

MEAP Edition
Manning Early Access Program

Deep Learning with R
Version 1

Copyright 2017 Manning Publications

For more information on this and other Manning titles go to
www.manning.com

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r
Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://www.manning.com
https://forums.manning.com/forums/deep-learning-with-r
https://forums.manning.com/forums/deep-learning-with-r

 welcome
Thank you for purchasing the MEAP for Deep Learning with R. If you are looking for a
resource to learn about deep learning from scratch and to quickly become able to use this
knowledge to solve real-world problems, you have found the right book. Deep Learning
with R is meant for statisticians, analysts, engineers and students with a reasonable amount
of R experience, but no significant knowledge of machine learning and deep learning. This
book is an adaptation of my previously published Deep Learning with Python, with all of
the code examples using the R interface to Keras. The goal of the book is to provide a
learning resource for the R community that goes all the way from basic theory to advanced
practical applications.

Deep learning is an immensely rich subfield of machine learning, with powerful
applications ranging from machine perception to natural language processing, all the way up
to creative AI. Yet, its core concepts are in fact very simple. Deep learning is often
presented as shrouded in a certain mystique, with references to algorithms that “work like
the brain”, that “think” or “understand”. Reality is however quite far from this science-
fiction dream, and I will do my best in these pages to dispel these illusions. I believe that
there are no difficult ideas in deep learning, and that’s why I started this book, based on
premise that all of the important concepts and applications in this field could be taught to
anyone, with very few prerequisites.

This book is structured around a series of practical code examples, demonstrating on real-
world problems every the notions that gets introduced. I strongly believe in the value of
teaching using concrete examples, anchoring theoretical ideas into actual results and
tangible code patterns. These examples all rely on Keras, the deep learning library. When I
released the initial version of Keras almost two years ago, little did I know that it would
quickly skyrocket to become one of the most widely used deep learning frameworks. A big
part of that success is that Keras has always put ease of use and accessibility front and
center. This same reason is what makes Keras a great library to get started with deep
learning, and thus a great fit for this book. By the time you reach the end of this book, you
will have become a Keras expert.

I hope that you will this book valuable —deep learning will definitely open up new
intellectual perspectives for you, and in fact it even has the potential to transform your
career, being the most in-demand scientific specialization these days. I am looking forward
to your reviews and comments. Your feedback is essential in order to write the best possible
book, that will benefit the greatest number of people.

— François Chollet

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r
Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r
https://forums.manning.com/forums/deep-learning-with-r

brief contents
PART 1: INTRODUCTION TO DEEP LEARNING

 1 What is deep learning?

 2 Before we begin: the mathematical blocks of neural networks

 3 Getting started with neural networks

 4 Fundamentals of machine learning

PART 2: DEEP LEARNING IN PRACTICE

 5 Deep learning for computer vision

 6 Deep learning for text and sequences

 7 Advanced deep learning best practices

 8 Generative deep learning

 9 Conclusions

APPENDIXES:

 A Installing Keras and its dependencies on Ubuntu

 B Running RStudio Server on a EC2 GPU instance

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r
Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r
https://forums.manning.com/forums/deep-learning-with-r

1
This chapter covers

In the past few years, artificial intelligence (AI) has been a subject of intense media hype.
Machine learning, deep learning, and AI come up in countless articles, often outside of
technology-minded publications. We’re being promised a future of intelligent chatbots,
self-driving cars, and virtual assistants—a future sometimes painted in a grim light and
other times as an utopia, where human jobs would be scarce and most economic activity
would be handled by robots or AI agents. This chapter provides essential context around
artificial intelligence, machine learning, and deep learning.

As a future or current practitioner of machine learning, it’s important to be able to
recognize the signal in the noise so that you can tell world-changing developments from
mere overhyped press releases. Our future is at stake, and it’s a future in which you have
an active role to play: after reading this book, you’ll be one of those who develop the
AIs. So let’s tackle these questions: What has deep learning achieved so far? How
significant is it? Where are we headed next? Should you believe the hype?

First, we need to define clearly what we’re talking about when we mention . WhatAI
are artificial intelligence, machine learning, and deep learning (see figure 1.1)? How do
they relate to each other?

What is deep learning?

High-level definitions of fundamental concepts
Timeline of the development of machine learning
Key factors behind deep learning’s rising popularity and future
potential

1.1 Artificial intelligence, machine learning, and deep learning

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

1

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 1.1 Artificial intelligence, machine learning, and deep learning

Artificial intelligence was born in the 1950s, when a handful of pioneers from the nascent
field of computer science started asking whether computers could be made to "think"—a
question whose ramifications we’re still exploring today. A concise definition of the field
would be as follows: the effort to automate intellectual tasks normally performed by

. As such, AI is a general field that encompasses machine learning and deephumans
learning, but that also includes many more approaches that don’t involve any learning.
Early chess programs, for instance, only involved hard-coded rules crafted by
programmers, and didn’t qualify as machine learning. For a fairly long time, many
experts believed that human-level artificial intelligence could be achieved by having
programmers handcraft a sufficiently large set of explicit rules for manipulating
knowledge. This approach is known as , and it was the dominant paradigm insymbolic AI
AI from the 1950s to the late 1980s. It reached its peak popularity during the expert

 boom of the 1980s.systems
Although symbolic AI proved suitable to solve well-defined, logical problems, such

as playing chess, it turned out to be intractable to figure out explicit rules for solving
more complex, fuzzy problems, such as image classification, speech recognition, and
language translation. A new approach arose to take symbolic AI’s place: machine

.learning

1.1.1 Artificial intelligence

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

2

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

In Victorian England, Lady Ada Lovelace was a friend and collaborator of Charles
Babbage, the inventor of the : the first known general-purpose,Analytical Engine
mechanical computer. Although visionary and far ahead of its time, the Analytical
Engine wasn’t meant as a general-purpose computer when it was designed in the 1830s
and 1840s, because the concept of general-purpose computation was yet to be invented. It
was merely meant as a way to use mechanical operations to automate certain
computations from the field of mathematical analysis—hence the name Analytical
Engine. In 1843, Ada Lovelace remarked on the invention, "The Analytical Engine has
no pretensions whatever to originate anything. It can do whatever we know how to order
it to perform.… Its province is to assist us in making available what we’re already
acquainted with."

This remark was later quoted by AI pioneer Alan Turing as "Lady Lovelace’s
objection" in his landmark 1950 paper "Computing Machinery and Intelligence," which1

introduced the as well as key concepts that would come to shape AI. TuringTuring test
was quoting Ada Lovelace while pondering whether general-purpose computers could be
capable of learning and originality, and he came to the conclusion that they could.

Footnote 1mA. M. Turing, "Computing Machinery and Intelligence," 59, no. 236 (1950): 433-460.Mind

Machine learning arises from this question: could a computer go beyond "what we
know how to order it to perform" and learn on its own how to perform a specified task?
Could a computer surprise us? Rather than programmers crafting data-processing rules
by hand, could a computer automatically learn these rules by looking at data?

This question opens the door to a new programming paradigm. In classical
programming, the paradigm of symbolic AI, humans input rules (a program) and data to
be processed according to these rules, and out come answers (see figure 1.2). With
machine learning, humans input data as well as the answers expected from the data, and
out come the rules. These rules can then be applied to new data to produce original
answers.

Figure 1.2 Machine learning: a new programming paradigm

A machine-learning system is rather than explicitly programmed. It’strained
presented with many examples relevant to a task, and it finds statistical structure in these
examples that eventually allows the system to come up with rules for automating the
task. For instance, if you wished to automate the task of tagging your vacation pictures,

1.1.2 Machine Learning

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

3

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

you could present a machine-learning system with many examples of pictures already
tagged by humans, and the system would learn statistical rules for associating specific
pictures to specific tags.

Although machine learning only started to flourish in the 1990s, it has quickly
become the most popular and most successful subfield of AI, a trend driven by the
availability of faster hardware and larger datasets. Machine learning is tightly related to
mathematical statistics, but it differs from statistics in several important ways. Unlike
statistics, machine learning tends to deal with large, complex datasets (such as a dataset
of millions of images, each consisting of tens of thousands of pixels) for which classical
statistical analysis such as Bayesian analysis would be impractical. As a result, machine
learning, and especially deep learning, exhibits comparatively little mathematical
theory—maybe too little—and is engineering oriented. It’s a hands-on discipline in
which ideas are proven empirically much more often than theoretically.

To define and understand the difference between deep learning and otherdeep learning
machine-learning approaches, first we need some idea of what machine-learning
algorithms . We just stated that machine learning discovers rules to execute ado
data-processing task, given examples of what’s expected. So, to do machine learning, we
need three things:

Input data points—For instance, if the task is speech recognition, these data points could
be sound files of people speaking. If the task is image tagging, they could be picture files.
Examples of the expected output—In a speech-recognition task, these could be
human-generated transcripts of sound files. In an image task, expected outputs could tags
such as "dog", "cat", and so on.
A way to measure whether the algorithm is doing a good job—This is necessary in order
to determine the distance between the algorithm’s current output and its expected output.
The measurement is used as a feedback signal to adjust the way the algorithm works.
This adjustment step is what we call .learning

A machine-learning model transforms its input data into meaningful output, a process
that is "learned" from exposure to known examples of inputs and outputs. Therefore, the
central problem in machine learning and deep learning is to :meaningfully transform data
in other words, to learn useful of the input data at hand—representationsrepresentations
that get us closer to the expected output. Before we go any further: what’s a
representation? At its core, it’s a different way to look at data—to or represent encode
data. For instance, a color image can be encoded in the RGB format (red-green-blue) or
in the HSV format (hue-saturation-value): these are two different representations of the
same data. Some tasks that may be difficult with one representation can become easy
with another. For example, the task "select all red pixels in the image" is simpler in the
RBG format, whereas "make the image less saturated" is simpler in the HSV format.
Machine-learning models are all about finding appropriate representations for their input
data—transformations of the data that make it more amenable to the task at hand, such as
a classification task.

1.1.3 Learning representations from data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

4

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Let’s make this concrete. Consider an x axis, a y axis, and some points represented by
their coordinates in the (x, y) system, as shown in figure 1.3.

Figure 1.3 Some sample data

As you can see, we have a few white points and a few black points. Let’s say we want
to develop an algorithm that can take the coordinates (x, y) of a point and output whether
that point is likely to be black or to be white. In this case,

The inputs are the coordinates of our points.
The expected outputs are the colors of our points.
A way to measure whether our algorithm is doing a good job could be, for instance, the
percentage of points that are being correctly classified.

What we need here is a new representation of our data that cleanly separates the white
points from the black points. One transformation we could use, among many other
possibilities, would be a coordinate change, illustrated in figure 1.4.

Figure 1.4 Coordinate change

In this new coordinate system, the coordinates of our points can be said to be a new
representation of our data. And it’s a good one! With this representation, the black/white
classification problem can be expressed as a simple rule: black points are such that x 0 or
"white points are such that x < 0". This new representation basically solves the
classification problem.

In this case, we defined the coordinate change by hand. But if instead we tried
systematically searching for different possible coordinate changes, and used as feedback

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

5

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

the percentage of points being correctly classified, then we would be doing machine
learning. , in the context of machine learning, describes an automatic searchLearning
process for better representations.

All machine-learning algorithms consist of automatically finding such
transformations that turn data into more useful representations for a given task. These
operations can be coordinate changes, as you just saw, or linear projections (which may
destroy information), translations, nonlinear operations (such as select all points such that
x 0), and so on. Machine-learning algorithms aren’t usually creative in finding these
transformations; they’re merely searching through a predefined set of operations, called a

.hypothesis space
So that’s what machine learning is, technically: searching for useful representations

of some input data, within a predefined space of possibilities, using guidance from some
feedback signal. This simple idea allows for solving a remarkably broad range of
intellectual tasks, from speech recognition to autonomous car driving.

Now that you understand what we mean by , let’s take a look at what makes learning
 special.deep learning

Deep learning is a specific subfield of machine learning: a new take on learning
representations from data that puts an emphasis on learning successive oflayers
increasingly meaningful representations. The in isn’t a reference todeep deep learning
any kind of deeper understanding achieved by the approach; rather, it stands for this idea
of successive layers of representations. How many layers contribute to a model of the
data is called the of the model. Other appropriate names for the field could havedepth
been and . Modernlayered representations learning hierarchical representations learning
deep learning often involves tens or even hundreds of successive layers of
representation—and they’re all learned automatically from exposure to training data.
Meanwhile, other approaches to machine learning tend to focus on learning only one or
two layers of representation of the data; hence they’re sometimes called shallow learning
.

In deep learning, these layered representations are (almost always) learned via models
called , structured in literal layers stacked one after the other. The term neural networks

 is a reference to neurobiology, but although some of the central conceptsneural network
in deep learning were developed in part by drawing inspiration from our understanding of
the brain, deep learning models are models of the brain. There’s no evidence that thenot
brain implements anything like the learning mechanisms used in modern deep-learning
models. You may come across pop-science articles proclaiming that deep learning works
like the brain or was modeled after the brain, but that isn’t the case. It would be
confusing and counterproductive for newcomers to the field to think of deep learning as
being in any way related to the neurobiology; you don’t need that shroud of "just like our

1.1.4 The "deep" in deep learning

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

6

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

minds" mystique and mystery, and you may as well forget anything you may have read
about hypothetical links between deep learning and biology. For our purposes, deep
learning is a mathematical framework for learning representations from data.

What do the representations learned by a deep-learning algorithm look like? Let’s
examine how a network several layers deep (see figure 1.5) transforms an image of a
digit in order to recognize what digit it is.

Figure 1.5 A deep neural network for digit classification

As you can see in figure 1.6, the network transforms the digit image into
representations that are increasingly different from the original image and increasingly
informative about the final result. You can think of a deep network as a multistage
information-distillation operation, where information goes through successive filters and
comes out increasingly (that is, useful with regard to some task).purified

Figure 1.6 Deep representations learned by a digit-classification model

So that’s what deep learning is, technically: a multistage way to learn data
©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/deep-learning-with-r

7

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

representations. It’s a simple idea—but, as it turns out, very simple mechanisms,
sufficiently scaled, can end up looking like magic.

At this point, you know that machine learning is about mapping inputs (such as images)
to targets (such as the label "cat"), which is done by observing many examples of input
and targets. You also know that deep neural networks do this input-to-target mapping via
a deep sequence of simple data transformations (layers) and that these data
transformations are learned by exposure to examples. Now let’s look at how this learning
happens, concretely.

The specification of what a layer does to its input data is stored in the layer’s ,weights
which in essence are a bunch of numbers. In technical terms, we’d say that the
transformation implemented by a layer is by its weights (see figure 1.7).parametrized
(Weights are also sometimes called the of a layer.) In this context, parameters learning
means finding a set of values for the weights of all layers in a network, such that the
network will correctly map example inputs to their associated targets. But here’s the
thing: a deep neural network can contain tens of millions of parameters. Finding the
correct value for all of them may seem like a daunting task, especially given that
modifying the value of one parameter will affect the behavior of all others!

Figure 1.7 A neural network is parametrized by its weights.

To control something, first you need to be able to observe it. To control the output of
a neural network, you need to be able to measure how far this output is from what you
expected. This is the job of the of the network, also called the loss function objective

. The loss function takes the predictions of the network and the true target (whatfunction
you wanted the network to output) and computes a distance score, capturing how well the
network has done on this specific example (see figure 1.8).

1.1.5 Understanding how deep learning works, in three figures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

8

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 1.8 A loss function measures the quality of the network’s output.

The fundamental trick in deep learning is to use this score as a feedback signal to
adjust the value of the weights a little, in a direction that will lower the loss score for the
current example (see figure 1.9). This adjustment is the job of the , whichoptimizer
implements what’s called the algorithm: the central algorithm in deepbackpropagation
learning. The next chapter will explain in more detail how backpropagation works.

Figure 1.9 The loss score is used as a feedback signal to adjust the weights.

Initially, the weights of the network are assigned random values, so the network
merely implements a series of random transformations. Naturally, its output is far from
what it should ideally be, and the loss score is accordingly very high. But with every
example the network processes, the weights are adjusted a little in the correct direction,
and the loss score decreases. This is the , which, repeated a sufficienttraining loop
number of times (typically tens of iterations over thousands of examples), yields weight
values that minimize the loss function. A network with a minimal loss is one for which
the outputs are as close as they can be to the targets: a trained network. Once again, a
simple mechanism that, once scaled, ends up looking like magic.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

9

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Although deep learning is a fairly old subfield of machine learning, it only rose to
prominence in the early 2010s. In the few years since, it has achieved nothing short of a
revolution in the field, with remarkable results on perceptual problems such as seeing and
hearing—problems involving skills that seem natural and intuitive to humans but have
long been elusive for machines.

In particular, deep learning has achieved the following breakthroughs, all in
historically difficult areas of machine learning:

Near-human-level image classification
Near-human-level speech recognition
Near-human-level handwriting transcription
Improved machine translation
Improved text-to-speech conversion
Digital assistants such as Google Now and Amazon Alexa
Near-human-level autonomous driving
Improved ad targeting, as used by Google, Baidu, and Bing
Improved search results on the Web
Ability to answer natural-language questions
Superhuman Go playing

We’re still exploring the full extent of what deep learning can do. We’ve started
applying it to a wide variety of problems outside of machine perception and
natural-language understanding, such as formal reasoning. If successful, this may herald
an age where deep learning assists humans in doing science, developing software, and
more.

Although deep learning has led to remarkable achievements in recent years, expectations
for what the field will be able to achieve in the next decade tend to run much higher than
what will turn out to be possible. Although some world-changing applications like
autonomous cars are already within reach, many more are likely to remain elusive for a
long time, such as believable dialogue systems, human-level machine translation across
arbitrary languages, and human-level natural-language understanding. In particular, talk
of shouldn’t be taken too seriously. The risk with highhuman-level general intelligence
expectations for the short term is that, as technology fails to deliver, research investment
will dry up, slowing progress for a long time.

This has happened before. Twice in the past, AI went through a cycle of intense
optimism followed by disappointment and skepticism, with a dearth of funding as a
result. It started with symbolic AI in the 1960s. In those early days, projections about AI
were flying high. One of the best-known pioneers and proponents of the symbolic AI
approach was Marvin Minsky, who claimed in 1967, "Within a generation … the
problem of creating 'artificial intelligence' will substantially be solved." Three years later,
in 1970, he made a more precisely quantified prediction: "In from three to eight years we

1.1.6 What deep learning has achieved so far

1.1.7 Don’t believe the short-term hype

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

10

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

will have a machine with the general intelligence of an average human being." In 2016,
such an achievement still appears to be far in the future—so far that we have no way to
predict how long it will take—but in the 1960s and early 1970s, several experts believed
it to be right around the corner (as do many people today). A few years later, as these
high expectations failed to materialize, researchers and government funds turned away
from the field, marking the start of the first (a reference to a nuclear winter,AI winter
because this was shortly after the height of the Cold War).

It wouldn’t be the last one. In the 1980s, a new take on symbolic AI, ,expert systems
started gathering steam among large companies. A few initial success stories triggered a
wave of investment, with corporations around the world starting their own in-house AI
departments to develop expert systems. Around 1985, companies were spending over $1
billion each year on the technology; but by the early 1990s, these systems had proven
expensive to maintain, difficult to scale, and limited in scope, and interest died down.
Thus began the second AI winter.

We may be currently witnessing the third cycle of AI hype and disappointment—and
we’re still in the phase of intense optimism. It’s best to moderate our expectations for the
short term and make sure people less familiar with the technical side of the field have a
clear idea of what deep learning can and can’t deliver.

Although we may have unrealistic short-term expectations for AI, the long-term picture
is looking bright. We’re only just getting started in applying deep learning to many
important problems for which it could prove transformative, from medical diagnoses to
digital assistants. AI research has been moving forward amazingly quickly in the past
five years, in large part due to a level of funding never seen before in the short history of
AI, but so far relatively little of this progress has made its way into the products and
processes that form our world. Most of the research findings of deep learning aren’t yet
applied, or at least not applied to the full range of problems they can solve across all
industries. Your doctor doesn’t yet use AI, and neither does your accountant. You
probably don’t use AI technologies in your day-to-day life. Of course, you can ask your
smartphone simple questions and get reasonable answers, you can get fairly useful
product recommendations on Amazon.com, and you can search for "birthday" on Google
Photos and instantly find those pictures of your daughter’s birthday party from last
month. That’s a far cry from where such technologies used to stand. But such tools are
still only accessory to our daily lives. AI has yet to transition to being central to the way
we work, think, and live.

Right now, it may seem hard to believe that AI could have a large impact on our
world, because it isn’t yet widely deployed—much as, back in 1995, it would have been
difficult to believe in the future impact of the internet. Back then, most people didn’t see
how the internet was relevant to them and how it was going to change their lives. The
same is true for deep learning and AI today. But make no mistake: AI is coming. In a
not-so-distant future, AI will be your assistant, even your friend; it will answer your

1.1.8 The promise of AI

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

11

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

questions, help educate your kids, and watch over your health. It will deliver your
groceries to your door and drive you from point A to point B. It will be your interface to
an increasingly complex and increasingly information-intensive world. And, even more
important, AI will help humanity as a whole move forward, by assisting human scientists
in new breakthrough discoveries across all scientific fields, from genomics to
mathematics.

On the way, we may face a few setbacks and maybe a new AI winter—in much the
same way the internet industry was overhyped in 1998–1999 and suffered from a crash
that dried up investment throughout the early 2000s. But we’ll get there eventually. AI
will end up being applied to nearly every process that makes up our society and our daily
lives, much like the internet today.

Don’t believe the short-term hype, but do believe in the long-term vision. It may take
a while for AI to be deployed to its true potential—a potential the full extent of which no
one has yet dared to dream—but AI is coming, and it will transform our world in a
fantastic way.

Deep learning has reached a level of public attention and industry investment never seen
before in the history of AI, but it isn’t the first successful form of machine learning. It’s
safe to say that most of the machine-learning algorithms used in the industry today aren’t
deep-learning algorithms. Deep learning isn’t always the right tool for the
job—sometimes there isn’t enough data for deep learning to be applicable, and
sometimes the problem is better solved by a different algorithm. If deep learning is your
first contact with machine learning, then you may find yourself in a situation where all
you have is the deep-learning hammer, and every machine-learning problem starts to
look like a nail. The only way not to fall into this trap is to be familiar with other
approaches and practice them when appropriate.

A detailed discussion of classical machine-learning approaches is outside of the scope
of this book, but we’ll briefly go over them and describe the historical context in which
they were developed. This will allow us to place deep learning in the broader context of
machine learning and better understand where deep learning comes from and why it
matters.

Probabilistic modeling is the application of the principles of statistics to data analysis. It
was one of the earliest forms of machine learning, and it’s still widely used to this day.
One of the best-known algorithms in this category is the Naive Bayes algorithm.

Naive Bayes is a type of machine-learning classifier based on applying the Bayes
theorem while assuming that the features in the input data are all independent (a strong,
or "naive" assumption, which is where the name comes from). This form of data analysis
predates computers and was applied by hand decades before its first computer

1.2 Before deep learning: a brief history of machine learning

1.2.1 Probabilistic modeling

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

12

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

implementation (most likely dating back to the 1950s). The Bayes theorem and the
foundations of statistics date back to the 18th century, and these are all you need to start
using Naive Bayes classifiers.

A closely related model is the (logreg for short), which islogistic regression
sometimes considered to be the "hello world" of modern machine learning. Don’t be
misled by its name—logreg is a classification algorithm rather than a regression
algorithm. Much like Naive Bayes, logreg predates computing by a long time, yet it’s
still useful to this day, thanks to its simple and versatile nature. It’s often the first thing a
data scientist will try on a dataset to get a feel for the classification task at hand.

Early iterations of neural networks have been completely supplanted by the modern
variants covered in these pages, but it’s helpful to be aware of how deep learning
originated. Although the core ideas of neural networks were investigated in toy forms as
early as the 1950s, the approach took decades to get started. For a long time, the missing
piece was an efficient way to train large neural networks. This changed in the mid 1980s,
when multiple people independently rediscovered the algorithm—abackpropagation
way to train chains of parametric operations using gradient-descent optimization (later in
the book, we’ll precisely define these concepts)--and started applying it to neural
networks.

The first successful practical application of neural nets came in 1989 from Bell Labs,
when Yann LeCun combined the earlier ideas of convolutional neural networks and
backpropagation, and applied them to the problem of classifying handwritten digits. The
resulting network, dubbed , was used by the United States Postal Service in theLeNet
1990s to automate the reading of ZIP codes on mail envelopes.

As neural networks started to gain some respect among researchers in the 1990s, thanks
to this first success, a new approach to machine learning rose to fame and quickly sent
neural nets back to oblivion: kernel methods. are a group of classificationKernel methods
algorithms, the best known of which is the (SVM). The modernsupport vector machine
formulation of an SVM was developed by Vladimir Vapnik and Corinna Cortes in the
early 1990s at Bell Labs and published in 1995, although an older linear formulation2

was published by Vapnik and Chervonenkis as early as 1963.3

Footnote 2mVladimir Vapnik and Corinna Cortes, "Support-Vector Networks," 20, no.Machine Learning
3 (1995): 273–297.

Footnote 3mVladimir Vapnik and Alexey Chervonenkis, "A Note on One Class of Perceptrons,"
 25 (1964).Automation and Remote Control

SVMs aim at solving classification problems by finding good decision boundaries
(see figure 1.10) between two sets of points belonging to two different categories. A

1.2.2 Early neural networks

1.2.3 Kernel methods

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

13

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

1.

2.

decision boundary can be thought of as a line or surface separating your training data into
two spaces corresponding to two categories. To classify new data points, you just need to
check which side of the decision boundary they fall on.

Figure 1.10 A decision boundary

SVMs proceed to find these boundaries in two steps:

The data is mapped to a new high-dimensional representation where the decision
boundary can be expressed as a hyperplane (if the data was two-dimensional, as in figure
1.10, a hyperplane would be a straight line).
A good decision boundary (a separation hyperplane) is computed by trying to maximize
the distance between the hyperplane and the closest data points from each class, a step
called . This allows the boundary to generalize well to newmaximizing the margin
samples outside of the training dataset.

The technique of mapping data to a high-dimensional representation where a
classification problem becomes simpler may look good on paper, but in practice it’s often
computationally intractable. That’s where the comes in (the key idea thatkernel trick
kernel methods are named after). Here’s the gist of it: to find good decision hyperplanes
in the new representation space, you don’t have to explicitly compute the coordinates of
your points in the new space; you just need to compute the distance between pairs of
points in that space, which can be done efficiently using a . A kernelkernel function
function is a computationally tractable operation that maps any two points in your initial
space to the distance between these points in your target representation space, completely
bypassing the explicit computation of the new representation. Kernel functions are
typically crafted by hand rather than learned from data—in the case of an SVM, only the
separation hyperplane is learned.

At the time they were developed, SVMs exhibited state-of-the-art performance on
simple classification problems and were one of the few machine-learning methods
backed by extensive theory and amenable to serious mathematical analysis, making them
well understood and easily interpretable. Because of these useful properties, SVMs
became extremely popular in the field for a long time.

But SVMs proved hard to scale to large datasets and didn’t provide good results for
©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/deep-learning-with-r

14

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

perceptual problems such as image classification. Because an SVM is a shallow method,
applying an SVM to perceptual problems requires first extracting useful representations
manually (a step called), which is difficult and brittle.feature engineering

Decision trees are flowchart-like structures that let you classify input data points or
predict output values given inputs (see figure 1.11). They’re easy to visualize and
interpret. Decisions trees learned from data began to receive significant research interest
in the 2000s, and by 2010 they were often preferred to kernel methods.

Figure 1.11 A decision tree: the parameters that are learned are the questions about the
data. A question could be, for instance, "Is coefficient 2 in the data higher than 3.5?"

In particular, the algorithm introduced a robust, practical take onRandom Forest
decision-tree learning that involves building a large number of specialized decision trees
and then ensembling their outputs. Random forests are applicable to a wide range of
problems—you could say that they’re almost always the second-best algorithm for any
shallow machine-learning task. When the popular machine-learning competition website
Kaggle () got started in 2010, random forests quickly became a favorite onkaggle.com
the platform—until 2014, when took over. A gradientgradient boosting machines
boosting machine, much like a random forest, is a machine-learning technique based on
ensembling weak prediction models, generally decision trees. It uses , agradient boosting
way to improve any machine-learning model by iteratively training new models that
specialize in addressing the weak points of the previous models. Applied to decision
trees, the use of the gradient boosting technique results in models that strictly outperform
random forests most of the time, while having similar properties. It may be one of the
best, if not best, algorithm for dealing with nonperceptual data today. Alongside deepthe
learning, it’s one of the most commonly used techniques in Kaggle competitions.

1.2.4 Decision trees, random forests, and gradient boosting machines

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

15

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://kaggle.com
https://forums.manning.com/forums/deep-learning-with-r

Around 2010, although neural networks were almost completely shunned by the
scientific community at large, a number of people still working on neural networks
started to make important breakthroughs: the groups of Geoffrey Hinton at the University
of Toronto, Yoshua Bengio at the University of Montreal, Yann LeCun at New York
University, and IDSIA in Switzerland.

In 2011, Dan Ciresan from IDSIA began to win academic image-classification
competitions with GPU-trained deep neural networks—the first practical success of
modern deep learning. But the watershed moment came in 2012, with the entry of
Hinton’s group in the yearly large-scale image-classification challenge ImageNet. The
ImageNet challenge was notoriously difficult at the time, consisting of classifying
high-resolution color images into 1,000 different categories after training on 1.4 million
images. In 2011, the top-five accuracy of the winning model, based on classical
approaches to computer vision, was only 74.3%. Then, in 2012, a team led by Alex
Krizhevsky and advised by Geoffrey Hinton was able to achieve a top-five accuracy of
83.6%--a significant breakthrough. The competition has been dominated by deep
convolutional neural networks every year since. By 2015, the winner reached an accuracy
of 96.4%, and the classification task on ImageNet was considered to be a completely
solved problem.

Since 2012, deep convolutional neural networks () have become the go-toconvnets
algorithm for all computer vision tasks; more generally, they work on all perceptual
tasks. At major computer vision conferences in 2015 and 2016, it was nearly impossible
to find presentations that didn’t involve convnets in some form. At the same time, deep
learning has also found applications in many other types of problems, such as natural
language processing. It has completely replaced SVMs and decision trees in a wide range
of applications. For instance, for several years, the European Organization for Nuclear
Research, CERN, used decision tree–based methods for analysis of particle data from the
ATLAS detector at the Large Hadron Collider (LHC); but CERN eventually switched to
Keras-based deep neural networks due to their higher performance and ease of training
on large datasets.

The primary reason deep learning took off so quickly is that it offered better performance
on many problems. But that’s not the only reason. Deep learning also makes
problem-solving much easier, because it completely automates what used to be the most
crucial step in a machine-learning workflow: feature engineering.

Previous machine-learning techniques—shallow learning—only involved
transforming the input data into one or two successive representation spaces, usually via
simple transformations such as high-dimensional non-linear projections (SVM) or
decision trees. But the refined representations required by complex problems generally
can’t be attained by such techniques. As such, humans had to go to great length to make
the initial input data more amenable to processing by these methods: that is, they had to

1.2.5 Back to neural networks

1.2.6 What makes deep learning different

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

16

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

manually engineer good layers of representations for their data. This is called feature
. Deep learning, on the other hand, completely automates this step: with deepengineering

learning, you learn all features in one pass rather than having to engineer them yourself.
This has greatly simplified machine-learning workflows, often replacing sophisticated
multistage pipelines with a single, simple, end-to-end deep-learning model.

You may ask, if the crux of the issue is to have multiple successive layers of
representation, could shallow methods be applied repeatedly to emulate the effects of
deep learning? In practice, there are fast-diminishing returns to successive applications of
shallow-learning methods, because the optimal first representation layer in a three-layer

. What ismodel isn’t the optimal first layer in a one-layer or two-layer model
transformative about deep learning is that it allows a model to learn all layers of
representation , at the same time, rather than in succession (, as it’s called).jointly greedily
With joint feature learning, whenever the model adjusts one of its internal features, all
other features that depend on it automatically adapt to the change, without requiring
human intervention. Everything is supervised by a single feedback signal: every change
in the model serves the end goal. This is much more powerful than greedily stacking
shallow models, because it allows for complex, abstract representations to be learned by
breaking them down into long series of intermediate spaces (layers); each space is only a
simple transformation away from the previous one.

These are the two essential characteristics of how deep learning learns from data: the
incremental, layer-by-layer way in which increasingly complex representations are

, and the fact developed these intermediate incremental representations are learned
, each layer being updated to follow both the representational needs of the layerjointly

above and the needs of the layer below. Together, these two properties have made deep
learning vastly more successful than previous approaches to machine learning.

A great way to get a sense of the current landscape of machine-learning algorithms and
tools is to look at machine-learning competitions on Kaggle. Due to its highly
competitive environment (some contests have thousands of entrants and million-dollar
prizes) and to the wide variety of machine-learning problems covered, Kaggle offers a
realistic way to assess what works and what doesn’t. So, what kind of algorithm is
reliably winning competitions? What tools do top entrants use?

In 2016, Kaggle was dominated by two approaches: gradient boosting machines and
deep learning. Specifically, gradient boosting is used for problems where structured data
is available, whereas deep learning is used for perceptual problems such as image
classification. Practitioners of the former almost always use the excellent XGBoost
library. Meanwhile, most of the Kaggle entrants leveraging deep learning use the Keras
library, due to its ease of use and flexibility. XGBoost and Keras both support the two
most popular data science languages: R and Python.

These are the two techniques you should be the most familiar with in order to be
successful in applied machine learning today: gradient boosting machines, for

1.2.7 The modern machine-learning landscape

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

17

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

shallow-learning problems; and deep learning, for perceptual problems. In technical
terms, this means you’ll need to be familiar with XGB and Keras—the two libraries that
currently dominate Kaggle competitions. With this book in hand, you’re already one big
step closer.

The two key ideas of deep learning for computer vision—convolutional neural networks
and backpropagation—were already well understood in 1989. The Long Short-Term
Memory (LSTM) algorithm, which is fundamental to deep learning for time series, was
developed in 1997 and has barely changed since. So why did deep learning only take off
after 2012? What changed in these two decades?

In general, three technical forces are driving advances in machine learning:

Hardware
Datasets and benchmarks
Algorithmic advances

Because the field is guided by experimental findings rather than by theory,
algorithmic advances only become possible when appropriate data and hardware were
available to try new ideas (or scale up old ideas, as is often the case). Machine learning
isn’t mathematics or physics, where major advances can be done with a pen and a piece
of paper. It’s an engineering science.

The real bottlenecks throughout the 1990s and 2000s were data and hardware. But
here’s what happened during that time: the internet took off, and high-performance
graphics chips were developed for the needs of the gaming market.

Between 1990 and 2010, off-the-shelf CPUs became faster by a factor of approximately
5,000. As a result, nowadays it’s possible to run small deep learning models on your
laptop, whereas this would have been intractable 25 years ago.

But typical deep-learning models used in computer vision or speech recognition
require orders of magnitude more computational power than what your laptop can
deliver. Throughout the 2000s, companies like NVIDIA and AMD have been investing
billions of dollars in developing fast, massively parallel chips (graphical processing units
[GPUs]) to power the graphics of increasingly photorealistic video games—cheap,
single-purpose supercomputers designed to render complex 3D scenes on your screen in
real time. This investment came to benefit the scientific community when, in 2007,
NVIDIA launched CUDA (), a programming interfacedeveloper.nvidia.com/about-cuda
for its line of GPUs. A small number of GPUs started replacing massive clusters of CPUs
in various highly parallelizable applications, beginning with physics modeling. Deep
neural networks, consisting mostly of many small matrix multiplications, are also highly

1.3 Why deep learning? Why now?

1.3.1 Hardware

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

18

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://developer.nvidia.com/about-cuda
https://forums.manning.com/forums/deep-learning-with-r

parallelizable; and around 2011, some researchers began to write CUDA
implementations of neural nets—Dan Ciresan and Alex Krizhevsky were among the4 5

first.

Footnote 4mSee "Flexible, High Performance Convolutional Neural Networks for Image Classification,"
 (2011),Proceedings of the 22nd International Joint Conference on Artificial Intelligence

www.ijcai.org/Proceedings/11/Papers/210.pdf.

Footnote 5mSee "ImageNet Classification with Deep Convolutional Neural Networks," Advances in
 25 (2012), .Neural Information Processing Systems mng.bz/2286

What happened is that the gaming market subsidized supercomputing for the next
generation of artificial intelligence applications. Sometimes, big things begin as games.
Today, the NVIDIA Titan X, a gaming GPU that cost $1,000 at the end of 2015, can
deliver a peak of 6.6 TLOPS in single precision: that is, 6.6 trillion operationsfloat32

per second. That’s about 350 times more than what you can get out of a modern laptop.
On a Titan X, it takes only a couple of days to train an ImageNet model of the sort that
would have won the ILSVRC competition a few years ago. Meanwhile, large companies
train deep-learning models on clusters of hundreds of GPUs of a type developed
specifically for the needs of deep learning, such as the NVIDIA K80. The sheer
computational power of such clusters is something that would never have been possible
without modern GPUs.

What’s more, the deep-learning industry is starting to go beyond GPUs and is
investing in increasingly specialized, efficient chips for deep learning. In 2016, at its
annual I/O convention, Google revealed its tensor processing unit (TPU) project: a new
chip design developed from the ground up to run deep neural networks, which is
reportedly 10 times faster and far more energy efficient than top-of-line GPUs.

AI is sometimes heralded as the new industrial revolution. If deep learning is the steam
engine of this revolution, then data is its coal: the raw material that powers our intelligent
machines, without which nothing would be possible. When it comes to data, in addition
to the exponential progress in storage hardware over the past 20 years (following
Moore’s law), the game changer has been the rise of the internet, making it feasible to
collect and distribute very large datasets for machine learning. Today, large companies
work with image datasets, video datasets, and natural-language datasets that couldn’t
have been collected without the internet. User-generated image tags on Flickr, for
instance, have been a treasure trove of data for computer vision. So are YouTube videos.
And Wikipedia is a key dataset for natural-language processing.

If there’s one dataset that has been a catalyst for the rise of deep learning, it’s the
ImageNet dataset, consisting of 1.4 million images that have been hand-annotated with
1,000 image categories (1 category per image). But what makes ImageNet special isn’t
just its large size, but also the yearly competition associated with it.6

1.3.2 Data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

19

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://mng.bz/2286
http://www.ijcai.org/Proceedings/11/Papers/210.pdf
https://forums.manning.com/forums/deep-learning-with-r

Footnote 6mThe ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
www.image-net.org/challenges/LSVRC.

As Kaggle has been demonstrating since 2010, public competitions are an excellent
way to motivate researchers and engineers to push the envelope. Having common
benchmarks that researchers compete to beat has greatly helped the recent rise of deep
learning.

In addition to hardware and data, until the late 2000s, we were missing a reliable way to
train very deep neural networks. As a result, neural networks were still fairly shallow,
using only one or two layers of representations; thus they weren’t able to shine against
more refined shallow methods such as SVMs and random forests. The key issue was that
of through deep stacks of layers. The feedback signal used to traingradient propagation
neural networks would fade away as the number of layers increased.

This changed around 2009–2010 with the advent of several simple but important
algorithmic improvements that allowed for better gradient propagation:

Better for neural layersactivation functions
Better , starting with layer-wise pretraining, which wasweight-initialization schemes
quickly abandoned
Better , such as RMSProp and Adamoptimization schemes

Only when these improvements began to allow for training models with 10 or more
layers did deep learning start to shine.

Finally, in 2014, 2015, and 2016, even more advanced ways to help gradient
propagation were discovered, such as batch normalization, residual connections, and
depthwise separable convolutions. Today we can train from scratch models that are
thousands of layers deep.

As deep learning became the new state of the art for computer vision in 2012–2013, and
eventually for all perceptual tasks, industry leaders took note. What followed was a
gradual wave of industry investment far beyond anything previously seen in the history
of AI.

In 2011, right before deep learning took the spotlight, the total venture capital
investment in AI was around $19 million, which went almost entirely to practical
applications of shallow machine-learning approaches. By 2014, it had risen to a
staggering $394 million. Dozens of startups launched in these three years, trying to
capitalize on the deep-learning hype. Meanwhile, large tech companies such as Google,
Facebook, Baidu, and Microsoft have invested in internal research departments in
amounts that would most likely dwarf the flow of venture-capital money. Only a few
numbers have surfaced: in 2013, Google acquired the deep-learning startup DeepMind
for a reported $500 million—the largest acquisition of an AI company in history. In

1.3.3 Algorithms

1.3.4 A new wave of investment

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

20

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://www.image-net.org/challenges/LSVRC
https://forums.manning.com/forums/deep-learning-with-r

2014, Baidu started a deep-learning research center in Silicon Valley, investing $300
million in the project. The deep-learning hardware startup Nervana Systems was acquired
by Intel in 2016 for over $400 million.

Machine learning—in particular, deep learning—has become central to the product
strategy of these tech giants. In late 2015, Google CEO Sundar Pichai stated, "Machine
learning is a core, transformative way by which we’re rethinking how we’re doing
everything. We’re thoughtfully applying it across all our products, be it search, ads,
YouTube, or Play. And we’re in early days, but you’ll see us—in a systematic
way—apply machine learning in all these areas."

As a result of this wave of investment, the number of people working on deep
learning went in just five years from a few hundred to tens of thousands, and research
progress has reached a frenetic pace. There are currently no signs that this trend will slow
any time soon.

One the key factors driving this inflow of new faces in deep learning has been the
democratization of the toolsets used in the field. In the early days, doing deep learning
required significant C++ and CUDA expertise, which few people possessed. Nowadays,
basic Python or R scripting skills suffice to do advanced deep-learning research. This has
been driven most notably by the development of Theano and then TensorFlow—two
symbolic tensor-manipulation frameworks that support auto-differentiation, greatly
simplifying the implementation of new models—and by the rise of user-friendly libraries
such as Keras, which makes deep learning as easy as manipulating LEGO bricks. After
its release early 2015, Keras quickly became the go-to deep-learning solution for large
numbers of new startups, grad students, and researchers pivoting into the field.

Is there anything special about deep neural networks that makes them the "right"
approach for companies to be investing in and for researchers to flock to? Or is deep
learning just a fad that may not last? Will we still be using deep neural networks in 20
years?

The short answer is yes—deep learning has several properties that justify its status as
an AI revolution, and it’s here to stay. We may not be using neural networks two decades
from now, but whatever we use will directly inherit from modern deep learning and its
core concepts. These important properties can be broadly sorted into three categories:

Simplicity—Deep learning removes the need for feature engineering, replacing complex,
brittle, engineering-heavy pipelines with simple, end-to-end trainable models that are
typically built using only five or six different tensor operations.
Scalability—Deep learning is highly amenable to parallelization on GPUs or TPUs, so it
can take full advantage of Moore’s law. In addition, deep-learning models are trained by
iterating over small batches of data, allowing them to be trained on datasets of arbitrary
size. (The only bottleneck is the amount of parallel computational power available,
which, thanks to Moore’s law, is a fast-moving barrier.)
Versatility and reusability—Unlike many prior machine-learning approaches,

1.3.5 The democratization of deep learning

1.3.6 Will it last?

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

21

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

deep-learning models can be trained on additional data without restarting from scratch,
making them viable for continuous online learning—an important property for very large
production models. Furthermore, trained deep-learning models are repurposable and thus
reusable: for instance, it’s possible to take a deep-learning model trained for image
classification and drop it into a video-processing pipeline. This allows us to reinvest
previous work into increasingly complex and powerful models. This also makes deep
learning applicable to fairly small datasets.

Deep learning has only been in the spotlight for a few years, and we haven’t yet
established the full scope of what it can do. With every passing month, we learn about
new use cases and engineering improvements that lift previous limitations. Following a
scientific revolution, progress generally follows a sigmoid curve: it starts with a period of
fast progress, which gradually stabilizes as researchers hit hard limitations, and then
further improvements become incremental. Deep learning in 2017 seems to be in the first
half of that sigmoid, with much more progress to come in the next few years.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

22

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

2
This chapter covers

Understanding deep learning requires familiarity with many simple mathematical
concepts: tensors, tensor operations, differentiation, gradient descent, and so on. Our goal
in this chapter will be to build your intuition about these notions without getting overly
technical. In particular, we’ll steer away from mathematical notation, which can be
off-putting for those without any mathematics background and isn’t strictly necessary to
explain things well.

To add some context for tensors and gradient descent, we’ll begin the chapter with a
practical example of a neural network. Then we’ll go over every new concept that’s been
introduced, point by point. Keep in mind that these concepts will be essential for you to
understand the practical examples that will come in the following chapters!

After reading this chapter, you’ll have an intuitive understanding of how neural
networks work, and you’ll be able to move on to practical applications—which will start
with chapter 3.

Let’s look at a concrete example of a neural network that uses the Keras R package to
learn to classify hand-written digits. Unless you already have experience with Keras or
similar libraries, you will not understand everything about this first example right away.
You probably haven’t even installed Keras yet. Don’t worry, that is perfectly fine. In the
next chapter, we will review each element in our example and explain them in detail. So
don’t worry if some steps seem arbitrary or look like magic to you! We’ve got to start
somewhere.

The problem we’re trying to solve here is to classify grayscale images of handwritten
digits (28 pixels by 28 pixels) into their 10 categories (0 to 9). We’ll use the MNIST

Before we begin: the mathematical
blocks of neural networks

A first example of a neural network
Tensors and tensor operations
How neural networks learn, via backpropagation and gradient descent

2.1 A first look at a neural network

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

23

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

dataset, a classic dataset in the machine-learning community, which has been around
almost as long as the field itself and has been intensively studied. It’s a set of 60,000
training images, plus 10,000 test images, assembled by the National Institute of
Standards and Technology (the NIST in MNIST) in the 1980s. You can think of
"solving" MNIST as the "Hello World" of deep learning—it’s what you do to verify that
your algorithms are working as expected. As you become a machine- learning
practitioner, you’ll see MNIST come up over and over again, in scientific papers, blog
posts, and so on. You can see some MNIST samples in figure 2.1.

SIDEBAR Note on classes and labels

In machine learning, a in a classification problem is called a .category class
Data points are called . The class associated with a specific samplesamples
is called a .label

Figure 2.1 MNIST sample digits

You don’t need to try to reproduce this example on your machine just now. If you
wish to, you’ll first need to set up Keras, which is covered in section 3.3.

The MNIST dataset comes preloaded in Keras, in the form of and lists,train test

each of which includes a set of images () and associated labels ():x y

Listing 2.1 Loading the MNIST dataset in Keras

train_images and form the , the data that the model willtrain_labels training set
learn from. The model will then be tested on the , and test set test_images test_labels

. The images are encoded as as 3D arrays, and the labels are a 1D array of digits, ranging
from 0 to 9. There is a one-to-one correspondence between the images and the labels.

The R function is a convenient way to get a quick glimpse at the structure ofstr()

an array. Let’s use it to have a look at the training data:

And here’s the test data:

library(keras)

mnist <- dataset_mnist()
train_images <- mnist$train$x
train_labels <- mnist$train$y
test_images <- mnist$test$x
test_labels <- mnist$test$y

> str(train_images)
 int [1:60000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0 ...
> str(train_labels)
 int [1:60000(1d)] 5 0 4 1 9 2 1 3 1 4 ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

24

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

The workflow will be as follows: first we’ll feed the neural network the training data,
 and . The network will then learn to associate images andtrain_images train_labels

labels. Finally, we’ll ask the network to produce predictions for , and we’lltest_images

verify whether these predictions match the labels from .test_labels

Let’s build the network—again, remember that you aren’t supposed to understand
everything about this example yet.

Listing 2.2 The network architecture

If you aren’t familliar with the pipe () operator used to invoke methods on the %>%

 object fear not, we’ll cover this when we review this example again towards thenetwork

end of this chapter. For now, read it in your head as "then" (e.g. start with a model, then
add a layer, then add another layer, etc.).

The core building block of neural networks is the , a data-processing module thatlayer
you can think of as a filter for data. Some data comes in, and it comes out in a more
useful form. Specifically, layers extract out of the data fed intorepresentations
them—hopefully representations that are more meaningful for the problem at hand. Most
of deep learning consists of chaining together simple layers that will implement a form of
progressive . A deep-learning model is like a sieve for data processing,data distillation
made of a succession of increasingly refined data filters—the layers.

Here our network consists of a sequence of two layers, which are densely connected
(also called) neural layers. The second (and last) layer is a 10-way fully connected

 layer, which means it will return an array of 10 probability scores (summing tosoftmax
1). Each score will be the probability that the current digit image belongs to one of our 10
digit classes.

To make the network ready for training, we need to pick three more things, as part of
the step:compilation

A loss function—How the network will be able to measure how good a job it’s doing on
its training data, and thus how it will be able to steer itself in the right direction.
An optimizer—The mechanism through which the network will update itself based on the
data it sees and its loss function.
Metrics to monitor during training and testing—Here we’ll only care about accuracy (the
fraction of the images that were correctly classified).

The exact purpose of the loss function and the optimizer will be made clear

> str(test_images)
 int [1:10000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0 ...
> str(test_labels)
 int [1:10000(1d)] 7 2 1 0 4 1 4 9 5 9 ...

network <- keras_model_sequential() %>%
 layer_dense(units = 512, activation = "relu", input_shape = c(28 * 28)) %>%
 layer_dense(units = 10, activation = "softmax")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

25

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

throughout the next two chapters.

Listing 2.3 The compilation step

You’ll notice that the function modifies the network in-place (rather thancompile()

returning a new network object as is more conventional in R). We’ll describe the reason
for this when we revisit the example later in the chapter.

Before training, we’ll preprocess the data by reshaping it into the shape the network
expects and scaling it so that all values are in the interval. Previously, our[0, 1]

training images, for instance, were stored in an array of shape of type(60000, 28, 28)

integer with values in the interval. We transform it into a double array of[0, 255]

shape with values between 0 and 1.(60000, 28 * 28)

Listing 2.4 Preparing the image data

Note that we use the function rather than the function toarray_reshape() dim<-()

reshape the array. We’ll cover the reason for this later on, when we talk about tensor
reshaping.

We also need to categorically encode the labels, a step that’s explained in chapter 3.

Listing 2.5 Preparing the labels

We’re now ready to train the network, which in Keras is done via a call to the
network’s method: we the model to its training data:fit fit

network %>% compile(
 optimizer = "rmsprop",
 loss = "categorical_crossentropy",
 metrics = c("accuracy")
)

train_images <- array_reshape(train_images, c(60000, 28 * 28))
train_images <- train_images / 255

test_images <- array_reshape(test_images, c(10000, 28 * 28))
test_images <- test_images / 255

train_labels <- to_categorical(train_labels)
test_labels <- to_categorical(test_labels)

> network %>% fit(train_images, train_labels, epochs = 5, batch_size = 128)
Epoch 1/5
60000/60000 [==============================] - 9s - loss: 0.2575 - acc: 0.9255
Epoch 2/5
60000/60000 [==============================] - 10s - loss: 0.1038 - acc: 0.9687
Epoch 3/5
60000/60000 [==============================] - 10s - loss: 0.0688 - acc: 0.9793
Epoch 4/5
60000/60000 [==============================] - 9s - loss: 0.0496 - acc: 0.9855
Epoch 5/5
60000/60000 [==============================] - 9s - loss: 0.0372 - acc: 0.9883

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

26

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Two quantities are displayed during training: the of the network over the trainingloss
data, and the accuracy of the network over the training data.

We quickly reach an accuracy of 0.989 (98.9%) on the training data. Now let’s check
that the model performs well on the test set, too:

The test-set accuracy turns out to be 97.8%--that’s quite a bit lower than the training
set accuracy. This gap between training accuracy and test accuracy is an example of

: the fact that machine-learning models tend to perform worse on new dataoverfitting
than on their training data. Overfitting will be a central topic in chapter 3.

Let’s generate predictions for the first 10 samples of the test set:

Listing 2.6 Generating predictions

This concludes our first example—you just saw how you can build and a train a
neural network to classify handwritten digits in less than 20 lines of R code. In the next
chapter, we’ll go into detail about every moving piece we just previewed and clarify
what’s going on behind the scenes. You’ll learn about tensors, the data-storing objects
going into the network; about tensor operations, which layers are made of; and about
gradient descent, which allows your network to learn from its training examples.

In the previous example, we started from data stored in multidimensional arrays, also
called . In general, all current machine-learning systems use tensors as their basictensors
data structure. Tensors are fundamental to the field—so fundamental that Google’s
TensorFlow was named after them. So what’s a tensor?

Tensors are a generalization of vectors and matrices to an arbitrary number of
dimensions (note that in the context of tensors, "dimension" is often called "axis").
Within R, vectors are used to create and manipulate 1D tensors and matrices are used for
2D tensors. For higher level dimensions objects (which support any number ofarray

dimensions) are used.

2.2 Data representations for neural networks

> metrics <- network %>% evaluate(test_images, test_labels)
> metrics
$loss
[1] 0.07519608

$acc
[1] 0.9785

> network %>% predict_classes(test_images[1:10,])
 [1] 7 2 1 0 4 1 4 9 5 9

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

27

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

A tensor that contains only one number is called a (or scalar tensor, orscalar
0-dimensional tensor, or 0D tensor). While R does not have a data type to represent
scalars (all numeric objects are vectors, matrices, or arrays), an R vector that is always
length 1 is conceptually similar to a scalar.

A one dimensionanl array of numbers is called a , or 1D tensor. A 1D tensor is saidvector
to have exactly one axis. We can convert the R vector to an object in order toarray

inspect it’s dimensions:

Listing 2.7 A 1D tensor

This vector has five entries and so is called a . Don’t confuse a5-dimensional vector
5D vector with a 5D tensor! A 5D vector has only one axis and has five dimensions along
its axis, whereas a 5D tensor has five axes (and may have any number of dimensions
along each axis). can denote either the number of entries along a specificDimensionality
axis (as in the case of our 5D vector) or the number of axes in a tensor (such as a 5D
tensor), which can be confusing at times. In the latter case, it’s technically more correct
to talk about (the rank of a tensor being the number of axes), but thea tensor of rank 5
ambiguous notation is common regardless.5D tensor

A two dimensional array of numbers is a matrix, or 2D tensor. A matrix has two axes
(often referred to and). You can visually interpret a matrix as a rectangularrows columns
grid of numbers:

Listing 2.8 An R matrix

2.2.1 Scalars (0D tensors)

2.2.2 Vectors (1D tensors)

> x <- c(12, 3, 6, 14, 10)

> str(x)
 num [1:5] 12 3 6 14 10

> dim(as.array(x))
[1] 5

2.2.3 Matrices (2D tensors)

> x <- matrix(rep(0, 3*5), nrow = 3, ncol = 5)

> x
 [,1] [,2] [,3] [,4] [,5]
[1,] 0 0 0 0 0
[2,] 0 0 0 0 0
[3,] 0 0 0 0 0

> dim(x)
[1] 3 5

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

28

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

If you pack such matrices in a new array, you obtain a 3D tensor, which you can visually
interpret as a cube of numbers:

Listing 2.9 An R 3D array

By packing 3D tensors in an array, you can create a 4D tensor, and so on. In deep
learning, you’ll generally manipulate tensors that are 0D to 4D, although you may go up
to 5D if you process video data.

A tensor is defined by three key attributes:

Number of axes (rank)—For instance, a 3D tensor has three axes, and a matrix has two
axes.
Shape—This is an integer vector that describes how many dimensions the tensor has
along each axis. For instance, the previous matrix example has shape , and the 3D(3, 5)
tensor example has shape . A vector has a shape with a single element, such(3, 3, 5)
as . You can access the dimensions of any array using the function.(5) dim()

Data type—This is the type of the data contained in the tensor; for instance, a tensor’s
type could be or . On rare occasions, you may see a tensor.integer double character
However, since tensors live in pre-allocated contiguous memory segments, and strings,
being variable-length, would preclude the use of this implementation, they are more
rarely used.

To make this more concrete, let’s look back at the data we processed in the MNIST
example. First, we load the MNIST dataset:

Next we display the number of axes of the tensor :train_images

Here’s its shape:

2.2.4 3D tensors and higher-dimensional tensors

> x <- array(rep(0, 2*3*2), dim = c(2,3,2))

> str(x)
num [1:2, 1:3, 1:2] 0 0 0 0 0 0 0 0

> dim(x)
[1] 2 3 2

2.2.5 Key attributes

library(keras)

mnist <- dataset_mnist()
train_images <- mnist$train$x
train_labels <- mnist$train$y
test_images <- mnist$test$x
test_labels <- mnist$test$y

> length(dim(train_images))
[1] 3

> dim(train_images)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

29

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

And this is its data type:

So what we have here is a 3D tensor of integers. More precisely, it’s an array of
60,000 matrices of 28 × 28 integers. Each such matrix is a grayscale image, with
coefficients between 0 and 255.

Let’s plot the 5th digit in this 3D tensor:

Listing 2.10 Displaying the 5th digit

Figure 2.2 The 5th sample in our dataset

In the previous example, we a specific digit alongside the first axis using theselected
syntax . Selecting specific elements in a tensor is called train_images[i,,] tensor

. Let’s take a look at the tensor slicing operations that you can do on R arrays.slicing
The following selects digits #10 to #99 and puts them in an array of shape (90, 28,
:28)

Listing 2.11 Slicing a tensor

It’s equivalent to this more detailed notation, which specifies a start index and stop
index for the slice along each tensor axis.

Listing 2.12 Advanced tensor slicing

[1] 60000 28 28

> typeof(train_images)
[1] "integer"

digit <- train_images[5,,]
plot(as.raster(digit, max = 255))

2.2.6 Manipulating tensors in R

> my_slice <- train_images[10:99,,]
> dim(my_slice)
[1] 90 28 28

> my_slice <- train_images[10:99,1:28,1:28]
> dim(my_slice)
[1] 90 28 28

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

30

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

In general, you may select between any two indices along each tensor axis. For
instance, in order to select 14 × 14 pixels in the bottom-right corner of all images, you’d
do this:

Listing 2.13 Advanced tensor slicing (continued)

In general, the first axis in all data tensors you’ll come across in deep learning will be the
 (sometimes called the). In the MNIST example, samplessamples axis samples dimension

are images of digits.
In addition, deep-learning models don’t process an entire dataset at once; rather, they

break the data into small batches. Concretely, here’s one batch of our MNIST digits, with
batch size of 128:

Listing 2.14 Slicing a tensor into batches

When considering such a batch tensor, the first axis is called the or batch axis batch
. This is a term you’ll frequently encounter when using Keras and otherdimension

deep-learning libraries.

Let’s make data tensors more concrete with a few examples similar to what you’ll
encounter later. The data you’ll manipulate will almost always fall into one of the
following categories:

Vector data—2D tensors of shape (samples, features)
Timeseries data or sequence data—3D tensors of shape (samples, timesteps,
features)

Images—4D tensors of shape or (samples, height, width, channels) (samples,
channels, height, width)

Video—5D tensors of shape or (samples, frames, height, width, channels)
(samples, frames, channels, height, width)

This is the most common case. In such a dataset, each single data point can be encoded as
a vector, and thus a batch of data will be encoded as a 2D tensor (that is, an array of
vectors), where the first axis is the and the second axis is the .samples axis features axis

Let’s take a look at two examples:

An actuarial dataset of people, where we consider each person’s age, ZIP code, and

my_slice <- train_images[, 15:28, 15:28]

2.2.7 The notion of data batches

batch <- train_images[1:128,,]
batch <- train_images[129:256,,]

2.2.8 Real-world examples of data tensors

2.2.9 Vector data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

31

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

income. Each person can be characterized as a vector of 3 values, and thus an entire
dataset of 100,000 people can be stored in a 2D tensor of shape .(100000, 3)

A dataset of text documents, where we represent each document by the counts of how
many times each word appears in it (out of a dictionary of 20,000 common words). Each
document can be encoded as a vector of 20,000 values (one count per word in the
dictionary), and thus an entire dataset of 500 documents can be stored in a tensor of shape

.(500, 20000)

Whenever time matters in your data (or the notion of sequence order), it makes sense to
store it in a 3D tensor with an explicit time axis. Each sample can be encoded as a
sequence of vectors (a 2D tensor), and thus a batch of data will be encoded as a 3D tensor
(see figure 2.3).

Figure 2.3 A 3D timeseries data tensor

The time axis is always the second axis, by convention. Let’s have a look at a few
examples:

A dataset of stock prices. Every minute, we store the current price of the stock, the
highest price in the past minute, and the lowest price in the past minute. Thus every
minute is encoded as a 3D vector, an entire day of trading is encoded as a 2D tensor of
shape (there are 390 minutes in a trading day), and 250 days worth of data can(390, 3)
be stored in a 3D tensor of shape . Here, each sample would be one day’s(250, 390, 3)
worth of data.
A dataset of tweets, where we encode each tweet as a sequence of 140 characters out of
an alphabet of 128 unique characters. In this setting, each character can be encoded as a
binary vector of size 128 (an all-zeros vector except for a 1 entry at the index
corresponding to the character). Then each tweet can be encoded as a 2D tensor of shape

, and a dataset of 1 million tweets can be stored in a tensor of shape (140, 128)
.(1000000, 140, 128)

Images typically have three dimensions: height, width, and color depth. Although
grayscale images (like our MNIST digits) have only a single color channel and could thus
be stored in 2D tensors, by convention image tensors are always 3D, with a
one-dimensional color channel for grayscale images. A batch of 128 grayscale images of
size 256 × 256 could thus be stored in a tensor of shape , and a(128, 256, 256, 1)

batch of 128 color images could be stored in a tensor of shape (128, 256, 256, 3)
(see figure 2.4).

2.2.10 Timeseries data or sequence data

2.2.11 Image data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

32

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 2.4 A 4D image data tensor (channels-first convention)

There are two conventions for shapes of images tensors: the conventionchannels-last
(used by TensorFlow) and the convention (used by Theano). Thechannels-first
TensorFlow machine-learning framework, from Google, places the color-depth axis at
the end, as you just saw: . Meanwhile,(samples, height, width, color_depth)

Theano places the color depth axis right after the batch axis: (samples, color_depth,
. With the Theano convention, the previous examples would become height, width)

 and . The Keras framework provides(128, 1, 256, 256) (128, 3, 256, 256)

support for both formats.

Video data is one of the few types of real-world data for which you’ll need 5D tensors. A
video can be understood as a sequence of frames, each frame being a color image.
Because each frame can be stored in a 3D tensor , a(height, width, color_depth)

sequence of frames can be stored in 4D tensor (frames, height, width,

, and thus a batch of different videos can be stored in a 5D tensor of shapecolor_depth)

.(samples, frames, height, width, color_depth)

For instance, a 60-second, 256 × 144 YouTube video clip sampled at 4 frames per
second would have 240 frames. A batch of four such video clips would be stored in a
tensor of shape . That’s a total of 106,168,320 values! If the(4, 240, 256, 144, 3)

data type of the tensor is double, then each value is stored in , so the tensor64 bits

would represent 810 MB. Heavy! Videos you encounter in real life are much lighter,
because they aren’t stored in and they’re typically compressed by a large factorfloat32

(such as in the MPEG format).

2.2.12 Video data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

33

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Much as any computer program can be ultimately reduced to a small set of binary
operations on binary inputs (AND, OR, NOR, and so on), all transformations learned by
deep neural networks can be reduced to a handful of applied to tensorstensor operations
of numeric data. For instance, it’s possible to add tensors, multiply tensors, and so on.

In our initial example, we were building our network by stacking dense layers on top
of each other. A layer instance looks like this:

This layer can be interpreted as a function, which takes as input a 2D tensor and
returns another 2D tensor—a new representation for the input tensor. Specifically, the
function is as follows (where is a 2D tensor and is a vector, both attributes of theW b

layer):

Let’s unpack this. We have three tensor operations here: a dot product () betweendot

the input tensor and a tensor named , an addition () between the resulting 2D tensorW +

and a vector , and finally a operation. is .b relu relu(x) max(x, 0)

NOTE Note

Although this section deals entirely with linear algebra expressions, you
won’t find any mathematical notation here. We’ve found that mathematical
concepts can be more readily mastered by readers with no mathematical
background if they’re expressed as short code snippets instead of
mathematical equations. So we’ll use R code throughout.

The operation and addition are operations: operations that are appliedrelu element-wise
independently to each entry in the tensors being considered. This means these operations
are highly amenable to massively parallel implementations (implementations,vectorized
a term that comes from the supercomputer architecture from thevector processor
1970–1990 period). If you wanted to write a naive R implementation of an element-wise
operation, you’d use a loop, as in this naive implementation of an element-wise for relu

operation:

2.3 The gears of neural networks: tensor operations

layer_dense(units = 512, activation = "relu")

output = relu(dot(W, input) + b)

2.3.1 Element-wise operations

naive_relu <- function(x) {
 for (i in nrow(x))
 for (j in ncol(x))
 x[i, j] <- max(x[i, j], 0)
 x
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

34

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

x is a 2D tensor (R matrix)

You’d do the same for addition:

x and y are 2D tensors (matrices)

On the same principle, you can do element-wise multiplication, subtraction, and so
on.

In practice, when dealing with R arrays, these operations are available as
well-optimized built-in R functions, which themselves delegate the heavy lifting to a
BLAS implementation (Basic Linear Algebra Subprograms) if you have one installed,
which you should. BLAS are low-level, highly-parallel, efficient tensor manipulation
routines typically implemented in Fortran or C.

So in R you can do the following, and it will be blazing fast:

Listing 2.15 Native element-wise operation in R

Our earlier naive implementation of only supports the addition of 2D tensorsnaive_add

with identical shapes. But in the dense layer introduced earlier, we added a 2D tensor
with a vector. What happens with addition when the shapes of the two tensors being
added differ?

The R function enables you to perform operations between highersweep()

dimension tensors and lower dimension tensors. With we could perform thesweep()

matrix + vector addition described above with:

Listing 2.16 A matrix-vector addition with sweep

The second argument (here) specifies the dimensions of over which to sweep .2 x y

The last argument (here) is the operation to perform during the sweep, which should be+

naive_add <- function(x, y) {
 for (i in nrow(x))
 for (j in ncol(x))
 x[i, j] = x[i, j] + y[i, j]
 x
}

Element-wise addition
z <- x + y

Element-wise relu
z <- pmax(z, 0)

2.3.2 Operations involving tensors of different dimensions

sweep(x, 2, y, `+`)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

35

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

a function of two arguments: and an array of the same dimensions generated from by x y

.aperm()

You can apply a sweep in any number of dimensions and can apply any function that
implements a vectorized operation over 2 arrays. Here we sweep a 2D tensor over the last
2 dimensions of a 4D tensor using the function:pmax()

Listing 2.17 Applying the element-wise function to two tensors of differentpmax()

shapes via sweep

The dot operation, also called a (not to be confused with an element-wisetensor product
product) is the most common, most useful tensor operation. Contrary to element-wise
operations, it combines entries in the input tensors.

Element-wise product is done with the operator in R, whereas dot products use the *

 operator.%*%

Listing 2.18 R dot operations between two tensors

In mathematical notation, you’d note the operation with a dot ():.

Mathematically, what does the dot operation do? Let’s start with the dot product of
two vectors and . It’s computed as follows:x y

Listing 2.19 A naive implementation of dot products

x and y are 1D tensors (vectors)

You’ll have noticed that the dot product between two vectors is a scalar and that only

x is a tensor of random values with shape (64, 3, 32, 10)
x <- array(round(runif(1000, 0, 9)), dim = c(64, 3, 32, 10))

y is a tensor of 5s of shape (32, 10)
y <- array(5, dim = c(32, 10))

The output z has shape (64, 3, 32, 10) like x
z <- sweep(x, c(3, 4), y, pmax)

2.3.3 Tensor dot

z <- x %*% y

z = x . y

naive_vector_dot <- function(x, y) {
 z <- 0
 for (i in 1:length(x))
 z <- z + x[[i]] * y[[i]]
 z
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

36

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

vectors with the same number of elements are compatible for a dot product.
You can also take the dot product between a matrix and a vector , which returns ax y

vector whose elements are the dot products between and the rows of . You implementy x

it as follows:

x is a 2D tensor (matrix)

y is a 1D tensor (vector)

You could also reuse the code we wrote previously, which highlights the relationship
between a matrix-vector product and a vector product:

Note that as soon as one of the two tensors has more than one dimension, is no%*%

longer symmetric, which is to say that isn’t the same as .x %*% y y %*% x

Of course, a dot product generalizes to tensors with an arbitrary number of axes. The
most common applications may be the dot product between two matrices. You can take
the dot product of two matrices and () if and only if .x y x %*% y ncol(x) == nrow(y)

The result is a matrix with shape , where coefficients are the(nrow(x), ncol(y))

vector products between the rows of and the columns of . Here’s the naivex y

implementation:

x and y are 2D tensors (matrices)

To understand dot-product shape compatibility, it helps to visualize the input and
output tensors by aligning them as shown in figure 2.5.

naive_matrix_vector_dot <- function(x, y) {
 z <- rep(0, nrow(x))
 for (i in 1:nrow(x))
 for (j in 1:ncol(x))
 z[[i]] <- z[[i]] + x[[i, j]] * y[[j]]
 z
}

naive_matrix_vector_dot <- function(x, y) {
 z <- rep(0, nrow(x))
 for (i in 1:nrow(x))
 z[[i]] <- naive_vector_dot(x[i,], y)
 z
}

naive_matrix_dot <- function(x, y) {
 z <- matrix(0, nrow = nrow(x), ncol = ncol(y))
 for (i in 1:nrow(x))
 for (j in 1:ncol(y)) {
 row_x <- x[i,]
 column_y <- y[,j]
 z[i, j] <- naive_vector_dot(row_x, column_y)
 }
 z
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

37

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 2.5 Matrix dot-product box diagram

x, , and are pictured as rectangles (literal boxes of coefficients). Because the rowsy z

and and the columns of must have the same size, it follows that the width of mustx y x

match the height of . If you go on to develop new machine-learning algorithms, you’lly

likely be drawing such diagrams a lot.
More generally, you can take the dot product between higher-dimensional tensors,

following the same rules for shape compatibility as outlined earlier for the 2D case:

And so on.

A third type of tensor operation that’s essential to understand is .tensor reshaping
Although it wasn’t used in the dense layers in our first neural network example, we used
it when we preprocessed the digits data before feeding them into our network:

Note that we use the function rather than the function toarray_reshape() dim<-()

reshape the array. This is so that the data is re-interpreted using row-major semantics (as
opposed to R’s default column-major semantics), which is in turn compatible with the
way that the numerical libraries called by Keras (e.g. NumPy, TensorFlow, etc.) interpret
array dimensions. You should always use the function whenarray_reshape()

reshaping R arrays that will be passed to Keras.
Reshaping a tensor means rearranging its rows and columns to match a target shape.

Naturally, the reshaped tensor has the same total number of coefficients as the initial
tensor. Reshaping is best understood via simple examples:

(a, b, c, d) . (d) -> (a, b, c)

(a, b, c, d) . (d, e) -> (a, b, c, e)

2.3.4 Tensor reshaping

train_images <- array_reshape(train_images, c(60000, 28 * 28))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

38

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

A special case of reshaping that’s commonly encountered is the . transposition
 a matrix means exchanging its rows and its columns, so that becomesTransposing x[i,]

. The function can be used to transpose a matrix:x[, i] t()

Because the contents of the tensors manipulated by tensor operations can be interpreted
as coordinates of points in some geometric space, all tensor operations have a geometric
interpretation. For instance, let’s consider addition. We’ll start with the following vector:

It’s a point in a 2D space (see figure 2.6). It’s common to picture a vector as an arrow
linking the origin to the point, as shown in figure 2.7.

> x <- matrix(c(0, 1,
 2, 3,
 4, 5),
 nrow = 3, ncol = 2, byrow = TRUE)

> x
 [,1] [,2]
[1,] 0 1
[2,] 2 3
[3,] 4 5

> x <- array_reshape(x, dim = c(6, 1))
> x
 [,1]
[1,] 0
[2,] 1
[3,] 2
[4,] 3
[5,] 4
[6,] 5

 > x <- array_reshape(x, dim = c(2, 3))
 > x
 [,1] [,2] [,3]
[1,] 0 1 2
[2,] 3 4 5

> x <- matrix(0, nrow = 300, ncol = 20)
> dim(x)
[1] 300 20

> x <- t(x)
> dim(x)
[1] 20 300

2.3.5 Geometric interpretation of tensor operations

A = [0.5, 1.0]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

39

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 2.6 A point in a 2D space

Figure 2.7 A point in a 2D space pictured as an arrow

Let’s consider a new point, , which we’ll add to the previous one.B = [1, 0.25]

This is done geometrically by chaining together the vector arrows, with the resulting
location being the vector representing the sum of the previous two vectors (see figure
2.8).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

40

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 2.8 Geometric interpretation of the sum of two vectors

In general, elementary geometric operations such as affine transformations, rotations,
scaling, and so on can be expressed as tensor operations. For instance, a rotation of a 2D
vector by an angle theta can be achieved via a dot product with a 2 × 2 matrix R = [u,

, where and and both vectors of the plane: and v] u v u = [cos(theta), sin(theta)]

.v = [-sin(theta), cos(theta)]

You just learned that neural networks consist entirely of chains of tensor operations and
that all of these tensor operations are just geometric transformations of the input data. It
follows that you can interpret a neural network as a very complex geometric
transformation in a high-dimensional space, implemented via a long series of simple
steps.

In 3D, the following mental image may prove useful. Imagine two sheets of colored
paper: one red and one blue. Put one on top of the other. Now crumple them together into
a small ball. That crumpled paper ball is your input data, and each sheet of paper is a
class of data in a classification problem. What a neural network (or any other
machine-learning model) is meant to do is figure out a transformation of the paper ball
that would uncrumple it, so as to make the two classes cleanly separable again. With
deep learning, this would be implemented as a series of simple transformations of the 3D
space, such as those you could apply on the paper ball with your fingers, one movement
at a time.

2.3.6 A geometric interpretation of deep learning

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

41

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

1.
2.
3.

4.

Figure 2.9 Uncrumpling a complicated manifold of data

Uncrumpling paper balls is what machine learning is about: finding neat
representations for complex, highly folded data manifolds. At this point, you should have
a pretty good intuition as to why deep learning excels at this: it takes the approach of
incrementally decomposing a complicated geometric transformation into a long chain of
elementary ones, which is pretty much the strategy a human would follow to uncrumple a
paper ball. Each layer in a deep network applies a transformation that disentangles the
data a little—and a deep stack of layers makes tractable an extremely complicated
disentanglement process.

As you saw in the previous section, each neural layer from our first network example
transforms its input data as follows:

In this expression, and are tensors that are attributes of the layer. They’re calledW b

the or of the layer (the and attributes,weights trainable parameters kernel bias

respectively). These weights contain the information learned by the network from
exposure to training data.

Initially, these weight matrices are filled with small random values (a step called
). Of course, there’s no reason to expect that random initialization relu(dot(W, input)

, when and are random, would yield any useful representations. The resulting+ b) W b

representations are meaningless—but they’re a starting point. What comes next is to
gradually adjust these weights, based on a feedback signal. This gradual adjustment, also
called , is basically the learning that machine learning is all about.training

This happens within what’s called a , which schematically looks astraining loop
follows. Repeat these steps in a loop, as long as necessary:

Draw a batch of training samples and corresponding targets .x y

Run the network on (called a) to obtain predictions .x forward pass y_pred

Compute the loss of the network on the batch, a measure of the mismatch between
 and .y_pred y

Update all weights of the network in a way that slightly reduces the loss on this batch.

You’ll eventually end up with a network that has a very low loss on its training data:

2.4 The engine of neural networks: gradient-based optimization

output = relu(dot(W, input) + b)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

42

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

that is, a low mismatch between predictions and expected targets . The networky_pred y

that has "learned" to map its inputs to correct targets. From afar, it may look like magic,
but when you reduce it to elementary steps, it turns out to be simple.

Step 1 sounds easy enough—just I/O code. Steps 2 and 3 are merely the application
of a handful of tensor operations, so you could implement these steps purely from what
you learned in the previous section. The difficult part is step 4: updating the network’s
weights. Given an individual weight coefficient in the network, how can you compute
whether the coefficient should be increased or decreased, and by how much?

One naive solution would be to freeze all weights in the network except the one scalar
coefficient being considered, and try different values for this coefficient. Let’s say the
initial value of the coefficient is 0.3. After the forward pass on a batch of data, the loss of
the network on the batch is 0.5. If you change the coefficient’s value to 0.35 and re-run
the forward pass, the loss increases to 0.6. But if you lower the coefficient to 0.25, the
loss falls to 0.4. In this case, it seems that updating the coefficient by -0.05 would
contribute to minimizing the loss. This would have to be repeated for all coefficients in
the network.

But such an approach would be horribly inefficient, because you’d need to compute
two forward passes (which are expensive) for every individual coefficient (and there are
many, usually thousands and sometimes up to millions). A much better approach is to
take advantage of the fact that all operations used in the network are , anddifferentiable
compute the of the loss with regard to the network’s coefficients. You can thengradient
move the coefficients in the opposite direction from the gradient, thus decreasing the
loss.

If you already know what means and what a is, you can skip todifferentiable gradient
section 2.4.3. Otherwise, the following two sections will help you understand these
concepts.

Consider a continuous, smooth function , mapping a real number to a newf(x) = y x

real number . Because the function is , a small change in can only result iny continuous x

a small change in —that’s the intuition behind continuity. Let’s say you increase by ay x

small factor : this results in a small change to :epsilon_x epsilon_y y

In addition, because the function is (its curve doesn’t have any abrupt angles),smooth
when is small enough, around a certain point , it’s possible to approximate epsilon_x p f

as a linear function of slope , so that becomes :a epsilon_y a * epsilon_x

Obviously, this linear approximation is valid only when is close enough to .x p

2.4.1 What’s a derivative?

f(x + epsilon_x) = y + epsilon_y

f(x + epsilon_x) = y + a * epsilon_x

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

43

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

The slope is called the of in . If is negative, it means a small changea derivative f p a

of around will result in a decrease of (as shown in figure 2.10); and if isx p f(x) a

positive, a small change in will result in an increase of . Further, the absolutex f(x)

value of (the of the derivative) tells you how quickly this increase ora magnitude
decrease will happen.

Figure 2.10 Derivative of f in p

For every differentiable function (means "can be differentiated":f(x) differentiable
for example, smooth, continuous functions can be differentiated), there exists a derivative
function that maps values of to the slope of the local linear approximation of f'(x) x f

in those points. For instance, the derivative of is , the derivative of cos(x) -sin(x) f(x)

 is , and so on.= a * x f'(x) = a

If you’re trying to update by a factor in order to minimize , andx epsilon_x f(x)

you know the derivative of , then your job is done: the derivative completely describesf

how evolves as you change . If you want to reduce the value of , you justf(x) x f(x)

need to move a little in the opposite direction from the derivative.x

A is the derivative of a tensor operation. It’s the generalization of the concept ofgradient
derivatives to functions of multidimensional inputs: that is, to functions that take tensors
as inputs.

Consider an input vector , a matrix , a target , and a loss function . You canx W y loss

use to compute a target candidate , and compute the loss, or mismatch, betweenW y_pred

the target candidate and the target :y_pred y

If the data inputs and are frozen, then this can be interpreted as a functionx y

mapping values of to loss values:W

2.4.2 Derivative of a tensor operation: the gradient

y_pred = dot(W, x)
loss_value = loss(y_pred, y)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

44

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

1.
2.
3.

4.

Let’s say the current value of is . Then the derivative of in the point is aW W0 f W0

tensor with the same shape as , where each coefficient gradient(f)(W0) W

 indicates the direction and magnitude of the change in gradient(f)(W0)[i, j]

 you’d observe when modifying . That tensor loss_value W0[i, j] gradient(f)(W0)

is the gradient of the function in .f(W) = loss_value W0

You saw earlier that the derivative of a function of a single coefficient can bef(x)

interpreted as the slope of the curve of . Likewise, can be interpretedf gradient(f)(W0)

as the tensor describing the of around .curvature f(W) W0

For this reason, in much the same way that, for a function , you can reduce thef(x)

value of by moving by a little in the opposite direction from the derivative, with af(x) x

function of a tensor, you can reduce by moving in the opposite directionf(W) f(W) W

from the gradient: for example, (where isW1 = W0 - step * gradient(f)(W0) step

a small scaling factor). That means going against the curvature, which intuitively should
put you lower on the curve. Note that the scaling factor is needed because step

 only approximates the curvature when you’re close to , so yougradient(f)(W0) W0

don’t want to get too far from .W0

Given a differentiable function, it’s theoretically possible to find its minimum
analytically: it’s known that a function’s minimum is a point where the derivative is 0, so
all you have to do is find all the points where the derivative goes to 0 and check for
which of these points the function has the lowest value.

Applied to a neural network, that means finding analytically the combination of
weight values that yields the smallest possible loss function. This can be done by solving
the equation for . This is a polynomial equation of variables,gradient(f)(W) = 0 W N
where is the number of coefficients in the network. Although it would be possible toN
solve such an equation for for = 2 or = 3, doing so is intractable for real neuralN N
networks, where the number of parameters is never less than a few thousand and can
often be several tens of millions.

Instead, you can use the four-step algorithm outlined at the beginning of this section:
you modify the parameters little by little based on the current loss value on a random
batch of data. Because you’re dealing with a differentiable function, you can compute its
gradient, which gives you an efficient way to implement step 4. If you update the weights
in the opposite direction from the gradient, the loss will be a little less every time:

Draw a batch of training samples x and corresponding targets .y
Run the network on to obtain predictions .x y_pred

Compute the loss of the network on the batch, a measure of the mismatch between
 and .y_pred y

Compute the gradient of the loss with regard to the network’s parameters (a backward

loss_value = f(W)

2.4.3 Stochastic gradient descent

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

45

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

5.
).pass

Move the parameters a little in the opposite direction from the gradient—for example W =
—thus reducing the loss on the batch a bit.W - (step * gradient)

Easy enough! What we’ve just described is called mini-batch stochastic gradient
 (minibatch SGD). The term refers to the fact that each batch of data isdescent stochastic

drawn at random (is a scientific synonym of). Figure 2.11 illustratesstochastic random
what happens in 1D, when the network has only one parameter and you have only one
training sample.

Figure 2.11 SGD down a 1D loss curve (one learnable parameter)

As you can see, intuitively it’s important to pick a reasonable value for the step
factor. If it’s too small, the descent down the curve will take many iterations, and it could
get stuck in a local minimum. If is too large, your updates may end up taking you tostep

completely random locations on the curve.
Note that a variant of the mini-batch SGD algorithm would be to draw a single

sample and target at each iteration, rather than drawing a batch of data. This would be
 SGD (as opposed to SGD). Alternatively, going to the opposite extreme,true mini-batch

you could run every step on data available, which is called . Each updateall batch SGD
would then be more accurate, but far more expensive. The efficient compromise between
these two extremes is to use mini-batches of reasonable size.

Although figure 2.11 illustrates gradient descent in a 1D parameter space, in practice
you’ll use gradient descent in highly dimensional spaces: every weight coefficient in a
neural network is a free dimension in the space, and there may be tens of thousands or
even millions of them. To help you build intuition about loss surfaces, you can also
visualize gradient descent along a 2D loss surface, as shown in figure 2.12. But you can’t
possibly visualize what the actual process of training a neural network looks like—you
can’t represent a 1,000,000-dimensional space in a way that makes sense to humans. As
such, it’s good to keep in mind that the intuitions you develop through these

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

46

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

low-dimensional representations may not always be accurate in practice. This has
historically been a source of issues in the world of deep-learning research.

Figure 2.12 Gradient descent down a 2D loss surface (two learnable parameters)

Additionally, there exist multiple variants of SGD that differ by taking into account
previous weight updates when computing the next weight update, rather than just looking
at the current value of the gradients. There is, for instance, SGD with momentum, as well
as Adagrad, RMSProp, and several others. Such variants are known as optimization

 or . In particular, the concept of , which is used in many ofmethods optimizers momentum
these variants, deserves your attention. Momentum addresses two issues with SGD:
convergence speed and local minima. Consider figure 2.13, which shows the curve of a
loss as a function of a network parameter.

Figure 2.13 A local minimum and a global minimum

As you can see, around a certain parameter value, there is a : aroundlocal minimum
©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/deep-learning-with-r

47

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

that point, moving left would result in the loss increasing, but so would moving right. If
the parameter under consideration were being optimized via SGD with a small learning
rate, then the optimization process would get stuck at the local minimum instead of
making its way to the global minimum.

You can avoid such issues by using momentum, which draws inspiration from
physics. A useful mental image here is to think of the optimization process as a small ball
rolling down the loss curve. If it has enough momentum, the ball won’t get stuck in a
ravine and will end up at the global minimum. Momentum is implemented by moving the
ball at each step based not only on the current slope value (current acceleration) but also
based on the current velocity (resulting from past acceleration). In practice, this means
updating the parameter based not only on the current gradient value but also on thew

previous parameter update, such as in this naive implementation:

In the previous algorithm, we casually assumed that because a function is differentiable,
we can explicitly compute its derivative. In practice, a neural-network function consists
of many tensor operations chained together, each of which has a simple, known
derivative. For instance, this is a network composed of three tensor operations , , andf a b

, with weight matrices , , and :c W1 W2 W3

Calculus tells us that such a chain of functions can be differentiated using the
following identity, called the : . Applying thechain rule f(g(x)) = f'(g(x)) * g'(x)

chain rule to the computation of the gradient values of a neural network gives rise to an
algorithm called (also sometimes called).backpropagation reverse-mode differentiation
Backpropagation starts with the final loss value and works backward from the top layers
to the bottom layers, applying the chain rule to compute the contribution that each
parameter had in the loss value.

Nowadays, and for years to come, people will implement networks in modern
frameworks that are capable of , such as TensorFlow. Thissymbolic differentiation
means, given a chain of operations with a known derivative, they can compute a gradient

past_velocity <- 0
momentum <- 0.1
while (loss > 0.01) {
 params <- get_current_parameters()
 w <- params$w
 loss <- params$loss
 gradient <- params$gradient

 velocity <- past_velocity * momentum + learning_rate * gradient
 w <- w + momentum * velocity - learning_rate * gradient
 past_velocity <- velocity

 update_parameter(w)
}

2.4.4 Chaining derivatives: the backpropagation algorithm

f(W1, W2, W3) = a(W1, b(W2, c(W3)))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

48

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

 for the chain (by applying the chain rule) that maps network parameter values tofunction
gradient values. When you have access to such a function, the backward pass is reduced
to a call to this gradient function. Thanks to symbolic differentiation, you’ll never have to
implement the backpropagation algorithm by hand. For this reason, we won’t waste your
time and focus on deriving the exact formulation of the backpropagation algorithm in
these pages. All you need is a good understanding of how gradient-based optimization
works.

You’ve reached the end of this chapter, and you should now have a general
understanding of what’s going on behind the scenes in a neural network. Let’s go back to
the first example and review each piece of it in the light of what you’ve learned in the
previous three sections.

This was the input data:

Now you understand that our input images are stored in tensors of shape (60000,
 (training data) and (test data) respectively.784) (10000, 784)

This was our network:

Now you understand that this network consists of a chain of two dense layers, that
each layer applies a few simple tensor operations to the input data, and that these
operations involve weight tensors. Weight tensors, which are attributes of the layers, are
where the of the network persists.knowledge

2.5 Looking back at our first example

library(keras)

mnist <- dataset_mnist()

train_images <- mnist$train$x
train_images <- array_reshape(train_images, c(60000, 28 * 28))
train_images <- train_images / 255

test_images <- mnist$test$x
test_images <- array_reshape(test_images, c(10000, 28 * 28))
test_images <- test_images / 255

network <- keras_model_sequential() %>%
 layer_dense(units = 512, activation = "relu", input_shape = c(28*28)) %>%
 layer_dense(units = 10, activation = "softmax")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

49

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

NOTE Using the pipe () operator%>%

You’ll notice that we use the pipe () operator for adding layers to our%>%

network. This operator comes from the package, and ismagrittr
shorthand for passing the value on it’s left hand side as the first argument
to the function on the right hand side. We could have equally written the
above as:

Using the results in code that is more readable and compact, so we’ll%>%

use that form throughout the book. If you are using RStudio you can insert
the pipe operator using the Ctrl+Shift+M keyboard shortcut. To learn more
about the pipe operator, see .r4ds.had.co.nz/pipes.html

This was the network-compilation step:

Now you understand that is the loss function that’scategorical_crossentropy

used as a feedback signal for learning the weight tensors, and which the training phase
will attempt to minimize. You also know that this reduction of the loss happens via
mini-batch stochastic gradient descent. The exact rules governing a specific use of
gradient descent are defined by the optimizer passed as the first argument.rmsprop

network <- keras_model_sequential()
layer_dense(network, units = 512, activation = "relu", input_shape = c(28*28))
layer_dense(network, units = 10, activation = "softmax")

network %>% compile(
 optimizer = "rmsprop",
 loss = "categorical_crossentropy",
 metrics = c("accuracy")
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

50

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://r4ds.had.co.nz/pipes.html
https://forums.manning.com/forums/deep-learning-with-r

NOTE In-place modification of models

Note again that we are using the operator to call . We could%>% compile()

have equally written the above as:

The use of for is less about compactness, and more about%>% compile

providing a syntactic reminder of an important characteristic of Keras
models: unlike most objects you work with in R, Keras models are
modified in-place. This is because Keras models are directed acyclic
graphs of layers whose state is updated during training.

We don’t operate on the and then return a new network network

object. Rather we the object. Placing the do something to network

 to the left of the and not saving the results to a new variablenetwork %>%

signals to the reader that we’re modifying in-place.

Finally, this was the training loop:

Now you understand what’s going on when you call : the network will start tofit

iterate on the training data in mini-batches of 128 samples, 5 times over (each iteration
over all the training data is called an). At each iteration, the network will computeepoch
the gradients of the weights with regard to the loss on the batch, and update the weights
accordingly. After these 5 epochs, the network will have performed 2,345 gradient
updates (469 per epoch), and the loss of the network will be sufficiently low that the
network will be capable of classifying handwritten digits with high accuracy.

At this point, you already know most of what there is to know about neural networks.

compile(
 network,
 optimizer = "rmsprop",
 loss = "categorical_crossentropy",
 metrics = c("accuracy")
)

network %>% fit(train_images, train_labels, epochs = 5, batch_size = 128)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

51

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Learning means a finding a combination of model parameters that minimizes a loss
function for a given set of training data samples and their corresponding targets.
Learning happens by drawing random batches of data samples and their targets, and
computing the gradient of the network parameters with respect to the loss on the batch.
The network parameters are then moved a bit (the magnitude of the move is defined by
the learning rate) in the opposite direction from the gradient.
The entire learning process is made possible by the fact that neural networks are chains of
differentiable tensor operations, and thus it’s possible to apply the chain rule of
derivation to find the gradient function mapping the current parameters and current batch
of data to a gradient value.
Two key concepts you’ll see come up a lot in future chapters are and .loss optimizers
These are the two things you need to define before you begin feeding data into a network.
The is the quantity you’ll attempt to minimize during training, so it should representloss
a measure of success for the task you’re trying to solve.
The specifies the exact way in which the gradient of the loss will be used tooptimizer
update parameters: for instance, it could be the RMSProp optimizer, SGD with
momentum, and so on.

2.6 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

52

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

3
This chapter covers

This chapter is designed to get you started with using neural networks to solve real
problems. You’ll consolidate the knowledge you gained from our first practical example
in chapter 2, and you’ll apply what you’ve learned to three new problems covering the
three most common use cases of neural networks: binary classification, multiclass
classification, and scalar regression.

In this chapter, we’ll take a closer look at the core components of neural networks
that we introduced in chapter 2: layers, networks, objective functions, and optimizers.

We’ll give you a quick introduction to Keras, the deep-learning library that we’ll use
throughout the book. You’ll set up deep-learning workstation, with TensorFlow, Keras,
and GPU support. We’ll dive into three introductory examples of how to use neural
networks to address real problems:

Classifying movie reviews as positive or negative (binary classification)
Classifying news wires by topic (multiclass classification)
Estimating the price of a house, given real-estate data (regression)

By the end of this chapter, you’ll be able to use neural networks to solve simple
machine problems such as classification and regression over vector data. You’ll then be
ready to start building a more principled, theory-driven understanding of machine
learning in chapter 4.

Getting started with neural networks

Core components of neural networks
An introduction to Keras
Setting up a deep-learning workstation
Using neural networks to solve basic classification and regression
problems

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

53

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

As you saw in the previous chapters, training a neural network revolves around the
following objects:

Layers, which are combined into a (or)network model
The and corresponding input data targets
The , which defines the feedback signal used for learningloss function
The , which determines how learning proceedsoptimizer

You can visualize their interaction as illustrated in figure 3.1: the network, composed
of layers that are chained together, maps the input data to predictions. The loss function
then compares these predictions to the targets, producing a loss value: a measure of how
well the network’s predictions match what was expected. The optimizer uses this loss
value to update the network’s weights.

Figure 3.1 Relationship between the network, layers, loss function, and optimizer

Let’s take a closer look at layers, networks, loss functions, and optimizers.

The fundamental data structure in neural networks is the , to which you werelayer
introduced in chapter 2. A layer is a data-processing module that takes as input one or
more tensors and that outputs one or more tensors. Some layers are stateless, but more
frequently layers have a state: the layer’s , one or several tensors learned withweights
stochastic gradient descent, which together contain the network’s .knowledge

Different layers are appropriate for different tensor formats and different types of data
processing. For instance, simple vector data, stored in 2D tensors of shape (samples,

, is often processed by layers, also called orfeatures) densely connected fully connected
 layers (the function in Keras). Sequence data, stored in 3D tensorsdense layer_dense

3.1 Anatomy of a neural network

3.1.1 Layers: the building blocks of deep learning

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

54

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

of shape , is typically processed by layers(samples, timesteps, features) recurrent
such as . Image data, stored in 4D tensors, is usually processed by 2Dlayer_lstm

convolution layers ().layer_conv_2d

You can think of layers as the LEGO bricks of deep learning, a metaphor that is made
explicit by frameworks like Keras. Building deep-learning models in Keras is done by
clipping together compatible layers to form useful data-transformation pipelines. The
notion of here refers specifically to the fact that every layer will onlylayer compatibility
accept input tensors of a certain shape and will return output tensors of a certain shape.
Consider the following example:

We’re creating a layer that will only accept as input 2D tensors where the first
dimension is 784 (the first dimension, the batch dimension, is unspecified, and thus any
value would be accepted). This layer will return a tensor where the first dimension has
been transformed to be 32.

Thus this layer can only be connected to a downstream layer that expects
32-dimensional vectors as its input. When using Keras, you don’t have to worry about
compatibility, because the layers you add to your models are dynamically built to match
the shape of the incoming layer. For instance, suppose you write the following:

The second layer didn’t receive an input shape argument—instead, it automatically
inferred its input shape as being the output shape of the layer that came before.

A deep-learning model is a directed, acyclic graph of layers. The most common instance
is a linear stack of layers, mapping a single input to a single output.

But as you move forward, you’ll be exposed to a much broader variety of network
topologies. Some common ones include the following:

Two-branch networks
Multihead networks
Inception blocks

The topology of a network defines a . You may remember that inhypothesis space
chapter 1, we defined machine learning as "searching for useful representations of some
input data, within a predefined space of possibilities, using guidance from some feedback
signal." By choosing a network topology, you constrain your space of possibilities

layer <- layer_dense(units = 32, input_shape = c(784))

model <- keras_model_sequential() %>%
 layer_dense(units = 32, input_shape = c(784)) %>%
 layer_dense(units = 32)

3.1.2 Models: networks of layers

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

55

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

(hypothesis space) to a specific series of tensor operations, mapping input data to output
data. What you’ll then be searching for is a good set of values for the weight tensors
involved in these tensor operations.

Picking the right network architecture is more an art than a science; and although
there are some best practices and principles you can rely on, only practice can help you
become a proper neural-network architect. The next few chapters will both teach you
explicit principles for building neural networks and help you develop intuition as to what
works or doesn’t work for specific problems.

Once the network architecture is defined, you still have to choose two more things:

Loss function (objective function)—The quantity that will be minimized during training.
It represents a measure of success for the task at hand.
Optimizer—Determines how the network will be updated based on the loss function. It
implements a specific variant of stochastic gradient descent (SGD).

A neural network that has multiple outputs may have multiple loss functions (one per
output). But the gradient-descent process must be based on a scalar loss value; so,single
for multiloss networks, all losses are combined (via averaging) into a single scalar
quantity.

Choosing the right objective function for the right problem is extremely important:
your network will take any shortcut it can, to minimize the loss; so if the objective
doesn’t fully correlate with success for the task at hand, your network will end up doing
things you may not have wanted. Imagine a stupid, omnipotent AI trained via SGD, with
this poorly chosen objective function: "maximizing the average well-being of all humans
alive." To make its job easier, this AI might choose to kill all humans except a few and
focus on the well-being on the remaining ones—because average well-being isn’t
affected by how many humans are left. That might not be what you intended! Just
remember that all neural networks you build will be just as ruthless in lowering their loss
function—so choose the objective wisely, or you will have to face unintended
side-effects.

Fortunately, when it comes to common problems such as classification, regression,
and sequence prediction, there are simple guidelines you can follow to choose the correct
loss. For instance, you’ll use binary crossentropy for a two-class classification problem,
categorical crossentropy for a many-class classification problem, mean-squared error for
a regression problem, CTC for a sequence learning problem, and so on. Only when
you’re working on truly new research problems will you have to develop your own
objective functions. In the next few chapters, we’ll detail explicitly which loss functions
to choose for a wide range of common tasks.

3.1.3 Loss functions and optimizers: keys to configuring the learning
process

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

56

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Throughout this book, the code examples use Keras (). Keras is akeras.rstudio.com
deep-learning framework that provides a convenient way to define and train almost any
kind of deep-learning model. Keras was initially developed for researchers, with the aim
of enabling fast experimentation.

Keras has the following key features:

It allows the same code to run seamlessly on CPU or GPU.
It has a user-friendly API that makes it easy to quickly prototype deep-learning models.
It has build-in support for convolutional networks (for computer vision), recurrent
networks (for sequence processing), and any combination of both.
It supports arbitrary network architectures: multi-input or multi-output models, layer
sharing, model sharing, and so on. This means Keras is appropriate for building
essentially any deep-learning model, from a generative adversarial network to a neural
Turing machine.

Keras and it’s R interface are is distributed under the permissive MIT license, which
means it can be freely used in commercial projects. The Keras R package is compatible
with R versions 3.2 and higher. The documentation for the R interface is available at

. The main project website can be found at .keras.rstudio.com keras.io
Keras has well over 150,000 users, ranging from academic researchers and engineers

at both startups and large companies to graduate students and hobbyists. Keras is used at
Google, Netflix, Uber, CERN, Yelp, Square, and hundreds of startups working on a wide
range of problems. Keras is also a popular framework on Kaggle, the machine-learning
competition website, where almost every recent deep-learning competition has been won
using Keras models.

Figure 3.2 Google web search interest for different deep-learning frameworks over time

3.2 Introduction to Keras

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

57

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://keras.rstudio.com
https://keras.rstudio.com
https://keras.io
https://forums.manning.com/forums/deep-learning-with-r

Keras is a model-level library, providing high-level building blocks for developing
deep-learning models. It doesn’t handle low-level operations such as tensor manipulation
and differentiation. Instead, it relies on a specialized, well-optimized tensor library to do
so, serving as the of Keras. Rather than choosing a single tensor librarybackend engine
and tying the implementation of Keras to that library, Keras handles the problem in a
modular way (see figure 3.3); thus several different backend engines can be plugged
seamlessly into Keras. Currently, the three existing backend implementations are the
TensorFlow backend, the Theano backend, and the Microsoft Cognitive Toolkit (CNTK)
backend. In the future, it’s likely that Keras will be extended to work with even more
deep-learning execution engines.

Figure 3.3 The deep-learning software and hardware stack

TensorFlow, CNTK, and Theano are some of the primary platforms for deep learning
today. Theano () is developed by the MILA lab at deeplearning.net/software/theano

, TensorFlow (www.tensorflow.org) is developed by Google, andUniversité de Montréal
CNTK () is developed by Microsoft. Any piece of code thatgithub.com/Microsoft/CNTK
you write with Keras can be run with any of these backends without having to change
anything in the code: you can seamlessly switch between the two during development,
which often proves useful—for instance, if one of these backends proves to be faster for a
specific task. We recommend using the TensorFlow backend as the default for most of
your deep-learning needs, because it’s the most widely adopted, most scalable, and most
production ready.

Via TensorFlow (or Theano, or CNTK), Keras is able to run seamlessly on both
CPUs and GPUs. When running on CPU, TensorFlow is itself wrapping a low-level
library for tensor operations called Eigen (). On GPU, TensorFloweigen.tuxfamily.org
wraps a library of well-optimized deep-learning operations called the NVIDIA CUDA
Deep Neural Network library (cuDNN).

To get started with Keras, you need to install the Keras R package, the core Keras library,
as well as a backend tensor engine (e.g. TensorFlow). You can accomplish all of this as
follows:

3.2.1 Keras, TensorFlow, Theano, and CNTK

3.2.2 Installing Keras

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

58

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://deeplearning.net/software/theano
https://github.com/Microsoft/CNTK
http://eigen.tuxfamily.org
http://www.tensorflow.org
https://forums.manning.com/forums/deep-learning-with-r

1.
2.
3.

4.

Listing 3.1 Installing Keras

This will provide you with a default CPU-based installation of Keras and
TensorFlow.

As noted in the next section on setting up a deep learning workstation, you will very
likely want to train your deep learning models on a GPU. If you are running on a system
with an NVIDIA GPU and properly configured CUDA and cuDNN libraries then you
can install the GPU-based version of the TensorFlow backend engine as follows:

Listing 3.2 Installing the GPU version of TensorFlow

Note that you should only do this if your workstation has an NVIDIA GPU and
required software (CUDA and cuDNN), as the GPU version of TensorFlow will fail to
load if these prerequisites are not met. The next section covers GPU configurations in
more detail.

You’ve already seen one example of a Keras model: the MNIST example. The typical
Keras workflow looks just like that example:

Define your training data: input tensors and target tensors.
Define a network of layers (or) that maps your inputs to your targets.model
Configure the learning process by choosing a loss function, an optimizer, and some
metrics to monitor.
Iterate on your training data by calling the method of your model.fit()

There are two ways to define a model: using the keras_model_sequential()
function (only for linear stacks of layers, which is the most common network architecture
by far) or the (for directed acyclic graphs of layers, which lets you buildfunctional API
completely arbitrary architectures).

As a refresher, here’s a two-layer model defined using keras_model_sequential
(note that we’re passing the expected shape of the input data to the first layer):

And here’s the same model defined using the functional API:

Install the keras R package
install.packages("keras")

Install the core Keras library + TensorFlow
library(keras)
install_keras()

install_keras(tensorflow = "gpu")

3.2.3 Developing with Keras: a quick overview

model <- keras_model_sequential() %>%
 layer_dense(units = 32, input_shape = c(784)) %>%
 layer_dense(units = 10, activation = "softmax")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

59

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

With the functional API, you’re manipulating the data tensor that the model processes
and applying layers to this tensor as if they were functions.

NOTE Note

A detailed guide to what you can do with the functional API can be found
in chapter 7. Until chapter 6, we’ll only be using keras_model_sequential
in our code examples.

Once your model architecture is defined, it doesn’t matter whether you used
 or the functional API. All of the following steps are thekeras_model_sequential

same.
The learning process is configured in the compilation step, where you specify the

optimizer and loss function(s) that the model should use, as well as the metrics you want
to monitor during training. Here’s an example with a single loss function, which is by far
the most common case:

Finally, the learning process consists of passing arrays of input data (and the
corresponding target data) to the model via the method, similar to what you wouldfit()

do with other machine-learning libraries:

Over the next few chapters, you’ll build a solid intuition about what type of network
architectures work for different kinds of problems, how to pick the right learning
configuration, and how to tweak a model until it gives the results you want to see.

We’ll look at three basic examples in sections 3.4, 3.5, and 3.6: a two-class
classification example, a many-class classification example, and a regression example.
All the code examples in this book are available as open source notebooks; you can
download them f rom the book’s webs i te a t

.www.manning.com/books/deep-learning-with-r

input_tensor <- layer_input(shape = c(784))

output_tensor <- input_tensor %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = 10, activation = "softmax")

model <- keras_model(inputs = input_tensor, outputs = output_tensor)

model %>% compile(
 optimizer = optimizer_rmsprop(lr = 0.0001),
 loss = "mse",
 metrics = c("accuracy")
)

model %>% fit(input_tensor, target_tensor, batch_size = 128, epochs = 10)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

60

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.manning.com/books/deep-learning-with-r
http://www.manning.com/books/deep-learning-with-r
https://forums.manning.com/forums/deep-learning-with-r

Before you can get started developing deep-learning applications, you need to set up your
workstation. It’s highly recommended, although not strictly necessary, that you run
deep-learning code on a modern NVIDIA GPU. Some applications—in particular, image
processing with convolutional networks and sequence processing with recurrent neural
networks—will be excruciatingly slow on CPU, even a fast multicore CPU. And even for
applications that can realistically be run on CPU, you’ll generally see speed increase by a
factor or 5 or 10 by using a modern GPU. If you don’t want to install a GPU on your
machine, you can alternatively consider running your experiments on a AWS EC2 GPU
instance or on Google Cloud Platform. But note that that cloud GPU instances can
become expensive over time.

Whether you’re running locally or in the cloud, it’s better to be using a Unix
workstation. Although it’s technically possible to use Keras on Windows (all three Keras
backends support Windows), we don’t recommend it. In the installation instructions in
appendix A, we’ll consider an Ubuntu machine. If you’re a Windows user, the simplest
solution to get everything running is to set up an Ubuntu dual boot on your machine. It
may seem like a hassle, but using Ubuntu will save you a lot of time and a trouble in the
long run.

Note that in order to use Keras, you need to install TensorFlow CTNK Theanoor or
(or all of them, if you want to be able to switch back and forth among the three
backends). In this book, we’ll focus on TensorFlow, with some light instructions relative
to Theano. We won’t cover CNTK.

To get started in practice, we recommend one of the following two options:

Use the official EC2 Deep Learning AMI (), and runaws.amazon.com/amazon-ai/amis
Keras experiments within RStudio Server on EC2. Do this if you don’t already have a
GPU on your local machine. We provide a step-by-step guide in appendix B. You can
find details on other cloud GPU options at .tensorflow.rstudio.com/tools/cloud_gpu
Install everything from scratch on a local Unix workstation. Do this if you already have a
high-end NVIDIA GPU. We provide an Ubuntu-specific, step-by-step guide in appendix
A. You can find additional details on local GPU configurations at

.tensorflow.rstudio.com/tools/local_gpu

Let’s take a closer look at some of the compromises involved in picking one option
over the other.

3.3 Setting up a deep-learning workstation

3.3.1 Getting Keras running: two options

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

61

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://aws.amazon.com/amazon-ai/amis
https://tensorflow.rstudio.com/tools/cloud_gpu
https://tensorflow.rstudio.com/tools/local_gpu
https://forums.manning.com/forums/deep-learning-with-r

If you don’t already have a GPU that you can use for deep learning (a recent, high-end
NVIDIA GPU), then running deep-learning experiments in the cloud is a simple,
low-cost way for you to get started without having to buy any additional hardware. If
you’re using RStudio Server, the experience of running in the cloud is no different from
running locally. As of mid-2017, the cloud offering that makes it easiest to get started
with deep learning is definitely AWS EC2. In appendix B, we provide a step-by-step
guide to running RStudio Server on a EC2 GPU instance.

But if you’re a heavy user of deep learning, this setup isn’t sustainable in the long
term—or even for more than a few weeks. EC2 instances are expensive: the instance type
we recommend in appendix B (the instance, which won’t provide you withp2.xlarge

much power) costs $0.90 per hour as of mid-2017. Meanwhile, a solid consumer-class
GPU will cost you somewhere between $1,000 and $1,500—a price that has been fairly
stable over time, even as the specs of these GPUs keeps improving. If you’re serious
about deep learning, you should set up a local workstation with one or more GPUs.

In short, EC2 is a great way to get started. You could follow the code examples in this
book entirely on a EC2 GPU instance. But if you’re going to be a power user of deep
learning, get your own GPUs.

If you’re going to buy a GPU, which one should you choose? The first thing to note is
that it must be an NVIDIA GPU. NVIDIA is the only graphics computing company that
has invested heavily in deep learning so far, and modern deep-learning frameworks can
only run on NVIDIA cards.

As of mid-2017, we recommend the NVIDIA TITAN Xp as the best card on the
market for deep learning. For lower budgets, you may want to consider the GTX 1060. If
you’re reading these pages in 2018 or later, take the time to look online for fresher
recommendations, because new models come out every year.

From this section onward, we’ll assume that you have access to a machine with Keras
and its dependencies installed—preferably with GPU support. Make sure you finish this
step before you proceed. Go through our step-by-step guides in the appendixes, and look
online if you need further help. There is no shortage of tutorials on how to install Keras
and common deep-learning dependencies.

We can now dive into practical Keras examples.

Two-class classification, or binary classification, may be the most widely applied kind of
machine-learning problem. In this example, you’ll learn to classify movie reviews as
positive or negative, based on the text content of the reviews.

3.4 Classifying movie reviews: a binary classification example

3.3.2 Running deep-learning jobs in the cloud: pros and cons

3.3.3 What is the best GPU for deep learning?

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

62

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

You’ll be working with the IMDB dataset: a set of 50,000 highly polarized reviews from
the Internet Movie Database. They’re split into 25,000 reviews for training and 25,000
reviews for testing, each set consisting of 50% negative and 50% positive reviews.

Why use separate training and test sets? Because you should never test a
machine-learning model on the same data that you used to train it! Just because a model
performs well on its training data doesn’t mean it will perform well on data it has never
seen; and what you care about is your model’s performance on new data (because you
already know the labels of your training data—obviously you don’t need your model to
predict those). For instance, it’s possible that your model could end up merely

 a mapping between your training samples and their targets, which would bememorizing
useless for the task of predicting targets for data the model has never seen before. We’ll
go over this point in much more detail in the next chapter.

Just like the MNIST dataset, the IMDB dataset comes packaged with Keras. It has
already been preprocessed: the reviews (sequences of words) have been turned into
sequences of integers, where each integer stands for a specific word in a dictionary.

The following code will load the dataset (when you run it the first time, about 80 MB
of data will be downloaded to your machine).

Listing 3.3 Loading the IMDB dataset

NOTE Using the multi-assignment () operator%<-%

The datasets built in to Keras are all nested lists of training and test data.
Here we use the multi-assignment () operator from the %<-% zeallot
package to unpack the list into a set of distinct variables. This could have
been equally written as:

However, the multi-assignment version is preferable since it’s more
compact. The operator is automatically available whenever the R%<-%

keras package is loaded.

The argument means you’ll only keep the top 10,000 mostnum_words = 10000

frequently occurring words in the training data. Rare words will be discarded. This
allows you to work with vector data of manageable size.

3.4.1 The IMDB dataset

library(keras)

imdb <- dataset_imdb(num_words = 10000)
c(c(train_data, train_labels), c(test_data, test_labels)) %<-% imdb

imdb <- dataset_imdb(num_words = 10000)
train_data <- imdb$train$x
train_labels <- imdb$train$y
test_data <- imdb$test$x
test_labels <- imdb$test$y

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

63

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

The variables and are lists of reviews; each review is a listtrain_data test_data

of word indices (encoding a sequence of words). and aretrain_labels test_labels

lists of 0s and 1s, where 0 stands for and 1 stands for :negative positive

Because you’re restricting yourself to the top 10,000 most frequent words, no word
index will exceed 10,000:

For kicks, here’s how you can quickly decode one of these reviews back to English
words:

word_index is a named list mapping words to an integer index.

Reverses it, mapping integer indices to words

Decodes the review. Note that the indices are offset by 3 because 0, 1, and 2 are
reserved indices for "padding", "start of sequence", and "unknown".

You can’t feed lists of integers into a neural network. You have to turn your lists into
tensors. There are two ways to do that:

Pad your lists so that they all have the same length, turn them into an integer tensor of
shape , and then use as the first layer in your network a(samples, word_indices)
layer capable of handling such integer tensors (the "embedding" layer, which we’ll cover
in detail later in the book).
One-hot-encode your lists to turn them into vectors of 0s and 1s. This would mean, for
instance, turning the sequence into a 10,000-dimensional vector that would be all[3, 5]
zeros except for indices 3 and 5, which would be ones. Then you could use as the first
layer in your network a dense layer, capable of handling floating-point vector data.

Let’s go with the latter solution and vectorize the data, which you’ll do manually for
maximum clarity.

> str(train_data[[1]])
int [1:218] 1 14 22 16 43 530 973 1622 1385 65 ...

> train_labels[[1]]
[1] 1

> max(sapply(train_data, max))
[1] 9999

word_index <- dataset_imdb_word_index()

reverse_word_index <- names(word_index)
names(reverse_word_index) <- word_index

decoded_review <- sapply(train_data[[1]], function(index) {
 word <- if (index >= 3) reverse_word_index[[as.character(index - 3)]]
 if (!is.null(word)) word else "?"
})

3.4.2 Preparing the data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

64

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Listing 3.4 Encoding the integer sequences into a binary matrix

Creates an all-zero matrix of shape (length(sequences), dimension)

Sets specific indices of results[i] to 1s

Here’s what the samples look like now:

You should also convert your labels from integer to numeric, which is
straightforward:

Listing 3.5 Converting labels to numeric

Now the data is ready to be fed into a neural network.

The input data is vectors, and the labels are scalars (1s and 0s): this is the easiest setup
you’ll ever encounter. A type of network that performs well on such a problem is a
simple stack of fully connected ("dense") layers with activations: relu

.layer_dense(units = 16, activation = "relu")

The argument being passed to each dense layer (16) is the number of hidden units of
the layer. A is a dimension in the representation space of the layer. You mayhidden unit
remember from chapter 2 that each such dense layer with a activation implementsrelu

the following chain of tensor operations:

Having 16 hidden units means the weight matrix will have shape W

: that is, the dot product with will project the input data onto(input_dimension, 16) W

a 16-dimensional representation space (and then you’ll add the bias vector and applyb

the operation). You can intuitively understand the dimensionality of yourrelu

representation space as "how much freedom you’re allowing the network to have when

vectorize_sequences <- function(sequences, dimension = 10000) {

 results <- matrix(0, nrow = length(sequences), ncol = dimension)
 for (i in 1:length(sequences))

 results[i, sequences[[i]]] <- 1
 results
}

x_train <- vectorize_sequences(train_data)
x_test <- vectorize_sequences(test_data)

> str(x_train[1,])
 num [1:10000] 1 1 0 1 1 1 1 1 1 0 ...

y_train <- as.numeric(train_labels)
y_test <- as.numeric(test_labels)

3.4.3 Building your network

output = relu(dot(W, input) + b)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

65

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

learning internal representations." Having more hidden units (a higher-dimensional
representation space) allows your network to learn more complex representations, but it
makes the network more computationally expensive and may lead to learning unwanted
patterns (patterns that will improve performance on the training data but not on the test
data).

There are two key architecture decisions to be made about such stack of dense layers:

How many layers to use
How many hidden units to choose for each layer

In chapter 4, you’ll learn formal principles to guide you in making these choices. For
the time being, you’ll have to trust us with the following architecture choice:

Two intermediate layers with 16 hidden units each
A third layer that will output the scalar prediction regarding the sentiment of the current
review

The intermediate layers will use as their activation function, and the final layerrelu

will use a sigmoid activation so as to output a probability (a score between 0 and 1,
indicating how likely the sample is to have the target "1": that is, how likely the review is
to be positive). A (rectified linear unit) is a function meant to zero-out negativerelu

values (see figure 3.4), whereas a sigmoid "squashes" arbitrary values into the [0, 1]
interval (see figure 3.5), outputting something that can be interpreted as a probability.

Figure 3.4 The rectified linear unit function

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

66

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 3.5 The sigmoid function

Figure 3.6 show what the network looks like. And here’s the Keras implementation,
similar to the MNIST example you saw previously:

Figure 3.6 The 3-layer network

Listing 3.6 The model definition

library(keras)

model <- keras_model_sequential() %>%
 layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>%
 layer_dense(units = 16, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

67

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

SIDEBAR What are activation functions, and why are they necessary?

Without an activation function like (also called a), therelu non-linearity
dense layer would consist of two linear operations—a dot product and an
addition:

So the layer could only learn (affine transformations)linear transformations
of the input data: that is, the of the layer would be the sethypothesis space
of all possible linear transformations of the input data into a 16-dimensional
space. Such a hypothesis space is too restricted and wouldn’t benefit from
multiple layers of representations, because a deep stack of linear layers
would still implement a linear operation: adding more layers wouldn’t extend
the hypothesis space.

In order to get access to a much richer hypothesis space that would benefit
from deep representations, you need a non-linearity, or activation function.

 is the most popular activation function in deep learning, but there arerelu

many other candidates, which all come with similarly strange names: , prelu

, and so on.elu

Finally, you need to choose a loss function and an optimizer. Because you’re facing a
binary classification problem and the output of your network is a probability (you end
your network with a single-unit layer with a sigmoid activation), it’s best to use the

 loss. It isn’t the only viable choice: you could use, for instance, binary_crossentropy

. But crossentropy is usually the best choice when you’re dealingmean_squared_error

with models that output probabilities. is a quantity from the field ofCrossentropy
Information Theory that measures the distance between probability distributions or, in
this case, between the ground-truth distribution and your predictions.

Here’s the step where you configure the model with the optimizer and the rmsprop

 loss function. Note that you’ll also monitor accuracy duringbinary_crossentropy

training.

Listing 3.7 Compiling the model

You’re passing your optimizer, loss function, and metrics as strings, which is possible
because , , and are packaged as part of Keras.rmsprop binary_crossentropy accuracy

Sometimes you may want to configure the parameters of your optimizer or pass a custom
loss function or metric function. The former can be done by passing an optimizer

output = dot(W, input) + b

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("accuracy")
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

68

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

instance as the argument, as shown in listing 3.8; the latter can be done byoptimizer

passing function objects as the and/or arguments, as shown in listing 3.9.loss metrics

Listing 3.8 Configuring the optimizer

Listing 3.9 Using custom losses and metrics

In order to monitor during training the accuracy of the model on data it has never seen
before, you’ll create a validation set by setting apart 10,000 samples from the original
training data.

Listing 3.10 Setting aside a validation set

You’ll now train the model for 20 epochs (20 iterations over all samples in the
 and tensors), in mini-batches of 512 samples. At the same time, you’llx_train y_train

monitor loss and accuracy on the 10,000 samples that you set apart. You do so by passing
the validation data as the argument.validation_data

Listing 3.11 Training your model

model %>% compile(
 optimizer = optimizer_rmsprop(lr=0.001),
 loss = "binary_crossentropy",
 metrics = c("accuracy")
)

model %>% compile(
 optimizer = optimizer_rmsprop(lr = 0.001),
 loss = loss_binary_crossentropy,
 metrics = metric_binary_accuracy
)

3.4.4 Validating your approach

val_indices <- 1:10000

x_val <- x_train[val_indices,]
partial_x_train <- x_train[-val_indices,]

y_val <- y_train[val_indices]
partial_y_train <- y_train[-val_indices]

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("accuracy")
)

history <- model %>% fit(
 partial_x_train,
 partial_y_train,
 epochs = 20,
 batch_size = 512,
 validation_data = list(x_val, y_val)
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

69

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

On a CPU, this will take less than 2 seconds per epoch—training is over in 20
seconds. At the end of every epoch, there is a slight pause as the model computes its loss
and accuracy on the 10,000 samples of the validation data.

Note that the call to returns a object. Let’s take a look at it:fit() history

Listing 3.12 The objecthistory

The object includes various parameters used to fit the model (history

) as well as data for each of the metrics being monitored (history$params

).history$metrics

The object has a method that enables us to visualize the training andhistory plot()

validation metrics by epoch:

Listing 3.13 Plotting the training and validation metrics

> str(history)
List of 2
 $ params :List of 8
 ..$ metrics : chr [1:4] "loss" "acc" "val_loss" "val_acc"
 ..$ epochs : int 20
 ..$ steps : NULL
 ..$ do_validation : logi TRUE
 ..$ samples : int 15000
 ..$ batch_size : int 512
 ..$ verbose : int 1
 ..$ validation_samples: int 10000
 $ metrics:List of 4
 ..$ acc : num [1:20] 0.783 0.896 0.925 0.941 0.952 ...
 ..$ loss : num [1:20] 0.532 0.331 0.24 0.186 0.153 ...
 ..$ val_acc : num [1:20] 0.832 0.882 0.886 0.888 0.888 ...
 ..$ val_loss: num [1:20] 0.432 0.323 0.292 0.278 0.278 ...
 - attr(*, "class")= chr "keras_training_history"

plot(history)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

70

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 3.7 Training and validation metrics

The accuracy is plotted on the top panel and the loss on the bottom panel. Note that
your own results may vary slightly due to a different random initialization of your
network.

NOTE Training history plot method

The method for training history objects will use for plottingplot() ggplot2
if it’s available (if not then base graphics will be used). The plot includes
all specified metrics as well as the loss, and draws a smoothing line if
there are 10 or more epochs. You can customize all of this behavior via
various arguments to the plot method.

If you want to create a custom visualization you can call the
 method on the history to obtain a data frame withas.data.frame()

factors for each metric as well as training vs. validation:

As you can see, the training loss decreases with every epoch, and the training
accuracy increases with every epoch. That’s what you would expect when running a
gradient-descent optimization—the quantity you’re trying to minimize should be less
with every iteration. But that isn’t the case for the validation loss and accuracy: they
seem to peak at the fourth epoch. This is an example of what we warned against earlier: a

> history_df <- as.data.frame(history)
> str(history_df)
'data.frame': 120 obs. of 4 variables:
 $ epoch : int 1 2 3 4 5 6 7 8 9 10 ...
 $ value : num 0.87 0.941 0.954 0.962 0.965 ...
 $ metric: Factor w/ 2 levels "acc","loss": 1 1 1 1 1 1 1 1 1 1 ...
 $ data : Factor w/ 2 levels "training","validation": 1 1 1 1 1 1 1 1 1 1 ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

71

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

model that performs better on the training data isn’t necessarily a model that will do
better on data it has never seen before. In precise terms, what you’re seeing is :overfitting
after the second epoch, you’re over-optimizing on the training data, and you end up
learning representations that are specific to the training data and don’t generalize to data
outside of the training set.

In this case, to prevent overfitting, you could stop training after three epochs. In
general, you can use a range of techniques to mitigate overfitting, which we’ll cover in
chapter 4.

Let’s train a new network from scratch for four epochs and then evaluate it on the test
data.

Listing 3.14 Retraining a model from scratch

The final results are as follows:

This fairly naive approach achieves an accuracy of 88%. With state-of-the-art
approaches, you should be able to get close to 95%.

After having trained a network, you’ll want to use it in a practical setting. You can
generate the likelihood of reviews being positive by using the method:predict

model <- keras_model_sequential() %>%
 layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>%
 layer_dense(units = 16, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("accuracy")
)

model %>% fit(x_train, y_train, epochs = 4, batch_size = 512)
results <- model %>% evaluate(x_test, y_test)

> results
$loss
[1] 0.2900235

$acc
[1] 0.88512

3.4.5 Using a trained network to generate predictions on new data

> model %>% predict(x_test[1:10,])
 [1,] 0.92306918
 [2,] 0.84061098
 [3,] 0.99952853
 [4,] 0.67913240
 [5,] 0.73874789
 [6,] 0.23108074
 [7,] 0.01230567
 [8,] 0.04898361
 [9,] 0.99017477
[10,] 0.72034937

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

72

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

As you can see, the network is confident for some samples (0.99 or more, or 0.01 or
less) but less confident for others (0.7, 0.2).

The following experiments will help convince you that the architecture choices you’ve
made are all fairly reasonable, although they can still be improved:

You used two hidden layers. Try using one or three hidden layers, and see how doing so
affects validation and test accuracy.
Try using layers with more hidden units or fewer hidden units: 32 units, 64 units, and so
on.
Try using the loss function instead of .mse binary_crossentropy

Try using the activation (an activation that was popular in the early days of neuraltanh
networks) instead of .relu

Here’s what you should take away from this example:

You usually need to do quite a bit of preprocessing on your raw data in order to be able to
feed it—as tensors—into a neural network. Sequences of words can be encoded as binary
vectors, but there are other encoding options, too.
Stacks of dense layers with activations can solve a wide range of problemsrelu
(including sentiment classification), and you’ll likely use them frequently.
In a binary classification problem (two output classes), your network should end with a
dense layer with one unit and a activation. That is, the output of your networksigmoid
should be a scalar between 0 and 1, encoding a probability.
With such a scalar sigmoid output on a binary classification problem, the loss function
you should use is .binary_crossentropy

The optimizer is generally a good enough choice, whatever your problem.rmsprop
That’s one less thing for you to worry about.
As they get better on their training data, neural networks eventually start andoverfitting
end up obtaining increasingly worse results on data they’ve never seen before. Be sure to
always monitor performance on data that is outside of the training set.

In the previous section, you saw how to classify vector inputs into two mutually
exclusive classes using a densely connected neural network. But what happens when you
have more than two classes?

In this section, you’ll build a network to classify Reuters newswires into 46 different
mutually exclusive topics. Because you have many classes, this problem is an instance of

; and because each data point should be classified into only onemulticlass classification
category, the problem is more specifically an instance of single-label, multiclass

. If each data point could belong to multiple categories (in this case, topics),classification
you’d be facing a problem.multilabel, multiclass classification

3.5 Classifying newswires: a multiclass classification example

3.4.6 Further experiments

3.4.7 Wrapping up

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

73

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

You’ll be working with the , a set of short newswires and their topics,Reuters dataset
published by Reuters in 1986. It’s a simple, widely used toy dataset for text
classification. There are 46 different topics; some topics are more represented than
others, but each topic has at least 10 examples in the training set.

Like IMDB and MNIST, the Reuters dataset comes packaged as part of Keras. Let’s
take a look.

Listing 3.15 Loading the Reuters dataset

As with the IMDB dataset, the argument restricts the data to thenum_words = 10000

10,000 most frequently occurring words found in the data.
You have 8,982 training examples and 2,246 test examples:

As with the IMDB reviews, each example is a list of integers (word indices):

Here’s how you can decode it back to words, in case you’re curious.

Listing 3.16 Decoding a newswires back to text

Note that the indices are offset by 3 because 0, 1, and 2 are reserved indices for
"padding", "start of sequence", and "unknown".

The label associated with an example is an integer between 0 and 45—a topic index:

3.5.1 The Reuters dataset

library(keras)

reuters <- dataset_reuters(num_words = 10000)
c(c(train_data, train_labels), c(test_data, test_labels)) %<-% reuters

> length(train_data)
[1] 8982
> length(test_data)
[1] 2246

> train_data[[1]]
 [1] 1 2 2 8 43 10 447 5 25 207 270 5 3095 111 16
[16] 369 186 90 67 7 89 5 19 102 6 19 124 15 90 67
[31] 84 22 482 26 7 48 4 49 8 864 39 209 154 6 151
[46] 6 83 11 15 22 155 11 15 7 48 9 4579 1005 504 6
[61] 258 6 272 11 15 22 134 44 11 15 16 8 197 1245 90
[76] 67 52 29 209 30 32 132 6 109 15 17 12

word_index <- dataset_reuters_word_index()
reverse_word_index <- names(word_index)
names(reverse_word_index) <- word_index
decoded_newswire <- sapply(train_data[[1]], function(index) {

 word <- if (index >= 3) reverse_word_index[[as.character(index - 3)]]
 if (!is.null(word)) word else "?"
})

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

74

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

You can vectorize the data with the exact same code as in the previous example.

Listing 3.17 Encoding the data

To vectorize the labels, there are two possibilities: you can cast the label list as an
integer tensor, or you can use a encoding. One-hot encoding is a widely usedone-hot
format for categorical data, also called . For a more detailedcategorical encoding
explanation of one-hot encoding, see section 6.1. In this case, one-hot encoding of the
labels consists of embedding each label as an all-zero vector with a 1 in the place of the
label index. Here’s an example:

Note that there is a built-in way to do this in Keras, which you’ve already seen in
action in the MNIST example:

This topic-classification problem looks similar to the previous movie-review
classification problem: in both cases, you’re trying to classify short snippets of text. But
there is a new constraint here: the number of output classes has gone from 2 to 46. The
dimensionality of the output space is much larger.

In a stack of dense layers like that you’ve been using, each layer can only access
information present in the output of the previous layer. If one layer drops some
information relevant to the classification problem, this information can never be
recovered by later layers: each layer can potentially become an information bottleneck. In

> train_labels[[1]]
3

3.5.2 Preparing the data

vectorize_sequences <- function(sequences, dimension = 10000) {
 results <- matrix(0, nrow = length(sequences), ncol = dimension)
 for (i in 1:length(sequences))
 results[i, sequences[[i]]] <- 1
 results
}

x_train <- vectorize_sequences(train_data)
x_test <- vectorize_sequences(test_data)

to_one_hot <- function(labels, dimension = 46) {
 results <- matrix(0, nrow = length(labels), ncol = dimension)
 for (i in 1:length(labels))
 results[i, labels[[i]]] <- 1
 results
}

one_hot_train_labels <- to_one_hot(train_labels)
one_hot_test_labels <- to_one_hot(test_labels)

one_hot_train_labels <- to_categorical(train_labels)
one_hot_test_labels <- to_categorical(test_labels)

3.5.3 Building your network

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

75

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

the previous example, you used 16-dimensional intermediate layers, but a 16-dimensional
space may be too limited to learn to separate 46 different classes: such small layers may
act as information bottlenecks, permanently dropping relevant information.

For this reason you’ll use larger layers. Let’s go with 64 units.

Listing 3.18 Model definition

There are two other things you should note about this architecture:

You end the network with a dense layer of size 46. This means for each input sample, the
network will output a 46-dimensional vector. Each entry in this vector (each dimension)
will encode a different output class.
The last layer uses a activation. You saw this pattern in the MNIST example. Itsoftmax
means the network will output a over the 46 different outputprobability distribution
classes: that is, for every input sample, the network will produce a 46-dimensional output
vector, where is the probability that the sample belongs to class . The 46 scoresoutput i
will sum to 1.

The best loss function to use in this case is . Itcategorical_crossentropy

measures the distance between two probability distributions: here, between the
probability distribution output by the network and the true distribution of the labels. By
minimizing the distance between these two distributions, you train the network to output
something as close as possible to the true labels.

Listing 3.19 Compiling the model

Let’s set apart 1,000 samples in the training data to use as a validation set.

Listing 3.20 Setting aside a validation set

Now, let’s train the network for 20 epochs.

model <- keras_model_sequential() %>%
 layer_dense(units = 64, activation = "relu", input_shape = c(10000)) %>%
 layer_dense(units = 64, activation = "relu") %>%
 layer_dense(units = 46, activation = "softmax")

model %>% compile(
 optimizer = "rmsprop",
 loss = "categorical_crossentropy",
 metrics = c("accuracy")
)

3.5.4 Validating your approach

val_indices <- 1:1000

x_val <- x_train[val_indices,]
partial_x_train <- x_train[-val_indices,]

y_val <- one_hot_train_labels[val_indices,]
partial_y_train = one_hot_train_labels[-val_indices,]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

76

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Listing 3.21 Training the model

And finally, display its loss and accuracy curves (see figure 3.8).

Listing 3.22 Plotting the training and validation metrics

Figure 3.8 Training and validation metrics

The network begins to overfit after nine epochs. Let’s train a new network from
scratch for nine epochs and then evaluate it on the test set.

Listing 3.23 Retraining a model from scratch

history <- model %>% fit(
 partial_x_train,
 partial_y_train,
 epochs = 20,
 batch_size = 512,
 validation_data = list(x_val, y_val)
)

plot(history)

model <- keras_model_sequential() %>%
 layer_dense(units = 64, activation = "relu", input_shape = c(10000)) %>%
 layer_dense(units = 64, activation = "relu") %>%
 layer_dense(units = 46, activation = "softmax")

model %>% compile(
 optimizer = "rmsprop",
 loss = "categorical_crossentropy",
 metrics = c("accuracy")
)

history <- model %>% fit(

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

77

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Here are the final results:

This approach reaches an accuracy of ~ 79%. With a balanced binary classification
problem, the accuracy reached by a purely random classifier would be 50%. But in this
case it’s closer to 18%, so the results seem pretty good, at least when compared to a
random baseline:

You can verify that the method of the model instance returns a probabilitypredict

distribution over all 46 topics. Let’s generate topic predictions for all of the test data.

Listing 3.24 Generating predictions for new data

Each entry in is a vector of length 46:predictions

The coefficients in this vector sum to 1:

The largest entry is the predicted class—the class with the highest probability:

 partial_x_train,
 partial_y_train,
 epochs = 9,
 batch_size = 512,
 validation_data = list(x_val, y_val)
)

results <- model %>% evaluate(x_test, one_hot_test_labels)

> results
$loss
[1] 0.9834202

$acc
[1] 0.7898486

> test_labels_copy <- test_labels
> test_labels_copy <- sample(test_labels_copy)
> length(which(test_labels == test_labels_copy)) / length(test_labels)
[1] 0.1821015

3.5.5 Generating predictions on new data

predictions <- model %>% predict(x_test)

> dim(predictions)
[1] 2246 46

> sum(predictions[1,])
[1] 1

> which.max(predictions[1,])
[1] 4

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

78

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

We mentioned earlier that another way to encode the labels would be to preserve their
integer values. The only thing this approach would change is the choice of the loss
function. The previous loss, , expects the labels to follow acategorical_crossentropy

categorical encoding. With integer labels, you should use
:sparse_categorical_crossentropy

This new loss function is still mathematically the same as
; it just has a different interface.categorical_crossentropy

We mentioned earlier that because the final outputs are 46-dimensional, you should avoid
intermediate layers with many fewer than 46 hidden units. Now let’s see what happens
when you introduce an information bottleneck by having intermediate layers that are
significantly less than 46-dimensional: for example, 4-dimensional.

Listing 3.25 A model with an information bottleneck

The network now peaks at ~71% validation accuracy, an 8% absolute drop. This drop
is mostly due to the fact that you’re trying to compress a lot of information (enough
information to recover the separation hyperplanes of 46 classes) into an intermediate
space that is too low-dimensional. The network is able to cram of the necessarymost
information into these eight-dimensional representations, but not all of it.

3.5.6 A different way to handle the labels and the loss

model %>% compile(
 optimizer = "rmsprop",
 loss = "sparse_categorical_crossentropy",
 metrics = c("accuracy")
)

3.5.7 The importance of having sufficiently large intermediate layers

model <- keras_model_sequential() %>%
 layer_dense(units = 64, activation = "relu", input_shape = c(10000)) %>%
 layer_dense(units = 4, activation = "relu") %>%
 layer_dense(units = 46, activation = "softmax")

model %>% compile(
 optimizer = "rmsprop",
 loss = "categorical_crossentropy",
 metrics = c("accuracy")
)

model %>% fit(
 partial_x_train,
 partial_y_train,
 epochs = 20,
 batch_size = 128,
 validation_data = list(x_val, y_val)
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

79

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Try using larger or smaller layers: 32 units, 128 units, and so on.
You used two hidden layers. Now try using a single hidden layer, or three hidden layers.

Here’s what you should take away from this example:

If you’re trying to classify data points among classes, your network should end with aN
dense layer of size .N
In a single-label, multiclass classification problem, your network should end with a

 activation so that it will output a probability distribution over the outputsoftmax N
classes.
Categorical crossentropy is almost always the loss function you should use for such
problems. It minimizes the distance between the probability distributions output by the
network and the true distribution of the targets.
There are two ways to handle labels in multiclass classification:

Encoding the labels via categorical encoding (also known as one-hot encoding) and usin
 as a loss functioncategorical_crossentropy

Encoding the labels as integers and using the losparse_categorical_crossentropy
function

If you need to classify data into a large number of categories, you should avoid creating
information bottlenecks in your network due to intermediate layers that are too small.

The two previous examples considered classification problems, where the goal was to
predict a single discrete label of an input data point. Another common type of
machine-learning problem is , which consists of predicting a continuous valueregression
instead of a discrete label: for instance, predicting the temperature tomorrow, given
meteorological data; or predicting the time that a software project will take to complete,
given its specifications.

NOTE Note

Don’t confuse and the algorithm .regression logistic regression
Confusingly, logistic regression isn’t a regression algorithm—it’s a
classification algorithm.

3.6 Predicting house prices: a regression example

3.5.8 Further experiments

3.5.9 Wrapping up

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

80

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

You’ll be attempting to predict the median price of homes in a given Boston suburb in
the mid-1970s, given data points about the suburb at the time, such as the crime rate, the
local property tax rate, and so on. The dataset you’ll be using has an interesting
difference from the two previous examples. It has relatively few data points: only 506,
split between 404 training samples and 102 test samples. And each in the inputfeature
data (for example, the crime rate) has a different scale. For instance, some values are
proportions, which take a values between 0 and 1; others take values between 1 and 12,
others between 0 and 100, and so on.

Listing 3.26 Loading the Boston housing dataset

Let’s look at the data:

As you can see, you have 404 training samples and 102 test samples, each with 13
numerical features, such as per capita crime rate, average number of rooms per dwelling,
accessibility to highways, and so on.

The targets are the median values of owner-occupied homes, in thousands of dollars:

The prices are typically between $10,000 and $50,000. If that sounds cheap,
remember that this was the mid-1970s, and these prices aren’t adjusted for inflation.

It would be problematic to feed into a neural network values that all take wildly different
ranges. The network might be able to automatically adapt to such heterogeneous data, but
it would definitely make learning more difficult. A widespread best practice to deal with
such data is to do feature-wise normalization: for each feature in the input data (a column
in the input data matrix), you subtract the mean of the feature and divide by the standard
deviation, so that the feature is centered around 0 and has a unit standard deviation. This
is easily done in R using the function.scale()

Listing 3.27 Normalizing the data

3.6.1 The Boston Housing Price dataset

library(keras)

dataset <- dataset_boston_housing()
c(c(train_data, train_targets), c(test_data, test_targets)) %<-% dataset

> str(train_data)
 num [1:404, 1:13] 1.2325 0.0218 4.8982 0.0396 3.6931 ...
> str(test_data)
 num [1:102, 1:13] 18.0846 0.1233 0.055 1.2735 0.0715 ...

> str(train_targets)
num [1:404(1d)] 15.2 42.3 50 21.1 17.7 18.5 11.3 15.6 15.6 14.4 ...

3.6.2 Preparing the data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

81

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Calculate the mean and sd on the training data

Scale training and test data using the mean and sd from the training data

Note that the quantities used for normalizing the test data are computed using the
training data. You should never use in your workflow any quantity computed on the test
data, even for something as simple as data normalization.

Because so few samples are available, you’ll use a very small network with 2 hidden
layers, each with 64 units. In general, the less training data you have, the worse
overfitting will be, and using a small network is one way to mitigate overfitting.

Listing 3.28 Model definition

Because you’ll need to instantiate the same model multiple times, you use a
function to construct it.

The network ends with a single unit and no activation (it will be a linear layer). This
is a typical setup for scalar regression (a regression where you’re trying to predict a
single continuous value). Applying an activation function would constrain the range the
output can take; for instance, if you applied a activation function to the lastsigmoid

layer, the network could only learn to predict values between 0 and 1. Here, because the
last layer is purely linear, the network is free to learn to predict values in any range.

Note that you compile the network with the loss function— ,mse mean squared error
the square of the difference between the predictions and the targets. This is a widely used
loss function for regression problems.

You’re also monitoring a new metric during training: (MAE).mean absolute error
It’s the absolute value of the difference between the predictions and the targets. For
instance, an MAE of 0.5 on this problem would mean your predictions are off by $500 on

mean <- apply(train_data, 2, mean)
std <- apply(train_data, 2, sd)

train_data <- scale(train_data, center = mean, scale = std)
test_data <- scale(test_data, center = mean, scale = std)

3.6.3 Building your network

build_model <- function() {
 model <- keras_model_sequential() %>%
 layer_dense(units = 64, activation = "relu",
 input_shape = dim(train_data)[[2]]) %>%
 layer_dense(units = 64, activation = "relu") %>%
 layer_dense(units = 1)

 model %>% compile(
 optimizer = "rmsprop",
 loss = "mse",
 metrics = c("mae")
)
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

82

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

average.

To evaluate your network while you keep adjusting its parameters (such as the number of
epochs used for training), you could split the data into a training set and a validation set,
as you did in the previous examples. But because you have so few data points, the
validation set would end up being very small (for example, about 100 examples). As a
consequence, the validation scores might change a lot depending on which data points
you chose to use for validation and which you chose for training: that is, the validation
scores might have a high with regard to the validation split. This would preventvariance
you from reliably evaluating your model.

The best practice in such situations is to use cross-validation (see figure 3.9). ItK-fold
consists of splitting the available data into partitions (typically = 4 or 5),K K
instantiating identical models, and training each one on – 1 partitions whileK K
evaluating on the remaining partition. The validation score for the model used is then the
average of the validation scores obtained. In terms of code, this is straightforward.K

Figure 3.9 3-fold cross-validation

Listing 3.29 K-fold validation

3.6.4 Validating your approach using K-fold validation

k <- 4
indices <- sample(1:nrow(train_data))
folds <- cut(indices, breaks = k, labels = FALSE)

num_epochs <- 100
all_scores <- c()
for (i in 1:k) {
 cat("processing fold #", i, "\n")

 val_indices <- which(folds == i, arr.ind = TRUE)
 val_data <- train_data[val_indices,]
 val_targets <- train_targets[val_indices]

 partial_train_data <- train_data[-val_indices,]
 partial_train_targets <- train_targets[-val_indices]

 model <- build_model()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

83

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Prepares the validation data: data from partition # k

Prepares the training data: data from all other partitions

Builds the Keras model (already compiled)

Trains the model (in silent mode, verbose = 0)

Evaluates the model on the validation data

Running this with yields the following results:num_epochs = 100

The different runs do indeed show rather different validation scores, from 2.1 to 2.8.
The average (2.4) is a much more reliable metric than any single score—that’s the entire
point of K-fold cross-validation. In this case, you’re off by $2,400 on average, which is
significant considering that the prices range from $10,000 to $50,000.

Let’s try training the network a bit longer: 500 epochs. To keep a record of how well
the model does at each epoch, you’ll modify the training loop to save the per-epoch
validation score log.

Listing 3.30 Saving the validation logs at each fold

 model %>% fit(partial_train_data, partial_train_targets,
 epochs = num_epochs, batch_size = 1, verbose = 0)

 results <- model %>% evaluate(val_data, val_targets, verbose = 0)
 all_scores <- c(all_scores, results$mean_absolute_error)
}

> all_scores
[1] 2.065541 2.270200 2.838082 2.381782
> mean(all_scores)
[1] 2.388901

num_epochs <- 500
all_mae_histories <- NULL
for (i in 1:k) {
 cat("processing fold #", i, "\n")

 val_indices <- which(folds == i, arr.ind = TRUE)
 val_data <- train_data[val_indices,]
 val_targets <- train_targets[val_indices]

 partial_train_data <- train_data[-val_indices,]
 partial_train_targets <- train_targets[-val_indices]

 model <- build_model()

 history <- model %>% fit(
 partial_train_data, partial_train_targets,
 validation_data = list(val_data, val_targets),
 epochs = num_epochs, batch_size = 1, verbose = 0
)
 mae_history <- history$metrics$val_mean_absolute_error
 all_mae_histories <- rbind(all_mae_histories, mae_history)
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

84

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Prepares the validation data: data from partition # k

Prepares the training data: data from all other partitions

Builds the Keras model (already compiled)

Trains the model (in silent mode, verbose=0)

You can then compute the average of the per-epoch MAE scores for all folds.

Listing 3.31 Building the history of successive mean K-fold validation scores

Let’s plot this; see figure 3.10.

Listing 3.32 Plotting validation scores

Figure 3.10 Validation MAE by epoch

It may be a bit hard to see the plot due to scaling issues and relatively high variance.
Let’s use to try to get a clearer picture:geom_smooth()

Listing 3.33 Plotting validation scores

average_mae_history <- data.frame(
 epoch = seq(1:ncol(all_mae_histories)),
 validation_mae = apply(all_mae_histories, 2, mean)
)

library(ggplot2)
ggplot(average_mae_history, aes(x = epoch, y = validation_mae)) + geom_line()

ggplot(average_mae_history, aes(x = epoch, y = validation_mae)) + geom_smooth()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

85

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 3.11 Validation MAE by epoch - smoothed

According to this plot, validation MAE stops improving significantly after 125
epochs. Past that point, you start overfitting.

Once you’re finished tuning other parameters of the model (in addition to the number
of epochs, you could also adjust the size of the hidden layers), you can train a final
production model on all of the training data, with the best parameters, and then look at its
performance on the test data.

Listing 3.34 Training the final model

Trains model on the entirety of the data

Here’s the final result:

You’re still off by about $2,540.

Here’s what you should take away from this example:

Regression is done using different loss functions than classification. Mean squared error

model <- build_model()

model %>% fit(train_data, train_targets,
 epochs = 80, batch_size = 16, verbose = 0)
result <- model %>% evaluate(test_data, test_targets)

> result
$loss
[1] 15.58299

$mean_absolute_error
[1] 2.54131

3.6.5 Wrapping up

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

86

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

(MSE) is a commonly used loss function for regression.
Similarly, evaluation metrics to be used for regression differ from those used for
classification; naturally, the concept of accuracy doesn’t apply for regression. A common
regression metric is mean absolute error (MAE).
When features in the input data have values in different ranges, each feature should be
scaled independently as a preprocessing step.
When there is little data available, using K-fold validation is a great way to reliably
evaluate a model.
When little training data is available, it’s preferable to use a small network with few
hidden layers (typically only one or two), in order to avoid severe overfitting.

You’re now able to handle the most common kinds of machine-learning tasks on vector
data: binary classification, multiclass classification, and scalar regression. The "Wrapping
up" sections earlier in the chapter summarize the important points you’ve learned
regarding these types of tasks.
You’ll usually need to preprocess raw data before feeding it into a neural network.
When your data has features with different ranges, scale each feature independently as
part of preprocessing.
As training progresses, neural networks eventually begin to overfit and obtain worse
results on never-before-seen data.
If you don’t have much training data, use a small network with only one or two hidden
layers, to avoid severe overfitting.
If your data is divided into many categories, you may cause information bottlenecks if
you make the intermediate layers too small.
Regression uses different loss functions and different evaluation metrics than
classification.
When you’re working with little data, K-fold validation can help reliably evaluate your
model.

3.7 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

87

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

4
This chapter covers

After the three practical examples in chapter 3, you should be starting to become familiar
with how to approach classification and regression problems using neural networks, and
you’ve witnessed the central problem of machine learning: overfitting. This chapter will
formalize some of your new intuition into a solid conceptual framework for attacking and
solving deep-learning problems. We’ll consolidate all of these concepts—model
evaluation, data preprocessing and feature engineering, and tackling overfitting—into a
detailed seven-step workflow for tackling any machine-learning task.

In our previous examples, you’ve become familiar with three specific types of
machine-learning problems: binary classification, multiclass classification, and scalar
regression. All three are instances of , where the goal is to learn thesupervised learning
relationship between training inputs and training targets.

Supervised learning is just the tip of the iceberg—machine learning is a vast field
with a complex subfield taxonomy. Machine-learning algorithms generally fall four
broad categories, described in the following sections.

Fundamentals of machine learning

Forms of machine learning beyond classification and regression
Formal evaluation procedures for machine-learning models
Preparing data for deep learning
Feature engineering
Tackling overfitting
The universal workflow for approaching machine-learning problems

4.1 Four branches of machine learning

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

88

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

This is by far the most common case. It consists of learning to map input data to known
targets (also called), given a set of examples (often annotated by humans).annotations
All four examples you’ve encountered in this book so far were canonical examples of
supervised learning. Generally, almost all applications of deep learning that are in the
spotlight these days belong in this category, such as optical character recognition, speech
recognition, image classification, and language translation.

Although supervised learning mostly consists of classification and regression, there
are more exotic variants as well, including the following:

Sequence generation—For example, given a picture, predict a caption describing it.
Sequence generation can sometimes be reformulated as a series of classification problems
(such as repeatedly predicting a word or token in a sequence).
Syntax tree prediction—For example, given a sentence, predict its decomposition into a
syntax tree.
Object detection—Given a picture, draw a bounding box around certain objects inside the
picture. This can also be expressed as a classification problem (given many candidate
bounding boxes, classify the contents of each one) or as a joint classification and
regression problem, where the bounding-box coordinates are predicted via vector
regression.
Image segmentation—Given a picture, draw a pixel-level mask on a specific object.

This branch of machine learning consists of finding interesting transformations of the
input data without the help of any targets, for the purposes of data visualization, data
compression, or data denoising, or to better understand the correlations present in the
data at hand. Unsupervised learning is the bread and butter of data analytics, and it’s
often a necessary step in better understanding a dataset before attempting to solve a
supervised-learning problem. and are well-knownDimensionality reduction clustering
categories of unsupervised learning.

This is a specific instance of supervised learning, but it’s different enough that it deserves
its own category. Self-supervised learning is supervised learning without
human-annotated labels—you can think of it as supervised learning without any humans
in the loop. There are still labels involved (because the learning has to be supervised by
something), but they’re generated from the input data, typically using a heuristic
algorithm.

For instance, are a well-known instance of self-supervised learning,autoencoders
where the generated targets are the input, unmodified. In the same way, trying to predict
the next frame in a video, given past frames, or the next word in a text, given previous
words, are instances of self-supervised learning (, in thistemporally supervised learning
case: supervision comes from future input data). Note that the distinction between
supervised, self-supervised, and unsupervised learning can be blurry sometimes—these

4.1.1 Supervised learning

4.1.2 Unsupervised learning

4.1.3 Self-supervised learning

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

89

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

categories are more of a continuum without solid borders. Self-supervised learning can
be reinterpreted as either supervised or unsupervised learning, depending on whether you
pay attention to the learning mechanism or to the context of its application.

NOTE In this book, we’ll focus specifically on supervised learning, because it’s
by far the dominant form of deep learning today, with a wide range of
industry applications. We’ll also take a briefer look at self-supervised
learning in later chapters.

Long overlooked, this branch of machine learning recently started to get a lot of attention
after Google DeepMind successfully applied it to learning to play Atari games (and, later,
to learning to play Go at the highest level). In reinforcement learning, an receivesagent
information about its environment and learns to choose actions that will maximize some
reward. For instance, a neural network that "looks" at a video-game screen and outputs
game actions in order to maximize its score can be trained via reinforcement learning.

Currently, reinforcement learning is mostly a research area and hasn’t yet had
significant practical successes beyond games. In time, however, we expect to see
reinforcement learning take over an increasingly large range of real-world applications:
self-driving cars, robotics, resource management, education, and so on. It’s an idea
whose time has come, or will come soon.

4.1.4 Reinforcement learning

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

90

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

SIDEBAR Classification and regression glossary

Classification and regression involve many specialized terms. You’ve come
across some of them in earlier examples, and you’ll see more of them in
future chapters. They have precise, machine-learning-specific definitions,
and you should be familiar with them:

Sample or —One data point that goes into your model.input
Prediction or —What comes out of your model.output
Target—The truth. What your model should ideally have predicted, according
to an external source of data.
Prediction error or —A measure of the distance between yourloss value
model’s prediction and the target.
Classes—A set of possible labels to choose from in a classification problem.
For example, when classifying cat and dog pictures, "dog" and "cat" are the
two classes.
Label—A specific instance of a class annotation in a classification problem.
For instance, if picture #1234 is annotated as containing the class "dog", then
"dog" is a label of picture #1234.

Ground-truth or —All targets for a dataset, typically collected byannotations
humans.

Binary classification—A classification task where each input sample should
be categorized into two exclusive categories.
Multiclass classification—A classification task where each input sample
should be categorized into more than two categories: for instance, classifying
handwritten digits.
Multilabel classification—A classification task where each input sample can
be assigned multiple labels. For instance, a given image may contain both a
cat and a dog and should be annotated both with the "cat" label and the "dog"
label. The number of labels per image is usually variable.
Scalar regression—A task where the target is a continuous scalar value.
Predicint house prices is a good example: the different target prices form a
continuous space.
Vector regression—A task where the target is a set of continuous values: for
example, a continuous vector. If you’re doing regression against multiple
values (such as the coordinates of a bounding box in an image), then you’re
doing vector regression.
Mini-batch or —A small set of samples (typically between 8 and 128)batch
that are processed simultaneously by the model. The number of samples is
often a power of 2, to facilitate memory allocation on a GPU. When training,
a mini-batch is used to compute a single gradient-descent update applied to
the weights of the model.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

91

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

In the three examples presented in chapter 3, we split the data into a training set, a
validation set, and a test set. The reason not to evaluate the models on the same data they
were trained on quickly became evident: after just a few epochs, all three models began
to . That is, their performance on never-before-seen data started stalling (oroverfit
worsening) compared to their performance on the training data—which always improves
as training progresses.

In machine learning, the goal is to achieve models that —that is, thatgeneralize
perform well on never-before-seen data—and overfitting is the central obstacle. You can
only control that which you can observe, so it’s crucial to be able to reliably measure the
generalization power of your model. The following sections look at strategies for
mitigating overfitting and maximizing generalization. In this section, we’ll focus on how
to measure generalization: that is, how to evaluate machine-learning models.

Evaluating a model always boils down to splitting the available data into three sets:
training, validation, and test. You train on the training data and evaluate your model on
the validation data. Once your model is ready for prime time, you test it one final time on
the test data.

You may ask, why not have two sets: a training set and a test set? You’d train on the
training data and evaluate on the test data. Much simpler!

The reason is that developing a model always involves tuning its configuration: for
example, choosing the number of layers or the size of the layers (called the

 of the model, to distinguish them from the , which are thehyperparameters parameters
network’s weights). You’ll do this tuning by using as a feedback signal the performance
of the model on the validation data. In essence, this tuning is a form of : a searchlearning
for a good configuration in some parameter space. As a result, tuning the configuration of
the model based on its performance on the validation set can quickly result in overfitting

, even though your model is never being directly trained on it.to the validation set
Central to this phenomenon is the notion of . Every time you tune ainformation leaks

hyperparameter of your model based on the model’s performance on the validation set,
some information about the validation data leaks into the model. If you do this only once,
for one parameter, then very few bits of information will leak, and your validation set
will remain reliable to evaluate the model. But if you repeat this many times—running
one experiment, evaluating on the validation set, and modifying your model as a
result—then you’ll leak an increasingly significant amount of information about the
validation set into the model.

At the end of the day, you’ll end up with a model that performs artificially well on the
validation data, because that’s what you optimized it for. You care about performance on
completely new data, not the validation data, so you need to use a completely different,
never-before-seen dataset to evaluate the model: the test dataset. Your model shouldn’t

4.2 Evaluating machine-learning models

4.2.1 Training, validation, and test sets

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

92

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

have had access to information about the test set, even indirectly. If anything aboutany
the model has been tuned based on test-set performance, then your measure of
generalization will be flawed.

Splitting your data into training, validation, and test sets may seem straightforward,
but there are a few advanced ways to do it that can come in handy when little data is
available. Let’s review three classic evaluation recipes: simple hold-out validation,
K-fold validation, and iterated K-fold validation with shuffling.

Set apart some fraction of your data as your test set. Train on the remaining data, and
evaluate on the test set. As you saw in the previous sections, in order to prevent
information leaks, you shouldn’t tune your model based on the test set, and therefore you
should reserve a validation set.also

Schematically, hold-out validation looks like figure 4.1. The following listing shows a
simple implementation.

Figure 4.1 Simple hold-out validation split

Listing 4.1 Hold-out validation

Shuffling the data is usually appropriate.

Defines the validation set

Defines the training set

SIMPLE HOLD-OUT VALIDATION

indices <- sample(1:nrow(data), size = 0.80 * nrow(data))

evaluation_data <- data[-indices,]

training_data <- data[indices,]

model <- get_model()
model %>% train(training_data)
validation_score <- model %>% evaluate(validation_data)

model <- get_model()

model %>% train(data)
test_score <- model %>% evaluate(test_data)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

93

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Trains a model on the training data, and evaluates it on the validation data

Once you’ve tuned your hyperparameters, it’s common to train your final model
from scratch on all non-test data available.

This is the simplest evaluation protocol, and it suffers from one flaw: if little data is
available, then your validation and test sets may contain too few samples to be
statistically representative of the data at hand. This is easy to recognize: if different
random shuffling rounds of the data before splitting end up yielding very different
neasures of model performance, then you’re having this issue. K-fold validation and
iterated K-fold validation are two ways to address this, as discussed next.

With this approach, you split your data into partitions of equal size. For each partition K
, train a model on the remaining – 1 partitions, and evaluate it on partition . Youri K i

final score is then the averages of the scores obtained. This method is helpful when theK
performance of your model shows significant variance based on your train-test split. Like
hold-out validation, this method doesn’t exempt you from using a distinct validation set
for model calibration.

Schematically, K-fold cross-validation looks like this figure 4.2. Here’s a simple R
pseudo-code implementation.

Figure 4.2 Three-fold validation

Listing 4.2 K-fold cross-validation

K-FOLD VALIDATION

k <- 4
indices <- sample(1:nrow(data))
folds <- cut(indices, breaks = k, labels = FALSE)

validation_scores <- c()
for (i in 1:k) {

 validation_indices <- which(folds == i, arr.ind = TRUE)

 validation_data <- data[validation_indices,]

 training_data <- data[-validation_indices,]

 model <- get_model()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

94

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Selects the validation-data partition

Uses the remainder of the data as training data.

Creates a brand-new instance of the model (untrained)

Validation score: average of the validation scores of the k folds

Trains the final model on all non-test data available

This one is for situations in which you have relatively little data available and you need
to evaluate your model as precisely as possible. We’ve found it to be extremely helpful in
Kaggle competitions. It consists of applying K-fold validation multiple times, shuffling
the data every time before splitting it ways. The final score is the average of the scoresK
obtained at each run of K-fold validation. Note that you end up training and evaluating P
* models (where is the number of iterations you use), which can very expensive.K P

Keep an eye out for the following when you’re choosing an evaluation protocol:

Data representativeness—You want both your training set and test set to be
representative of the data at hand. For instance, if you’re trying to classify images of
digits, and you’re starting from an array of samples where the samples are ordered by
their class, taking the first 80% of the array as your training set and the remaining 20% as
your test will result in your training set containing only classes 0–7, whereas your test set
contains only classes 8–9. This seems like a ridiculous mistake, but it’s surprisingly
common. For this reason, you usually should your data before splittingrandomly shuffle
it into training and test sets.
The arrow of time—If you’re trying to predict the future given the past (for example, the
weather tomorrow, stock movements, and so on), you should randomly shuffle yournot
data before splitting it, because doing so will create a : your model willtemporal leak
effectively be trained on data from the future. In such situations, you should always make
sure all data in your test set is to the data in the training set.posterior
Redundancy in your data—If some data points in your data appear twice (fairly common
with real-world data), then shuffling the data and splitting it into a training set and a
validation set will result in redundancy between the training and validation sets. In effect,
you’ll be testing on part of your training data, which is the worst thing you can do! Make
sure your training set and validation set are disjoint.

 model %>% train(training_data)
 results <- model %>% evaluate(validation_data)
 validation_scores <- c(validation_scores, results$accuracy)
}

validation_score <- mean(validation_scores)

model <- get_model()

model %>% train(data)
results <- model %>% evaluate(test_data)

ITERATED K-FOLD VALIDATION WITH SHUFFLING

4.2.2 Things to keep in mind

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

95

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

In addition to model evaluation, an important question we must tackle before we dive
deeper into model development is the following: how do you prepare the input data and
targets before feeding them into a neural network? Many data-preprocessing and
feature-engineering techniques are domain specific (for example, specific to text data or
image data); we’ll cover those in the following chapters as we encounter them in
practical examples. For now, we’ll review the basics that are common to all data
domains.

Data preprocessing aims at making the raw data at hand more amenable to neural
networks. This includes vectorization, normalization, handling missing values, and
feature extraction.

All inputs and targets in a neural network must be tensors of floating-point data (or, in
specific cases, tensors of integers). Whatever data you need to process—sound, images,
text—you must first turn into tensors, a step called . For instance, in thedata vectorization
two previous text-classification examples, we started from text represented as lists of
integers (standing for sequences of words), and we used to turn themone-hot encoding
into a tensor of floating point data. In the examples of classifying digits and predicting
house prices, the data already came in vectorized form, so you were able to skip this step.

In the digit-classification example, you started from image data encoded as integers in the
0–255 range, encoding grayscale values. Before you fed this data into your network, you
had to divide by 255 so you’d end up with floating-point values in the 0–1 range.
Similarly, when predicting house prices, you started from features that took a variety of
ranges—some features had small floating-point values, others had fairly large integer
values. Before you fed this data into your network, you had to normalize each feature
independently so that it had a standard deviation of 1 and a mean of 0.

In general, it isn’t safe to feed into a neural network data that takes relatively large
values (for example, multidigit integers, which are much larger than the initial values
taken by the weights of a network) or data that is heterogeneous (for example, data where
one feature is in the range 0–1 and another is in the range 100–200). Doing so can trigger
large gradient updates that will prevent the network from converging. To make learning
easier for your network, your data should have the following characteristics:

Take small values—Typically, most values should be in the 0–1 range.
Be homogenous—That is, all features should take values in roughly the same range.

Additionally, the following stricter normalization practice is common and can help,
although it isn’t always necessary (for example, you didn’t do this in the
digit-classification example):

4.3 Data preprocessing, feature engineering, and feature learning

4.3.1 Data preprocessing for neural networks

VECTORIZATION

VALUE NORMALIZATION

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

96

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Normalize each feature independently to have a mean of 0.
Normalize each feature independently to have a standard deviation of 1.

This is easy to do with R using the function:scale()

Listing 4.3 Feature-wise normalization of 2D arrays

Assuming x is a 2D matrix of shape (samples, features)

Typically you’ll be normalizing features in both training and test data. In this case
you’ll want to compute the mean and standard deviation on the training data only and
then apply it to both the training and test data. This is what we did in chapter 3 when
normalizing features in the Boston housing dataset:

Listing 4.4 Normalizing training and test data

Calculate the mean and sd on the training data

Scale training and test data using the mean and sd from the training data

The and R packages both include many more high-level functions forcaret recipes
data preprocessing and normalization.

You may sometimes have missing values in your data. For instance, in the house-price
example, the first feature (the column of index 0 in the data) was the per capita crime
rate. What if this feature wasn’t available for all samples? You’d then have missing
values in the training or test data.

In general, with neural networks, it’s safe to input missing values as 0, with the
condition that 0 isn’t already a meaningful value. The network will learn from exposure
to the data that the value 0 means and will start ignoring the value.missing data

Note that if you’re expecting missing values in the test data, but the network was
trained on data without any missing values, the network won’t have learned to ignore
missing values! In this situation, you should artificially generate training samples with
missing entries: copy some training samples several times, and drop some of the features
that you expect are likely to be missing in the test data.

x <- scale(x)

mean <- apply(train_data, 2, mean)
std <- apply(train_data, 2, sd)

train_data <- scale(train_data, center = mean, scale = std)
test_data <- scale(test_data, center = mean, scale = std)

HANDLING MISSING VALUES

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

97

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Feature engineering is the process of using your own knowledge about the data and
about the machine-learning algorithm at hand (in this case, a neural network) to make the
algorithm work better by applying hard-coded (nonlearned) transformations to the data
before it goes into the model. In many cases, it isn’t reasonable to expect a
machine-learning model to be able to learn from completely arbitrary data. The data
needs to be presented to the model in a way that will make the model’s job easier.

Let’s look at an intuitive example. Suppose you’re trying to develop a model that can
take as input an image of a clock and can output the time of day (see figure 4.3).

Figure 4.3 Feature engineering for reading the time on a clock

If you choose to use the raw pixels of the image as input data, then you have a
difficult machine-learning problem on your hands. You’ll need a convolutional neural
network to solve it, and you’ll have to expend quite a bit of computational resources to
train the network.

But if you already understand the problem at a high level (you understand how
humans read time on a clock face), then you can come up with much better input features
for a machine-learning algorithm: for instance, it’s easy to write a short R script to follow
the black pixels of the clock hands and output the (x, y) coordinates of the tip of each
hand. Then a simple machine-learning algorithm can learn to associate these coordinates
with the appropriate time of the day.

You can go even further: do a coordinate change, and express the (x, y) coordinates
as polar coordinates with regard to the center of the image. Your input will become the
angle of each clock hand. At this point, your features are making the problem sotheta

easy that no machine learning is required; a simple rounding operation and dictionary
lookup are enough to recover the approximate time of day.

That’s the essence of feature engineering: making a problem easier by expressing it in
a simpler way. It usually requires understanding the problem in depth.

4.3.2 Feature engineering

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

98

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Before deep learning, feature engineering used to be critical, because classical
shallow algorithms didn’t have hypothesis spaces rich enough to learn useful features by
themselves. The way you presented the data to the algorithm was essential to its success.
For instance, before convolutional neural networks became successful on the MNIST
digit-classification problem, solutions were typically based on hard-coded features such
as the number of loops in a digit image, the height of each digit in an image, a histogram
of pixel values, and so on.

Fortunately, modern deep learning removes the need for most feature engineering,
because neural networks are capable of automatically extracting useful features from raw
data. Does this mean you don’t have to worry about feature engineering as long as you’re
using deep neural networks? No, for two reasons:

Good features still allow you to solve problems more elegantly while using fewer
resources. For instance, it would be ridiculous to solve the problem of reading a clock
face using a convolutional neural network.
Good features let you solve a problem with much less data. The ability of deep-learning
models to learn features on their own relies on having lots of training data available; if
you have only a few samples, then the informativeness of their features becomes critical.

In all the examples in the previous chapter—predicting movie reviews, topic
classification, and house-price regression—the performance of the model on the held-out
validation data always peaked after a few epochs and then began to degrade: that is, the
model quickly started to to the training data. Overfitting happens in everyoverfit
machine-learning problem. Learning how to deal with overfitting is essential to mastering
machine learning.

The fundamental issue in machine learning is the tension between optimization and
generalization. refers to the process of adjusting a model to get the bestOptimization
performance possible on the training data (the in), whereas learning machine learning

 refers to how well the trained model performs on data it has never seengeneralization
before. The goal of the game is to get good generalization, of course, but you don’t
control generalization; you can only adjust the model based on its training data.

At the beginning of training, optimization and generalization are correlated: the lower
the loss on training data, the lower the loss on test data. While this is happening, your
model is said to be : there is still progress to be made; the network hasn’t yetunder-fit
modeled all relevant patterns in the training data. But after a certain number of iterations
on the training data, generalization stops improving, and validation metrics stall and then
begin to degrade: the model is starting to over-fit. That is, it’s beginning to learn patterns
that are specific to the training data but that are misleading or irrelevant when it comes to
new data.

To prevent a model from learning misleading or irrelevant patterns found in the
training data, . A model trained on more datathe best solution is to get more training data
will naturally generalize better. When that isn’t possible, the next-best solution is to

4.4 Overfitting and underfitting

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

99

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

modulate the quantity of information that your model is allowed to store or to add
constraints on what information it’s allowed to store. If a network can only afford to
memorize a small number of patterns, the optimization process will force it to focus on
the most prominent patterns, which have a better chance of generalizing well.

The processing of fighting overfitting this way is called . Let’s reviewregularization
some of the most common regularization techniques and apply them in practice to
improve the movie-classification model from section 3.4.

The simplest way to prevent overfitting is to reduce the size of the model: that is, the
number of learnable parameters in the model (which is determined by the number of
layers and the number of units per layer). In deep learning, the number of learnable
parameters in a model is often referred to as the model’s . Intuitively, a modelcapacity
with more parameters has more and therefore can easily learn amemorization capacity
perfect dictionary-like mapping between training samples and their targets—a mapping
without any generalization power. For instance, a model with 500,000 binary parameters
could easily be made to learn the class of every digit in the MNIST training set: we’d
need only 10 binary parameters for each of the 50,000 digits. But such a model would be
useless for classifying new digit samples. Always keep this in mind: deep-learning
models tend to be good at fitting to the training data, but the real challenge is
generalization, not fitting.

On the other hand, if the network has limited memorization resources, it won’t be
able to learn this mapping as easily; thus, in order to minimize its loss, it will have to
resort to learning compressed representations that have predictive power regarding the
targets—precisely the type of representations we’re interested in. At the same time, keep
in mind that you should use models that have enough parameters that they don’t underfit:
your model shouldn’t be starved for memorization resources. There is a compromise to
be found between and .too much capacity not enough capacity

Unfortunately, there is no magical formula to determine the right number of layers or
the right size for each layer. You must evaluate an array of different architectures (on
your validation set, not on your test set, of course) in order to find the correct model size
for your data. The general workflow to find an appropriate model size is to start with
relatively few layers and parameters, and increase the size of the layers or add new layers
until you see diminishing returns with regard to validation loss.

Let’s try this on the movie-review classification network. The original network is
shown next.

Listing 4.5 Original model

4.4.1 Reducing the network’s size

library(keras)

model <- keras_model_sequential() %>%
 layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>%
 layer_dense(units = 16, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

100

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Now let’s try to replace it with this smaller network.

Listing 4.6 Version of the model with lower capacity

Figure 4.4 shows a comparison of the validation losses of the original network and
the smaller network (remember, a lower validation loss signals a better model).

Figure 4.4 Effect of model capacity on validation loss: trying a smaller model

As you can see, the smaller network starts overfitting later than the reference network
(after six epochs rather than four), and its performance degrades much more slowly once
it starts overfitting.

Now, for kicks, let’s add to this benchmark a network that has much more
capacity—far more than the problem warrants.

Listing 4.7 Version of the model with higher capacity

Figure 4.5 shows how the bigger network fares compared to the reference network.

model <- keras_model_sequential() %>%
 layer_dense(units = 4, activation = "relu", input_shape = c(10000)) %>%
 layer_dense(units = 4, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")

model <- keras_model_sequential() %>%
 layer_dense(units = 512, activation = "relu", input_shape = c(10000)) %>%
 layer_dense(units = 512, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

101

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 4.5 Effect of model capacity on validation loss: trying a bigger model

The bigger network starts overfitting almost immediately, after just one epoch, and it
overfits much more severely. Its validation loss is also noisier.

Meanwhile, figure 4.6 shows the training losses for the two networks. As you can see,
the bigger network gets its training loss near zero very quickly. The more capacity the
network has, the more quickly it can model the training data (resulting in a low training
loss), but the more susceptible it is to overfitting (resulting in a large difference between
the training and validation loss).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

102

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 4.6 Effect of model capacity on training loss: trying a bigger model

You may be familiar with the principle of : given two explanations forOccam’s razor
something, the explanation most likely to be correct is the simplest one—the one that
makes fewer assumptions. This idea also applies to the models learned by neural
networks: given some training data and a network architecture, multiple sets of weight
values (multiple) could explain the data. Simpler models are less likely to overfitmodels
than complex ones.

A in this context is a model where the distribution of parameter valuessimple model
has less entropy (or a model with fewer parameters, as you saw in the previous section).
Thus a common way to mitigate overfitting is to put constraints on the complexity of a
network by forcing its weights to take only small values, which makes the distribution of
weight values more . This is called , and it’s done by addingregular weight regularization
to the loss function of the network a associated with having large weights. This costcost
comes in two flavors:

L1 regularization—The cost added is proportional to the absolute value of the weight
 (the of the weights).coefficients L1 norm

L2 regularization—The cost added is proportional to the square of the value of the
 (the of the weights). L2 regularization is also called weight coefficients L2 norm weight

 in the context of neural networks. Don’t let the different name confuse you: weightdecay
decay is mathematically the same as L2 regularization.

In Keras, weight regularization is added by passing toweight regularizer instances
layers as keyword arguments. Let’s add L2 weight regularization to the movie-review

4.4.2 Adding weight regularization

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

103

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

classification network.

Listing 4.8 Adding L2 weight regularization to the model

regularizer_l2(0.001) means every coefficient in the weight matrix of the layer
will add to the total loss of the network. Note0.001 * weight_coefficient_value

that because this penalty is , the loss for this network will beonly added at training time
much higher at training than at test time.

Figure 4.7 shows the impact of the L2 regularization penalty. As you can see, the
model with L2 regularization has become much more resistant to overfitting than the
reference model, even though both models have the same number of parameters.

Figure 4.7 Effect of L2 weight regularization on validation loss

As an alternative to L2 regularization, you can use one of the following Keras weight
regularizers.

Listing 4.9 Different weight regularizers available in Keras

model <- keras_model_sequential() %>%
 layer_dense(units = 16, kernel_regularizer = regularizer_l2(0.001),
 activation = "relu", input_shape = c(10000)) %>%
 layer_dense(units = 16, kernel_regularizer = regularizer_l2(0.001),
 activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")

regularizer_l1(0.001)
regularizer_l1_l2(l1 = 0.001, l2 = 0.001)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

104

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Dropout is one of the most effective and most commonly used regularization techniques
for neural networks, developed by Geoff Hinton and his students at the University of
Toronto. Dropout, applied to a layer, consists of randomly (setting to zero)dropping out
a number of output features of the layer during training. Let’s say a given layer would
normally return a vector [0.2, 0.5, 1.3, 0.8, 1.1] for a given input sample during training.
After applying dropout, this vector will have a few zero entries distributed at random: for
example, [0, 0.5, 1.3, 0, 1.1]. The is the fraction of the features that aredropout rate
zeroed out; it’s usually set between 0.2 and 0.5. At test time, no units are dropped out;
instead, the layer’s output values are scaled down by a factor equal to the dropout rate, to
balance for the fact that more units are active than at training time.

Consider a matrix containing the output of a layer, , of shape layer_output

. At training time, we zero out at random a fraction of the(batch_size, features)

values in the matrix:

At test time, we scale down the output by the dropout rate. Here we scale by 0.5
(because we previously dropped half the units):

Note that this process can be implemented by doing both operations at training time
and leaving the output unchanged at test time, which is often the way it’s implemented in
practice (see figure 4.8):

At training time

Note that we’re scaling up rather scaling down in this case.

Figure 4.8 Dropout applied to an activation matrix at training time, with rescaling
happening during training. At test time, the activation matrix is unchanged.

4.4.3 Adding dropout

layer_output <- layer_output * sample(0:1, length(layer_output),
 replace = TRUE)

layer_output <- layer_output * 0.5

layer_output <- layer_output * sample(0:1, length(layer_output),
 replace = TRUE)

layer_output <- layer_output / 0.5

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

105

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

This technique may seem strange and arbitrary. Why would this help reduce
overfitting? Hinton says he was inspired by, among other things, a fraud-prevention
mechanism used by banks. In his own words, "I went to my bank. The tellers kept
changing and I asked one of them why. He said he didn’t know but they got moved
around a lot. I figured it must be because it would require cooperation between
employees to successfully defraud the bank. This made me realize that randomly
removing a different subset of neurons on each example would prevent conspiracies and
thus reduce overfitting." The core idea is that introducing noise in the output values of a7

layer can break up happenstance patterns that aren’t significant (what Hinton refers to as
), which the network will start memorizing if no noise is present.conspiracies

Footnote 7mSee the Reddit thread "AMA: We are the Google Brain team. We’d love to answer your
questions about machine learning," .mng.bz/XrsS

In Keras, you can introduce dropout in a network via , which islayer_dropout

applied to the output of layer right before it:

Let’s add two dropout layers in the IMDB network to see how well they do at
reducing overfitting.

Listing 4.10 Adding dropout to the IMDB network

Figure 4.9 shows a plot of the results. Again, this is a clear improvement over the
reference network.

layer_dropout(rate = 0.5)

model <- keras_model_sequential() %>%
 layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>%
 layer_dropout(rate = 0.5) %>%
 layer_dense(units = 16, activation = "relu") %>%
 layer_dropout(rate = 0.5) %>%
 layer_dense(units = 1, activation = "sigmoid")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

106

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://mng.bz/XrsS
https://forums.manning.com/forums/deep-learning-with-r

Figure 4.9 Effect of dropout on validation loss

To recap, these are the most common ways to prevent overfitting in neural networks:

Get more training data.
Reduce the capacity of the network.
Add weight regularization.
Add dropout.

In this section, we’ll present a universal blueprint that you can use to attack and solve any
machine-learning problem. The discussion ties together the concepts you’ve learned
about in this chapter: problem definition, evaluation, feature engineering, and fighting
overfitting.

First, you must define the problem at hand:

What will your input data be? What are you trying to predict? You can only learn to
predict something if you have available training data: for example, you can only learn to
classify the sentiment of movie reviews if you have both movie reviews and sentiment
annotations available. As such, data availability is usually the limiting factor at this stage
(unless you have the means to pay people to collect data for you).
What type of problem are you facing? Is it binary classification? Multiclass
classification? Scalar regression? Vector regression? Multiclass, multilabel
classification? Something else, like clustering, generation, or reinforcement learning?
Identifying the problem type will guide your choice of model architecture, loss function,
and so on.

4.5 The universal workflow of machine learning

4.5.1 Defining the problem and assembling a dataset

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

107

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

You can’t move to the next stage until you know what your inputs and outputs are,
and what data you’ll be using. Be aware of the hypotheses you’re making at this stage:

You’re hypothesizing that your outputs can be predicted given your inputs.
You’re hypothesizing that your available data is sufficiently informative to learn the
relationship between inputs and outputs.

Until you have a working model, these are merely hypotheses, waiting to be validated
or invalidated. Not all problems can be solved; just because you’ve assembled examples
of inputs X and targets Y doesn’t mean X contains enough information to predict Y. For
instance, if you’re trying to predict the movements of a stock on the stock market given
its recent price history, you’re unlikely to succeed, because price history doesn’t contain
much predictive information.

One class of unsolvable problems you should be aware of is .nonstationary problems
Suppose you’re trying to build a recommendation engine for clothing, you’re training it
on one month of data (August), and you want to start generating recommendations in the
winter. One big issue is that the kinds of clothes people buy change from season to
season: clothes buying is a nonstationary phenomenon over the scale of a few months.
What you’re trying to model changes over time. In this case, the right move is to
constantly retrain your model on data from the recent past, or gather data at a timescale
where the problem is stationary. For a cyclical problem like clothes buying, a few years'
worth of data will suffice to capture seasonal variation—but remember to make the time
of the year an input of your model!

Keep it in mind that machine learning can only be used to memorize patterns that are
present in your training data. You can only recognize what you’ve seen before. Using
machine learning trained on past data to predict the future is making the assumption that
the future will behave like the past. That often isn’t the case.

To control something, you need to be able to observe it. To achieve success, you must
define what you mean by success: accuracy? precision-recall? customer retention rate?
Your metric for success will guide the choice of a loss function: that is, what your model
will optimize. It should directly align with your higher-level goals, such as the success of
your business.

For balanced-classification problems, where every class is equally likely, accuracy
and (ROC AUC) are commonarea under the receiver operating characteristic curve
metrics. For class-imbalanced problems, you can use precision-recall. For ranking
problems or multilabel classification, you can use mean average precision. And it isn’t
uncommon to have to define your own custom metric by which to measure success. To
get a sense of the diversity of machine-learning success metrics and how they relate to
different problem domains, it’s helpful to browse the data science competitions on
Kaggle (); they showcase a wide range of problems and evaluation metrics.kaggle.com

4.5.2 Choosing a measure of success

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

108

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://kaggle.com
https://forums.manning.com/forums/deep-learning-with-r

Once you know what you’re aiming for, you must establish how you’ll measure your
current progress. We’ve previously reviewed three common evaluation protocols:

Maintaining a hold-out validation set—The way to go when you have plenty of data
Doing K-fold cross-validation—The right choice when you have too few samples for
hold-out validation to be reliable
Doing iterated K-fold validation—For performing highly accurate model evaluation
when little data is available

Just pick one of these. In most cases, the first will work well enough.

Once you know what you’re training on, what you’re optimizing for, and how to evaluate
your approach, you’re almost ready to begin training models. But first, you should format
your data in a way that can be fed into a machine-learning model—here we’ll assume a
deep neural network:

As you saw previously, your data should be formatted as tensors.
The values taken by these tensors should usually be scaled to small values: for example,
in the [-1, 1] range or [0, 1] range.
If different features take values in different ranges (heterogenous data), then the data
should be normalized.
You may want to do some feature engineering, especially for small data problems.

Once your tensors of input data and target data are ready, you can begin to train
models.

Your goal at this stage is to achieve : that is, to develop a small modelstatistical power
that is capable of beating a dumb baseline. In the MNIST digit-classification example,
anything that achieves an accuracy greater than 0.1 can be said to have statistical power;
in the IMDB example, it’s anything with an accuracy greater than 0.5.

Note that it’s not always possible to achieve statistical power. If you can’t beat a
random baseline after trying multiple reasonable architectures, it may be that the answer
to the question you’re asking isn’t present in the input data. Remember that you’re
making two hypotheses:

You’re hypothesizing that your outputs can be predicted given your inputs.
You’re hypothesizing that the available data is sufficiently informative to learn the
relationship between inputs and outputs.

It may well be that these hypotheses are false, in which case you must go back to the
drawing board.

Assuming that things go well, you need to make three key choices to build your first
working model:

4.5.3 Deciding on an evaluation protocol

4.5.4 Preparing your data

4.5.5 Developing a model that does better than a baseline

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

109

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

1.
2.
3.

Last-layer activation—This establishes useful constraints on the network’s output. For
instance, the IMDB classification example used in the last layer; the regressionsigmoid
example didn’t use any last-layer activation; and so on.
Loss function—This should match the type of problem you’re trying to solve. For
instance, the IMDB example used , the regression example used binary_crossentropy

, and so on.mse

Optimization configuration—What optimizer will you use? What will its learning rate
be? In most cases, it’s safe to go with and its default learning rate.rmsprop

Regarding the choice of a loss function, note that it isn’t always possible to directly
optimize for the metric that measures success on a problem. Sometimes there is no easy
way to turn a metric into a loss function; loss functions, after all, need to be computable
given only a mini-batch of data (ideally, a loss function should be computable for as little
as a single data point) and must be differentiable (otherwise you can’t use
backpropagation to train your network). For instance, the widely used classification
metric ROC AUC can’t be directly optimized. Hence, in classification tasks, it is
common to optimize for a proxy metric of ROC AUC, such as cross-entropy. In general,
you can hope that the lower the cross-entropy gets, the higher the ROC-AUC will be.

Table 4.1 can help you choose a last-layer activation and a loss function for a few
common problem types.

Once you’ve obtained a model that has statistical power, the question becomes, is your
model powerful enough? Does it have enough layers and parameters to properly model
the problem at hand? For instance, a network with a single hidden layer with two units
would have statistical power on MNIST but wouldn’t be sufficient to solve the problem
well. Remember that the universal tension in machine learning is between optimization
and generalization; the ideal model is one that stands right at the border between
under-fitting and over-fitting; between under-capacity and over-capacity. To figure out
where this border lies, first you must cross it.

To figure out how big a model you’ll need, you must develop a model that overfits.
This is fairly easy:

Add layers.
Make the layers bigger.
Train for more epochs.

Table 4.1 Choosing the right last-layer activation and loss function for yourm
model
Problem type Last-layer activation Loss function
Binary classification sigmoid binary_crossentropy

Multiclass, single-label classification softmax categorical_crossentropy

Multiclass, multilabel classification sigmoid binary_crossentropy

Regression to arbitrary values None mse

Regression to values between 0 and 1 sigmoid mse or binary_crossentropy

4.5.6 Scaling up: developing a model that overfits

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

110

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Always monitor the training loss and validation loss, as well as the training and
validation values for any metrics you care about. When you see that the model’s
performance on the validation data begins to degrade, you’ve achieved overfitting.

The next stage is to start regularizing and tuning the model, to get as close as possible
to the ideal model that neither underfits nor overfits.

This step will take the most time: you’ll repeatedly modify your model, train it, evaluate
on your validation data (not the test data, at this point), modify it again, and repeat, until
the model is as good as it can get. These are some things you should try:

Add dropout.
Try different architectures: add or remove layers.
Add L1 and/or L2 regularization.
Try different hyperparameters (such as the number of units per layer or the learning rate
of the optimizer) to find the optimal configuration.
Optionally, iterate on feature engineering: add new features, or remove features that don’t
seem to be informative.

Be mindful of the following: every time you use feedback from your validation
process to tune your model, you leak information about the validation process into the
model. Repeated just a few times, this is innocuous; but done systematically over many
iterations, it will eventually cause your model to overfit to the validation process (even
though no model is directly trained on any of the validation data). This makes the
evaluation process less reliable, so keep it in mind.

Once you’ve developed a good enough model configuration, you can train your final
production model on all the available data (training and validation) and evaluate it one
last time on the test set. If it turns out that performance on the test set is significantly
worse than the performance measured on the validation data, this may mean either that
your validation procedure wasn’t reliable after all, or that you started overfitting to the
validation data while tuning the parameters of the model. In this case, you may want to
switch to a more reliable evaluation protocol (such as iterated K-fold validation).

Define the problem at hand and the data on which you’ll be training. Collect this data, or
annotate it with labels if need be.
Choose how you’ll measure success on your problem. Which metrics will you monitor on
your validation data?
Determine your evaluation protocol: hold-out validation? K-fold validation? Which
portion of the data should you use for validation?
Develop a first model that does better than a basic baseline: a model with statistical
power.
Develop a model that overfits.
Regularize your model and tune its hyperparameters, based on performance on the
validation data. A lot of machine-learning research tends to focus only on this step—but
keep the big picture in mind.

4.6 Summary

4.5.7 Regularizing your model and tuning your hyperparameters

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

111

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

5
This chapter covers

This chapter introduces convolutional neural networks, also known as , a type ofconvnets
deep-learning model almost universally used in computer vision applications. You’ll
learn to apply convnets to image-classification problems—in particular those involving
small training datasets, which are the most common use case if you aren’t a large tech
company.

We’re about to dive into the theory of what convnets are and why they have been so
successful at computer vision tasks. But first, let’s take a practical look at a simple
convnet example. It uses a convnet to classify MNIST digits, a task we performed in
chapter 2 using a densely connected network (our test accuracy then was 97.8%). Even
though the convnet will be basic, its accuracy will blow out of the water that of the
densely connected model from chapter 2.

The following lines of code show you what a basic convnet looks like. It’s a stack of
 and layers. You’ll see in a minute exactlylayer_conv_2d layer_max_pooling_2d

what they do.

Listing 5.1 Instantiating a small convnet

Deep learning for computer vision

Understanding convolutional neural networks (convnets)
Using data augmentation to mitigate overfitting
Using a pretrained convnet to do feature extraction
Fine-tuning a pretrained convnet
Visualizing what convnets learn and how they make classification
decisions

5.1 Introduction to convnets

library(keras)

model <- keras_model_sequential() %>%
 layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu",
 input_shape = c(28, 28, 1)) %>%

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

112

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Importantly, a convnet takes as input tensors of shape (image_height,

 (not including the batch dimension). In this case,image_width, image_channels)

we’ll configure the convnet to process inputs of size , which is the format(28, 28, 1)

of MNIST images. We do this by passing the argument input_shape = c(28, 28, 1)
to the first layer.

Let’s display the architecture of the convnet so far:

You can see that the output of every and islayer_conv_2d layer_max_pooling_2d

a 3D tensor of shape . The width and height dimensions(height, width, channels)

tend to shrink as you go deeper in the network. The number of channels is controlled by
the first argument passed to the (32 or 64).layer_conv_2d

The next step is to feed the last output tensor (of shape) into a densely(3, 3, 64)

connected classifier network like those you’re already familiar with: a stack of dense
layers. These classifiers process vectors, which are 1D, whereas the current output is a
3D tensor. First we have to flatten the 3D outputs to 1D, and then add a few dense layers
on top.

Listing 5.2 Adding a classifier on top of the convnet

We’ll do 10-way classification, using a final layer with 10 outputs and a softmax
activation. Here’s what the network looks like now:

 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>%
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu")

> model

__
Layer (type) Output Shape Param #
==
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
__
maxpooling2d_1 (MaxPooling2D) (None, 13, 13, 32) 0
__
conv2d_2 (Conv2D) (None, 11, 11, 64) 18496
__
maxpooling2d_2 (MaxPooling2D) (None, 5, 5, 64) 0
__
conv2d_3 (Conv2D) (None, 3, 3, 64) 36928
==
Total params: 55,744
Trainable params: 55,744
Non-trainable params: 0

model <- model %>%
 layer_flatten() %>%
 layer_dense(units = 64, activation = "relu") %>%
 layer_dense(units = 10, activation = "softmax")

> model

Layer (type) Output Shape Param #

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

113

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

As you can see, the outputs are flattened into vectors of shape (3, 3, 64) (576)

before going through two dense layers.
Now, let’s train the convnet on the MNIST digits. We’ll reuse a lot of the code from

the MNIST example in chapter 2.

Listing 5.3 Training the convnet on MNIST images

Let’s evaluate the model on the test data:

Whereas the densely connected network from chapter 2 had a test accuracy of 97.8%,
the basic convnet has a test accuracy of 99.3%: we decreased the error rate by 68%

==
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
__
maxpooling2d_1 (MaxPooling2D) (None, 13, 13, 32) 0
__
conv2d_2 (Conv2D) (None, 11, 11, 64) 18496
__
maxpooling2d_2 (MaxPooling2D) (None, 5, 5, 64) 0
__
conv2d_3 (Conv2D) (None, 3, 3, 64) 36928
__
flatten_1 (Flatten) (None, 576) 0
__
dense_1 (Dense) (None, 64) 36928
__
dense_2 (Dense) (None, 10) 650
==
Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0

mnist <- dataset_mnist()
c(c(train_images, train_labels), c(test_images, test_labels)) %<-% mnist

train_images <- array_reshape(train_images, c(60000, 28, 28, 1))
train_images <- train_images / 255

test_images <- array_reshape(test_images, c(10000, 28, 28, 1))
test_images <- test_images / 255

train_labels <- to_categorical(train_labels)
test_labels <- to_categorical(test_labels)

model %>% compile(
 optimizer = "rmsprop",
 loss = "categorical_crossentropy",
 metrics = c("accuracy")
)

model %>% fit(
 train_images, train_labels,
 epochs = 5, batch_size=64
)

> results <- model %>% evaluate(test_images, test_labels)
> results
$loss
[1] 0.02563557

$acc
[1] 0.993

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

114

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

(relative). Not bad!
But why does this simple convnet work so well, compared to a densely connected

model? To answer this, let’s dive into what and layer_conv_2d

 actually do.layer_max_pooling_2d

The fundamental difference between a densely connected layer and a convolution layer is
this: dense layers learn global patterns in their input feature space (for example, for a
MNIST digit, patterns involving all pixels), whereas convolution layers learn local
patterns (see figure 5.1): that is, in the case of images, patterns found in small 2D
windows of the inputs. In the previous example, these windows were all 3 × 3.

Figure 5.1 Images can be broken into local patterns such as edges, textures, and so on.

This key characteristic gives convnets two interesting properties:

The patterns they learn are translation-invariant. After learning a certain pattern in the
lower-right corner of a picture, a convnet can recognize it anywhere: for example, in the
upper-left corner. A densely connected network would have to learn the pattern anew if it
appeared at a new location. This makes convnets data-efficient when processing images
(because): they need fewerthe visual world is fundamentally translation invariant
training samples to learn representations that have generalization power.
They can learn spatial hierarchies of patterns (see figure 5.2). A first convolution layer
will learn small local patterns such as edges, a second convolution layer will learn larger
patterns made of the features of the first layers, and so on. This allows convnets to
efficiently learn increasingly complex and abstract visual concepts (because the visual

).world is fundamentally spatially hierarchical

5.1.1 The convolution operation

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

115

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 5.2 The visual world forms a spatial hierarchy of visual modules: hyperlocal edges
combine into local objects such as eyes or ears, which combine into high-level concepts
such as "cat."

Convolutions operate over 3D tensors, called , with two spatial axes (feature maps
 and) as well as a axis (also called the axis). For an RGBheight width depth channels

image, the dimension of the depth axis is 3, because the image has 3 color channels: red,
green, and blue. For a black-and-white picture, like the MNIST digits, the depth is 1
(levels of gray). The convolution operation extracts patches from its input feature map
and applies the same transformation to all of these patches, producing an output feature

. This output feature map is still a 3D tensor: it has a width and a height. Its depthmap
can be arbitrary, because the output depth is a parameter of the layer, and the different
channels in that depth axis no longer stand for specific colors as in RGB input; rather,
they stand for . Filters encode specific aspects of the input data: at a high level, afilters
single filter could encode the concept "presence of a face in the input," for instance.

In the MNIST example, the first convolution layer takes a feature map of size (28,
 and outputs a feature map of size : it computes 32 filters over its28, 1) (26, 26, 32)

input. Each of these 32 output channels contains a 26 × 26 grid of values, which is a
 of the filter over the input, indicating the response of that filter pattern atresponse map

different locations in the input (see figure 5.3). That is what the term means:feature map
every dimension in the depth axis is a feature (or filter), and the 2D tensor output[:,

 is the 2D spatial of the response of this filter over the input.:, n] map

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

116

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 5.3 The concept of a response map: a 2D map of the presence of a pattern at
different locations in an input

Convolutions are defined by two key parameters:

Size of the patches extracted from the inputs—These are typically 3 × 3 or 5 × 5. In the
example, they were 3 × 3, which is a common choice.
Depth of the output feature map—That is, the number of filters computed by the
convolution. The example started with a depth of 32 and ended with a depth of 64.

In Keras, these parameters are the first arguments passed to the layer:
.layer_conv_2d(output_depth, c(window_height, window_width))

A convolution works by these windows of size 3 × 3 or 5 × 5 over the 3Dsliding
input feature map, stopping at every possible location, and extracting the 3D patch of
surrounding features (shape). Each(window_height, window_width, input_depth)

such 3D patch is then transformed (via a tensor product with the same learned weight
matrix, called the) into a 1D vector of shape . All ofconvolution kernel (output_depth)

these vectors are then spatially reassembled into a 3D output map of shape (height,
. Every spatial location in the output feature map corresponds towidth, output_depth)

the same location in the input feature map (for example, the lower-right corner of the
output contains information about the lower-right corner of the input). For instance, with
3 × 3 windows, the vector comes from the 3D patch output[i, j,] input[i-1:i+1,

. The full process is detailed in figure 5.4.j-1:j+1,]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

117

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 5.4 How convolution works

Note that the output width and height may differ from the input width and height.
They may differ for two reasons:

Border effects, which can be countered by padding the input feature map
The use of , which we’ll define in a secondstrides

Let’s take a deeper look at these notions.

Consider a 5 × 5 feature map (25 tiles total). There are only 9 tiles around which you can
center a 3 × 3 window, forming a 3 × 3 grid (see figure 5.5). Hence the output feature
map will be 3 × 3. It shrinks a little: by exactly two tiles alongside each dimension, in
this case. You can see this border effect in action in the earlier example: you start with 28
× 28 inputs, which become 26 × 26 after the first convolution layer.

UNDERSTANDING BORDER EFFECTS AND PADDING

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

118

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 5.5 Valid locations of 3 × 3 patches in a 5 × 5 input feature map

If you want to get an output feature map with the same spatial dimensions as the
input, you can use . Padding consists of adding an appropriate number of rowspadding
and columns on each side of the input feature map so as to make it possible to fit center
convolution windows around every input tile. For a 3 × 3 window, you’d add one column
on the right, one column on the left, one row at the top, and one row at the bottom. For a
5 × 5 window, you’d add two rows (see figure 5.6).

Figure 5.6 Padding a 5 × 5 input in order to be able to extract 25 3 × 3 patches

In layers, padding is configurable via the argument, whichlayer_conv_2d padding

takes two values: , which means no padding (only valid window locations will"valid"

be used); and , which means "pad in such a way as to have an output with the"same"

same width and height as the input." The argument defaults to .padding "valid"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

119

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

The other factor that can influence output size is the notion of . The description ofstrides
convolution so far has assumed that the center tile of the convolution windows are all
contiguous. But the distance between two successive windows is a parameter of the
convolution, called its , which defaults to 1. It’s possible to have stride strided

: convolutions with a stride higher than one. In figure 5.7, you can see theconvolutions
patches extracted by a 3 x 3 convolution with stride 2 over a 5 × 5 input (without
padding).

Figure 5.7 3 × 3 convolution patches with 2 × 2 strides

Using stride 2 means the width and height of the feature map are downsampled by a
factor of 2 (in addition to any changes induced by border effects). Strided convolutions
are rarely used in practice, although they can come in handy for some types of models;
it’s good to be familiar with the concept.

To downsample feature maps, instead of strides, we tend to use the max-pooing
operation, which you saw in action in the first convnet example. Let’s look at it in more
depth.

In the convnet example, you may have noticed that the size of the feature maps is halved
after every . For instance, before the first layer_max_pooling_2d

, the feature map is 26 × 26, but the max-pooing operationlayer_max_pooling_2d

halves it to 13 × 13. That’s the role of max pooling: to aggressively downsample feature
maps, much like strided convolutions.

Max pooling consists of extracting windows from the input feature maps and
outputting the max value of each channel. It’s conceptually similar to convolution, except
that instead of transforming local patches via a learned linear transformation (the
convolution kernel), they’re transformed via a hard-coded tensor operation. A bigmax

difference from convolution is that max pooling is usually done with 2 × 2 windows and
stride 2, in order to downsample the feature maps by a factor of 2. On the other hand,
convolution is typically done with 3 × 3 windows and no stride (stride 1).

Why downsample feature maps this way? Why not remove the max-pooing layers
and keep fairly large feature maps all the way up? Let’s look at this option. The

UNDERSTANDING CONVOLUTION STRIDES

5.1.2 The max-pooling operation

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

120

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

convolutional base of the model would then look like this:

Here’s a summary of the model:

What’s wrong with this setup? Two things:

It isn’t conducive to learning a spatial hierarchy of features. The 3 × 3 windows in the
third layers will only contain information coming from 7 × 7 windows in the initial input.
The high-level patterns learned by the convnet will still be very small with regard to the
initial input, which may not be enough to learn to classify digits (try recognizing a digit
by only looking at it through windows that are 7 × 7 pixels!). We need the features from
the last convolution layer to contain information about the totality of the input.
The final feature map has 22 * 22 * 64 = 30,976 total coefficients per sample. This is
huge. If you were to flatten it to stick a dense layer of size 512 on top, that layer would
have 15.8 million parameters. This is far too large for such a small model and would
result in intense overfitting.

In short, the reason to use downsampling is to reduce the number of feature-map
coefficients to process, as well as to induce spatial-filter hierarchies by making
successive convolution layers look at increasingly large windows (in terms of the fraction
of the original input they cover).

Note that max pooling isn’t the only way you can achieve such downsampling. As
you already know, you can also use strides in the previous convolution layer. And you
can use average pooling instead of max pooling, where each local input patch is
transformed by taking the average value of each channel over the patch, rather than the
max. But max pooling tends to work better than these alternative solutions. In a nutshell,
the reason is that features tend to encode the spatial presence of some pattern or concept
over the different tiles of the feature map (hence the term), and it’s morefeature map
informative to look at the of different features than at their maximal presence average

. So the most reasonable subsampling strategy is to first produce dense maps ofpresence
features (via unstrided convolutions) and then look at the maximal activation of the
features over small patches, rather than looking at sparser windows of the inputs (via

model_no_max_pool <- keras_model_sequential() %>%
 layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu",
 input_shape = c(28, 28, 1)) %>%
 layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>%
 layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu")

> model_no_max_pool

Layer (type) Output Shape Param #
==
conv2d_4 (Conv2D) (None, 26, 26, 32) 320
__
conv2d_5 (Conv2D) (None, 24, 24, 64) 18496
__
conv2d_6 (Conv2D) (None, 22, 22, 64) 36928
==
Total params: 55,744
Trainable params: 55,744
Non-trainable params: 0

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

121

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

strided convolutions) or averaging input patches, which could cause you to miss or dilute
feature-presence information.

At this point, you should understand the basics of convnets—feature maps,
convolution, and max pooling—and you know how to build a small convnet to solve a
toy problem such as MNIST digits classification. Now let’s move on to more useful,
practical applications.

Having to train an image-classification model using very little data is a common
situation, which you’ll likely encounter in practice if you ever do computer vision in a
professional context. A "few" samples can mean anywhere from a few hundred to a few
tens of thousands of images. As a practical example, we’ll focus on classifying images as
dogs or cats, in a dataset containing 4,000 pictures of cats and dogs (2,000 cats, 2,000
dogs). We’ll use 2,000 pictures for training, 1,000 for validation, and 1,000 for testing.

In this section, we’ll review one basic strategy to tackle this problem: training a new
model from scratch using what little data you have. You’ll start by naively training a
small convnet on the 2,000 training samples, without any regularization, to set a baseline
for what can be achieved. This will get you to a classification accuracy of 71%. At that
point, the main issue will be overfitting. Then we’ll introduce , adata augmentation
powerful technique for mitigating overfitting in computer vision. By using data
augmentation, you’ll improve the network to reach an accuracy of 82%.

In the next section, we’ll review two more essential techniques for applying deep
learning to small datasets: (which will getfeature extraction with a pretrained network
you to an accuracy of 90% to 96%) and (this will getfine-tuning a pretrained network
you to a final accuracy of 97%). Together, these three strategies—training a small model
from scratch, doing feature extraction using a pretrained model, and fine-tuning a
pretrained model—will constitute your future toolbox for tackling the problem of
performing computer vision with small datasets.

You’ll sometimes hear that deep learning only works when lots of data is available. This
is valid in part: one fundamental characteristic of deep learning is that it can find
interesting features in the training data on its own, without any need for manual feature
engineering, and this can only be achieved when lots of training examples are available.
This is especially true for problems where the input samples are very high-dimensional,
like images.

But what constitutes lots of samples is relative—relative to the size and depth of the
network you’re trying to train, for starters. It isn’t possible to train a convnet to solve a
complex problem with just a few tens of samples, but a few hundred can potentially
suffice if the model is small and well regularized and the task is simple. Because
convnets learn local, translation-invariant features, they’re highly data-efficient on
perceptual problems. Training a convnet from scratch on a very small image dataset will

5.2 Training a convnet from scratch on a small dataset

5.2.1 The relevance of deep learning for small-data problems

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

122

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

still yield reasonable results despite a relative lack of data, without the need for any
custom feature engineering. You’ll see this in action in this section.

What’s more, deep-learning models are by nature highly repurposable: you can take,
say, an image-classification or speech-to-text model trained on a large-scale dataset and
reuse it on a significantly different problem with only minor changes. Specifically, in the
case of computer vision, many pretrained models (usually trained on the ImageNet
dataset) are now publicly available for download and can be used to bootstrap powerful
vision models out of very little data. That’s what you’ll do in the next section. Let’s start
by getting your hands on the data.

The Dogs vs. Cats dataset that you’ll use isn’t packaged with Keras. It was made
available by Kaggle as part of a computer-vision competition in late 2013, back when
convnets weren’t mainstream. You can download the original dataset from
www.kaggle.com/c/dogs-vs-cats/data (you’ll need to create a Kaggle account if you don’t
already have one—don’t worry, the process is painless).

The pictures are medium-resolution color JPEGs. Figure 5.8 shows some examples.

Figure 5.8 Samples from the Dogs vs. Cats dataset. Sizes weren’t modified: the samples
are heterogenous in size, appearance, and so on.

Unsurprisingly, the cats-versus-dogs Kaggle competition in 2013 was won by
entrants who used convnets. The best entries achieved up to 95% accuracy. In this
example, you’ll get fairly close to this accuracy (in the next section), even though you’ll
be training your models on less than 10% of the data that was available to the
competitors.

5.2.2 Downloading the data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

123

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://www.kaggle.com/c/dogs-vs-cats/data
https://forums.manning.com/forums/deep-learning-with-r

This dataset contains 25,000 images of dogs and cats (12,500 from each class) and is
543 MB (compressed). After downloading and uncompressing it, you’ll create a new
dataset containing three subsets: a training set with 1,000 samples of each class, a
validation set with 500 samples of each class, and a test set with 500 samples of each
class.

Following is the code to do this.

Listing 5.4 Copying images to train, validation, and test directories

As a sanity check, let’s count how many pictures are in each training split
(train/validation/test):

original_dataset_dir <- "~/Downloads/kaggle_original_data"

base_dir <- "~/Downloads/cats_and_dogs_small"
dir.create(base_dir)

train_dir <- file.path(base_dir, "train")
dir.create(train_dir)
validation_dir <- file.path(base_dir, "validation")
dir.create(validation_dir)
test_dir <- file.path(base_dir, "test")
dir.create(test_dir)

train_cats_dir <- file.path(train_dir, "cats")
dir.create(train_cats_dir)

train_dogs_dir <- file.path(train_dir, "dogs")
dir.create(train_dogs_dir)

validation_cats_dir <- file.path(validation_dir, "cats")
dir.create(validation_cats_dir)

validation_dogs_dir <- file.path(validation_dir, "dogs")
dir.create(validation_dogs_dir)

test_cats_dir <- file.path(test_dir, "cats")
dir.create(test_cats_dir)

test_dogs_dir <- file.path(test_dir, "dogs")
dir.create(test_dogs_dir)

fnames <- paste0("cat.", 1:1000, ".jpg")
file.copy(file.path(original_dataset_dir, fnames),
 file.path(train_cats_dir))

fnames <- paste0("cat.", 1001:1500, ".jpg")
file.copy(file.path(original_dataset_dir, fnames),
 file.path(validation_cats_dir))

fnames <- paste0("cat.", 1501:2000, ".jpg")
file.copy(file.path(original_dataset_dir, fnames),
 file.path(test_cats_dir))

fnames <- paste0("dog.", 1:1000, ".jpg")
file.copy(file.path(original_dataset_dir, fnames),
 file.path(train_dogs_dir))

fnames <- paste0("dog.", 1001:1500, ".jpg")
file.copy(file.path(original_dataset_dir, fnames),
 file.path(validation_dogs_dir))

fnames <- paste0("dog.", 1501:2000, ".jpg")
file.copy(file.path(original_dataset_dir, fnames),
 file.path(test_dogs_dir))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

124

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

So you have indeed 2,000 training images, 1,000 validation images, and 1,000 test
images. Each split contains the same number of samples from each class: this is a
balanced binary-classification problem, which means classification accuracy will be an
appropriate measure of success.

You built a small convnet for MNIST in the previous example, so you should be familiar
with convnets. You’ll reuse the same general structure: the convnet will be a stack of
alternated (with activation) and stages.layer_conv_2d relu layer_max_pooling_2d

But because you’re dealing with bigger images and a more complex problem, you’ll
make your network larger, accordingly: it will have one more + layer_conv_2d

 stage. This serves both to augment the capacity of the networklayer_max_pooling_2d

and to further reduce the size of the feature maps so they aren’t overly large when you
reach the . Here, because you start from inputs of size 150 × 150 (alayer_flatten

somewhat arbitrary choice), you end up with feature maps of size 7 × 7 just before the
.layer_flatten

NOTE The depth of the feature maps progressively increases in the network
(from 32 to 128), whereas the size of the feature maps decreases (from
148 × 148 to 7 × 7). This is a pattern you’ll see in almost all convnets.

Because you’re attacking a binary-classification problem, you’ll end the network with
a single unit (a of size 1) and a activation. This unit will encodelayer_dense sigmoid

the probability that the network is looking at one class or the other.

Listing 5.5 Instantiating a small convnet for cats vs. dogs classification

> cat("total training cat images:", length(list.files(train_cats_dir)), "\n")
total training cat images: 1000
> cat("total training dog images:", length(list.files(train_dogs_dir)), "\n")
total training dog images: 1000
> cat("total validation cat images:", length(list.files(validation_cats_dir)), "\n")
total validation cat images: 500
> cat("total validation dog images:", length(list.files(validation_dogs_dir)), "\n")
total validation dog images: 500
> cat("total test cat images:", length(list.files(test_cats_dir)), "\n")
total test cat images: 500
> cat("total test dog images:", length(list.files(test_dogs_dir)), "\n")
total test dog images: 500

5.2.3 Building your network

library(keras)

model <- keras_model_sequential() %>%
 layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu",
 input_shape = c(150, 150, 3)) %>%
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>%
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_conv_2d(filters = 128, kernel_size = c(3, 3), activation = "relu") %>%
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_conv_2d(filters = 128, kernel_size = c(3, 3), activation = "relu") %>%
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

125

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

1.
2.
3.

Let’s look at how the dimensions of the feature maps change with every successive
layer:

For the compilation step, you’ll go with the optimizer, as usual. BecauseRMSprop

you ended the network with a single sigmoid unit, you’ll use binary crossentropy as the
loss (as a reminder, check out table 4.1 for a cheatsheet on what loss function to use in
various situations).

Listing 5.6 Configuring the model for training

As you know by now, data should be formatted into appropriately preprocessed
floating-point tensors before being fed into the network. Currently, the data sits on a
drive as JPEG files, so the steps for getting it into the network are roughly as follows:

Read the picture files.
Decode the JPEG content to RGB grids of pixels.
Convert these into floating-point tensors.

 layer_flatten() %>%
 layer_dense(units = 512, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")

> summary(model)

Layer (type) Output Shape Param #
==
conv2d_1 (Conv2D) (None, 148, 148, 32) 896
__
maxpooling2d_1 (MaxPooling2D) (None, 74, 74, 32) 0
__
conv2d_2 (Conv2D) (None, 72, 72, 64) 18496
__
maxpooling2d_2 (MaxPooling2D) (None, 36, 36, 64) 0
__
conv2d_3 (Conv2D) (None, 34, 34, 128) 73856
__
maxpooling2d_3 (MaxPooling2D) (None, 17, 17, 128) 0
__
conv2d_4 (Conv2D) (None, 15, 15, 128) 147584
__
maxpooling2d_4 (MaxPooling2D) (None, 7, 7, 128) 0
__
flatten_1 (Flatten) (None, 6272) 0
__
dense_1 (Dense) (None, 512) 3211776
__
dense_2 (Dense) (None, 1) 513
==
Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0

model %>% compile(
 loss = "binary_crossentropy",
 optimizer = optimizer_rmsprop(lr = 1e-4),
 metrics = c("acc")
)

5.2.4 Data preprocessing

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

126

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

4. Rescale the pixel values (between 0 and 255) to the [0, 1] interval (as you know, neural
networks prefer to deal with small input values).

It may seem a bit daunting, but thankfully Keras has utilities to take care of these
steps automatically. Keras includes a number of image processing helper tools. In
particular, it includes the function, which can automaticallyimage_data_generator()

turn image files on disk into batches of pre-processed tensors. This is what we will use
here.

Listing 5.7 Using to read images from directoriesimage_data_generator

Let’s look at the output of one of these generators: it yields batches of 150 × 150
RGB images (shape) and binary labels (shape). There are 20(20, 150, 150, 3) (20)

samples in each batch (the batch size). Note that the generator yields these batches
indefinitely: it loops endlessly over the images in the target folder.

Listing 5.8 Displaying a batch of data and labels

Let’s fit the model to the data using the generator. You do so using the
 function, the equivalent of for data generators like this one. Itfit_generator fit

expects as its first argument a generator that will yield batches of inputs and targets
indefinitely, like this one does. Because the data is being generated endlessly, the
generator needs to know how many samples to draw from the generator before declaring
an epoch over. This is the role of the argument: after having drawn steps_per_epoch

 batches from the generator—that is, after having run for steps_per_epoch

train_datagen <- image_data_generator(rescale = 1/255)
validation_datagen <- image_data_generator(rescale = 1/255)

train_generator <- flow_images_from_directory(
 train_dir,
 train_datagen,
 target_size = c(150, 150),
 batch_size = 20,
 class_mode = "binary"
)

validation_generator <- flow_images_from_directory(
 validation_dir,
 validation_datagen,
 target_size = c(150, 150),
 batch_size = 20,
 class_mode = "binary"
)

> batch <- generator_next(train_generator)
> str(batch)
List of 2
 $: num [1:20, 1:150, 1:150, 1:3] 37 48 153 53 114 194 158 141 255 167 ...
 $: num [1:20(1d)] 1 1 1 1 0 1 1 0 1 1 ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

127

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

 gradient descent steps—the fitting process will go to the next epoch.steps_per_epoch

In this case, batches are 20-samples large, so it will take 100 batches until you see your
target of 2,000 samples.

When using , you can pass a argument, much asfit_generator validation_data

with the function. It’s important to note that this argument is allowed to be a datafit

generator, but it could also be a list of arrays. If you pass a generator as
, then this generator is expected to yield batches of validation datavalidation_data

endlessly; thus you should also specify the argument, which tells thevalidation_steps

process how many batches to draw from the validation generator for evaluation.

Listing 5.9 Fitting the model using a batch generator

It’s good practice to always save your models after training.

Listing 5.10 Saving the model

Let’s plot the loss and accuracy of the model over the training and validation data
during training (see figure 5.9).

Listing 5.11 Displaying curves of loss and accuracy during training

history <- model %>% fit_generator(
 train_generator,
 steps_per_epoch = 100,
 epochs = 30,
 validation_data = validation_generator,
 validation_steps = 50
)

model %>% save_model_hdf5("cats_and_dogs_small_1.h5")

plot(history)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

128

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 5.9 Training and validation metrics

These plots are characteristic of overfitting. The training accuracy increases linearly
over time, until it reaches nearly 100%, whereas the validation accuracy stalls at 71–75%.
The validation loss reaches its minimum after only five epochs and then stalls, whereas
the training loss keeps decreasing linearly until it reaches nearly 0.

Because you have relatively few training samples (2,000), overfitting will be your
number-one concern. You already know about a number of techniques that can help
mitigate overfitting, such as dropout and weight decay (L2 regularization). We’re now
going to introduce a new one, specific to computer vision and used almost universally
when processing images with deep-learning models: .data augmentation

Overfitting is caused by having too few samples to learn from, rendering you unable to
train a model that can generalize to new data. Given infinite data, your model would be
exposed to every possible aspect of the data distribution at hand: you would never
overfit. Data augmentation takes the approach of generating more training data from
existing training samples, by the samples via a number of randomaugmenting
transformations that yield believable-looking images. The goal is that at training time,
your model will never see the exact same picture twice. This helps expose the model to
more aspects of the data and generalize better.

In Keras, this can be done by configuring a number of random transformations to be
performed on the images read by an . Let’s get started with animage_data_generator

example.

5.2.5 Using data augmentation

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

129

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Listing 5.12 Setting up a data augmentation configuration via
image_data_generator

These are just a few of the options available (for more, see the Keras documentation).
Let’s quickly go over this code:

rotation_range is a value in degrees (0–180), a range within which to randomly rotate
pictures.
width_shift and are ranges (as a fraction of total width or height)height_shift
within which to randomly translate pictures vertically or horizontally.
shear_range is for randomly applying shearing transformations.
zoom_range is for randomly zooming inside pictures.
horizontal_flip is for randomly flipping half the images horizontally—relevant when
there are no assumptions of horizontal asymmetry (for example, real-world pictures).
fill_mode is the strategy used for filling in newly created pixels, which can appear after
a rotation or a width/height shift.

Let’s look at the augmented images (see figure 5.10).

Listing 5.13 Displaying some randomly augmented training images

Chooses one image to augment

Reads the image and resizes it

datagen <- image_data_generator(
 rescale = 1/255,
 rotation_range = 40,
 width_shift_range = 0.2,
 height_shift_range = 0.2,
 shear_range = 0.2,
 zoom_range = 0.2,
 horizontal_flip = TRUE,
 fill_mode = "nearest"
)

fnames <- list.files(train_cats_dir, full.names = TRUE)

img_path <- fnames[[3]]

img <- image_load(img_path, target_size = c(150, 150))

img_array <- image_to_array(img)

img_array <- array_reshape(img_array, c(1, 150, 150, 3))

augmentation_generator <- flow_images_from_data(
 img_array,
 generator = datagen,
 batch_size = 1
)

op <- par(mfrow = c(2, 2), pty = "s", mar = c(1, 0, 1, 0))
for (i in 1:4) {
 batch <- generator_next(augmentation_generator)
 plot(as.raster(batch[1,,,]))
}
par(op)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

130

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Converts it to an array with shape (150, 150, 3)

Reshapes it to (1, 150, 150, 3)

Generates batches of randomly transformed images. Loops indefinitely, so you
need to break the loop at some point!

Plot the images

Figure 5.10 Generation of cat pictures via random data augmentation

If you train a new network using this data-augmentation configuration, the network
will never see the same input twice. But the inputs it sees are still heavily intercorrelated,
because they come from a small number of original images—you can’t produce new
information, you can only remix existing information. As such, this may not be enough to
completely get rid of overfitting. To further fight overfitting, you’ll also add a dropout
layer to your model, right before the densely connected classifier.

Listing 5.14 Defining a new convnet that includes dropout

model <- keras_model_sequential() %>%
 layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu",
 input_shape = c(150, 150, 3)) %>%
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>%
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_conv_2d(filters = 128, kernel_size = c(3, 3), activation = "relu") %>%
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_conv_2d(filters = 128, kernel_size = c(3, 3), activation = "relu") %>%
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_flatten() %>%
 layer_dropout(rate = 0.5) %>%
 layer_dense(units = 512, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

131

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Let’s train the network using data augmentation and dropout.

Listing 5.15 Training the convnet using data-augmentation generators

Let’s save the model—you’ll be using it in section 5.4.

Listing 5.16 Saving the model

Thanks to data augmentation and dropout, we are no longer overfitting: the training
curves are rather closely tracking the validation curves. We are now able to reach an
accuracy of 82%, a 15% relative improvement over the non-regularized model.

model %>% compile(
 loss = "binary_crossentropy",
 optimizer = optimizer_rmsprop(lr = 1e-4),
 metrics = c("acc")
)

datagen <- image_data_generator(
 rescale = 1/255,
 rotation_range = 40,
 width_shift_range = 0.2,
 height_shift_range = 0.2,
 shear_range = 0.2,
 zoom_range = 0.2,
 horizontal_flip = TRUE
)

test_datagen <- image_data_generator(rescale = 1/255)

train_generator <- flow_images_from_directory(
 train_dir,
 datagen,
 target_size = c(150, 150),
 batch_size = 32,
 class_mode = "binary"
)

validation_generator <- flow_images_from_directory(
 validation_dir,
 test_datagen,
 target_size = c(150, 150),
 batch_size = 32,
 class_mode = "binary"
)

history <- model %>% fit_generator(
 train_generator,
 steps_per_epoch = 100,
 epochs = 100,
 validation_data = validation_generator,
 validation_steps = 50
)

model %>% save_model_hdf5("cats_and_dogs_small_2.h5")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

132

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 5.11 Training and validation metrics

By using regularization techniques even further, and by tuning the network’s
parameters (such as the number of filters per convolution layer, or the number of layers
in the network), you may be able to get an even better accuracy, likely up to 86 or 87%.
But it would prove difficult to go any higher just by training your own convnet from
scratch, because you have so little data to work with. As a next step to improve your
accuracy on this problem, you’ll have to use a pretrained model, which will be the focus
of the next two sections.

A common and highly effective approach to deep learning on small image datasets is to
use a pretrained network. A is a saved network that was previouslypretrained network
trained on a large dataset, typically on a large-scale image-classification task. If this
original dataset is large enough and general enough, then the spatial-feature hierarchy
learned by the pretrained network can effectively act as a generic model of the visual
world, and hence its features can prove useful for many different computer-vision
problems, even though these new problems may involve completely different classes than
those of the original task. For instance, you might train a network on ImageNet (where
classes are mostly animals and everyday objects) and then repurpose this trained network
for something as remote as identifying furniture items in images. Such portability of
learned features across different problems is a key advantage of deep learning compared
to many older, shallow-learning approaches, and it makes deep learning very effective for
small-data problems.

In this case, let’s consider a large convnet trained on the ImageNet dataset (1.4

5.3 Using a pretrained convnet

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

133

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

million labeled images and 1,000 different classes). ImageNet contains many animal
classes, including different species of cats and dogs, and you can thus expect to perform
well on the cats-versus-dogs classification problem.

You’ll use the VGG16 architecture, developed by Karen Simonyan and Andrew
Zisserman in 2014; it’s a simple and widely used convnet architecture for ImageNet.8

Although it’s an older model, far from the current state of the art and somewhat heavier
than many other recent models, we chose it because its architecture is similar to what
you’re already familiar with and is easy to understand without introducing any new
concepts. This may be your first encounter with one of these cutesy model
names—VGG, ResNet, Inception, Inception-ResNet, Xception, and so on; you’ll get
used to them, because they will come up frequently if you keep doing deep learning for
computer vision.

Footnote 8mKaren Simonyan and Andrew Zisserman, "Very Deep Convolutional Networks for
Large-Scale Image Recognition," Cornell University Library (2014), .arxiv.org/abs/1409.1556

There are two ways to use a pretrained network: and .feature extraction fine-tuning
We’ll cover both of them. Let’s start with feature extraction.

Feature extraction consists of using the representations learned by a previous network to
extract interesting features from new samples. These features are then run through a new
classifier, which is trained from scratch.

As you saw previously, convnets used for image classification comprise two parts:
they start with a series of pooling and convolution layers, and they end with a densely
connected classifier. The first part is called the of the model. In theconvolutional base
case of convnets, feature extraction consists of taking the convolutional base of a
previously trained network, running the new data through it, and training a new classifier
on top of the output (see figure 5.12).

5.3.1 Feature extraction

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

134

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://arxiv.org/abs/1409.1556
https://forums.manning.com/forums/deep-learning-with-r

Figure 5.12 Swapping classifiers while keeping the same convolutional base

Why only reuse the convolutional base? Could you reuse the densely connected
classifier as well? In general, doing so should be avoided. The reason is that the
representations learned by the convolutional base are likely to be more generic and
therefore more reusable: the feature maps of a convnet are presence maps of generic
concepts over a picture, which is likely to be useful regardless of the computer-vision
problem at hand. But the representations learned by the classifier will necessarily be
specific to the set of classes on which the model was trained—they will only contain
information about the presence probability of this or that class in the entire picture.
Additionally, representations found in densely connected layers no longer contain any
information about objects are located in the input image: these layers get rid of thewhere
notion of space, whereas the object location is still described by convolutional feature
maps. For problems where object location matters, densely connected features are largely
useless.

Note that the level of generality (and therefore reusability) of the representations
extracted by specific convolution layers depends on the depth of the layer in the model.
Layers that come earlier in the model extract local, highly generic feature maps (such as
visual edges, colors, and textures), whereas layers that are higher up extract more abstract
concepts (such as "cat ear" or "dog eye"). So if your new dataset differs a lot from the
dataset on which the original model was trained, you may be better off using only the
first few layers of the model to do feature extraction, rather than using the entire
convolutional base.

In this case, because the ImageNet class set contains multiple dog and cat classes, it’s
likely to be beneficial to reuse the information contained in the densely connected layers
of the original model. But we’ll choose not to, in order to cover the more general case
where the class set of the new problem doesn’t overlap the class set of the original model.
Let’s put this in practice by using the convolutional base of the VGG16 network, trained

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

135

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

on ImageNet, to extract interesting features from cat and dog images, and then training a
cats-versus-dogs classifier on top of these features.

The VGG16 model, among others, comes prepackaged with Keras. Here’s the list of
image-classification models (all pretrained on the ImageNet dataset) that are available as
part of Keras:

Xception
InceptionV3
ResNet50
VGG16
VGG19
MobileNet

Let’s instantiate the VGG16 model.

Listing 5.17 Instantiating the VGG16 convolutional base

You pass three arguments to the function:

weights specifies the weight checkpoint from which to initialize the model.
include_top refers to including (or not) the densely connected classifier on top of the
network. By default, this densely connected classifier corresponds to the 1,000 classes
from ImageNet. Because you intend to use your own densely connected classifier (with
only two classes: and), you don’t need to include it.cat dog

input_shape is the shape of the image tensors that you’ll feed to the network. This
argument is purely optional: if you don’t pass it, the network will be able to process
inputs of any size.

Here’s the detail of the architecture of the VGG16 convolutional base. It’s similar to
the simple convnets you’re already familiar with.

library(keras)

conv_base <- application_vgg16(
 weights = "imagenet",
 include_top = FALSE,
 input_shape = c(150, 150, 3)
)

> conv_base

Layer (type) Output Shape Param #
==
input_1 (InputLayer) (None, 150, 150, 3) 0
__
block1_conv1 (Convolution2D) (None, 150, 150, 64) 1792
__
block1_conv2 (Convolution2D) (None, 150, 150, 64) 36928
__
block1_pool (MaxPooling2D) (None, 75, 75, 64) 0
__
block2_conv1 (Convolution2D) (None, 75, 75, 128) 73856
__
block2_conv2 (Convolution2D) (None, 75, 75, 128) 147584
__
block2_pool (MaxPooling2D) (None, 37, 37, 128) 0

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

136

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

The final feature map has shape . That’s the feature on top of which(4, 4, 512)

you’ll stick a densely connected classifier.
At this point, there are two ways you could proceed:

Running the convolutional base over your dataset, recording its output to an array on
disk, and then using this data as input to a standalone, densely connected classifier
similar to those you saw in part 1 of this book. This solution is fast and cheap to run,
because it only requires running the convolutional base once for every input image, and
the convolutional base is by far the most expensive part of the pipeline. But for the same
reason, this technique won’t allow you to use data augmentation.
Extending the model you have () by adding dense layers on top, and runningconv_base
the whole thing end to end on the input data. This will allow you to use data
augmentation, because every input image goes through the convolutional base every time
it’s seen by the model. But for the same reason, this technique is far more expensive than
the first.

We’ll cover both techniques. Let’s walk through the code required to set up the first
one: recording the output of on your data and using these outputs as inputs toconv_base

a new model.

You’ll start by running instances of the previously introduced image_data_generator
to extract images as arrays as well as their labels. You’ll extract features from these
images by calling the method on the model.predict

Listing 5.18 Extracting features using the pretrained convolutional base

__
block3_conv1 (Convolution2D) (None, 37, 37, 256) 295168
__
block3_conv2 (Convolution2D) (None, 37, 37, 256) 590080
__
block3_conv3 (Convolution2D) (None, 37, 37, 256) 590080
__
block3_pool (MaxPooling2D) (None, 18, 18, 256) 0
__
block4_conv1 (Convolution2D) (None, 18, 18, 512) 1180160
__
block4_conv2 (Convolution2D) (None, 18, 18, 512) 2359808
__
block4_conv3 (Convolution2D) (None, 18, 18, 512) 2359808
__
block4_pool (MaxPooling2D) (None, 9, 9, 512) 0
__
block5_conv1 (Convolution2D) (None, 9, 9, 512) 2359808
__
block5_conv2 (Convolution2D) (None, 9, 9, 512) 2359808
__
block5_conv3 (Convolution2D) (None, 9, 9, 512) 2359808
__
block5_pool (MaxPooling2D) (None, 4, 4, 512) 0
==
Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0

FAST FEATURE EXTRACTION WITHOUT DATA AUGMENTATION

base_dir <- "~/Downloads/cats_and_dogs_small"
train_dir <- file.path(base_dir, "train")
validation_dir <- file.path(base_dir, "validation")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

137

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Note that because generators yield data indefinitely in a loop, you must break after
every image has been seen once.

The extracted features are currently of shape . You’ll feed(samples, 4, 4, 512)

them to a densely connected classifier, so first you must flatten them to (samples,
:8192)

At this point, you can define your densely connected classifier (note the use of
dropout for regularization) and train it on the data and labels that you just recorded.

Listing 5.19 Defining and training the densely connected classifier

test_dir <- file.path(base_dir, "test")

datagen <- image_data_generator(rescale = 1/255)
batch_size <- 20

extract_features <- function(directory, sample_count) {

 features <- array(0, dim = c(sample_count, 4, 4, 512))
 labels <- array(0, dim = c(sample_count))

 generator <- flow_images_from_directory(
 directory = directory,
 generator = datagen,
 target_size = c(150, 150),
 batch_size = batch_size,
 class_mode = "binary"
)

 i <- 0
 while(TRUE) {
 batch <- generator_next(generator)
 inputs_batch <- batch[[1]]
 labels_batch <- batch[[2]]
 features_batch <- conv_base %>% predict(inputs_batch)

 index_range <- ((i * batch_size)+1):((i + 1) * batch_size)
 features[index_range,,,] <- features_batch
 labels[index_range] <- labels_batch

 i <- i + 1
 if (i * batch_size >= sample_count)

 break
 }

 list(
 features = features,
 labels = labels
)
}

train <- extract_features(train_dir, 2000)
validation <- extract_features(validation_dir, 1000)
test <- extract_features(test_dir, 1000)

reshape_features <- function(features) {
 array_reshape(features, dim = c(nrow(features), 4 * 4 * 512))
}
train$features <- reshape_features(train$features)
validation$features <- reshape_features(validation$features)
test$features <- reshape_features(test$features)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

138

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Training is very fast, because you only have to deal with two dense layers—an epoch
takes less than one second even on a CPU.

Let’s look at the loss and accuracy curves during training (see figure 5.13).

Listing 5.20 Plotting the results

Figure 5.13 Training and validation metrics for simple feature extraction

You reach a validation accuracy of about 90%: much better than you achieved in the
previous section with the small model trained from scratch. But the plots also indicate

model <- keras_model_sequential() %>%
 layer_dense(units = 256, activation = "relu",
 input_shape = 4 * 4 * 512) %>%
 layer_dropout(rate = 0.5) %>%
 layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
 optimizer = optimizer_rmsprop(lr = 2e-5),
 loss = "binary_crossentropy",
 metrics = c("accuracy")
)

history <- model %>% fit(
 train$features, train$labels,
 epochs = 30,
 batch_size = 20,
 validation_data = list(validation$features, validation$labels)
)

plot(history)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

139

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

that you’re overfitting almost from the start—despite using dropout with a fairly large
rate. That’s because this technique doesn’t use data augmentation, which is essential for
preventing overfitting with small image datasets.

Now, let’s review the second technique we mentioned for doing feature extraction, which
is much slower and more expensive, but which allows you to use data augmentation
during training: extending the model and running it end to end on the inputs.conv_base

NOTE This technique is so expensive that you should only attempt it if you have
access to a GPU—it’s absolutely intractable on a CPU. If you can’t run
your code on a GPU, then the previous technique is the way to go.

Because models behave just like layers, you can add a model (like) to aconv_base

sequential model just like you would add a layer. So, you can do the following.

Listing 5.21 Adding a densely connected classifier on top of the convolutional
base

This is what the model looks like now:

As you can see, the convolutional base of VGG16 has 14,714,688 parameters, which
is very large. The classifier you’re adding on top has 2 million parameters.

Before you compile and train the model, it’s very important to freeze the
convolutional base. a layer or set of layers means preventing their weights fromFreezing
being updated during training. If you don’t do this, then the representations that were
previously learned by the convolutional base will be modified during training. Because

FEATURE EXTRACTION WITH DATA AUGMENTATION

model <- keras_model_sequential() %>%
 conv_base %>%
 layer_flatten() %>%
 layer_dense(units = 256, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")

> model

Layer (type) Output Shape Param #
==
vgg16 (Model) (None, 4, 4, 512) 14714688
__
flatten_1 (Flatten) (None, 8192) 0
__
dense_1 (Dense) (None, 256) 2097408
__
dense_2 (Dense) (None, 1) 257
==
Total params: 16,812,353
Trainable params: 16,812,353
Non-trainable params: 0

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

140

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

the dense layers on top are randomly initialized, very large weight updates would be
propagated through the network, effectively destroying the representations previously
learned.

In Keras, you freeze a network using the function:freeze_weights()

With this setup, only the weights from the two dense layers that you added will be
trained. That’s a total of four weight tensors: two per layer (the main weight matrix and
the bias vector). Note that in order for these changes to take effect, you must first compile
the model. If you ever modify weight trainability after compilation, you should then
recompile the model, or these changes will be ignored.

Now you can start training your model, with the same data-augmentation
configuration that you used in the previous example.

Listing 5.22 Training the model end to end with a frozen convolutional base

> cat("This is the number of trainable weights before freezing",
 "the conv base:", length(model$trainable_weights), "\n")
This is the number of trainable weights before freezing the conv base: 30
> freeze_weights(conv_base)
> cat("This is the number of trainable weights after freezing",
 "the conv base:", length(model$trainable_weights), "\n")
This is the number of trainable weights before freezing the conv base: 4

train_datagen = image_data_generator(
 rescale = 1/255,
 rotation_range = 40,
 width_shift_range = 0.2,
 height_shift_range = 0.2,
 shear_range = 0.2,
 zoom_range = 0.2,
 horizontal_flip = TRUE,
 fill_mode = "nearest"
)

test_datagen <- image_data_generator(rescale = 1/255)

train_generator <- flow_images_from_directory(
 train_dir,
 train_datagen,
 target_size = c(150, 150),
 batch_size = 20,
 class_mode = "binary"
)

validation_generator <- flow_images_from_directory(
 validation_dir,
 test_datagen,
 target_size = c(150, 150),
 batch_size = 20,
 class_mode = "binary"
)

model %>% compile(
 loss = "binary_crossentropy",
 optimizer = optimizer_rmsprop(lr = 2e-5),
 metrics = c("accuracy")
)

history <- model %>% fit_generator(
 train_generator,
 steps_per_epoch = 100,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

141

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Let’s plot the results again (see figure 5.14). As you can see, you reach a validation
accuracy of about 96%. This is much better than you achieved with the small convnet
trained from scratch.

Figure 5.14 Training and validation metrics for feature extraction with data augmentation

Another widely used technique for model reuse, complementary to feature extraction, is
 (see figure 5.15). Fine-tuning consists of unfreezing a few of the top layers offine-tuning

a frozen model base used for feature extraction, and jointly training both the newly added
part of the model (in this case, the fully connected classifier) and these top layers. This is
called because it slightly adjusts the more abstract representations of thefine-tuning
model being reused, in order to make them more relevant for the problem at hand.

 epochs = 30,
 validation_data = validation_generator,
 validation_steps = 50
)

5.3.2 Fine-tuning

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

142

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

1.
2.

Figure 5.15 Fine-tuning the last convolutional block of the VGG16 network

We stated earlier that it was necessary to freeze the convolution base of VGG16 in
order to be able to train a randomly initialized classifier on top. For the same reason, it’s
only possible to fine-tune the top layers of the convolutional base once the classifier on
top has already been trained. If the classifier wasn’t already trained, then the error signal
propagating through the network during training would be too large, and the
representations previously learned by the layers being fine-tuned would be destroyed.
Thus the steps for fine-tuning a network are as follow:

Add your custom network on top of an already-trained base network.
Freeze the base network.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

143

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

3.
4.
5.

Train the part you added.
Unfreeze some layers in the base network.
Jointly train both these layers and the part you added.

You already completed the first three steps when doing feature extraction. Let’s
proceed with the step 4: you’ll unfreeze your and then freeze individualconv_base

layers inside it.
As a reminder, this is what your convolutional base looks like:

You’ll fine-tune the last three convolutional layers, which means all layers up to
 should be frozen, and the layers , , and block4_pool block5_conv1 block5_conv2

 should be trainable.block5_conv3

Why not fine-tune more layers? Why not fine-tune the entire convolutional base? You
could. But you need to consider the following:

Earlier layers in the convolutional base encode more generic, reusable features, whereas
layers higher up encode more specialized features. It’s more useful to fine-tune the more
specialized features, because these are the ones that need to be repurposed on your new

> conv_base

Layer (type) Output Shape Param #
==
input_1 (InputLayer) (None, 150, 150, 3) 0
__
block1_conv1 (Convolution2D) (None, 150, 150, 64) 1792
__
block1_conv2 (Convolution2D) (None, 150, 150, 64) 36928
__
block1_pool (MaxPooling2D) (None, 75, 75, 64) 0
__
block2_conv1 (Convolution2D) (None, 75, 75, 128) 73856
__
block2_conv2 (Convolution2D) (None, 75, 75, 128) 147584
__
block2_pool (MaxPooling2D) (None, 37, 37, 128) 0
__
block3_conv1 (Convolution2D) (None, 37, 37, 256) 295168
__
block3_conv2 (Convolution2D) (None, 37, 37, 256) 590080
__
block3_conv3 (Convolution2D) (None, 37, 37, 256) 590080
__
block3_pool (MaxPooling2D) (None, 18, 18, 256) 0
__
block4_conv1 (Convolution2D) (None, 18, 18, 512) 1180160
__
block4_conv2 (Convolution2D) (None, 18, 18, 512) 2359808
__
block4_conv3 (Convolution2D) (None, 18, 18, 512) 2359808
__
block4_pool (MaxPooling2D) (None, 9, 9, 512) 0
__
block5_conv1 (Convolution2D) (None, 9, 9, 512) 2359808
__
block5_conv2 (Convolution2D) (None, 9, 9, 512) 2359808
__
block5_conv3 (Convolution2D) (None, 9, 9, 512) 2359808
__
block5_pool (MaxPooling2D) (None, 4, 4, 512) 0
==
Total params: 14714688

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

144

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

problem. There would be fast-decreasing returns in fine-tuning lower layers.
The more parameters you’re training, the more you’re at risk of overfitting. The
convolutional base has 15 million parameters, so it would be risky to attempt to train it on
your small dataset.

Thus, in this situation, it’s a good strategy to fine-tune only the top two or three layers
in the convolutional base. Let’s set this up, starting from where you left off in the
previous example.

Listing 5.23 Unfreezing previously frozen layers

Now you can begin fine-tuning the network. You’ll do this with the RMSProp
optimizer, using a very low learning rate. The reason for using a low learning rate is that
you want to limit the magnitude of the modifications you make to the representations of
the three layers you’re fine-tuning. Updates that are too large may harm these
representations.

Now let’s proceed with fine-tuning.

Listing 5.24 Fine-tuning the model

Let’s plot our results :

unfreeze_weights(conv_base, from = "block5_conv1")

model %>% compile(
 loss = "binary_crossentropy",
 optimizer = optimizer_rmsprop(lr = 1e-5),
 metrics = c("accuracy")
)

history <- model %>% fit_generator(
 train_generator,
 steps_per_epoch = 100,
 epochs = 100,
 validation_data = validation_generator,
 validation_steps = 50
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

145

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 5.16 Training and validation metrics for fine-tuning

You’re seeing a nice 1% absolute improvement in accuracy, from about 96% to above
97%.

Note that the loss curve doesn’t show any real improvement (in fact, it’s
deteriorating). You may wonder, how could accuracy stay stable or improve if the loss
isn’t decreasing? The answer is simple: what you display is an average of pointwise loss
values; but what matters for accuracy is the distribution of the loss values, not their
average, because accuracy is the result of a binary thresholding of the class probability
predicted by the model. The model may still be improving even if this isn’t reflected in
the average loss.

You can now finally evaluate this model on the test data:

Here you get a test accuracy of 97.2%. In the original Kaggle competition around this
dataset, this would have been one of the top results. But using modern deep-learning
techniques, you managed to reach this result using only a small fraction of the training

test_generator <- flow_images_from_directory(
 test_dir,
 test_datagen,
 target_size = c(150, 150),
 batch_size = 20,
 class_mode = "binary"
)

> model %>% evaluate_generator(test_generator, steps = 50)
$loss
[1] 0.2840393

$acc
[1] 0.972

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

146

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

data available (about 10%). There is a huge difference between being able to train on
20,000 samples compared to 2,000 samples!

Here’s what you should take away from the exercises of the past two sections:

Convnets are the best type of machine-learning models for computer-vision tasks. It’s
possible to train one from scratch even on a very small dataset, with decent results.
On a small dataset, overfitting will be the main issue. Data augmentation is a powerful
way to fight overfitting when you’re working with image data.
It’s easy to reuse an existing convnet on a new dataset via feature extraction. This is a
valuable technique for working with small image datasets.
As a complement to feature extraction, you can use fine-tuning, which adapts to a new
problem some of the representations previously learned by an existing model. This
pushes performance a bit further.

Now you have a solid set of tools for dealing with image-classification problems—in
particular with small datasets.

It’s often said that deep-learning models are "black boxes": learning representations that
are difficult to extract and present in a human-readable form. Although this is partially
true for certain types of deep-learning models, it’s definitely not true for convnets. The
representations learned by convnets are highly amenable to visualization, in large part
because they’re . Since 2013, a wide array ofrepresentations of visual concepts
techniques have been developed for visualizing and interpreting these representations.
We won’t survey all of them, but we’ll cover three of the most accessible and useful
ones:

Visualizing intermediate convnet outputs (intermediate activations)—Useful for
understanding how successive convnet layers transform their input, and for getting a first
idea of the meaning of individual convnet filters.
Visualizing convnets filters—Useful for understanding precisely what visual pattern or
concept each filter in a convnet is receptive to.
Visualizing heatmaps of class activation in an image—Useful for understanding which
parts of an image were identified as belonging to a given class, and thus allows you to
localize objects in images.

For the first method—activation visualization—you’ll use the small convnet that you
trained from scratch on the cats-versus-dogs classification problem in section 5.2. For the
next two methods, you’ll use the VGG16 model that we introduced in section 5.3.

5.4 Visualizing what convnets learn

5.3.3 Take-aways: using convnets with small datasets

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

147

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Visualizing intermediate activations consists of displaying the feature maps that are
output by various convolution and pooling layers in a network, given a certain input (the
output of a layer is often called its , the output of the activation function). Thisactivation
gives a view into how an input is decomposed unto the different filters learned by the
network. These feature maps you want to visualize have three dimensions: width, height,
and depth (channels). Each channel encodes relatively independent features, so the
proper way to visualize these feature maps is by independently plotting the contents of
every channel as a 2D image. Let’s start by loading the model that you saved in section
5.2:

Next, you’ll get an input image—a picture of a cat, not part of the images the network
was trained on.

Listing 5.25 Preprocessing a single image

5.4.1 Visualizing intermediate activations

> library(keras)
> model <- load_model_hdf5("cats_and_dogs_small_2.h5")
> model
__
Layer (type) Output Shape Param #
==
conv2d_5 (Conv2D) (None, 148, 148, 32) 896
__
maxpooling2d_5 (MaxPooling2D) (None, 74, 74, 32) 0
__
conv2d_6 (Conv2D) (None, 72, 72, 64) 18496
__
maxpooling2d_6 (MaxPooling2D) (None, 36, 36, 64) 0
__
conv2d_7 (Conv2D) (None, 34, 34, 128) 73856
__
maxpooling2d_7 (MaxPooling2D) (None, 17, 17, 128) 0
__
conv2d_8 (Conv2D) (None, 15, 15, 128) 147584
__
maxpooling2d_8 (MaxPooling2D) (None, 7, 7, 128) 0
__
flatten_2 (Flatten) (None, 6272) 0
__
dropout_1 (Dropout) (None, 6272) 0
__
dense_3 (Dense) (None, 512) 3211776
__
dense_4 (Dense) (None, 1) 513
==
Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0

img_path <- "~/Downloads/cats_and_dogs_small/test/cats/cat.1700.jpg"

img <- image_load(img_path, target_size = c(150, 150))
img_tensor <- image_to_array(img)
img_tensor <- array_reshape(img_tensor, c(1, 150, 150, 3))

img_tensor <- img_tensor / 255

dim(img_tensor)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

148

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Preprocesses the image into a 4D tensor

Remember that the model was trained on inputs that were preprocessed this way.

Its shape is (1, 150, 150, 3)

Let’s display the picture (see figure 5.17).

Listing 5.26 Displaying the test picture

Figure 5.17 The test cat picture

In order to extract the feature maps you want to look at, you’ll create a Keras model
that takes batches of images as input, and outputs the activations of all convolution and
pooling layers. To do this, we will use the function, which takes twokeras_model()

arguments: an input tensor (or list of input tensors) and an output tensor (or list of output
tensors). The resulting class is a Keras model, just like the ones created by the

 function that you are familiar with, mapping the specifiedkeras_sequential_model()

inputs to the specified outputs. What sets this type of model apart apart is that it allows
for models with multiple outputs (unlike). For morekeras_sequential_model

information about creating models with the function, see section 7.1.keras_model()

Listing 5.27 Instantiating a model from an input tensor and a list of output tensors

Extracts the outputs of the top eight layers

Creates a model that will return these outputs, given the model input

plot(as.raster(img_tensor[1,,,]))

layer_outputs <- lapply(model$layers[1:8], function(layer) layer$output)

activation_model <- keras_model(inputs = model$input, outputs = layer_outputs)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

149

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

When fed an image input, this model returns the values of the layer activations in the
original model. This is the first time you’ve encountered a multi-output model in this
book: until now, the models you’ve seen have had exactly one input and one output. In
the general case, a model can have any number of inputs and outputs. This one has one
input and eight outputs: one output per layer activation.

Listing 5.28 Running the model in predict mode

Returns a list of five arrays: one array per layer activation

For instance, this is the activation of the first convolution layer for the cat image
input:

It’s a 148 x 148 feature map with 32 channels. Let’s visualize some of them. First we
define an R function that will plot a channel:

Listing 5.29 Function to plot a channel

Let’s try visualizing the 2nd channel:

Listing 5.30 Plotting the 2nd channel of the activation of the first layer of the
original model

activations <- activation_model %>% predict(img_tensor)

> first_layer_activation <- activations[[1]]
> dim(first_layer_activation)
[1] 1 148 148 32

plot_channel <- function(channel) {
 rotate <- function(x) t(apply(x, 2, rev))
 image(rotate(channel), axes = FALSE, asp = 1,
 col = terrain.colors(12))
}

plot_channel(first_layer_activation[1,,,2])

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

150

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 5.18 Second channel of the
activation of the first layer on the test cat
picture

This channel appears to encode a diagonal edge detector. Let’s try the seventh
channel (see figure 5.19)—but note that your own channels may vary, because the
specific filters learned by convolution layers aren’t deterministic.

Listing 5.31 Visualizing the seventh channel

Figure 5.19 Seventh channel of the
activation of the first layer on our test cat
picture

This channel is subtly different, and unlike the 2nd channel seems to be picking up
the iris of the cat’s eye. At this point, let’s go and plot a complete visualization of all the

plot_channel(first_layer_activation[1,,,7])

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

151

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

activations in the network. We’ll extract and plot every channel in each of our 8
activation maps, and we will stack the results in one big image tensor, with channels
stacked side by side.

Listing 5.32 Visualizing every channel in every intermediate activation

Figure 5.20 conv2d_5

Figure 5.21 conv2d_6

image_size <- 58
images_per_row <- 16

for (i in 1:8) {

 layer_activation <- activations[[i]]
 layer_name <- model$layers[[i]]$name

 n_features <- dim(layer_activation)[[4]]
 n_cols <- n_features %/% images_per_row

 png(paste0("cat_activations_", i, "_", layer_name, ".png"),
 width = image_size * images_per_row,
 height = image_size * n_cols)
 op <- par(mfrow = c(n_cols, images_per_row), mai = rep_len(0.02, 4))

 for (col in 0:(n_cols-1)) {
 for (row in 0:(images_per_row-1)) {
 channel_image <- layer_activation[1,,,(col*images_per_row) + row + 1]
 plot_channel(channel_image)
 }
 }

 par(op)
 dev.off()
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

152

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 5.22 conv2d_7

Figure 5.23 conv2d_8

There are a few things to note here:

The first layer acts as a collection of various edge detectors. At that stage, the activations
retain almost all of the information present in the initial picture.
As you go higher, the activations become increasingly abstract and less visually
interpretable. They begin to encode higher-level concepts such as "cat ear" and "cat eye."
Higher presentations carry increasingly less information about the visual contents of the
image, and increasingly more information related to the class of the image.
The sparsity of the activations is increasing with the depth of the layer: in the first layer,
all filters are activated by the input image, but in the following layers some filters are
blank. This means that the pattern encoded by the filter isn’t found in the input image.

We have just evidenced an important universal characteristic of the representations
learned by deep neural networks: the features extracted by a layer become increasingly
abstract with the depth of the layer. The activations of higher layers carry less and less

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

153

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

information about the specific input being seen, and more and more information about
the target (in this case, the class of the image: cat or dog). A deep neural network
effectively acts as an , with raw data going in (in thisinformation distillation pipeline
case, RGB pictures) and being repeatedly transformed so that irrelevant information is
filtered out (for example, the specific visual appearance of the image) and useful
information is magnified and refined (for example, the class of the image).

This is analogous to the way humans and animals perceive the world: after observing
a scene for a few seconds, a human can remember which abstract objects were present in
it (bicycle, tree) but can’t remember the specific appearance of these objects. In fact, if
you tried to draw a generic bicycle from memory, chances are you couldn’t get it even
remotely right, even though you’ve seen thousands of bicycles in your lifetime (see, for
example, figure 5.24). Try it right now: this effect is absolutely real. You brain has
learned to completely abstract its visual input—to transform it into high-level visual
concepts while filtering out irrelevant visual details—making it tremendously difficult to
remember how things around you look.

Figure 5.24 Left: attempts to draw a bicycle from memory. Right: what a schematic
bicycle should look like.

Another easy thing to do to inspect the filters learned by convnets is to display the visual
pattern that each filter is meant to respond to. This can be done with gradient ascent in

: applying to the value of the input image of a convnet so asinput space gradient descent
to the response of a specific filter, starting from a blank input image. Themaximize
resulting input image will be one that the chosen filter is maximally responsive to.

The process is simple: you’ll build a loss function that maximizes the value of a given
filter in a given convolution layer, and then you’ll use stochastic gradient descent to
adjust the values of the input image so as to maximize this activation value. For instance,
here’s a loss for the activation of filter 1 in the layer of the VGG16block3_conv1

network, pretrained on ImageNet.

5.4.2 Visualizing convnet filters

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

154

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Listing 5.33 Defining the loss tensor for filter visualization

NOTE Using the Keras backend

In the code above we get a reference to the Keras backend with the
statement then subsequently use it in the statement K <- backend()

. What is the Keras backend?K$mean(layer_output[,,,filter_index])

Keras is a model-level library, providing high-level building blocks for
developing deep learning models. It does not handle itself low-level
operations such as tensor products, convolutions and so on. Instead, it
relies on a specialized, well-optimized tensor manipulation library to do
so, serving as the “backend engine” of Keras.

Some operations in Keras require interfacing directly with the
functions in the backend engine, and the statement givesK <- backend()

us access to those functions. Note that when a backend function expects
an integer value you need to ensure that the R type is "integer" rather
than "double" (e.g. pass rather than).1L 1

You can find additional documntation on available backend functions
at .keras.rstudio.com/articles/backend.html

To implement gradient descent, you’ll need the gradient of this loss with respect to
the model’s input. To do this, you’ll use the function packaged with the gradients

 module of Keras.backend

Listing 5.34 Obtaining the gradient of the loss with regard to the input

The call to gradients returns an R list of tensors (of size 1 in this case). Hence you
keep only the first element—which is a tensor.

A non-obvious trick to use to help the gradient-descent process go smoothly is to
normalize the gradient tensor by dividing it by its L2 norm (the square root of the average
of the square of the values in the tensor). This ensures that the magnitude of the updates
done to the input image is always within a same range.

library(keras)
K <- backend()

model <- application_vgg16(
 weights = "imagenet",
 include_top = FALSE
)

layer_name <- "block3_conv1"
filter_index <- 1

layer_output <- get_layer(model, layer_name)$output
loss <- K$mean(layer_output[,,,filter_index])

grads <- K$gradients(loss, model$input)[[1]]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

155

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://keras.rstudio.com/articles/backend.html
https://forums.manning.com/forums/deep-learning-with-r

Listing 5.35 Gradient-normalization trick

Add 1e-5 before dividing to avoid accidentally dividing by 0.

Now you need a way to compute the value of the loss tensor and the gradient tensor,
given an input image. You can define a Keras backend function to do this: is aiterate

function that takes a tensor (as a list of tensors of size 1) and returns a list of two tensors:
the loss value and the gradient value.

Listing 5.36 Fetching output values given input values

At this point, you can define an R loop to do stochastic gradient ascent.

Listing 5.37 Loss maximization via stochastic gradient descent

Starts from a gray image with some noise

Runs gradient ascent for 40 steps

Computes the loss value and gradient value

Adjusts the input image in the direction that maximizes the loss

The resulting image tensor is a floating-point tensor of shape ,(1, 150, 150, 3)

with values that may not be integers within [0, 255]. Hence you need to post-process this
tensor to turn it into a displayable image. You do so with the following straightforward
utility function.

Listing 5.38 Utility function to convert a tensor into a valid image

grads <- grads / (K$sqrt(K$mean(K$square(grads))) + 1e-5)

iterate <- K$`function`(list(model$input), list(loss, grads))

c(loss_value, grads_value) %<-%
 iterate(list(array(0, dim = c(1, 150, 150, 3))))

input_img_data <-
 array(runif(150 * 150 * 3), dim = c(1, 150, 150, 3)) * 20 + 128

step <- 1

for (i in 1:40) {

 c(loss_value, grads_value) %<-% iterate(list(input_img_data))

 input_img_data <- input_img_data + (grads_value * step)
}

deprocess_image <- function(x) {

 dms <- dim(x)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

156

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Normalizes the tensor: centers on 0., ensures that std is 0.1

Clips to [0, 1]

Reshape to original image dimensions

Now you have all the pieces. Let’s put them together into an R function that takes as
input a layer name and a filter index, and returns a valid image tensor representing the
pattern that maximizes the activation of the specified filter.

Listing 5.39 Function to generate filter visualizations

Builds a loss function that maximizes the activation of the nth filter of the layer
under consideration

Computes the gradient of the input picture with regard to this loss

Normalization trick: normalizes the gradient

Returns the loss and grads given the input picture

Starts from a gray image with some noise

Runs gradient ascent for 40 steps

 x <- x - mean(x)

 x <- x / (sd(x) + 1e-5)
 x <- x * 0.1

 x <- x + 0.5

 x <- pmax(0, pmin(x, 1))

 array(x, dim = dms)
}

generate_pattern <- function(layer_name, filter_index, size = 150) {

 layer_output <- model$get_layer(layer_name)$output
 loss <- K$mean(layer_output[,,,filter_index])

 grads <- K$gradients(loss, model$input)[[1]]

 grads <- grads / (K$sqrt(K$mean(K$square(grads))) + 1e-5)

 iterate <- K$`function`(list(model$input), list(loss, grads))

 input_img_data <-

 array(runif(size * size * 3), dim = c(1, size, size, 3)) * 20 + 128

 step <- 1

 for (i in 1:40) {
 c(loss_value, grads_value) %<-% iterate(list(input_img_data))
 input_img_data <- input_img_data + (grads_value * step)
 }

 img <- input_img_data[1,,,]
 deprocess_image(img)
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

157

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Let’s try it (see figure 5.25):

Figure 5.25 Pattern that the 1st channel in
layer block3_conv1 responds to
maximally

It seems that filter 1 in layer is responsive to a polka-dot pattern.block3_conv1

Now the fun part: you can start visualizing every filter in every layer. For simplicity,
you’ll only look at the first 64 filters in each layer, and you’ll only look at the first layer
of each convolution block (, , , block1_conv1 block2_conv1 block3_conv1

,). You’ll arrange the outputs on an 8 × 8 grid of filterblock4_conv1 block5_conv1

patterns (see figures 5.26–5.29).

Listing 5.40 Generating a grid of all filter response patterns in a layer

> library(grid)
> grid.raster(generate_pattern("block3_conv1", 1))

library(grid)
library(gridExtra)
dir.create("vgg_filters")
for (layer_name in c("block1_conv1", "block2_conv1",
 "block3_conv1", "block4_conv1")) {
 size <- 140

 png(paste0("vgg_filters/", layer_name, ".png"),
 width = 8 * size, height = 8 * size)

 grobs <- list()
 for (i in 0:7) {
 for (j in 0:7) {
 pattern <- generate_pattern(layer_name, i + (j*8) + 1, size = size)
 grob <- rasterGrob(pattern,
 width = unit(0.9, "npc"),
 height = unit(0.9, "npc"))
 grobs[[length(grobs)+1]] <- grob
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

158

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 5.26 Filter patterns for layer block1_conv1

Figure 5.27 Filter patterns for layer block2_conv1

 grid.arrange(grobs = grobs, ncol = 8)
 dev.off()
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

159

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 5.28 Filter patterns for layer block3_conv1

Figure 5.29 Filter patterns for layer block4_conv1

These filter visualizations tell you a lot about how convnet layers see the world: each
layer in a convnet learns a collection of filters such that their inputs can be expressed as a
combination of the filters. This is similar to how the Fourier transform decomposes
signals onto a bank of cosine functions. The filters in these convnet filter banks get
increasingly complex and refined as you go higher in the model:

The filters from the first layer in the model () encode simple directionalblock1_conv1

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

160

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

edges and colors (or colored edges in some cases).
The filters from encode simple textures made from combinations of edgesblock2_conv1
and colors.
The filters in higher layers begin to resemble textures found in natural images: feathers,
eyes, leaves, and so on.

We’ll introduce one more visualization technique: one that is useful for understanding
which parts of a given image led a convnet to its final classification decision. This is
helpful for debugging the decision process of a convnet, particularly in the case of a
classification mistake. It also allows you to locate specific objects in an image.

This general category of techniques is called (CAM)class activation map
visualization, and it consists of producing heatmaps of class activation over input images.
A class-activation heatmap is a 2D grid of scores associated with a specific output class,
computed for every location in any input image, indicating how important each location
is with respect to the class under consideration. For instance, given an image fed into a
cat-versus-dog convnet, CAM visualization allows you to generate a heatmap for the
class "cat," indicating how cat-like different parts of the image are, and also a heatmap
for the class "dog," indicating how dog-like parts of the image are.

The specific implementation you’ll use is the one described in "Grad-CAM: Visual
Explanations from Deep Networks via Gradient-based Localization." . It’s very simple: it9

consists of taking the output feature map of a convolution layer, given an input image,
and weighing every channel in that feature map by the gradient of the class with respect
to the channel. Intuitively, one way to understand this trick is that you’re weighting a
spatial map of "how intensely the input image activates different channels" by "how
important each channel is with regard to the class," resulting in a spatial map of "how
intensely the input image activates the class."

Footnote 9mRamprasaath R. Selvaraju et al., Cornell University Library, March 21, 2017,
.arxiv.org/abs/1610.02391

We’ll demonstrate this technique using the pretrained VGG16 network again.

Listing 5.41 Loading the VGG16 network with pretrained weights

Note that you include the densely connected classifier on top; in all previous cases,
you discarded it.

Consider the image of two African elephants shown in figure 5.34 (under a Creative
Commons license), possibly a mother and her calf, strolling on the savanna.

Let’s convert this image into something the VGG16 model can read: the model was
trained on images of size 224 × 244, preprocessed according to a few rules that are

5.4.3 Visualizing heatmaps of class activation

model <- application_vgg16(weights = "imagenet")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

161

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://arxiv.org/abs/1610.02391
https://forums.manning.com/forums/deep-learning-with-r

packaged in the utility function . So you need to loadimagenet_preprocess_input()

the image, resize it to 224 × 224, convert it to an array, and apply these preprocessing
rules.

Figure 5.30 Test picture of African elephants

Listing 5.42 Preprocessing an input image for VGG16

Local path to the target image

Image of size 224 × 224

Array of shape (224, 224, 3)

Adds a dimension to transform the array into a batch of size (1, 224, 224, 3)

Preprocesses the batch (this does channel-wise color normalization)

You can now run the pretrained network on the image and decode its prediction
vector back to a human-readable format:

img_path <- "~/Downloads/creative_commons_elephant.jpg"

img <- image_load(img_path, target_size = c(224, 224)) %>%

 image_to_array() %>%

 array_reshape(dim = c(1, 224, 224, 3)) %>%

 imagenet_preprocess_input()

> preds <- model %>% predict(img)
> imagenet_decode_predictions(preds, top = 3)[[1]]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

162

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

The top three classes predicted for this image are as follows:

African elephant (with 90.9% probability)
Tusker (with 8.6% probability)
Indian elephant (with 0.4% probability)

The network has recognized the image as containing an undetermined quantity of
African elephants. The entry in the prediction vector that was maximally activated is the
one corresponding to the "African elephant" class, at index 387:

To visualize which parts of the image are the most African elephant-like, let’s set up
the Grad-CAM process.

Listing 5.43 Setting up the Grad-CAM algorithm

"African elephant" entry in the prediction vector

Output feature map of the block5_conv3 layer, the last convolutional layer in
VGG16

Gradient of the "African elephant" class with regard to the output feature map of
block5_conv3

Vector of shape (512) where each entry is the mean intensity of the gradient over a
specific feature map channel

Lets you access the values of the quantities you just defined: pooled_grads and the

 class_name class_description score
1 n02504458 African_elephant 0.909420729
2 n01871265 tusker 0.086183183
3 n02504013 Indian_elephant 0.004354581

> which.max(preds[1,])
[1] 387

african_elephant_output <- model$output[, 387]

last_conv_layer <- model %>% get_layer("block5_conv3")

grads <- K$gradients(african_elephant_output, last_conv_layer$output)[[1]]

pooled_grads <- K$mean(grads, axis = c(0L, 1L, 2L))

iterate <- K$`function`(list(model$input),
 list(pooled_grads, last_conv_layer$output[1,,,]))

c(pooled_grads_value, conv_layer_output_value) %<-% iterate(list(img))

for (i in 1:512) {
 conv_layer_output_value[,,i] <-
 conv_layer_output_value[,,i] * pooled_grads_value[[i]]
}

heatmap <- apply(conv_layer_output_value, c(1,2), mean)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

163

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

output feature map of block5_conv3, given a sample image

Values of these two quantities, given the sample image of two elephants

Multiplies each channel in the feature-map array by "how important this channel
is" with regard to the elephant class

The channel-wise mean of the resulting feature map is the heatmap of the class
activation.

For visualization purposes, you’ll also normalize the heatmap between 0 and 1. The
result is shown in figure 5.31.

Listing 5.44 Heatmap post-processing

Normalize between 0 and 1

Function to write a heatmap to a PNG

Write the heatmap

Figure 5.31 African elephant
class-activation heatmap over
the test picture

Finally, we will use the package to generate an image that superimposes themagick
original image with the heatmap we just obtained:

Listing 5.45 Superimposing the heatmap with the original picture

heatmap <- pmax(heatmap, 0)

heatmap <- heatmap / max(heatmap)

write_heatmap <- function(heatmap, filename, width = 224, height = 224,
 bg = "white", col = terrain.colors(12)) {
 png(filename, width = width, height = height, bg = bg)
 op = par(mar = c(0,0,0,0))
 on.exit({par(op); dev.off()}, add = TRUE)
 rotate <- function(x) t(apply(x, 2, rev))
 image(rotate(heatmap), axes = FALSE, asp = 1, col = col)
}

write_heatmap(heatmap, "elephant_heatmap.png")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

164

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Read the original elephant image and it’s geometry

Create a blended / transparent version of the heatmap image

Overlay the heatmap

Figure 5.32 Superimposing the class-activation heatmap on the original picture

This visualization technique answers two important questions:

Why did the network think this image contained an African elephant?
Where is the African elephant located in the picture?

In particular, it’s interesting to note that the ears of the elephant calf are strongly
activated: this is probably how the network can tell the difference between African and

library(magick)
library(viridis)

image <- image_read(img_path)
info <- image_info(image)
geometry <- sprintf("%dx%d!", info$width, info$height)

pal <- col2rgb(viridis(20), alpha = TRUE)
alpha <- floor(seq(0, 255, length = ncol(pal)))
pal_col <- rgb(t(pal), alpha = alpha, maxColorValue = 255)
write_heatmap(heatmap, "elephant_overlay.png",
 width = 14, height = 14, bg = NA, col = pal_col)

image_read("elephant_overlay.png") %>%
 image_resize(geometry, filter = "quadratic") %>%
 image_composite(image, operator = "blend", compose_args = "20") %>%
 plot()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

165

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Indian elephants.

Convnets are the best tool for attacking visual-classification problems.
Convnets work by learning a hierarchy of modular patterns and concepts to represent the
visual world.
The representations they learn are easy to inspect—convnets the opposite of black boxes!
You’re now capable of training your own convnet from scratch to solve an
image-classification problem.
You understand how to use visual data augmentation to fight overfitting.
You know how to use a pretrained convnet to do feature extraction and fine-tuning.
You can generate visualizations of the filters learned by your convnets, as well as
heatmaps of class activity.

5.5 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

166

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

6
This chapter covers

This chapter explores deep-learning models that can process text (understood as
sequences of word or sequences of characters), timeseries, and sequence data in general.
The two fundamental deep-learning algorithms for sequence processing are recurrent

 and , the one-dimensional version of the 2D convnets thatneural networks 1D convnets
we covered in the previous chapters. We’ll discuss both of these approaches in this
chapter.

Applications of these algorithms include the following:

Document classification and timeseries classification, such as identifying the topic of an
article or the author of a book
Timeseries comparisons, such as estimating how closely related two documents or two
stock tickers are
Sequence-to-sequence learning, such as decoding an English sentence into French
Sentiment analysis, such as classifying the sentiment of tweets or movie reviews as
positive or negative
Timeseries forecasting, such as predicting the future weather at a certain location, given
recent weather data

This chapter’s examples will focus on two narrow tasks: sentiment analysis on the
IMDB dataset, a task we approached earlier in the book, and weather forecasting. But the
techniques we’ll demonstrate for these two tasks are relevant to all the applications we
just listed, and many more.

Deep learning for text and sequences

Preprocessing text data into useful representations
Working with recurrent neural networks
Using 1D convnets for sequence processing

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

167

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Text is one of the most widespread forms of sequence data. It can be understood as either
a sequence of characters or a sequence of words, but it’s most common to work at the
level of words. The deep-learning sequence-processing models that we’ll introduce in the
following sections can use text to produce a basic form of natural language
understanding, sufficient for applications including document classification, sentiment
analysis, author identification, and even answering questions (in a constrained context).
Of course, keep in mind throughout this chapter that none of these deep-learning models
truly understand text in a human sense; rather, these models can map the statistical
structure of written language, which is sufficient to solve many simple textual tasks.
Deep learning for natural-language processing is pattern recognition applied to words,
sentences, and paragraphs, in much the same way that computer vision is pattern
recognition applied to pixels.

Like all other neural networks, deep-learning models don’t take as input raw text:
they only work with numeric tensors. text is the process of transforming textVectorizing
into numeric tensors. This can be done in multiple ways:

Segment text into words, and transform each word into a vector.
Segment text into characters, and transform each character into a vector.
Extract N-grams of words or characters, and transform each N-gram into a vector.

 are overlapping groups of multiple consecutive words or characters.N-grams

Collectively, the different units into which you can break down text (words,
characters, or N-grams) are called , and breaking text into such tokens is called tokens

. All text-vectorization processes consist of applying some tokenizationtokenization
scheme and then associating numeric vectors with the generated tokens. These vectors,
packed into sequence tensors, are fed into deep neural networks. There are multiple ways
to associate a vector with a token. In this section, we’ll present two major ones: one-hot

 of tokens, and (typically used exclusively for words, andencoding token embedding
called). The remainder of this section explains these techniques andword embedding
shows how to use them to go from raw text to a tensor that you can send to a Keras
network.

Figure 6.1 From text to tokens to vectors

6.1 Working with text data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

168

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

NOTE Understanding N-grams and bag-of-words

Word N-grams are groups of (or fewer) consecutive words that you canN
extract from a sentence. The same concept may also be applied to
characters instead of words.

Here’s a simple example. Consider the sentence "The cat sat on the
mat". It may be decomposed into the following set of 2-grams:

It may also be decomposed into the following set of 3-grams:

Such a set is called a or , respectively.bag-of-2-grams bag-of-3-grams
The term here refers to the fact that you’re dealing with a ofbag set
tokens rather than a list or sequence: the tokens have no specific order.
This family of tokenization methods is called .bag-of-words

Because bag-of-words isn’t an order-preserving tokenization method
(the tokens generated are understood as a set, not a sequence, and the
general structure of the sentences is lost), it tends to be used in shallow
language-processing models rather than in deep-learning models.
Extracting N-grams is a form of feature engineering, and deep learning
does away with this kind of rigid, brittle approach, replacing it with
hierarchical feature learning. One-dimensional convnets and recurrent
neural networks, introduced later in this chapter, are capable of learning
representations for groups of words and characters without being
explicitly told about the existence of such groups, by looking at continuous
word or character sequences. For this reason, we won’t be covering
N-grams any further in this book. But do keep in mind that they’re a
powerful, unavoidable feature-engineering tool when using lightweight,
shallow text-processing models such as logistic regression and random
forests.

One-hot encoding is the most common, most basic way to turn a token into a vector. You
saw it in action in the initial IMDB and Reuters examples in chapter 3 (done with words,
in that case). It consists of associating a unique integer index with every word and then
turning this integer index into a binary vector of size (the size of the vocabulary); thei N
vector is all zeros except for the _i_th entry, which is 1.

Of course, one-hot encoding can be done at the character level, as well. To
unambiguously drive home what one-hot encoding is and how to implement it, listings
6.1 and 6.2 show two toy examples: one for words, the other for characters.

{"The", "The cat", "cat", "cat sat", "sat",
 "sat on", "on", "on the", "the", "the mat", "mat"}

{"The", "The cat", "cat", "cat sat", "The cat sat",
 "sat", "sat on", "on", "cat sat on", "on the", "the",
 "sat on the", "the mat", "mat", "on the mat"}

6.1.1 One-hot encoding of words and characters

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

169

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Listing 6.1 Word-level one-hot encoding (toy example)

Initial data: one entry per sample (in this example, a sample is a sentence, but it
could be an entire document)

Builds an index of all tokens in the data

Tokenizes the samples via the strsplit function. In real life, you’d also strip
punctuation and special characters from the samples.

Assigns a unique index to each unique word. Note that you don’t attribute index 1
to anything.

Vectorizes the samples. You’ll only consider the first max_length words in each
sample.

This is where you store the results.

Listing 6.2 Character-level one-hot encoding (toy example)

samples <- c("The cat sat on the mat.", "The dog ate my homework.")

token_index <- list()
for (sample in samples)

 for (word in strsplit(sample, " ")[[1]])
 if (!word %in% names(token_index))

 token_index[[word]] <- length(token_index) + 2

max_length <- 10

results <- array(0, dim = c(length(samples),
 max_length,

 max(as.integer(token_index))))

for (i in 1:length(samples)) {
 sample <- samples[[i]]
 words <- head(strsplit(sample, " ")[[1]], n = max_length)
 for (j in 1:length(words)) {
 index <- token_index[[words[[j]]]]
 results[[i, j, index]] <- 1
 }
}

samples <- c("The cat sat on the mat.", "The dog ate my homework.")

ascii_tokens <- c("", sapply(as.raw(c(32:126)), rawToChar))
token_index <- c(1:(length(ascii_tokens)))
names(token_index) <- ascii_tokens

max_length <- 50

results <- array(0, dim = c(length(samples), max_length, length(token_index)))

for (i in 1:length(samples)) {
 sample <- samples[[i]]
 characters <- strsplit(sample, "")[[1]]
 for (j in 1:length(characters)) {
 character <- characters[[j]]
 results[i, j, token_index[[character]]] <- 1
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

170

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Note that Keras has built-in utilities for doing one-hot encoding of text at the word
level or character level, starting from raw text data. You should use these utilities,
because they take care of a number of important features such as stripping special
characters from strings and only taking into account the most common words in yourN
dataset (a common restriction, to avoid dealing with very large input vector spaces).

Listing 6.3 Using Keras for word-level one-hot encoding

Creates a tokenizer, configured to only take into account the 1,000 most common
words

Builds the word index

Turns strings into lists of integer indices

You could also directly get the one-hot binary representations. Vectorization
modes other than one-hot encoding are supported by this tokenizer.

How you can recover the word index that was computed

A variant of one-hot encoding is the so-called , which you canone-hot hashing trick
use when the number of unique tokens in your vocabulary is too large to handle
explicitly. Instead of explicitly assigning an index to each word and keeping a reference
of these indices in a dictionary, you can hash words into vectors of fixed size. This is
typically done with a very lightweight hashing function. The main advantage of this
method is that it does away with maintaining an explicit word index, which saves
memory and allows online encoding of the data (you can generate token vectors right
away, before you’ve seen all of the available data). The one drawback of this approach is
that it’s susceptible to : two different words may end up with the samehash collisions
hash, and subsequently any machine-learning model looking at these hashes won’t be
able to tell the difference between these words. The likelihood of hash collisions
decreases when the dimensionality of the hashing space is much larger than the total
number of unique tokens being hashed.

Listing 6.4 Word-level one-hot encoding with hashing trick (toy example)

library(keras)

samples <- c("The cat sat on the mat.", "The dog ate my homework.")

tokenizer <- text_tokenizer(num_words = 1000) %>%

 fit_text_tokenizer(samples)

sequences <- texts_to_sequences(tokenizer, samples)

one_hot_results <- texts_to_matrix(tokenizer, samples, mode = "binary")

word_index <- tokenizer$word_index

cat("Found", length(word_index), "unique tokens.\n")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

171

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Stores the words as vectors of size 1,000. If you have close to 1,000 words (or
more), you’ll see many hash collisions, which will decrease the accuracy of this
encoding method.

Use hashFunction::spooky.32() to hash the word into a random integer index
between 0 and 1,000

Another popular and powerful way to associate a vector with a word is the use of dense
, also called . Whereas the vectors obtained throughword vectors word embeddings

one-hot encoding are binary, sparse (mostly made of zeros), and very high-dimensional
(same dimensionality as the number of words in the vocabulary), word embeddings are
low-dimensional floating-point vectors (that is, dense vectors, as opposed to sparse
vectors); see figure 6.2. Unlike the word vectors obtained via one-hot encoding, word
embeddings are learned from data. It’s common to see word embeddings that are
256-dimensional, 512-dimensional, or 1,024-dimensional when dealing with very large
vocabularies. On the other hand, one-hot encoding words generally leads to vectors that
are 20,000-dimensional or greater (capturing a vocabulary of 20,000 token, in this case).
So, word embeddings pack more information into far fewer dimensions.

library(hashFunction)

samples <- c("The cat sat on the mat.", "The dog ate my homework.")

dimensionality <- 1000
max_length <- 10

results <- array(0, dim = c(length(samples), max_length, dimensionality))

for (i in 1:length(samples)) {
 sample <- samples[[i]]
 words <- head(strsplit(sample, " ")[[1]], n = max_length)
 for (j in 1:length(words)) {

 index <- abs(spooky.32(words[[i]])) %% dimensionality
 results[[i, j, index]] <- 1
 }
}

6.1.2 Using word embeddings

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

172

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 6.2 Whereas word representations obtained from one-hot encoding or hashing are
sparse, high-dimensional, and hardcoded, word embeddings are dense, relatively
low-dimensional, and learned from data.

There are two ways to obtain word embeddings:

Learn word embeddings jointly with the main task you care about (such as document
classification or sentiment prediction). In this setup, you start with random word vectors
and then learn word vectors in the same way you learn the weights of a neural network.
Load into your model word embeddings that were precomputed using a different
machine-learning task than the one you’re trying to solve. These are called pretrained

.word embeddings

Let’s look at both.

The simplest way to associate a dense vector with a word is to choose the vector at
random. The problem with this approach is that the resulting embedding space has no
structure: for instance, the words and may end up with completelyaccurate exact
different embeddings, even though they’re interchangeable in most sentences. It’s
difficult for a deep neural network to make sense of such a noisy, unstructured
embedding space.

To get a bit more abstract, the geometric relationships between word vectors should
reflect the semantic relationships between these words. Word embeddings are meant to
map human language into a geometric space. For instance, in a reasonable embedding
space, you would expect synonyms to be embedded into similar word vectors; and in
general, you would expect the geometric distance (such as L2 distance) between any two

LEARNING WORD EMBEDDINGS WITH AN EMBEDDING LAYER

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

173

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

word vectors to relate to the semantic distance between the associated words (words
meaning different things are embedded at points far away from each other, whereas
related words are closer). In addition to distance, you may want specific in thedirections
embedding space to be meaningful. To make this clearer, let’s look at a concrete
example.

In figure 6.3, four words are embedded on a 2D plane, , , , and . Withcat dog wolf tiger
the vector representations we chose here, some semantic relationships between these
words can be encoded as geometric transformations. For instance, the same vector allows
us to go from to and from to : this vector could be interpreted as thecat tiger dog wolf
"from pet to wild animal" vector. Similarly, another vector lets us go from to anddog cat
from to , which could be interpreted as a "from canine to feline" vector.wolf tiger

Figure 6.3 A toy example of a word-embedding space

In real-world word-embedding spaces, common examples of meaningful geometric
transformations are "gender" vectors and "plural" vectors. For instance, by adding a
"female" vector to the vector "king", we obtain the vector "queen". By adding a "plural"
vector, we obtain "kings". Word-embedding spaces typically feature thousands of such
interpretable and potentially useful vectors.

Is there some ideal word-embedding space that would perfectly map human language
and could be used for any natural language-processing task? Possibly, but we have yet to
compute anything of the sort. Also, there is no such a thing as —therehuman language
are many different languages, and they aren’t isomorphic, because a language is the
reflection of a specific culture and a specific context. But more pragmatically, what
makes a good word-embedding space depends heavily on your task: the perfect
word-embedding space for an English-language movie-review sentiment-analysis model
may look different from the perfect embedding space for an English-language
legal-document-classification model, because the importance of certain semantic
relationships varies from task to task.

It’s thus reasonable to a new embedding space with every new task.learn
Fortunately, backpropagation makes this easy, and Keras makes it even easier. It’s about
learning the weights of a layer using layer_embedding

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

174

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Listing 6.5 Instantiating an embedding layer

The embedding layer takes at least two arguments: the number of possible tokens
(here, 1,000) and the dimensionality of the embeddings (here, 64).

A is best understood as a dictionary that maps integer indiceslayer_embedding

(which stand for specific words) to dense vectors. It takes integers as input, it looks up
these integers in an internal dictionary, and it returns the associated vectors. It’s
effectively a dictionary lookup (see figure 6.4).

Figure 6.4 An embedding layer

An embedding layer takes as input a 2D tensor of integers, of shape (samples,
, where each entry is a sequence of integers. It can embed sequencessequence_length)

of variable lengths: for instance, you could feed into the embedding layer in the previous
example batches with shapes (batch of 32 sequences of length 10) or (32, 10) (64,

 (batch of 64 sequences of length 15). All sequences in a batch must have the same15)

length, though (because you need to pack them into a single tensor), so sequences that are
shorter than others should be padded with zeros, and sequences that are longer should be
truncated.

This layer returns a 3D floating-point tensor, of shape (samples,

. Such a 3D tensor can then besequence_length, embedding_dimensionality)

processed by an RNN layer or a 1D convolution layer (both will be introduced in the
following sections).

When you instantiate an embedding layer, its weights (its internal dictionary of token
vectors) are initially random, just as with any other layer. During training, these word
vectors are gradually adjusted via backpropagation, structuring the space into something
the downstream model can exploit. Once fully trained, the embedding space will show a
lot of structure—a kind of structure specialized for the specific problem for which you
were training your model.

Let’s apply this idea to the IMDB movie-review sentiment-prediction task that you’re
already familiar with. First, you’ll quickly prepare the data. You’ll restrict the movie
reviews to the top 10,000 most common words (as you did the first time you worked with
this dataset) and cut off the reviews after only 20 words. The network will learn
8-dimensional embeddings for each of the 10,000 words, turn the input integer sequences
(2D integer tensor) into embedded sequences (3D float tensor), flatten the tensor to 2D,
and train a single dense layer on top for classification.

Listing 6.6 Loading the IMDB data for use with an embedding layer

embedding_layer <- layer_embedding(input_dim = 1000, output_dim = 64)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

175

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Number of words to consider as features

Cuts off the text after this number of words (among the max_features most
common words)

Loads the data as lists of integers

Turns the lists of integers into a 2D integer tensor of shape (samples, maxlen)

Listing 6.7 Using an embedding layer and classifier on the IMDB data

Specifies the maximum input length to the embedding layer so you can later flatten
the embedded inputs. After the embedding layer, the activations have shape
(samples, maxlen, 8).

Flattens the 3D tensor of embeddings into a 2D tensor of shape (samples, maxlen *
8)

Adds the classifier on top

You get to a validation accuracy of ~76%, which is pretty good considering that
you’re only looking at the first 20 words in every review. But note that merely flattening
the embedded sequences and training a single dense layer on top leads to a model that
treats each word in the input sequence separately, without considering inter-word
relationships and sentence structure (for example, this model would likely treat both "this
movie is a bomb" and "this movie is the bomb" as being negative reviews). It’s much

max_features <- 10000

maxlen <- 20

imdb <- dataset_imdb(num_words = max_features)

c(c(x_train, y_train), c(x_test, y_test)) %<-% imdb

x_train <- pad_sequences(x_train, maxlen = maxlen)
x_test <- pad_sequences(x_test, maxlen = maxlen)

model <- keras_model_sequential() %>%

 layer_embedding(input_dim = 10000, output_dim = 8,
 input_length = maxlen) %>%

 layer_flatten() %>%

 layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("acc")
)

summary(model)

history <- model %>% fit(
 x_train, y_train,
 epochs = 10,
 batch_size = 32,
 validation_split = 0.2
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

176

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

better to add recurrent layers or 1D convolutional layers on top of the embedded
sequences to learn features that take into account each sequence as a whole. That’s what
we’ll focus on in the next few sections.

Sometimes, you have so little training data available that you can’t use your data alone to
learn an appropriate task-specific embedding of your vocabulary. What do you do then?

Instead of learning word embeddings jointly with the problem you want to solve, you
can load embedding vectors from a precomputed embedding space that you know is
highly structured and exhibits useful properties—that captures generic aspects of
language structure. The rationale behind using pretrained word embeddings in natural
language processing is much the same as for using pretrained convnets in image
classification: you don’t have enough data available to learn truly powerful features on
your own, but you expect the features that you need to be fairly generic—that is,
common visual features or semantic features. In this case, it makes sense to reuse features
learned on a different problem.

Such word embeddings are generally computed using word-occurrence statistics
(observations about what words co-occur in sentences or documents), using a variety of
techniques, some involving neural networks, others not. The idea of a dense,
low-dimensional embedding space for words, computed in an unsupervised way, was
initially explored by Bengio et al. in the early 2000s, but it only started to take off in10

research and industry applications after the release of one of the most famous and
successful word-embedding schemes: the Word2vec algorithm (

), developed by Tomas Mikolov at Google in 2013.code.google.com/archive/p/word2vec
Word2vec dimensions capture specific semantic properties, such as gender.

Footnote 10mYoshua Bengio et al., (Springer, 2003).Neural Probabilistic Language Models

There are various precomputed databases of word embeddings that you can download
and use in a Keras embedding layer. Word2vec is one of them. Another popular one is
called Global Vectors for Word Representation (GloVe,),nlp.stanford.edu/projects/glove
which was developed by Stanford researchers in 2014. This embedding technique is
based on factorizing a matrix of word co-occurrence statistics. Its developers have made
available precomputed embeddings for millions of English tokens, obtained from
Wikipedia data and Common Crawl data.

Let’s look at how you can get started using GloVe embeddings in a Keras model. The
same method will of course be valid for Word2vec embeddings or any other
word-embedding database. You’ll also use this example to refresh the text-tokenization
techniques we introduced a few paragraphs ago: you’ll start from raw text and work your
way up.

USING PRETRAINED WORD EMBEDDINGS

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

177

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://code.google.com/archive/p/word2vec
https://nlp.stanford.edu/projects/glove
https://forums.manning.com/forums/deep-learning-with-r

You’ll be using a model similar to the one we just went over: embedding sentences in
sequences of vectors, flattening them, and training a dense layer on top. But you’ll do so
using pretrained word embeddings; and instead of using the pretokenized IMDB data
packaged in Keras, you’ll start from scratch by downloading the original text data.

First, head to and download the raw IMDB datasetai.stanford.edu/~amaas/data/sentiment
(if the URL isn’t working anymore, Google "IMDB dataset"). Uncompress it.

Now, let’s collect the individual training reviews into a list of strings, one string per
review. You’ll also collect the review labels (positive / negative) into a list.labels

Listing 6.8 Processing the labels of the raw IMDB data

Let’s vectorize the text and prepare a training and validation split, using the concepts we
introduced earlier in this section. Because pretrained word embeddings are meant to be
particularly useful on problems where little training data is available (otherwise,
task-specific embeddings are likely to outperform them), we’ll add the following twist:
restricting the training data to the first 200 samples. So you’ll be learning to classify
movie reviews after looking at just 200 examples.

Listing 6.9 Tokenizing the text of the raw IMDB data

6.1.3 Putting it all together: from raw text to word embeddings

DOWNLOADING THE IMDB DATA AS RAW TEXT

imdb_dir <- "~/Downloads/aclImdb"
train_dir <- file.path(imdb_dir, "train")

labels <- c()
texts <- c()

for (label_type in c("neg", "pos")) {
 label <- switch(label_type, neg = 0, pos = 1)
 dir_name <- file.path(train_dir, label_type)
 for (fname in list.files(dir_name, pattern = glob2rx("*.txt"),
 full.names = TRUE)) {
 texts <- c(texts, readChar(fname, file.info(fname)$size))
 labels <- c(labels, label)
 }
}

TOKENIZING THE DATA

library(keras)

maxlen <- 100

training_samples <- 200

validation_samples <- 10000

max_words <- 10000

tokenizer <- text_tokenizer(num_words = max_words) %>%
 fit_text_tokenizer(texts)

sequences <- texts_to_sequences(tokenizer, texts)

word_index = tokenizer$word_index

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

178

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://ai.stanford.edu/~amaas/data/sentiment
https://forums.manning.com/forums/deep-learning-with-r

Cuts off reviews after 100 words

Trains on 200 samples

Validates on 10,000 samples

Considers only the top 10,000 words in the dataset

Splits the data into a training set and a validation set. But first shuffles the data,
because you’re starting with data in which samples are ordered (all negative first,
then all positive).

Go to , and download the precomputed embeddings fromnlp.stanford.edu/projects/glove
2014 English Wikipedia. It’s a 822 MB zip file called glove.6B.zip, containing
100-dimensional embedding vectors for 400,000 words (or nonword tokens). Unzip it.

Let’s parse the unzipped file (a .txt file) to build an index that maps words (as strings) to
their vector representation (as number vectors).

Listing 6.10 Parsing the GloVe word-embeddings file

Next, you’ll build an embedding matrix that you can load into an embedding layer. It
must be a matrix of shape , where each entry contains(max_words, embedding_dim) i
the -dimensional vector for the word of index in the reference wordembedding_dim i

cat("Found", length(word_index), "unique tokens.\n")

data <- pad_sequences(sequences, maxlen = maxlen)

labels <- as.array(labels)
cat("Shape of data tensor:", dim(data), "\n")
cat('Shape of label tensor:', dim(labels), "\n")

indices <- sample(1:nrow(data))
training_indices <- indices[1:training_samples]
validation_indices <- indices[(training_samples + 1):
 (training_samples + validation_samples)]

x_train <- data[training_indices,]
y_train <- labels[training_indices]

x_val <- data[validation_indices,]
y_val <- labels[validation_indices]

DOWNLOADING THE GLOVE WORD EMBEDDINGS

PREPROCESSING THE EMBEDDINGS

glove_dir = '~/Downloads/glove.6B'
lines <- readLines(file.path(glove_dir, "glove.6B.100d.txt"))

embeddings_index <- new.env(hash = TRUE, parent = emptyenv())
for (i in 1:length(lines)) {
 line <- lines[[i]]
 values <- strsplit(line, " ")[[1]]
 word <- values[[1]]
 embeddings_index[[word]] <- as.double(values[-1])
}

cat("Found", length(embeddings_index), "word vectors.\n")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

179

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://nlp.stanford.edu/projects/glove
https://forums.manning.com/forums/deep-learning-with-r

index (built during tokenization). Note that index 1 isn’t supposed to stand for any word
or token—it’s a placeholder.

Listing 6.11 Preparing the GloVe word-embeddings matrix

Words not found in the embedding index will be all zeros.

You’ll use the same model architecture as before.

Listing 6.12 Model definition

The embedding layer has a single weight matrix: a 2D float matrix where each entry isi
the word vector meant to be associated with index . Simple enough. Load the GloVei
matrix you prepared into the embedding layer, the first layer in the model.

Listing 6.13 Loading pretrained word embeddings into the embedding layer

Additionally, you’ll freeze the weights of the embedding layer, following the same
rationale you’re already familiar with in the context of pretrained convnet features: when
parts of a model are pretrained (like your embedding layer) and parts are randomly
initialized (like your classifier), the pretrained parts shouldn’t be updated during training,
to avoid forgetting what they already know. The large gradient updates triggered by the
randomly initialized layers would be disruptive to the already-learned features.

embedding_dim <- 100

embedding_matrix <- array(0, c(max_words, embedding_dim))

for (word in names(word_index)) {
 index <- word_index[[word]]
 if (index < max_words) {
 embedding_vector <- embeddings_index[[word]]
 if (!is.null(embedding_vector))

 embedding_matrix[index+1,] <- embedding_vector
 }
}

DEFINING A MODEL

model <- keras_model_sequential() %>%
 layer_embedding(input_dim = max_words, output_dim = embedding_dim,
 input_length = maxlen) %>%
 layer_flatten() %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")

summary(model)

LOADING THE GLOVE EMBEDDINGS IN THE MODEL

get_layer(model, index = 1) %>%
 set_weights(list(embedding_matrix)) %>%
 freeze_weights()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

180

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Compile and train the model.

Listing 6.14 Training and evaluation

Now, plot the model’s performance over time (see figure 6.5).

Listing 6.15 Plotting the results

Figure 6.5 Training and validation metrics when using pretrained word embeddings

The model quickly starts overfitting, which is unsurprising given the small number of
training samples. Validation accuracy has high variance for the same reason, but it seems
to reach the high 50s.

Note that your mileage may vary: because you have so few training samples,
performance is heavily dependent on exactly which 200 samples you choose—and you’re

TRAINING AND EVALUATING THE MODEL

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("acc")
)

history <- model %>% fit(
 x_train, y_train,
 epochs = 20,
 batch_size = 32,
 validation_data = list(x_val, y_val)
)

save_model_weights_hdf5(model, "pre_trained_glove_model.h5")

plot(history)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

181

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

choosing them at random. If this works poorly for you, try choosing a different random
set of 200 samples, for the sake of the exercise (in real life, you don’t get to choose your
training data).

You can also train the same model without loading the pretrained word embeddings
and without freezing the embedding layer. In that case, you’ll be learning a task-specific
embedding of the input tokens, which is generally more powerful than pretrained word
embeddings when lots of data is available. But in this case, you have only 200 training
samples. Let’s try it (see figure 6.6).

Listing 6.16 Training the same model without pretrained word embeddings

Figure 6.6 Training and validation metrics without using pretrained word embeddings

Validation accuracy stalls in the mid 50s. So in this case, pretrained word embeddings
outperform jointly learned embeddings. If you increase the number of training samples,

model <- keras_model_sequential() %>%
 layer_embedding(input_dim = max_words, output_dim = embedding_dim,
 input_length = maxlen) %>%
 layer_flatten() %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("acc")
)

history <- model %>% fit(
 x_train, y_train,
 epochs = 20,
 batch_size = 32,
 validation_data = list(x_val, y_val)
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

182

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

this will quickly stop being the case—try it as an exercise.
Finally, let’s evaluate the model on the test data. First, you need to tokenize the test

data.

Listing 6.17 Tokenizing the data of the test set

Next, load and evaluate the first model.

Listing 6.18 Evaluating the model on the test set

You get an appalling test accuracy of 58%. Working with just a handful of training
samples is difficult!

Now you’re able to do the following:

Turn raw text into something a neural network can process
Use an embedding layer in a Keras model to learn task-specific token embeddings
Use pretrained word embeddings to get an extra boost on small
natural-language-processing problems

test_dir <- file.path(imdb_dir, "test")

labels <- c()
texts <- c()

for (label_type in c("neg", "pos")) {
 label <- switch(label_type, neg = 0, pos = 1)
 dir_name <- file.path(test_dir, label_type)
 for (fname in list.files(dir_name, pattern = glob2rx("*.txt"),
 full.names = TRUE)) {
 texts <- c(texts, readChar(fname, file.info(fname)$size))
 labels <- c(labels, label)
 }
}

sequences <- texts_to_sequences(tokenizer, texts)
x_test <- pad_sequences(sequences, maxlen = maxlen)
y_test <- as.array(labels)

model %>%
 load_model_weights_hdf5("pre_trained_glove_model.h5") %>%
 evaluate(x_test, y_test)

6.1.4 Wrapping up

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

183

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

A major characteristic of all neural networks you’ve seen so far, such as densely
connected networks and convnets, is that they have no memory. Each input shown to
them is processed independently, with no state kept in between inputs. With such
networks, in order to process a sequence or a temporal series of data points, you have to
show the entire sequence to the network at once: that is, turn it into a single data point.
For instance, this is what you did in the IMDB example: an entire movie review was
transformed into a single large vector and processed in one go. Such networks are called

.feedforward networks
In contrast, as you’re reading the present sentence, you’re processing it word by

word—or rather, eye saccade by eye saccade—while keeping memories of what came
before; this gives you a fluid representation of the meaning we’re conveying with this
sentence. Biological intelligence processes information incrementally while maintaining
an internal model of what it’s processing, built from past information and constantly
updated as new information comes in.

A (RNN) adopts the same principle, albeit in an extremelyrecurrent neural network
simplified version: it processes sequences by iterating through the sequence elements and
maintaining a containing information relative to what it has seen so far. In effect, anstate
RNN is a type of neural network that has an internal loop (see figure 6.9). The state of the
RNN is reset between processing two different, independent sequences (such as two
different IMDB reviews), so you still consider one sequence a single data point: a single
input to the network. What changes is that this data point is no longer processed in a
single step; rather, the network internally loops over sequence elements.

Figure 6.7 A recurrent network: a network with a loop

To make these notions of and clear, let’s implement the forward pass of aloop state
toy RNN in R. This RNN takes as input a sequence of vectors, which you’ll encode as a
2D tensor of size . It loops over timesteps, and at each(timesteps, input_features)

timestep, it considers its current state at and the input at (of shape t t

, and combines them to obtain the output at . You’ll then set the(input_features) t

6.2 Understanding recurrent neural networks

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

184

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

state for the next step to be this previous output. For the first timestep, the previous
output isn’t defined; hence there is no current state. So, you’ll initialize the state as an
all-zero vector called the of the network.initial state

In pseudocode, this is the RNN:

Listing 6.19 Pseudocode RNN

The state at t

Iterates over sequence elements

The previous output becomes the new state.

You can even flesh out the function : the transformation of the input and state intof

an output will be parametrized by two matrices, and , and a bias vector. It’s similar toW U

the transformation operated by a densely connected layer in a feedforward network.

Listing 6.20 More detailed pseudocode for the RNN

To make these notions absolutely unambiguous, let’s write a naive R implementation
of the forward pass of the simple RNN.

Listing 6.21 R implementation of a simple RNN

state_t = 0

for (input_t in input_sequence) {
 output_t <- f(input_t, state_t)

 state_t <- output_t
}

state_t <- 0
for (input_t in input_sequence) {
 output_t <- activation(dot(W, input_t) + dot(U, state_t) + b)
 state_t <- output_t
}

timesteps <- 100

input_features <- 32

output_features <- 64

random_array <- function(dim) {
 array(runif(prod(dim)), dim = dim)
}

inputs <- random_array(dim = c(timesteps, input_features))

state_t <- rep_len(0, length = c(output_features))

W <- random_array(dim = c(output_features, input_features))

U <- random_array(dim = c(output_features, output_features))

b <- random_array(dim = c(output_features, 1))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

185

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Number of timesteps in the input sequence

Dimensionality of the input feature space

Dimensionality of the output feature space

Input data: random noise for the sake of the example

Initial state: an all-zero vector

Creates random weight matrices

input_t is a vector of shape (input_features).

Combines the input with the current state (the previous output) to obtain the current
output

Updates the result matrix

Updates the state of the network for the next timestep

Easy enough: in summary, an RNN is a loop that reuses quantities computedfor

during the previous iteration of the loop. Nothing more. Of course, there are many
different RNNs fitting this definition that you could build—this example is one of the
simplest RNN formulations. RNNs are characterized by their step function, such as the
following function in this case (see figure 6.8):

Figure 6.8 A simple RNN, unrolled over time

output_sequence <- array(0, dim = c(timesteps, output_features))
for (i in 1:nrow(inputs)) {

 input_t <- inputs[i,]

 output_t <- tanh(as.numeric((W %*% input_t) + (U %*% state_t) + b))

 output_sequence[i,] <- as.numeric(output_t)

 state_t <- output_t
}

output_t <- tanh(as.numeric((W %*% input_t) + (U %*% state_t) + b))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

186

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

NOTE In this example, the final output is a 2D tensor of shape (timesteps,
, where each timestep is the output of the loop at time output_features) t

. Each timestep in the output tensor contains information aboutt

timesteps to in the input sequence—about the entire past. For this1 t

reason, in many cases, you don’t need this full sequence of outputs; you
just need the last output (at the end of the loop), because itoutput_t

already contains information about the entire sequence.

The process you just naively implemented in R corresponds to an actual Keras layer—
.layer_simple_rnn

There is one minor difference: processes batches of sequences,layer_simple_rnn

like all other Keras layers, not a single sequence as in the R example. This means it takes
inputs of shape , rather than (batch_size, timesteps, input_features)

.(timesteps, input_features)

Like all recurrent layers in Keras, can be run in two differentlayer_simple_rnn

modes: it can return either the full sequences of successive outputs for each timestep (a
3D tensor of shape) or only the last(batch_size, timesteps, output_features)

output for each input sequence (a 2D tensor of shape (batch_size,

). These two modes are controlled by the output_features) return_sequences

constructor argument. Let’s look at an example that uses and returnslayer_simple_rnn

the last state:

The following example returns the full state sequence:

6.2.1 A recurrent layer in Keras

layer_simple_rnn(units = 32)

library(keras)
model <- keras_model_sequential() %>%
 layer_embedding(input_dim = 10000, output_dim = 32) %>%
 layer_simple_rnn(units = 32)

> summary(model)

__
Layer (type) Output Shape Param #
==
embedding_22 (Embedding) (None, None, 32) 320000
__
simplernn_10 (SimpleRNN) (None, 32) 2080
==
Total params: 322,080
Trainable params: 322,080
Non-trainable params: 0

model <- keras_model_sequential() %>%
 layer_embedding(input_dim = 10000, output_dim = 32) %>%
 layer_simple_rnn(units = 32, return_sequences = TRUE)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

187

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

It’s sometimes useful to stack several recurrent layers one after the other in order to
increase the representational power of a network. In such a setup, you have to get all of
the intermediate layers to return full sequences:

Last layer only returns the last outputs

Now, let’s use such a model on the IMDB movie-review-classification problem. First,
preprocess the data.

Listing 6.22 Preparing the IMDB data

> summary(model)
__
Layer (type) Output Shape Param #
==
embedding_23 (Embedding) (None, None, 32) 320000
__
simplernn_11 (SimpleRNN) (None, None, 32) 2080
==
Total params: 322,080
Trainable params: 322,080
Non-trainable params: 0

model <- keras_model_sequential() %>%
 layer_embedding(input_dim = 10000, output_dim = 32) %>%
 layer_simple_rnn(units = 32, return_sequences = TRUE) %>%
 layer_simple_rnn(units = 32, return_sequences = TRUE) %>%
 layer_simple_rnn(units = 32, return_sequences = TRUE) %>%

 layer_simple_rnn(units = 32)

> summary(model)

__
Layer (type) Output Shape Param #
==
embedding_24 (Embedding) (None, None, 32) 320000
__
simplernn_12 (SimpleRNN) (None, None, 32) 2080
__
simplernn_13 (SimpleRNN) (None, None, 32) 2080
__
simplernn_14 (SimpleRNN) (None, None, 32) 2080
__
simplernn_15 (SimpleRNN) (None, 32) 2080
==
Total params: 328,320
Trainable params: 328,320
Non-trainable params: 0

library(keras)

max_features <- 10000

maxlen <- 500
batch_size <- 32

cat("Loading data...\n")
imdb <- dataset_imdb(num_words = max_features)
c(c(input_train, y_train), c(input_test, y_test)) %<-% imdb
cat(length(input_train), "train sequences\n")
cat(length(input_test), "test sequences")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

188

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Number of words to consider as features

Cuts off texts after this many words (among the max_features most common
words)

Let’s train a simple recurrent network using a and layer_embedding

.layer_simple_rnn

Listing 6.23 Training the model with embedding and simple RNN layers

Now, let’s display the training and validation loss and accuracy (see figure 6.9).

Listing 6.24 Plotting results

cat("Pad sequences (samples x time)\n")
input_train <- pad_sequences(input_train, maxlen = maxlen)
input_test <- pad_sequences(input_test, maxlen = maxlen)
cat("input_train shape:", dim(input_train), "\n")
cat("input_test shape:", dim(input_test), "\n")

model <- keras_model_sequential() %>%
 layer_embedding(input_dim = max_features, output_dim = 32) %>%
 layer_simple_rnn(units = 32) %>%
 layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("acc")
)

history <- model %>% fit(
 input_train, y_train,
 epochs = 10,
 batch_size = 128,
 validation_split = 0.2
)

plot(history)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

189

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 6.9 Training and validation metrics on IMDB with layer_simple_rnn

As a reminder, in chapter 3, the first naive approach to this dataset got you to a test
accuracy of 88%. Unfortunately, this small recurrent network doesn’t perform well
compared to this baseline (only 84% validation accuracy). Part of the problem is that
your inputs only consider the first 500 words, rather than full sequences—hence the RNN
has access to less information than the earlier baseline model. The remainder of the
problem is that isn’t good at processing long sequences, such as text.layer_simple_rnn

Other types of recurrent layers perform much better. Let’s look at some more advanced
layers.

Simple RNNs aren’t the only recurrent layers available in Keras. There are two others:
 and . In practice, you’ll always use one of these, because layer_lstm layer_gru

 is generally too simplistic to be of real use. One major issue with layer_simple_rnn

 is that although it should theoretically be able to retain at time layer_simple_rnn t

information about inputs seen many timesteps before, in practice, such long-term
dependencies are impossible to learn. This is due to the , anvanishing gradient problem
effect that is similar to what is observed with non-recurrent networks (feedforward
networks) that are many layers deep: as you keep adding layers to a network, the network
eventually becomes untrainable. The theoretical reasons for this effect were studied by
Hochreiter, Schmidhuber, and Bengio in the early 1990s. The and layers are11 LSTM GRU

designed to solve this problem.

Footnote 11mSee, for example, Yoshua Bengio, Patrice Simar, and Paolo Frasconi, "Learning Long-Term
Dependencies with Gradient Descent Is Difficult," 5, no. 2 (1994).IEEE Transactions on Neural Networks

Let’s consider the layer. The underlying Long Short-Term Memory (LSTM)LSTM

algorithm was developed by Hochreiter and Schmidhuber in 1997; it was the12

6.2.2 Understanding the LSTM and GRU layers

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

190

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

culmination of their research on the vanishing gradient problem.

Footnote 12mSepp Hochreiter and Jürgen Schmidhuber, "Long Short-Term Memory," Neural
 9, no. 8 (1997).Computation

This layer is a variant of the you already know about; it adds alayer_simple_rnn

way to carry information across many timesteps. Imagine a conveyor belt running
parallel to the sequence you’re processing. Information from the sequence can jump onto
the conveyor belt at any point, be transported to a later timestep, and jump off, intact,
when you need it. This is essentially what LSTM does: it saves information for later, thus
preventing older signals from gradually vanishing during processing.

To understand this in detail, let’s start from the simple RNN cell (see figure 6.10).
Because you’ll have a lot of weight matrices, you’ll index the and matrices in the cellW U

with the letter (and) for .o Wo Uo output

Figure 6.10 The starting point of an LSTM layer: a simple RNN

Let’s add to this picture an additional data flow that carries information across
timesteps. You’ll call its values at different timesteps , where stands for . ThisCt C carry
information will have the following impact on the cell: it will be combined with the input
connection and the recurrent connection (via a dense transformation: a dot product with a
weight matrix followed by a bias add and the application of an activation function), and it
will affect the state being sent to the next timestep (via an activation function an a
multiplication operation). Conceptually, the carry dataflow is a way to modulate the next
output and the next state (see figure 6.11). Simple so far.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

191

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 6.11 Going from a simple RNN to an LSTM: adding a carry track

Now the subtlety: the way the next value of the carry dataflow is computed. It
involves three distinct transformations. All three have the form of a simple RNN cell:

But all three transformations have their own weight matrices, which you’ll index with
the letters , , and . Here’s what you have so far (it may seem a bit arbitrary, but beari f k

with us).

Listing 6.25 Pseudocode details of the LSTM architecture (1/2)

You obtain the new carry state (the next) by combining , , and .c_t i_t f_t k_t

Listing 6.26 Pseudocode details of the LSTM architecture (2/2)

Add this as shown in figure 6.12. And that’s it. Not so complicated—merely a tad
complex.

y = activation(dot(state_t, U) + dot(input_t, W) + b)

output_t = activation(dot(state_t, Uo) + dot(input_t, Wo) + dot(C_t, Vo) + bo)

i_t = activation(dot(state_t, Ui) + dot(input_t, Wi) + bi)
f_t = activation(dot(state_t, Uf) + dot(input_t, Wf) + bf)
k_t = activation(dot(state_t, Uk) + dot(input_t, Wk) + bk)

c_t+1 = i_t * k_t + c_t * f_t

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

192

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 6.12 Anatomy of an LSTM

If you want to get philosophical, you can interpret what each of these operations is
meant to do. For instance, you can say that multiplying and is a way toc_t f_t

deliberately forget irrelevant information in the carry dataflow. Meanwhile, and i_t k_t

provide information about the present, updating the carry track with new information.
But at the end of the day, these interpretations don’t mean much, because what these
operations do is determined by the contents of the weights parametrizing them;actually
and the weights are learned in an end-to-end fashion, starting over with each training
round, making it impossible to credit this or that operation with a specific purpose. The
specification of a RNN cell (as we just described) determines your hypothesis space—the
space in which you’ll search for a good model configuration during training—but it
doesn’t determine what the cell does; that is up to the cell weights. The same cell with
different weights can be doing very different things. So the combination of operations
making up a RNN cell is better interpreted as set of on your search, not as a constraints

 in an engineering sense.design
To a researcher, it seems that the choice of such constraints—the question of how to

implement RNN cells—is better left to optimization algorithms (like genetic algorithms
or reinforcement learning processes) than to human engineers. And in the future, that’s
how we’ll build networks. In summary: you don’t need to understand anything about the
specific architecture of an LSTM cell; as a human, it shouldn’t be your job to understand
it. Just keep in mind what the LSTM cell is meant to do: allow past information to be
reinjected at a later time, thus fighting the vanishing-gradient problem.

Now let’s switch to more practical concerns: you’ll set up a model using layer_lstm
and train it on the IMDB data (see figure 6.13). The network is similar to the one with

 that we just presented. You only specify the output dimensionalitylayer_simple_rnn

of the ; leave every other argument (there are many) at the Keras defaults.layer_lstm

Keras has good defaults, and things will almost always "just work" without you having to
spend time tuning parameters by hand.

Listing 6.27 Using the LSTM layer in Keras

6.2.3 A concrete LSTM example in Keras

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

193

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 6.13 Training and validation metrics on IMDB with LSTM

This time, you achieve up to 88% validation accuracy. Not bad: certainly much better
than the simple RNN network—that’s largely because LSTM suffers much less from the
vanishing-gradient problem—and even slightly better than the fully connected approach
from chapter 3, even though you’re looking at less data than you were in chapter 3.
You’re truncating sequences after 500 timesteps, whereas in chapter 3, you were
considering full sequences.

But this result isn’t groundbreaking for such a computationally intensive approach.
Why isn’t LSTM performing better? One reason is that you made no effort to tune
hyperparameters such as the embeddings dimensionality or the LSTM output
dimensionality. Another may be lack of regularization. But honestly, the primary reason
is that analyzing the global, long-term structure of the reviews (what LSTM is good at)

model <- keras_model_sequential() %>%
 layer_embedding(input_dim = max_features, output_dim = 32) %>%
 layer_lstm(units = 32) %>%
 layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("acc")
)

history <- model %>% fit(
 input_train, y_train,
 epochs = 10,
 batch_size = 128,
 validation_split = 0.2
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

194

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

isn’t helpful for a sentiment-analysis problem. Such a basic problem is well solved by
looking at what words occur in each review, and at what frequency. That’s what the first
fully connected approach looked at. But there are far more difficult
natural-language-processing problems out there, where the strength of LSTM will
become apparent: in particular, answering questions and machine translation.

Now you understand the following:

What RNNs are and how they work
What LSTM is, and why it works better on long sequences than a naive RNN
How to use Keras RNN layers to process sequence data

Next, we’ll review a number of more advanced features of RNNs, which can help you
get the most out of your deep-learning sequence models.

In this section, we’ll review three advanced techniques for improving the performance
and generalization power of recurrent neural networks. By the end of the section, you’ll
know most of what there is to know about using recurrent networks with Keras. We’ll
demonstrate all three concepts on a weather-forecasting problem, where you have access
to a timeseries of data points coming from sensors installed on the roof of a building,
such as temperature, air pressure, and humidity, which you use to predict what the
temperature will be 24 hours after the last data point. This is a fairly challenging problem
that exemplifies many common difficulties encountered when working with timeseries.

We’ll cover the following techniques:

Recurrent dropout—This is a specific, built-in way to use dropout to fight overfitting in
recurrent layers.
Stacking recurrent layers—This increases the representational power of the network (at
the cost of higher computational loads).
Bidirectional recurrent layers—These present the same information to a recurrent
network in different ways, increasing accuracy and mitigating forgetting issues.

Until now, the only sequence data we’ve covered has been text data, such as the IMDB
dataset and the Reuters dataset. But sequence data is found in many more problems than
just language processing. In all the examples in this section, you’ll be playing with a
weather timeseries dataset recorded at the Weather Station at the Max-Planck-Institute
for Biogeochemistry in Jena, Germany.13

Footnote 13mOlaf Kolle, www.bgc-jena.mpg.de/wetter.

In this dataset, 14 different quantities (such air temperature, atmospheric pressure,
humidity, wind direction, and so on) were recorded every 10 minutes, over several years.
The original data goes back to 2003, but this example is limited to data from 2009–2016.

6.3 Advanced use of recurrent neural networks

6.2.4 Wrapping up

6.3.1 A temperature-forecasting problem

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

195

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://www.bgc-jena.mpg.de/wetter
https://forums.manning.com/forums/deep-learning-with-r

This dataset is perfect for learning to work with numerical timeseries. You’ll use it to
build a model that takes as input some data from the recent past (a few days' worth of
data points) and predicts the air temperature 24 hours in the future.

Download and uncompress the data as follows:

Let’s look at the data.

Listing 6.28 Inspecting the data of the Jena weather dataset

Here is the plot of temperature (in degrees Celsius) over time (see figure 6.14). On
this plot, you can clearly see the yearly periodicity of temperature.

Listing 6.29 Plotting the temperature timeseries

cd ~/Downloads
mkdir jena_climate
cd jena_climate
wget https://s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip
unzip jena_climate_2009_2016.csv.zip

library(tibble)
library(readr)

data_dir <- "~/Downloads/jena_climate"
fname <- file.path(data_dir, "jena_climate_2009_2016.csv")
data <- read_csv(fname)

> glimpse(data)

Observations: 420,551
Variables: 15
$ `Date Time` <chr> "01.01.2009 00:10:00", "01.01.2009 00:20:00", "...
$ `p (mbar)` <dbl> 996.52, 996.57, 996.53, 996.51, 996.51, 996.50,...
$ `T (degC)` <dbl> -8.02, -8.41, -8.51, -8.31, -8.27, -8.05, -7.62...
$ `Tpot (K)` <dbl> 265.40, 265.01, 264.91, 265.12, 265.15, 265.38,...
$ `Tdew (degC)` <dbl> -8.90, -9.28, -9.31, -9.07, -9.04, -8.78, -8.30...
$ `rh (%)` <dbl> 93.3, 93.4, 93.9, 94.2, 94.1, 94.4, 94.8, 94.4,...
$ `VPmax (mbar)` <dbl> 3.33, 3.23, 3.21, 3.26, 3.27, 3.33, 3.44, 3.44,...
$ `VPact (mbar)` <dbl> 3.11, 3.02, 3.01, 3.07, 3.08, 3.14, 3.26, 3.25,...
$ `VPdef (mbar)` <dbl> 0.22, 0.21, 0.20, 0.19, 0.19, 0.19, 0.18, 0.19,...
$ `sh (g/kg)` <dbl> 1.94, 1.89, 1.88, 1.92, 1.92, 1.96, 2.04, 2.03,...
$ `H2OC (mmol/mol)` <dbl> 3.12, 3.03, 3.02, 3.08, 3.09, 3.15, 3.27, 3.26,...
$ `rho (g/m**3)` <dbl> 1307.75, 1309.80, 1310.24, 1309.19, 1309.00, 13...
$ `wv (m/s)` <dbl> 1.03, 0.72, 0.19, 0.34, 0.32, 0.21, 0.18, 0.19,...
$ `max. wv (m/s)` <dbl> 1.75, 1.50, 0.63, 0.50, 0.63, 0.63, 0.63, 0.50,...
$ `wd (deg)` <dbl> 152.3, 136.1, 171.6, 198.0, 214.3, 192.7, 166.5...

library(ggplot2)
ggplot(data, aes(x = 1:nrow(data), y = `T (degC)`)) + geom_line()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

196

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip
https://forums.manning.com/forums/deep-learning-with-r

Figure 6.14 Temperature over the full temporal range of the dataset (ºC)

Here is a more narrow plot of the first 10 days of temperature data (see figure 6.15).
Because the data is recorded every 10 minutes, you get 144 data points per day.

Listing 6.30 Plotting the first 10 days of the temperature timeseries

Figure 6.15 Temperature over the first 10 days of the dataset (ºC)

On this plot, you can see daily periodicity, especially evident for the last 4 days. Also

ggplot(data[1:1440,], aes(x = 1:1440, y = `T (degC)`)) + geom_line()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

197

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

note that this 10-day period must be coming from a fairly cold winter month.
If you were trying to predict average temperature for the next month given a few

months of past data, the problem would be easy, due to the reliable year-scale periodicity
of the data. But looking at the data over a scale of days, the temperature looks a lot more
chaotic. Is this timeseries predictable at a daily scale? Let’s find out.

The exact formulation of the problem will be as follows: given data going as far back as
 timesteps (a timestep is 10 minutes) and sampled every timesteps, canlookback steps

you predict the temperature in timesteps? You’ll use the following parameterdelay

values:

lookback = 720—Observations will go back 5 days.
steps = 6—Observations will be sampled at one data point per hour.
delay = 144—Targets will be 24 hours in the future.

To get started, you need to do two things:

Preprocess the data to a format a neural network can ingest. This is easy: the data is
already numerical, so you don’t need to do any vectorization. But each timeseries in the
data is on a different scale (for example, temperature is typically between -20 and +30,
but pressure, measured in mbar, is around 1,000). You’ll normalize each timeseries
independently so that they all take small values on a similar scale.
Write a generator function that takes the current array of float data and yields batches of
data from the recent past, along with a target temperature in the future. Because the
samples in the dataset are highly redundant (sample and sample will have mostN N + 1
of their timesteps in common), it would be wasteful to explicitly allocate every sample.
Instead, you’ll generate the samples on the fly using the original data.

6.3.2 Preparing the data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

198

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

NOTE Understanding generator functions

A generator function is a special type of function that you call repeatedly
to obtain a sequence of values from. Often generators need to maintain
internal state, so they are typically constructed by calling another yet
another function which returns the generator function (the environment of
the function which returns the generator is then used to track state).

For example, the function below returns asequence_generator()

generator function that yields an infinite sequence of numbers:

The current state of the generator is the variable that is definedvalue

outside of the function. Note that superassignment () is used to update<<-

this state from within the function.

Generator functions can signal completion by returning the value NULL
. However, generator functions passed to Keras training methods (e.g.

) should always return values infinitely (the number offit_generator()

calls to the generator function is controlled by the and epochs

 parameters).steps_per_epoch

First, you’ll convert the R data frame which we read earlier into a matrix of floating
point values (we’ll discard the first column which included a text timestamp):

Listing 6.31 Converting the data to a floating point matrix

You’ll then preprocess the data by subtracting the mean of each timeseries and
dividing by the standard deviation. You’re going to use the first 200,000 timesteps as
training data, so compute the mean and standard deviation for normalization only on this
fraction of the data.

Listing 6.32 Normalizing the data

sequence_generator <- function(start) {
 value <- start - 1
 function() {
 value <<- value + 1
 value
 }
}

> gen <- sequence_generator(10)
> gen()
[1] 10
> gen()
[1] 11

data <- data.matrix(data[,-1])

train_data <- data[1:200000,]
mean <- apply(train_data, 2, mean)
std <- apply(train_data, 2, sd)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

199

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Listing 6.33 shows the data generator you’ll use. It yields a list (samples,
, where is one batch of input data and is the correspondingtargets) samples targets

array of target temperatures. It takes the following arguments:

data—The original array of floating-point data, which you normalized in listing 6.32.
lookback—How many timesteps back the input data should go.
delay—How many timesteps in the future the target should be.
min_index and —Indices in the array that delimit which timesteps tomax_index data
draw from. This is useful for keeping a segment of the data for validation and another for
testing.
shuffle—Whether to shuffle the samples or draw them in chronological order.
batch_size—The number of samples per batch.
step—The period, in timesteps, at which you sample data. You’ll set it 6 in order to
draw one data point every hour.

Listing 6.33 Generator yielding timeseries samples and their targets

The variable contains the state that tracks next window of data to return, so it isi

updated using superassignment (e.g.).i < i + length(rows)

Now, let’s use the abstract function to instantiate three generators: one forgenerator

training, one for validation, and one for testing. Each will look at different temporal
segments of the original data: the training generator looks at the first 200,000 timesteps,
the validation generator looks at the following 100,000, and the test generator looks at the
remainder.

data <- scale(data, center = mean, scale = std)

generator <- function(data, lookback, delay, min_index, max_index,
 shuffle = FALSE, batch_size = 128, step = 6) {
 if (is.null(max_index))
 max_index <- nrow(data) - delay - 1
 i <- min_index + lookback
 function() {
 if (shuffle) {
 rows <- sample(c((min_index+lookback):max_index), size = batch_size)
 } else {
 if (i + batch_size >= max_index)
 i <<- min_index + lookback
 rows <- c(i:min(i+batch_size, max_index))
 i <<- i + length(rows)
 }

 samples <- array(0, dim = c(length(rows),
 lookback / step,
 dim(data)[[-1]]))
 targets <- array(0, dim = c(length(rows)))

 for (j in 1:length(rows)) {
 indices <- seq(rows[[j]] - lookback, rows[[j]],
 length.out = dim(samples)[[2]])
 samples[j,,] <- data[indices,]
 targets[[j]] <- data[rows[[j]] + delay,2]
 }

 list(samples, targets)
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

200

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Listing 6.34 Preparing the training, validation, and test generators

How many steps to draw from val_gen in order to see the entire validation set

How many steps to draw from test_gen in order to see the entire test set

lookback <- 1440
step <- 6
delay <- 144
batch_size <- 128

train_gen <- generator(
 data,
 lookback = lookback,
 delay = delay,
 min_index = 1,
 max_index = 200000,
 shuffle = TRUE,
 step = step,
 batch_size = batch_size
)

val_gen = generator(
 data,
 lookback = lookback,
 delay = delay,
 min_index = 200001,
 max_index = 300000,
 step = step,
 batch_size = batch_size
)

test_gen <- generator(
 data,
 lookback = lookback,
 delay = delay,
 min_index = 300001,
 max_index = NULL,
 step = step,
 batch_size = batch_size
)

val_steps <- (300000 - 200001 - lookback) / batch_size

test_steps <- (nrow(data) - 300001 - lookback) / batch_size

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

201

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Before you start using black-box deep-learning models to solve the
temperature-prediction problem, let’s try a simple, common-sense approach. It will serve
as a sanity check, and it will establish a baseline that you’ll have to beat in order to
demonstrate the usefulness of more advanced machine-learning models. Such
common-sense baselines can be useful when you’re approaching a new problem for
which there is no known solution (yet). A classic example is that of unbalanced
classification tasks, where some classes are much more common than others. If your
dataset contains 90% instances of class A and 10% instances of class B, then a
common-sense approach to the classification task is to always predict "A" when
presented with a new sample. Such a classifier is 90% accurate overall, and any
learning-based approach should therefore beat this 90% score in order to demonstrate
usefulness. Sometimes, such elementary baselines can prove surprisingly hard to beat.

In this case, the temperature timeseries can safely be assumed to be continuous (the
temperatures tomorrow are likely to be close to the temperatures today) as well as
periodical with a daily period. Thus a common-sense approach is to always predict that
the temperature 24 hours from now will be equal to the temperature right now. Let’s
evaluate this approach, using the mean absolute error (MAE) metric:

Here’s the evaluation loop.

Listing 6.35 Computing the common-sense baseline MAE

This yields an MAE of 0.29. Because the temperature data has been normalized to be
centered on 0 and have a standard deviation of 1, this number isn’t immediately
interpretable. It translates to an average absolute error of 0.29 * temperature_std
degrees Celsius: 2.57C.

Listing 6.36 Converting the MAE back to a Celsius error

6.3.3 A common-sense, non-machine-learning baseline

mean(abs(preds - targets))

evaluate_naive_method <- function() {
 batch_maes <- c()
 for (step in 1:val_steps) {
 c(samples, targets) %<-% val_gen()
 preds <- samples[,dim(samples)[[2]],2]
 mae <- mean(abs(preds - targets))
 batch_maes <- c(batch_maes, mae)
 }
 print(mean(batch_maes))
}

evaluate_naive_method()

celsius_mae <- 0.29 * std[[2]]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

202

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

That’s a fairly large average absolute error. now the game is to use your knowledge of
deep learning to do better.

In the same way that it’s useful to establish a common-sense baseline before trying
machine-learning approaches, it’s useful to try simple, cheap machine-learning models
(such as small, densely connected networks) before looking into complicated and
computationally expensive models such as RNNs. This is the best way to make sure any
further complexity you throw at the problem is legitimate and delivers real benefits.

The following listing shows a fully connected model that starts by flattening the data
and then runs it through two dense layers. Note the lack of activation function on the last
dense layer, which is typical for a regression problem. You use MAE as the loss. Because
you’re evaluating on the exact same data and with the exact same metric you did with the
common-sense approach, the results will be directly comparable.

Listing 6.37 Training and evaluating a densely connected model

Let’s display the loss curves for validation and training (see figure 6.16).

Listing 6.38 Plotting results

6.3.4 A basic machine-learning approach

library(keras)

model <- keras_model_sequential() %>%
 layer_flatten(input_shape = c(lookback / step, dim(data)[-1])) %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = 1)

model %>% compile(
 optimizer = optimizer_rmsprop(),
 loss = "mae"
)

history <- model %>% fit_generator(
 train_gen,
 steps_per_epoch = 500,
 epochs = 20,
 validation_data = val_gen,
 validation_steps = val_steps
)

plot(history)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

203

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 6.16 Training and validation loss on the Jena temperature forecasting task with a
simple, densely connected network

Some of the validation losses are close to the no-learning baseline, but not reliably.
This goes to show the merit of having this baseline in the first place: it turns out to be not
easy to outperform. Your common sense contains a lot of valuable information that a
machine-learning model doesn’t have access to.

You may wonder, if a simple, well-performing model exists to go from the data to the
targets (the common-sense baseline), why doesn’t the model you’re training find it and
improve on it? Because this simple solution isn’t what your training setup is looking for.
The space of models in which you’re searching for a solution—that is, your hypothesis
space—is the space of all possible two-layer networks with the configuration you
defined. These networks are already fairly complicated. When you’re looking for a
solution with a space of complicated models, the simple, well-performing baseline may
be unlearnable, even if it’s technically part of the hypothesis space. That is a pretty
significant limitation of machine learning in general: unless the learning algorithm is
hard-coded to look for a specific kind of simple model, parameter learning can
sometimes fail to find a simple solution to a simple problem.

The first fully connected approach didn’t do well, but that doesn’t mean machine learning
isn’t applicable to this problem. The previous approach consisted first flattened the
timeseries, which removed the notion of time from the input data. Let’s instead look at
the data as what it is: a sequence, where causality and order matter. You’ll try a
recurrent-sequence processing model—it should be the perfect fit for such sequence data,
precisely because it exploits the temporal ordering of data points, unlike the first
approach.

Instead of the LSTM layer introduced in the previous section, you’ll use the GRU

6.3.5 A first recurrent baseline

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

204

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

layer, developed by Chung et al. in 2014. Gated recurrent unit (GRU) layers work14

using the same principle as LSTM, but they’re somewhat streamlined and thus cheaper to
run (although they may not have as much representational power as LSTM). This
trade-off between computational expensiveness and representational power is seen
everywhere in machine learning.

Footnote 14mJunyoung Chung et al., "Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling," Conference on Neural Information Processing Systems (2014),

.arxiv.org/abs/1412.3555

Listing 6.39 Training and evaluating a model with layer_gru

Figure 6.17 shows the results. Much better! You can significantly beat the
common-sense baseline, demonstrating the value of machine learning as well as the
superiority of recurrent networks compared to sequence-flattening dense networks on this
type of task.

Figure 6.17 Training and validation loss on the Jena temperature-forecasting task with
layer_gru

model <- keras_model_sequential() %>%
 layer_gru(units = 32, input_shape = list(NULL, dim(data)[[-1]])) %>%
 layer_dense(units = 1)

model %>% compile(
 optimizer = optimizer_rmsprop(),
 loss = "mae"
)

history <- model %>% fit_generator(
 train_gen,
 steps_per_epoch = 500,
 epochs = 20,
 validation_data = val_gen,
 validation_steps = val_steps
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

205

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://arxiv.org/abs/1412.3555
https://forums.manning.com/forums/deep-learning-with-r

The new validation MAE of ~0.265 (before you start significantly overfitting)
translates to a mean absolute error of 2.35C after denormalization. That’s a solid gain on
the initial error of 2.57C, but you probably still have a bit of a margin for improvement.

It’s evident from the training and validation curves that the model is overfitting: the
training and validation losses start to diverge considerably after a few epochs. You’re
already familiar with a classic technique for fighting this phenomenon: dropout, which
randomly zeros out input units of a layer in order to break happenstance correlations in
the training data that the layer is exposed to. But how to correctly apply dropout in
recurrent networks isn’t a trivial question. It has long been known that applying dropout
before a recurrent layer hinders learning rather than helping with regularization. In 2015,
Yarin Gal, as part of his Ph.D. thesis on Bayesian deep learning, determined the proper15

way to use dropout with a recurrent network: the same dropout mask (the same pattern of
dropped units) should be applied at every timestep, instead of a dropout mask that varies
randomly from timestep to timestep. What’s more, in order to regularize the
representations formed by the recurrent gates of layers such as and layer_gru

, a temporally constant dropout mask should be applied to the inner recurrentlayer_lstm

activations of the layer (a dropout mask). Using the same dropout mask atrecurrent
every timestep allows the network to properly propagate its learning error through time; a
temporally random dropout mask would disrupt this error signal and be harmful to the
learning process.

Footnote 15mSee Yarin Gal, "Uncertainty in Deep Learning (PhD Thesis)," October 13, 2016,
.mlg.eng.cam.ac.uk/yarin/blog_2248.html

Yarin Gal did his research using Keras and helped build this mechanism directly into
Keras recurrent layers. Every recurrent layer in Keras has two dropout-related arguments:

, a float specifying the dropout rate for input units of the layer, and dropout

, specifying the dropout rate of the recurrent units. Let’s addrecurrent_dropout

dropout and recurrent dropout to the and see how it impacts overfitting.layer_gru

Because networks being regularized with dropout always take longer to fully converge,
you’ll train the network for twice as many epochs.

Listing 6.40 Training and evaluating a dropout-regularized GRU-based model

6.3.6 Using recurrent dropout to fight overfitting

model <- keras_model_sequential() %>%
 layer_gru(units = 32, dropout = 0.2, recurrent_dropout = 0.2,
 input_shape = list(NULL, dim(data)[[-1]])) %>%
 layer_dense(units = 1)

model %>% compile(
 optimizer = optimizer_rmsprop(),
 loss = "mae"
)

history <- model %>% fit_generator(
 train_gen,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

206

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://mlg.eng.cam.ac.uk/yarin/blog_2248.html
https://forums.manning.com/forums/deep-learning-with-r

Figure 6.18 shows the results. Success! You’re no longer overfitting during the first
20 epochs. But although you have more stable evaluation scores, your best scores aren’t
much lower than they were previously.

Figure 6.18 Training and validation loss on the Jena temperature forecasting task with a
dropout-regularized GRU

Because you’re no longer overfitting but seem to have hit a performance bottleneck, you
should consider increasing the capacity of the network. Recall our description of the
universal machine-learning workflow: it’s generally a good idea to increase the capacity
of your network until overfitting becomes the primary obstacle (assuming you’re already
taking basic steps to mitigate overfitting, such as using dropout). As long as you aren’t
overfitting too badly, you’re likely under capacity.

Increasing network capacity is typically done by increasing the number of units in the
layers or adding more layers. Recurrent layer stacking is a classic way to build more
powerful recurrent networks: for instance, what currently powers the Google Translate
algorithm is a stack of seven large LSTM layers—that’s huge.

To stack recurrent layers on top of each other in Keras, all intermediate layers should
return their full sequence of outputs (a 3D tensor) rather than their output at the last
timestep. This is done by specifying .return_sequences = TRUE

Listing 6.41 Training and evaluating a dropout-regularized, stacked GRU model

 steps_per_epoch = 500,
 epochs = 40,
 validation_data = val_gen,
 validation_steps = val_steps
)

6.3.7 Stacking recurrent layers

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

207

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 6.19 shows the results. You can see that the added layer does improve the
results a bit, though not significantly. You can draw two conclusions:

Because you’re still not overfitting too badly, you could safely increase the size of your
layers in a quest for validation loss improvement. This has a non-negligible
computational cost, though.
Adding a layer didn’t help by a significant factor, so you may be seeing diminishing
returns from increasing network capacity at this point.

Figure 6.19 Training and validation loss on the Jena temperature forecasting task with a
stacked GRU network

model <- keras_model_sequential() %>%
 layer_gru(units = 32,
 dropout = 0.1,
 recurrent_dropout = 0.5,
 return_sequences = TRUE,
 input_shape = list(NULL, dim(data)[[-1]])) %>%
 layer_gru(units = 64, activation = "relu",
 dropout = 0.1,
 recurrent_dropout = 0.5) %>%
 layer_dense(units = 1)

model %>% compile(
 optimizer = optimizer_rmsprop(),
 loss = "mae"
)

history <- model %>% fit_generator(
 train_gen,
 steps_per_epoch = 500,
 epochs = 40,
 validation_data = val_gen,
 validation_steps = val_steps
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

208

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

The last technique we’ll introduce in this section is called . Abidirectional RNNs
bidirectional RNN is common RNN variant that can offer greater performance than a
regular RNN on certain tasks. It’s frequently used in natural language processing—you
could call it the Swiss Army knife of deep learning for natural language processing.

RNNs are notably order dependent, or time dependent: they process the timesteps of
their input sequences in order, and shuffling or reversing the timesteps can completely
change the representations the RNN extracts from the sequence. This is precisely the
reason they perform well on problems where order is meaningful, such as the
temperature-forecasting problem. A bidirectional RNN exploits the order sensitivity of
RNNs: it consists of using two regular RNNs, such as the and layer_gru layer_lstm

you’re already familiar with, each of which processes the input sequence in one direction
(chronologically and antichronologically), and then merging their representations. By
processing a sequence both ways, a bidirectional RNN can catch patterns that may be
overlooked by a one-direction RNN.

Remarkably, the fact that the RNN layers in this section have processed sequences in
chronological order (older timesteps first) may have been an arbitrary decision. At least,
it’s a decision we made no attempt to question so far. Could the RNNs have performed
well enough if they processed input sequences in antichronological order, for instance
(newer timesteps first)? Let’s try this in practice and see what happens. All you need to
do is write a variant of the data generator where the input sequences are reverted along
the time dimension (replace the last line with list(samples[,ncol(samples):1,],

). Training the same one-GRU-layer network that you used in the firsttargets)

experiment in this section, you get the results shown in figure 6.20.

Figure 6.20 Training and validation loss on the Jena temperature forecasting task with a
GRU trained on reversed sequences

6.3.8 Using bidirectional RNNs

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

209

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

The reversed-order GRU underperforms even the common-sense baseline, indicating
that in this case, chronological processing is important to the success of your approach.
This makes perfect sense: the underlying GRU layer will typically be better at
remembering the recent past than the distant past, and naturally the more recent weather
data points are more predictive than older data points for the problem (that’s what makes
the common-sense baseline fairly strong). Thus the chronological version of the layer is
bound to outperform the reversed-order version. Importantly, this isn’t true for many
other problems, including natural language: intuitively, the importance of a word in
understanding a sentence isn’t usually dependent on its position in the sentence. Let’s try
the same trick on the LSTM IMDB example from section 6.2.

Listing 6.42 Training and evaluating an LSTM using reversed sequences

Number of words to consider as features

Cuts off texts after this number of words (among the max_features most common
words)

Reverses sequences

Pads sequences

You get performance nearly identical to that of the chronological-order LSTM.
Remarkably, on such a text dataset, reversed-order processing works just as well as

library(keras)

max_features <- 10000

maxlen <- 500

imdb <- dataset_imdb(num_words = max_features)
c(c(x_train, y_train), c(x_test, y_test)) %<-% imdb

x_train <- lapply(x_train, rev)
x_test <- lapply(x_test, rev)

x_train <- pad_sequences(x_train, maxlen = maxlen)
x_test <- pad_sequences(x_test, maxlen = maxlen)

model <- keras_model_sequential() %>%
 layer_embedding(input_dim = max_features, output_dim = 128) %>%
 layer_lstm(units = 32) %>%
 layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("acc")
)

history <- model %>% fit(
 x_train, y_train,
 epochs = 10,
 batch_size = 128,
 validation_split = 0.2
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

210

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

chronological processing, confirming the hypothesis that, although word order does
matter in understanding language, order you use isn’t crucial. Importantly, anwhich
RNN trained on reversed sequences will learn different representations than one trained
on the original sequences, much as you would have different mental models if time
flowed backward in the real world—if you lived a life where you died on your first day
and were born on your last day. In machine learning, representations that are yetdifferent

 are always worth exploiting, and the more they differ, the better: they offer a newuseful
angle from which to look at your data, capturing aspects of the data that were missed by
other approaches, and thus can help boost performance on a task. This is the intuition
behind , a concept we’ll introduce in chapter 7.ensembling

A bidirectional RNN exploits this idea to improve on the performance of
chronological-order RNNs. It looks at its input sequence both ways (see figure 6.25),
obtaining potentially richer representations and capturing patterns that may have been
missed by the chronological-order version alone.

Figure 6.21 How a bidirectional RNN layer works

To instantiate a bidirectional RNN in Keras, you use the function,bidirectional()

which takes a recurrent layer instance as an argument. The functionbidirectional()

creates a second, separate instance of this recurrent layer and uses one instance for
processing the input sequences in chronological order and the other instance for
processing the input sequences in reversed order. Let’s try it on the IMDB
sentiment-analysis task.

Listing 6.43 Training and evaluating a bidirectional LSTM

model <- keras_model_sequential() %>%
 layer_embedding(input_dim = max_features, output_dim = 32) %>%
 bidirectional(
 layer_lstm(units = 32)
) %>%
 layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("acc")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

211

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

It performs slightly better than the regular LSTM you tried in the previous section,
achieving over 89% validation accuracy. It also seems to overfit more quickly, which is
unsurprising because a bidirectional layer has twice as many parameters as a
chronological LSTM. With some regularization, the bidirectional approach would likely
be a strong performer on this task.

Now let’s try the same approach on the weather-prediction task.

Listing 6.44 Training a bidirectional GRU

This performs about as well as the regular . It’s easy to understand why:layer_gru

all the predictive capacity must come from the chronological half of the network, because
the anti-chronological half is known to be severely underperforming on this task (again,
because the recent past matters much more than the distant past in this case).

There are many other things you could try, in order to improve performance on the
weather-forecasting problem:

Adjust the number of units in each recurrent layer in the stacked setup. The current
choices are largely arbitrary and thus probably suboptimal.
Adjust the learning rate used by the optimizer.RMSprop

Try using instead of .layer_lstm layer_gru

Try using a bigger densely connected regressor on top of the recurrent layers: that is, a
bigger dense layer or even a stack of dense layers.
Don’t forget to eventually run the best-performing models (in terms of validation MAE)
on the test set! Otherwise, you’ll develop architectures that are overfitting to the
validation set.

)

history <- model %>% fit(
 x_train, y_train,
 epochs = 10,
 batch_size = 128,
 validation_split = 0.2
)

model <- keras_model_sequential() %>%
 bidirectional(
 layer_gru(units = 32), input_shape = list(NULL, dim(data)[[-1]])
) %>%
 layer_dense(units = 1)

model %>% compile(
 optimizer = optimizer_rmsprop(),
 loss = "mae"
)

history <- model %>% fit_generator(
 train_gen,
 steps_per_epoch = 500,
 epochs = 40,
 validation_data = val_gen,
 validation_steps = val_steps
)

6.3.9 Going even further

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

212

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

As always, deep learning is more an art than a science. We can provide guidelines
that tell you what is likely to work or not work on a given problem, but, ultimately, every
problem is unique; you’ll have to evaluate different strategies empirically. There is
currently no theory that will tell you in advance precisely what you should do to
optimally solve a problem. You must iterate.

Here’s what you should take away from this section:

As you first learned in chapter 4, when approaching a new problem, it’s good to first
establish common-sense baselines for your metric of choice. If you don’t have a baseline
to beat, you can’t tell whether you’re making real progress.
Try simple models before expensive ones, to justify the additional expense. Sometimes a
simple model will turn out to be your best option.
When you have data where temporal ordering matters, recurrent networks are a great fit
and easily outperform models that first flatten the temporal data.
To use dropout with recurrent networks, you should use a time-constant dropout mask
and recurrent dropout mask. These are built into Keras recurrent layers, so all you have to
do is use the and arguments of recurrent layers.dropout recurrent_dropout

Stacked RNNs provide more representational power than a single RNN layer. They’re
also much more expensive and thus not always worth it. Although they offer clear gains
on complex problems (such as machine translation), they may not always be relevant to
smaller, simpler problems.
Bidirectional RNNs, which look at a sequence both ways, are useful on natural-language
processing problems. But they aren’t strong performers on sequence data where the
recent past is much more informative than the beginning of the sequence.

NOTE There are two important concepts we won’t cover in detail here: recurrent
attention and sequence masking. Both tend to be especially relevant for
natural-language processing, and they aren’t particularly applicable to the
temperature-forecasting problem. We’ll leave them for future study
outside of this book.

SIDEBAR Markets and machine learning

Some readers are bound to want to take the techniques we’ve introduced
here and try them on the problem of forecasting the future price of securities
on the stock market (or currency exchange rates, and so on). Markets have

 than natural phenomena such asvery different statistical characteristics
weather patterns. Trying to use machine learning to beat markets, when you
only have access to publicly available data, is a difficult endeavor, and you’re
likely to waste your time and resources with nothing to show for it.

Always remember that when it comes to markets, past performance is anot
good predictor of future returns—looking in the rear-view mirror is a bad way
to drive. Machine learning, on the other hand, is applicable to datasets where
the past a good predictor of the future.is

6.3.10 Wrapping up

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

213

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

In chapter 5, you learned about convolutional neural networks (convnets) and how they
perform particularly well on computer vision problems, due to their ability to operate

, extracting features from local input patches and allowing forconvolutionally
representation modularity and data efficiency. The same properties that make convnets
excel at computer vision also make them highly relevant to sequence processing. Time
can be treated as a spatial dimension, like the height or width of a 2D image.

Such 1D convnets can be competitive with RNNs on certain sequence-processing
problems, usually at a considerably cheaper computational cost. Recently, 1D convnets,
typically used with dilated kernels, have been used with great success for audio
generation and machine translation. In addition to these specific successes, it has long
been known that small 1D convnets can offer a fast alternative to RNNs for simple tasks
such as text classification and timeseries forecasting.

The convolution layers we introduced previously were 2D convolutions, extracting 2D
patches from image tensors and applying an identical transformation to every patch. In
the same way, you can use 1D convolutions, extracting local 1D patches (subsequences)
from sequences (see figure 6.26).

Figure 6.22 How 1D convolution works: each output timestep is obtained from a temporal
patch in the input sequence.

Such 1D convolution layers can recognize local patterns in a sequence. Because the
same input transformation is performed on every patch, a pattern learned at a certain
position in a sentence can later be recognized at a different position, making 1D convnets
translation invariant (for temporal translations). For instance, a 1D convnet processing
sequences of characters using convolution windows of size 5 should be able to learn

6.4 Sequence processing with convnets

6.4.1 Understanding 1D convolution for sequence data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

214

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

words or word fragments of length 5 or less, and it should be able to recognize these
words in any context in an input sequence. A character-level 1D convnet is thus able to
learn about word morphology.

You’re already familiar with 2D pooling operations, such as 2D average pooling and max
pooling, used in convnets to spatially downsample image tensors. The 2D pooling
operation has a 1D equivalent: extracting 1D patches (subsequences) from an input and
outputting the maximum value (max pooling) or average value (average pooling). Just as
with 2D convnets, this is used for reducing the length of 1D inputs ().subsampling

In Keras, you use a 1D convnet via the function, which has an interfacelayer_conv_1d

similar to . It takes as input 3D tensors with shape layer_conv_2d (samples, time,

 and returns similarly shaped 3D tensors. The convolution window is a 1Dfeatures)

window on the temporal axis: the second axis in the input tensor.
Let’s build a simple two-layer 1D convnet and apply it to the IMDB

sentiment-classification task you’re already familiar with. As a reminder, this is the code
for obtaining and preprocessing the data.

Listing 6.45 Preparing the IMDB data

1D convnets are structured in the same way as their 2D counterparts, which you used
in chapter 5: they consist of a stack of and ,layer_conv_1d layer_max_pooling_1d

ending in either a global pooling layer or a , that turn the 3D outputs intolayer_flatten

2D outputs, allowing you to add one or more dense layers to the model for classification
or regression.

One difference, though, is the fact that you can afford to use larger convolution
windows with 1D convnets. With a 2D convolution layer, a 3 × 3 convolution window
contains 3 * 3 = 9 feature vectors; but with a 1D convolution layer, a convolution
window of size 3 contains only 3 feature vectors. You can thus easily afford 1D
convolution windows of size 7 or 9.

6.4.2 1D pooling for sequence data

6.4.3 Implementing a 1D convnet

library(keras)

max_features <- 10000
max_len <- 500

cat("Loading data...\n")
imdb <- dataset_imdb(num_words = max_features)
c(c(x_train, y_train), c(x_test, y_test)) %<-% imdb
cat(length(x_train), "train sequences\n")
cat(length(x_test), "test sequences")

cat("Pad sequences (samples x time)\n")
x_train <- pad_sequences(x_train, maxlen = max_len)
x_test <- pad_sequences(x_test, maxlen = max_len)
cat("x_train shape:", dim(x_train), "\n")
cat("x_test shape:", dim(x_test), "\n")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

215

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

This is the example 1D convnet for the IMDB dataset.

Listing 6.46 Training and evaluating a simple 1D convnet on the IMDB data

Figures 6.23 shows the training and validation results. Validation accuracy is
somewhat less than that of the LSTM, but runtime is faster on both a CPU and a GPU
(the exact increase in speed will vary greatly depending on your exact configuration). At
this point, you could retrain this model for the right number of epochs (eight) and run it
on the test set. This is a convincing demonstration that a 1D convnet can offer a fast,
cheap alternative to a recurrent network on a word-level sentiment-classification task.

Figure 6.23 Training and validation metrics on IMDB with a simple 1D convnet

model <- keras_model_sequential() %>%
 layer_embedding(input_dim = max_features, output_dim = 128,
 input_length = max_len) %>%
 layer_conv_1d(filters = 32, kernel_size = 7, activation = "relu") %>%
 layer_max_pooling_1d(pool_size = 5) %>%
 layer_conv_1d(filters = 32, kernel_size = 7, activation = "relu") %>%
 layer_global_max_pooling_1d() %>%
 layer_dense(units = 1)

summary(model)

model %>% compile(
 optimizer = optimizer_rmsprop(lr = 1e-4),
 loss = "binary_crossentropy",
 metrics = c("acc")
)

history <- model %>% fit(
 x_train, y_train,
 epochs = 10,
 batch_size = 128,
 validation_split = 0.2
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

216

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Because 1D convnets process input patches independently, they aren’t sensitive to the
order of the timesteps (beyond a local scale, the size of the convolution windows), unlike
RNNs. Of course, to recognize longer-term patterns, you can stack many convolution
layers and pooling layers, resulting in upper layers that will see long chunks of the
original inputs—but that’s still a fairly weak way to induce order sensitivity. One way to
evidence this weakness is to try 1D convnets on the temperature-forecasting problem,
where order-sensitivity is key to producing good predictions. The following example
reuses the following variables defined previously: , , ,float_data train_gen val_gen

and .val_steps

Listing 6.47 Training and evaluating a simple 1D convnet on the Jena data

Figure 6.24 shows the training and validation MAEs.

6.4.4 Combining CNNs and RNNs to process long sequences

model <- keras_model_sequential() %>%
 layer_conv_1d(filters = 32, kernel_size = 5, activation = "relu",
 input_shape = list(NULL, dim(data)[[-1]])) %>%
 layer_max_pooling_1d(pool_size = 3) %>%
 layer_conv_1d(filters = 32, kernel_size = 5, activation = "relu") %>%
 layer_max_pooling_1d(pool_size = 3) %>%
 layer_conv_1d(filters = 32, kernel_size = 5, activation = "relu") %>%
 layer_global_max_pooling_1d() %>%
 layer_dense(units = 1)

model %>% compile(
 optimizer = optimizer_rmsprop(),
 loss = "mae"
)

history <- model %>% fit_generator(
 train_gen,
 steps_per_epoch = 500,
 epochs = 20,
 validation_data = val_gen,
 validation_steps = val_steps
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

217

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 6.24 Training and validation loss on the Jena temperature-forecasting task with a
simple 1D convnet

The validation MAE stays in the 0.40s: you can’t even beat the common-sense
baseline using the small convnet. Again, this is because the convnet looks for patterns
anywhere in the input timeseries and has no knowledge of the temporal position of a
pattern it sees (toward the beginning, toward the end, and so on). Because more recent
data points should be interpreted differently from older datapoints in the case of this
specific forecasting problem, the convnet fails at producing meaningful results. This
limitation of convnets isn’t an issue with the IMDB data, because patterns of keywords
associated with a positive or negative sentiment are informative independently of where
they’re found in the input sentences.

One strategy to combine the speed and lightness of convnets with the order-sensitivity
of RNNs is to use a 1D convnet as a preprocessing step before a RNN (see figure 6.25).
This is especially beneficial when you’re dealing with sequences that are so long they
can’t realistically be processed with RNNs, such as sequences with thousands of steps.
The convnet will turn the long input sequence into much shorter (downsampled)
sequences of higher-level features. This sequence of extracted features then becomes the
input to the RNN part of the network.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

218

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 6.25 Combining a 1D convnet and an RNN for processing long sequences

This technique isn’t seen often in research papers and practical applications, possibly
because it isn’t well known. It’s effective and ought to be more common. Let’s try it on
the temperature-forecasting dataset. Because this strategy allows you to manipulate much
longer sequences, you can either look at data from longer ago (by increasing the

 parameter of the data generator) or look at high-resolution timeseries (bylookback

decreasing the parameter of the generator). Here, somewhat arbitrarily, you’ll use a step

 that’s half as large, resulting in a timeseries twice as long, where the weather data isstep

sampled at a rate of 1 point per 30 minutes. The example reuses the functiongenerator

defined earlier.

Listing 6.48 Preparing higher-resolution data generators for the Jena dataset

step <- 3

lookback <- 720

delay <- 144

train_gen <- generator(
 data,
 lookback = lookback,
 delay = delay,
 min_index = 1,
 max_index = 200000,
 shuffle = TRUE,
 step = step
)

val_gen <- generator(
 data,
 lookback = lookback,
 delay = delay,
 min_index = 200001,
 max_index = 300000,
 step = step
)

test_gen <- generator(

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

219

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Previously set to 6 (1 point per hour); now 3 (1 point per 30 min)

Unchanged

This is the model, starting with two and following up with a layer_conv_1d

. Figure 6.26 shows the results.layer_gru

Listing 6.49 Model combining a 1D convolutional base and a GRU layer

 data,
 lookback = lookback,
 delay = delay,
 min_index = 300001,
 max_index = NULL,
 step = step
)

val_steps <- (300000 - 200001 - lookback) / 128
test_steps <- (nrow(data) - 300001 - lookback) / 128

model <- keras_model_sequential() %>%
 layer_conv_1d(filters = 32, kernel_size = 5, activation = "relu",
 input_shape = list(NULL, dim(data)[[-1]])) %>%
 layer_max_pooling_1d(pool_size = 3) %>%
 layer_conv_1d(filters = 32, kernel_size = 5, activation = "relu") %>%
 layer_gru(units = 32, dropout = 0.1, recurrent_dropout = 0.5) %>%
 layer_dense(units = 1)

summary(model)

model %>% compile(
 optimizer = optimizer_rmsprop(),
 loss = "mae"
)

history <- model %>% fit_generator(
 train_gen,
 steps_per_epoch = 500,
 epochs = 20,
 validation_data = val_gen,
 validation_steps = val_steps
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

220

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 6.26 Training and validation loss on the Jena temperature-forecasting task with a
1D convnet followed by a GRU

Judging from the validation loss, this setup isn’t as good as the regularized GRU
alone, but it’s significantly faster. It looks at twice as much data, which in this case
doesn’t appear to be hugely helpful but may be important for other datasets.

Here’s what you should take away from this section:

In the same way that 2D convnets perform well for processing visual patterns in 2D
space, 1D convnets perform well for processing temporal patterns. They offer a faster
alternative to RNNs on some problems, in particular natural-language processing tasks.
Typically, 1D convnets are structured much like their 2D equivalents from the world of
computer vision: they consist of stacks of and ,layer_conv_1d layer_max_pooling_1d
ending in a global pooling operation or flattening operation.
Because RNNs are extremely expensive for processing very long sequences, but 1D
convnets are cheap, it can be a good idea to use a 1D convnet as a preprocessing step
before a RNN, shortening the sequence and extracting useful representations for the RNN
to process.

One useful and important concept that we won’t cover in these pages is that of 1D
convolution with dilated kernels.

6.4.5 Wrapping up

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

221

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

In this chapter you learned the following techniques, which are widely applicable to any
dataset of sequence data, from text to timeseries:

How to tokenize text
What word embeddings are, and how to use them
What recurrent networks are, and how to use them
How to stack RNN layers and use bidirectional RNNs to build more powerful sequence
processing models
How to use 1D convnets for sequence processing
How to combine 1D convnets and RNNs to process long sequences

For instance, you can use RNNs for timeseries regression ("predicting the future"),
timeseries classification, anomaly detection in timeseries, and sequence labeling (such as
identifying names or dates in sentences).
Similarly, you can use 1D convnets for machine translation (sequence-to-sequence
convolutional models, like SliceNet), document classification, and spelling correction.
If in your sequence data, then it’s preferable to use a recurrentglobal order matters
network to process it. This is typically the case for timeseries, where the recent past is
likely to be more informative than the distant past.
If , then 1D convnets will turn out toglobal ordering isn’t fundamentally meaningful
work at least as well and are cheaper. This is often the case for text data, where a
keyword found at the beginning of a sentence is just as meaningful as a keyword found at
the end.

6.5 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

222

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

7
This chapter covers

This chapter explores a number of powerful tools that will bring you closer to being able
to develop state-of-art models on difficult problems. Using the Keras functional API, you
can build graph-like models, share a layer across different inputs, and use Keras models
just like R functions. Keras callbacks and the TensorBoard browser-based visualization
tool let you monitor models during training. We’ll also discuss several other best
practices including batch normalization, residual connections, hyperparameter
optimization, and model ensembling.

Until now, all neural networks introduced in this book have been implemented using the
sequential model (i.e. . The sequential model makes thekeras_model_sequential

assumption that the network has exactly one input and exactly one output, and that it
consists of a linear stack of layers (see figure 7.1).

Advanced deep-learning best practices

The Keras functional API
Using Keras callbacks
Working with the TensorBoard visualization tool
Important best practices for developing state-of-the-art models

7.1 Going beyond the Sequential model: the Keras functional API

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

223

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 7.1 A Sequential model: a linear stack of layers

This is a commonly verified assumption; the configuration is so common that we’ve
been able to cover many topics and practical applications in these pages so far using only

. But this set of assumptions is too inflexible in a number ofkeras_model_sequential

cases. Some networks require several independent inputs, others require multiple outputs,
and some networks have internal branching between layers that makes them look like

 of layers rather than linear stacks of layers.graphs
Some tasks, for instance, require inputs: they merge data coming frommultimodal

different input sources, processing each type of data using different kinds of neural
layers. Imagine a deep-learning model trying to predict the most likely market price of a
second-hand piece of clothing, using the following inputs: user-provided metadata (such
as the item’s brand, age, and so on), a user-provided text description, and a picture of the
item. If you had only the metadata available, you could one-hot encode it and use a
densely connected network to predict the price. If you had only the text description
available, you could use an RNN or a 1D convnet. If you had only the picture, you could
use a 2D convnet. But how can you use all three at the same time? A naive approach
would be to train three separate models and then do a weighted average of their
predictions. But this may be suboptimal, because the information extracted by the models
may be redundant. A better way is to learn a more accurate model of the data byjointly
using a model that can see all available input modalities simultaneously: a model with
three input branches (see figure 7.2).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

224

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 7.2 A multi-input model

Similarly, some tasks need to predict multiple target attributes of input data. Given
the text of a novel or short story, you might want to automatically classify it by genre
(such as romance or thriller) but also predict the approximate date it was written. Of
course, you could train two separate models: one for the genre and one for the date. But
because these attributes aren’t statistically independent, you could build a better model
by learning to jointly predict both genre and date at the same time. Such a joint model
would then have two outputs, or (see figure 7.3). Due to correlations betweenheads
genre and date, knowing the date of a novel would help the model learn rich, accurate
representations of the space of novel genres, and vice versa.

Figure 7.3 A multi-output (or multihead) model

Additionally, many recent neural architectures require nonlinear network topology:
networks structured as directed acyclic graphs. The Inception family of networks
(developed by Szegedy et al. at Google), for instance, relies on ,16 Inception modules
where the input is processed by several parallel convolutional branches whose outputs are
then merged back into a single tensor (see figure 7.4). There is also the recent trend of
adding to a model, which started with the ResNet family ofresidual connections
networks (developed by He et al. at Microsoft). A residual connection consists of17

reinjecting previous representations into the downstream flow of data by adding a past
output tensor to later output tensor (see figure 7.5), which helps prevent information loss

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

225

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

along the data-processing flow. There are many other examples of such graph-like
networks.

Footnote 16mChristian Szegedy et al., "Going Deeper with Convolutions," Conference on Computer
Vision and Pattern Recognition (2014), .arxiv.org/abs/1409.4842

Footnote 17mKaiming He et al., "Deep Residual Learning for Image Recognition," Conference on
Computer Vision and Pattern Recognition (2015), .arxiv.org/abs/1512.03385

Figure 7.4 An Inception module: a subgraph of layers with several parallel convolutional
branches

Figure 7.5 A residual connection: reinjection of prior information downstream via
feature-map addition

These three important use cases—multi-input models, multi-output models, and
graph-like models—aren’t possible when defining a model with

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

226

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.03385
https://forums.manning.com/forums/deep-learning-with-r

. But there is another far more general and flexible way tokeras_model_sequential

use Keras: the . This section explains in detail what it is, what it can do,functional API
and how to use it.

In the functional API, you build your input and output layers and then pass them to the
 function. This model can be trained just like Keras sequential models.keras_model()

Let’s start with a minimal example that shows side by side a simple sequential model
and its equivalent in the functional API:

Sequential model, which you already know about

Its functional equivalent

The keras_model() function turns an input tensor and output tensor into a model.

Let’s look at it!

This is what the call to displays:summary(model)

The only part that may seem a bit magical at this point is passing only an input tensor
and an output tensor to the function. Behind the scenes, Keras retrieveskeras_model()

every layer involved in going from to , bringing theminput_tensor output_tensor

7.1.1 Introduction to the functional API

library(keras)

seq_model <- keras_model_sequential() %>%
 layer_dense(units = 32, activation = "relu", input_shape = c(64)) %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = 10, activation = "softmax")

input_tensor <- layer_input(shape = c(64))
output_tensor <- input_tensor %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = 10, activation = "softmax")

model <- keras_model(input_tensor, output_tensor)

summary(model)

Layer (type) Output Shape Param #
===
input_1 (InputLayer) (None, 64) 0

dense_1 (Dense) (None, 32) 2080

dense_2 (Dense) (None, 32) 1056

dense_3 (Dense) (None, 10) 330
===
Total params: 3,466
Trainable params: 3,466
Non-trainable params: 0

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

227

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

together into a graph-like data structure—a model. Of course, the reason it works is that
 was obtained by repeatedly transforming . If you tried tooutput_tensor input_tensor

build a model from inputs and outputs that weren’t related, you’d get an error:

This error tells you, in essence, that Keras couldn’t reach from the providedinput_1

output tensor.
When it comes to compiling, training, or evaluating such a model built this way, the

API is the same as that of sequential models:

Compiles the model

Generates dummy data to train on

Trains the model for 10 epochs

Evaluates the model

The functional API can be used to build models that have multiple inputs. Typically, such
models at some point merge their different input branches using a layer that can combine
several tensors: by adding them, concatenating them, and so on. This is usually done via
a Keras merge operation such as , , and so on. Let’s looklayer_add layer_concatenate

at a very simple example of a multi-input model: a question-answering model.
A typical question-answering model has two inputs: a natural-language question and

a text snippet (such as a news article) providing information to be used for answering the
question. The model must then produce an answer: in the simplest possible setup, this is a
one-word answer obtained via a softmax over some predefined vocabulary (see figure
7.6).

> unrelated_input <- layer_input(shape = c(64))
> bad_model <- keras_model(unrelated_input, output_tensor)
RuntimeError: Graph disconnected: cannot obtain value for tensor
[CA]Tensor("input_1:0", shape=(?, 64), dtype=float32) at layer "input_1".

model %>% compile(
 optimizer = "rmsprop",
 loss = "categorical_crossentropy"
)

x_train <- array(runif(1000 * 64), dim = c(1000, 64))
y_train <- array(runif(1000 * 10), dim = c(1000, 10))

model %>% fit(x_train, y_train, epochs = 10, batch_size = 128)

model %>% evaluate(x_train, y_train)

7.1.2 Multi-input models

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

228

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 7.6 A question-answering model

Here is an example of how you can build such a model with the functional API. You
set up two independent branches, encoding the text input and the question input as
representation vectors; then concatenate these vectors; and finally, add a softmax
classifier on top of the concatenated representations.

Listing 7.1 Functional API implementation of a two-input question-answering
model

library(keras)

text_vocabulary_size <- 10000
ques_vocabulary_size <- 10000
answer_vocabulary_size <- 500

text_input <- layer_input(shape = list(NULL),
 dtype = "int32", name = "text")

encoded_text <- text_input %>%

 layer_embedding(input_dim = 64, output_dim = text_vocabulary_size) %>%

 layer_lstm(units = 32)

question_input <- layer_input(shape = list(NULL),
 dtype = "int32", name = "question")

encoded_question <- question_input %>%
 layer_embedding(input_dim = 32, output_dim = ques_vocabulary_size) %>%
 layer_lstm(units = 16)

concatenated <- layer_concatenate(list(encoded_text, encoded_question))

answer <- concatenated %>%
 layer_dense(units = answer_vocabulary_size, activation = "softmax")

model <- keras_model(list(text_input, question_input), answer)

model %>% compile(
 optimizer = "rmsprop",
 loss = "categorical_crossentropy",
 metrics = c("acc")
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

229

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

The text input is a variable-length sequence of integers. Note that you can
optionally name the inputs.

Embeds the inputs into a sequence of vectors of size 64

Encodes the vectors in a single vector via an LSTM

Same process (with different layer instances) for the question

Concatenates the encoded question and encoded text

Adds a softmax classifier on top

At model instantiation, specifies the two inputs and the output:

Now, how do you train this two-input model? There are two possible APIs: you can
feed the model a list of arrays as inputs, or you can feed it a dictionary that maps input
names to arrays. Naturally, the latter option is available only if you give names to your
inputs.

Listing 7.2 Feeding data to a multi-input model

Generates dummy data

Answers are one-hot encoded, not integers

Fitting using a list of inputs

Fitting using a named list of inputs

num_samples <- 1000
max_length <- 100

random_matrix <- function(range, nrow, ncol) {
 matrix(sample(range, size = nrow * ncol, replace = TRUE),
 nrow = nrow, ncol = ncol)
}

text <- random_matrix(1:text_vocabulary_size, num_samples, max_length)
question <- random_matrix(1:ques_vocabulary_size, num_samples, max_length)

answers <- random_matrix(0:1, num_samples, answer_vocabulary_size)

model %>% fit(
 list(text, question), answers,
 epochs = 10, batch_size = 128
)

model %>% fit(
 list(text = text, question = question), answers,
 epochs = 10, batch_size = 128
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

230

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

In the same way, you can use the functional API to build models with multiple outputs
(or multiple). A simple example is a network that attempts to simultaneouslyheads
predict different properties of the data, such as a network that takes as input a series of
social media posts from a single anonymous person and tries to predict attributes of that
person, such as age, gender, and income level (see figure 7.7).

Listing 7.3 Functional API implementation of a three-output model

Note that the output layers are given names.

Figure 7.7 A social media model with three heads

7.1.3 Multi-output models

library(keras)

vocabulary_size <- 50000
num_income_groups <- 10

posts_input <- layer_input(shape = list(NULL),
 dtype = "int32", name = "posts")

embedded_posts <- posts_input %>%
 layer_embedding(input_dim = 256, output_dim = vocabulary_size)

base_model <- embedded_posts %>%
 layer_conv_1d(filters = 128, kernel_size = 5, activation = "relu") %>%
 layer_max_pooling_1d(pool_size = 5) %>%
 layer_conv_1d(filters = 256, kernel_size = 5, activation = "relu") %>%
 layer_conv_1d(filters = 256, kernel_size = 5, activation = "relu") %>%
 layer_max_pooling_1d(pool_size = 5) %>%
 layer_conv_1d(filters = 256, kernel_size = 5, activation = "relu") %>%
 layer_conv_1d(filters = 256, kernel_size = 5, activation = "relu") %>%
 layer_global_max_pooling_1d() %>%
 layer_dense(units = 128, activation = "relu")

age_prediction <- base_model %>%
 layer_dense(units = 1, name = "age")

income_prediction <- base_model %>%
 layer_dense(num_income_groups, activation = "softmax", name = "income")

gender_prediction <- base_model %>%
 layer_dense(units = 1, activation = "sigmoid", name = "gender")

model <- keras_model(
 posts_input,
 list(age_prediction, income_prediction, gender_prediction)
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

231

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Importantly, training such a model requires the ability to specify different loss
functions for different heads of the network: for instance, age prediction is a scalar
regression task, but gender prediction is a binary classification task, requiring a different
training procedure. But because gradient descent requires you to minimize a , youscalar
must combine these losses into a single value in order to train the model. The simplest
way to combine different losses is to sum them all. In Keras, you can use either a list or a
named list of losses in to specify different objects for different outputs; thecompile

resulting loss values are summed into a global loss, which is minimized during training.

Listing 7.4 Compilation options of a multi-output model: multiple losses

Equivalent (possible only if you give names to the output layers)

Note that very imbalanced loss contributions will cause the model representations to
be optimized preferentially for the task with the largest individual loss, at the expense of
the other tasks. To remedy this, you can assign different levels of importance to the loss
values in their contribution to the final loss. This is useful in particular if the losses'
values use different scales. For instance, the mean squared error (MSE) loss used for the
age-regression task typically takes a value around 3–5, whereas the crossentropy loss
used for the gender-classification task can be as low as 0.1. In such a situation, to balance
the contribution of the different losses, you can assign a weight of 10 to the crossentropy
loss and a weight of 0.25 to the MSE loss.

Listing 7.5 Compilation options of a multi-output model: loss weighting

model %>% compile(
 optimizer = "rmsprop",
 loss = c("mse", "categorical_crossentropy", "binary_crossentropy")
)

model %>% compile(
 optimizer = "rmsprop",
 loss = list(
 age = "mse",
 income = "categorical_crossentropy",
 gender = "binary_crossentropy"
)
)

model %>% compile(
 optimizer = "rmsprop",
 loss = c("mse", "categorical_crossentropy", "binary_crossentropy"),
 loss_weights = c(0.25, 1, 10)
)

model %>% compile(
 optimizer = "rmsprop",
 loss = list(
 age = "mse",
 income = "categorical_crossentropy",
 gender = "binary_crossentropy"
),
 loss_weights = list(
 age = 0.25,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

232

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Equivalent (possible only if you give names to the output layers)

Much as in the case of multi-input models, you can pass data to the model for training
either via a plain list of arrays or via a named list of arrays.

Listing 7.6 Feeding data to a multi-output model

age_targets, income_targets and gender_targets are assumed to be R arrays.

Equivalent (possible only if you give names to the output layers)

With the functional API, not only can you build models with multiple inputs and multiple
outputs, but you can also implement networks with a complex internal topology. Neural
networks in Keras are allowed to be arbitrary of layers. Thedirected acyclic graphs
qualifier is important: these graphs can’t have cycles. It’s impossible for a tensor acyclic

 to become the input of one of the layers that generated . The only processing x x loops
that are allowed (that is, recurrent connections) are those internal to recurrent layers.

Several common neural-network components are implemented as graphs. Two
notable ones are Inception modules and residual connections. To better understand how
the functional API can be used to build graphs of layers, let’s take a look at how you can
implement both of them in Keras.

 income = 1,
 gender = 10
)
)

model %>% fit(
 posts, list(age_targets, income_targets, gender_targets),
 epochs = 10, batch_size = 64
)

model %>% fit(
 posts, list(
 age = age_targets,
 income = income_targets,
 gender = gender_targets
),
 epochs = 10, batch_size = 64
)

7.1.4 Directed acyclic graphs of layers

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

233

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Inception is a popular type of network architecture for convolutional neural networks; it
was developed by Christian Szegedy and his colleagues at Google in 2013-2014, inspired
by the earlier architecture. It consists of a stack of modules thatnetwork-in-network 18

themselves look like small independent networks, split into several parallel branches. The
most basic form of an Inception module has three to four branches starting with a 1 × 1
convolution, followed by a 3 × 3 convolution, and ending with the concatenation of the
resulting features. This setup helps the network separately learn spatial features and
channel-wise features, which is more efficient than learning them jointly. More complex
versions of an Inception module are also possible, typically involving pooling operations,
different spatial convolution sizes (for example, 5 × 5 instead of 3 × 3 on some
branches), and branches without a spatial convolution (only a 1 × 1 convolution). An
example of such a module, taken from Inception V3, is shown in figure 7.8.

Footnote 18mMin Lin, Qiang Chen, and Shuicheng Yan, "Network in Network," International Conference
on Learning Representations (2013), .arxiv.org/abs/1312.4400

Figure 7.8 An Inception module

INCEPTION MODULES

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

234

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://arxiv.org/abs/1312.4400
https://forums.manning.com/forums/deep-learning-with-r

SIDEBAR The purpose of 1 × 1 convolutions

You already know that convolutions extract spatial patches around every tile
in an input tensor and apply the same transformation to each patch. An edge
case is when the patches extracted consist of a single tile. The convolution
operation then becomes equivalent to running each tile vector through a
dense layer: it will compute features that mix together information from the
channels of the input tensor, but it won’t mix information across space
(because it’s looking at one tile at a time). Such 1 × 1 convolutions (also
called) are featured in Inception modules, where theypointwise convolutions
contribute to factoring out channel-wise feature learning and space-wise
feature learning—a reasonable thing to do if you assume that each channel
is highly auto-correlated across space but different channels may not be
highly correlated with each other.

Here is how you’d implement the module featured in 7.7 using the functional API.
This example assumes the existence of a 4D input tensor :input

Every branch has the same stride value (2), which is necessary to keep all branch
outputs the same size so you can concatenate them.

In this branch, the striding occurs in the spatial convolution layer.

In this branch, the striding occurs in the average pooling layer.

Concatenates the branch outputs to obtain the module output

library(keras)

branch_a <- input %>%
 layer_conv_2d(filters = 128, kernel_size = 1,

 activation = "relu", strides = 2)

branch_b <- input %>%
 layer_conv_2d(filters = 128, kernel_size = 1,
 activation = "relu") %>%
 layer_conv_2d(filters = 128, kernel_size = 3,

 activation = "relu", strides = 2)

branch_c <- input %>%
 layer_average_pooling_2d(pool_size = 3, strides = 2) %>%
 layer_conv_2d(filters = 128, kernel_size = 3,
 activation = "relu")

branch_d <- input %>%
 layer_conv_2d(filters = 128, kernel_size = 1,
 activation = "relu") %>%
 layer_conv_2d(filters = 128, kernel_size = 3,
 activation = "relu") %>%
 layer_conv_2d(filters = 128, kernel_size = 3,
 activation = "relu", strides = 2)

output <- layer_concatenate(list(
 branch_a, branch_b, branch_c, branch_d
))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

235

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Note that the full Inception V3 architecture is available in Keras as
, including weights pretrained on the ImageNet dataset.application_inception_v3

Another closely related model available as part of the Keras applications module is
. Xception, which stands for , is a convnet architectureXception 19 extreme inception

loosely inspired by Inception. It takes the idea of separating the learning of channel-wise
and space-wise features to its logical extreme, and replaces Inception modules with
depthwise separable convolutions consisting of a depthwise convolution (a spatial
convolution where every input channel is handled separately) followed by a pointwise
convolution (a 1 × 1 convolution)—effectively, an extreme form of an Inception module,
where spatial features and channel-wise features are fully separated. Xception has
roughly the same number of parameters as Inception V3, but it shows better runtime
performance and higher accuracy on ImageNet as well as other large-scale datasets, due
to a more efficient use of model parameters.

Footnote 19mFrançois Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions,"
Conference on Computer Vision and Pattern Recognition (2017), .arxiv.org/abs/1610.02357

Residual connections are a common graph-like network component found in many
post-2015 network architectures, including Xception. They were introduced by He et al
from Microsoft in their winning entry in the ILSVRC ImageNet challenge in late 2015.20

They tackle two common problems that plague any large-scale deep-learning model:
vanishing gradients and representational bottlenecks. In general, adding residual
connections to any model that has more than 10 layers is likely to be beneficial.

Footnote 20mIbid.

A residual connection consists of making the output of an earlier layer available as
input to a later layer, effectively creating a shortcut in a sequential network (see figure
7.9). Rather than being concatenated to the later activation, the earlier output is summed
with the later activation, which assumes that both activations are the same size. If they’re
sizes, you can use a linear transformation to reshape the earlier activation into the target
shape (for example, a dense layer without an activation or, for convolutional feature
maps, a 1 × 1 convolution without an activation).

Here is how to implement a residual connection in Keras when the feature-map sizes
are the same, using identity residual connections. This example assumes the existence of
a 4D input tensor :input

RESIDUAL CONNECTIONS

output <- input %>%
 layer_conv_2d(filters = 128, kernel_size = 3,
 activation = "relu", padding = "same") %>%
 layer_conv_2d(filters = 128, kernel_size = 3,
 activation = "relu", padding = "same") %>%
 layer_conv_2d(filters = 128, kernel_size = 3,
 activation = "relu", padding = "same")

output <- layer_add(list(output, input))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

236

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://arxiv.org/abs/1610.02357
https://forums.manning.com/forums/deep-learning-with-r

Applies a transformation to input

Adds the original input back to output

And the following implements a residual connection when the feature-map sizes
differ, using a linear residual connection (again, assuming the existence of a 4D input
tensor):input

Uses a 1 × 1 convolution to linearly downsample the original input tensor to the
same shape as the output

Adds the residual tensor back to the output features

SIDEBAR Representational bottlenecks in deep learning

In a sequential model, each successive representation layer is built on top of
the previous one, which means it only has access to information contained in
the activation of the previous layer. If one layer is too small (for example, it
has features that are too low-dimensional), then the model will be
constrained by how much information can be crammed into the activations of
this layer.

You can think of it with a signal-processing analogy: if you have an
audio-processing pipeline that consists of a series of operations, each of
which takes as input the output of the previous operation, then if one
operation crops your signal to a low-frequency range (for example, 0–15
kHz), the operations downstream will never be able to recover the dropped
frequencies. Any loss of information is permanent. Residual connections, by
reinjecting earlier information downstream, partially solve this issue for
deep-learning models.

output <- input %>%
 layer_conv_2d(filters = 128, kernel_size = 3,
 activation = "relu", padding = "same") %>%
 layer_conv_2d(filters = 128, kernel_size = 3,
 activation = "relu", padding = "same") %>%
 layer_max_pooling_2d(pool_size = 2, strides = 2)

residual <- input %>%
 layer_conv_2d(filters = 128, kernel_size = 1,

 strides = 2, padding = "same")

output <- layer_add(list(output, residual))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

237

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

SIDEBAR Vanishing gradients in deep learning

Backpropagation, the master algorithm used to train deep neural networks,
works by propagating a feedback signal from the output loss down to earlier
layers. If this feedback signal has to be propagated through a deep stack of
layers, the signal may become tenuous or even be lost entirely, rendering the
network untrainable. This issue is known as .vanishing gradients

This problem occurs both with deep networks and with recurrent networks
over very long sequences—in both cases, a feedback signal must be
propagated through a long series of operations. You’re already familiar with
the solution that the LSTM layer uses to address this problem in recurrent
networks: it introduces a that propagates information in parallel tocarry track
the main processing track. Residual connections work in a similar way in
feedforward deep networks, but they’re even simpler: they introduce a purely
linear information carry track parallel to the main layer stack, thus helping to
propagate gradients through arbitrarily deep stacks of layers.

One more important feature of the functional API is the ability to reuse a layer instance
several times. When you call a layer instance twice, instead of instantiating a new layer
for each call, you reuse the same weights with every call. This allows you to build
models that have shared branches—several branches that all share the same knowledge
and perform the same operations. That is, they share the same representations and learn
these representations simultaneously for different sets of inputs.

For example, consider a model that attempts to assess the semantic similarity between
two sentences. The model has two inputs (the two sentences to compare) and outputs a
score between 0 and 1, where 0 means unrelated sentences and 1 means sentences that
are either identical or reformulations of each other. Such a model could be useful in many
applications, including deduplicating natural-language queries in a dialog system.

In this setup, the two input sentences are interchangeable, because semantic similarity
is a symmetrical relationship: the similarity of A to B is identical to the similarity of B to
A. For this reason, it wouldn’t make sense to learn two independent models for
processing each input sentence. Rather, you want to process both with a single LSTM
layer. The representations of this LSTM layer (its weights) are learned based on both
inputs simultaneously. This is what we call a model or a .Siamese LSTM shared LSTM

Here is how to implement such a model using layer sharing (layer reuse) in the Keras
functional API:

7.1.5 Layer weight sharing

library(keras)

lstm <- layer_lstm(units = 32)

left_input <- layer_input(shape = list(NULL, 128))

left_output <- left_input %>% lstm()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

238

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Instantiates a single LSTM layer, once

Building the left branch of the model: inputs are variable-length sequences of
vectors of size 128.

Building the right branch of the model: when you call an existing layer instance,
you reuse its weights.

Builds the classifier on top

Instantiating and training the model: when you train such a model, the weights of
the LSTM layer are updated based on both inputs.

Naturally, a layer instance may be used more than once—it can be called arbitrarily
many times, reusing the same set of weights every time.

Importantly, in the functional API, models can be used as you’d use layers—effectively,
you can think of a model as a "bigger layer." This is true of models created with both the

 and functions. This means you can call akeras_model() keras_model_sequential()

model on an input tensor and retrieve an output tensor:

If the model has multiple input tensors and multiple output tensors, it should be called
with a list of tensors:

When you call a model instance, you’re reusing the weights of the model—exactly
like what happens when you call a layer instance. Calling an instance, whether it’s a layer
instance or a model instance, will always reuse the existing learned representations of the
instance—which is intuitive.

One simple practical example of what you can build by reusing a model instance is a
vision model that uses a dual camera as its input: two parallel cameras, a few centimeters
(one inch) apart. Such a model can perceive depth, which can be useful in many
applications. You shouldn’t need two independent models to extract visual features from
the left camera and the right camera before merging the two feeds. Such low-level

right_input <- layer_input(shape = list(NULL, 128))

right_output <- right_input %>% lstm()

merged <- layer_concatenate(list(left_output, right_output))

predictions <- merged %>%
 layer_dense(units = 1, activation = "sigmoid")

model <- keras_model(list(left_input, right_input), predictions)
model %>% fit(
 list(left_data, right_data), targets)
)

7.1.6 Models as layers

y <- model(x)

c(y1, y2) %<-% <- model(list(x1, x2))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

239

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

processing can be shared across the two inputs: that is, done via layers that use the same
weights and thus share the same representations. Here is how you’d implement a siamese
vision model (shared convolutional base) in Keras:

The base image-processing model is the Xception network (convolutional base
only).

The inputs are 250 × 250 RGB images.

Calls the same vision model twice

The merged features contain information from the right visual feed and the left
visual feed.

This concludes our introduction to the Keras functional API—an essential tool for
building advanced deep neural network architectures. Now you know the following:

To step out of the sequential API whenever you need anything more than a linear stack of
layers
How to build Keras models with several inputs, several outputs, and complex internal
network topology, using the Keras functional API
How to reuse the weights of a layer or model across different processing branches, by
calling the same layer or model instance several times

library(keras)

xception_base <- application_xception(weights = NULL,

 include_top = FALSE)

left_input <- layer_input(shape = c(250, 250, 3))
right_input <- layer_input(shape = c(250, 250, 3))

left_features = left_input %>% xception_base()
right_features <- right_input %>% xception_base()

merged_features <- layer_concatenate(
 list(left_features, right_features)
)

7.1.7 Wrapping up

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

240

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

In this section, we’ll review ways to gain greater access and control over what goes on
inside your model during training. Launching a training run on a large dataset for tens of
epochs using or can be a bit like launching a paper airplane:fit() fit_generator()

past the initial impulse, you don’t have any control over its trajectory or its landing spot.
If you want to avoid bad outcomes (and thus wasted paper airplanes), it’s smarter to use
not a paper plane, but a drone that can sense its environment, send data back to its
operator, and automatically make steering decisions based on its current state. The
techniques we present here will transform the call to from a paper airplane into afit()

smart, autonomous drone that can self-introspect and dynamically take action.

When you’re training a model, there are many things you can’t predict from the start. In
particular, you can’t tell how many epochs will be needed to get to an optimal validation
loss. The examples so far have adopted the strategy of training for enough epochs that
you begin overfitting, using the first run to figure out the proper number of epochs to
train for and then finally launch a new training run from scratch using this optimal
number. Of course, this approach is wasteful.

A much better way to handle this is to stop training when you measure that the
validation loss in no longer improving. This can be achieved using a Keras callback. A

 is an object that is passed to the model in the call to and that is called by thecallback fit

model at various points during training. It has access to all the data available about the
state of the model and its performance, and it can take action: interrupt training, save a
model, load a different weight set, or otherwise alter the state of the model.

Here are some examples of ways you can use callbacks:

Model checkpointing—Saving the current weights of the model at different points during
training.
Early stopping—Interrupting training when the validation loss is no longer improving
(and of course, saving the best model obtained during training).
Dynamically adjusting the value of certain parameters during training—Such as the
learning rate of the optimizer.
Logging training and validation metrics during training, or visualizing the
representations learned by the model as they’re updated—The Keras progress bar that
you’re familiar with is a callback!

Keras includes a number of built-in callbacks (this is not an exhaustive list):

Let’s review a few of them to give you an idea of how to use them:

7.2 Inspecting and monitoring deep-learning models using Keras
callbacks and TensorBoard

7.2.1 Using callbacks to act on a model during training

callback_model_checkpoint()
callback_early_stopping()
callback_learning_rate_scheduler()
callback_reduce_lr_on_plateau()
callback_csv_logger()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

241

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

, , and callback_model_checkpoint callback_early_stopping

.callback_reduce_lr_on_plateau

You can use to interrupt training once a target metric beingcallback_early_stopping

monitored has stopped improving for a fixed number of epochs. For instance, this
callback allows you to interrupt training as soon as you start overfitting, thus avoiding
having to retrain your model for a smaller number of epochs. This callback is typically
used in combination with , which lets you continuallycallback_model_checkpoint

save the model during training (and, optionally, save only the current best model so far:
that is, the version of the model that achieved the best performance at the end of an
epoch):

Callbacks are passed to the model via the callbacks argument in fit, which takes a
list of callbacks. You can pass any number of callbacks.

Interrupts training when improvement stops

Monitors the model’s validation accuracy

Interrupts training when accuracy has stopped improving for more than one epoch
(that is, two epochs)

Saves the current weights after every epoch

Path to the destination model file

These two arguments mean you won’t overwrite the model file unless val_loss has

THE MODEL CHECKPOING AND EARLY STOPPING CALLBACKS

library(keras)

callbacks_list <- list(

 callback_early_stopping(

 monitor = "acc",

 patience = 1
),

 callback_model_checkpoint(

 filepath = "my_model.h5",

 monitor = "val_loss",
 save_best_only = TRUE
)
)

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",

 metrics = c("acc")
)

model %>% fit(
 x, y,
 epochs = 10,
 batch_size = 32,
 callbacks = callbacks_list,
 validation_data = list(x_val, y_val)
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

242

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

improved, which allows you to keep the best model seen during training.

You monitor acc, so it should be part of the model’s metrics.

Note that because the callback will monitor validation accuracy, you need to pass
validation_data to the call to fit.

You can use this callback to reduce the learning rate when the validation loss has stopped
improving. Reducing or increasing the learning rate in case of a is is anloss plateau
effective strategy to get out of local minima during training. The following example uses

:callback_reduce_lr_on_plateau

Monitors the model’s validation loss

Divides learning by 10 when triggered

The callback is triggered after the validation loss has stopped improving for at least
10 epochs.

Because the callback will monitor the validation loss, you need to pass
validation_data to the call to fit.

If you need to take a specific action during training that isn’t covered by one of the
built-in callbacks, you can write your own callback. Callbacks are implemented by
creating a new class that inherits from the class. You can thenR6 KerasCallback

implement any number of the following transparently named methods, which are called
at various points during training:

THE REDUCE LEARNING RATE ON PLATEAU CALLBACK

callbacks_list <- list(
 callback_reduce_lr_on_plateau(

 monitor = "val_loss",

 factor = 0.1,

 patience = 10
)
)

model %>% fit(
 x, y,
 epochs = 10,
 batch_size = 32,
 callbacks = callbacks_list,
 validation_data = list(x_val, y_val)
)

WRITING YOUR OWN CALLBACK

on_epoch_begin

on_epoch_end

on_batch_begin

on_batch_end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

243

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Called at the start of every epoch

Called at the end of every epoch

Called right before processing each batch

Called right after processing each batch

Called at the start of training

Called at the end of training

These methods all are called with a argument, which is a named list containinglogs

information about the previous batch, epoch, or training run: training and validation
metrics, and so on. Additionally, the callback has access to the following attributes:

self$model—Reference to the Keras model being trained.
self$params—Named list with training parameters (eg. verbosity, batch size, number of
epochs…)

Here’s a simple example saving a list of losses over each batch during training:

Called at the end of every training batch

Accumulate losses from every batch in a list

Create an instance of the callback

Attach the callback to model training

on_train_begin

on_train_end

library(keras)
library(R6)

LossHistory <- R6Class("LossHistory",
 inherit = KerasCallback,

 public = list(

 losses = NULL,

 on_batch_end = function(batch, logs = list()) {

 self$losses <- c(self$losses, logs[["loss"]])
 }
))

history <- LossHistory$new()
model %>% fit(
 x, y,
 batch_size = 128,
 epochs = 20,

 callbacks = list(history)
)

> str(history$losses)
num [1:160] 0.634 0.615 0.631 0.664 0.626 ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

244

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Accumulated losses are now available from callback instance

This is all you need to know about callbacks—the rest is technical details, which you
can easily look up. Now you’re equipped to perform any sort of logging or
preprogrammed intervention on a Keras model during training.

To do good research or develop good models, you need rich, frequent feedback about
what’s going on inside your models during your experiments. That’s the point of running
experiments: to get information about how well a model performs—as much information
as possible. Making progress is an iterative process, or loop: you start with an idea and
express it as an experiment, attempting to validate or invalidate your idea. Your run this
experiment and process the information it generates. This inspires your next idea. The
more iterations of this loop you’re able to run, the more refined and powerful your ideas
become. Keras helps you go from idea to experiment in the least possible time, and fast
GPUs can help you get from experiment to result as quickly as possible. But what about
processing the experiment results? That’s where TensorBoard comes in.

Figure 7.9 The loop of progress

This section introduces TensorBoard, a browser-based visualization tool that comes
packaged with TensorFlow. Note that it’s only available for Keras models when you’re
using Keras with the TensorFlow backend.

The key purpose of TensorBoard is to help you visually monitor everything that goes
on inside your model during training. If you’re monitoring more information than just the
model’s final loss, you can develop a clearer vision of what the model does or doesn’t do,
and you can make progress more quickly. TensorBoard gives you access to several neat
features, all in your browser:

Visually monitoring metrics during training
Visualizing your model architecture
Visualizing histograms of activations and gradients
Exploring embeddings in 3D

Let’s demonstrate these features on a simple example. You’ll be training a 1D

7.2.2 Introduction to TensorBoard: the TensorFlow visualization framework

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

245

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

convnet on the IMDB sentiment-analysis task.
The model is similar to the one you saw in the last section of chapter 6. You’ll

consider only the top 2,000 words in the IMDB vocabulary, to make visualizing word
embedding more tractable.

Listing 7.7 Text-classification model to use with TensorBoard

Number of words to consider as features

Cuts off texts after this number of words (among max_features most common
words)

Before you start using TensorBoard, you need to create a directory where you’ll store
the log files it generates.

Listing 7.8 Creating a directory for TensorBoard log files

Let’s launch the training with a TensorBoard callback instance. This callback will
write log events to disk at the specified location.

Listing 7.9 Training the model with a TensorBoard callback

library(keras)

max_features <- 2000

max_len <- 500

imdb <- dataset_imdb(num_words = max_features)
c(c(x_train, y_train), c(x_test, y_test)) %<-% imdb
x_train <- pad_sequences(x_train, maxlen = max_len)
x_test = pad_sequences(x_test, maxlen = max_len)

model <- keras_model_sequential() %>%
 layer_embedding(input_dim = max_features, output_dim = 128,
 input_length = max_len, name = "embed") %>%
 layer_conv_1d(filters = 32, kernel_size = 7, activation = "relu") %>%
 layer_max_pooling_1d(pool_size = 5) %>%
 layer_conv_1d(filters = 32, kernel_size = 7, activation = "relu") %>%
 layer_global_max_pooling_1d() %>%
 layer_dense(units = 1)

summary(model)

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("acc")
)

> dir.create("my_log_dir")

tensorboard("my_log_dir")

callbacks = list(
 callback_tensorboard(
 log_dir = "my_log_dir",

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

246

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Launch TensorBoard and wait for output in specified directory

Records activation histograms every 1 epoch

Records embedding data every 1 epoch

A web browser will open with TensorBoard monitoring the specified directory for
training output (see figure 7.10). Note that metrics won’t show up in TensorBoard until
after the first epoch (if you don’t see your training metrics when you expect to you may
need to refresh the display). In addition to live graphs of the training and validation
metrics, you get access to the Histograms tab, where you can find pretty visualizations of
histograms of activation values taken by your layers (see figure 7.11).

Figure 7.10 TensorBoard: metrics monitoring

 histogram_freq = 1,

 embeddings_freq = 1,
)
)

history <- model %>% fit(
 x_train, y_train,
 epochs = 20,
 batch_size = 128,
 validation_split = 0.2,
 callbacks = callbacks
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

247

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 7.11 TensorBoard: activation histograms

The Embeddings tab gives you a way to inspect the embedding locations and spatial
relationships of the 10,000 words in the input vocabulary, as learned by the initial

. Because the embedding space is 128-dimensional, TensorBoardlayer_embedding

automatically reduces it to 2D or 3D using a dimensionality-reduction algorithm of your
choice: either principal component analysis (PCA) or t-distributed stochastic neighbor
embedding (t-SNE). In figure 7.12, in the point cloud, you can clearly see two clusters:
words with a positive connotation and words with a negative connotation. The
visualization makes it immediately obvious that embeddings trained jointly with a
specific objective result in models that are completely specific to the underlying
task—that’s the reason using pretrained generic word embeddings is rarely a good idea.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

248

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 7.12 TensorBoard: interactive 3D word-embedding visualization

The Graphs tab shows an interactive visualization of the graph of low-level
TensorFlow operations underlying your Keras model (see figure 7.13). As you can see,
there is a lot more going on than you would expect. The model you just built may look
simple when defined in Keras—a small stack of basic layers—but under the hood, you
need to construct a fairly complex graph structure to make it work. A lot of it is related to
the gradient-descent process. This complexity differential between what you see and
what you’re manipulating is the key motivation for using Keras as your way of building
models, instead of working with raw TensorFlow to define everything from scratch.
Keras makes your workflow dramatically simpler.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

249

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 7.13 TensorBoard: TensorFlow graph visualization

Keras callbacks provide a simple way to monitor models during training and
automatically take action based on the state of the model.
When using TensorFlow, TensorBoard is a great way to visualize model activity in your
browser. You can use it in Keras models via the function.callback_tensorboard()

Trying out architectures blindly works well enough if you just need something that works
okay. In this section, we’ll go beyond "works okay" to "works great and wins
machine-learning competitions" by offering you a quick guide to a set of must-know
techniques for building state-of-the-art deep-learning models.

We covered one important design pattern in detail in the previous section: residual
connections. There are two more design patterns you should know about: normalization
and separable convolution. These patterns are especially relevant when you’re building
high-performing deep convnets, but they’re commonly found in many other types of
architectures as well.

7.3 Getting the most out of your models

7.2.3 Wrapping up

7.3.1 Advanced architecture patterns

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

250

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Normalization is a broad category of methods that seek to make different samples seen
by a machine-learning model more similar to each other, which helps the model learn and
generalize well to new data. The most common form of data normalization is one you’ve
seen several times in this book already: centering the data on 0 by subtracting the mean
from the data, and giving the data a unit standard deviation by dividing the data by its
standard deviation. In effect, this makes the assumption that the data follows a normal (or
Gaussian) distribution and makes sure this distribution is centered and scaled to unit
variance:

Previous examples normalized data before feeding it into models. But data
normalization should be a concern after every transformation operated by the network:
even if the data entering a or has a 0 mean and unitlayer_dense layer_conv_2d

variance, there is no reason to expect a priori that this will be the case for the data coming
out.

Batch normalization is a type of layer (in Keras)layer_batch_normalization

introduced in 2015 by Ioffe and Szegedy; it can adaptively normalize data even as the21

mean and variance change over time during training. It works by internally maintaining
an exponential moving average of the batch-wise mean and variance of the data seen
during training. The main effect of batch normalization is that it helps with gradient
propagation—much like residual connections—and thus allows for deeper networks.
Some very deep networks can only be trained if they include multiple batch
normalization layers. For instance, is used liberally inlayer_batch_normalization

many of the advanced convnet architectures that come packaged with Keras, such as
ResNet50, Inception V3, and Xception.

Footnote 21mSergey Ioffe and Christian Szegedy, "Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift," Proceedings of the 32nd International Conference on

 (2015), .Machine Learning arxiv.org/abs/1502.03167

The is typically used after a convolutional or denselylayer_batch_normalization

connected layer:

The layer takes an argument, which specifieslayer_batch_normalization axis

the feature axis that should be normalized. This argument defaults to -1, the last axis in

BATCH NORMALIZATION

mean <- apply(train_data, 2, mean)
std <- apply(train_data, 2, sd)
train_data <- scale(train_data, center = mean, scale = std)
test_data <- scale(test_data, center = mean, scale = std)

layer_conv_2d(filters = 32, kernel_size = 3, activation = "relu") %>%
layer_batch_normalization()

layer_dense(units = 32, activation = "relu") %>%
layer_batch_normalization()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

251

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://arxiv.org/abs/1502.03167
https://forums.manning.com/forums/deep-learning-with-r

the input tensor. This is the correct value when using , ,layer_dense layer_conv_1d

RNN layers, and with set to "channels_last". But in thelayer_conv_2d data_format

niche use case of with set to "channels_first", the featureslayer_conv_2d data_format

axis is axis 1; the argument in should accordinglyaxis layer_batch_normalization

be set to 1.

SIDEBAR Batch renormalization

A recent improvement over regular batch normalization is batch
, introduced by Ioffe in 2017. It offers clears benefits overrenormalization 22

batch normalization, at no apparent cost. At the time of writing, it’s too early
to tell whether it will supplant batch normalization—but I think it’s likely. Even
more recently, Klambauer et al. introduced ,self-normalizing neural networks

 which manage to keep data normalized after going through any dense23

layer by using a specific activation function () and a specific initializer (selu

). This scheme, although highly interesting, is limited to denselylecun_normal

connected networks for now, and its usefulness hasn’t yet been broadly
replicated.

Footnote 22mSergey Ioffe, "Batch Renormalization: Towards Reducing
Minibatch Dependence in Batch-Normalized Models" (2017),

.arxiv.org/abs/1702.03275

Footnote 23mGünter Klambauer et al., "Self-Normalizing Neural
Networks," Conference on Neural Information Processing Systems (2017),

.arxiv.org/abs/1706.02515

What if I told you that there is a layer you can use as a drop-in replacement for
 that will make your model lighter (fewer trainable weight parameters)layer_conv_2d

and faster (fewer floating-point operations) and cause it perform a few percent better on
its task? That is precisely what the layer does (depthwise separable convolution

). Such a layer performs a spatial convolution on eachlayer_separable_conv_2d

channel of its input, independently, before mixing output channels via a pointwise
convolution (a 1 × 1 convolution), as shown in figure 7.14 This is equivalent to
separating the learning of spatial features and the learning of channel-wise features,
which makes a lot of sense if you assume that spatial locations in the input are highly
correlated but different channels are fairly independent. It requires significantly fewer
parameter and involves fewer computations, thus resulting in smaller, speedier models.
And because it’s a more representationally efficient way to perform convolution, it tends
to learn better representations using less data, resulting in better-performing models.

DEPTHWISE SEPARABLE CONVOLUTION

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

252

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://arxiv.org/abs/1702.03275
https://arxiv.org/abs/1706.02515
https://forums.manning.com/forums/deep-learning-with-r

Figure 7.14 Depthwise separable convolution: a depthwise convolution followed by a
pointwise convolution

These advantages become especially important when you’re training small models
from scratch on limited data. For instance, here is how you can build a lightweight,
depthwise separable convnet for an image-classification task (softmax categorical
classification) on a small dataset:

library(keras)

height <- 64
width <- 64
channels <- 3
num_classes <- 10

model <- keras_model_sequential() %>%
 layer_separable_conv_2d(filters = 32, kernel_size = 3,
 activation = "relu",
 input_shape = c(height, width, channels)) %>%
 layer_separable_conv_2d(filters = 64, kernel_size = 3,
 activation = "relu") %>%
 layer_max_pooling_2d(pool_size = 2) %>%

 layer_separable_conv_2d(filters = 64, kernel_size = 3,
 activation = "relu") %>%
 layer_separable_conv_2d(filters = 128, kernel_size = 3,
 activation = "relu") %>%
 layer_max_pooling_2d(pool_size = 2) %>%

 layer_separable_conv_2d(filters = 64, kernel_size = 3,
 activation = "relu") %>%
 layer_separable_conv_2d(filters = 128, kernel_size = 3,
 activation = "relu") %>%
 layer_global_average_pooling_2d() %>%

 layer_dense(units = 32, activation = "relu") %>%

 layer_dense(units = num_classes, activation = "softmax")

model %>% compile(
 optimizer = "rmsprop",
 loss = "categorical_crossentropy"
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

253

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

1.
2.
3.
4.
5.
6.

When it comes to larger-scale models, depthwise separable convolutions are the basis
of the Xception architecture, a high-performing convnet that comes packaged with Keras.
You can read more about the theoretical grounding for depthwise separable convolutions
and Xception in my paper "Xception: Deep Learning with Depthwise Separable
Convolutions."footnote[Chollet, Xception, .]arxiv.org/abs/1610.02357

When building a deep-learning model, you have to make many seemingly arbitrary
decisions: how many layers should you stack? How many units or filters should go in
each layer? Should you use as activation, or a different function? Should you use relu

 after a given layer? How much dropout should you use?layer_batch_normalization

And so on. These architecture-level parameters are called to distinguishhyperparameters
them from the parameters of a model, which are trained via backpropagation.

In practice, experienced machine-learning engineers and researchers build intuition
over time as to what works and what doesn’t when it comes to these choices—they
develop hyperparameter-tuning skills. But there are no formal rules. If you want to get to
the very limit of what can be achieved on a given task, you can’t be content with arbitrary
choices made by a fallible human. Your initial decisions are almost always suboptimal,
even if you have good intuition. You can refine your choices by tweaking them by hand
and retraining the model repeatedly—that’s what machine-learning engineers and
researchers spend most of their time doing. But it shouldn’t be your job as a human to
fiddle with hyperparameters all day—that is better left to a machine.

Thus you need to explore the space of possible decisions automatically,
systematically, in a principled way. You need to search the architecture space and find
the best-performing ones empirically. That’s what the field of automatic hyperparameter
optimization is about: it’s an entire field of research, and an important one.

The process of optimizing hyperparameters typically looks like this:

Choose a set of hyperparameters (automatically).
Build the corresponding model.
Fit it to your training data, and measure the final performance on the validation data.
Choose the next set of hyperparameters to try (automatically).
Repeat.
Eventually, measure performance on your test data.

The key to this process is the algorithm that uses this history of validation
performance, given various sets of hyperparameters, to choose the next set of
hyperparameters to evaluate. Many different techniques are possible: bayesian
optimization, genetic algorithms, simple random search, and so on.

Training the weights of a model is relatively easy: you compute a loss function on a
mini-batch of data and then use the backpropagation algorithm to move the weights in the
right direction. Updating hyperparameters, on the other hand, is extremely challenging.
Consider the following:

7.3.2 Hyperparameter optimization

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

254

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://arxiv.org/abs/1610.02357
https://forums.manning.com/forums/deep-learning-with-r

Computing the feedback signal (does this set of hyperparameters lead to a
high-performing model on this task?) can be extremely expensive: it requires creating
and training a new model from scratch on your dataset.
The hyperparameter space is typically made of discrete decisions and thus isn’t
continuous or differentiable. Hence, you typically can’t do gradient descent in
hyperparameter space. Instead, you must rely on gradient-free optimization techniques,
which naturally are far less efficient than gradient descent.

Because these challenges are difficult and the field is still young, we currently only
have access to very limited tools to optimize models. Often, it turns out that random
search (choosing hyperparameters to evaluate at random, repeatedly) is the best solution,
despite being the most naive one.

The package provides a set of tools that can assist with hyperparameter tuning,tfruns
including:

Tracking the hyperparameters, metrics, output, and source code of every training run.
Comparing hyperparmaeters and metrics across runs to find the best performing model.
Automatically generating reports to visualize individual training runs or comparisons
between runs.

You can find out more about the package at tfruns
.tensorflow.rstudio.com/tools/tfruns/

NOTE One important issue to keep in mind when doing hyperparameter
optimization at scale is validation-set overfitting. Because you’re updating
hyperparameters based on a signal that is computed using your validation
data, you’re effectively training them on the validation data, and thus they
will quickly overfit to the validation data. Always keep this in mind.

Overall, hyperparameter optimization is a powerful technique that is an absolute
requirement to get to state-of-the-art models on any task or to win machine-learning
competitions. Think about it: once upon a time, people handcrafted the features that went
into shallow machine-learning models. That was very much suboptimal. Now, deep
learning automates the task of hierarchical feature engineering—features are learned
using a feedback signal, not hand-tuned, and that’s the way it should be. In the same way,
you shouldn’t handcraft your model architectures; you should optimize them in a
principled way. At the time of writing, the field of automatic hyperparameter
optimization is very young and immature, as deep learning was some years ago, but I
expect it to boom in the next few years.

One last powerful technique for obtaining the best possible results on a task is model
. Ensembling consists of pooling together the predictions of a set of differentensembling

models, to produce better predictions. If you look at machine-learning competitions, in
particular on Kaggle, the winners use very large ensembles of models that inevitably beat
any single model, no matter how good.

7.3.3 Model ensembling

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

255

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://tensorflow.rstudio.com/tools/tfruns/
https://forums.manning.com/forums/deep-learning-with-r

Ensembling relies on the assumption that different good models trained independently
are likely to be good for : each model looks at slightly different aspectsdifferent reasons
of the data to make its predictions, getting part of the "truth" but not all of it. You may be
familiar with the parable of the blind men and the elephant: an ancient story of a group of
blind men who come across an elephant for the first time and try to understand what the
elephant is by touching it. Each man touches a different part of the elephant’s body—just
one part, such as the trunk or a leg. Then the men describe to each other what an elephant
is: "It’s like a snake", "Like a pillar or a tree," and so on. The blind men are essentially
machine-learning models trying to understand the manifold of the training data, each
from its own perspective, using its own assumptions (provided by the unique architecture
of the model and the unique random weight initialization). Each of them gets part of the
truth of the data, but not the whole truth. By pooling their perspectives together, you can
get a far more accurate description of the data. The elephant is a combination of parts:
not any single blind man gets it quite right, but, interviewed together, they can tell a
fairly accurate story.

Let’s use classification as an example. The easiest way to pool the predictions of a set
of classifiers (to) is to average their predictions at inference time:ensemble the classifiers

Use 4 different models to compute initial predictions.

This new prediction array should be more accurate than any of the initial ones.

This will work only if the classifiers are more or less equally good. If one of them is
significantly worse than the others, the final predictions may not be as good as the best
classifier of the group.

A smarter way to ensemble classifiers is to do a weighted average, where the weights
are learned on the validation data—typically, the better classifiers are given a higher
weight, and the worse classifiers are given a lower weight. To search for a good set of
ensembling weights, you can use random search or a simple optimization algorithm such
as Nelder-Mead:

preds_a <- model_a %>% predict(x_val)
preds_b <- model_b %>% predict(x_val)
preds_c <- model_c %>% predict(x_val)
preds_d <- model_d %>% predict(x_val)

final_preds <- 0.25 * (preds_a + preds_b + preds_c + preds_d)

preds_a <- model_a %>% predict(x_val)
preds_b <- model_b %>% predict(x_val)
preds_c <- model_c %>% predict(x_val)
preds_d <- model_d %>% predict(x_val)

final_preds <- 0.5 * preds_a +
 0.25 * preds_b +
 0.1 * preds_c +
 0.15 * preds_d

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

256

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

These weights (0.5, 0.25, 0.1, 0.15) are assumed to be learned empirically.

There are many possible variants: you can do an average of an exponential of the
predictions, for instance. In general, a simple weighted average with weights optimized
on the validation data provides a very strong baseline.

The key to making ensembling work is the of the set of classifiers. Diversitydiversity
is strength. If all the blind men only touched the elephant’s trunk, they would agree that
elephants are like snakes, and they would forever stay ignorant of the truth of the
elephant. Diversity is what makes ensembling work. In machine-learning terms, if all of
your models are biased in the same way, then your ensemble will retain this same bias. If
your models are , the biases will cancel each other out, and thebiased in different ways
ensemble will be more robust and more accurate.

For this reason, you should ensemble models that are while being as good as possible
. This typically means using very different architectures or evenas different as possible

different brands of machine-learning approaches. One thing that is largely worthnot
doing is ensembling the same network trained several times independently, from different
random initializations. If the only difference between your models is their random
initialization and the order in which they were exposed to the training data, then your
ensemble will be low-diversity and will provide only a tiny improvement over any single
model.

One thing I have found to work well in practice—but that doesn’t generalize to every
problem domain—is the use of an ensemble of tree-based methods (such as random
forests or gradient-boosted trees) and deep neural networks. In 2014, partnering with
Andrei Kolev, I took fourth place in the Higgs Boson decay detection challenge on
Kaggle (www.kaggle.com/c/higgs-boson) using an ensemble of various tree models and
deep neural networks. Remarkably, one of the models in the ensemble originated from a
different method than the others (it was a regularized greedy forest) and had a
significantly worse score than the others. Unsurprisingly, it was assigned a small weight
in the ensemble. But to our surprise, it turned out to improve the overall ensemble by a
large factor, because it was so different from every other model: it provided information
that the other models didn’t have access to. That’s precisely the point of ensembling. It’s
not so much about how good your best model is; it’s about the diversity of your set of
candidate models.

In recent times, one style of basic ensemble that has been very successful in practice
is the category of models, blending deep learning with shallow learning.wide and deep
Such models consist of jointly training a deep neural net with a large linear model. The
joint training of a family of diverse models is yet another option to achieve model
ensembling.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

257

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://www.kaggle.com/c/higgs-boson
https://forums.manning.com/forums/deep-learning-with-r

When building high-performing deep convnets, you’ll need to use residual connections,
batch normalization, and depthwise separable convolutions. In the future, it’s likely that
depthwise separable convolutions will completely replace regular convolutions, whether
for 1D, 2D, or 3D applications, due to their higher representational efficiency.
Building deep nets requires making many small hyperparameter and architecture choices,
which together define how good your model will be. Rather than basing these choices on
intuition or random chance, it’s better to systematically search hyperparameter space to
find optimal choices. At this time, the process is expensive, and the tools to do it aren’t
very good (but the package may be able to help you manage the process moretfruns
effectively). When doing hyperparameter optimization, be mindful of validation set
overfitting!
Winning machine-learning competitions or otherwise obtaining the best best possible
results on a task can only be done with large ensembles of models. Ensembling via a
well-optimized weighted average is usually good enough. Remember: diversity is
strength. It’s largely pointless to ensemble very similar models; the best ensembles are
sets of models that are as dissimilar as possible (while having as much predictive power
as possible, naturally).

In this chapter, you learned the following:
How to build models as arbitrary graphs of layers, reuse layers (layer weight sharing),
and use models as R functions (model templating).
You can use Keras callbacks to monitor your models during training and take action
based on model state.
TensorBoard allows you to visualize metrics, activation histograms, and even embeddin
spaces.
What batch normalization, depthwise separable convolution, and residual connections
are.
Why you should use hyperparameter optimization and model ensembling.

With these new tools, you’re better equipped to use deep learning in the real world and
start building highly competitive deep-learning models.

7.4 Summary

7.3.4 Wrapping up

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

258

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

8
This chapter covers

The potential of artificial intelligence to emulate human thought processes goes beyond
passive tasks such as object recognition and mostly reactive tasks such as driving a car. It
extends well into creative activities. When I first made the claim that in a not-so-distant
future, most of the cultural content that you consume will be created with heavy help
from AIs, I was met with utter disbelief, even from long-time machine-learning
practitioners. That was in 2014. Fast-forward three years, and the disbelief has
receded—at an incredible speed. In the summer of 2015, we were entertained by
Google’s DeepDream algorithm turning an image into a psychedelic mess of dog eyes
and pareidolic artifacts; in 2016, we used the Prisma application to turn photos into
paintings of various styles. In the summer of 2016, an experimental short movie,

, was directed using a script written by a Long Short-Term Memory (LSTM)Sunspring
algorithm—complete with dialogue. Maybe you’ve recently listened to music that was
tentatively generated by a neural network.

Granted, the artistic productions we have seen from AI so far have been fairly low
quality. AI isn’t anywhere close to rivaling human screenwriters, painters, and
composers. But replacing humans was always besides the point: artificial intelligence
isn’t about replacing our own intelligence with something else, it’s about bringing into
our lives and work intelligence—intelligence of a different kind. In many fields, butmore
especially in creative ones, AI will be used by humans as a tool to augment their own
capabilities: more intelligence than intelligence.augmented artificial

A large part of artistic creation consists of simple pattern recognition and technical
skill. And that is precisely the part of the process that many find less attractive or even

Generative deep learning

Text generation with LSTM
Implementing DeepDream
Performing neural style transfer
Variational autoencoders
Understanding generative adversarial networks

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

259

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

skippable. That’s where AI comes in. Our perceptual modalities, our language, and our
artwork all have statistical structure. Learning this structure is what deep-learning
algorithms excel at. Machine-learning models can learn the statistical oflatent space
images, music, or stories, and they can then from this space, creating newsample
artworks with characteristics similar to those the model has seen in its training data.
Naturally, such sampling is hardly an act of artistic creation in itself. It’s a mere
mathematical operation: the algorithm has no grounding in human life, human emotions,
or our experience of the world; instead, it learns from an experience that has little in
common with ours. It’s only our interpretation, as human spectators, that will give
meaning to what the model generates. But in the hands of a skilled artist, algorithmic
generation can be steered to become meaningful—and beautiful. Latent space sampling
can become a brush that empowers the artist, augments our creative affordances, and
expands the space of what we can imagine. What’s more, it can make artistic creation
more accessible by eliminating the need for technical skill and practice—setting up a new
medium of pure expression, factoring art apart from craft.

Iannis Xenakis, a visionary pioneer of electronic and algorithmic music, beautifully
expressed this same idea in the 1960s, in the context of the application of automation
technology to music composition:24

Footnote 24mIannis Xenakis, _Formalized Music: Thought and Mathematics in Composition" (Indiana
University Press, 1971).

Freed from tedious calculations, the composer is able to devote himself to the genera
problems that the new musical form poses and to explore the nooks and crannies of thi
form while modifying the values of the input data. For example, he may test al
instrumental combinations from soloists to chamber orchestras, to large orchestras. With
the aid of electronic computers the composer becomes a sort of pilot: he presses the
buttons, introduces coordinates, and supervises the controls of a cosmic vessel sailing in
the space of sound, across sonic constellations and galaxies that he could formerly
glimpse only as a distant dream.

In this chapter, we’ll explore from various angles the potential of deep learning to
augment artistic creation. We’ll review sequence data generation (which can be used to
generate text or music), DeepDream, and image generation using both variational
autoencoders and generative adversarial networks. We’ll get your computer to dream up
content never seen before; and maybe we’ll get you to dream, too, about the fantastic
possibilities that lie at the intersection of technology and art. Let’s get started.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

260

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

In this section, we’ll explore how recurrent neural networks can be used to generate
sequence data. We’ll use text generation as an example, but the exact same techniques
can be generalized to any kind of sequence data: you could apply it to sequences of
musical notes in order to generate new music, to timeseries of brushstroke data (for
example, recorded while an artist paints on an iPad) to generate paintings stroke by
stroke, and so on.

Sequence data generation is in no way limited to artistic content generation. It has
been successfully applied to speech synthesis and to dialogue generation for chatbots.
The Smart Reply feature that Google released in 2016, capable of automatically
generating a selection of quick replies to emails or text messages, is powered by similar
techniques.

In late 2014, few people had ever heard the abbreviation LSTM, even in the
machine-learning community. Successful applications of sequence data generation with
recurrent networks only began to appear in the mainstream in 2016. But these techniques
have a fairly long history, starting with the development of the LSTM algorithm in 1997.

 This new algorithm was used early on to generate text character by character.25

Footnote 25mSepp Hochreiter and Jürgen Schmidhuber, "Long Short-Term Memory," Neural
 9, no. 8 (1997).Computation

In 2002, Douglas Eck, then at Schmidhuber’s lab in Switzerland, applied LSTM to
music generation for the first time, with promising results. Eck is now a researcher at
Google Brain, and in 2016 he started a new research group there, called Magenta,
focused on applying modern deep-learning techniques to produce engaging music.
Sometimes, good ideas take 15 years to get started.

In the late 2000s and early 2010s, Alex Graves did important pioneering work on
using recurrent networks for sequence data generation. In particular, his 2013 work on
applying recurrent mixture density networks to generate human-like handwriting using
timeseries of pen positions is seen by some as a turning point. This specific application26

of neural networks at that specific moment in time captured for me the notion of
 and was a significant inspiration around the time I startedmachines that dream

developing Keras. Graves left a similar commented-out remark hidden in a 2013 LateX
file uploaded to the preprint server arXiv (): "generating sequential data is thearxiv.org
closest computers get to dreaming." Several years later, we take a lot of these
developments for granted; but at the time, it was difficult to watch Graves’s
demonstrations and not walk away awe-inspired by the possibilities.

Footnote 26mAlex Graves, "Generating Sequences With Recurrent Neural Networks," arXiv (2013),
.arxiv.org/abs/1308.0850

Since then, recurrent neural networks have been successfully used for music
generation, dialogue generation, image generation, speech synthesis, and molecule

8.1 Text generation with LSTM

8.1.1 A brief history of generative recurrent networks

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

261

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://arxiv.org
https://arxiv.org/abs/1308.0850
https://forums.manning.com/forums/deep-learning-with-r

design. They were even used to produce a movie script that was then cast with live
actors.

The universal way to generate sequence data in deep learning is to train a network
(usually an RNN or a convnet) to predict the next token or next few tokens in a sequence,
using the previous tokens as input. For instance, given the input "the cat is on the ma,"
the network is trained to predict the target , the next character. As usual when workingt
with text data, are typically words or characters, and any network that can modeltokens
the probability of the next token given the previous ones is called a . Alanguage model
language model captures the of language: its statistical structure.latent space

Once you have such a trained language model, you can from it (generate newsample
sequences): you feed it an initial string of text (called), ask it toconditioning data
generate the next character or the next word (you can even generate several tokens at
once), add the generated output back to the input data, and repeat the process many times
(see figure 8.1). This loop allows you to generate sequences of arbitrary length that
reflect the structure of the data on which the model was trained: sequences that look

 like human-written sentences. In the example we present in this section, you’llalmost
take a LSTM layer, feed it strings of characters extracted from a text corpus, and trainN
it to predict character + 1. The output of the model will be a softmax over all possibleN
characters: a probability distribution for the next character. This LSTM is called a

.character-level neural language model

Figure 8.1 The process of character-by-character text generation using a language model

8.1.2 How do you generate sequence data?

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

262

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

When generating text, the way you choose the next character is crucially important. A
naive approach is , consisting of always choosing the most likely nextgreedy sampling
character. But such an approach results in repetitive, predictable strings that don’t look
like coherent language. A more interesting approach makes slightly more surprising
choices: it introduces randomness in the sampling process, by sampling from the
probability distribution for the next character. This is called (recallstochastic sampling
that is what we call in this field). In such a setup, if has astochasticity randomness e
probability 0.3 of being the next character, according to the model, you’ll choose it 30%
of the time. Note that greedy sampling can be also cast as sampling from a probability
distribution: one where a certain character has probability 1 and all others have
probability 0.

Sampling probabilistically from the softmax output of the model is neat: it allows
even unlikely characters to be sampled some of the time, generating more
interesting-looking sentences and sometimes showing creativity by coming up with new,
realistic-sounding words that didn’t occur in the training data. But there is one issue with
this strategy: it doesn’t offer a way to in the samplingcontrol the amount of randomness
process.

Why would you want more or less randomness? Consider an extreme case: pure
random sampling, where you draw the next character from a uniform probability
distribution and every character is equally likely. This scheme has maximum
randomness; in other words, this probability distribution has maximum entropy.
Naturally, it won’t produce anything interesting. At the other extreme, greedy sampling
doesn’t produce anything interesting, either, and has no randomness: the corresponding
probability distribution has minimum entropy. Sampling from the "real" probability
distribution—the distribution that is output by the model’s softmax function—constitutes
an intermediate point between these two extremes. But there are many other intermediate
points of higher or lower entropy that you may want to explore. Less entropy will give
the generated sequences a more predictable structure (and thus they will potentially be
more realistic looking), whereas more entropy will result in more surprising and creative
sequences. When sampling from generative models, it’s always good to explore different
amounts of randomness in the generation process. Because we—humans—are the
ultimate judges of how interesting the generated data is, interestingness is highly
subjective, and there is no telling in advance where the point of optimal entropy lies.

In order to control the amount of stochasticity in the sampling process, we’ll
introduce a parameter called the that characterizes the entropy of thesoftmax temperature
probability distribution used for sampling: in other words, it characterizes how surprising
or predictable the choice of the next character will be. Given a value, atemperature

new probability distribution is computed from the original one (the softmax output of the
model) by reweighting it in the following way.

8.1.3 The importance of the sampling strategy

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

263

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Listing 8.1 Reweighting a probability distribution to a different temperature

original_distribution is a vector of probability values that must sum to 1.
temperature is a factor quantifying the entropy of the output distribution.

Returns a reweighted version of the original distribution. The sum of the
distribution may no longer be 1, so you divide it by its sum to obtain the new
distribution.

Higher temperatures result in sampling distributions of higher entropy that will
generate more surprising and unstructured generated data, whereas a lower temperature
will result in less randomness and much more predictable generated data (see figure 8.2).

Figure 8.2 Different reweightings of a same probability distribution. Low temperature =
more deterministic, high temperature = more random.

reweight_distribution <- function(original_distribution, temperature = 0.5) {

 distribution <- log(original_distribution) / temperature
 distribution <- exp(distribution)

 distribution / sum(distribution)
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

264

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Let’s put these ideas into practice in a Keras implementation. The first thing you need is
a lot of text data that you can use to learn a language model. You can use any sufficiently
large text file or set of text files—Wikipedia, , and so on. In thisThe Lord of the Rings
example, you’ll use some of the writings of Nietzsche, the late-19th century German
philosopher (translated to English). The language model you’ll learn will thus be
specifically a model of Nietzsche’s writing style and topics of choice, rather than a more
generic model of the English language.

Let’s start by downloading the corpus and converting it to lowercase.

Listing 8.2 Downloading and parsing the initial text file

Next, you’ll extract partially overlapping sequences of length , one-hot encodemaxlen

them, and pack them in a 3D array of shape x (sequences, maxlen,

. Simultaneously, you’ll prepare an array containing theunique_characters) y

corresponding targets: the one-hot-encoded characters that come after each extracted
sequence.

Listing 8.3 Vectorizing sequences of characters

8.1.4 Implementing character-level LSTM text generation

PREPARING THE DATA

library(keras)
library(stringr)

path <- get_file(
 "nietzsche.txt",
 origin = "https://s3.amazonaws.com/text-datasets/nietzsche.txt"
)
text <- tolower(readChar(path, file.info(path)$size))
cat("Corpus length:", nchar(text), "\n")

maxlen <- 60

step <- 3

text_indexes <- seq(1, nchar(text) - maxlen, by = step)

sentences <- str_sub(text, text_indexes, text_indexes + maxlen - 1)

next_chars <- str_sub(text, text_indexes + maxlen, text_indexes + maxlen)

cat("Number of sequences: ", length(sentences), "\n")

chars <- unique(sort(strsplit(text, "")[[1]]))
cat("Unique characters:", length(chars), "\n")

char_indices <- 1:length(chars)
names(char_indices) <- chars

cat("Vectorization...\n")
x <- array(0L, dim = c(length(sentences), maxlen, length(chars)))
y <- array(0L, dim = c(length(sentences), length(chars)))
for (i in 1:length(sentences)) {
 sentence <- strsplit(sentences[[i]], "")[[1]]
 for (t in 1:length(sentence)) {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

265

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://s3.amazonaws.com/text-datasets/nietzsche.txt
https://forums.manning.com/forums/deep-learning-with-r

1.

2.
3.
4.

We’ll extract sequences of 60 characters

We’ll sample a new sequence every 3 characters

This holds the extracted sequences

This holds the targets (the follow-up characters)

List of unique characters in the corpus

Named list that maps unique characters to their index in the list "chars"

One-hot encodes the characters into binary arrays

This network is a single LSTM layer followed by a dense classifier and softmax over all
possible characters. But note that recurrent neural networks aren’t the only way to do
sequence data generation; 1D convnets also have proven extremely successful at this task
in recent times.

Listing 8.4 Single-layer LSTM model for next-character prediction

Because your targets are one-hot encoded, you’ll use categorical_crossentropy
as the loss to train the model.

Listing 8.5 Model compilation configuration

Given a trained model and a seed text snippet, you can generate new text by doing the
following repeatedly:

Draw from the model a probability distribution over the next character, given the text
available so far.
Reweight the distribution to a certain temperature.
Sample the next character at random according to the reweighted distribution.
Add the new character at the end of the available text.

 char <- sentence[[t]]
 x[i, t, char_indices[[char]]] <- 1
 }
 next_char <- next_chars[[i]]
 y[i, char_indices[[next_char]]] <- 1
}

BUILDING THE NETWORK

model <- keras_model_sequential() %>%
 layer_lstm(units = 128, input_shape = c(maxlen, length(chars))) %>%
 layer_dense(units = length(chars), activation = "softmax")

optimizer <- optimizer_rmsprop(lr = 0.01)

model %>% compile(
 loss = "categorical_crossentropy",
 optimizer = optimizer
)

TRAINING THE LANGUAGE MODEL AND SAMPLING FROM IT

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

266

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

This is the code you use to reweight the original probability distribution coming out
of the model and draw a character index from it (the).sampling function

Listing 8.6 Function to sample the next character given the model’s predictions

Finally, the following loop repeatedly trains and generates text. You begin generating
text using a range of different temperatures after every epoch. This allows you to see how
the generated text evolves as the model begins to converge, as well as the impact of
temperature in the sampling strategy.

Listing 8.7 Text-generation loop

sample_next_char <- function(preds, temperature = 1.0) {
 preds <- as.numeric(preds)
 preds <- log(preds) / temperature
 exp_preds <- exp(preds)
 preds <- exp_preds / sum(exp_preds)
 which.max(t(rmultinom(1, 1, preds)))
}

for (epoch in 1:60) {

 cat("epoch", epoch, "\n")

 model %>% fit(x, y, batch_size = 128, epochs = 1)

 start_index <- sample(1:(nchar(text) - maxlen - 1), 1)
 seed_text <- str_sub(text, start_index, start_index + maxlen - 1)

 cat("—- Generating with seed:", seed_text, "\n\n")

 for (temperature in c(0.2, 0.5, 1.0, 1.2)) {

 cat("—---- temperature:", temperature, "\n")
 cat(seed_text, "\n")

 generated_text <- seed_text

 for (i in 1:400) {

 sampled <- array(0, dim = c(1, maxlen, length(chars)))
 generated_chars <- strsplit(generated_text, "")[[1]]
 for (t in 1:length(generated_chars)) {
 char <- generated_chars[[t]]

 sampled[1, t, char_indices[[char]]] <- 1
 }

 preds <- model %>% predict(sampled, verbose = 0)
 next_index <- sample_next_char(preds[1,], temperature)
 next_char <- chars[[next_index]]

 generated_text <- paste0(generated_text, next_char)
 generated_text <- substring(generated_text, 2)

 cat(next_char)
 }
 cat("\n\n")
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

267

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

We train the model for 60 epochs

Fits the model for one iteration on the data

Selects a text seed at random

We try a range of different sampling temperatures

We generate 400 characters, starting from the seed text

One-hot encodes the characters generated so far

Samples the next character

Here we used the random seed text "new faculty, and the jubilation reached its climax
when kant." Here is what you get at epoch 20, long before the model has fully converged,
with :temperature=0.2

Here’s the result with :temperature=0.5

And here’s what you get with :temperature=1.0

At epoch 60, the model has mostly converged, and the text starts to look significantly
more coherent. Here’s the result with :temperature=0.2

new faculty, and the jubilation reached its climax when kant and such a man
in the same time the spirit of the surely and the such the such
as a man is the sunligh and subject the present to the superiority of the
special pain the most man and strange the subjection of the
special conscience the special and nature and such men the subjection of the
special men, the most surely the subjection of the special
intellect of the subjection of the same things and

new faculty, and the jubilation reached its climax when kant in the eterned
and such man as it's also become himself the condition of the
experience of off the basis the superiory and the special morty of the
strength, in the langus, as which the same time life and "even who
discless the mankind, with a subject and fact all you have to be the stand
and lave no comes a troveration of the man and surely the
conscience the superiority, and when one must be w

new faculty, and the jubilation reached its climax when kant, as a
periliting of manner to all definites and transpects it it so
hicable and ont him artiar resull
too such as if ever the proping to makes as cnecience. to been juden,
all every could coldiciousnike hother aw passife, the plies like
which might thiod was account, indifferent germin, that everythery
certain destrution, intellect into the deteriorablen origin of moralian,
and a lessority o

cheerfulness, friendliness and kindness of a heart are the sense of the
spirit is a man with the sense of the sense of the world of the
self-end and self-concerning the subjection of the strengthorixes--the
subjection of the subjection of the subjection of the
self-concerning the feelings in the superiority in the subjection of the
subjection of the spirit isn't to be a man of the sense of the
subjection and said to the strength of the sense of the

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

268

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Here is :temperature=0.5

And here is :temperature=1.0

As you can see, a low temperature value results in extremely repetitive and
predictable text, but local structure is highly realistic: in particular, all words (a word
being a local pattern of characters) are real English words. With higher temperatures, the
generated text becomes more interesting, surprising, even creative; it sometimes invents
completely new words that sound somewhat plausible (such as and).eterned troveration
With a high temperature, the local structure starts to break down, and most words look
like semi-random strings of characters. Without a doubt, 0.5 is the most interesting
temperature for text generation in this specific setup. Always experiment with multiple
sampling strategies! A clever balance between learned structure and randomness is what
makes generation interesting.

Note that by training a bigger model, longer, on more data, you can achieve generated
samples that look much more coherent and realistic than this one. But, of course, don’t
expect to ever generate any meaningful text, other than by random chance: all you’re
doing is sampling data from a statistical model of which characters come after which
characters. Language is a communication channel, and there is a distinction between
what communications are about and the statistical structure of the messages in which
communications are encoded. To evidence this distinction, here is a thought experiment:
what if human language did a better job of compressing communications, much like
computers do with most digital communications? Language would be no less meaningful,
but it would lack any intrinsic statistical structure, thus making it impossible to learn a
language model as you just did.

cheerfulness, friendliness and kindness of a heart are the part of the soul
who have been the art of the philosophers, and which the one
won't say, which is it the higher the and with religion of the frences.
the life of the spirit among the most continuess of the
strengther of the sense the conscience of men of precisely before enough
presumption, and can mankind, and something the conceptions, the
subjection of the sense and suffering and the

cheerfulness, friendliness and kindness of a heart are spiritual by the
ciuture for the
entalled is, he astraged, or errors to our you idstood--and it needs,
to think by spars to whole the amvives of the newoatly, prefectly
raals! it was
name, for example but voludd atu-especity"—or rank onee, or even all
"solett increessic of the world and
implussional tragedy experience, transf, or insiderar,--must hast
if desires of the strubction is be stronges

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

269

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

You can generate discrete sequence data by training a model to predict the next tokens(s)
given previous tokens.
In the case of text, such a model is called a . It can be based on eitherlanguage model
words or characters.
Sampling the next token requires balance between adhering to what the model judges
likely, and introducing randomness.
One way to handle this is the notion of softmax temperature. Always experiment with
different temperatures to find the right one.

DeepDream is an artistic image-modification technique that uses the representations
learned by convolutional neural networks. It was first released by Google in the summer
of 2015, as an implementation written using the Caffe deep-learning library (this was
several months before the first public release of TensorFlow). It quickly became an27

internet sensation thanks to the trippy pictures it could generate (see, for example, figure
8.3), full of algorithmic pareidolia artifacts, bird feathers, and dog eyes—a byproduct of
the fact that the DeepDream convnet was trained on ImageNet, where dog breeds and
bird species are vastly over-represented.

Footnote 27mAlexander Mordvintsev, Christopher Olah, and Mike Tyka, "DeepDream: A Code Example
for Visualizing Neural Networks," , July 1, 2015, .Google Research Blog mng.bz/xXlM

Figure 8.3 Example of a DeepDream output image

The DeepDream algorithm is almost identical to the convnet filter-visualization
technique introduced in chapter 5, consisting of running a convnet in reverse: doing

8.2 DeepDream

WRAPPING UP

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

270

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://mng.bz/xXlM
https://forums.manning.com/forums/deep-learning-with-r

gradient ascent on the input to the convnet in order to maximize the activation of a
specific filter in an upper layer of the convnet. DeepDream uses this same idea, with a
few simple differences:

With DeepDream, you try to maximize the activation of entire layers rather than that of a
specific filter, thus mixing together visualizations of large numbers of features at once.
You start not from blank, slightly noisy input, but rather from an existing image—thus
the resulting effects latch unto pre-existing visual patterns, distorting elements of the
image in a somewhat artistic fashion.
The input images are processed at different scales (called), which improves theoctaves
quality of the visualizations.

Let’s make some DeepDreams.

You’ll start from a convnet pretrained on ImageNet. In Keras, many such convnets are
available: VGG16, VGG19, Xception, ResNet50, and so on. You can implement
DeepDream with any of them, but your convnet of choice will naturally affect your
visualizations, because different convnet architectures result in different learned features.
The convnet used in the original DeepDream release was an Inception model, and in
practice Inception is known to produce nice-looking DeepDreams, so you’ll use the
Inception V3 model that comes with Keras.

Listing 8.8 Loading the pretrained Inception V3 model

You won’t be training the model, so this command disables all training-specific
operations.

Builds the Inception V3 network, without its convolutional base. The model will be
loaded with pretrained ImageNet weights.

Next, you’ll compute the : the quantity you’ll seek to maximize during theloss
gradient-ascent process. In chapter 5, for filter visualization, you were trying to maximize
the value of a specific filter in a specific layer. Here, you’ll simultaneously maximize the
activation of all filters in a number of layers. Specifically, you’ll maximize a weighted
sum of the L2 norm of the activations of a set of high-level layers. The exact set of layers
you choose (as well as their contribution to the final loss) has a major influence on the
visuals you’ll be able to produce, so you want to make these parameters easily
configurable. Lower layers result in geometric patterns, whereas higher layers result in

8.2.1 Implementing DeepDream in Keras

library(keras)
K <- backend()

K$set_learning_phase(0L)

model <- application_inception_v3(
 weights = "imagenet",
 include_top = FALSE,
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

271

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

visuals in which you can recognize some classes from ImageNet (for example, birds or
dogs). You’ll start from a somewhat arbitrary configuration involving four layers—but
you’ll definitely want to explore many different configurations later.

Listing 8.9 Setting up the DeepDream configuration

Named list mapping layer names to a coefficient quantifying how much the layer’s
activation contributes to the loss you’ll seek to maximize. Note that the layer
names are hardcoded in the built-in Inception V3 application. You can list all layer
names using summary(model).

Now let’s define a tensor that contains the loss: the weighted sum of the L2 norm of
the activations of the layers in listing 8.9.

Listing 8.10 Defining the loss to be maximized

Creates a dictionary that maps layer names to layer instances

We’ll define the loss by adding layer contributions to this scalar variable

Retrieves the layer’s output

Adds the L2 norm of the features of a layer to the loss.

Next, you can set up the gradient-ascent process.

Listing 8.11 Gradient-ascent process

layer_contributions <- list(
 mixed2 = 0.2,
 mixed3 = 3,
 mixed4 = 2,
 mixed5 = 1.5
)

layer_dict <- model$layers

names(layer_dict) <- lapply(layer_dict, function(layer) layer$name)

loss <- K$variable(0)
for (layer_name in names(layer_contributions)) {
 coeff <- layer_contributions[[layer_name]]

 activation <- layer_dict[[layer_name]]$output
 scaling <- K$prod(K$cast(K$shape(activation), "float32"))

 loss <- loss + (coeff * K$sum(K$square(activation)) / scaling)
}

dream <- model$input

grads <- K$gradients(loss, dream)[[1]]

grads <- grads / K$maximum(K$mean(K$abs(grads)), 1e-7)

outputs <- list(loss, grads)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

272

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

This tensor holds the generated image: the dream

Computes the gradients of the dream with regard to the loss

Normalizes the gradients (important trick)

Sets up a Keras function to retrieve the value of the loss and gradients, given an
input image

This function runs gradient ascent for a number of iterations

Finally: the actual DeepDream algorithm. First you define a list of (also called scales
) at which to process the images. Each successive scale is larger than previous oneoctaves

by a factor of 1.4 (it’s 40% larger): you start by processing a small image and then
increasingly scale it up (see figure 8.4).

Figure 8.4 The DeepDream process: successive scales of spatial processing (octaves)
and detail reinjection upon upscaling

For each successive scale, from the smallest to the largest, you run gradient ascent to
maximize the loss you previously defined, at that scale. After each gradient ascent run,
you upscale the resulting image by 40%.

fetch_loss_and_grads <- K$`function`(list(dream), outputs)

eval_loss_and_grads <- function(x) {
 outs <- fetch_loss_and_grads(list(x))
 loss_value <- outs[[1]]
 grad_values <- outs[[2]]
 list(loss_value, grad_values)
}

gradient_ascent <- function(x, iterations, step, max_loss = NULL) {
 for (i in 1:iterations) {
 c(loss_value, grad_values) %<-% eval_loss_and_grads(x)
 if (!is.null(max_loss) && loss_value > max_loss)
 break
 cat("...Loss value at", i, ":", loss_value, "\n")
 x <- x + (step * grad_values)
 }
 x
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

273

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

To avoid losing a lot of image detail after each successive scale-up (resulting in
increasingly blurry or pixelated images), you can use a simple trick: after each scale-up,
you’ll reinject the lost details back into the image, which is possible because you know
what the original image should look like at the larger scale. Given a small image size S
and a larger image size , you can compute the difference between the original imageL
(assumed larger than) resized to size and the original resized to size —thisL L S
difference quantifies the details lost when going from to .S L

Listing 8.12 Running gradient ascent over different successive scales

Playing with these hyperparameters will let you achieve new effects.

Gradient ascent step size

Number of scales at which to run gradient ascent

step <- 0.01

num_octave <- 3

octave_scale <- 1.4

iterations <- 20

max_loss <- 10

base_image_path <- "..."

img <- preprocess_image(base_image_path)

original_shape <- dim(img)[-1]
successive_shapes <- list(original_shape)
for (i in 1:num_octave) {
 shape <- as.integer(original_shape / (octave_scale ^ i))
 successive_shapes[[length(successive_shapes) + 1]] <- shape
}

successive_shapes <- rev(successive_shapes)

original_img <- img

shrunk_original_img <- resize_img(img, successive_shapes[[1]])

for (shape in successive_shapes) {
 cat("Processsing image shape", shape, "\n")

 img <- resize_img(img, shape)

 img <- gradient_ascent(img,
 iterations = iterations,
 step = step,
 max_loss = max_loss)

 upscaled_shrunk_original_img <- resize_img(shrunk_original_img, shape)

 same_size_original <- resize_img(original_img, shape)

 lost_detail <- same_size_original - upscaled_shrunk_original_img

 img <- img + lost_detail
 shrunk_original_img <- resize_img(original_img, shape)
 save_img(img, fname = sprintf("dream_at_scale_%s.png",
 paste(shape, collapse = "x")))
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

274

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Size ratio between scales

Number of ascent steps to run at each scale

If the loss grows larger than 10, we will interrupt the gradient-ascent process to
avoid ugly artifacts.

Fill this with the path to the image you want to use.

Loads the base image into an array (function is defined in listing 8.13)

Prepares a list of shape tuples defining the different scales at which to run gradient
ascent

Reverses the list of shapes so they’re in increasing order

Resizes the array of the image to the smallest scale

Scales up the dream image

Runs gradient ascent, altering the dream

Scales up the smaller version of the original image: it will be pixellated

Computes the high-quality version of the original image at this size

The difference between the two is the detail that was lost when scaling up

Reinjects lost detail into the dream

Note that this code uses the following straightforward auxiliary R functions, which all
do as their names suggest.

Listing 8.13 Auxiliary functions

resize_img <- function(img, size) {
 image_array_resize(img, size[[1]], size[[2]])
}

save_img <- function(img, fname) {
 img <- deprocess_image(img)
 image_array_save(img, fname)
}

preprocess_image <- function(image_path) {
 image_load(image_path) %>%
 image_to_array() %>%
 array_reshape(dim = c(1, dim(.))) %>%
 inception_v3_preprocess_input()
}

deprocess_image <- function(img) {
 img <- array_reshape(img, dim = c(dim(img)[[2]], dim(img)[[3]], 3))

 img <- img / 2
 img <- img + 0.5
 img <- img * 255

 dims <- dim(img)
 img <- pmax(0, pmin(img, 255))
 dim(img) <- dims
 img
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

275

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Util function to open, resize, and format pictures into tensors that Inception V3 can
process

Util function to convert a tensor into a valid image

Undoes preprocessing that was performed by imagenet_preprocess_input

NOTE Because the original Inception V3 network was trained to recognize
concepts in images of size 299 × 299, and given that the process involves
scaling the images down by a reasonable factor, the DeepDream
implementation produces much better results on images that are
somewhere between 300 × 300 and 400 × 400. Regardless, you can run
the same code on images of any size and any ratio.

Starting from a photograph taken in the small hills between San Francisco Bay and
the Google campus, we obtained the DeepDream shown in figure 8.5.

Figure 8.5 Running the DeepDream code on an example image

I strongly suggest that you explore what you can do by adjusting which layers you
use in your loss. Layers that are lower in the network contain more local, less-abstract
representations and lead to more geometric-looking dream patterns. Layers that are
higher up lead to more recognizable visual patterns based on the most common objects
found in ImageNet, such as dog eyes, bird feathers, and so on. You can use random
generation of the parameters in the dictionary to quickly explorelayer_contributions

many different layer combinations. Figure 8.6 shows a range of results obtained using
different layer configurations, from an image of a delicious homemade pastry.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

276

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 8.6 Trying a range of DeepDream configurations on an example image

DeepDream consists of running a convnet in reverse to generate inputs based on the
representations learned by the network.
The results produced are fun and share some similarity with the visual artifacts induced
in humans by the disruption of the visual cortex via psychedelics.
Note that the process isn’t specific to image models or even to convnets. It can be done
for speech, music, and more.

In addition to DeepDream, another major development in deep learning-driven image
modification that happened is , introduced by Leon Gatys et al. in theneural style transfer
summer of 2015. The algorithm using neural style transfer has undergone many28

refinements and spawned many variations since its original introduction, including a viral
smartphone app called Prisma. For simplicity, this section focuses on the formulation
described in the original paper.

Footnote 28mLeon A. Gatys, Alexander S. Ecker, and Matthias Bethge, "A Neural Algorithm of Artistic
Style," arXiv, 2015, .arxiv.org/abs/1508.06576

Neural style transfer consists of applying the style of a reference image to a target

8.3 Neural style transfer

8.2.2 Wrapping up

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

277

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://arxiv.org/abs/1508.06576
https://forums.manning.com/forums/deep-learning-with-r

image while conserving the content of the target image. Figure 8.7 shows an example.

Figure 8.7 A style transfer example

In this context, essentially means textures, colors, and visual patterns in thestyle
image, at various spatial scales; and the is the higher-level macrostructure of thecontent
image. For instance, blue-and-yellow circular brushstrokes are considered to be the style
in figure 8.7 (using by Vincent Van Gogh), and the buildings in theStarry Night
Tübingen photograph are considered to be the content.

The idea of style transfer, which is tightly related to that of texture generation, has
had a long history in the image-processing community prior to the development of neural
style transfer in 2015. But as it turns out, the deep learning-based implementations of
style transfer offer results unparalleled by what had been previously achieved with
classical computer-vision techniques, and they triggered an amazing renaissance in
creative applications of computer vision.

The key notion behind implementing style transfer is the same idea that is central to
all deep-learning algorithms: you define a loss function to specify what you want to
achieve, and you minimize this loss. You know what you want to achieve: conserving the
content of the original image while adopting the style of the reference image. If we were
able to mathematically define and , then an appropriate loss function tocontent style
minimize would be the following:

Here, is a norm function such as the L2 norm, is a function thatdistance content

takes an image and computes a representation of its content, and is a function thatstyle

takes an image and computes a representation of its style. Minimizing this loss causes
 to be close to , and style(generated_image) style(reference_image)

 is close to , thus achievingcontent(generated_image) content(generated_image)

style transfer as we defined it.
A fundamental observation made by Gatys et al. was that deep convolutional neural

networks offer a precise way to mathematically define the and functions.style content

Let’s see how.

loss <- distance(style(reference_image) - style(generated_image)) +
 distance(content(original_image) - content(generated_image))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

278

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

As you already know, activations from earlier layers in a network contain local
information about the image, whereas activations from higher layers contain increasingly

, information. Formulated in a different way, the activations of theglobal abstract
different layers of a convnet provide a decomposition of the contents of an image over
different spatial scales. Therefore, you’d expect the content of an image, which is more
global and abstract, to be captured by the representations of an upper layer in a convnet.

A good candidate for content loss is thus the L2 norm between the activations of an
upper layer in a pretrained convnet, computed over the target image, and the activations
of the same layer computed over the generated image. This guarantees that, as seen from
the upper layer, the generated image will look similar to the original target image.
Assuming that what the upper layers of a convnet see is really the content of their input
images, then this works as a way to preserve image content.

The content loss only uses a single upper layer, but the style loss as defined by Gatys et
al. uses multiple layers of a convnet: you try to capture the appearance of the
style-reference image at all spatial scales extracted by the convnet, not just a single scale.
For the style loss, Gatys et al. use the of a layer’s activations: the innerGram matrix
product of the feature maps of a given layer. This inner product can be understood as
representing a map of the correlations between the a layer’s features. These feature
correlations capture the statistics of the patterns of a particular spatial scale, which
empirically correspond to the appearance of the textures found at this scale.

Hence the style loss aims to preserve similar internal correlations within the
activations of different layers, across the style- reference image and the generated image.
In turn, this guarantees that the textures found at different spatial scales look similar
across the style-reference image and the generated image.

In short, you can use a pretrained convnet to define a loss that will do the following:

Preserve content by maintaining similar high-level layer activations between the target
content image and the generated image. The convnet should "see" both the target image
and the generated image as containing the same things.
Preserve style by maintaining similar within activations for both low-levelcorrelations
layers and high-level layers. Feature correlations capture : the generated imagetextures
and the style-reference image should share the same textures at different spatial scales.

Now, let’s look at a Keras implementation of the original 2015 neural style-transfer
algorithm. As you’ll see, it shares many similarities with the DeepDream implementation
developed in the previous section.

Neural style transfer can be implemented using any pretrained convnet. Here you’ll use
the VGG19 network used by Gatys et al. VGG19 is a simple variant of the VGG16
network introduced in chapter 5, with three more convolutional layers.

8.3.1 The content loss

8.3.2 The style loss

8.3.3 Neural style transfer in Keras

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

279

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

1.

2.

3.

This is the general process:

Set up a network that computes VGG19 layer activations for the style-reference image,
the target image, and the generated image at the same time.
Use the layer activations computed over these three images to define the loss function
described earlier, which you’ll minimize in order to achieve style transfer.
Set up a gradient-descent process to minimize this loss function.

Let’s start by defining the paths to the style-reference image and the target image. To
make sure that the processed images are a similar size (widely different sizes make style
transfer more difficult), you’ll later resize them all to a shared height of 400 px.

Listing 8.14 Defining initial variables

Path to the image you want to transform

Path to the style image

Calculate dimensions of the generated picture

You need some auxiliary functions for loading, preprocessing, and post-processing
the images that go in and out of the VGG19 convnet.

Listing 8.15 Auxiliary functions

library(keras)
K <- backend()

target_image_path <- "img/portrait.png"

style_reference_image_path <- "img/transfer_style_reference.png"

img <- image_load(target_image_path)
width <- img$size[[1]]
height <- img$size[[2]]
img_nrows <- 400
img_ncols <- as.integer(width * img_nrows / height)

preprocess_image <- function(path) {
 img <- image_load(path, target_size = c(img_nrows, img_ncols)) %>%
 image_to_array() %>%
 array_reshape(c(1, dim(.)))
 imagenet_preprocess_input(img)
}

deprocess_image <- function(x) {
 x <- x[1,,,]

 x[,,1] <- x[,,1] + 103.939
 x[,,2] <- x[,,2] + 116.779
 x[,,3] <- x[,,3] + 123.68

 x <- x[,,c(3,2,1)]
 x[x > 255] <- 255
 x[x < 0] <- 0
 x[] <- as.integer(x)/255
 x
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

280

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Zero-centering by removing the mean pixel value from ImageNet. This reverses a
transformation done by `imagenet_preprocess_input.

Convert images from 'BGR' to 'RGB'. This is also part of the reversal of
`imagenet_preprocess_input.

Let’s set up the VGG19 network. It takes as input a batch of three images: the
style-reference image, the target image, and a placeholder that will contain the generated
image. A placeholder is a symbolic tensor, the values of which are provided externally
via R arrays. The style-reference and target image are static and thus defined using

, whereas the values contained in the placeholder of the generated image willK$constant

change over time.

Listing 8.16 Loading the pretrained VGG19 network and applying to the three
images

Placeholder that will contain the generated image

Combines the three images in a single batch

Builds the VGG16 network with the batch of three images as input. The model will
be loaded with pretrained ImageNet weights.

Let’s define the content loss, which will make sure the top layer of the VGG19
convnet has a similar view of the target image and the generated image.

Listing 8.17 Content loss

Next is the style loss. It uses an auxiliary function to compute the Gram matrix of an
input matrix: a map of the correlations found in the original feature matrix.

Listing 8.18 Style loss

target_image <- K$constant(preprocess_image(target_image_path))
style_reference_image <- K$constant(
 preprocess_image(style_reference_image_path)
)

combination_image <- K$placeholder(c(1L, img_nrows, img_ncols, 3L))

input_tensor <- K$concatenate(list(target_image, style_reference_image,
 combination_image), axis = 0L)

model <- application_vgg19(input_tensor = input_tensor,
 weights = "imagenet",
 include_top = FALSE)

cat("Model loaded\n")

content_loss <- function(base, combination) {
 K$sum(K$square(combination - base))
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

281

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

To these two loss components, you add a third: the , whichtotal variation loss
operates on the pixels of the generated combination image. It encourages spatial
continuity in the generated image, thus avoiding overly pixelated results. You can
interpret it as a regularization loss.

Listing 8.19 Total variation loss

The loss that you minimize is a weighted average of these three losses. To compute
the content loss, you use only one upper layer—the layer—whereas forblock5_conv2

the style loss, you use a list of layers than spans both low-level and high-level layers.
You add the total variation loss at the end.

Depending on the style-reference image and content image you’re using, you’ll likely
want to tune the coefficient (the contribution of the content loss to thecontent_weight

total loss). A higher means the target content will be morecontent_weight

recognizable in the generated image.

Listing 8.20 Defining the final loss that you’ll minimize

gram_matrix <- function(x) {
 features <- K$batch_flatten(K$permute_dimensions(x, list(2L, 0L, 1L)))
 gram <- K$dot(features, K$transpose(features))
 gram
}

style_loss <- function(style, combination){
 S <- gram_matrix(style)
 C <- gram_matrix(combination)
 channels <- 3
 size <- img_nrows*img_ncols
 K$sum(K$square(S - C)) / (4 * channels^2 * size^2)
}

total_variation_loss <- function(x) {
 y_ij <- x[,1:(img_nrows - 1L), 1:(img_ncols - 1L),]
 y_i1j <- x[,2:(img_nrows), 1:(img_ncols - 1L),]
 y_ij1 <- x[,1:(img_nrows - 1L), 2:(img_ncols),]
 a <- K$square(y_ij - y_i1j)
 b <- K$square(y_ij - y_ij1)
 K$sum(K$pow(a + b, 1.25))
}

outputs_dict <- lapply(model$layers, `[[`, "output")
names(outputs_dict) <- lapply(model$layers, `[[`, "name")

content_layer <- "block5_conv2"

style_layers = c("block1_conv1", "block2_conv1",
 "block3_conv1", "block4_conv1",
 "block5_conv1")

total_variation_weight <- 1e-4
style_weight <- 1.0
content_weight <- 0.025

loss <- K$variable(0.0)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

282

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Named list mapping layer names to activation tensors

Layer used for content loss

Layers used for style loss

Weights in the weighted average of the loss components

We’ll define the loss by adding all components this scalar variable

Adds the content loss

Adds a style loss component for each target layer

Adds the total variation loss

Finally, you’ll set up the gradient-descent process. In the original Gatys et al. paper,
optimization is performed using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm, so that is also what you’ll use here. This is a key difference from
the DeepDream example in section 8.2. The L-BFGS algorithm is available via the

 function, but there are two slight limitations with the implementation:optim() optim()

It requires that you pass the value of the loss function and the value of the gradients as
two separate functions.
It can only be applied to flat vectors, whereas you have a 3D image array.

It would be inefficient to compute the value of the loss function and the value of the
gradients independently, because doing so would lead to a lot of redundant computation
between the two; the process would be almost twice as slow as computing them jointly.
To bypass this, you’ll set up an R6 class named that computes both the lossEvaluator

value and the gradients value at once, returns the loss value when called the first time,
and caches the gradients for the next call.

Listing 8.21 Setting up the gradient-descent process

layer_features <- outputs_dict[[content_layer]]
target_image_features <- layer_features[1,,,]
combination_features <- layer_features[3,,,]

loss <- loss + content_weight * content_loss(target_image_features,
 combination_features)

for (layer_name in style_layers) {
 layer_features <- outputs_dict[[layer_name]]
 style_reference_features <- layer_features[2,,,]
 combination_features <- layer_features[3,,,]
 sl <- style_loss(style_reference_features, combination_features)
 loss <- loss + ((style_weight / length(style_layers)) * sl)
}

loss <- loss +
 (total_variation_weight * total_variation_loss(combination_image))

grads <- K$gradients(loss, combination_image)[[1]]

fetch_loss_and_grads <- K$`function`(list(combination_image), list(loss, grads))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

283

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Gets the gradients of the generated image with regard to the loss

Function to fetch the values of the current loss and the current gradients

This class wraps fetch_loss_and_grads in a way that allows you to retrieve the
losses and gradients via two separate method calls, which is required by the
optimizer we’ll use

Finally, you can run the gradient-ascent process using the L-BFGS algorithm, plotting
the current generated image at each iteration of the algorithm (here, a single iteration
represents 20 steps of gradient ascent).

Listing 8.22 Style-transfer loop

eval_loss_and_grads <- function(image) {
 image <- array_reshape(image, c(1, img_nrows, img_ncols, 3))
 outs <- fetch_loss_and_grads(list(image))
 list(
 loss_value = outs[[1]],
 grad_values = array_reshape(outs[[2]], dim = length(outs[[2]]))
)
}

library(R6)

Evaluator <- R6Class("Evaluator",
 public = list(

 loss_value = NULL,
 grad_values = NULL,

 initialize = function() {
 self$loss_value <- NULL
 self$grad_values <- NULL
 },

 loss = function(x) {
 loss_and_grad <- eval_loss_and_grads(x)
 self$loss_value <- loss_and_grad$loss_value
 self$grad_values <- loss_and_grad$grad_values
 self$loss_value
 },

 grads = function(x) {
 grad_values <- self$grad_values
 self$loss_value <- NULL
 self$grad_values <- NULL
 grad_values
 }
)
)

evaluator <- Evaluator$new()

iterations <- 20

dms <- c(1, img_nrows, img_ncols, 3)

x <- preprocess_image(target_image_path)

x <- array_reshape(x, dim = length(x))

for (i in 1:iterations) {

 opt <- optim(

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

284

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

This is the initial state: the target image.

We flatten the image because optim can only process flat vectors.

Runs L-BFGS over the pixels of the generated image to minimize the neural style
loss. Note that we have to pass the function that computes the loss and the function
that computes the gradients as two separate arguments.

Figure 8.8 shows what you get. Keep in mind that what this technique achieves is
merely a form of image retexturing, or texture transfer. It works best with style- reference
images that are strongly textured and highly self-similar, and with content targets that
don’t require high levels of detail in order to be recognizable. It typically can’t achieve
fairly abstract feats such as transferring the style of one portrait to another. The algorithm
is closer to classical signal processing than to AI, so don’t expect it to work like magic!

 array_reshape(x, dim = length(x)),
 fn = evaluator$loss,
 gr = evaluator$grads,
 method = "L-BFGS-B",
 control = list(maxit = 15)
)

 cat("Loss:", opt$value, "\n")

 image <- x <- opt$par
 image <- array_reshape(image, dms)

 im <- deprocess_image(image)
 plot(as.raster(im))
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

285

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 8.8 Some example results

Additionally, note that running this style-transfer algorithm is slow. But the
transformation operated by the setup is simple enough that it can be learned by a small,
fast feedforward convnet as well—as long as you have appropriate training data
available. Fast style transfer can thus be achieved by first spending a lot of compute

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

286

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

cycles to generate input-output training examples for a fixed style- reference image,
using the method outlined here, and then training a simple convnet to learn this
style-specific transformation. Once that is done, stylizing a given image is instantaneous:
it’s just a forward pass of this small convnet.

Style transfer consists of creating a new image that preserves the contents of a target
image while also capturing the style of a reference image.
Content can be captured by the high-level activations of a convnet.
Style can be captured by the internal correlations of the activations of different layers of a
convnet.
Hence deep learning allows style transfer to be formulated as an optimization process
using a loss defined with a pretrained convnet.
Starting from this basic idea, many variants and refinements are possible.

Sampling from a latent space of images to create entirely new images or edit existing
ones is currently the most popular and successful application of creative AI. In this
section and the next, we’ll review some high-level concepts pertaining to image
generation, alongside implementations details relative to the two main techniques in this
domain: (VAEs) and (GANs).variational autoencoders generative adversarial networks
The techniques we present here aren’t specific to images—you could develop latent
spaces of sound, music, or even text, using GANs and VAEs—but in practice, the most
interesting results have been obtained with pictures, and that is what we focus on here.

The key idea of image generation is to develop a low-dimensional oflatent space
representations (which naturally is a vector space) where any point can be mapped to a
realistic-looking image. The module capable of realizing this mapping, taking as input a
latent point and outputting an image (a grid of pixels) is called a (in the case ofgenerator
GANs) or a (in the case of VAEs). Once such a latent space has been developed,decoder
you can sample points from it, either deliberately or at random, and, by mapping them to
image space, generate images that have never been seen before (see figure 8.9).

8.4 Generating images with variational autoencoders

8.3.4 Wrapping up

8.4.1 Sampling from latent spaces of images

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

287

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 8.9 Learning a latent vector space of images, and using it to sample new images

GANs and VAEs are two different strategies for learning such latent spaces of image
representations, each with its own characteristics. VAEs are great for learning latent
spaces that are well structured, where specific directions encode a meaningful axis of
variation in the data. GANs generate images that can potentially be highly realistic, but
the latent space they come from may not have as much structure and continuity.

Figure 8.10 A continuous space of faces generated by Tom White using VAEs

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

288

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

We already hinted at the idea of a when we covered word embeddings inconcept vector
chapter 6. The idea is still the same: given a latent space of representations, or an
embedding space, certain directions in the space may encode interesting axes of variation
in the original data. In a latent space of images of faces, for instance, there may be a

 , such that if latent point is the embedded representation of a certain face,smile vector s z

then latent point is the embedded representation of the same face, smiling. Oncez + s

you’ve identified such a vector, it then becomes possible to edit images by projecting
them into the latent space, moving their representation in a meaningful way, and then
decoding them back to image space. There are concept vectors for essentially any
independent dimension of variation in image space—in the case of faces, you may
discover vectors for adding sunglasses to a face, removing glasses, turning a male face
into as female face, and so on. Figure 8.11 is an example of a smile vector, a concept
vector discovered by Tom White from the Victoria University School of Design in New
Zealand, using VAEs trained on a dataset of faces of celebrities (the CelebA dataset).

Figure 8.11 The smile vector

Variational autoencoders, simultaneously discovered by Kingma and Welling in
December 2013 and Rezende, Mohamed, and Wierstra in January 2014, are a kind of29 30

generative model that is especially appropriate for the task of image editing via concept
vectors. They’re a modern take on autoencoders—a type of network that aims to encode
an input to a low-dimensional latent space and then decode it back—that mixes ideas
from deep learning with Bayesian inference.

Footnote 29mDiederik P. Kingma and Max Welling, "Auto-Encoding Variational Bayes, arXiv, 2013,
.arxiv.org/abs/1312.6114

Footnote 30mDanilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra, "Stochastic
Backpropagation and Approximate Inference in Deep Generative Models," arXiv, 2014,

.arxiv.org/abs/1401.4082

8.4.2 Concept vectors for image editing

8.4.3 Variational autoencoders

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

289

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082
https://forums.manning.com/forums/deep-learning-with-r

A classical image autoencoder takes an image, maps it to a latent vector space via an
encoder module, and then decodes it back to an output with the same dimensions as the
original image, via a decoder module (see figure 8.12). It’s then trained by using as target
data the as the input images, meaning the autoencoder learns to reconstructsame images
the original inputs. By imposing various constraints on the code (the output of the
encoder), you can get the autoencoder to learn more-or-less interesting latent
representations of the data. Most commonly, you’ll constrain the code to be
low-dimensional and sparse (mostly zeros), in which case the encoder acts as a way to
compress the input data into fewer bits of information.

Figure 8.12 An autoencoder: mapping an input x to a compressed representation and
then decoding it back as x'

In practice, such classical autoencoders don’t lead to particularly useful or
well-structured latent spaces. They’re not much good at compression, either. For these
reasons, they have largely fallen out of fashion. VAEs, however, augment autoencoders
with a little statistical magic that forces them to learn continuous, highly structured latent
spaces. They have turned out to be a powerful tool for image generation.

A VAE, instead of compressing its input image into a fixed code in the latent space,
turns the image into the parameters of a statistical distribution: a mean and a variance.
Essentially, this means you’re assuming the input image has been generated by a
statistical process, and that the randomness of this process should be taken into account
during encoding and decoding. The VAE then uses the mean and variance parameters to
randomly sample one element of the distribution, and decodes that element back to the
original input (see figure 8.13). The stochasticity of this process improves robustness and
forces the latent space to encode meaningful representations everywhere: every point
sampled in the latent space is decoded to a valid output.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

290

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

1.

2.

3.

Figure 8.13 A VAE maps an image to two vectors, z_mean and z_log_sigma, which define
a probability distribution over the latent space, used to sample a latent point to decode.

In technical terms, here is how a VAE works:

An encoder module turns the input samples into two parameters in a latentinput_img
space of representations, and .z_mean z_log_variance

You randomly sample a point from the latent normal distribution that is assumed toz
generate the input image, via ,z = z_mean + exp(z_log_variance) * epsilon
where is a random tensor of small values.epsilon

A decoder module maps this point in the latent space back to the original input image.

Because is random, the process ensures that every point that is close to theepsilon

latent location where you encoded () can be decoded to somethinginput_img z-mean

similar to , thus forcing the latent space to be continuously meaningful. Anyinput_img

two close points in the latent space will decode to highly similar images. Continuity,
combined with the low dimensionality of the latent space, forces every direction in the
latent space to encode a meaningful axis of variation of the data, making the latent space
very structured and thus highly suitable to manipulation via concept vectors.

The parameters of a VAE are trained via two loss functions: a thatreconstruction loss
forces the decoded samples to match the initial inputs, and a thatregularization loss
helps learn well-formed latent spaces and reduce overfitting to the training data.

Let’s quickly go over a Keras implementation of a VAE. Schematically, it looks like
this:

Encodes the input into a mean and variance parameter

c(z_mean, z_log_variance) %<% encoder(input_img)

z <- z_mean + exp(z_log_variance) * epsilon

reconstructed_img <- decoder(z)

model <- keras_model(input_img, reconstructed_img)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

291

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Draws a latent point using a small random epsilon

Decodes z back to an image

Instantiates the autoencoder model, that maps an input image to its reconstruction

After these steps, you train the model using the reconstruction loss and the
regularization loss.

The following listing shows the encoder network you’ll use, mapping images to the
parameters of a probability distribution over the latent space. It’s a simple convnet that
maps the input image to two vectors, and .x z_mean z_log_variance

Listing 8.23 VAE encoder network

Dimensionality of the latent space: a 2D plane

The input image ends up being encoded into these two parameters

Next is the code for using and , the parameters of the statisticalz_mean z_log_var

distribution assumed to have produced , to generate a latent space point .input_img z

Here, you wrap some arbitrary code (built on top of Keras backend primitives) into a
, which wraps an R function into a layer. In Keras, everything needs to belayer_lambda

a layer, so code that isn’t part of a built-in layer should be wrapped in a layer_lambda
(or in a custom layer).

Listing 8.24 Latent space-sampling function

library(keras)
K <- backend()

img_shape <- c(28, 28, 1)
batch_size <- 16

latent_dim <- 2L

input_img <- layer_input(shape = img_shape)

x <- input_img %>%
 layer_conv_2d(filters = 32, kernel_size = 3, padding = "same",
 activation = "relu") %>%
 layer_conv_2d(filters = 64, kernel_size = 3, padding = "same",
 activation = "relu", strides = c(2, 2)) %>%
 layer_conv_2d(filters = 64, kernel_size = 3, padding = "same",
 activation = "relu") %>%
 layer_conv_2d(filters = 64, kernel_size = 3, padding = "same",
 activation = "relu")

shape_before_flattening <- K$int_shape(x)

x <- x %>%
 layer_flatten() %>%
 layer_dense(units = 32, activation = "relu")

z_mean <- x %>%
 layer_dense(units = latent_dim)

z_log_var <- x %>%
 layer_dense(units = latent_dim)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

292

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

The following listing shows the decoder implementation. You reshape the vector toz

the dimensions of an image and then use a few convolution layers to obtain a final image
output that has the same dimensions as the original .input_img

Listing 8.25 VAE decoder network, mapping latent space points to images

Input where you’ll feed z

Upsamples to the correct number of units

Reshapes into an image of the same shape as before the last flatten layer

Uses a layer_conv_2d_transpose and layer_conv_2d to decode the it into a feature
map the same size as the original image input

Instantiates the decoder model, that turns "decoder_input" into the decoded image

Applies it to z to recover the decoded z

The dual loss of a VAE doesn’t fit the traditional expectation of a sample-wise
function of the form . Thus, you’ll set up the loss by writing aloss(input, target)

custom layer that internally uses the built-in layer method to create anadd_loss

arbitrary loss.

Listing 8.26 Custom layer used to compute the VAE loss

sampling <- function(args) {
 c(z_mean, z_log_var) %<-% args
 epsilon <- K$random_normal(shape = list(K$shape(z_mean)[1], latent_dim),
 mean = 0, stddev = 1)
 z_mean + K$exp(z_log_var) * epsilon
}

z <- list(z_mean, z_log_var) %>%
 layer_lambda(sampling)

decoder_input <- layer_input(K$int_shape(z)[-1])

x <- decoder_input %>%

 layer_dense(units = prod(as.integer(shape_before_flattening[-1])),
 activation = "relu") %>%

 layer_reshape(target_shape = shape_before_flattening[-1]) %>%
 layer_conv_2d_transpose(filters = 32, kernel_size = 3, padding = "same",

 activation = "relu", strides = c(2, 2)) %>%
 layer_conv_2d(filters = 1, kernel_size = 3, padding = "same",

 activation = "sigmoid")

decoder <- keras_model(decoder_input, x)

z_decoded <- decoder(z)

library(R6)

CustomVariationalLayer <- R6Class("CustomVariationalLayer",

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

293

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Custom layers are implemented by writing a "call" method.

You actually don’t use this output, but the layer must return something.

Calls the custom layer on the input and the decoded output to obtain the final
model output

Finally, you’re ready to instantiate and train the model. Because the loss is taken care
of in the custom layer, you don’t specify an external loss at compile time (),loss = NULL

which in turns means you won’t pass target data during training (as you can see, you only
pass to the model in).x_train fit()

Listing 8.27 Training the VAE

 inherit = KerasLayer,

 public = list(

 vae_loss = function(x, z_decoded) {
 x <- K$flatten(x)
 z_decoded <- K$flatten(z_decoded)
 xent_loss <- metric_binary_crossentropy(x, z_decoded)
 kl_loss <- -5e-4 * K$mean(
 1 + z_log_var - K$square(z_mean) - K$exp(z_log_var),
 axis = -1L
)
 K$mean(xent_loss + kl_loss)
 },

 call = function(inputs, mask = NULL) {
 x <- inputs[[1]]
 z_decoded <- inputs[[2]]
 loss <- self$vae_loss(x, z_decoded)
 self$add_loss(loss, inputs = inputs)
 x
 }
)
)

layer_variational <- function(object) {
 create_layer(CustomVariationalLayer, object, list())
}

y <- list(input_img, z_decoded) %>%
 layer_variational()

vae <- keras_model(input_img, y)

vae %>% compile(
 optimizer = "rmsprop",
 loss = NULL
)

mnist <- dataset_mnist()
c(c(x_train, y_train), c(x_test, y_test)) %<-% mnist

x_train <- x_train / 255
x_train <- array_reshape(x_train, dim =c(dim(x_train), 1))

x_test <- x_test / 255
x_test <- array_reshape(x_test, dim =c(dim(x_test), 1))

vae %>% fit(

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

294

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Trains the VAE on MNIST digits

Once such a model is trained—such as on MNIST, in this case—you can use the
 network to turn arbitrary latent-space vectors into images.decoder

Listing 8.28 Sampling a grid of points from the 2D latent space and decoding
them to images

We’ll display a grid of 15 x 15 digits (255 digits in total)

Transforms linearly spaced coordinates using the qnorm function to produce values
of the latent variables z (because the prior of the latent space is Gaussian)

Repeat our z multiple times to form a complete batch

Decodes the batch into digit images

Reshapes the first digit in the batch from 28x28x1 to 28x28

The grid of sampled digits (see figure 8.14) shows a completely continuous
distribution of the different digit classes, with one digit morphing into another as you
follow a path through latent space. Specific directions in this space have a meaning: for
example, there is a direction for "four-ness", "one-ness", and so on.

 x = x_train, y = NULL,
 epochs = 10,
 batch_size = batch_size,
 validation_data = list(x_test, NULL)
)

n <- 15

digit_size <- 28

grid_x <- qnorm(seq(0.05, 0.95, length.out = n))
grid_y <- qnorm(seq(0.05, 0.95, length.out = n))

op <- par(mfrow = c(n, n), mar = c(0,0,0,0), bg = "black")
for (i in 1:length(grid_x)) {
 yi <- grid_x[[i]]
 for (j in 1:length(grid_y)) {
 xi <- grid_y[[j]]
 z_sample <- matrix(c(xi, yi), nrow = 1, ncol = 2)
 z_sample <- t(replicate(batch_size, z_sample, simplify = "matrix"))

 x_decoded <- decoder %>% predict(z_sample, batch_size = batch_size)

 digit <- array_reshape(x_decoded[1,,,], dim = c(digit_size, digit_size))
 plot(as.raster(digit))
 }
}
par(op)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

295

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 8.14 Grid of digits decoded from the latent space

In the next section, we’ll cover in detail the other major tool for generating artificial
images: generative adversarial networks (GANs).

Image generation with deep learning is done by learning latent spaces that capture
statistical information about a dataset of images. By sampling and decoding points from
the latent space, you can generate never-before-seen images. There are two major tools to
do this: VAEs and GANs.
VAEs result in highly structured, continuous latent representations. For this reason, they
work well for doing all sorts of image editing in latent space: face swapping, turning a
frowning face into a smiling face, and so on. They also work nicely for doing
latent-space- based animations, such as animating a walk along a cross section of the
latent space, showing a starting image slowly morphing into different images in a
continuous way.
GANs enable the generation of realistic single-frame images but may not induce latent
spaces with solid structure and high continuity.

Most successful practical applications I have seen with images rely on VAEs, but GANs
are extremely popular in the world of academic research—at least, circa 2016-2017.
You’ll find out how they work and how to implement one in the next section.

TIP To play further with image generation, I suggest working with the Large-scale
Celeb Faces Attributes (CelebA) dataset. It’s a free-to-download image
dataset containing more than 200,000 celebrity portraits. It’s great for
experimenting with concept vectors in particular—it definitely beats MNIST.

8.4.4 Wrapping up

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

296

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Generative adversarial networks (GANs), introduced in 2014 by Goodfellow et al., are31

an alternative to VAEs for learning latent spaces of images. They enable the generation
of fairly realistic synthetic images by forcing the generated images to be statistically
almost indistinguishable from real ones.

Footnote 31mIan Goodfellow et al., "Generative Adversarial Networks," arXiv, 2014,
.arxiv.org/abs/1406.2661

An intuitive way to understand GANs is to imagine a forger trying to create a fake
Picasso painting. At first, the forger is pretty bad at the task. He mixes some of his fakes
with authentic Picassos and shows them all to an art dealer. The art dealer makes an
authenticity assessment for each painting and gives the forger feedback about what
makes a Picasso look like a Picasso. The forger goes back to his studio to prepare some
new fakes. As times goes on, the forger becomes increasingly competent at imitating the
style of Picasso, and the art dealer becomes increasingly expert at spotting fakes. In the
end, they have on their hands some excellent fake Picassos.

That’s what a GAN is: a forger network network and an expert network, each being
trained to best the other. As such, a GAN is made of two parts:

Generator network—Takes as input a random vector (a random point in the latent space),
and decodes it into a synthetic image
Discriminator network (or adversary)—Takes as input an image (real or synthetic), and
must predict whether the image came from the training set or was created by the
generator network.

The generator network is trained to be able to fool the discriminator network, and
thus it evolves toward generating increasingly realistic images as training goes on:
artificial images that look indistinguishable from real ones, to the extent that it’s
impossible for the discriminator network to tell the two apart (see figure 8.15).
Meanwhile, the discriminator is constantly adapting to the gradually improving
capabilities of the generator, which sets a high bar of realism for the generated images.
Once training is over, the generator is capable of turning any point in its input space into
a believable image. Unlike VAEs, this latent space has less explicit guarantees of
meaningful structure; in particular, it isn’t continuous.

8.5 Introduction to generative adversarial networks

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

297

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://arxiv.org/abs/1406.2661
https://forums.manning.com/forums/deep-learning-with-r

Figure 8.15 A generator transforms random latent vectors into images, and a
discriminator seeks to tell real images from generated ones. The generator is trained to
fool the discriminator.

Remarkably, a GAN is a system where the optimization minimum isn’t fixed, unlike
in any other training setup you’ve encountered in this book. Normally, gradient descent
consists of rolling down hills in a static loss landscape. But with a GAN, every step taken
down the hill changes the entire landscape a little. It’s a dynamic system where the
optimization process is seeking not a minimum, but an equilibrium between two forces.
For this reason, GANs are notoriously difficult to train—getting a GAN to work requires
lots of careful tuning of the model architecture and training parameters.

Figure 8.16 Latent space dwellers. Images generated by Mike Tyka using a multistaged
GAN trained on a dataset of faces (www.miketyka.com).

In this section, we’ll explain how to implement a GAN in Keras, in its barest
form—because GANs are advanced, diving deeply into the technical details would be out
of scope for this book. The specific implementation is a deep convolutional GAN
(DCGAN): a GAN where the generator and discriminator are deep convnets. In
particular, it uses a for image upsampling in the generator.layer_conv_2d_transpose

8.5.1 A schematic GAN implementation

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

298

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://www.miketyka.com
https://forums.manning.com/forums/deep-learning-with-r

1.

2.

3.

4.

5.

You’ll train the GAN on images from CIFAR10, a dataset of 50,000 32 × 32 RGB
images belonging to 10 classes (5,000 images per class). To make things easier, you’ll
only use images belonging to the class "frog".

Schematically, the GAN looks like this:

A network maps vectors of shape to images of shape generator (latent_dim) (32,
.32, 3)

A network maps images of shape (32, 32, 3) to a binary score estimatingdiscriminator
the probability that the image is real.
A network chains the generator and the discriminator together: gan gan(x)

. Thus this network maps latent-space vectors todiscriminator(generator(x)) gan
the discriminator’s assessment of the realism of these latent vectors as decoded by the
generator.
You train the discriminator using examples of real and fake images along with
"real"/"fake" labels, just as you train any regular image- classification model.
To train the generator, you use the gradients of the generator’s weights with regard to the
loss of the model. This means, at every step, you move the weights of the generatorgan
in a direction that makes the discriminator more likely to classify as "real" the images
decoded by the generator. In other words, you train the generator to fool the
discriminator.

Training GANs and tuning GAN implementations is notoriously difficult. There are a
number of known tricks you should keep in mind. Like most things in deep learning, it’s
more alchemy than science: these tricks are heuristics, not theory-backed guidelines.
They’re supported by a level of intuitive understanding of the phenomenon at hand, and
they’re known to work well empirically, although not necessarily in every context.

Here are a few of the tricks used in the implementation of a GAN generator and
discriminator in this section. It isn’t an exhaustive list of GAN-related tips; you’ll find
many more across the GAN literature:

We use as the last activation in the generator, instead of , which is moretanh sigmoid
commonly found in other types of models.
We sample points from the latent space using a (Gaussiannormal distribution
distribution), not a uniform distribution.
Stochasticity is good to induce robustness. Because GAN training results in a dynamic
equilibrium, GANs are likely to get stuck in all sorts of ways. Introducing randomness
during training helps prevent this. We introduce randomness in two ways: by using
dropout in the discriminator and by adding random noise to the labels for the
discriminator.
Sparse gradients can hinder GAN training. In deep learning, sparsity is often a desirable
property, but not in GANs. Two things can induce gradient sparsity: max pooling
operations and ReLU activations. Instead of max pooling, we recommend using strided
convolutions for downsampling, and we recommend using a

 instead of a ReLU activation. It’s similar to ReLU, butlayer_activation_leaky_relu
it relaxes sparsity constraints by allowing small negative activation values.
In generated images, it’s common to see checkerboard artifacts caused by unequal
coverage of the pixel space in the generator (see figure 8.17). To fix this, we use a kernel
size that is divisible by the stride size whenever we use a strided

8.5.2 A bag of tricks

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

299

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

 or in both the generator and thelayer_conv_2d_transpose layer_conv_2d
discriminator.

Figure 8.17 Checkerboard artifacts caused by mismatching strides and kernel sizes,
resulting in unequal pixel-space coverage: one of the many gotchas of GANs

First, let’s develop a model that turns a vector (from the latent space—duringgenerator

training it will be sampled at random) into a candidate image. One of the many issues
that commonly arise with GANs is that the generator gets stuck with generated images
that look like noise. A possible solution is to use dropout on both the discriminator and
the generator.

Listing 8.29 GAN generator network

8.5.3 The generator

library(keras)

latent_dim <- 32
height <- 32
width <- 32
channels <- 3

generator_input <- layer_input(shape = c(latent_dim))

generator_output <- generator_input %>%

 layer_dense(units = 128 * 16 * 16) %>%
 layer_activation_leaky_relu() %>%
 layer_reshape(target_shape = c(16, 16, 128)) %>%

 layer_conv_2d(filters = 256, kernel_size = 5,
 padding = "same") %>%
 layer_activation_leaky_relu() %>%

 layer_conv_2d_transpose(filters = 256, kernel_size = 4,
 strides = 2, padding = "same") %>%
 layer_activation_leaky_relu() %>%

 layer_conv_2d(filters = 256, kernel_size = 5,
 padding = "same") %>%
 layer_activation_leaky_relu() %>%
 layer_conv_2d(filters = 256, kernel_size = 5,
 padding = "same") %>%
 layer_activation_leaky_relu() %>%

 layer_conv_2d(filters = channels, kernel_size = 7,
 activation = "tanh", padding = "same")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

300

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Transforms the input into a 16 x 16, 128-channel feature map

Upsamples to 32 × 32

Produces a 32 × 32, 3-channel feature map (shape of a CIFAR10 image)

Instantiates the generator model, that maps the input of shape (latent_dim) into an
image of shape (32, 32, 3)

Next, you’ll develop a model that takes as input a candidate image (realdiscriminator

or synthetic) and classifies it into one of two classes: "generated image" or "real image
that comes from the training set."

Listing 8.30 The GAN discriminator network

One dropout layer: an important trick!

Classification layer

Instantiates the discrimator model, that turns a (32, 32, 3) input into a binary
classification decision (fake/real)

Uses gradient clipping (by value) in the optimizer.

To stabilize training, uses learning-rate decay

generator <- keras_model(generator_input, generator_output)
summary(generator)

8.5.4 The discriminator

discriminator_input <- layer_input(shape = c(height, width, channels))

discriminator_output <- discriminator_input %>%
 layer_conv_2d(filters = 128, kernel_size = 3) %>%
 layer_activation_leaky_relu() %>%
 layer_conv_2d(filters = 128, kernel_size = 4, strides = 2) %>%
 layer_activation_leaky_relu() %>%
 layer_conv_2d(filters = 128, kernel_size = 4, strides = 2) %>%
 layer_activation_leaky_relu() %>%
 layer_conv_2d(filters = 128, kernel_size = 4, strides = 2) %>%
 layer_activation_leaky_relu() %>%
 layer_flatten() %>%

 layer_dropout(rate = 0.4) %>%

 layer_dense(units = 1, activation = "sigmoid")

discriminator <- keras_model(discriminator_input, discriminator_output)
summary(discriminator)

discriminator_optimizer <- optimizer_rmsprop(
 lr = 0.0008,

 clipvalue = 1.0,

 decay = 1e-8
)

discriminator %>% compile(
 optimizer = discriminator_optimizer,
 loss = "binary_crossentropy"
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

301

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

1.
2.
3.
4.

5.
6.

Finally, you’ll set up the GAN, which chains the generator and the discriminator. When
trained, this model will move the generator in a direction that improves its ability to fool
the discriminator. This model turns latent-space points into a classification
decision—"fake" or "real"—and it’s meant to be trained with labels that are always
"these are real images." So, training will update the weights of in a waygan generator

that makes more likely to predict "real" when looking at fake images.discriminator

It’s very important to note that you set the discriminator to be frozen during training
(nontrainable): its weights won’t be updated when training . If the discriminatorgan

weights could be updated during this process, then you’d be training the discriminator to
always predict "real," which isn’t what you want!

Listing 8.31 Adversarial network

Sets discriminator weights to non-trainable (this will only apply to the gan model)

Now you can begin training. To recapitulate, this is what the training loop looks like
schematically. For each epoch, you do the following:

Draw random points in the latent space (random noise).
Generate images with using this random noise.generator

Mix the generated images with real ones.
Train using these mixed images, with corresponding targets: eitherdiscriminator
"real" (for the real images) or "fake" (for the generated images).
Draw new random points in the latent space.
Train using these random vectors, with targets that all say "these are real images."gan
This updates the weights of the generator (only, because the discriminator is frozen inside

) to move them toward getting the discriminator to predict "these are real images" forgan
generated images: this trains the generator to fool the discriminator.

Let’s implement it.

8.5.5 The adversarial network

freeze_weights(discriminator)

gan_input <- layer_input(shape = c(latent_dim))
gan_output <- discriminator(generator(gan_input))
gan <- keras_model(gan_input, gan_output)

gan_optimizer <- optimizer_rmsprop(
 lr = 0.0004,
 clipvalue = 1.0,
 decay = 1e-8
)

gan %>% compile(
 optimizer = gan_optimizer,
 loss = "binary_crossentropy"
)

8.5.6 How to train your DCGAN

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

302

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Listing 8.32 Implementing GAN training

cifar10 <- dataset_cifar10()
c(c(x_train, y_train), c(x_test, y_test)) %<-% cifar10

x_train <- x_train[as.integer(y_train) == 6,,,]

x_train <- x_train / 255

iterations <- 10000
batch_size <- 20

save_dir <- "your_dir"

start <- 1

for (step in 1:iterations) {

 random_latent_vectors <- matrix(rnorm(batch_size * latent_dim),
 nrow = batch_size, ncol = latent_dim)

 generated_images <- generator %>% predict(random_latent_vectors)

 stop <- start + batch_size - 1
 real_images <- x_train[start:stop,,,]
 rows <- nrow(real_images)
 combined_images <- array(0, dim = c(rows * 2, dim(real_images)[-1]))
 combined_images[1:rows,,,] <- generated_images
 combined_images[(rows+1):(rows*2),,,] <- real_images

 labels <- rbind(matrix(1, nrow = batch_size, ncol = 1),
 matrix(0, nrow = batch_size, ncol = 1))

 labels <- labels + (0.5 * array(runif(prod(dim(labels))),
 dim = dim(labels)))

 d_loss <- discriminator %>% train_on_batch(combined_images, labels)

 random_latent_vectors <- matrix(rnorm(batch_size * latent_dim),
 nrow = batch_size, ncol = latent_dim)

 misleading_targets <- array(0, dim = c(batch_size, 1))

 a_loss <- gan %>% train_on_batch(
 random_latent_vectors,
 misleading_targets
)

 start <- start + batch_size
 if (start > (nrow(x_train) - batch_size))
 start <- 1

 if (step %% 100 == 0) {

 save_model_weights_hdf5(gan, "gan.h5")

 cat("discriminator loss:", d_loss, "\n")
 cat("adversarial loss:", a_loss, "\n")

 image_array_save(
 generated_images[1,,,] * 255,
 path = file.path(save_dir, paste0("generated_frog", step, ".png"))
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

303

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Loads CIFAR10 data

Selects frog images (class 6)

Normalizes data

Specifies where you want to save generated images

Samples random points in the latent space

Decodes them to fake images

Combines them with real images

Assembles labels discriminating real from fake images

Adds random noise to the labels—an important trick!

Trains the discriminator

Samples random points in the latent space

Assembles labels that say "these are all real images" (it’s a lie!)

Trains the generator (via the gan model, where the discriminator weights are
frozen)

Occasionally saves images

Saves model weights

Prints metrics

Saves one generated image

Saves one real image for comparison

When training, you may see the adversarial loss begin to increase considerably, while
the discriminative loss tends to zero—the discriminator may end up dominating the
generator. If that’s the case, try reducing the discriminator learning rate, and increase the
dropout rate of the discriminator.

 image_array_save(
 real_images[1,,,] * 255,
 path = file.path(save_dir, paste0("real_frog", step, ".png"))
)
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

304

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 8.18 Play the discriminator: in each row, two images were dreamed up by the GAN,
and one image comes from the training set. Can you tell them apart? (Answers: the real
images in each column are middle, top, bottom, middle.)

A GAN consists of a generator network coupled with a discriminator network. The
discriminator is trained to tell apart the output of the generator and real images from a
training dataset, and the generator is trained to fool the discriminator. Remarkably, the
generator nevers sees images from the training set directly; the information it has about
the data comes from the discriminator.
GANs are difficult to train, because training a GAN is a dynamic process rather than a
simple descent process with a fixed loss landscape. Getting a GAN to train correctly
requires using a number of heuristic tricks, as well as extensive tuning.
GANs can potentially produce highly realistic images. But unlike VAEs, the latent space
they learn doesn’t have a neat continuous structure and thus may not be suited for certain
practical applications, such as image editing via latent-space concept vectors.

With creative applications of deep learning, deep nets go beyond annotating existing
content and start generating their own. You learned:

How to generate sequence data, one timestep at a time. This is applicable to text
generation and also to note-by-note music generation or any other type of timeseries da
How DeepDream works: by maximizing convnet layer activations through gradient
ascent in input space.
How to perform style transfer, where a content image and a style image are combined t
produce interesting-looking results.
What GANs and VAEs are, how they can be used to dream up new images, and how
latent-space concept vectors can be used for image edition.

These few techniques cover only the basics of this fast-expanding field. There’s a lot
more to discover out there—generative deep learning is deserving of an entire book of its
own.

8.6 Summary

8.5.7 Wrapping up

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

305

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

9
This chapter covers

You’ve almost reached the end of this book. This last chapter will summarize and review
core concepts while also expanding your horizons beyond the relatively basic notions
you’ve learned so far. Understanding deep learning and AI is a journey, and finishing this
book is merely the first step of it. I want to make sure you realize this and are properly
equipped to take the next steps of this journey on your own.

We’ll start with a bird’s-eye view of what you should take away from this book. This
should refresh your memory regarding some of the concepts you’ve learned. Next, we’ll
present an overview of some key limitations of deep learning. To use a tool
appropriately, you should not only understand what it do but also be aware of what itcan

 do. Finally, I’ll offer some speculative thoughts about the future evolution of thecan’t
fields of deep learning, machine learning, and AI. This should be especially interesting to
you if you’d like to get into fundamental research. The chapter ends with a short list of
resources and strategies for learning further about AI and staying up to date with new
advances.

This section briefly synthesizes the key take-aways from this book. If you ever need a
quick refresher to help you recall what you’ve learned, you can read these few pages.

Conclusions

Important take-aways from this book
The limitations of deep learning
The future of deep learning, machine learning, and AI
Resources for learning further and working in the field

9.1 Key concepts in review

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

306

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

First of all, deep learning isn’t synonymous with AI or even with machine learning.
 is an ancient, broad field that can generally be defined as "allArtificial intelligence

attempts to automate cognitive processes"—in other words, the automation of thought.
This can range from the very basic, such as an Excel spreadsheet, to the very advanced,
like a humanoid robot that can walk and talk.

Machine learning is a specific subfield of AI that aims at automatically developing
programs (called) purely from exposure to training data. This process of turningmodels
data into a program is called . Although machine learning has been around for alearning
long time, it only started to take off in the 1990s.

Deep learning is one of many branches of machine learning, where the models are
long chains of geometric functions, chained one after the other. These operations are
structured into modules called : deep-learning models are typically stacks oflayers
layers—or, more generally, graphs of layers. These layers are parametrized by ,weights
which are the parameters learned during training. The of a model is stored inknowledge
its weights, and the process of learning consists of finding good values for these weights.

Even though deep learning is just one approach to machine learning among many, it
isn’t on an equal footing with the others. Deep learning is a breakout success. Here’s
why.

In the span of only a few years, deep learning has achieved tremendous breakthroughs
across a wide range of tasks that have been historically perceived as extremely difficult
for computers, especially in the area of machine perception: extracting useful information
from images, videos, sound, and more. Given sufficient training data (in particular,
training data appropriately labeled by humans), it’s possible to extract from perceptual
data almost anything that a human could extract. Hence it’s sometimes said that deep
learning has , although that is true only for a fairly narrow definition of solved perception

.perception
Due to its unprecedented technical successes, deep learning has singlehandedly

brought about the third and by far the largest : a period of intense interest,AI summer
investment, and hype in the field of AI. As this book is being written, we’re in the middle
of it. Whether this period will end in the near future, and what happens after it ends, is a
topic of debate. One thing is certain: in stark contrast with previous AI summers, deep
learning has provided enormous business value to a number of large technology
companies, enabling human-level speech recognition, smart assistants, human-level
image classification, vastly improved machine translation, and more. The hype may (and
likely will) recede, but the sustained economic and technological impact of deep learning
will remain. In that sense, deep learning could be analogous to the internet: it may be
overly hyped up for a few years, but in the longer term it will still be a major revolution
that will transform our economy and our lives.

9.1.1 Different types of approaches to AI

9.1.2 What makes deep learning special within the field of machine learning

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

307

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

I’m particularly optimistic about deep learning because even if we were to make no
further technological progress in the next decade, deploying existing algorithms to every
applicable problem would already be a game changer for most industries. Deep learning
is nothing short of a revolution, and progress is currently happening at an incredibly fast
rate, due to an exponential investment in resources and headcount. From where I stand,
the future looks bright, although short-term expectations are somewhat over-optimistic;
deploying deep learning to the full extent of its potential will take well over a decade.

The most surprising thing about deep learning is how simple it is. Ten years ago, no one
expected that we would achieve such amazing results on machine-perception problems
by using simple parametric models trained with gradient descent. Now, it turns out that
all you need is sufficiently large parametric models trained with gradient descent on
sufficiently many examples. As Feynman once said about the universe, "It’s not
complicated, it’s just a lot of it."32

Footnote 32mRichard Feynman, interview, , Yorkshire Television,The World from Another Point of View
1972.

In deep learning, everything is a vector: that is, everything is a in a point geometric
. Model inputs (text, images, and so on) and targets are first : turned intospace vectorized

an initial input vector space and target vector space. Each layer in a deep-learning model
operates one simple geometric transformation on the data that goes through it. Together,
the chain of layers in the model forms one complex geometric transformation, broken
down into a series of simple ones. This complex transformation attempts to map the input
space to the target space, one point at a time. This transformation is parametrized by the
weights of the layers, which are iteratively updated based on how well the model is
currently performing. A key characteristic of this geometric transformation is that it must
be , which is required in order for us to be able to learn its parameters viadifferentiable
gradient descent. Intuitively, this means the geometric morphing from inputs to outputs
must be smooth and continuous—a significant constraint.

The entire process of applying this complex geometric transformation to the input
data can be visualized in 3D by imagining a person trying to uncrumple a paper ball: the
crumpled paper ball is the manifold of the input data that the model starts with. Each
movement operated by the person on the paper ball is similar to a simple geometric
transformation operated by one layer. The full uncrumpling gesture sequence is the
complex transformation of the entire model. Deep-learning models are mathematical
machines for uncrumpling complicated manifolds of high-dimensional data.

That’s the magic of deep learning: turning meaning into vectors, into geometric
spaces, and then incrementally learning complex geometric transformations that map one
space to another. All you need are spaces of sufficiently high dimensionality in order to
capture the full scope of the relationships found in the original data.

The whole thing hinges on a single core idea: that meaning is derived from the
 (between words in a language, between pixels in anpairwise relationship between things

9.1.3 How to think about deep learning

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

308

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

image, and so on) and that .these relationships can be captured by a distance function
But note that whether the brain implements meaning via geometric spaces is an entirely
separate question. Vector spaces are efficient to work with from a computational
standpoint, but different data structures for intelligence can easily be envisioned—in
particular, graphs. Neural networks initially emerged from the idea of using graphs as a
way to encode meaning, which is why they’re named ; the surroundingneural networks
field of research used to be called . Nowadays the name connectionism neural network
exists purely for historical reasons—it’s an extremely misleading name because, they’re
neither neural nor networks. In particular, neural networks have hardly anything to do
with the brain. A more appropriate name would have been layered representations

 or , or maybe even learning hierarchical representations learning deep differentiable
 or , to emphasize the fact that continuous geometricmodels chained geometric transforms

space manipulation is at their core.

The technological revolution that is currently unfolding didn’t start with any single
breakthrough invention. Rather, like any other revolution, it’s the product of a vast
accumulation of enabling factors—slowly at first, and then all of a sudden. In the case of
deep learning, we can point out the following key factors:

Incremental algorithmic innovations, first spread over two decades (starting with
backpropagation) and then happening increasingly faster as more research effort was
poured into deep learning after 2012.
The availability of large amounts of perceptual data, which is a requirement in order to
realize that sufficiently large models trained on sufficiently large data are all we need.
This is in turn a byproduct of the rise of the consumer internet and Moore’s law applied
to storage media.
The availability of fast, highly parallel computation hardware at a low price, especially
the GPUs produced by NVIDIA—first gaming GPUs and then chips designed from the
ground up for deep learning. Early on, NVIDIA CEO Jensen Huang took note of the
deep-learning boom and decided to bet the company’s future on it.
A complex stack of software layers that makes this computational power available to
humans: the CUDA language, frameworks like TensorFlow that do automatic
differentiation, and Keras, which makes deep learning accessible to most people.

In the future, deep learning will not only be used by specialists—researchers, grad
students, and engineers with an academic profile—but will also be a tool in the toolbox
of every developer, much like web technology today. Everyone needs to build intelligent
apps: just as every business today needs a website, every product will need to
intelligently make sense of user-generated data. Bringing about this future will require us
to build tools that make deep learning radically easy to use and accessible to anyone with
basic coding abilities. Keras is the first major step in that direction.

9.1.4 Key enabling technologies

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

309

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

1.

2.

3.

4.

5.

6.

7.

Having access to an extremely powerful tool for creating models that map any input
space to any target space is great, but the difficult part of the machine-learning workflow
is often everything that comes before designing and training such models (and, for
production models, what comes after, as well). Understanding the problem domain so as
to be able to determine what to attempt to predict, given what data, and how to measure
success, is a prerequisite for any successful application of machine learning, and it isn’t
something that advanced tools like Keras and TensorFlow can help you with. As a
reminder, here’s a quick summary of the typical machine-learning workflow as described
in chapter 4:

Define the problem: what data is available, and what are you trying to predict? Will you
need to collect more data or hire people to manually label a dataset?
Identify a way to reliably measure success on your goal. For simple tasks, this may be
prediction accuracy, but in many cases it will require sophisticated domain-specific
metrics.
Prepare the validation process that you’ll use to evaluate your models. In particular, you
should define a training set, a validation set, and a test set. The validation- and test-set
labels shouldn’t leak into the training data: for instance, with temporal prediction, the
validation and test data should be posterior to the training data.
Vectorize the data by turning it into vectors and preprocessing it in a way that makes it
more easily approachable by a neural network (normalization, and so on).
Develop a first model that beats a trivial common-sense baseline, thus demonstrating that
machine learning can work on your problem. This may not always be the case!
Gradually refine your model architecture by tuning hyperparameters and adding
regularization. Make changes based on performance on the validation data only, not the
test data or the training data. Remember that you should get your model to overfit (thus
identifying a model capacity level that is greater than you need) and only then begin to
add regularization or downsize your model.
Be aware of validation-set overfitting when turning hyperparameters: that is, the fact that
your hyperparameters may end up being over-specialized to the validation set. Avoiding
this is the purpose of having a separate test set!

The three families of network architectures that you should be familiar with are densely
, , and . Each type ofconnected networks convolutional networks recurrent networks

network is meant for a specific input modality: a network architecture (dense,
convolutional, recurrent) encodes about the structure of the data: a assumptions

 within which the search for a good model will proceed. Whether ahypothesis space
given architecture will work on a given problem depends entirely on the match between
the structure of the data and the assumptions of the network architecture.

These different network types can easily be combined to achieve larger multimodal
networks, much as you combine LEGO bricks. In a way, deep-learning layers are LEGO
bricks for information processing. Here is a quick overview of the mapping between
input modalities and appropriate network architectures:

9.1.5 The universal machine-learning workflow

9.1.6 Key network architectures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

310

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Vector data—Densely connected network (dense layers).
Image data—2D convnets.
Sound data (for example, waveform)—Either 1D convnets (preferred) or RNNs.
Text data—Either 1D convnets (preferred) or RNNs.
Timeseries data—Either RNNs (preferred) or 1D convnets.
Other types of sequence data—Either RNNs or 1D convnets. Prefer RNNs if data
ordering is strongly meaningful (for example, for timeseries, but not for text).
Video data—Either 3D convnets (if you need to capture motion effects) or a combination
of a frame-level convnet for feature extraction followed by either an RNN or a 1D
convnet to process the resulting sequences.
Volumetric data—3D convnets.

Now, let’s quickly review the specificities of each network architecture.

A densely connected network is a stack of dense layers, meant to process vector data
(batches of vectors). Such networks assume no specific structure in the input features:
they’re called because the units of a dense layer are connected to everydensely connected
other unit. The layer attempts to map relationships between any two input features; this is
unlike a 2D convolution layer, for instance, which only looks at relationships.local

Densely connected networks are most commonly used for categorical data (for
example, where the input features are lists of attributes), such as the Boston Housing
dataset used in chapter 3. They’re also used as the final classification or regression stage
of most networks. For instance, the convnets covered in chapter 5 typically end with one
or two dense layers, and so do the recurrent networks in chapter 6.

Remember: to perform , end your stack of layers with a densebinary classification
layer with a single unit and a activation, and use as thesigmoid binary_crossentropy

loss. Your targets should be either 0 or 1:

To perform (where each sample has exactlysingle-label categorical classification
one class, no more), end your stack of layers with a dense layer with a number of units
equal to the number of classes, and a activation. If your targets are one-hotsoftmax

encoded, use as the loss; if they’re integers, use categorical_crossentropy

:sparse_categorical_crossentropy

DENSELY CONNECTED NETWORKS

library(keras)

model <- keras_model_sequential() %>%
 layer_dense(units = 32, activation = "relu",
 input_shape = c(num_input_features)) %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy"
)

model <- keras_model_sequential() %>%
 layer_dense(units = 32, activation = "relu",

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

311

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

To perform (where each sample can havemulti-label categorical classification
several classes), end your stack of layers with a dense layer with a number of units equal
to the number of classes and a activation, and use assigmoid binary_crossentropy

the loss. Your targets should be one-hot encoded:

To perform toward a vector of continuous values, end your stack of layersregression
with a dense layer with a number of units equal to the number of values you’re trying to
predict (often a single one, such as the price of a house), and no activation. Several losses
can be used for regression, most commonly (MSE) and mean_squared_error

 (MAE):mean_absolute_error

Convolution layers look at spatially local patterns by applying the same geometric
transformation to different spatial locations () in an input tensor. This results inpatches
representations that are , making convolution layers highlytranslation invariant
data-efficient and modular. This idea is applicable to spaces of any dimensionality: 1D
(sequences), 2D (images), 3D (volumes), and so on. You can use the tolayer_conv_1d

process sequences (especially text—it doesn’t work as well on timeseries, which often
don’t follow the translation-invariance assumption), the to processlayer_conv_2d

images, and the to process volumes.layer_conv_3d

Convnets, or , consist of stacks of convolution andconvolutional networks
max-pooling layers. The pooling layers let you spatially downsample the data, which is

 input_shape = c(num_input_features)) %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = num_classes, activation = "softmax")

model %>% compile(
 optimizer = "rmsprop",
 loss = "categorical_crossentropy"
)

model <- keras_model_sequential() %>%
 layer_dense(units = 32, activation = "relu",
 input_shape = c(num_input_features)) %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = num_classes, activation = "sigmoid")

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy"
)

model <- keras_model_sequential() %>%
 layer_dense(units = 32, activation = "relu",
 input_shape = c(num_input_features)) %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = num_values)

model %>% compile(
 optimizer = "rmsprop",
 loss = "mse"
)

CONVNETS

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

312

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

required to keep feature maps to a reasonable size as the number of features grows, and
to allow subsequent convolution layers to "see" a greater spatial extent of the inputs.
Convnets are often ended with either a or a global pooling layer, turninglayer_flatten

spatial feature maps into vectors, followed by dense layers to achieve classification or
regression.

Note that it’s highly likely that regular convolutions will soon be mostly (or
completely) replaced by an equivalent but faster and representationally efficient
alternative: the (). This isdepthwise separable convolution layer_separable_conv_2d

true for 3D, 2D, and 1D inputs. When building a new network from scratch, using
depthwise separable convolutions is definitely the way to go. The

 can be used as a drop-in replacement for ,layer_separable_conv_2d layer_conv_2d

resulting in a smaller, faster network that also performs better on its task.
Here is a typical image-classification network (categorical classification, in this case):

Recurrent neural networks (RNNs) work by processing sequences of inputs one timestep
at a time and maintaining a throughout (a state is typically a vector or set of vectors:state
that is, a point in a geometric space of states). They should be used preferentially over 1D
convnets in the case of sequences where patterns of interest aren’t invariant by temporal
translation (for instance, timeseries data where the recent past is more important than the
distant past).

Three RNN layers are available in Keras: , , and layer_simple_rnn layer_gru

. For most practical purposes, you should use either or layer_lstm layer_gru

. The is the more powerful of the two but is also morelayer_lstm layer_lstm

model <- keras_model_sequential() %>%

 layer_separable_conv_2d(filters = 32, kernel_size = 3,
 activation = "relu",
 input_shape = c(height, width, channels)) %>%
 layer_separable_conv_2d(filters = 64, kernel_size = 3,
 activation = "relu") %>%
 layer_max_pooling_2d(pool_size = 2) %>%

 layer_separable_conv_2d(filters = 64, kernel_size = 3,
 activation = "relu") %>%
 layer_separable_conv_2d(filters = 128, kernel_size = 3,
 activation = "relu") %>%
 layer_max_pooling_2d(pool_size = 2) %>%

 layer_separable_conv_2d(filters = 64, kernel_size = 3,
 activation = "relu") %>%
 layer_separable_conv_2d(filters = 128, kernel_size = 3,
 activation = "relu") %>%
 layer_global_average_pooling_2d() %>%

 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = num_classes, activation = "softmax")

model %>% compile(
 optimizer = "rmsprop",
 loss = "categorical_crossentropy"
)

RNNS

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

313

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

expensive; you can think of as a simpler, cheaper alternative to it.layer_gru

In order to stack multiple RNN layers on top of each other, each layer prior to the last
layer in the stack should return the full sequence of its outputs (each input timestep will
correspond an output timestep); if you aren’t stacking any further RNN layers, then it’s
common to only return the last output, which contains information about the entire
sequence.

Following is a single RNN layer for binary classification of vector sequences:

And this is a stacked RNN for binary classification of vector sequences

What will you build with deep learning? Remember, building deep-learning models is
like playing with LEGO bricks: layers can be plugged together to map essentially
anything to anything, given that you have appropriate training data available and that the
mapping is achievable via a continuous geometric transformation of reasonable
complexity. The space of possibilities is infinite. This section offers a few examples to
inspire you to think beyond the basic classification and regression tasks that have
traditionally been the bread and butter of machine learning.

I’ve sorted my suggested applications by input and output modalities. Note that quite
a few of them stretch the limits of what is possible—although a model could be trained
on all of these tasks, in some cases such a model probably wouldn’t generalize far from
its training data. Sections 9.2 and 9.3 will address how these limitations could be lifted in
the future.

Mapping vector data to vector data
Predictive healthcare—Mapping patient medical records to predictions of patient
outcomes
Behavioral targeting—Mapping a set of website attributes with data on how long a use
will spend on the website

model <- keras_model_sequential() %>%
 layer_lstm(units = 32, input_shape = c(num_timestamps, num_features)) %>%
 layer_dense(units = num_classes, activation = "sigmoid")

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy"
)

model <- keras_model_sequential() %>%
 layer_lstm(units = 32, return_sequences = TRUE,
 input_shape = c(num_timestamps, num_features)) %>%
 layer_lstm(units = 32, return_sequences = TRUE) %>%
 layer_lstm(units = 32) %>%
 layer_dense(units = num_classes, activation = "sigmoid")

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy"
)

9.1.7 The space of possibilities

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

314

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Product quality control—Mapping a set of attributes relative to an instance of a
manufactured product with the probability that the product will fail by next year

Mapping image data to vector data
Doctor assistant—Mapping slides of medical images with a prediction about the
presence of a tumor
Self-driving vehicle—Mapping car dashcam video frames to steering wheel angle
commands
Board game AI—Mapping Go and chess boards to the next player move
Diet helper—Mapping pictures of a dish to its calorie count
Age prediction—Mapping selfies to the age of the person

Mapping timeseries data to vector data
Weather prediction—Mapping timeseries of weather data in a grid of locations of
weather data the following week at a specific location
Brain-computer interfaces—Mapping timeseries of magnetoencephalogram (MEG) dat
to computer commands
Behavioral targeting—Mapping timeseries of user interactions on a website to the
probability that a user will buy something

Mapping text to text
Smart reply—Mapping emails to possible one-line replies
Answering questions—Mapping general-knowledge questions to answers
Summarization—Mapping long articles to a short summary of the article

Mapping images to text
Captioning—Mapping images to short captions describing the contents of the images

Mapping text to images
Conditioned image generation—Mapping short text descriptions to images matching th
description
Logo generation/selection—Mapping the name and description of a company to the
company’s logo

Mapping images to images
Super-resolution—Mapping downsized images to higher-resolution versions of the sam
images
Visual depth sensing—Mapping images of indoor environments to maps of depth
predictions

Mapping images and text to text
Visual QA—Mapping images and natural-language questions about the contents of
images to natural-language answers

Mapping video and text to text
Video QA—Mapping short videos and natural-language questions about the contents of
videos to natural-language answers

Almost anything is possible—but not quite . Let’s see in the next sectionanything
what we do with deep learning.can’t

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

315

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

The space of applications that can be implemented with deep learning is nearly infinite.
And yet, many applications are completely out of reach for current deep-learning
techniques—even given vast amounts of human-annotated data. Say, for instance, that
you could assemble a dataset of hundreds of thousands—even millions—of English
language descriptions of the features of a software product, written by a product
manager, as well as the corresponding source code developed by a team of engineers to
meet these requirements. Even with this data, you could train a deep-learning modelnot
to read a product description and generate the appropriate codebase. That’s just one
example among many. In general, anything that requires reasoning—like programming
or applying the scientific method—long-term planning, and algorithmic-like data
manipulation is out of reach for deep-learning models, no matter how much data you
throw at them. Even learning a sorting algorithm with a deep neural network is
tremendously difficult.

This is because a deep-learning model is just a chain of simple, continuous geometric
 mapping one vector space into another. All it can do is map one datatransformations

manifold X into another manifold Y, assuming the existence of a learnable continuous
transform from X to Y. A deep-learning model can be interpreted as a kind of program;
but, inversely, —for mostmost programs can’t be expressed as deep-learning models
tasks, either there exists no corresponding deep-neural network that solves the task or,
even if one exists, it may not be : the corresponding geometric transform maylearnable
be far too complex, or there may not be appropriate data available to learn it.

Scaling up current deep-learning techniques by stacking more layers and using more
training data can only superficially palliate some of these issues. It won’t solve the more
fundamental problems that deep-learning models are limited in what they can represent
and that most of the programs you may wish to learn can’t be expressed as a continuous
geometric morphing of a data manifold.

One real risk with contemporary AI is misinterpreting what deep-learning models do and
overestimating their abilities. A fundamental feature of humans is our : ourtheory of mind
tendency to project intentions, beliefs, and knowledge on the things around us. Drawing a
smiley face on a rock suddenly makes it "happy"—in our minds. Applied to deep
learning, this means that, for instance, when we’re able to somewhat successfully train a
model to generate captions to describe pictures, we’re led to believe that the model
"understands" the contents of the pictures and the captions it generates. Then we’re
surprised when any slight departure from the sort of images present in the training data
causes the model to generate completely absurd captions (see figure 9.1).

9.2 The limitations of deep learning

9.2.1 The risk of anthropomorphizing machine-learning models

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

316

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 9.1 Failure of a deep learning-based image captioning system

In particular, this is highlighted by , which are samples fed to aadversarial examples
deep-learning network that are designed to trick the model into misclassifying them.
You’re already aware that, for instance, it’s possible to do gradient ascent in input space
to generate inputs that maximize the activation of some convnet filter—this is the basis of
the filter-visualization technique introduced in chapter 5, as well as the DeepDream
algorithm in chapter 8. Similarly, through gradient ascent, you can slightly modify an
image in order to maximize the class prediction for a given class. By taking a picture of a
panda and adding to it a gibbon gradient, we can get a neural network to classify the
panda as a gibbon (see figure 9.2). This evidences both the brittleness of these models
and the deep difference between their input-to-output mapping and our human
perception.

Figure 9.2 An adversarial example: imperceptible changes in an image can upend a
model’s classification of the image.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

317

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

In short, deep-learning models don’t have any understanding of their input—at least,
not in any human sense. Our own understanding of images, sounds, and language is
grounded in our sensorimotor experience as humans. Machine-learning models have no
access to such experiences and thus can’t understand their inputs in a human-relatable
way. By annotating large numbers of training examples to feed into our models, we get
them to learn a geometric transform that maps data to human concepts on a specific set of
examples, but this mapping is a simplistic sketch of the original model in our minds—the
one developed from our experience as embodied agents. It’s like a dim image in a mirror
(see figure 9.3).

Figure 9.3 Current machine-learning models: like a dim image in a mirror

As a machine-learning practitioner, always be mindful of this, and never fall into the
trap of believing that neural networks understand the task they perform—they don’t, at
least not in a way that would make sense to us. They were trained on a different, far
narrower task than the one we wanted to teach them: that of mapping training inputs to
training targets, point by point. Show them anything that deviates from their training
data, and they will break in absurd ways.

There are fundamental differences between the straightforward geometric morphing from
input to output that deep-learning models do, and the way humans think and learn. It isn’t
only the fact that humans learn by themselves from embodied experience instead of being
presented with explicit training examples. In addition to the different learning processes,
there is a basic difference in the nature of the underlying representations.

Humans are capable of far more than mapping immediate stimuli to immediate
responses, as a deep net, or maybe an insect, would. We maintain complex, abstract

 of our current situation, of ourselves, of other people, and can use these models tomodels
anticipate different possible futures and perform long-term planning. We can merge
together known concepts to represent something we’ve never experienced before—like
picturing a horse wearing jeans, for instance, or imagining what we’d do if we won the
lottery. This ability to handle hypotheticals, to expand our mental model space far
beyond what we can experience directly—to perform and —isabstraction reasoning

9.2.2 Local generalization vs. extreme generalization

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

318

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

arguably the defining characteristic of human cognition. I call it :extreme generalization
an ability to adapt to novel, never-before-experienced situations using little data or even
no new data at all.

This stands in sharp contrast with what deep nets do, which I call local generalization
(see figure 9.4). The mapping from inputs to outputs performed by a deep net quickly
stops making sense if new inputs differ even slightly from what the net saw at training
time. Consider, for instance, the problem of learning the appropriate launch parameters to
get a rocket to land on the moon. If you used a deep net for this task and trained it using
supervised learning or reinforcement learning, you’d have to feed it thousands or even
millions of launch trials: you’d need to expose it to a of the input space,dense sampling
in order for it to learn a reliable mapping from input space to output space. In contrast,
humans can use our power of abstraction to come up with physical models—rocket
science—and derive an solution that will get the rocket on the moon in one or a fewexact
trials. Similarly, if you developed a deep net controlling a human body, and you wanted it
to learn to safely navigate a city without getting hit by cars, the net would have to die
many thousands of times in various situations until it could infer that cars are dangerous
and develop appropriate avoidance behaviors. Dropped into a new city, the net would
have to relearn most of what it knows. On the other hand, humans are able to learn safe
behaviors without having to die even once—again, thanks to our power of abstract
modeling of hypothetical situations.

Figure 9.4 Local generalization vs. extreme generalization

In short, despite our progress on machine perception, we’re still far from human-level
AI. Our models can only perform local generalization, adapting to new situations that
must be similar to past data, whereas human cognition is capable of extreme

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

319

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

generalization, quickly adapting to radically novel situations and planning for long-term
future situations.

Here’s what you should remember: the only real success of deep learning so far has been
the ability to map space X to space Y using a continuous geometric transform, given
large amounts of human-annotated data. Doing this well is a game-changer for essentially
every industry, but it’s still a long way from human-level AI.

To lift some of these limitations and begin to have AI complete with human brains,
we need to move away from straightforward input-to-output mappings and on to

 and . A likely appropriate substrate for abstract modeling of variousreasoning abstraction
situations and concepts is that of computer programs. We said previously that
machine-learning models can be defined as ; currently we can onlylearnable programs
learn programs that belong to a narrow and specific subset of all possible programs. But
what if we could learn program, in a modular and reusable way? Let’s see in the nextany
section what the road ahead may look like.

This is a more speculative section aimed at opening horizons for people who want to join
a research program or begin doing independent research. Given what we know of how
deep nets work, their limitations, and the current state of the research landscape, can we
predict where things are headed in the medium term? Following are some purely personal
thoughts. Note that I don’t have a crystal ball, so a lot of what I anticipate may fail to
become reality. I’m sharing these predictions not because I expect them to be proven
completely right in the future, but because they’re interesting and actionable in the
present.

At a high level, these are the main directions in which I see promise:

Models closer to general-purpose computer programs, built on top of far richer
primitives than the current differentiable layers. This is how we’ll get to and reasoning

, the lack of which is the fundamental weakness of current models.abstraction
New forms of learning that make the previous point possible, allowing models to move
away from differentiable transforms.
Models that require less involvement from human engineers. It shouldn’t be your job to
tune knobs endlessly.
Greater, systematic reuse of previously learned features and architectures, such as
metalearning systems based on reusable and modular program subroutines.

Additionally, note that these considerations aren’t specific to the sort of supervised
learning that has been the bread and butter of deep learning so far—rather, they’re
applicable to any form of machine learning, including unsupervised, self-supervised, and
reinforcement learning. It isn’t fundamentally important where your labels come from or
what your training loop looks like; these different branches of machine learning are
different facets of the same construct. Let’s dive in.

9.3 The future of deep learning

9.2.3 Wrapping up

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

320

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

As noted in the previous section, a necessary transformational development that we can
expect in the field of machine learning is a move away from models that perform purely

 and can only achieve , toward models capable of pattern recognition local generalization
 and that can achieve . Current AI programsabstraction reasoning extreme generalization

that are capable of basic forms of reasoning are all hard-coded by human programmers:
for instance, software that relies on search algorithms, graph manipulation, and formal
logic. In DeepMind’s AlphaGo, for example, most of the intelligence on display is
designed and hard-coded by expert programmers (such as the Monte Carlo Tree Search);
learning from data happens only in specialized submodules (value networks and policy
networks). But in the future, such AI systems may be fully learned, with no human
involvement.

What path could make this happen? Consider a well-known type of network: RNNs.
It’s important to note that RNNs have slightly fewer limitations than feedforward
networks. That is because RNNs are a bit more than mere geometric transformations:
they’re geometric transformations . The temporal repeatedly applied inside a loopfor

 loop is itself hard-coded by human developers: it’s a built-in assumption of thefor

network. Naturally, RNNs are extremely limited in what they can represent, primarily
because each step they perform is still a differentiable geometric transformation, and they
carry information from step to step via points in a continuous geometric space (state
vectors). Now imagine a neural network that is augmented in a similar way with
programming primitives—but instead of a single hard-coded loop with hard-codedfor

geometric memory, the network includes a large set of programming primitives that the
model is free to manipulate to expand its processing function, such as branches, if

 statements, variable creation, disk storage for long-term memory, sortingwhile

operators, advanced data structures (such as lists, graphs, and hash tables), and many
more. The space of programs that such a network could represent would be far broader
than what can be represented with current deep-learning models, and some of these
programs could achieve superior generalization power.

We’ll move away from having, on one hand, hard-coded algorithmic intelligence
(handcrafted software) and, on the other hand, learned geometric intelligence (deep
learning). Instead, we’ll have a blend of formal algorithmic modules that provide
reasoning and abstraction capabilities, and geometric modules that provide informal
intuition and pattern-recognition capabilities. The entire system will be learned with little
or no human involvement.

A related subfield of AI that I think may be about to take off in a big way is program
, in particular neural program synthesis. Program synthesis consists ofsynthesis

automatically generating simple programs by using a search algorithm (possibly genetic
search, as in genetic programming) to explore a large space of possible programs. The
search stops when a program is found that matches the required specifications, often
provided as a set of input-output pairs. This is highly reminiscent of machine learning:

9.3.1 Models as programs

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

321

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

given training data provided as input-output pairs, we find a program that matches inputs
to outputs and can generalize to new inputs. The difference is that instead of learning
parameter values in a hard-coded program (a neural network), we generate source code
via a discrete search process.

I definitely expect this subfield to see a wave of renewed interest in the next few
years. In particular, I expect the emergence of a crossover subfield between deep learning
and program synthesis, where instead of generating programs in a general-purpose
language, we’ll generate neural networks (geometric data-processing flows) augmented
with a rich set of algorithmic primitives, such as loops and many others (see figurefor

9.5). This should be far more tractable and useful than directly generating source code,
and it will dramatically expand the scope of problems that can be solved with machine
learning—the space of programs that we can generate automatically given appropriate
training data. Contemporary RNNs can be seen as a prehistoric ancestor of such hybrid
algorithmic-geometric models.

Figure 9.5 A learned program relying on both geometric (pattern recognition, intuition)
and algorithmic (reasoning, search, memory) primitives

If machine-learning models become more like programs, then they will mostly no longer
be differentiable—these programs will still use continuous geometric layers as
subroutines, which will be differentiable, but the model as a whole won’t be. As a result,
using backpropagation to adjust weight values in a fixed, hard-coded network can’t be
the method of choice for training models in the future—at least, it can’t be the entire
story. We need to figure out to train non-differentiable systems efficiently. Current
approaches include genetic algorithms, evolution strategies, certain
reinforcement-learning methods, and alternating direction method of multipliers
(ADMM). Naturally, gradient descent isn’t going anywhere; gradient information will
always be useful for optimizing differentiable parametric functions. But our models will
become increasingly more ambitious than mere differentiable parametric functions, and
thus their automatic development (the in) will require morelearning machine learning
than backpropagation.

In addition, backpropagation is end to end, which is a great thing for learning good
chained transformations but is computationally inefficient because it doesn’t fully take
advantage of the modularity of deep networks. To make something more efficient, there

9.3.2 Beyond backpropagation and differentiable layers

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

322

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

is one universal recipe: introduce modularity and hierarchy. So we can make
backpropagation more efficient by introducing decoupled training modules with a
synchronization mechanism between them, organized in a hierarchical fashion. This
strategy is somewhat reflected in DeepMind’s recent work on synthetic gradients. I
expect more more work along these lines in the near future. I can imagine a future where
models that are globally non-differentiable (but feature differentiable parts) are
trained—grown—using an efficient search process that doesn’t use gradients, whereas
the differentiable parts are trained even faster by taking advantage of gradients using a
more efficient version of backpropagation.

In the future, model architectures will be learned rather than being handcrafted by
engineer-artisans. Learning architectures goes hand in hand with the use of richer sets of
primitives and program-like machine-learning models.

Currently, most of the job of a deep-learning engineer consists of munging data and
then tuning the architecture and hyperparameters of a deep network at length to get a
working model—or even to get a state-of-the-art model, if the engineer is that ambitious.
Needless to say, that isn’t an optimal setup. But AI can help. Unfortunately, the
data-munging part is tough to automate, because it often requires domain knowledge as
well as a clear, high-level understanding of what the engineer wants to achieve.
Hyperparameter tuning, however, is a simple search procedure; and in that case we know
what the engineer wants to achieve: it’s defined by the loss function of the network being
tuned. It’s already common practice to set up basic systems that take care ofAutoML
most model knob tuning. I even set up my own, years ago, to win Kaggle competitions.

At the most basic level, such a system would tune the number of layers in a stack,
their order, and the number of units or filters in each layer. This is commonly done today,
which we discussed in chapter 7. But we can also be far more ambitious and attempt to
learn an appropriate architecture from scratch, with as few constraints as possible: for
instance, via reinforcement learning or genetic algorithms.

Another important AutoML direction involves learning model architecture jointly
with model weights. Because training a new model from scratch every time we try a
slightly different architecture is tremendously inefficient, a truly powerful AutoML
system would evolve architectures at the same time the features of the model were being
tuned via backpropagation on the training data. Such approaches are beginning to emerge
at the time of writing.

When this starts to happen, the jobs of machine-learning engineers won’t
disappear—rather, engineers will move up the value-creation chain. They will begin to
put much more effort into crafting complex loss functions that truly reflect business goals
and understanding how their models impact the digital ecosystems in which they’re
deployed (for example, the users who consume the model’s predictions and generate the
model’s training data) —problems that only the largest companies can afford to consider
at present.

9.3.3 Automated machine learning

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

323

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

If models become more complex and are built on top of richer algorithmic primitives,
then this increased complexity will require higher reuse between tasks, rather than
training a new model from scratch every time we have a new task or a new dataset. Many
datasets don’t contain enough information for us to develop a new, complex model from
scratch, and it will be necessary to use information from previously encountered datasets
(much as you don’t learn English from scratch every time you open a new book—that
would be impossible). Training models from scratch on every new task is also inefficient
due to the large overlap between the current tasks and previously encountered tasks.

A remarkable observation has been made repeatedly in recent years: training the same
model to do several loosely connected tasks at the same time results in a model that is

. For instance, training the same neural machine-translation model tobetter at each task
perform both English-to-German translation and French-to-Italian translation will result
in a model that is better at each language pair. Similarly, training an image-classification
model jointly with an image-segmentation model, sharing the same convolutional base,
results in a model that is better at both tasks. This is fairly intuitive: there is always some
information overlap between seemingly disconnected tasks, and a joint model has access
to a greater amount of information about each individual task than a model trained on
that specific task only.

Currently, when it comes to model reuse across tasks, we use pretrained weights for
models that perform common functions, such as visual feature extraction. You saw this in
action in chapter 5. In the future, I expect a generalized version of this to be
commonplace: we will use not only previously learned features (submodel weights) but
also model architectures and training procedures. As models become more like programs,
we’ll begin to reuse like the functions and classes found in humanprogram subroutines
programming languages.

Think of the process of software development today: once an engineer solves a
specific problem (HTTP queries, for instance), they package it as an abstract, reusable
library. Engineers who face a similar problem in the future will be able to search for
existing libraries, download one, and use it in their own project. In a similar way, in the
future, metalearning systems will be able to assemble new programs by sifting through a
global library of high-level reusable blocks. When the system finds itself developing
similar program subroutines for several different tasks, it can come up with an abstract,
reusable version of the subroutine and store it in the global library (see figure 9.6). Such a
process will implement : a necessary component for achieving extremeabstraction
generalization. A subroutine that is useful across different tasks and domains can be said
to some aspect of problem-solving. This definition of abstraction is similar to theabstract
notion of abstraction in software engineering. These subroutines can be either geometric
(deep-learning modules with pretrained representations) or algorithmic (closer to the
libraries that contemporary software engineers manipulate).

9.3.4 Lifelong learning and modular subroutine reuse

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

324

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

Figure 9.6 A meta-learner capable of quickly developing task-specific models using
reusable primitives (both algorithmic and geometric), thus achieving extreme
generalization

In short, here is my long-term vision for machine learning:

Models will be more like programs and will have capabilities that go far beyond the
continuous geometric transformations of the input data we currently work with. These
programs will arguably be much closer to the abstract mental models that humans
maintain about their surroundings and themselves, and they will be capable of stronger
generalization due to their rich algorithmic nature.
In particular, models will blend providing formal reasoning, search,algorithmic modules
and abstraction capabilities with providing informal intuition andgeometric modules
pattern-recognition capabilities. AlphaGo (a system that required a lot of manual
software engineering and human-made design decisions) provides an early example of
what such a blend of symbolic and geometric AI could look like.
Such models will be automatically rather than hard-coded by human engineers,grown
using modular parts stored in a global library of reusable subroutines—a library evolved
by learning high-performing models on thousands of previous tasks and datasets. As
frequent problem-solving patterns are identified by the meta-learning system, they will be
turned into reusable subroutines—much like functions and classes in software
engineering—and added to the global library. This will achieve .abstraction
This global library and associated model-growing system will be able to achieve some
form of human-like extreme generalization: given a new task or situation, the system will
be able to assemble a new working model appropriate for the task using very little data,
thanks to rich program-like primitives that generalize well and extensive experience with
similar tasks. In the same way, humans can quickly learn to play a complex new video
game if they have experience with many previous games, because the models derived
from this previous experience are abstract and program-like, rather than a basic mapping
between stimuli and action.
As such, this perpetually learning model-growing system can be interpreted as an

 (AGI). But don’t expect any singularitarian robotartificial general intelligence
apocalypse to ensue: that’s pure fantasy, coming from a long series of profound
misunderstandings of both intelligence and technology. Such a critique, however, doesn’t
belong in this book.

9.3.5 The long-term vision

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

325

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

As final parting words, I want to give you some pointers about how to keep learning and
updating your knowledge and skills after you’ve turned the last page of this book. The
field of modern deep learning, as we know it today, is only a few years old, despite a
long, slow prehistory stretching back decades. With an exponential increase in financial
resources and research headcount since 2013, the field as a whole is now moving at a
frenetic pace. What you’ve learned in this book won’t stay relevant forever, and it isn’t
all you’ll need for the rest of your career.

Fortunately, there are plenty of free online resources that you can use to stay up to
date and expand your horizons. Here are a few.

One effective way to acquire real-world experience is to try your hand at
machine-learning competitions on Kaggle (). The only real way to learn iskaggle.com
through practice and actual coding—that’s the philosophy of this book, and Kaggle
competitions are the natural continuation of this. On Kaggle, you’ll find an array of
constantly renewed data-science competitions, many of which involve deep learning,
prepared by companies interested in obtaining novel solutions to some of their most
challenging machine-learning problems. Fairly large monetary prizes are offered to top
entrants.

Most competitions are won using either the XGBoost library (for shallow machine
learning) or Keras (for deep learning). So you’ll fit right in! By participating in a few
competitions, maybe as part of a team, you’ll become more familiar with the practical
side of some of the advanced best practices described in this book, especially
hyperparameter tuning, avoiding validation-set overfitting, and model ensembling.

Deep-learning research, in contrast with some other scientific fields, takes places
completely in the open. Papers are made publicly and freely accessible as soon as they’re
finalized, and a lot of related software is open source. arXiv (arxiv.org)—pronounced
"archive" (the stands for the Greek)—is an open-access preprint server for physics,X chi
mathematics, and computer science research papers. It has become the de facto way to
stay up to date on the bleeding edge of machine learning and deep learning. The large
majority of deep-learning researchers upload any paper they write to arXiv shortly after
completion. This allows them to plant a flag and claim a specific finding without waiting
for a conference acceptance (which takes months), which is necessary given the fast pace
of research and the intense competition in the field. It also allows the field to move
extremely fast: all new findings are immediately available for all to see and to build on.

An important downside is that the sheer quantity of new papers posted every day on
arXiv makes it impossible to even skim them all; and the fact that they aren’t peer
reviewed makes it difficult to identify those that are both important and high quality. It’s
difficult, and becoming increasingly more so, to find the signal in the noise. Currently,

9.4 Staying up to date in a fast-moving field

9.4.1 Practice on real-world problems using Kaggle

9.4.2 Read about the latest developments on arXiv

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

326

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://kaggle.com
https://arxiv.org)�pronounced
https://forums.manning.com/forums/deep-learning-with-r

there isn’t a good solution to this problem. But some tools can help: an auxiliary website
called arXiv Sanity Preserver () serves as a recommendation engine forarxiv-sanity.com
new papers and can help you keep track of new developments within a specific narrow
vertical of deep learning. Additionally, you can use Google Scholar to keep track of
publications by your favorite authors.

With about 150,000 users as of June 2017, and growing fast, Keras has a large ecosystem
of tutorials, guides, and related open source projects:

Your main reference for working with the Keras R interface is the online documentation
at .keras.rstudio.com
The main Keras website, , includes additional documentation and discussion.keras.io
The Keras for R source code can be found at .github.com/rstudio/keras
The Keras blog, , offers Keras tutorials and other articles related to deepblog.keras.io
learning.
The TensorFlow for R blog, , offers articles on usingtensorflow.rstudio.com/blog.html
the R interfaces to Keras and TensorFlow.
You can follow me on Twitter: @fchollet.

This is the end of ! I hope you’ve learned a thing or two aboutDeep Learning with R
machine learning, deep learning, Keras, and maybe even cognition in general. Learning is
a lifelong journey, especially in the field of AI, where we have far more unknowns on our
hands than certitudes. So please go on learning, questioning, and researching. Never stop.
Because even given the progress made so far, most of the fundamental questions in AI
remain unanswered. Many haven’t even been properly asked yet.

9.5 Final words

9.4.3 Explore the Keras ecosystem

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

327

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://arxiv-sanity.com
https://keras.rstudio.com
https://keras.io
https://github.com/rstudio/keras
https://blog.keras.io
https://tensorflow.rstudio.com/blog.html
https://forums.manning.com/forums/deep-learning-with-r

A

1.

2.

3.

4.
5.

This appendix provides a step-by-step guide to configuring a deep learning workstation
with GPU support on Ubuntu. You can find details on other local GPU configurations at

.tensorflow.rstudio.com/tools/local_gpu

Before beginning, it’s important to note that the core Keras library as well as the
TensorFlow back end are written in Python. The installation instructions below cover
using (the Python package manager) to install Keras and it’s dependencies (includingpip

requisite NVIDIA GPU libraries).
These instructions apply equally to the Keras R interface (since it in turn calls the

core Keras library). Once these steps are completed, you can install the Keras R package
with:

Listing A.1 Installing the Keras R package

The process of setting up a deep learning workstation is fairly involved, and consists
of the following steps, which we will cover in detail:

Install the Python scientific suite—Numpy and SciPy—and make sure you have a Basic
Linear Algebra Subprogram (BLAS) library installed so your models run fast on the
CPU.
Install two extras packages that come in handy when using Keras: HDF5 (for saving
large neural-network files) and Graphviz (for visualizing neural-network architectures).
Make sure your GPU can run deep-learning code, by installing CUDA drivers and
cuDNN.
Install a backend for Keras: TensorFlow, CTNK, or Theano.
Install Keras.

It may seem like a daunting process. In fact, the only difficult part is setting up GPU
support—otherwise, the entire process can be done in a few commands and takes only a
couple of minutes.

Installing Keras and its dependencies on
Ubuntu

A.1 Overview of the installation process

install.packages("keras")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

328

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://tensorflow.rstudio.com/tools/local_gpu
https://forums.manning.com/forums/deep-learning-with-r

1.

2.

3.

4.

5.

We’ll assume you have a fresh installation of Ubuntu, with an NVIDIA GPU
available. Before you start, make sure you have installed and that your packagepip

manager is up to date:

If you use a Mac, we recommend that you install the Python scientific suite via
Anaconda, which you can get at www.continuum.io/downloads. Note that this won’t
include HDF5 and Graphviz, which you have to install manually. Following are the steps
for a installation of the Python scientific suite on Ubuntu:manual

Install a BLAS library (OpenBLAS in this case), to ensure that you can run fast tensor
operations on your CPU:

Install the Python scientific suite: Numpy, SciPy and MatPlotLib. This is necessary in
order to perform any kind of machine learning or scientific computing in Python,
regardless of whether you’re doing deep learning:

Install HDF5. This library, originally developed by NASA, stores large files of numeric
data in an efficient binary format. It will allow you to save your Keras models to disk
quickly and efficiently:

Install Graphviz and PyDot-ng, two packages that will let you visualize Keras models.
They aren’t necessary to run Keras, so you could also skip this step and install these
packages when you need them. Here are the commands:

Install additional packages that are used in some of our code examples:

A.2 Installing the Python scientific suite

$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get install python-pip python-dev

$ sudo apt-get install build-essential cmake git unzip \
 pkg-config libopenblas-dev liblapack-dev

$ sudo apt-get install python-numpy python-scipy python-matplotlib python-yaml

$ sudo apt-get install libhdf5-serial-dev python-h5py

$ sudo apt-get install graphviz
$ sudo pip install pydot-ng

$ sudo apt-get install python-opencv

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

329

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://www.continuum.io/downloads
https://forums.manning.com/forums/deep-learning-with-r

Using a GPU isn’t strictly necessary, but it’s strongly recommended. All the code
examples found in this book can be run on a laptop CPU, but you may sometimes have to
wait for several hours for a model to train, instead of mere minutes on a good GPU. If
you don’t have a modern NVIDIA GPU, you can skip this step and go directly to section
A.3.

In order to be able to use your NVIDIA GPU for deep learning, you need to install
two things:

CUDA—A set of drivers for your GPU that allows it to run a low-level programming
language for parallel computing.
cuDNN—A library of highly optimized primitives for deep learning. When using cuDNN
and running on a GPU, you can typically increase the training speed of your models by
50% to 100%.

TensorFlow depends on particular versions of CUDA and the cuDNN library. At the
time of writing, it uses CUDA version 8 and cuDNN version 6. Please consult the
TensorFlow website for detailed instructions about which versions are currently
recommended: www.tensorflow.org/install/install_linux.

Follow these steps:

Download CUDA. For Ubuntu (and other Linux flavors), NVIDIA provides a
ready-to-use package that you can download from developer.nvidia.com/cuda-downloads
:

Install CUDA. The easiest way to do so is to use Ubuntu’s on this package. This willapt
allow you to easily install updates via as they become available:apt

Install cuDNN.
Register for a free NVIDIA developer account (unfortunately, this is necessary in order
to gain access to the cuDNN download), and download cuDNN at

 (select the version of cuDNN compatible withdeveloper.NVIDIA.com/cudnn
TensorFlow). Like CUDA, NVIDIA provides packages for different Linux
flavors—we’ll use the version for Ubuntu 16.04. Note that if you’re working with an
EC2 install, you won’t be able to download the cuDNN archive directly to your instanc
instead, download it to your local machine and then upload it to your EC2 instance (via

).scp

Install cuDNN:

A.3 Setting up GPU support

$ wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/
[CA]x86_64/cuda-repo-ubuntu1604_9.0.176-1_amd64.deb

$ sudo dpkg -i cuda-repo-ubuntu1604_9.0.176-1_amd64.deb
$ sudo apt-key adv --fetch-keys
[CA]http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/
[CA]x86_64/7fa2af80.pub
$ sudo apt-get update
$ sudo apt-get install cuda-8-0

$ sudo dpkg -i dpkg -i libcudnn6*.deb

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

330

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://developer.nvidia.com/cuda-downloads
https://developer.NVIDIA.com/cudnn
http://www.tensorflow.org/install/install_linux
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/
https://forums.manning.com/forums/deep-learning-with-r

Installing TensorFlow
TensorFlow with or without GPU support can be installed from PyPI using Pip.

Here’s the command without GPU support:

Here’s the command to install TensorFlow with GPU support:

Because you’ve already installed TensorFlow, you don’t have to install Theano in order
to run Keras code. But it can sometimes be useful to switch back and forth from
TensorFlow to Theano when building Keras models.

Theano can also be installed from PyPI:

If you’re using a GPU, then you should configure Theano to use your GPU. You can
create a Theano configuration file with this command:

Then, fill in the file with the following configuration:

You can install Keras from PyPI:

Alternatively, you can install Keras from GitHub. Doing so will allow you to access
the keras/examples folder, which contains many example scripts for you to learn from:

You can now try to run a Keras script, such as this MNIST example:

A.4 Installing Theano (optional)

A.5 Installing Keras

sudo pip install tensorflow

sudo pip install tensorflow-gpu

sudo pip install theano

nano ~/.theanorc

[global]
floatX = float32
device = gpu0

[nvcc]
fastmath = True

sudo pip install keras

$ git clone https://github.com/fchollet/keras
$ cd keras
$ sudo python setup.py install

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

331

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://github.com/fchollet/keras
https://forums.manning.com/forums/deep-learning-with-r

Note that running this example to completion may take a few minutes, so feel free to
force-quit it (Ctrl-C) once you’ve verified that it’s working nominally.

After you’ve run Keras at least once, the Keras configuration file can be found at
~/.keras/keras.json. You can edit it to select the backend that Keras runs on: ,tensorflow

, or . Your configuration file should like this:theano cntk

While the Keras script examples/mnist_cnn.py is running, you can monitor GPU
utilization in a different shell window:

You’re all set! Congratulations—you can now begin building deep-learning
applications.

python examples/mnist_cnn.py

{
 "image_data_format": "channels_last",
 "epsilon": 1e-07,
 "floatx": "float32",
 "backend": "tensorflow"
}

$ watch -n 5 NVIDIA-smi -a --display=utilization

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

332

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://forums.manning.com/forums/deep-learning-with-r

B
This appendix provides a step by step guide to start running deep learning within RStudio
Server on an AWS GPU instance. This is the perfect setup for deep learning research if
you do not have a GPU on your local machine. You can find details on other cloud GPU
options at .tensorflow.rstudio.com/tools/cloud_gpu

Many deep-learning applications are very computationally intensive and can take hours
or even days when running on a laptop’s CPU cores. Running on a GPU can speed up
training and inference by a considerable factor (often 5 to 10 times, when going from a
modern CPU to a single modern GPU). But you may not have access to a GPU on your
local machine. Running RStudio Server on AWS gives you the same experience as
running on your local machine, while allowing you to use one or several GPUs on AWS.
And you only pay for what you use, which can compare favorably to investing in your
own GPU(s) if you use deep learning only occasionally.

WS GPU instances can quickly become expensive. The one we suggest using costs $0.90
per hour. This is fine for occasional use; but if you’re going to run experiments for
several hours per day every day, then you’re better off building your own deep-learning
machine with a Titan X or GTX 1080 Ti.

In summary, use the RStudio-Server-on-EC2 setup if you’re in one of the following
situations:

You don’t have access to a local GPU.
You don’t want to deal with installing Keras dependencies, in particular GPU drivers.

If you have a access to a local GPU, we recommend running your models locally,
instead. In that case, use the installation guide in appendix A.

Running RStudio Server on a EC2 GPU
instance

B.1 Why would you want to use AWS for deep learning?

B.2 Why would you want to use AWS for deep learning?not

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

333

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://tensorflow.rstudio.com/tools/cloud_gpu
https://forums.manning.com/forums/deep-learning-with-r

NOTE You’ll need an active AWS account. Some familiarity with AWS EC2 will
help, but it isn’t mandatory.

The following setup process will take 5 to 10 minutes:

Navigate to the EC2 control panel at , and click theconsole.aws.amazon.com/ec2/v2
Launch Instance link (see figure B.1).

Figure B.1 The EC2 control panel

Select AWS Marketplace (see figure B.2), and search for "deep learning" in the search
box. Scroll down until you find the AMI named Deep Learning AMI Ubuntu Version
(see figure B.3); select it.

Figure B.2 The EC2 AMI Marketplace

Figure B.3 The EC2 Deep Learning AMI

Select the p2.xlarge instance (see figure B.4). This instance type provides access to a
single GPU and costs $0.90 per hour of usage (as of March 2017).

B.3 Setting up an AWS GPU instance

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

334

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://console.aws.amazon.com/ec2/v2
https://forums.manning.com/forums/deep-learning-with-r

Figure B.4 The p2.xlarge instance

You can keep the default configuration for the steps Configure Instance, Add Storage,
Add Tags, and Configure Security Group.

NOTE At the end of the launch process, you’ll be asked if you want to create
new connection keys or if you want to reuse existing keys. If you’ve never
used EC2 before, create new keys and download them.

To connect to your instance, select it on the EC2 control panel, click the Connect button,
and follow the instructions (see figure B.6). Note that it may take a few minutes for the
instance to boot up. If you can’t connect at first, wait a bit and try again.

Figure B.5 Connection instructions

Next, you should install and configure R and RStudio Server. You can do this with
the following commands:

Listing B.1 Install R and RStudio Server

Install R
sudo apt-get install r-base

Download RStudio Server and check MD5 sum
wget https://download2.rstudio.org/rstudio-server-1.1.383-amd64.deb
md5sum -c <<<"80cf85a6e0364a02a4e8d65f535dcc16 rstudio-server-1.1.383-amd64.deb"

Install RStudio Server

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

335

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://download2.rstudio.org/rstudio-server-1.1.383-amd64.deb
https://forums.manning.com/forums/deep-learning-with-r

You’re almost ready to start using RStudio Server. But first, you need to update Keras. A
version of Keras is preinstalled on the AMI, but it may not necessarily be up to date. On
the remote instance, run this command:

If there is an existing Keras configuration file on the instance (there shouldn’t be, but
the AMI may have changed since we wrote this), you should delete it, just in case. Keras
will re-create a standard configuration file when it’s launched for the first time.

If the following code snippet returns an error saying that the file doesn’t exist, you
can ignore it:

We recommend that you use an SSH tunnel to access RStudio Server on the remote AMI.
To configure this, first disable non-local access to RStudio Server with:

Then, in a shell (the remote instance), start forwardingon your local machine not
your local port 8787 (the HTTP port) to port 8787 of the remote instance:

In our case, this looked like the following:

B.4 Installing Keras

B.5 Accessing RStudio Server

sudo apt-get install gdebi
sudo gdebi rstudio-server-1.1.383-amd64.deb

Configure RStudio to locate CUDA libraries
CUDA="/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
sudo /bin/bash -c "echo 'rsession-ld-library-path=${CUDA}' >> /etc/rstudio/rserver.conf"

Add an interactive user for login to RStudio Server
sudo adduser <username>

Restart RStudio with new settings
sudo rstudio-server restart

sudo pip install keras --upgrade

rm -f ~/.keras/keras.json

B.5.1 SSH Tunnel Access

Configure RStudio to only allow local connections
sudo /bin/bash -c "echo 'www-address=127.0.0.1' >> /etc/rstudio/rserver.conf"

Restart RStudio with new settings
sudo rstudio-server restart

ssh -i awsKeys.pem -N -L local_port:local_machine:remote_port remote_machine

ssh -i awsKeys.pem -N -L 8787:127.0.0.1:8787 ubuntu@ec2-54-147-126-214.compute-1.amazonaws.com

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

336

Licensed to <null>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
mailto:ubuntu@ec2-54-147-126-214.compute-1.amazonaws.com
https://forums.manning.com/forums/deep-learning-with-r

Then, in your local browser, navigate to the local address you’re forwarding to the
remote instance (). You’ll be asked to login with the username and127.0.0.1:8787
password you created when configuring RStudio Server.

If you don’t use an SSH tunnel then you can access the server at port 8787 of the
instances public IP address. To do this you’ll need to create a custom TCP rule to allow

 on your AWS instance.port 8787
This rule can be allowed either for your current public IP (such as that of your laptop)

or for any IP (such as 0.0.0.0/0) if the former isn’t possible. Note that if you allow port
8888 for any IP, then literally anyone will be able to listen to that port on your instance
(which is where you’ll be running RStudio Server). You added password protection to
RStudio Server to mitigate the risk of random strangers using the server, but that may be
pretty weak protection. If at all possible, you should consider restricting access to a
specific IP. But if your IP address changes constantly, then that isn’t a practical choice. If
you’re going to leave access open to any IP, then remember not to leave sensitive data on
the instance.

Figure B.6 Configure a new security group

Once you’ve configured this you can access RStudio Server at port 8787 of the
instances public IP address. In our case that would be

 (you’ll be asked to login with theec2-54-147-126-214.compute-1.amazonaws.com:8787
username and password you created when configuring RStudio Server).

B.5.2 Plain HTTP Access

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/deep-learning-with-r

337

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://127.0.0.1:8787
http://ec2-54-147-126-214.compute-1.amazonaws.com:8787
https://forums.manning.com/forums/deep-learning-with-r

	Deep Learning with R MEAP V01
	Copyright
	Welcome
	Brief contents
	Chapter 1: What is deep learning?
	1.1 Artificial intelligence, machine learning, and deep learning
	1.1.1 Artificial intelligence
	1.1.2 Machine Learning
	1.1.3 Learning representations from data
	1.1.4 The "deep" in deep learning
	1.1.5 Understanding how deep learning works, in three figures
	1.1.6 What deep learning has achieved so far
	1.1.7 Don’t believe the short-term hype
	1.1.8 The promise of AI

	1.2 Before deep learning: a brief history of machine learning
	1.2.1 Probabilistic modeling
	1.2.2 Early neural networks
	1.2.3 Kernel methods
	1.2.4 Decision trees, random forests, and gradient boosting machines
	1.2.5 Back to neural networks
	1.2.6 What makes deep learning different
	1.2.7 The modern machine-learning landscape

	1.3 Why deep learning? Why now?
	1.3.1 Hardware
	1.3.2 Data
	1.3.3 Algorithms
	1.3.4 A new wave of investment
	1.3.5 The democratization of deep learning
	1.3.6 Will it last?

	Chapter 2: Before we begin: the mathematical blocks of neural networks
	2.1 A first look at a neural network
	2.2 Data representations for neural networks
	2.2.1 Scalars (0D tensors)
	2.2.2 Vectors (1D tensors)
	2.2.3 Matrices (2D tensors)
	2.2.4 3D tensors and higher-dimensional tensors
	2.2.5 Key attributes
	2.2.6 Manipulating tensors in R
	2.2.7 The notion of data batches
	2.2.8 Real-world examples of data tensors
	2.2.9 Vector data
	2.2.10 Timeseries data or sequence data
	2.2.11 Image data
	2.2.12 Video data

	2.3 The gears of neural networks: tensor operations
	2.3.1 Element-wise operations
	2.3.2 Operations involving tensors of different dimensions
	2.3.3 Tensor dot
	2.3.4 Tensor reshaping
	2.3.5 Geometric interpretation of tensor operations
	2.3.6 A geometric interpretation of deep learning

	2.4 The engine of neural networks: gradient-based optimization
	2.4.1 What’s a derivative?
	2.4.2 Derivative of a tensor operation: the gradient
	2.4.3 Stochastic gradient descent
	2.4.4 Chaining derivatives: the backpropagation algorithm

	2.5 Looking back at our first example
	2.6 Summary

	Chapter 3: Getting started with neural networks
	3.1 Anatomy of a neural network
	3.1.1 Layers: the building blocks of deep learning
	3.1.2 Models: networks of layers
	3.1.3 Loss functions and optimizers: keys to configuring the learning process

	3.2 Introduction to Keras
	3.2.1 Keras, TensorFlow, Theano, and CNTK
	3.2.2 Installing Keras
	3.2.3 Developing with Keras: a quick overview

	3.3 Setting up a deep-learning workstation
	3.3.1 Getting Keras running: two options
	3.3.2 Running deep-learning jobs in the cloud: pros and cons
	3.3.3 What is the best GPU for deep learning?

	3.4 Classifying movie reviews: a binary classification example
	3.4.1 The IMDB dataset
	3.4.2 Preparing the data
	3.4.3 Building your network
	3.4.4 Validating your approach
	3.4.5 Using a trained network to generate predictions on new data
	3.4.6 Further experiments
	3.4.7 Wrapping up

	3.5 Classifying newswires: a multiclass classification example
	3.5.1 The Reuters dataset
	3.5.2 Preparing the data
	3.5.3 Building your network
	3.5.4 Validating your approach
	3.5.5 Generating predictions on new data
	3.5.6 A different way to handle the labels and the loss
	3.5.7 The importance of having sufficiently large intermediate layers
	3.5.8 Further experiments
	3.5.9 Wrapping up

	3.6 Predicting house prices: a regression example
	3.6.1 The Boston Housing Price dataset
	3.6.2 Preparing the data
	3.6.3 Building your network
	3.6.4 Validating your approach using K-fold validation
	3.6.5 Wrapping up

	3.7 Summary

	Chapter 4: Fundamentals of machine learning
	4.1 Four branches of machine learning
	4.1.1 Supervised learning
	4.1.2 Unsupervised learning
	4.1.3 Self-supervised learning
	4.1.4 Reinforcement learning

	4.2 Evaluating machine-learning models
	4.2.1 Training, validation, and test sets
	4.2.2 Things to keep in mind

	4.3 Data preprocessing, feature engineering, and feature learning
	4.3.1 Data preprocessing for neural networks
	4.3.2 Feature engineering

	4.4 Overfitting and underfitting
	4.4.1 Reducing the network’s size
	4.4.2 Adding weight regularization
	4.4.3 Adding dropout

	4.5 The universal workflow of machine learning
	4.5.1 Defining the problem and assembling a dataset
	4.5.2 Choosing a measure of success
	4.5.3 Deciding on an evaluation protocol
	4.5.4 Preparing your data
	4.5.5 Developing a model that does better than a baseline
	4.5.6 Scaling up: developing a model that overfits
	4.5.7 Regularizing your model and tuning your hyperparameters

	4.6 Summary

	Chapter 5: Deep learning for computer vision
	5.1 Introduction to convnets
	5.1.1 The convolution operation
	5.1.2 The max-pooling operation

	5.2 Training a convnet from scratch on a small dataset
	5.2.1 The relevance of deep learning for small-data problems
	5.2.2 Downloading the data
	5.2.3 Building your network
	5.2.4 Data preprocessing
	5.2.5 Using data augmentation

	5.3 Using a pretrained convnet
	5.3.1 Feature extraction
	5.3.2 Fine-tuning
	5.3.3 Take-aways: using convnets with small datasets

	5.4 Visualizing what convnets learn
	5.4.1 Visualizing intermediate activations
	5.4.2 Visualizing convnet filters
	5.4.3 Visualizing heatmaps of class activation

	5.5 Summary

	Chapter 6: Deep learning for text and sequences
	6.1 Working with text data
	6.1.1 One-hot encoding of words and characters
	6.1.2 Using word embeddings
	6.1.3 Putting it all together: from raw text to word embeddings
	6.1.4 Wrapping up

	6.2 Understanding recurrent neural networks
	6.2.1 A recurrent layer in Keras
	6.2.2 Understanding the LSTM and GRU layers
	6.2.3 A concrete LSTM example in Keras
	6.2.4 Wrapping up

	6.3 Advanced use of recurrent neural networks
	6.3.1 A temperature-forecasting problem
	6.3.2 Preparing the data
	6.3.3 A common-sense, non-machine-learning baseline
	6.3.4 A basic machine-learning approach
	6.3.5 A first recurrent baseline
	6.3.6 Using recurrent dropout to fight overfitting
	6.3.7 Stacking recurrent layers
	6.3.8 Using bidirectional RNNs
	6.3.9 Going even further
	6.3.10 Wrapping up

	6.4 Sequence processing with convnets
	6.4.1 Understanding 1D convolution for sequence data
	6.4.2 1D pooling for sequence data
	6.4.3 Implementing a 1D convnet
	6.4.4 Combining CNNs and RNNs to process long sequences
	6.4.5 Wrapping up

	6.5 Summary

	Chapter 7: Advanced deep-learning best practices
	7.1 Going beyond the Sequential model: the Keras functional API
	7.1.1 Introduction to the functional API
	7.1.2 Multi-input models
	7.1.3 Multi-output models
	7.1.4 Directed acyclic graphs of layers
	7.1.5 Layer weight sharing
	7.1.6 Models as layers
	7.1.7 Wrapping up

	7.2 Inspecting and monitoring deep-learning models using Keras callbacks and TensorBoard
	7.2.1 Using callbacks to act on a model during training
	7.2.2 Introduction to TensorBoard: the TensorFlow visualization framework
	7.2.3 Wrapping up

	7.3 Getting the most out of your models
	7.3.1 Advanced architecture patterns
	7.3.2 Hyperparameter optimization
	7.3.3 Model ensembling
	7.3.4 Wrapping up

	7.4 Summary

	Chapter 8: Generative deep learning
	8.1 Text generation with LSTM
	8.1.1 A brief history of generative recurrent networks
	8.1.2 How do you generate sequence data?
	8.1.3 The importance of the sampling strategy
	8.1.4 Implementing character-level LSTM text generation

	8.2 DeepDream
	8.2.1 Implementing DeepDream in Keras
	8.2.2 Wrapping up

	8.3 Neural style transfer
	8.3.1 The content loss
	8.3.2 The style loss
	8.3.3 Neural style transfer in Keras
	8.3.4 Wrapping up

	8.4 Generating images with variational autoencoders
	8.4.1 Sampling from latent spaces of images
	8.4.2 Concept vectors for image editing
	8.4.3 Variational autoencoders
	8.4.4 Wrapping up

	8.5 Introduction to generative adversarial networks
	8.5.1 A schematic GAN implementation
	8.5.2 A bag of tricks
	8.5.3 The generator
	8.5.4 The discriminator
	8.5.5 The adversarial network
	8.5.6 How to train your DCGAN
	8.5.7 Wrapping up

	8.6 Summary

	Chapter 9: Conclusions
	9.1 Key concepts in review
	9.1.1 Different types of approaches to AI
	9.1.2 What makes deep learning special within the field of machine learning
	9.1.3 How to think about deep learning
	9.1.4 Key enabling technologies
	9.1.5 The universal machine-learning workflow
	9.1.6 Key network architectures
	9.1.7 The space of possibilities

	9.2 The limitations of deep learning
	9.2.1 The risk of anthropomorphizing machine-learning models
	9.2.2 Local generalization vs. extreme generalization
	9.2.3 Wrapping up

	9.3 The future of deep learning
	9.3.1 Models as programs
	9.3.2 Beyond backpropagation and differentiable layers
	9.3.3 Automated machine learning
	9.3.4 Lifelong learning and modular subroutine reuse
	9.3.5 The long-term vision

	9.4 Staying up to date in a fast-moving field
	9.4.1 Practice on real-world problems using Kaggle
	9.4.2 Read about the latest developments on arXiv
	9.4.3 Explore the Keras ecosystem

	9.5 Final words

	Appendix A: Installing Keras and its dependencies on Ubuntu
	A.1 Overview of the installation process
	A.2 Installing the Python scientific suite
	A.3 Setting up GPU support
	A.4 Installing Theano (optional)
	A.5 Installing Keras

	Appendix B: Running RStudio Server on a EC2 GPU instance
	B.1 Why would you want to use AWS for deep learning?
	B.2 Why would you not want to use AWS for deep learning?
	B.3 Setting up an AWS GPU instance
	B.4 Installing Keras
	B.5 Accessing RStudio Server
	B.5.1 SSH Tunnel Access
	B.5.2 Plain HTTP Access

	Botón:
	Botón0:

