

Is composed of 64 neurons, as we further specified in Example 5.6

Has 50,240 parameters associated with it, broken down into the
following:

50,176 weights, corresponding to each of the 64 neurons in
this dense layer receiving input from each of the 784
neurons in the input layer (64 × 784)

Plus 64 biases, one for each of the neurons in the layer

Giving us a total of 50,240 parameters: n  = n  + n
= 50176 + 64 = 50240

The second row of the table in Figure 7.5 corresponds to the
model’s output layer. The table tells us that this layer:

Is called dense_2

Is a Dense layer, as we specified it to be

Consists of 10 neurons—again, as we specified

Has 650 parameters associated with it, as follows:

640 weights, corresponding to each of the 10 neurons
receiving input from each of the 64 neurons in the hidden
layer (64 × 10)

Plus 10 biases, one for each of the output neurons

parameters w b



From the parameter counts for each layer, we can calculate
for ourselves the Total params line displayed in Figure 7.5:

ntotal = n1 + n2

= 50240 + 650
= 50890

(7.8)

All 50,890 of these parameters are Trainable params
because—during the subsequent model.fit() call in the
Shallow Net in Keras notebook—they are permitted to be tuned
during model training. This is the norm, but as you’ll see in Part
III, there are situations when it is fruitful to freeze some of the
parameters in a model, rendering them Non-trainable
params.

SUMMARY
In this chapter, we detailed how artificial neurons are
networked together to approximate an output y given some
inputs x. In the remaining chapters of Part II, we detail how a
network learns to improve its approximations of y by using
training data to tune the parameters of its constituent artificial
neurons. Simultaneously, we broaden our coverage of best
practices for designing and training artificial neural networks so
that you can include additional hidden layers and form a high-
caliber deep learning model.

KEY CONCEPTS
Here are the essential foundational concepts thus far. New
terms from the current chapter are highlighted in purple.



parameters:

weight w

bias b

activation a

artificial neurons:

sigmoid

tanh

ReLU

input layer

hidden layer

output layer

layer types:

dense (fully connected)

softmax

forward propagation



8. Training Deep Networks

In the preceding chapters, we described artificial neurons
comprehensively and we walked through the process of forward
propagating information through a network of neurons to
output a prediction, such as whether a given fast food item is a
hot dog, a juicy burger, or a greasy slice of pizza. In those
culinary examples from Chapters 6 and 7, we fabricated
numbers for the neuron parameters—the neuron weights and
biases. In real-world applications, however, these parameters
are not typically concocted arbitrarily: They are learned by
training the network on data.

In this chapter, you will become acquainted with two
techniques—called gradient descent and backpropagation—
that work in tandem to learn artificial neural network
parameters. As usual in this book, our presentation of these
methods is not only theoretical: We provide pragmatic best
practices for implementing the techniques. The chapter
culminates in the application of these practices to the
construction of a neural network with more than one hidden
layer.

COST FUNCTIONS
In Chapter 7, you discovered that, upon forward propagating
some input values all the way through an artificial neural



network, the network provides its estimated output, which is
denoted ŷ. If a network were perfectly calibrated, it would
output ŷ values that are exactly equal to the true label y. In our
binary classifier for detecting hot dogs, for example (Figure 7.3),
y = 1 indicated that the object presented to the network is a hot
dog, while y = 0 indicated that it’s something else. In an
instance where we have in fact presented a hot dog to the
network, therefore, ideally it would output ŷ = 1.

In practice, the gold standard of ŷ = y is not always attained
and so may be an excessively stringent definition of the
“correct” ŷ. Instead, if y = 1 we might be quite pleased to see a ŷ
of, say, 0.9997, because that would indicate that the network
has an extremely high confidence that the object is a hot dog. A
ŷ of 0.9 might be considered acceptable, ŷ = 0.6 to be
disappointing, and ŷ = 0.1192 (as computed in Equation 7.7) to
be awful.

To quantify the spectrum of output-evaluation sentiments
from “quite pleased” all the way down to “awful,” machine
learning algorithms often involve cost functions (also known as
loss functions). The two such functions that we cover in this
book are called quadratic cost and cross-entropy cost. Let’s
cover them in turn.

Quadratic Cost
Quadratic cost is one of the simplest cost functions to calculate.
It is alternatively called mean squared error, which handily
describes all that there is to its calculation:

C =
n∑

i=1

(yi − ŷi)
2 (8.1)

1
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For any given instance i, we calculate the difference (the error)
between the true label y  and the network’s estimated ŷ . We
then square this difference, for two reasons:

1. Squaring ensures that whether y is greater than ŷ or vice versa, the
difference between the two is stated as a positive value.

2. Squaring penalizes large differences between y and ŷ much more
severely than small differences.

Having obtained a squared error for each instance i by using (y
− ŷ ) , we can then calculate the mean cost C across all n of our
instances by:

1. Summing up cost across all instances using 
n∑

i=1

2. Dividing by however many instances we have using 

By taking a peek inside the Quadratic Cost Jupyter notebook
from the book’s GitHub repo, you can play around with
Equation 8.1 yourself. At the top of the notebook, we define a
function to calculate the squared error for an instance i:

def squared_error(y, yhat):
    return (y - yhat)**2

By plugging a true y of 1 and the ideal yhat of 1 in to the
function by using squared_error(1, 1), we observe that—
as desired—this perfect estimate is associated with a cost of 0.
Likewise, minor deviations from the ideal, such as a yhat of
0.9997, correspond to an extremely small cost: 9.0e-08.  As
the difference between y and yhat increases, we witness the

i i
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expected exponential increase in cost: Holding y steady at 1 but
lowering yhat from 0.9 to 0.6, and then to 0.1192, the cost
climbs increasingly rapidly from 0.01 to 0.16 and then to
0.78. As a final bit of amusement in the notebook, we note that
had y truly been 0, our yhat of 0.1192 would be associated with
a small cost: 0.0142.

Saturated Neurons
While quadratic cost serves as a straightforward introduction to
loss functions, it has a vital flaw. Consider Figure 8.1, in which
we recapitulate the tanh activation function from Figure 6.10.
The issue presented in the figure, called neuron saturation, is
common across all activation functions, but we’ll use tanh as
our lone exemplar. A neuron is considered saturated when the
combination of its inputs and parameters (interacting as per
“the most important equation,” z = w · x + b, which is captured
in Figure 6.10) produces extreme values of z—the areas
encircled with red in the plot in Figure 8.1. In these areas,
changes in z (via adjustments to the neuron’s underlying
parameters w and b) cause only teensy-weensy changes in the
neuron’s activation a.

1. 9.0e-08 is equivalent to 9.0 × 10 .–8

2



Figure 8.1 Plot reproducing the tanh activation function
shown in Figure 6.10, drawing attention to the high and low

values of z at which a neuron is saturated

Using methods that we cover later in this chapter—namely,
gradient descent and backpropagation—a neural network is able
to learn to approximate y through the tuning of the parameters
w and b associated with all of its constituent neurons. In a
saturated neuron, where changes to w and b lead to only
minuscule changes in a, this learning slows to a crawl: If
adjustments to w and b make no discernible impact on a given
neuron’s activation a, then these adjustments cannot have any
discernible impact downstream (via forward propagation) on

2. Recall from Chapter 6 that a = σ( z), where σ is some activation function—in this
example, the tanh function.



the network’s ŷ, its estimate of y.

Cross-Entropy Cost
One of the ways  to minimize the impact of saturated neurons
on learning speed is to use cross-entropy cost in lieu of
quadratic cost. This alternative loss function is configured to
enable efficient learning anywhere within the activation
function curve of Figure 8.1. Because of this, it is a far more
popular choice of cost function and it is the selection that
predominates the remainder of this book.

You need not preoccupy yourself with the equation for cross-
entropy cost, but for the sake of completeness, here it is:

C = −
n∑

i=1

[yi   ln  ŷi + (1 − yi) ln (1 − ŷi)] (8.2)

The most pertinent aspects of the equation are:

Like quadratic cost, divergence of ŷ from y corresponds to
increased cost.

Analogous to the use of the square in quadratic cost, the use of the
natural logarithm ln in cross-entropy cost causes larger differences
between ŷ and y to be associated with exponentially larger cost.

Cross-entropy cost is structured so that the larger the difference
between ŷ and y, the faster the neuron is able to learn.

3. More methods for attenuating saturated neurons and their negative effects on a
network are covered in Chapter 9.

4. Cross-entropy cost is well suited to neural networks solving classification
problems, and such problems dominate this book. For regression problems (covered
in Chapter 9), quadratic cost is a better option than cross-entropy cost.
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To make it easier to remember that the greater the cost, the
more quickly a neural network incorporating cross-entropy cost
learns, here’s an analogy that would absolutely never involve
any of your esteemed authors: Let’s say you’re at a cocktail party
leading the conversation of a group of people that you’ve met
that evening. The strong martini you’re holding has already
gone to your head, and you go out on a limb by throwing a
risqué line into your otherwise charming repartee. Your
audience reacts with immediate, visible disgust. With this
response clearly indicating that your quip was well off the mark,
you learn pretty darn quickly. It’s exceedingly unlikely you’ll be
repeating the joke anytime soon.

Anyway, that’s plenty enough on disasters of social etiquette.
The final item to note on cross-entropy cost is that, by including
ŷ, the formula provided in Equation 8.2 applies to only the
output layer. Recall from Chapter 7 (specifically the discussion
of Figure 7.3) that ŷ is a special case of a: It’s actually just
another plain old a value—except that it’s being calculated by
neurons in the output layer of a neural network. With this in
mind, Equation 8.2 could be expressed with a  substituted in for

5. To understand how the cross-entropy cost function in Equation 8.2 enables a
neuron with larger cost to learn more rapidly, we require a touch of partial-derivative
calculus. (Because we endeavor to minimize the use of advanced mathematics in this
book, we’ve relegated this calculus-focused explanation to this footnote.) Central to
the two computational methods that enable neural networks to learn—gradient
descent and backpropagation—is the comparison of the rate of change of cost C
relative to neuron parameters like weight w. Using partial-derivative notation, we
can represent these relative rates of change as . The cross-entropy cost function is

deliberately structured so that, when we calculate its derivative,  is related to ( ŷ –

y). Thus, the larger the difference between the ideal output y and the neuron’s
estimated output ŷ, the greater the rate of change of cost C with respect to weight w.

∂C

∂w
∂C

∂w

i



ŷ  so that the equation generalizes neatly beyond the output
layer to neurons in any layer of a network:

C = −
n∑

i=1

[yi  ln ai + (1 − yi) ln (1 − ai)] (8.3)

To cement all of this theoretical chatter about cross-entropy
cost, let’s interactively explore our aptly named Cross Entropy
Cost Jupyter notebook. There is only one dependency in the
notebook: the log function from the NumPy package, which
enables us to compute the natural logarithm ln shown twice in
Equation 8.3. We load this dependency using from numpy
import log.

Next, we define a function for calculating cross-entropy cost
for an instance i:

Click here to view code image

def cross_entropy(y, a):
     return -1*(y*log(a) + (1-y)*log (1-a))

Plugging the same values in to our cross_entropy() function
as we did the squared_ error() function earlier in this
chapter, we observe comparable behavior. As shown in Table
8.1, by holding y steady at 1 and gradually decreasing a from
the nearly ideal estimate of 0.9997 downward, we get
exponential increases in cross-entropy cost. The table further
illustrates that—again, consistent with the behavior of its
quadratic cousin—cross-entropy cost would be low, with an a of
0.1192, if y happened to in fact be 0. These results reiterate for

i
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us that the chief distinction between the quadratic and cross-
entropy functions is not the particular cost value that they
calculate per se, but rather it is the rate at which they learn
within a neural net—especially if saturated neurons are
involved.

Table 8.1 Cross-entropy costs associated with
selected example inputs

y a C

1   0.9997 0.0003

1   0.9 0.1

1   0.6 0.5

1   0.1192 2.1

0   0.1192 0.1269

1 1− 0.1192 0.1269

OPTIMIZATION: LEARNING TO MINIMIZE
COST



Cost functions provide us with a quantification of how incorrect
our model’s estimate of the ideal y is. This is most helpful
because it arms us with a metric we can leverage to reduce our
network’s incorrectness.

As alluded to a couple of times in this chapter, the primary
approach for minimizing cost in deep learning paradigms is to
pair an approach called gradient descent with another one
called backpropagation. These approaches are optimizers and
they enable the network to learn. This learning is accomplished
by adjusting the model’s parameters so that its estimated ŷ
gradually converges toward the target of y, and thus the cost
decreases. We cover gradient descent first and move on to
backpropagation immediately afterward.

Gradient Descent
Gradient descent is a handy, efficient tool for adjusting a
model’s parameters with the aim of minimizing cost,
particularly if you have a lot of training data available. It is
widely used across the field of machine learning, not only in
deep learning.

In Figure 8.2, we use a nimble trilobite in a cartoon to
illustrate how gradient descent works. Along the horizontal axis
in each frame is some parameter that we’ve denoted as p. In an
artificial neural network, this parameter would be either a
neuron’s weight w or bias b. In the top frame, the trilobite finds
itself on a hill. Its goal is to descend the gradient, thereby
finding the location with the minimum cost, C. But there’s a
twist: The trilobite is blind! It cannot see whether deeper valleys
lie far away somewhere, and so it can only use its cane to



investigate the slope of the terrain in its immediate vicinity.





Figure 8.2 A trilobite using gradient descent to find the value
of a parameter p associated with minimal cost, C

The dashed orange line in Figure 8.2 indicates the blind
trilobite’s calculation of the slope at the point where it finds
itself. According to that slope line, if the trilobite takes a step to
the left (i.e., to a slightly lower value of p), it would be moving to
a location with smaller cost. On the hand, if the trilobite takes a
step to the right (a slightly higher value of p), it would be
moving to a location with higher cost. Given the trilobite’s
desire to descend the gradient, it chooses to take a step to the
left.

By the middle frame, the trilobite has taken several steps to
the left. Here again, we see it evaluating the slope with the
orange line and discovering that, yet again, a step to the left will
bring it to a location with lower cost, and so it takes another
step left. In the lower frame, the trilobite has succeeded in
making its way to the location—the value of the parameter p—
corresponding to the minimum cost. From this position, if it
were to take a step to the left or to the right, cost would go up,
so it gleefully remains in place.

In practice, a deep learning model would not have only one
parameter. It is not uncommon for deep learning networks to
have millions of parameters, and some industrial applications
have billions of them. Even our Shallow Net in Keras—one of
the smallest models we build in this book—has 50,890
parameters (see Figure 7.5).

Although it’s impossible for the human mind to imagine a
billion-dimensional space, the two-parameter cartoon shown in



Figure 8.3 provides a sense of how gradient descent scales up to
minimize cost across multiple parameters simultaneously.
Across however many trainable parameters there are in a
model, gradient descent iteratively evaluates slopes  to identify
the adjustments to those parameters that correspond to the
steepest reduction in cost. With two parameters, as in the
trilobite cartoon in Figure 8.3, for example, this procedure can
be likened to a blind hike through the mountains, where:

Latitude represents one parameter, say p .

Longitude represents the other parameter, p .

Altitude represents cost—the lower the altitude, the better!

Figure 8.3 A trilobite exploring along two model parameters—p
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6. Using partial-derivative calculus.
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and p —in order to minimize cost via gradient descent. In a
mountain-adventure analogy, p  and p  could be thought of as

latitude and longitude, and altitude represents cost.

The trilobite randomly finds itself at a location in the
mountains. From that point, it feels around with its cane to
identify the direction of the step it can take that will reduce its
altitude the most. It then takes that single step. Repeating this
process many times, the trilobite may eventually find itself at
the latitude and longitude coordinates that correspond to the
lowest-possible altitude (the minimum cost), at which point the
trilobite’s surreal alpine adventure is complete.

Learning Rate
For conceptual simplicity, in Figure 8.4, let’s return to a blind
trilobite navigating a single-parameter world instead of a two-
parameter world. Now let’s imagine that we have a ray-gun that
can shrink or enlarge trilobites. In the middle panel, we’ve used
our ray-gun to make our trilobite very small. The trilobite’s
steps will then be correspondingly small, and so it will take our
intrepid little hiker a long time to find its way to the legendary
valley of minimum cost. On the other hand, consider the bottom
panel, in which we’ve used our ray-gun to make the trilobite
very large. The situation here is even worse! The trilobite’s steps
will now be so large that it will step right over the valley of
minimum cost, and so it never has any hope of finding it.

2

1 2





Figure 8.4 The learning rate (η) of gradient descent expressed
as the size of a trilobite. The middle panel has a small learning

rate, and the bottom panel, a large one.

In gradient descent terminology, step size is referred to as
learning rate and denoted with the Greek letter η (eta,
pronounced “ee-ta”). Learning rate is the first of several model
hyperparameters that we cover in this book. In machine
learning, including deep learning, hyperparameters are aspects
of the model that we configure before we begin training the
model. So hyperparameters such as η are preset while, in
contrast, parameters—namely, w and b—are learned during
training.

Getting your hyperparameters right for a given deep learning
model often requires some trial and error. For the learning rate
η, it’s something like the fairy tale of “Goldilocks and the Three
Bears”: Too small and too large are both inadequate, but there’s
a sweet spot in the middle. More specifically, as we portray in
Figure 8.4, if η is too small, then it will take many, many
iterations of gradient descent (read: an unnecessarily long time)
to reach the minimal cost. On the other hand, selecting a value
for η that is too large means we might never reach minimal cost
at all: The gradient descent algorithm will act erratically as it
jumps right over the parameters associated with minimal cost.

Coming up in Chapter 9, we have a clever trick waiting for
you that will circumnavigate the need for you to manually select
a given neural network’s η hyperparameter. In the interim,
however, here are our rules of thumb on the topic:

Begin with a learning rate of about 0.01 or 0.001.



If your model is able to learn (i.e., if cost decreases consistently
epoch over epoch) but training happens very slowly (i.e., each
epoch, the cost decreases only a small amount), then increase your
learning rate by an order of magnitude (e.g., from 0.01 to 0.1). If
the cost begins to jump up and down erratically epoch over epoch,
then you’ve gone too far, so rein in your learning rate.

At the other extreme, if your model is unable to learn, then your
learning rate may be too high. Try decreasing it by orders of
magnitude (e.g., from 0.001 to 0.0001) until cost decreases
consistently epoch over epoch. For a visual, interactive way to get a
handle on the erratic behavior of a model when its learning rate is
too high, you can return to the TensorFlow Playground example
from Figure 1.18 and dial up the value within the “Learning rate”
dropdown box.

Batch Size and Stochastic Gradient Descent
When we introduced gradient descent, we suggested that it is
efficient for machine learning problems that involve a large
dataset. In the strictest sense, we outright lied to you. The truth
is that if we have a very large quantity of training data, ordinary
gradient descent would not work at all because it wouldn’t be
possible to fit all of the data into the memory (RAM) of our
machine.

Memory isn’t the only potential snag; compute power could
cause us headaches, too. A relatively large dataset might
squeeze into the memory of our machine, but if we tried to train
a neural network containing millions of parameters with all
those data, vanilla gradient descent would be highly inefficient
because of the computational complexity of the associated high-
volume, high-dimensional calculations.

Thankfully, there’s a solution to these memory and compute



limitations: the stochastic variant of gradient descent. With this
variation, we split our training data into mini-batches—small
subsets of our full training dataset—to render gradient descent
both manageable and productive.

Although we didn’t focus on it at the time, when we trained
the model in our Shallow Net in Keras notebook back in
Chapter 5 we were already using stochastic gradient descent by
setting our optimizer to SGD in the model.compile() step.
Further, in the subsequent line of code when we called the
model.fit() method, we set batch_size to 128 to specify
the size of our mini-batches—the number of training data points
that we use for a given iteration of SGD. Like the learning rate η
presented earlier in this chapter, batch size is also a model
hyperparameter.

Let’s work through some numbers to make the concepts of
batches and stochastic gradient descent more tangible. In the
MNIST dataset, there are 60,000 training images.

With a batch size of 128 images, we then have 
⌈468.75⌉ = 469 batches  of gradient descent per epoch:

number of batches = ⌈ ⌉
= ⌈ ⌉
= ⌈468.75⌉

= 469

(8.4)

size of training dataset
batch size

60, 000 images
128 images

7. Because 60,000 is not perfectly divisible by 128, that 469th batch would contain
only 0.75 × 128 = 96 images.

8. The square brackets we use here and in Equation 8.4 that appear to be missing the

7,8



Before carrying out any training, we initialize our network with
random values for each neuron’s parameters w and b.  To begin
the first epoch of training:

1. We shuffle and divide the training images into mini-batches of 128
images each. These 128 MNIST images provide 784 pixels each, which
all together constitute the inputs x that are passed into our neural
network. It’s this shuffling step that puts the stochastic (which means
random) in “stochastic gradient descent.”

2. By forward propagation, information about the 128 images is processed
by the network, layer through layer, until the output layer ultimately
produces ŷ values.

3. A cost function (e.g., cross-entropy cost) evaluates the network’s ŷ
values against the true y values, providing a cost C for this particular
mini-batch of 128 images.

4. To minimize cost and thereby improve the network’s estimates of y
given x, the gradient descent part of stochastic gradient descent is
performed: Every single w and b parameter in the network is adjusted
proportional to how much each contributed to the error (i.e., the cost) in
this batch (note that the adjustments are scaled by the learning rate
hyperparameter η ).

These four steps constitute a round of training, as summarized
by Figure 8.5.

horizontal element from the bottom are used to denote the calculation of an integer-
value ceiling. The whole-integer ceiling of 468.75, for example, is 469.

9. We delve into the particulars of parameter initialization with random values in
Chapter 9.

10. This error-proportional adjustment is calculated during backpropagation. We
haven’t covered backpropagation explicitly yet, but it’s coming up in the next section,
so hang on tight!

9
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Figure 8.5 An individual round of training with stochastic
gradient descent. Although mini-batch size is a hyperparameter
that can vary, in this particular case, the mini-batch consists of
128 MNIST digits, as exemplified by our hike-loving trilobite

carrying a small bag of data.

Figure 8.6 captures how rounds of training are repeated until
we run out of training images to sample. The sampling in step 1
is done without replacement, meaning that at the end of an
epoch each image has been seen by the algorithm only once, and



yet between different epochs the mini-batches are sampled
randomly. After a total of 468 rounds, the final batch contains
only 96 samples.

Figure 8.6 An outline of the overall process for training a
neural network with stochastic gradient descent. The entire

dataset is shuffled and split into batches. Each batch is forward
propagated through the network; the output ŷ is compared to

the ground truth y and the cost C is calculated; backpropagation
calculates the gradients; and the model parameters w and b are
updated. The next batch (indicated by a dashed line) is forward

propagated, and so on until all of the batches have moved



through the network. Once all the batches have been used, a
single epoch is complete and the process starts again with a

reshuffling of the full training dataset.

This marks the end of the first epoch of training. Assuming
we’ve set our model up to train for further epochs, we begin the
next epoch by replenishing our pool with all 60,000 training
images. As we did through the previous epoch, we then proceed
through a further 469 rounds of stochastic gradient descent.
Training continues in this way until the total desired number of
epochs is reached.

The total number of epochs that we set our network to train
for is yet another hyperparameter, by the way. This
hyperparameter, though, is one of the easiest to get right:

If the cost on your validation data is going down epoch over epoch,
and if your final epoch attained the lowest cost yet, then you can try
training for additional epochs.

Once the cost on your validation data begins to creep upward, that’s
an indicator that your model has begun to overfit to your training
data because you’ve trained for too many epochs. (We elaborate
much more on overfitting in Chapter 9.)

There are methods  you can use to automatically monitor training
and validation cost and stop training early if things start to go awry.
In this way, you could set the number of epochs to be arbitrarily
large and know that training will continue until the validation cost
stops improving—and certainly before the model begins overfitting!

11. Because we’re sampling randomly, the order in which we select training images
for our 469 mini-batches is completely different for every epoch.

12. See keras.io/callbacks/#earlystopping.
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Escaping the Local Minimum
In all of the examples of gradient descent thus far in the
chapter, our hiking trilobite has encountered no hurdles on its
journey toward minimum cost. There are no guarantees that
this would be the case, however. Indeed, such smooth sailing is
unusual.

Figure 8.7 shows the mountaineering trilobite exploring the
cost of some new model that is being used to solve some new
problem. With this new problem, the relationship between the
parameter p and cost C is more complex. To have our neural
network estimate y as accurately as possible, gradient descent
needs to identify the parameter values associated with the
lowest-attainable cost. However, as our trilobite makes its way
from its random starting point in the top panel, gradient
descent leads it to getting trapped in a local minimum. As
shown in the middle panel, while our intrepid explorer is in the
local minimum, a step to the left or a step to the right both lead
to an increase in cost, and so the blind trilobite stays put,
completely oblivious of the existence of a deeper valley—the
global minimum—lying yonder.

All is not lost, friends, for stochastic gradient descent comes
to the rescue here again. The sampling of mini-batches can have
the effect of smoothing out the cost curve, as exemplified by the
dashed curve shown in the bottom panel of Figure 8.7. This
smoothing happens because the estimate is noisier when
estimating the gradient from a smaller mini-batch (versus from
the entire dataset). Although the actual gradient in the local
minimum truly is zero, estimates of the gradient from small
subsets of the data don’t provide the complete picture and



might give an inaccurate reading, causing our trilobite to take a
step left thinking there is a gradient when there really isn’t one.
This noisiness and inaccuracy is paradoxically a good thing! The
incorrect gradient may result in a step that is large enough for
the trilobite to escape the local valley and continue making its
way down the mountain. Thus, by estimating the gradient many
times on these mini-batches, the noise is smoothed out and we
are able to avoid local minima. In summary, although each
mini-batch on its own lacks complete information about the
cost curve, in the long run—over a large number of mini-batches
—this tends to work to our advantage.





Figure 8.7 A trilobite applying vanilla gradient descent from a
random starting point (top panel) is ensnared by a local

minimum of cost (middle panel). By turning to stochastic
gradient descent in the bottom panel, the daring trilobite is able

to bypass the local minimum and make its way toward the
global minimum.

Like the learning rate hyperparameter η, there is also a
Goldilocks-style sweet spot for batch size. If the batch size is too
large, the estimate of the gradient of the cost function is far
more accurate. In this way, the trilobite has a more exacting
impression of the gradient in its immediate vicinity and is able
to take a step (proportional to η) in the direction of the steepest
possible descent. However, the model is at risk of becoming
trapped in local minima as described in the preceding
paragraph.  Besides that, the model might not fit in memory on
your machine, and the compute time per iteration of gradient
descent could be very long.

On the other hand, if the batch size is too small, each
gradient estimate may be excessively noisy (because a very
small subset of the data is being used to estimate the gradient of
the entire dataset) and the corresponding path down the
mountain will be unnecessarily circuitous; training will take
longer because of these erratic gradient descent steps.
Furthermore, you’re not taking advantage of the memory and
compute resources on your machine.  With that in mind, here

13. It’s worth noting that the learning rate η plays a role here. If the size of the local
minimum was smaller than the step size, the trilobite would likely breeze right past
the local minimum, akin to how we step over cracks in the sidewalk.
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are our rules of thumb for finding the batch-size sweet spot:

Start with a batch size of 32.

If the mini-batch is too large to fit into memory on your machine,
try decreasing your batch size by powers of 2 (e.g., from 32 to 16).

If your model trains well (i.e., cost is going down consistently) but
each epoch is taking very long and you are aware that you have
RAM to spare,  you could experiment with increasing your batch
size. To avoid getting trapped in local minima, we don’t recommend
going beyond 128.

BACKPROPAGATION
Although stochastic gradient descent operates well on its own to
adjust parameters and minimize cost in many types of machine
learning models, for deep learning models in particular there is
an extra hurdle: We need to be able to efficiently adjust
parameters through multiple layers of artificial neurons. To do
this, stochastic gradient descent is partnered up with a
technique called backpropagation.

Backpropagation—or backprop for short—is an elegant
application of the “chain rule” from calculus.  As shown along
the bottom of Figure 8.6 and as suggested by its very name,
backpropagation courses through a neural network in the

14. Stochastic gradient descent with a batch size of 1 is known as online learning. It’s
worth noting that this is not the fastest method in terms of compute. The matrix
multiplication associated with each round of mini-batch training is highly optimized,
and so training can be several orders of magnitude quicker when using moderately
sized mini-batches relative to online learning.

15. On a Unix-based operating system, including macOS, RAM usage may be assessed
by running the top or htop command within a Terminal window.
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opposite direction of forward propagation. Whereas forward
propagation carries information about the input x through
successive layers of neurons to approximate y with ŷ,
backpropagation carries information about the cost C
backwards through the layers in reverse order and, with the
overarching aim of reducing cost, adjusts neuron parameters
throughout the network.

Although the nitty-gritty of backpropagation has been
relegated to Appendix B, it’s worth understanding (in broad
strokes) what the backpropagation algorithm does: Any given
neural network model is randomly initialized with parameter
(w and b) values (such initialization is detailed in Chapter 9).
Thus, prior to any training, when the first x value is fed in, the
network outputs a random guess at ŷ. This is unlikely to be a
good guess, and the cost associated with this random guess will
probably be high. At this point, we need to update the weights in
order to minimize the cost—the very essence of machine
learning. To do this within a neural network, we use
backpropagation to calculate the gradient of the cost function
with respect to each weight in the network.

Recall from our mountaineering analogies earlier that the
cost function represents a hiking trail, and our trilobite is trying
to reach basecamp. At each step along the way, the trilobite
finds the gradient (or the slope) of the cost function and moves

16. To elucidate the mathematics underlying backpropagation, a fair bit of partial-
derivative calculus is necessary. While we encourage the development of an in-depth
understanding of the beauty of backprop, we also appreciate that calculus might not
be the most appetizing topic for everyone. Thus, we’ve placed our content on
backprop mathematics in Appendix B.



down that gradient. That movement corresponds to a weight
update: By adjusting the weight in proportion to the cost
function’s gradient with respect to that weight, backprop
adjusts that weight in a direction that reduces the cost.

Reflecting back on the “most important equation” from
Figure 6.7 (w · x + b), and remembering that neural networks
are stacked with information forward propagating through their
layers, we can grasp that any given weight in the network
contributes to the final ŷ output, and thus the cost C. Using
backpropagation, we move layer-by-layer backwards through
the network, starting at the cost in the output layer, and we find
the gradients of every single parameter. A given parameter’s
gradient can then be used to adjust the parameter up or down
(by an increment corresponding to the learning rate η)—
whichever of the two directions is associated with a reduction in
cost.

We appreciate that this is not the lightest section of this book.
If there’s only one thing you take away, let it be this:
Backpropagation uses cost to calculate the relative contribution
by every single parameter to the total cost, and then it updates
each parameter accordingly. In this way, the network iteratively
reduces cost and, well . . . learns!

TUNING HIDDEN-LAYER COUNT AND
NEURON COUNT
As with learning rate and batch size, the number of hidden
layers you add to your neural network is also a hyperparameter.
And as with the previous two hyperparameters, there is yet



again a Goldilocks sweet spot for your network’s count of layers.
Throughout this book, we’ve reiterated that with each additional
hidden layer within a deep learning network, the more abstract
the representations that the network can represent. That is the
primary advantage of adding layers.

The disadvantage of adding layers is that backpropagation
becomes less effective: As demonstrated by the plot of learning
speed across the layers of a five-hidden-layer network in Figure
8.8, backprop is able to have its greatest impact on the
parameters of the hidden layer of neurons closest to the output
ŷ.  The farther a layer is from ŷ, the more diluted the effect of
that layer’s parameters on the overall cost. Thus, the fifth layer,
which is closest to the output ŷ, learns most rapidly because
those weights are associated with larger gradients. In contrast,
the third hidden layer, which is several layers away from the
output layer’s cost calculation, learns about an order of
magnitude more slowly than the fifth hidden layer.

17. If you’re curious as to how we made Figure 8.8, check out our Measuring Speed of
Learning Jupyter notebook.
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Figure 8.8 The speed of learning over epochs of training for a
deep learning network with five hidden layers. The fifth hidden
layer, which is closest to the output ŷ, learns about an order of

magnitude more quickly than the third hidden layer.

Given the above, our rules of thumb for selecting the number
of hidden layers in a network are:

The more abstract the ground-truth value y you’d like to estimate
with your network, the more helpful additional hidden layers may



be. With that in mind, we recommend starting off with about two to
four hidden layers.

If reducing the number of layers does not increase the cost you can
achieve on your validation dataset, then do it. Following the
problem-solving principle called Occam’s razor, the simplest
network architecture that can provide the desired result is the best;
it will train more quickly and require fewer compute resources.

On the other hand, if increasing the number of layers decreases the
validation cost, then you should pile up those layers!

Not only is network depth a model hyperparameter, but the
number of neurons in a given layer is, too. If you have many
layers in your network, then there are many layers you could be
fine-tuning your neuron count in. This may seem intimidating
at first, but it’s nothing to be too concerned about: A few too
many neurons, and your network will have a touch more
computational complexity than is necessary; a touch too few
neurons, and your network’s accuracy may be held back
imperceptibly.

As you build and train more and more deep learning models
for more and more problems, you’ll begin to develop a sense for
how many neurons might be appropriate in a given layer.
Depending on the particular data you’re modeling, there may be
lots of low-level features to represent, in which case you might
want to have more neurons in the network’s early layers. If
there are lots of higher-level features to represent, then you may
benefit from having additional neurons in its later layers. To
determine this empirically, we generally experiment with the
neuron count in a given layer by varying it by powers of 2. If
doubling the number of neurons from 64 to 128 provides an



appreciable improvement in model accuracy, then go for it.
Rehashing Occam’s razor, however, consider this: If halving the
number of neurons from 64 to 32 doesn’t detract from model
accuracy, then that’s probably the way to go because you’re
reducing your model’s computational complexity with no
apparent negative effects.

AN INTERMEDIATE NET IN KERAS
To wrap up this chapter, let’s incorporate the new theory we’ve
covered into a neural network to see if we can outperform our
previous Shallow Net in Keras model at classifying handwritten
digits.

The first few stages of our Intermediate Net in Keras Jupyter
notebook are identical to those of its Shallow Net predecessor.
We load the same Keras dependencies, load the MNIST dataset
in the same way, and preprocess the data in the same way. As
shown in Example 8.1, the situation begins to get interesting
when we design our neural network architecture.

Example 8.1 Keras code to architect an
intermediate-depth neural network

Click here to view code image

model = Sequential()

model.add(Dense(64, activation='relu', input_shape=(784,)))

model.add(Dense(64, activation='relu'))

model.add(Dense(10, activation='softmax'))

The first line of this code chunk, model = Sequential(), is



the same as before (refer to Example 5.6); this is our
instantiation of a neural network model object. It’s in the
second line that we begin to diverge. In it, we specify that we’ll
substitute the sigmoid activation function in the first hidden
layer with our most-highly-recommended neuron from Chapter
6, the relu. Other than this activation function swap, the first
hidden layer remains the same: It still consists of 64 neurons,
and the dimensionality of the 784-neuron input layer is
unchanged.

The other significant change in Example 8.1 relative to the
shallow architecture of Example 5.6 is that we specify a second
hidden layer of artificial neurons. By calling the model.add()
method, we nearly effortlessly add a second Dense layer of 64
relu neurons, providing us with the notebook’s namesake: an
intermediate-depth neural network. With a call to
model.summary(), you can see from Figure 8.9 that this
additional layer corresponds to an additional 4,160 trainable
parameters relative to our shallow architecture (refer to Figure
7.5). We can break these parameters down into:

4,096 weights, corresponding to each of the 64 neurons in the
second hidden layer densely receiving input from each of the 64
neurons in the first hidden layer (64 × 64 = 4,096)

Plus 64 biases, one for each of the neurons in the second hidden
layer

Giving us a total of 4,160 parameters: n  = n  + n  = 4,096
+ 64 = 4,160

parameters w b



Figure 8.9 A summary of the model object from our
Intermediate Net in Keras Jupyter notebook

In addition to changes to the model architecture, we’ve also
made changes to the parameters we specify when compiling our
model, as shown in Example 8.2.

Example 8.2 Keras code to compile our
intermediate-depth neural network

Click here to view code image

model.compile(loss='categorical_crossentropy',

              optimizer=SGD(lr=0.1),

              metrics=['accuracy'])

With these lines from Example 8.2, we:

Set our loss function to cross-entropy cost by using
loss='categorical_crossentropy' (in Shallow Net in



Keras, we used quadratic cost by using
loss='mean_squared_error')

Set our cost-minimizing method to stochastic gradient descent by
using optimizer=SGD

Specify our SGD learning rate hyperparameter η by setting
lr=0.1

Indicate that, in addition to the Keras default of providing feedback
on loss, by setting metrics=['accuracy'], we’d also like to
receive feedback on model accuracy

Finally, we train our intermediate net by running the code in
Example 8.3.

Example 8.3 Keras code to train our intermediate-
depth neural network

Click here to view code image

18. On your own time, you can play around with increasing this learning rate by
several orders of magnitude as well as decreasing it by several orders of magnitude,
and observing how it impacts training.

19. Although loss provides the most important metric for tracking a model’s
performance epoch over epoch, its particular values are specific to the characteristics
of a given model and are not generally interpretable or comparable between models.
Because of this, other than knowing that we would like our loss to be as close to zero
as possible, it can be an esoteric exercise to interpret how close to zero loss should be
for any particular model. Accuracy, on the other hand, is highly interpretable and
highly generalizable: We know exactly what it means (e.g., “The shallow neural
network correctly classified 86 percent of the handwritten digits in the validation
dataset”), and we can compare this classification accuracy to any other model (“The
accuracy of 86 percent is worse than the accuracy of our deep neural network”).
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model.fit(X_train, y_train,

          batch_size=128, epochs=20,

          verbose=1,

          validation_data=(X_valid, y_valid))

Relative to the way we trained our shallow net (see Example
5.7), the only change we’ve made is reducing our epochs
hyperparameter from 200 down by an order of magnitude to
20. As you’ll see, our much-more-efficient intermediate
architecture required far fewer epochs to train.

Figure 8.10 provides the results of the first three epochs of
training the network. Recalling that our shallow architecture
plateaued as it approached 86 percent accuracy on the
validation dataset after 200 epochs, our intermediate-depth
network is clearly superior: The val_acc field shows that we
attained 92.34 percent accuracy after a single epoch of
training. This accuracy climbs to more than 95 percent by the
third epoch and appears to plateau around 97.6 percent by the
twentieth. My, how far we’ve come already!

Figure 8.10 The performance of our intermediate-depth
neural network over its first four epochs of training

Let’s break down the verbose model.fit() output shown in
Figure 8.10 in further detail:

The progress bar shown next fills in over the course of the 469



“rounds of training” (Figure 8.5):

Click here to view code image

60000/60000 
[==============================]

1s 15us/step indicates that all 469 rounds in the first epoch
required 1 second to train, at an average rate of 15 microseconds per
round.

loss shows the average cost on our training data for the epoch. For
the first epoch this is 0.4744, and, epoch over epoch, this cost is
reliably minimized via stochastic gradient descent (SGD) and
backpropagation, eventually diminishing to 0.0332 by the
twentieth epoch.

acc is the classification accuracy on training data for the epoch.
The model correctly classified 86.37 percent for the first epoch,
increasing to more than 99 percent by the twentieth. Because a
model can overfit to the training data, one shouldn’t be overly
impressed by high accuracy on the training data.

Thankfully, our cost on the validation dataset (val_loss) does
generally decrease as well, eventually plateauing as it approaches
0.08 over the final five epochs of training.

Corresponding to the decreasing cost of the validation data is an
increase in accuracy (val_acc). As mentioned, validation accuracy
plateaued at about 97.6 percent, which is a vast improvement over
the 86 percent of our shallow net.

SUMMARY
We covered a lot of ground in this chapter. Starting from an
appreciation of how a neural network with fixed parameters



processes information, we developed an understanding of the
cooperating methods—cost functions, stochastic gradient
descent, and backpropagation—that enable network parameters
to be learned so that we can approximate any y that has a
continuous relationship to some input x. Along the way, we
introduced several network hyperparameters, including
learning rate, mini-batch size, and number of epochs of training
—as well as our rules of thumb for configuring each of these.
The chapter concluded by applying your newfound knowledge
to develop an intermediate-depth neural network that greatly
outperformed our previous, shallow network on the same
handwritten-digit-classification task. Up next, we have
techniques for improving the stability of artificial neural
networks as they deepen, enabling you to architect and train a
bona fide deep learning model for the first time.

KEY CONCEPTS
Here are the essential foundational concepts thus far. New
terms from the current chapter are highlighted in purple.

parameters:

weight w

bias b

activation a

artificial neurons:

sigmoid



tanh

ReLU

input layer

hidden layer

output layer

layer types:

dense (fully connected)

softmax

cost (loss) functions:

quadratic (mean squared error)

cross-entropy

forward propagation

backpropagation

optimizers:

stochastic gradient descent

optimizer hyperparameters:

learning rate η

batch size



9. Improving Deep Networks

In Chapter 6, we detailed individual artificial neurons. In
Chapter 7, we arranged these neural units together as the nodes
of a network, enabling the forward propagation of some input x
through the network to produce some output ŷ. Most recently,
in Chapter 8, we described how to quantify the inaccuracies of a
network (compare ŷ to the true y with a cost function) as well as
how to minimize these inaccuracies (adjust the network
parameters w and b via optimization with stochastic gradient
descent and backpropagation).

In this chapter, we cover common barriers to the creation of
high-performing neural networks and techniques that overcome
them. We apply these ideas directly in code while architecting
our first deep neural network.  Combining this additional
network depth with our newfound best practices, we’ll see if we
can outperform the handwritten-digit classification accuracy of
our simpler, shallower architectures from previous chapters.

WEIGHT INITIALIZATION
In Chapter 8, we introduced the concept of neuron saturation
(see Figure 8.1), where very low or very high values of z
diminish the capacity for a given neuron to learn. At the time,

1. Recall from Chapter 4 that a neural network earns the deep moniker if it consists of
at least three hidden layers.

1



we offered cross-entropy cost as a solution. Although cross-
entropy does effectively attenuate the effects of neuron
saturation, pairing it with thoughtful weight initialization will
reduce the likelihood of saturation occurring in the first place.
As mentioned in a footnote in Chapter 1, modern weight
initialization provided a significant leap forward in deep
learning capability: It is one of the landmark theoretical
advances between LeNet-5 (Figure 1.11) and AlexNet (Figure
1.17) that dramatically broadened the range of problems
artificial neural networks could reliably solve. In this section, we
play around with several weight initializations to help you
develop an intuition around how they’re so impactful.

While describing neural network training in Chapter 8, we
mentioned that the parameters w and b are initialized with
random values such that a network’s starting approximation of
y will be far off the mark, thereby leading to a high initial cost C.
We haven’t needed to dwell on this much, because, in the
background, Keras by default constructs TensorFlow models
that are initialized with sensible values for w and b. It’s
nevertheless worthwhile discussing this initialization, not only
to be aware of another method for avoiding neuron saturation
but also to fill in a gap in your understanding of how neural
network training works. Although Keras does a sensible job of
choosing default values—and that’s a key benefit of using Keras
in the first place—it’s certainly possible, and sometimes even
necessary, to change these defaults to suit your problem.

To make this section interactive, we encourage you to check
out our accompanying Jupyter notebook, Weight Initialization.
As shown in the following chunk of code, our library



dependencies are NumPy (for numerical operations), matplotlib
(for generating plots), and a handful of Keras methods, which
we will detail as we work through them in this section.

Click here to view code image

import numpy as np
import matplotlib.pyplot as plt
from keras import Sequential
from keras.layers import Dense, Activation
from keras.initializers import Zeros, RandomNormal
from keras.initializers import glorot_normal, glorot
_uniform

In this notebook, we simulate 784 pixel values as inputs to a
single dense layer of artificial neurons. The inspiration behind
our simulation of these 784 inputs comes of course from our
beloved MNIST digits (Figure 5.3). For the number of neurons
in the dense layer (256), we picked a number large enough so
that, when we make some plots later on, they have ample data:

n_input = 784

n_dense = 256

Now for the impetus of this section: the initialization of the
network parameters w and b. Before we begin passing training
data into our network, we’d like to start with reasonably scaled
parameters. This is for two reasons.



1. Large w and b values tend to correspond to larger z values and
therefore saturated neurons (see Figure 8.1 for a plot on neuron
saturation).

2. Large parameter values would imply that the network has a strong
opinion about how x is related to y, but before any training on data has
occurred, any such strong opinions are wholly unmerited.

Parameter values of zero, on the other hand, imply the weakest
opinion on how x is related to y. To bring back the fairy tale yet
again, we’re aiming for a Goldilocks-style, middle-of-the-road
approach that starts training from a balanced and learnable
beginning. With that in mind, when we design our neural
network architecture, we select the Zeros() method for
initializing the neurons of our dense layer with b = 0:

b_init = Zeros()

Following the line of thinking from the preceding paragraph
to its natural conclusion, we might be tempted to think that we
should also initialize our network weights w with zeros as well.
In fact, this would be a training disaster: If all weights and
biases were identical, many neurons in the network would treat
a given input x identically, giving stochastic gradient descent a
minimum of heterogeneity for identifying individual parameter
adjustments that might reduce the cost C. It would be more
productive to initialize weights with a range of different values
so that each neuron treats a given x uniquely, thereby providing
SGD with a wide variety of starting points for approximating y.
By chance, some of the initial neuron outputs may contribute in



part to a sensible mapping from x to y. Although this
contribution will be weak at first, SGD can experiment with it to
determine whether it might contribute to a reduction in the cost
C between the predicted ŷ and the target y.

As worked through earlier (e.g., in discussion of Figures 7.5
and 8.9), the vast majority of the parameters in a typical
network are weights; relatively few are biases. Thus, it’s
acceptable (indeed, it’s the most common practice) to initialize
biases with zeros, and the weights with a range of values near
zero. One straightforward way to generate random values near
zero is to sample from the standard normal distribution  as in
Example 9.1.

Example 9.1 Weight initialization with values
sampled from standard normal distribution

Click here to view code image

w_init = RandomNormal(stddev=1.0)

To observe the impact of the weight initialization we’ve
chosen, in Example 9.2 we design a neural network architecture
for our single dense layer of sigmoid neurons.

Example 9.2 Architecture for a single dense layer of
sigmoid neurons

Click here to view code image

2. The normal distribution is also known as the Gaussian distribution or, colloquially,
as the “bell curve” because of its bell-like shape. The standard normal distribution in
particular is a normal distribution with a mean of 0 and standard deviation of 1.
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model = Sequential()

model.add(Dense(n_dense,

                input_dim=n_input,

                kernel_initializer=w_init,

                bias_initializer=b_init))

model.add(Activation('sigmoid'))

As in all of our previous examples, we instantiate a model by
using Sequential(). We then use the add() method to
create a single Dense layer with the following parameters:

256 neurons (n_dense)

784 inputs (n_input)

kernel_initializer set to w_init to initialize the network
weights via our desired approach, in this case sampling from the
standard normal distribution

bias_initializer set to b_init to initialize the biases with
zeros

For simplicity when updating it later in this section, we add the
sigmoid activation function to the layer separately by using
Activation('sigmoid').

With our network set up, we use the NumPy random()
method to generate 784 “pixel values,” which are floats
randomly sampled from the range [0.0, 1.0):

Click here to view code image

x = np.random.random((1,n_input))



We subsequently use the predict() method to forward
propagate x through the single layer and output the activations
a:

a = model.predict(x)

With our final line of code, we use a histogram to visualize the a
activations:

_ = plt.hist(np.transpose(a))

Your result will look slightly different from ours because of the
random() method we used to generate our input values, but
your outputs should look approximately like those shown in
Figure 9.1.

3. In case you’re wondering, the leading underscore (_ =) keeps the Jupyter notebook
tidier by outputting the plot only, instead of the plot as well as an object that stores
the plot.
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Figure 9.1 Histogram of the a activations output by a layer of
sigmoid neurons, with weights initialized using a standard

normal distribution

As expected given Figure 6.9, the a activations output from
our sigmoid layer of neurons is constrained to a range from 0 to
1. What is undesirable about these activations, however, is that
they are chiefly pressed up against the extremes of the range:
Most of them are either immediately adjacent to 0 or
immediately adjacent to 1. This indicates that with the normal
distribution from which we sampled to initialize the layer’s
weights w, we ended up encouraging our artificial neurons to
produce large z values. This is unwelcome for two reasons
mentioned earlier in this section:

1. It means the vast majority of the neurons in the layer are saturated.



2. It implies that the neurons have strong opinions about how x would
influence y prior to any training on data.

Thankfully, this ickiness can be resolved by initializing our
network weights with values sampled from alternative
distributions.

Xavier Glorot Distributions
In deep learning circles, popular distributions for sampling
weight-initialization values were devised by Xavier Glorot and
Yoshua Bengio  (portrait provided in Figure 1.10). These Glorot
distributions, as they are typically called,  are tailored such that
sampling from them will lead to neurons initially outputting
small z values. Let’s examine them in action. Replacing the
standard-normal-sampling code (Example 9.1) of our Weight
Initialization notebook with the line in Example 9.3, we sample
from the Glorot normal distribution  instead.

Example 9.3 Weight initialization with values
sampled from Glorot normal distribution

w_init = glorot_normal()

By restarting and rerunning the notebook,  you should now

4. Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. Proceedings of Machine Learning Research, 9, 249–
56.

5. Some folks also refer to them as Xavier distributions.

6. The Glorot normal distribution is a truncated normal distribution. It is centered at

0 with a standard deviation of √ , where n  is the number of neurons in the

preceding layer and n  is the number of neurons in the subsequent layer.
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observe a distribution of the activations a similar to the
histogram shown in Figure 9.2.

Figure 9.2 Histogram of the a activations output by a layer of
sigmoid neurons, with weights initialized using the Glorot

normal distribution

In stark contrast to Figure 9.1, the a activations obtained
from our layer of sigmoid neurons is now normally distributed
with a mean of ~0.5 and few (if any) values at the extremes of
the sigmoid range (i.e., less than 0.1 or greater than 0.9). This is
a good starting point for a neural network because now:

7. Select Kernel from the Jupyter notebook menu bar and choose Restart & Run All.
This ensures you start completely fresh and don’t reuse old parameters from the
previous run.



1. Few, if any, of the neurons are saturated.

2. It implies that the neurons generally have weak opinions about how x
would influence y, which—prior to any training on data—is sensible.

As demonstrated in this section, one of the potentially confusing aspects of weight
initialization is that, if we would like the a values returned by a layer of artificial neurons
to be normally distributed (and we do!), we should not sample our initial weights from a
standard normal distribution.

In addition to the Glorot normal distribution, there is also
the Glorot uniform distribution.  The impact of selecting one of
these Glorot distributions over the other when initializing your
model weights is generally unnoticeable. You’re welcome to
rerun the notebook while sampling values from the Glorot
uniform distribution by setting w_init equal to
glorot_uniform(). Your histogram of activations should
come out more or less indistinguishable from Figure 9.2.

By swapping out the sigmoid activation function in Example
9.2 with tanh (Activation('tanh')) or ReLU
(Activation('relu')) in the Weight Initialization
notebook, you can observe the consequences of initializing
weights with values sampled from a standard normal
distribution relative to a Glorot distribution across a range of
activations. As shown in Figure 9.3, regardless of the chosen
activation function, weight initialization with the standard
normal leads to a activation outputs that are extreme relative to

8. The Glorot uniform distribution is on the range [l; l] where l =√ .6
nin +nout

8



those obtained when initializing with Glorot.



Figure 9.3 The activations output by a dense layer of 256
neurons, while varying activation function (tanh or ReLU) and
weight initialization (standard normal or Glorot uniform). Note
that while the distributions in (b) and (d) appear comparable at
first glance, the standard normal initialization produced large
activation values (reaching toward 40) while all the activations

resulting from Glorot initialization are below 2.

To be sure you’re aware of the parameter initialization
approach used by Keras, you can delve into the library’s
documentation on a layer-by-layer basis, but, as we’ve
suggested here, its default configuration is typically to initialize
biases with 0 and to initialize weights with a Glorot distribution.

Glorot initialization is probably the most popular technique for initializing weights, but
there are other sensible options such as He initialization  and LeCun initialization.  In
our experience, the difference in outcome when selecting between these weight-
initialization techniques is minimal to imperceptible.

UNSTABLE GRADIENTS
Another issue associated with artificial neural networks, and
one that becomes especially perturbing as we add more hidden
layers, is unstable gradients. Unstable gradients can either be

9. He, Y., et al. (2015). Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification. arXiv: 1502.01852.

10. LeCun, Y., et al. (1998). Efficient backprop. In G. Montavon et al. (Eds.) Neural
Networks: Tricks of the Trade. Lecture Notes in Computer Science, 7700 (pp. 355–65).
Berlin: Springer.
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vanishing or explosive in nature. We cover both varieties in turn
here, and then discuss a solution to these issues called batch
normalization.

Vanishing Gradients
Recall that using the cost C between the network’s predicted ŷ
and the true y, as depicted in Figure 8.6, backpropagation
works its way from the output layer toward the input layer,
adjusting network parameters with the aim of minimizing cost.
As exemplified by the mountaineering trilobite in Figure 8.2,
each of the parameters is adjusted in proportion to its gradient
with respect to cost: If, for example, the gradient of a parameter
(with respect to the cost) is large and positive, this implies that
the parameter contributes a large amount to the cost, and so
decreasing it proportionally would correspond to a decrease in
cost.

In the hidden layer that is closest to the output layer, the
relationship between its parameters and cost is the most direct.
The farther away a hidden layer is from the output layer, the
more muddled the relationship between its parameters and cost
becomes. The impact of this is that, as we move from the final
hidden layer toward the first hidden layer, the gradient of a
given parameter relative to cost tends to flatten; it gradually
vanishes. As a result of this, and as captured by Figure 8.8, the
farther a layer is from the output layer, the more slowly it tends
to learn. Because of this vanishing gradient problem, if we were
to naïvely add more and more hidden layers to our neural

11. The change is directly proportional to the negative magnitude of the gradient,
scaled by the learning rate η.
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network, eventually the hidden layers farthest from the output
would not be able to learn to any extent, crippling the capacity
for the network as a whole to learn to approximate y given x.

Exploding Gradients
Although they occur much less frequently than vanishing
gradients, certain network architectures (e.g., the recurrent nets
introduced in Chapter 11) can induce exploding gradients. In
this case, the gradient between a given parameter relative to
cost becomes increasingly steep as we move from the final
hidden layer toward the first hidden layer. As with vanishing
gradients, exploding gradients can inhibit an entire neural
network’s capacity to learn by saturating the neurons with
extreme values.

Batch Normalization
During neural network training, the distribution of hidden
parameters in a layer may gradually move around; this is known
as internal covariate shift. In fact, this is sort of the point of
training: We want the parameters to change in order to learn
things about the underlying data. But as the distribution of the
weights in a layer changes, the inputs to the next layer might be
shifted away from an ideal (i.e., normal, as in Figure 9.2)
distribution. Enter batch normalization (or batch norm for
short).  Batch norm takes the a activations output from the
preceding layer, subtracts the batch mean, and divides by the
batch standard deviation. This acts to recenter the distribution
of the a values with a mean of 0 and a standard deviation of 1
(see Figure 9.4). Thus, if there are any extreme values in the
preceding layer, they won’t cause exploding or vanishing

12



gradients in the next layer. In addition, batch norm has the
following positive effects:

It allows layers to learn more independently from each other,
because large values in one layer won’t excessively influence the
calculations in the next layer.

It allows for selection of a higher learning rate—because there are
no extreme values in the normalized activations—thus enabling
faster learning.

The layer outputs are normalized to the batch mean and standard
deviation, and that adds a noise element (especially with smaller
batch sizes), which, in turn, contributes to regularization.
(Regularization is covered in the next section, but suffice it to say
here that regularization helps a network generalize to data it hasn’t
encountered previously, which is a good thing.)





Figure 9.4 Batch normalization transforms the distribution of the
activations output by a given layer of neurons toward a standard

normal distribution.

Batch normalization adds two extra learnable parameters to
any given layer it is applied to: γ (gamma) and β (beta). In the
final step of batch norm, the outputs are linearly transformed by
multiplying by γ and adding β, where γ is analogous to the
standard deviation, and β to the mean. (You may notice this is
the exact inverse of the operation that normalized the output
values in the first place!) However, the output values were
originally normalized by the batch mean and batch standard
deviation, whereas γ and β are learned by SGD. We initialize the
batch norm layer with γ = 1 and β = 0, and thus at the start of
training this linear transformation makes no changes; batch
norm is allowed to normalize the outputs as intended. As the
network learns, though, it may determine that denormalizing
any given layer’s activations is optimal for reducing cost. In this
way, if batch norm is not helpful the network will learn to stop
using it on a layer-by-layer basis. Indeed, because γ and β are
continuous variables, the network can decide to what degree it
would like to denormalize the outputs, depending on what
works best to minimize the cost. Pretty neat!

MODEL GENERALIZATION (AVOIDING
OVERFITTING)
In Chapter 8, we mention that after training a model for a

12. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv: 1502.03167.



certain number of epochs the cost calculated on the validation
dataset—which may have been decreasing nicely over earlier
epochs—could begin to increase despite the fact that the cost
calculated on the training dataset is still decreasing. This
situation—when training cost continues to go down while
validation cost goes up—is formally known as overfitting.

We illustrate the concept of overfitting in Figure 9.5. Notice
we have the same data points scattered along the x and y axes in
each panel. We can imagine that there is some underlying
distribution that describes these points, and we show a
sampling from that distribution. Our goal is to generate a model
that explains the relationship between x and y but, perhaps
most importantly, one that also approximates the original
distribution; in this way, the model will be able to generalize to
new data points drawn from the distribution and not just model
the sampling of points we already have.



Figure 9.5 Fitting y given x using models with varying
numbers of parameters. Top left: A single-parameter model
underfits the data. Top right: A two-parameter model fits a
parabola that suits the relationship between x and y well.
Bottom left: A many-parameter model overfits the data,

generalizing poorly to new data points (shown in green in the
bottom-right panel).



In the first panel (top left) of Figure 9.5, we use a single-
parameter model, which is limited to fitting a straight line to the
data.  This straight line underfits the data: The cost
(represented by the vertical gaps between the line and the data
points) is high, and the model would not generalize well to new
data points. In other words, the line misses most of the points
because this kind of model is not complex enough. In the next
panel (top right), we use a model with two parameters, which
fits a parabola-shaped curve to the data.  With this parabolic
model, the cost is much lower relative to the linear model, and it
appears the model would also generalize well to new data—
great!

In the third panel (bottom left) of Figure 9.5, we use a model
with too many parameters—more parameters than we have data
points. With this approach we reduce the cost associated with
our training data points to nil: There is no perceptible gap
between the curve and the data. In the last panel (bottom right),
however, we show new data points from the original
distribution in green, which were unseen by the model during
training and so can be used to validate the model. Despite
eliminating training cost entirely, the model fits these
validation data poorly and so it results in a significant validation
cost. The many-parameter model, dear friends, is overfit: It is a
perfect model for the training data, but it doesn’t actually
capture the relationship between x and y well; rather, it has
learned the exact features of the training data too closely, and it

13. This models a linear relationship, the simplest form of regression between two
variables.

14. Recall the quadratic function from high school algebra.
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subsequently performs poorly on unseen data.

Consider how in three lines of code in Example 5.6, we
created a shallow neural network architecture with more than
50,000 parameters (Figure 7.5). Given this, it should not be
surprising that deep learning architectures regularly have
millions of parameters.  Working with datasets that have such
a large number of parameters but with perhaps only thousands
of training samples could be a recipe for severe overfitting.
Because we yearn to capitalize on deep, sophisticated network
architectures even if we don’t have oodles of data at hand,
thankfully we can rely on techniques specifically designed to
reduce overfitting. In this section, we cover three of the best-
known such techniques: L1/L2 regularization, dropout, and
data augmentation.

L1 and L2 Regularization
In branches of machine learning other than deep learning, the
use of L1 or L2 regularization to reduce overfitting is prevalent.
These techniques—which are alternately known as LASSO
regression and ridge regression, respectively—both penalize
models for including parameters by adding the parameters to
the model’s cost function. The larger a given parameter’s size,
the more that parameter adds to the cost function. Because of
this, parameters are not retained by the model unless they
appreciably contribute to the reduction of the difference

15. Indeed, as early as Chapter 10, you’ll encounter models with tens of millions of
parameters.

16. This circumstance can be annotated as n ≫ p, indicating the number of samples is
much greater than the parameter count.
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between the model’s estimated ŷ and the true y. In other words,
extraneous parameters are pared away.

The distinction between L1 and L2 regularization is that L1’s additions to cost
correspond to the absolute value of parameter sizes, whereas L2’s additions
correspond to the square of these. The net effect of this is that L1 regularization tends
to lead to the inclusion of a smaller number of larger-sized parameters in the model,
while L2 regularization tends to lead to the inclusion of a larger number of smaller-
sized parameters.

Dropout
L1 and L2 regularization work fine to reduce overfitting in deep
learning models, but deep learning practitioners tend to favor
the use of a neural-network-specific regularization technique
instead. This technique, called dropout, was developed by Geoff
Hinton (Figure 1.16) and his colleagues at the University of
Toronto  and was made famous by its incorporation in their
benchmark-smashing AlexNet architecture (Figure 1.17).

Hinton and his coworkers’ intuitive yet powerful concept for
preventing overfitting is captured by Figure 9.6. In a nutshell,
dropout simply pretends that a randomly selected proportion of
the neurons in each layer don’t exist during each round of
training. To illustrate this, three rounds of training  are shown
in the figure. For each round, we remove a specified proportion
of hidden layers by random selection. For the first hidden layer

17. Least absolutely shrinkage and selection operator

18. Hinton, G., et al. (2012). Improving neural networks by preventing co-adaptation
of feature detectors. arXiv:1207.0580.
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of the network, we’ve configured it to drop out one-third (33.3
percent) of the neurons. For the second hidden layer, we’ve
configured 50 percent of the neurons to be dropped out. Let’s
cover the three training rounds shown in Figure 9.6:

1. In the top panel, the second neuron of the first hidden layer and the first
neuron of the second hidden layer are randomly dropped out.

2. In the middle panel, it is the first neuron of the first hidden layer and
the second one of the second hidden layer that are selected for dropout.
There is no “memory” of which neurons have been dropped out on
previous training rounds, and so it is by chance alone that the neurons
dropped out in the second round are distinct from those dropped out in
the first.

3. In the bottom panel, the third neuron of the first hidden layer is
dropped out for the first time. For the second consecutive round of
training, the second neuron of the second hidden layer is also randomly
selected.





Figure 9.6 Dropout, a technique for reducing model
overfitting, involves the removal of randomly selected neurons
from a network’s hidden layers in each round of training. Three

rounds of training with dropout are shown here.

Instead of reining in parameter sizes toward zero (as with
batch normalization), dropout doesn’t (directly) constrain how
large a given parameter value can become. Dropout is
nevertheless an effective regularization technique, because it
prevents any single neuron from becoming excessively
influential within the network: Dropout makes it challenging for
some very specific aspect of the training dataset to create an
overly specific forward-propagation pathway through the
network because, on any given round of training, neurons along
that pathway could be removed. In this way, the model doesn’t
become overreliant on certain features of the data to generate a
good prediction.

When validating a neural network model that was trained
using dropout, or indeed when making real-world inferences
with such a network, we must take an extra step first. During
validation or inference, we would like to leverage the power of
the full network, that is, its total complement of neurons. The
snag is that, during training, we only ever used a subset of the
neurons to forward propagate x through the network and
estimate ŷ. If we were to naïvely carry out this forward
propagation with suddenly all of the neurons, our ŷ would
emerge befuddled: There are now too many parameters, and the

19. If the phrase round of training is not immediately familiar, refer to Figure 8.5 for
a refresher.



totals after all the mathematical operations would be larger than
expected. To compensate for the additional neurons, we must
correspondingly adjust our neuron parameters downward. If we
had, say, dropped out half of the neurons in a hidden layer
during training, then we would need to multiply the layer’s
parameters by 0.5 prior to validation or inference. As a second
example, for a hidden layer in which we dropped out 33.3
percent of the neurons during training, we then must multiply
the layer’s parameters by 0.667 prior to validation.
Thankfully, Keras handles this parameter-adjustment process
for us automatically. When working in other deep learning
libraries (e.g., low-level TensorFlow), however, you may need to
be mindful and remember to carry out these adjustments
yourself.

If you’re familiar with creating ensembles of statistical models (e.g., a single random
forest out of multiple random decision trees), then it may already be evident to you that
dropout produces such an ensemble. During each round of training, a random
subnetwork is created, and its parameter values are tuned. Later, at the conclusion of
training, all of these subnetworks are reflected in the parameter values throughout the
final network. In this way, the final network is an aggregated ensemble of its
constituent subnetworks.

As with learning rate and mini-batch size (discussed in
Chapter 8), network architecture options pertaining to dropout
are hyperparameters. Here are our rules of thumb for choosing

20. Put another way, if the probability of a given neuron being retained during
training is p, then we multiply that neuron’s parameters by p prior to carrying out
model validation or inference.
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which layers to apply dropout to and how much of it to apply:

If your network is overfitting to your training data (i.e., your
validation cost increases while your training cost goes down), then
dropout is warranted somewhere in the network.

Even if your network isn’t obviously overfitting to your training
data, adding some dropout to the network may improve validation
accuracy—especially in later epochs of training.

Applying dropout to all of the hidden layers in your network may be
overkill. If your network has a fair bit of depth, it may be sufficient
to apply dropout solely to later layers in the network (the earliest
layers may be harmlessly identifying features). To test this out, you
could begin by applying dropout only to the final hidden layer and
observing whether this is sufficient for curtailing overfitting; if not,
add dropout to the next deepest layer, test it, and so on.

If your network is struggling to reduce validation cost or to
recapitulate low validation costs attained when less dropout was
applied, then you’ve added too much dropout—pare it back! As with
other hyperparameters, there is a Goldilocks zone for dropout, too.

With respect to how much dropout to apply to a given layer, each
network behaves uniquely and so some experimentation is
required. In our experience, dropping out 20 percent up to 50
percent of the hidden-layer neurons in machine vision applications
tends to provide the highest validation accuracies. In natural
language applications, where individual words and phrases can
convey particular significance, we have found that dropping out a
smaller proportion—between 20 percent and 30 percent of the
neurons in a given hidden layer—tends to be optimal.

Data Augmentation
In addition to regularizing your model’s parameters to reduce
overfitting, another approach is to increase the size of your
training dataset. If it is possible to inexpensively collect



additional high-quality training data for the particular modeling
problem you’re working on, then you should do so! The more
data provided to a model during training, the better the model
will be able to generalize to unseen validation data.

In many cases, collecting fresh data is a pipe dream. It may
nevertheless be possible to generate new training data from
existing data by augmenting it, thereby artificially expanding
your training dataset. With the MNIST digits, for example,
many different types of transforms would yield training samples
that constitute suitable handwritten digits, such as:

Skewing the image

Blurring the image

Shifting the image a few pixels

Applying random noise to the image

Rotating the image slightly

Indeed, as shown on the personal website of Yann LeCun (see
Figure 1.9 for a portrait), many of the record-setting MNIST
validation dataset classifiers took advantage of such artificial
training dataset expansion.

FANCY OPTIMIZERS
So far in this book we’ve used only one optimization algorithm:
stochastic gradient descent. Although SGD performs well,
researchers have devised shrewd ways to improve it.

21. yann.lecun.com/exdb/mnist

22. We will use Keras data-augmentation tools on actual images of hot dogs in
Chapter 10.

21,22
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Momentum
The first SGD improvement is to consider momentum. Here’s
an analogy of the principle: Let’s imagine it’s winter and our
intrepid trilobite is skiing down a snowy gradient-mountain. If a
local minimum is encountered (as in the middle panel of Figure
8.7), the momentum of the trilobite’s movement down the
slippery hill will keep it moving, and the minimum will be easily
bypassed. In this way, the gradients on previous steps have
influenced the current step.

We calculate momentum in SGD by taking a moving average
of the gradients for each parameter and using that to update the
weights in each step. When using momentum, we have the
additional hyperparameter β (beta), which ranges from 0 to 1,
and which controls how many previous gradients are
incorporated in the moving average. Small β values permit older
gradients to contribute to the moving average, something that
can be unhelpful; the trilobite wouldn’t want the steepest part of
the hill to guide its speed as it approaches the lodge for its
après-ski drinks. Typically we’d use larger β values, with β = 0.9
serving as a reasonable default.

Nesterov Momentum
Another version of momentum is called Nesterov momentum.
In this approach, the moving average of the gradients is first
used to update the weights and find the gradients at whatever
that position may be; this is equivalent to a quick peek at the
position where momentum might take us. We then use the
gradients from this sneak-peek position to execute a gradient
step from our original position. In other words, our trilobite is



suddenly aware of its speed down the hill, so it’s taking that into
account, guessing where its own momentum might be taking it,
and then adjusting its course before it even gets there.

AdaGrad
Although both momentum approaches improve SGD, a
shortcoming is that they both use a single learning rate η for all
parameters. Imagine, if you will, that we could have an
individual learning rate for each parameter, thus enabling those
parameters that have already reached their optimum to slow or
halt learning, while those that are far from their optima can
keep going. Well, you’re in luck! That’s exactly what can be
achieved with the other optimizers we’ll discuss in this section:
AdaGrad, AdaDelta, RMSProp, and Adam.

The name AdaGrad comes from “adaptive gradient.”  In
this variation, every parameter has a unique learning rate that
scales depending on the importance of that feature. This is
especially useful for sparse data where some features occur only
rarely: When those features do occur, we’d like to make larger
updates of their parameters. We achieve this individualization
by maintaining a matrix of the sum of squares of the past
gradients for each parameter, and dividing the learning rate by
its square root. AdaGrad is the first introduction to the
parameter ∊ (epsilon), which is a doozy: Epsilon is a smoothing
factor to avoid divide-by-zero errors and can safely be left at its
default value of ∊ = 1 × 10 .

23. Duchi, J., et al. (2011). Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12, 2121–59.

24. AdaGrad, AdaDelta, RMSProp, and Adam all use∊ for the same purpose, and it

23
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A significant benefit of AdaGrad is that it minimizes the need
to tinker with the learning rate hyperparameter η. You can
generally just set-it-and-forget-it at its default of η = 0.01. A
considerable downside of AdaGrad is that, as the matrix of past
gradients increases in size, the learning rate is increasingly
divided by a larger and larger value, which eventually renders
the learning rate impractically small and so learning essentially
stops.

AdaDelta and RMSProp
AdaDelta resolves the gradient-matrix-size shortcoming of
AdaGrad by maintaining a moving average of previous
gradients in the same manner that momentum does.  AdaDelta
also eliminates the η term, so a learning rate doesn’t need to be
configured at all.

RMSProp (root mean square propagation) was developed by
Geoff Hinton (see Figure 1.16 for a portrait) at about the same
time as AdaDelta.  It works similarly except it retains the
learning rate η parameter. Both RMSProp and AdaDelta involve
an extra hyperparameter ρ (rho), or decay rate, which is
analogous to the β value from momentum and which guides the

can be left at its default across all of these methods.

25. Zeiler, M.D. (2012). ADADELTA: An adaptive learning rate method.
arXiv:1212.5701.

26. This is achieved through a crafty mathematical trick that we don’t think is worth
expounding on here. You may notice, however, that Keras and TensorFlow still have
a learning rate parameter in their implementations of AdaDelta. In those cases, it is
recommended to leave η at 1, that is, no scaling and therefore no functional learning
rate as you have come to know it in this book.

25

26
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size of the window for the moving average. Recommended
values for the hyperparameters are ρ = 0.95 for both optimizers,
and setting η = 0.001 for RMSProp.

Adam
The final optimizer we discuss in this section is also the one we
employ most often in the book. Adam—short for adaptive
moment estimation—builds on the optimizers that came before
it.  It’s essentially the RMSProp algorithm with two
exceptions:

1. An extra moving average is calculated, this time of past gradients for
each parameter (called the average first moment of the gradient,  or
simply the mean) and this is used to inform the update instead of the
actual gradients at that point.

2. A clever bias trick is used to help prevent these moving averages from
skewing toward zero at the start of training.

Adam has two β hyperparameters, one for each of the moving
averages that are calculated. Recommended defaults are β  =
0.9 and β  = 0.999. The learning rate default with Adam is η =
0.001, and you can generally leave it there.

Because RMSProp, AdaDelta, and Adam are so similar, they
can be used interchangeably in similar applications, although

27. This optimizer remains unpublished. It was first proposed in Lecture 6e of
Hinton’s Coursera Course “Neural Networks for Machine Learning”
(www.cs.toronto.edu/∼hinton/coursera/lecture6/lec6.pdf).

28. Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv:1412.6980.

29. The other moving average is of the squares of the gradient, which is the second
moment of the gradient, or the variance.

1

2
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the bias correction may help Adam later in training. Even
though these newfangled optimizers are in vogue, there is still a
strong case for simple SGD with momentum (or Nesterov
momentum), which in some cases performs better. As with
other aspects of deep learning models, you can experiment with
optimizers and observe what works best for your particular
model architecture and problem.

A DEEP NEURAL NETWORK IN KERAS
We can now sound the trumpet, because we’re reached a
momentous milestone! With the additional theory we’ve
covered in this chapter, you have enough knowledge under your
belt to competently design and train a deep learning model. If
you’d like to follow along interactively as we do so, pop into the
accompanying Deep Net in Keras Jupyter notebook. Relative to
our shallow and intermediate-depth model notebooks (refer to
Example 5.1), we have a pair of additional dependencies—
namely, dropout and batch normalization—as provided in
Example 9.4.

Example 9.4 Additional dependencies for deep net
in Keras

Click here to view code image

from keras.layers import Dropout
from keras.layers.normalization import BatchNormalization

We load and preprocess the MNIST data in the same way as
previously. As shown in Example 9.5, it’s the neural network



architecture cell where we begin to diverge.

Example 9.5 Deep net in Keras model architecture

Click here to view code image

model = Sequential()

model.add(Dense(64, activation='relu', input_shape=(784,)))

model.add(BatchNormalization())

model.add(Dense(64, activation='relu'))

model.add(BatchNormalization())

model.add(Dense(64, activation='relu'))

model.add(BatchNormalization())

model.add(Dropout(0.2))

model.add(Dense(10, activation='softmax'))

As before, we instantiate a Sequential model object. After we
add our first hidden layer to it, however, we also add a
BatchNormalization() layer. In doing this we are not
adding an actual layer replete with neurons, but rather we’re
adding the batch-norm transformation for the activations a
from the layer before (the first hidden layer). As with the first
hidden layer, we also add a BatchNormalization() layer
atop the second hidden layer of neurons. Our output layer is
identical to the one used in the shallow and intermediate-depth
nets, but to create an honest-to-goodness deep neural network,
we are further adding a third hidden layer of neurons. As with
the preceding hidden layers, the third hidden layer consists of
64 batch-normalized relu neurons. We are, however,



supplementing this final hidden layer with Dropout, set to
remove one-fifth (0.2) of the layer’s neurons during each round
of training.

As captured in Example 9.6, the only other change relative to
our intermediate-depth network is that we use the Adam
optimizer (optimizer='adam') in place of ordinary SGD
optimization.

Example 9.6 Deep net in Keras model compilation

Click here to view code image

model.compile(loss='categorical_crossentropy',

              optimizer='adam',

              metrics=['accuracy'])

Note that we need not supply any hyperparameters to the Adam
optimizer, because Keras automatically includes all the sensible
defaults we detailed in the preceding section. For all of the other
optimizers we covered, Keras (and TensorFlow, for that matter)
has implementations that can easily be dropped in in place of
ordinary SGD or Adam. You can refer to the documentation for
those libraries online to see exactly how it’s done.

When we call the fit() method on our model,  we discover
that our digestion of all the additional theory in this chapter
paid off: With our intermediate-depth network, our validation
accuracy plateaued around 97.6 percent, but our deep net
attained 97.87 percent validation accuracy following 15 epochs
of training (see Figure 9.7), shaving away 11 percent of our
already-small error rate. To squeeze even more juice out of the

30



error-rate lemon than that, we’re going to need machine-vision-
specific neuron layers such as those introduced in the upcoming
Chapter 10.

Figure 9.7 Our deep neural network architecture peaked at a
97.87 percent validation following 15 epochs of training, besting

the accuracy of our shallow and intermediate-depth
architectures. Because of the randomness of network

initialization and training, you may obtain a slightly lower or a
slightly higher accuracy with the identical architecture.

REGRESSION
In Chapter 4, when discussing supervised learning problems, we
mentioned that these can involve either classification or
regression. In this book, nearly all our models are used for
classifying inputs into one category or another. In this section,
however, we depart from that tendency and highlight how to
adapt neural network models to regression tasks—that is, any
problem where you’d like to predict some continuous variable.
Examples of regression problems include predicting the future
price of a stock, forecasting how many centimeters of rain may
fall tomorrow, and modeling how many sales to expect of a
particular product. In this section, we use a neural network and
a classic dataset to estimate the price of housing near Boston,
Massachusetts, in the 1970s.

30. This model.fit() step is exactly the same as for our Intermediate Net in Keras

notebook, that is, Example 8.3.



Our dependencies, as shown in our Regression in Keras
notebook, are provided in Example 9.7. The only unfamiliar
dependency is the boston_housing dataset, which is
conveniently bundled into the Keras library.

Example 9.7 Regression model dependencies

Click here to view code image

from keras.datasets import boston_housing
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers.normalization import BatchNormalization

Loading the data is as simple as with the MNIST digits:

Click here to view code image

(X_train, y_train), (X_valid, y_valid) = boston_hous

ing.load_data()

Calling the shape parameter of X_train and X_valid, we
find that there are 404 training cases and 102 validation cases.
For each case—a distinct area of the Boston suburbs—we have
13 predictor variables related to building age, mean number of
rooms, crime rate, the local student-to-teacher ratio, and so
on.  The median house price (in thousands of dollars) for each
area is provided in the y variables. As an example, the first case
in the training set has a median house price of $15,200.

31. You can read more about the data by referring to the article they were originally
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The network architecture we built for house-price prediction
is provided in Example 9.8.

Example 9.8 Regression model network
architecture

Click here to view code image

model = Sequential()

model.add(Dense(32, input_dim=13, activation='relu'))

model.add(BatchNormalization())

model.add(Dense(16, activation='relu'))

model.add(BatchNormalization())

model.add(Dropout(0.2))

model.add(Dense(1, activation='linear'))

Reasoning that with only 13 input values and a few hundred
training cases we would gain little from a deep neural network
with oodles of neurons in each layer, we opted for a two-hidden-
layer architecture consisting of merely 32 and 16 neurons per
layer. We applied batch normalization and a touch of dropout to
avoid overfitting to the particular cases of the training dataset.
Most critically, in the output layer we set the activation
argument to linear—the option to go with when you’d like to
predict a continuous variable, as we do when performing
regression. The linear activation function outputs z directly so

published in: Harrison, D., & Rubinfeld, D. L. (1978). Hedonic prices and the demand
for clean air. Journal of Environmental Economics and Management, 5, 81–102.

32. Running y_train[0] returns 15.2.



that the network’s ŷ can be any numeric value (representing,
e.g., dollars, centimeters) instead of being squashed into a
probability between 0 and 1 (as happens when you use the
sigmoid or softmax activation functions).

When compiling the model (see Example 9.9), another
regression-specific adjustment we made is using mean squared
error (MSE) in place of cross-entropy
(loss='mean_squared_error'). While we’ve used cross-
entropy cost exclusively so far in this book, that cost function is
specifically designed for classification problems, in which ŷ is a
probability. For regression problems, where the output is
inherently not a probabilty, we use MSE instead.

Example 9.9 Compiling a regression model

Click here to view code image

model.compile(loss='mean_squared_error', optimizer='adam')

You may have noticed that we left out the accuracy metric when
compiling this time around. This is deliberate: There’s no point
in calculating accuracy, because this metric (the percentage of
cases classified correctly) isn’t relevant to continuous variables
as it is with categorical ones.

33. There are other cost functions applicable to regression problems, such as mean
absolute error (MAE) and Huber loss, although these aren’t covered in this book.
MSE should serve you well enough.

34. It’s also helpful to remember that, generally, accuracy is used only to set our
minds at ease about how well our models are performing. The model itself learns
from the cost, not the accuracy.
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Fitting our model (as in Example 9.10) is one step that is no
different from classification.

Example 9.10 Fitting a regression model

Click here to view code image

model.fit(X_train, y_train,

          batch_size=8, epochs=32, verbose=1,

          validation_data=(X_valid, y_valid))

We trained for 32 epochs because, in our experience with this
particular model, training for longer produced no lower
validation losses. We didn’t spend any time optimizing the
batch-size hyperparameter, so there could be small accuracy
gains to be made by varying it.

During our particular run of the regression model, our lowest
validation loss (25.7) was attained in the 22nd epoch. By our
final (32nd) epoch, this loss had risen considerably to 56.5 (for
comparison, we had a validation loss of 56.6 after just one
epoch). In Chapter 11, we demonstrate how to save your model
parameters after each epoch of training so that the best-
performing epoch can be reloaded later, but for the time being
we’re stuck with the relatively crummy parameters from the
final epoch. In any event, if you’d like to see specific examples of
model house-price inferences given some particular input data,
you can do this by running the code provided in Example 9.11.

35. Note that we had to use the NumPy reshape method to pass in the 13 predictor
variables of the 43rd case as a row-oriented array of values ([1, 13]) as opposed to

as a column.
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Example 9.11 Predicting the median house price in
a particular suburb of Boston

Click here to view code image

model.predict(np.reshape(X_valid[42], [1, 13]))

This returned for us a predicted median house price (ŷ) of
$20,880 for the 43rd Boston suburb in the validation dataset.
The actual median price (y; which can be output by calling
y_valid[42]) is $14,100.

TENSORBOARD
When evaluating the performance of your model epoch over
epoch, it can be tedious and time-consuming to read individual
results numerically, as we did after running the code in
Example 9.10, particularly if the model has been training for
many epochs. Instead, TensorBoard (Figure 9.8) is a
convenient, graphical tool for:

Visually tracking model performance in real time

Reviewing historical model performances

Comparing the performance of various model architectures and
hyperparameter settings applied to fitting the same data





Figure 9.8 The TensorBoard dashboard enables you to, epoch
over epoch, visually track your model’s cost (loss) and
accuracy (acc) across both your training data and your

validation (val) data.

TensorBoard comes automatically with the TensorFlow library,
and instructions for getting it up and running are available via
the TensorFlow site.  It’s generally straightforward to set up.
Provided here, for example, is a procedure that adapts our Deep
Net in Keras notebook for TensorBoard use on a Unix-based
operating system, including macOS:

1. As shown in Example 9.12, change your Python code as follows:

1. Import the TensorBoard dependency from keras.callbacks.

2. Instantiate a TensorBoard object (we’ll call it tensorboard), and
specify a new, unique directory name (e.g., deep-net) that you’d
like to create and have TensorBoard log data written into for this
particular run of model-fitting:

Click here to view code image

tensorboard = 
TensorBoard(log_dir='logs/deep-net')

3. Pass the TensorBoard object as a callback parameter to the fit()
method:

callbacks = [tensorboard]

36. tensorflow.org/guide/summaries_and_tensorboard

37. This is also laid out in our Deep Net in Keras with TensorBoard notebook.

36

37
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2. In your terminal, run the following:

Click here to view code image

tensorboard --logdir='logs/deep-net' --port 
6006

3. Navigate to localhost:6006 in your favorite web browser.

Example 9.12 Using TensorBoard while fitting a
model in Keras

Click here to view code image

from keras.callbacks import TensorBoard
tensorboard = TensorBoard('logs/deep-net')

model.fit(X_train, y_train,

          batch_size=128, epochs=20,

          verbose=1,

          validation_data=(X_valid, y_valid),

          callbacks=[tensorboard])

By following these steps or an analogous procedure for the
circumstances of your particular operating system, you should
see something like Figure 9.8 in your browser window. From
there, you can visually track any given model’s cost and
accuracy across both your training and validation datasets in
real time as these metrics change epoch over epoch. This kind of

38. Note: We specified the same logging directory location that the TensorBoard
object was set to use in step 1b. Since we specified a relative path and not an
absolute path for our logging directory, we need to be mindful to run the
tensorboard command from the same directory as our Deep Net in Keras with
TensorBoard notebook.
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performance tracking is one of the primary uses of
TensorBoard, although the dashboard interface also provides
heaps of other functionality, such as visual breakdowns of your
neural network graph and the distribution of your model
weights. You can learn about these additional features by
reading the TensorBoard docs and exploring the interface on
your own.

SUMMARY
Over the course of the chapter, we discussed common pitfalls in
modeling with neural networks and covered strategies for
minimizing their impact on model performance. We wrapped
up the chapter by applying all of the theory learned thus far in
the book to construct our first bona fide deep learning network,
which provided us with our best-yet accuracy on MNIST
handwritten-digit classification. While such deep, dense neural
nets are applicable to generally approximating any given output
y when provided some input x, they may not be the most
efficient option for specialized modeling. Coming up next in
Part III, we introduce neural network layers and deep learning
approaches that excel at particular, specialized tasks, including
machine vision, natural language processing, the generation of
art, and playing games.

KEY CONCEPTS
Here are the essential foundational concepts thus far. New
terms from the current chapter are highlighted in purple.

parameters:



weight w

bias b

activation a

artificial neurons:

sigmoid

tanh

ReLU

linear

input layer

hidden layer

output layer

layer types:

dense (fully connected)

softmax

cost (loss) functions:

quadratic (mean squared error)

cross-entropy

forward propagation

backpropagation

unstable (especially vanishing) gradients



Glorot weight initialization

batch normalization

dropout

optimizers:

stochastic gradient descent

Adam

optimizer hyperparameters:

learning rate η

batch size



III: Interactive Applications of Deep
Learning

Chapter 10 Machine Vision

Chapter 11 Natural Language Processing

Chapter 12 Generative Adversarial Networks

Chapter 13 Deep Reinforcement Learning



10. Machine Vision

Welcome to Part III, dear reader. Previously, we provided a
high-level overview of particular applications of deep learning
(Part I). With the foundational, low-level theory we’ve covered
since (in Part II), you’re now well positioned to work through
specialized content across a range of application areas,
primarily via hands-on example code. In this chapter, for
example, you’ll discover convolutional neural networks and
apply them to machine vision tasks. In the remainder of Part
III, we cover practical examples of:

Recurrent neural networks for natural language processing in
Chapter 11

Generative adversarial networks for visual creativity in Chapter 12

Deep reinforcement learning for sequential decision making within
complex, changing environments in Chapter 13

CONVOLUTIONAL NEURAL NETWORKS
A convolutional neural network—also known as a ConvNet or a
CNN—is an artificial neural network that features one or more
convolutional layers (also called conv layers). This layer type
enables a deep learning model to efficiently process spatial
patterns. As you’ll see firsthand in this chapter, this property
makes convolutional layers especially effective in computer



vision applications.

The Two-Dimensional Structure of Visual Imagery
In our previous code examples involving handwritten MNIST
digits, we converted the image data into one-dimensional arrays
of numbers so that we could feed them into a dense hidden
layer. More specifically, we began with 28×28-pixel grayscale
images and converted them into 784-element one-dimensional
arrays.  Although this step was necessary in the context of a
dense, fully connected network—we needed to flatten the 784
pixel values so that each one could be fed into a neuron of the
first hidden layer—the collapse of a two-dimensional image into
one dimension corresponds to a substantial loss of meaningful
visual image structure. When you draw a digit with a pen on
paper, you don’t conceptualize it as a continuous linear
sequence of pixels running from top-left to bottom-right. If, for
example, we printed an MNIST digit for you here as a 784-pixel
long stream in shades of gray, we’d be willing to wager that you
couldn’t identify the digit. Instead, humans perceive visual
information in a two-dimensional form,  and our ability to
recognize what we’re looking at is inherently tied to the spatial
relationships between the shapes and colors we perceive.

Computational Complexity
In addition to the loss of two-dimensional structure when we
collapse an image, a second consideration when piping images

1. Recall that the pixel values were divided by 255 in order to scale everything to [0 :
1].

2. Well . . . three-dimensional, but let’s ignore depth for the purposes of this
discussion.

1
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into a dense network is computational complexity. The MNIST
images are very small—28×28 pixels with only one channel
(there is only one color “channel” because MNIST digits are
monochromatic; to render images in full color, in contrast, at
least three channels—usually red, green, and blue—are
required). Passing MNIST image information into a dense layer,
that corresponds to 785 parameters per neuron: 784 weights for
each of the pixels, plus the neuron’s bias. If we were handling a
moderately sized image, however—say, a 200×200-pixel, full-
color RGB  image—then the number of parameters increases
dramatically. In that case, we’d have three color channels, each
with 40,000 pixels, corresponding to a total of 120,001
parameters per neuron in a dense layer.  With a modest
number of neurons in the dense layer—let’s say 64—that
corresponds to nearly 8 million parameters associated with the
first hidden layer of our network alone.  Furthermore, the
image is only 200×200 pixels—that’s barely 0.4MP,  whereas
most modern smartphones have 12MP or greater camera
sensors. Generally, machine vision tasks don’t need to run on
high-resolution images in order to be successful, but the point
should be clear: Images can contain a very large number of data
points, and using these in a naïve, fully connected manner will
explode the neural network’s compute power requirements.

Convolutional Layers

3. The red, green, and blue channels required for a full-color image.

4. 200 pixels × 200 pixels × 3 color channels + 1 bias = 120,001 parameters.

5. 64 neurons × 120,001 parameters per neuron = 7,680,064 parameters.

6. Megapixels.

3

4

5

6



Convolutional layers consist of sets of kernels, which are also
known as filters. Each of these kernels is a small window (called
a patch) that scans across the image (in more technical terms,
the filter convolves), from top left to bottom right (see Figure
10.1 for an illustration of this convolutional operation).

Figure 10.1 When reading a page of a book written in English,
we begin in the top-left corner and read to the right. Every time
we reach the end of a row of text, we progress to the next row.

In this way, we eventually reach the bottom-right corner,
thereby reading all of the words on the page. Analogously, the

kernel in a convolutional layer begins on a small window of
pixels in the top-left corner of a given image. From the top row

downward, the kernel scans from left to right, until it eventually
reaches the bottom-right corner, thereby scanning all of the

pixels in the image.



Kernels are made up of weights, which—as in dense layers—
are learned through back-propagation. Kernels can range in
size, but a typical size is 3×3, and we use that in the examples in
this chapter.  For the monochromatic MNIST digits, this 3×3-
pixel window would consist of 3 × 3 × 1 weights—nine weights,
for a total of 10 parameters (like an artificial neuron in a dense
layer, every convolutional filter has a bias term b). For
comparison, if we happened to be working with full-color RGB
images, then a kernel covering the same number of pixels would
have three times as many weights—3 × 3 × 3 of them, for a total
of 27 weights and 28 parameters.

As depicted in Figure 10.1, the kernel occupies discrete
positions across an image as it convolves. Sticking with the 3×3
kernel size for this explanation, during forward propagation a
multidimensional variation of the “most important equation in
this book”—w · x + b (introduced in Figure 6.7)—is calculated at
each position that the kernel occupies as it convolves over the
image. Referring to the 3×3 window of pixels and the 3×3
kernel in Figure 10.2 as inputs x and weights w, respectively, we
can demonstrate the calculation of the weighted sum w · x in
which products are calculated elementwise based on the
alignment of vertical and horizontal locations. It’s helpful to
imagine the kernel superimposed over the pixel values. The
math is presented here:

7. Another typical size is 5×5, with kernels larger than that used infrequently.
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w ⋅ x = .01 × .53 + .09 × .34 + .22 × .06
+ −1.36 × .37 + .34 × .82 + −1.59 × .01
+ .13 × .62 + −.69 + .91 + 1.02 + .34
= −0.3917

(10.1)

Figure 10.2 A 3×3 kernel and a 3×3-pixel window

Next, using Equation 7.1, we add some bias term b (say, –0.19)
to arrive at z:

z = w ⋅ x + b

= −0.39 + b

= −0.39 + 0.20
= −0.19

(10.2)

With z, we can at last calculate an activation value a by passing
z through the activation function of our choice, say the tanh
function or the ReLU function.

Note that the fundamental operation hasn’t changed relative
to the artificial neuron mathematics of Chapters 6 and 7.



Convolutional kernels have weights, inputs, and a bias; a
weighted sum of these is produced using our most important
equation; and the resulting z is passed through some nonlinear
function to produce an activation. What has changed is that
there isn’t a weight for every input, but rather a discrete kernel
with 3×3 weights. These weights do not change as the kernel
convolves; instead they’re shared across all of the inputs. In this
way, a convolutional layer can have orders of magnitude fewer
weights than a fully connected layer. Another important point is
that, like the inputs, the outputs from this kernel (all of the
activations) are also arranged in a two-dimensional array. We’ll
delve more into this in a moment, but first . . .

Multiple Filters
Typically, we have multiple filters in a given convolutional layer.
Each filter enables the network to learn a representation of the
data at a given layer in a unique way. For example, analogous to
Hubel and Wiesel’s simple cells in the biological visual system
(Figure 1.5), if the first hidden layer in our network is a
convolutional layer, it might contain a kernel that responds
optimally to vertical lines. Thus, whenever it convolves (slides
over) a vertical line in an input image, it produces a large
activation (a) value. Additional kernels in this layer can learn to
represent other simple spatial features such as horizontal lines
and color transitions (for examples, see the bottom-left panel of
Figure 1.17). This is how these kernels came to be known as
filters; they scan over the image and filter out the location of
specific features, producing high activations when they come
across the pattern, shape, and/or color they are specially tuned
to detect. One could say that they function as highlighters,



producing a two-dimensional array of activations that indicate
where that filter’s particular feature exists in the original image.
For this reason, the output from a kernel is referred to as an
activation map.

Analogous to the hierarchical representations of the
biological visual system (Figure 1.6), subsequent convolutional
layers receive these activation maps as their inputs. As the
network gets deeper, the filters in the layers react to
increasingly complex combinations of these simple features,
learning to represent increasingly abstract spatial patterns and
eventually building a hierarchy from simple lines and colors up
to complex textures and shapes (see the panels along the
bottom of Figure 1.17). In this way, later layers within the
network have the capacity to recognize whole objects or even,
say, to distinguish an image of a Great Dane from that of a
Yorkshire Terrier.

The number of filters in the layer, like the number of neurons
in a dense layer, is a hyperparameter that we configure
ourselves. As with the other hyperparameters covered already in
this book, there is a Goldilocks sweet spot for filter number.
Here are our rules of thumb for homing in on it for your
particular problem:

Having a larger number of kernels facilitates the identification of
more-complex features, so consider the complexity of the data and
the problem you’re solving. Of course, more kernels comes with the
cost of computation efficiency.

If a network has multiple convolutional layers, the optimal number
of kernels for a given layer could vary quite a bit from layer to layer.
Keep in mind that early layers identify simple features, whereas



later layers identify complex recombinations of these simple
features, so let this guide where you stack your network. As we’ll see
when we get into coded examples of CNNs later in this chapter, a
common approach for machine vision is to have many more kernels
in later convolutional layers relative to early convolutional layers.

As always, strive to minimize computational complexity: Consider
using the smallest number of kernels that facilitates a low cost on
your validation data. If doubling the number of kernels (say, from
32 to 64 to 128) in a given layer significantly decreases your model’s
validation cost, then consider using the higher value. If halving the
number of kernels (say, from 32 to 16 to 8) in a given layer doesn’t
increase your model’s validation cost, then consider using the
smaller value.

A Convolutional Example
Convolutional layers are a nontrivial departure from the simpler
fully connected layers of Part II, so, to help you make sense of
the way the pixel values and weights combine to produce feature
maps, across Figures 10.3 through 10.5 we’ve created a detailed
contrived example with accompanying math. To begin, imagine
we’re convolving over a single RGB image that’s 3×3 pixels in
size. In Python, those data are stored in a [3,3,3] array as
shown at the top of Figure 10.3.8



Figure 10.3 This schematic diagram demonstrates how the
activation values in a feature map are calculated in a

convolutional layer.

Shown in the middle of the figure are the 3×3 arrays for each
of the three channels: red, green, and blue. Note that the image
has been padded with zeros on all four sides. We’ll discuss more
about padding shortly, but for now all you need to know is this:
Padding is used to ensure that the resulting feature map has the
same dimensions as the input data. Below the arrays of pixel

8. We admit that the RGB example of the tree has far more than nine pixels, but we
struggled to identify a compelling color image that was 3×3.



values you’ll find the weight matrices for each of the channels.
We chose a kernel size of 3×3, and given that there are three
channels in the input image the weights matrix will be an array
with dimensions [3,3,3], shown here individually. The bias
term is 0.2. The current position of the filter is indicated by an
overlay on each array of pixel values, and the z value
(determined by calculating the weighted sum from Equation
10.1 across all three color channels, and then adding the bias as
in Equation 10.2) is given at the bottom right of the figure.
Finally, all of these z values are summed to create the first entry
in the feature map at the bottom right.

Proceeding to Figure 10.4, the image arrays are now shown
with the filter in its next position, one pixel to the right. Exactly
as in Figure 10.3, the z value is calculated following Equations
10.1 and 10.2. This z-value can then fill the second position in
the activation map, as shown again at the bottom right of the
figure.



Figure 10.4 A continuation of the convolutional example from
Figure 10.3, now showing the activation for the next filter

position

This process is repeated for every possible filter position, and
the z-value that was calculated for each of these nine positions
is shown in the bottom-right corner of Figure 10.5. To convert
this 3×3 map of z-values into a corresponding 3×3 activation
map, we pass each z-value through an activation function, such
as the ReLU function. Because a single convolutional layer
nearly always has multiple filters, each producing its own two-
dimensional activation map, activation maps have an additional
depth dimension, analogous to the depth provided by the three
the channels of an RGB image. Each of these kernel “channels”
in the activation map represents a feature that that particular
kernel specializes in recognizing, such as an edge (a straight
line) at a particular orientation.  Figure 10.6 shows how the
calculation of activation values a from the input image build up
a three-dimensional activation map. The convolutional layer
that produced the activation map shown in Figure 10.6 has 16
kernels, thus resulting in an activation map with a depth of 16
“channels” (we’ll call these slices going forward).

9



Figure 10.5 Finally, the activation for the last filter position
has been calculated, and the activation map is complete.



Figure 10.6 A graphical representation of the input array (left;
represented here is a three-channel RGB image of size 32×32

with the kernel patch currently focused on the first—i.e., top-left
—position) and the activation map (right). There are 16 kernels,
resulting in an activation map with a depth of 16. Each position

a given kernel occupies as it convolves over the input image
corresponds to one a value in the resulting activation map.

In Figure 10.6, the kernel filter is positioned over the top-left
corner of the input image. This corresponds to 16 activation
values in the top-left corner of the activation map: one
activation a for each of the 16 kernels. By convolving over all of
the pixel windows in the input image from left to right and from
top to bottom, all of the values in the activation map are filled
in.  If the first of the 16 filters is tuned to respond optimally to
vertical lines, then the first slice of the activation map will
highlight all the physical regions of the input image that contain
vertical lines. If the second filter is tuned to respond optimally
to horizontal lines, then the second slice of the activation map
will highlight regions of the image that contain horizontal lines.
In this way, all 16 filters in the activation map can together
represent the spatial location of 16 different spatial features.

9. Figure 1.17 shows real-world examples of the features individual kernels become
specialized to detect across a range of convolutional-layer depths. In the first
convolutional layer, for example, the majority of the kernels have a speciality in
detecting an edge at a particular orientation.

10. Note that regardless of whether an input image is monochromatic (with only one
color channel) or full-color (with three), there is only one activation map output for
each convolutional kernel. If there is one color channel, we calculate the weighted

10
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At this point, students of deep learning often wonder where the weights for a given
convolutional kernel come from. In our examples in this section, all of the parameter
values have been contrived. In real-world convolutional layers, however, the kernel
weights and biases are initialized with random values (as usual, per Chapter 9) and
then learned through backpropagation, akin to the way weights and biases are learned
in dense layers. As suggested by the hierarchical abstraction theme of Chapter 1, the
earliest convolutional layers in a deep CNN tend to become tuned to simple features
like straight lines at particular orientations, whereas deeper layers might specialize in
representing, say, a face, a clock, or a dog. A four-minute video by Jason Yosinski and
his colleagues (available at bit.ly/DeepViz) vividly demonstrates the
specializations of convolutional kernels by ConvNet layer depth.  We highly
recommend checking it out.

Now that we’ve described the general principles underscoring
convolutional layers in deep learning, it’s a good time to review
the basic features:

They allow deep learning models to learn to recognize features in a
position invariant manner; a single kernel can identify its cognate
feature anywhere in the input data.

They remain faithful to the two-dimensional structure of images,

sum of inputs for that single channel as in Equation 10.1. If there are three color
channels, we calculate the total weighted sum of inputs across all three channels as in
Figures 10.3, 10.4, and 10.5. Either way (after adding the kernel’s bias and passing
the resulting z-value through an activation function), we produce only one activation
value for each position that each kernel convolves over.

11. If you are interested in an interactive demonstration of convolutional-filter
calculations, we highly recommend one created by Andrej Karpathy (see Figure 14.6
for a portrait). It’s available at bit.ly/CNNdemo under the Convolution Demo

heading.

12. Yosinski, J., et al. (2015). Understanding neural networks through deep
visualization. Proceedings of the International Conference on Machine Learning.
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allowing features to be identified within their spacial context.

They significantly reduce the number of parameters required for
modeling image data, yielding higher computational efficiency.

Ultimately, they perform machine vision tasks (e.g., image
classification) more accurately.

Convolutional Filter Hyperparameters
In contrast with dense layers, convolutional layers are
inherently not fully connected. That is, there isn’t a weight
mapping every single pixel to every single neuron in the first
hidden layer. Instead, there are a handful of hyperparameters
that dictate the number of weights and biases associated with a
given convolutional layer. These include:

Kernel size

Stride length

Padding

Kernel Size
In all of the examples covered so far in this chapter, the kernel
size (also known as filter size or receptive field ) has been 3
pixels wide and 3 pixels tall. This is a common size that is found
to be effective across a broad range of machine vision
applications in contemporary ConvNet architectures. A kernel
size of 5×5 pixels is also popular, and 7×7 is about as expansive
as they ever get. If the kernel is too large with respect to the
image, there would be too many competing features in the
receptive field and it would be challenging for the convolutional
layer to learn effectively, but if the receptive field is too small
(e.g., 2×2) it wouldn’t be able to tune to any structures, and that

13



isn’t helpful either.

Stride Length
Stride refers to the size of the step that the kernel takes as it
moves over the image. Across our convolutional-layer example
(Figures 10.3 to 10.5) we use a stride length of 1 pixel, which is a
frequently used option. Another common choice is a 2-pixel
stride and, less often, a stride of 3. Anything much larger is
likely to be suboptimal, because the kernel might skip regions of
the image that are of value to the model. On the other hand,
increasing the stride will yield an increase in speed because
there are fewer calculations that need to be carried out. As ever
in deep learning, it’s about finding a balance—that Goldilocks
sweet spot—between these effects. We recommend a stride of 1
or 2, while avoiding anything larger than 3.

Padding
Next is padding, which plays handily with stride to keep the
calculations of a convolutional layer in order. Let’s suppose you
had a 28×28 MNIST digit and a 5×5 kernel. With a stride of 1,
there are 24×24 “positions” for the kernel to move through
before it bumps up against the edges of the image, so the
activation map output by the layer is slightly smaller than the
input. If you’d like to produce an activation map that is the
exact same size as the input image, you can simply pad the
image with zeros around the edges (Figures 10.3, 10.4, and 10.5
contain an example of a zero-padded image). In the case of the
28×28 image and the 5×5 kernel, padding with two zeros on

13. The term receptive field is borrowed directly from the study of biological visual
systems like the eye.



each edge will produce a 28×28 activation map. This can be
calculated with the following equation:

Activation map = + 1 (10.3)

Where:

D is the size of the image (either width or height, depending on
whether you’re calculating the width or height of the activation
map).

F is the size of the filter.

P is the amount of padding.

S is the stride length.

Thus, with our padding of 2, we can calculate that the output
volume is 28 × 28:

Activation map = + 1

Activation map = + 1

Activation map = 28
Given the interconnected nature of kernel size, stride, and

padding, one has to make sure these hyperparameters align
when designing CNN architectures. That is, the hyper-
parameters must combine to produce a valid activation map size
—specifically, an integer value. Take, for example, a kernel size
of 5 × 5 with a stride of 2 and no padding. Using Equation 10.3,
this would result in a 12.5×12.5 activation map:

D − F + 2P

S

D − F + 2P

S

28 − 5 + 2 × 2
1

D − F + 2P



Activation map = + 1

Activation map = + 1

Activation map = 12.5

There is no such thing as a partial activation value, so a
convolutional layer with these dimensions would simply not be
computable.

POOLING LAYERS
Convolutional layers frequently work in tandem with another
layer type that is a staple in machine vision neural networks:
pooling layers. This layer type serves to reduce the overall
count of parameters in a network as well as to reduce
complexity, thereby speeding up computation and helping to
avoid overfitting.

As discussed in the preceding section, a convolutional layer
can have any number of kernels. Each of these kernels produces
an activation map (whose dimensions are defined by Equation
10.3), such that the output from a convolutional layer is a three-
dimensional array of activation maps, with the depth dimension
of the output corresponding to the number of filters in that
convolutional layer. The pooling layer reduces these activation
maps spatially, while leaving the depth of the activation maps
intact.

Like convolutional layers, any given pooling layer has a filter
size and a stride length. Also like a convolutional layer, the
pooling layer slides over its input. At each position it occupies,

D − F + 2P

S

28 − 5 + 0 × 2
1



the pooling layer applies a data-reducing operation. Pooling
layers most often use the max operation, and these are termed
max-pooling layers: They retain the largest value (the
maximum activation) within the receptive field while discarding
the other values (see Figure 10.7).  Typically, a pooling layer
has a filter size of 2 × 2 and a stride length of 2.  In this case, at
each position the pooling layer evaluates four activations,
retaining only the maximum value, and thereby downsampling
the activations by a factor of 4. Because this pooling operation
happens independently for each depth slice in the three-
dimensional array, a 28 × 28 activation map with a depth of 16
slices would be reduced to a 14 × 14 activation map but it would
retain its full complement of 16 slices.

Figure 10.7 An example of a max-pooling layer being passed a
4×4 activation map. Like a convolutional layer, the pooling
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15



layer slides from left to right and from top to bottom over the
matrix of values input into it. With a 2×2-sized filter, the layer

retains only the largest of four input values (e.g., the orange “5”
in the 2×2 hatch-marked top-left corner). With a 2×2 stride, the
resulting output from this max-pooling layer has one-quarter of

the volume of its input: a 2×2 activation map.

An alternative approach to pooling for reducing computational complexity is to use a
convolutional layer with a larger stride (see how stride relates to the output size in
Equation 10.3). This can be handy for some specialized machine vision tasks (e.g., the
generative adversarial networks you’ll build later in Chapter 12) that tend to perform
better without pooling layers. Finally, you might be wondering what happens in a
pooling layer during backpropagation: The network keeps track of the index of the max
value in each forward pass, such that the gradient for that particular weight is
backpropagated correctly and is used to update the correct parameters.

LENET-5 IN KERAS
All the way back at Figure 1.11, as we introduced the hierarchical
nature of deep learning, we discussed the machine vision
architecture called LeNet-5. In this section, we use Keras to
construct an MNIST digit-classifying model that is inspired by

14. Other pooling variants (e.g., average pooling, L2-norm pooling) exist but are
much less common relative to max-pooling, which typically suits machine vision
applications sufficiently accurately while requiring minimal computational resources
(it is, for example, more computationally expensive to calculate an average than a
maximum).

15. Max-pooling with a filter size of 2 × 2 with a stride of 2 is our default
recommendation. Both, however, are hyperparameters that you can experiment with,
if desired.



this landmark architecture. However, we afford Yann LeCun
and his colleagues’ 1998 model some modern twists:

Because computation is much cheaper today, we opt to use more
kernels in our convolutional layers. More specifically, we include 32
and 64 filters in the first and second convolutional layers,
respectively, whereas the original LeNet-5 had only 6 and 16 in
each.

Also thanks to cheap compute, we are subsampling activations only
once (with a max-pooling layer), whereas LeNet-5 did twice.

We leverage innovations like ReLU activations and dropout, which
had not yet been invented at the time of LeNet-5.

If you’d like to follow along interactively, please make your
way to our LeNet in Keras Jupyter notebook. As shown in
Example 10.1, relative to our previous notebook (Deep Net in
Keras, covered in Chapter 9), we have three additional
dependencies.

Example 10.1 Dependencies for LeNet in Keras

Click here to view code image

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Conv2D, MaxPooling2D # new!
from keras.layers import Flatten # new!

Two of these dependencies—Conv2D and MaxPooling2D—are

16. There is a general trend in deep learning to use pooling layers less frequently,
presumably due to increasingly inexpensive computation costs.
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for implementing convolutional and max-pooling layers,
respectively. The Flatten layer, meanwhile, enables us to
collapse many-dimensional arrays down to one dimension.
We’ll explain why that’s necessary shortly when we build our
model architecture.

Next, we load our MNIST data in precisely the same way we
did for all of the previous notebooks involving handwritten digit
classification (see Example 5.2). Previously, however, we
reshaped the image data from its native two-dimensional
representation to a one-dimensional array so that we could feed
it into a dense network (see Example 5.3). The first hidden layer
in our LeNet-5-inspired network will be convolutional, so we
can leave the images in the 28×28-pixel format, as in Example
10.2.

Example 10.2 Retaining two-dimensional image
shape

Click here to view code image

X_train = X_train.reshape(60000, 28, 28, 

1).astype('float32')

X_valid = X_valid.reshape(10000, 28, 28, 

1).astype('float32')

We continue to use the astype() method to convert the digits
from integers to floats so that they are scaled to range from 0 to

17. For any arrays passed into a Keras Conv2D() layer, a fourth dimension is

expected. Given the monochromatic nature of the MNIST digits, we use 1 as the
fourth-dimension argument passed into reshape(). If our data were full-color

images we would have three color channels, and so this argument would be 3.
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1 (as in Example 5.4). Also as before, we convert our integer y
labels to one-hot encodings (as in Example 5.5).

The data loading and preprocessing behind us, we configure
our LeNet-ish model architecture as in Example 10.3.

Example 10.3 CNN model inspired by LeNet-5

Click here to view code image

model = Sequential()

# first convolutional layer:

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu',

                 input_shape=(28, 28, 1)))

# second conv layer, with pooling and dropout:

model.add(Conv2D(64, kernel_size=(3, 3), 

activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

# dense hidden layer, with dropout:

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

# output layer:

model.add(Dense(n_classes, activation='softmax'))

All of the previous MNIST classifiers in this book have been
dense networks, consisting only of Dense layers of neurons.
Here we use convolutional layers (Conv2D) as our first two
hidden layers.  The settings we select for these convolutional
layers are:

18



The integers 32 and 64 correspond to the number of filters we’re
specifying for the first and second convolutional layer, respectively.

kernel_size is set to 3×3 pixels.

We’re using relu as our activation function.

We’re using the default stride length, which is 1 pixel (along both
the vertical and the horizontal axes). Alternative stride lengths can
be specified by providing a strides argument to Conv2D.

We’re using the default padding, which is 'valid'. This means
that we will forgo the use of padding: Per Equation 10.3, with a
stride of 1, our activation map will be 2 pixels shorter and 2 pixels
narrower than the input to the layer (e.g., a 28×28-pixel input
image shrinks to a 26×26 activation map). The alternative would be
to specify the argument padding='same', which would pad the
input with zeros so that the output retains the same size as the
input (a 28×28-pixel input image results in a 28×28 activation
map).

To our second hidden layer of neurons, we add a number of
additional layers of computational operations:

MaxPooling2D() is used to reduce computational complexity. As
in our example in Figure 10.7, with pool_size set to 2 × 2 and the
strides argument left at its default (None, which sets stride
length equal to pool size), we are reducing the volume of our
activation map by three-quarters.

As per Chapter 9, Dropout() reduces the risk of overfitting to our
training data.

18. Conv2D() is our choice here because we’re convolving over two-dimensional

arrays, that is, images. In Chapter 11, we’ll use Conv1D() to convolve over one-

dimensional data (strings of text). Conv3D() layers also exist but are outside the

scope of this book: These are for carrying out the convolutional operation over all
three dimensions, as one might want to for three-dimensional medical images.

19



Finally, Flatten() converts the three-dimensional activation map
output by Conv2D() to a one-dimensional array. This enables us to
feed the activations as inputs into a Dense layer, which can only
accept one-dimensional arrays.

As already discussed in this chapter, the convolutional layers
in the network learn to represent spatial features within the
image data. The first convolutional layer learns to represent
simple features like straight lines at a particular orientation,
whereas the second convolutional layer recombines those
simple features into more-abstract representations. The
intuition behind having a Dense layer as the third hidden layer
in the network is that it allows the spatial features identified by
the second convolutional layer to be recombined in any way
that’s optimal for distinguishing classes of images (there is no
sense of spatial orientation within a dense layer). Put
differently, the two convolutional layers learn to identify and
label spatial features in the images, and these spatial features
are then fed into a dense layer that maps these spatial features
to a particular class of images (e.g., the digit “3” as opposed to
the digit “8”). In this way, the convolutional layers can be
thought of as feature extractors. The dense layer of the network
receives the extracted features as its input, instead of raw pixels.

We apply Dropout() to the dense layer (again to avoid
overfitting), and the network then culminates in a softmax

19. Layer types such as pooling, dropout, and flattening layers aren’t made up of
artificial neurons, so they don’t count as stand-alone hidden layers of a deep learning
network like dense or convolutional layers do. They nevertheless perform valuable
operations on the data flowing through our neural network, and we can use the Keras
add( ) method to include them in our model architecture in the same way that we add
layers of neurons.



output layer—identical to the output layers we have used in all
of our previous MNIST-classifying notebooks. Finally, a call to
model.summary() prints out a summary of our CNN
architecture, as shown in Figure 10.8.

Figure 10.8 A summary of our LeNet-5-inspired ConvNet
architecture. Note that the None dimension in each layer is a

placeholder for the number of images per batch (i.e., the
stochastic gradient descent mini-batch size). Because batch size
is specified later (in the model.fit() method), None is used

in the interim.

Let’s break down the “Output Shape” column of Figure 10.8
first:

The first convolutional layer, conv2d_1, takes in the 28×28-pixel



MNIST digits. With the chosen kernel hyperparameters (filter size,
stride, and padding), the layer outputs a 26×26-pixel activation
map (as per Equation 10.3).  With 32 kernels, the resulting
activation map has a depth of 32 slices.

The second convolutional layer receives as its input the 26×26×32
activation map from the first convolutional layer. The kernel
hyperparameters are unchanged, so the activation map shrinks
again, now down to 24 × 24. The map is, however, twice as deep
because there are 64 kernels in the layer.

As discussed earlier, a max-pooling layer with a kernel size of 2 and
a stride of 2 reduces the volume of data flowing through the
network by half in each of the spatial dimensions, yielding an
activation map of 12 × 12. The depth of the activation map is not
affected by pooling, so it retains 64 slices.

The flatten layer collapses the three-dimensional activation map
down to a one-dimensional array with 9,216 elements.

The dense hidden layer contains 128 neurons, so its output is a one-
dimensional array of 128 activation values.

Likewise, the softmax output layer consists of 10 neurons, so it
outputs 10 probabilities—one ŷ for each possible MNIST digit.

Now let’s move on to dissecting the “Param #” column of Figure
10.8:

The first convolutional layer has 320 parameters:

288 weights: 32 filters × 9 weights each (from the 3×3 filter
size × 1 channel)

32 biases, one for each filter

20. Activation map = + 1 = + 1 = 26
D − F + 2P

S

28 − 3 + 2 × 0
1

21. 12 × 12 × 64 = 9,216

20
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The second convolutional layer has 18,496 parameters:

18,432 weights: 64 filters × 9 weights per filter, each
receiving input from the 32 filters of the preceding layer

64 biases, one for each filter

The dense hidden layer has 1,179,776 parameters:

1,179,648 weights: 9,216 inputs from the preceding layer’s
flattened activation map × 128 neurons in the dense layer

128 biases, one for each neuron in the dense layer

The output layer has 1,290 parameters:

1,280 weights: 128 inputs from the preceding layer × 10
neurons in the output layer

10 biases, one for each neuron in the output layer

Cumulatively, the entire ConvNet has 1,199,882 parameters, the
vast majority (98.3 percent) of which are associated with the dense
hidden layer.

To compile the model, we call the model.compile()
method as usual. Likewise, the model.fit() method will
begin training.  The results of our best epoch are shown in
Figure 10.9. Previously, our best result was attained by Deep
Net in Keras—an accuracy of 97.87 percent on the validation set
of MNIST digits. But here, the ConvNet inspired by LeNet-5
achieved 99.27 percent validation accuracy. This is fairly
remarkable because the CNN wiped away 65.7 percent of the
remaining error;  presumably these now correctly classified

22
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instances are some of the trickiest digits to classify because they
were not identified correctly by our already solid-performing
Deep Net.

Figure 10.9 Our LeNet-5-inspired ConvNet architecture
peaked at a 99.27 percent validation accuracy following nine
epochs of training, thereby outperforming the accuracy of the

dense nets we trained earlier in the book.

ALEXNET AND VGGNET IN KERAS
In our LeNet-inspired architecture (Example 10.3), we included
a pair of convolutional layers followed by a max-pooling layer.
This is a routine approach within convolutional neural
networks. As depicted in Figure 10.10, it is common to group
convolutional layers (often one to three of them) together with a
pooling layer. These conv-pool blocks can then be repeated
several times. As in LeNet-5, such CNN architectures regularly
culminate in a dense hidden layer (up to several dense hidden
layers) and then the output layer.

22. Notice that the dense layer has two orders of magnitude more parameters than
the convolutional layers!

23. These steps are identical to the previous notebooks, with the minor exception that
the number of epochs is reduced (to 10), because we found that validation loss
stopped decreasing after nine epochs of training.

24. 1 - (100%-99.27%)/(100%-97.87%)



Figure 10.10 A general approach to CNN design: A block
(shown in red) of convolutional layers (often one to three of
them) and a pooling layer is repeated several times. This is

followed by one (up to a few) dense layers.

The AlexNet model (Figure 1.17)—which we introduced as the
2012 computer vision competition-winning harbinger of the
deep learning revolution—is another architecture that features
the convolutional layer block approach provided in Figure
10.10. In our AlexNet in Keras notebook, we use the code shown
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in Example 10.4 to emulate this structure.

Example 10.4 CNN model inspired by AlexNet

Click here to view code image

model = Sequential()

# first conv-pool block:

model.add(Conv2D(96, kernel_size=(11, 11),

          strides=(4, 4), activation='relu',

          input_shape=(224, 224, 3)))

model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))

model.add(BatchNormalization())

# second conv-pool block:

model.add(Conv2D(256, kernel_size=(5, 5), 

activation='relu'))

model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))

model.add(BatchNormalization())

# third conv-pool block:

model.add(Conv2D(256, kernel_size=(3, 3), 

activation='relu'))

model.add(Conv2D(384, kernel_size=(3, 3), 

activation='relu'))

model.add(Conv2D(384, kernel_size=(3, 3), 

activation='relu'))

model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))

model.add(BatchNormalization())

# dense layers:

model.add(Flatten())

model.add(Dense(4096, activation='tanh'))

25. This AlexNet model architecture is the same one visualized by Jason Yosinski
with his DeepViz tool. If you didn’t view his video when we mentioned it earlier in
this chapter, then we recommend checking it out at bit.ly/DeepViz now.
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model.add(Dropout(0.5))

model.add(Dense(4096, activation='tanh'))

model.add(Dropout(0.5))

# output layer:

model.add(Dense(17, activation='softmax'))

The key points about this particular model architecture are:

For this notebook, we moved beyond the MNIST digits to a dataset
of larger-sized (224×224-pixel) images that are full-color (hence
the 3 channels of depth in the input_shape argument passed to
the first Conv2D layer).

AlexNet used larger filter sizes in the earliest convolutional layers
relative to what is popular today—for example, kernel_size=
(11, 11).

Such use of dropout in only the dense layers near the model output
(and not in the earlier convolutional layers) is common. The
intuition behind this is that the early convolutional layers enable
the model to represent spatial features of images that generalize
well beyond the training data. However, a very specific
recombination of these features, as facilitated by the dense layers,
may be unique to the training dataset and thus may not generalize
well to validation data.

The AlexNet and VGGNet (more about this in a moment) model architectures are very
large (AlexNet, for example, has 21.9 million parameters), and you may need to
increase the memory available to Docker on your machine to load it. See
bit.ly/DockerMem for instructions on how to do this.

Following AlexNet being crowned the 2012 winner of the



ImageNet Large Scale Visual Recognition Challenge, deep
learning models suddenly began to be used widely in the
competition (see Figure 1.15). Among these models, there has
been a general trend toward making the neural networks deeper
and deeper. For example, in 2014 the runner-up in the ILSVRC
was VGGNet,  which follows the same repeated conv-pool-
block structure as AlexNet; VGGNet simply has more of them,
and with smaller (all 3×3-pixel) kernel sizes. We provide the
architecture shown in Example 10.5 in our VGGNet in Keras
notebook.

Example 10.5 CNN model inspired by VGGNet

Click here to view code image

model = Sequential()

model.add(Conv2D(64, 3, activation='relu',

          input_shape=(224, 224, 3)))

model.add(Conv2D(64, 3, activation='relu'))

model.add(MaxPooling2D(2,2))

model.add(BatchNormalization())

model.add(Conv2D(128, 3, activation='relu'))

model.add(Conv2D(128, 3, activation='relu'))

model.add(MaxPooling2D(2,2))

model.add(BatchNormalization())

model.add(Conv2D(256, 3, activation='relu'))

model.add(Conv2D(256, 3, activation='relu'))

model.add(Conv2D(256, 3, activation='relu'))

model.add(MaxPooling2D(2,2))

26. Developed by the V isual Geometry Group at the University of Oxford: Simonyan,
K., and Zisserman, A. (2015). Very deep convolutional networks for large-scale image
recognition. arXiv: 1409.1556.
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model.add(BatchNormalization())

model.add(Conv2D(512, 3, activation='relu'))

model.add(Conv2D(512, 3, activation='relu'))

model.add(Conv2D(512, 3, activation='relu'))

model.add(MaxPooling2D(2,2))

model.add(BatchNormalization())

model.add(Conv2D(512, 3, activation='relu'))

model.add(Conv2D(512, 3, activation='relu'))

model.add(Conv2D(512, 3, activation='relu'))

model.add(MaxPooling2D(2,2))

model.add(BatchNormalization())

model.add(Flatten())

model.add(Dense(4096, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(4096, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(17, activation='softmax'))

RESIDUAL NETWORKS
As our example ConvNets from this chapter (LeNet-5, AlexNet,
VGGNet) suggest, there’s a trend over time toward deeper
networks. In this section, we recapitulate the topic of vanishing
gradients—the (often dramatic) slowing in learning that can
occur as network architectures are deepened. We then describe
an imaginative solution that has emerged in recent years:
residual networks.

Vanishing Gradients: The Bête Noire of Deep CNNs
With more layers, models are able to learn a larger variety of
relatively low-level features in the early layers, and increasingly



complex abstractions are made possible in the later layers via
nonlinear recombination. This approach, however, has limits: If
we continue to simply make our networks deeper (e.g., by
adding more and more of the conv-pool blocks from Figure
10.10), they will eventually be debilitated by the vanishing
gradient problem.

We introduced vanishing gradients in Chapter 9; the basis of
the issue is that parameters in early layers of the network are far
away from the cost function: the source of the gradient that is
propagated backward through the network. As the error is
backpropa-gated, a larger and larger number of parameters
contribute to the error, and thus each layer closer to the input
gets a smaller and smaller update. The net effect is that early
layers in increasingly deep networks become more difficult to
train (see Figure 8.8).

Because of the vanishing gradient problem, it is commonly
observed that as one increases the depth of a network, accuracy
increases up to a saturation point and then later begins to
degrade as networks become excessively deep. Imagine a
shallow network that is performing well. Now let’s copy those
layers with their weights, and stack on new layers atop to make
the model deeper. Intuition might say that the new, deeper
model would take the existing gains from the early pretrained
layers and improve. If the new layers performed simple identity
mapping (wherein they faithfully reproduced the exact results of
the earlier layers), then we’d see no increase in training error. It
turns out, however, that plain deep networks struggle to learn
identity functions.  Thus, these new layers either add new
information and decrease the error, or they do not add new
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information (but also fail at identity mapping) and the error
increases. Given that adding useful information is an
exceedingly rare outcome (relative to the baseline, which is
essentially random noise), it transpires that beyond a certain
point these extra layers will, probabilistically, contribute to an
overall degradation in performance.

Residual Connections
Residual networks (or ResNets, for short) rely on the idea of
residual connections, which exist within so-called residual
modules. A residual module—as illustrated in Figure 10.11—is a
collective term for a sequence of convolutions, batch-
normalization operations, and ReLU activations that culminates
with a residual connection. For the sake of simplicity here, we
consider these various layers within a residual module to be a
single, discrete unit. Following on with the most straightforward
definition, a residual connection exists when the input to one
such residual module is summed with its output to produce the
final activation for that residual module. In other words, a
residual module will receive some input a ,  which is
transformed by the convolutions and activation functions within
the residual module to generate its output a . Subsequently, this
output and the original input to the residual module are
summed: y  = a  + a .

27. Hardt, M., and Ma, T. (2018). Identity matters in deep learning.
arXiv:1611.04231.

28. Hold tight! More clarification is coming up on the terms identity mapping and
identity functions shortly.
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Figure 10.11 A schematic representation of a residual module.
Batch normalization and dropout layers are not shown, but may

be included.

Following the structure and the basic math of the residual
connection from the preceding paragraph, you’ll notice that an
interesting feature emerges: If the residual module has an

29. Remember that the input to any given layer is simply the output of the preceding
layer, denoted here by a .i–1

30. We’ve opted to denote the final output of the whole residual module as y , but
that does not mean to indicate that this is necessarily the final output of the entire
model. It simply serves to avoid confusion with the activations from the current and
preceding layers, indicating that the final output is a distinct entity derived from the
sum of those activations.
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activation a  = 0—that is, it has learned nothing—the final
output of the residual module will simply be the original input,
since the two are summed. Following on with the equation we
used most recently:

yi = ai + ai−1

= 0 + ai−1

= ai−1

In this case, the residual module is effectively an identity
function. These residual modules either learn something useful
and contribute to reducing the error of the network, or they
perform identity mapping and do nothing at all. Because of this
identity-mapping behavior, residual connections are also called
“skip connections,” because they enable information to skip the
functions located within the residual module.

In addition to this neutral-or-better characteristic of residual
networks, we should also highlight the value of their inherent
multiplicity. Consider the schematic in Figure 10.12: When
several residual modules are stacked, later residual modules
receive inputs that are increasingly complex combinations of
the residual modules and skip connections from earlier in the
network. Seen on the right in this figure, a decision tree
representation shows how, at each of the three residual modules
in the network, information may either pass through the
residual block or bypass it via a skip connection. Thus, as is
shown at the bottom of the figure, with only three residual
modules there are eight possible paths the information can take.
In practice, the process is not commonly as binary as it is
depicted in this figure. That is, the value of a  is seldom 0, and
therefore the output is usually some mix of the identity function

i
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and the residual module. Given this insight, residual networks
can be thought of as complex combinations or ensembles of
many shallower networks that are pooled at various depths.

Figure 10.12 Shown at left is the conventional representation
of residual blocks within a residual network. Shown at right is

an unraveled view, which demonstrates how, depending on
which skip connections are used, the final path of information

from input to output can be varied by the network.

ResNet



The first deep residual network, ResNet, was introduced by
Microsoft Research in 2015  and won first place in that year’s
ILSVRC image-classification competition. Referring back to
Figure 1.15, this makes ResNet the leader of the pack of deep
learning algorithms that surpassed human performance at
image recognition in 2015.

Up to this point in the book, we’ve made it sound as if image
classification is the only contest at ILSVRC, but in fact ILSVRC
has several machine vision competition categories, such as
object detection and image segmentation (more on these two
machine vision tasks coming soon in this chapter). In 2015,
ResNet took first place not only in the ILSVRC image-
classification competition but in the object detection and image
segmentation categories, too. Further, in the same year, ResNet
was also recognized as champion of the detection and
segmentation competitions involving an alternative image
dataset called COCO, which is an alternative to the ILSVRC
set.

Given the broad sweep of machine vision trophies upon the
invention of residual networks, it’s clear they were a
transformative innovation. They managed to squeeze out more
juice relative to the existing networks by enabling much deeper
architectures without the decrease in performance associated
with those extra layers if they fail to learn useful information
about the problem.

31. He, K., et al. (2015). Deep residual learning for image recognition.
arXiv:1512.03385.

32. cocodataset.org
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In this book, we strive to make our code examples accessible
to our readers by having model architectures and datasets that
are small enough to carry out training on even a modest laptop
computer. Residual network architectures, as well as the
datasets that make them worthwhile, do not fall into this
category. That said, using a powerful, general approach called
transfer learning—which we will introduce at the end of this
chapter—we provide you with resources to nevertheless take
advantage of very deep architectures like ResNet with the
model’s parameters pretrained on massive datasets.

APPLICATIONS OF MACHINE VISION
In this chapter, you’ve learned about layer types that enable
machine vision models to perform well. We’ve also discussed
some of the approaches that are used to improve these models,
and we’ve delved into some of the canonical machine vision
algorithms of the past few years. Up to here in the chapter,
we’ve dealt with the problem of image classification—that is,
identifying the main subject in an image, as seen at the left in
Figure 10.13. Now, to wrap up the chapter, we turn our focus to
other interesting applications of machine vision beyond image
classification. The first is object detection, seen in the second
panel from the left in Figure 10.13, wherein the algorithm is
tasked with drawing bounding boxes around objects in an
image. Next is image segmentation, shown in the third and
fourth panels of Figure 10.13. Semantic segmentation identifies
all objects of a particular class down to the pixel level, whereas
instance segmentation discriminates between different
instances of a particular class, also at the pixel level.



Figure 10.13 These are examples of various machine vision
applications. We have encountered classification previously in

this chapter, but now we cover object detection, semantic
segmentation, and instance segmentation.

Object Detection
Imagine a photo of a group of people sitting down to dinner.
There are several people in the image. There is a roast chicken
in the middle of the table, and maybe a bottle of wine. If we
desired an automated system that could predict what was
served for dinner or to identify the people sitting at the table, an
image-classification algorithm would not provide that level of
granularity—enter object detection.

Object detection has broad applications, such as detecting
pedestrians in the field of view for autonomous driving, or for
identifying anomalies in medical images. Generally speaking,
object detection is divided into two tasks: detection (identifying
where the objects in the image are) and then, subsequently,
classification (identifying what the objects are that have been
detected). Typically this pipeline has three stages:

1. A region of interest must be identified.



2. Automatic feature extraction is performed on this region.

3. The region is classified.

Seminal models—ones that have defined progress in this area—
include R-CNN, Fast R-CNN, Faster R-CNN, and YOLO.

R-CNN
R-CNN was proposed in 2013 by Ross Girshick and his
colleagues at UC Berkeley.  The algorithm was modeled on the
attention mechanism of the human brain, wherein an entire
scene is scanned and focus is placed on specific regions of
interest. To emulate this attention, Girshick and his coworkers
developed R-CNN to:

1. Perform a selective search for regions of interest (ROIs) within the
image.

2. Extract features from these ROIs by using a CNN.

3. Combine two “traditional” (as in Figure 1.12) machine learning
approaches—called linear regression and support vector machines—to,
respectively, refine the locations of bounding boxes  and classify
objects within each of those boxes.

R-CNNs redefined the state of the art in object detection,
achieving a massive gain in performance over the previous best
model in the Pattern Analysis, Statistical Modeling and
Computational Learning (PASCAL) Visual Object Classes (VOC)
competition.  This ushered in the era of deep learning in object
detection. However, this model had some limitations:

33. Girshnick, R., et al. (2013). Rich feature hierarchies for accurate object detection
and semantic segmentation. arXiv: 1311.2524.

34. See examples of bounding boxes in Figure 10.14.
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It was inflexible: The input size was fixed to a single specific image
shape.

It was slow and computionally expensive: Both training and
inference are multistage processes involving CNNs, linear
regression models, and support vector machines.

Fast R-CNN
To address the primary drawback of R-CNN—its speed—
Girshick went on to develop Fast R-CNN.  The chief innovation
here was the realization that during step 2 of the R-CNN
algorithm, the CNN was unnecessarily being run multiple times,
once for each region of interest. With Fast R-CNN, the ROI
search (step 1) is run as before, but during step 2, the CNN is
given a single global look at the image, and the extracted
features are used for all ROIs simultaneously. A vector of
features is extracted from the final layer of the CNN, which (for
step 3) is then fed into a dense network along with the ROI. This
dense net learns to focus on only the features that apply to each
individual ROI, culminating in two outputs per ROI:

1. A softmax probability output over the classification categories (for a
prediction of what class the detected object belongs to)

2. A bounding box regressor (for refinement of the ROI’s location)

Following this approach, the Fast R-CNN model has to
perform feature extraction using a CNN only once for a given
image (thereby reducing computational complexity), and then
the ROI search and dense layers work together to finish the

35. PASCAL VOC ran competitions from 2005 until 2012; the dataset remains
available and is considered one of the gold standards for object-detection problems.

36. Girshnick, R. (2015). Fast R-CNN. arXiv: 1504.08083
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object-detection task. As the name suggests, the reduced
computational complexity of Fast R-CNN corresponds to
speedier compute times. It also represents a single, unified
model without the multiple independent parts of its
predecessor. Nevertheless, as with R-CNN, the initial (ROI
search) step of Fast R-CNN still presents a significant
computational bottleneck.

Faster R-CNN
The model architectures in this section are clever works of
innovation—their names, however, are not. Our third object-
detection algorithm of note is Faster R-CNN, which (you
guessed it!) is even swifter than Fast R-CNN.

Faster R-CNN was revealed in 2015 by Shaoqing Ren and his
coworkers at Microsoft Research (Figure 10.14 shows example
outputs).  To overcome the ROI-search bottleneck of R-CNN
and Fast R-CNN, Ren and his colleagues had the cunning
insight to leverage the feature activation maps from the model’s
CNN for this step, too. Those activation maps contain a great
deal of contextual information about an image. Because each
map has two dimensions representing location, they can be
thought of as literal maps of the locations of features within a
given image. If—as in Figure 10.6—a convolutional layer has 16
filters, the activation map it outputs has 16 maps, together
representing the locations of 16 features in the input image. As
such, these feature maps contain rich detail about what is in an
image and where it is. Faster R-CNN takes advantage of this
rich detail to propose ROI locations, enabling a CNN to
seamlessly perform all three steps of the object-detection
process, thereby providing a unified model architecture that

37



builds on R-CNN and Fast R-CNN but is markedly quicker.

Figure 10.14 These are examples of object detection
(performed on four separate images by the Faster R-CNN
algorithm). Within each region of interest—defined by the

bounding boxes within the images—the algorithm predicts what
the object within the region is.

YOLO
Within each of the various object-detection models described
thus far, the CNN focused on the individual proposed ROIs as

37. Ren, S. et al. (2015). Faster R-CNN: Towards real-time object detection with
region proposal networks. arXiv: 1506.01497.
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opposed to the whole input image.  Joseph Redmon and
coworkers published on You Only Look Once (YOLO) in 2015,
which bucked this trend.  YOLO begins with a pretrained
CNN for feature extraction. Next, the image is divided into a
series of cells, and, for each cell, a number of bounding boxes
and object-classification probabilities are predicted. Bounding
boxes with class probabilities above a threshold value are
selected, and these combine to locate an object within an image.

You can think of the YOLO method as aggregating many
smaller bounding boxes, but only if they have a reasonably good
probability of containing any given object class. The algorithm
improved on the speed of Faster R-CNN, but it struggled to
accurately detect small objects in an image.

Since the original YOLO paper, Redmon and his colleagues
have released their YOLO9000  and YOLOv3 models.
YOLO9000 resulted in increases in both execution speed and
model accuracy, and YOLOv3 yielded some speed for even
further improved accuracy—in large part due to the increased
sophistication of the underlying model architectures. The
details of these continuations stretch beyond the scope of this
book, but at the time of writing these models represent the
cutting edge of object-detection algorithms.

38. Technically, the CNN looked at the whole image at the start in both Fast R-CNN
and Faster R-CNN. However, in both cases this was simply a one-shot step to extract
features, and from then onward the image was treated as a set of smaller regions.

39. Redmon, J., et al. (2015). You Only Look Once: Unified, real-time object
detection. arXiv: 1506.02640.

40. Pretrained models are used in transfer learning, which we detail at chapter’s end.
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Image Segmentation
When the visual field of a human is exposed to a real-world
scene containing many overlapping visual elements—such as
the game of association football (soccer) captured in Figure
10.15—the adult brain seems to effortlessly distinguish figures
from the background, defining the boundaries of these figures
and relationships between them within a few hundred
milliseconds. In this section, we cover image segmentation,
another application area where deep learning has in a few short
years bridged much of the gap in visual capability between
humans and machines. We focus on two prominent model
architectures—Mask R-CNN and U-Net—that are able to
reliably classify objects in an image on a pixelwise scale.

41. Redmon,J., et al. (2016). YOLO9000: Better, faster, stronger. arXiv: 1612.08242.

42. Redmon,J. (2018). YOLOv3: An incremental improvement. arXiv: 1804.02767.



Figure 10.15 This is an example of image segmentation (as
performed by the Mask R-CNN algorithm). Whereas object

detection involves defining object locations with coarse
bounding boxes, image segmentation predicts the location of

objections to the pixel level.

Mask R-CNN
Mask R-CNN was developed by Facebook AI Research (FAIR)
in 2017.  This approach involves:

1. Using the existing Faster R-CNN architecture to propose ROIs within
the image that are likely to contain objects.

2. An ROI classifier predicting what kind of object exists in the bounding
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box while also refining the location and size of the bounding box.

3. Using the bounding box to grab the parts of the feature maps from the
underlying CNN that correspond to that part of the image.

4. Feeding the feature maps for each ROI into a fully convolutional
network that outputs a mask indicating which pixels correspond to the
object in the image. An example of such a mask—consisting of bright
colors to designate the pixels associated with separate objects—is
provided in Figure 10.15.

Image segmentation problems require binary masks as labels
for training. These consist of arrays of the same dimensions as
the original image. However, instead of RGB pixel values they
contain 1s and 0s indicating where in the image the object is,
with the 1s representing a given object’s pixel-by-pixel location
(and the 0s representing everywhere else). If an image contains
a dozen different objects, then it must have a dozen binary
masks.

U-Net
Another popular image segmentation model is U-Net, which
was developed at the University of Freiberg (and was mentioned
at the end of Chapter 3 with respect to the automated photo-
processing pipelines).  U-Net was created for the purpose of
segmenting biomedical images, and at the time of writing it
outperformed the best available methods in two challenges held
by the International Symposium on Biomedical Images.

43. He, K., et al. (2017). Mask R-CNN. arXiv: 1703.06870.

44. Ronneberger, O., et al. (2015). U-Net: Convolutional networks for biomedical
image segmentation. arXiv: 1505.04597.

45. The two challenges were the segmentation of neuronal structures in electron
microscopy stacks, and the ISBI cell-tracking challenge from 2015.
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The U-Net model consists of a fully convolutional
architecture, which begins with a contracting path that
produces successively smaller and deeper activation maps
through multiple convolution and max-pooling steps.
Subsequently, an expanding path restores these deep activation
maps back to full resolution through multiple upsampling and
convolution steps. These two paths—the contracting and
expanding paths—are symmetrical (forming a “U” shape), and
because of this symmetry the activation maps from the
contracting path can be concatenated onto those of the
expanding path.

The contracting path serves to allow the model to learn high-
resolution features from the image. These high-res features are
handed directly to the expanding path. By the end of the
expanding path, we expect the model to have localized these
features within the final image dimensions. After concatenating
the feature maps from the contracting path onto the expanding
path, a subsequent convolutional layer allows the network to
learn to assemble and localize these features precisely. The final
result is a network that is highly adept both at identifying
features and at locating those features within two-dimensional
space.

Transfer Learning
To be effective, many of the models we describe in this chapter
are trained on very large datasets of diverse images. This
training requires significant compute resources, and the
datasets themselves are not cheap or easy to assemble. Over the
course of this training, a given CNN learns to extract general



features from the images. At a low level, these are lines, edges,
colors, and simple shapes; at a higher level, they are textures,
combinations of shapes, parts of objects, and other complex
visual elements (recall Figure 1.17). If the CNN has been trained
on a suitably varied set of images and if it is sufficiently deep,
these feature maps likely contain a rich library of visual
elements that can be assembled and combined to form nearly
any image. For example, a feature map that identifies a dimpled
texture combined with another that recognizes round objects
and yet another that responds to white colors could be
recombined to correctly identify a golf ball. Transfer learning
takes advantage of this library of existing visual elements
contained within the feature maps of a pretrained CNN and
repurposes them to become specialized in identifying new
classes of objects.

Say, for example, that you’d like to build a machine vision
model that performs the binary classification task we’ve
addressed time and again since Chapter 6: distinguishing hot
dogs from anything that is not a hot dog. Of course, you could
design a large and complex CNN that takes in images of hot
dogs and, well . . . not hot dogs, and outputs a single sigmoid
class prediction. You could train this model on a large number
of training images, and you’d expect the convolutional layers
early in the network to learn a set of feature maps that will
identify hot dog-esque features. Frankly, this would work pretty
well. However, you’d need a lot of time and a lot of compute
power to train the CNN properly, and you’d need a large
number of diverse images so that the CNN could learn a suitably
diverse set of feature maps. This is where transfer learning



comes in: Instead of training a model from scratch, you can
leverage the power of a deep model that has already been
trained on a large set of images and quickly repurpose it to
detecting hot dogs specifically.

Earlier in this chapter, we mentioned VGGNet as an example
of a classic machine vision model architecture. In Example 10.5
and in our VGGNet in Keras Jupyter notebook, we showcase the
VGGNet16 model, which is composed of 16 layers of artificial
neurons—mostly repeating conv-pool blocks (see Figure 10.10).
The closely related VGGNet19 model, which incorporates one
further conv-pool block (containing three convolutional layers),
is our pick for our transfer-learning starting point. In our
accompanying notebook, Transfer Learning in Keras, we load
VGGNet19 and modify it for our own hot-doggy purposes.

The chief advantage of VGG19 over VGG16 is that VGG19’s additional layers afford it
additional opportunities for the abstract representation of visual imagery. The chief
disadvantage of VGG19 relative to VGG16 is that these additional layers mean more
parameters and therefore a longer training time. Further, because of the vanishing
gradient problem, backpropagation may struggle through VGG19’s additional early
layers.

To start, let’s get the standard imports out of the way and
load up the pretrained VGGNet19 model (Example 10.6).

Example 10.6 Loading the VGGNet19 model for
transfer learning

Click here to view code image



# Load dependencies:

from keras.applications.vgg19 import VGG19
from keras.models import sequential
from keras.layers import Dense, Dropout, Flatten
from keras.preprocessing.image import ImageDataGenerator

# Load the pre-trained VGG19 model:

vgg19 = VGG19(include_top=False,
              weights='imagenet',

              input_shape=(224,224, 3),

              pooling=None)

# Freeze all the layers in the base VGGNet19 model:

for layer in vgg19.layers:
    layer.trainable = False

Handily, Keras provides the network architecture and
parameters (called weights, but includes biases, too) already, so
loading the pretrained model is easy.  Arguments passed to the
VGG19 function help to define some characteristics of the
loaded model:

include_top=False specifies that we do not want the final dense
classification layers from the original VGGNet19 architecture.
These layers were trained for classifying the original ImageNet
data. Rather, as you’ll see momentarily, we’ll make our own top
layers and train them ourselves using our own data.

weights='imagenet' is to load model parameters trained on the
14 million-sample ImageNet dataset.

input_shape=(224,224,3) initializes the model with the
correct input image size to handle our hot dog data.

46. For other pretrained Keras models, including the ResNet architecture we
introduced earlier in this chapter, visit keras.io/applications.
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After we load the model, a quick for loop traverses each layer
in the model and sets its trainable flag to False so that the
parameters in these layers will not be updated during training.
We are confident that the convolutional layers of VGGNet19
have been effectively trained to represent the generalized visual-
imagery features of the large ImageNet dataset, so we leave the
base model intact.

In Example 10.7, we add fresh dense layers on top of the base
VGGNet19 model. These layers take the features extracted from
the input image by the pretrained convolutional layers, and
through training they will learn to use these features to classify
the images as hot dogs or not hot dogs.

Example 10.7 Adding classification layers to
transfer-learning model

Click here to view code image

# Instantiate the sequential model and add the VGG19 model:

model = Sequential()

model.add(vgg19)

# Add the custom layers atop the VGG19 model:

model.add(Flatten(name='flattened'))

model.add(Dropout(0.5, name='dropout'))

model.add(Dense(2, activation='softmax', 

name='predictions'))

# Compile the model for training:

model.compile(optimizer='adam', 

47. The only other weights argument option at the time of writing is 'None', which

would be a random initialization, but in the future, model parameters trained on
other datasets could be available.



loss='categorical_crossentropy',

              metrics=['accuracy'])

Next, we use an instance of the ImageDataGenerator class
to load the data (Example 10.8). This class is provided by Keras
and serves to load images on the fly. It’s especially helpful if you
don’t want to load all of your training data into memory right
away, or when you might want to perform random data
augmentations in real time during training.

Example 10.8 Defining data generators

Click here to view code image

# Instantiate two image generator classes:

train_datagen = ImageDataGenerator(

    rescale=1.0/255,

    data_format='channels_last',

    rotation_range=30,

    horizontal_flip=True,
    fill_mode='reflect')

valid_datagen = ImageDataGenerator(

    rescale=1.0/255,

    data_format='channels_last')

# Define the batch size:

batch_size=32

# Define the train and validation data generators:

train_generator = train_datagen.flow_from_directory(

    directory='./hot-dog-not-hot-dog/train',

    target_size=(224, 224),

48. In Chapter 9, we mention that data augmentation is an effective way to increase
the size of a training dataset, thereby helping a model generalize to previously unseen
data.
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    classes=['hot_dog','not_hot_dog'],

    class_mode='categorical',

    batch_size=batch_size,

    shuffle=True,
    seed=42)

valid_generator = valid_datagen.flow_from_directory(

    directory='./hot-dog-not-hot-dog/test',

    target_size=(224, 224),

    classes=['hot_dog','not_hot_dog'],

    class_mode='categorical',

    batch_size=batch_size,

    shuffle=True,
    seed=42)

The train-data generator will randomly rotate the images within
a 30-degree range, randomly flip the images horizontally,
rescale the data to between 0 and 1 (by multiplying by 1/255),
and load the image data into arrays in the “channels last”
format.  The validation generator only needs to rescale and
load the images; data augmentation would be of no value there.
Finally, the flow_from_directory() method directs each
generator to load the images from a directory we specify.  The
remainder of the arguments to this method should be intuitive.

Now we’re ready to train (Example 10.9). Instead of using the
fit() method as we did in all previous cases of model-fitting in
this book, here we call the fit_generator() method on the
model because we’ll be passing in a data generator in place of

49. Look back at Example 10.6, and you’ll see that the model accepts inputs with
dimensions of 224 × 224 × 3—that is, the channels dimension is last. The alternative
is to set up the color channel as the first dimension.

50. Instructions for downloading the data are included in our Jupyter notebook.
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arrays of data.  During our run of this model, our best epoch
turned out to be the sixth, in which we attained 81.2 percent
accuracy.

Example 10.9 Train transfer-learning model

Click here to view code image

model.fit_generator(train_generator, steps_per_epoch=15,

                    epochs=16, 

validation_data=valid_generator,

                    validation_steps=15)

This demonstrates the power of transfer learning. With a
small amount of training and almost no time spent on
architectural considerations or hyperparameter tuning, we have
at our fingertips a model that performs reasonably well on a
rather complicated image-classification task: hot dog
identification. With some time invested in hyperparameter
tuning, the results could be improved further.

Capsule Networks
In 2017, Sara Sabour and her colleagues on Geoff Hinton’s
(Figure 1.16) Google Brain team in Toronto made a splash with
a novel concept called capsule networks.  Capsule networks
have received considerable interest, because they are able to
take positional information into consideration. CNNs, to their

51. As we warned earlier in this chapter, in the section on AlexNet and VGGNet, with
very large models you may encounter out-of-memory errors. Please refer to
bit.ly/DockerMem for information on increasing the amount of memory available

to your Docker container. Alternatively, you could reduce your batch-size
hyperparameter.

51

52



great detriment, do not; so a CNN would, for example, consider
both of the images in Figure 10.16 to be a human face. The
theory behind capsule networks is beyond the scope of this
book, but machine vision practitioners are generally aware of
them so we wanted to be sure you were, too. Today, they are too
computationally intensive to be predominant in applications,
but cheaper compute and theoretical advancements could mean
that this situation will change soon.

Figure 10.16 With convolutional neural networks, which are
agnostic to the relative positioning of image features, the figure

on the left and the one on the right are equally likely to be
classified as Geoff Hinton’s face. Capsule networks, in contrast,
take positional information into consideration, and so would be

less likely to mistake the right-hand figure for a face.

52. Sabour, S., et al. (2017). Dynamic routing between capsules. arXiv: 1710.09829.



SUMMARY
In this chapter, you learned about convolutional layers, which
are specialized to detect spatial patterns, making them
particularly useful for machine vision tasks. You incorporated
these layers into a CNN inspired by the classic LeNet-5
architecture, enabling you to surpass the handwritten-digit
recognition accuracy of the dense networks you designed in Part
II. The chapter concluded by discussing best practices for
building CNNs and surveying the most noteworthy applications
of machine vision algorithms. In the coming chapter, you’ll
discover that the spatial-pattern recognition capabilities of
convolutional layers are well suited not only to machine vision
but also to other tasks.

KEY CONCEPTS
Here are the essential foundational concepts thus far. New
terms from the current chapter are highlighted in purple.

parameters:

weight w

bias b

activation a

artificial neurons:

sigmoid

tanh



ReLU

linear

input layer

hidden layer

output layer

layer types:

dense (fully connected)

softmax

convolutional

max-pooling

flatten

cost (loss) functions:

quadratic (mean squared error)

cross-entropy

forward propagation

backpropagation

unstable (especially vanishing) gradients

Glorot weight initialization

batch normalization

dropout

optimizers:



stochastic gradient descent

Adam

optimizer hyperparameters:

learning rate η

batch size



11. Natural Language Processing

In Chapter 2, we introduced computational representations of
language, particularly highlighting word vectors as a potent
approach for quantitatively capturing word meaning. In the
present chapter, we cover code that will enable you to create
your own word vectors as well as to provide them as an input
into a deep learning model.

The natural language processing models you build in this
chapter will incorporate neural network layers we’ve applied
already: dense layers from Chapters 5 through 9, and
convolutional layers from Chapter 10. Our NLP models will also
incorporate new layer types—ones from the family of recurrent
neural networks. RNNs natively handle information that occurs
in sequences such as natural language, but they can, in fact,
handle any sequential data—such as financial time series or
temperatures at a given geographic location—so they’re quite
versatile. The chapter concludes with a section on deep learning
networks that process data via multiple parallel streams—a
concept that dramatically widens the scope for creativity when
you design your model architectures and, as you’ll see, can also
improve model accuracy.

PREPROCESSING NATURAL LANGUAGE
DATA



There are steps you can take to preprocess natural language
data such that the modeling you carry out downstream may be
more accurate. Common natural language preprocessing
options include:

Tokenization: This is the splitting of a document (e.g., a book) into
a list of discrete elements of language (e.g., words), which we call
tokens.

Converting all characters to lowercase: A capitalized word at the
beginning of a sentence (e.g., She) has the same meaning as when
it’s used later in a sentence (she). By converting all characters in a
corpus to lowercase, we disregard any use of capitalization.

Removing stop words: These are frequently occurring words that
tend to contain relatively little distinctive meaning, such as the, at,
which, and of. There is no universal consensus on the precise list of
stop words, but depending on your application it may be sensible to
ensure that certain words are (or aren’t!) considered to be stop
words. For example, in this chapter, we’ll build a model to classify
movie reviews as positive or negative. Some lists of stop words
include negations like didn’t, isn’t, and wouldn’t that might be
critical for our model to identify the sentiment of a movie review, so
these words probably shouldn’t be removed.

Removing punctuation: Punctuation marks generally don’t add
much value to a natural language model and so are often removed.

Stemming:  Stemming is the truncation of words down to their
stem. For example, the words house and housing both have the
stem hous. With smaller datasets in particular, stemming can be
productive because it pools words with similar meanings into a
single token. There will be more examples of this stemmed token’s
context, enabling techniques like word2vec or GloVe to more
accurately identify an appropriate location for the token in word-
vector space (see Figures 2.5 and 2.6).

Handling n-grams: Some words commonly co-occur in such a way

1



that the combination of words is better suited to being considered a
single concept than several separate concepts. As examples, New
York is a bigram (an n-gram of length two), and New York City is a
trigram (an n-gram of length three). When chained together, the
words new, york, and city have a specific meaning that might be
better captured by a single token (and therefore a single location in
word-vector space) than three separate ones.

Depending on the particular task that we’ve designed our
model for, as well as the dataset that we’re feeding into it, we
may use all, some, or none of these data preprocessing steps. As
you consider applying any preprocessing step to your particular
problem, you can use your intuition to weigh whether it might
ultimately be valuable to your downstream task. We’ve already
mentioned some examples of this:

Stemming may be helpful for a small corpus but unhelpful for a
large one.

Likewise, converting all characters to lowercase is likely to be
helpful when you’re working with a small corpus, but, in a larger
corpus that has many more examples of individual uses of words,
the distinction of, say, general (an adjective meaning “widespread”)
versus General (a noun meaning the commander of an army) may
be valuable.

Removing punctuation would not be an advantage in all cases.
Consider, for example, if you were building a question-answering
algorithm, which could use question marks to help it identify
questions.

Negations may be helpful as stop words for some classifiers but
probably not for a sentiment classifier, for example. Which words

1. Lemmatization, a more sophisticated alternative to stemming, requires the use of a
reference vocabulary. For our purposes in this book, stemming is a sufficient
approach for considering multiple related words as a single token.



you include in your list of stop words could be crucial to your
particular application, so be careful with this one. In many
instances, it will be best to remove only a limited number of stop
words.

If you’re unsure whether a given preprocessing step may be
helpful or not, you can investigate the situation empirically by
incorporating the step and observing whether it impacts the
accuracy of your deep learning model downstream. As a general
rule, the larger a corpus becomes, the fewer preprocessing steps
that will be helpful. With a small corpus, you’re likely to be
concerned about encountering words that are rare or that are
outside the vocabulary of your training dataset. By pooling
several rare words into a single common token, you’ll be more
likely to train a model effectively on the meaning of the group of
related words. As the corpus becomes larger, however, rare
words and out-of-vocabulary words become less and less of an
issue. With a very large corpus, then, it is likely to be helpful to
avoid pooling several words into a single common token. That’s
because there will be enough instances of even the less-
frequently-occurring words to effectively model their unique
meaning as well as to model the relatively subtle nuances
between related words (that might otherwise have been pooled
together).

To provide practical examples of these preprocessing steps in
action, we invite you to check out our Natural Language
Preprocessing Jupyter notebook. It begins by loading a number
of dependencies:

Click here to view code image



import nltk
from nltk import word_tokenize, sent_tokenize
from nltk.corpus import stopwords
from nltk.stem.porter import *
nltk.download('gutenberg')

nltk.download('punkt')

nltk.download('stopwords')

import string

import gensim
from gensim.models.phrases import Phraser, Phrases
from gensim.models.word2vec import Word2Vec

from sklearn.manifold import TSNE

import pandas as pd
from bokeh.io import output_notebook, output_file
from bokeh.plotting import show, figure
%matplotlib inline

Most of these dependencies are from nltk (the Natural
Language Toolkit) and gensim (another natural language
library for Python). We explain our use of each individual
dependency when we apply it in the example code that follows.

Tokenization
The dataset we used in this notebook is a small corpus of out-of-
copyright books from Project Gutenberg.  This corpus is
available within nltk so it can be easily loaded using this code:

2. Named after the printing-press inventor Johannes Gutenberg, Project Gutenberg is
a source of tens of thousands of electronic books. These books are classic works of
literature from across the globe whose copyright has now expired, making them
freely available. See gutenberg.org.
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Click here to view code image

from nltk.corpus import gutenberg

This wee corpus consists of a mere 18 literary works, including
Jane Austen’s Emma, Lewis Carroll’s Alice in Wonderland, and
three plays by a little-known fellow named William
Shakespeare. (Execute gutenberg.fileids() to print the
names of all 18 documents.) By running
len(gutenberg.words()), you can see that the corpus
comes out to 2.6 million words—a manageable quantity that
means you’ll be able to run all of the code examples in this
section on a laptop.

To tokenize the corpus into a list of sentences, one option is
to use nltk’s sent_tokenize() method:

Click here to view code image

gberg_sent_tokens = sent_tokenize(gutenberg.raw())

Accessing the first element of the resulting list by running
gberg_sent_tokens[0], you can see that the first book in
the Project Gutenberg corpus is Emma, because this first
element contains the book’s title page, chapter markers, and
first sentence, all (erroneously) blended together with newline
characters (\n):

Click here to view code image



'[Emma by Jane Austen 1816]\n\nVOLUME I\n\nCHAPTER 

I\n\n\nEmma Wood-

house, handsome, clever, and rich, with a 

comfortable home\nand happy

disposition, seemed to unite some of the best 

blessings\nof existence;

and had lived nearly twenty-one years in the 

world\nwith very little to

distress or vex her.'

A stand-alone sentence is found in the second element, which
you can view by executing gberg_sent_tokens[1]:

Click here to view code image

"She was the youngest of the two daughters of a most 

affectionate,

\nindulgent father; and had, in consequence of her 

sister's mar-

riage,\nbeen mistress of his house from a very early 

period."

You can further tokenize this sentence down to the word level
using nltk’s word_tokenize() method:

Click here to view code image

word_tokenize(gberg_sent_tokens[1])

This prints a list of words with all whitespace, including newline
characters, stripped out (see Figure 11.1). The word father, for
example, is the 15th word in the second sentence, as you can see



by running this line of code:

Click here to view code image

word_tokenize(gberg_sent_tokens[1])[14]





Figure 11.1 The second sentence of Jane Austen’s classic
Emma tokenized to the word level

Although the sent_tokenize() and word_tokenize()
methods may come in handy for working with your own natural
language data, with this Project Gutenberg corpus, you can
instead conveniently employ its built-in sents() method to
achieve the same aims in a single step:

Click here to view code image

gberg_sents = gutenberg.sents()

This command produces gberg_sents, a tokenized list of lists.
The higher-level list consists of individual sentences, and each
sentence contains a lower-level list of words within it.
Appropriately, the sents() method also separates the title
page and chapter markers into their own individual elements, as
you can observe with a call to gberg_sents[0:2]:

Click here to view code image

[['[', 'Emma', 'by', 'Jane', 'Austen', '1816', ']'],

['VOLUME', 'I'],

['CHAPTER', 'I']]

Because of this, the first actual sentence of Emma is now on its
own as the fourth element of gberg_sents, and so to access
the 15th word (father) in the second actual sentence, we now
use gberg_sents[4][14].



Converting All Characters to Lowercase
For the remaining natural language preprocessing steps, we
begin by applying them iteratively to a single sentence. As we
wrap up the section later on, we’ll apply the steps across the
entire 18-document corpus.

Looking back at Figure 11.1, we see that this sentence begins
with the capitalized word She. If we’d like to disregard
capitalization so that this word is considered to be identical to
she, then we can use the Python lower() method from the
string library, as shown in Example 11.1.

Example 11.1 Converting a sentence to lowercase

Click here to view code image

[w.lower() for w in gberg_sents[4]]

This line returns the same list as in Figure 11.1 with the
exception that the first element in the list is now she instead of
She.

Removing Stop Words and Punctuation
Another potential inconvenience with the sentence in Figure
11.1 is that it’s littered with both stop words and punctuation. To
handle these, let’s use the + operator to concatenate together
nltk’s list of English stop words with the string library’s list of
punctuation marks:

Click here to view code image

stpwrds = stopwords.words('english') + list(string.p



unctuation)

If you examine the stpwrds list that you’ve created, you’ll see
that it contains many common words that often don’t contain
much particular meaning, such as a, an, and the.  However, it
also contains words like not and other negative words that could
be critical if we were building a sentiment classifier, such as in
the sentence, “This film was not good.”

In any event, to remove all of the elements of stpwrds from
a sentence we could use a list comprehension  as we do in
Example 11.2, which incorporates the lowercasing we used in
Example 11.1.

Example 11.2 Removing stop words and
punctuation with a list comprehension

Click here to view code image

[w.lower() for w in gberg_sents[4] if w.lower() not in 
stpwrds]

Relative to Figure 11.1, running this line of code returns a much
shorter list that now contains only words that each tend to
convey a fair bit of meaning:

['youngest',

3. These three particular words are called articles, or determiners.

4. See bit.ly/listComp if you’d like an introduction to list comprehensions in

Python.

3
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 'two',

 'daughters',

 'affectionate',

 'indulgent',

 'father',

 'consequence',

 'sister',

 'marriage',

 'mistress',

 'house',

 'early',

 'period']

Stemming
To stem words, you can use the Porter algorithm  provided by
nltk. To do this, you create an instance of a PorterStemmer()
object and then add its stem() method to the list
comprehension you began in Example 11.2, as shown in
Example 11.3.

Example 11.3 Adding word stemming to our list
comprehension

Click here to view code image

[stemmer.stem(w.lower()) for w in gberg_sents[4]
if w.lower() not in stpwrds]

This outputs the following:

['youngest',

 'two',

 'daughter',

5. Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14, 130–7.
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 'affection',

 'indulg',

 'father',

 'consequ',

 'sister',

 'marriag',

 'mistress',

 'hous',

 'earli',

 'period']

This is similar to our previous output of the sentence except that
many of the words have been stemmed:

1. daughters to daughter (allowing the plural and singular terms to be
treated identically)

2. house to hous (allowing related words like house and housing to be
treated as the same)

3. early to earli (allowing differing tenses such as early, earlier, and
earliest to be treated as the same)

These stemming examples may be advantageous with a corpus
as small as ours, because there are relatively few examples of
any given word. By pooling similar words together, we obtain
more occurrences of the pooled version, and so it may be
assigned to a more accurate location in vector space (Figure
2.6). With a very large corpus, however, where you have many
more examples of rarer words, there might be an advantage to
treating plural and singular variations on a word differently,
treating related words as unique, and retaining multiple tenses;
the nuances could prove to convey valuable meaning.

Handling n-grams



To treat a bigram like New York as a single token instead of two,
we can use the Phrases() and Phraser() methods from the
gensim library. As demonstrated in Example 11.4, we use them
in this way:

1. Phrases() to train a “detector” to identify how often any given pair of
words occurs together in our corpus (the technical term for this is
bigram collocation) relative to how often each word in the pair occurs
by itself

2. Phraser() to take the bigram collocations detected by the Phrases()
object and then use this information to create an object that can
efficiently be passed over our corpus, converting all bigram collocations
from two consecutive tokens into a single token

Example 11.4 Detecting collocated bigrams

Click here to view code image

phrases = Phrases(gberg_sents)

bigram = Phraser(phrases)

By running bigram.phrasegrams, we output a dictionary of
the count and score of each bigram. The topmost lines of this
dictionary are provided in Figure 11.2.



Figure 11.2 A dictionary of bigrams detected within our corpus

Each bigram in Figure 11.2 has a count and a score associated
with it. The bigram two daughters, for example, occurs a mere
19 times across our Gutenberg corpus. This bigram has a fairly
low score (12.0), meaning the terms two and daughters do not
occur together very frequently relative to how often they occur
apart. In contrast, the bigram Miss Taylor occurs more often
(48 times), and the terms Miss and Taylor occur much more
frequently together relative to how often they occur on their
own (score of 453.8).

Scanning over the bigrams in Figure 11.2, notice that they are
marred by capitalized words and punctuation marks. We’ll



resolve those issues in the next section, but in the meantime
let’s explore how the bigram object we’ve created can be used
to convert bigrams from two consecutive tokens into one. Let’s
tokenize a short sentence by using the split() method on a
string of characters wherever there’s a space, as follows:

Click here to view code image

tokenized_sentence = "Jon lives in New York City".sp

lit()

If we print tokenized_sentence, we output a list of
unigrams only: ['Jon', 'lives', 'in', 'New',
'York', 'City']. If, however, we pass the list through our
gensim bigram object by using
bigram[tokenized_sentence], the list then contains the
bigram New York: ['Jon', 'lives', 'in',
'New_York', 'City'].

After you’ve identified bigrams across your corpus by running it through the bigram
object, you can detect trigrams (such as New York City) by passing this new, bigram-
filled corpus through the Phrases() and Phraser() methods. This could be
repeated again to identify 4-grams (and then again to identify 5-grams, and so on);
however, there are diminishing returns from this. Bigrams (or at most trigrams) should
suffice for the majority of applications. By the way, if you go ahead and detect trigrams
with the Project Gutenberg corpus, New York City is unlikely to be detected. Our
corpus of classic literature doesn’t mention it often enough.

Preprocessing the Full Corpus



Having run through some examples of preprocessing steps on
individual sentences, we now compose some code to preprocess
the entire Project Gutenberg corpus. This will also enable us to
collocate bigrams on a cleaned-up corpus that no longer
contains capital letters or punctuation.

Later on in this chapter, we’ll use a corpus of film reviews
that was curated by Andrew Maas and his colleagues at Stanford
University to predict the sentiment of the reviews with NLP
models.  During their data preprocessing steps, Maas and his
coworkers decided to leave in stop words because they are
“indicative of sentiment.”  They also decided not to stem words
because they felt their corpus was sufficiently large that their
word-vector-based NLP model “learns similar representations
of words of the same stem when the data suggest it.” Said
another way, words that have a similar meaning should find
their way to a similar location in word-vector space (Figure 2.6)
during model training.

Following their lead, we’ll also forgo stop-word removal and
stemming when preprocessing the Project Gutenberg corpus, as
in Example 11.5.

Example 11.5 Removing capitalization and
punctuation from Project Gutenberg corpus

Click here to view code image

6. Maas, A., et al. (2011). Learning word vectors for sentiment analysis. Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics, 142–
50.

7. This is in line with our thinking, as we mentioned earlier in the chapter.
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lower_sents = []

for s in gberg_sents:
    lower_sents.append([w.lower() for w in s if w.lower()
                        not inlist(string.punctuation)])

In this example, we begin with an empty list we call
lower_sents, and then we append preprocessed sentences to
it using a for loop.  For preprocessing each sentence within the
loop, we used a variation on the list comprehension from
Example 11.2, in this case removing only punctuation marks
while converting all characters to lowercase.

With punctuation and capitals removed, we can set about
detecting collocated bigrams across the corpus afresh:

Click here to view code image

lower_bigram = Phraser(Phrases(lower_sents))

Relative to Example 11.4, this time we created our gensim
lower_bigram object in a single line by chaining the
Phrases() and Phraser() methods together. The top of the
output of a call to lower_bigram.phrasegrams is provided
in Figure 11.3: Comparing these bigrams with those from Figure
11.2, we do indeed observe that they are all in lowercase (e.g.,

8. If you’re preprocessing a large corpus, we’d recommend using optimizable and
parallelizable functional programming techniques in place of our simple (and
therefore simple-to-follow) for loop.
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miss taylor) and bigrams that included punctuation marks are
nowhere to be seen.

Figure 11.3 Sample of a dictionary of bigrams detected within
our lowercased and punctuation-free corpus

Examining the results in Figure 11.3 further, however, it
appears that the default minimum thresholds for both count
and score are far too liberal. That is, word pairs like two
daughters and her sister should not be considered bigrams. To
attain bigrams that we thought were more sensible, we
experimented with more conservative count and score
thresholds by increasing them by powers of 2. Following this



approach, we were generally satisfied by setting the optional
Phrases() arguments to a min(imum) count of 32 and to a
score threshold of 64, as shown in Example 11.6.

Example 11.6 Detecting collocated bigrams with
more conservative thresholds

Click here to view code image

lower_bigram = Phraser(Phrases(lower_sents,

                               min_count=32, threshold=64))

Although it’s not perfect,  because there are still a few
questionable bigrams like great deal and few minutes, the
output from a call to lower_bigram.phrasegrams is now
largely defensible, as shown in Figure 11.4.

9



Figure 11.4 Sample of a more conservatively thresholded
dictionary of bigrams

Armed with our well-appointed lower_bigram object from
Example 11.6, we can at last use a for loop to iteratively append
for ourselves a corpus of cleaned-up sentences, as in Example
11.7.

Example 11.7 Creating a “clean” corpus that
includes bigrams

Click here to view code image

9. These are statistical approximations, of course!



clean_sents = []

for s in lower_sents:
    clean_sents.append(lower_bigram[s])

As an example, Figure 11.5 shows the seventh element of our
clean corpus (clean_sents[6]), a sentence that includes the
bigrams miss taylor and mr woodhouse.



Figure 11.5 Clean, preprocessed sentence from the Project



Gutenberg corpus

CREATING WORD EMBEDDINGS WITH
WORD2VEC
With the cleaned corpus of natural language clean_sents
now available to us, we are well positioned to embed words
from the corpus into word-vector space (Figure 2.6). As you’ll
see in this section, such word embeddings can be produced with
a single line of code. This single line of code, however, should
not be executed blindly, and it has quite a few optional
arguments to consider carefully. Given this, we’ll cover the
essential theory behind word vectors before delving into
example code.

The Essential Theory Behind word2vec
In Chapter 2, we provided an intuitive understanding of what
word vectors are. We also discussed the underlying idea that
because you can “know a word by the company it keeps” then a
given word’s meaning can be well represented as the average of
the words that tend to occur around it. word2vec is an
unsupervised learning technique —that is, it is applied to a
corpus of natural language without making use of any labels
that may or may not happen to exist for the corpus. This means
that any dataset of natural language could be appropriate as an
input to word2vec.

10. See Chapter 4 for a recap of the differences between the supervised, unsupervised,
and reinforcement learning problems.

11. Mikolov, T., et al. (2013). Efficient estimation of word representations in vector
space. arXiv:1301.3781.
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When running word2vec, you can choose between two
underlying model architectures—skip-gram (SG) or continuous
bag of words (CBOW; pronounced see-bo)—either of which will
typically produce roughly comparable results despite
maximizing probabilities from “opposite” perspectives. To make
sense of this, reconsider our toy-sized corpus from Figure 2.5:

Click here to view code image

you shall know a word by the company it keeps

In it, we are considering word to be the target word, and the
three words to the right of it as well as the three words to the left
of it are considered to be context words. (This corresponds to a
window size of three words—one of the primary
hyperparameters we must take into account when applying
word2vec.) With the SG architecture, context words are
predicted given the target word.  With CBOW, it is the inverse:
The target word is predicted based on the context words.

To understand word2vec more concretely, let’s focus on the
CBOW architecture in greater detail (although we equally could
have focused on SG instead). With CBOW, the target word is
predicted to be the average of all the context words considered
jointly. “Jointly” means “all at once”: The particular position of

12. In more technical machine learning terms, the cost function of the skip-gram
architecture is to maximize the log probability of any possible context word from a
corpus given the current target word.

13. Again, in technical ML jargon, the cost function for CBOW is maximizing the log
probability of any possible target word from a corpus given the current context
words.

12

13



context words isn’t taken into consideration, nor whether the
context word occurs before or after the target word. That the
CBOW architecture has this attribute is right there in the “bag of
words” part of its name:

We take all the context words within the windows to the right and
the left of the target word.

We (figuratively!) throw all of these context words into a bag. If it
helps you remember that the sequence of words is irrelevant, you
can even imagine shaking up the bag.

We calculate the average of all the context words contained in the
bag, using this average to estimate what the target word could be.

If we were concerned about syntax—the grammar of language (see Figure 2.9 for a
refresher on the elements of natural language)—then word order would matter. But
because with word2vec we’re concerned only with semantics—the meaning of words—
it turns out that the order of context words is, on average, irrelevant.

Having considered the intuitiveness of the “BOW”
component of the CBOW moniker, let’s also consider the
“continuous” part of it: The target word and context word
windows slide continuously one word at a time from the first
word of the corpus all the way through to the final word. At each
position along the way, the target word is estimated given the
context words. Via stochastic gradient descent, the location of
words within vector space can be shifted, and thereby these
target-word estimates can gradually be improved.

In practice, and as summarized in Table 11.1, the SG
architecture is a better choice when you’re working with a small



corpus. It represents rare words in word-vector space well. In
contrast, CBOW is much more computationally efficient, so it is
the better option when you’re working with a very large corpus.
Relative to SG, CBOW also represents frequently occurring
words slightly better.

Table 11.1 Comparison of word2vec architectures

Archite
cture

Predicts Relative Strengths

Skip-
gram 
(SG)

Context words 
given target word

Better for a smaller corpus; 
represents rare words well

CBOW Target word given 
context words

Multiple times faster; represents 
frequent words slightly better

Although word2vec is comfortably the most widely used approach for embedding
words from a corpus of natural language into vector space, it is by no means the only

14. Regardless of whether you use the SG or CBOW architecture, an additional option
you have while running word2vec is the training method. For this, you have two
different options: hierarchical softmax and negative sampling. The former involves
normalization and is better suited to rare words. The latter, on the other hand,
forgoes normalization, making it better suited to common words and low-
dimensional word-vector spaces. For our purposes in this book, the differences
between these two training methods are insignificant and we don’t cover them
further.

14



approach. A major alternative to word2vec is GloVe—global vectors for word
representation—which was introduced by the prominent natural language researchers
Jeffrey Pennington, Richard Socher, and Christopher Manning.  At the time—in 2014
—the three were colleagues working together at Stanford University.

GloVe and word2vec differ in their underlying methodology: word2vec uses
predictive models, while GloVe is count based. Ultimately, both approaches tend to
produce vector-space embeddings that perform similarly in downstream NLP
applications, with some research suggesting that word2vec may provide modestly
better results in select cases. One potential advantage of GloVe is that it was designed
to be parallelized over multiple processors or even multiple machines, so it might be a
good option if you’re looking to create a word-vector space with many unique words
and a very large corpus.

The contemporary leading alternative to both word2vec and GloVe is
fastText.  This approach was developed by researchers at Facebook. A
major benefit of fastText is that it operates on a subword level—its “word” vectors are
actually subcomponents of words. This enables fastText to work around some of the
issues related to rare words and out-of-vocabulary words addressed in the
preprocessing section at the outset of this chapter.

Evaluating Word Vectors
However you create your word vectors—be it with word2vec or
an alternative approach—there are two broad perspectives you
can consider when evaluating the quality of word vectors:
intrinsic and extrinsic evaluations.

Extrinsic evaluations involve assessing the performance of
your word vectors within whatever your downstream NLP
application of interest is—your sentiment-analysis classifier,

15. Pennington, J., et al. (2014). GloVe: Global vectors for word representations.
Proceedings of the Conference on Empirical Methods in Natural Language Processing.

16. The open-source fastText library is available at fasttext.cc.

17. Joulin, A., et al. (2016). Bag of tricks for efficient text classification. arXiv:
1607.01759

18. Bojanowski, P., et al. (2016). Enriching word vectors with subword information.
arXiv: 1607.04606

19. Note that the lead author of the landmark word2vec paper, Tomas Mikolov, is the
final author of both of these landmark fastText papers.
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say, or perhaps your named-entity recognition tool. Although
extrinsic evaluations can take longer to carry out because they
require you to carry out all of your downstream processing steps
—including perhaps training a computationally intensive deep
learning model—you can be confident that it’s worthwhile to
retain a change to your word vectors if they relate to an
appreciable improvement in the accuracy of your NLP
application.

In contrast, intrinsic evaluations involve assessing the
performance of your word vectors not on your final NLP
application, but rather on some specific intermediate subtask.
One common such task is assessing whether your word vectors
correspond well to arithmetical analogies like those shown in
Figure 2.7. For example, if you start at the word-vector location
for king, subtract man, and add woman, do you end up near the
word-vector location for queen?

Relative to extrinsic evaluations, intrinsic tests are quick.
They may also help you better understand (and therefore
troubleshoot) intermediate steps within your broader NLP
process. The limitation of intrinsic evaluations, however, is that
they may not ultimately lead to improvements in the accuracy of
your NLP application downstream unless you’ve identified a
reliable, quantifiable relationship between performance on the
intermediate test and your NLP application.

Running word2vec

20. A test set of 19,500 such analogies was developed by Tomas Mikolov and his
colleagues in their 2013 word2vec paper. This test set is available at
download.tensorflow.org/data/questions-words.txt.
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As mentioned earlier, and as shown in Example 11.8, word2vec
can be run in a single line of code—albeit with quite a few
arguments.

Example 11.8 Running word2vec

Click here to view code image

model = Word2Vec(sentences=clean_sents, size=64,

                 sg=1, window=10, iter=5,

                 min_count=10, workers=4)

Here’s a breakdown of each of the arguments we passed into the
Word2Vec() method from the gensim library:

sentences: Pass in a list of lists like clean_sents as a corpus.
Elements in the higher-level list are sentences, whereas elements in
the lowerlevel list can be wordlevel tokens.

size: The number of dimensions in the word-vector space that will
result from running word2vec. This is a hyperparameter that can be
varied and evaluated extrinsically or intrinsically. Like other
hyperparameters in this book, there is a Goldilocks sweet spot. You
can home in on an optimal value by specifying, say, 32 dimensions
and varying this value by powers of 2. Doubling the number of
dimensions will double the computational complexity of your
downstream deep learning model, but if doing this results in
markedly higher model accuracy then this extrinsic evaluation
suggests that the extra complexity could be worthwhile. On the
other hand, halving the number of dimensions halves
computational complexity downstream: If this can be done without
appreciably decreasing your NLP model’s accuracy, then it should
be. By performing a handful of intrinsic inspections (which we’ll go
over shortly), we found 64 dimensions to provide more sensible
word vectors than 32 dimensions for this particular case. Doubling



this figure to 128, however, provided no noticeable improvement.

sg: Set to 1 to choose the skip-gram architecture, or leave at the 0
default to choose CBOW. As summarized in Table 11.1, SG is
generally better suited to small datasets like our Gutenberg corpus.

window: For SG, a window size of 10 (for a total of 20 context
words) is a good bet, so we set this hyperparameter to 10. If we
were using CBOW, then a window size of 5 (for a total of 10 context
words) could be near the optimal value. In either case, this
hyperparameter can be experimented with and evaluated
extrinsically or intrinsically. Small adjustments to this
hyperparameter may not be perceptibly impactful, however.

iter: By default, the gensim Word2Vec() method iterates over
the corpus fed into it (i.e., slides over all of the words) five times.
Multiple iterations of word2vec is analogous to multiple epochs of
training a deep learning model. With a small corpus like ours, the
word vectors improve over several iterations. With a very large
corpus, on the other hand, it might be cripplingly computationally
expensive to run even two iterations—and, because there are so
many examples of words in a very large corpus anyway, the word
vectors might not be any better.

min_count: This is the minimum number of times a word must
occur across the corpus in order to fit it into word-vector space. If a
given target word occurs only once or a few times, there are a
limited number of examples of its contextual words to consider, and
so its location in word-vector space may not be reliable. Because of
this, a minimum count of about 10 is often reasonable. The higher
the count, the smaller the vocabulary of words that will be available
to your downstream NLP task. This is yet another hyperparameter
that can be tuned, with extrinsic evaluations likely being more
illuminating than intrinsic ones because the size of the vocabulary
you have to work with could make a considerable impact on your
downstream NLP application.

workers: This is the number of processing cores you’d like to



dedicate to training. If the CPU on your machine has, say, eight
cores, then eight is the largest number of parallel worker threads
you can have. In this case, if you choose to use fewer than eight
cores, you’re leaving compute resources available for other tasks.

In our GitHub repository, we saved our model using the
save() method of word2vec objects:

Click here to view code image

model.save('clean_gutenberg_model.w2v')

Instead of running word2vec yourself, then, you’re welcome to
load up our word vectors using this code:

Click here to view code image

model = gensim.models.Word2Vec.load('clean_gutenberg

_model.w2v')

If you do choose the word vectors we created, then the
following examples will produce the same outputs.  We can see
the size of our vocabulary by calling len(model.wv.vocab).
This tells us that there are 10,329 words (well, more
specifically, tokens) that occur at least 10 times within our
clean_sents corpus.  One of the words in our vocabulary is
dog. As shown in Figure 11.6, we can output its location in 64-
dimensional word-vector space by running
model.wv['dog'].
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Figure 11.6 The location of the token “dog” within the 64-
dimensional word-vector space we generated using a corpus of

books from Project Gutenberg

As a rudimentary intrinsic evaluation of the quality of our
word vectors, we can use the most_similar() method to
confirm that words with similar meanings are found in similar
locations within our word-vector space.  For example, to
output the three words that are most similar to father in our
word-vector space, we can run this code:

Click here to view code image

21. Every time word2vec is run, the initial locations of every word of the vocabulary
within word-vector space are assigned randomly. Because of this, the same data and
arguments provided to Word2Vec() will nevertheless produce unique word vectors

every time, but the semantic relationships should be similar.

22. Vocabulary size is equal to the number of tokens from our corpus that had
occurred at least 10 times, because we set min_count=10 when calling Word2Vec()

in Example 11.8.

23. Technically speaking, the similarity between two given words is computed here by
calculating the cosine similarity.
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model.wv.most_similar('father', topn=3)

This outputs the following:

[('mother', 0.8257375359535217),

 ('brother', 0.7275018692016602),

 ('sister', 0.7177823781967163)]

This output indicates that mother, brother, and sister are the
most similar words to father in our word-vector space. In other
words, within our 64-dimensional space, the word that is
closest  to father is the word mother. Table 11.2 provides some
additional examples of the words most similar to (i.e., closest
to) particular words that we’ve picked from our word-vector
vocabulary, all five of which appear pretty reasonable given our
small Gutenberg corpus.

Table 11.2 The words most similar to select test
words from our Project Gutenberg vocabulary

Test Word Most Similar Word Cosine Similarity Score

father mother 0.82

dog puppy 0.78

eat drink 0.83

24
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day morning 0.76

ma_am madam 0.85

Suppose we run the following line of code:

Click here to view code image

model.wv.doesnt_match("mother father sister brother 

dog".split())

We get the output dog, indicating that dog is the least similar
relative to all the other possible word pairs. We can also use the
following line to observe that the similarity score between
father and dog is a mere 0.44:

Click here to view code image

model.wv.similarity('father','dog')

24. That is, has the shortest Euclidean distance in that 64-dimensional vector space.

25. Note that the final test word in Table 11.2—ma’am—is only available because of
the bigram collocation (see Examples 11.6 and 11.7).



This similarity score of 0.44 is much lower than the similarity
between father and any of mother, brother, or sister, and so it’s
unsurprising that dog is relatively distant from the other four
words within our word-vector space.

As a final little intrinsic test, we can compute word-vector
analogies as in Figure 2.7. For example, to calculate υ  −
υ  + υ , we can execute this code:

Click here to view code image

model.wv.most_similar(positive=['father','woman'], n

egative=['man'])

The top-scoring word comes out as mother, which is the correct
answer to the analogy. Suppose we likewise execute this code:

Click here to view code image

model.wv.most_similar(positive=['husband','woman'], 

negative=['man'])

In this case, the top-scoring word comes out as wife, again the
correct answer, thereby suggesting that our word-vector space
may generally be on the right track.

A given dimension within an n-dimensional word-vector space does not necessarily

father

man woman



represent any specific factor that relates words. For example, although the real-world
differences in meaning of gender or verb tense are represented by some vector
direction (i.e., some movement along some combination of dimensions) within the
vector space, this meaningful vector direction may only by chance be aligned—or
perhaps correlated—with a particular axis of the vector space.

This contrasts with some other approaches that involve n-dimensional vector spaces,
where the axes are intended to represent some specific explanatory variable. One such
approach that many people are familiar with is principal component analysis (PCA), a
technique for identifying linearly uncorrelated (i.e., orthogonal) vectors that contribute to
variance in a given dataset. A corollary of this difference between information stored as
points in PCA versus in word-vector space is that in PCA, the first principal components
contribute most of the variance, and so you can focus on them and ignore later
principal components; but in a word-vector space, all of the dimensions may be
important and need to be taken into consideration. In this way, approaches like PCA
are useful for dimensionality reduction because we do not need to consider all of the
dimensions.

Plotting Word Vectors
Human brains are not well suited to visualizing anything in
greater than three dimensions. Thus, plotting word vectors—
which could have dozens or even hundreds of dimensions—in
their native format is out of the question. Thankfully, we can
use techniques for dimensionality reduction to approximately
map the locations of words from high-dimensional word-vector
space down to two or three dimensions. Our recommended
approach for such dimensionality reduction is t-distributed
stochastic neighbor embedding (t-SNE; pronounced tee-snee),
which was developed by Laurens van der Maaten in
collaboration with Geoff Hinton (Figure 1.16).

Example 11.9 provides the code from our Natural Language
Preprocessing notebook for reducing our 64-dimensional
Project Gutenberg-derived word-vector space down to two

26. van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal
of Machine Learning Research, 9, 2579–605.
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dimensions, and then storing the resulting x and y coordinates
within a Pandas DataFrame. There are two arguments for the
TSNE() method (from the scikit-learn library) that we need to
focus on:

n_components is the number of dimensions that should be
returned, so setting this to 2 results in a two-dimensional output,
whereas 3 would result in a three-dimensional output.

n_iter is the number of iterations over the input data. As with
word2vec (Example 11.8), iterations are analogous to the epochs
associated with training a neural network. More iterations
corresponds to a longer training time but may improve the results
(although only up to a point).

Example 11.9 t-SNE for dimensionality reduction

Click here to view code image

tsne = TSNE(n_components=2, n_iter=1000)

X_2d = tsne.fit_transform(model.wv[model.wv.vocab])

coords_df = pd.DataFrame(X_2d, columns=['x','y'])

coords_df['token'] = model.wv.vocab.keys()

Running t-SNE as in Example 11.9 may take some time on
your machine, so you’re welcome to use our results if you’re
feeling impatient by running the following code:

Click here to view code image

coords_df = pd.read_csv('clean_gutenberg_tsne.csv')

27. We created this CSV after running t-SNE on our word-vectors using this
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Click here to view code image

coords_df.to_csv('clean_gutenberg_tsne.csv', 

index=False)

Whether you ran t-SNE to produce coords_df on your own or
you loaded in ours, you can check out the first few lines of the
DataFrame by using the head() method:

coords_df.head()

Our output from executing head() is shown in Figure 11.7.

command:

28. Note that because t-SNE is stochastic, you will obtain a unique result every time
you run it.



Figure 11.7 This is a Pandas DataFrame containing a two-
dimensional representation of the word-vector space we created
from the Project Gutenberg corpus. Each unique token has an x

and y coordinate.

Example 11.10 provides code for creating a static scatterplot
(Figure 11.8) of the two-dimensional data we created with t-SNE
(in Example 11.9).



Figure 11.8 Static two-dimensional word-vector scatterplot

Example 11.10 Static two-dimensional scatterplot of
word-vector space

Click here to view code image

_ = coords_df.plot.scatter('x','y', figsize=(12,12),



                           marker='.', s=10, alpha=0.2)

On its own, the scatterplot displayed in Figure 11.8 may look
interesting, but there’s little actionable information we can take
away from it. Instead, we recommend using the bokeh library to
create a highly interactive—and actionable—plot, as with the
code provided in Example 11.11.

Example 11.11 Interactive bokeh plot of two-
dimensional word-vector data

Click here to view code image

output_notebook()

subset_df = coords_df.sample(n=5000)

p = figure(plot_width=800, plot_height=800)

_ = p.text(x=subset_df.x, y=subset_df.y, 

text=subset_df.token)

show(p)

The code in Example 11.11 produces the interactive scatterplot
in Figure 11.9 using the x and y coordinates generated using t-
SNE.

29. In Example 11.11, we used the Pandas sample() method to reduce the dataset

down to 5,000 tokens, because we found that using more data than this
corresponded to a clunky user experience when using the bokeh plot interactively.
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Figure 11.9 Interactive bokeh two-dimensional word-vector
plot

By toggling the Wheel Zoom button in the top-right corner of
the plot, you can use your mouse to zoom into locations within



the cloud so that the words become legible. For example, as
shown in Figure 11.10, we identified a region composed largely
of items of clothing, with related clusters nearby, including
parts of the human anatomy, colors, and fabric types. Exploring
in this way provides a largely subjective intrinsic evaluation of
whether related terms—and particularly synonyms—cluster
together as you’d expect them to. Doing similar, you may also
notice particular shortcomings of your natural-language
preprocessing steps, such as the inclusion of punctuation
marks, bigrams, or other tokens that you may prefer weren’t
included within your word-vector vocabulary.



Figure 11.10 Clothing words from the Project Gutenberg
corpus, revealed by zooming in to a region of the broader bokeh

plot from Figure 11.9

THE AREA UNDER THE ROC CURVE



Our apologies for interrupting the fun, interactive plotting of
word vectors. We need to take a brief break from natural
language-specific content here to introduce a metric that will
come in handy in the next section of the chapter, when we will
evaluate the performance of deep learning NLP models.

Up to this point in the book, most of our models have
involved multiclass outputs: When working with the MNIST
digits, for example, we used 10 output neurons to represent
each of the 10 possible digits that an input image could
represent. In the remaining sections of this chapter, however,
our deep learning models will be binary classifiers: They will
distinguish between only two classes. More specifically, we will
build binary classifiers to predict whether the natural language
of film reviews corresponds to a favorable review or negative
one.

Unlike artificial neural networks tasked with multiclass
problems, which require as many output neurons as classes,
ANNs that are acting as binary classifiers require only a single
output neuron. This is because there is no extra information
associated with having two output neurons. If a binary classifier
is provided some input x and it calculates some output ŷ for one
of the classes, then the output for the other class is simply 1 – ŷ.
As an example, if we feed a movie review into a binary classifier
and it outputs that the probability that this review is a positive
one is 0.85, then it must be the case that the probability of the
review being negative is 1 – 0.85 = 0.15.

Because binary classifiers have a single output, we can take
advantage of metrics for evaluating our model’s performance
that are sophisticated relative to the excessively black-and-white



accuracy metric that dominates multiclass problems. A typical
accuracy calculation, for example, would contend that if ŷ > 0.5,
then the model is predicting that the input x belongs to one
class, whereas if it outputs anything less than 0.5, it belongs to
the other class. To illustrate why having a specific binary
threshold like this is overly simplistic, consider a situation
where inputting a movie review results in a binary classifier
outputting ŷ = 0.48: A typical accuracy calculation threshold
would hold that—because this ŷ is lower than 0.5—it is being
classed as a negative review. If a second film review corresponds
to an output of ŷ = 0.51, the model has barely any more
confidence that this review is positive relative to the first review.
Yet, because 0.51 is greater than the 0.5 accuracy threshold, the
second review is classed as a positive review.

The starkness of the accuracy metric threshold can hide a fair
bit of nuance in the quality of our model’s output, and so when
evaluating the performance of binary classifiers, we prefer a
metric called the area under the curve of the receiver operating
characteristic. The ROC AUC, as the metric is known for short,
has its roots in the Second World War, when it was developed to
assess the performance of radar engineers’ judgment as they
attempted to identify the presence of enemy objects.

We like the ROC AUC for two reasons:

1. It blends together two useful metrics—true positive rate and false
positive rate—into a single summary value.

2. It enables us to evaluate the performance of our binary classifier’s
output across the full range of ŷ, from 0.0 to 1.0. This contrasts with the
accuracy metric, which evaluates the performance of a binary classifier
at a single threshold value only—usually ŷ = 0.5.



The Confusion Matrix
The first step toward understanding how to calculate the ROC
AUC metric is to understand the so-called confusion matrix,
which—as you’ll see—isn’t actually all that confusing. Rather,
the matrix is a straightforward 2 × 2 table of how confused a
model (or, as back in WWII, a person) is while attempting to act
as a binary classifier. You can see an example of a confusion
matrix in Table 11.3.

Table 11.3 A confusion matrix

  actual y

  1 0

predicted 
y

1 True positive False 
positive

0 False 
negative

True 
negative

To bring the confusion matrix to life with an example, let’s
return to the hot dog / not hot dog binary classifier that we’ve
used to construct silly examples over many of the preceding
chapters:

When we provide some input x to a model and it predicts that the
input represents a hot dog, then we’re dealing with the first row of



the table, because the predicted y = 1. In that case,

True positive: If the input is actually a hot dog (i.e., actual
y = 1), then the model correctly classified the input.

False positive: If the input is actually not a hot dog (i.e.,
actual y = 0), then the model is confused.

When we provide some input x to a model and it predicts that the
input does not represent a hot dog, then we’re dealing with the
second row of the table, because predicted y = 0. In that case,

False negative: If the input is actually a hot dog (i.e., actual
y = 1), then the model is also confused in this circumstance.

True negative: If the input is actually not a hot dog (i.e.,
actual y = 0), then the model correctly classified the input.

Calculating the ROC AUC Metric
Briefed on the confusion matrix, we can now move forward and
calculate the ROC AUC metric itself, using a toy-sized example.
Let’s say, as shown in Table 11.4, we provide four inputs to a
binary-classification model. Two of these inputs are actually hot
dogs (y = 1), and two of them are not hot dogs (y = 0). For each
of these inputs, the model outputs some predicted ŷ, all four of
which are provided in Table 11.4.

To calculate the ROC AUC metric, we consider each of the ŷ
values output by the model as the binary-classification
threshold in turn. Let’s start with the lowest ŷ, which is 0.3 (see
the “0.3 threshold” column in Table 11.5). At this threshold,
only the first inpu is classed as not a hot dog, whereas the
second through fourth inputs (all with ŷ > 0.3) are all classed as



hot dogs. We can compare each of these four predicted
classifications with the confusion matrix in Table 11.3:

1. True negative (TN): This is actually not a hot dog (y = 0) and was
correctly predicted as such.

2. True positive (TP): This is actually a hot dog (y = 1) and was correctly
predicted as such.

3. False positive (FP): This is actually not a hot dog (y = 0) but it was
erroneously predicted to be one.

4. True positive (TP): Like input 2, this is actually a hot dog (y = 1) and
was correctly predicted as such.

Table 11.4 Four hot dog / not hot dog predictions

y ŷ

0 0.3

1 0.5

0 0.6

1 0.9

Table 11.5 Four hot dog / not hot dog predictions, now
with intermediate ROC AUC calculations

y ŷ 0.3 
threshol

0.5 
threshol

0.6 
threshol



d d d

0 (not hot dog) 0.3 0 (TN) 0 (TN) 0 (TN)

1 (hot dog) 0.5 1 (TP) 0 (FN) 0 (FN)

0 (not hot dog) 0.6 1 (FP) 1 (FP) 0 (TN)

1 (hot dog) 0.9 1 (TP) 1 (TP) 1 (TP)

True Positive Rate = = 1.0 = 0.5 = 0.5

False Positive Rate = = 0.5 = 0.5 = 0.0

The same process is repeated with the classification threshold
set to 0.5 and yet again with the threshold set to 0.6, allowing us
to populate the remaining columns of Table 11.5. As an exercise,
it might be wise to work through these two columns, comparing
the classifications at each threshold with the actual y values and
the confusion matrix (Table 11.3) to ensure that you have a good
handle on these concepts. Finally, note that the highest ŷ value
(in this case, 0.9) can be skipped as a potential threshold,
because at such a high threshold we’d be considering all four
instances to not be hot dogs, making it a ceiling instead of a
classification boundary.

TP
TP +F N

2
2+0

1
1+1

1
1+1

F P
FP +TN

1
1+1

1
1+1

0
0+2



The next step toward computing the ROC AUC metric is to
calculate both the true positive rate (TPR) and the false positive
rate (FPR) at each of the three thresholds. Equations 11.1 and
11.2 use the “0.3 threshold” column to provide examples of how
to calculate the true positive rate and false positive rate,
respectively.

True Positive Rate =

=

=

= 1.0

(11.1)

False Positive Rate =

=

=

= 0.5

(11.2)

Shorthand versions of the arithmetic for calculating TPR and
FPR for the thresholds 0.5 and 0.6 are also provided for your
convenience at the bottom of Table 11.5. Again, perhaps you
should test if you can compute these values yourself on your
own time.

The final stage in calculating ROC AUC is to create a plot like
the one we provide in Figure 11.11. The points that make up the
shape of the receiver operating characteristic (ROC) curve are
the false positive rate (horizontal, x-axis coordinate) and true

(TP  count)
(TP  count) + (FN  count)

2
2 + 0
2
2

(FP  count)
(FP  count) + (TN  count)

1
1 + 1
1
2



positive rate (vertical, y-axis coordinate) at each of the available
thresholds (which in this case is three) in Table 11.5, plus two
extra points in the bottom-left and top-right corners of the plot.
Specifically, these five points (shown as orange dots in Figure
11.11) are:

1. (0, 0) for the bottom-left corner

2. (0, 0.5) from the 0.6 threshold

3. (0.5, 0.5) from the 0.5 threshold

4. (0.5, 1) from the 0.3 threshold

5. (1, 1) for the top-right corner

Figure 11.11 The (orange-shaded) area under the curve of the
receiving operator characteristic, determined using the TPRs

and FPRs from Table 11.5

In this toy-sized example, we only used four distinct ŷ values, so



there are only five points that determine the shape of the ROC
curve, making the curve rather step shaped. When there are
many available predictions providing many distinct ŷ values—
as is typically the case in real-world examples—the ROC curve
has many more points, and so it’s much less step shaped and
much more, well, curve shaped. The area under the curve (AUC)
of the ROC curve is exactly what it sounds like: In Figure 11.11,
we’ve shaded this area in orange and, in this example, the AUC
constitutes 75 percent of all the possible area and so the ROC
AUC metric comes out to 0.75.

A binary classifier that works as well as chance will generate
a straight diagonal running from the bottom-left corner of the
plot to its top-right corner, so an ROC AUC of 0.5 indicates that
the classifier works as well as flipping a coin. A perfect ROC
AUC is 1.0, which is attained by having FPR = 0 and TPR = 1
across all of the available ŷ thresholds. When you’re designing a
binary classifier to perform well on the ROC AUC metric, the
goal is thus to minimize FPR and maximize TPR across the
range of ŷ thresholds. That said, for most problems you
encounter, attaining a perfect ROC AUC of 1.0 is not possible:
There is usually some noise—perhaps a lot of noise—in the data
that makes perfection unattainable. Thus, when you’re working
with any given dataset, there is some (typically unknown!)
maximum ROC AUC score, such that no matter how ideally
suited your model is to act as a binary classifier for the problem,
there’s an ROC AUC ceiling that no model can crack through.

Over the remainder of this chapter we use the illuminating
ROC AUC metric, alongside the simpler accuracy and cost
metrics you are already acquainted with, to evaluate the



performance of the binary-classifying deep learning models that
we design and train.

NATURAL LANGUAGE CLASSIFICATION
WITH FAMILIAR NETWORKS
In this section, we tie together concepts that were introduced in
this chapter—natural language preprocessing best practices, the
creation of word vectors, and the ROC AUC metric—with the
deep learning theory from previous chapters. As we already
alluded to earlier, the natural language processing model you’ll
experiment with over the remainder of the chapter will be a
binary classifier that predicts whether a given film review is a
positive one or a negative one. We begin by classifying natural
language documents using types of neural networks that you’re
already familiar with—dense and convolutional—before moving
along to networks that are specialized to handle data that occur
in a sequence.

Loading the IMDb Film Reviews
As a performance baseline, we’ll initially train and test a
relatively simple dense network. All of the code for doing this is
provided within our Dense Sentiment Classifier Jupyter
notebook.

Example 11.12 provides the dependencies we need for our
dense sentiment classifier. Many of these dependencies will be
recognizable from previous chapters, but others (e.g., for
loading a dataset of film reviews, saving model parameters as
we train, calculating ROC AUC) are new. As usual, we cover the
details of these dependencies as we apply them later on.



Example 11.12 Loading sentiment classifier
dependencies

Click here to view code image

import keras
from keras.datasets import imdb # new!
from keras.preprocessing.sequence import pad_sequences # 
new!

from keras.models import Sequential
from keras.layers import Dense, Flatten, Dropout
from keras.layers import Embedding # new!
from keras.callbacks import ModelCheckpoint # new!
import os # new!
from sklearn.metrics import roc_auc_score, roc_curve # new!
import pandas as pd
import matplotlib.pyplot as plt # new!
%matplotlib inline

It’s a good programming practice to put as many
hyperparameters as you can at the top of your file. This makes it
easier to experiment with these hyperparameters. It also makes
it easier for you (or, indeed, your colleagues) to understand
what you were doing in the file when you return to it (perhaps
much) later. With this in mind, we place all of our
hyperparameters together in a single cell within our Jupyter
notebook. The code is provided in Example 11.13.

Example 11.13 Setting dense sentiment classifier
hyperparameters

Click here to view code image

# output directory name:



output_dir = 'model_output/dense'

# training:

epochs = 4

batch_size = 128

# vector-space embedding:

n_dim = 64

n_unique_words = 5000

n_words_to_skip = 50

max_review_length = 100

pad_type = trunc_type = 'pre'

# neural network architecture:

n_dense = 64

dropout = 0.5

Let’s break down the purpose of each of these variables:

output_dir: A directory name (ideally, a unique one) in which to
store our model’s parameters after each epoch, allowing us to
return to the parameters from any epoch of our choice at a later
time.

epochs: The number of epochs that we’d like to train for, noting
that NLP models often overfit to the training data in fewer epochs
than machine vision models.

 batch_size: As before, the number of training examples used
during each round of model training (see Figure 8.5).

n_dim: The number of dimensions we’d like our word-vector space
to have.

n_unique_words: With word2vec earlier in this chapter, we
included tokens in our word-vector vocabulary only if they occurred
at least a certain number of times within our corpus. An alternative
approach—the one we take here—is to sort all of the tokens in our
corpus by the number of times they occur, and then only use a



certain number of the most popular words. Andrew Maas and his
coworkers  opted to use the 5,000 most popular words across
their film-review corpus and so we’ll do the same.

n_words_to_skip: Instead of removing a manually curated list of
stop words from their word-vector vocabulary, Maas et al. made the
assumption that the 50 most frequently occurring words across
their film-review corpus would serve as a decent list of stop words.
We followed their lead and did the same.

max_review_length: Each movie review must have the same
length so that TensorFlow knows the shape of the input data that
will be flowing through our deep learning model. For this model, we
selected a review length of 100 words.  Any reviews longer than
100 are truncated. Any reviews shorter than 100 are padded with a
special padding character (analogous to the zero padding that can
be used in machine vision, as in Figure 10.3).

pad_type: By selecting 'pre', we add padding characters to the
start of every review. The alternative is 'post', which adds them
to the end. With a dense network like the one in this notebook, it
shouldn’t make much difference which of these options we pick.
Later in this chapter, when we’re working with specialized,
sequential-data layer types,  it’s generally best to use 'pre'
because the content at the end of the document is more influential
in the model and so we want the largely uninformative padding
characters to be at the beginning of the document.

trunc_type: As with pad_type, our truncation options are
'pre' or 'post'. The former will remove words from the
beginning of the review, whereas the latter will remove them from
the end. By selecting 'pre', we’re making (a bold!) assumption
that the end of film reviews tend to include more information on
review sentiment than the beginning.

n_dense: The number of neurons to include in the dense layer of
our neural network architecture. We waved our finger in the air to

30

31

32

33

34



select 64, so some experimentation and optimization are warranted
at your end if you feel like it. For simplicity’s sake, we also are using
a single layer of dense neurons, but you could opt to have several.

dropout: How much dropout to apply to the neurons in the dense
layer. Again, we did not take the time to optimize this
hyperparameter (set at 0.5) ourselves.

Loading in the film review data is a one-liner, provided in
Example 11.14.

Example 11.14 Loading IMDb film review data

Click here to view code image

(x_train, y_train), (x_valid, y_valid) = \

    imdb.load_data(num_words=n_unique_words, 

skip_top=n_words_to_skip)

This dataset from Maas et al. (2011) is made up of the natural
language of reviews from the publicly available Internet Movie
Database (IMDb; imdb.com). It consists of 50,000 reviews,
half of which are in the training dataset (x_train), and half of

30. We mentioned Maas et al. (2011) earlier in this chapter. They put together the
movie-review corpus we’re using in this notebook.

31. This 5,000-word threshold may not be optimal, but we didn’t take the time to test
lower or higher values. You are most welcome to do so yourself!

32. Note again that following Maas et al.’s lead may not be the optimal choice.
Further, note that this means we’ll actually be including the 51st most popular word
through to the 5050th most popular word in our word-vector vocabulary.

33. You are free to experiment with lengthier or shorter reviews.

34. For example, RNN, LSTM.



which are for model validation (x_valid). When submitting
their review of a given film, users also provide a star rating, with
a maximum of 10 stars. The labels (y_train and y_valid) are
binary, based on these star ratings:

Reviews with a score of four stars or fewer are considered to be a
negative review (y = 0).

Reviews with a score of seven stars or more, meanwhile, are classed
as a positive review (y = 1).

Moderate reviews—those with five or six stars—are not included in
the dataset, making the binary classification task easier for any
model.

By specifying values for the num_words and skip_top
arguments when calling imdb.load_data(), we are limiting
the size of our word-vector vocabulary and removing the most
common (stop) words, respectively.

In our Dense Sentiment Classifier notebook, we have the convenience of loading our
IMDb film-review data via the Keras imdb.load_data() method. When you’re
working with your own natural language data, you’ll likely need to preprocess many
aspects of the data yourself. In addition to the general preprocessing guidance we
provided earlier in this chapter, Keras provides a number of convenient text
preprocessing utilities, as documented online at keras.io/preprocessing/text.
In particular, the Tokenizer() class may enable you to carry out all of the
preprocessing steps you need in a single line of code, including

Tokenizing a corpus to the word level (or even the character level)

Setting the size of your word-vector vocabulary (with num_words)

Filtering out punctuation

Converting all characters to lowercase

Converting tokens into an integer index



Examining the IMDb Data
Executing x_train[0:6], we can examine the first six reviews
from the training dataset, the first two of which are shown in
Figure 11.12. These reviews are natively in an integer-index
format, where each unique token from the dataset is
represented by an integer. The first few integers are special
cases, following a general convention that is widely used in
NLP:

0: Reserved as the padding token (which we’ll soon add to the
reviews that are shorter than max_review_length).

1: Would be the starting token, which would indicate the beginning
of a review. As per the next bullet point, however, the starting token
is among the top 50 most common tokens and so is shown as
“unknown.”

2: Any tokens that occur very frequently across the corpus (i.e.,
they’re in the top 50 most common words) or rarely (i.e., they’re
below the top 5,050 most common words) will be outside of our
word-vector vocabulary and so are replaced with this unknown
token.

3: The most frequently occurring word in the corpus.

4: The second-most frequently occurring word.

5: The third-most frequently occurring, and so on.



Figure 11.12 The first two film reviews from the training
dataset of Andrew Maas and colleagues’ (2011) IMDb dataset.

Tokens are in an integer-index format.

Using the following code from Example 11.15, we can see the
length of the first six reviews in the training dataset.

Example 11.15 Printing the number of tokens in six
reviews

Click here to view code image

for x in x_train[0:6]:
    print(len(x))

They are rather variable, ranging from 43 tokens up to 550
tokens. Shortly, we’ll handle these discrepancies, standardizing



all reviews to the same length.

The film reviews are fed into our neural network model in the
integer-index format of Figure 11.12 because this is a memory-
efficient way to store the token information. It would require
appreciably more memory to feed the tokens in as character
strings, for example. For us humans, however, it is
uninformative (and, frankly, uninteresting) to examine reviews
in the integer-index format. To view the reviews as natural
language, we create an index of words as follows, where PAD,
START, and UNK are customary for representing padding,
starting, and unknown tokens, respectively:

Click here to view code image

word_index = keras.datasets.imdb.get_word_index()

word_index = {k:(v+3) for k,v in word_index.items()}
word_index["PAD"] = 0

word_index["START"] = 1

word_index["UNK"] = 2

index_word = {v:k for k,v in word_index.items()}

Then we can use the code in Example 11.16 to view the film
review of our choice—in this case, the first review from the
training data.

Example 11.16 Printing a review as a character
string

Click here to view code image

' '.join(index_word[id] for id in x_train[0])



The resulting string should look identical to the output shown in
Figure 11.13.

Figure 11.13 The first film review from the training dataset,
now shown as a character string

Remembering that the review in Figure 11.13 contains the
tokens that are fed into our neural network, we might
nevertheless find it enjoyable to read the full review without all
of the UNK tokens. In some cases of debugging model results, it
might indeed even be practical to be able to view the full review.
For example, if we’re being too aggressive or conservative with
either our n_unique_words or n_words_to_skip
thresholds, it might become apparent by comparing a review
like the one in Figure 11.13 with a full one. With our index of
words (index_words) already available to us, we simply need
to download the full reviews:

Click here to view code image



(all_x_train,_),(all_x_valid,_) = imdb.load_data()

Then we modify Example 11.16 to execute join() on the full-
review list of our choice (i.e., all_x_train or all_x_valid),
as provided in Example 11.17.

Example 11.17 Print full review as character string

Click here to view code image

' '.join(index_word[id] for id in all_x_train[0])

Executing this outputs the full text of the review of our choice—
again, in this case, the first training review—as shown in Figure
11.14.

Figure 11.14 The first film review from the training dataset,
now shown in full as a character string

Standardizing the Length of the Reviews



By executing Example 11.15 earlier, we discovered that there is
variability in the length of the film reviews. In order for the
Keras-created TensorFlow model to run, we need to specify the
size of the inputs that will be flowing into the model during
training. This enables TensorFlow to optimize the allocation of
memory and compute resources. Keras provides a convenient
pad_sequences() method that enables us to both pad and
truncate documents of text in a single line. Here we standardize
our training and validation data in this way, as shown in
Example 11.18.

Example 11.18 Standardizing input length by
padding and truncating

Click here to view code image

x_train = pad_sequences(x_train, maxlen=max_review_length,

                        padding=pad_type, 

truncating=trunc_type, value=0)

x_valid = pad_sequences(x_valid, maxlen=max_review_length,

                        padding=pad_type, 

truncating=trunc_type, value=0)

Now, when printing reviews (e.g., with x_train[0:6]) or their
lengths (e.g., with the code from Example 11.15), we see that all
of the reviews have the same length of 100 (because we set
max_review_length = 100). Examining x_train[5]—
which previously had a length of only 43 tokens—with code
similar to Example 11.16, we can observe that the beginning of
the review has been padded with 57 PAD tokens (see Figure
11.15).



Figure 11.15 The sixth film review from the training dataset,
padded with the PAD token at the beginning so that—like all the

other reviews—it has a length of 100 tokens

Dense Network
With sufficient NLP theory behind us, as well as our data loaded
and preprocessed, we’re at long last prepared to make use of a
neural network architecture to classify film reviews by their
sentiment. A baseline dense network model for this task is
shown in Example 11.19.

Example 11.19 Dense sentiment classifier
architecture

Click here to view code image

model = Sequential()

model.add(Embedding(n_unique_words, n_dim,

                    input_length=max_review_length))

model.add(Flatten())

model.add(Dense(n_dense, activation='relu'))

model.add(Dropout(dropout))

# model.add(Dense(n_dense, activation='relu'))

# model.add(Dropout(dropout))

model.add(Dense(1, activation='sigmoid'))

Let’s break the architecture down line by line:

We’re using a Keras Sequential() method to invoke a sequential



model, as we have for all of the models so far in this book.

As with word2vec, the Embedding() layer enables us to create
word vectors from a corpus of documents—in this case, the 25,000
movie reviews of the IMDb training dataset. Relative to
independently creating word vectors with word2vec (or GloVe, etc.)
as we did earlier in this chapter, training your word vectors via
backpropagation as a component of your broader NLP model has a
potential advantage: The locations that words are assigned to
within the vector space reflect not only word similarity but also the
relevance of the words to the ultimate, specific purpose of the
model (e.g., binary classification of IMDb reviews by sentiment).
The size of the word-vector vocabulary and the number of
dimensions of the vector space are specified by n_unique_words
and n_dim, respectively. Because the embedding layer is the first
hidden layer in our network, we must also pass into it the shape of
our input layer: We do this with the input_length argument.

As in Chapter 10, the Flatten() layer enables us to pass a many-
dimensional output (here, a two-dimensional output from the
embedding layer) into a one-dimensional dense layer.

Speaking of Dense() layers, we used a single one consisting of
relu activations in this architecture, with Dropout() applied to
it.

We opted for a fairly shallow neural network architecture for our
baseline model, but you can trivially deepen it by adding further
Dense() layers (see the lines that are commented out).

Finally, because there are only two classes to classify, we require
only a single output neuron (because, as discussed earlier in this
chapter, if one class has the probability p then the other class has
the probability 1 – p). This neuron is sigmoid because we’d like it
to output probabilities between 0 and 1 (refer to Figure 6.9).



In addition to training word vectors on natural language data alone (e.g., with
word2vec or GloVe) or training them with an embedding layer as part of a deep
learning model, pretrained word vectors are also available online.

As with using a ConvNet trained on the millions of images in ImageNet (Chapter 10),
this natural language transfer learning is powerful, because these word vectors may
have been trained on extremely large corpuses (e.g., all of Wikipedia, or the English-
language Internet) that provide large, nuanced vocabularies that would be expensive to
train yourself. Examples of pretrained word vectors are available at
github.com/Kyubyong/wordvectors and nlp.stanford.edu/projects/glove. The fast-Text
library also offers subword embeddings in 157 languages; these can be downloaded
from fasttext.cc.

In this book, we don’t cover substituting pretrained word vectors (be they
downloaded or trained separately from your deep learning model, as we did with
Word2Vec() earlier in this chapter) in place of the embedding layer, because there are
many different permutations on how you might like to do this. For a neat tutorial from
François Chollet, the creator of Keras, go to bit.ly/preTrained.

Executing model.summary(), we discover that our fairly
simple NLP model has quite a few parameters, as shown in
Figure 11.16:

In the embedding layer, the 320,000 parameters come from having
5,000 words, each one with a location specified in a 64-dimensional
word-vector space (64 × 5,000 = 320,000).

Flowing out of the embedding layer through the flatten layer and
into the dense layer are 6,400 values: Each of our film-review
inputs consists of 100 tokens, with each token specified by 64 word-
vector-space coordinates (64 × 100 = 6,400).

Each of the 64 neurons in the dense hidden layer receives input
from each of the 6,400 values flowing out of the flatten layer, for a
total of 64 × 6,400 = 409,600 weights. And, of course, each of the
64 neurons has a bias, for a total of 409,664 parameters in the
layer.

http://github.com/Kyubyong/wordvectors
http://nlp.stanford.edu/projects/glove


Figure 11.16 Dense sentiment classifier model summary

Finally, the single neuron of the output layer has 64 weights—one
for the activation output by each of the neurons in the preceding
layer—plus its bias, for a total of 65 parameters.

Summing up the parameters from each of the layers, we have a
grand total of 730,000 of them.

As shown in Example 11.20, we compile our dense sentiment
classifier with a line of code that should already be familiar from
recent chapters, except that—because we have a single output
neuron within a binary classifier—we use
binary_crossentropy cost in place of the
categorical_crossentropy cost we used for our multiclass
MNIST classifiers.

Example 11.20 Compiling our sentiment classifier

Click here to view code image

model.compile(loss='binary_crossentropy', optimizer='adam',



              metrics=['accuracy'])

With the code provided in Example 11.21, we create a
ModelCheckpoint() object that will allow us to save our
model parameters after each epoch during training. By doing
this, we can return to the parameters from our epoch of choice
later on during model evaluation or to make inferences in a
production system. If the output_dir directory doesn’t
already exist, we use the makedirs() method to make it.

Example 11.21 Creating an object and directory for
checkpointing model parameters after each epoch

Click here to view code image

modelcheckpoint = ModelCheckpoint(filepath=output_dir+

                                  "/weights.

{epoch:02d}.hdf5")

if not os.path.exists(output_dir):
    os.makedirs(output_dir)

Like the compile step, the model-fitting step (Example 11.22)
for our sentiment classifier should be familiar except, perhaps,
for our use of the callbacks argument to pass in the
modelcheckpoint object.

Example 11.22 Fitting our sentiment classifier

Click here to view code image

35. This isn’t our first use of the callbacks argument. We previously used this
argument, which can take in a list of multiple different callbacks, to provide data on
model training progress to TensorBoard (see Chapter 9).

35



model.fit(x_train, y_train,

          batch_size=batch_size, epochs=epochs, verbose=1,

          validation_data=(x_valid, y_valid),

          callbacks=[modelcheckpoint])

As shown in Figure 11.17, we achieve our lowest validation loss
(0.349) and highest validation accuracy (84.5 percent) in the
second epoch. In the third and fourth epochs, the model is
heavily overfit, with accuracy on the training set considerably
higher than on the validation set. By the fourth epoch, training
accuracy stands at 99.6 percent while validation accuracy is
much lower, at 83.4 percent.

Figure 11.17 Training the dense sentiment classifier

To evaluate the results of the best epoch more thoroughly, we
use the Keras load_ weights() method to load the
parameters from the second epoch (weights.02.hdf5) back
into our model, as in Example 11.23.

Example 11.23 Loading model parameters

36. Although the method is called load_weights(), it loads in all model

parameters, including biases. Because weights typically constitute the vast majority
of parameters in a model, deep learning practitioners often call parameter files
“weights” files.

37. Earlier versions of Keras used zero indexing for epochs, but more recent versions
index starting at 1.

36,37



Click here to view code image

model.load_weights(output_dir+"/weights.02.hdf5")

We can then calculate validation set ŷ values for the best epoch
by passing the predict_proba() method on the x_valid
dataset, as shown in Example 11.24.

Example 11.24 Predicting ŷ for all validation data

Click here to view code image

y_hat = model.predict_proba(x_valid)

With y_hat[0], for example, we can now see the model’s
prediction of the sentiment of the first movie review in the
validation set. For this review, ŷ = 0.09, indicating the model
estimates that there’s a 9 percent chance the review is positive
and, therefore, a 91 percent chance it’s negative. Executing
y_valid[0] informs us that ŷ = 0 for this review—that is, it is
in fact a negative review—so the model’s ŷ is pretty good! If
you’re curious about what the content of the negative review
was, you can run a slight modification on Example 11.17 to
access the full text of the all_x_valid[0] list item, as shown
in Example 11.25.

Example 11.25 Printing a full validation review

Click here to view code image

' '.join(index_word[id] for id in all_x_valid[0])



Examining individual scores can be interesting, but we get a
much better sense of our model’s performance by looking at all
of the validation results together. We can plot a histogram of all
the validation ŷ values by running the code in Example 11.26.

Example 11.26 Plotting a histogram of validation
data ŷ values

Click here to view code image

plt.hist(y_hat)

_ = plt.axvline(x=0.5, color='orange')

The histogram output is provided in Figure 11.18. The plot
shows that the model often has a strong opinion on the
sentiment of a given review: Some 8,000 of the 25,000 reviews
(~32 percent of them) are assigned a ŷ of less than 0.1, and
~6,500 (~26 percent) are given a ŷ greater than 0.9.



Figure 11.18 Histogram of validation data ŷ values for the
second epoch of our dense sentiment classifier

The vertical orange line in Figure 11.18 marks the 0.5
threshold above which reviews are considered by a simple
accuracy calculation to be positive. As discussed earlier in the
chapter, such a simple threshold can be misleading, because a
review with a ŷ just below 0.5 is not predicted by the model to
have much difference in sentiment relative to a review with a ŷ
just above 0.5. To obtain a more nuanced assessment of our
model’s performance as a binary classifier, we can use the
roc_auc_score() method from the scikit-learn metrics
library to straightforwardly calculate the ROC AUC score across
the validation data, as shown in Example 11.27.

Example 11.27 Calculating ROC AUC for validation



data

Click here to view code image

pct_auc = roc_auc_score(y_valid, y_hat)*100.0

"{:0.2f}".format(pct_auc)

Printing the output in an easy-to-read format with the
format() method, we see that the percentage of the area under
the receiver operating characteristic curve is (a fairly high) 92.9
percent.

To get a sense of where the model breaks down, we can create
a DataFrame of y and ŷ validation set values, using the code in
Example 11.28.

Example 11.28 Creating a ydf DataFrame of y and ŷ
values

Click here to view code image

float_y_hat = []

for y in y_hat:
     float_y_hat.append(y[0])

ydf = pd.DataFrame(list(zip(float_y_hat, y_valid)),

                   columns=['y_hat', 'y'])

Printing the first 10 rows of the resulting ydf DataFrame with
ydf.head(10), we see the output shown in Figure 11.19.



Figure 11.19 DataFrame of y and ŷ values for the IMDb
validation data

Querying the ydf DataFrame as we do in Examples 11.29 and
11.30 and then examining the individual reviews these queries
surface by varying the list index in

Example 11.25, you can get a sense of the kinds of reviews that
cause the model to make its largest errors.



Example 11.29 Ten cases of negative validation
reviews with high ŷ scores

Click here to view code image

ydf[(ydf.y == 0) & (ydf.y_hat > 0.9)].head(10)

Example 11.30 Ten cases of positive validation
reviews with low ŷ scores

Click here to view code image

ydf[(ydf.y == 0) & (ydf.y_hat > 0.9)].head(10)

An example of a false positive—a negative review (y = 0) with
a very high model score (ŷ = 0.97)—that was identified by
running the code in Example 11.29 is provided in Figure 11.20.
And an example of a false negative—a positive review (y = 1)
with a very low model score (ŷ = 0.06)—that was identified by
running the code in Example 11.30 is provided in Figure 11.21.
Carrying out this kind of post hoc analysis of our model, one
potential shortcoming that surfaces is that our dense classifier is
not specialized to detect patterns of multiple tokens occurring in
a sequence that might predict film-review sentiment. For
example, it might be handy for patterns like the token-pair not-
good to be easily detected by the model as predictive of negative
sentiment.
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Figure 11.20 An example of a false positive: This negative
review was misclassified as positive by our model.

Figure 11.21 An example of a false negative: This positive
review was misclassified as negative by our model.

Convolutional Networks
As covered in Chapter 10, convolutional layers are particularly
adept at detecting spatial patterns. In this section, we use them
to detect spatial patterns among words—like the not-good
sequence—and see whether they can improve upon the
performance of our dense network at classifying film reviews by

38. We output this particular review—the 387th in the validation dataset—by running
the following code: ' '.join(index_word[id] for id in
all_x_valid[386]).

39. Run ' '.join(index_word[id] for id in all_x_valid[224]) to

print out this same review yourself.



their sentiment. All of the code for this ConvNet can be found in
our Convolutional Sentiment Classifier notebook.

The dependencies for this model are identical to those of our
dense sentiment classifier (see Example 11.12), except that it has
three new Keras layer types, as provided in Example 11.31.

Example 11.31 Additional CNN dependencies

Click here to view code image

from keras.layers import Conv1D, GlobalMaxPooling1D
from keras.layers import SpatialDropout1D

The hyperparameters for our convolutional sentiment classifier
are provided in Example 11.32.

Example 11.32 Convolutional sentiment classifier
hyperparameters

Click here to view code image

# output directory name:

output_dir = 'model_output/conv'

# training:

epochs = 4

batch_size = 128

# vector-space embedding:

n_dim = 64

n_unique_words = 5000

max_review_length = 400

pad_type = trunc_type = 'pre'

drop_embed = 0.2 # new!



# convolutional layer architecture:

n_conv = 256 # filters, a.k.a. kernels

k_conv = 3 # kernel length

# dense layer architecture:

n_dense = 256

dropout = 0.2

Relative to the hyperparameters from our dense sentiment
classifier (see Example 11.13):

We have a new, unique directory name ('conv') for storing model
parameters after each epoch of training.

Our number of epochs and batch size remain the same.

Our vector-space embedding hyperparameters remain the same,
except that

We quadrupled max_review_length to 400. We did this
because, despite the fairly dramatic increase in input
volume as well as an increase in our number of hidden
layers, our convolutional classifier will still have far fewer
parameters relative to our dense sentiment classifier.

With drop_embed, we’ll be adding dropout to our
embedding layer.

Our convolutional sentiment classifier will have two hidden layers
after the embedding layer:

A convolutional layer with 256 filters (n_conv), each with a
single dimension (a length) of 3 (k_conv). When working
with two-dimensional images in Chapter 10, our
convolutional layers had filters with two dimensions.
Natural language—be it written or spoken—has only one



dimension associated with it (the dimension of time) and so
the convolutional layers used in this chapter will have one-
dimensional filters.

A dense layer with 256 neurons (n_dense) and dropout of
20 percent.

The steps for loading the IMDb data and standardizing the
length of the reviews are identical to those in our Dense
Sentiment Classifier notebook (see Examples 11.14 and 11.18).
The model architecture is of course rather different, and is
provided in Example 11.33.

Example 11.33 Convolutional sentiment classifier
architecture

Click here to view code image

model = Sequential()

# vector-space embedding:

model.add(Embedding(n_unique_words, n_dim,

                    input_length=max_review_length))

model.add(SpatialDropout1D(drop_embed))

# convolutional layer:

model.add(Conv1D(n_conv, k_conv, activation='relu'))

# model.add(Conv1D(n_conv, k_conv, activation='relu'))

model.add(GlobalMaxPooling1D())

# dense layer:

model.add(Dense(n_dense, activation='relu'))

model.add(Dropout(dropout))

# output layer:

model.add(Dense(1, activation='sigmoid'))



Breaking the model down:

Our embedding layer is the same as before, except that it now has
dropout applied to it.

We no longer require Flatten(), because the Conv1D() layer
takes in both dimensions of the embedding layer output.

We use relu activation within our one-dimensional convolutional
layer. The layer has 256 unique filters, each of which is free to
specialize in activating when it passes over a particular three-token
sequence. The activation map for each of the 256 filters has a length
of 398, for a 256×398 output shape.

If you fancy it, you’re welcome to add additional convolutional
layers, by, for example, uncommenting the second Conv1D() line.

Global max-pooling is common for dimensionality reduction
within deep learning NLP models. We use it here to squash the
activation map from 256 × 398 to 256 × 1. By applying it, only the
magnitude of largest activation for a given convolutional filter is
retained by the maximum-calculating operation, and we lose any
temporal-position-specific information the filter may have output
to its 398-element-long activation map.

Because the activations output from the global max-pooling layer
are one-dimensional, they can be fed directly into the dense layer,
which consists (again) of relu neurons and dropout is applied.

The output layer remains the same.

The model has a grand total of 435,000 parameters (see Figure
11.22), several hundred thousand fewer than our dense sentiment
classifier. Per epoch, this model will nevertheless take longer to
train because the convolutional operation is relatively
computationally expensive.
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Figure 11.22 Convolutional sentiment classifier model
summary

A critical item to note about this model architecture is that
the convolutional filters are not detecting simply triplets of
words. Rather, they are detecting triplets of word vectors.
Following from our discussion in Chapter 2, contrasting
discrete, one-hot word representations with the word-vector
representations that gently smear meaning across a high-
dimensional space (see Table 2.1), all of the models in this

40. As described in Chapter 10, when a two-dimensional filter convolves over an
image, we lose pixels around the perimeter if we don’t pad the image first. In this
natural language model, our one-dimensional convolutional filter has a length of
three, so, on the far left of the movie review, it begins centered on the second token
and, on the far right, it ends centered on the second-to-last token. Because we didn’t
pad the movie reviews at both ends before feeding them into the convolutional layer,
we thus lose a token’s worth of information from each end: 400 – 1 – 1 = 398. We’re
not upset about this loss.



chapter become specialized in associating word meaning with
review sentiment—as opposed to merely associating individual
words with review sentiment. As an example, if the network
learns that the token pair not-good is associated with a negative
review, then it should also associate the pair not-great with
negative reviews, because good and great have similar
meanings (and thus should occupy a similar location in word-
vector space).

The compile, checkpoint, and model-fitting steps are the
same as for our dense sentiment classifier (see Examples 11.20,
11.21, and 11.22, respectively). Model-fitting progress is shown
in Figure 11.23. The epoch with the lowest validation loss
(0.258) and highest validation accuracy (89.6 percent) was the
third epoch. Loading the model parameters from that epoch
back in (with the code from Example 11.23 but specifying
weights.03.hdf5), we then predict ŷ for all validation data
(exactly as in Example 11.24). Creating a histogram (Figure
11.24) of these ŷ values (with the same code as in Example
11.26), we can see visually that our CNN has a stronger opinion
of review sentiment than our dense network did (refer to Figure
11.18): There are about a thousand more reviews with ŷ < 0.1
and several thousand more with ŷ > 0.9. Calculating ROC AUC
(with the code from Example 11.27), we output a very high score
of 96.12 percent, indicating that the CNN’s confidence was not
misplaced: It is a marked improvement over the already high
∽93 percent score of the dense net.



Figure 11.23 Training the convolutional sentiment classifier

Figure 11.24 Histogram of validation data ŷ values for the
third epoch of our convolutional sentiment classifier

NETWORKS DESIGNED FOR SEQUENTIAL
DATA
Our ConvNet classifier outperformed our dense net—perhaps in
large part because its convolutional layer is adept at learning
patterns of words that predict some outcome, such as whether a
film review is favorable or negative. The filters within



convolutional layers tend to excel at learning short sequences
like triplets of words (recall that we set k = 3 in Example
11.32), but a document of natural language like a movie review
might contain much longer sequences of words that, when
considered all together, would enable the model to accurately
predict some outcome. To handle long sequences of data like
this, there exists a family of deep learning models called
recurrent neural networks (RNNs), which include specialized
layer types like long short-term memory units (LSTMs) and
gated recurrent units (GRUs). In this section, we cover the
essential theory of RNNs and apply several variants of them to
our movie-review classification problem. We also introduce
attention—an especially sophisticated approach to modeling
natural language data that is setting new benchmarks across
NLP applications.

As mentioned at the start of the chapter, the RNN family, including LSTMs and GRUs,
is well suited to handling not only natural language data but also any input data that
occur in a one-dimensional sequence. This includes price data (e.g., financial time
series, stock prices), sales figures, temperatures, and disease rates (epidemiology).
While RNN applications other than NLP are beyond the scope of this textbook, we
collate resources for modeling quantitative data over time at jonkrohn.com/resources
under the heading Time Series Prediction.

Recurrent Neural Networks
Consider the following sentences:

Jon and Grant are writing a book together. They have really enjoyed
writing it.

http://jonkrohn.com/resources


The human mind can track the concepts in the second sentence
quite easily. You already know that “they” in the second
sentence refers to your authors, and “it” refers to the book we’re
writing. Although this task is easy for you, however, it is not so
trivial for a neural network.

The convolutional sentiment classifier we built in the
previous section was able to consider a word only in the context
of the two words on either side of it (k_conv = 3, as in
Example 11.32). With such a small window of text, that neural
network had no capacity to assess what “they” or “it” might be
referring to. Our human brains can do it because our thoughts
loop around each other, and we revisit earlier ideas in order to
inform our understanding of the current context. In this section
we introduce the concept of recurrent neural networks, which
set out to do just that: They have loops built into their structure
that allow information to persist over time.

The high-level structure of a recurrent neural network (RNN)
is shown in Figure 11.25. On the left, the purple line indicates
the loop that passes information between steps in the network.
As in a dense network, where there is a neuron for each input,
so too is there a neuron for each input here. We can observe this
more easily on the right, where the schematic of the RNN is
unpacked. There is a recurrent module for each word in the
sentence (only the first four words are shown here for brevity).
However, each module receives an additional input from the
previous module, and in doing so the network is able to pass
along information from earlier timesteps in the sequence. In the
case of Figure 11.25, each word is represented by a distinct
timestep in the RNN sequence, so the network might be able to
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learn that “Jon” and “Grant” were writing the book, thereby
associating these terms with the word “they” that occurs later in
the sequence.

Figure 11.25 Schematic diagram of a recurrent neural network

Recurrent neural networks are, computationally, more
complex to train than exclusively “feedforward” neural
networks like the dense nets and CNNs we’ve used so far in the
book. As depicted in Figure 8.6, feedforward networks involve
backpropagating cost from the output layer back toward the
input layer. If a network includes a recurrent layer (such as
SimpleRNN, LSTM, or GRU), then the cost must be
backpropagated not only back toward the input layer, but back
over the timesteps of the recurrent layer (from later timesteps

41. This is also why we have to pad shorter sentences during preprocessing: The RNN
expects a sequence of a particular length, and so if the sequence is not long enough
we add PAD tokens to make up the difference.



back toward earlier timesteps), as well. Note that, in the same
way that the gradient of learning vanishes as we backpropagate
over later hidden layers toward earlier ones (see Figure 8.8), so,
too, does the gradient vanish as we backpropagate over later
timesteps within a recurrent layer toward earlier ones. Because
of this, later timesteps in a sequence have more influence within
the model than earlier ones do.

Implementing an RNN in Keras
Adding a recurrent layer to a neural network architecture to
create an RNN is straightforward in Keras, as we illustrate in
our RNN Sentiment Classifier Jupyter notebook. For the sake of
brevity and readability, please note that the following code cells
are identical across all the Jupyter notebooks in this chapter,
including the Dense and Convolutional Sentiment Classifier
notebooks that we’ve already covered:

Loading dependencies (Example 11.12), except that there are often
one or two additional dependencies in a given notebook. We’ll note
these additions separately—typically when we present the
notebook’s neural network architecture.

Loading IMDb film review data (Example 11.14).

Standardizing review length (Example 11.18).

Compiling the model (Example 11.20).

Creating the ModelCheckpoint() object and directory (Example

42. If you suspect that the beginning of your sequences (e.g., the words at the
beginning of a movie review) is generally more relevant to the problem you’re solving
with your model (sentiment classification) than the end (the words at the end of the
review), you can reverse the sequence before passing it as an input into your network.
In that way, within your network’s recurrent layers, the beginning of the sequence
will be backpropagated over before the end is.
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11.21).

Fitting the model (Example 11.22).

Loading the model parameters from the best epoch (Example
11.23), with the critical exception that the particular epoch we select
to load varies depending on which epoch has the lowest validation
loss.

Predicting ŷ for all validation data (Example 11.24).

Plotting a histogram of ŷ (Example 11.26).

Calculating ROC AUC (Example 11.27).

The code cells that vary are those in which we:

1. Set hyperparameters

2. Design the neural network architecture

The hyperparameters for our RNN are as shown in Example
11.34.

Example 11.34 RNN sentiment classifier
hyperparameters

Click here to view code image

# output directory name:

output_dir = 'model_output/rnn'

# training:

epochs = 16 # way more!

batch_size = 128

# vector-space embedding:

n_dim = 64

n_unique_words = 10000

max_review_length = 100 # lowered due to vanishing gradient 



over time

pad_type = trunc_type = 'pre'

drop_embed = 0.2

# RNN layer architecture:

n_rnn = 256

drop_rnn = 0.2

Changes relative to our previous sentiment classifier notebooks
are:

We quadrupled epochs of training to 16 because overfitting didn’t
occur in the early epochs.

We lowered max_review_length back down to 100, although
even this is excessive for a simple RNN. We can backpropagate over
about 100 timesteps (i.e., 100 tokens or words in a natural language
model) with an LSTM (covered in the next section) before the
gradient of learning vanishes completely, but the gradient in a plain
old RNN vanishes completely after about 10 timesteps. Thus,
max_review_length could probably be lowered to less than 10
before we would notice a reduction in this model’s performance.

For all of the RNN-family architectures in this chapter, we
experimented with doubling the word-vector vocabulary to 10000
tokens. This seemed to provide improved results for these
architectures, although we didn’t test it rigorously.

We set n_rnn = 256, so we could say that this recurrent layer has
256 units, or, alternatively, we could say it has 256 cells. In the
same way that having 256 convolutional filters enabled our CNN
model to specialize in detecting 256 unique triplets of word
meaning,  this setting enables our RNN to detect 256 unique
sequences of word meaning that may be relevant to review
sentiment.

43. “Word meaning” here refers to a location in word-vector space.
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Our RNN model architecture is provided in Example 11.35.

Example 11.35 RNN sentiment classifier
architecture

Click here to view code image

from keras.layers import SimpleRNN

model = Sequential()

model.add(Embedding(n_unique_words,

                    n_dim, input_length=max_review_length))

model.add(SpatialDropout1D(drop_embed))

model.add(SimpleRNN(n_rnn, dropout=drop_rnn))

model.add(Dense(1, activation='sigmoid'))

In place of a convolutional layer or a dense layer (or both)
within the hidden layers of this model, we have a Keras
SimpleRNN() layer, which has a dropout argument; as a
result, we didn’t need to add dropout in a separate line of code.
Unlike putting a dense layer after a convolutional layer, it is
relatively uncommon to add a dense layer after a recurrent
layer, because it provides little performance advantage. You’re
welcome to try it by adding in a Dense() hidden layer anyway.

The results of running this model (which are shown in full in
our RNN Sentiment Classifier notebook) were not encouraging.
We found that the training loss, after going down steadily over
the first half-dozen epochs, began to jump around after that.
This indicates that the model is struggling to learn patterns even
within the training data, which—relative to the validation data—
it should be readily able to do. Indeed, all of the models fit so far
in this book have had training losses that reliably attenuated



epoch over epoch.

As the training loss bounced around, so too did the validation
loss. We observed the lowest validation loss in the seventh
epoch (0.504), which corresponded to a validation accuracy of
77.6 percent and an ROC AUC of 84.9 percent. All three of these
metrics are our worst yet for a sentiment classifier model. This
is because, as we mentioned earlier in this section, RNNs are
only able to backpropagate through ~10 time steps before the
gradient diminishes so much that parameter updates become
negligibly small. Because of this, simple RNNs are rarely used in
practice: More-sophisticated recurrent layer types like LSTMs,
which can backpropagate through ~100 time steps, are far more
common.

Long Short-Term Memory Units
As stated at the end of the preceding section, simple RNNs are
adequate if the space between the relevant information and the
context where it’s needed is small (fewer than 10 timesteps);
however, if the task requires a broader context (which is often
the case in NLP tasks), there is another recurrent layer type that
is well suited to it: long short-term memory units, or LSTMs.

LSTMs were introduced by Sepp Hochreiter and Jürgen
Schmidhuber in 1997,  but they are more widely used in NLP
deep learning applications today than ever before. The basic
structure of an LSTM layer is the same as the simple recurrent

44. The only situation we could think of where a simple RNN would be practical is
one where your sequences only had 10 or fewer consecutive timesteps of information
that are relevant to the problem you’re solving with your model. This might be the
case with some time series forecasting models or if you only had very short strings of
natural language in your dataset.

44
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layers captured in Figure 11.25. LSTMs receive input from the
sequence of data (e.g., a particular token from a natural
language document), and they also receive input from the
previous time point in the sequence. The difference is that
inside each cell in a simple recurrent layer (e.g., SimpleRNN()
in Keras), you’ll find a single neural network activation function
such as a tanh function, which transforms the RNN cell’s inputs
to generate its output. In contrast, the cells of an LSTM layer
contain a far more complex structure, as depicted in Figure
11.26.

Figure 11.26 Schematic diagram of an LSTM

45. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural



This schematic can appear daunting, and, admittedly, we
agree that a full step-by-step breakdown of each component
inside of an LSTM cell is unnecessarily detailed for this book.
That said, there are a few key points that we should nevertheless
touch on here. The first is the cell state running across the top of
the LSTM cell. Notice that the cell state does not pass through
any nonlinear activation functions. In fact, the cell state only
undergoes some minor linear transformations, but otherwise it
simply passes through from cell to cell. Those two linear
transformations (a multiplication and an addition operation)
are points where a cell in an LSTM layer can add information to
the cell state, information that will be passed onto the next cell
in the layer. In either case, there is a sigmoid activation
(represented by σ in the figure) before the information is added
to the cell state. Because a sigmoid activation produces values
between 0 and 1, these sigmoids act as “gates” that decide
whether new information (from the current timestep) is added
to the cell state or not.

The new information at the current timestep is a simple
concatenation of the current timestep’s input and the hidden
state from the preceding timestep. This concatenation has two
chances to be incorporated into the cell state—either linearly or
following a nonlinear tanh activation—and in either case it’s
those sigmoid gates that decide whether the information is
combined.

Computation, 9, 1735–80.

46. For a thorough exposition of LSTM cells, we recommend Christopher Olah’s
highly visual explainer, which is available at bit.ly/colahLSTM.
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After the LSTM has determined what information to add to
the cell state, another sigmoid gate decides whether the
information from the current input is added to the final cell
state, and this results in the output for the current timestep.
Notice that, under a different name (“hidden state”), the output
is also sent into the next LSTM module (which represents the
next timestep in the sequence), where it is combined with the
next timestep’s input to begin the whole process again, and that
(alongside the hidden state) the final cell state is also sent to the
module representing the next timestep.

We know this might be a lot to come to grips with. Another
way to distill this LSTM content is:

The cell state enables information to persist along the length of the
sequence, through each timestep in a given LSTM cell. It is the
long-term memory of the LSTM.

The hidden state is analogous to the recurrent connections in a
simple RNN and represents the short-term memory of the LSTM.

Each module represents a particular point in the sequence of data
(e.g., a particular token from a natural language document).

At each timestep, several decisions are made (using those sigmoid
gates) about whether the information at that particular timestep in
the sequence is relevant to the local (hidden state) and global (cell
state) contexts.

The first two sigmoid gates determine whether the information
from the current timestep is relevant to the global context (the cell
state) and how it will be combined into that stream.

The final sigmoid gate determines whether the information from
the current timestep is relevant to the local context (i.e., whether it
is added to the hidden state, which doubles as the output for the
current timestep).



We recommend taking a moment to reconsider Figure 11.26
and see if you can follow how information moves through an
LSTM cell. This task should be easier if you keep in mind that
the sigmoid gates decide whether information is let through or
not. Regardless, the primary take-aways from this section are:

Simple RNN cells pass only one type of information (the hidden
state) between timesteps and contain only one activation function.

LSTM cells are markedly more complex: They pass two types of
information between timesteps (hidden state and cell state) and
contain five activation functions.

Implementing an LSTM with Keras
Despite all of their additional computational complexity, as
demonstrated within our LSTM Sentiment Classifier notebook,
implementing LSTMs with Keras is a breeze. As shown in
Example 11.36, we selected the same hyperparameters for our
LSTM as we did for our simple RNN, except:

We changed the output directory name.

We updated variable names to n_lstm and drop_lstm.

We reduced the number of epochs of training to 4 because the
LSTM begins to overfit to the training data much earlier than the
simple RNN.

Example 11.36 LSTM sentiment classifier
hyperparameters

Click here to view code image

# output directory name:

output_dir = 'model_output/LSTM'



# training:

epochs = 4

batch_size = 128

# vector-space embedding:

n_dim = 64

n_unique_words = 10000

max_review_length = 100

pad_type = trunc_type = 'pre'

drop_embed = 0.2

# LSTM layer architecture:

n_lstm = 256

drop_lstm = 0.2

Our LSTM model architecture is also the same as our RNN
architecture, except that we replaced the SimpleRNN() layer
with LSTM(); see Example 11.37.

Example 11.37 LSTM sentiment classifier
architecture

Click here to view code image

from keras.layers import LSTM

model = Sequential()

model.add(Embedding(n_unique_words, n_dim,

                    input_length=max_review_length))

model.add(SpatialDropout1D(drop_embed))

model.add(LSTM(n_lstm, dropout=drop_lstm))

model.add(Dense(1, activation='sigmoid'))

The results of training the LSTM are provided in full in our
LSTM Sentiment Classifier notebook. To summarize, training



loss decreased steadily epoch over epoch, suggesting that
model-fitting proceeded more conventionally than with our
simple RNN. The results are not a slam dunk, however. Despite
its relative sophistication, our LSTM performed only as well as
our baseline dense model. The LSTM’s epoch with the lowest
validation loss is the second one (0.349); it had a validation
accuracy of 84.8 percent and an ROC AUC of 92.8 percent.

Bidirectional LSTMs
Bidirectional LSTMs (or Bi-LSTMs, for short) are a clever
variation on standard LSTMs. Whereas the latter involve
backpropagation in only one direction (typically backward over
timesteps, such as from the end of a movie review toward the
beginning), bidirectional LSTMs involve backpropagation in
both directions (backward and forward over timesteps) across
some one-dimensional input. This extra backpropagation
doubles computational complexity, but if accuracy is paramount
to your application, it is often worth it: Bi-LSTMs are a popular
choice in modern NLP applications because their ability to learn
patterns both before and after a given token within an input
document facilitates high-performing models.

Converting our LSTM architecture (Example 11.37) into a Bi-
LSTM architecture is painless. We need only wrap our LSTM()
layer within the Bidirectional() wrapper, as shown in
Example 11.38.

Example 11.38 Bidirectional LSTM sentiment
classifier architecture

Click here to view code image



from keras.layers import LSTM
from keras.layers.wrappers import Bidirectional # new!

model = Sequential()

model.add(Embedding(n_unique_words, n_dim,

                    input_length=max_review_length))

model.add(SpatialDropout1D(drop_embed))

model.add(Bidirectional(LSTM(n_lstm, dropout=drop_lstm)))

model.add(Dense(1, activation='sigmoid'))

The straightforward conversion from LSTM to Bi-LSTM
yielded substantial performance gains, as the results of model-
fitting show (provided in full in our Bi LSTM Sentiment
Classifier notebook). The epoch with the lowest validation loss
(0.331) was the fourth, which had validation accuracy of 86.0
percent and an ROC AUC of 93.5 percent, making it our second-
best model so far as it trails behind only our convolutional
architecture.

Stacked Recurrent Models
Stacking multiple RNN-family layers (be they SimpleRNN(),
LSTM, or another type) is not quite as straightforward as
stacking dense or convolutional layers in Keras—although it
certainly isn’t difficult: It requires only specifying an extra
argument when the layer is defined.

As we’ve discussed, recurrent layers take in an ordered
sequence of inputs. The recurrent nature of these layers comes
from their processing each timestep in the sequence and
passing along a hidden state as an input to the next timestep in
the sequence. Upon reaching the final timestep in the sequence,
the output of a recurrent layer is the final hidden state.



So in order to stack recurrent layers, we use the argument
return_sequences=True. This asks the recurrent layer to
return the hidden states for each step in the layer’s sequence.
The resulting output now has three dimensions, matching the
dimensions of the input sequence that was fed into it. The
default behavior of a recurrent layer is to pass only the final
hidden state to the next layer. This works perfectly well if we’re
passing this information to, say, a dense layer. If, however, we’d
like the subsequent layer in our network to be another recurrent
layer, that subsequent recurrent layer must receive a sequence
as its input. Thus, to pass the array of hidden states from across
all individual timesteps in the sequence (as opposed to only the
single final hidden state value) to this subsequent recurrent
layer, we set the optional return_sequences argument to
True.

To observe this in action, check out the two-layer Bi-LSTM
model shown in Example 11.39. (Notice that in this example we
still leave the final recurrent layer with its default
return_sequences=False so that only the final hidden state
of this final recurrent layer is returned for use further
downstream in the network.)

Example 11.39 Stacked recurrent model
architecture

47. There is also a return_state argument (which, like return_sequences,

defaults to False) that asks the network to return the final cell state in addition to

the final hidden state. This optional argument is not used as often, but it is useful
when we’d like to initialize a recurrent layer’s cell state with that of another layer, as
we do in “encoder-decoder” models (introduced in the next section).

47



Click here to view code image

from keras.layers import LSTM
from keras.layers.wrappers import Bidirectional

model = Sequential()

model.add(Embedding(n_unique_words, n_dim,

                    input_length=max_review_length))

model.add(SpatialDropout1D(drop_embed))

model.add(Bidirectional(LSTM(n_lstm_1, dropout=drop_lstm,

                             return_sequences=True))) # 

new!

model.add(Bidirectional(LSTM(n_lstm_2, dropout=drop_lstm)))

model.add(Dense(1, activation='sigmoid'))

As you’ve discovered a number of times since Chapter 1 of
this book, additional layers within a neural network model can
enable it to learn increasingly complex and abstract
representations. In this case, the abstraction facilitated by the
supplementary Bi-LSTM layer translated to performance gains.
The stacked Bi-LSTM outperformed its unstacked cousin by a
noteworthy margin, with an ROC AUC of 94.9 percent and
validation accuracy of 87.8 percent in its best epoch (the
second, with its validation loss of 0.296). The full results are
provided in our Stacked Bi LSTM Sentiment Classifier
notebook.

The performance of our stacked Bi-LSTM architecture,
despite being considerably more sophisticated than our
convolutional architecture and despite being designed
specifically to handle sequential data like natural language,
nevertheless lags behind the accuracy of our ConvNet model.
Perhaps some hyperparameter experimentation and fine-tuning



would yield better results, but ultimately our hypothesis is that
because the IMDb film review dataset is so small, our LSTM
models don’t have an opportunity to demonstrate their
potential. We opine that a much larger natural language dataset
would facilitate effective backpropagation over the many
timesteps associated with LSTM layers.

A relative of the LSTM within the family of RNNs is the gated recurrent unit (GRU).
GRUs are slightly less computationally intensive than LSTMs because they involve
only three activation functions, and yet their performance often approaches the
performance of LSTMs. If a bit more compute isn’t a deal breaker for you, we see little
advantage in choosing a GRU over an LSTM. If you’re interested in trying a GRU in
Keras anyway, it’s as easy as importing the GRU() layer type and dropping it into a
model architecture where you might otherwise place an LSTM() layer. Check out our
GRU Sentiment Classifer notebook for a hands-on example.

Seq2seq and Attention
Natural language techniques that involve so-called sequence-to-
sequence (seq2seq; pronounced “seek-to-seek”) models take in
an input sequence and generate an output sequence as their
product. Neural machine translation (NMT) is a quintessential
class of seq2seq models, with Google Translate’s machine-
translation algorithm serving as an example of NMT being used
in a production system.

48. If you’d like to test our hypothesis yourself, we provide appropriate sentiment
analysis dataset suggestions in Chapter 14.

49. Cho, K., et al. (2014). Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv:1406.1078.

50. Google Translate has incorporated NMT since 2016. You can read more about it

48
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NMTs consist of an encoder-decoder structure, wherein the
encoder processes the input sequence and the decoder
generates the output sequence. The encoder and decoder are
both RNNs, and so during the encoding step there exists a
hidden state that is passed between units of the RNN. At the
end of the encoding phase, the final hidden state is passed to the
decoder; this final state can be referred to as the “context.” In
this way, the decoder starts with a context for what is
happening in the input sequence. Although this idea is sound in
theory, the context is often a bottleneck: It’s difficult for models
to handle really long sequences, and so the context loses its
punch.

Attention was developed to overcome the computational
bottleneck associated with context.  In a nutshell, instead of
passing a single hidden state vector (the final one) from the
encoder to the decoder, with attention we pass the full sequence
of hidden states to the decoder. Each of these hidden states is
associated with a single step in the input sequence, although the
decoder might need the context from multiple steps in the input
to inform its behavior at any given step during decoding. To
achieve this, for each step in the sequence the decoder
calculates a score for each of the hidden states from the
encoder. Each encoder hidden state is multiplied by the softmax
of its score.  This serves to amplify the most relevant contexts
(they would have high scores, and thus higher softmax
probabilities) while muting the ones that aren’t relevant; in
essence, attention weights the available contexts for a given
timestep. The weighted hidden states are summed, and this new

at bit.ly/translateNMT.
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context vector is used to predict the output for each timestep in
the decoder sequence. Following this approach, the model
selectively reviews what it knows about the input sequence and
uses only the relevant information where necessary to inform
the output. It’s paying attention to the most relevant elements
of the whole sentence!

If this book were dedicated solely to NLP, we’d have at least a
chapter covering seq2seq and attention. As it stands, we’ll have
to leave it to you to further explore these techniques, which are
raising the bar of the performance of many NLP applications.

Transfer Learning in NLP
Machine vision practitioners have for a number of years been
helped along by the ready availability of nuanced models that
have been pretrained on large, rich datasets. As covered in the
“Transfer Learning” section near the end of Chapter 10, casual
users can download model architectures with pretrained
weights and rapidly scale up their particular vision application
to a state-of-the-art model. Well, more recently, such transfer
learning has become readily available for NLP, too.

51. Bahdanau, D., et al. (2014). Neural machine translation by jointly learning to
align and translate. arXiv:1409.0473.

52. Recall from Chapter 6 that the softmax function takes a vector of real numbers
and generates a probability distribution with the same number of classes as the input
vector.

53. When we introduced Keras Embedding() layers earlier in this chapter, we

touched on transfer learning with word vectors. The transfer learning approaches
covered in this section—ULMFiT, ELMo, and BERT—are closer in spirit to the

53



First came ULMFiT (universal language model fine-tuning),
wherein tools were described and open-sourced that enabled
others to use a lot of what the model learns during
pretraining.  In this way, models can be fine-tuned on task-
specific data, thus requiring less training time and fewer data to
attain high-accuracy results.

Shortly thereafter, ELMo (embeddings from language
models) was revealed to the world.  In this update to the
standard word vectors we introduced in this chapter, the word
embeddings are dependent not only on the word itself but also
on the context in which the word occurs. In place of a fixed
word embedding for each word in the dictionary, ELMo looks at
each word in the sentence before assigning each word a specific
embedding. The ELMo model is pretrained on a very large
corpus; if you had to train it yourself, it would likely strain your
compute resources, but you can now nevertheless use it as a
component in your own NLP models.

The final transfer learning development we’ll mention is the
release of BERT (bi-directional encoder representations from
transformers) from Google.  Perhaps even more so than

transfer learning of machine vision, because (analogous to the hierarchical visual
features that are represented by a deep CNN; see Figure 1.17) they allow for the
hierarchical representation of the elements of natural language (e.g., subwords,
words, and context, as in Figure 2.9). Word vectors, in contrast, have no hierarchy;
they capture only the word level of language.

54. Howard, J., and Ruder, S. (2018). Universal language model fine-tuning for text
classification. arXiv:1801.06146.

55. Peters, M.E., et al. (2018). Deep contextualized word representations.
arXiv:1802.05365.
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ULMFiT and ELMo, pretrained BERT models tuned to
particular NLP tasks have been associated with the achievement
of new state-of-the-art benchmarks across a broad range of
applications, while requiring much less training time and fewer
data to get there.

NON-SEQUENTIAL ARCHITECTURES: THE
KERAS FUNCTIONAL API
To solve a given problem, there are countless ways that the layer
types we’ve already covered in this book can be recombined to
form deep learning model architectures. For example, see our
Conv LSTM Stack Sentiment Classifier notebook, wherein we
were extra creative in designing a model that involves a
convolutional layer passing its activations into a Bi-LSTM
layer.  Thus far, however, our creativity has been constrained
by our use of the Keras Sequential() model, which requires
each layer to flow directly into a following one.

Although sequential models constitute the vast majority of
deep learning models, there are times when non-sequential
architectures—which permit infinite model-design possibilities
and are often more complex—could be warranted.  In such
situations, we can take advantage of the Keras functional API,
which makes use of the Model class instead of the Sequential
models we’ve worked with so far in this book.

56. Devlin, J., et al. (2018). BERT: Pre-training of deep bidirectional transformers for
language understanding. arXiv: 0810.04805.

57. This conv-LSTM model approached the validation accuracy and ROC AUC of our
Stacked Bi-LSTM architecture, but each epoch trained in 82 percent less time.
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As an example of a non-sequential architecture, we decided
to riff on our highest-performing sentiment classifier, the
convolutional model, to see if we could squeeze more juice out
of the proverbial lemon. As diagrammed in Figure 11.27, our
idea was to have three parallel streams of convolutional layers—
each of which takes in word vectors from an Embedding()
layer. As in our Convolutional Sentiment Classifier notebook,
one of these streams would have a filter length of three tokens.
One of the others will have a filter length of two—so it will
specialize in learning word-vector pairs that appear to be
relevant to classifying a film review as having positive or
negative sentiment. The third convolutional stream will have a
filter length of four tokens, so it will specialize in detecting
relevant quadruplets of word meaning.

58. Popular aspects of non-sequential models include having multiple model inputs
or outputs (potentially at different levels within the architecture; e.g., a model could
have an additional input or an additional output midway through the architecture),
sharing the activations of a single layer with multiple other layers, and creating
directed acyclic graphs.



Figure 11.27 A non-sequential model architecture: Three
parallel streams of convolutional layers—each with a unique

filter length (k = 2, k = 3, or k = 4)—receive input from a word-
embedding layer. The activations of all three streams are

concatenated together and passed into a pair of sequentially
stacked dense hidden layers en route to the sigmoid output



neuron.

The hyperparameters for our three-convolutional-stream
model are provided in Example 11.40 as well as in our Multi
ConvNet Sentiment Classifier Jupyter notebook.

Example 11.40 Multi-ConvNet sentiment classifier
hyperparameters

Click here to view code image

# output directory name:

output_dir = 'model_output/multiconv'

# training:

epochs = 4

batch_size = 128

# vector-space embedding:

n_dim = 64

n_unique_words = 5000

max_review_length = 400

pad_type = trunc_type = 'pre'

drop_embed = 0.2

# convolutional layer architecture:

n_conv_1 = n_conv_2 = n_conv_3 = 256

k_conv_1 = 3

k_conv_2 = 2

k_conv_3 = 4

# dense layer architecture:

n_dense = 256

dropout = 0.2

The novel hyperparameters are associated with the three



convolutional layers. All three convolutional layers have 256
filters, but mirroring the diagram in Figure 11.27, the layers
form parallel streams—each with a unique filter length (k) that
ranges from 2 up to 4.

The Keras code for our multi-ConvNet model architecture is
provided in Example 11.41.

Example 11.41 Multi-ConvNet sentiment classifier
architecture

Click here to view code image

from keras.models import Model
from keras.layers import Input, concatenate

# input layer:

input_layer = Input(shape=(max_review_length,),

                    dtype='int16', name='input')

# embedding:

embedding_layer = Embedding(n_unique_words, n_dim,

                            name='embedding')(input_layer)

drop_embed_layer = SpatialDropout1D(drop_embed,

                                    name='drop_embed')

(embedding_layer)

# three parallel convolutional streams:

conv_1 = Conv1D(n_conv_1, k_conv_1,

                          activation='relu', name='conv_1')

(drop_embed_layer)

maxp_1 = GlobalMaxPooling1D(name='maxp_1')(conv_1)

conv_2 = Conv1D(n_conv_2, k_conv_2, activation='relu', 

name='conv_2')(drop_embed_layer)

maxp_2 = GlobalMaxPooling1D(name='maxp_2')(conv_2)



conv_3 = Conv1D(n_conv_3, k_conv_3,

                activation='relu', name='conv_3')

(drop_embed_layer)

maxp_3 = GlobalMaxPooling1D(name='maxp_3')(conv_3)

# concatenate the activations from the three streams:

concat = concatenate([maxp_1, maxp_2, maxp_3])

# dense hidden layers:

dense_layer = Dense(n_dense,

                    activation='relu', name='dense')

(concat)

drop_dense_layer = Dropout(dropout, name='drop_dense')

(dense_layer)

dense_2 = Dense(int(n_dense/4),

                activation='relu', name='dense_2')

(drop_dense_layer)

dropout_2 = Dropout(dropout, name='drop_dense_2')(dense_2)

# sigmoid output layer:

predictions = Dense(1, activation='sigmoid', name='output')

(dropout_2)

# create model:

model = Model(input_layer, predictions)

This architecture may look a little alarming if you haven’t seen
the Keras Model class used before, but as we break it down line-
by-line here, it should lose any intimidating aspects it might
have:

With the Model class, we specify the Input() layer independently,
as opposed to specifying it as the shape argument of the first
hidden layer. We specified the data type (dtype) explicitly: 16-bit
integers (int16) can range up to 32,767, which will accommodate
the maximum index of the words we input.  As with all of the59



layers in this model, we specify a recognizable name argument so
that when we print the model later (using model.summary()) it
will be easy to make sense of everything.

Every layer is assigned to a unique variable name, such as
input_layer, embedding_layer, and conv_2. We will use
these variable names to specify the flow of data within our model.

The most noteworthy aspect of using the Model class, which will be
familiar to developers who have worked with functional
programming languages, is the variable name within the second set
of parentheses following any layer call. This specifies which layer’s
outputs are flowing into a given layer. For example,
(input_layer) in the second set of parentheses of the
embedding_layer indicates that the output of the input layer
flows into the embedding layer.

The Embedding() and SpatialDropout1D layers take the same
arguments as before in this chapter.

The output of the SpatialDropout1D layer (with a variable
named drop_embed_layer) is the input to three separate,
parallel convolutional layers: conv_1, conv_2, and conv_3.

As per Figure 11.27, each of the three convolutional streams
includes a Conv1D layer (with a unique k_conv filter length) and a
GlobalMaxPooling1D layer.

The activations output by the GlobalMaxPooling1D layer of each
of the three convolutional streams are concatenated into a single
array of activation values by the concatenate() layer, which
takes in a list of inputs ([maxp_1, maxp_2, maxp_3]) as its
only argument.

The concatenated convolutional-stream activations are provided as
input to two Dense() hidden layers, each of which has a
Dropout() layer associated with it. (The second dense layer has
one-quarter as many neurons as the first, as specified by



n_dense/4.)

The activations output by the sigmoid output neuron (ŷ) are
assigned to the variable name predictions.

Finally, the Model class ties all of the model’s layers together by
taking two arguments: the variable name of the input layer (i.e.,
input_layer) and the output layer (i.e., predictions).

Our elaborate parallel network architecture ultimately
provided us with a modest bump in capability to give us the
best-performing sentiment classifier in this chapter (see Table
11.6). As detailed in our Multi ConvNet Sentiment Classifier
notebook, the lowest validation loss was attained in the second
epoch (0.262), and this epoch was associated with a validation
accuracy of 89.4 percent and an ROC AUC of 96.2 percent—a
tenth of a percent better than our Sequential convolutional
model.

Table 11.6 Comparison of the performance of our
sentiment classifier model architectures

Model ROC AUC (%)

Dense 92.9

Convolutional 96.1

Simple RNN 84.9

59. The index goes up to only 5,500, because of the n_unique_words and

n_words_to_skip hyperparameters we selected.



LSTM 92.8

Bi-LSTM 93.5

Stacked Bi-LSTM 94.9

GRU 93.0

Conv-LSTM 94.5

Multi-ConvNet 96.2

SUMMARY
In this chapter, we discussed methods for preprocessing natural
language data, ways to create word vectors from a corpus of
natural language, and the procedure for calculating the area
under the receiver operating characteristic curve. In the second
half of the chapter, we applied this knowledge to experiment
with a wide range of deep learning NLP models for classifying
film reviews as favorable or negative. Some of these models
involved layer types you were familiar with from earlier
chapters (i.e., dense and convolutional layers), while later ones
involved new layer types from the RNN family (LSTMs and
GRUs) and, for the first time in this book, a non-sequential



model architecture.

A summary of the results of our sentiment-classifier
experiments are provided in Table 11.6. We hypothesize that,
had our natural language dataset been much larger, the Bi-
LSTM architectures might have outperformed the convolutional
ones.

KEY CONCEPTS
Here are the essential foundational concepts thus far. New
terms from the current chapter are highlighted in purple.

parameters:

weight w

bias b

activation a

artificial neurons:

sigmoid

tanh

ReLU

linear

input layer

hidden layer

output layer

layer types:



dense (fully connected)

softmax

convolutional

max-pooling

flatten

embedding

RNN

(bidirectional-)LSTM

concatenate

cost (loss) functions:

quadratic (mean squared error)

cross-entropy

forward propagation

backpropagation

unstable (especially vanishing) gradients

Glorot weight initialization

batch normalization

dropout

optimizers:

stochastic gradient descent

Adam



optimizer hyperparameters:

learning rate η

batch size

word2vec



12. Generative Adversarial Networks

Back in Chapter 3, we introduced the idea of deep learning
models that can create novel and unique pieces of visual
imagery—images that we might even be able to call art. In this
chapter, we combine the high-level theory from Chapter 3 with
the convolutional networks from Chapter 10, the Keras Model
class from Chapter 11, and a couple of new layer types, enabling
you to code up a generative adversarial network (GAN) that
outputs images in the style of sketches hand drawn by humans.

ESSENTIAL GAN THEORY
At its highest level, a GAN involves two deep learning networks
pitted against each other in an adversarial relationship. As
depicted by the trilobites in Figure 3.4, one network is a
generator that produces forgeries of images, and the other is a
discriminator that attempts to distinguish the generator’s fakes
from the real thing. Moving from trilobites to slightly more-
technical schematic sketches, the generator is tasked with
receiving a random noise input and turning this into a fake
image, as shown on the left in Figure 12.1. The discriminator—a
binary classifier of real versus fake images—is shown in Figure
12.1 on the right. (The schematics in this figure are highly
simplified for illustrative purposes, but we’ll go into more detail
shortly.) Over several rounds of training, the generator becomes



better at producing more-convincing forgeries, and so too the
discriminator improves its capacity for detecting the fakes. As
training continues, the two models battle it out, trying to outdo
one another, and, in so doing, both models become more and
more specialized at their respective tasks. Eventually this
adversarial interplay can culminate in the generator producing
fakes that are convincing not only to the discriminator network
but also to the human eye.

Figure 12.1 Highly simplified schematic diagrams of the two
models that make up a typical GAN: the generator (left) and the

discriminator (right)

Training a GAN consists of two opposing (adversarial!)
processes:

1. Discriminator training: As mapped out in Figure 12.2, in this process
the generator produces fake images—that is, it performs inference only1



—while the discriminator learns to tell the fake images from real ones.

Figure 12.2 This is an outline of the discriminator training loop.
Forward propagation through the generator produces fake images.

These are mixed into batches with real images from the dataset and,
together with their labels, are used to train the discriminator. Learning
paths are shown in green, while non-learning paths are shown in black

and the blue arrow calls attention to the image labels, y.

2. Generator training: As depicted in Figure 12.3, in this process the
discriminator judges fake images produced by the generator. Here, it is
the discriminator that performs inference only, whereas it’s the
generator that uses this information to learn—in this case, to learn how
to better fool the discriminator into classifying fake images as real ones.



Figure 12.3 An outline of the generator training loop. Forward
propagation through the generator produces fake images, and inference
with the discriminator scores these images. The generator is improved

through backpropagation. As in Figure 12.2, learning paths are shown in
green, and non-learning paths are shown in black. The blue arrow calls
attention to the relationship between the image and its label y which, in

the case of generator training, is always equal to 1.

Thus, in each of these two processes, one of the models creates
its output (either a fake image or a prediction of whether the
image is fake) but is not trained, and the other model uses that
output to learn to perform its task better.

During the overall process of training a GAN, discriminator
training alternates with generator training. Let’s dive into both
training processes in a bit more detail, starting with

1. Inference is forward propagation alone. It does not involve model training (via,
e.g., backpropagation).



discriminator training (see Figure 12.2):

The generator produces fake images (by inference; shown in black)
that are mixed in with batches of real images and fed into the
discriminator for training.

The discriminator outputs a prediction (ŷ) that corresponds to the
likelihood that the image is real.

The cross-entropy cost is evaluated for the discriminator’s ŷ
predictions relative to the true y labels.

Via backpropagation tuning the discriminator’s parameters (shown
in green), the cost is minimized in order to train the model to better
distinguish real images from fake ones.

Note well that during discriminator training, it is only the
discriminator network that is learning; the generator network is
not involved in the backpropagation, so it doesn’t learn
anything.

Now let’s turn our focus to the process that discriminator
training alternates with: the training of the generator (shown in
Figure 12.3):

The generator receives a random noise vector z as input  and
produces a fake image as an output.

The fake images produced by the generator are fed directly into the
discriminator as inputs. Crucially to this process, we lie to the
discriminator and label all of these fake images as real (y = 1).

The discriminator (by inference; shown in black) outputs ŷ
predictions as to whether a given input image is real or fake.

Cross-entropy cost here is used to tune the parameters of the
generator network (shown in green). More specifically, the
generator learns how convincing its fake images are to the
discriminator network. By minimizing this cost, the generator will

2



learn to produce forgeries that the discriminator mistakenly labels
as real—forgeries that may even appear to be real to the human eye.

So, during generator training, it is only the generator network
that is learning. Later in this chapter, we show you how to freeze
the discriminator’s parameters so that backpropagation can
tune the generator’s parameters without influencing the
discriminator in any way.

At the onset of GAN training, the generator has no idea yet
what it’s supposed to be making, so—being fed random noise as
inputs—the generator produces images of random noise as
outputs. These poor-quality fakes contrast starkly with the real
images—which contain combinations of features that blend to
form actual images—and therefore the discriminator initially
has no trouble at all learning to distinguish real from fake. As
the generator trains, however, it gradually learns how to
replicate some of the structure of the real images. Eventually,
the generator becomes crafty enough to fool the discriminator,
and thus in turn the discriminator learns more-complex and
nuanced features from the real images such that outwitting the
discriminator becomes trickier. Back and forth, alternating
between generator training and discriminator training in this
way, the generator learns to forge ever-more-convincing images.
At some point, the two adversarial models arrive at a stalemate:
They reach the limits of their architectures, and learning stalls
on both sides.

2. This random noise vector z corresponds to the latent-space vector introduced in
Chapter 3 (see Figure 3.4), and it is unrelated to the z variable that has been used
since Figure 6.8 to represent w · x + b. We cover this in more detail later on in this
chapter.

3



At the conclusion of training, the discriminator is discarded
and the generator is our final product. We can feed in random
noise, and it will output images that match the style of the
images the adversarial network was trained on. In this sense,
the generative capacity of GANs could be considered creative. If
provided with a large training dataset of photos of celebrity
faces, a GAN can produce convincing photos of “celebrities” that
have never existed. As in Figure 3.4, by passing specific z values
into this generator, we would be specifying particular
coordinates within the GAN’s latent space, enabling us to output
a celebrity face with whatever attributes we desire—such as a
particular age, gender, or type of eyeglasses. In the GAN that
you’ll train in this chapter, you’ll use a training dataset
consisting of sketches hand drawn by humans, so our GAN will
learn to produce novel drawings—ones that no human mind has
conceived of before. Hold tight for that section, where we
discuss the specific architectures of the generator and
discriminator in more detail. First, though, we describe how to
download and process these sketch data.

THE QUICK, DRAW! DATASET
At the conclusion of Chapter 1, we encouraged you to play a
round of the Quick, Draw! game.  If you did, then you
contributed to the world’s largest dataset of sketches. At the
time of this writing, the Quick, Draw! dataset consists of 50
million drawings across 345 categories. Example drawings from

3. More-complex generator and discriminator networks would learn more-complex
features and produce more-realistic images. However, in some cases we don’t need
that complexity, and of course these models would be harder to train.

4



12 of these categories are provided in Figure 12.4, including
from the categories of ant, anvil, and apple. The GAN we’ll
build in this chapter will be trained on images from the apple
category, but you’re welcome to choose any category you fancy.
You could even train on several categories simultaneously if
you’re feeling adventurous!

Figure 12.4 Example of sketches drawn by humans who have
played the Quick, Draw! game. Baseballs, baskets, and bees—oh

my!

4. quickdraw.withgoogle.com

5. If you have a lot of compute resources available to you (we’d recommend multiple
GPUs), you could train a GAN on the data from all 345 sketch categories
simultaneously. We haven’t tested this, so it really would be an adventure.

5

http://quickdraw.withgoogle.com


The GitHub repository of the Quick, Draw! game dataset can
be accessed via bit.ly/QDrepository. The data are
available in several formats there, including as raw and
unmoderated images. In the interest of having relatively
uniform data, we recommend using preprocessed data, which
are centered and scaled doodles, among other more-technical
adjustments. Specifically, for the simplicity of working with the
data in Python, we recommend selecting the NumPy-formatted
bitmaps of the preprocessed data.

We downloaded the apple.npy file, but you could pick any
category that you desire for your own GAN. The contents of our
Jupyter working directory are shown in Figure 12.5 with the
data file stored here:

Click here to view code image

/deep-learning-illustrated/quickdraw_data/apples.npy

6. These particular data are available at bit.ly/QDdata for you to download.

6



Figure 12.5 The directory structure inside the Docker
container that is running Jupyter. We put our

quickdraw_data directory (for storing Quick, Draw! NumPy
bitmaps) at the same level as our notebooks directory (which

contains all of the Jupyter notebooks we’ve been running in this
book).

You’re welcome to store the data elsewhere, and you’re welcome
to change the filename (especially if you downloaded a category
other than apples); if you do, however, be mindful that you’ll
need to update your data-loading code (coming up in Example
12.2) accordingly.

The first step, as you should be used to by now, is to load the
package dependencies. For our Generative Adversarial
Network notebook, these dependencies are provided in
Example 12.1.7



Example 12.1 Generative adversarial network
dependencies

Click here to view code image

# for data input and output:

import numpy as np
import os

# for deep learning:

import keras
from keras.models import Model
from keras.layers import Input, Dense, Conv2D, Dropout
from keras.layers import BatchNormalization, Flatten
from keras.layers import Activation
from keras.layers import Reshape # new!
from keras.layers import Conv2DTranspose, UpSampling2D # 
new!

from keras.optimizers import RMSprop # new!

# for plotting:

import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

All of these dependencies have popped up previously in this
book except for three new layers and the RMSProp optimizer,
which we’ll go over as we design our model architecture.

Okay, now back to loading the data. Assuming you set up
your directory structure the same as ours and downloaded the

7. Our GAN architecture is based on Rowel Atienza’s, which you can check out in
GitHub via bit.ly/mnistGAN.

8. We introduced RMSProp in Chapter 9. Skip back to the section “Fancy Optimizers”
if you’d like a refresher.
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apple.npy file, you can load these data in using the command
in Example 12.2.

Example 12.2 Loading the Quick, Draw! data

Click here to view code image

input_images = "../quickdraw_data/apple.npy"

data = np.load(input_images)

Again, if your directory structure is different from ours or you
selected a different category of NumPy images from the Quick,
Draw! dataset, then you’ll need to amend the input_images
path variable to your particular circumstance.

Running data.shape outputs the two dimensions of your
training data. The first dimension is the number of images. At
the time of this writing, the apples category had 145,000
images, but there are likely to be more by the time you’re
reading this. The second dimension is the pixel count of each
image. This value is 784, which should be familiar because—like
the MNIST digits—these images have a 28×28-pixel shape.

Not only do these Quick, Draw! images have the same
dimensions as the MNIST digits, but they are also represented
as 8-bit integers, that is, integers ranging from 0 to 255. You
can examine one—say, the 4,243rd image—by executing
data[4242]. Because the data are still in a one-dimensional
array, this doesn’t show you much. You should reformat the
data as follows:

Click here to view code image



data = data/255

data = np.reshape(data,(data.shape[0],28,28,1))

img_w,img_h = data.shape[1:3]

Let’s examine this code line by line:

We divide by 255 to scale our pixels to be in the range of 0 to 1, just
as we did for the MNIST digits.

The first hidden layer of our discriminator network will consist of
two-dimensional convolutional filters, so we convert the images
from 1 × 784-pixel arrays to 28 × 28-pixel matrices. The NumPy
reshape() method does this for us. Note that the fourth
dimension is 1 because the images are monochromatic; it would be
3 if the images were full-color.

We store the image width (img_w) and height (img_h) for use
later.

Figure 12.6 provides an example of what our reformatted
data look like. We printed that example—a bitmap of the
4,243rd sketch from the apple category—by running this code:

Click here to view code image

plt.imshow(data[4242,:,:,0], cmap='Greys')

9. See the footnote near Example 5.4 for an explanation as to why we scale in this
way.
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Figure 12.6 This example bitmap is the 4,243rd sketch from
the apple category of the Quick, Draw! dataset.

THE DISCRIMINATOR NETWORK
Our discriminator is a fairly straightforward convolutional
network, involving the Conv2D layers detailed in Chapter 10
and the Model class introduced at the end of Chapter 11. See the
code in Example 12.3.

Example 12.3 Discriminator model architecture

Click here to view code image

def build_discriminator(depth=64, p=0.4):

    # Define inputs

    image = Input((img_w,img_h,1))



    # Convolutional layers

    conv1 = Conv2D(depth*1, 5, strides=2,

                   padding='same', activation='relu')

(image)

    conv1 = Dropout(p)(conv1)

    conv2 = Conv2D(depth*2, 5, strides=2,

               padding='same', activation='relu')(conv1)

    conv2 = Dropout(p)(conv2)

    conv3 = Conv2D(depth*4, 5, strides=2,

                   padding='same', activation='relu')

(conv2)

    conv3 = Dropout(p)(conv3)

    conv4 = Conv2D(depth*8, 5, strides=1,

               padding='same', activation='relu')(conv3)

    conv4 = Flatten()(Dropout(p)(conv4))

    # Output layer

    prediction = Dense(1, activation='sigmoid')(conv4)

    # Model definition

    model = Model(inputs=image, outputs=prediction)

    return model

For the first time in this book, rather than create a model
architecture directly we instead define a function
(build_discriminator) that returns the constructed model
object. Considering the schematic of this model in Figure 12.7
and the code in Example 12.3, let’s break down each piece of the
model:

The input images are 28×28 pixels in size. This is passed to the
input layer by the variables img_w and img_h.



There are four hidden layers, and all of them are convolutional.

The number of convolutional filters per layer doubles layer-by-layer
such that the first hidden layer has 64 convolutional filters (and
therefore outputs an activation map with a depth of 64), whereas
the fourth hidden layer has 512 convolutional filters (corresponding
to an activation map with a depth of 512).

The filter size is held constant at 5 × 5.

The stride length for the first three convolutional layers is 2 × 2,
which means that the activation map’s height and width are roughly
halved by each of these layers (recall Equation 10.3). The stride
length for the last convolutional layer is 1 × 1, so the activation map
it outputs has the same height and width as the activation map
input into it (4 × 4).

Dropout of 40 percent (p=0.4) is applied to every convolutional
layer.

10
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Figure 12.7 A schematic representation of our discriminator
network for predicting whether an input image is real (in this case,

a hand-drawn apple from the Quick, Draw! dataset) or fake
(produced by an image generator)

We flatten the three-dimensional activation map from the final



convolutional layer so that we can feed it into the dense output
layer.

As with the film sentiment models in Chapter 11, discriminating
real images from fakes is a binary classification task, so our (dense)
output layer consists of a single sigmoid neuron.

To build the discriminator, we call our
build_discriminator function without any arguments:

Click here to view code image

discriminator = build_discriminator()

A summary of the model architecture can be output by calling
the model’s summary method, which shows that the model has
a total of 4.3 million parameters, most of which (76 percent) are
associated with the final convolutional layer.

Example 12.4 provides code for compiling the discriminator.

Example 12.4 Compiling the discriminator network

Click here to view code image

discriminator.compile(loss='binary_crossentropy',

                      optimizer=RMSprop(lr=0.0008,

                                        decay=6e-8,

10. More filters lead to more parameters and more model complexity, but also
contribute to greater sharpness in the images the GANs produce. These values work
well enough for this example.

11. We’ve largely used a filter size of 3 × 3 thus far in the book, although GANs can
benefit from a slightly larger filter size, especially earlier in the network.



                                        clipvalue=1.0),

                      metrics=['accuracy'])

Let’s look at Example 12.4 line by line:

As in Chapter 11, we use the binary cross-entropy cost function
because the discriminator is a binary classification model.

Introduced in Chapter 9, RMSprop is an alternative “fancy
optimizer” to Adam.

The decay rate (decay, ρ) for the RMSprop optimizer is a
hyperparameter described in Chapter 9.

Finally, clipvalue is a hyperparameter that prevents (i.e., clips)
the gradient of learning (the partial-derivative relationship between
cost and parameter values during stochastic gradient descent) from
exceeding this value; clipvalue thereby explicitly limits
exploding gradients (see Chapter 9). This particular value of 1.0 is
common.

THE GENERATOR NETWORK
Although the CNN architecture of the discriminator network
should largely look familiar, the generator network contains a
number of aspects that you haven’t encountered previously in
this book. The generator model is shown schematically in Figure
12.8.

12. Ian Goodfellow and his colleagues published the first GAN paper in 2014. At the
time, RMSProp was an optimizer already in vogue (the researchers Kingma and Ba
published on Adam in 2014 as well, and it has become more popular in the years
since). You might need to tune the hyperparameters a bit, but you could probably
substitute RMSProp with Adam to similar effect.
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Figure 12.8 A schematic representation of our generator
network, which takes in noise (in this case, representing 32
latent-space dimensions) and outputs a 28×28-pixel image.

After training as part of an adversarial network, these images



should resemble images from the training dataset (in this case,
hand-drawn apples).

We refer to the generator as a deCNN because it features de-
convolutional layers (also known as convTranspose layers) that
perform the opposite function of the typical convolutional layers
you’ve encountered so far. Instead of detecting features and
outputting an activation map of where the features occur in an
image, de-convolutional layers take in an activation map and
arrange the features spatially as outputs. An early step in the
generative network reshapes the noise input (a one-dimensional
vector) into a two-dimensional array that can be used by the de-
convolutional layers. Through several layers of de-convolution,
the generator converts the random noise inputs into fake
images.

The code to build the generator model is in Example 12.5.

Example 12.5 Generator model architecture

Click here to view code image

z_dimensions = 32

def build_generator(latent_dim=z_dimensions,
                    depth=64, p=0.4):

    # Define inputs

    noise = Input((latent_dim,))

    # First dense layer

    dense1 = Dense(7*7*depth)(noise)

    dense1 = BatchNormalization(momentum=0.9)(dense1)

    dense1 = Activation(activation='relu')(dense1)

    dense1 = Reshape((7,7,depth))(dense1)



    dense1 = Dropout(p)(dense1)

    # De-Convolutional layers

    conv1 = UpSampling2D()(dense1)

    conv1 = Conv2DTranspose(int(depth/2),

                            kernel_size=5, padding='same',

                            activation=None,)(conv1)
    conv1 = BatchNormalization(momentum=0.9)(conv1)

    conv1 = Activation(activation='relu')(conv1)

    conv2 = UpSampling2D()(conv1)

    conv2 = Conv2DTranspose(int(depth/4),

                            kernel_size=5, padding='same',

                            activation=None,)(conv2)
    conv2 = BatchNormalization(momentum=0.9)(conv2)

    conv2 = Activation(activation='relu')(conv2)

    conv3 = Conv2DTranspose(int(depth/8),

                            kernel_size=5, padding='same',

                            activation=None,)(conv2)
    conv3 = BatchNormalization(momentum=0.9)(conv3)

    conv3 = Activation(activation='relu')(conv3)

    # Output layer

    image = Conv2D(1, kernel_size=5, padding='same',

                   activation='sigmoid')(conv3)

    # Model definition

    model = Model(inputs=noise, outputs=image)

    return model

Let’s go through the architecture in detail:

We specify the number of dimensions in the input noise vector
(z_dimensions) as 32. Configuring this hyperparameter follows
the same advice we gave for selecting the number of dimensions in
word-vector space in Chapter 11: A higher-dimensional noise vector



has the capacity to store more information and thus can improve
the quality of the GAN’s fake-image output; however, this comes at
the cost of increased computational complexity. Generally, we
recommend experimenting with varying this hyperparameter by
multiples of 2.

As with our discriminator model architecture (Example 12.3), we
again opted to wrap our generator architecture within a function.

The input is the random noise array with a length corresponding to
latent_dim, which in this case is 32.

The first hidden layer is a dense layer. This fully connected layer
enables the latent-space input to be flexibly mapped to the spatial
(de-convolutional) hidden layers that follow. The 32 input
dimensions are mapped to 3,136 neurons in the dense layer, which
outputs a one-dimensional array of activations. These activations
are then reshaped into a 7×7×64 activation map. This dense layer is
the only layer in the generator where dropout is applied.

The network has three de-convolutional layers (specified by
Conv2DTranspose). The first has 32 filters, and this number is
halved successively in the remaining two layers.  While the
number of filters decreases, the size of the filters increases, thanks
to the upsampling layers (UpSampling2D). Each time upsampling
is applied (with its default parameters, as we use it here), both the
height and the width of the activation map double.  All three de-
convolutional layers have the following:

5×5

Stride of 1 × 1 (the default)

Padding set to same to maintain the dimensions of the
activation maps after de-convolution

ReLU activation functions

Batch normalization applied (to promote regularization)

13
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The output layer is a convolutional layer that collapses the
28×28×8 activation maps into a single 28×28×1 image. The
sigmoid activation function in this last step ensures that the pixel
values range from 0 to 1, just like the data from real images that we
feed into the discriminator separately.

Exactly as we did with the discriminator network, we call the
build_generator function without supplying any arguments
to build the generator:

Click here to view code image

generator = build_generator()

Calling the model’s summary method shows that the generator
has only 177,000 trainable parameters—a mere 4 percent of the
number of parameters in the discriminator.

THE ADVERSARIAL NETWORK
Combining the training processes from Figures 12.2 and 12.3,
we arrive at the outline in Figure 12.9. By executing the code
examples so far in this chapter, we have accomplished the
following:

With respect to discriminator training (Figure 12.2), we’ve
constructed our discriminator network and compiled it: It’s ready
to be trained on real and fake images so that it can learn how to

13. As with convolutional layers, the number of filters in the layer corresponds to the
number of slices (the depth) of the activation map the layer outputs.

14. This makes upsampling roughly the inverse of pooling.



distinguish between these two classes.

With respect to generator training (Figure 12.3), we’ve constructed
our generator network, but it needs to be compiled as part of the
larger adversarial network in order to be ready for training.

Figure 12.9 Shown here is a summary of the whole adversarial
network. The horizontal dashes visually separate generator training

from discriminator training. Green lines indicate trainable paths,
whereas inference-only paths are in black. The red arrows above

and below indicate the path of the backpropagation step during the
respective training processes.

To combine our generator and discriminator networks to build
an adversarial network, we use the code in Example 12.6.



Example 12.6 Adversarial model architecture

Click here to view code image

z = Input(shape=(z_dimensions,))

img = generator(z)

discriminator.trainable = False
pred = discriminator(img)

adversarial_model = Model(z, pred)

Let’s break this code down:

We use Input() to define the model’s input z, which will be an
array of random noise of length 32.

Passing z into generator returns a 28×28 image output that we
call img.

For the purposes of generator training, the parameters of our
discriminator network must be frozen (see Figure 12.3), so we set
the discriminator’s trainable attribute to False.

We pass the fake img into the frozen discriminator network,
which outputs a prediction (pred) as to whether the image is real
or fake.

Finally, using the Keras functional API’s Model class, we construct
the adversarial model. By indicating that the adversarial model’s
input is z and its output is pred, the functional API determines
that the adversarial network consists of the generator passing img
into the frozen discriminator.

To compile the adversarial network, we use the code in Example
12.7.

Example 12.7 Compiling the adversarial network

Click here to view code image



adversarial_model.compile(loss='binary_crossentropy',

                          optimizer=RMSprop(lr=0.0004,

                                            decay=3e-8,

                                            clipvalue=1.0),

                          metrics=['accuracy'])

The arguments to the compile() method are the same as
those we used for the discriminator network (see Example 12.4),
except that the optimizer’s learning rate and decay have been
halved. There’s a somewhat delicate balance to be struck
between the rate at which the discriminator and the generator
learn in order for the GAN to produce compelling fake images.
If you were to adjust the optimizer hyperparameters of the
discriminator model when compiling it, then you might find
that you’d also need to adjust them for the adversarial model in
order to produce satisfactory image outputs.

A tricky aspect of the GAN training process that is worth restating is that the same
discriminator network parameters (weights) are used during discriminator training and
during adversarial training. The discriminator is not frozen across the board; it is only
frozen when it’s a component of the adversarial model. In this way, during discriminator
training the weights are updated during backpropagation and the model learns to
distinguish between real and fake images. The adversarial model, in contrast, was
compiled with a frozen discriminator. This discriminator is the exact same model with
the same weights, but when the adversarial model learns it does not update the
discriminator weights; it only updates the weights of the generator.

GAN TRAINING
To train our GAN, we call the (cleverly titled) function train,



which is provided in Example 12.8.

Example 12.8 GAN training

Click here to view code image

def train(epochs=2000, batch=128, z_dim=z_dimensions):

    d_metrics = []

    a_metrics = []

    running_d_loss = 0

    running_d_acc = 0

    running_a_loss = 0

    running_a_acc = 0

    for i in range(epochs):

        # sample real images:

        real_imgs = np.reshape(

            data[np.random.choice(data.shape[0],

                                  batch,

                                  replace=False)],
            (batch,28,28,1))

       # generate fake images:

       fake_imgs = generator.predict(

           np.random.uniform(-1.0, 1.0,

                             size=[batch, z_dim]))

       # concatenate images as discriminator inputs:

       x = np.concatenate((real_imgs,fake_imgs))

       # assign y labels for discriminator:

       y = np.ones([2*batch,1])

       y[batch:,:] = 0

       # train discriminator:



       d_metrics.append(

           discriminator.train_on_batch(x,y)

       )

       running_d_loss += d_metrics[-1][0]

       running_d_acc += d_metrics[-1][1]

       # adversarial net's noise input and "real" y:

       noise = np.random.uniform(-1.0, 1.0,

                                 size=[batch, z_dim])

       y = np.ones([batch,1])

       # train adversarial net:

       a_metrics.append(

          adversarial_model.train_on_batch(noise,y)

       )

       running_a_loss += a_metrics[-1][0]

       running_a_acc += a_metrics[-1][1]

       # periodically print progress & fake images:

       if (i+1)%100 == 0:

           print('Epoch #{}'.format(i))

           log_mesg = "%d: [D loss: %f, acc: %f]" % \

           (i, running_d_loss/i, running_d_acc/i)

           log_mesg = "%s [A loss: %f, acc: %f]" % \

           (log_mesg, running_a_loss/i, running_a_acc/i)

           print(log_mesg)

           noise = np.random.uniform(-1.0, 1.0,

                                     size=[16, z_dim])

           gen_imgs = generator.predict(noise)

           plt.figure(figsize=(5,5))

           for k in range(gen_imgs.shape[0]):
               plt.subplot(4, 4, k+1)

               plt.imshow(gen_imgs[k, :, :, 0],

                          cmap='gray')

               plt.axis('off')



           plt.tight_layout()

           plt.show()

     return a_metrics, d_metrics

# train the GAN:

a_metrics_complete, d_metrics_complete = train()

This is the largest single chunk of code in the book, so from top
to bottom, let’s dissect it to understand it better:

The two empty lists (e.g., d_metrics) and the four variables set to
0 (e.g., running_d_loss) are for tracking loss and accuracy
metrics for the discriminator (d) and adversarial (a) networks as
they train.

We use the for loop to train for however many epochs we’d like.
Note that while the term epoch is commonly used by GAN
developers for this loop, it would be more accurate to call it a batch:
During each iteration of the for loop, we will sample only 128
apple sketches from our dataset of hundreds of thousands of such
sketches.

Within each epoch, we alternate between discriminator training
and generator training.

To train the discriminator (as depicted in Figure 12.2), we:

Sample a batch of 128 real images.

Generate 128 fake images by creating noise vectors (z,
sampled uniformly over the range [–1:0, 1:0]) and passing
them into the generator model’s predict method. Note
that by using the predict method, the generator is only
performing inference; it is generating images without
updating any of its parameters.



Concatenate the real and fake images into a single variable
x, which will serve as the input into our discriminator.

Create an array, y, to label the images as real (y = 1) or fake
(y = 0) so that they can be used to train the discriminator.

To train the discriminator, we pass our inputs x and
labels y into the model’s train_on_batch method.

After each round of training, the training loss and accuracy
metrics are appended to the d_metrics list.

To train the generator (as in Figure 12.3), we:

Pass random noise vectors (stored in a variable called
noise) as inputs as well as an array (y) of all-real labels
(i.e., y = 1) into the train_on_batch method of the
adversarial model.

The generator component of the adversarial model converts
the noise inputs into fake images, which are automatically
passed as inputs into the discriminator component of the
adversarial model.

Because the discriminator’s parameters are frozen during
adversarial model training, the discriminator will simply
tell us whether it thinks the incoming images are real or
fake. Even though the generator outputs fakes, they are
labeled as real (y = 1) and the cross-entropy cost is used
during backpropagation to update the weights of the
generator model. By minimizing this cost, the generator
should learn to produce fake images that the discriminator
erroneously classifies as real.

After each round of training, the adversarial loss and
accuracy metrics are appended to the a_metrics list.



After every 100 epochs we:

Print the epoch that we are in.

Print a log message that includes the discriminator and
adversarial models’ running loss and accuracy metrics.

Randomly sample 16 noise vectors and use the generator’s
predict method to generate fake images, which are stored
in gen_imgs.

Plot the 16 fake images in a 4×4 grid so that we can monitor
the quality of the generator’s images during training.

At the conclusion of the train function, we return the lists of
adversarial model and discriminator model metrics (a_metrics
and d_metrics, respectively).

Finally, we call the train function, saving the metrics into the
a_metrics_complete and d_metrics_complete variables as
training progresses.

After 100 rounds (epochs) of training (see Figure 12.10), our
GAN’s fake images appear to have some vague sketch-like
structure, but we can’t yet discern apples in them. After 200
rounds, however (see Figure 12.11), the images do begin to have
a loose appley-ness to them. Over several hundred more rounds
of training, the GAN begins to produce some compelling
forgeries of apple sketches (Figure 12.12). And, after 2,000
rounds, our GAN output the “machine art” demo images that we
provided way back at the end of Chapter 3 (Figure 3.9).



Figure 12.10 Fake apple sketches generated after 100 epochs
of training our GAN



Figure 12.11 Fake apple sketches after 200 epochs of training
our GAN



Figure 12.12 Fake apple sketches after 1,000 epochs of
training our GAN

To wrap up our Generative Adversarial Network notebook,
we ran the code in Examples 12.9 and 12.10 to create plots of
our GAN’s training loss (Figure 12.13) and training accuracy
(Figure 12.14). These show that the adversarial model’s loss
declined as the quality of the apple-sketch forgeries improved;



that is what we’d expect because this model’s loss is associated
with fake images being misclassified as real ones by the
discriminator network, and you can see from Figures 12.10,
12.11, and 12.12 that, the longer we trained, the increasingly real
the fakes appeared. As the generator component of the
adversarial model began to produce higher-quality fakes, the
discriminator’s task of discerning real apple sketches from fake
ones became more difficult, and so its loss generally rose over
the first 300 epochs. From the ~300th epoch onward, the
discriminator modestly improved at its binary classification
task, corresponding to a gentle decrease in its training loss and
an increase in its training accuracy.

Figure 12.13 GAN training loss over epochs



Figure 12.14 GAN training accuracy over epochs

Example 12.9 Plotting our GAN training loss

Click here to view code image

ax = pd.DataFrame(

     {

        'Adversarial': [metric[0] for metric in 
a_metrics_complete],

        'Discriminator': [metric[0] for metric in 
d_metrics_complete],

     }

).plot(title='Training Loss', logy=True)
ax.set_xlabel("Epochs")

ax.set_ylabel("Loss")



Example 12.10 Plotting our GAN training accuracy

Click here to view code image

ax = pd.DataFrame(

     {

        'Adversarial': [metric[1] for metric in 
a_metrics_complete],

        'Discriminator': [metric[1] for metric in 
d_metrics_complete],

     }

).plot(title='Training Accuracy')

ax.set_xlabel("Epochs")

ax.set_ylabel("Accuracy")

SUMMARY
In this chapter, we covered the essential theory of GANs,
including a couple of new layer types (de-convolution and
upsampling). We constructed discriminator and generator
networks and then combined them to form an adversarial
network. Through alternately training a discriminator model
and the generator component of the adversarial model, the GAN
learned how to create novel “sketches” of apples.

KEY CONCEPTS
Here are the essential foundational concepts thus far. New
terms from the current chapter are highlighted in purple.

parameters:

weight w



bias b

activation a

artificial neurons:

sigmoid

tanh

ReLU

linear

input layer

hidden layer

output layer

layer types:

dense (fully connected)

softmax

convolutional

de-convolutional

max-pooling

upsampling

flatten

embedding

RNN

(bidirectional-)LSTM

concatenate



cost (loss) functions:

quadratic (mean squared error)

cross-entropy

forward propagation

backpropagation

unstable (especially vanishing) gradients

Glorot weight initialization

batch normalization

dropout

optimizers:

stochastic gradient descent

Adam

optimizer hyperparameters:

learning rate η

batch size

word2vec

GAN components:

discriminator network

generator network

adversarial network



13. Deep Reinforcement Learning

In Chapter 4, we introduced the paradigm of reinforcement
learning (as distinct from supervised and unsupervised
learning), in which an agent (e.g., an algorithm) takes
sequential actions within an environment. The environments—
whether they be simulated or real world—can be extremely
complex and rapidly changing, requiring sophisticated agents
that can adapt appropriately in order to succeed at fulfilling
their objective. Today, many of the most prolific reinforcement
learning agents involve an artificial neural network, making
them deep reinforcement learning algorithms.

In this chapter, we will

Cover the essential theory of reinforcement learning in general and,
in particular, a deep reinforcement learning model called deep Q-
learning

Use Keras to construct a deep Q-learning network that learns how
to excel within simulated, video game environments

Discuss approaches for optimizing the performance of deep
reinforcement learning agents

Introduce families of deep RL agents beyond deep Q-learning

ESSENTIAL THEORY OF REINFORCEMENT
LEARNING



Recall from Chapter 4 (specifically, Figure 4.3) that
reinforcement learning is a machine learning paradigm
involving:

An agent taking an action within an environment (let’s say the
action is taken at some timestep t).

The environment returning two types of information to the agent:

1. Reward: This is a scalar value that provides quantitative
feedback on the action that the agent took at timestep t. This
could, for example, be 100 points as a reward for acquiring
cherries in the video game Pac-Man. The agent’s objective is to
maximize the rewards it accumulates, and so rewards are what
reinforce productive behaviors that the agent discovers under
particular environmental conditions.

2.  State: This is how the environment changes in response to an
agent’s action. During the forthcoming timestep (t + 1), these
will be the conditions for the agent to choose an action in.

Repeating the above two steps in a loop until reaching some
terminal state. This terminal state could be reached by, for
example, attaining the maximum possible reward, attaining some
specific desired outcome (such as a self-driving car reaching its
programmed destination), running out of allotted time, using up
the maximum number of permitted moves in a game, or the agent
dying in a game.

Reinforcement learning problems are sequential decision-
making problems. In Chapter 4, we discussed a number of
particular examples of these, including:

Atari video games, such as Pac-Man, Pong, and Breakout

Autonomous vehicles, such as self-driving cars and aerial drones

Board games, such as Go, chess, and shogi



Robot-arm manipulation tasks, such as removing a nail with a
hammer

The Cart-Pole Game
In this chapter, we will use OpenAI Gym—a popular library of
reinforcement learning environments (examples provided in
Figure 4.13)—to train an agent to play Cart-Pole, a classic
problem among academics working in the field of control
theory. In the Cart-Pole game:

The objective is to balance a pole on top of a cart. The pole is
connected to the cart at a purple dot, which functions as a pin that
permits the pole to rotate along the horizontal axis, as illustrated in
Figure 13.1.1



Figure 13.1 The objective of the Cart-Pole game is to keep the
brown pole balanced upright on top of the black cart for as long as

possible. The player of the game (be it a human or a machine)
controls the cart by moving it horizontally to the left or to the right
along the black line. The pole moves freely along the axis created by

the purple pin.



The cart itself can only move horizontally, either to the left or to the
right. At any given moment—at any given timestep—the cart must
be moved to the left or to the right; it can’t remain stationary.

Each episode of the game begins with the cart positioned at a
random point near the center of the screen and with the pole at a
random angle near vertical.

As shown in Figure 13.2, an episode ends when either

The pole is no longer balanced on the cart—that is, when
the angle of the pole moves too far away from vertical
toward horizontal

The cart touches the boundaries—the far right or far left of
the screen

In the version of the game that you’ll play in this chapter, the
maximum number of timesteps in an episode is 200. So, if the
episode does not end early (due to losing pole balance or navigating
off the screen), then the game will end after 200 timesteps.

One point of reward is provided for every timestep that the episode
lasts, so the maximum possible reward is 200 points.



Figure 13.2 The Cart-Pole game ends early if the pole falls
toward horizontal or the cart is navigated off-screen.

The Cart-Pole game is a popular introductory reinforcement
learning problem because it’s so simple. With a self-driving car,
there are effectively an infinite number of possible
environmental states: As it moves along a road, its myriad
sensors—cameras, radar, lidar,  accelerometers, microphones,
and so on—stream in broad swaths of state information from
the world around the vehicle, on the order of a gigabyte of data
per second.  The Cart-Pole game, in stark contrast, has merely
four pieces of state information:

1. The position of the cart along the one-dimensional horizontal axis

2. The cart’s velocity

1. An actual screen capture of the Cart-Pole game is provided in Figure 4.13a.

2
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3. The angle of the pole

4. The pole’s angular velocity

Likewise, a number of fairly nuanced actions are possible
with a self-driving car, such as accelerating, braking, and
steering right or left. In the Cart-Pole game, at any given
timestep t, exactly one action can be taken from only two
possible actions: move left or move right.

Markov Decision Processes
Reinforcement learning problems can be defined
mathematically as something called a Markov decision process.
MDPs feature the so-called Markov property—an assumption
that the current timestep contains all of the pertinent
information about the state of the environment from previous
timesteps. With respect to the Cart-Pole game, this means that
our agent would elect to move right or left at a given timestep t
by considering only the attributes of the cart (e.g., its location)
and the pole (e.g., its angle) at that particular timestep t.

As summarized in Figure 13.3, the MDP is defined by five
components:

1. S is the set of all possible states. Following set-theory convention, each
individual possible state (i.e., a particular combination of cart position,

2. Same principle as radar, but uses lasers instead of sound.

3. bit.ly/GBpersec

4. The Markov property is assumed in many financial-trading strategies. As an
example, a trading strategy might take into account the price of all the stocks listed
on a given exchange at the end of a given trading day, while it does not consider the
price of the stocks on any previous day.

4



cart velocity, pole angle, and angular velocity) is represented by the
lowercase s. Even when we consider the relatively simple Cart-Pole
game, the number of possible recombinations of its four state
dimensions is enormous. To give a couple of coarse examples, the cart
could be moving slowly near the far-right of the screen with the pole
balanced vertically, or the cart could be moving rapidly toward the left
edge of the screen with the pole at a wide angle turning clockwise with
pace.

2. A is the set of all possible actions. In the Cart-Pole game, this set
contains only two elements (left and right); other environments have
many more. Each individual possible action is denoted as a.

3.  R is the distribution of reward given a state-action pair—some
particular state paired with some particular action—denoted as (s, a).
It’s a distribution in the sense of being a probability distribution: The
exact same state-action pair (s, a) might randomly result in different
amounts of reward r on different occasions.  The details of the reward
distribution R—its shape, including its mean and variance—are hidden
from the agent but can be glimpsed by taking actions within the
environment. For example, in Figure 13.1, you can see that the cart is
centered within the screen and the pole is angled slightly to the left.
We’d expect that pairing the action of moving left with this state s
would, on average, correspond to a higher expected reward r relative to
pairing the action of moving right with this state: Moving left in this
state s should cause the pole to stand more upright, increasing the
number of timesteps that the pole is kept balanced for, thereby tending
to lead to a higher reward r. On the other hand, the move right in this
state s would increase the probability that the pole would fall toward
horizontal, thereby tending toward an early end to the game and a
smaller reward r.

4. ℙ, like R, is also a probability distribution. In this case, it represents the
probability of the next state (i.e., s ) given a particular state-action pair
(s, a) in the current timestep t. Like R, the ℙ distribution is hidden from
the agent, but again aspects of it can be inferred by taking actions within
the environment. For example, in the Cart-Pole game, it would be
relatively straightforward for the agent to learn that the left action

t+1
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corresponds directly to the cart moving leftward.  More-complex
relationships—for example, that the left action in the state s captured in
Figure 13.1 tends to correspond to a more vertically oriented pole in the
next state s —would be more difficult to learn and so would require
more gameplay.

5. γ (gamma) is a hyperparameter called the discount factor (also known
as decay). To explain its significance, let’s move away from the Cart-
Pole game for a moment and back to Pac-Man. The eponymous Pac-
Man character explores a two-dimensional surface, gaining reward
points for collecting fruit and dying if he gets caught by one of the
ghosts that’s chasing him. As illustrated by Figure 13.4, when the agent
considers the value of a prospective reward, it should value a reward
that can be attained immediately (say, 100 points for acquiring cherries
that are only one pixel’s distance away from Pac-Man) more highly than
an equivalent reward that would require more timesteps to attain (100
points for cherries that are a distance of 20 pixels away). Immediate
reward is more valuable than some distant reward, because we can’t
bank on the distant reward: A ghost or some other hazard could get in
Pac-Man’s way.  If we were to set γ = 0.9, then cherries one timestep
away would be considered to be worth 90 points,  whereas cherries 20
timesteps away would be considered to be worth only 12.2 points.

t+1
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Figure 13.3 The reinforcement learning loop (top; a rehashed version
of Figure 4.3, provided again here for convenience) can be considered a
Markov decision process, which is defined by the five components S, A,

R, ℙ, and γ (bottom).



Figure 13.4 Based on the discount factor γ, in a Markov decision
process more-distant reward is discounted relative to reward that’s

more immediately attainable. Using the Atari game Pac-Man to
illustrate this concept (a green trilobite sitting in for Mr. Pac-Man

himself), with γ = 0.9, cherries (or a fish!) only one timestep away are
valued at 90 points, whereas cherries (a fish) 20 timesteps away are

valued at 12.2 points. Like the ghosts in the Pac-Man game, the octopus
here is roaming around and hoping to kill the poor trilobite. This is why

immediately attainable rewards are more valuable than distant ones:
There’s a higher chance of being killed before reaching the fish that’s

farther away.

5. Although this is true in reinforcement learning in general, the Cart-Pole game in
particular is a relatively simple environment that is fully deterministic. In the Cart-
Pole game, the exact same state-action pair (s, a) will in fact result in the same
reward every time. For the purposes of illustrating the principles of reinforcement
learning in general, we use examples in this section that imply the Cart-Pole game is



The Optimal Policy
The ultimate objective with an MDP is to find a function that
enables an agent to take an appropriate action a (from the set of
all possible actions A) when it encounters any particular state s
from the set of all possible environmental states S. In other
words, we’d like our agent to learn a function that enables it to
map S to A. As shown in Figure 13.5, such a function is denoted
by π and we call it the policy function.

less deterministic than it really is.

6. For the sake of simplicity, let’s ignore cart velocity and pole angular velocity for
this example, because we can’t infer these state aspects from this static image.

7. As with all of the other artificial neural networks in this book, the ANNs within
deep reinforcement learning agents are initialized with random starting parameters.
This means that, prior to any learning (via, say, playing episodes of the Cart-Pole
game), the agent has no awareness of even the simplest relationships between some
state-action pair (s, a) and the next state s . For example, although it may be
intuitive and obvious to a human player of the Cart-Pole game that the action left
should cause the cart to move leftward, nothing is “intuitive” or “obvious” to a
randomly initialized neural net, and so all relationships must be learned through
gameplay.

t+1

8. The γ discount factor is analogous to the discounted cash flow calculations that are
common in accounting: Prospective income a year from now is discounted relative to
income expected today.

9. Later in this chapter, we introduce concepts called value functions (V) and Q-value
functions (Q). Both V and Q incorporate γ because it prevents them from becoming
unbounded (and thus computationally impossible) in games with an infinite number
of possible future timesteps.

10. 100 × γ  = 100 × 0.9  = 90

11. 100 × γ  = 100 × 0.9  = 12.16

t 1

t 20



Figure 13.5 The policy function π enables an agent to map any
state s (from the set of all possible states S) to an action a from

the set of all possible actions A.

The high-level idea of the policy function π, using vernacular
language, is this: Regardless of the particular circumstance the
agent finds itself in, what is the policy it should follow that will
enable it to maximize its reward? For a more concrete definition
of this reward-maximization idea, you are welcome to pore over
this:

J (π∗) = max
π

 J (π) = max 
π
E[∑

t>0
γtrt] ( 13.1 )

In this equation:

J(π) is called an objective function. This is a function that we can
apply machine learning techniques to in order to maximize
reward.12



π represents any policy function that maps S to A.

π* represents a particular, optimal policy (out of all the potential π
policies) for mapping S to A. That is, π* is a function that—fed any
state s—will return an action a that will lead to the agent attaining
the max-imum possible discounted future reward.

Expected discounted future reward is defined by E[∑
t>0

γtrt]
where ṛ stands for expectation and ∑

t>0
γt rt stands for the

discounted future reward.

To calculate the discounted future reward ∑
t>0

γ trt, over all future

timesteps (i.e., t > 0), we do the following.

Multiply the reward that can be attained in any given future
timestep (r ) by the discount factor of that timestep (γ ).

Accumulate these individual discounted future rewards
(γ r ) by summing them all up (using ∑).

ESSENTIAL THEORY OF DEEP Q-
LEARNING NETWORKS
In the preceding section, we defined reinforcement learning as a

t

t

12. The cost functions (a.k.a. loss functions) referred to throughout this book are
examples of objective functions. Whereas cost functions return some cost value C, the
objective function J(π) returns some reward value r. With cost functions, our
objective is to minimize cost, so we apply gradient descent to them (as depicted by
the valley-descending trilobite back in Figure 8.2). With the function J(π), in
contrast, our objective is to maximize reward, and so we technically apply gradient
ascent to it (conjuring up Figure 8.2 imagery, imagine a trilobite hiking to identify
the peak of a mountain) even though the mathematics are the same as with gradient
descent.

t

t



Markov decision process. At the end of the section, we indicated
that as part of an MDP, we’d like our agent—when it encounters
any given state s at any given timestep t—to follow some
optimal policy π* that will enable it to select an action a that
maximizes the discounted future reward it can obtain. The issue
is that—even with a rather simple reinforcement learning
problem like the Cart-Pole game—it is computationally
intractable (or, at least, extremely computationally inefficient)
to definitively calculate the maximum cumulative discounted

future reward, max ( Σ
t>0

γtrt). Because of all the possible

future states S and all the possible actions A that could be taken
in those future states, there are way too many possible future
outcomes to take into consideration. Thus, as a computational
shortcut, we’ll describe the Q-learning approach for estimating
what the optimal action a in a given situation might be.

Value Functions
The story of Q-learning is most easily described by beginning
with an explanation of value functions. The value function is
defined by V  (s). It provides us with an indication of how
valuable a given state s is if our agent follows its policy π from
that state onward.

As a simple example, consider yet again the state s captured
in Figure 13.1.  Assuming our agent already has some
reasonably sensible policy π for balancing the pole, then the
cumulative discounted future reward that we’d expect it to
obtain in this state is probably fairly large because the pole is
near vertical. The value V  (s), then, of this particular state s is
high.

π

13

π



On the other hand, if we imagine a state s  where the pole
angle is approaching horizontal, the value of it—V  (s )—is
lower, because our agent has already lost control of the pole and
so the episode is likely to terminate within the next few
timesteps.

Q-Value Functions
The Q-value function  builds on the value function by taking
into account not only state: It considers the utility of a
particular action when that action is paired with a given state—
that is, it rehashes our old friend, the state-action pair
symbolized by (s, a). Thus, where the value function is defined
by V  (s), the Q-value function is defined by Q (s, a).

Let’s return once more to Figure 13.1. Pairing the action left
(let’s call this a ) with this state s and then following a pole-
balancing policy π from there should generally correspond to a
high cumulative discounted future reward. Therefore, the Q-
value of this state-action pair (s, a ) is high.

In comparison, let’s consider pairing the action right (we can
call it a ) with the state s from Figure 13.1 and then following a
pole-balancing policy π from there. Although this might not
turn out to be an egregious error, the cumulative discounted
future reward would nevertheless probably be somewhat lower
relative to taking the left action. In this state s, the left action

13. As we did earlier in this chapter, let’s consider cart position and pole position
only, because we can’t speculate on cart velocity or pole angular velocity from this
still image.

h

h

14. The “Q” in Q-value stands for quality but you seldom hear practitioners calling
these “quality-value functions.”

L

L

R

π
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should generally cause the pole to become more vertically
oriented (enabling the pole to be better controlled and better
balanced), whereas the rightward action should generally cause
it to become somewhat more horizontally oriented—thus, less
controlled, and the episode somewhat more likely to end early.
All in all, we would expect the Q-value of (s, a ) to be higher
than the Q-value of (s, a ).

Estimating an Optimal Q-Value
When our agent confronts some state s, we would then like it to
be able to calculate the optimal Q-value, denoted as Q*(s, a).
We could consider all possible actions, and the action with the
highest Q-value—the highest cumulative discounted future
reward—would be the best choice.

In the same way that it is computationally intractable to
definitively calculate the optimal policy π* (Equation 13.1) even
with relatively simple reinforcement learning problems, so too
is it typically computationally intractable to definitively
calculate an optimal Q-value, Q*(s, a). With the approach of
deep Q-learning (as introduced in Chapter 4; see Figure 4.5),
however, we can leverage an artificial neural network to
estimate what the optimal Q-value might be. These deep Q-
learning networks (DQNs for short) rely on this equation:

Q∗ (s, a) ≈ Q (s, a; θ) (13.2)

In this equation:

The optimal Q-value (Q*(s, a)) is being approximated.

The Q-value approximation function incorporates neural network
model parameters (denoted by the Greek letter theta, θ) in addition
to its usual state s and action a inputs. These parameters are the

L

R



usual artificial neuron weights and biases that we have become
familiar with since Chapter 6.

In the context of the Cart-Pole game, a DQN agent armed
with Equation 13.2 can, upon encountering a particular state s,
calculate whether pairing an action a (left or right) with this
state corresponds to a higher predicted cumulative discounted
future reward. If, say, left is predicted to be associated with a
higher cumulative discounted future reward, then this is the
action that should be taken. In the next section, we’ll code up a
DQN agent that incorporates a Keras-built dense neural net to
illustrate hands-on how this is done.

For a thorough introduction to the theory of reinforcement learning, including deep Q-
learning networks, we recommend the recent edition of Richard Sutton (Figure 13.6)
and Andrew Barto’s Reinforcement Learning: An Introduction,  which is available free
of charge at bit.ly/SuttonBarto.
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Figure 13.6 The biggest star in the field of reinforcement learning, Richard Sutton has
long been a computer science professor at the University of Alberta. He is more

recently also a distinguished research scientist at Google DeepMind.

DEFINING A DQN AGENT
Our code for defining a DQN agent that learns how to act in an
environment—in this particular case, it happens to be the Cart-
Pole game from the OpenAI Gym library of environments—is
provided within our Cartpole DQN Jupyter notebook.  Its
dependencies are as follows:

15. Sutton, R., & Barto, A. (2018). Reinforcement Learning: An Introduction (2nd
ed.). Cambridge, MA: MIT Press.
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Click here to view code image

import random
import gym
import numpy as np
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
import os

The most significant new addition to the list is gym, the Open AI
Gym itself. As usual, we discuss each dependency in more detail
as we apply it.

The hyperparameters that we set at the top of the notebook
are provided in Example 13.1.

Example 13.1 Cart-Pole DQN hyperparameters

Click here to view code image

env = gym.make('CartPole-v0')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n

batch_size = 32
n_episodes = 1000
output_dir = 'model_output/cartpole/'
if not os.path.exists(output_dir):
    os.makedirs(output_dir)

16. Our DQN agent is based directly on Keon Kim’s, which is available at his GitHub
repository at bit.ly/keonDQN.



Let’s look at this code line by line:

We use the Open AI Gym make() method to specify the particular
environment that we’d like our agent to interact with. The
environment we choose is version zero (v0) of the Cart-Pole game,
and we assign it to the variable env. On your own time, you’re
welcome to select an alternative Open AI Gym environment, such
as one of those presented in Figure 4.13.

From the environment, we extract two parameters:

1. state_size: the number of types of state information, which
for the Cart-Pole game is 4 (recall that these are cart position,
cart velocity, pole angle, and pole angular velocity).

2. action_size: the number of possible actions, which for Cart-
Pole is 2 (left and right).

We set our mini-batch size for training our neural net to 32.

We set the number of episodes (rounds of the game) to 1000. As
you’ll soon see, this is about the right number of episodes it will
take for our agent to excel regularly at the Cart-Pole game. For
more-complex environments, you’d likely need to increase this
hyperparameter so that the agent has more rounds of gameplay to
learn in.

We define a unique directory name
('model_output/cartpole/') into which we’ll output our
neural network’s parameters at regular intervals. If the directory
doesn’t yet exist, we use os.makedirs() to make it.

The rather large chunk of code for creating a DQN agent
Python class—called DQNAgent—is provided in Example 13.2.

Example 13.2 A deep Q-learning agent

Click here to view code image



class DQNAgent:
       def __init__(self, state_size, action_size):
           self.state_size = state_size

           self.action_size = action_size

           self.memory = deque(maxlen=2000)

           self.gamma = 0.95

           self.epsilon = 1.0

           self.epsilon_decay = 0.995

           self.epsilon_min = 0.01

           self.learning_rate = 0.001

           self.model = self._build_model()

       def _build_model(self):
           model = Sequential()

           model.add(Dense(32, activation='relu',

                           input_dim=self.state_size))

           model.add(Dense(32, activation='relu'))

           model.add(Dense(self.action_size, 

activation='linear'))

           model.compile(loss='mse',

                         

optimizer=Adam(lr=self.learning_rate))

           return model

       def remember(self, state, action, reward, 
next_state, done):

           self.memory.append((state, action,

                               reward, next_state, done))

       def train(self, batch_size):
           minibatch = random.sample(self.memory, 

batch_size)

           for state, action, reward, next_state, done in 
minibatch:

               target = reward # if done

               if not done:

                   target = (reward +



                             self.gamma *

                             

np.amax(self.model.predict(next_state)[0]))

               target_f = self.model.predict(state)

               target_f[0][action] = target

               self.model.fit(state, target_f, epochs=1, 

verbose=0)

           if self.epsilon >  self.epsilon_min:
               self.epsilon *= self.epsilon_decay

       def act(self, state):
           if np.random.rand() <= self.epsilon:
               return random.randrange(self.action_size)
           act_values = self.model.predict(state)

           return np.argmax(act_values[0])

       def save(self, name):
           self.model.save_weights(name)

       def load(self, name):
           self.model.load_weights(name)

Initialization Parameters
We begin Example 13.2 by initializing the class with a number
of parameters:

state_size and action_size are environment-specific, but in
the case of the Cart-Pole game are 4 and 2, respectively, as
mentioned earlier.

memory is for storing memories that can subsequently be replayed
in order to train our DQN’s neural net. The memories are stored as
elements of a data structure called a deque (pronounced “deck”),
which is the same as a list except that—because we specified
maxlen=2000—it only retains the 2,000 most recent memories.
That is, whenever we attempt to append a 2,001st element onto the
deque, its first element is removed, always leaving us with a list that



contains no more than 2,000 elements.

gamma is the discount factor (a.k.a. decay rate) γ that we introduced
earlier in this chapter (see Figure 13.4). This agent hyperparameter
discounts prospective rewards in future timesteps. Effective γ
values typically approach 1 (for example, 0.9, 0.95, 0.98, and 0.99).
The closer to 1, the less we’re discounting future reward.  Tuning
the hyperparameters of reinforcement learning models such as γ
can be a fiddly process; near the end of this chapter, we discuss a
tool called SLM Lab for carrying it out effectively.

epsilon—symbolized by the Greek letter ∊—is another
reinforcement learning hyperparameter called exploration rate. It
represents the proportion of our agent’s actions that are random
(enabling it to explore the impact of such actions on the next state
s  and the reward r returned by the environment) relative to how
often we allow its actions to exploit the existing “knowledge” its
neural net has accumulated through gameplay. Prior to having
played any episodes, agents have no gameplay experience to
exploit, so it is the most common practice to start it off exploring
100 percent of the time; this is why we set epsilon = 1.0.

As the agent gains gameplay experience, we very slowly decay its
exploration rate so that it can gradually exploit the information it
has learned (hopefully enabling it to attain more reward, as
illustrated in Figure 13.7). That is, at the end of each episode the
agent plays, we multiply its ∊ by epsilon_decay. Common
options for this hyperparameter are 0.990, 0.995, and 0.999.

t+1

17

18



Figure 13.7 As in Figure 13.4, here we use the Pac-Man
environment (with a green trilobite representing a DQN agent in
place of the Mr. Pac-Man character) to illustrate a reinforcement
learning concept. In this case, the concept is exploratory versus

exploitative actions. The higher the hyperparameter ∊ (epsilon) in a
given episode, the more likely the agent is to be in its exploratory

mode, in which it takes purely random actions: By chance, an agent
in this mode might navigate in the opposite direction of a fish that

would have provided an immediate reward of 100 points. The
alternative to the exploratory mode is the exploitative mode.

Assuming the DQN agent’s neural net parameters have already
benefited from some previous gameplay experience, in its



exploitative mode the agent’s policy should be to acquire reward
that is immediately available to it.

epsilon_min is a floor (a minimum) on how low the exploration
rate ∊ can decay to. This hyperparameter is typically set to a near-
zero value such as 0.001, 0.01, or 0.02. We set it equal to 0.01,
meaning that after ∊ has decayed to 0.01 (as it will in our case by
the 911th episode), our agent will explore on only 1 percent of the
actions it takes—exploiting its gameplay experience the other 99
percent of the time.

learning_rate is the same stochastic gradient descent
hyperparameter that we covered in Chapter 8.

Finally, _build_model()—by the inclusion of its leading
underscore—is being suggested as a private method. This means
that this method is recommended for use “internally” only—that is,
solely by instances of the class DQNAgent.

Building the Agent’s Neural Network Model
The _build_model() method of Example 13.2 is dedicated to
constructing and compiling a Keras-specified neural network
that maps an environment’s state s to the agent’s Q-value for
each available action a. Once trained via gameplay, the agent
will then be able to use the predicted Q-values to select the
particular action it should take, given a particular

17. Indeed, if you were to set γ = 1 (which we don’t recommend) you wouldn’t be
discounting future reward at all.

18. Analogous to setting γ = 1, setting epsilon_decay = 1 would mean ∊ would not be
decayed at all—that is, exploring at a continuous rate. This would be an unusual
choice for this hyperparameter.

19. If at this stage this exploration rate concept is somewhat unclear, it should
become clearer as we examine our agent’s episode-by-episode results later on.
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environmental state it encounters. Within the method, there is
nothing you haven’t seen before in this book:

We specify a sequential model.

We add to the model the following layers of neurons.

The first hidden layer is dense, consisting of 32 ReLU
neurons. Using the input_dim argument, we specify the
shape of the network’s input layer, which is the
dimensionality of the environment’s state information s. In
the case of the Cart-Pole environment, this value is an array
of length 4, with one element each for cart position, cart
velocity, pole angle, and pole angular velocity.

The second hidden layer is also dense, with 32 ReLU
neurons. As mentioned earlier, we’ll explore
hyperparameter selection—including how we home in on a
particular model architecture—by discussing the SLM Lab
tool later on in this chapter.

The output layer has dimensionality corresponding to the
number of possible actions.  In the case of the Cart-Pole
game, this is an array of length 2, with one element for left
and the other for right. As with a regression model (see
Example 9.8), with DQNs the z values are output directly
from the neural net instead of being converted into a
probability between 0 and 1. To do this, we specify the
linear activation function instead of the sigmoid or
softmax functions that have otherwise dominated this book.

As indicated when we compiled our regression model (Example
9.9), mean squared error is an appropriate choice of cost function
when we use linear activation in the output layer, so we set the
compile() method’s loss argument to mse. We return to our
routine optimizer choice, Adam.

20
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Remembering Gameplay
At any given timestep t—that is, during any given iteration of
the reinforcement learning loop (refer back to Figure 13.3)—the
DQN agent’s remember() method is run in order to append a
memory to the end of its memory deque. Each memory in this
deque consists of five pieces of information about timestep t:

1. The state s  that the agent encountered

2. The action a  that the agent took

3. The reward r  that the environment returned to the agent

4. The next_state s  that the environment also returned to the agent

5. A Boolean flag done that is true if timestep t was the final iteration of
the episode, and false otherwise

Training via Memory Replay
The DQN agent’s neural net model is trained by replaying
memories of gameplay, as shown within the train() method

20. In environments other than Cart-Pole, the state information might be much more
complex. For example, with an Atari video game environment like Pac-Man, state s
would consist of pixels on a screen, which would be a two- or three-dimensional
input (for monochromatic or full-color, respectively). In a case such as this, a better
choice of first hidden layer would be a convolutional layer such as Conv2D (see
Chapter 10).

21. Any previous models in this book with only two outcomes (as in Chapters 11 and
12) used a single sigmoid neuron. Here, we specify separate neurons for each of the
outcomes, because we would like our code to generalize beyond the Cart-Pole game.
While Cart-Pole has only two actions, many environments have more than two.
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of Example 13.2. The process begins by randomly sampling a
minibatch of 32 (as per the agent’s batch_size parameter)
memories from the memory deque (which holds up to 2,000
memories). Sampling a small subset of memories from a much
larger set of the agent’s experiences makes model-training more
efficient: If we were instead to use, say, the 32 most recent
memories to train our model, many of the states across those
memories would be very similar. To illustrate this point,
consider a timestep t where the cart is at some particular
location and the pole is near vertical. The adjacent timesteps
(e.g., t – 1, t + 1, t + 2) are also likely to be at nearly the same
location with the pole in a near-vertical orientation. By
sampling from across a broad range of memories instead of
temporally proximal ones, the model will be provided with a
richer cornucopia of experiences to learn from during each
round of training.

For each of the 32 sampled memories, we carry out a round
of model training as follows: If done is True—that is, if the
memory was of the final timestep of an episode—then we know
definitively that the highest possible reward that could be
attained from this timestep is equal to the reward r . Thus, we
can just set our target reward equal to reward.

Otherwise (i.e., if done is False) then we try to estimate
what the target reward—the maximum discounted future
reward—might be. We perform this estimation by starting with
the known reward r  and adding to it the discounted
maximum future Q-value. Possible future Q-values are
estimated by passing the next (i.e., future) state s  into the
model’s predict() method. Doing this in the context of the

t

t

t+1
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Cart-Pole game returns two outputs: one output for the action
left and the other for the action right. Whichever of these two
outputs is higher (as determined by the NumPy amax function)
is the maximum predicted future Q-value.

Whether target is known definitively (because the timestep
was the final one in an episode) or it’s estimated using the
maximum future Q-value calculation, we continue onward
within the train() method’s for loop:

We run the predict() method again, passing in the current state
s . As before, in the context of the Cart-Pole game this returns two
outputs: one for the left action and one for the right. We store these
two outputs in the variable target_f.

Whichever action a  the agent actually took in this memory, we
use target_f[0][action] = target to replace that
target_f output with the target reward.

We train our model by calling the fit() method.

The model input is the current state s  and its output is
target_f, which incorporates our approximation of the
maximum future discounted reward. By tuning the model’s
parameters (represented by θ in Equation 13.2), we thus
improve its capacity to accurately predict the action that is
more likely to be associated with maximizing future reward
in any given state.

In many reinforcement learning problems, epochs can be
set to 1. Instead of recycling an existing training dataset
multiple times, we can cheaply engage in more episodes of
the Cart-Pole game (for example) to generate as many fresh
training data as we fancy.

22. That is, multiplied by gamma, the discount factor γ.
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We set verbose=0 because we don’t need any model-
fitting outputs at this stage to monitor the progress of
model training. As we demonstrate shortly, we’ll instead
monitor agent performance on an episode-by-episode basis.

Selecting an Action to Take
To select a particular action a  to take at a given timestep t, we
use the agent’s act() method. Within this method, the NumPy
rand function is used to sample a random value between 0 and
1 that we’ll call υ. In conjunction with our agent’s epsilon,
epsilon_decay, and epsilon_min hyperparameters, this υ
value will determine for us whether the agent takes an
exploratory action or an exploitative one:

If the random value υ is less than or equal to the exploration rate ∊,
then a random exploratory action is selected using the randrange
function. In early episodes, when ∊ is high, most of the actions will
be exploratory. In later episodes, as ∊ decays further and further
(according to the epsilon_decay hyperparameter), the agent will
take fewer and fewer exploratory actions.

Otherwise—that is, if the random value υ is greater than ∊—the
agent selects an action that exploits the “knowledge” the model has
learned via memory replay. To exploit this knowledge, the state s
is passed in to the model’s predict() method, which returns an
activation output  for each of the possible actions the agent could
theoretically take. We use the NumPy argmax function to select the
action a  associated with the largest activation output.

23. We do this because we can only train the Q-value estimate based on actions that
were actually taken by the agent: We estimated target based on next_state s
and we only know what s  was for the action a  that was actually taken by the

agent at timestep t. We don’t know what next state s  the environment might have
returned had the agent taken a different action than it actually took.

t+1

t+1 t

t+1
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t
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Saving and Loading Model Parameters
Finally, the save() and load() methods are one-liners that
enable us to save and load the parameters of the model.
Particularly with respect to complex environments, agent
performance can be flaky: For long stretches, the agent may
perform very well in a given environment, and then later appear
to lose its capabilities entirely. Because of this flakiness, it’s wise
to save our model parameters at regular intervals. Then, if the
agent’s performance drops off in later episodes, the higher-
performing parameters from some earlier episode can be loaded
back up.

INTERACTING WITH AN OPENAI GYM
ENVIRONMENT
Having created our DQN agent class, we can initialize an
instance of the class—which we name agent—with this line of
code:

Click here to view code image

agent = DQNAgent(state_size, action_size)

24. We introduced the exploratory and exploitative modes of action when discussing
the initialization parameters for our DQNAgent class earlier, and they’re illustrated
playfully in Figure 13.7.

25. Recall that the activation is linear, and thus the output is not a probability;
instead, it is the discounted future reward for that action.



The code in Example 13.3 enables our agent to interact with
an OpenAI Gym environment, which in our particular case is
the Cart-Pole game.

Example 13.3 DQN agent interacting with an
OpenAI Gym environment

Click here to view code image

for e in range(n_episodes):
    state = env.reset()

    state = np.reshape(state, [1, state_size])

    done = False
    time = 0

    while not done:
#         env.render()

        action = agent.act(state)

        next_state, reward, done, _ = env.step(action)

        reward = reward if not done else -10
        next_state = np.reshape(next_state, [1, 

state_size])

        agent.remember(state, action, reward, next_state, 

done)

        state = next_state

        if done:

           print("episode: {}/{}, score: {}, e: {:.2}"

                 .format(e, n_episodes-1, time, 

agent.epsilon))

        time += 1

    if len(agent.memory) > batch_size:
        agent.train(batch_size)

    if e % 50 == 0:
        agent.save(output_dir + "weights_"

                   + '{:04d}'.format(e) + ".hdf5")

Recalling that we had set the hyperparameter n_episodes



to 1000, Example 13.3 consists of a big for loop that allows our
agent to engage in these 1,000 rounds of game-play. Each
episode of gameplay is counted by the variable e and involves:

We use env.reset() to begin the episode with a random state
s . For the purposes of passing state into our Keras neural
network in the orientation the model is expecting, we use reshape
to convert it from a column into a row.

Nested within our thousand-episode loop is a while loop that
iterates over the timesteps of a given episode. Until the episode
ends (i.e., until done equals True), in each timestep t (represented
by the variable time), we do the following.

The env.render() line is commented out because if you
are running this code via a Jupyter notebook within a
Docker container, this line will cause an error. If, however,
you happen to be running the code via some other means
(e.g., in a Jupyter notebook without using Docker) then you
can try uncommenting this line. If an error isn’t thrown,
then a pop-up window should appear that renders the
environment graphically. This enables you to watch your
DQN agent as it plays the Cart-Pole game in real time,
episode by episode. It’s fun to watch, but it’s by no means
essential: It certainly has no impact on how the agent
learns!

We pass the state s  into the agent’s act() method, and
this returns the agent’s action a , which is either 0
(representing left) or 1 (right).

The actiona  is provided to the environment’s step()
method, which returns the next_state s , the current
reward r , and an update to the Boolean flag done.

If the episode is done (i.e., done equals true), then we set
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reward to a negative value (-10). This provides a strong
disincentive to the agent to end an episode early by losing
control of balancing the pole or navigating off the screen. If
the episode is not done (i.e., done is False), then reward
is +1 for each additional timestep of gameplay.

In the same way that we needed to reorient state to be a
row at the start of the episode, we use reshape to reorient
next_state to a row here.

We use our agent’s remember() method to save all the
aspects of this timestep (the state s , the action a  that was
taken, the reward r , the next state s , and the flag done)
to memory.

We set state equal to next_state in preparation for the
next iteration of the loop, which will be timestep t + 1.

If the episode ends, then we print summary metrics on the
episode (see Figures 13.8 and 13.9 for example outputs).

Figure 13.8 The performance of our DQN agent during its
first 10 episodes playing the Cart-Pole game. Its scores are

low (keeping the game going for between 10 and 42
timesteps), and its exploration rate ∊ is high (starting at 100

t t

t t+1



percent and decaying to 96 percent by the 10th episode).

Figure 13.9 The performance of our DQN agent during its
final 10 episodes playing the Cart-Pole game. It scores the

maximum (199 timesteps) across all 10 episodes. The
exploration rate ∊ had already decayed to its minimum of 1

percent, so the agent is in exploitative mode for ~99 percent
of its actions.

Add 1 to our timestep counter time.

If the length of the agent’s memory deque is larger than our batch
size, then we use the agent’s train() method to train its neural
net parameters by replaying its memories of gameplay.

Every 50 episodes, we use the agent’s save() method to store the
neural net model’s parameters.

26. We previously performed this transposition for the same reason back in Example
9.11.

27. You can optionally move this training step up so that it’s inside the while loop.

Each episode will take a lot longer because you’ll be training the agent much more
often, but your agent will tend to solve the Cart-Pole game in far fewer episodes.
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As shown in Figure 13.8, during our agent’s first 10 episodes
of the Cart-Pole game, the scores were low. It didn’t manage to
keep the game going for more than 42 timesteps (i.e., a score of
41). During these initial episodes, the exploration rate ∊ began
at 100 percent. By the 10th episode, ∊ had decayed to 96
percent, meaning that the agent was in exploitative mode (refer
back to Figure 13.7) on about 4 percent of timesteps. At this
early stage of training, however, most of these exploitative
actions would probably have been effectively random anyway.

As shown in Figure 13.9, by the 991st episode our agent had
mastered the Cart-Pole game. It attained a perfect score of 199
in all of the final 10 episodes by keeping the game going for 200
timesteps in each one. By the 911th episode,  the exploration
rate ∊ had reached its minimum of 1 percent so during all of
these final episodes the agent is in exploitative mode in about
99 percent of timesteps. From the perfect performance in these
final episodes, it’s clear that these exploitative actions were
guided by a neural net well trained by its gameplay experience
from previous episodes.

As mentioned earlier in this chapter, deep reinforcement learning agents often display
finicky behavior. When you train your DQN agent to play the Cart-Pole game, you
might find that it performs very well during some later episodes (attaining many
consecutive 200-timestep episodes around, say, the 850th or 900th episode) but then
it performs poorly around the final (1,000th) episode. If this ends up being the case,
you can use the load() method to restore model parameters from an earlier, higher-
performing phase.

28. Not shown here, but can be seen in our Cartpole DQN Jupyter notebook.
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HYPERPARAMETER OPTIMIZATION WITH
SLM LAB
At a number of points in this chapter, in one breath we’d
introduce a hyperparameter and then in the next breath we’d
indicate that we’d later introduce a tool called SLM Lab for
tuning that hyperparameter.  Well, that moment has arrived!

SLM Lab is a deep reinforcement learning framework
developed by Wah Loon Keng and Laura Graesser, who are
California-based software engineers (at the mobile-gaming firm
MZ and within the Google Brain team, respectively). The
framework is available at github.com/kengz/SLM-Lab and has a
broad range of implementations and functionality related to
deep reinforcement learning:

It enables the use of many types of deep reinforcement learning
agents, including DQN and others (forthcoming in this chapter).

It provides modular agent components, allowing you to dream up
your own novel categories of deep RL agents.

You can straightforwardly drop agents into environments from a
number of different environment libraries, such as OpenAI Gym
and Unity (see Chapter 4).

Agents can be trained in multiple environments simultaneously.
For example, a single DQN agent can at the same time solve the
OpenAI Gym Cart-Pole game and the Unity ball-balancing game
Ball2D.

You can benchmark your agent’s performance in a given
environment against others’ efforts.

29. “SLM” is an abbreviation of strange loop machine, with the strange loop concept
being related to ideas about the experience of human consciousness. See Hofstadter,
R. (1979). Gödel, Escher, Bach. New York: Basic Books.
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Critically, for our purposes, the SLM Lab also provides a
painless way to experiment with various agent hyperparameters
to assess their impact on an agent’s performance in a given
environment. Consider, for example, the experiment graph
shown in Figure 13.10. In this particular experiment, a DQN
agent was trained to play the Cart-Pole game during a number
of distinct trials. Each trial is an instance of an agent with
particular, distinct hyperparameters trained for many episodes.
Some of the hyperparameters varied between trials were as
follows.

Figure 13.10 An experiment run with SLM Lab, investigating
the impact of various hyperparameters (e.g., hidden-layer

architecture, activation function, learning rate) on the
performance of a DQN agent within the Cart-Pole environment



Dense net model architecture

[32]: a single hidden layer, with 32 neurons

[64]: also a single hidden layer, this time with 64 neurons

[32, 16]: two hidden layers; the first with 32 neurons and
the second with 16

[64, 32]: also with two hidden layers, this time with 64
neurons in the first hidden layer and 32 in the second

Activation function across all hidden layers

Sigmoid

Tanh

ReLU

Optimizer learning rate (η), which ranged from zero up to 0.2

Exploration rate (∊) annealing, which ranged from 0 to 100

SLM Lab provides a number of metrics for evaluating model
performance (some of which can be seen along the vertical axis
of Figure 13.10):

Strength: This is a measure of the cumulative reward attained by
the agent.

30. Annealing is an alternative to ∊ decay that serves the same purpose. With the
epsilon and epsilon_min hyper-parameters set to fixed values (say, 1.0 and 0.01,

respectively), variations in annealing will adjust epsilon_decay such that an ∊ of

0.01 will be reached by a specified episode. If, for example, annealing is set to 25 then
∊ will decay at a rate such that it lowers uniformly from 1.0 in the first episode to 0.01
after 25 episodes. If annealing is set to 50 then ∊ will decay at a rate such that it
lowers uniformly from 1.0 in the first episode to 0.01 after 50 episodes.
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Speed: This is how quickly (i.e., over how many episodes) the agent
was able to reach its strength.

Stability: After the agent solved how to perform well in the
environment, this is a measure of how well it retained its solution
over subsequent episodes.

Consistency: This is a metric of how reproducible the performance
of the agent was across trials that had identical hyperparameter
settings.

Fitness: An overall summary metric that takes into account the
above four metrics simultaneously. Using the fitness metric in the
experiment captured by Figure 13.10, it appears that the following
hyperparameter settings are optimal for this DQN agent playing the
Cart-Pole game:

A single-hidden-layer neural net architecture, with 64
neurons in that single layer outperforming the 32-neuron
model.

The tanh activation function for the hidden layer neurons.

A low learning rate ( η) of ~0.02.

Trials with an exploration rate (∊) that anneals over 10
episodes outperform trials that anneal over 50 or 100
episodes.

Details of running SLM Lab are beyond the scope of our
book, but the library is well documented at
kengz.gitbooks.io/slm-lab.

AGENTS BEYOND DQN

31. At the time of this writing, SLM Lab installation is straightforward only on Unix-
based systems, including macOS.
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In the world of deep reinforcement learning, deep Q-learning
networks like the one we built in this chapter are relatively
simple. To their credit, not only are DQNs (comparatively)
simple, but—relative to many other deep RL agents—they also
make efficient use of the training samples that are available to
them. That said, DQN agents do have drawbacks. Most notable
are:

1. If the possible number of state-action pairs is large in a given
environment, then the Q-function can become extremely complicated,
and so it becomes intractable to estimate the optimal Q-value, Q*.

2. Even in situations where finding Q* is computationally tractable, DQNs
are not great at exploring relative to some other approaches, and so a
DQN may not converge on Q* anyway.

Thus, even though DQNs are sample efficient, they aren’t
applicable to solving all problems.

To wrap up this deep reinforcement learning chapter, let’s
briefly introduce the types of agents beyond DQNs. The main
categories of deep RL agents, as shown in Figure 13.11, are:

Value optimization: These include DQN agents and their
derivatives (e.g., double DQN, dueling QN) as well as other types of
agents that solve reinforcement learning problems by optimizing
value functions (including Q-value functions).



Figure 13.11 The broad categories of deep reinforcement learning
agents

Imitation learning: The agents in this category (e.g., behavioral
cloning and conditional imitation learning algorithms) are
designed to mimic behaviors that are taught to them through
demonstration, by—for example—showing them how to place
dinner plates on a dish rack or how to pour water into a cup.
Although imitation learning is a fascinating approach, its range of
applications is relatively small and we don’t discuss it further in this
book.

Model optimization: Agents in this category learn to predict future
states based on (s, a) at a given timestep. An example of one such
algorithm is Monte Carlo tree search (MCTS), which we introduced



with respect to AlphaGo in Chapter 4.

Policy optimization: Agents in this category learn policies directly,
that is, they directly learn the policy function π shown in Figure
13.5. We’ll cover these in further detail in the next section.

Policy Gradients and the REINFORCE Algorithm
Recall from Figure 13.5 that the purpose of a reinforcement
learning agent is to learn some policy function π that maps the
state space S to the action space A. With DQNs, and indeed
with any other value optimization agent, π is learned indirectly
by estimating a value function such as the optimal Q-value, Q*.
With policy optimization agents, π is learned directly instead.

Policy gradient (PG) algorithms, which can perform gradient
ascent  on π directly, are exemplified by a particularly well-
known reinforcement learning algorithm called REINFORCE.
The advantage of PG algorithms like REINFORCE is that they
are likely to converge on a fairly optimal solution,  so they’re
more widely applicable than value optimization algorithms like
DQN. The trade-off is that PGs have low consistency. That is,
they have higher variance in their performance relative to value
optimization approaches like DQN, and so PGs tend to require a
larger number of training samples.

32. Because PG algorithms maximize reward (instead of, say, minimizing cost), they
perform gradient ascent and not gradient descent. For more on this, see Footnote 12
in this chapter.

33. Williams, R. (1992). Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8, 229–56.

34. PG agents tend to converge on at least an optimal local solution, although some
particular PG methods have been demonstrated to identify the optimal global
solution to a problem. See Fazel, K., et al. (2018). Global convergence of policy
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The Actor-Critic Algorithm
As suggested by Figure 13.11, the actor-critic algorithm is an RL
agent that combines the value optimization and policy
optimization approaches. More specifically, as depicted in
Figure 13.12, the actor-critic combines the Q-learning and PG
algorithms. At a high level, the resulting algorithm involves a
loop that alternates between:

Actor: a PG algorithm that decides on an action to take.

Critic: a Q-learning algorithm that critiques the action that the
actor selected, providing feedback on how to adjust. It can take
advantage of efficiency tricks in Q-learning, such as memory replay.

Figure 13.12 The actor-critic algorithm combines the policy
gradient approach to reinforcement learning (playing the role of
actor) with the Q-learning approach (playing the role of critic).

gradient methods for the linear quadratic regulator. arXiv: 1801.05039.



In a broad sense, the actor-critic algorithm is reminiscent of the generative adversarial
networks of Chapter 12. GANs have a generator network in a loop with a discriminator
network, with the former creating fake images that are evaluated by the latter. The
actor-critic algorithm has an actor in a loop with a critic, with the former taking actions
that are evaluated by the latter.

The advantage of the actor-critic algorithm is that it can solve
a broader range of problems than DQN, while it has lower
variance in performance relative to REINFORCE. That said,
because of the presence of the PG algorithm within it, the actor-
critic is still somewhat sample inefficient.

While implementing REINFORCE and the actor-critic
algorithm are beyond the scope of this book, you can use SLM
Lab to apply them yourself, as well as to examine their
underlying code.

SUMMARY
In this chapter, we covered the essential theory of reinforcement
learning, including Markov decision processes. We leveraged
that information to build a deep Q-learning agent that solved
the Cart-Pole environment. To wrap up, we introduced deep RL
algorithms beyond DQN such as REINFORCE and actor-critic.
We also described SLM Lab—a deep RL framework with
existing algorithm implementations as well as tools for
optimizing agent hyperparameters.

This chapter brings an end to Part III of this book, which
provided hands-on applications of machine vision (Chapter 10),
natural language processing (Chapter 11), art-generating models
(Chapter 12), and sequential decision-making agents. In Part
IV, the final part of the book, we will provide you with loose



guidance on adapting these applications to your own projects
and inclinations.

KEY CONCEPTS
Listed here are the key concepts from across this book. The final
concept—covered in the current chapter—is highlighted in
purple.

parameters:

weight w

bias b

activation a

artificial neurons:

sigmoid

tanh

ReLU

linear

input layer

hidden layer

output layer

layer types:

dense (fully connected)

softmax



convolutional

de-convolutional

max-pooling

upsampling

flatten

embedding

RNN

(bidirectional-)LSTM

concatenate

cost (loss) functions:

quadratic (mean squared error)

cross-entropy

forward propagation

backpropagation

unstable (especially vanishing) gradients

Glorot weight initialization

batch normalization

dropout

optimizers:

stochastic gradient descent

Adam



optimizer hyperparameters:

learning rate η

batch size

word2vec

GAN components:

discriminator network

generator network

adversarial network

deep Q-learning
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14. Moving Forward with Your Own
Deep Learning Projects

Congratulations, you’ve made it to the closing chapter of the
book! In Part I, we introduced deep learning: what it is and how
it has become predominant. In Part II, we delved into the
essential theory of deep learning. And in Part III, we applied the
theory you learned to a broad range of problems spanning
vision, language, art, and changing environments.

In this chapter, we provide you with resources and advice for
moving onward from the examples provided in Part III to your
very own deep learning projects, some of which could be of
tremendous benefit to society. We cap everything off by
providing context on how your work may contribute to deep
learning’s ongoing overhaul of software globally and perhaps
even to the dawn of artificial general intelligence.

IDEAS FOR DEEP LEARNING PROJECTS
In this section, we cover candidate ideas for your own first deep
learning projects.

Machine Vision and GANs
The easiest way to get your feet wet with a deep learning
problem of your own might be to load up the Fashion-MNIST

1



dataset.  Keras comes preloaded with these data, which consist
of 10 classes of photos of clothing (see Table 14.1). The Fashion-
MNIST data have identical dimensions to the handwritten
MNIST digits you familiarized yourself with in Part II: They are
8-bit 28×28-pixel grayscale bitmaps (an example is provided in
Figure 14.1) spread across 60,000 training-image and 10,000
validation-image sets. Thus, by replacing the data-loading line
(e.g., Example 5.2) of any existing MNIST-classifying Jupyter
notebook from this book with the following code, the Fashion-
MNIST data can trivially be substituted in:

Click here to view code image

from keras.datasets import fashion_mnist
(X_train, y_train), (X_valid, y_valid) = fashion_mni

st.load_data()

1



Figure 14.1 Following our pixel-by-pixel rendering of an
MNIST digit (Figure 5.3), this is an example of an image from
the Fashion-MNIST dataset. This particular image belongs to

class 9, so—as per Table 14.1—it is an ankle boot. Check out our
Fashion MNIST Pixel by Pixel Jupyter notebook for the code we

used to create this figure.

Table 14.1 Fashion-MNIST categories

Class Label Description



0 t-shirt

1 trousers

2 pullover

3 dress

4 coat

5 sandal

6 shirt

7 sneaker

8 bag

9 ankle boot

From there, you can begin experimenting with modifying your
model architecture and tuning your hyperparameters to

1. Xiao, H., et al. (2017). Fashion-MNIST: A novel image dataset for benchmarking
machine learning algorithms. arXiv: 1708.07747.



improve validation-set accuracy. The Fashion-MNIST data are
quite a bit more challenging to classify relative to the
handwritten MNIST digits, so they present a rewarding problem
for applying the material you learned in this book. By Chapter
10, we observed greater than 99 percent validation accuracy
with MNIST (see Figure 10.9), but obtaining validation accuracy
greater than 92 percent with Fashion-MNIST is not easy, and
achieving anything greater than 94 percent is downright
impressive.

Other excellent machine vision datasets for deep learning
image-classification models can be found via the following
sources:

Kaggle: This data-science competition platform has many real-
world datasets. Building a winning model could earn you real-world
money, too! For example, the platform’s Cdiscount Image
Classification Challenge had a $35,000 cash prize for classifying
images of products for a French e-commerce giant.  The datasets
available via Kaggle come and go as competitions begin and end,
but at any given time there are likely to be a number of large image
datasets available—with model-building experience, kudos, and
maybe even cash prizes for you to benefit from.

Figure Eight: This data-labeling-via-crowdsourcing company
(formerly known as CrowdFlower) provides dozens of publicly
available, superbly curated image-classification datasets. To peruse
what’s available, visit figure-eight.com/data-for-everyone and
search for the word image.

The researcher Luke de Oliveira compiled a clear, concise list of the
best-known datasets among deep learning practitioners. Have a
look under the “Computer Vision” heading at bit.ly/LukeData.

2. bit.ly/kaggleCD

2
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If you’re looking to build and tune your own GAN, small
datasets you could start off with include:

One or more of the classes of images from the Quick, Draw! dataset
we leveraged in Chapter 12

The Fashion-MNIST data

The plain old handwritten MNIST digits

Natural Language Processing
In the same way that the Fashion-MNIST data plug right in to
the image-classification models we built in this book, datasets
curated by Xiang Zhang and his colleagues from Yann LeCun’s
(Figure 1.9) lab can be dropped straightforwardly into the
natural-language-classification models we built in Chapter 11,
making them ideal data for a first NLP project of your own.

All eight of Zhang et al.’s natural language datasets are
described in detail in their paper  and are available for
download at bit.ly/NLPdata. Each dataset is at least an
order of magnitude larger than the 25,000-training-sample
IMDb film-sentiment data we worked with in Chapter 11,
enabling you to experiment with the value of much more
complex deep learning models and much richer word-vector
spaces. Six of the datasets have more than two classes (which
would require you to have multiple output neurons in a softmax
layer), and the other two are binary classification problems
(enabling you to retain the single sigmoid output we used for
the IMDb data):

3. github.com/googlecreativelab/quickdraw-dataset

4. See section four (“Large-scale Datasets and Results”) of Zhang, X., et al. (2016).
Character-level convolutional networks for text classification. arXiv: 1509.01626.
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Yelp Review Polarity: 560,000 training samples and 38,000
validation samples that are classed as either positive (four- or five-
star) or negative (one- or two-star) reviews of services and locations
posted on the website Yelp

Amazon Review Polarity: A whopping 3.6 million training samples
and 400,000 validation samples collected from the e-retail giant
Amazon that are either positive or negative product reviews

As with machine vision, NLP data available from Kaggle,
Figure Eight (again, search for the word sentiment or text on
figure-eight.com/data-for-everyone), and Luke de Oliveira
(under the “Natural Language” heading at bit.ly/LukeData)
would form the basis of solid self-directed deep learning
projects.

Deep Reinforcement Learning
A first deep reinforcement learning project could involve a:

New environment: By changing the OpenAI Gym environment in
our Cartpole DQN notebook,  you can use the DQN agent you
studied in Chapter 13 to tackle an environment other than the Cart-
Pole game. Some relatively simple options include Mountain Car
(MountainCar-v0) and Frozen Lake (FrozenLake-v0).

New agent: If you have access to a Unix-based machine (which
includes ones running macOS), you can install SLM Lab (Figure
13.10) to try out other agents (e.g., an Actor-Critic agent; see Figure
13.12). Some of these could be sophisticated enough to excel in
advanced environments like the Atari games  provided by OpenAI
Gym or the three-dimensional environments provided by Unity.

5. To do this, change the string argument you pass into gym.make() from Example

13.1.

6. gym.openai.com/envs/#atari

5
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Once you’re comfortable with fairly advanced agents, it could
be rewarding to try them out in other environments like
DeepMind Lab (Figure 4.14) or to unleash a single agent upon
multiple different environments simultaneously (SLM Lab can
help facilitate this for you).

Converting an Existing Machine Learning Project
Although all of the projects we’ve suggested thus far involve
using third-party data sources, you may very well have collected
data already yourself. You may even have already used these
data for machine learning—say, with a linear regression model
or support vector machines. In these cases, you could feed the
data you already have into a deep learning model. You could
begin with a three-hidden-layer dense net like our Deep Net in
Keras model from Chapter 9. If you’re keen to predict a
continuous variable as opposed to a categorical one, then
perhaps our Regression in Keras notebook (covered near the
end of Chapter 9) would serve as an appropriate template.

You could feed more or less unadulterated data into your
deep learning model, or, if you’ve already extracted features
from your raw data, there’s certainly no harm in passing these
features in as inputs. Indeed, researchers from Google  have
popularized a wide and deep modeling approach that handles
existing engineered features while simultaneously learning new
features from raw input data. See Figure 14.2 for a generalized
schematic of this wide and deep approach, which incorporates
the concat layer introduced at the end of Chapter 11 (see
Example 11.41).

7



Figure 14.2 The wide and deep model architecture
concatenates together inputs from two separate legs. The deep
leg receives more or less unadulterated (“raw”) input data and
uses several data-appropriate (e.g., convolutional, recurrent,
dense) layers of neurons to extract features automatically. Its
“deep”-ness may result from having many layers of neurons.
The wide leg, meanwhile, receives manually curated features
(extracted from the raw data prior to modeling via expertly

defined functions) as inputs. Its “wide”-ness may result from
having many such features serving as inputs.

7. bit.ly/wideNdeep



RESOURCES FOR FURTHER PROJECTS
For moving beyond the initial projects suggested above, we
maintain a directory of helpful resources at
jonkrohn.com/resources. There, we provide links to:

Open data sources that are well organized and, in many cases, very
large

Recommended hardware and cloud infrastructure options for
training larger deep learning models

Compilations of key deep learning papers and implementations of
the research covered within them

Interactive deep learning demos

Examples of recurrent neural networks applied to times series
predictions, such as financial applications

Socially Beneficial Projects
In particular, we’d like to draw your attention to the section of
our resources page titled “Problems Worth Solving.” In this
section, we list resources that summarize the most pressing
global issues facing society in our time—issues that we
encourage you to apply deep learning techniques toward
solving. As an example, in one of these studies,  the authors—
from the McKinsey Global Institute—examine 10 social-impact
domains:

1. Equality and inclusion

2. Education

3. Health and hunger

8. This topic is of great interest to many students of deep learning, but it’s beyond the
scope of this book.

8
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4. Security and justice

5. Information verification and validation

6. Crisis response

7. Economic empowerment

8. Public and social sector

9. The environment

10. Infrastructure

They go on to detail the prospective utility of many of the
techniques introduced in this book to each of these domains,
including the following particular examples:

Deep learning on structured data (the dense nets of Chapters 5 to
9): applicable to all 10 domains

Image classification, including handwriting recognition (Chapter
10): all domains except public and social sector

NLP, including sentiment analysis (Chapter 11): all domains except
infrastructure

Content generation (Chapter 12): applicable to the equality and
inclusion domain as well as to the public and social sector domain

Reinforcement learning (Chapter 13): applicable to the health and
hunger domain

THE MODELING PROCESS, INCLUDING
HYPERPARAMETER TUNING
With any of the deep learning project ideas we’ve covered in this
chapter, hyperparameter tuning is likely to prove key to your

9. Chui, M. (2018). Notes from the AI frontier: Applying AI for social good. McKinsey
Global Institute.bit.ly/aiForGood



success. In this section, we provide you with a step-by-step
modeling process that you can use as a rough template for your
own projects. Bear in mind, however, that you may need to stray
from our recommended procedural path in a number of ways
because of the unique specifics of your particular project. For
example, you’re unlikely to proceed strictly linearly through the
following steps: As you reach later steps in the process, you may
develop a hunch  about how an earlier step might be improved
based on model behavior,  so you’ll end up circling back and
proceeding through some of the steps several times—perhaps
even dozens of times or more!

Here’s our rough step-by-step guide:

1. Parameter initialization: As covered in Chapter 9 (see Figure 9.3), you
should initialize your model’s parameters with sensible random values.
We recommend initializing biases with zeros and initializing weights
using Xavier Glorot’s approach. Thankfully, with Keras, sensible layer
initializations such as these will generally be handled for you
automatically.

2. Cost function selection: If you’re solving a classification problem, you
should probably be using cross-entropy cost. If you’re solving a
regression problem, then you should probably be using mean-squared-
error cost. If you’re interested in experimenting, however,

10. As you carry out more and more of your own deep learning projects, and as you
examine more and more of other people’s high-performing model architectures (e.g.,
in GitHub, StackOverflow, and arXiv papers), you’ll develop an intuition for how to
adapt your model’s design and hyperparameters to a given problem.

11. Model behavior can be studied by, for example, monitoring training- and
validation-set loss as your model trains. This would be made easier by using
TensorBoard (see Figure 9.8).

10
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keras.io/losses offers further options.

3. Get above chance: If your initial model architecture (which could be
based directly on any of the models we went over in this book) attains
below-chance performance on your validation data (e.g., <10 percent
accuracy with the 10-class MNIST-digit data) then consider these
tactics.

1. Simplifying your problem: For example, if you’re working with
the MNIST digits, you could reduce the number of classes you’re
classifying from 10 down to 2.

2. Simplifying your network architecture: Perhaps you’re doing
something rather silly and not realizing it. Or perhaps your
model is too deep and your gradient of learning is vanishing
severely. By simplifying your model architecture—such as by
removing layers—you may bring these potential issues to light.

3. Reducing your training set size: If you have a large training
dataset, waiting for a single epoch to finish training could take a
long time. By drastically subsetting your training sample, you
can iterate and improve your model more rapidly.

4. Layers: Once your model is learning to any extent, you can begin
experimenting with your layers. You could try:

1. Varying the number of layers: Following the guidelines
discussed in Chapter 8 (the section containing Figure 8.8), you
could try adding or removing individual layers or blocks of
layers (like the conv-pool blocks in Figure 10.10).

2. Varying the types of layers: Depending on your particular
problem and dataset, particular layer types might markedly
outperform others. Consider, for example, the impact of the
layer changes we made across our film-sentiment classifiers in
Chapter 11 (see Table 11.6 for a summary).

3. Varying layer width: We recommend varying the number of
neurons per layer by powers of 2, also as per Chapter 8 near
Figure 8.8.



5. Avoid overfitting: As discussed in Chapter 9, we recommend
encouraging your model to generalize beyond your training dataset by
employing dropout, data augmentation (if possible, e.g., with image
data), and/or batch normalization. If you happen to be able to acquire
additional, new training data for your model, that would likely be
helpful, too. Finally, as we demonstrated countless times in Chapter 11,
if your model does overfit during training, it’d be wise to reload the
model weights from a previous epoch—probably the one in which the
validation loss was lowest (see Figure 14.3 for an example).

Figure 14.3 A plot of training loss (red) and validation loss (blue) over
epochs of model training. These particular results come from our Multi
ConvNet Sentiment Classifier notebook (see the final section of Chapter
11), but this overfitting pattern is typical of deep learning models. After

epoch 2, the training loss continues toward zero while the validation
loss creeps upward. Epoch 2 has the lowest validation loss, so the
parameters from that epoch should be reloaded for further model

testing and (perhaps!) even for use in a production system.



6. Learning rate: As per Chapter 9, you can tune your learning rate up or
down. However, “fancy” optimizers like Adam and RMSProp often
manage to handle adjusting learning rate automatically on the fly.

7. Batch size: This hyperparameter is likely to be one of the least
impactful, so you can leave it to last. Refer back to Chapter 8 (near
Figure 8.7) for guidance on tuning it up or down.

Automation of Hyperparameter Search
With all of the hyperparameters that we could endlessly play
around with for a given deep learning model, it should come as
little surprise that developers (who are famously lazy!) have
come up with approaches for automating hyperparameter
search. In Chapter 13, we covered the use of SLM Lab for
searching for hyperparameters in deep reinforcement learning
models specifically; for deep learning models in general, we
recommend Spearmint.  Note that regardless of the
hyperparameter-search approach that you decide to go with,
James Bergstra and Yoshua Bengio  from the University of
Montreal have provided evidence that selecting random values
for your hyperparameters is more likely to identify optimal
hyperparameters for your model than a rigidly structured grid
search; see Figure 14.4.

12. Note that there are exceptions to this. For example, we did find tuning learning
rate to be impactful even with optimizers like Adam and RMSProp in Chapters 12
(with respect to GANs) and 13 (with respect to reinforcement learning agents).

12
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Figure 14.4 A strictly structured grid search (shown in the left-
hand panel) is less likely to identify optimal hyperparameters
for a given model than a search over values that are sampled
randomly over the same hyperparameter ranges (right-hand

panel).

DEEP LEARNING LIBRARIES
Throughout this book, we have used Keras to construct and run
our deep learning models. There are, however, countless other
deep learning libraries, and more pop up every year. In this

13. Snoek, J., et al. (2012). Practical Bayesian optimization of machine learning
algorithms. Advances in Neural Information Processing Systems, 25. Code available
at github.com/JasperSnoek/spearmint.

14. Figure 1.10 provides a portrait of Bengio.

15. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13, 281–305.

http://github.com/JasperSnoek/spearmint


section, we review the other leading options you have.

Keras and TensorFlow
TensorFlow is perhaps the best-known deep learning library, its
name derived from the concept of tensors (arrays of
information, e.g., model inputs x or activations a) flowing
through operations (e.g., those that define the mathematics of
artificial neurons like our “most important equation” from back
in Figure 6.7). The TensorFlow library was originally developed
for internal use at Google, and the tech giant open-sourced the
project in 2015. Figure 14.5 illustrates the relative interest in
five of the most popular deep learning libraries, as per
frequency of Google searches. Keras is the clear runner-up, with
Tensor-Flow in the lead. Given this, you might be particularly
interested in learning how to use TensorFlow. Well, we have
good news for you: You already know how to.



Figure 14.5 The relative Google search frequency (from
October 2015 to February 2019) of five of the most popular deep

learning libraries

Not only is Keras the high-level API that we’ve been using
throughout this book to call TensorFlow in the background, but
also—as of the release of TensorFlow 2.0 in 2019—Keras layers
are the recommended approach for building models directly
with the TensorFlow library itself. To build TensorFlow models
in earlier versions of the software, it was necessary to become
familiar with a fairly abstruse three-step process:

1. Configuring a detailed “computational graph”

2. Initializing this computational graph within a “session”

3. Feeding data into the session while fetching information you’d like to
access (e.g., summary metrics, model parameters) out of the session

This relatively esoteric process was in place because it enabled
TensorFlow to optimize the execution of deep learning model
training and production-time execution across as many devices
(CPUs and GPUs, perhaps spread across multiple servers) as are
made available to it. In time, the developers behind libraries like
PyTorch devised creative mechanisms to facilitate the best of
both worlds:

1. The conceptually simple, layer-focused, instantly executable building of
deep learning models and simultaneously . . .

2. The highly optimized model execution across however many devices are
available

The team behind TensorFlow responded by more tightly
incorporating Keras layers and by creating Eager mode—an



approach to enable immediate execution (in place of the
previous three-step process) without sacrificing performance.
Prior to TensorFlow 2.0, Eager mode needed to be activated in
order to use it,  but from 2.0 onward it’s the built-in default.

Converting any of the code we covered in this book from
being run with the Keras library to being run within TensorFlow
itself is painless. For example, have a look at our Deep Net in
TensorFlow notebook, which is identical to our Deep Net in
Keras notebook (from Chapter 9) except for how the
dependencies are loaded (Example 14.1, as compared to
Examples 5.1 and 9.4).

Example 14.1 Dependencies for building a Keras
layer-based deep net in TensorFlow without loading
the Keras library

Click here to view code image

import tensorflow as tf
from tensorflow.python.keras.datasets import mnist
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Dropout
from tensorflow.python.keras.layers import 
BatchNormalization

from tensorflow.python.keras.optimizers import SGD
from tensorflow.python.keras.utils import to_categorical

From there, you can begin exploring the added functionality
and flexibility that Tensor-Flow offers.

Particular reasons you might use TensorFlow with Keras

16. With a single line of code: tf.enable_eager_execution().
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layers instead of the high-level Keras API alone include:

Customizing your model to your heart’s content, including by
subclassing tf.keras.Model to forward propagate through your
model in any way that you fancy

Creating high-performance data-input pipelines by using tf.data

Deploying your model to

High-performance systems on servers with TensorFlow
Serving

Mobile or embedded devices with TensorFlow Lite

A web browser with TensorFlow.js

PyTorch
PyTorch is the cousin of a machine learning framework called
Torch, which is based in the programming language Lua. It’s
really an extension of Torch, designed to feel fast and intuitive
in the much more widely used Python language. PyTorch is
developed primarily by the Facebook AI Research group led by
Yann LeCun (Figure 1.9). Although not quite as popular as
TensorFlow or Keras, PyTorch has gained a lot of traction in a
short period of time (see Figure 14.5) and with good reason, as
we elaborate on here.

Many high-level deep learning libraries (including Keras)
serve as simple wrappers for low-level code (sometimes in
Python, and sometimes in other languages such as C); however,
PyTorch is not a simple Python wrapper for Torch. Rather,
PyTorch was completely rewritten and specifically tailored to

17. See tensorflow.org/guide/keras#model_subclassing.
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http://tensorflow.org/guide/keras#model_subclassing


feel native to people familiar with Python, while retaining the
computational efficiency of the original Torch library.

At its core, PyTorch performs matrix operations, much like
NumPy. Indeed, PyTorch’s tensors are compatible with most
NumPy operations, and methods exist for converting between
NumPy arrays and PyTorch tensors. Because of this deep
integration with NumPy, custom layers can be written directly
in Python if this extra flexibility is desired. Unlike NumPy,
however, PyTorch has specific systems in place to execute its
calculations on GPUs, thereby leveraging these processors’
massively parallel matrix-calculation capabilities. Additionally,
acceleration libraries are built in, which helps to make PyTorch
fast regardless of device, and custom memory allocators enable
it to be memory efficient.

If you’d like to learn more, in Appendix C we delve into many
of the features of the PyTorch library. We compare and contrast
it with TensorFlow, and we provide a hands-on demonstration
of training a deep learning model. As you’ll see, the syntax of
PyTorch is similar to that of Keras, and you should be able to
pick it up fairly quickly if you so desire.

MXNet, CNTK, Caffe, and So On
Beyond Keras, TensorFlow, and PyTorch, there are myriad
other deep learning libraries out there. Examples include:

MXNet, which was developed by Amazon.

CNTK, the Microsoft Cognitive Toolkit.

Caffe, out of the University of Berkeley, which is designed
exclusively for machine vision/CNN applications. Caffe2, its
lightweight successor, was being developed by Facebook AI



Research, but it was folded into FAIR’s PyTorch project in 2018.

Theano, a University of Montreal project that once rivaled
TensorFlow as the leading deep learning library, but is no longer in
development largely because many of its developers jumped ship to
Google’s TensorFlow project.

All of these libraries—indeed, any popular ones—are open-
source. In addition, because the vast majority of these libraries
follow the layer-focused design of Keras and have a similar
syntax, you should have little trouble recognizing their code and
employing them yourself if you have the inclination to.

SOFTWARE 2.0
The models that all of the available deep learning libraries
facilitate are revolutionizing the world of software. In a widely
shared blog post written by the prominent data scientist Andrej
Karpathy (Figure 14.6),  he argues that deep learning is
facilitating “Software 2.0.” Software 1.0 is what Karpathy
describes as classic computer programming languages like
Python, Java, JavaScript, C++, and so on. With Software 1.0, we
need to provide explicit instructions within a computer program
in order to have the computer produce outputs in the desired
manner.

18



Figure 14.6 Andrej Karpathy is the director of AI at Tesla, the
California-based automotive and energy firm. We mentioned

him once earlier—in a footnote in Chapter 10. Karpathy’s
background spans many institutions mentioned in this book,

including OpenAI (Figure 4.13 and Chapter 13), Stanford
University (where he completed his PhD under Fei-Fei Li; see

Figure 1.14), DeepMind (e.g., Figures 4.4 through 4.10), Google
(countless mentions across this book, including as the

developers behind TensorFlow), and the University of Toronto



(e.g., Figures 1.16 and Figure 3.2).

Software 2.0, in contrast, consists of deep learning models
that approximate functions, like the functions we approximated
in this book in order to classify handwritten digits, predict
house prices, analyze the sentiment of film reviews, generate
sketches of apples, and converge on Q* in order to play the Cart-
Pole game. The millions or billions of parameters in
productionized deep learning models today are increasingly
demonstrating themselves to be more adaptable, useful, and
powerful than hard-coded Software 1.0. Software 2.0 doesn’t
replace Software 1.0, however: It builds on top of it, with
Software 1.0 providing all of the critical digital infrastructure
that Software 2.0 exists within.

Some of the particular advantages of Software 2.0 covered by
Karpathy are:

1. Computational homogeneity: Deep learning models are made up of
homogenous units—such as ReLU neurons—enabling matrix
computations with these units to be highly optimizable and scalable.

2. Constant running time: Once making inferences in production systems,
a given deep learning model will use the same amount of compute
regardless of the input fed into it. Software 1.0 approaches, which could
involve countless if-else statements, could require widely varying
amounts of compute depending on the particular input fed into it.

3.  Constant memory use: For the same reasons as the preceding point, a
given deep learning model in production requires the same amount of
memory resources regardless of the particular input fed into it.

4. Easy: By reading this one book, you’ve developed the skills to create
high-performing algorithms across a range of domains. Prior to the

18. bit.ly/AKsoftware2



advent of deep learning, markedly more domain-specific expertise
would have been required to do this in each individual domain.

5. Superior: As we review in the next paragraph, deep learning models can
dramatically outperform other approaches.

In light of these points, let’s review the applications that were
featured in Part III of this book:

Machine vision (e.g., the MNIST digit recognition from Chapter
10): With traditional machine learning, this required hard-coding
visual features extensively, typically requiring years of expertise in
the field. Deep learning models perform better (recall Figure 1.15),
learn features automatically, and require little vision-specific
expertise to deploy effectively.

Natural language processing (e.g., the sentiment analysis from
Chapter 11): In the traditional machine learning approach, many
years of linguistics experience would typically be required to build
an effective algorithm, including an understanding of the unique
syntax and semantics of any given language involved in the
application. Here too, deep learning models tend to perform better
(as suggested by Figure 2.3). They learn the relevant features
automatically, and again they require minimal linguistics-specific
expertise to use effectively.

Simulating art and visual imagery (e.g., the drawings in Chapter
12): Generative adversarial networks, which incorporate deep
learning models, produce far more compelling and realistic images
than any preexisting approaches.

Game-playing (e.g., the Deep Q-Learning networks in Chapter 13):
A single algorithm, AlphaZero, can crush any Software 1.0 or
traditional machine learning approach to playing Go, chess, and
shogi (as shown in Figure 4.10). Remarkably, it does so more
efficiently and doesn’t require any training data.

19. Visit distill.pub/2017/aia to experience an interactive article by Shan

Carter and Michael Nielsen that expounds on how GANs can be used to augment
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APPROACHING ARTIFICIAL GENERAL
INTELLIGENCE
Recalling the development of vision in trilobites from Chapter 1
(Figure 1.1), many millions of years passed before biological life
evolved the sophisticated, full-color visual systems that
primates like us benefit from. In contrast, it was a matter of
decades from the first computer-vision systems (Figure 1.8) to
ones that could match or exceed the performance of humans at
visual-recognition tasks (Figure 1.15).  Whereas image
classification is a classic example of artificial narrow intelligence
(ANI), rapid advancements such as this lead many researchers
to believe that artificial general intelligence (AGI) and maybe
even artificial super intelligence (ASI) can be attained in our
lifetimes.  The Müller and Bostrom survey results we
mentioned back in Chapter 1, for example, have median
estimates of 2040 and 2060 for the genesis of AGI and ASI,
respectively.

Four primary factors are driving our rapid advances in ANI
and also may be hurrying us in the direction of AGI or ASI:

1. Data: In recent years, the amount of data in the digital realm doubles
about every 18 months. This exponential rate of growth shows no sign of
slowing (recall from Chapter 13, for example, the relentless swell of data
produced by an individual autonomous vehicle). A lot of the data is low

human intelligence.

20. The human-accuracy benchmark in Figure 1.15 is Andrej Karpathy (Figure 14.6)
himself, by the way.

21. Refer back to the end of Chapter 1 for a refresher on ANI, AGI, and ASI.
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quality, but—as with the open data sources we mentioned earlier in this
chapter—datasets are becoming larger, cheaper to store, and often
better organized (ImageNet from Chapters 1 and 10 is an exemplar).

2. Computing power: Although the rate of performance improvements on
individual CPUs may slow down in coming years,  the massive
parallelization of matrix operations within GPUs and across many
servers—each with multiple CPUs and perhaps multiple GPUs—will
continue to increase the ready availability of compute.

3. Algorithms: A rapidly enlarging army of data-focused scientists and
engineers—who are global, and who are spread across both the
academic and commercial realms—is tweaking the techniques used to
mine datasets for meaningful patterns. Every once in a while, there is a
breakthrough like AlexNet (Figure 1.15). In recent years, deep learning
has been associated with the bulk of these breakthroughs, many of
which we’ve covered over the course of this book.

4. Infrastructure: The Software 1.0 infrastructure such as open-source
operating systems and programming languages, paired with Software
2.0 libraries and techniques (shared in nearly real time, worldwide, via
arXiv and GitHub) and the low cost of cloud-computing providers (e.g.,
Amazon Web Services, Microsoft Azure, Google Cloud Platform)
provide a highly scalable hotbed for approaches to be experimented
with on ever-larger datasets.

The cognitive tasks that humans tend to find hard (e.g.,
playing chess, solving matrix algebra problems, optimizing a
financial portfolio) are generally the ones that Homo sapiens
have been doing for only thousands of years or fewer; these are
the types of tasks that today tend to be easy for machines. In
contrast, the cognitive tasks humans find easy (e.g., reading
social cues, carrying an infant safely up the stairs) evolved over

22. Moore’s “law” is anything but a law, and the shrinking of transistors down toward
electron scale makes decreasing the cost of computation on a given chip trickier and
trickier.
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millions of years and today remain beyond the reach of
machines. So despite all of the justifiable excitement around
machine learning, the possibility of AGI could be a long way off
and remains only a theoretical possibility at this time. Some
examples of the significant barriers that prevent contemporary
deep learning from bringing about AGI include:

Deep learning requires training on many, many samples. These
large datasets are not always available, and, in stark contrast,
biological learning systems—including those in mice and human
infants—can often learn from a single example.

Deep learning models are typically a black box. Although
investigative techniques like Jason Yosinski and colleagues’
DeepViz tool  exist, these are the exceptions to the rule.

Deep learning models don’t leverage knowledge of the world; they
don’t, for example, take into account databases of facts when they
make inferences.

To deep learning models, a predicted correlation between some
input x and some outcome y provides no assessment of causation.
Being able to move beyond predicting correlations between
variables toward causal relationships between them is presumably
critical to the development of general intelligence.

Deep learning models are often susceptible to unintuitive and
embarrassing failures,  and they can be deliberately duped by
changes to even a single pixel in an input image.

23. For more on the limitations of deep learning, read Marcus, G. (2018). Deep
learning: A critical appraisal. arXiv: 1801.00631.

24. bit.ly/DeepViz

25. Go to bit.ly/googleGaffe for an infamous example.

26. Deliberately misleading a machine learning algorithm is called an adversarial
attack, and it is carried out by inputting an adversarial example. There are many

23

24

25

26



Perhaps some of these barriers catch your own interest, and you
could consider dedicating some of your career to contributing to
devising solutions! We can’t know precisely what the future will
hold, but given the explosions of data, compute, algorithms, and
infrastructure, one prediction we’re confident making is that
you should have little difficulty identifying exhilerating
opportunities to apply deep learning.

SUMMARY
This chapter wrapped up the book by providing you with project
ideas, resources for further learning, a general guide to fitting
models, an overview of the deep learning models available to
you beyond Keras, and an exploration of the ways artificial
neural networks are rapidly reshaping software—with much
more potential excitement in the years to come!

Have fun going forward, and please do stay in touch:

Here’s a Twitter account we use for posting about new content as
it’s released, including new studio-recorded video tutorials we
anticipate publishing to accompany the material covered in this
book: twitter.com/JonKrohnLearns

We use Medium for long-form blog posts:
medium.com/@jonkrohn

We set up a Google Group to enable readers of this book to ask
questions and have them answered by other readers (perhaps even
us!) in a forum format. You can find it here: bit.ly/DLIforum

And, finally, feel free to add us on LinkedIn (e.g.,
linkedin.com/in/jonkrohn), but be sure to mention you’re a reader

papers on these; one outlining single-pixel adversarial attacks on CNNs is Su, J., et al.
(2017). One pixel attack for fooling deep neural networks. arXiv: 1710.08864.

http://twitter.com/JonKrohnLearns
http://medium.com/@jonkrohn
http://linkedin.com/in/jonkrohn


because we don’t accept requests from just anyone!

We hope you enjoyed this visual, interactive introduction to
deep learning. We’re deeply grateful for the time and energy you
invested in this journey that you’ve taken alongside us.
Farewell, dear friend—from the amiable trilobite in Figure 14.7.

Figure 14.7 Trilobyte waving good-bye
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A. Formal Neural Network Notation

To keep discussion of artificial neurons as straightforward as
possible, in this book we used a shorthand notation to identify
them within a network. In this appendix, we lay out a more
widely used formal notation, which may be of interest if you’d
like to:

Possess a more precise manner for describing neurons

Follow closely the backpropagation technique covered in Appendix
B

Taking a look back at Figure 7.1, the neural network has a
total of four layers. The first is the input layer, which can be
thought of as a collection of starting blocks for each data point
to enter the network. In the case of the MNIST models, for
example, there are 784 such starting blocks, representing each
of the pixels in a 28×28–pixel handwritten MNIST digit. No
computation happens within an input layer; it simply holds
space for the input values to exist in so that the network knows
how many values it needs to be ready to compute on in the next
layer.

The next two layers in the network in Figure 7.1 are hidden
layers, in which the bulk of the computation within a neural

1. For this reason, we usually don’t need a means to address a particular input
neuron; they have no weights or biases.

1



network occurs. As we’ll soon discuss, the input values x are
mathematically transformed and combined by each neuron in
the hidden layer, outputting some activation value a. Because
we need a way to address specific neurons in specific layers,
we’ll use superscript to define a layer, starting at the first hidden
layer, and subscript to define a neuron in that layer. In Figure
7.1, then, we’d have a1

1
, a1

2
, and a1

3  in the first hidden layer. In
this way, we can precisely refer to an individual neuron in a
specific layer. For example, a2

2
 represents the second neuron in

the second hidden layer.

Because Figure 7.1 is a dense network, the neuron a1
1
 receives

inputs from all of the neurons in the preceding layer, namely the
network inputs x  and x . Each neuron has its own bias, b, and
we’ll label that bias in exactly the same manner as the activation
a: For example, b1

2
 is the bias for the second neuron in the first

hidden layer.

The green arrows in Figure 7.1 represent the mathematical
transformation that takes place during forward propagation,
and each green arrow has its own individual weight associated
with it. In order to refer to these weights directly, we employ the
following notation: w1

(1,2)
 is the weight in the first hidden layer

(superscript) that connects neuron a1
1
 to its input x  in the input

layer (subscript). This double-barreled subscript is necessary
because the network is fully connected: Every neuron in a layer
is connected to every neuron in the layer before it, and that
connection carries its own weight. Let’s generalize this weight
notation:

The superscript is the hidden-layer number of the input-receiving
neuron.

1 2

2



The first subscript is the number of the neuron receiving the input
within its hidden layer.

The second subscript is the number of the neuron providing input
from the preceding layer.

As a further example, the weight for neuron a2
2
 will be denoted 

w2
(2,i) where i is a neuron in the preceding layer.

At the far right of the network, we finally have the output
layer. As with the hidden layers, output-layer neurons have
weights and a bias, and these are labeled in the same way.



B. Backpropagation

In this appendix, we use the formal neural network notation
from Appendix A to dive into the partial-derivative calculus
behind the backpropagation method introduced in Chapter 8.

Let’s begin by defining some additional notation to help us
along. Backpropagation works backwards, so the notation is
based on the final layer (denoted L), and the earlier layers are
annotated with respect to it (L – 1, L – 2, . . . L – n). The
weights, biases, and outputs from functions are subscripted
appropriately with this same notation. Recall from Equations
7.1 and 7.2 that the layer activation a  is calculated by
multiplying the preceding layer’s activation (a ) by the weight
w  and bias b  terms to produce z  and passing this through an
activation function (denoted simply as σ here). Also, we
implement a simple cost function at the end; here we’re using
Euclidean distance. Thus, for the final layer we have:

zL = wL ⋅ aL−1 + bL (B.1)

aL = σ (zL) (B.2)

C0 = (aL − y)2 (B.3)

In every iteration, we need the gradient of the total error
from the preceding layer ( /∂a ); in this way, the total error of
the system is propagated backwards. We’ll call this value δ .
Because backpropagation runs back-to-front, we start with the

L

L

L–1

L L L

∂C L



output layer. This layer is a special case given that the error
originates here in the form of the cost function and there are no
layers above it. Thus, δ  is given as follows:

δL = = 2 (aL − y) (B.4)

Again, this is a special case for the initial δ value; the remaining
layers will be different (more on that shortly). Now, to update
the weights in layer L we need to find the gradient of the cost
w.r.t. (with respect to) the weights, /∂w . According to the
chain rule, this is the product of the gradient of the cost for the
layer before w.r.t. its output, the gradient of the activation
function w.r.t. z, and the gradient of the z w.r.t. the weights w :

= ⋅ ⋅ (B.5)

Since /∂a  =δ  (Equation B.4), this equation can be simplified
to:

= δL ⋅ aL−1 (1 − aL−1) ⋅ aL−1 (B.6)

This value is essentially the relative amount by which the
weights at layer L affect the total cost, and we use this to update
the weights at this layer. Our work isn’t complete, however; now
we need to continue down the rest of the layers. For layer L – 1:

δL−1 = = ⋅ ⋅ (B.7)

Again, /∂a  = δ  (Equation B.4). In this way, the total error is
being incorporated down the line, or backpropagated. The
remaining terms have derivatives, so the equation becomes:

δL−1 = = δL ⋅ aL(1 − aL) ⋅ wL (B.8)

Now we need to find the gradient of the cost w.r.t. the weights at
this layer L – 1 as before:

L
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= ⋅ ⋅ (B.9)

Once again, substituting δ  for /∂a  (Equation B.8) and
taking the derivatives of the other terms, we get:

= δL−1 ⋅ aL−1 (1 − aL−1) ⋅ aL−2 (B.10)

This process is repeated layer by layer all the way down to the
first layer.

To recap, we first find ∂  (Equation B.4) which is the error of
the cost function (Equation B.3), and we use that value in the
equation for the derivative of the cost function w.r.t. the weights
in layer L (Equation B.6). In the next layer, we find δ
(Equation B.8)—the gradient of the cost w.r.t. the output of
layer L–1. As before, this is used in the equation to calculate the
gradient of the cost function w.r.t. the weights in layer L –1
(Equation B.10). And so on; backpropagation continues until we
reach the model inputs.

Up to this point in this appendix, we’ve only dealt with
networks with single inputs, single hidden neurons, and single
outputs. In practice, deep learning models are never this simple.
Thankfully, the math shown above scales straightforwardly
given multiple neurons in a layer and multiple network inputs
and outputs.

Consider the case where there are multiple output classes,
such as when you’re classifying MNIST digits. In this case, there
are 10 output classes (n = 10) representing the digits 0–9. For
each class, the model provides a probability that a given input
image belongs to that class. To find the total cost, we find the
sum of the (quadratic, in this case) cost over all the classes:

∂C

∂wL−1
∂C

∂a
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∂aL−1

∂z
L−1
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∂w
L−1

L–1
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L

L–1

∂C L–1



C0 =
n∑

n=1

(aL
n − yn)2 (B.11)

In Equation B.11, a  and y are vectors, each containing n
elements.

Examining /∂w  for this, the output layer, we must account
for the fact that there may be many neurons in the final hidden
layer, each one of them connected to each output neuron. It’s
helpful here to switch the notation slightly: Let the final hidden
layer be i and the output layer be j. In this way, we have a matrix
of weights that can be accessed with a row for each output
neuron and a column for each hidden-layer neuron, and each
weight can be denoted w . So now, we find the gradient on each
weight (remember, there are i × j weights: one for each
connection between each neuron in the two layers):

= ⋅ ⋅ (B.12)

We do this for every single weight in the layer, creating the
gradient vector for the weights of size i × j.

Although this is essentially the same as our single-neuron-
per-layer backprop (refer to Equation B.7), the equation for the
gradient of the cost w.r.t. the preceding layer’s output a  will
change (i.e., the δ  value). Because this gradient is composed
of the partial derivatives of the current layer’s inputs and
weights, and because there are now multiple of those, we need
to sum everything up. Sticking with the i and j notation:

δL−1 = =
nj−1

∑
j=0

⋅ ⋅ (B.13)
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This is a lot of math to take in, so let’s review in simple terms:
Relative to the simpler network of Equations B.1 through B.10,
the equations haven’t changed except that instead of calculating
the gradient on a single weight, we need to calculate the
gradient on multiple weights (Equation B.12). In order to
calculate the gradient on any given weight, we need that δ value
—which itself is composed of the error over a number of
connections in the preceding layer—so we calculate the sum
over all these errors (Equation B.13).



C. PyTorch

In this appendix, we’ll introduce the distinguishing elements of
PyTorch, including contrasting it with its primary competition—
TensorFlow.

PYTORCH FEATURES
In Chapter 14, we introduced PyTorch at a high level. In this
section, we continue by examining the library’s core attributes.

Autograd System
PyTorch operates using what’s called an autograd system,
which relies on the principle of reverse-mode automatic
differentiation. As detailed in Chapter 7, the end product of
forward propagating through a deep neural network is the result
of a series of functions chained together. Reverse-mode
automatic differentiation applies the chain rule to differentiate
the inputs with respect to the cost at the end, working
backwards (introduced in Chapter 8 and detailed in Appendix
B). At each iteration, the activations of the neurons in the
network are computed by forward propagation, and each
function is recorded on a graph. At the end of training, this
graph can be computed backwards to calculate the gradient at
each neuron.



Define-by-Run Framework
What makes autograd especially interesting is the define-by-run
nature of the framework: The calculations for backpropagation
are defined with each forward pass. This is important because it
means that the backpropagation step is only dependent on how
your code is run, and as such the backpropagation mathematics
can vary with each forward pass. This means that every round of
training (see Figure 8.5) can be different. This is useful in
settings such as natural language processing, where the input
sequence length is typically set to the maximum length (i.e., the
longest sentence in the corpus) and shorter sequences are
padded with zeros (as we did in Chapter 11). PyTorch, in
contrast, natively supports dynamic inputs, circumventing the
need for this truncating and padding.

The define-by-run framework also means that the framework
is not asynchronous. When a line is executed, the code is run,
making debugging much simpler. When the code throws an
error, you’re able to see exactly which line caused the error.
Furthermore, by running an appropriate helper function, this
so-called eager execution can be easily replaced with a
traditional graph-based model—wherein the graphs are defined
in advance, which brings with it speed and optimization
benefits.

PyTorch Versus TensorFlow
You might now wonder when one might select PyTorch over
TensorFlow. The answer is not unambiguous, but we’ll explore
some of the advantages and disadvantages of each library here.

One relevant topic is adoption: TensorFlow is currently more



widely used than PyTorch. PyTorch was first released to the
public in January 2017, whereas TensorFlow was released a
little over a year prior, in November 2015. In the rapidly
developing world of deep learning, this is a significant head
start. Indeed, the 1.0.0 version of PyTorch was only released on
December 7, 2018. In this way, TensorFlow gained traction and
a large body of tutorials and Stack Overflow posts emerged
online, giving Google’s library an edge.

A second consideration is that PyTorch’s dynamic interface
makes iteration easier and quicker relative to the static nature
of TensorFlow.  With PyTorch you can define, change, and
execute nodes as you go, as opposed to defining the entire
model in advance. Debugging is significantly easier in PyTorch,
largely because graphs are defined at run time. This means that
errors occur when the code is executed and are more easily
traceable to the offending line of code.

Visualization in TensorFlow is intuitive and easy with the
built-in TensorBoard platform (see Figure 9.8). However,
TensorBoard integrations with PyTorch do exist, and data are
more implicitly available during PyTorch model training, so
custom solutions can be built using other libraries (for example,
with matplotlib).

TensorFlow is used in both development and production at
Google, and for this reason the library has much more
sophisticated deployment options, including mobile support
and distributed training support. PyTorch has historically
lagged in these departments; however, with the release of

1. The Eager mode central to TensorFlow 2.0 intends to remedy this.

1



PyTorch 1.0.0, a new just in time (JIT) compiler and its new
distributed library are available to address these shortcomings.
Additionally, all of the major cloud providers have announced
PyTorch integrations, including ones with TensorBoard and
TPU support on Google Cloud!

When it comes to everyday use, PyTorch feels more
“Pythonic” than TensorFlow: It was written specifically as a
Python library, and so it will feel familiar to Python developers.
While TensorFlow has an established Python implementation
that’s widely used, the library was originally written in C++, and
so its Python implementation can feel cumbersome. Of course,
Keras exists to try to solve this problem, but in the process it
obscures some of TensorFlow’s functionality.  On the topic of
Keras, PyTorch has the Fast.ai library,  which aims to provide
high-level abstractions to PyTorch that are analogous to those
provided by Keras to TensorFlow.

Taking all of these topics into account, if you’re doing
research or if your in-production execution demands are not
very high, PyTorch might be the optimal choice. The speed of
iteration when experimenting, coupled with simpler debugging
and extensive NumPy integration, make this library well suited
to research. However, if you’re deploying deep learning models
into a production environment, you’ll find more support with

2. One might have expected Google to drag its feet on integrations with the library of
one of its primary competitors—in this case, Facebook.

3. TensorFlow 2.0’s tight coupling with Keras therein intends to correct many of
these issues.

4. github.com/fastai/fastai

2

3

4

http://github.com/fastai/fastai


TensorFlow. This is especially the case if you’re using
distributed training or performing inference on a mobile
platform.

PYTORCH IN PRACTICE
In this section, we go over the basics of PyTorch installation and
use.

PyTorch Installation
Alongside TensorFlow and Keras, PyTorch is one of the libraries
in the Docker container we recommended installing  for
running the Jupyter notebooks throughout this book. So, if you
followed those instructions, you’re already all set. If you’re
working outside of our recommended Docker setup, then you
can consult the installation notes that are available on the
PyTorch homepage.

The Fundamental Units Within PyTorch
The fundamental units within PyTorch are tensors and
variables, which we describe in turn here.

Basic Operations with Tensors
As in TensorFlow, tensor is little more than a fancy name for a
matrix or vector. Tensors are functionally the same as NumPy
arrays, except that PyTorch provides specific methods to
perform computation with them on GPUs. Under the hood,
these tensors also keep a record of the graph (for the autograd

5. See the beginning of Chapter 5 for these instructions.

6. pytorch.org

5

6

http://pytorch.org


system) and the gradients.

The default tensor is usually FloatTensor. PyTorch has
eight types of tensors, which contain either integers or floats.
When you define which type of tensor you’d like to use, that
choice has memory and precision implications; 8-bit integers
can only store 256 values (i.e., [0 : 255]) and occupy much less
memory than 64-bit  integers. However, in cases where, say,
integers up to 255 are all that is required, using higher-order
integers would be unnecessary. This consideration is especially
relevant when you’re running models on GPU architectures,
because memory is generally the limiting factor on GPUs, as
compared to running models on the CPU, where installing more
RAM is relatively cheap.

Click here to view code image

import torch
x = torch.zeros(28, 28, 1, dtype=torch.uint8)

y = torch.randn(28, 28, 1, dtype=torch.float32)

This code (which is available in our PyTorch Jupyter notebook,
along with all of the other examples in this appendix) creates a
28×28×1 tensor, x, that’s filled with zeros, of the type uint8.
You could also have used torch.ones() to create a
comparable tensor filled with ones. The second tensor, y,
contains random numbers from the standard normal
distribution.  By definition, these cannot be 8-bit integers, so

7. 64-bit integers can store values as large 2  − 1, which is 9.2 quintillion.

7

63

8

9



we specified 32-bit floats here.

As mentioned initially, these tensors have a lot in common
with NumPy n-dimensional arrays. For example, it’s easy to
generate a PyTorch tensor from a NumPy array with the
torch.from_numpy() method. The PyTorch library also
contains many math operations that can be efficiently
performed on these tensors, many of which mirror their NumPy
counterparts.

Automatic Differentiation
PyTorch tensors can natively store the computational graph for
the network as well as the gradients. This is enabled by setting
the requires_grad argument to True when you create the
tensor. Now, each tensor has a grad attribute that stores the
gradient. Initially, this is set to None until the tensor’s
backward() method is called. The backward() method
reverses through the record of operations and calculates the
gradient at each point in the graph. After the first call to
backward(), the grad attribute becomes filled with gradient
values.

In the following code block, we define a simple tensor,
perform some mathematical operations, and call the
backward() method to reverse through the graph and
calculate the gradients. Subsequently, the grad attribute will
store gradients.

8. The “u” in uint8 stands for unsigned, meaning that these 8-bit integers span from
0 to 255 instead of from −128 to 127.

9. The standard normal distribution has a mean of 0 and a standard deviation of 1.



Click here to view code image

import torch

x = torch.zeros(3, 3, dtype=torch.float32, requires_

grad=True)

y = x - 4

z = y** 3  * 6

out = z.mean()

out.backward()

print(x.grad)

Because x had its require_grad flag set, we can perform
backpropagation on this series of computations. PyTorch has
accumulated the functions that generated the final output using
its autograd system, so calling out.backward() will calculate
the gradients and store them in x.grad. The final line prints
the following:

tensor([[32., 32., 32.],

        [32., 32., 32.],

        [32., 32., 32.]])

As this example demonstrates, PyTorch takes the hassle out of
automatic differentiation. Next, we cover the basics of building
a neural network in PyTorch.



Building a Deep Neural Network in PyTorch
The essential paradigm of building neural networks should be
familiar: They consist of multiple layers that are stacked
together (as in Figure 4.2). In the examples throughout this
book, we used the Keras library as a high-level abstraction over
the raw TensorFlow functions. Similarly, the PyTorch nn
module contains layerlike modules that receive tensors as
inputs and return tensors as outputs. In the following example,
we build a two-layer network akin to the dense nets we used to
classify handwritten digits in Part II:

Click here to view code image

import torch

# Define random tensors for the inputs and outputs

x = torch.randn(32, 784, requires_grad=True)
y = torch.randint(low=0, high=10, size=(32,))

# Define the model, using the Sequential class

model = torch.nn.Sequential(

    torch.nn.linear(784, 100),

    torch.nn.Sigmoid(),

    torch.nn.Linear(100, 10),

    torch.nn.LogSoftmax(dim=1)

)

# Define the optimizer and loss function

optimizer = torch.optim.Adam(model.parameters())

loss_fn = torch.nn.NLLLoss()

for step  in range(1000):
    # Make predictions by forward propagation

    y_hat = model(x)

    # Calculate the loss



    loss = loss_fn(y_hat, y)

    # Zero-out the gradient before performing a back

ward pass

    optimizer.zero_grad()

    # Compute the gradients w.r.t. the loss

    loss.backward()

    # Print the results

    print('Step: :4d - loss: :0.4f'.format(step+1, l

oss.item()))

    # Update the model parameters

    optimizer.step()

Let’s break this down step by step:

The x and y tensors are placeholders for the input and output
values of the model.

We use the Sequential class to begin building our model as a
series of layers (linear() through to LogSoftmax()), in much
the same way as we did in Keras.

We initialize an optimizer; in this case we use Adam with its default
values. We also pass into the optimizer all of the tensors we’d like
optimized—in this case, model.parameters().

We also initialize the loss function, although it doesn’t require any
parameters. We opted for the built-in negative log-likelihood loss
function, torch.nn.NLLLoss().

We manually iterate over the number of rounds of training (Figure
8.5) that we’d like to take (in this case, 1000), and during each
round we

Calculate the model outputs using y_hat = model(x).

Calculate the loss using the function we defined earlier,
passing in the predicted ŷ values and the true y values.

10



Zero the gradients. This is necessary because the gradients
are accumulated in buffers, and not overwritten.

Perform backpropagation to recalculate the gradients, given
the loss.

Finally, take a step using the optimizer. This updates the
model weights using the gradients.

This procedure diverges from the model.fit() method we
employed in Keras. However, with all of the theory covered in
this book and the hands-on examples we’ve worked through
together, hopefully it’s not a stretch to appreciate what’s taking
place in this PyTorch code. Without too much effort, you should
be able to adapt the deep learning models in this book from
Keras into PyTorch.

10. Pairing a LogSoftmax( ) output layer with the torch.nn.NLLLoss( ) cost function
in PyTorch is equivalent to using a softmax output layer with cross-entropy cost in
Keras. PyTorch does have a cross_entropy( ) cost function, but it incorporates the
softmax calculation so that if you were to use it, you wouldn’t need to apply the
softmax activation function to your model output.

11. Note that our example PyTorch neural network in this appendix isn’t learning
anything meaningful. The loss decreases, but the model is simply memorizing
(overfitting to) the training data we randomly generated. We’re feeding in random
numbers as inputs and mapping them to other random numbers. If we randomly
generated validation data, too, the validation loss wouldn’t decrease. If you’re feeling
adventurous, you could initialize x and y with actual data from, say, the MNIST
dataset (you can import these data with Keras, as in Example 5.2) and train a
PyTorch model to map a meaningful relationship!

11
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most_similar() method, word2vec, 212–213

Motion, detecting in visual cortex, 7–8

Mountain Car game, 316

MRI (magnetic resonance imaging), and visual cortex,
7–8

Müller, Vincent, 72

Multi ConvNet Sentiment Classifier Jupyter notebook,
320

MXNet, deep learning library, 324

N
n-dimensional spaces, 42–43, 339

n-grams, 196, 202–203



Nair, Vinod, 94–95

Natural human language, elements of, 33–35

Natural language classification

dense network classifier architecture, 229–235
examining IMDb data, 227–228
with familiar networks, 222
loading IMDb film reviews, 222–226
processing in document, 23–24
standardizing length of reviews, 228–229

Natural Language Preprocessing Jupyter notebook,
197

Natural language processing (NLP)

area under ROC curve, 217–222
building own deep learning project, 315–316
building socially beneficial projects, 318
computational representations of. See Language,

computational representations of
deep learning approaches to, 53
examples, 23–24
Google Duplex as deep-learning, 35–37
history of deep learning, 24–25
key concepts, 256–257
learning representations automatically, 22–23
natural human language elements of, 33–35
natural language classification in. See Natural language

classification
networks designed for sequential data, 240–251



non-sequential architectures, 251–256
overview of, 195
preprocessing. See Preprocessing natural language data
Software 2.0 and, 326
summary, 256
transfer learning in, 251
word embedding with word2vec. See word2vec

n_components, plotting word vectors, 214

Negative rewards, reinforcement learning problems
and, 56

Negative sampling, training word2vec, 208

Neocognition

LeNet-5 advantages over, 13–14
LeNet-5 model and, 9–12
machine vision and, 8–9

Nesterov momentum optimizer, stochastic gradient
descent, 146

Network architecture, regression model, 150–151

Network depth, as hyperparameter, 125–126

Neural Information Processing Systems (NIPS)
conference, 41

Neural machine translation (NMT), seq2seq models,
250

Neural networks

building deep in PyTorch, 343–344
coding shallow in Keras, 83
formal notation for, 333–334



Neuron saturation. See Saturated neurons

Neurons

AlexNet vs. LeNet-5, 17
behaviors of biological, 85–86
forming primary visual cortex, 4–7
neocognition and, 8–9
regions processing visual stimuli in visual cortex, 7–8
TensorFlow Playground and, 17–19
tuning hidden-layer count and number of, 126

next_state, DQN agent gameplay, 298

NIPS (Neural Information Processing Systems)
conference, 41

n_iter, plotting word vectors, 214

NLP. See Natural language processing (NLP)

NMT (neural machine translation), seq2seq models,
250

Noë, Alva, 39

Non-sequential model architecture, 251–256

Non-trainable params, model object, 109–110

Nonlinearity, of ReLU neuron, 95

Notation, formal neural network, 333–334

Number of epochs of training

as hyperparameter, 122
rule of thumb for learning rate, 119
stochastic gradient descent and, 119–122
training deep learning model, 83–84

NumPy



PyTorch tensors and, 324, 339
selecting action for DQN agent, 299–300
weight initialization, 132, 134

O
Object detection

with Fast R-CNN, 184
as machine vision application, 182–183
with R-CNN, 183–184
understanding, 183
with YOLO, 185–186

Objective function (π), maximizing reward with, 290

Objects

manipulation of, 67–68
recognition tasks of machine vision, 52–53

Occam’s razor, neuron count and, 126

Oliveira, Luke de, 315, 316

On-device processing, machine learning for, 46–48

One-hot format

computational representations of language via, 25–26
converting integer labels to, 82–83
localist vs. distributed representations, 32–33

Online resources

building deep learning projects, 317–318
pretrained word vectors, 230

OpenAI Gym

building deep learning projects, 316



Cart-Pole game, 284–286
deep reinforcement learning, 68–70
interacting with environment, 300–303

Optimal policy

building neural network model for, 288–290
estimating optimal action via Q-learning, 290–292

Optimal Q-value (Q*), estimating, 291–292

Optimization

agents beyond DQN using, 306–307
fancy optimizers for stochastic gradient descent, 145–147
hyperparameter optimizers, 130, 303–306
minimizing cost via. See Cost, minimizing via optimization
stochastic gradient descent. See Stochastic gradient descent

(SGD)

Output layer

artificial neural network with, 99
batch normalization and, 139
building network model for DQN agent, 298
calculus behind backpropagation, 335, 337
deep learning model architectures, 51–52
LSTM, 245
notation for neural networks, 334
perceptrons, 86–87, 89
schematic diagram of shallow network, 79
softmax layer for multiclass problems, 106–108
softmax layer of fast food-classifying network, 106–107
TensorFlow Playground demo, 100



Overfitting, avoiding

building your own project, 320
data augmentation, 145
dropout, 142–145
L1 and L2 regularization, 141–142
model generalization and, 140–141

P
Pac-Man

discount factor (decay) and, 288–289
DQN agent initialization and, 296

Padding

convolutional example of, 163–167
as convolutional filter hyperparameter, 167–168
standardizing length of IMDb film reviews, 228–229

Parameter initialization, building own project, 319

Parameters. See also Hyperparameters

Cart-Pole DQN agent initialization, 295–297
creating dense network classifier architecture, 230–232
escaping local minimum, 122–124
gradient descent minimizing cost across multiple, 116–117
pooling layers reducing overall, 169–170
saving model, 300
weight initialization, 132–135

Parametric ReLU activation function, 96

Partial-derivative calculus, cross-entropy cost, 114–115

Patches, in convolutional layers, 160



PCA (principal component analysis), 213

Perceptrons

choosing, 96
hot dog/not hot dog detector example, 86–90
modern neurons vs., 91
as most important equation in this book, 90–91
overview of, 86

Performance

hyperparameter optimization using SLM Lab, 303–306
Software 2.0 and, 326

PG. See Policy gradient (PG) algorithm

Phonemes, natural human language and, 34

Phonology, natural human language and, 34–35

Photorealistic images, creating. See Machine art

Phraser() method, NLP, 202–203, 204–205

Phrases() method, NLP, 202–203, 204–205

Pichai, Sundar, 35–36

pix2pix web application, 45–46

Pixels

computational complexity and, 160
converting integers to floats, 82
convolutional example of, 163–167
convolutional layers and, 160–162
handwritten MNIST digits as, 77–78
kernel size hyperparameter of convolutional filters, 167
reformatting data for shallow net, 81–83



schematic diagram of shallow network, 78–79
two-dimensional imagery and, 159–160

Plotting

GAN training accuracy, 281
GAN training loss, 280–281
word vectors, 213–217

Policy function (π), discounted future reward,
288–290

Policy gradient (PG) algorithm

actor-critic using Q-learning with, 307–308
in deep reinforcement learning, 68
REINFORCE algorithm as, 307

Policy networks, AlphaGo, 61

Policy optimization

agents beyond DQN using, 307
building neural network model for, 288–290
estimating optimal action via Q-learning, 290–292
RL agent using actor-critic with, 307–308

Pooling layers, 169–170, 176

Positive rewards, deep reinforcement learning, 56, 57

Prediction

selecting action for DQN agent, 300
training dense sentiment classifier, 232
training DQN agent via memory replay, 299
word2vec using predictive models, 208

Preprocessing natural language data

converting all characters to lowercase, 199–200



full corpus, 203–206
handling n-grams, 202–203
overview of, 195–197
removing stop words and punctuation, 200–201
stemming, 201
tokenization, 197–199

Principal component analysis (PCA), 213

Probability distribution, Markov decision processes,
288

Processing power, AlexNet vs. LeNet-5, 16–17

Project Gutenberg. See Preprocessing natural language
data

Punctuation

processing full corpus, 204–206
removing, 196, 200

Python, for example code in this book, 75–76

PyTorch

building deep neural network in, 343–344
deep learning library, 323–324
features, 339–340
installation, 341
in practice, 341–343
TensorFlow vs., 340–341

Q
Q-learning networks

actor-critic combining PG algorithms with, 307–308



DQNs. See Deep Q-learning networks (DQNs)

Q-value functions

agents beyond DQN optimizing, 306
drawbacks of DQN agents, 306
estimating optimal, 291–292
training DQN agent via memory replay, 299

Quadratic cost, 112–113

Quake III Arena, DeepMind Lab built on, 69

Quick, Draw! game

GANs and, 263–266
for hundreds of machine-drawn sketches, 48
introduction to deep learning, 19

R
R-CNN

Fast R-CNN, 184
Faster R-CNN, 184–185
Mask R-CNN, 186–187
object detection application, 183–184

Radford, Alec, 41–44

RAM (memory), batch size/stochastic gradient descent
and, 119–122

rand function, DQN agent action selection, 299–300

randrange function, DQN agent action selection, 300

Rectified linear unit neurons. See ReLU (rectified
linear unit) neurons

Recurrent neural networks (RNNs)



bidirectional LSTM, 247–248
LSTM, 244–247
LSTM cell as layer of NLP in, 53
overview of, 240–244
stacked recurrent models, 248–250

Redmon, Joseph, 185–186

Reformatting data, coding shallow network, 81–83

Regions of interest (ROIs)

developing Faster R-CNN, 184–185
image segmentation with Mask R-CNN, 187
object detection with Fast R-CNN, 184
object detection with R-CNN, 183–184

Regression, improving deep networks, 149–152

REINFORCE algorithm, agents beyond DQN using, 307

Reinforcement learning

building socially beneficial projects, 318
essential theory of, 283–286
overview of, 49
problems of machine learning, 54–56
as sequential decision-making problems, 284

Reinforcement Learning: An Introduction (Barto),
292

Reinforcement learning, deep

agents beyond DQN, 306–308
board games. See Board games
building own project. See Deep learning projects, building

own



Cart-Pole game, 284–286
DeepMind DQN using, 58–59
defining DQN agent, 293–300
essential theory of deep Q-learning networks, 290–292
essential theory of reinforcement learning, 283–286
game-playing applications. See Game-playing machines
hyperparameter optimization with SLM Lab, 303–306
interacting with OpenAI Gym environment, 300–303
key concepts, 308–309
manipulation of objects, 67–68
Markov decision processes, 286–288
optimal policy, 288–290
overview of, 56–57, 283
popular learning environments for, 68–71
summary, 308
video games, 57–60

ReLU (rectified linear unit) neurons

with Glorot distributions, 136–137
neural network model for DQN agent, 297
overview of, 94–95
as preferred neuron type, 96
TensorFlow Playground demo, 100

Representation learning, 22, 51

requires_grad argument, PyTorch, 342

Residual connections, 180–182

Residual modules, 180–182

Residual networks (ResNets), 180–182



Resources, building deep learning projects, 317–318

return_sequencesTrue, stacking recurrent layers, 248

Reward(s)

deep Q-learning network theory, 290–292
DeepMind DQN and, 59
DeepMind Lab, 69, 71
DQN agent gameplay, 298
Markov decision processes (MDPs), 287–289
optimal policy, 288–290
reinforcement learning problems and, 56
theory of reinforcement learning, 283
training DQN agent via memory replay, 298–299

Ridge regression, reducing model overfitting, 141–142

RMSProp, 147

RMSProp optimizer, 147

ROC AUC metric

as area under ROC curve, 217–218
calculating, 219–222, 234
confusion matrix, 218–219
for sentiment classifier model architectures, 256

ROIs. See Regions of interest (ROIs)

Rosenblatt, Frank, 86–90

Round of training, stochastic gradient descent,
120–121

Running time, Software 2.0 and, 325

S



Sabour, Sara, 192

Saturated neurons

as flaw in calculating quadratic cost, 112–113
minimizing impact using cross-entropy cost, 113–115
reducing with cross-entropy cost and weight initialization,

131–135
weight initialization, Glorot normal distribution, 136

Saving model parameters, 300

Schematic diagram

activation values in feature map of convolutional layer, 164
coding shallow network in Keras, 77–79
of discriminator network, 268
of generator network, 270
of LSTM, 245
of recurrent neural network, 241
wide and deep modeling, 317

Schmidhuber, Jürgen, 244

Search, automating hyperparameter, 321

Search engines, NLP in, 23–24

Sedol, Lee, 62

See-in-the-Dark dataset, image processing, 47–48

Semantics, natural human language and, 34–35

sentences argument, word2vec, 210

Sentiment classifier

bidirectional LSTM, 247–248
convolutional, 236–239
dense, 229–235



LSTM architecture, 247
LSTM hyperparameters, 246–247
non-sequential architecture example, 251–255
performance of model architectures, 256

seq2seq (sequence-to-sequence), and attention, 250

Sequential decision-making problems, 284

Sequential model, building for DQN agent, 297–298

sg argument, word2vec, 210

SG (skip-gram) architecture, 207, 208

SGD. See Stochastic gradient descent (SGD)

Shadow Dexterous Hand, OpenAI Gym, 70

Shallow network

coding. See Coding shallow network in Keras
for dense networks, 108–110
intermediate-depth neural network in, 127–129
vs. deep learning, 78–79

Shogi, AlphaZero and, 65–66

Short-term memory, LSTM, 245–246

Sigmoid Function Jupyter notebook, 105

Sigmoid neuron(s)

activation function of, 92–94
for binary classification problems, 100–101, 105–106
choosing, 96
for shallow net in Keras, 79, 83
softmax function with single neuron equivalent to using, 108
weight initialization and, 133–137



Silver, David, 61–62, 65–66

Similarity score, running word2vec, 212–213

Simple neurons

forming primary visual cortex, 6–7
neocognition and, 8–9

SimpleRNN() layer, RNN sentiment classifier, 243

size argument, word2vec, 210

Skip-gram (SG) architecture, 207, 208

SLM Lab, 303–306, 316

Socially beneficial projects, deep learning projects, 318

Sodol, Lee, 62, 64

Softmax layer, fast food-classifying network, 106–108

Softmax probability output, Fast R-CNN, 184

Software dependencies, shallow net in Keras, 80

Sofware 2.0, deep learning models, 324–326

Speech recognition, NLP in, 24

Spell-checkers, 24

Squared error, as quadratic cost, 112

Stacked recurrent models, 248–250

StackGAN, photorealistic images from text, 45–46

State(s)

deep Q-learning network theory and, 290–292
DeepMind DQN and, 58
DQN agent, remembering gameplay, 298
Markov decision processes and, 286
optimal policy in deep reinforcement learning and, 289–290



reinforcement learning problems and, 56
reinforcement learning via Cart-Pole game and, 286
theory of reinforcement learning, 284

Static scatterplot, plotting word vectors, 214–216

Stemming, word

forgoing removal of, 203–206
overview of, 201
preprocessing natural language via, 196

Stochastic gradient descent (SGD)

escaping local minimum of cost via, 122–124
fancy optimizers for, 145–147
training deep networks using batch size and, 119–124

Stop words

forgoing removal of, 203–206
how to remove, 200
removing in NLP, 195–196

Stride length

as convolutional filter hyperparameter, 167
pooling layers using, 169–170
reducing computational complexity, 170

Style transfer, 44–45

Suleyman, Mustafa, 58

Supervised learning problems, machine learning,
53–54

Support vector machines, R-CNN, 183–184

Sutskever, Ilya, 14, 16

Sutton, Richard, 292



Syntax, natural human language and, 34–35

T
Tacotron, TTS engine, 36–37

Tanh neurons

activation function of, 94
choosing, 96
with Glorot distributions, 136–137
LSTM, 244–245

Target word

converting natural words to word vectors, 27–28
running word2vec, 207–209

Tensor processing units (TPUs), Google training
neural networks, 64

TensorBoard dashboard, 152–154

TensorFlow, 321–323

TensorFlow Playground, 17–19, 100

Tensors, PyTorch

automatic differentiation in, 342–343
building deep neural network, 343–344
compatibility with NumPy operations, 324
features, 339–340

Terminal state, theory of reinforcement learning, 284

Text, creating photorealistic images from, 45–46

Text-to-speech (TTS) engine, Google Duplex, 36–37

Theano, deep learning library, 324



Theory, essential

of deep Q-learning networks, 290–292
of GANs, 259–262
of reinforcement learning, 283–284
of RNNs, 240–244
of word2vec, 206–209

Threshold value, perceptron equation, 89–91

Tokenization

examining IMDb data, 226–228
natural human language and, 35–36
preprocessing natural language, 195, 197–199

Torch, PyTorch as extension of, 323–324

torch.nn.NLLLoss() function, PyTorch, 344

TPUs (tensor processing units), Google training neural
networks, 64

Traditional machine learning (ML) approach

deep learning approach vs., 11–12
entrants into ILSVRC using, 14–15
natural human language in, 33–35
one-hot encoding of words in, 25–26
understanding, 12–13

train() method

training DQN agent, 299
training GAN, 275–281

Training

AlexNet vs. LeNet-5, 16–17
AlphaGo vs. AlphaGo Zero, 63–65



TensorFlow Playground, 17–19

Training deep networks

adversarial network, 272–274
backpropagation, 124–125
batch size and stochastic gradient descent, 119–122
coding shallow network in Keras, 83–84
convolutional sentiment classifier, 238
cost functions, 111–115
cross-entropy cost, 113–115
data augmentation for, 145
deep neural network in Keras, 147–149
dense sentiment classifier, 232
escaping local minimum, 122–124
generative adversarial networks (GANs), 259–262, 275–281
gradient descent, 115–117
intermediate-depth neural network, 128–129
intermediate net in Keras, 127–129
key concepts, 130
learning rate, 117–119
minimizing cost via optimization, 115
overview of, 111
preventing overfitting with dropout, 142–145
quadratic cost, 112–113
recurrent neural networks (RNNs), 241
running word2vec, 208
saturated neurons, 112–113
summary, 129–130



transfer learning model of, 188–192
tuning hidden-layer and neuron counts, 125–126
via memory replay for DQN agent, 298–299

Transfer learning

machine vision and, 188–192
natural language and, 230
in NLP, 251
overview of, 188–192

Truncation, standardizing film review length, 228–229

TSNE() method, plotting word vectors, 214–216

TTS (text-to-speech) engine, Google Duplex, 36–37

Two-dimensional images, flattening to one dimension,
82

Two-dimensional structure of visual imagery

overview of, 159–160
retaining in convolutional layers, 167
retaining using LeNet-5 in Keras, 172

U
U-Net, image segmentation, 187–188

ULMFiT (universal language model fine-tuning),
transfer learning, 251

United States Postal Service, LeNet-5 reading ZIP
codes, 11

Unity ML-Agents plug-in, 71, 304

Unstable gradients, improving deep networks, 137–139

Unsupervised learning problems, machine learning, 54



Upsampling layers, 187, 272

V
Validation data, 232–235, 239

Value functions, Q-learning, 291–292

Value networks, AlphaGo algorithm, 61

Value optimization

agents beyond DQN using, 306
RL agent using actor-critic algorithm and, 307–308

Vanishing gradient problem

in artificial neural networks, 137–138
performance degradation in deep CNNs, 179–180

Vector space

embeddings. See Word vectors
latent space similarities to, 42–43
word meaning represented by three dimensions, 27–29
word-vector arithmetic, 29–30

Venn diagram, 22, 50

VGGNet, 178–179, 188–192

Video games, 57–60

Viola, Paul, 12–13

Visual imagery, two-dimensional structure of, 159–160

Visual perception

cerebral cortex research on, 4–7
development of species on planet due to, 3–4

W



WaveNet, Google Duplex TTS engine, 36–37

Weight initialization, 131–137

Weighted sum, perceptron algorithm, 86–89

Weight(s)

backpropagation and, 125, 335–337
convolutional example of, 163–167
of kernels in convolutional layers, 160–162
minimizing cost via gradient descent, 115–116
notation for neural networks, 334

Wide and deep modeling approach, Google, 317

Wiesel, Torsten

LeNet-5 model built on work of, 10–12
machine vision using work of, 8–9
research on visual cortex, 4–7

window argument, word2vec, 210

Wittgenstein, Ludwig, 21

Word embeddings. See Word vectors

Word vectors. See also word2vec

arithmetic of, 29–30
capturing word meaning, 195
computational representations. See Language,

computational representations of
convolutional filters detecting triplets of, 239
evaluating, 209
localist vs. distributed representations, 32–33
in NLP. See Natural language processing (NLP)



online pretrained, 230
plotting, 213–217
training on natural language data, 229–230
word2viz tool for exploring, 30–32

word2vec

converting natural words to word vectors, 28
essential theory behind, 206–209
evaluating word vectors, 209
FastText as leading alternative to, 209
plotting word vectors, 213–217
running, 209–213
word embeddings, 206

Words

creating embeddings with word2vec. See word2vec
natural human language and, 33–35
preprocessing natural language. See Preprocessing natural

language data

word_tokenize() method, natural language, 199

workers argument, word2vec, 211

X
Xavier Glorot distributions, improving deep networks,

135–137

Y
Yelp review polarity, 316

YOLO (You Only Look Once), object detection, 185–186
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Zhang, Xiang, 315
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Code Snippets
Many titles include programming code or configuration
examples. To optimize the presentation of these elements, view
the eBook in single-column, landscape mode and adjust the font
size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included
images of the code that mimic the presentation found in the
print book; therefore, where the reflowable format may
compromise the presentation of the code listing, you will see a
“Click here to view code image” link. Click the link to view the
print-fidelity code image. To return to the previous page viewed,
click the Back button on your device or app.
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