

Developing with Angular

Denys Vuika

This book is for sale at http://leanpub.com/developing-with-angular

This version was published on 2018-10-23

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2017 - 2018 Denys Vuika

http://leanpub.com/developing-with-angular
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Denys Vuika by spreading the word about this book on Twitter!

The suggested hashtag for this book is #developing-with-angular.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#developing-with-angular

http://twitter.com
https://twitter.com/search?q=%23developing-with-angular
https://twitter.com/search?q=%23developing-with-angular

To my dear wife, Iuliia, who always inspires me and supports me in anything I try.

Contents

Introduction . 1
Book Revision . 1
Book progress . 1
Code examples . 2
Feedback, Bug Reports and Suggestions . 2
Other publications . 2
Testimonials . 2

Prerequisites . 3
Node . 3
Visual Studio Code . 3

Recommended extensions . 4
Hiding files . 5

ES6 . 6
Classes . 6
Inheritance . 7
Arrow Functions . 8

Expression Bodies . 8
Statement Bodies . 8
Lexical this . 9

Template Literals . 11
Extended Parameter Handling . 12

Default Parameter Values . 12
Rest Parameter . 13
Spread Operator . 15

Destructuring assignment . 16
Basic example . 16
Array destructuring . 17

Value assignment . 17
Default values . 18
Swapping values . 19
Skipping values . 20
Grouping tail values into a single variable . 20

CONTENTS

Object destructuring . 21
Unpacking properties . 21
Renaming properties . 21
Default values . 22
Unpacking methods . 22
Renaming methods . 23

Using with function parameters . 24
IDE support . 26

Modules . 26
Exporting and Importing Values . 27
Default Values . 28
Wildcard Export . 28

See also . 29

TypeScript . 30
Getting Started with TypeScript . 30

Installing TypeScript . 30
Using tsc . 30
Typings . 31
Linting . 31

tslint . 31
TypeScript Features . 31

Types . 32
Basic Types . 32
Arrays . 33
Enum . 34
Any . 34
Void . 35

Classes . 36
Properties . 37
Setters and Getters . 38
Methods . 40

Return values . 40
Method parameters . 41
Optional parameters . 42
Default parameters . 43
Rest Parameters and Spread Operator . 43

Constructors . 44
Inheritance . 47
Access Modifiers . 49

Public . 49
Private . 50
Protected . 51

CONTENTS

Interfaces . 54
Abstract Classes . 55
Modules . 58

Module Loaders . 58
Running at server side . 59
Running in browser . 59

Decorators . 61
Class Decorators . 61

Decorators with parameters . 62
Multiple decorators . 64

Method Decorators . 64
Accessor Decorators . 66
Property Decorators . 69
Parameter Decorators . 70

Angular CLI . 72
Installing . 73
Your first application . 73
Running application . 74
Code Linting . 75
Unit tests . 76
Code coverage . 78
Development and Production builds . 79
Using blueprints . 81
Creating modules . 87

Assigning components to modules . 88
Routing support . 89
Generating standalone scripts . 90

Components . 92
Creating a simple component . 93
Generating components with Angular CLI . 95
Component metadata . 97
Templates . 98

Inline templates . 98
External templates . 99

Styles . 100
Inline styles . 100
External styles . 101

Input properties . 103
Output events . 105

Raising events . 105
Handling events . 106

CONTENTS

Typed events . 107
Accessing event parameters . 109
Aliased outputs . 111

Providers . 112
Host . 118

CSS class . 119
Host events . 120
Host attributes . 123
Host properties . 123

Queries . 126
Preparing the project . 126
@ViewChild . 127
@ViewChildren . 129
@ContentChild . 131
@ContentChildren . 133
Listening for View and Content changes . 134

Component Lifecycle . 137
ngOnChanges . 138
ngOnInit . 141
ngDoCheck . 143
ngAfterContentInit . 148
ngAfterContentChecked . 152
ngAfterViewInit . 153
ngAfterViewChecked . 156
ngOnDestroy . 157

Cleaning up subscriptions . 159
Content Projection . 162

ng-container directive . 162
Projecting single entity . 165

Supporting external content . 166
Projecting multiple entities . 167

Projecting with CSS selectors . 167
Projecting with Component selectors . 169

Fallback content . 170

Dependency Injection . 174
Preparing a project . 174
Services . 175

Creating LogService . 175
Injecting and using LogService . 177

Providers . 177
Using a class . 178
Using a class factory . 180

CONTENTS

Class factories with dependencies . 181
Using @Inject decorator . 182
Using a value . 184
Using an alias . 186

Injection Tokens . 188
Type tokens . 188
String tokens . 188
Generic InjectionToken . 189

Injecting multiple instances . 191
Optional dependencies . 196
Manual injection with ReflectiveInjector . 198
Summary . 198

Events . 199
Component events . 200

Bubbling up child events . 203
DOM events . 205
Service events . 208

Modules . 211

Directives . 212
Introduction . 212
Attribute Directives . 212

Handling host events . 213
Host members binding . 215

Binding element attributes . 216
Binding element properties . 217
Binding style attributes . 218
Binding class names . 219

Built-in attribute directives . 222
NgStyle . 222
NgClass . 223

Binding to String Expression (single): . 223
Binding to String Expression (space delimited) 224
Binding to Object Literal . 224
Binding to Array . 224

NgNonBindable . 225
Structural Directives . 226

Built-in structural directives . 226
NgIf . 227
NgFor . 230

Binding to arrays . 230
Binding to class properties or functions . 231

CONTENTS

Using exported variables . 232
Improving performance with trackBy . 233

NgSwitch . 234
Creating a Structural Directive . 236

Modifying host element layout . 240

Walkthrough: Upload Directive . 249

Pipes . 259
Introduction . 259
Pipes with Parameters . 260
Chaining Pipes . 261
Built-in Pipes . 262

UpperCase . 262
LowerCase . 263
TitleCase . 263
Date . 264

Custom formatting rules . 264
Predefined formatting rules . 266

Decimal . 267
Currency . 269
Percent . 271
Json . 273
Slice . 274

Using with Arrays . 274
Using with Strings . 276

I18nSelect . 277
I18nPlural . 281
Async . 283

Using with NgFor directive . 283
Using with Date object . 285

Custom Pipes . 286
Implementing Custom Pipe . 287

Pure And Impure Pipes . 290
Preparing Project . 290
Pure Pipes . 293
Impure Pipes . 297

Global Application Configuration . 300
Preparing the configuration file . 300
Creating the configuration service . 301
Loading server-side configuration file . 302
Registering configuration service . 303
Using configuration settings . 305

CONTENTS

Internationalisation (i18n) . 307
Creating Translate Service . 307
Creating Translate Pipe . 310
Using Translate Pipe . 311
Switching languages . 313
Summary . 315

Advanced Angular . 316
Dynamic Content in Angular . 316

List item templates . 316
List component . 316
Row templates . 318
Typical use cases . 321

Dynamic Components . 321
Runtime context . 325
Typical use cases . 328

Runtime Compilation . 328
Binding events . 333
Typical use cases . 334

Plugins . 335
Preparing new project . 335
Building components based on string names . 335

Loading configuration from external sources . 341
Dynamically changing application routes . 347
External plugins . 353

Extension decorator . 354
Creating a Plugins Core library . 356
Creating an example Plugin library . 360
Extra libraries and dependencies . 365
Providing dependencies for your plugins . 368
Loading plugins into the Application . 369
Setting plugin properties at runtime . 379
Dynamic Routes with plugin content . 380

Summary . 389

Reusable Component Libraries . 390
Creating new application . 390
Creating component libraries . 391
Building the packages . 393
Publishing to NPM . 397
Integrating with the application . 397
See also . 400

Using with Docker . 401

CONTENTS

Additional Resources . 401
Preparing new project . 401
Creating Dockerfile . 402
Testing in a container . 403
Creating docker-compose.yml . 404
Publishing to Docker Hub . 405
Consuming from Docker Hub . 406
Automating with Travis . 406

See also . 409

Webpack . 410
Initial project structure . 410
Typescript configuration . 410
Basic webpack setup . 411

Enabling source maps . 412
Simple Angular application . 413
Generating index page . 415
Development server . 416
Start command with NPM . 417
Fixing Angular warnings . 418
Testing source maps . 419

Advanced webpack setup . 420
External Html templates . 421
External CSS styles . 423
Loading images . 425
TSLint . 426

Unit testing . 428
Code coverage . 432

Code splitting . 437
Multiple configurations . 437

Development mode . 439
Production mode . 439

CSS splitting . 442
Vendor code splitting . 445

Building a Mobile App with Cordova and Angular . 450
Installing command-line tools . 451
Generating a new Cordova App . 451

Adding the Browser platform . 452
Adding the iOS platform . 453

Generating a new Angular App . 454
Build scripts . 456
Running Angular in the Browser . 456

CONTENTS

Running Angular in the iOS emulator . 457
Routing support . 458

Routing in the iOS emulator . 460
Summary . 461

Changelog . 462
Revision 16 (2018-10-23) . 462
Revision 15 (2018-06-03) . 462
Revision 14 (2018-04-08) . 462
Revision 13 (2018-02-12) . 462
Revision 12 (2017-12-17) . 462
Revision 11 (2017-12-03) . 463
Revision 10 (2017-11-12) . 463
Revision 9 (2017-10-15) . 463
Revision 8 (2017-09-17) . 463
Revision 7 (2017-09-14) . 463
Revision 6 (2017-08-24) . 463
Revision 5 (2017-08-13) . 463
Revision 4 (2017-07-22) . 463
Revision 3 (2017-07-09) . 464
Revision 2 (2017-07-02) . 464
Revision 1 (2017-06-09) . 464

Introduction
This author of this book follows Lean Publishing¹ principles, and the book evolves with readers’
feedback.

In the first few chapters, we are going to dwell on the basics you may need to understand Angular
development better later on.

We are going to start with the main ES6 (ECMAScript 2015) features you should come across
frequently when using TypeScript.

Next, the most remarkable TypeScript features you should get familiar before starting the Angular
development.

After that, we are covering the Angular framework and supplemental toolings, like Angular CLI
(Command Line Interface) and Webpack.

Finally, you should expect many practical topics that are addressing specific application require-
ments and scenarios, including those coming from the community requests.

Book Revision

Revision 16 (2018-10-23)

• Upgrade all examples to Angular 7 and Angular CLI 7
• Update chapters to use Angular 7 examples
• Setup Travis CI and unit testing for all example projects
• Setup Prettier and provide better code formatting for example projects
• Minor text polishing and link fixes

Revision 15 (2018-06-03)

• Updated: ngOnDestroy
• New Listening for View and Content changes

Book progress

You can see the progress of the writing on this GitHub board². Be sure to check the board if you
want to see what’s coming next or what is in progress right now.

¹https://leanpub.com/manifesto
²https://github.com/DenysVuika/developing-with-angular/projects/1

https://leanpub.com/manifesto
https://github.com/DenysVuika/developing-with-angular/projects/1
https://leanpub.com/manifesto
https://github.com/DenysVuika/developing-with-angular/projects/1

Introduction 2

Code examples

You can find all code examples in this GitHub repository: developing-with-angular³. The source code
gets frequently revisited and updated.

Feedback, Bug Reports and Suggestions

If you have noticed a typo in the text or a bug in the code examples, please don’t hesitate and contact
me using the next email address: denys.vuika@gmail.com⁴

You are also invited to raise issues for the source code and examples using corresponding issue
tracker⁵ at GitHub.

Feel free to raise feature requests and suggestions on what you would like to see next.

Other publications

You can find many other interesting publications at my Medium channel⁶.

Testimonials

Your feedback on the book content is very appreciated. I would love to publish your photo and
testimonial on the web page of the book. Email me at: denys.vuika@gmail.com⁷.

³https://github.com/DenysVuika/developing-with-angular
⁴mailto:denys.vuika@gmail.com?subject=developing-with-angular%20feedback
⁵https://github.com/DenysVuika/developing-with-angular/issues
⁶https://medium.com/@DenysVuika/
⁷mailto:denys.vuika@gmail.com?subject=developing-with-angular%20testimonial

https://github.com/DenysVuika/developing-with-angular
mailto:denys.vuika@gmail.com?subject=developing-with-angular%20feedback
https://github.com/DenysVuika/developing-with-angular/issues
https://github.com/DenysVuika/developing-with-angular/issues
https://medium.com/@DenysVuika/
mailto:denys.vuika@gmail.com?subject=developing-with-angular%20testimonial
https://github.com/DenysVuika/developing-with-angular
mailto:denys.vuika@gmail.com?subject=developing-with-angular%20feedback
https://github.com/DenysVuika/developing-with-angular/issues
https://medium.com/@DenysVuika/
mailto:denys.vuika@gmail.com?subject=developing-with-angular%20testimonial

Prerequisites
Node

Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript engine⁸. Node.js uses an
event-driven, non-blocking I/O model that makes it lightweight and efficient. Node.js’
package ecosystem, npm⁹, is the largest ecosystem of open source libraries in the world.

Navigate to the main page¹⁰, download installer for your platform and follow setup instructions.

You can use the following commands to test currnet versions of the Node and NPM on yourmachine:

node -v

v8.4.0

npm -v

5.0.4

Please note that the actual versions may differ.

Visual Studio Code

Visual Studio Code is a source code editor developed by Microsoft for Windows, Linux
andmacOS. It includes support for debugging, embedded Git control, syntax highlighting,
intelligent code completion, snippets, and code refactoring.

⁸https://developers.google.com/v8/
⁹https://www.npmjs.com/
¹⁰https://nodejs.org/en/

https://developers.google.com/v8/
https://www.npmjs.com/
https://nodejs.org/en/
https://developers.google.com/v8/
https://www.npmjs.com/
https://nodejs.org/en/

Prerequisites 4

vs code

Recommended extensions

TSLint¹¹

Integrates the tslint linter for the TypeScript language into VS Code.

Launch VS Code Quick Open (âŒ˜+P), paste the following command, and press enter.

1 ext install tslint

ESLint¹²

Integrates ESLint into VS Code. See project page¹³ for more details.

1 ext install vscode-eslint

EditorConfig¹⁴

EditorConfig Support for Visual Studio Code

¹¹https://marketplace.visualstudio.com/items?itemName=eg2.tslint
¹²https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
¹³https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
¹⁴https://marketplace.visualstudio.com/items?itemName=EditorConfig.EditorConfig

https://marketplace.visualstudio.com/items?itemName=eg2.tslint
https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://marketplace.visualstudio.com/items?itemName=EditorConfig.EditorConfig
https://marketplace.visualstudio.com/items?itemName=eg2.tslint
https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://marketplace.visualstudio.com/items?itemName=EditorConfig.EditorConfig

Prerequisites 5

1 ext install EditorConfig

Hiding files

This step is optional. In the code go to the Preferences -> Workspace Settings and paste the
following settings into the opened file:

1 {

2 "files.exclude": {

3 "**/.git": true,

4 "**/.DS_Store": true

5 }

6 }

You can extend the list with the files, extensions or directories based on your preferences.

ES6
ECMAScript 2015 (also known as ES6 and often referred to as Harmony) is the 6th major release of
the ECMAScript language specification. I am going to cover the most important features here to get
you started with ES6 and then be able moving to TypeScript and Angular faster.

Classes

The class syntax in JavaScript is not a new object-oriented inheritance model but simply a
syntactical sugar on top of the existing prototype-based inheritance. Traditionally we have been
using standard Objects and Prototypes like shown below:

1 var Widget = function(id, x, y) {

2 this.id = id;

3 this.setPosition(x, y);

4 }

5 Widget.prototype.setPosition = function(x, y) {

6 this.x = x;

7 this.y = y;

8 }

With class syntax developers get more natural and boilerplate-free result:

1 class Widget {

2 constructor(id, x, y) {

3 this.id = id;

4 this.setPosition(x, y);

5 }

6

7 setPosition(x, y) {

8 this.x = x;

9 this.y = y;

10 }

11 }

The constructor function is automatically called when you create a new instance of Widget:

ES6 7

1 let myWidget = new Widget(1, 10, 20);

Inheritance

The extends keyword is used to define a class as a child of another class. The following example
demonstrates inheritance in practice:

1 class TextBox extends Widget {

2 constructor (id, x, y, text) {

3 super(id, x, y);

4 this.text = text;

5 }

6 }

We created a new TextBox class that is based on the Widget and adds additional text property. Note
that a base Widget constructor must also be called when a child class instantiated. It must be the
very first line of the child constructor implementation.

Here’s another example:

1 class ImageBox extends Widget {

2 constructor (id, x, y, width, height) {

3 super(id, x, y);

4 this.setSize(width, height);

5 }

6

7 setSize(width, height) {

8 this.width = width;

9 this.height = height;

10 }

11

12 reset() {

13 this.setPosition(0, 0);

14 this.setSize(0, 0);

15 }

16 }

ImageBox also inherits Widget class and adds size-related information alongside position. Access
to both classes is demonstrated with the reset function that calls Widget.setPosition and
ImageBox.setSize functions.

ES6 8

Arrow Functions

ES6 offers a shorter syntax for a function expression called arrow function, also known as fat
arrow function. Arrow functions provide more expressive closure syntax, simplify function scoping
and change the way this is handled.

Expression Bodies

When used as expressions bodies arrow functions work much like anonymous one-line lambdas
that you can meet in many programming languages. Let’s filter a book collection to find something
to read using both ES5 and ES6 to see the difference:

1 var books = [

2 { name: 'Book 1', read: true },

3 { name: 'Book 2' , read: false },

4 { name: 'Book 3', read: true }

5];

6

7 // ES5

8 var booksToRead = books.filter(function (b) { return !b.read });

9

10 // ES6

11 var booksToRead = books.filter(b => !b.read);

Curly brackets and return statement are not required if only one expression is present. You could
write the same example like following:

1 // ES6

2 let booksToRead = books.filter(b => { return !b.read; });

Statement Bodies

Arrow functions provide more expressive closure syntax.

ES6 9

1 // ES6

2 // list the books I've read

3 books.forEach(b => {

4 if (book.read) {

5 console.log(b.name);

6 }

7 });

And another example using DOM:

1 // ES6

2 let button = document.getElementById('submit-button');

3 button.addEventListener('click' () => {

4 this.onButtonClicked();

5 });

Parameterless arrow functions are much easier to read

1 // ES6

2 setTimeout(_ => {

3 console.log('First callback');

4 setTimeout(_ => {

5 console.log('Second callback');

6 }, 1);

7 }, 1);

Lexical this

One of the best features of arrow functions in ES6 is the more intuitive handling of current object
context. These function expressions do not bind their variables:

• arguments
• super
• this
• new.target

ES6 10

1 // ES6

2 this.books.forEach(b => {

3 if (!b.read) {

4 this.booksToRead.push(b);

5 }

6 });

There are multiple ways of doing the same with ECMAScript 5, and all of them involve manual
context management

1 // ES5: using 'bind()'

2 this.books.forEach(function(b) {

3 if (!b.read) {

4 this.booksToRead.push(b);

5 }

6 }).bind(this);

7

8 // ES5: referencing 'this' via variables

9 var self = this;

10 this.books.forEach(function(b) {

11 if (!b.read) {

12 self.booksToRead.push(b);

13 }

14 });

15

16 // ES5: passing context if supported

17 this.books.forEach(function(b) {

18 if (!b.read) {

19 this.booksToRead.push(b);

20 }

21 }, this);

As arrow functions do not create and bind their own this context the following code is concise and
works as expected:

ES6 11

1 // ES6

2 function ProgressBar() {

3 this.progress = 0;

4

5 setInterval(() => {

6 this.progress++;

7 }, 1000);

8 }

9

10 let p = new ProgressBar();

In the example above this properly refers to the ProgressBar object. Before ES6 you would most
probably additional variables like self, that, and other.

1 // ES5

2 function ProgressBar() {

3 var self = this;

4 self.progress = 0;

5

6 setInterval(function () {

7 self.progress++;

8 }, 1000);

9 }

Template Literals

Template Literals (formerly called “template strings” in prior drafts of the ECMAScript 6 language
specification) are string literals providing intuitive expression interpolation for single-line and
multiline strings.

You use backticks to enclose a string literal and ${} to interpolate JavaScript variables or arbitrary
expressions

1 // ES6

2 let point = { x: 10, y: 20 };

3 console.log(`Position is ${point.x}:${point.y}`);

4 // output: Position is 10:10

With ES5 you have to concatenate strings when dealing with multiple lines:

ES6 12

1 // ES5

2 var title = 'Title'

3 var component = {

4 template: '' +

5 '<h1>' + title + '<h1>\n' +

6 '<div class="grid">\n' +

7 ' <div class="col-6"></div>\n' +

8 ' <div class="col-6"></div>\n' +

9 '</div>'

10 }

Multi-line string creation with template literals becomes very clean and readable:

1 // ES6

2 let title = 'Title';

3 let component = {

4 template: `

5 <h1>${title}</h1>

6 <div class="grid">

7 <div class="col-6"></div>

8 <div class="col-6></div>

9 </div>

10 `

11 }

Extended Parameter Handling

ES6 brings improvements to parameter handling by introducing default values, rest parameter

and spread operator.

Default Parameter Values

Simple and intuitive default values for function parameters.

ES6 13

1 // ES6

2 function playSound(file, volume = 50) {

3 console.log(`Playing '${file}' with volume ${volume}.`);

4 }

5 playSound('test.mp3');

6 // Playing 'test.mp3' with volume 50.

7

8 playSound('test.mp3', 70);

9 // Playing 'test.mp3' with volume 70.

With ES5 you have to check every parameter to be undefined and setting defaults manually if
needed.

1 // ES5

2 function playSound(file, volume) {

3 if (volume === undefined) {

4 volume = 50;

5 }

6 console.log("Playing '" + file + "' with volume " + volume);

7 }

8 playSound('test.mp3');

9 // Playing 'test.mp3' with volume 50.

10

11 playSound('test.mp3', 70);

12 // Playing 'test.mp3' with volume 70.

So support for default parameter values is a huge step forward and real time saver.

Rest Parameter

In ES5, if you want your function to handle an indefinite or an arbitrary number of arguments, you
must use special arguments variable:

ES6 14

1 // ES5

2 function logMessages() {

3 for (var i = 0; i < arguments.length; i++) {

4 console.log(arguments[i]);

5 }

6 }

7

8 logMessages('Hello,', 'world!');

Which produces:

Hello,

world!

In ES6, you can aggregate all remaining arguments into a single function parameter

1 // ES6

2 function logMessages(...messages) {

3 for (const message of messages) {

4 console.log(message);

5 }

6 }

7

8 logMessages('Hello,', 'world!');

Also, that gives the same console output as before:

Hello,

world!

Rest parameters become even more valuable when you need collecting arguments starting from a
different position. In the next example, the rest parameter is used to collect arguments from the
second one to the end of the array.

ES6 15

1 // ES6

2 function greet(message, ...friends) {

3 for (const friend of friends) {

4 console.log(`${message}, ${friend}!`);

5 }

6 }

7

8 greet('Hello', 'John', 'Joan', 'Bob')

The function above allows you to set the greeting message as the first parameter and array of friend
names to generate messages. The console output, in this case, should be:

Hello, John!

Hello, Joan!

Hello, Bob!

Spread Operator

Spread operator is used to expand an iterable collection into multiple arguments.

1 // ES6

2 let positive = [1, 2, 3];

3 let negative = [-1, -2, -3]

4

5 let numbers = [...negative, 0, ...positive];

6

7 console.log(numbers);

8 // [-1, -2, -3, 0, 1, 2, 3]

You can use spread operator even with strings:

1 // ES6

2 let message = 'Hello, world';

3 let chars = [...message];

4

5 console.log(chars);

6 // ["H", "e", "l", "l", "o", ",", " ", "w", "o", "r", "l", "d"]

Spread operator easily becomes an alternative to the Array.prototype.concat()method. With ES5
the example above will look like the following:

ES6 16

1 // ES5

2 var positive = [1, 2, 3];

3 var negative = [-1, -2, -3];

4 var zero = [0];

5

6 var numbers = negative.concat(zero, positive);

7

8 console.log(numbers);

9 // [-1, -2, -3, 0, 1, 2, 3]

Destructuring assignment

ES6 provides a way to extract values out of the objects or collections into the separate variables to
access them easier in the code. That is often called “value unpacking” or “destructuring”.

Basic example

As an example, you can extract a subset of values from the collection using the following format:

let [<var1>, <var2>] = <array>

Let’s create an array of words and extract the first couple of them into separate variables “first” and
“second” like in the code below:

1 // ES6

2

3 let words = ['this', 'is', 'hello', 'world', 'example'];

4 let [first, second] = words;

5

6 console.log(first); // 'this'

7 console.log(second); // 'is'

As you can see from the example above, you can extract a subset of an array and split it into multiple
variables. Without destructuring your code might look like the following:

ES6 17

1 // ES5

2

3 var words = ['this', 'is', 'hello', 'world', 'example'];

4 var first = words[0];

5 var second = words[1];

6

7 console.log(first); // 'this'

8 console.log(second); // 'is'

Array destructuring

You have already seen some of the array destructuring examples earlier in the section. We enclose
variables in square brackets using the following syntax:

let [<var1>, <var2>] = <array>

Please note that you can also apply the same destructuring technique to the function call results:

1 // ES6

2

3 function getWords() {

4 return ['this', 'is', 'hello', 'world', 'example'];

5 }

6

7 let [first, second] = getWords();

8 console.log(`${first} ${second}`); // 'this is'

In addition to basic unpacking and variable assignment, several other things bring much value and
reduce the code.

Value assignment

The destructuring syntax can be used to assign values to variables instead of extracting them. Take
a look at the following example:

ES6 18

1 // ES6

2

3 let first, second;

4

5 [first, second] = ['hello', 'world'];

6

7 console.log(first); // 'hello'

8 console.log(second); // 'world'

Default values

Another great feature of the array destructuring is default values. There might be cases when the
array has no values, and you want to provide some reasonable defaults.

The format of the syntax, in this case, is as follows:

let [<variable> = <value>] = <array>

Let’s see this feature in action:

1 // ES6

2

3 let words = ['hello'];

4 let [first = 'hey', second = 'there'] = words;

5

6 console.log(first); // 'hello'

7 console.log(second); // 'there'

The array we got initially does not contain two words. We are trying to extract first two variables
from it, and set ‘hey’ as the default value for the first word, and ‘there’ as a default for the second
one. At the runtime however only second variable stays with the default value.

Default value assignment is a compelling feature that helps you reduce the code for variable
initialization and safety checks. Below is how the same code could look like in ES5:

ES6 19

1 // ES5

2

3 var words = ['hello'];

4

5 var first = words[0];

6 if (!first) {

7 first = 'hey';

8 }

9

10 var second = words[1];

11 if (!second) {

12 second = 'there'

13 }

14

15 console.log(first); // 'hello'

16 console.log(second); // 'there'

Swapping values

Traditionally to swap two variables, developers need a third temporary one to hold the value of
either first or second variable.

1 // ES5

2

3 var first = 'world';

4 var second = 'hello';

5

6 var temp = first;

7 first = second;

8 second = temp;

9

10 console.log(first + ' ' + second); // 'hello world'

With ES6 you can now reduce the code by using destructuring assignment syntax to swap variables
in a single line like in the next example:

ES6 20

1 // ES6

2

3 let first = 'world';

4 let second = 'hello';

5

6 [first, second] = [second, first];

7

8 console.log(`${first} ${second}`); // 'hello world'

This feature may be a great time saver when it comes to sorting functions.

Skipping values

We have been using examples that take the beginning of the array so far.
The ES6 does not restrict you to that only scenario; it is also possible skipping values when unpacking
or destructuring arrays.

let [<variable-1>, , , , <variable-X>] = <array>

You can just put the commas instead of variables like in the example below:

1 let words = ['this', 'is', 'hello', 'world', 'example'];

2 let [first, second, , , last] = words;

3

4 console.log(`${first} ${second} ${last}`); // 'this is example'

Grouping tail values into a single variable

As you see, the ES6 allows you to unpack the head of the array into separate variables. Sometimes
you may want to access the tail of the array as a single variable as well.

For this particular case, there’s a special syntax that utilises ES6 “rest” parameters.

let [<variable1>, <variable2>, ...<restVariable>] = <array>

We use “rest parameter” to define a variable to hold the tail of the array and below is an example of
how to achieve this behaviour:

ES6 21

1 let command = ['greet', 'user1', 'user2', 'user3'];

2 let [action, ...users] = command;

3

4 console.log(action); // 'greet'

5 console.log(users); // ['user1', 'user2', 'user3']

Object destructuring

Besides arrays and collections, you can use destructuring assignment syntax with the object
instances as well.

We enclose variables in curly brackets using the following syntax:

let { <var1>, <var2> } = <object>

Unpacking properties

ES6 allows you to extract properties by their names similar to how to unpack arrays.

Let’s try to unpack a couple of properties from a user object:

1 let obj = {

2 id: 1,

3 username: 'jdoe',

4 firstName: 'John',

5 lastName: 'Doe'

6 };

7

8 let { id, username } = obj;

9

10 console.log(id); // '1'

11 console.log(username); // 'jdoe'

Renaming properties

You can also give destructured property an alias if you want to use it as a variable with a different
name.

The syntax, in this case, is going to be as follows:

ES6 22

let { <property> : <alias> } = <object>;

Let’s now rewrite our previous example to use custom property names.

1 let obj = {

2 id: 1,

3 username: 'jdoe',

4 firstName: 'John',

5 lastName: 'Doe'

6 };

7

8 let { id: uid, username: login } = obj;

9

10 console.log(uid); // '1'

11 console.log(login); // 'jdoe'

We are using “uid” and “login” instead of “id” and “username” properties this time.

Default values

When applying property destructuring to the object properties, you can provide default values for
missing properties. That saves time for property checks and reduces coding efforts.

let { <variable> : <value> } = <object>

For example, let’s provide a default value for the “id” property and also unpack the property “role”
that that does not exist for the given object, and set it to be “guest” by default.

1 let obj = {

2 id: 1,

3 username: 'jdoe',

4 firstName: 'John',

5 lastName: 'Doe'

6 };

7

8 let { id = 0, role = 'guest' } = obj;

9

10 console.log(id); // '1'

11 console.log(role); // 'guest'

Unpacking methods

You can extract object methods into separate variables and use them as shortcuts:

ES6 23

1 let { log } = console;

2 log('hello world');

The example above demonstrates a “console.log” method being extracted into the “log” variable and
used separately.

We utilise the following syntax:

1 let { <method> } = <object>

Next, let’s create a custom class and export multiple methods:

1 // ES6

2

3 class MyClass {

4

5 sayHello(message) {

6 console.log(`Hello, ${message}`);

7 }

8

9 sayBye(message) {

10 console.log(`Bye, ${message}`);

11 }

12

13 }

14

15 let myClass = new MyClass();

16 let { sayHello, sayBye } = myClass;

17

18 sayHello('how are you?'); // 'Hello, how are you?'

19 sayBye('see you soon.'); // 'Bye, see you soon'

Renaming methods

You can also rename destructured methods if needed. The following syntax should be used to give
the unpacked method a custom name:

let { <method> : <alias> } = <object>

Let’s update the “MyClass” we used earlier and rename “sayHello” and “sayBye” methods to just
“hello” and “bye”:

ES6 24

1 let myClass = new MyClass();

2 let { sayHello: hello, sayBye: bye } = myClass;

3

4 hello('how are you?'); // Hello, how are you?

5 bye('see you soon'); // Bye, see you soon

Using with function parameters

The best scenario for using destructuring with objects and functions is default parameter values and
options.

First, let’s reproduce the most common use case for the “options” parameter passed to a function or
object member:

1 // ES5

2

3 function showDialog(options) {

4 options = options || {};

5 var message = options.message || 'Unknown message';

6 var size = options.size || { width: 400, height: 400 };

7 var position = options.position || { x: 200, y: 300 };

8

9 console.log('message: ' + message);

10 console.log('size: ' + size.width + ':' + size.height);

11 console.log('position: ' + position.x + ':' + position.y);

12 }

Above is the simplified version of the custom options management that has been very popular for
years. We provide a JavaScript object as an “options” parameter, and function does parsing and
detecting missing properties to initialize default values if needed.

Depending on the size of the options object there might be many checks just to set the default values
for them. Especially if there are nested objects with own properties, like “size” and “position” in our
case.

Now, if you call the “showDialog” function with no parameters except the “message” value, the
output should be similar to the following one:

ES6 25

showDialog({

message: 'hello world'

});

// message: hello world

// size: 400:400

// position: 200:300

Next, try to call the same function with a partial set of options, for instance, the “size” settings:

showDialog({

message: 'hey there',

size: { width: 200, height: 100 }

});

// message: hey there

// size: 200:100

// position: 200:300

Now you can rewrite the “showDialog” implementation to use destructuring with default values
like in the next example:

1 // ES6

2

3 function showDialog({

4 message = 'Message',

5 size = { width: 400, height: 400 },

6 position = { x: 200, y: 300 } }) {

7

8 console.log(`message: ${message}`);

9 console.log(`size: ${size.width}:${size.height}`);

10 console.log(`position: ${position.x}:${position.y}`);

11 }

Notice how we use the destructuring assignment syntax to declare a function parameter.

ES6 26

1 showDialog({

2 message: 'hey there',

3 size: { width: 200, height: 100 }

4 });

5

6 // message: hey there

7 // size: 200:100

8 // position: 200:300

IDE support

Many modern IDEs already provide support for destructuring syntax within function or method
parameters. VS Code¹⁵, for instance, provides auto-completion both for function calls and for nested
properties.

Modules

Before ES6 developers traditionally were using Revealing Module pattern to emulate modules
in JavaScript. The basic concept of a Revealing Module is that you use closures (self-invoking
functions) with an Object which encapsulates its data and behaviour.

1 // ES5

2 var Module = (function() {

3 var privateMethod = function() {

4 // do something

5 console.log('private method called');

6 };

7

8 return {

9 x: 10,

10 name: 'some name',

11 publicMethod: function() {

¹⁵https://code.visualstudio.com/

https://code.visualstudio.com/
https://code.visualstudio.com/

ES6 27

12 // do something

13 console.log('public method called');

14 privateMethod();

15 }

16 };

17 })();

18

19 Module.publicMethod()

You should get the following output to browser console:

public method called

private method called

I recommend also reading an excellent article “Mastering the Module Pattern¹⁶” by Todd Motto to
get deep coverage of Revealing Module pattern in JavaScript.

The rise ofmodule systems based on either AMDor CommonJS syntax hasmostly replaced revealing
modules and other hand-written solutions in ES5.

Exporting and Importing Values

ECMAScript 6 provides a long-needed support for exporting and importing values from/to modules
without global namespace pollution.

1 // ES6

2

3 // module lib/logger.js

4 export function log (message) { console.log(message); };

5 export var defaultErrorMessage = 'Aw, Snap!';

6

7 // myApp.js

8 import * as logger from "lib/logger";

9 logger.log(logger.defaultErrorMessage);

10

11 // anotherApp.js

12 import { log, defaultErrorMessage } from "lib/logger";

13 log(defaultErrorMessage);

Here’s how the same approach would look like if written with ECMAScript 5:

¹⁶https://toddmotto.com/mastering-the-module-pattern/

https://toddmotto.com/mastering-the-module-pattern/
https://toddmotto.com/mastering-the-module-pattern/

ES6 28

1 // ES5

2

3 // lib/logger.js

4 LoggerLib = {};

5 LoggerLib.log = function(message) { console.log(message); };

6 LoggerLib.defaultErrorMessage = 'Aw, Snap!';

7

8 // myApp.js

9 var logger = LoggerLib;

10 logger.log(logger.defaultErrorMessage);

11

12 // anotherApp.js

13 var log = LoggerLib.log;

14 var defaultErrorMessage = LoggerLib.defaultErrorMessage;

15 log(defaultErrorMessage);

Default Values

You can make your ES6 module exporting some value as default one.

1 // ES6

2

3 // lib/logger.js

4 export default (message) => console.log(message);

5

6 // app.js

7 import output from 'lib/logger';

8 output('hello world');

Wildcard Export

Another great feature of ES6 modules is support for wildcard-based export of values. That becomes
handy if you are creating a composite module that re-exports values from other modules.

ES6 29

1 // ES6

2

3 // lib/complex-module.js

4 export * from 'lib/logger';

5 export * from 'lib/http';

6 export * from 'lib/utils';

7

8 // app.js

9 import { logger, httpClient, stringUtils } from 'lib/complex-module';

10 logger.log('hello from logger');

See also

• ECMAScript 6 â€” New Features: Overview & Comparison¹⁷

¹⁷http://es6-features.org/

http://es6-features.org/
http://es6-features.org/

TypeScript
TypeScript is a typed superset of JavaScript that compiles to plain JavaScript.

1 npm install -g typescript

Getting Started with TypeScript

Installing TypeScript

npm install -g typescript

Using tsc

In your code editor create a file logger.ts with the following content:

1 function log(message) {

2 console.log(message);

3 }

4

5 log('Hello, world!');

Now you can use a command line to compile your source code to ES5 with tsc tool and run it with
node.js:

tsc logger.ts

node logger.js

TypeScript compiler takes logger.ts file, processes it and produces a JavaScript output to logger.js.
At this point, the .js file is ready to be used with an HTML page or executed by node.js.

You should see the following output in the command line:

Hello, world!

Now let’s see how type validation works. Add string type annotation for the log function and call
it with a number.

TypeScript 31

1 function log(message: string) {

2 console.log(message);

3 }

4

5 log(0);

If you compile logger.ts once again tsc should produce an error:

tsc logger.ts

> logger.ts(5,5): error TS2345: Argument of type '0' is not assignable to parameter

of type 'string'.

Typings

TBD

Linting

TBD

tslint

TSLint checks your TypeScript code for readability, maintainability, and functionality
errors.

1 npm install -g tslint

TBD

TypeScript Features

TBD

TypeScript 32

Types

TypeScript supports all the types used in JavaScript:

• boolean
• number
• string
• arrays

TypeScript also adds the following types:

• enum
• any
• void

Basic Types

Boolean

The most basic datatype is the simple true/false value, which JavaScript and TypeScript
call a boolean value.

1 let isEnabled: boolean = true;

Assigning non-Boolean value to the variable will produce an error.

1 isEnabled = 'YES';

2 // logger.ts(2,1): error TS2322: Type '"YES"' is not assignable to type 'boolean'.

It is also possible annotating function or method return types.

1 function isEmpty(str: string): boolean {

2 return !str;

3 }

Number

TypeScript maps all JavaScript numbers to the number type:

• floating point numbers (default JavaScript type for all numbers)
• decimal numbers
• hexadecimal numbers
• binary literals (ES6)
• octal literals (ES6)

Here’s an example:

TypeScript 33

1 let decimal: number = 6;

2 let hex: number = 0xf00d;

3 let binary: number = 0b1010;

4 let octal: number = 0o744;

String

Typescript supports ES6 template literals (formerly known as template strings). As in ECMAScript
6, you use backticks (‘) to enclose a string literal and ${} to interpolate JavaScript variables or arbitrary
expressions. Either double quotes (“) or single quotes (‘) can be used to surround string data.

1 let firstName: string = "Joan";

2 let lastName: string = 'Doe';

3 let fullName: string = `${firstName} ${lastName}`;

4 let template: string = `

5 <h1>Title<h1>

6 <p>Hello, ${fullName}</p>

7 `;

Arrays

There are two main ways you can provide type definition for arrays of values in TypeScript:

1 let arr1: string[] = [];

2 let arr2: Array<string> = new Array();

You can also initialize arrays upon declaring them:

1 let arr1: string[] = ['hello', 'world'];

2 let arr2: Array<string> = ['hello', 'world'];

3

4 let flags1: boolean[] = [true, false, true, false];

5 let flags2: boolean[] = new Array(false, true);

As in JavaScript arrays, you can push elements and access them by index

1 let users: string[] = [];

2 users.push('user1');

3 console.log(`First user: ${users[0]}`);

The sample above demonstrates array element access together with string interpolation. When
executed it should produce:

TypeScript 34

First user: user1

Enum

TypeScript provides support for an enumerated type known in many languages (Swift, C#, Java, C,
and others). This data type consists of a set of named values mapped to numbers.

1 enum Suit { Club, Diamond, Heart, Spade };

2 let s: Suit = Suit.Spade;

By default numbering of enum members starts with 0 and increments by one. You have full control
of the values if needed.

1 enum Suit { Club = 1, Diamond, Heart, Spade };

2 enum Suit { Club = 1, Diamond = 2, Heart = 4, Spade = 8 }

Another valuable feature is accessing by a numeric value.

1 enum Suit { Club, Diamond, Heart, Spade };

2 console.log(Suit[0]); // Club

It must be noted however that you access names by the numeric values, not by an array index as it
may seem.

1 enum Suit { Club = 1, Diamond, Heart, Spade };

2 console.log(Suit[0]); // undefined

3 console.log(Suit[1]); // Club

Any

A special any type is used to opt-out of the TypeScript type-checking process and addresses the
following cases:

• dynamic content (objects created on the fly)
• 3rd party libraries (having no TypeScript support via definition files)

TypeScript 35

1 let obj: any = {

2 log(message) {

3 console.log(message);

4 }

5 };

6 obj.log('hello world');

Please note that by opting-out of the type-checking process you take full responsibility for safety
checks, as now TypeScript compiler is not able to verify the code at compile time. The following
example shows valid TypeScript code:

1 obj.log('hello world');

2 obj.helloWorld('log');

However, at runtime the second line causes a TypeError exception:

hello world

TypeError: obj.helloWorld is not a function

So it is recommended using any type only where necessary.

Void

The void type is used to declare a function does not return any value explicitly.

1 class Logger {

2

3 log(message: string): void {

4 console.log(message);

5 return true;

6 }

7

8 }

If you try compiling the code above you should get an error:

error TS2322: Type 'true' is not assignable to type 'void'.

You can fix the type-check error by removing return statement from the log method:

TypeScript 36

1 class Logger {

2

3 log(message: string): void {

4 console.log(message);

5 }

6

7 }

You might also be using void types as function parameters or with Interfaces:

1 function fn(x: () => void) {

2 x();

3 }

4

5 interface Logger {

6

7 log(message: string): void;

8 warn(message: string): void;

9 error(message: string): void;

10

11 }

You will get more information on Interfaces later in this book.

Classes

TypeScript provides support for classes introduced with ES6 (ECMAScript 2015) and adds a set of
features to improve object-oriented development.

1 class Widget {

2

3 id: string;

4

5 constructor(id: string) {

6 this.id = id;

7 }

8

9 render() {

10 console.log(`Rendering widget "${this.id}"`);

11 }

12

13 }

TypeScript 37

14

15 let widget = new Widget('text1');

16 widget.render();

You should get the following output when executed:

Rendering widget "text1"

Properties

With ES6 you define class properties from with the class constructor:

1 // ES6

2 class Widget {

3

4 constructor(id) {

5 this.id = id;

6 this.x = 0;

7 this.y = 0;

8 }

9

10 }

If you try compiling example above with tsc utility (TypeScript compiler) you should get the
following errors:

error TS2339: Property 'id' does not exist on type 'Widget'.

error TS2339: Property 'x' does not exist on type 'Widget'.

error TS2339: Property 'y' does not exist on type 'Widget'.

The errors are raised because TypeScript requires you to define properties separately. It is needed to
enable many other features TypeScript provides.

TypeScript 38

1 class Widget {

2

3 id: string;

4 x: number;

5 x: number;

6

7 constructor(id: string) {

8 this.id = id;

9 this.x = 0;

10 this.y = 0;

11 }

12 }

Properties in TypeScript can have default values:

1 class Widget {

2

3 id: string;

4 x: number = 0;

5 x: number = 0;

6

7 constructor(id: string) {

8 this.id = id;

9 }

10 }

Setters and Getters

TypeScript supports computed properties, which do not store a value. Instead, they provide getters
and setters to retrieve and assign values in a controlled way.

TBD: describe get/set format

One of the common cases for a getter is computing a return value based on other property values:

TypeScript 39

1 class User {

2

3 firstName: string;

4 lastName: string;

5

6 get fullName(): string {

7 return `${this.firstName} ${this.lastName}`.trim();

8 }

9

10 constructor(firstName: string, lastName: string) {

11 this.firstName = firstName;

12 this.lastName = lastName;

13 }

14

15 }

16

17 let user = new User('Joan', 'Doe');

18 console.log(`User full name is: ${user.fullName}`);

If you save this example to file script.ts, compile it and run like shown below

tsc --target ES6 script.ts

node script.js

You should see the output with the full username as expected:

User full name is: Joan Doe

Now let’s introduce a simple setter for the firstName property. Every time a new property value is
set we are going to remove leading and trailing white space. Such values as “ Joan” and “Joan “ are
automatically converted to “Joan”.

1 class User {

2

3 private _firstName: string;

4

5 get firstName(): string {

6 return this._firstName;

7 }

8

9 set firstName(value: string) {

10 if (value) {

TypeScript 40

11 this._firstName = value.trim();

12 }

13 }

14 }

15

16 let user = new User();

17 user.firstName = ' Joan ';

18 console.log(`The first name is "${user.firstName}".`);

The console output, in this case, should be:

The first name is "Joan".

Methods

Methods are functions that operate on a class object and are bound to an instance of that object. You
can use this keyword to access properties and call other methods like in the example below:

1 class Sprite {

2

3 x: number;

4 y: number;

5

6 render() {

7 console.log(`rendering widget at ${this.x}:${this.y}`);

8 }

9

10 moveTo(x: number, y: number) {

11 this.x = x;

12 this.y = y;

13 this.render();

14 }

15

16 }

17

18 let sprite = new Sprite();

19 sprite.moveTo(5, 10);

20 // rendering widget at 5:10

Return values

TypeScript 41

1 class NumberWidget {

2

3 getId(): string {

4 return 'number1';

5 }

6

7 getValue(): number {

8 return 10;

9 }

10

11 }

You can use a void type if the method does not return any value.

1 class TextWidget {

2

3 text: string;

4

5 reset(): void {

6 this.text = '';

7 }

8

9 }

Method parameters

You can add types to each parameter of the method.

1 class Logger {

2

3 log(message: string, level: number) {

4 console.log(`(${level}): ${message}`);

5 }

6

7 }

TypeScript will automatically perform type checking at compile time. Let’s try providing a string
value for the level parameter:

TypeScript 42

1 let logger = new Logger();

2 logger.log('test', 'not a number');

You should get a compile error with the following message:

error TS2345: Argument of type '"string"' is not assignable to parameter of type 'nu\

mber'.

Now let’s change level parameter to a number to fix compilation

1 let logger = new Logger();

2 logger.log('test', 2);

Now we should get the expected output:

(2): test

Optional parameters

By default, all method/function parameters in TypeScript are required. However, it is possible
making parameters optional by appending ? (question mark) symbol to the parameter name. Let’s
update our Logger class and make level parameter optional.

1 class Logger {

2

3 log(message: string, level?: number) {

4 if (level === undefined) {

5 level = 1;

6 }

7 console.log(`(${level}): ${message}`);

8 }

9

10 }

11

12 let logger = new Logger();

13 logger.log('Application error');

The log method provides default value automatically if level is omitted.

TypeScript 43

(1): Application error

Please note that optional parameters must always follow required ones.

Default parameters

TypeScript also supports default values for parameters. Instead of checking every parameter for
undefined value you can provide defaults directly within the method declaration:

1 class Logger {

2

3 log(message: string = 'Unknown error', level: number = 1) {

4 console.log(`(${level}): ${message}`);

5 }

6

7 }

Let’s try calling log without any parameters:

1 let logger = new Logger();

2 logger.log('Application error');

The output, in this case, should be:

(1): Application error

Rest Parameters and Spread Operator

In TypeScript, you can gather multiple arguments into a single variable known as rest parameter.
Rest parameters were introduced as part of ES6, and TypesScripts extends them with type checking
support.

TypeScript 44

1 class Logger {

2

3 showErrors(...errors: string[]) {

4 for (let err of errors) {

5 console.error(err);

6 }

7 }

8

9 }

Now you can provide an arbitrary number of arguments for showErrors method:

1 let logger = new Logger();

2 logger.showErrors('Something', 'went', 'wrong');

That should produce three errors as an output:

Something

went

wrong

Rest parameters in TypeScript work great with Spread Operator allowing you to expand a collection
into multiple arguments. It is also possible mixing regular parameters with spread ones:

1 let logger = new Logger();

2 let messages = ['something', 'went', 'wrong'];

3 logger.showErrors('Error', ...messages, '!');

In the example above we compose a collection of arguments from arbitrary parameters and content
of the messages array in the middle. The showErrorsmethod should handle all entries correctly and
produce the following output:

Error

something

went

wrong

!

Constructors

Constructors in TypeScript got same features as methods. You can have default and optional
parameters, use rest parameters and spread operators with class constructor functions.

Besides, TypeScript provides support for automatic property creation based on constructor param-
eters. Let’s create a typical User class implementation:

TypeScript 45

1 class User {

2

3 firstName: string;

4 lastName: string;

5

6 get fullName(): string {

7 return `${this.firstName} ${this.lastName}`.trim();

8 }

9

10 constructor(firstName: string, lastName: string) {

11 this.firstName = firstName;

12 this.lastName = lastName;

13 }

14

15 }

Instead of assigning parameter values to the corresponding properties we can instruct TypeScript to
perform an automatic assignment instead. You can do that by putting one of the access modifiers
public, private or protected before the parameter name.

You are going to get more details on access modifiers later in this book. For now, let’s see the updated
User class using automatic property assignment:

1 class User {

2

3 get fullName(): string {

4 return `${this.firstName} ${this.lastName}`.trim();

5 }

6

7 constructor(public firstName: string, public lastName: string) {

8 }

9

10 }

11

12 let user = new User('Joan', 'Doe');

13 console.log(`Full name is: ${user.fullName}`);

TypeScript creates firstName and lastName properties when generating JavaScript output. You need
targeting at least ES5 to use this feature. Save example above to file script.ts then compile and run
with node:

TypeScript 46

tsc script.ts --target ES5

node script.js

The output should be as following:

Full name is: Joan Doe

You have not defined properties explicitly, but fullName getter was still able accessing them via
this. If you take a look at the emitted JavaScript you should see the properties are defined there as
expected:

1 // ES5

2 var User = (function () {

3 function User(firstName, lastName) {

4 this.firstName = firstName;

5 this.lastName = lastName;

6 }

7 Object.defineProperty(User.prototype, "fullName", {

8 get: function () {

9 return (this.firstName + " " + this.lastName).trim();

10 },

11 enumerable: true,

12 configurable: true

13 });

14 return User;

15 }());

16 var user = new User('Joan', 'Doe');

17 console.log("Full name is: " + user.fullName);

Now you can also switch to ES6 target to see how TypeScript assigns properties:

tsc script.ts --target ES6

The generated JavaScript, in this case, is even smaller and cleaner:

TypeScript 47

1 // ES6

2 class User {

3 constructor(firstName, lastName) {

4 this.firstName = firstName;

5 this.lastName = lastName;

6 }

7 get fullName() {

8 return `${this.firstName} ${this.lastName}`.trim();

9 }

10 }

11 let user = new User('Joan', 'Doe');

12 console.log(`Full name is: ${user.fullName}`);

Inheritance

One of the important TypeScript features is the class inheritance that enables OOP patterns for
developers. Under the hood TypeScript is using the same extends syntactic sugar when targeting
ES6 JavaScript, and prototypical inheritance wrappers when generating output in ES5.

We can refer to animals as a classic example of class-based programming and inheritance.

1 class Animal {

2 name: string;

3 constructor(name: string) {

4 this.name = name;

5 }

6 makeSound() {

7 console.log('Unknown sound');

8 }

9 }

You have created a basic Animal class that contains a name property and makeSound method. That
translates to ES5 as following:

TypeScript 48

1 // ES5

2 var Animal = (function () {

3 function Animal(name) {

4 this.name = name;

5 }

6 Animal.prototype.makeSound = function () {

7 console.log('Unknown sound');

8 };

9 return Animal;

10 }());

Now you can create a Dog implementation that provides a right sound:

1 class Dog extends Animal {

2 constructor(name: string) {

3 super(name);

4 }

5 makeSound() {

6 console.log('Woof-woof');

7 }

8 }

Please note that if you have a constructor in the base class, then you must call it from all derived
classes. Otherwise, TypeScript should raise a compile-time error:

error TS2377: Constructors for derived classes must contain a 'super' call.

Here’s how a Dog gets converted to ES5:

1 var Dog = (function (_super) {

2 __extends(Dog, _super);

3 function Dog(name) {

4 return _super.call(this, name) || this;

5 }

6 Dog.prototype.makeSound = function () {

7 console.log('Woof-woof');

8 };

9 return Dog;

10 }(Animal));

Now let’s add a Cat implementation with its sound and test both classes:

TypeScript 49

1 class Cat extends Animal {

2 constructor(name: string) {

3 super(name);

4 }

5 makeSound() {

6 console.log('Meow');

7 }

8 }

9

10 let dog = new Dog('Spot');

11 let cat = new Cat('Tom');

12

13 dog.makeSound();

14 cat.makeSound();

Once the code compiles and executes you should get the following output:

Woof-woof

Meow

Access Modifiers

TypeScript supports public, private and protected modifiers for defining accessibility of the class
members.

Public

By default, each member of the class is public so that you can omit it. However, nothing stops you
from declaring public modifier explicitly if needed:

1 class User {

2 public firstName: string;

3 public lastName: string;

4

5 public speak() {

6 console.log('Hello');

7 }

8

9 constructor(firstName: string, lastName: string) {

10 this.firstName = firstName;

11 this.lastName = lastName;

12 }

13 }

Now if you compile example above to JavaScript you should see the following:

TypeScript 50

1 var User = (function () {

2 function User(firstName, lastName) {

3 this.firstName = firstName;

4 this.lastName = lastName;

5 }

6 User.prototype.speak = function () {

7 console.log('Hello');

8 };

9 return User;

10 }());

Private

You mark a member as private when it should never be accessed from outside of its containing
class. One of the most common scenarios is creating private fields to hold values for properties. For
example:

1 class User {

2 private _firstName: string;

3 private _lastName: string;

4

5 get firstName() {

6 return this._firstName;

7 }

8

9 get lastName() {

10 return this._lastName;

11 }

12

13 constructor(firstName: string, lastName: string) {

14 this._firstName = firstName;

15 this._lastName = lastName;

16 }

17 }

The class we have created above allows setting user’s first and last name only from within the
constructor.

If you try changing name properties from outside the class, TypeScript will raise an error at compile
time:

TypeScript 51

1 let user = new User('John', 'Doe');

2 user.firstName = 'Rob';

3 // error TS2540: Cannot assign to 'firstName' because it is a constant or a read-onl\

4 y property.

Protected

The protectedmodifier restricts member visibility from outside of the containing class but provides
access from the derived classes.

Let’s start with base Page class implementation:

1 class Page {

2

3 protected renderHeader() { /* ... */ }

4 protected renderContent() { /* ... */ }

5 protected renderFooter() { /* ... */ }

6

7 render() {

8 this.renderHeader();

9 this.renderContent();

10 this.renderFooter();

11 }

12 }

We created a Page class that has public method render. Internally render calls three separate
methods to render header, content and footer of the page. These methods are not available from
the outside the the class.

Now we are going to create a simple derived AboutPage class:

1 class AboutPage extends Page {

2

3 private renderAboutContent() { /* ... */ }

4

5 render() {

6 this.renderHeader();

7 this.renderAboutContent();

8 this.renderFooter();

9 }

10

11 }

TypeScript 52

As you can see the AboutPage defines its render method that calls renderHeader and renderFooter

in parent class but puts custom content in the middle.

You can also use protectedmodifier with class constructors. In this case, the class can be instantiated
only by the derived classes that extend it. That becomes handy when you want to have properties
and methods available for multiple classes as a base implementation, but don’t want a base class to
be instantiated outside its containing class.

For example

1 class Page {

2 protected constructor(id: string) {

3 // ...

4 }

5

6 render() { /* base render */ }

7 }

8

9 class MainPage extends Page {

10 constructor(id: string) {

11 super(id);

12 }

13

14 render() { /* render main page */ }

15 }

16

17 class AboutPage extends Page {

18 constructor(id: string) {

19 super(id);

20 }

21

22 render() { /* render about page */ }

23 }

24

25 let main = new MainPage('main');

26 let about = new AboutPage('about');

You can create instances of MainPage and AboutPage both having access to protected members of
the Page class. However, you are not able creating an instance of the Page class directly.

TypeScript 53

1 let page = new Page();

2 // error TS2674: Constructor of class 'Page' is protected and only accessible within\

3 the class declaration.

Readonly modifier

One of the common ways to create a read-only property in many object-oriented programming
languages is by having a private local variable with a getter only.

1 class Widget {

2

3 private _id: string;

4

5 get id(): string {

6 return this._id;

7 }

8

9 constructor(id: string) {

10 this._id = id;

11 }

12 }

13

14 let widget = new Widget('textBox');

15 console.log(`Widget id: ${widget.id}`);

16 // Widget id: textBox

You can also make properties read-only by using the readonly keyword. That reduces repetitive
typing when dealing with many read-only properties, and greatly improves overall code readability.

Let’s update the previous example to use readonly:

1 class Widget {

2 readonly id: string;

3

4 constructor(id: string) {

5 this.id = id;

6 }

7 }

If you try changing the value of the property outside of the constructor TypeScript will raise an
error:

TypeScript 54

1 let widget = new Widget('text');

2 widget.id = 'newId';

3 // error TS2540: Cannot assign to 'id' because it is a constant or a read-only prope\

4 rty.

You can provide default values for read-only properties only in two places: property declaration and
constructor.

1 class Widget {

2 readonly id: string;

3 readonly minWidth: number = 200;

4 readonly minHeight: number = 100;

5

6 constructor(id: string) {

7 this.id = id;

8 }

9 }

10

11 let widget = new Widget('text');

12 widget.minWidth = 1000;

13 // error TS2540: Cannot assign to 'minWidth' because it is a constant or a read-only\

14 property.

Interfaces

An interface is a description of the actions that an object can do.

You might already be familiar with interfaces in other programming languages like C# and Java, or
contracts in Swift.

Interfaces are not part of the ECMAScript. It is a level of abstraction supported by TypeScript to
improve the type-checking process, and not converted to JavaScript code.

Here’s an example of an interface describing generic Text component:

1 interface TextComponent {

2

3 text: string;

4 render(): void;

5

6 }

Now you can use the interface above to describe the requirement of having the text property that
is a string and a render method:

TypeScript 55

1 class PlainTextComponent implements TextComponent {

2

3 text: string;

4

5 render() {

6 console.log('rendering plain text component');

7 }

8

9 }

We are using implements keyword to wire class with a particular interface. It is not important in
what order class members are defined as long as all properties and methods the interface requires
are present and have required types.

Let’s create another class that implements TextComponent interface partially:

1 class RichTextComponent implements TextComponent {

2 text: string;

3 }

Upon compilation TypeScript will produce the following error:

error TS2420: Class 'RichTextComponent' incorrectly implements interface 'TextCompon\

ent'.

Property 'render' is missing in type 'RichTextComponent'.

You can use multiple interfaces delimited by a comma:

1 class RichTextComponent implements TextComponent, OnInit, OnDestroy {

2 // ...

3 }

The example above shows a class that must implement three different interfaces to compile.

Abstract Classes

Interfaces describe only requirements for classes; you cannot create an instance of the interface. You
need abstract classes un order to provide implementation details.

TypeScript 56

1 abstract class PageComponent {

2

3 abstract renderContent(): void;

4

5 renderHeader() {

6 // ...

7 }

8

9 renderFooter() {

10 // ...

11 }

12 }

Same as with interfaces you cannot create instances of abstract classes directly, only other classes
derived from an abstract one. Also, it is possible marking class methods as abstract. Abstract
methods do not contain implementation, and similar to interface methods provide requirements
for derived classes.

1 class HomePageComponent extends PageComponent {

2

3 renderContent() {

4 this.renderHeader();

5 console.log('rendering home page');

6 this.renderFooter();

7 }

8

9 }

Note how HomePageComponent implements abstract renderContent that has access to renderHeader

and renderFooter methods carried out in the parent class.

You can also use access modifiers with abstract methods. The most frequent scenario is when
methods need to be accessible only from within the child classes, and invisible from the outside:

For example:

TypeScript 57

1 abstract class PageComponent {

2

3 protected abstract renderContent(): void;

4

5 renderHeader() {

6 // ...

7 }

8

9 renderFooter() {

10 // ...

11 }

12 }

Now HomePageComponent can make renderContent protected like shown below:

1 class HomePageComponent extends PageComponent {

2

3 constructor() {

4 super();

5 this.renderContent();

6 }

7

8 protected renderContent() {

9 this.renderHeader();

10 console.log('rendering home page');

11 this.renderFooter();

12 }

13

14 }

Any additional class that inherits (extends) HomePageComponentwill still be able calling or redefining
renderContentmethod. But if you try accessing renderContent from outside the TypeScript should
raise the following error:

1 let homePage = new HomePageComponent();

2 homePage.renderContent();

3 // error TS2445: Property 'renderContent' is protected and only

4 // accessible within class 'HomePageComponent' and its subclasses.

Abstract classes is a great way consolidating common functionality in a single place.

TypeScript 58

Modules

TypeScript supports the concept of modules introduced in ES6. Modules allow isolating code and
data and help splitting functionality into logical groups.

One of the major features of ES6 (and TypeScript) modules is their file scope. The code inside the
module (classes, variables, functions, and other) does not pollute global scope and is not accessible
from the outside unless exported explicitly.

To share the code of the module with the outside world, you use export keyword:

1 // module1.ts

2 export class TextBoxComponent {

3 constructor(public text: string) {}

4 render() {

5 console.log(`Rendering '${this.text}' value.`);

6 }

7 }

To use this code in your main application file or another module, youmust import it first. You import
the TextBoxComponent class using import keyword:

1 // app.ts

2 import { TextBoxComponent } from './module1'

3

4 let textBox = new TextBoxComponent('hello world');

5 textBox.render();

Module Loaders

ES6 and TypeScript rely on module loaders to locate files, resolve external dependencies and execute
module files.

The most popular module loaders are:

• Server side
– CommonJs (used by node.js)

• Client side
– SystemJS
– RequireJS
– Webpack

TypeScript 59

TypeScript supports different formats of generated JavaScript output. You can instruct compiler to
generate code adopted for multiple module loading systems using formats such as

• CommonJS (used in node.js)
• RequireJS
• UMD (Universal Module Definition)
• SystemJS
• ES6 (or ECMAScript 2015)

Running at server side

You can test TextBoxComponent we have created earlier with node.js using commonjs module target:

tsc app.ts --module commonjs

node app.js

When executed it produces the following output:

Rendering 'hello world' value.

TypeScript automatically compiles referenced modules. It starts with app.ts, resolves and compiles
module1 as module1.ts file, and produces two JavaScript files app.js and module.js that can be
executed by node.js.

Here’s an example of app.js file content:

1 "use strict";

2 // app.ts

3 var module1_1 = require("./module1");

4 var textBox = new module1_1.TextBoxComponent('hello world');

5 textBox.render();

Running in browser

In order to run module-based application in browser you can take SystemJS loader:

1 <script src="systemjs/dist/system.js"></script>

2 <script>

3 SystemJS.import('/app/app.js');

4 </script>

Let’s take a look at a simple TypeScript application that references an external module.

TypeScript 60

1 // logger.ts

2 export class Logger {

3

4 output: any;

5

6 constructor(outputId: string) {

7 this.output = document.getElementById(outputId);

8 }

9

10 info(message: string) {

11 this.output.innerText = `INFO: ${message}`;

12 }

13

14 }

Our simple logger is going to put a message as a content of the document element provided from
the outside.

1 // app.ts

2 import { Logger } from './logger';

3

4 let logger = new Logger('content');

5 logger.info('hello world');

The application needs to be compiled with SystemJS support to load correctly. You can configure
TypeScript to generate compatible JavaScript code by setting module code generation setting to
system:

tsc app.ts --module system

Source code
You can find source code for the examples above in the “typescript/systemjs-example¹⁸”
folder.

To install dependencies, compile and run the demo use the following commands:

npm install

npm start

Your default browser should run example page automatically. Once the page gets loaded you should
see an expected message:

¹⁸https://github.com/DenysVuika/developing-with-angular/tree/master/typescript/systemjs-example

https://github.com/DenysVuika/developing-with-angular/tree/master/typescript/systemjs-example
https://github.com/DenysVuika/developing-with-angular/tree/master/typescript/systemjs-example

TypeScript 61

INFO: hello world

Decorators

TypeScript introduces decorators feature, metadata expressions similar to Java annotation tags or
C# and Swift attributes. ECMAScript does not yet have native support for annotating classes and
class members (the feature is in the proposal state), so decorators is an experimental TypeScript
feature.

Decorators have a traditional notation of @expressionwhere expression is the name of the function
that should be invoked at runtime. This function receives decorated target as a parameter and can
be attached to:

• class declaration
• method
• accessor
• property
• parameter

Class Decorators

Class decorators are attached to class declarations. At runtime, the function that backs the decorator
gets applied to the class constructor. That allows decorators inspecting, modifying or even replacing
class instances if needed.

Here’s a simple example of the LogClass decorator that outputs some log information every time
being invoked:

1 function LogClass(constructor: Function) {

2 console.log('LogClass decorator executed for the constructor:');

3 console.log(constructor);

4 }

Now you can use newly created decorator with different classes:

TypeScript 62

1 @LogClass

2 class TextWidget {

3 text: string;

4

5 constructor(text: string = 'default text') {

6 this.text = text;

7 }

8

9 render() {

10 console.log(`Rendering text: ${this.text}`);

11 }

12 }

When a new instance of TextWidget class is created, the @LogClass attribute will be automatically
invoked:

1 let widget = new TextWidget();

2 widget.render();

The class decorator should produce the following output:

LogClass decorator executed for the constructor:

[Function: TextWidget]

Rendering text: default text

Decorators with parameters

It is also possible passing values to decorators. You can achieve this with a feature known as
decorator factories. A decorator factory is a function returning an expression that is called at
runtime:

Let’s create another simple decorator with log output that accepts additional prefix and suffix

settings:

TypeScript 63

1 function LogClassWithParams(prefix: string, suffix: string) {

2 return (constructor: Function) => {

3 console.log(`

4 ${prefix}

5 LogClassWithParams decorator called for:

6 ${constructor}

7 ${suffix}

8 `);

9 };

10 }

It can now be tested with the TextWidget class created earlier:

1 @LogClassWithParams('BEGIN:', ':END')

2 class TextWidget {

3 text: string;

4

5 constructor(text: string = 'default text') {

6 this.text = text;

7 }

8

9 render() {

10 console.log(`Rendering text: ${this.text}`);

11 }

12 }

13

14 let widget = new TextWidget();

15 widget.render();

You have marked TextWidget class with the LogClassWithParams decorator having a prefix and
suffix properties set to BEGIN: and :END values. The console output, in this case, should be:

BEGIN:

LogClassWithParams decorator called for:

function TextWidget(text) {

if (text === void 0) { text = 'default text'; }

this.text = text;

}

}

:END

TypeScript 64

Multiple decorators

You are not limited to a single decorator per class. TypeScript allows declaring as much class and
member decorators as needed:

1 @LogClass

2 @LogClassWithParams('BEGIN:', ':END')

3 @LogClassWithParams('[', ']')

4 class TextWidget {

5 // ...

6 }

Note that decorators are called from right to left, or in this case from bottom to top. It means that
first decorator that gets executed is:

1 @LogClassWithParams('[', ']')

and the last decorator is going to be

1 @LogClass

Method Decorators

Method decorators are attached to class methods and can be used to inspect, modify or completely
replace method definition of the class. At runtime, these decorators receive following values as
parameters: target instance, member name and member descriptor.

Let’s create a decorator to inspect those parameters:

1 function LogMethod(target: any,

2 propertyKey: string,

3 descriptor: PropertyDescriptor) {

4 console.log(target);

5 console.log(propertyKey);

6 console.log(descriptor);

7 }

Below is an example of this decorator applied to a render method of TextWidget class:

TypeScript 65

1 class TextWidget {

2 text: string;

3

4 constructor(text: string = 'default text') {

5 this.text = text;

6 }

7

8 @LogMethod

9 render() {

10 console.log(`Rendering text: ${this.text}`);

11 }

12 }

13

14 let widget = new TextWidget();

15 widget.render();

The console output in this case will be as following:

TextWidget { render: [Function] }

render

{ value: [Function],

writable: true,

enumerable: true,

configurable: true }

Rendering text: default text

You can use decorator factories also with method decorators to support additional parameters.

1 function LogMethodWithParams(message: string) {

2 return (target: any,

3 propertyKey: string,

4 descriptor: PropertyDescriptor) => {

5 console.log(`${propertyKey}: ${message}`);

6 };

7 }

This decorator can now be applied tomethods. You can attachmultiple decorators to a singlemethod:

TypeScript 66

1 class TextWidget {

2 text: string;

3

4 constructor(text: string = 'default text') {

5 this.text = text;

6 }

7

8 @LogMethodWithParams('hello')

9 @LogMethodWithParams('world')

10 render() {

11 console.log(`Rendering text: ${this.text}`);

12 }

13 }

14

15 let widget = new TextWidget();

16 widget.render();

Note that decorators are called from right to left, or in this case from bottom to top. If you run the
code the output should be as follows:

render: world

render: hello

Rendering text: default text

Accessor Decorators

Accessor decorators are attached to property getters or setters and can be used to inspect, modify
or completely replace accessor definition of the property. At runtime, these decorators receive
following values as parameters: target instance, member name and member descriptor.

Note that you can attach accessor decorator to either getter or setter but not both. This restriction
exists because on the low level decorators deal with Property Descriptors¹⁹ that contain both get

and set accessors.

Let’s create a decorator to inspect parameters:

¹⁹https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty

TypeScript 67

1 function LogAccessor(target: any,

2 propertyKey: string,

3 descriptor: PropertyDescriptor) {

4 console.log('LogAccessor decorator called');

5 console.log(target);

6 console.log(propertyKey);

7 console.log(descriptor);

8 }

Now the decorator can be applied to the following TextWidget class:

1 class TextWidget {

2 private _text: string;

3

4 @LogAccessor

5 get text(): string {

6 return this._text;

7 }

8

9 set text(value: string) {

10 this._text = value;

11 }

12

13 constructor(text: string = 'default text') {

14 this._text = text;

15 }

16 }

17

18 let widget = new TextWidget();

Once invoked the decorator should produce the following output:

LogAccessor decorator called

TextWidget { text: [Getter/Setter] }

text

{ get: [Function: get],

set: [Function: set],

enumerable: true,

configurable: true }

Same as with class and method decorators you can use decorator factories feature to pass parameters
to your accessor decorator.

TypeScript 68

1 function LogAccessorWithParams(message: string) {

2 return (target: any,

3 propertyKey: string,

4 descriptor: PropertyDescriptor) => {

5 console.log(`Message from decorator: ${message}`);

6 }

7 }

TypeScript allows using more than one decorator given you attach it to the same property accessor:

1 class TextWidget {

2 private _text: string;

3

4 @LogAccessorWithParams('hello')

5 @LogAccessorWithParams('world')

6 get text(): string {

7 return this._text;

8 }

9

10 set text(value: string) {

11 this._text = value;

12 }

13

14 constructor(text: string = 'default text') {

15 this._text = text;

16 }

17 }

18

19 let widget = new TextWidget();

The console output should be as shown below, note the right-to-left execution order:

Message from decorator: world

Message from decorator: hello

In case you declare decorator for both accessors TypeScript generates an error at compile time:

TypeScript 69

1 class TextWidget {

2 private _text: string;

3

4 @LogAccessorWithParams('hello')

5 get text(): string {

6 return this._text;

7 }

8

9 @LogAccessorWithParams('world')

10 set text(value: string) {

11 this._text = value;

12 }

13 }

error TS1207: Decorators cannot be applied to multiple get/set accessors of the same\

name.

Property Decorators

Property decorators are attached to class properties. At runtime, property decorator receives the
following arguments:

• target object
• property name

Due to technical limitations, it is not currently possible observing or modifying property initializers.
That is why property decorators do not get Property Descriptor value at runtime and can be used
mainly to observe a property with a particular name has been defined for a class.

Here’s a simple property decorator to display parameters it gets at runtime:

1 function LogProperty(target: any, propertyKey: string) {

2 console.log('LogProperty decorator called');

3 console.log(target);

4 console.log(propertyKey);

5 }

TypeScript 70

1 class TextWidget {

2

3 @LogProperty

4 id: string;

5

6 constructor(id: string) {

7 this.id = id;

8 }

9

10 render() {

11 // ...

12 }

13 }

14

15 let widget = new TextWidget('text1');

The output in this case should be as following:

LogProperty decorator called

TextWidget { render: [Function] }

id

Parameter Decorators

Parameter decorators are attached to function parameters. At runtime, every parameter decorator
function is called with the following arguments:

• target
• parameter name
• parameter position index

Due to technical limitations, it is possible only detecting that a particular parameter has been
declared on a function.

Let’s inspect runtime arguments with this simple parameter decorator:

TypeScript 71

1 function LogParameter(target: any,

2 parameterName: string,

3 parameterIndex: number) {

4 console.log('LogParameter decorator called');

5 console.log(target);

6 console.log(parameterName);

7 console.log(parameterIndex);

8 }

You can now use this decorator with a class constructor and method parameters:

1 class TextWidget {

2

3 render(@LogParameter positionX: number,

4 @LogParameter positionY: number) {

5 // ...

6 }

7

8 }

Parameter decorators are also executed in right-to-left order. So you should see console outputs for
positionY and then positionX:

LogParameter decorator called

TextWidget { render: [Function] }

render

1

LogParameter decorator called

TextWidget { render: [Function] }

render

0

Angular CLI
The Angular CLI²⁰ is a command line interface for Angular.

Angular CLI

As you might have noticed from the previous chapters, creating a project structure for a new web
app may be a non-trivial task. Working with multiple projects or frequently creating new ones may
become extremely time-consuming as you need configuring project structure again and again.

The Angular CLI makes it easy to create an application that already works, right out of
the box. It already follows our best practices!

This command line tool automates and simplifies many common scenarios, including:

• create new project structure from scratch with most optimal configuration out of the box
• scaffold common Angular building blocks using one of the various blueprints (components,
directives, pipes, services and other)

• serving, watching and live reload
• code linting
• unit testing, code coverage reports, and end-to-end testing
• development and production builds
²⁰https://cli.angular.io

https://cli.angular.io/
https://cli.angular.io/

Angular CLI 73

Installing

npm install -g @angular/cli

The tool installs globally and is available via ng command. Angular CLI supports lots of features;
you can view details on available commands with the help command:

ng help

Your first application

To create a new application you should use ng new <project-name> command:

ng new my-first-app

The ng tool should produce console output similar to the following one:

installing ng

create .editorconfig

create README.md

create src/app/app.component.css

create src/app/app.component.html

create src/app/app.component.spec.ts

create src/app/app.component.ts

create src/app/app.module.ts

create src/assets/.gitkeep

create src/environments/environment.prod.ts

create src/environments/environment.ts

create src/favicon.ico

create src/index.html

create src/main.ts

create src/polyfills.ts

create src/styles.css

create src/test.ts

create src/tsconfig.app.json

create src/tsconfig.spec.json

create src/typings.d.ts

create .angular-cli.json

create e2e/app.e2e-spec.ts

create e2e/app.po.ts

Angular CLI 74

create e2e/tsconfig.e2e.json

create .gitignore

create karma.conf.js

create package.json

create protractor.conf.js

create tsconfig.json

create tslint.json

Successfully initialized git.

Installing packages for tooling via npm.

Installed packages for tooling via npm.

You can `ng set --global packageManager=yarn`.

Project 'my-first-app' successfully created.

The scripts section of the package.json file should point to ng tool for all the actions:

package.json

1 {

2 ...

3 "scripts": {

4 "ng": "ng",

5 "start": "ng serve",

6 "build": "ng build",

7 "test": "ng test",

8 "lint": "ng lint",

9 "e2e": "ng e2e"

10 },

11 ...

12 }

Running application

Now switch to the newly generated my-first-app folder and launch the app:

cd my-first-app/

ng serve

The ng serve command compiles and serves entire project using webpack bundler with an output
similar to following:

Angular CLI 75

** NG Live Development Server is running on http://localhost:4200 **

Hash: 2c5e702e0dbbc24e055c

Time: 10564ms

chunk {0} polyfills.bundle.js, polyfills.bundle.js.map (polyfills) 158 kB {4} [in\

itial] [rendered]

chunk {1} main.bundle.js, main.bundle.js.map (main) 3.62 kB {3} [initial] [render\

ed]

chunk {2} styles.bundle.js, styles.bundle.js.map (styles) 9.77 kB {4} [initial] [\

rendered]

chunk {3} vendor.bundle.js, vendor.bundle.js.map (vendor) 2.37 MB [initial] [rend\

ered]

chunk {4} inline.bundle.js, inline.bundle.js.map (inline) 0 bytes [entry] [render\

ed]

webpack: Compiled successfully.

It is important to note that with ng serve you are going to run your project with live development

server. The server is going to watch for code changes, rebuild all affected bundles and reload the
browser.

Now if you navigate to http://localhost:4200 you should see the following default text:

app works!

Alternatively, you can run serve command with the --open switch to automatically open system
browser with the application once compilation is complete:

ng serve --open

It is also possible configuring default host and port settings:

ng serve --host 0.0.0.0 --port 3000

The command above allows accessing your application from the local machine and local network
via port 3000.

There are plenty of options and switches that can be used with ng serve command; you can refer
to full details by calling ng help.

Code Linting

Checking code is one of the essential steps. Angular CLI shipswith the TSLint support and predefined
set of rules in the tsconfig.json file.

Angular CLI 76

ng lint

Default auto-generated project should contain no errors. You should see the following result in the
console:

All files pass linting.

Let’s try to ensure TSLint works as expected by modifying the /src/app/app.component.ts file. Just
change single quotes with double quotes like below:

src/app/app.component.ts

1 export class AppComponent {

2 title = "app works!";

3 }

Now running ng lint should produce next output:

src/app/app.component.ts[9, 11]: " should be '

Lint errors found in the listed files.

Unit tests

You get a predefined unit testing configuration with every generated project. By default, you are
going to use Karma runner with the Jasmine test framework.

ng test

Unit tests

Tests run in watch mode, meaning they automatically re-run upon code changes.

Please note that out-of-box configuration requires Google Chrome browser to run tests, via the
karma-chrome-launcher plugin.

As per Angular code style guides, all the unit test files reside next to the components tested. The
Angular CLI generates three dummy tests in the src/app/app.component.spec.ts:

Angular CLI 77

src/app/app.component.spec.ts

1 it('should create the app', async(() => {

2 const fixture = TestBed.createComponent(AppComponent);

3 const app = fixture.debugElement.componentInstance;

4 expect(app).toBeTruthy();

5 }));

6

7 it(`should have as title 'app works!'`, async(() => {

8 const fixture = TestBed.createComponent(AppComponent);

9 const app = fixture.debugElement.componentInstance;

10 expect(app.title).toEqual('app works!');

11 }));

12

13 it('should render title in a h1 tag', async(() => {

14 const fixture = TestBed.createComponent(AppComponent);

15 fixture.detectChanges();

16 const compiled = fixture.debugElement.nativeElement;

17 expect(compiled.querySelector('h1').textContent).toContain('app works!');

18 }));

Let’s check what happens when a test fails. Append the following code to the end of the
app.component.spec.ts:

src/app/app.component.spec.ts

1 it('should fail', () => {

2 expect(true).toBe(false);

3 });

Now if you run ng test once again you should see the following report:

Angular CLI 78

Failed test

There are two tabs on the page: Spec List and Failures. You should see Failures by default but if
there’s more than one unit test failed you can check them on the Spec List page:

Spec List

If you do not plan to debug tests and just want to see a quick result of the test run just add
--single-run switch to the test command:

ng test --single-run

Developers typically use single run configurations for continuous integration (CI) scenarios.

Code coverage

You can generate a coverage report for your unit tests by adding --code-coverage switch to the test
command:

ng test --single-run --code-coverage

Under the hood the ng tool performs the following actions:

Angular CLI 79

• compile the project with webpack, including TypeScript transpilation with source maps
• use Karma runner and Jasmine to execute unit tests
• remap code coverage report for JavaScript back to TypeScript
• generate HTML report within coverage folder

After testing finishes you can either open coverage/index.html with your favourite browser. For
example:

open ./coverage/index.html

The command above should serve your coverage report and automatically launches default browser
with the main page.

Code Coverage

Click the src/app and then app.component.ts to see TypeScript coverage:

Code Coverage for single file

Development and Production builds

The Angular CLI supports producing both development and production using the build command:

ng build

The format of the command is:

Angular CLI 80

ng build <options...>

By default it is running in developmentmode (an equivalent of ng build -dev) and produces output
to the dist/ folder. You will get bundles together with source maps for better debugging:

File Size

favicon.ico 5430
index.html 613
inline.bundle.js 5764
inline.bundle.js.map 5824
main.bundle.js 6539
main.bundle.js.map 3817
polyfills.bundle.js 169209
polyfills.bundle.js.map 204535
styles.bundle.js 10039
styles.bundle.js.map 13372
vendor.bundle.js 2884505
vendor.bundle.js.map 3081499

For production purposes you will want using the following command:

ng build -prod

Which is an equivalent of the:

ng build --target=production

This will give you much smaller output:

File Size

favicon.ico 5430
inline.d72284a6a83444350a39.bundle.js 1460
main.e088c8ce83e51568eb21.bundle.js 12163
polyfills.f52c146b4f7d1751829e.bundle.js 58138
styles.d41d8cd98f00b204e980.bundle.css 0
vendor.a2da17b9c49cdce7678a.bundle.js 362975

Please note that styles bundle will be empty because by default newly generated app has
src/styles.css file empty.

The ng tool removes dist folder between the builds so you should not worry about files left from
previous builds and modes.

The content of the dist folder is everything you need to deploy your application to the remote

Angular CLI 81

server. You can also use any web server of your choice to run the application in production.

For example:

• Nginx server
• Tomcat server
• IIS server
• and many others

In addition, you can deploy your application to any static pages host, like:

• GitHub pages²¹
• Netlify²²
• and many others

It is still possible to use Angular CLI and embedded development server to test production builds.
You can use the following command to build the app in production mode and then run and open
default browser to check it:

ng serve --prod --open

Using blueprints

Besides generating new application project structure, the ng tool supports creating core Angular
building blocks be means of generate (or g) command and several blueprints.

ng generate <blueprint> <options...>

For the time being Angular CLI supports the following set of blueprints out-of-box:

Blueprint name Command line usage

Component ng g component my-new-component
Directive ng g directive my-new-directive
Pipe ng g pipe my-new-pipe
Service ng g service my-new-service
Class ng g class my-new-class
Guard ng g guard my-new-guard
Interface ng g interface my-new-interface
Enum ng g enum my-new-enum
Module ng g module my-module

²¹https://pages.github.com/
²²https://www.netlify.com/

https://pages.github.com/
https://www.netlify.com/
https://pages.github.com/
https://www.netlify.com/

Angular CLI 82

Let’s assume you have generated a new my-first-app like suggested below:

ng new my-first-app

cd my-first-app

Now to create a new component, you should be using the following command:

ng g component my-first-component

The ng tool takes your current directory and creates all component related files:

installing component

create src/app/my-first-component/my-first-component.component.css

create src/app/my-first-component/my-first-component.component.html

create src/app/my-first-component/my-first-component.component.spec.ts

create src/app/my-first-component/my-first-component.component.ts

update src/app/app.module.ts

If you are running ng generate command (or ng g by alias) from the root of your project, the CLI
should automatically put content to src/app/<feature> folder like shown above.

You can also specify additional folder structure that should become relative to src/app during
generation. All missing directories get created automatically. Run the following command from
the root project folder:

ng g service services/simple-service

The ng tool creates src/app/services path and puts simple-service implementation there:

installing service

create src/app/services/simple-service.service.spec.ts

create src/app/services/simple-service.service.ts

WARNING Service is generated but not provided, it must be provided to be used

Finally, you can change current directory and generate Angular artefacts there:

mkdir src/app/directives

cd src/app/directives/

ng g directive my-first-directive

In this case, you should see get following output:

Angular CLI 83

installing directive

create src/app/directives/my-first-directive.directive.spec.ts

create src/app/directives/my-first-directive.directive.ts

update src/app/app.module.ts

All blueprints follow common Angular code style guides. You get a separate folder and all files one
should expect when starting with a new Angular component:

• code file (<component>.ts)
• external template file (<component>.html)
• external css file (<component>.css)
• unit test file (<component>.spec.ts)

One of the best features of Angular CLI is that you do not get just placeholder files but a valid
ready to use artefact and unit tests. Let’s peek inside MyFirstComponent component we have created
earlier, and try integrating into the application.

my-first-component.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-my-first-component',

5 templateUrl: './my-first-component.component.html',

6 styleUrls: ['./my-first-component.component.css']

7 })

8 export class MyFirstComponentComponent implements OnInit {

9

10 constructor() { }

11

12 ngOnInit() {

13 }

14

15 }

You get app-my-first-component selector, external template and style, together with a constructor
and OnInit placeholder to save your time.

The stylesheet file (my-first-component.component.css) is empty by default, and template file
(my-first-component.component.html) contains the following simple layout:

Angular CLI 84

my-first-component.component.html

1 <p>

2 my-first-component works!

3 </p>

The CLI will even update src/app/app.module.ts to include your newly created component into
the application module:

src/app/app.module.ts

1 import { BrowserModule } from '@angular/platform-browser';

2 import { NgModule } from '@angular/core';

3 import { FormsModule } from '@angular/forms';

4 import { HttpModule } from '@angular/http';

5

6 import { AppComponent } from './app.component';

7 import { MyFirstComponentComponent } from './my-first-component/my-first-component.c\

8 omponent';

9

10 @NgModule({

11 declarations: [

12 AppComponent,

13 MyFirstComponentComponent

14],

15 imports: [

16 BrowserModule,

17 FormsModule,

18 HttpModule

19],

20 providers: [],

21 bootstrap: [AppComponent]

22 })

23 export class AppModule { }

To test the generated component you can use main application template:

Angular CLI 85

src/app/app.component.html

1 <h1>

2 {{title}}

3 </h1>

4

5 <app-my-first-component>

6 </app-my-first-component>

Finally, you can run development server if it is not running already:

ng serve

Angular CLI component

As a starting point you also get a simple ready-to-run unit test for your component:

my-first-component.component.spec.ts

1 import { async, ComponentFixture, TestBed } from '@angular/core/testing';

2

3 import { MyFirstComponentComponent } from './my-first-component.component';

4

5 describe('MyFirstComponentComponent', () => {

6 let component: MyFirstComponentComponent;

7 let fixture: ComponentFixture<MyFirstComponentComponent>;

8

9 beforeEach(async(() => {

10 TestBed.configureTestingModule({

11 declarations: [MyFirstComponentComponent]

12 })

13 .compileComponents();

14 }));

15

16 beforeEach(() => {

Angular CLI 86

17 fixture = TestBed.createComponent(MyFirstComponentComponent);

18 component = fixture.componentInstance;

19 fixture.detectChanges();

20 });

21

22 it('should create', () => {

23 expect(component).toBeTruthy();

24 });

25 });

As mentioned earlier you can run unit tests in watch mode with the help of ng test command:

Component Test

If you have added your component to the app.component.html template, some unit tests may fail.
To fix them you should update test configuration in app.component.spec.ts and include your
component into the test module:

app.component.spec.ts

1 import { TestBed, async } from '@angular/core/testing';

2

3 import { AppComponent } from './app.component';

4 import { MyFirstComponentComponent } from './my-first-component/my-first-component.c\

5 omponent';

6

7 describe('AppComponent', () => {

8 beforeEach(async(() => {

9 TestBed.configureTestingModule({

10 declarations: [

11 AppComponent,

Angular CLI 87

12 MyFirstComponentComponent

13],

14 }).compileComponents();

15 }));

16

17 ...

18 });

Creating modules

The Angular CLI tool also provides support for multiple modules and generating entities that belong
to the particular module.

Let’s start by generating a new module using the next command:

ng g module my-components

The output in the console should look similar to the following:

create src/app/my-components/my-components.module.ts (196 bytes)

And the content of the module contains a basic implementation like in the example below:

src/app/my-components/my-components.module.ts

1 import { NgModule } from '@angular/core';

2 import { CommonModule } from '@angular/common';

3

4 @NgModule({

5 imports: [

6 CommonModule

7],

8 declarations: []

9 })

10 export class MyComponentsModule { }

Note that by default Angular creates a folder for yourmodule, similar towhat it does for components.
This is handy once you create components, services, directives and pipes that need to belongÂ to
this module. But if you want to put the resulting module in a single file next to the “app.module.ts”
use the “–flat” switch.

Angular CLI 88

ng g module my-components --flat

In that case, the output will be:

create src/app/my-components.module.ts (196 bytes)

You can check more details on the available switches by running the “ng g module –help” command.

Assigning components to modules

By default, Angular CLI appends all generated content to the main application module inside
“app.module.ts”. Once you have two or more modules in the application, the CLI will require the
module name for every new content.

Try running the following command to see what happens:

ng g component my-button-1

The output should be similar to the following one:

1 Error: More than one module matches.

2 Use skip-import option to skip importing the component into the closest module.

To include your new component into a particular module use the “–module” switch. If you are
building a shared module, you might also use the “–export” switch, so that module exports your
component besides declaration.

ng g component my-button-1 --module=my-components --export

This time, you will get the following result:

1 create src/app/my-button-1/my-button-1.component.css (0 bytes)

2 create src/app/my-button-1/my-button-1.component.html (30 bytes)

3 create src/app/my-button-1/my-button-1.component.spec.ts (651 bytes)

4 create src/app/my-button-1/my-button-1.component.ts (287 bytes)

5 update src/app/my-components.module.ts (321 bytes)

And the module content now looks like in the code example below:

Angular CLI 89

src/app/my-components.module.ts

1 import { NgModule } from '@angular/core';

2 import { CommonModule } from '@angular/common';

3 import { MyButton1Component } from './my-button-1/my-button-1.component';

4

5 @NgModule({

6 imports: [

7 CommonModule

8],

9 declarations: [MyButton1Component],

10 exports: [MyButton1Component]

11 })

12 export class MyComponentsModule { }

Do not forget to check the “ng g component –help” to see all available options.

You can also include your new module into some other existing module from the command line.

ng g module my-feature --module=my-components --flat

As a result, the “MyComponentsModule” module will include “MyFeatureModule”:

src/app/my-components.module.ts

1 @NgModule({

2 imports: [

3 CommonModule,

4 MyFeatureModule

5],

6 declarations: [MyButton1Component],

7 exports: [MyButton1Component]

8 })

9 export class MyComponentsModule { }

Routing support

If you plan working with Angular Router or want to experiment with routing capabilities, the
Angular CLI can generate an application for you with initial Router support.

Use the “–routing” switch if you want to generate a routing module scaffold with your application.

Angular CLI 90

1 ng new my-app --routing

The routing scaffold should look similar to the one below:

src/app/app-routing.module.ts

1 import { NgModule } from '@angular/core';

2 import { Routes, RouterModule } from '@angular/router';

3

4 const routes: Routes = [];

5

6 @NgModule({

7 imports: [RouterModule.forRoot(routes)],

8 exports: [RouterModule]

9 })

10 export class AppRoutingModule { }

In addition, the main application component is going to contain the router outlet component:

src/app/app.component.html

1 ...

2 <router-outlet></router-outlet>

Generating standalone scripts

The Angular CLI provides a special feature that allows detaching command line tools from the
project, and generating a set of scripts needed for standalone project compilation and testing:

ng eject

Which is an equivalent for ng eject -dev or ng eject --target=development, and instructs ng
tool to use development configuration. Alternatively, you can use -prod or --target=production
switches to enable production mode.

Upon running eject command, the CLI will:

• update package.json with all dependencies needed to compile project without extra tools
• generate and output the proper webpack configuration (webpack.config.js) and scripts for
testing

The tool might provide additional notes in the console output like below:

Angular CLI 91

==

Ejection was successful.

To run your builds, you now need to do the following commands:

- "npm run build" to build.

- "npm run test" to run unit tests.

- "npm start" to serve the app using webpack-dev-server.

- "npm run e2e" to run protractor.

Running the equivalent CLI commands results in error.

==

Some packages were added. Please run "npm install".

Now scripts section in your package.json file should link to local content for a start, build and
various test scripts:

package.json

1 {

2 ...

3 "scripts": {

4 "ng": "ng",

5 "start": "webpack-dev-server --port=4200",

6 "build": "webpack",

7 "test": "karma start ./karma.conf.js",

8 "lint": "ng lint",

9 "e2e": "protractor ./protractor.conf.js",

10 "prepree2e": "npm start",

11 "pree2e": "webdriver-manager update --standalone false --gecko false --quiet"

12 },

13 ...

14 }

Components
Components are the main building blocks in Angular.

A typical Angular application is represented by a tree of elements starting with a single root one.

1 <app-root>

2

3 <app-header title="My header">

4 ...

5 </app-header>

6

7 <app-layout type="horizontal">

8

9 <app-sidebar>

10 ...

11 </app-sidebar>

12

13 <app-content>

14 ...

15 </app-content>

16

17 </app-layout>

18

19 <app-footer>

20 ...

21 </app-footer>

22

23 </app-root>

As you can see from the markup above, our main application template consists at least of the
following six components:

• app-root
• app-header
• app-layout
• app-sidebar
• app-content
• app-footer

Components 93

Schematically it should look similar to the following:

Creating a simple component

Let’s build a simple Angular component in the new “basic-components” project.

The easiest and quickest way to prepare a project structure is using Angular CLI to setup scaffold.

Angular CLI
You can find detailed information on setting up project scaffolds in the “Angular CLI”
chapter.

You start creating a component with importing the @Component decorator from the @angular/core:

import { Component } from '@angular/core';

The @Component decorator supports multiple properties, and we are going review them in the
Component metadata section later in this chapter. For the bare minimum, you need to set the
“selector” and “template” values to create a basic reusable component.

Our minimal “Header” component implementation can look in practice like in the following
example.

Components 94

src/app/components/header.component.ts

1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'app-header',

5 template: '<div>{{ title }}</div>'

6 })

7 export class HeaderComponent {

8

9 title: string = 'Header';

10

11 }

You set the selector value to ‘app-header’. That means you are registering a new HTML element
called “<app-header>”.

You also set a “template” property that holds the inline HTML template string. At run time the
Header element is to be rendered as a <div> element with its inner text bound to the “title” property
of the “HeaderComponent” class.

Note that before using Header component within an application, we need to register it within the
main application module.

Application module
You are going to get more detailed information on Angular modules in a separate Modules
chapter.

For now, it is good for you to have just a basic understanding of how components get
registered within modules.

Below you can see an example of how typically register a component. For the sake of simplicity, we
are going to see only newly added content.

src/app/app.component.ts

1 ...

2 import { HeaderComponent } from './components/header.component';

3

4 @NgModule({

5 declarations: [

6 ...

7 HeaderComponent

8],

9 ...

Components 95

10 })

11 export class AppModule { }

Finally, to test your component just put the following content into the main application template
HTML file.

src/app/app.component.template

1 <app-header></app-header>

Once you compile and run your web application, you should see the following content on the main
page.

Header

Congratulations, you have just created a basic Angular component that you can now reuse across
all your web application.

Source code
You can find the source code as an Angular CLI project in the “angular/components/basic-
components²³” folder.

Generating components with Angular CLI

Now let’s try creating another component utilising Angular CLI. This time we are going to create
a Footer element. That should give a good comparison on manual versus automatically generated
approaches.

Using the command line prompt execute the following command in the project root directory:

ng g component components/footer

You should instantly notice how Angular CLI saves your time. It creates you a full set of files for
your Footer component and event modifies the main application module file for you.

You can check the console output below:

²³https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/basic-components

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/basic-components
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/basic-components
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/basic-components

Components 96

installing component

create src/app/components/footer/footer.component.css

create src/app/components/footer/footer.component.html

create src/app/components/footer/footer.component.spec.ts

create src/app/components/footer/footer.component.ts

update src/app/app.module.ts

Angular CLI
You can find detailed information on blueprints and content generation in the “Angular CLI”
chapter.

As a result, you get an initial component implementation with an external HTML and CSS templates
and even a unit test scaffold.

src/app/components/footer/footer.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-footer',

5 templateUrl: './footer.component.html',

6 styleUrls: ['./footer.component.css']

7 })

8 export class FooterComponent implements OnInit {

9

10 constructor() { }

11

12 ngOnInit() {

13 }

14

15 }

Finally, you can update your main application template to see both header and footer elements in
action:

src/app/app.component.html

1 <app-header></app-header>

2 <app-footer></app-footer>

Upon compiling the application and reloading the page, you should see the following output.

Components 97

Header

footer works!

Note how Angular CLI provides a content of the automatically generated Footer element.

So as you can from the examples above, you save an enormous amount of time when using Angular
CLI when it comes to scaffold generation.

Component metadata

According to the official documentation, you can use the following set of properties with a
@Component decorator:

Name Type Description

changeDetection ChangeDetectionStrategy Defines the change detection strategy the component
should use.

viewProviders Provider[] Defines the set of injectable objects that are visible to its
view DOM children.

moduleId string ES/CommonJS module id of the file in which this
component is defined.

templateUrl string Specifies a URL containing a relative path to an external
file containing a template for the view.

template string An inline-defined template for the view.
styleUrls string[] List of URLs containing relative paths to the stylesheets

to apply to this component’s view at runtime.
styles string[] List of inline-defined styles to apply to this component’s

view at runtime.
animations any[] List of animations of this component in a special

DSL-like format.
encapsulation ViewEncapsulation Defines style encapsulation strategy used by this

component.
interpolation [string, string] Overrides the default encapsulation start and end

delimiters (respectively {{ and }}).
entryComponents Array<Type<any> | any[]> List of components that are dynamically inserted into

the view of this component.

The @Component decorator extends the @Directive one, so it also inherits the following set of
properties you can use as well:

Name Type Description

selector string CSS selector that identifies this component in a template.
inputs string[] List of class property names to data-bind as component inputs.
outputs string[] List of class property names that expose output events that others can

subscribe to.
host { [key: string]: string; } Map that specifies the events, actions, properties and attributes

related to the host element.
providers Provider[] List of providers available to this component and its children.

Components 98

Name Type Description

exportAs string A name under which the component instance is exported in a
template.

queries { [key: string]: any; } Map of queries that can be injected into the component.

Templates

There are two ways to assign a component view template: inline-defined and external file.

Inline templates

You specify inline template by setting the “template” field value of the @Component decorator. To get
better formatting and multi-line support, you can use template literals feature introduced in ES6 and
backed by TypeScript out of the box.

Template literals
Template literals are string literals allowing embedded expressions. You can use multi-line
strings and string interpolation features with them.

For more detailed information on this ES6 feature, please refer to the following Template
literals²⁴ article.

Most of the modern IDEs already have support for mixed content, including TypeScript files. If
you are using Visual Studio Code²⁵ for development, then you already have syntax highlighting for
HTML and CSS.

Let’s edit the Header component template to take multiple lines like in the example below:

src/app/components/header.component.ts

1 @Component({

2 selector: 'app-header',

3 template: `

4 <div>

5 <div>{{ title }}</div>

6 </div>

7 `

8 })

9 export class HeaderComponent {

10 title: string = 'Header';

11 }

²⁴https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
²⁵https://code.visualstudio.com/

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
https://code.visualstudio.com/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
https://code.visualstudio.com/

Components 99

Using backtick characters also allows you to have single and double quotes in HTML without any
additional escaping or string concatenation. You are using the same HTML content inlined as you
would have in separate files.

Typically you may want to use inline templates only when your component view is small.

External templates

The HTML code in the templates usually grows over time and becomes less maintainable. That is
why storing HTML in the separate files may be more practical and productive.

The @Component decorator provides support for external templates through the “templateUrl” option.
Please note that you should set only “template” or “templateUrl”, you cannot define both of them at
the same time.

Let’s now update our Header component we created earlier and move its HTML template to a
separate file.

src/app/components/header.component.html
1 <div>

2 <div>{{ title }}</div>

3 </div>

The “templateUrl” property should always point to a path relative to the component class file. In our
case, we put both files together in the same directory and update decorator declaration accordingly.

src/app/components/header.component.ts
1 @Component({

2 selector: 'app-header',

3 templateUrl: './header.component.html'

4 })

5 export class HeaderComponent {

6 title: string = 'Header';

7 }

Typically developers put them next to the component class implementation and give the same name
for the file as the component:

• header.component.html
• header.component.ts

External files
External files are the most convenient and recommended way of storing your components’
HTML templates.

Components 100

Styles

Similar to the HTML templates, the @Component decorator also provides support for CSS styles in
either inline or external form.

Inline styles

If your component is small and you decided to use inline HTML templates then high chances you
may want to inline CSS styles as well.

The “styles” property of the @Component decorator is used to store an array of CSS styles that Angular
applies to the component at runtime.

To test that in practice let’s add a couple of class names to the HTM elements inside the component’s
template.

src/app/components/header.component.ts

1 @Component({

2 selector: 'app-header',

3 template: `

4 <div class="app-header">

5 <div class="app-header-title">

6 {{ title }}

7 </div>

8 </div>

9 `

10 })

11 export class HeaderComponent { ... }

We just added “app-header” and “app-header-title” classes, and it is time to provide some CSS for
those elements.

src/app/components/header.component.ts

1 @Component({

2 selector: 'app-header',

3 template: `

4 <div class="app-header">

5 <div class="app-header-title">

6 {{ title }}

7 </div>

8 </div>

9 `,

Components 101

10 styles: [`

11 .app-header {

12 border: 1px solid gray;

13 padding: 4px;

14 }

15 .app-header-title {

16 font-weight: bold;

17 }

18 `]

19 })

20 export class HeaderComponent { ... }

Now if you compile and run your web application you should see a nice grey border around your
Header component. Also, the “Header” title should have the bold font style.

As with the inline templates, you may want to inline your style files only for the small components.

External styles

The CSS styles tend to grow over time even faster than HTML content. So it is recommended to
move them to the separate files at early stages.

Similar to external HTML templates Angular provides support for external CSS. You can use
“styleUrls” property to provide an array of the URLs with relative paths to corresponding files.

You already know how to use external HTML templates with your components. Let’s now extract
the CSS into a separate file as well. Typically the main style file is called after the parent component
class, in our case, it becomes “header.component.css”.

Components 102

src/app/components/header.component.css

1 .app-header {

2 border: 1px solid gray;

3 padding: 4px;

4 }

5

6 .app-header-title {

7 font-weight: bold;

8 }

You should now have “Header” component split into the three separate files:

• header.component.css
• header.component.html
• header.component.ts

With the changes to@Component decorator properties, the component implementation should now
look like the following:

src/app/components/header.component.ts

1 @Component({

2 selector: 'app-header',

3 templateUrl: './header.component.html',

4 styleUrls: [

5 './header.component.css'

6]

7 })

8 export class HeaderComponent { ... }

Visually the component should look the same as with the inline CSS styles. Once you compile and
run your web application, the main page looks like on the screenshot below.

External files
External files are the most convenient and recommended way of storing your components’
CSS stylesheets.

Components 103

Input properties

The @Input decorator is used to mark a class property that binds to incoming data.

Let’s take a closer look at our Header component created earlier in this chapter.

The component exposes a “title” property of the “string” type and with the default value set to
“Header”.

1 @Component({...})

2 export class HeaderComponent {

3 title: string = 'Header';

4 }

We have also provided an HTML template that binds to the underlying “title” property.

1 <div class="app-header">

2 <div class="app-header-title">{{ title }}</div>

3 </div>

As you can notice from the example above the major limitation of the Header component is that we
cannot change the header title text from the outside.

The only way we can use it so far is by utilising plain selector:

{{linenos=off}} html <app-header></app-header> <app-footer></app-footer>

Next, let’s provide data-binding support for the “title” property using @Input decorator as following:

src/app/components/header.component.ts

1 import { ..., Input } from '@angular/core';

2

3 @Component({ ... })

4 export class HeaderComponent {

5

6 @Input()

7 title: string = 'Header';

8 }

You can now use Header component with custom title values. Set the value to “My Header” to test
that in action.

Components 104

<app-header title="My Header"></app-header>

<app-footer></app-footer>

This time once your web application compiles and starts the Header should look like on the picture
below:

You can also bind “title” property value to another property. For example, imagine a scenario when
main application component maintains global settings and initializes Header and Footer content.

src/app/app.component.ts
1 @Component({ ... })

2 export class AppComponent {

3 title = 'app';

4 }

In this case, you can bind the Header title like following:

<app-header [title]="title"></app-header>

<app-footer></app-footer>

Reload the page, and you are going to see the header having now the “app” title as per main
application component implementation.

Binding to expressions
Keep in mind that you are binding to JavaScript expressions when using square brackets
with element attributes.

The example above can also be changed to bind to a string or component class method. For
example <app-header [title]="getHeaderTitle()"> or <app-header [title]="'Hello '

+ 'world'">.

By default, the @Input takes the name of the decorated property when setting up the bindings. You
can, however, change the name of the resulting HTML attribute.

@Input decorator accepts additional optional property alias “bindingPropertyName” to redefine the
name to use in the template. Let’s change the binding name of the “title” property to the “title-text”
value.

Components 105

1 export class HeaderComponent {

2

3 @Input('title-text')

4 title: string = 'Header';

5

6 }

From now on you should be settings “title-text” attribute in HTML templates when using Header
component with the custom title.

<app-header title-text="My Title"></app-header>

<app-footer></app-footer>

Please note that you are going to deal with two different property names at the same time when
using input aliases. The component template still references property by the original name “title”
while externally this property is known as “title-text”:

<div class="app-header">

<div class="app-header-title">{{ title }}</div>

</div>

Avoid aliasing inputs and outputs
According to the Angular Style Guide (Style 05-13²⁶), you should avoid using alias for
@Input and @Output decorators except when is needed and serves an important purpose.

Two names for the same property is confusing and may require additional documentation
and maintenance over time.

Output events

You use @Output decorator in combination with the EventEmitter type to create component events.

To better understand how events are used and work let’s introduce and see a component event in
action.

Raising events

We are going to extend our Header component with a “click” event. Every time the header title gets
clicked the component is going to raise a “titleClick” event.

²⁶https://angular.io/guide/styleguide#style-05-13

https://angular.io/guide/styleguide#style-05-13
https://angular.io/guide/styleguide#style-05-13

Components 106

src/app/components/header.component.ts

1 import { ..., Output, EventEmitter } from '@angular/core';

2

3 @Component({...})

4 export class HeaderComponent {

5 ...

6

7 @Output()

8 titleClick = new EventEmitter();

9 }

Now to raise the newly introduced event from the component, we call its “next” method:

this.titleClick.next();

Next, we need to wire component template with the underlying method “handleTitleClick”. The
latter is going to be responsible for raising the corresponding “titleClick” event.

src/app/components/header.component.html

1 <div class="app-header">

2 <div class="app-header-title" (click)="handleTitleClick()">{{ title }}</div>

3 </div>

The “handleTitleClick” implementation can be as follows:

src/app/components/header.component.ts

1 @Component({...})

2 export class HeaderComponent {

3 ...

4

5 @Output()

6 titleClick = new EventEmitter();

7

8 handleTitleClick() {

9 this.titleClick.next();

10 }

11 }

Handling events

We have extended our Header component to raise an event once a user clicks the title. Now let’s
make our main application handle this event and display click counter on the page.

Components 107

src/app/app.component.html

1 <app-header

2 [title]="title"

3 (titleClick)="onTitleClicked()">

4 </app-header>

5 <div>

6 Header clicks: {{ headerClicks }}

7 </div>

8 <app-footer></app-footer>

As you can see from the code above the main application component subscribes to the “titleClick”
event and uses “onTitleClicked” method as an event handler.

The component also displays the “headerClicks” property value for us to see the event handler works.
The final thing we need right now is incrementing the counter property like in the code below:

src/app/app.component.ts

1 @Component({...})

2 export class AppComponent {

3

4 headerClicks = 0;

5

6 onTitleClicked() {

7 this.headerClicks += 1;

8 }

9

10 }

Now if you run the web application and click several times on the header text, you should see the
clicks counter increase in real time.

Typed events

The EventEmitter type we used for earlier is a generic type, and by default takes the type variable
of “any”.

Components 108

EventEmitter<any>

In many cases, you may want to provide the additional event arguments to enable better handling
of your component events. For example, a “click” event may expose details on the mouse cursor
position or a “textChanged” event that exposes old and new text values.

In the previous section, we have already created a Header component that raises generic “titleClick”
event with no arguments. To compare both approaches let’s now update Footer component with the
similar event but of a specific type.

The Footer is going to count the number of clicks itself and provide the value as part of the event.
The main application is no longer required to keep track on clicks as it is going to get exact values
from the corresponding event arguments.

If you remember, we created a Footer component using the following Angular CLI command:

ng g component components/footer

First, create a “FooterClickedEvent” class to hold the clicks-related information for our “titleClicked”
event:

src/app/components/footer/footer-clicked.event.ts

1 export class FooterClickedEvent {

2

3 constructor(public readonly totalClicks: number = 0) {

4 }

5

6 }

For the sake of simplicity, we are going to create a class with a single read-only property “totalClicks”
we assign in the constructor, and that defaults to zero if not provided.

Next, edit your footer component and update its code with the following pieces that add a “title”
input property and “titleClicked” output event:

src/app/components/footer/footer.component.ts

1 import { ..., Output, EventEmitter } from '@angular/core';

2 import { FooterClickedEvent } from './footer-clicked.event';

3

4 @Component({...})

5 export class FooterComponent {

6

7 @Input()

8 title = 'Footer';

Components 109

9

10 @Output()

11 titleClick = new EventEmitter<FooterClickedEvent>();

12

13 }

As you can see above, we also declare a private property “totalClicks” to hold the overall clicks
count.

Note how we use EventEmitter type this time. Using “FooterClickedEvent” as an EventEmitter’s
type variable allows us now to create an instance of the given type and emit as an event.

src/app/components/footer/footer.component.ts

1 @Component({...})

2 export class FooterComponent {

3 ...

4

5 private totalClicks = 0;

6

7 handleTitleClick() {

8 const event = new FooterClickedEvent(++this.totalClicks)

9 this.titleClick.next(event);

10 }

11

12 }

Now we can update the component template to display the title and handle mouse clicks:

src/app/components/footer/footer.component.html

1 <p>

2 {{ title }}

3 </p>

Every time user clicks the “title” element of the Footer, the component is going to increment clicks
counter and raise an event with its actual value.

Accessing event parameters

Angular provides a way to access the original event by using a special “$event” variable that you
can pass to your handlers.

Components 110

<app-footer

title="My footer"

(titleClick)="onHeaderClicked($event)">

</app-footer>

In our current case, we handle “titleClick” event and pass original “FooterClickedEvent” to the
“onHeaderClicked” handler inside application controller. That provides access to “totalClicks”
property we created earlier.

DOM events
Please keep in mind that “$event” usage applies to all events, either custom or standard
DOM ones. For instance, you can inspect “click”, “hover”, “input” and many other DOM
events from within your class methods.

Let’s now update our main application component to display the number of times the user clicked
the Footer.

src/app/app.component.ts

1 ...

2 import { FooterClickedEvent } from './components/footer/footer-clicked.event';

3

4 @Component({...})

5 export class AppComponent {

6 ...

7 footerClicks = 0;

8

9 onHeaderClicked(event: FooterClickedEvent) {

10 this.footerClicks = event.totalClicks;

11 }

12 }

As you can see in the example above, we now can import “FooterClickedEvent” type and use with
the event handler parameters to get type checking and code completion support in your IDE.

Finally, let’s update the main component template to display click counters for the Footer alongside
the Header.

Components 111

src/app/app.component.html

1 <app-header

2 [title]="title"

3 (titleClick)="onTitleClicked()">

4 </app-header>

5

6 <div>Header clicks: {{ headerClicks }}</div>

7 <div>Footer clicks: {{ footerClicks }}</div>

8

9 <app-footer

10 title="My footer"

11 (titleClick)="onHeaderClicked($event)">

12 </app-footer>

You can now run your web application and make several clicks on Header and Footer components
to see all event handlers in action. You should see results similar to the following:

Aliased outputs

Similar to the @Input decorator the @Output one also supports custom aliases for event names and
takes the name of the decorated property as the default value.

In the previous examples, we used “titleClick” for the output property name:

src/app/components/footer/footer.component.ts

1 @Component({...})

2 export class FooterComponent {

3 ...

4

5 @Output()

6 titleClick = new EventEmitter<FooterClickedEvent>();

7 }

You could also provide the “title-click” alias for the event like below:

Components 112

src/app/components/footer/footer.component.ts

1 @Component({...})

2 export class FooterComponent {

3 ...

4

5 @Output('title-click')

6 titleClick = new EventEmitter<FooterClickedEvent>();

7 }

In this case the “official” (or public) event name for the Footer’s “titleClick” component would be
“title-click”, and not “titleClick”:

<app-footer

title="My footer"

(title-click)="onHeaderClicked($event)">

</app-footer>

Avoid aliasing inputs and outputs
According to the Angular Style Guide (Style 05-13²⁷), you should avoid using alias for
@Input and @Output decorators except when is needed and serves an important purpose.

Two names for the same property is confusing and may require additional documentation
and maintenance over time.

Providers

Every Angular component can declare its own set of providers. The use of local providers allows
developers to replace global instances of services, and register and use a new copy of the service for
the given component and all child components.

Let’s see how local component providers work in practice. We are going to need a new service
‘ClickCounterService’ that you can generate with the following Angular CLI command:

ng g service click-counter

The service is going to keep track of the user clicks on the elements. Our components should notify
the service upon every click, and also subscribe to the service events to get notifications on clicks
from other components.

²⁷https://angular.io/guide/styleguide#style-05-13

https://angular.io/guide/styleguide#style-05-13
https://angular.io/guide/styleguide#style-05-13

Components 113

Add the “clicks” property to the service to hold total amount of clicks happened across the
application. Then add the “clicked” event to allow components to subscribe and perform custom
actions if needed. Finally, implement the “click” method that increments the click counter and emits
the corresponding event at the same time.

1 import { Injectable, EventEmitter } from '@angular/core';

2

3 @Injectable({

4 providedIn: 'root'

5 })

6 export class ClickCounterService {

7

8 clicks = 0;

9

10 clicked = new EventEmitter<number>();

11

12 click() {

13 this.clicks += 1;

14 this.clicked.emit(this.clicks);

15 }

16

17 }

Let’s register the newly created “ClickCounterService” service as part of the global providers, in the
main application module.

Registering service
Given that developers can register services in different places, the Angular CLI does not
perform default registration and does not modify “app.module.ts” file like it does for other
Angular entities.

Please refer to the code below for an example of service registration:

Components 114

src/app/app.module.ts

1 ...

2 import { ClickCounterService } from './click-counter.service';

3

4 @NgModule({

5 ...

6 providers: [

7 ClickCounterService

8],

9 ...

10 })

11 export class AppModule { }

For the next step, we are going to need three simple components. You can quickly generate them
using the following Angular CLI commands:

ng g component componentA

ng g component componentB

ng g component componentC

Now replace the content of the main application component template with the following code:

src/app/app.component.html

1 <app-component-a></app-component-a>

2 <app-component-b></app-component-b>

3 <app-component-c></app-component-c>

Once you build and run the application, you should see the following content on the main page:

component-a works! component-b works! component-c works!

Now, let’s integrate one of the components with the “ClickCounterService” service we introduced
earlier. Our component is going to have an HTML button that invokes “onClick” method upon every
click. The component also subscribes to the service’s “clicked” event to update the local “totalClicks”
property and display it to the user.

Components 115

src/app/component-a/component-a.component.ts

1 import { Component, OnInit } from '@angular/core';

2 import { ClickCounterService } from '../click-counter.service';

3

4 @Component({

5 selector: 'app-component-a',

6 templateUrl: './component-a.component.html',

7 styleUrls: ['./component-a.component.css']

8 })

9 export class ComponentAComponent implements OnInit {

10

11 totalClicks = 0;

12

13 constructor(private clickService: ClickCounterService) { }

14

15 ngOnInit() {

16 this.clickService.clicked.subscribe((clicks) => {

17 this.totalClicks = clicks;

18 });

19 }

20

21 onClick() {

22 this.clickService.click();

23 }

24

25 }

Also, replace the component template content with the following markup:

src/app/component-a/component-a.component.html

1 Component A

2 Clicks: {{ totalClicks }}

3 <button (click)="onClick()">Click</button>

Run the application or switch to the running one. Click the component button multiple times to see
the counter updates.

Components 116

Repeat the same procedure for other two components we got. All three components should display
the total number of clicks fetched from the server, and have a button for the user to click.

Also, let’s slightly improve the main application template and add dividers for better visibility:

src/app/app.component.html

1 <app-component-a></app-component-a>

2 <hr>

3 <app-component-b></app-component-b>

4 <hr>

5 <app-component-c></app-component-c>

Switch to your running application and try clicking one of the buttons several times. You should see
that all click counters get updated automatically with the same value. That is an expected behaviour
because all we got three components powered by the same instance of the “ClickCounterService”
service. Every time we click a button, the service notifies other components that update local counter
properties and display labels.

Now, let’s see what happens if one of the components, let it be Component B, declares its own
“providers” collection. Import the “ClickCounterService” and declare it as in the example below:

Components 117

src/app/component-b.component.ts

1 ...

2 import { ClickCounterService } from '../click-counter.service';

3

4 @Component({

5 selector: 'app-component-b',

6 templateUrl: './component-b.component.html',

7 styleUrls: ['./component-b.component.css'],

8 providers: [

9 ClickCounterService

10]

11 })

12 export class ComponentBComponent implements OnInit {

13 ...

14 }

If now you start clicking on the first component, only “Component A” and “Component C” are going
to update the labels. The “Component B” should remain with the zero value.

As you can see, the “Component B” declares its local instance of the service, so it does not react
to the events raised by the global one. Now if you click the “Component B” button several times,
its counter label should update separately from other components. Moreover, other components are
not going to update on “Component B” clicks, as they are listening to the global service events.

Components 118

The component-level provider is a great feature. It allows you to have more than one instance of the
service or to have custom service implementation or replacement for a particular component and
all child components that you use in its template.

Advanced feature
You should be very careful and use this feature only when it is necessary as it is quite easy to
introduce an issue when creating multiple instances of the same service type. For example
the Authentication Service. Typically you may want always to have only one instance, as
the service might keep the authentication state or some other critical data, and having more
than one service leads to application issues.

Source code
You can find the source code in the “angular/components/component-providers²⁸” folder.

Host

The host property is an object of a Map type and specifies the events, actions, properties and
attributes related to the resulting element.

Use the following Angular CLI command to generate a new “host-events” component for the tests:

ng g component host-events

Also, replace the content of the main application component template with your component
declaration:

²⁸https://github.com/DenysVuika/developing-with-angular/blob/master/angular/components/component-providers

https://github.com/DenysVuika/developing-with-angular/blob/master/angular/components/component-providers
https://github.com/DenysVuika/developing-with-angular/blob/master/angular/components/component-providers

Components 119

src/app/app.component.html

1 <h2>Host events:</h2>

2 <app-host-events></app-host-events>

Run the application and ensure the main page looks similar to the following:

CSS class

Your component or directive can assign a class name to the corresponding DOM element that serves
the root of the component. For example setting the class name to the “host-events” value looks like
the following:

src/app/host-events/host-events.component.ts

1 @Component({

2 selector: 'app-host-events',

3 templateUrl: './host-events.component.html',

4 styleUrls: ['./host-events.component.css'],

5 host: {

6 class: 'host-events'

7 }

8 })

9 export class HostEventsComponent implements OnInit {

10 ...

11 }

At runtime, if you use the “Inspect element” tool to view the compiled HTML output, it should look
similar to the following:

1 <app-host-events _ngcontent-c0="" class="host-events" _nghost-c1="">

2 <p _ngcontent-c1="">

3 host-events works!

4 </p>

5 </app-host-events>

Note that the main “app-host-events” element has now the “host-events” class name associated with
it.

You can also set multiple classes based on property values using the following format:

Components 120

host: {

'[class.<className1>]': '<statement1>',

'[class.<classNameN>]': '<statementN>'

}

Let’s bind a couple of CSS class names to the component class properties:

src/app/host-events/host-events.component.ts

1 @Component({

2 selector: 'app-host-events',

3 templateUrl: './host-events.component.html',

4 styleUrls: ['./host-events.component.css'],

5 host: {

6 '[class.is-invalid]': 'isInvalid',

7 '[class.is-readonly]': 'isReadonly'

8 }

9 })

10 export class HostEventsComponent implements OnInit {

11 ...

12

13 isInvalid: boolean = false;

14 isReadonly: boolean = false;

15 }

The class values are toggled based on the corresponding property values.

For example, the “is-invalid” is appended to the class list of the DOM element as soon as ‘isInvalid’
property turns to “true”, also, is automatically removed from the class list if it has the value of “false”.

Host events

The component or directive you create can also use “host” metadata property to bind element events
to the class methods. The usage format, in this case, is as follows:

host: {

'(<event>)': '<statement>'

}

To test the event bindings in action let’s wire the “mouseenter” and “mouseleave” DOM events with
the “onMouseEnter” and “onMouseLeave” methods that are going to change the “color” property
value:

Components 121

src/app/host-events/host-events.component.ts

1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'app-host-events',

5 templateUrl: './host-events.component.html',

6 styleUrls: ['./host-events.component.css'],

7 host: {

8 class: 'host-events',

9 '(mouseenter)': 'onMouseEnter()',

10 '(mouseleave)': 'onMouseLeave()'

11 }

12 })

13 export class HostEventsComponent {

14

15 color = 'black';

16

17 onMouseEnter() {

18 this.color = 'red';

19 }

20

21 onMouseLeave() {

22 this.color = 'black';

23 }

24

25 }

Finally, update the component template to use the “color” property like in the example below:

src/app/host-events/host-events.component.html

1 <p [style.color]="color">

2 host-events works!

3 </p>

Now switch to the running application and try moving the mouse cursor over the component text.
You should see the colour of the text changing automatically upon mouse events.

Components 122

Your component can also listen to global events using the following format:

host: {

'(<target>:<event>)': '<statement>'

}

Where ‘target’ can be of one the following values:

• window
• document
• body

For example, the component can listen to ‘window.resize’ events and adapt the layout accordingly:

src/app/host-events/host-events.component.ts

1 ...

2

3 @Component({

4 ...

5 host: {

6 class: 'host-events',

7 '(mouseenter)': 'onMouseEnter()',

8 '(mouseleave)': 'onMouseLeave()',

9 '(window:resize)': 'onWindowResize()'

10 }

11 })

12 export class HostEventsComponent {

13

14 ...

15

16 onWindowResize() {

17 console.log('Window resized');

18 }

19

20 }

If you run the developer tools in your browser and try resizing the browser window, you should
notice the component reacts on that and writes corresponding messages to the console log.

Components 123

Host attributes

The Angular framework allows you to mapmultiple HTML attributes to the class properties or static
string values. Let’s set the “role” and “aria-label” attributes from within the host metadata:

src/app/host-events/host-events.component.ts

1 ...

2

3 @Component({

4 ...

5 host: {

6 class: 'host-events',

7 '(mouseenter)': 'onMouseEnter()',

8 '(mouseleave)': 'onMouseLeave()',

9 '(window:resize)': 'onWindowResize()',

10 'role': 'button',

11 'aria-label': 'Demo button'

12 }

13 })

14 export class HostEventsComponent {

15 ...

16 }

As soon as the page gets rendered, you can inspect the compiled HTML layout to check the element
attributes. The “app-host-events” element now contains the expected attributes:

1 <app-host-events _ngcontent-c0="" aria-label="Demo button" class="host-events" role=\

2 "button" _nghost-c1="">

3 <p _ngcontent-c1="" style="color: black;">

4 host-events works!

5 </p>

6 </app-host-events>

Host properties

Finally, you can bind component properties to element properties. That might be useful when
developing Angular directives.

For example, a directive that automatically changes the button value based on one of its properties
can look like the following:

Components 124

src/app/host-properties.directive.ts

1 import { Directive } from '@angular/core';

2

3 @Directive({

4 selector: '[appHostProperties]',

5 host: {

6 '[innerHTML]': 'value'

7 }

8 })

9 export class HostPropertiesDirective {

10

11 value = 'Custom Value';

12

13 }

Now, let’s define a simple button and see the directive in action:

src/app/app.component.html

1 <h2>Host events:</h2>

2 <app-host-events></app-host-events>

3

4 <hr>

5 <button appHostProperties>Click me</button>

Note that we provided the button text in the HTML template. Switch back to the browser window
and ensure the button value got changed by the directive as per the host metadata settings.

Similar to the CSS classes, you can provide values for multiple attributes of the decorated DOM
element using the following syntax:

Components 125

host: {

'[attr.<name1>]': '<statement1>',

'[attr.<nameN>]': '<statementN>',

}

Let’s bind a “custom1” attribute to the “attrValue” property of the class to check how that feature
works.

1 import { Directive } from '@angular/core';

2

3 @Directive({

4 selector: '[appHostProperties]',

5 host: {

6 '[innerHTML]': 'value',

7 '[attr.custom1]': 'attrValue'

8 }

9 })

10 export class HostPropertiesDirective {

11

12 value = 'Custom Value';

13 attrValue = 'some attribute value';

14 }

If you remember, we got a button element declared in the main application template like below:

<button appHostProperties>Click me</button>

At the runtime, the element gets a custom attribute from the directive:

<button _ngcontent-c0="" apphostproperties="" custom1="some attribute value">Custom \

Value</button>

Source code
You can find the source code as an Angular CLI project in the “angular/components/com-
ponent-host²⁹” folder.

²⁹https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/component-host

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/component-host
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/component-host
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/component-host

Components 126

Queries

There may be scenarios when you need accessing child components from your current component
that contains them. That becomes useful when you need calling public methods or change properties
of the children.

Source code
You can find the source code as an Angular CLI project in the “angular/components/com-
ponent-queries³⁰” folder.

Preparing the project

Let’s start by creating a new Angular project with the help of Angular CLI, and creating to
components “List” and “ListItem” to experiment.

ng g component list

ng g component list-item

Extend the generated List component with an extra property “title” marked with the @Input

decorator.

src/app/list/list.component.ts

1 import { ..., Input } from '@angular/core';

2

3 @Component({...})

4 export class ListComponent implements OnInit {

5

6 @Input()

7 title = 'List Title';

8

9 ...

10 }

Next, update the component HTML template to display the “title” value, and also the “ng-content”
component to render any other components or HTML elements the end developers provide:

³⁰https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/component-queries

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/component-queries
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/component-queries
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/component-queries

Components 127

src/app/list/list.component.html

1 <div>{{ title }} </div>

2 <ng-content></ng-content>

Nowyou can declare a List element in themain application component template, and also put several
ListItem components inside its tags:

src/app/app.component.html

1 <app-list>

2 <app-list-item></app-list-item>

3 <app-list-item></app-list-item>

4 <app-list-item></app-list-item>

5 </app-list>

At runtime, the code above should give you the following output on the main page:

@ViewChild

The @ViewChild decorator allows you to retrieve and reference the component or directive from the
current component View.

For example, the main application component can gain access to the List component we have defined
in its HTML template, and modify properties of the component instance from the code. To do that
we need to use a @ViewChild decorator with the target type. You can access the property decorated
with the @ViewChild only after component’s View initialises. The “AfterViewInit” interface and
corresponding method is the most appropriate place for that.

Components 128

src/app/app.component.ts

1 import { ..., ViewChild, AfterViewInit } from '@angular/core';

2 import { ListComponent } from './list/list.component';

3

4 @Component({...})

5 export class AppComponent implements AfterViewInit {

6

7 @ViewChild(ListComponent)

8 list: ListComponent;

9

10 ngAfterViewInit() {

11 this.list.title = 'custom list title';

12 }

13 }

In the code snippet above, we change the title of the child List component from code. Switch to the
browser running your application, and you should see the following:

The component query is not limited to the target type reference. You can also use local references
and use string identifiers, for example, mark the List with the “myList” id:

src/app/app.component.html

1 <app-list #myList>

2 ...

3 </app-list>

Now you can use this id with the “@ViewChild” decorator if needed:

Components 129

src/app/app.component.ts

1 @Component({...})

2 export class AppComponent implements AfterViewInit {

3

4 @ViewChild('myList')

5 list: ListComponent;

6

7 ...

8 }

@ViewChildren

If you declare more than one List component, you should notice that every time only the first
instance is fetched. To get a reference to all the child instances of the particular component type
you need to use a @ViewChildren decorator.

Let’s have two List components separated by a horizontal line like in the example below:

src/app/app.component.html

1 <app-list>

2 <app-list-item></app-list-item>

3 <app-list-item></app-list-item>

4 <app-list-item></app-list-item>

5 </app-list>

6

7 <hr>

8

9 <app-list>

10 <app-list-item></app-list-item>

11 <app-list-item></app-list-item>

12 <app-list-item></app-list-item>

13 </app-list>

Now create a “lists” property in the underlying component class to reference all “ListComponent”
instances after View gets initialised:

Components 130

src/app/app.component.ts

1 import { ..., QueryList, ViewChildren } from '@angular/core';

2 import { ListComponent } from './list/list.component';

3

4 @Component({...})

5 export class AppComponent implements AfterViewInit {

6

7 @ViewChild(ListComponent)

8 list: ListComponent;

9

10 @ViewChildren(ListComponent)

11 lists: QueryList<ListComponent>;

12

13 ...

14 }

For the next step, we are going to update “title” property of every List component in the View:

src/app/app.component.ts

1 import { ..., AfterViewInit, QueryList, ViewChildren } from '@angular/core';

2 import { ListComponent } from './list/list.component';

3

4 @Component({...})

5 export class AppComponent implements AfterViewInit {

6 ...

7

8 @ViewChildren(ListComponent)

9 lists: QueryList<ListComponent>;

10

11 ngAfterViewInit() {

12 let i = 0;

13 this.lists.forEach(l => {

14 l.title = 'Custom title #' + (i++);

15 });

16 }

17 }

Switch back to the browser and once the application compiles and restarts you should see the
following:

Components 131

ViewChildren Queries

@ContentChild

The@ViewChild provides access only to components and directives that are part of the view but not
inside the “ng-content” tags. You need to use @ContentChild decorator to work with the elements
inside “ng-content” container.

If you remember, the List component template already features the “ng-template”:

src/app/list/list.component.html

1 <div>{{ title }} </div>

2 <ng-content></ng-content>

Update the ListItemComponent component class with the “title” property like in the following
example:

src/app/list-item/list-item.component.ts

1 ...

2

3 @Component({...})

4 export class ListItemComponent {

5

6 title = 'list-item works!';

7

8 }

For the sake of simplicity just replace the content of the ListItem component template with the next
block of HTML:

Components 132

src/app/list-item/list-item.component.html

1 <p>

2 {{ title }}

3 </p>

For a start, let’s access the very first entry of the List content collection by introducing a
“firstListItem” property decorated with the @ContentChild. As soon as component content gets
initialised, we are going to update the title of the referenced item.

src/app/list/list.component.ts

1 import { ..., ContentChild, AfterContentInit } from '@angular/core';

2 import { ListItemComponent } from '../list-item/list-item.component';

3

4 @Component({...})

5 export class ListComponent implements AfterContentInit {

6 ...

7

8 @ContentChild(ListItemComponent)

9 firstListItem: ListItemComponent;

10

11 ngAfterContentInit() {

12 this.firstListItem.title = 'first item';

13 }

14 }

Note that your component now needs to implement the “AfterContentInit” interface and have the
corresponding “ngAfterContentInit” method implementation. That is the most recommended place
to work with the elements provided using the @ContentChild decorator.

Switch to the browser, and you should now look the following on the main page:

Components 133

ContentChild Query

@ContentChildren

Similar to the @ViewChild, the @ContentChild decorator always returns the first found element if
there aremore than one declared in the Component View. You are going to need a@ContentChildren
decorator if you intend working with all the instances.

src/app/list/list.component.ts

1 import { ..., ContentChildren, QueryList } from '@angular/core';

2 import { ListItemComponent } from '../list-item/list-item.component';

3

4 @Component({...})

5 export class ListComponent implements AfterContentInit {

6 ...

7

8 @ContentChildren(ListItemComponent)

9 listItems: QueryList<ListItemComponent>;

10

11 ngAfterContentInit() {

12 this.listItems.forEach(item => {

13 item.title = item.title + ' (' + new Date().toLocaleDateString() + ')';

14 });

15 }

16 }

The example above should already be familiar to you. We have just updated every item in the list
by changing its title. The main page in the browser should be looking similar to the following one:

Components 134

ContentChildren Query

Listening for View and Content changes

So with @ContentChild, @ContentChildren, @ViewChild and @ViewChildren decorators we can
import and manipulate elements and components in the controller class.

But what if developer applies conditional visibility to the layout entries like in the example below?

1 <app-list>

2 <app-list-item *ngIf="showFirstItem"></app-list-item>

3 <app-list-item></app-list-item>

4 <app-list-item></app-list-item>

5 </app-list>

As we already know, based on the “ngIf state”, the Angular will remove a corresponding element
from the DOM, or add it back. There are many scenarios, however, when your component controller
needs to know about such changes. For example, imagine a “DataTable” component that uses child
components to define column structure, but then turns developer-defined view or content elements
to some internal representation. The component must always know what is the “visible” part of the
layout to work with.

Let’s now extend our previous “ViewChildren” example with an extra flag to toggle visibility of the
first list entry. We will add a “showFirstItem” property, and a button that changes the property value
on each click.

Components 135

src/app/app.component.ts

1 export class AppComponent implements AfterViewInit {

2

3 showFirstItem = true;

4

5 ...

6 }

Next, append the following block to the component template:

src/app/app.component.html

1 <hr>

2

3 <button (click)="showFirstItem = !showFirstItem">

4 Toggle first item

5 </button>

We have declared two List components in the previous examples. Let’s now wire the first entry of
each of the components with the “showFirstItem” condition like in the example below:

src/app/app.component.html

1 <app-list>

2 <app-list-item *ngIf="showFirstItem"></app-list-item>

3 <app-list-item></app-list-item>

4 <app-list-item></app-list-item>

5 </app-list>

6

7 <hr>

8

9 <app-list>

10 <app-list-item *ngIf="showFirstItem"></app-list-item>

11 <app-list-item></app-list-item>

12 <app-list-item></app-list-item>

13 </app-list>

14

15 <hr>

16

17 <button (click)="showFirstItem = !showFirstItem">

18 Toggle first item

19 </button>

Components 136

If you run the application now, you will see every first item appear and disappear from the list each
time you click the “Toggle first item” buttons. We have just emulated the situation when layout
changes based on the external criteria. But how does the component now react on those changes?

The “QueryList” class exposes a special “changes” property of the “Observable<any>” type that can
help us watch for the layout changes and achieve the desired behaviour.

Now you can update the ListComponent implementation and add a simple change tracking code
like in the following example:

src/app/list/list.component.ts

1 @Component({...})

2 export class ListComponent implements AfterContentInit {

3

4 ...

5

6 ngAfterContentInit() {

7 ...

8

9 this.listItems.changes.subscribe(() => {

10 console.log(

11 `List content changed and has now ${this.listItems.length} items.`

12);

13 });

14 }

15 }

Please run the application once again and click the “Toggle first item” button a few times. Alongside
the element being added to and removed from the page, you will see the following console output:

1 List content changed and has now 2 items.

2 List content changed and has now 2 items.

3 List content changed and has now 3 items.

4 List content changed and has now 3 items.

5 List content changed and has now 2 items.

6 List content changed and has now 2 items.

We have two instances of the ListComponent declared in the application component template. And
both lists have its first element wired with conditional visibility expression. That is why you will
see messages from both components in the browser console output window.

As you can see, subscribing and listening to “QueryList<T>.change” events gives you an ability to
react on layout changes and perform extra behaviours at the component level.

Components 137

Component Lifecycle

Angular supports multiple lifecycle events for components, directives and services.

For the Components, the Angular invokes the following methods at runtime, in the order of
execution:

• ngOnChanges
• ngOnInit
• ngDoCheck
• ngAfterContentInit
• ngAfterContentChecked
• ngAfterViewInit
• ngAfterViewChecked
• ngOnDestroy

As Directives do not have UI templates, they get the following set of lifecycle methods supported
out of the box:

• ngOnChanges
• ngOnInit
• ngDoCheck
• ngOnDestroy

Finally, the Services get the next methods:

• ngOnDestroy

Every method represents a separate interface in the @angular/core namespace and contains a “ng”
prefix appended to the interface name. For example, the “OnInit” interface declares a “ngOnInit”
method, and so on. We are going to dive deeper into details on each method and interface below.

Technically, the interfaces for the lifecycle events are optional. The Angular is going to call those
events in any case, and if the corresponding methods are present, they get automatically invoked. It
is a good practice, however, to still expose those interfaces in your classes to enable static checks by
TypeScript.

You can find additional information on the lifecycle events in the following official docs: Lifecycle
Hooks³¹

Source code
You can find the source code as an Angular CLI project in the “angular/components/lifecy-
cle³²” folder.

³¹https://angular.io/guide/lifecycle-hooks#component-lifecycle-hooks-overview
³²https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/lifecycle

https://angular.io/guide/lifecycle-hooks#component-lifecycle-hooks-overview
https://angular.io/guide/lifecycle-hooks#component-lifecycle-hooks-overview
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/lifecycle
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/lifecycle
https://angular.io/guide/lifecycle-hooks#component-lifecycle-hooks-overview
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/lifecycle

Components 138

ngOnChanges

The “ngOnChanges” method is related to the “OnChanges” hook. Angular calls it every time an
input property of the component or directive gets changed.

You can find the code of the interface below:

interface OnChanges {

ngOnChanges(changes: SimpleChanges): void;

}

Let’s create a new Angular CLI project and generate an “on-changes-demo” component to see the
“OnChanges” hook in action.

ng g component on-changes-demo

To visualise the property change, we need two properties to store the current and old values. The
“text” property stores current string value and is decorated with the @Input to enable two-way
bindings with template components, or external input. The “previous” property provides the one-
way binding support to display the old string.

src/app/on-changes-demo/on-changes-demo.component.ts

1 import { Component, Input } from '@angular/core';

2

3 @Component({

4 selector: 'app-on-changes-demo',

5 templateUrl: './on-changes-demo.component.html',

6 styleUrls: ['./on-changes-demo.component.css']

7 })

8 export class OnChangesDemoComponent {

9

10 @Input()

11 text = 'hello world';

12

13 previous: string;

14

15 }

Now that we have a code defined, the minimal component implementation can look like in the
following example:

Components 139

src/app/on-changes-demo/on-changes-demo.component.html

1 <p>

2 Text: {{ text }}

3

4 Previous: {{ previous }}

5 </p>

At this point, we are ready to implement “OnChanges” interface from the “@angular/core” package.
Your “ngOnChanges” method can look like the next one:

src/app/on-changes-demo/on-changes-demo.component.ts

1 import { ..., OnChanges, SimpleChanges } from '@angular/core';

2

3 @Component({...})

4 export class OnChangesDemoComponent implements OnChanges {

5

6 @Input()

7 text = 'hello world';

8

9 previous: string;

10

11 ngOnChanges(changes: SimpleChanges) {

12 if (changes.text) {

13 this.previous = changes.text.previousValue;

14 }

15 }

16

17 }

As you already know, the Angular keeps track of all property changes. In our current case, the
framework collects the changes made to the “OnChangesDemoComponent” component properties
and, wraps into a special “SimpleChanges” map and passes to the corresponding hook method.

interface SimpleChanges {

[propName: string]: SimpleChange;

}

Every value of the “SimpleChanges” map implements a “SimpleChange” interface with at least the
following properties and methods:

• previousValue: any;

Components 140

• currentValue: any;
• firstChange: boolean;
• isFirstChange(): boolean;

As you can see the “SimpleChange” API allows you to inspect the current and previous values, as
well as to check whether this is the first time the particular property gets changed. The “firstChange”
property allows you to distinguish between setting default property value within the class initialiser
as opposed to the changes caused by user interaction or runtime changes.

Now let’s use our newly created component with the main application one. The simple way to test
value changes is to bind an input element to the “text” property like in the example below:

src/app/app.component.html

1 <input [(ngModel)]="text">

2 <app-on-changes-demo [text]="text"></app-on-changes-demo>

Note that you are going to need an extra “text” property for the application component controller
class:

src/app/app.component.ts

1 import { Component, Input } from '@angular/core';

2

3 @Component({

4 selector: 'app-root',

5 templateUrl: './app.component.html',

6 styleUrls: ['./app.component.css']

7 })

8 export class AppComponent {

9

10 @Input()

11 text: string;

12

13 }

Run the application with the “ng serve –open” command and try typing text in the main page. Notice
that our component displays both old and new values as you type them into the input element.

OnChanges example

Components 141

ngOnInit

The “OnInit” is the most common lifecycle hook. You are probably going to use it a lot in your
custom components.

It is a good practice to perform component initialisation in the “ngOnInit” method and not in the
constructor. Angular invokes the “ngOnInit” after the construction and once all input properties set,
so you can setup your component based on the property values from the outside.

You can find the code of the interface below:

interface OnInit {

ngOnInit(): void;

}

In the same project, we created earlier, generate a new “on-init-demo” component with the following
command:

ng g component on-init-demo

Next, define a property “currentDate” of the “Date” type, and set its value in the “ngOnInit” method
like in the following example:

src/app/on-init-demo/on-init-demo.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-on-init-demo',

5 templateUrl: './on-init-demo.component.html',

6 styleUrls: ['./on-init-demo.component.css']

7 })

8 export class OnInitDemoComponent implements OnInit {

9

10 currentDate: Date;

11

12 constructor() { }

13

14 ngOnInit() {

15 this.currentDate = new Date();

16 }

17

18 }

Update the component template to render the value of the “currentDate”:

Components 142

src/app/on-init-demo/on-init-demo.component.html

1 <p>

2 Date: {{ currentDate }}

3 </p>

Given that we do not have any input properties, the main application component template can
contain just the empty tag. Append the following code to the existing template HTML:

src/app/app.component.html

1 ...

2

3 <hr>

4 <h2>ngOnInit</h2>

5

6 <app-on-init-demo></app-on-init-demo>

If you run the application right now, you should see current date and time with default string
formatting:

Let’s now try creating the component multiple times on the fly to see the “ngOnInit” method calls
in practice.

We can wrap our custom “OnInitDemoComponent” with the “ng-container” element decorated by
the “ngIf” directive. Add a new “showNgOnInit” property of the “boolean” type to the component
controller class, and bind the checkbox to toggle component at runtime:

src/app/app.component.ts

1 @Component({...)

2 export class AppComponent {

3

4 ...

5

6 showNgOnInit = true;

7

8 }

Update the application controller template to look like the following code:

Components 143

src/app/app.component.html

1 ...

2

3 <hr>

4 <h2>ngOnInit</h2>

5

6 <label>

7 <input type="checkbox" [(ngModel)]="showNgOnInit">

8 Toggle ngOnInit demo

9 </label>

10

11 <ng-container *ngIf="showNgOnInit">

12 <app-on-init-demo></app-on-init-demo>

13 </ng-container>

ngModel
Don’t forget that you need to import “FormsModule” for your root application module to be
able to use “ngModel” with components.

Now, every time you tick the checkbox element a new “OnInitDemoComponent” is created and
displayed, and a new date value assigned by the “ngOnInit” method.

As you can imagine, we used a pretty basic scenario for component setup. In real life, your “ngOnInit”
content might be more complicated.

ngDoCheck

The “DoCheck” hook allows you to integrate into the change detection cycle and find changes within
the objects references or any areas where Angular did not detect changes automatically.

You can find the code of the interface below:

Components 144

interface DoCheck {

ngDoCheck(): void;

}

Performance Penalty
Please keep in mind that, depending on the component tree size and complexity, the
“ngDoCheck” method is going to execute enormous amount of times and may become
a performance bottleneck if you poorly implement the code. Avoid using “ngDoCheck”
method unless necessary.

When using properties of the object type, the Angular is going to watch the changes by value
reference, meaning detects the change of the entire value, but not the changes in the child properties.
That is the case where we are going to use “DoCheck” lifecycle hook and detect changes in the object.

For the next exercise, we need a new component called “DoCheckDemoComponent” that you can
generate using the following command:

ng g component do-check-demo

Let’s integrate it into the main application template now to save the time later. Append the next
HTML snippet to the content of the component template:

src/app/app.component.html

1 ...

2 <hr>

3 <h2>ngDoCheck</h2>

4 <app-do-check-demo></app-do-check-demo>

Next, we need an object value and custom properties. For the sake of simplicity let’s create a “User”
object featuring first and last names as separate properties. The component should have “current”
and “previous” values to facilitate property checks.

Components 145

src/app/do-check-demo/do-check-demo.component.ts

1 import { Component, Input, DoCheck } from '@angular/core';

2

3 @Component({

4 selector: 'app-do-check-demo',

5 templateUrl: './do-check-demo.component.html',

6 styleUrls: ['./do-check-demo.component.css']

7 })

8 export class DoCheckDemoComponent implements DoCheck {

9

10 currentUser = {

11 firstName: 'John',

12 lastName: 'Doe'

13 };

14

15 previousUser = {

16 firstName: '',

17 lastName: ''

18 };

19

20 ngDoCheck() {

21 }

22

23 }

For the first iteration leave the “ngDoCheck” method empty and switch to the component template.
Our component needs to display values for both current and previous property values.

src/app/do-check-demo/do-check-demo.component.html

1 <p>

2 Current user: {{ currentUser.firstName + ' ' + currentUser.lastName }}

3

4 Previous user: {{ previousUser.firstName + ' ' + previousUser.lastName }}

5 </p>

You can run the application and check that component works as expected. The main page should
contain the full name of the user stored in the “currentUser” property. The text for the “previousUser”
property should be empty because we have not yet changed anything.

Components 146

As mentioned earlier, Angular calls “DoCheck” many times based on the change detection cycle. To
see that in practice, let’s introduce a new field “checks” that should hold a count of checks performed
for our component. We are going to increment this field every time the “ngDoCheck” get called.

Next, we create a field “updates” to hold a count of “currentUser” updates detected by our custom
“ngDoCheck” implementation. Themethod checks both “firstName” and “lastName” property values
and updates the counter, in addition to setting a new instance of the “previousUser” value.

Finally, let’s introduce an “Update user” button that changes the value of the current user and so
triggers the change detection cycle and our custom checks. The button calls “updateUser” method
upon every click.

Below is the implementation of all the mentioned class members and behaviour:

src/app/do-check-demo/do-check-demo.component.ts

1 @Component({...})

2 export class DoCheckDemoComponent implements DoCheck {

3

4 currentUser = {

5 firstName: 'John',

6 lastName: 'Doe'

7 };

8

9 previousUser = {

10 firstName: '',

11 lastName: ''

12 };

13

14 checks = 0;

15 updates = 0;

16

17 updateUser() {

18 this.currentUser = {

19 firstName: 'James',

20 lastName: 'Bond'

21 };

22 }

23

24 ngDoCheck() {

Components 147

25 this.checks ++;

26 if (this.previousUser.firstName !== this.currentUser.firstName

27 || this.previousUser.lastName !== this.currentUser.lastName) {

28 this.updates ++;

29 this.previousUser = Object.assign({}, this.currentUser);

30 }

31 }

32

33 }

Now, edit the component HTML template to add necessary labels and a button to update the
underlying user.

src/app/do-check-demo/do-check-demo.component.html

1 <p>

2 Current user: {{ currentUser.firstName + ' ' + currentUser.lastName }}

3

4 Previous user: {{ previousUser.firstName + ' ' + previousUser.lastName }}

5 </p>

6

7 <p>

8 Checks: {{ checks }}

9 Updates: {{ updates }}

10 <button (click)="updateUser()">Update user</button>

11 </p>

Run the application or switch to the corresponding browser tab if it is already running. You should
see something like the following:

Now click the “Update user” button one time and check that both counters got incremented.

Components 148

If you continue clicking the button, you should notice that “checked” counter keeps incrementing.
Note that it increments even if you click some other buttons or clickable Angular components. That
demonstrates that our custom component reacts on change detection cycle managed by Angular,
and increments the counter as designed.

The “update” counter, however, should remain the same. That is obvious as we change the values of
the user only once.

ngAfterContentInit

The “ngAfterContentInit” method belongs to the “AfterContentInit” hook in Angular, and is part of
the “Content Projection” feature.

Angular raises “AfterContentInit” every time an injected child component gets initialised and is
ready for use and access from the code if needed.

Content Projection
Content projection is the process of injection of the external HTML content and other An-
gular components into the body of your component template. You can get more information
in the Content Projection section later in this chapter.

You can find the code of the interface below:

Components 149

interface AfterContentInit {

ngAfterContentInit(): void;

}

As all in all previous cases, let’s start by generating a separate component to experiment with the
hook:

ng g component after-content-init-demo

For our exercise, we do not need “constructor” and “OnInit” implementation. You can clean the
component class and replace with the “AfterContentInit” interface implementation.

src/app/after-content-init-demo/after-content-init-demo.component.ts

1 import { Component, AfterContentInit } from '@angular/core';

2

3 @Component({...})

4 export class AfterContentInitDemoComponent implements AfterContentInit {

5

6 ngAfterContentInit() {

7 }

8

9 }

The “ng-content” element is going to be an injection point for external content. Update the
component template to look like the following markup:

src/app/after-content-init-demo/after-content-init-demo.component.html

1 Projected content below:

2 <div>

3 <ng-content></ng-content>

4 </div>

We now need to generate a second component to test the Angular lifecycle hook.

ng g component after-content-init-child

You can clean the component class code as we need just a default implementation.

Components 150

src/app/after-content-init-child/after-content-init-child.component.ts

1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'app-after-content-init-child',

5 templateUrl: './after-content-init-child.component.html',

6 styleUrls: ['./after-content-init-child.component.css']

7 })

8 export class AfterContentInitChildComponent {

9 }

Also, the default component template should work fine as well. The Angular CLI usually generates
a “<component> works!” label out of the box.

src/app/after-content-init-child/after-content-init-child.component.html

1 <p>

2 after-content-init-child works!

3 </p>

Finally, let’s extend the main application template with the testing parent-child hierarchy with
our newly introduced components. Just append the following HTML snippet to existing template
markup.

src/app/app.component.html

1 ...

2 <hr>

3 <h2>ngAfterContentInit</h2>

4

5 <app-after-content-init-demo>

6

7 <app-after-content-init-child>

8 </app-after-content-init-child>

9

10 </app-after-content-init-demo>

Serve the application with “ng serve –open” command or switch to a running one in the browser.
You should see the next layout at the bottom of your page:

Components 151

Typically you are going to use “AfterContentInit” hook with the @ContentChild decorator. While
we use the “ngAfterContentInit” to detect when an injected component finished initialising, the
“ContentChild” allows getting references to the component instance.

Please refer to the example below to get a better understanding of how both APIs work together.

src/app/after-content-init-demo/after-content-init-demo.component.ts

1 import {

2 Component, OnInit,

3 AfterContentInit, ContentChild } from '@angular/core';

4 import {

5 AfterContentInitChildComponent

6 } from '../after-content-init-child/after-content-init-child.component';

7

8 @Component({...})

9 export class AfterContentInitDemoComponent implements AfterContentInit {

10

11 @ContentChild(AfterContentInitChildComponent)

12 child: AfterContentInitChildComponent;

13

14 ngAfterContentInit() {

15 console.log('AfterContentInit:', this.child);

16 }

17

18 }

Once you run your application and open the developer tools, you should see the following content
in the browser console output:

At this point, your parent component can perform additional setup for the child one, like changing
properties, subscribing to events or calling methods.

Components 152

ngAfterContentChecked

The “ngAfterContentChecked” method belongs to the “AfterContentChecked” interface in Angular,
and is part of the “Content Projection” feature.

The “AfterContentChecked” lifecycle hook allows you to provide a custom mechanism for checking
changes in the projected components. The behaviour is similar to the “DoCheck” but applied to the
components that are part of the “ng-content” container.

Content Projection
Content projection is the process of injection of the external HTML content and other An-
gular components into the body of your component template. You can get more information
in the Content Projection section later in this chapter.

You can find the code of the interface below:

interface AfterContentChecked {

ngAfterContentChecked(): void;

}

Let’s use the same “AfterContentInitDemoComponent” we created earlier. For the sake of simplicity,
we are going to add the “checked” counter field and update it on every change detection cycle.

src/app/after-content-init-demo/after-content-init-demo.component.ts

1 import { ..., AfterContentChecked } from '@angular/core';

2 ...

3

4 @Component({...})

5 export class AfterContentInitDemoComponent implements AfterContentInit, AfterContent\

6 Checked {

7

8 checked = 0;

9

10 ...

11

12 ngAfterContentChecked() {

13 this.checked ++;

14 }

15

16 }

Update the component template to also display the “checked” counter after the projected content.

Components 153

src/app/after-content-init-demo/after-content-init-demo.component.html

1 Projected content below:

2 <div>

3 <ng-content></ng-content>

4 </div>

5 <div>

6 Checked (times): {{ checked }}

7 </div>

Once your application starts or reloads, the bottom of the page should look similar to the following:

Please note that the counter is going to update multiple times even if you interact with some other
components or elements on the page. You should keep the code inside “ngAfterContentChecked”
method body fast and small not to introduce a performance bottleneck for the entire application.

ngAfterViewInit

Angular invokes the “ngAfterViewInit” hook once the view of the component is ready. That also
includes the child components that may be part of the template. You can access child instance
members and perform additional tasks in the code, for example changing properties or subscribing
to events.

You can find the code of the interface below:

interface AfterViewInit {

ngAfterViewInit(): void;

}

Let’s introduce a basic scenario that requires us to access view elements and update their properties.
We are going to have two buttons in the component template that have no text, and once the view
gets initialised our component should update the text of each button.

We need a separate “AfterViewInitDemoComponent” component that gets generated with the next
Angular CLI command:

Components 154

ng g component after-view-init-demo

Import and implement the “AfterViewInit” interface from the “@angular/core” package. The
“ngAfterViewInit” method can be blank for now, and we are going to implement it shortly.

src/app/after-view-init-demo/after-view-init-demo.component.ts

1 import { Component, OnInit, AfterViewInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-after-view-init-demo',

5 templateUrl: './after-view-init-demo.component.html',

6 styleUrls: ['./after-view-init-demo.component.css']

7 })

8 export class AfterViewInitDemoComponent implements AfterViewInit {

9

10 ngAfterViewInit() {

11 }

12

13 }

Next, add two buttons to the template. Each of the button needs to have a template reference id so
that our component class can access each button using “prevPageButton” and “nextPageButton” id
values.

src/app/after-view-init-demo/after-view-init-demo.component.html

1 <div>

2 after-view-init-demo works!

3 <div>

4 <button #prevPageButton></button>

5 <button #nextPageButton></button>

6 </div>

7 </div>

As a next step, declare the newly generated component within the main application template by
appending the following code to the existing markup:

Components 155

src/app/app.component.html

1 ...

2 <hr>

3 <h2>ngAfterViewInit</h2>

4 <app-after-view-init-demo></app-after-view-init-demo>

Serve the application right now and ensure the component renders its template with a default label
and two buttons with missing labels as in the picture below:

You also need importing the ViewChild decorator type. This decorator is used to get a reference to
the native element of the component template.

Also, create two separate properties “prevButton” and “nextButton” or the “ElementRef” type. Every
“ElementRef” instance exposes a “nativeElement” property that you can use to access the DOM
element, in our case HTML button inputs. The component sets the “innerText” values for both
buttons inside the “ngAfterViewInit” method body like in the next example:

src/app/after-view-init-demo/after-view-init-demo.component.ts

1 import { ..., ViewChild, ElementRef } from '@angular/core';

2

3 @Component({...})

4 export class AfterViewInitDemoComponent implements AfterViewInit {

5

6 @ViewChild('prevPageButton')

7 prevButton: ElementRef;

8

9 @ViewChild('nextPageButton')

10 nextButton: ElementRef;

11

12 ngAfterViewInit() {

13 this.prevButton.nativeElement.innerText = 'Left Page';

14 this.nextButton.nativeElement.innerText = 'Right Page';

15 }

16

17 }

This time, when you run the application, both buttons should have correct labels:

Components 156

The “AfterViewInit” is usually used to modify the behaviour of the view elements once the
corresponding component is ready.

ngAfterViewChecked

The “ngAfterViewChecked” method represents the “AfterViewChecked” lifecycle hook and inter-
face. It allows you to provide custom change tracking that is not handled by Angular due to some
reason. The behaviour is similar to the AfterContentChecked hook but applies to the view template
children rather than projected content.

You can find the code of the interface below:

interface AfterViewChecked {

ngAfterViewChecked(): void;

}

As with previous examples, let’s introduce a “checked” field to hold the number of checks, and use
the previous component with two buttons to demonstrate the lifecycle hook in practice.

src/app/after-view-init-demo/after-view-init-demo.component.ts

1 import { ..., AfterViewChecked } from '@angular/core';

2

3 @Component({...})

4 export class AfterViewInitDemoComponent implements AfterViewInit, AfterViewChecked {

5

6 checked = 0;

7

8 ...

9

10 ngAfterViewChecked() {

11 this.checked ++;

12 }

13

14 }

Don’t forget to update the component template by appending the label like in the next snippet:

Components 157

src/app/after-view-init-demo/after-view-init-demo.component.html

1 ...

2 <div>

3 Checked (times): {{ checked }}

4 </div>

Now run the application and try clicking the buttons. You should notice that the counter updates
every time you interact with the button inside the component template, or any other Angular
component on the page.

Needless to say that your custom change tracking code should be highly optimised and run fast.
Otherwise, you risk getting a performance bottleneck.

ngOnDestroy

The “OnDestroy” lifecycle hook provides you with a way to run cleanup operations for your
component, directive or service to reduce resources and avoid potential memory leaks.

If your component controller subscribes to various event handlers, the “ngOnDestroy” method is
the most appropriate place to tear down all event subscriptions.

You can find the code of the interface below:

interface OnDestroy {

ngOnDestroy(): void;

}

Let’s generate a new component to see how “OnDestroy” hook works in practice. We are going to
produce two log entries for the browser console log, one during the “OnInit” call and one for the
“OnDestroy”.

1 ng g component on-destroy-demo

Components 158

src/app/on-destroy-demo/on-destroy-demo.component.ts

1 import { Component, OnInit, OnDestroy } from '@angular/core';

2

3 @Component({

4 selector: 'app-on-destroy-demo',

5 templateUrl: './on-destroy-demo.component.html',

6 styleUrls: ['./on-destroy-demo.component.css']

7 })

8 export class OnDestroyDemoComponent implements OnInit, OnDestroy {

9

10 constructor() { }

11

12 ngOnInit() {

13 console.log('OnInit');

14 }

15

16 ngOnDestroy() {

17 console.log('OnDestroy');

18 }

19

20 }

Next, declare a “showNgOnDestroy” property for the main application component class to control
the visibility of our generated component.

src/app/app.component.ts

1 @Component({...})

2 export class AppComponent {

3 ...

4

5 showNgOnDestroy = true;

6

7 }

For the last step, declare a checkbox with the label to control the value of the “showNgOnDestroy”
property, and a “ng-container” element that wraps the “app-on-destroy-demo”.

Components 159

src/app/app.component.html

1 ...

2 <hr>

3 <h2>ngOnDestroy</h2>

4 <label>

5 <input type="checkbox" [(ngModel)]="showNgOnDestroy">

6 Toggle ngOnDestroy demo

7 </label>

8

9 <ng-container *ngIf="showNgOnDestroy">

10 <app-on-destroy-demo></app-on-destroy-demo>

11 </ng-container>

At runtime, the component should look like the following once the application starts:

As soon as you untick the checkbox, the Angular is going to tear down the component that should
no longer be on the page and call the “ngOnDestroy” method.

Open the development tools for your current browser and try clicking the checkbox multiple times.
The console output should look like the one below:

Cleaning up subscriptions

Also, the OnDestroy event is also used to cleanup subscriptions to external service or component
events. It is very important to unsubscribe from all the events to prevent memory leaks and
performance degradation.

Let’s take an example of a service that exposes multiple events.

Components 160

src/app/on-destroy-demo/simple.service.ts

1 import { Injectable } from '@angular/core';

2 import { Subject } from 'rxjs/Subject';

3

4 @Injectable()

5 export class SimpleService {

6

7 loaded = new Subject();

8 changed = new Subject();

9 somethingElse = new Subject();

10

11 }

We use dependency injection to get an instance of this service injected into the component
constructor. And we use the “OnInit” hook to set up the event handlers.

src/app/on-destroy-demo/on-destroy-demo.component.ts

1 @Component({...})

2 export class OnDestroyDemoComponent implements OnInit, OnDestroy {

3

4 constructor(private service: SimpleService) {}

5

6 ngOnInit() {

7 this.service.loaded.subscribe(() => {

8 // handle event

9 });

10 this.service.changed.subscribe(() => {

11 // handle event

12 });

13 }

14

15 ngOnDestroy() {

16 // ...

17 }

18 }

It is sometimes difficult to spot the problem in such an approach, but we may get a memory leak
with the code above. The issue is that the service we inject is a singleton one, and Angular keeps its
instance somewhere. It also means that now service instance will keep a reference to our component
alive due to the event handler and subscription. That is whywe need to clean all subscriptions during
destroy phase.

Components 161

When using Observables, you get an instance of the Subscription each time you call “subscribe”
method of the “Observable” or “Subject”.

Subscription
Represents a disposable resource, such as the execution of an Observable. Subscription has
one important method, unsubscribe, that takes no argument and just disposes the resource
held by the subscription.

The easiest way to processmultiple subscriptions is to use them in bulk, wrapping into a private array
variable. That saves a lot of time and prevents issues related to missed variables or “unsubscribe”
calls.

First, let’s create a private property “subscriptions” of the array type that will hold all our
subscriptions to external events.

1 @Component({...})

2 export class OnDestroyDemoComponent implements OnInit, OnDestroy {

3

4 private subscriptions: Subscription[] = [];

5

6 }

Now you can push multiple subscriptions into the array like in the next example:

1 @Component({...})

2 export class OnDestroyDemoComponent implements OnInit, OnDestroy {

3

4 private subscriptions: Subscription[] = [];

5

6 constructor(private service: SimpleService) {}

7

8 ngOnInit() {

9 this.subscriptions.push(

10 this.service.loaded.subscribe(() => {

11 // handle event

12 }),

13 this.service.changed.subscribe(() => {

14 // handle event

15 }),

16 this.service.somethingElse.subscribe(() => {

17 // handle event

18 })

Components 162

19);

20 }

21

22 ngOnDestroy() {

23 // ...

24 }

25

26 }

Keeping all subscriptions in one place makes it easy to cleanup them in bulk when Angular invokes
“ngOnDestroy” life-cycle hook.

1 @Component({...})

2 export class OnDestroyDemoComponent implements OnInit, OnDestroy {

3

4 private subscriptions: Subscription[] = [];

5

6 constructor(private service: SimpleService) {}

7

8 ngOnInit() {...}

9

10 ngOnDestroy() {

11 this.subscriptions.forEach(s => s.unsubscribe());

12 this.subscriptions = [];

13 }

14

15 }

Do not forget about the technique above when dealing with subscriptions. It should prevent memory
leaks and performance issues when the component is re-created or gets destroyed.

Content Projection

The process of adding custom content into the existing components without rebuilding them is often
called content projection.

ng-container directive

In most cases when using structural directives or components you are dealing with an extra DOM
element that serves as a root one. There are scenarios, however, when you will want to have raw
content emitted at run-time, with no wrapping elements.

The “ng-container” directive allows you to group single or multiple elements and components
producing no HTML output.

Components 163

1 <ng-container>

2 <!-- Your content comes here -->

3 </ng-container>

Let’s take a simple repeater example and render a sequence of strings wrapped with a div element
and compare the same solution with ng-container use case.

First, take any existing, or generate a new Angular application using Angular CLI tools. Create an
“items” property with a set of strings values so you can use that property with the “*ngFor” directive.

src/app/app.component.ts

1 import { Component } from '@angular/core';

2

3 @Component({...})

4 export class AppComponent {

5 items = ['One', 'Two', 'Three', 'Four'];

6 }

Next, update the component template and append the following code:

src/app/app.component.html

1 <h2>Using container element</h2>

2 <div *ngFor="let item of items">

3 {{ item }}

4 </div>

Once you run the application, the main page should contain a header element and a list of strings
like following:

1 Using container element

2

3 One

4 Two

5 Three

6 Four

If you now look at the generated HTML (right-clicking on the list and using “Inspect Element” menu
item), you will see something like in the following example:

Components 164

1 <h2 _ngcontent-c69="">Using container element</h2>

2 <!--bindings={

3 "ng-reflect-ng-for-of": "One,Two,Three,Four"

4 }-->

5 <div _ngcontent-c69="">

6 One

7 </div><div _ngcontent-c69="">

8 Two

9 </div><div _ngcontent-c69="">

10 Three

11 </div><div _ngcontent-c69="">

12 Four

13 </div>

Note that every string is wrapped with the “div” element. That is what we will now try to avoid by
using ng-container directive.

For comparison, let’s leave the exiting layout as it is now, and append a new block at the bottom
with the following code.

src/app/app.component.html

1 <h2>Using ng-container</h2>

2 <ng-container *ngFor="let item of items">

3 {{ item }}

4 </ng-container>

That is the same code, but we replaced “div” element with the “ng-container” one. At run-time,
however, the result should look different.

1 Using ng-container

2

3 One Two Three Four

Note that repeated values are now forming a string rather than a vertical list. If you now check the
source code, you will see that there are no additional elements on the page. Angular replaces them
with the HTML comments instead.

Components 165

1 <h2 _ngcontent-c69="">Using ng-container</h2>

2 <!--bindings={

3 "ng-reflect-ng-for-of": "One,Two,Three,Four"

4 }--><!---->

5 One

6 <!---->

7 Two

8 <!---->

9 Three

10 <!---->

11 Four

Angular does not restrict you to the “ngFor” directive only. You can use the “ng-container” in any
parts of the template where you need to have a “virtual” container element, or there’s a need to
group multiple elements without introducing an extra content in the DOM.

Most times using “ng-container” should also simplify layout and CSS maintenance.

Source Code and Demo
You can find the source code and the live demo³³ on Stackblitz.

Projecting single entity

A good example of the custom content projection is container components. You can have a panel-
like component with some predefined content and styles. At the same time the component can host
external elements in panel body implementation.

Let’s now create a panel component to see content projection in action. Use the following Angular
CLI command to get started:

ng g component my-panel

Next, you should edit the main application template and replace its contents with the following
HTML block:

1 <app-my-panel></app-my-panel>

For demonstration and testing purposes, let’s update the generated panel component. First, replace
the “p” element with the “div”.

³³https://stackblitz.com/edit/dwa-ng-container?file=app%2Fapp.component.html

https://stackblitz.com/edit/dwa-ng-container?file=app/app.component.html
https://stackblitz.com/edit/dwa-ng-container?file=app/app.component.html

Components 166

src/app/my-panel/my-panel.component.html

1 <div>

2 my-panel works!

3 </div>

Then you can update its stylesheet, add the border to all the “div” children of the root component
layout.

src/app/my-panel/my-panel.component.css

1 :host > div {

2 border: 1px solid gray;

3 }

Run the application and should see the main page with the panel component looking like on the
picture below.

Default Panel

Supporting external content

To provide a basic support for external content projection, add the “ng-content” element somewhere
in the panel template layout.

src/app/my-panel/my-panel.component.html

1 <div>

2 my-panel works!

3 <ng-content></ng-content>

4 </div>

Now your panel component can receive custom HTML elements and Angular components inside
its selector tags. Update the main application template with a header element inside the panel to see
that in practice.

Components 167

src/app/app.component.html

1 <app-my-panel>

2 <h2>My custom external content</h2>

3 </app-my-panel>

Once your application restarts, the main page should now look similar to the next picture:

Panel with custom content

Note you can see both the native panel content presented by the “my-panel works!” and the external
“h2” element from the application level.

For your customAngular components, treat the “ng-content” element as a placeholder for something
that comes from the outside.

Projecting multiple entities

We got support for a single entity projection so far, but there are many scenarios when you will
need to fill multiple placeholders in your Angular component template.

You can achieve that by using the “selector” support that “ng-content” container exposes. It allows
you to match placeholders using HTML selectors, for example CSS class names, or DOM element
names.

The usage format is as follows:

1 <ng-content select="<selector>"></ng-content>

Projecting with CSS selectors

For the first step, provide support for injecting Header, Content and Footer content for our panel
component, and see CSS class name selectors in action.

You should start by adding three new content placeholders that point to unique class names.

Components 168

src/app/my-panel/my-panel.component.html
1 <div>

2 <ng-content select=".my-panel-header"></ng-content>

3 </div>

4 <div>

5 my-panel works!

6 <ng-content select=".my-panel-content"></ng-content>

7 </div>

8 <div>

9 <ng-content select=".my-panel-footer"></ng-content>

10 </div>

To populate those placeholders, you components or DOM elements now need to declare correspond-
ing CSS class names.

src/app/app.component.html
1 <app-my-panel>

2 <div class="my-panel-header">

3 Header

4 </div>

5 <h2 class="my-panel-content">

6 My custom external content

7 </h2>

8 <div class="my-panel-footer">

9 Footer

10 </div>

11 </app-my-panel>

At runtime, the main application page should now look like the following:

Projecting with class selectors

Components 169

You have projected custom content for panel’s Header, Content and Footer areas.

Projecting with Component selectors

When dealing with CSS class name-based selectors, things may get complicated once your layout
grows. Header and Footer content might need own complex layout, styling, effects or conditional
rendering. The best approach for handling application growth is to introduce separate components
that encapsulate the logic and presentation for panel primitives.

You can practice better separation of concerns by introducing three granular components to compose
the panel.

ng g component my-panel/my-panel-header

ng g component my-panel/my-panel-content

ng g component my-panel/my-panel-footer

Note that by default, Angular CLI generates “app-“ prefixes for the component selectors. So “My-
PanelHeaderComponent” will have “app-my-panel-header” selector. Same for other components we
create.

Now update the panel template to reference the DOM element selectors instead of the CSS class
names like in the example below:

src/app/my-panel/my-panel.component.html

1 <div>

2 <ng-content select="app-my-panel-header"></ng-content>

3 </div>

4 <div>

5 my-panel works!

6 <ng-content select="app-my-panel-content"></ng-content>

7 </div>

8 <div>

9 <ng-content select="app-my-panel-footer"></ng-content>

10 </div>

That allows us to refactor the main page and use Angular components instead of the DOM elements
with class names:

Components 170

src/app/app.component.html

1 <app-my-panel>

2 <app-my-panel-header></app-my-panel-header>

3 <app-my-panel-content></app-my-panel-content>

4 <app-my-panel-footer></app-my-panel-footer>

5 </app-my-panel>

Run the web application again and ensure that all content is on the expected places.

Projecting with component selectors

The main benefit for using Angular components over the DOM elements is that your components
can have own content projection support. Besides that components can hide the complexity of the
layout and expose different input properties and output events.

Fallback content

You can further improve coding experience for the developers that reuse your panel component.
It is possible to provide a default fallback content to support the cases when custom projection is
missing. Also, the panel may provide shortcuts for common features, like providing a simple string
value for the Header via the input property, in case developer does not need complex layout.

Importing the references to content children of the component into the code can further help reuse
them in the template and building conditional visibility expressions for other elements.

Let’s import the “header” component and also introduce the optional “title” shortcut property.

Components 171

src/app/my-panel/my-panel.component.ts

1 import { Input, Component, ContentChild, } from '@angular/core';

2 import {

3 MyPanelHeaderComponent

4 } from './my-panel-header/my-panel-header.component';

5

6 @Component({

7 selector: 'app-my-panel',

8 templateUrl: './my-panel.component.html',

9 styleUrls: ['./my-panel.component.css']

10 })

11 export class MyPanelComponent {

12

13 @Input()

14 title = 'Default title';

15

16 @ContentChild(MyPanelHeaderComponent)

17 header: MyPanelHeaderComponent;

18

19 }

Now update the panel template, if there is no “header” element provided and there is a “title” input
property defined, we display the value of the “title”.

src/app/my-panel/my-panel.component.html

1 <div>

2 <ng-container *ngIf="!header && title">{{ title }}</ng-container>

3 <ng-content select="app-my-panel-header"></ng-content>

4 </div>

5 <div>

6 my-panel works!

7 <ng-content select="app-my-panel-content"></ng-content>

8 </div>

9 <div>

10 <ng-content select="app-my-panel-footer"></ng-content>

11 </div>

If you want to test new functionality, comment out the header tags in the main page template and
reload the application.

Components 172

1 <app-my-panel>

2 <!-- <app-my-panel-header></app-my-panel-header> -->

3 <app-my-panel-content></app-my-panel-content>

4 <app-my-panel-footer></app-my-panel-footer>

5 </app-my-panel>

We have set the default title value to “Default title”, that is the text you should now see rendered.

Projecting fallback title

Now set custom value for the “title” attribute to test that fallback content works as we expect:

1 <app-my-panel title="Custom title">

2 <!-- <app-my-panel-header></app-my-panel-header> -->

3 <app-my-panel-content></app-my-panel-content>

4 <app-my-panel-footer></app-my-panel-footer>

5 </app-my-panel>

The panel should reflect your changes and web application should now render the “Custom title”
value in the Header area.

Components 173

Projecting custom title

The dual rendering approach we have just tried helps a lot when you need to provide default layout
portions, but still want to allow developers replacing them on demand. Imagine a dialog with the
toolbar, for instance, where developers can project a new toolbar implementation, but can also have
a predefined set of buttons.

Source Code and Demo
You can find the source code and the live demo³⁴ on Stackblitz.

³⁴https://stackblitz.com/github/DenysVuika/dwa-content-projection?file=src%2Fapp%2Fapp.component.html

https://stackblitz.com/github/DenysVuika/dwa-content-projection?file=src/app/app.component.html
https://stackblitz.com/github/DenysVuika/dwa-content-projection?file=src/app/app.component.html

Dependency Injection
Dependency Injection, also known as DI, is one of the major features of the Angular framework.

With dependency injection, Angular greatly improves development and testing process by providing
an infrastructure that helps to move share coded into the separate application services and blocks
that can be centrally maintained, reused or replaced at run time.

In this chapter, we are going to try key features of dependency injection in practice.

Source code
You can find the source code as an Angular CLI project for this chapter in the “angular/de-
pendency-injection³⁵” folder.

Preparing a project

First, let’s use Angular CLI tool and generate a new project called “dependency-injection”.

ng new dependency-injection

cd dependency-injection

Next, generate two components “component1” and “component2”, as in the example below:

ng g component component1

ng g component component2

Finally, update the main application component template to use both components we have just
created:

src/app/app.component.html

1 <app-component1></app-component1>

2 <app-component2></app-component2>

If you now run the application with the “ng serve –open” command you should see two default
component templates that get generated automatically by Angular CLI:

³⁵https://github.com/DenysVuika/developing-with-angular/tree/master/angular/dependency-injection

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/dependency-injection
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/dependency-injection
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/dependency-injection

Dependency Injection 175

component1 works!

component2 works!

You now have a working project ready for DI experiments.

Services

Creating LogService

As an example, let’s build a shared Logger service now. Logging is an excellent example of how to
turn a frequently used functionality into an injectable service. That is something you are not going
to reimplement in each component.

You can save your time by using Angular CLI to generate a new “log” service utilising the following
command:

ng g service services/log

That should give you a scaffold for a new service called “LogService”:

src/app/services/log.service.ts

1 import { Injectable } from '@angular/core';

2

3 @Injectable({

4 providedIn: 'root'

5 })

6 export class LogService {

7

8 constructor() { }

9

10 }

We use a special “@Injectable” decorator here to mark the class and instruct Angular that the given
class should participate in the dependency injection layer.

All classes marked with “@Injectable” can get imported into other entities like services, components,
directives or pipes. The Angular framework creates instances of those classes, usually in the form
of “singletons”, and injects into other primitives on demand.

Note the warning message that Angular CLI generates for every new service scaffold:

Dependency Injection 176

installing service

create src/app/services/log.service.spec.ts

create src/app/services/log.service.ts

WARNING Service is generated but not provided, it must be provided to be used

We are going to walk through Modules feature later in this chapter. For now, just edit the
“app.module.ts” file and add the “LogService” file to the “providers” section as in the following
example:

src/app/app.module.ts

1 ...

2 import { LogService } from './services/log.service';

3

4 @NgModule({

5 declarations: [

6 ...

7],

8 imports: [

9 ...

10],

11 providers: [

12 LogService

13],

14 bootstrap: [AppComponent]

15 })

16 export class AppModule { }

That allows injecting “LogService” into all application components, including the “component1” and
“component2” we created earlier.

Next, let’s extend the service implementation with an “info” method we can reuse across the
components:

src/app/services/log.service.ts

1 @Injectable({

2 providedIn: 'root'

3 })

4 export class LogService {

5

6 constructor() { }

7

8 info(message: string) {

9 console.log(`[info] ${message}`);

Dependency Injection 177

10 }

11

12 }

At this point, we got a minimal logging service implementation that we can use in our components.

Injecting and using LogService

We are going to use constructor parameters to inject the LogService created earlier.

The Angular framework takes care of all the intermediate steps needed to find the expected type of
the service, instantiate it and provide as a parameter when building our component.

src/app/component1/component1.component.ts

1 import { Component } from '@angular/core';

2 import { LogService } from './../services/log.service';

3

4 @Component({...})

5 export class Component1Component {

6

7 constructor(logService: LogService) {

8 logService.info('Component 1 created');

9 }

10

11 }

You can now try to update the second component implementation yourself and add the same
LogService integration as in the example above.

Once you are finished updating the code, run the application, and you should see the following
output in the browser console:

[info] Component 1 created

[info] Component 2 created

Providers

In the previous examples, you should have noticed that to import and use a class decorated with
“@Injectable” one needs to declare its Type in the “providers” array of the main application Module.
That makes Angular “know” about the services when instantiating components for your web
application.

You can have numerous services that perform various sets of functionality, all registered within the
root module:

Dependency Injection 178

1 @NgModule({

2 ...,

3 providers: [

4 ...

5 LogService,

6 AuthenticationService,

7 AvatarService,

8 UserService,

9 ChatService

10],

11 ...

12 })

13 export class AppModule { }

The concept of “providers” in Angular goes beyond the collection of classes, in fact, it supports
several powerful ways to control how dependency injection behaves at runtime.

Besides strings, the framework supports an object-based notation for defining providers.

Using a class

Earlier in this chapter, we have been using a string value to define a LogService dependency in the
“providers” section. We can express the same value with the help of the following notation:

{ provide: <key>, useClass: <class> }

Let’s take a look at the next example:

1 @NgModule({

2 ...

3 providers: [

4 { provide: LogService, useClass: LogService }

5],

6 ...

7 })

8 export class AppModule { }

We are using “LogService” both as a “key” for injection and as a “value” to build a new instance for
injection. The main feature of this approach is that “key” and “value” can be different classes. That
allows swapping the value of the service with a custom implementation if needed, or with a Mock
object for an improved unit testing experience.

Now, let’s create a custom logger implementation “CustomLogService”:

Dependency Injection 179

ng g service services/custom-log

Next, implement the “info” method, but this time it should contain some different output for us to
distinguish both implementations:

1 import { Injectable } from '@angular/core';

2

3 @Injectable({

4 providedIn: 'root'

5 })

6 export class CustomLogService {

7

8 constructor() { }

9

10 info(message: string) {

11 console.log(`[custom]: [info] ${message}`);

12 }

13

14 }

Finally, you need to import this class into the main application module and declare as a new provider
with the “LogService” key. Don’t forget to comment out or remove the former logger declaration as
in the example below:

1 import { LogService } from './services/log.service';

2 import { CustomLogService } from './services/custom-log.service';

3

4 @NgModule({

5 ...,

6 providers: [

7 // LogService

8 { provide: LogService, useClass: CustomLogService }

9],

10 ...

11 })

12 export class AppModule { }

The code above means that all the components that inject the “LogService” as part of the constructor
parameters are going to receive the “CustomLogService” implementation at runtime. Essentially we
are swapping the value of the logger, and no component is going to notice that. That is the behaviour
developers often use for unit testing purposes.

If you now run the web application and navigate to browser console, you should see the following
output:

Dependency Injection 180

[custom]: [info] Component 1 created

[custom]: [info] Component 2 created

Strings now contain “[custom]: “ as a prefix, which proves the “Component1” and “Component2”
are now dealing with the “CustomLogService” code that has been successfully injected using the
“LogService” key.

Using a class factory

Previously we have been relying on the Angular framework to create instances of the injectable
entities. There is also a possibility to control how the class gets instantiated if you need more than
just a default constructor calls. Angular provides support for “class factories” for that very purpose.

You are going to use the following notation for class factories:

{ provide: <key>, useFactory: <function> }

Before we jump into configuration details, let’s extend our newly introduced “CustomLogService”
service with the custom “prefix” support. We are going to implement a special “setPrefix” method:

1 import { Injectable } from '@angular/core';

2

3 @Injectable({

4 providedIn: 'root'

5 })

6 export class CustomLogService {

7

8 private prefix = '[custom]';

9

10 setPrefix(value: string) {

11 this.prefix = value;

12 }

13

14 info(message: string) {

15 console.log(`${this.prefix}: [info] ${message}`);

16 }

17

18 }

As you can see from the code above the “info” method is going to use a custom prefix for all the
messages.

Next, create an exported function “customLogServiceFactory” that is going to control how the
CustomLogService instance gets created. In our case we are going to provide a custom prefix like in
the example below:

Dependency Injection 181

1 export function customLogServiceFactory() {

2 const service = new CustomLogService();

3 service.setPrefix('(factory demo)');

4 return service;

5 }

As you can imagine, there could be more sophisticated configuration scenarios for all application
building blocks, including services, components, directives and pipes.

Finally, you can use the factory function for the “LogService”. In this case, we both replace the
real instance with the CustomLogService, and pre-configure the latter with a custom prefix for info
messages:

1 @NgModule({

2 ...

3 providers: [

4 { provide: LogService, useFactory: customLogServiceFactory }

5],

6 ...

7 })

8 export class AppModule { }

This time, when the application runs, you should see the following output:

(factory demo): [info] Component 1 created

(factory demo): [info] Component 2 created

Class factories with dependencies

When you use the default provider registration for a service, directive or component, the Angular
framework automatically manages and injects dependencies if needed. In the case of factories, you
can use additional “deps” property to define dependencies and allow your factory function to access
corresponding instances during execution.

Let’s imagine we need to manually bootstrap the “AuthenticationService” that depends on the
“RoleService” and “LogService” instances.

Dependency Injection 182

1 @Injectable({

2 providedIn: 'root'

3 })

4 export class AuthenticationService {

5 constructor(private roles: RoleService,

6 private log: LogService) {

7 }

8 ...

9 }

We should declare our factory-based provider the following way now:

1 @NgModule({

2 ...,

3 providers: [

4 {

5 provide: AuthenticationService,

6 useFactory: authServiceFactory,

7 deps: [RoleService, LogService]

8 }

9],

10 ...

11 })

12 export class AppModule { }

With the code above we instruct Angular to resolve “RoleService” and “LogService” and use with
our custom factory function when the “AuthenticationService” singleton instance gets created for
the first time.

Finally, your factory implementation should look similar to the following one:

1 export function authServiceFactory(roles: RoleService, log: LogService) {

2 const service = new AuthenticationService(roles, log);

3 // do some additional service setup

4 return service;

5 }

Using @Inject decorator

Another important scenario you might be interested in is the @Inject decorator. The @Inject
decorator instructs Angular that a given parameter must get injected at runtime. You can also use
it to get references to “injectables” using string-based keys.

To demonstrate@Inject decorator in practice let’s create a “date” factory function to generate current
date:

Dependency Injection 183

src/app/app.module.ts

1 export function dateFactory() {

2 return new Date();

3 }

Now we define a custom provider with the key “DATE_NOW” that is going to use our new factory.

1 @NgModule({

2 ...,

3 providers: [

4 { provide: 'DATE_NOW', useFactory: dateFactory }

5],

6 ...

7 })

8 export class AppModule { }

For the next step, you can import the ‘@Inject’ decorator from the “angular/core” namespace and
use it with the “Component1” we created earlier in this chapter:

1 import { ..., Inject } from '@angular/core';

2

3 @Component({...})

4 export class Component1Component {

5

6 constructor(logService: LogService, @Inject('DATE_NOW') now: Date) {

7 logService.info('Component 1 created');

8 logService.info(now.toString());

9 }

10

11 }

There are two points of interest in the code above. First, we inject “LogService” instance as a
“logService” parameter using its type definition: “logService: LogService”. Angular is smart enough
to resolve the expected value based on the “providers” section in the Module, using “LogService” as
the key.

Second, we inject a date value into the “now” parameter. This time Angular may experience
difficulties resolving the value based on the “Date” type, so we have to use the “@Inject” decorator
to explicitly bind “now” parameter to the “DATE_NOW” value.

The browser console output, in this case, should be as the following one:

Dependency Injection 184

(factory demo): [info] Component 1 created

(factory demo): [info] Sun Aug 06 2017 08:45:36 GMT+0100 (BST)

(factory demo): [info] Component 2 created

Another important use case for the @Inject decorator is using custom types in TypeScript when
the service has different implementation class associated with the provider key, like in our early
examples with LogService and CustomLogService.

Below is an alternative way you can use to import CustomLogService into the component and use
all the API exposed:

1 @Component({...})

2 export class Component1Component {

3

4 constructor(@Inject(LogService) logService: CustomLogService) {

5 logService.info('Component 1 created');

6 }

7

8 }

In this case, you are getting access to real CustomLogService class that is injected by Angular for
all the “LogService” keys. If your custom implementation has extra methods and properties, not
provided by the LogService type, you can use them from within the component now.

This mechanism is often used in unit testing when the Mock classes expose additional features to
control the execution and behaviour flow.

Using a value

Another scenario for registering providers in the Angular framework is providing instances directly,
without custom or default factories.

The format, in this case, should be as following:

{ provide: <key>, useValue: <value> }

There are two main scenarios of providing the values.

The first scenario is pretty much similar to the factory functions you can create and initialise the
service instance before other components and services use it.

Below is the basic example of how you can instantiate and register custom logging service by value:

Dependency Injection 185

1 const logService = new CustomLogService();

2 logService.setPrefix('(factory demo)');

3

4 @NgModule({

5 ...

6 providers: [

7 { provide: LogService, useValue: logService }

8],

9 ...

10 })

11 export class AppModule { }

The second scenario is related to configuration objects you can pass to initialise or setup other
components and services.

Let’s now register a “logger.config” provider with a JSON object value:

1 @NgModule({

2 ...,

3 providers: [

4 {

5 LogService,

6 {

7 provide: 'logger.config',

8 useValue: {

9 logLevel: 'info',

10 prefix: 'my-logger'

11 }

12 }

13 }

14],

15 ...

16 })

17 export class AppModule { }

Now any component, service or directive can receive the configuration values by injecting it as
“logger.config”. To enable static type checking you can create a TypeScript interface describing the
settings object:

Dependency Injection 186

1 export interface LoggerConfig {

2 logLevel?: string;

3 prefix?: string;

4 }

Finally, proceed to the “LogService” code and inject the JSON object using the “logger.config” token
and “LoggerConfig” interface like in the following example:

1 @Injectable({

2 providedIn: 'root'

3 })

4 export class LogService {

5

6 constructor(@Inject('logger.config') config: LoggerConfig) {

7 console.log(config);

8 }

9

10 info(message: string) {

11 console.log(`[info] ${message}`);

12 }

13

14 }

For the sake of simplicity we just log the settings content to the browser console. Feel free to extend
the code with configuring the log service behaviour based on the incoming setting values.

If you run the web application right now and open the browser console you should see the next
output:

{

logLevel: 'info',

prefix: 'my-logger'

}

Registering providers with exact values is a compelling feature when it comes to global configuration
and setup. Especially if you are building redistributable components, directives or services that
developers can configure from the application level.

Using an alias

The next feature we are going to see in action is “provider alias”. You are probably not going to use
this feature frequently in applications, but it is worth taking a look at what it does if you plan to
create and maintain redistributable component libraries.

Dependency Injection 187

Let’s imagine a scenario when you have created a shared component library with an “Authentica-
tionService” service that performs various login and logout operations that you and other developers
can reuse across multiple applications and other component libraries.

After some time you may find another service implementation with the same APIs, or let’s assume
you want to replace the service with a newer “SafeAuthenticationService” implementation.

The main issue you are going to come across when replacing Types is related to breaking changes.
The old service might be in use in a variety of modules and applications, many files import the Type,
use in constructor parameters to inject it, and so on.

For the scenario above is where “alias” support comes to the rescue. It helps you to smooth the
transition period for old content and provide backwards compatibility with existing integrations.

Let’s now take a look at the next example:

1 @NgModule({

2 ...

3 providers: [

4 SafeAuthenticationService,

5 { provide: AuthenticationService, useExisting: SafeAuthenticationService }

6],

7 ...

8 })

9 export class AppModule { }

As you can see from the example above, we register a new “SafeAuthenticationService” service and
then declare an “AuthenticationService” that points to the same “SafeAuthenticationService”.

Now all the components that use “AuthenticationService” are going to receive the instance of the
“SafeAuthenticationService” service automatically. All the newly introduced components can now
reference new service without aliases.

Difference with the “useClass”
You may wonder what’s the difference with the “useClass” provider registration compared
to the “useExisting” one.

When using “useClass”, you are going to end up with two different instances registered at
the same time. That is usually not a desirable behaviour as services may contain events
for example, and various components may have issues finding the “correct” instance. The
“useExisting” approach allows you to have only one singleton instance referenced by two
or more injection tokens.

Dependency Injection 188

Injection Tokens

As you might have already understood the Angular dependency injection layer keeps a map of
providers that are being identified by “keys”, also known as “injection tokens”, and uses this map to
resolve, create and inject instances at runtime.

The injection tokens can be of different types. We have already tried Types and Strings in action in
previous sections.

Type tokens

Type-based injection tokens are the most commonly used way to register providers. Typically you
import the service type from the corresponding file and put it into the “providers” section of the
module.

1 import { LogService } from './services/log.service';

2

3 @NgModule({

4 ...

5 providers: [

6 LogService

7],

8 ...

9 })

10 export class AppModule { }

The same applies to custom provider registration options we tried earlier:

1 providers: [

2 { provide: LogService, useClass: LogService },

3 { provide: LogService, useFactory: customLogServiceFactory },

4 { provide: LogService, useValue: logService },

5 { provide: AuthenticationService, useExisting: SafeAuthenticationService }

6]

In all the cases above we use a real Type reference to register a new provider.

String tokens

Another way to register a provider involves the string-based injection tokens.

Another way to register a provider involves the string-based injection tokens. Typically you are
going to use strings when there is no Type reference available, for example when registering plain
values or objects:

Dependency Injection 189

1 providers: [

2 { provide: 'DATE_NOW', useFactory: dateFactory },

3 { provide: 'APP_VERSION', useValue: '1.1.0' },

4 {

5 provide: 'logger.config',

6 useValue: {

7 logLevel: 'info',

8 prefix: 'my-logger'

9 }

10 }

11]

Generic InjectionToken

Also, Angular provides a special generic class InjectionToken<T> to help you create custom injection
tokens backed by specific types: primitives, classes or interfaces. That enables static type checks and
prevents many type-related errors at early stages.

Let’s create separate file “tokens.ts” to hold our custom injection tokens, and create a simple string-
based one:

1 import { InjectionToken } from '@angular/core';

2

3 export const REST_API_URL = new InjectionToken<string>('rest.api.url');

Now we can use this token within the main application module to register a URL value that all
components and services can use when needed:

1 import { REST_API_URL } from './tokens';

2

3 @NgModule({

4 ...,

5 providers: [

6 ...,

7 { provide: REST_API_URL, useValue: 'http://localhost:4200/api' }

8]

9 })

From this moment we can use the same token to import registered value in the service or a
component like in the example below:

Dependency Injection 190

1 ...

2 import { REST_API_URL } from './../tokens';

3

4 @Injectable({

5 providedIn: 'root'

6 })

7 export class LogService {

8

9 constructor(@Inject(REST_API_URL) restApiUrl: string) {

10 console.log(restApiUrl);

11 }

12

13 ...

14 }

At runtime, you should see the actual value of the REST_API_URL provider in the browser console:
http://localhost:4200/api.

As mentioned earlier, you can also use interfaces or classes with the InjectionToken<T>. That does
not affect the process of dependency injection but gives you an opportunity for static compile-time
checks and auto completion if your code editor supports TypeScript.

Let’s create a token for the “LoggerConfig” interface we set up in this chapter earlier:

1 export interface LoggerConfig {

2 logLevel?: string;

3 prefix?: string;

4 }

5

6 export const LOGGER_CONFIG = new InjectionToken<LoggerConfig>('logger.config');

You can now define a type-safe configuration object and register it with the dependency injection
system using main application module:

1 const loggerConfig: LoggerConfig = {

2 logLevel: 'warn',

3 prefix: 'warning:'

4 };

5

6 @NgModule({

7 ...,

8 providers: [

9 ...,

10 { provide: LOGGER_CONFIG, useValue: loggerConfig }

Dependency Injection 191

11]

12 })

Finally, you can use that token to inject configuration into the LogService and use it to setup the
service accordingly:

1 @Injectable({

2 providedIn: 'root'

3 })

4 export class LogService {

5

6 constructor(@Inject(LOGGER_CONFIG) config: LoggerConfig) {

7 console.log(config);

8 }

9

10 ...

11 }

Injecting multiple instances

Previously we have been working with injectables backed by the singletons. That means any
components, directives or other services are typically referencing the same instance created only
once on the very first request.

There are cases, however, when you may want to have multiple service instances injected at runtime
utilising a single injection token.

An excellent example is plugin systems and plugins support. Typically you are going to require a
special contract or interface that every external plugin must implement. The service, component or
an application layer need to rely on only the common and shared API, and it makes sense injecting
an entire collection of the plugin instances without knowing exact types.

Let’s build a logging service that supports external plugins and injects them as a single collection.

First, create a “LogPlugin” interface for external plugin implementation, and a basic “CompositeL-
ogService” scaffold for our service. We are going to get back to it shortly.

Dependency Injection 192

src/app/services/composite-log.service.ts

1 export interface LogPlugin {

2 name: string;

3 level: string;

4 log(message: string);

5 }

6

7 @Injectable({

8 providedIn: 'root'

9 })

10 export class CompositeLogService {

11

12 constructor() { }

13

14 }

The “LogPlugin” interface contains a bareminimum of APIs, at this point we need a “name” for demo
and debugging purposes, alongside the level of the messages our plugin supports and the method to
write a log message.

Next, create an injection token “LOGGER_PLUGIN” backed by the interface we have just created
above.

src/app/tokens.ts

1 import { LogPlugin } from './services/composite-log.service';

2

3 export const LOGGER_PLUGIN = new InjectionToken<LogPlugin>('logger.plugin');

We are going to use that token to register various logger plugins, and also inject existing plugin
instances for the “CompositeLogService”.

After that let’s create a couple of Loggers that implement the LogPlugin interface. There is going to
be one class for error messages and one for warnings.

Dependency Injection 193

src/app/services/loggers.ts

1 import { LogPlugin } from './composite-log.service';

2

3 export class ErrorLogPlugin implements LogPlugin {

4

5 name = 'Error Log Plugin';

6 level = 'error';

7

8 log(message: string) {

9 console.error(message);

10 }

11 }

12

13 export class WarningLogPlugin implements LogPlugin {

14

15 name = 'Warning Log Plugin';

16 level = 'warn';

17

18 log(message: string) {

19 console.warn(message);

20 }

21 }

Now you are ready to register the service and its plugins with the main application module like in
the following example:

src/app/app.module.ts

1 import { LOGGER_PLUGIN } from './tokens';

2 import { ErrorLogPlugin, WarningLogPlugin } from './services/loggers';

3

4

5 @NgModule({

6 providers: [

7 CompositeLogService,

8 { provide: LOGGER_PLUGIN, useClass: ErrorLogPlugin, multi: true },

9 { provide: LOGGER_PLUGIN, useClass: WarningLogPlugin, multi: true }

10]

11 })

Please note that the most important part that enables multiple injections is the “multi” attribute we
set to “true” when registering a provider.

Dependency Injection 194

Now let’s get back to our “CompositeLogService” and inject instances of all previously registered
plugins using the following format:

constructor(@Inject(LOGGER_PLUGIN) plugins: LogPlugin[])

To demonstrate the instances, we are going to enumerate the injected collection and log all plugin
names to the browser console:

src/app/services/composite-log.service.ts

1 import { Injectable, Inject } from '@angular/core';

2 import { LOGGER_PLUGIN } from './../tokens';

3

4 export interface LogPlugin {

5 name: string;

6 level: string;

7 log(message: string);

8 }

9

10 @Injectable({

11 providedIn: 'root'

12 })

13 export class CompositeLogService {

14

15 constructor(@Inject(LOGGER_PLUGIN) plugins: LogPlugin[]) {

16 if (plugins && plugins.length > 0) {

17 for (const plugin of plugins) {

18 console.log(`Loading plugin: ${plugin.name} (level: ${plugin.level})`);

19 }

20 }

21 }

22

23 }

The service is ready for testing. The only thing we have left is to inject it somewhere. The main
application component is the best place to test all the newly introduced code quickly.

Dependency Injection 195

src/app/app.component.ts

1 import { CompositeLogService } from './services/composite-log.service';

2

3 @Component({...})

4 export class AppComponent {

5 constructor(private logService: CompositeLogService) {

6 }

7 }

Now if you run the application the console log is going to contain the following output:

Loading plugin: Error Log Plugin (level: error)

Loading plugin: Warning Log Plugin (level: warn)

In the real-life scenario, you would most probably want the log service to use different types of
plugins for certain purposes. Let’s now extend our service and introduce a “log” method redirects
logging calls to the plugins that support the corresponding levels.

src/app/services/composite-log.service.ts

1 @Injectable({

2 providedIn: 'root'

3 })

4 export class CompositeLogService {

5 ...

6

7 log(level: string, message: string) {

8 const logger = this.plugins.find(p => p.level === level);

9 if (logger) {

10 logger.log(message);

11 }

12 }

13 }

To test how it works you can even use the “log” method within the service itself. Update the
constructor to send a message once all the external plugins are enumerated:

Dependency Injection 196

src/app/services/composite-log.service.ts

1 @Injectable({

2 providedIn: 'root'

3 })

4 export class CompositeLogService {

5 constructor(@Inject(LOGGER_PLUGIN) private plugins: LogPlugin[]) {

6 if (plugins && plugins.length > 0) {

7 for (const plugin of plugins) {

8 console.log(`Loading plugin: ${plugin.name} (level: ${plugin.level})`);

9 }

10 this.log('warn', 'All plugins loaded');

11 }

12 }

13 }

For the sake of simplicity, we are going to use the “warn” level because we got only “warn” and
“error” loggers registered. Feel free to extend the collection of the loggers with the “info” or “debug”
one for example.

Once you run the web application, the main component should provide the following output to the
browser console:

Loading plugin: Error Log Plugin (level: error)

Loading plugin: Warning Log Plugin (level: warn)

All plugins loaded

Now you are ready to deal with multiple instances injected as collections and got a basic scenario
working in practice.

Optional dependencies

Previously in this chapter, we have successfully created a “CompositeLogService” service based on
multiple plugins injected with the same custom token. However, what happens when there are no
logger plugins registered within the application? Let’s comment out the plugin registration section
in the app module providers to see what happens at runtime.

Dependency Injection 197

@NgModule({

providers: [

CompositeLogService // ,

// { provide: LOGGER_PLUGIN, useClass: ErrorLogPlugin, multi: true },

// { provide: LOGGER_PLUGIN, useClass: WarningLogPlugin, multi: true }

]

})

Now if you rebuild and run your application it is going to crash with the following error in the
browser console:

Error: No provider for InjectionToken logger.plugin!

The error above is an expected behaviour. Essentially, when you declare a dependency within
the constructor parameters, you instruct the Angular framework to ensure the corresponding
dependency indeed exists, and injection can happen.

There are scenarios when having an instance is not mandatory, and application can function without
it, like in our case with logger plugins - the log service can have default fallback behaviour in case
no plugins are present.

For those kinds of scenarios, the Angular framework provides us with the “@Optional” decorator
that allows making particular injections “optional” rather than “mandatory” during dependency
injection phase.

1 import { ..., Optional } from '@angular/core';

2

3 @Injectable({

4 providedIn: 'root'

5 })

6 export class CompositeLogService {

7

8 constructor((@Optional() @Inject(LOGGER_PLUGIN) private plugins: LogPlugin[]) {

9 if (plugins && plugins.length > 0) {

10 ...

11 } else {

12 console.log('No logger plugins found.');

13 }

14 }

15

16 ...

17 }

Dependency Injection 198

As you can see from the code above, we now have a possibility to check whether any plugins are
available, and perform the fallback behaviour if needed. Just for the demo purposes, we log the
information message to the console:

1 No logger plugins found.

The “@Optional” decorator is a handy mechanism that helps you to prevent the runtime errors
when some content is missing or is not registered correctly.

Manual injection with ReflectiveInjector

You are not limited to automatic dependency injection mechanism. The Angular provides you with
a low-level APIs that allow you to resolve and create instances manually from code.

The DI utility class is called “ReflectiveInjector”, and you can import it from the “@angular/core”
namespace. It helps to create the “injectors” filled with resolved and created instances of the
providers, similar to those we used with the application modules.

1 import { ReflectiveInjector } from '@angular/core';

2

3 @Component({...})

4 export class AppComponent {

5 constructor() {

6 const injector = ReflectiveInjector.resolveAndCreate([LogService]);

7 const logService: LogService = injector.get(LogService);

8 logService.info('hello world');

9 }

10 }

Typically you are going to use this API only for concrete scenarios like unit testing or dynamic
content creation. You can get more detailed information including code examples in the following
article: Reflective Injector³⁶.

Summary

We have covered the main scenarios for service and provider registration and tested them in action.
You can also refer to the Dependency Injection³⁷ article for even more detailed information on how
dependency injection works in Angular.

³⁶https://angular.io/api/core/ReflectiveInjector
³⁷https://angular.io/guide/dependency-injection#dependency-injection

https://angular.io/api/core/ReflectiveInjector
https://angular.io/guide/dependency-injection#dependency-injection
https://angular.io/api/core/ReflectiveInjector
https://angular.io/guide/dependency-injection#dependency-injection

Events
There are three main event cases we are going to review in this chapter. With Angular, you can raise
Component events, DOM events and Service events.

Source code
You can find the source code in the “angular/events³⁸” folder.

To address all three scenarios let’s create a simple Panel component that consists of the Body, Header
and Footer. The Header and Footer are going to be separate components.

First, generate a new Angular application using the Angular CLI tool. Then execute the following
commands to generate the prerequisites:

ng g component panel

ng g component panel-header

ng g component panel-footer

Next, update the Panel component template like in the example below:

src/app/panel/panel.component.html

1 <app-panel-header></app-panel-header>

2

3 <p>

4 panel works!

5 </p>

6

7 <app-panel-footer></app-panel-footer>

Finally, we can replace the default auto-generated content of the main application template with the
Panel we have just created above:

³⁸https://github.com/DenysVuika/developing-with-angular/tree/master/angular/events

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/events
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/events

Events 200

src/app/app.component.html

1 <app-panel>

2 </app-panel>

If youmake a pause at this point and run the “ng serve –open” command you should see the following
output on the main page:

panel-header works!

panel works!

panel-footer works!

At this point, we got all the basic prerequisites for testing the events.

Component events

It is now time to improve our Header component. Let’s provide a way to set the content text for
the component to display when rendered, and a simple click event “contentClick” that gets emitted
every time user clicks the content.

src/app/panel-header/panel-header.component.ts

1 import { ..., Input, Output, EventEmitter } from '@angular/core';

2

3 @Component({...})

4 export class PanelHeaderComponent {

5

6 @Input()

7 content = 'Panel header';

8

9 @Output()

10 contentClick = new EventEmitter();

11

12 onContentClicked() {

13 console.log('panel header clicked');

14 this.contentClick.next();

15 }

16 }

Events 201

From the earlier chapters, you already know that we use “@Input” decorator for the class properties
we want to set or bind from the outside. We also need to use the “@Output” decorator to mark our
events.

Output Events
You can get more details on the component events in the Output Events section of the
Components chapter.

Also, note that in the example above we also add the “onContentClicked” method that is going to
raise our “contentClick” event.

Below is an example of a minimalistic Header component template we can use to display a “content”
value:

src/app/panel-header/panel-header.component.html

1 <p (click)="onContentClicked()">

2 {{ content }}

3 </p>

As you can see, we link the “click” event of the enclosed “p” element with the “onContentClicked”
handler that temporarily sends a message to the console log for testing/debugging purposes and also
invokes the “contentClicked” event that other components can use.

Also, we set a default value for the “content” property to the “Panel header” string. So at the runtime,
the content or application main page is going to look similar to the following:

Panel header

panel works!

panel-footer works!

However, we are not going to use the Header component directly. It is the Panel component that
needs it. So we should allow our Panel component to control the header content, and also react on
header click events. Let’s toggle the panel content as an example.

Edit the panel component class and add the “header” input property to hold the text for the Header,
and “displayBody” property to serve as a flag for showing and hiding the main panel content, like
in the example below:

Events 202

src/app/panel/panel.component.ts

1 import { ..., Input } from '@angular/core';

2

3 @Component({...})

4 export class PanelComponent {

5

6 @Input()

7 header = 'My panel header';

8

9 displayBody = true;

10 }

For the next step, let’s update the panel component template to link the Header properties with the
newly introduced class members:

src/app/panel/panel.component.html

1 <app-panel-header

2 [content]="header"

3 (contentClick)="displayBody = !displayBody">

4 </app-panel-header>

5

6 <ng-container *ngIf="displayBody">

7 <p>

8 panel works!

9 </p>

10 </ng-container>

11

12 <app-panel-footer></app-panel-footer>

You can now run the application and test your components by clicking the panel header text multiple
times. The panel should toggle its body content every time a header gets clicked.

Below is how the panel should look like by default, in the expanded state:

My panel header

panel works!

panel-footer works!

Also, the next example shows how the panel looks like in the “collapsed” state:

Events 203

My panel header

panel-footer works!

Congratulations, you just got the component events working, and tested them in practice. Now
feel free to extend the PanelFooterComponent and add similar “content” and “contentClick”
implementations.

Bubbling up child events

We have created a PanelHeader component earlier in this chapter. Aalso, we introduced a “click”
event for the component and made the Panel component host it within its template, and toggle panel
body content every time the Panel Header is clicked.

Imagine that the “<app-panel>” is a redistributable component, and you would like developers to
have access to header clicks as well. The “<app-panel-header>” however, is a child element, and
developers do not have direct access to its instance when working with the Panel. In this case, you
would probably want your main Panel component re-throwing its child events.

We already got the “header” and the “footer” input properties that hold the values for the “<app-
panel-header>” and “<app-panel-fooder>” elements. Let’s now introduce two new output events and
call them “headerClick” and “footerClick”.

src/app/panel/panel.component.ts

1 export class PanelComponent {

2

3 displayBody = true;

4

5 @Input()

6 header = 'My panel header';

7

8 @Input()

9 footer = 'My panel footer';

10

11 @Output()

12 headerClick = new EventEmitter();

13

14 @Output()

15 footerClick = new EventEmitter();

16

17 onHeaderClicked() {

18 this.displayBody = !this.displayBody;

Events 204

19 this.headerClick.next();

20 }

21

22 onFooterClicked() {

23 this.footerClick.next();

24 }

25

26 }

As you can see from the code above, we also get two methods to raise our events. The “onHead-
erClicked” method is still toggling the panel body before raising the “headerClick” event.

Next, our “<app-panel> component is going to watch the “contentClick” events of the child elements,
and emit events for developers. Update the HTML template and subscribe to the header and footer
events like in the example below:

src/app/panel/panel.component.html

1 <app-panel-header

2 [content]="header"

3 (contentClick)="onHeaderClicked()">

4 </app-panel-header>

5

6 <ng-container *ngIf="displayBody">

7 <p>

8 panel works!

9 </p>

10 </ng-container>

11

12 <app-panel-footer

13 [content]="footer"

14 (contentClick)="onFooterClicked()">

15 </app-panel-footer>

Finally, let’s test our panel events in action. Update your main application template and subscribe
to our newly introduced events for header and footer clicks:

Events 205

src/app/app.component.html

1 <app-panel

2 (headerClick)="onHeaderClicked()"

3 (footerClick)="onFooterClicked()">

4 </app-panel>

For the sake of simplicity we are going to log messages to browser console similar to the following:

src/app/app.component.ts

1 @Component({...})

2 export class AppComponent {

3

4 onHeaderClicked() {

5 console.log('App component: Panel header clicked');

6 }

7

8 onFooterClicked() {

9 console.log('App component: Panel footer clicked');

10 }

11

12 }

If you compile and run your web application with the “ng serve –open” command, you should be
able to see messages in the console every time a header or footer elements of the panel get clicked.

DOM events

With multiple levels of nesting, the re-raising of child events quickly turns into a challenging
and time-consuming process. Like with our previous Panel example, to wrap it with another
Angular component developers may have to watch for panel events and raise them for the own
implementation. That is where native DOM events with bubbling support come to the rescue.

If set to bubble, a DOM event gets raised for every element up against the parent hierarchy.
Developers get an opportunity reacting on events that occur in deeply nested components.

Creating and triggering events
You can get more details and examples on how to build and dispatch DOM events in the
following article: Creating and triggering events³⁹

³⁹https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events

Events 206

First, to raise a custom DOM event we need to get access to a native element of the component. You
can achieve that by injecting an “ElementRef” instance in the component constructor, and saving as
a private property called “elementRef”.

src/app/panel-header/panel-header.component.ts

1 import { ..., ElementRef } from '@angular/core';

2

3 @Component({...})

4 export class PanelHeaderComponent {

5

6 ...

7

8 constructor(private elementRef: ElementRef) {

9 }

10

11 }

Next, we need updating the “onContentClicked” handler to raise an additional event. You can leave
the code to raise the “contentClick” event, so that component supports raising two types of the
events at the same time. Let’s introduce a new “header-click” custom event that is set to bubble and
contains clicked content in the “details” section.

src/app/panel-header/panel-header.component.ts

1 @Component({...})

2 export class PanelHeaderComponent {

3

4 ...

5

6 onContentClicked() {

7 this.contentClick.next();

8

9 this.elementRef.nativeElement.dispatchEvent(

10 new CustomEvent('header-click', {

11 detail: {

12 content: this.content

13 },

14 bubbles: true

15 })

16);

17 }

18 }

Events 207

We are now ready to see the newly introduced event in practice. Let’s update the main application
component template with a top-most “div” element that is going to listen to the “header-click” event.
That is a good case to test event handling and see how event bubbles up to non-Angular elements.

src/app/app.component.html

1 <div (header-click)="onDomHeaderClick($event)">

2 <app-panel

3 (headerClick)="onHeaderClicked()"

4 (footerClick)="onFooterClicked()">

5 </app-panel>

6 </div>

For testing purposes, we are going just to log the event details to the browser console.

1 @Component({...})

2 export class AppComponent {

3

4 ...

5

6 onDomHeaderClick(event) {

7 console.log(event);

8 }

9

10 }

Finally, if you run your web application at this point, and click the panel header content, the
following content should appear in the browser console output:

As you can see from the picture above you can access all data in the custom event including the
“detail” object we have created earlier, and that contains our component-specific information.

Dispatching the custom DOM events is an excellent option if you want to allow developers to wrap
your components, or you are using composite components and trying to avoid re-throwing multiple
events.

Events 208

Service events

When working with events in Angular, you can achieve a significant level of flexibility by utilising
the application services and service events.

Service-based events allow multiple components to communicate with each other regardless of the
component and DOM structure using the publish/subscribe approach.

Before we dive into details let’s use Angular CLI and generate a new service using the following
command:

ng g service panel

You need to manually register the newly generated service within one of your modules. For now,
let’s add the “PanelService” to the main application module in the “app.module.ts” file:

src/app/app.module.ts

1 import { PanelService } from './panel.service';

2

3 @NgModule({

4 providers: [

5 PanelService

6]

7 })

8 export class AppModule { }

Next, extend the service with a couple of events for header and footer clicks:

src/app/panel.service.ts

1 import { Injectable } from '@angular/core';

2 import { Subject } from 'rxjs/Rx';

3

4 import { PanelHeaderComponent } from './panel-header/panel-header.component';

5 import { PanelFooterComponent } from './panel-footer/panel-footer.component';

6

7 @Injectable({

8 providedIn: 'root'

9 })

10 export class PanelService {

11

12 headerClicked = new Subject<PanelHeaderComponent>();

13 footerClicked = new Subject<PanelFooterComponent>();

14

15 }

Events 209

In the example above, we are using generic “Subject<T>” to allow both emitting and subscribing to
the same event. We are going to pass either “PanelHeaderComponent” or “PanelFooterComponent”
instance as the event argument.

Let’s update the “PanelHeaderComponent” class and emit the “headerClicked” event like in the
following example:

src/app/panel-header/panel-header.component.ts

1 import { PanelService } from '../panel.service';

2

3 @Component({...})

4 export class PanelHeaderComponent {

5

6 constructor(

7 private panelService: PanelService,

8 private elementRef: ElementRef) {

9 }

10

11 onContentClicked() {

12 ...

13 // raise service event

14 this.panelService.headerClicked.next(this);

15 }

16 }

As you can see, the component now injects the “PanelService” instance and saves a reference to the
private “panelService” property so that click handler can use to emit the corresponding event.

Subscribing to the event is also simple. The component, in our case main application one, injects the
“PanelService” and uses “headerClicked.subscribe” to wire the event handler code:

src/app/app.component.ts

1 import { PanelHeaderComponent } from './panel-header/panel-header.component';

2 import { PanelService } from './panel.service';

3

4 @Component({...})

5 export class AppComponent {

6

7 constructor(panelService: PanelService) {

8 panelService.headerClicked.subscribe(

9 (header: PanelHeaderComponent) => {

10 console.log(`Header clicked: ${header.content}`);

11 }

12);

Events 210

13 }

14 }

Now if you run your web application and click the header you should see the following output in
the browser console:

Header clicked: My panel header

Congratulations, you have just established a basic communication channel between header and
footer components with the rest of the application content. Many other components and services
now can subscribe and react to click events. Of course, we got over-simplified examples; you can
imagine more complex scenarios involving different events in your application.

Source code
You can find the source code in the “angular/events⁴⁰” folder.

⁴⁰https://github.com/DenysVuika/developing-with-angular/tree/master/angular/events

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/events
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/events

Modules

Directives
A directive is one of the core building blocks in Angular. It allows easy manipulation of the DOM
structure of HTML elements, change their appearance and layout, or even extend the behaviour if
needed.

Introduction

There are three types of directives in Angular you are going to work with:

• Components - also known as Directives with Templates, see Components chapter for a
detailed overview;

• Attribute Directives - extend elements, change the look and feel of the host elements;
• Structural Directives - change elements, manipulate DOM layout, add or remove elements or
completely change underlying view;

Let’s start with a new project to host various kinds of directives we are going to experiment with:

ng new directive-example

cd directive-example

ng serve --open

Attribute Directives

Attribute directives change appearance or behaviour of a host DOM element. Usually, they look like
regular HTML element attributes.

Let’s create a simple clickable directive and call it ‘Clickme’.

ng g directive directives/clickme

Angular CLI generates directive with unit test and updates main application module:

Directives 213

installing directive

create src/app/directives/clickme.directive.spec.ts

create src/app/directives/clickme.directive.ts

update src/app/app.module.ts

Initial implementation should look like the following one:

src/app/directives/clickme.directive.ts

1 import { Directive } from '@angular/core';

2

3 @Directive({

4 selector: '[appClickme]'

5 })

6 export class ClickmeDirective {

7

8 constructor() { }

9

10 }

Directives can interact with the host by listening to events and setting properties of the target
element.

Handling host events

Your newly created directive can listen to events with the help of the HostListener decorator.
Angular invokes decorated method when the host element emits a corresponding event.

The format of the HostListener decorator and metadata is as following:

1 interface HostListener {

2 eventName : string

3 args : string[]

4 }

You can use it to decorate class methods like shown below:

Directives 214

src/app/directives/clickme.directive.ts

1 @HostListener('domEvent', ['$event'])

2 onEvent(event) {

3 // ...

4 }

Angular should be listening for the ‘domEvent’ event (if supported by host element) and invoke
onEvent method of the directive controller. The event handler is also going to get a reference to the
original DOM event, as we instruct Angular tomap specific $event argument to the event parameter.
That means directive can inspect properties of the original event and even prevent default behaviour
or event bubbling if necessary.

The easiest way to demonstrate HostListener in action is by wiring a standard click event.

src/app/directives/clickme.directive.ts

1 import { ..., HostListener } from '@angular/core';

2

3 ...

4 export class ClickmeDirective {

5 ...

6 @HostListener('click', ['$event'])

7 onClicked(e: Event) {

8 console.log(e);

9 alert('Clicked');

10 }

11 }

Next put a div element to the app.component.html and decorate it with your appHighlight directive:

src/app/app.component.html

1 <h1>

2 {{title}}

3 </h1>

4

5 <div class="click-area" appClickme>

6 Click me

7 </div>

You also need to have some space to click on; this is what we are going to use highlight-area CSS
class for:

Directives 215

src/app/app.component.css

1 .click-area {

2 width: 100px;

3 height: 100px;

4 background-color: beige;

5 }

Below is how the main page looks like after your changes:

You get the default ‘app works!’ label generated by the Angular CLI, and coloured div element. Now
if you click anywhere on the beige area the browser should display an alert:

So as you can see in the example above, with the help of HostListener, you can listen to any event
emitted by host element. We have added appClickme directive as an attribute of the div, and every
click on the div automatically triggers onClickedmethod in the ClickmeDirective. You can use any
target for the directive, for example:

src/app/app.component.html

1 <button appClickme>Click me</button>

2 Click me

3 <input type="text" appClickme>

Host members binding

Angular also provides a way for a directive to change host properties by using a HostBinding

decorator. During change detection cycle Angular checks all property bindings and updates host
element of the directive if bound value changes.

The format of the HostBinding decorator and metadata is as following:

Directives 216

1 interface HostBinding {

2 hostPropertyName : string

3 }

You can use this decorator to change:

• attributes (applies to all elements)

@HostBinding('attr.text)

• properties (corresponding properties must exist)

@HostBinding('title')

• style values (applies to all elements)

@HostBinding('style.background-color')

• class names (applies to all elements)

@HostBinding('class.some-class-name')

Binding element attributes

If you want your directive to change element attributes, you can use this decorator with class
methods like below:

src/app/directives/clickme.directive.ts

1 export class ClickmeDirective {

2

3 @HostBinding('attr.propertyName')

4 myProperty: string = 'hello world';

5

6 }

For example, if you apply directive to a div element, the property binding should cause the following
attributes rendering at run time:

src/app/app.component.html

1 <div appclickme="" propertyName="hello world"></div>

Please note that if host property name parameter is not defined, then a class property name should
be taken as a fallback value.

1 @HostBinding()

2 title: string = 'element title';

This time, if you apply the directive to the input element, for instance, you should see the title

property name as an attribute of the host:

Directives 217

1 <input appclickme="" type="text" title="element title">

Binding element properties

Keep in mind that in this case, the property should exist for a given element. Angular should throw
an error if you try to bind a missing property. Let’s try to bind a value property to demonstrate this
behaviour.

src/app/directives/clickme.directive.ts

1 ...

2 export class ClickmeDirective {

3

4 @HostBinding()

5 value: string = 'input value';

6

7 ...

8 }

You may still have a click area example on the main page, or you can do it once again:

1 <div class="click-area" appClickme>

Angular should produce an error when page compiles and reloads:

Error: Uncaught (in promise): Error: Template parse errors:

Can't bind to 'value' since it isn't a known property of 'div'.

[ERROR ->]<div class="click-area" appClickme>

Click me

</div>

However, if you replace divwith an input element that natively supports value property, you should
get it rendered properly:

You can, however, fix the issue and provide compatibility with all HTML elements by utilising
attr.value instead of value for the property binding:

Directives 218

src/app/directives/clickme.directive.ts

1 ...

2 export class ClickmeDirective {

3

4 @HostBinding('attr.value')

5 value: string = 'input value';

6

7 ...

8 }

In this case you are going to get the following HTML when both <input> and <div> are present on
the page:

src/app/app.component.html

1 <div appclickme="" class="click-area" value="input value">

2 Click me

3 </div>

4

5 <input appclickme="" type="text" value="input value">

Your main application component page should now render without errors.

Binding style attributes

You bind single style attribute values using @HostBinding('style.<attribute>) format, where
<attribute> is a valid name of the CSS style attribute.

Directives 219

src/app/directives/clickme.directive.ts

1 ...

2 export class ClickmeDirective {

3 ...

4 @HostBinding('style.background-color')

5 background: string = 'lightblue';

6 }

Now the directive is painting its host element’s background into light-blue.

This is how the rendered HTML looks like:

src/app/app.component.html

1 <div appclickme="" class="click-area" value="input value"

2 style="background-color: rgb(173, 216, 230);">

3 Click me

4 </div>

Binding class names

Instead of binding single style attributes, you may want to operate CSS class names, to be able
providing external themes, or separating presentation layer from directive implementation. It can
be achieved utilising @HostBinding('class.<class-name>')where <class-name> is the name of the
CSS class.

Note that having corresponding CSS class implementation is optional if you directive is not enforcing
styles directly. Developers can choose whether to implement or override the class, or leave defaults.

You can bind class names to the boolean values or expressions. Angular appends provided CSS class
name to the host element if the resulting value is true, and automatically removes it if value changes
back to false.

Directives 220

src/app/directives/clickme.directive.ts

1 ...

2 export class ClickmeDirective {

3 ...

4

5 @HostBinding('class.is-selected')

6 isSelected: boolean = true;

7 }

This is the initial template we have been using:

src/app/app.component.html

1 <div class="click-area" appClickme>

2 Click me

3 </div>

So this is how Angular renders component at run time. Note the class value now has both
click-area we defined manually, and is-selected class provided by the directive controller.

src/app/app.component.html

1 <div appclickme="" class="click-area is-selected" value="input value"

2 style="background-color: rgb(173, 216, 230);">

3 Click me

4 </div>

Typically you are going to apply or change CSS classes of the host element as a response to the host
events wired by HostBinding decorators. For example, the directive can listen to mouse events and
toggle hovered styles:

src/app/directives/clickme.directive.ts

1 ...

2 export class ClickmeDirective {

3 ...

4

5 @HostBinding('class.is-hovered')

6 isHovered: boolean = false;

7

8 @HostListener('mouseenter')

9 onMouseEnter() {

10 this.isHovered = true;

11 // other code if needed

Directives 221

12 }

13

14 @HostListener('mouseleave')

15 onMouseLeave() {

16 this.isHovered = false;

17 // other code if needed

18 }

19 }

Our directive toggles the isHovered property value upon mouse enter and leave, but it does not
directly change the way its host element looks. Instead, you or developers that use your directive
can optionally add a custom is-hovered CSS class to alter how the element looks and behaves on
mouse interaction.

The example below adds a thin dashed border to the element when a user hovers it:

src/app/app.component.css

1 .is-hovered {

2 border: 1px dashed darkblue;

3 }

You can now run the application and move the mouse cursor in and out of the click area.

Of course, you can control hover styles in pure CSS. The code above is more a simple demonstration
of capabilities to give you more ideas on what is possible with HostListener and HostBinding

combined.

Source code
You can find the source code in the “angular/directives/directive-example⁴¹” folder.

⁴¹https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/directive-example

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/directive-example
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/directive-example

Directives 222

Built-in attribute directives

Angular comes with the following ready-to-use attribute directives:

• NgStyle, updates an HTML element styles
• NgClass, adds and removes CSS classes on an HTML element
• NgModel, provides two-way binding to Form elements, see Forms chapter for more details
• NgNonBindable, prevents content from being evaluated and compiled in templates

NgStyle

The NgStyle directive is used to modify CSS style attributes of the host element or component.

1 <element [ngStyle]="OPTIONS">

2 ...

3 </element>

Where OPTIONS is an object literal NgStyle that binds and maps properties to style attributes.
Object keys should represent style names with an optional .<unit> suffix, for example, width.px,
font-style.em.

1 <button [ngStyle]="{ 'border-width': '1px' }">button 1</button>

2 <button [ngStyle]="{ 'border-width.px': '1' }">button 2</button>

3 <button [ngStyle]="{

4 'background-color': 'white',

5 'border': '1px blue solid'

6 }">button 3</button>

You should see three buttons with custom styles once you run the application:

It is also possible to bind ngStyle to the component property.

1 <input type="text" value="hello world" [ngStyle]="inputStyle">

In this case, you declare object literal within the component class implementation, for example:

Directives 223

src/app/app.component.ts

1 ...

2 export class AppComponent {

3 ...

4 inputStyle = {

5 'border': '1px green solid',

6 'background-color': 'white',

7 'color': 'blue'

8 };

9 }

That allows you to compose styles based on some other conditions dynamically.

Source code
You can find the source code in the “angular/directives/attribute-directives⁴²” folder.

NgClass

The NgClass directive allows binding CSS class names on an HTML element.

1 <element [ngClass]="OPTIONS">

2 ...

3 </element>

Where OPTIONS value can take one of the following formats:

• string expression (single or space delimited)
• object literal
• array

Binding to String Expression (single):

With this format you specify a string expression that corresponds to a CSS class name:

⁴²https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/attribute-directives

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/attribute-directives
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/attribute-directives

Directives 224

1 <element [ngClass]="'class1'">

2 ...

3 </element>

Binding to String Expression (space delimited)

You can also provide multiple class names per single space delimited string expression:

1 <element [ngClass]="'class1 class2 class3'">

2 ...

3 </element>

Binding to Object Literal

This format is very similar to that of NgStyle one. All object keys are CSS class names and get added
to host element only if value evaluates to a truthy value. In a case of a non-truthy value, Angular
removes class names from the host.

1 <element [ngClass]="{

2 'class1': true,

3 'class2': false,

4 'class3': true }">

5 ...

6 </element>

Binding to Array

Finally you can bind NgClass directive to an array or class names:

1 <element [ngClass]="['class1', 'class2', 'class3']">

2 ...

3 </element>

In all the cases described above you can also bind directive options to underlying controller
properties or methods:

Directives 225

src/app/app.component.html

1 <element [ngClass]="currentClass">...</element>

2 <element [ngClass]="getClassObj()">...</element>

3 <element [ngClass]="getClassArr()">...</element>

src/app/app.component.ts

1 export class MyComponent {

2

3 currentClass: string = 'class1';

4

5 getClassObj(): any {

6 return {

7 'class2': true,

8 'class3': true

9 };

10 }

11

12 getClassArr(): string[] {

13 return [

14 'class4',

15 'class5'

16];

17 }

18 }

Source code
You can find the source code in the “angular/directives/attribute-directives⁴³” folder.

NgNonBindable

You use NgNonBindable directive to switch off Angular evaluating code or binding values for a
particular element and its content. For example if you want displaying source code:

⁴³https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/attribute-directives

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/attribute-directives
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/attribute-directives

Directives 226

1 <h2>NgNonBindable</h2>

2 <pre>

3 You can bind title property like following:

4 <code ngNonBindable>

5 <div>{{title}}</div>

6 </code>

7 </pre>

Which renders to the following if you run the application:

Please note that NgNonBindable is a very specific directive, and typically you are not going to use
it often, if at all.

Source code
You can find the source code in the “angular/directives/attribute-directives⁴⁴” folder.

Structural Directives

Structural directives allow you to control how element renders at run time.

Built-in structural directives

Angular provides a few built-in directives you are going to use very often:

• NgIf
• NgFor
• NgSwitch
⁴⁴https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/attribute-directives

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/attribute-directives
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/attribute-directives

Directives 227

NgIf

You are going to use NgIf directive when you want to display or hide decorated element based on
condition.

The most common usage format for this directive is

1 <element *ngIf="<condition>">

2 ...

3 </element>

where <condition> is a valid JavaScript expression.

Let’s build an example demonstrating conditional inclusion of the template. Add a boolean property
extraContent to your AppComponent component controller class implementation:

src/app/app.component.ts

1 export class AppComponent {

2 extraContent = false;

3 }

Next, put a <button> element to the component template, this button should toggle the extraContent
value on each click.

src/app/app.component.html

1 <button (click)="extraContent = !extraContent">

2 Toggle extra content

3 </button>

Finally, let’s add some content that should be displayed only when extraContent property value
gets set to true

src/app/app.component.html

1 <div *ngIf="extraContent">

2 <h2>Extra content comes here (ngIf)</h2>

3 </div>

Now if you run the application you should be able to toggle additional content by clicking the button
multiple times.

Directives 228

Very often you may need two different templates within the component based on the condition
evaluation. Traditionally developers are using separate NgIf directives assigned to truthy and falsy

results of the same expression:

1 <element *ngIf="condition">main content</element>

2 <element *ngIf="!condition">alternative content</element>

The NgIf directive also supports else blocks for showing alternative content when the condition
expression evaluates to a falsy value. In this case, you need to provide a reference to a separate
ng-template:

1 <element *ngIf="condition; else alternative">

2 Main template (condition is truthy)

3 </element>

4

5 <ng-template #alternative>

6 Alternative template (condition is falsy)

7 </ng-template>

To see that on practice return to the project created earlier and add the additional template:

src/app/app.component.html

1 <ng-template #emptyView>

2 <h3>No extra content available</h3>

3 </ng-template>

Template above can be referenced by emptyView id. Now update the main element to utilize the
newly created template:

Directives 229

src/app/app.component.html

1 <div *ngIf="extraContent; else emptyView">

2 <h2>Extra content comes here (ngIf)</h2>

3 </div>

If you run the application right now and click the Toggle extra content button, you should see the
content of the emptyView template.

It is possible to store both templates as external references. By default, Angular treats inline template
as a then block, but you can define it explicitly using the following syntax:

1 <element *ngIf="condition; then thenBlock else elseBlock"></element>

Now if updated our example can look like the following:

src/app/app.component.html

1 <button (click)="extraContent = !extraContent">

2 Toggle extra content

3 </button>

4 <div *ngIf="extraContent; then mainView else emptyView"></div>

5

6 <ng-template #mainView>

7 <h2>Extra content comes here (ngIf)</h2>

8 </ng-template>

9

10 <ng-template #emptyView>

11 <h3>No extra content available</h3>

12 </ng-template>

Source code
You can find the source code in the “angular/directives/structural-directives⁴⁵” folder.

⁴⁵https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/structural-directives

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/structural-directives
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/structural-directives

Directives 230

NgFor

The main purpose of NgFor directive is to display iterable collections utilising a custom HTML
template for each entry.

Binding to arrays

Let’s start with a simple example that best demonstrates NgFor directive in action.

src/app/app.component.html

1

2 <li *ngFor="let num of [1,2,3,4,5]">

3 {{num}}

4

5

In the example above we are using NgFor directive with a collection of five numbers to render an
unordered (bulleted) list. Angular treats the content of the list item as a template and repeatedly
applies to each array entry.

You should see the following HTML once application compiles and restarts:

If you inspect the source code of the page you should see the structure similar to the one below:

Directives 231

1

2

3 1

4

5

6 2

7

8

9 3

10

11

12 4

13

14

15 5

16

17

Binding to class properties or functions

It is also possible to bind NgFor to class properties or functions.

src/app/app.component.ts

1 export class AppComponent {

2 ...

3

4 users = [

5 {

6 id: 10,

7 firstName: 'John',

8 lastName: 'Doe'

9 },

10 {

11 id: 20,

12 firstName: 'Joan',

13 lastName: 'Doe'

14 }

15];

16 }

We are going to have two objects in the users collection. The list entry template should now look
like the next one:

Directives 232

src/app/app.component.html

1

2 <li *ngFor="let user of users">

3 <div>{{user.firstName + ' ' + user.lastName}}</div>

4

5

Once your project and compiled and reloaded you should see a list of full user names:

Using exported variables

The NgFordirectives exports several values that you can map to the the local template variables:

• index: number holds the numeric position of the current array item
• first: boolean indicates whether the current array item is the first one
• last: boolean indicates whether the current array item is the last one
• even: boolean indicates whether current array item’s position index is even
• odd: boolean indicates whether current array item’s position index is odd

You can use these additional values to improve the user interface. For example, let’s add row numbers
to the user list:

src/app/app.component.html

1

2 <li *ngFor="let user of users; let i = index">

3 <div>

4 {{i + 1}}:

5 {{user.firstName + ' ' + user.lastName}}

6 </div>

7

8

Note the use of let i = index, this is where you bind index property to a local template variable
i. That allows you displaying it via {{i + 1}}:

Directives 233

You can use all local variables for conditional styling and layout. For example, you may want
drawing a table or a list with stripes based on even and odd value, rendering some header or footer
for the first and last items.

It is possible to use all variables at the same time separating them by semicolons:

src/app/app.component.html

1

2 <li *ngFor="let user of users; let isFirst = first; let isLast = last;">

3 {{user.firstName + ' ' + user.lastName}}

4 (this is the first item)

5 (this is the last item)

6

7

When running the application, you should notice that first and last items in the list get different text
appended to them based on the condition expression.

Improving performance with trackBy

Every time a collection changes Angular drops existing DOM elements and the renders entire set of
new ones. That is fine when you are dealing with static collections. However, youmay see significant
performance drops when using frequently changed arrays, for example when using dynamic editing
or populating collections from the server. The complexity of item templates can also slow down
rendering and affect overall application performance.

Angular provides a special trackBy feature that allows you to track underlying objects by unique
id values and to rebuild DOM elements only for the entries that change. For many scenarios that
often ends up with a huge performance boosts as large portions of the DOM remain unchanged.

The trackBy value should go after the main ngFor expression and must be separated by a semicolon:

Directives 234

src/app/app.component.html

1

2 <li *ngFor="let user of users; trackBy: trackByUserId">

3 {{user.firstName + ' ' + user.lastName}}

4

5

The trackBy always binds to a component method having a numeric index and a current collection
object as parameters:

src/app/app.component.ts

1 trackByUserId(index: number, user: any) {

2 return user.id;

3 }

In the example above we tell Angular to keep track of users in the list based on the id property value
so that it can better detect what item has been added or removed.

NgSwitch

The NgSwitch directive is used for conditional rendering of element templates depending on the
expression value. You can treat it as an advanced NgIf directive with multiple else clauses.

You need three separate directives to make NgSwitch work:

• NgSwitch: an attribute directive holding main expression body
• NgSwitchCase: a structural directive, renders corresponding template if its condition matches
that of the NgSwitch one

• NgSwitchDefault: a structural directive, works like a fallback mechanism and renders a
template if none of the NgSwitchCase values matches the NgSwitch one

Here’s the basic example of the NgSwitch format:

1 <element [ngSwitch]="expression">

2 <element *ngSwitchCase="condition1">...</element>

3 <element *ngSwitchCase="condition2">...</element>

4 <element *ngSwitchDefault>...</element>

5 </element>

To check how NgSwitch operates in practice let’s build a simple component that displays different
UI layouts based on the selected role of the user. Open the app.component.ts and add the roles and
selectedRole properties like below:

Directives 235

src/app/app.component.ts

1 roles = [

2 { id: 0, name: 'empty' },

3 { id: 1, name: 'unknown' },

4 { id: 2, name: 'user' },

5 { id: 3, name: 'guest' },

6 { id: 4, name: 'administrator' }

7];

8

9 selectedRole = 'empty';

Next place a <select> element to be able to select a role from the dropdown list:

src/app/app.component.html

1 <select [(ngModel)]="selectedRole">

2 <option *ngFor="let role of roles">{{role.name}}</option>

3 </select>

Finally we are going to build our simple role template selector:

src/app/app.component.html

1 <div [ngSwitch]="selectedRole">

2

3 <div *ngSwitchCase="'administrator'">

4 Special layout for the administrator role

5 </div>

6

7 <div *ngSwitchCase="'guest'">

8 Special layout for the guest role

9 </div>

10

11 <div *ngSwitchDefault>

12 General UI for the roles

13 </div>

14

15 </div>

As a result, we are going to use dedicated UI templates for administrator and guest roles:

Directives 236

The rest of the roles should receive a generic template.

As you can see from the examples above, the NgSwitch directive is a poweful and flexible way for
conditional element rendering in Angular.

Creating a Structural Directive

Let’s create a simple structural directive called RepeatDirective that is going to repeat specified
HTML template certain number of times. You can use Angular CLI to generate a working directive
skeleton quickly.

ng g directive repeat

The command above gives you a basic RepeatDirective implementation and a simple unit test. It
also modifies the main application module app.module.ts to register new directive within module
declarations.

installing directive

create src/app/repeat.directive.spec.ts

create src/app/repeat.directive.ts

update src/app/app.module.ts

Here’s the content of the repeat.directive.ts we are going to work with:

Directives 237

src/app/repeat.directive.ts

1 import { Directive } from '@angular/core';

2

3 @Directive({

4 selector: '[appRepeat]'

5 })

6 export class RangeDirective {

7

8 constructor() { }

9

10 }

Note that Angular CLI automatically prepends default app prefix to the directive selector value. This
helps us to avoid name conflicts with the existing directives from either standard Angular or third
party libraries.

You can use your new directive with any HTML element like the following:

1 <element *appRepeat>...</element>

It is also possible to use the plain format without Angular’s syntactic sugar:

1 <ng-template [appRepeat]>...</ng-template>

Now let’s update our directive to repeat the content.

src/app/repeat.directive.ts

1 import { Directive, TemplateRef, ViewContainerRef, Input } from '@angular/core';

2

3 @Directive({

4 selector: '[appRepeat]'

5 })

6 export class RepeatDirective {

7

8 constructor(private templateRef: TemplateRef<any>,

9 private viewContainer: ViewContainerRef) { }

10

11 @Input()

12 set appRepeat(times: number) {

13 for (let i = 0; i < times; i++) {

14 this.viewContainer.createEmbeddedView(this.templateRef);

15 }

Directives 238

16 }

17

18 }

First of all, you get access to the underlying template by injecting TemplateRef instance and using
it as a local reference. You also save a reference to the ViewContainerRef instance as you need it to
turn the template reference to a real HTML element.

As a second step, we define an appRepeat setter that is going to receive configuration settings from
the directive value. Note that to map an attribute value to a function parameter the directive setter
must have the same name as the HTML selector value. In our case, it is appRepeat one. That gives
you the possibility using the *directive="expression" format similar to the one below:

1 <element *appRepeat="5">...</element>

The child content of the decorated element gets treated as a template.With the help of ViewContainer
and Template references we turn it into the HTML DOM multiple times:

1 for (let i = 0; i < times; i++) {

2 this.viewContainer.createEmbeddedView(this.templateRef);

3 }

You can test the directive with the following layout:

1 <div *appRepeat="5">

2 <div>Hello</div>

3 </div>

It is going to render the following output once the application runs:

1 Hello

2 Hello

3 Hello

4 Hello

5 Hello

The Hello template is rendered 5 times as we expect it. However, rendering HTML elements without
data context is not very useful. Let’s extend our directive with a custom context set to the position
index of the element:

Directives 239

1 for (let i = 0; i < times; i++) {

2 this.viewContainer.createEmbeddedView(this.templateRef, {

3 $implicit: i

4 });

5 }

Now you can define a local variable for your template bound to the data context:

1 <div *appRepeat="5; let idx">

2 <div>Hello {{idx}}</div>

3 </div>

You can also change example able to be like the next one:

1 <ng-template [appRepeat]="5" let-idx>

2 <div>Hello {{idx}}</div>

3 </ng-template>

This time the application output when using any of these formats is going to be as following:

1 Hello 0

2 Hello 1

3 Hello 2

4 Hello 3

5 Hello 4

Let’s get back to the data context again. Any local variable that has no value defined is going to point
to the default $implicit value. You can define as many variables as needed within your directive
implementation. For example, try to expose first and last variables similar to those of the NgFor
directive:

1 for (let i = 0; i < times; i++) {

2 this.viewContainer.createEmbeddedView(this.templateRef, {

3 $implicit: i,

4 first: i === 0,

5 last: i === times - 1

6 });

7 }

Next you can wire newly created local variables and reuse them within the template:

Directives 240

src/app/app.component.html

1 <div *appRepeat="5; let idx; let isFirst = first; let isLast = last;">

2 <div>

3 Hello {{idx}}

4 (first)

5 (last)

6 </div>

7 </div>

Once the application compiles and runs you should see the following result:

1 Hello 0 (first)

2 Hello 1

3 Hello 2

4 Hello 3

5 Hello 4 (last)

You can keep enhancing your directive with more complex layout and behaviour.

Modifying host element layout

Directives can extend or modify host element layout at run time. Let’s create an AttachDirective

directive that invokes an open file dialogue, once the user clicks the host element.

Due to security reasons, modern browsers do not allow invoking file dialogues from code, unless
caused by a user action, like clicking a button or hyperlink. Traditionally developers use a hidden
<input type="file"> element to trigger its native behaviour programmatically. So as part of its
implementation, our directive is going to create an additional <input> element and interact with it
from code.

Using Angular CLI create a new project to develop and test the directive.

ng new app-attach-directive

cd app-attach-directive/

ng g directive attach

The commands above result in a new app-attach-directive project containing attach.directive.ts
and attach.directive.spec.ts in the src/app folder. You can see the content of the new AttachDirective

below:

Directives 241

src/app/attach.directive.ts

1 import { Directive } from '@angular/core';

2

3 @Directive({

4 selector: '[appAttach]'

5 })

6 export class AttachDirective {

7

8 constructor() { }

9

10 }

Angular CLI automatically prepended the name with the default app prefix to avoid naming
conflicts, so you are going to use appAttach in HTML. Before implementing the directive let’s
prepare the testing environment. We are going to use main application component to see all the
changes in action.

src/app/app.component.ts

1 export class AppComponent {

2 title = 'Attach directive';

3 }

Add the following block to the application component’s template:

src/app/app.component.html

1 <div appAttach class="attach-area">

2 <div>

3 Click me to upload files

4 </div>

5 </div>

For demonstration and testing purposes we also provide some basic styling via attach-area CSS
class. The light blue box on the page shows the ‘clickable’ area wired with the appAttach directive.

Directives 242

src/app/app.component.css

1 .attach-area {

2 width: 200px;

3 height: 50px;

4 background-color: lightblue;

5 cursor: pointer;

6 }

Now you can run the app with

ng serve --open

The application compiles and runs inside your default browser.

You can leave the terminal running in the background. Angular CLI keeps watching for files and
automatically recompiles and reloads application upon any changes.

Now provide the initial directive implementation like the following:

src/app/attach.directive.ts

1 import { Directive, OnInit, ElementRef, Renderer, HostListener } from '@angular/core\

2 ';

3

4 @Directive({

5 selector: '[appAttach]'

6 })

7 export class AttachDirective implements OnInit {

8 private upload: HTMLInputElement;

9

10 constructor(

11 private el: ElementRef,

12 private renderer: Renderer) {

Directives 243

13 }

14

15 ngOnInit(): void {

16 this.upload = this.renderer.createElement(

17 this.el.nativeElement.parentNode, 'input')

18 as HTMLInputElement;

19

20 this.upload.type = 'file';

21 this.upload.style.display = 'none';

22 }

23 }

First of all, you reserve a private property upload to store reference on the original <input> element.
The directive also needs a reference to its host element and an instance of the Renderer class, to
modify HTML layout. We inject both in the constructor and store as private properties el and
renderer.

Once directive gets initialized it creates a new hidden <input type="file"> HTML element next to
the host one. You can invoke its methods from the code, for example, a click event that causes a file
dialogue to appear. Let’s listen to the host’s click event and redirect it to the hidden input element
like below:

src/app/attach.directive.ts

1 @HostListener('click', ['$event'])

2 onClick(event: Event) {

3 if (this.upload) {

4 event.preventDefault();

5 this.upload.click();

6 }

7 }

Once the user selects a file in the dialogue, our directive should know about that. We can achieve
that by listening to the change event of the input element and accessing the file list as soon as the
event occur.

Directives 244

src/app/attach.directive.ts

1 ngOnInit(): void {

2 ...

3 this.upload.addEventListener('change', e => this.onAttachFiles(e));

4 }

5

6 private onAttachFiles(e: Event): void {

7 const input = (<HTMLInputElement>e.currentTarget);

8 const files = this.getFiles(input.files);

9 this.raiseEvent(files);

10 }

Inside the handler, you extract the list of File objects from the event using the getFilesmethod with
the following implementation:

src/app/attach.directive.ts

1 private getFiles(fileList: FileList): File[] {

2 const result: File[] = [];

3 if (fileList && fileList.length > 0) {

4 for (let i = 0; i < fileList.length; i++) {

5 result.push(fileList[i]);

6 }

7 }

8 return result;

9 }

Typically you may want to create an array of Model classes based on the File instances, or wrapping
files into some other components. For the sake of simplicity let’s just return File objects as they are.

There can be multiple approaches to handling file uploads. The directive might be doing all the
upload work itself, it could be triggering some application service, or it can raise DOM events
for other components react on them. We are going to take the latter approach and raise a custom
attach-files event.

The raiseEvent method receives an array of File instances and raises attach-files event like
below:

Directives 245

src/app/attach.directive.ts

1 private raiseEvent(files: File[]): void {

2 if (files.length > 0) {

3 const event = new CustomEvent('attach-files', {

4 detail: {

5 sender: this,

6 files: files

7 },

8 bubbles: true

9 });

10

11 this.el.nativeElement.dispatchEvent(event);

12 }

13 }

You can now handle this custom event from either host element or any other HTML element up
against the parent hierarchy. Let’s create a list of files the user attaches using our directive.

src/app/app.component.html

1 <div class="attach-area" appAttach

2 (attach-files)="onAttachFiles($event)">

3 <div>

4 Click me to upload files

5 </div>

6 </div>

7

8 <h3>Files attached</h3>

9

10 <li *ngFor="let file of files">

11 {{file.name}}

12

13

As you can see from the layout above, we wire attach-files event with the onAttachFilesmethod
of main application component class and are going to store attached files in the files collection.

Directives 246

src/app/app.component.ts

1 export class AppComponent {

2 title = 'Attach directive';

3

4 files: File[];

5

6 onAttachFiles(e: CustomEvent) {

7 this.files = e.detail.files || [];

8 }

9 }

Once application recompiles and reloads you can to test new behaviour by attaching a file to see its
name appear in the list:

Another feature you may want to add to the directive is the ability to toggle single and multiple
file selection support. The standard <input type="file"> element allows this via the multiple

HTML attribute. We can introduce the same property for the directive and propagate its value to
the enclosed upload element like this:

Directives 247

src/app/attach.directive.ts

1 ...

2 export class AttachDirective implements OnInit {

3 ...

4

5 @Input()

6 multiple: boolean;

7

8 ngOnInit(): void {

9 ...

10 if (this.multiple) {

11 this.upload.setAttribute('multiple', '');

12 }

13 }

14 }

That allows us binding to or setting [multiple] property value on an HTML element alongside
appAttach directive.

src/app/app.component.html

1 <div class="attach-area" appAttach [multiple]="true"

2 (attach-files)="onAttachFiles($event)">

3 ...

4 </div>

Now if you run the application you should be able to select multiple files in the file dialogue. The
list at the bottom should display names for all of them.

Directives 248

So we got a directive that attaches to an HTML element, alters its behaviour and even redirects user
events to an additional hidden content. You can keep extending the implementation if needed, for
example adding new properties, or controlling the types of files to be selected.

Source code
You can find the source code in the “angular/directives/app-attach-directive⁴⁶” folder.

⁴⁶https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/app-attach-directive

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/app-attach-directive
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/app-attach-directive

Walkthrough: Upload Directive
In this walkthrough, we are going to create a directive that turns its host element into a drop target
for files.

Our directive itself does not upload files to a server, but instead, it is going to be responsible for
detecting dropped Files and raising special DOM events. Other parts of the application (components,
directives, services) can then react on those events and perform additional actions if needed.

Let’s start by generating a new application and calling it app-upload-directive:

ng new app-upload-directive

cd app-upload-directive/

You can test application was created successfully by running it with the default browser:

ng serve --open

Now let’s create an upload directive from the Angular CLI blueprint:

ng g directive directives/upload

The ng tool should put the code and unit tests into the src/app/directives folder, and should also
update main application module.

installing directive

create src/app/directives/upload.directive.spec.ts

create src/app/directives/upload.directive.ts

update src/app/app.module.ts

Angular CLI generates the following code for the new directive:

Walkthrough: Upload Directive 250

upload.directive.ts

1 import { Directive } from '@angular/core';

2

3 @Directive({

4 selector: '[appUpload]'

5 })

6 export class UploadDirective {

7

8 constructor() { }

9

10 }

All application and directive tests should be working properly

ng test

There should be an additional test for UploadDirective class: should create an instance. This test
is a good starting point for unit testing your future directive.

We are going to decorate a simple <div> element and turn it into a file drop area.

Walkthrough: Upload Directive 251

app.component.html

1 <h1>

2 {{title}}

3 </h1>

4

5 <div class="my-drop-area">

6 Drop your files here...

7 </div>

As it is a <div> element let’s add some style to be able distinguishing it. Setting fixed size and
background colour should be more than enough for now.

app.component.css

1 .my-drop-area {

2 width: 150px;

3 height: 50px;

4 background-color: lightgray;

5 }

The main application page now should look like the following:

upload.directive.ts

1 import { ..., HostBinding, HostListener } from '@angular/core';

2

3 export class UploadDirective {

4

5 @HostBinding('class.app-upload__dragover')

6 isDragOver: boolean;

7

8 }

Every time isDragOver becomes true the host element gets a CSS class app-upload__dragover

applied to it. Once it is set back to false the CSS class is automatically removed.

Now add the following code to the directive implementation:

Walkthrough: Upload Directive 252

upload.directive.ts

1 @HostListener('dragenter')

2 onDragEnter() {

3 this.isDragOver = true;

4 }

5

6 @HostListener('dragover', ['$event'])

7 onDragOver(event: Event) {

8 if (event) {

9 event.preventDefault();

10 }

11 this.isDragOver = true;

12 }

13

14 @HostListener('dragleave')

15 onDragLeave() {

16 this.isDragOver = false;

17 }

The code above performs a simple drag management to update isDragOver state and so host element
style. For dragenter and dragover events we are going to enable additional styles, and disable on
dragleave.

In order to turn host element into a drop zone you also need handling drop event:

upload.directive.ts

1 @HostListener('drop', ['$event'])

2 onDrop(event: DragEvent) {

3 event.preventDefault();

4 event.stopPropagation();

5 this.isDragOver = false;

6 }

Keep in mind that directive only adds app-upload__dragover class to the host element, it does not
modify element’s style attributes directly. Developers that are using your directive should be able
to define look and feel of the decorated element at the application level.

Traditionally file drop areas use dashed borders when being dragged over, let’s make our element
draw a thin blue border and also change background colour:

Walkthrough: Upload Directive 253

app.component.css

1 .app-upload__dragover {

2 border: 1px dashed blue;

3 background-color: white;

4 }

And you need decorating div element with the directive to see it in action:

app.component.html

1 <div class="my-drop-area" appUpload>

2 Drop your files here...

3 </div>

The element should be changing the style when you drag a file over its area:

Now that we have drag events wired with element styles, it is time to implement drop handling.
Find the onDrop method we have introduced earlier and replace with the following code:

upload.directive.ts

1 @HostListener('drop', ['$event'])

2 onDrop(event: DragEvent) {

3 event.preventDefault();

4 event.stopPropagation();

5 this.isDragOver = false;

6

7 const files = this.collectFiles(event.dataTransfer);

8 console.log(files);

9 this.onFilesDropped(files);

10 }

Once user drops files on the host element, the directive is going extract information on files from
the DataTrasfer instance (collectFiles), and pass discovered files to the onFilesDropped method
to raise corresponding DOM events.

Walkthrough: Upload Directive 254

DataTransfer
The DataTransfer object is used to hold the data that is being dragged during a drag and
drop operation. It may hold one or more data items, each of one or more data types. For
more information see DataTranfer⁴⁷ article.

Essentially we need to extract File objects into a separate collection in a safe manner:

upload.directive.ts

1 private collectFiles(dataTransfer: DataTransfer): File[] {

2 const result: File[] = [];

3

4 if (dataTransfer) {

5 const items: FileList = dataTransfer.files;

6

7 if (items && items.length > 0) {

8 for (let i = 0; i < items.length; i++) {

9 result.push(items[i]);

10 }

11 }

12 }

13

14 return result;

15 }

Finally, we need to raise an upload-files event to allow other components handling it. We are going
to create an instance of the CustomEvent for that purpose.

CustomEvent
The CustomEvent interface represents events initialized by an application for any purpose.
For more information see CustomEvent⁴⁸ article.

The directive also needs access to the native DOM element of the host to raise a custom event,
so importing ElementRef instance for the constructor is required. Reference to the native HTML
element should be injected as a constructor parameter and used as private property el.

⁴⁷https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
⁴⁸https://developer.mozilla.org/en-US/docs/Web/API/CustomEvent

https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/CustomEvent
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/CustomEvent

Walkthrough: Upload Directive 255

upload.directive.ts

1 import { ..., ElementRef } from '@angular/core';

2

3 export class UploadDirective {

4 ...

5

6 constructor(private el: ElementRef) {}

7

8 ...

9 }

You need using Element.dispatchEvent() to raise the upload-files event. As part of the CustomEvent
interface, we can define custom detail value, so that external event handlers can get additional
information.

We are going to provide an object containing a list of files (files) the user has dropped on the host
element, and reference to the directive (sender) instance that raised the event.

upload.directive.ts

1 private onFilesDropped(files: File[]) {

2 if (files && files.length > 0) {

3 this.el.nativeElement.dispatchEvent(

4 new CustomEvent('upload-files', {

5 detail: {

6 sender: this,

7 files: files

8 },

9 bubbles: true

10 })

11);

12 }

13 }

Note the bubbles property being set to true to enable event bubbling. It indicates whether the given
event bubbles up through the DOM or not. In our case we allow any HTML element up the visual
tree handle this event or stop its propagation.

You can get more details on custom events in the article Creating and triggering events⁴⁹.

Now it is time to handle upload-files event at the application level. Open the app.component.html
file and add onUploadFiles event handler like shown below:

⁴⁹https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events

Walkthrough: Upload Directive 256

app.component.html

1 <div class="my-drop-area" appUpload (upload-files)="onUploadFiles($event)">

2 Drop your files here...

3 </div>

Given that our event supports bubbling any element in the parent hierarchy can handle it. You could
also define the handler as following:

app.component.html

1 <div (upload-files)="onUploadFiles($event)">

2 <div class="my-drop-area" appUpload>

3 Drop your files here...

4 </div>

5 </div>

To see the content of the event, we are going to put the console.log for now:

app.component.ts

1 onUploadFiles(event: CustomEvent) {

2 console.log(event);

3 }

Now if you compile and run the web application, and drop one or multiple files on the drop are, the
console output should be similar to the following one:

As you may see from the picture above, the handler is getting CustomEvent that holds details value
with a File collection, reference to the directive instance, and several standard properties.

Let’s try adding some visualisation and display a list of previously uploaded files on the main page.
Append the following HTML to the app.component.html file content:

Walkthrough: Upload Directive 257

app.component.html

1 ...

2 <div>

3 <h3>Uploaded files:</h3>

4

5 <li *ngFor="let file of uploadedFiles">

6 {{file}}

7

8

9 </div>

List element binds to the uploadedFiles collection holding uploaded file names. The upload-files
event handler just collects the file names and fills the collection.

app.component.ts

1 export class AppComponent {

2 ...

3 uploadedFiles: string[] = [];

4

5 onUploadFiles(event: CustomEvent) {

6 console.log(event);

7 const files: File[] = event.detail.files;

8 if (files) {

9 for (const file of files) {

10 this.uploadedFiles.push(file.name);

11 }

12 }

13 }

14 }

Now run your web application or switch to the browser if running the live development server, and
try dropping one or multiple files several times. You should see file names appear in the list below
the drop area like shown on the picture below:

Walkthrough: Upload Directive 258

Source code
You can find the source code in the “angular/directives/app-upload-directive⁵⁰” folder.

When working on your Angular web application, you may want some other component or service
handle the upload-files event and perform actual uploading to a backend server, preferably
utilising the injectable service. It is always a good practice splitting functionality into small
interchangeable building blocks, each doing one thing at a time.

⁵⁰https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/app-upload-directive

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/app-upload-directive
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/directives/app-upload-directive

Pipes
Pipes transform template data into display values at runtime.

Source code
You can find the source code in the “angular/pipes/standard-pipes⁵¹” folder.

Introduction

There are many cases when you may want to perform minor changes to the values that users see
when the application is running. Text transformation is an excellent example. Imagine that you need
to display a text label or field in the upper case, regardless of how the user originally typed it. You
can do that with the help of CSS by wrapping the text into some HTML element with style or class
applied. Alternatively, you can use the UpperCasePipe, a built-in Angular pipe that transforms text
values to upper case.

Pipes have the following usage formats:

1 <element>{{ <expression> | <pipe> }}</element>

2 <element [propertyName]="<expression> | <pipe>"></element>

You append the name of the pipe to the expression separating them with the pipe operator (|).

Let’s now build a quick example to see the UpperCasePipe in action:

1 <h2>Uppercase</h2>

2 <div>

3 {{'Hello world' | uppercase }}

4 </div>

The Hello world example above renders to the following result at runtime:

⁵¹https://github.com/DenysVuika/developing-with-angular/tree/master/angular/pipes/standard-pipes

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/pipes/standard-pipes
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/pipes/standard-pipes

Pipes 260

No matter how you define the text value, for instance, “hEllo worlD” or “hello WOLRD”, it is going
to be uppercased when the application runs.

Pipes with Parameters

The pipes in Angular can also have input parameters. That allows passing options to pipes is they
support multiple output transformations. You define pipe parameters by appending a colon (:)
symbol to the pipe name followed by the parameter value:

1 <element>{{ <expression> | <pipe>:<parameter> }}</element>

It is also possible to provide multiple parameters given the pipe supports that. In this case you are
going to separate all values by a colon (:) symbol, for example:

1 <element>{{ <expression> | <pipe>:<parameter-1>:<parameter-2>:<parameter-N> }}</elem\

2 ent>

The simplest example is date value conversion. There are many different formats you can choose to
display a date on the HTML page. Angular provides a DatePipe pipe out of the box that helps you
converting dates to various string representations.

Add the following currentDate property to the AppComponent class in the app.component.ts:

1 ...

2 export class AppComponent {

3 ...

4 currentDate: number = Date.now();

5 }

The property holds the current date value evaluated with the Date.now() function. You can take the
next HTML template to display the date:

Pipes 261

1 <h2>Date</h2>

2 <div>

3 Date: {{ currentDate | date }}

4 </div>

We transform currentDate value with a DatePipe pipe using default parameters. If you run the
application right now the output should be similar to the following one:

Note that the value of the date depends on your current date.

Typically you may want to render dates in short or long forms, or even with a custom format. For
that purpose the DatePipe in Angular supports format parameter to fine-tune the resulting output.

Let’s add two more examples to the page:

1 <div>

2 Short date: {{ currentDate | date:'shortDate' }}

3 </div>

4 <div>

5 Long date: {{ currentDate | date:'longDate' }}

6 </div>

Chaining Pipes

You can use multiple value transformations by chaining pipes together. The pipes are combined
utilising the same pipe operator (|), and every pipe can optionally have own properties to alter its
behaviour.

Pipes 262

1 <element>{{ <expression> | <pipe-1> | <pipe-2> | <pipe-N> }}</element>

The simple use case to demonstrate the chaining is using Date and Uppercase pipes at the same time.

Append the following code to the main application template:

1 <div>

2 Long date (uppercase): {{ currentDate | date:'fullDate' | uppercase }}

3 </div>

The main page now looks like below:

So you can have quite powerful combinations of pipes transforming your data values as you need
them to be.

Built-in Pipes

Angular provides a set of handy pipes out of the box. All of them can save your time and significantly
reduce coding efforts related to values transformation and formatting.

You can notice that many pipes have similar usage format, so it should be pretty easy to remember
most of the use cases. Let’s start with simple pipes and proceed to more complex by the end of this
chapter.

UpperCase

The UpperCasePipe pipe transforms text to upper case and has the following usage format:

<element>

{{ <string_expression> | uppercase }}

</element>

You can use it with text expressions inside HTML element body or property binding:

Pipes 263

1 <h2>Uppercase</h2>

2

3 'Hello world' => {{ 'Hellow world' | uppercase }}

4

You can see the result of the rendering below:

This pipe does not have any additional parameters.

LowerCase

The LowerCasePipe pipe transforms text to lower case and has the following usage format:

<element>

{{ <string_expression> | lowercase }}

</element>

Here’s the basic example of using LowerCasePipe in practice:

<h2>Lowercase</h2>

'hELLO wORLD' => {{ 'hELLO wORLD' | lowercase }}

Which gives you the following result once application runs:

This pipe does not have any additional parameters.

TitleCase

The TitleCasePipe converts input text to the title case. Thatmeans that first character gets converted
to upper case while the rest of the string becomes lowercased.

Pipes 264

<element>

{{ <text_expression> | titlecase }}

</element>

Converting to title case becomes handy when dealing with usernames. Your application may have
an input form, like a personal profile, where users can enter their first and last names for instance.
Regardless of the actual value, whether it is “john” or “jOHN”, you can render it like a “John” at run
time:

1 <h2>Titlecase</h2>

2

3 'jOHN' => {{ 'jOHN' | titlecase }}

4

That turns into the following once your application runs:

This pipe does not have any additional parameters.

Date

You have already seen the DatePipe usage earlier in this chapter. This pipe allows you to format a
date value using a custom or one of the predefined locale rules.

<element>

{{ <date_expression> | date[:format] }}

</element>

Where date_expression is date represented by an object, a number holding amount of milliseconds
since UTC epoch, an ISO string⁵², or a function or method call evaluating to these values at run time.

Custom formatting rules

According to the Angular documentation you can provide a custom date format based on the
following rules:

⁵²https://www.w3.org/TR/NOTE-datetime

https://www.w3.org/TR/NOTE-datetime
https://www.w3.org/TR/NOTE-datetime

Pipes 265

Component Symbol Narrow Short Long Numeric 2-digit

era G G (A) GGG
(AD)

GGGG
(Anno
Domini)

— —

year y — — — y (2015) yy (15)
month M L (S) MMM

(Sep)
MMMM
(Septem-
ber)

M (9) MM (09)

day d — — — d (3) dd (03)
weekday E E (S) EEE (Sun) EEEE

(Sunday)
— —

hour j — — — j (13) jj (13)
hour12 h — — — h (1 PM) hh (01

PM)
hour24 H — — — H (13) HH (13)
minute m — — — m (5) mm (05)
second s — — — s (9) ss (09)
timezone z — — z (Pacific

Standard
Time)

— —

timezone Z — Z (GMT-
8:00)

— — —

timezone a — a (PM) — — —

As you can see from the table above, there may be plenty of different combinations depending on
how you want a date and time presented. If you want to get a year portion as a full 4-digit value you
are going to take y symbol (2017), or yy for a 2-digit only (17). Some of the date components support
multiple presentations. Assuming your browser is set to en-UK locale, for example, you can display
September month as S using its narrow form via L symbol, short form Sep using MMM symbol, long
September form with MMMM, or numeric forms 9 and doble-digit 09 by means of M and MM symbols
respectively.

Note that you can use any other symbol as a date component separator, for instance:

• dd/MM/yy ⇒ 13/04/79
• dd-MM-yy ⇒ 13-04-79
• dd=MM=yy ⇒ 13=04=79

Here’s a basic example you can try with the main application component:

1 export class AppComponent {

2 ...

3 birthday = new Date(1879, 3, 14);

4 }

Pipes 266

1 <h2>Date (custom formats)</h2>

2

3 {{'1879-03-14' | date:'yMMMdjms'}}

4 dd/MM/yy: {{ birthday | date:'dd/MM/yy' }}

5 EEE, MMMM dd, yyyy: {{ birthday | date:'EEE, MMMM dd, yyyy' }}

6

The result should be something like the following:

The Date pipe is going to use the end user’s locale when formatting time zones. Note that when you
use an ISO string⁵³ with no time portion, for example, 1879-03-14, the pipe does not apply time zone
offset.

<element{{'1879-03-14' | date:'yMMMdjms'}}</element>

<!-- Mar 14, 1879, 12:00:00 AM -->

Internationalisation API
This pipe is using Internationalisation API that may not be fully supported by all modern
browsers. You can use Polyfill.io⁵⁴ service to get the Intl polyfill only if your user’s current
browser needs it.

Also, you can see details and additional options at the project side: Intl.js⁵⁵

Predefined formatting rules

The DatePipe pipe comes with the following predefined rules to help you formatting the dates:

⁵³https://www.w3.org/TR/NOTE-datetime
⁵⁴https://cdn.polyfill.io/v2/docs/
⁵⁵https://github.com/andyearnshaw/Intl.js/

https://www.w3.org/TR/NOTE-datetime
https://cdn.polyfill.io/v2/docs/
https://github.com/andyearnshaw/Intl.js/
https://www.w3.org/TR/NOTE-datetime
https://cdn.polyfill.io/v2/docs/
https://github.com/andyearnshaw/Intl.js/

Pipes 267

Name Value Example output (en-UK)

medium yMMMdjms Apr 13, 1879, 11:00:00 PM

short yMdjm 4/13/1879, 11:00 PM

fullDate yMMMMEEEEd Sunday, April 13, 1879

longDate yMMMMd April 13, 1879

mediumDate yMMMd Apr 13, 1879

shortDate yMd 4/13/1879

mediumTime jms 11:00:00 PM

shortTime jm 11:00 PM

You can use the following HTML template and corresponding component property birthday to test
all the rules:

1 <h2>Date (predefined formats)</h2>

2

3 medium: {{ birthday | date:'medium' }}

4 short: {{ birthday | date:'short' }}

5 fullDate: {{ birthday | date:'fullDate' }}

6 longDate: {{ birthday | date:'longDate' }}

7 mediumDate: {{ birthday | date:'mediumDate' }}

8 shortDate: {{ birthday | date:'shortDate' }}

9 mediumTime: {{ birthday | date:'mediumTime'}}

10 shortTime: {{ birthday | date:'shortTime' }}

11

1 export class AppComponent {

2 ...

3 birthday = new Date(1879, 3, 14);

4 }

So that should give you the following result at run time:

Decimal

The DecimalPipe pipe formats a number as text, taking into account user’s locale and optionally
custom display format.

Pipes 268

The usage format of the pipe is as follows:

<element>

{{ <number_expression> | number[:digitFormat] }}

</element>

Where the digitFormat value is represented by the following formatting rule:

minIntegerDigits.minFractionDigits-maxFractionDigits

Component Default Value Description

minIntegerDigits 1 Minimum number of digits to use when
converting to text.

minFractionDigits 0 Minimum number of digits after fraction.
maxFractionDigits 3 Maximum number of digits after fraction.

Minimum numbers
By setting the minimum numbers like minIntegerDigits and minFractionDigits, you
enforce resulting value to have a certain size. The pipe automatically adds leading or trailing
zeros if the actual value is less than expected.

For example applying a minimum number of 3 to the value 1 results in 003 text rendered by
the pipe.

Let’s now see how this pipe works in practice. Open existing or create a new Angular application
and put the following block to the main application component template:

1 <h2>Decimal (12.123456)</h2>

2

3 number => {{ 12.123456 | number }}

4 number:'2.1-2' => {{ 12.123456 | number:'2.1-2' }}

5 number:'3.0-0' => {{ 12.123456 | number:'3.0-0' }}

6 number:'3.10-15' => {{ 12.123456 | number:'3.10-15' }}

7

The example above renders to the following:

Pipes 269

Please note the last case in the example above. It demonstrates how leading, and trailing zeros get
added to the output based on conditions.

Internationalisation API
This pipe is using Internationalisation API that may not be fully supported by all modern
browsers. You can use Polyfill.io⁵⁶ service to get the Intl polyfill only if your user’s current
browser needs it.

Also, you can see details and additional options at the project side: Intl.js⁵⁷

Currency

The CurrencyPipe pipe formats a number as a currency text, taking into account user’s locale and
optionally custom display format.

You can use this pipe with three optional parameters utilising the following format:

<element>

{{ <number_expression> | currency[:code[:symbol[:digitFormat]]] }}

</element>

The code is a parameter of string type that refers to ISO 4217⁵⁸ currency code. For example, you
can use GBP for the Great Britain Pound Sterling, or USD for United States Dollar.

The symbol parameter holds boolean value to indicate whether pipe needs to render currency symbol
like £ or just use the currency code value, in this case, GBP. This parameter defaults to false and
CurrencyPipe is going to use currency codes if symbol parameter is not defined explicitly.

Finally, the digitFormat value is the same as of the DecimalPipe, and is represented by the following
formatting rule:

minIntegerDigits.minFractionDigits-maxFractionDigits

⁵⁶https://cdn.polyfill.io/v2/docs/
⁵⁷https://github.com/andyearnshaw/Intl.js/
⁵⁸https://en.wikipedia.org/wiki/ISO_4217

https://cdn.polyfill.io/v2/docs/
https://github.com/andyearnshaw/Intl.js/
https://en.wikipedia.org/wiki/ISO_4217
https://cdn.polyfill.io/v2/docs/
https://github.com/andyearnshaw/Intl.js/
https://en.wikipedia.org/wiki/ISO_4217

Pipes 270

Component Default Value Description

minIntegerDigits 1 Minimum number of digits to use when
converting to text.

minFractionDigits 0 Minimum number of digits after fraction.
maxFractionDigits 3 Maximum number of digits after fraction.

Minimum numbers
By setting the minimum numbers like minIntegerDigits and minFractionDigits, you
enforce resulting value to have a certain size. The pipe automatically adds leading or trailing
zeros if the actual value is less than expected.

For example applying a minimum number of 3 to the value 1 results in 003 text rendered by
the pipe.

Below is a set of examples to demonstrate the pipe in action:

1 <h2>Currency</h2>

2

3 GBP (code): {{ 150 | currency:'GBP' }}

4 GBP (symbol): {{ 150 | currency:'GBP':true }}

5 USD: {{ 0.9876 | currency:'USD':true:'2.2-2' }}

6

Once your application starts you should see the following output:

Internationalisation API
This pipe is using Internationalisation API that may not be fully supported by all modern
browsers. You can use Polyfill.io⁵⁹ service to get the Intl polyfill only if your user’s current
browser needs it.

Also, you can see details and additional options at the project side: Intl.js⁶⁰

⁵⁹https://cdn.polyfill.io/v2/docs/
⁶⁰https://github.com/andyearnshaw/Intl.js/

https://cdn.polyfill.io/v2/docs/
https://github.com/andyearnshaw/Intl.js/
https://cdn.polyfill.io/v2/docs/
https://github.com/andyearnshaw/Intl.js/

Pipes 271

Percent

The PercentPipe formats a number input as a percentage, where “1” corresponds to “100%”, and
“0.5” for instance corresponds to “50%”. This pipe also takes into account user’s locale and allows
you to customise resulting numeric format if needed.

The usage format is similar to that of the DecimalPipe, CurrencyPipe and many other number-based
pipes Angular provides out of the box:

<element>

{{ <number_expression> | percent[:digitFormat] }}

</element>

Where the digitFormat value is represented by the following formatting rule:

minIntegerDigits.minFractionDigits-maxFractionDigits

Component Default Value Description

minIntegerDigits 1 Minimum number of digits to use when
converting to text.

minFractionDigits 0 Minimum number of digits after fraction.
maxFractionDigits 3 Maximum number of digits after fraction.

Minimum numbers
By setting the minimum numbers like minIntegerDigits and minFractionDigits, you
enforce resulting value to have a certain size. The pipe automatically adds leading or trailing
zeros if the actual value is less than expected.

For example applying a minimum number of 3 to the value 1 results in 003 text rendered by
the pipe.

Now create a new Angular project or open an existing one and append the following block to the
main application component template:

1 <h2>Percent</h2>

2

3 1.0 equals to {{ 1.0 | percent }}

4 0.5 equals to {{ 0.5 | percent }}

5 0.123456 equals to {{ 0.123456 | percent }}

6

If you run the application with the code above you should see the following output:

Pipes 272

Notice that by default PercentPipe displays three digits after the fraction, so 0.123456 gets rounded
and shown as 12.346.

As with other number conversion pipes, you are also able to control how PercentPipe displays digits
after fraction. For example, let’s make the transformed output more precise and render five numbers
instead of the default three:

1 <h2>Percent</h2>

2

3 0.123456 corresponds to {{ 0.123456 | percent:'1.1-5' }}

4

This time we should see the full number as we define it initially, and without rounding:

It is also possible to add leading zero to the final output by putting a minimum threshold for the
number of digits:

1 <h2>Percent</h2>

2

3 0.025 corresponds to {{ 0.025 | percent:'2.1' }}

4

The example above shows how to force PercentPipe always to use two numbers during conversion,
so you are going to get a leading zero for small values.

Pipes 273

Internationalisation API
This pipe is using Internationalisation API that may not be fully supported by all modern
browsers. You can use Polyfill.io⁶¹ service to get the Intl polyfill only if your user’s current
browser needs it.

Also, you can see details and additional options at the project side: Intl.js⁶²

Json

The JsonPipe pipe often helps with debugging your Angular code. Its main purpose is converting
JavaScript objects into JSON strings.

<element>

{{ <object_expression> | json }}

</element>

You are going to use this pipe if you want to peek inside a payload or response object coming
from HTTP service call for instance. Let’s start by adding a complexObject property to the main
application component:

1 export class AppComponent {

2 ...

3 complexObject = {

4 name: {

5 firstName: 'Joan',

6 lastName: 'Doe'

7 },

8 email: 'joan.doe@mail.com'

9 };

10 }

As you see the property holds a User object with some nested properties. You can now render it
using the JsonPipe pipe as below:

1 <h2>Json</h2>

2 <pre>{{ complexObject | json }}</pre>

That gives you the following output once application reloads:

⁶¹https://cdn.polyfill.io/v2/docs/
⁶²https://github.com/andyearnshaw/Intl.js/

https://cdn.polyfill.io/v2/docs/
https://github.com/andyearnshaw/Intl.js/
https://cdn.polyfill.io/v2/docs/
https://github.com/andyearnshaw/Intl.js/

Pipes 274

This pipe does not have any additional parameters.

Slice

The SlicePipe pipe extracts a section of a string or array into a new object. It performs a selection
from a “begin” to an “end” index where the “end” does not get included in the resulting set. Note
that the original string or array is not modified.

Slice behaviour
The implementation of this pipe is based on the standard Array.prototype.slice()⁶³ method
for JavaScript Arrays, and String.prototype.slice()⁶⁴ method for JavaScript Strings.

If needed, please refer to the corresponding API documentation for more details on how
slice gets performed.

Using with Arrays

The format when using the pipe with arrays and collections is the following:

<element>

{{ array_expression | slice:begin[:end] }}

</element>

First, add an initial collection of numbers to the main application component class, to be able testing
the pipe:

⁶³https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/slice
⁶⁴https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/slice

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/slice
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/slice
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/slice
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/slice

Pipes 275

1 ...

2 export class AppComponent {

3 ...

4 numberCollection = [0, 1, 2, 3, 4, 5, 6];

5 }

As the next, try displaying first three items from the array by setting begin index to 0 to point to
the start of the collection, and the end index to 3.

1 <h2>Slice (arrays)</h2>

2

3

4 First 3 items:

5

6 <li *ngFor="let num of numberCollection | slice:0:3">{{num}}

7

8

9

Given the ending index is not included, the resulting subset should have the following items
rendered: 0, 1, 2

You can also count items from the end of the array. For this purpose, you are going to use negative
values for the start option. For example value 3 signals the pipe to start taking items from the third
position from the beginning. Using value -3 makes the pipe count items from the end of the array.

Let’s now try negative values in action and display last 3 items from the numbers collection:

Pipes 276

1 <h2>Slice (arrays)</h2>

2

3

4 Last 3 items:

5

6 <li *ngFor="let num of numberCollection | slice:-3">{{num}}

7

8

9

This time we do not need to specify the end index as we are going to take all array values starting
with the third one from the end.

Feel free to experiment with start and end index values more to see how SlicePipe works with
arrays depending on your conditions.

Using with Strings

The format when using the pipe with strings is identical to that of the arrays. The SlicePipe pipe
treats strings as arrays of characters, so you can apply the same begin and end parameters as you
did earlier.

<element>

{{ string_expression | slice:begin[:end] }}

</element>

Let’s test this pipe with the “Hello world!” string and extract the first word:

1 <h2>Slice (strings)</h2>

2

3

4 First word of 'Hello world!':

5 {{ 'Hello world!' | slice:0:5 }}

6

7

Pipes 277

Upon application start, you should see that pipe successfully transformed the string value and
rendered only the word “Hello”.

We can also take the last word by using negative number for the begin parameter value:

1 <h2>Slice (strings)</h2>

2

3

4 Last word of 'Hello world!':

5 {{ 'Hello world!' | slice:-6:-1 }}

6

7

You should see the word “world” rendered by the pipe as soon as your application reloads.

Note that we use -1 for the end value because sentence ends with an exclamation mark that we want
to exclude from the final output. Otherwise, you can omit the end setting entirely and leave just -6
for the start value.

I18nSelect

For the time being the I18nSelectPipe is an experimental pipe that allows you to render different
strings from the object depending on the input value.

Experimental
Please note that this pipe is an experimental one and its functionality may change. We are
going to update this section with new features for the I18nSelectPipe if they appear, or
remove this warning if the pipe gets updated to the stable state.

The usage format for this pipe is the following:

Pipes 278

<element>

{{ <expression> | i18nSelect:mapping }}

</element>

The mapping is an object literal with properties.

To see that in action you need to create two properties titleMode and titleValues. The titleMode
property should be responsible for different title rendering modes, while titleValues contains
different values for title content.

1 export class AppComponent {

2 titleMode = 'primary';

3 titleValues = {

4 primary: 'This is a primary title',

5 secondary: 'This is a secondary title',

6 other: 'This is an alternative title'

7 };

8 }

Now we can wire both properties together in the component HTML template as below:

1 <h2>I18nSelect</h2>

2

3 {{ titleMode | i18nSelect:titleValues }}

4

Based on settings above there are four different values you can see on the screen at runtime:

• titleValues.primary if titleMode property value equals to primary;
• titleValues.secondary if titleMode property value equals to secondary;
• titleValues.other as a fallback value if titleMode does not contain any of the values above;
• empty string, if titleValues object literal does not have other property defined, and titleMode
contains “unknown” value;

Given that by default titleMode property value is set to primary, you should see the following
content once the application starts:

Now try changing the value of the titleMode property to secondary like in the example below:

Pipes 279

1 export class AppComponent {

2 titleMode = 'secondary';

3 ...

4 }

This time I18nSelectPipe is going to select and display titleValues.secondary value:

For the next experiment, let’s try setting titleMode to something titleValues does not contain a
property for. For example, change the value to a “something else” string.

1 export class AppComponent {

2 titleMode = 'something else';

3 ...

4 }

As soon as your page reloads you can see that I18nSelectPipe this time takes the titleMode.other
content as a fallback value.

Another good scenario for I18nSelectPipe is rendering text that gets adopted to some input criteria,
for instance, gender value of the current user can be a good example:

1 export class AppComponent {

2 gender: string = 'male';

3 inviteMap: any = {

4 'male': 'Invite him.',

5 'female': 'Invite her.',

6 'other': 'Invite them.'

7 };

8 }

Your component may display different user interface and content based on the gender value at run
time.

Finally, you an use the I18nSelectPipe pipe for localising text, the i18n prefix in its name stands
for internationalisation. Imagine you are implementing a colour picker button component, and

Pipes 280

you need to support multiple languages. You can easily split the translation support into two
pieces: currentLanguage property holding currently used language code and a buttonLabels object
containing all supported translations.

Let’s see that in practice by providing tree “Pick colour” labels translated into British English (en-GB),
American English (en-US) and Ukrainian (uk). For all other languages that our component does not
support out of the box, we are going to use en-GB locale via other property as a fallback option.

1 export class AppComponent {

2 currentLanguage = 'en-GB';

3 buttonLabels = {

4 'en-US': 'Pick a color',

5 'en-GB': 'Pick a colour',

6 'uk': 'Вибрати колiр',

7 'other': 'Pick a colour'

8 };

9 }

Now switch to the HTML template of your application component or any other component you are
using for testing purposes, and add the following content:

1 <h2>I18nSelect</h2>

2

3

4 <button>{{ currentLanguage | i18nSelect:buttonLabels }}</button>

5

6

You should see the en-GB translation by default as per currentLanguage property value we set earlier:

Now if you change the currentLanguage to “uk” code the button should have the following content
rendered by I18nSelectPipe:

Finally, if you change your currentLanguage property value to something that is not supported by
default, like “fr” or “it” for instance, the pipe is going to switch to the “other” value at run time.

Pipes 281

I18nPlural

This pipe helps youwith pluralizing your string values based on a number input value and optionally
taking into account the current user’s locale.

Experimental
Please note that this pipe is an experimental one and its functionality may change. We are
going to update this section with new features for the I18nPluralPipe if they appear, or
remove this warning if the pipe gets updated to the stable state.

The usage format for the I18nPluralPipe is as following:

<element>

{{ <number_expression> | i18nPlural:mapping }}

</element>

The mapping is an object literal with properties, represented in TypeScript by a dictionary containing
key/value pairs of a string type.

Let’s imagine we have a list of posts to render on the page. Each post may also contain comments,
so we are also going to show a list of comment instances in a user-friendly manner.

Create a new application with Angular CLI or open an existing one, and append the following
content to the main application controller:

1 export class AppComponent {

2 ...

3 posts = [

4 {

5 content: 'Post 1 content',

6 commentsCount: 0,

7 },

8 {

9 content: 'Post 2 content',

10 commentsCount: 1

11 },

12 {

13 content: 'Post 3 content',

14 commentsCount: 10

15 }

16];

17 }

Pipes 282

We have a collection of three simple posts with comment counters as commentsCount properties
holding different number values.

There are at least three different cases for display value formatting in our case:

• 0 comments: special message for zero values
• 1 comment: singular form of the message
• 2+ comments: plural form of the message

Now let’s create a mapping dictionary to hold string values for all the use cases above:

1 export class AppComponent {

2 ...

3 commentLabels: { [key: string]: string } = {

4 '=0': 'There are no comments for this post.',

5 '=1': 'There is one comment for this post.',

6 'other': 'There are # comments for this post.'

7 };

8 }

Finally we are ready to see I18nPluralPipe in action. Append the followingHTML to the component
template:

1 <h2>I18nPluralPipe</h2>

2

3 <li *ngFor="let post of posts">

4 {{ post.content }}

5

6 {{ post.commentsCount | i18nPlural: commentLabels }}

7

8

9

So this is how the output result should look like when the application starts:

Pipes 283

Async

The AsyncPipe pipe subscribes to an instance of a Promise or Observable and transforms the
underlying value upon every change.

<element>

{{ <expression> | async }}

</element>

The expression can take a value of either Observable or a Promise type.

Unsubscribing
When the component gets destroyed, the async pipe unsubscribes automatically to avoid
potential memory leaks.

Using with NgFor directive

Let’s try to display a list of comments based on an Observable. First, create a comments property in
your application component class:

1 export class AppComponent {

2 ...

3 comments: Observable<string[]>;

4 }

We are going to render an unordered list of comments; we also need a button to fetch comments
from the server and update comments observable with new values.

Open the HTML template of the main application component and append the following:

1 <h2>Async</h2>

2

3 <li *ngFor="let comment of comments | async">

4 {{ comment }}

5

6

7 <button (click)="checkComments()">Check comments</button>

For the sake of simplicity, we are not going to make any HTTP calls on the checkComments call. Let’s
just return a predefined set of comments after a short delay to emulate delays with a response.

Pipes 284

1 export class AppComponent {

2 ...

3 comments: Observable<string[]>;

4

5 checkComments() {

6 this.comments = new Observable(observer => {

7 observer.next([

8 'Comment 1',

9 'Comment 2',

10 'Comment 3'

11]);

12 }).delay(1000);

13 }

14 }

The checkComments method sets comments variable value to an observable that evaluates with 1-
second delay and returns a set of sample comments.

For testing purposes you can also add a button to reset comments:

<button (click)="resetComments()">Reset comments</button>

The corresponding resetComments method is going to just set the comments value to null.

1 export class AppComponent {

2 ...

3

4 resetComments() {

5 this.comments = null;

6 }

7 }

If you now run the application the main page should look like the following:

Try clicking the Check comments button and the results should get displayed in 1 second:

Pipes 285

Using with Date object

Another good example to demonstrate the ‘AsyncPipe in action is displaying current time on

the page. Our component needs to implement standard OnInit interface to setup currentTime‘
observable once it is ready.

1 import { ..., OnInit } from '@angular/core';

2

3 export class AppComponent implements OnInit {

4 ...

5

6 currentTime: Observable<Date>;

7

8 ngOnInit() {

9 this.currentTime = new Observable<Date>(observer => {

10 setInterval(_ => observer.next(new Date()), 1000);

11 });

12 }

13 }

Upon initialization, the component assigns an Observable of Date type to the currentTime property.
The Observable instance updates the underlying value to a new Date object every second, that causes
AsyncPipe to render new date automatically.

As Angular allows chaining multiple pipes together, you can also use a DatePipe to format resulting
output to display only the time portion of the date.

You can get the basic HTML template for the application component below:

Pipes 286

1 <h2>Async (date/time)</h2>

2

3

4 Current time: {{ currentTime | async | date:'mediumTime' }}

5

6

Once application compiles and starts you should get a time value updated every second:

Source code
You can find the source code in the “angular/pipes/standard-pipes⁶⁵” folder.

Custom Pipes

Besides providing a set of standard out-of-box pipes the Angular framework provides support for
creating your custom ones.

To create a custom pipe you need to import the @Pipe decorator and apply it to your class.

1 import { Pipe } from '@angular/core';

2

3 @Pipe({

4 name: 'customDate'

5 })

6 export class CustomDatePipe {

7 ...

8 }

You can give your class any name you want. The Angular is going to use the @Pipe decorator
metadata when parsing component templates, in our case the pipe gets used as customDate:

⁶⁵https://github.com/DenysVuika/developing-with-angular/tree/master/angular/pipes/standard-pipes

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/pipes/standard-pipes
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/pipes/standard-pipes

Pipes 287

<element>

{{ <expression> | customDate }}

</element>

Also, your class should implement a PipeTransform interface with a transform method:

interface PipeTransform {

transform(value: any, ...args: any[]) : any

}

At runtime, the Angular calls your pipe’s transform method providing original input value together
with optional pipe parameters. For example, if your myPipe pipe expects to receive 3 additional
parameters you can declare your transform method like the following:

transform(value: string, p1: number, p2: number, p3: number) : string {

return value;

}

To get type checking support from TypeScript, you can also provide type definitions for your
parameters and method return type.

You can now use your pipe in HTML templates like in the example below:

1 <element>

2 {{ 'hello world' | myPipe:1:2:3 }}

3 </element>

Implementing Custom Pipe

We are going to create a simple pipe that takes a numeric input value for a size of the file in bytes
and produces a user-friendly output by transforming it to Kilobytes, Megabytes or greater units.

Let’s start creating a custom pipe with a new project custom-pipes by utilising the Angular CLI
tool.

ng new custom-pipes

You can use Angular CLI to generate the file-size pipe scaffold.

ng g pipe pipes/file-size

The command above generates a pipe, basic unit test and updates main application module so that
you can use this pipe across all the application components.

Pipes 288

installing pipe

create src/app/pipes/file-size.pipe.spec.ts

create src/app/pipes/file-size.pipe.ts

update src/app/app.module.ts

The default pipe scaffold already contains a @Pipe decorator applied and inherits the PipeTransform
interface:

src/app/pipes/file-size.pipe.ts
1 import { Pipe, PipeTransform } from '@angular/core';

2

3 @Pipe({

4 name: 'fileSize'

5 })

6 export class FileSizePipe implements PipeTransform {

7

8 transform(value: any, args?: any): any {

9 return null;

10 }

11

12 }

First, let’s change the signature of the transform method to accept bytes and decimals parameters
of a number type. We also make both of them optional by providing default values and change the
return type of the method to a string.

src/app/pipes/file-size.pipe.ts
1 @Pipe({

2 name: 'fileSize'

3 })

4 export class FileSizePipe implements PipeTransform {

5

6 transform(bytes: number = 0, decimals: number = 2): string {

7 return null;

8 }

9

10 }

Converting Bytes
There are many different ways to convert a file size from bytes to other units of mea-
surement. For this example we are going to take the accepted answer from the following
Stackoverflow question: Correct way to convert size in bytes to KB, MB, GB in Javascript⁶⁶

⁶⁶https://stackoverflow.com/questions/15900485/correct-way-to-convert-size-in-bytes-to-kb-mb-gb-in-javascript

https://stackoverflow.com/questions/15900485/correct-way-to-convert-size-in-bytes-to-kb-mb-gb-in-javascript
https://stackoverflow.com/questions/15900485/correct-way-to-convert-size-in-bytes-to-kb-mb-gb-in-javascript

Pipes 289

You can see the final implementation of the pipe below:

1 @Pipe({

2 name: 'fileSize'

3 })

4 export class FileSizePipe implements PipeTransform {

5

6 transform(bytes: number = 0, decimals: number = 2): string {

7 if (bytes === 0) {

8 return '0 Bytes';

9 }

10 const k = 1024,

11 dm = decimals || 2,

12 sizes = ['Bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB', 'ZB', 'YB'],

13 i = Math.floor(Math.log(bytes) / Math.log(k));

14 return parseFloat((bytes / Math.pow(k, i)).toFixed(dm)) + ' ' + sizes[i];

15 }

16

17 }

If no bytes value provided the pipe returns a “0 Bytes” string, for all other cases if converts input
number to the most appropriate measuring unit. The transform method also takes into account
the number of decimals to use after the point, provided within the second decimals parameter. By
default, it is going to take two numbers.

In order to see the pipe in action open the main application component template and append the
following HTML block:

1 <h2>fileSize</h2>

2

3 520.12345 => {{ 520.12345 | fileSize }}

4 520.12345 => {{ 520.12345 | fileSize:4 }}

5 1024 => {{ 1024 | fileSize }}

6 5,347,737.6 => {{ 5347737.6 | fileSize }}

7 1,288,490,188.8 => {{ 1288490188.8 | fileSize }}

8

Now run the application with ng serve --open command and you should see the following output:

Pipes 290

Pure And Impure Pipes

Angular supports two different categories of pipes - “pure” and “impure”. Every custom pipe is pure
by default, but you can change that when using the @Pipe decorator:

@Pipe({

name: 'myCustomPipe',

pure: false

})

Before diving into details on category differences, let’s prepare the testing project.

We are going to display a list of short blog posts filtered by a pure or impure pipe and allow creating
a new simple blog post entry with various properties like creation date, content or public state.

Preparing Project

Use Angular CLI to generate a new project called “pure-impure”.

ng new pure-impure

cd pure-impure

Aswe are going to filter and display Posts let’s create a Post interface that defines themain attributes
of a Post instance. You can do that by utilising Angular CLI that supports generating interface classes
as well.

ng g interface post

The Angular CLI puts interfaces classes to the src/app folder by default:

Pipes 291

installing interface

create src/app/post.ts

The bare minimum of properties we need to visualise a post is:

• the text content of the post
• creation date
• a flag indicating whether the post is public or private

Open the newly generated post.ts file and update it according to the list above:

src/app/post.ts

1 export interface Post {

2 created: Date;

3 content: string;

4 isPublic: boolean;

5 }

For the next step let’s update the main application component class. We need a posts property to
hold a collection of created Post instances. Also, the newPostContent and newPostPublic properties
of string and boolean types are going to power our simple post editor.

src/app/app.component.ts

1 import { Post } from './post';

2

3 @Component({ ... })

4 export class AppComponent {

5 ...

6

7 posts: Post[] = [];

8

9 newPostContent = '';

10 newPostPublic = true;

11

12 createPost(): void {

13 if (this.newPostContent) {

14 const newPost = <Post> {

15 content: this.newPostContent,

16 isPublic: this.newPostPublic,

17 created: new Date()

18 };

19 this.posts.push(newPost);

Pipes 292

20 this.newPostContent = '';

21 }

22 }

23 }

The createPostmethod performs some basic validation for content to be defined and creates a new
post. The creation date is assigned automatically to current date and time. Upon pushing the new
post to the posts collection, our createPost method also clears the input field.

Note that posts collection is defined and initialized with an empty array by default. We add items
to it via createPost method, but the initial collection is always the same. To better demonstrate
capabilities of both pipes we also need to change the object reference for the posts collection, for
example creating a new collection of Post instances, or resetting it by assigning an empty array
value.

For the sake of simplicity let’s just be making a copy of the existing collection and reassigning posts
property, all we need so far is changing the object reference. Append the following mutateArray

method to the main application component class:

1 @Component({ ... })

2 export class AppComponent {

3 ...

4

5 mutateArray() {

6 this.posts = this.posts.concat();

7 }

8 }

Finally edit the component template and add the following HTML content:

src/app/app.component.html

1 <h2>Posts</h2>

2 <div>

3 <textarea [(ngModel)]="newPostContent"></textarea>

4 </div>

5 <div>

6 <label>

7 <input type="checkbox" [(ngModel)]="newPostPublic">

8 Is Public

9 </label>

10 </div>

11 <div>

12 <button (click)="createPost()">post</button>

Pipes 293

13 <button (click)="mutateArray()">mutate array</button>

14 </div>

15

16

17 <li *ngFor="let post of posts">

18 {{ post.content }} ({{ post.created | date:'short' }})

19

20

The layout above is pretty simple. You get a text area element to enter a content for a new post, a
checkbox to toggle the public state, and two buttons post and mutate array. Under the post editor
there is a list of previously created posts, by default it is empty.

Once you compile and start the application you should see the following:

ng serve --open

Now you are ready testing pure and impure pipes in action.

Pure Pipes

A “pure pipe” is a pipe that gets executed by Angular only when a “pure change” happens to the
underlying input value, for example:

• a “primitive” value changes, for example of a String, Number, Boolean or other primitive types;
• object reference changes, for instance an entire Array, Date, Object and other reference-based
types;

When you use a “pure pipe”, the Angular ignores all changes to the complex objects it gets as
input parameters for the pipe. For example, when using with arrays, the pipe renders data if your
component class initializes default collection of items. However, the pipe does not update the view
if you add new items to the collection at run time.

Pipes 294

Object reference checks
Concerning performance andmemory consumption, it is much faster for Angular to perform
an object reference check rather than initiating a deep check for complex object differences.
So “pure” pipes are extremely fast if you deal with primitives or change entire input value
in your component. Angular change detection mechanisms take care of values and execute
pipes when needed.

Let’s use Angular CLI to generate our simple pure pipe and call it “public-posts”.

ng g pipe pipes/public-posts

You should get your pipe scaffold and a basic unit test in the src/app/pipes folder:

installing pipe

create src/app/pipes/public-posts.pipe.spec.ts

create src/app/pipes/public-posts.pipe.ts

update src/app/app.module.ts

Edit the public-posts.pipe.ts according to the following example:

src/app/pipes/public-posts.pipe.ts

1 import { Pipe, PipeTransform } from '@angular/core';

2 import { Post } from '../post';

3

4 @Pipe({

5 name: 'publicPosts'

6 })

7 export class PublicPostsPipe implements PipeTransform {

8

9 transform(posts: Post[]): any {

10 return posts.filter(p => p.isPublic);

11 }

12

13 }

Essentially the pipe takes a collection of Post instances as an input parameter posts and returns a
filtered result using isPublic property.

Pipe name
Note that your pipe’s public name is going to be publicPosts. You can give the component
class any name you want, in our case, it is PublicPostsPipe, but Angular is going to use
@Pipe metadata when parsing component templates.

Pipes 295

Now let’s add a couple of initial posts for our pipe to filter at run time:

1 @Component({ ... })

2 export class AppComponent {

3

4 posts: Post[] = [

5 <Post> {

6 content: 'default public post',

7 isPublic: true,

8 created: new Date()

9 },

10 <Post> {

11 content: 'default private post',

12 isPublic: false,

13 created: new Date()

14 }

15];

16

17 }

The first post is going to be public while the second one is configured to be private by default.

For the next step, please update the application component template to show the posts collection,
filtered by our publicPosts pipe, in a separate unstructured list element.

1 <h3>Public posts (pure)</h3>

2

3 <li *ngFor="let post of posts | publicPosts">

4 {{ post.content }} ({{ post.created | date:'short' }})

5

6

7

8 <h3>All posts</h3>

9

10 <li *ngFor="let post of posts">

11 {{ post.content }} ({{ post.created | date:'short' }})

12

13

If you run your application right now, you should see one entry in the “Public posts” list and two
entries in the “All posts” one.

Pipes 296

So the pipe is working with predefined data as we expect it. Now try adding couple more posts by
entering content into the input area and clicking the “post” button. Please ensure that “Is Public”
checkbox element is set to “checked” state.

You should see the “All posts” list is getting updated, while “Public posts” one remains the same.
That is the expected behaviour as we are modifying a complex object, in this case, an array of Post
instances, without actually changing object reference for the pipe.

The “All posts” list uses the ngFor directive, so Angular detects the change and updates it accordingly.
During the preparation phase, we have created a “mutate array” button that modifies posts by
replacing the collection with its copy.

If you click this button right now the “Public posts” should instantly update the view with new
values:

Pipes 297

Impure Pipes

An “impure pipe” is a pipe that gets executed by Angular during every component change detection
cycle. All custom pipes are “pure” by default, in order to change its state to “impure” you need to
explicitly define that in the @Pipe decorator metadata:

@Pipe({

name: 'myCustomPipe',

pure: false

})

Performance
A single component may cause many change detection cycles based on various factors, for
example, user interaction, keyboard or mouse events. Keep in mind that you pipe may affect
overall application performance if it is slow, or not optimised for frequent runs (data caching
for instance).

Let’s create another pipe scaffold called “public-posts-impure” in the same project using Angular
CLI:

ng g pipe pipes/public-posts-impure

The command above should produce a new pipe next to the existing one in the src/app/pipes folder.

Pipes 298

installing pipe

create src/app/pipes/public-posts-impure.pipe.spec.ts

create src/app/pipes/public-posts-impure.pipe.ts

update src/app/app.module.ts

Next, update the pipe code like in the example below:

src/app/pipes/public-posts-impure.pipe.ts

1 import { Pipe, PipeTransform } from '@angular/core';

2 import { Post } from '../post';

3

4 @Pipe({

5 name: 'publicPostsImpure',

6 pure: false

7 })

8 export class PublicPostsImpurePipe implements PipeTransform {

9

10 transform(posts: Post[]): any {

11 return posts.filter(p => p.isPublic);

12 }

13

14 }

The implementation of the pipe is pretty much the same we used before. It takes a collection of posts
as an input and returns a filtered result based on public state via isPublic property values.

We are going to use this pipe as “publicPostsImpure” in the HTML templates, and we also explicitly
set the pure property value in the @Pipe decorator metadata to false:

@Pipe({

name: 'publicPostsImpure',

pure: false

})

Finally extend the main application component template with the list showing all public posts
filtered by the publicPostsImpure pipe:

Pipes 299

1 <h3>Public posts (impure)</h3>

2

3 <li *ngFor="let post of posts | publicPostsImpure">

4 {{ post.content }} ({{ post.created | date:'short' }})

5

6

This time if you run the application and add several posts with “Is Public” element checked, you
should see the “Public posts (impure)” list gets updated at real-time. That happens because our
custom publicPostsImpure pipe gets executed by Angular during each change detection cycle.

Global Application Configuration
In this chapter, we are going to focus on application settings and configuration files.

If you are building a large application or an application that performs the server side or RESTful APIs
calls, sooner or later you will come across the need to store global application settings somewhere.
For example the APIs URL string, you may hardcode it somewhere in the application or service,
but that will require rebuilding and redeploying your application every time the URL value needs
changes. It is much easier storing and loading configuration parameters in a separate file that
developers can maintain without changing the main application code.

Let’s create an Application Configuration service that loads global settings from the external server-
side file before all other services get loaded, and provides access to configuration properties for all
other application components and services.

Preparing the configuration file

We are going to use the JSON format for configuration files. The name of the file can be anything
as we need only the content.

As a first step, create an “app.config.json” file in the “src” folder with the following content:

src/app.config.json

1 {

2 "title": "My application"

3 }

Configuration content
Theoretically, you could even dynamically generate the file if necessary, for example
building the output based on some database values.

In our case, we just store the custom application title in the config file to see the basic flow in action.
You can extend the file content later on with more properties and values.

We also need configuring Angular CLI to copy the newly created file to the application output
directory upon every build. Edit the “apps” section of the “.angular-cli.json” file and append the
name of the settings file to the “assets” collection like in the example below:

Global Application Configuration 301

.angular-cli.json

1 {

2 "apps": {

3 "assets": [

4 "app.config.json"

5]

6 }

7 }

Updating file content
One of the greatest features of Angular CLI is automatic rebuilding and live-reloading upon
file changes. If you start your application in the development mode, the runner should also
be watching for the “app.config.json” changes, and automatically reloading your application
every time you update your settings.

Creating the configuration service

We now need two things to be created: an “AppConfig” interface to provide a type-safe access to
our configuration properties, and “AppConfigService” service that is going to load the remote file,
store the resulting settings and expose them to external components and services.

Use the following commands to generate both an interface and a service scaffolds:

ng g interface app-config

ng g service app-config

Don’t forget to register the newly generated service with the main application module, as
Angular CLI does not do that by default.

Now, edit the “AppConfig” interface and add the “title” property we have declared in the server-side
config earlier in this chapter:

Global Application Configuration 302

src/app/app-config.ts

1 export interface AppConfig {

2

3 title?: string;

4

5 }

Next, let’s wire our “AppConfigService” with the “Http” service to be able making HTTP calls and
fetching remote files:

src/app/app-config.service.ts

1 import { Injectable } from '@angular/core';

2 import { HttpClient } from '@angular/common/http';

3

4 @Injectable({

5 providedIn: 'root'

6 })

7 export class AppConfigService {

8

9 constructor(private http: HttpClient) {}

10

11 }

We are now ready to load the configuration from the server.

Loading server-side configuration file

Let’s introduce the “load” method that fetches the “app.config.json” file and exposes its content as a
“data” property.

For the convenience purposes, the method is going to return a Promise instance that resolves to the
loaded configuration file or falls back to the default values upon loading errors. We also provide
support for the optional default values that you can pass as part of the “load” call.

Below you can see the full code for the service implementation:

Global Application Configuration 303

src/app/app-config.service.ts

1 import { Injectable } from '@angular/core';

2 import { HttpClient } from '@angular/common/http';

3 import { AppConfig } from './app-config';

4

5 @Injectable({

6 providedIn: 'root'

7 })

8 export class AppConfigService {

9

10 data: AppConfig = {};

11

12 constructor(private http: HttpClient) {}

13

14 load(defaults?: AppConfig): Promise<AppConfig> {

15 return new Promise<AppConfig>(resolve => {

16 this.http.get('app.config.json').subscribe(

17 response => {

18 console.log('using server-side configuration');

19 this.data = Object.assign({}, defaults || {}, response || {});

20 resolve(this.data);

21 },

22 () => {

23 console.log('using default configuration');

24 this.data = Object.assign({}, defaults || {});

25 resolve(this.data);

26 }

27);

28 });

29 }

30

31 }

As you can see from the code above, we also add a basic debugging output to the browser console
log. It should help us to see whether the application is using an external configuration file or fallback
values. Logging to console is a fully optional step, and you may want to remove that code at the
later stages.

Registering configuration service

Next, we need registering our configuration service with the main application module. However,
given that many other services and components may depend on the external settings, we should

Global Application Configuration 304

ensure the application configuration service gets the “app.config.json” file loaded and applied before
others.

The Angular framework provides a special injection token called “APP_INITIALIZER” that you
should use to execute your code during the application startup. That also helps to register providers
and to use provider factories.

For the sake of simplicity the example below shows only the newly added content:

src/app/app.module.ts

1 import { ..., APP_INITIALIZER } from '@angular/core';

2 import { HttpClientModule } from '@angular/common/http';

3

4 export function setupAppConfigServiceFactory(

5 service: AppConfigService

6): Function {

7 return () => service.load();

8 }

9

10 @NgModule({

11 imports: [

12 ...,

13 HttpClientModule

14],

15 providers: [

16 {

17 provide: APP_INITIALIZER,

18 useFactory: setupAppConfigServiceFactory,

19 deps: [

20 AppConfigService

21],

22 multi: true

23 }

24]

25 })

26 export class AppModule { }

So how the code above works and how do we load an external configuration at the application
startup?

First of all, we declare the “AppConfigService” in the “providers” section of the module. Then
we use the “APP_INITIALIZER” injection token to declare a custom provider based on the
“setupAppConfigServiceFactory” factory; the provider also references the “AppConfigService” as
a dependency to inject when the factory gets invoked.

Global Application Configuration 305

At the runtime, the Angular resolves and creates an instance of the “AppConfigService”, and then
uses it when calling the “setupAppConfigServiceFactory”. The factory itself calls the “load” method
to fetch the “app.config.json” file.

If you run the web application right now the browser console output should be as following:

using server-side configuration

The settings service is up and running correctly, and we are now able to use configuration settings
in the components.

Using configuration settings

It is now time to see the application configuration service in action. Let’s use the “title” value to
update the similar property in the main application component.

We get the following controller class generated by the Angular CLI:

src/app/app.component.ts

1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'app-root',

5 templateUrl: './app.component.html',

6 styleUrls: ['./app.component.css']

7 })

8 export class AppComponent {

9 title = 'app';

10 }

All we need at this point is to inject the “AppConfigService” as an “appConfig” parameter and assign
the title property to the “appConfig.data.title” value. Don’t forget that at this point the JSON file is
already loaded and configuration properties are ready for use.

Global Application Configuration 306

1 import { AppConfigService } from './app-config.service';

2

3 @Component({...})

4 export class AppComponent {

5 title = 'app';

6

7 constructor(appConfig: AppConfigService) {

8 this.title = appConfig.data.title;

9 }

10 }

If you run the web application now, the main page should contain the title value fetched from the
external file. Try editing the “title” value in the “app.config.json” and you should see the Angular
CLI automatically reload the page. The page automatically reflects new values.

We just got a working example of the configuration service. We have also checked the external
settings being successfully fetched and applied to component properties. The examples in the chapter
should help you building configuration support for your applications.

Source code
You can find the source code as an Angular CLI project in the “angular/app-settings⁶⁷” folder.

⁶⁷https://github.com/DenysVuika/developing-with-angular/tree/master/angular/app-settings

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/app-settings
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/app-settings

Internationalisation (i18n)
In this chapter, we are going to build a simple multi-language support for an application. We are
about to create services to translate application strings, switch languages based on user interactions,
and also using third-party libraries for more sophisticated translation scenarios.

For a basic multi-language support we need at least three blocks:

• language files, preferably in the JSON format
• Angular service to load one or multiple language files
• Angular pipe for a convenient mapping of resource keys to translated values

We start with generating a new Angular application called “app-i18n”:

ng new app-i18n

cd app-i18n

Let’s also use Angular CLI to generate our translation layer blocks, the TranslateService and the
TranslatePipe:

ng g service translate

ng g pipe translate

We also need at least a single language file to demonstrate the translation process in action, and
optionally use as a default or fallback locale. Create a new “i18n” folder in the “src/assets” one, and
put an “en.json” file there with the following content:

src/assets/i18n/en.json

1 {

2 "TITLE": "My i18n Application (en)"

3 }

Creating Translate Service

As a second step, we need to make our TranslateService load the language file.

As a second step, we need to make our TranslateService load the language file. We are going to
implement a “use” method that performs the loading process over the HTTP. It takes the “lang”
parameter holding the name of the locale and falls back to the “en” value.

Internationalisation (i18n) 308

src/app/translate.service.ts

1 import { Injectable } from '@angular/core';

2 import { HttpClient } from '@angular/common/http';

3

4 @Injectable({

5 providedIn: 'root'

6 })

7 export class TranslateService {

8

9 data: any = {};

10

11 constructor(private http: HttpClient) {}

12

13 use(lang: string): Promise<{}> {

14 return new Promise<{}>(resolve => {

15 const langPath = `assets/i18n/${lang || 'en'}`;

16

17 this.http.get(langPath).subscribe(

18 response => {

19 this.data = response || {};

20 resolve(this.data);

21 },

22 err => {

23 this.data = {};

24 resolve(this.data);

25 }

26);

27 });

28 }

29 }

Loading server-side files
The process of loading of the translation file is very similar to that of the global configuration
files we have used earlier in this book. Please refer to the Global Application Configuration
chapter for more details and examples.

Next, let’s register our service provider and a custom factory that triggers the TranslateService to
load default or predefined locale file before all other services and components get created. That helps
us ensure that all other elements of the application get access to translation feature at startup.

Internationalisation (i18n) 309

src/app/app.module.ts

1 export function setupTranslateServiceFactory(

2 service: TranslateService): Function {

3 return () => service.use('en');

4 }

5

6 @NgModule({

7 providers: [

8 TranslateService,

9 {

10 provide: APP_INITIALIZER,

11 useFactory: setupTranslateServiceFactory,

12 deps: [

13 TranslateService

14],

15 multi: true

16 }

17]

18 })

19 export class AppModule { }

Now we can have a quick test to ensure the file got loaded and translation service has the data
preserved. Inject the service into the main application component and dump the entire data set to
the browser console output.

src/app/app.component.ts

1 import { TranslateService } from './translate.service';

2

3 @Component({...})

4 export class AppComponent {

5 title = 'app';

6

7 constructor(translateService: TranslateService) {

8 console.log(translateService.data);

9 }

10 }

Once you run the web application and head to the browser console, you should see the following
output:

Internationalisation (i18n) 310

We got the translation service working as expected; nowwe can proceed to create the corresponding
pipe.

Creating Translate Pipe

The pipe we have generated at the beginning of this chapter needs to inject the translation service
instance in the constructor like in the code below:

src/app/translate.pipe.ts

1 import { Pipe, PipeTransform } from '@angular/core';

2 import { TranslateService } from './translate.service';

3

4 @Pipe({

5 name: 'translate'

6 })

7 export class TranslatePipe implements PipeTransform {

8

9 constructor(private translate: TranslateService) {}

10

11 transform(value: any, args?: any): any {

12 return null;

13 }

14

15 }

Now the pipe needs to map the key to the underlying resource string. Let’s get also provide a fallback
behaviour and return the resource key if the corresponding translation is missing. That should help
you to identify the problems with translation earlier.

Internationalisation (i18n) 311

src/app/translate.pipe.ts

1 @Pipe({...})

2 export class TranslatePipe implements PipeTransform {

3 ...

4

5 transform(key: any): any {

6 return this.translate.data[key] || key;

7 }

8

9 }

Don’t forget that your newly created pipe needs to be present in the main application module.
The Angular CLI tool automatically registers it, if you have added the pipe manually then see the
following code for example:

src/app/app.module.ts

1 import { TranslatePipe } from './translate.pipe';

2

3 @NgModule({

4 declarations: [

5 ...,

6 TranslatePipe

7],

8 ...

9 })

10 export class AppModule { }

Using Translate Pipe

It is time to see our translation pipe in action. Let’s update the main application controller class and
set the “title” property value to the “TITLE” resource key like below:

Internationalisation (i18n) 312

src/app/app.component.ts

1 @Component({...})

2 export class AppComponent {

3

4 title = 'TITLE';

5

6 ...

7 }

If you open the “app.component.html” template file, you should see the “title” property referenced
in the welcome message:

src/app/app.component.html

1 <h1>

2 Welcome to {{ title }}!

3 </h1>

We can just append the pipe to the “title” value to enable automatic translation of the value based
on the resource strings in the translation file.

src/app/app.component.html

1 <h1>

2 Welcome to {{ title | translate }}!

3 </h1>

Once you compile and run the web application, you should see the welcome message getting the
text directly from the language file.

Internationalisation (i18n) 313

Switching languages

We have the default locale working so far, but switching languages at runtime require some extra
configuration steps.

First, let’s create an additional file “ua.json” in the “assets/i18n” folder. For testing purposes, you
can just copy the contents of the “en.json” file and slightly modify the strings to be able to see the
difference at runtime.

src/assets/i18n/ua.json

1 {

2 "TITLE": "My i18n Application (ua)"

3 }

The main application controller class needs a new “setLang” method so that we can switch
to a different language with, for instance, a button click. With our current TranslateService
implementation we need just the name of the locale:

src/app/app.component.ts

1 @Component({...})

2 export class AppComponent {

3 title = 'TITLE';

4

5 constructor(private translateService: TranslateService) {

6 console.log(translateService.data);

7 }

8

9 setLang(lang: string) {

10 this.translateService.use(lang);

11 }

12 }

Get back to the application component template and add a couple of buttons to switch between the
languages like in the example below:

Internationalisation (i18n) 314

src/app/app.component.html

1 <div>

2 <button (click)="setLang('ua')">Language: UA</button>

3 <button (click)="setLang('en')">Language: EN</button>

4 </div>

If you try running the application right now, you should notice that buttons do not work. If you run
the Dev Tools and inspect the Network tab, you are going to see that a corresponding language file
is, in fact, fetched every time you click the buttons. You do not see the changes on the page because
of how the pipes in Angular work by default. For the performance reasons, they cache the result
once the value is transformed and always use evaluated values in subsequent calls.

In our particular case, we need the pipe to refresh, so the caching needs to be switched off. You can
achieve that by setting the “pure” attribute of the @Pipe decorator metadata to “false”.

src/app/translate.pipe.ts

1 @Pipe({

2 name: 'translate',

3 pure: false

4 })

5 export class TranslatePipe implements PipeTransform {

6

7 ...

8

9 }

Pure and impure pipes

You can get more details in the “Pipes” chapter, specifically in the “Pure And Impure Pipes”
section.

Try rerunning your web application, and clicking the buttons to switch between languages. You
should see the label text getting updated each time the button gets clicked.

Internationalisation (i18n) 315

Summary

You just have got a basic lightweight multi-language functionality that you can use in your web
application. Note, however, that translation layer may require many code enhancements and
performance optimisations, for you to be ready to use it for production purposes.

Source code
You can find the source code as an Angular CLI project in the “angular/i18n⁶⁸” folder.

You can also check out one of my Angular projects “@ngstack/translate⁶⁹” that provides i18n-
features for Angular applications and components. That library can save a lot of your time and
effort required to build a multi-lingual web application.

⁶⁸https://github.com/DenysVuika/developing-with-angular/tree/master/angular/app-i18n
⁶⁹https://www.npmjs.com/package/@ngstack/translate

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/app-i18n
https://www.npmjs.com/package/@ngstack/translate
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/app-i18n
https://www.npmjs.com/package/@ngstack/translate

Advanced Angular
This chapter assumes you are already familiar with the Angular development and want to advance
your experience further to specific areas. We are going to review various practical scenarios and
challenges that you can come across, and provide example solutions.

Dynamic Content in Angular

In this section, we are going to see in practice different ways of dynamically creating and modifying
content in Angular at runtime. You are about to get examples of custom entry templates in a List
component, see how Component and Module compilation works.

List item templates

In this part, we are going to see how you can enrich Angular components with custom templating
support. We start by building a simple List component that supports external entry templates that a
developer defines as part of the application.

List component

First, let’s create a simple component to render an unordered list of bound items, and call it
“TemplatedListComponent”.

With the Angular CLI the command should look like the following:

ng g component templated-list

The Angular CLI generates all required scaffold for your component and updates main application
module, so you are strongly recommended using it to save your time.

As you can remember from the Angular CLI chapter, all generated artefacts should have prefixes to
avoid conflicts with standard HTML elements or third party components. In our case, the Angular
CLI tool automatically prepends the default “app-“ prefix to the component selector value:

Advanced Angular 317

src/app/templated-list/templated-list.component.ts

1 @Component({

2 selector: 'app-templated-list',

3 templateUrl: './templated-list.component.html',

4 styleUrls: ['./templated-list.component.css']

5 })

6 export class TemplatedListComponent { ... }

For now, the only property that our newly created list needs is an array of items to display. Every
item must have at least a “title” property, so we use a generic Array type with the corresponding
constraints.

src/app/templated-list/templated-list.component.ts

1 @Component({...})

2 export class TemplatedListComponent {

3

4 @Input()

5 items: Array<{title: string}> = [];

6

7 }

Note that array is empty by default. By our design, the items are not hard coded into the component
and should be coming from the application instead.

For the template part, a simple unordered list with “ngFor” directive should be more than enough
to demonstrate the content:

src/app/templated-list/templated-list.component.html

1

2 <li *ngFor="let item of items">

3 {{ item.title }}

4

5

Next, let’s provide our List with some data and see it working. Edit yourmain application component
class and add the “listItems” property with some basic entries:

Advanced Angular 318

src/app/app.component.ts

1 @Component({...})

2 export class AppComponent {

3 ...

4

5 listItems: Array<{title: string}> = [

6 { title: 'item 1' },

7 { title: 'item 2' },

8 { title: 'item 3' }

9]

10 }

Don’t forget to modify the HTML template of the component and declare the <app-templated-list>
component with the corresponding bindings:

src/app/app.component.html

1 <h2>Templated List</h2>

2 <app-templated-list [items]="listItems">

3 </app-templated-list>

If you run your web application right now you should see the HTML unordered list element with
three entries like on the picture below:

Row templates

So we got a simple list component that binds to an array of objects and renders standard unordered
HTML element where every entry binds its content to the “title” property of the underlying object.

Now let’s update the code to provide support for external templates.

First, you need a property to hold custom template reference. That requires importing a @ContentChild
decorator and TemplateRef type.

Advanced Angular 319

src/app/templated-list/templated-list.component.ts

1 import { ..., ContentChild, TemplateRef } from '@angular/core';

2

3 @Component({...})

4 export class TemplatedListComponent {

5

6 @ContentChild(TemplateRef)

7 template: TemplateRef<any>;

8

9 @Input()

10 items: Array<{title: string}> = [];

11

12 }

The @ContentChild decorator helps you to bind the property value to the first child element of the
specific type in out List component at run time. In our particular case, we are instructing decorator
to look for the first <ng-template> instance exposed via TemplateRef reference.

For example:

<app-templated-list>

<ng-template>

...

</ng-template>

</app-templated-list>

For the next step, let’s update our List component template to use provided template property value
for each entry.

src/app/templated-list/templated-list.component.html

1

2 <ng-template ngFor [ngForOf]="items" [ngForTemplate]="template">

3 </ng-template>

4

Now the “TemplatedListComponent” expects a “template” instance as its child element in the form
of <ng-template>. It then takes the content of the template and applies to each “*ngFor” entry. So
application developers can define entire row template like the following:

Advanced Angular 320

src/app/app.component.html

1 <h2>Templated List</h2>

2 <app-templated-list [items]="listItems">

3 <ng-template>

4

5 List item template content

6

7 </ng-template>

8 </app-templated-list>

If you now run your web app you should see the following output:

As you can see on the picture above the template works as expected. We define a static content and
see it rendered three times. Now to see the data change across the list entries update component
template like in the next example:

1 <h2>Templated List</h2>

2 <app-templated-list [items]="listItems">

3 <ng-template let-item="$implicit" let-i="index">

4 [{{i}}] Hello: {{item.title}}

5 </ng-template>

6 </app-templated-list>

Upon building the elements, the “ngFor” directive takes each object in the collection and uses it as
a data context for every corresponding list item and its custom template. To get direct access to
this object we are using the let-item="$implicit" attribute. That reads as “bind the object to the
template variable called ‘item’”.

You can omit the “$implicit” value and use just the “let-item” attribute if you like. You can also give
the template variable any name; it can be “let-data”, “let-context” or any name of your choice.

The “ngFor” directive provides us with the numeric index for each item in the collection. We bind
it inside the template to the “i” variable using the let-i="index" syntax.

So to demonstrate both data context bindings, we used the following list item template:

Advanced Angular 321

1 <ng-template let-item="$implicit" let-i="index">

2 [{{i}}] Hello: {{item.title}}

3 </ng-template>

Once your web application runs you should see the following result:

We are now able to see index value, static “Hello” text and “title” property of the underlying object.

Typical use cases

You are going to use the above approach when building list-like or grid-like components that hide
all complexity from the developers but at the same time allow customising entries or rows using
templates.

Source code
You can find the source code in the “angular/components/dynamic-content⁷⁰” folder.

Dynamic Components

Another interesting scenario involves changing the content of the component based on some
condition evaluation result. For example, rendering different child component depending on the
value of the “type” property:

<component type="my-type-1"></component>

<component type="my-type-2"></component>

Let’s start with a component scaffold generated by the Angular CLI using the following command:

ng g component dynamic-content

For the first step, update the HTML template of the newly generated component with the following
one:

⁷⁰https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/dynamic-content

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/dynamic-content
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/dynamic-content

Advanced Angular 322

src/app/dynamic-content/dynamic-content.component.html

1 <div>

2 <div #container></div>

3 </div>

Note how we declare a separate <div> element with the “#container” id. We are going to use it as
the injection point. All dynamic content should get inserted in the DOM below this element. The
component maps it to the “container” property of the “ViewContainerRef” type to allow you access
container element from the code.

1 import { ..., Input, ViewChild, ViewContainerRef } from '@angular/core';

2

3 @Component({...})

4 export class DynamicContentComponent {

5

6 @ViewChild('container', { read: ViewContainerRef })

7 container: ViewContainerRef;

8

9 @Input()

10 type: string;

11

12 }

Later on, you should be able to use this component similar to the following example:

<dynamic-content type="some-value"></dynamic-type>

Now let’s introduce two more components to display depending on the “type” property value. We
also are going to need an additional “fallback” component to use for all the “unknown” types.

For the sake of simplicity, you can append new components to the same “dynamic-content”
component file.

Advanced Angular 323

src/app/dynamic-content/dynamic-content.component.ts

1 @Component({

2 selector: 'app-dynamic-sample-1',

3 template: `<div>Dynamic sample 1</div>`

4 })

5 export class DynamicSample1Component {}

6

7 @Component({

8 selector: 'app-dynamic-sample-2',

9 template: `<div>Dynamic sample 2</div>`

10 })

11 export class DynamicSample2Component {}

12

13 @Component({

14 selector: 'app-unknown-component',

15 template: `<div>Unknown component</div>`

16 })

17 export class UnknownDynamicComponent {}

Developers are going to use the “type” property that has the type of “string” and gets used as an
alias for real component types. You are going to need some mapping of string values to types, either
in the form of separate injectable service (recommended approach) or just a part of the component
implementation like in the example below:

1 @Component({...})

2 export class DynamicContentComponent {

3 ...

4

5 private mappings = {

6 'sample1': DynamicSample1Component,

7 'sample2': DynamicSample2Component

8 };

9

10 getComponentType(typeName: string) {

11 const type = this.mappings[typeName];

12 return type || UnknownDynamicComponent;

13 }

14

15 }

As you can see from the code above, for “sample1” and “sample2” values the newly introduced
components “DynamicSample1Component” and “DynamicSample2Component” are returned. For
all other cases, we are going to take the “UnknownDynamicComponent” component.

Advanced Angular 324

Finally, we are ready to create components dynamically. Below is the simplified version of
component class implementation that shows the main blocks of interest:

1 import {

2 ...,

3 OnInit, OnDestroy,

4 ComponentRef, ComponentFactoryResolver

5 } from '@angular/core';

6

7 @Component({...})

8 export class DynamicContentComponent implements OnInit, OnDestroy {

9 ...

10

11 private componentRef: ComponentRef<{}>;

12

13 constructor(private resolver: ComponentFactoryResolver) { }

14

15 ngOnInit() {

16 if (this.type) {

17 const componentType = this.getComponentType(this.type);

18 const factory = this.resolver.resolveComponentFactory(componentType);

19 this.componentRef = this.container.createComponent(factory);

20 }

21 }

22

23 ngOnDestroy() {

24 if (this.componentRef) {

25 this.componentRef.destroy();

26 this.componentRef = null;

27 }

28 }

29

30 }

We inject the “ComponentFactoryResolver” into the component at runtime and use it to build the
dynamic content upon initialization, and tear down when our parent component gets destroyed.

The process of content creation is quite straightforward. First, we resolve the component type by
the string value. Second, we resolve a component factory for the given component type. Finally, we
use that factory to build a component. Newly created content gets automatically appended to the
DOM after the “#container” element.

Please note that you must register every component you create dynamically within the “en-
tryComponents” section of your module. That instructs the Angular framework to maintain

Advanced Angular 325

corresponding factories at runtime.

src/app.module.ts

1 @NgModule({

2 imports: [...],

3 declarations: [...],

4 entryComponents: [

5 DynamicSample1Component,

6 DynamicSample2Component,

7 UnknownDynamicComponent

8],

9 bootstrap: [AppComponent]

10 })

11 export class AppModule { }

You can now test all three cases with the following layout:

src/app/app.component.html

1 <h2>Dynamic Content</h2>

2 <app-dynamic-content type="sample1"></app-dynamic-content>

3 <app-dynamic-content type="sample2"></app-dynamic-content>

4 <app-dynamic-content type="some-other-type"></app-dynamic-content>

The main application page should look like the following:

Runtime context

The easiest way to maintain different types of dynamic components in the code is to build a common
interface or an abstract class with a shared API. For example:

1 abstract class DynamicComponent {

2 context: any;

3 }

Advanced Angular 326

Note that for the sake of simplicity we are declaring “context” property of “any” type. In real-life
scenarios, however, you may want to use some particular type to benefit from the static checks the
Typescript compiler provides.

Now you can update all previously created components to expose the “DynamicComponent” class
and take “context” into account.

1 @Component({

2 selector: 'app-dynamic-sample-1',

3 template: `<div>Dynamic sample 1 ({{context?.text}})</div>`

4 })

5 export class DynamicSample1Component extends DynamicComponent {}

6

7 @Component({

8 selector: 'app-dynamic-sample-2',

9 template: `<div>Dynamic sample 2 ({{context?.text}})</div>`

10 })

11 export class DynamicSample2Component extends DynamicComponent {}

12

13 @Component({

14 selector: 'app-unknown-component',

15 template: `<div>Unknown component ({{context?.text}})</div>`

16 })

17 export class UnknownDynamicComponent extends DynamicComponent {}

Next, the “DynamicContentComponent” needs updates to receive the value of the “context” from
the outside using bindings, and pass it to the underlying child component.

1 export class DynamicContentComponent implements OnInit, OnDestroy {

2 ...

3

4 @Input()

5 context: any;

6

7 ngOnInit() {

8 if (this.type) {

9 ...

10 let instance = <DynamicComponent> this.componentRef.instance;

11 instance.context = this.context;

12 }

13 }

14 }

Advanced Angular 327

That is it, and we are ready to test the whole flow. Add a simple object to the main application
component class to use as a “context” value for the dynamic elements:

src/app.component.ts

1 export class AppComponent {

2

3 context: { text: string } = {

4 text: 'test'

5 }

6 }

Now bind this context to all three components we declared earlier in the template:

src/app.component.html

1 <h3>Context: <input type="text" [(ngModel)]="context.text"></h3>

2 <app-dynamic-content type="sample1" [context]="context"></app-dynamic-content>

3 <app-dynamic-content type="sample2" [context]="context"></app-dynamic-content>

4 <app-dynamic-content type="some-other-type" [context]="context"></app-dynamic-conten\

5 t>

To demonstrate “live updates” feature, we add an input element to the page. The element is using
“two-way” binding to the “context.text” property. According to our setup, all dynamically created
components should automatically reflect the new value as we type.

Note that to use “ngModel” directive you need to import and reference the “FormModule” within
your main application module like in the example below:

src/app/app.module.ts

1 ...

2 import { FormsModule } from '@angular/forms';

3

4 @NgModule({

5 ...

6 imports: [

7 BrowserModule,

8 FormsModule

9],

10 ...

11 })

12 export class AppModule { }

Advanced Angular 328

The setup is ready, and you can run your web application to see it in action. By default, it should
be displaying the “test” value within each dynamically created component. Try typing some text in
the “context” input to see all of those components’ titles change on the fly.

Typical use cases

Dynamic forms and form persistence is the best example of where you might need the features we
tried above. If you need displaying a form or a complex component based on some definition file
(JSON, XML, or other), you may end up creating a dynamic component that builds final content
based on the schema and/or persisted state, and a form component built from multiple dynamic
content containers.

Source code
You can find the source code in the “angular/components/dynamic-content⁷¹” folder.

Runtime Compilation

For some advanced scenarios, you might want to take full control over Angular component and
template compilation.

In this part, we are going to implement the following features:

• allow a user to define the component template
• compile a “Component” on the fly with user defined template and the underlying class
• compile a “NgModule” on the fly with the component created in the previous step
• display newly created component on the page

Let’s start by generating a separate scaffold for the component utilising the Angular CLI tools:

ng g component runtime-content

You can take initial implementation from the “DynamicContentComponent” we created in previous
chapters.

The component template needs a predefined injection point:
⁷¹https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/dynamic-content

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/dynamic-content
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/dynamic-content

Advanced Angular 329

src/app/runtime-content/runtime-content.component.html

1 <div>

2 <div #container></div>

3 </div>

Also, we map “#container” element to the underlying “container” property of the component class.

src/app/runtime-content/runtime-content.component.ts

1 import { ..., ViewChild, ViewContainerRef } from '@angular/core';

2

3 @Component({...})

4 export class RuntimeContentComponent {

5

6 @ViewChild('container', { read: ViewContainerRef })

7 container: ViewContainerRef;

8

9 }

The main idea behind the new component we introduce is to allow a user to define HTML template
on the fly. So let’s add a basic UI for editing:

src/app/runtime-content/runtime-content.component.html

1 <div>

2 <h3>Template</h3>

3 <div>

4 <textarea rows="5" [(ngModel)]="template"></textarea>

5 </div>

6 <button (click)="compileTemplate()">Compile</button>

7

8 <h3>Output</h3>

9 <div #container></div>

10 </div>

Note that to use “ngModel” directive you must import a “FormsModule” into your main application
module. You should have it already configured from the previous part of the chapter where we
created the DynamicContent component.

Set the default template value to something the user can compile without typing beforehand. That
should help us testing the flow as well:

Advanced Angular 330

1 @Component({...})

2 export class RuntimeContentComponent {

3 ...

4

5 template = '<div>\nHello, {{name}}\n</div>';

6

7 }

When the main page gets rendered it should look similar to the following:

Now the most important part of the component implementation, the runtime compilation:

src/app/runtime-content/runtime-content.component.ts

1 import {

2 ...,

3 Compiler, ComponentFactory,

4 NgModule, ModuleWithComponentFactories

5 } from '@angular/core';

6 import { CommonModule } from '@angular/common';

7

8 @Component({...})

9 export class RuntimeContentComponent {

10 ...

11

12 private createComponentFactorySync(

13 compiler: Compiler,

14 metadata: Component,

15 componentClass: any): ComponentFactory<any> {

16

17 const cmpClass = componentClass || class RuntimeComponent {

18 name = 'Denys'

19 };

Advanced Angular 331

20 const decoratedCmp = Component(metadata)(cmpClass);

21

22 @NgModule({

23 imports: [CommonModule],

24 declarations: [decoratedCmp] }

25)

26 class RuntimeComponentModule { }

27

28 const module: ModuleWithComponentFactories<any> =

29 compiler.compileModuleAndAllComponentsSync(RuntimeComponentModule);

30

31 return module.componentFactories.find(

32 f => f.componentType === decoratedCmp

33);

34 }

35

36 }

The code above takes custom metadata and optionally a component class reference via “compo-
nentClass” parameter. If you do not provide the class as part of the “createComponentFactorySync”
call, the fallback “RuntimeComponent” one gets used instead. The fallback class also has a “name”
property predefined. That is what we are going to use for testing.

1 const cmpClass = componentClass || class RuntimeComponent {

2 name = 'Denys'

3 };

The resulting component also gets decorated with the metadata we provide:

1 const decoratedCmp = Component(metadata)(cmpClass);

Next, a component gets created with the predefined “CommonModule” import. You may extend the
list if you want to support more functionality. We also put our component as part of the module’s
“declarations” section as per Angular requirements.

Finally, the function uses Angular “Compiler” service to compile the module and all included
components. Compiled module provides access to the underlying component factories, and this is
exactly the feature we need.

For the last step, we need to wire the “Compile” button with the following method:

Advanced Angular 332

1 @Component({...})

2 export class RuntimeContentComponent {

3 ...

4

5 compileTemplate() {

6

7 let metadata = {

8 selector: `runtime-component-sample`,

9 template: this.template

10 };

11

12 let factory = this.createComponentFactorySync(

13 this.compiler,

14 metadata,

15 null

16);

17

18 if (this.componentRef) {

19 this.componentRef.destroy();

20 this.componentRef = null;

21 }

22 this.componentRef = this.container.createComponent(factory);

23 }

24 }

Every time the user clicks the “Compile” button our “RuntimeContentComponent” component takes
the template value, compiles it to a new component backed by the RuntimeComponent class (with
the predefined “name” property), and renders:

To fully test the flow in action now change the default HTML template value and provide some
custom content, for example changing the colour style of the root “div” element to “blue”. Modify

Advanced Angular 333

the text content as well.

Click “Compile” button once again, and you should see the following result now:

Binding events

Your component users are not limited to user property bindings. The template supports event
binding as well. All event handlers have to be defined in the underlying class or be present in the
“RuntimeComponent” class we use as a fallback value.

To see events in action let’s modify the fallback class and add the “onClick” method like in the
following example:

1 @Component({...})

2 export class RuntimeContentComponent {

3 ...

4

5 private createComponentFactorySync(...): ComponentFactory<any> {

6

7 const cmpClass = componentClass || class RuntimeComponent {

8 name = 'Denys';

9

10 onClick() {

11 alert('Clicked');

12 }

13 };

14

15 ...

16 }

17 }

Now you can wire the click events in the template with the “onClick” method like in the next picture:

Advanced Angular 334

If you press the “Compile” button once again and then click the “div” element you should see the
browser alert dialogue:

Typical use cases

The best scenario for this feature is when you want to store component templates somewhere in the
external storage, and then build components on the fly, similar to how it gets performed in various
RAD environments, online layout builders, and other design tools.

Source code
You can find the source code in the “angular/components/dynamic-content⁷²” folder.

⁷²https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/dynamic-content

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/dynamic-content
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/components/dynamic-content

Advanced Angular 335

Plugins

Plugins are used to allow third-party developers extend your application by utilising the redis-
tributable extensions that provide new features for the application without recompiling its code.

In this section, we are going to use multiple ways to extend your application, starting from the
string-based configurations to build and compose components at runtime, and finishing with the
complete drop-in plugins you can put into the folder to add new features to the running application.

Preparing new project

Use the following Angular CLI command to generate a project with initial Routing support.

ng new plugins --routing

It is essential to have Routing enabled as later in this section we are also going to see how to create
new routes dynamically at runtime, and how a plugin can contribute new application routes with
external content presented to a user.

Edit the main application component template and replace the HTML markup that Angular CLI
generates by default with the following one:

src/app/app.component.html

1 <h1>Plugins</h1>

2

3 <router-outlet></router-outlet>

That is pretty much all to get started with extensibility. You can test the project by running “ng start
–open” command, to see that everything compiles and runs fine. After that, proceed to the next
section below.

Source code
You can find the source code in the “angular/plugins⁷³” folder.

Building components based on string names

The first thing we are going to start with is related to creating components based on their string
names, either types or aliases.

⁷³https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins

Advanced Angular 336

This feature allows to you have configurable configuration files or custom layout definitions that
instruct your application what components to use for the particular scenarios.

A good example is a dynamic sidebar that can contain various components or mini-widgets based
on the configuration file. Users or developers can change the settings to display only individual
components, like a “weather widget” or “notification panel”, can provide a different order of
rendering, and many other options.

The example above is not a fully-fledged plugin approach, as our application still “knows” about
all possible component types, and all components and templates get compiled and bundled as part
of the application. However, we are taking that scenario as a simplified case to see how to use the
Angular compiler at runtime. That should give us a base experience for more advanced scenarios
that we are going to implement later in this chapter.

I strongly recommend creating a separate module that contains all the configurable components that
you plan to create at runtime. That should significantly simplify future maintenance and discovery
of such components, and you are going to see that shortly in practice.

Let’s use Angular CLI once again to generate a new flat module and call it “plugins”:

1 ng g module plugins --flat --module=app

Note the “–module=app” switch we are using in this case. It instructs Angular CLI to also include
our newly generated module into the main application module. The “–flat” switch forces the CLI
to generate module file in the application source folder, without creating a separate subfolder as it
does for components, directives and other Angular entities.

The console output in your case should look similar to the next example:

1 create src/app/plugins.module.ts (191 bytes)

2 update src/app/app.module.ts (465 bytes)

While we are at the command line, let’s also create two components “page1” and “page2”. These are
the components we would like to create dynamically. Moreover, you can save some time by using
the “–module” switch to include both components into the “plugins” module like in the code below:

1 ng g component page1 --module=plugins

2 ng g component page2 --module=plugins

Now, feel free to inspect what you have as a result in the “plugins” module that should reside in
the “src/app” folder and contain references to both “Page1Component” and “Page2Component”
components. The Angular CLI also imports the most frequently used “CommonModule” module
for you:

Advanced Angular 337

src/app/plugins.module.ts

1 import { NgModule } from '@angular/core';

2 import { CommonModule } from '@angular/common';

3 import { Page1Component } from './page1/page1.component';

4 import { Page2Component } from './page2/page2.component';

5

6 @NgModule({

7 imports: [

8 CommonModule

9],

10 declarations: [Page1Component, Page2Component]

11 })

12 export class PluginsModule { }

Both “page” component classes should be almost identical and look similar to the following:

src/app/page1/page1.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-page1',

5 templateUrl: './page1.component.html',

6 styleUrls: ['./page1.component.css']

7 })

8 export class Page1Component implements OnInit {

9

10 constructor() { }

11

12 ngOnInit() {

13 }

14

15 }

The Angular CLI provides dummy HTML templates in the form of “<component-name> works!” for
every component it generates. That saves much time when you are preparing project structure or
have a quick prototyping phase. As we focus on the architecture and dynamic compilation, it is not
very important what templates component have. Let’s leave the default values for now, and you can
revisit that later.

Next, we need to create a couple of buttons to trigger component creation, and a placeholder to insert
the newly compiled content. Update the main application component template like in the example
below.

Advanced Angular 338

src/app/app.component.html

1 <h1>Plugins</h1>

2

3

4

5 <button (click)="createView('app-page1')">page 1</button>

6

7

8 <button (click)="createView('app-page2')">page 2</button>

9

10

11

12 <div #content></div>

13

14 <router-outlet></router-outlet>

Pay attention to the empty “div” element: “<div #content></div>”. That is the place we are going
put our dynamic components. You can put this element to any other places, as long as it has the
“content” Angular reference name, the component controller is going to find it.

Now, if you run the application, the main page should look like in the next picture:

List of plugins

We also need to finish the component controller preparation. The class should get the reference to
the “content” placeholder and have the “createView” handler for the buttons:

Advanced Angular 339

src/app/app.component.ts

1 import { Component, Compiler, ViewChild, ViewContainerRef } from '@angular/core';

2 import { PluginsModule } from './plugins.module';

3

4 @Component({

5 selector: 'app-root',

6 templateUrl: './app.component.html',

7 styleUrls: ['./app.component.css']

8 })

9 export class AppComponent {

10

11 @ViewChild('content', { read: ViewContainerRef })

12 content: ViewContainerRef;

13

14 constructor(private compiler: Compiler) {

15 }

16

17 createView(name: string) {

18 }

19 }

Note that we also import the “PluginsModule”, as it contains all the components we would like to
find and create according to our initial scenario.

We inject the instance of the “Compiler” class into the component constructor and use it to compile
the “PluginsModule” on the fly. The private “module” variable is going to hold the resulting instance
so that we do not compile the module more times than it is needed.

src/app/app.component.ts

1 import { Component, Compiler, ViewChild, ViewContainerRef } from '@angular/core';

2 import { PluginsModule } from './plugins.module';

3

4 @Component({...})

5 export class AppComponent {

6

7 @ViewChild('content', { read: ViewContainerRef })

8 content: ViewContainerRef;

9

10 private module;

11

12 constructor(private compiler: Compiler) {

13 this.module = this.compiler.compileModuleAndAllComponentsSync(

14 PluginsModule

Advanced Angular 340

15);

16 }

17

18 createView(name: string) {

19 const factory = this.module.componentFactories.find(

20 f => f.selector === name

21);

22

23 this.content.clear();

24 this.content.createComponent(factory);

25 }

26 }

As you can see above, as long as we have the compiled module instance, we can perform searches
to find a component factory based on specific metadata. In the particular case, we are interested in
the selector names.

As soon as factory got found, we can clear the “content” placeholder, and create a new instance of
the component in that place.

Run the application and click the first button “page 1” on the main page. You should see the “page1
works!” label immediately appear at the bottom of the page.

Plugin 1

Now click the second button, and this time the placeholder content is replaced with the “page2
works!” text that comes with the “Page2Component” instance our application component creates on
the fly.

Advanced Angular 341

Plugin 2

Congratulations on having the first step complete. You are now able to take a string, map it to the
component selector, and build the corresponding component at runtime.

Loading configuration from external sources

Thewhole idea of string to component typemapping usually arises when the exact values are coming
from the external sources, like configuration files. Otherwise, you could just declare the needed
component tags in the HTML template without any compilation.

As we have started this chapter with the example of the configurable Sidebar component, let’s go
ahead and introduce a barebone implementation that takes external “plugins.config.json” file as a
configuration, and builds a set of components.

Below is our configuration file that is going to reside in the “src/assets” folder. Upon startup, the
Angular server automatically exposes this folder to the application access and also copies its content
to the output directory during production builds.

src/assets/plugins.config.json

1 {

2 "sidebar": {

3 "components": [

4 "app-page1",

5 "app-page2"

6]

7 }

8 }

So we got the “sidebar” with two components “app-page1” and “app-page2” defined by default. Let’s
now generate the corresponding component by utilising the following command:

1 ng g component sidebar --module=app

Advanced Angular 342

As we now have more than one module, we need to tell Angular CLI where to put the resulting
component. In our case, it is “app” that corresponds to the “app.module.ts” file.

In the main application template, append the “Configurable Sidebar” header element together with
the newly introduced “app-sidebar” tag:

src/app/app.component.html

1 ...

2

3 <h1>Configurable Sidebar</h1>

4 <app-sidebar></app-sidebar>

You also need to import the “HttpClientModule” to allow your application components and services
make Http calls with the help of the HttpClient instance.

src/app/app.module.ts

1 ...

2 import { HttpClientModule } from '@angular/common/http';

3

4 @NgModule({

5 declarations: [

6 ...,

7 SidebarComponent

8],

9 imports: [

10 ...,

11 HttpClientModule

12],

13 entryComponents: [

14 ...

15],

16 providers: [],

17 bootstrap: [AppComponent]

18 })

19 export class AppModule { }

Next, edit the SidebarComponent template, and update the default auto-generated content with the
following snippet:

Advanced Angular 343

src/app/sidebar/sidebar.component.html

1 <p>

2 Sidebar

3 </p>

4

5 <div #content></div>

Similar to previous examples, we have the placeholder “div” element that we reference as “content”,
and we compile the “PluginsModule” module to get access to all its factories at the runtime:

src/app/sidebar/sidebar.component.ts

1 import {

2 ...,

3 ViewChild, ViewContainerRef, AfterViewInit, Compiler

4 } from '@angular/core';

5 import { HttpClient } from '@angular/common/http';

6 import { PluginsModule } from '../plugins.module';

7

8 @Component({...})

9 export class SidebarComponent implements AfterViewInit {

10

11 @ViewChild('content', { read: ViewContainerRef })

12 content: ViewContainerRef;

13

14 private module;

15

16 constructor(private http: HttpClient,

17 private compiler: Compiler) {

18 this.module = compiler.compileModuleAndAllComponentsSync(

19 PluginsModule

20);

21 }

22

23 ngAfterViewInit() {

24 }

25

26 }

We use the “ngAfterViewInit” lifecycle hook as we need access to the “content” placeholder. You can
also mark the handler as “async” to get the benefits of the “async / await” support that Typescript
provides:

Advanced Angular 344

src/app/sidebar/sidebar.component.ts

1 export class SidebarComponent implements AfterViewInit {

2 ...

3

4 async ngAfterViewInit() {

5 const url = '/assets/plugins.config.json';

6 const config = await this.http.get(url).toPromise();

7

8 console.log(config);

9 }

10 }

Optimisation
Typically you should be aiming to have a separate application service to deal with HTTP
and configuration loading. In that case, you do not repeat the same calls in every component,
get a better separation of concerns and improved unit testing support.

If you now switch to the browser tab with your application and run the developer tools, the console
output should be similar to the next one:

Configuration file

I strongly recommend introducing a separate interface that describes the content of the configuration
file. In the long run, it is going to help youwith type checks, addresses typos and errors at early stages.

For the sake of simplicity, let’s create an interface called “AppConfig” in the same “sidebar.component.ts”
file. You can later extract it to a separate file if there’s more than one place to use it.

Advanced Angular 345

1 interface AppConfig {

2 sidebar: {

3 components: string[]

4 };

5 }

Now you can use this interface with HttpClient like this:

1 export class SidebarComponent implements AfterViewInit {

2 ...

3

4 async ngAfterViewInit() {

5 const url = '/assets/plugins.config.json';

6 const config = await this.http.get<AppConfig>(url).toPromise();

7

8 console.log(config);

9 }

10 }

As a bonus, you are going to get automatic completion for your configuration files when working
with typed variables:

Automatic completion in VS Code

We have already covered how to search for the component factories using selector values; this can
be easily used now with the external configuration to build multiple components and inject them
into the placeholder in the specific order:

1 export class SidebarComponent implements AfterViewInit {

2 ...

3

4 async ngAfterViewInit() {

5 const url = '/assets/plugins.config.json';

6 const config = await this.http.get<AppConfig>(url).toPromise();

7

8 this.createSidebarComponents(config.sidebar.components);

9 }

10

Advanced Angular 346

11 private createSidebarComponents(selectors: string[]) {

12 this.content.clear();

13

14 for (let i = 0; i < selectors.length; i++) {

15 const factory = this.module.componentFactories.find(

16 f => f.selector === selectors[i]

17);

18 this.content.createComponent(factory, i);

19 }

20 }

21 }

The “ViewContainerRef.createComponent” method handles the correct positioning of all generated
instances. It accepts the exact index of the entry as the second parameter.

Run or reload the project and you are going to see the following content on the main page:

Sidebar with Components

Let’s try to test the configuration is indeed dynamic. Edit the JSON file and change the order of the
components like in the following example:

1 {

2 "sidebar": {

3 "components": [

4 "app-page2",

5 "app-page1"

6]

7 }

8 }

Next, reload the application page or wait till the Angular CLI web server automatically reloads. You
should now see components created in the order we configured:

Advanced Angular 347

Different order in config

That means you are now ready to build composite components driven by the external configuration.
With the approach above, you can quickly create applications that change the layout without
rebuilding and re-deploying new version to the server.

Source code
You can find the source code in the “angular/plugins⁷⁴” folder.

Dynamically changing application routes

If you are building a scalable web application, then you are most probably already using routing
feature and application Router that Angular provides.

Besides the navigation patterns, Angular Router provides a way to partition your application into
smaller chunks, load them on demand using Lazy Loading feature. We are going to dwell on Lazy
Loading in the separate chapter, and meanwhile, let’s see how you can extend the router on the fly,
and inject new, or modify existing routes in the running application.

If you remember, at the beginning of the chapter, we have enabled the routing support via the
“–routing” switch. With that switch, Angular CLI automatically generates a separate “AppRouting-
Module” module file with the necessary scaffold, stored in the “app-routing.module.ts” file.

Let’s generate a couple of components to use for navigation. We are going to call them “Home” and
“About”:

ng g component home --module=app

ng g component about --module=app

Now edit the “app-routing.module.ts” file and introduce new routes backed by the components
we have just generated. The ‘about’ route corresponds to the “/about” URL and displays the
“AboutComponent” component. By default, when the application starts, we are going to render
the “HomeComponent”.

⁷⁴https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins

Advanced Angular 348

src/app/app-routing.module.ts

1 import { NgModule } from '@angular/core';

2 import { Routes, RouterModule } from '@angular/router';

3

4 import { HomeComponent } from './home/home.component';

5 import { AboutComponent } from './about/about.component';

6

7 const routes: Routes = [

8 {

9 path: '',

10 component: HomeComponent

11 },

12 {

13 path: 'about',

14 component: AboutComponent

15 }

16];

17

18 @NgModule({

19 imports: [RouterModule.forRoot(routes)],

20 exports: [RouterModule]

21 })

22 export class AppRoutingModule { }

Next, we create the links on the home page to allow the users navigate to the corresponding pages.
Find the “router-outlet” tag on the main application template, and replace it with the following
snippet:

src/app/app.component.html

1 ...

2

3 <h1>Routes</h1>

4

5

6

7 Home

8

9

10 About

11

12

Advanced Angular 349

13

14 <router-outlet></router-outlet>

Start the application, and you should see two links togetherwith the label “homeworks!” underneath.
That is our default “Home” component already loaded in the router outlet area.

Basic routes

Click the “About” link to see the “AboutComponent”, that proves the router is up and running, and
ready for our further customisations.

For the next step, we need one more component that we are going to create dynamically at runtime.
Let’s imagine that we have a configuration switch or settings that allows us to enable the “Settings”
feature for our application.

Use Angular CLI to create a new “SettingsComponent” and automatically declare it within the “App”
module:

1 ng g component settings --module=app

Note that “Settings” component is part of the application, but it gets created dynamically. According
to Angular rules we need to register in the module’s “entryComponents” section all the components
that we are going to create dynamically by using their factories.

Update the main application module according to the example of the code below:

Advanced Angular 350

src/app/app.module.ts

1 ...

2 import { SettingsComponent } from './settings/settings.component';

3

4 @NgModule({

5 declarations: [

6 ...,

7 SettingsComponent

8],

9 imports: [

10 ...

11],

12 entryComponents: [

13 SettingsComponent

14],

15 providers: [],

16 bootstrap: [AppComponent]

17 })

18 export class AppModule { }

We also need a way to render and test all dynamic routes. Let’s create the collection variable to hold
the information we need to create the list of links on the main page, similar to “Home” and “About”
we have created earlier. Our main component class also needs importing and injecting the Router
instance.

src/app/app.component.ts

1 ...

2 import { Router } from '@angular/router';

3

4 @Component({...})

5 export class AppComponent {

6

7 ...

8

9 links: { text: string, path: string }[] = [];

10

11 constructor(..., private router: Router) {

12 ...

13 }

14

15 ...

16 }

Advanced Angular 351

To display a link, we need a title and a route path value. For a minimal Router entry, we also need
the type of the component to associate with the given route. That means we can create the following
method to register a new route and also fill the “links” collection:

src/app/app.component.ts

1 createRoute(text: string, path: string, componentType: any) {

2 this.router.config.unshift({

3 path: path,

4 component: componentType

5 });

6

7 this.links.push({ text, path });

8 }

The main point of interest for us, in this case, is the “router.config” property that holds a collection
of all registered routes available to the application and Router. The “createRoute” method inserts a
new record containing a path and the component Type.

Why is it essential to use “unshift” instead of the “push” method for the routes array? Very often the
last route in the collection is a “catch-all” fallback path that handles missing pages and redirects to
some error or “page not found” component, like in the following example:

1 const appRoutes: Routes = [

2 {

3 path: '',

4 component: HomeComponent

5 },

6 { path: '**', component: PageNotFoundComponent }

7];

By pushing new content to the routes collection we risk adding it after the “catch-all” path, and so
the routes are not going to be available at runtime. That is why we “prepend” new routes by using
“Array.prototype.unshift” rather than append them with “Array.prototype.push” function.

Let’s try the route generator out with the SettingsComponent we have recently created. Update the
main application component class with the necessary imports, and call the “createRoute” method in
the class constructor to prepend the “Settings” route pointing to the “/settings” URL like in the next
snippet:

Advanced Angular 352

src/app/app.component.ts

1 ...

2 import { SettingsComponent } from './settings/settings.component';

3

4 @Component({...})

5 export class AppComponent {

6 ...

7

8 constructor(private compiler: Compiler, private router: Router) {

9 ...

10 this.createRoute('Settings', 'settings', SettingsComponent);

11 }

12

13 createView(name: string) {

14 ...

15 }

16

17 createRoute(text: string, path: string, componentType: any) {

18 this.router.config.unshift({

19 path: path,

20 component: componentType

21 });

22

23 this.links.push({ text, path });

24 }

25 }

Finally, we need to create a list of new routes on the main page. You should already have an
unordered list with the “Home” and “About” links, let’s update it with the dynamic portion now:

src/app/app.component.html

1 ...

2

3 <h1>Routes</h1>

4

5

6 Home

7 About

8

9 <li *ngFor="let link of links">

10 <a [routerLink]="link.path">

11 {{ link.text }}

Advanced Angular 353

12

13

14

15

16 <router-outlet></router-outlet>

As soon as you reload the page, you are going to see three links in the “Routes” section: “Home”,
“About” and newly introduced “Settings”. Click on the “Settings” one, and you are going to see the
“setting works!” label in the router outlet area. That means your application successfully renders the
content you provide at runtime, congratulations!

Dynamic route

We have walked through a simplified scenario for route creation. As you can now imagine, that
approach can be used inmore sophisticated cases, when you store route names, paths and component
aliases in the external configuration files, and load them on demand together with new route
generation, as we did earlier in this chapter.

Source code
You can find the source code in the “angular/plugins⁷⁵” folder.

External plugins

We have finally approached the most advanced and the most valuable area - plugins that are loaded
by the application at runtime from external sources, and provide new features based on specific
extension points.

⁷⁵https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins

Advanced Angular 354

For generic plugin capabilities we need to have application support at least for the following items:

• defining an extension point in the application
• essential plugin registration and management APIs
• loading external modules at runtime
• executing or instantiating external components

Traditionally, application or framework developers provide a set of extension points that third-party
developers can use to build plugins or extensions. Let’s take the Routing example we used across
this chapter as a perfect scenario for extensibility.

We are going to enable other developers to build extra components and register new routes in our
application. Ultimately it should be possible to drop the JavaScript file in some specialised “modules”
folder and register the module in the application configuration file. The application should not
“know” about loaded types, and the whole plugin integration should happen dynamically, without
recompiling the application or even restarting the web server.

Extension decorator

It is essential to keep the plugin feature as simple as possible so that your third-party developers do
not study a new programming language or the practices and patterns that are relevant only to your
particular implementation. The ES2016 “decorator” pattern might be the best choice, as Angular
developers are already familiar with decorators and annotations.

Let’s imagine we have a unique “@Extension” decorator to mark all the components we want
the target application to discover and use. We could also provide some extra metadata for such
a decorator, for example, public alias to use in the configuration files, maybe an icon or even a list
of dependencies on other plugins or modules.

For example, it can look like the following when applied to a class:

1 @Extension('my-extension')

2 class MyExtension {

3 ...

4 }

Decorators can be chained, so that means we can use them with Angular components like this as
well:

Advanced Angular 355

1 @Extension('my-button')

2 @Component({

3 selector: 'my-button,

4 templateUrl: 'my-button.html'

5 })

6 export class MyButtonComponent {

7 ...

8 }

As you can see, we need at least one project to hold the Extension and other APIs that we share
across all plugin implementations, let’s call it “Plugins Core”. It can also contain some management
services, like “Plugin Manager” to help the end application maintain plugins easily.

Finally, we are going to extend the main application to allow adding new routes and components
via the configuration file. For the current scenario, our simple extension point is a Router extension
and new pages for the application, but there can be many different extension points in the future.

Simple dependency flow

Advanced Angular 356

Creating a Plugins Core library

Create a separate “plugins-core” folder for the shared Extension APIs to use with all new plugins. I
am going to use the Rollup.js to build and bundle the code. However, you can use any other means to
create a redistributable Angular library. You can refer to the Reusable component libraries chapter
for more details.

Rollup.js
Rollup is a module bundler for JavaScript which compiles small pieces of code into
something larger and more complex, such as a library or application.

To get more information about Rollup, please refer to the official documentation:
https://rollupjs.org⁷⁶

Note, however, that “Rollup” is not the only option for building redistributable libraries. You can
also check the following alternatives:

• ng-packagr⁷⁷
• Nx extensions for Angular⁷⁸

Create a new “package.json” file with the following content to configure dependencies for the new
project:

package.json

1 {

2 "name": "plugins-core",

3 "version": "1.0.0",

4 "main": "dist/bundle.js",

5 "license": "MIT",

6 "scripts": {

7 "build": "rimraf dist/bundle.js && rollup -c"

8 },

9 "devDependencies": {

10 "babel-core": "^6.26.0",

11 "babel-plugin-external-helpers": "^6.22.0",

12 "babel-plugin-transform-decorators-legacy": "^1.3.4",

13 "babel-preset-env": "^1.6.1",

14 "rimraf": "^2.6.2",

15 "rollup-plugin-babel": "^3.0.3",

16 "rollup-plugin-json": "^2.3.0",

⁷⁶https://rollupjs.org
⁷⁷http://spektrakel.de/ng-packagr
⁷⁸https://nrwl.io/nx

https://rollupjs.org/
http://spektrakel.de/ng-packagr
https://nrwl.io/nx
https://rollupjs.org/
http://spektrakel.de/ng-packagr
https://nrwl.io/nx

Advanced Angular 357

17 "rollup-plugin-node-resolve": "^3.0.2"

18 }

19 }

Note the “scripts” section and the “build” command. You are going to need it later to produce the
bundle to use with the main application.

Run the following command now to install all dependencies:

1 npm install

The Rollup is using Babel libraries under the hood. We need to provide the following configuration
to enable support for decorators:

.babelrc

1 {

2 "presets": [

3 ["env", {

4 "modules": false

5 }]

6],

7 "plugins": [

8 "external-helpers",

9 "transform-decorators-legacy"

10]

11 }

The last project preparation step is the configuration file for the Rollup itself. Use the following
source code for the minimal working configuration that takes “src/main.js” file as an input, and
produces “dist/bundle.js” file as the bundled output.

rollup.config.js

1 import json from 'rollup-plugin-json';

2 import resolve from 'rollup-plugin-node-resolve';

3 import babel from 'rollup-plugin-babel';

4

5 export default {

6 input: 'src/main.js',

7 output: {

8 file: 'dist/bundle.js',

9 format: 'system'

10 },

Advanced Angular 358

11 plugins: [

12 json(),

13 resolve({

14 // pass custom options to the resolve plugin

15 customResolveOptions: {

16 moduleDirectory: 'node_modules'

17 }

18 }),

19 babel({

20 exclude: 'node_modules/**' // only transpile our source code

21 })

22]

23 }

Finally, we are ready to start implementing our “Extension” decorator. The code is pretty simple,
given that decorators are JavaScript functions:

src/extension.js

1 export function Extension(name, deps) {

2 return (constructor) => {

3 Extension.prototype.registry[name] = {

4 ctor: constructor,

5 deps: deps || []

6 };

7 };

8 }

9

10 Extension.prototype.registry = {};

As per our design, the “Extension” decorator is going to keep a registry of all the classes it has
decorated. That enables quick access to all the “registered” extensions at runtime without extra
initialisation overhead for each decorated class or component.

Our decorator requires a public name of the decorated element, to use within application configura-
tions. We also reserve an optional array of dependencies that our plugin requires when loaded into
the application. Feel free to add more properties later on when your plugin architecture evolves.

While we are here, let’s also provide a couple of utility functions to generate a list of providers.
One is “getProviders”, to be able using it within the Angular Injectors and modules. Another one is
“getExtensionType” to allow us quickly resolving extension type (or constructor) based on the public
name. You are going to see both of them in action shortly.

Advanced Angular 359

src/extension.js

1 ...

2

3 Extension.prototype.getProviders = function () {

4 var registry = this.registry;

5 return Object.keys(registry).map(function (key) {

6 return {

7 provide: key,

8 useClass: registry[key].ctor,

9 deps: registry[key].deps

10 };

11 });

12 };

13

14 Extension.prototype.getExtensionType = function (name) {

15 return this.registry[name].ctor;

16 }

For the next step, we introduce a “PluginManager” class to provide a single place for controlling and
using our plugins at runtime. Typically it is the end application that calls these methods when setting
up the extension points or resolving and compiling components coming from the plugin library.

src/plugin-manager.js

1 import { Extension } from './extension';

2

3 export class PluginManager {

4

5 getType(name) {

6 return Extension.prototype.getExtensionType(name);

7 }

8

9 getProviders() {

10 return Extension.prototype.getProviders();

11 }

12 }

Finally, create the “main” library entry point and export the classes and functions we have created.
Note that we export the instance of the PluginManager as a singleton. That is not mandatory but
saves time for creating new instances at the application level, especially when accessing plugins
from multiple places and files in the code.

Advanced Angular 360

src/main.js

1 import { PluginManager } from './plugin-manager';

2

3 export { Extension } from './extension';

4

5 export const pluginManager = new PluginManager();

That is pretty much all. You can now build the redistributable bundle with the “build” script:

1 npm run build

The console output should be similar to the following one:

1 src/main.js => dist/bundle.js...

2 created dist/bundle.js in 369ms

For real-life scenarios, youmay probablywant to publish your redistributable library to NPM, so that
developers can install it as part of the application and use as a third party addon. For demonstration
and quick testing purposes let’s emulate the NPM deployment behaviour by running “npm link” in
the root project folder:

1 npm link

Now you can run “npm link plugins-core” in any of your local projects folders, and emulate the
process of installing from NPM. The main benefit is that you can keep working on the library
code, all applications and libraries that link it are going to get updates automatically. Once you are
have finished with the development, you can, of course, use the real publishing via “npm publish”
commands, but this is out of our current scope.

You shall see the linking example later in this chapter.

Source code
You can find the source code in the “angular/plugins-core⁷⁹” folder.

Creating an example Plugin library

We have created a shared Plugins Core library with the previous steps. It is now time to build our
first plugin library.

Create a separate “plugins-example” folder and place the following “package.json” file there:

⁷⁹https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins-core

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins-core
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins-core

Advanced Angular 361

package.json

1 {

2 "name": "plugins-example",

3 "version": "1.0.0",

4 "main": "dist/bundle.js",

5 "license": "MIT",

6 "scripts": {

7 "build": "rimraf dist && rollup -c"

8 },

9 "devDependencies": {

10 "rimraf": "^2.6.2",

11 "rollup-plugin-node-resolve": "^3.0.2",

12 "rollup-plugin-typescript": "^0.8.1",

13 "rollup-plugin-typescript2": "^0.10.0",

14 "typescript": "^2.6.2"

15 },

16 "dependencies": {

17 "@angular/core": "^5.2.2",

18 "rollup": "^0.55.1"

19 }

20 }

As with the previous project, install the dependencies running the command below:

1 npm install

Our project needs to depend on the “plugins-core” library. Typically we should be adding it to the
package file and installing with all other dependencies, however for the sake of simplicity we are
going to use “npm link” feature to provide a live link to the library. That helps to work on both
projects at the same time without publishing to NPM.

Run the following command in the project root to establish a link:

1 npm link plugins-core

As we are going to create Angular components, we need to setup the TypeScript integration for the
Rollup. Put the following “tsconfig.json” file in the project root to enable basic support we need right
now:

Advanced Angular 362

tsconfig.json

1 {

2 "compilerOptions": {

3 "target": "es5",

4 "module": "system",

5 "lib": ["es2017", "dom"],

6 "declaration": true,

7 "sourceMap": true,

8 "removeComments": true,

9 "moduleResolution": "node",

10 "typeRoots": ["node_modules/@types"],

11 "experimentalDecorators": true,

12 "emitDecoratorMetadata": true

13 }

14 }

TypeScript Configuration
You can always generate a recommended configuration file by running the “tsc –init”
command in any folder. That requires, however, a TypeScript to be installed globally via
“npm install -g typescript” command.

Now finish the project scaffold setup by also adding the Rollup configuration file like below:

rollup.config.js

1 import resolve from 'rollup-plugin-node-resolve';

2 import typescript from 'rollup-plugin-typescript2';

3

4 export default {

5 input: 'src/main.ts',

6 output: {

7 file: 'dist/bundle.js',

8 format: 'system'

9 },

10 plugins: [

11 resolve({

12 // pass custom options to the resolve plugin

13 customResolveOptions: {

14 moduleDirectory: 'node_modules'

15 }

16 }),

Advanced Angular 363

17 typescript({

18 typescript: require('typescript')

19 })

20],

21 external: [

22 'plugins-core',

23 '@angular/core'

24]

25 }

Please pay attention to the “external” section of the Rollup configuration. It contains references to
the libraries in your “package.json” that should never get bundled into the resulting output. That
means that every plugin library is not going to contain the full copy of the Angular or another
version of the “plugins-core”. Having such dependencies marked as “external”, however, requires
the main application to import them alongside our plugins.

If your library depends on other Angular libraries, like “@angular/forms” or “@angular/http”,
include those in the “external” section too.

Let’s now create the first plugin component marked with our “Extension” decorator. It is going to
be a dummy button element that we reference as “my-button” extension.

src/my-button/my-button.component.ts

1 import { Component, OnInit, NgModule } from '@angular/core';

2 import { Extension } from 'plugins-core';

3

4 @Extension('my-button', [])

5 @Component({

6 selector: 'my-button',

7 template: `<button>My Button</button>`

8 })

9 export class MyButtonComponent implements OnInit {

10

11 ngOnInit() {

12 console.log('My Button Init');

13 }

14

15 }

Create one more component with a label element and called “my-label”:

Advanced Angular 364

src/my-label/my-label.component.ts

1 import { Component, OnInit, NgModule } from '@angular/core';

2 import { Extension } from 'plugins-core';

3

4 @Extension('my-label', [])

5 @Component({

6 selector: 'my-label',

7 template: `<h1>My Label</h1>`

8 })

9 export class MyLabelComponent implements OnInit {

10

11 ngOnInit() {

12 console.log('My Label Init');

13 }

14

15 }

Both components also produce log messages to the browser console for testing purposes. The only
thing that is now left is to export both components in the “main” class.

src/main.ts

1 export { MyLabelComponent } from './my-label/my-label.component';

2 export { MyButtonComponent } from './my-button/my-button.component';

Now run the “build” script to create a redistributable bundle:

npm run build

Once the compilation completes, the console output should be as follows:

src/main.ts => dist/bundle.js...

created dist/bundle.js in 980ms

Finally, you should also create a link to this project to test the library without publishing to NPM
every time you make changes to the project.

npm link

We now got the “plugins-core” and “plugins-example” libraries compiled and ready for use with an
Angular application as external plugins.

Advanced Angular 365

Source code
You can find the source code in the “angular/plugins-example⁸⁰” folder.

Extra libraries and dependencies

Your component library does not restrict you to a particular set of dependencies. You can add
many additional libraries to the “rollup” configuration, and plugin components can also have own
“providers” sections to get additional services imported.

For example, you can add a FormBuilder integration using the following steps.

First, update the “rollup.config.js” file and add “@angular/forms” to the exclusion list. That prevents
entire forms library from getting bundled into your library output.

1 export default {

2 ...,

3

4 external: [

5 'plugins-core',

6 '@angular/core',

7 '@angular/forms'

8]

9 }

Next, import the Forms related types, and update your component decorator to include the
“FormBuilder” provider:

src/my-label/my-label.component.ts

1 import { Component, OnInit, NgModule } from '@angular/core';

2 import { FormBuilder, FormGroup, Validators } from '@angular/forms';

3 import { Extension } from 'plugins-core';

4

5 @Extension('my-label', [])

6 @Component({

7 selector: 'my-label',

8 template: `<h1>My Label</h1>`,

9 providers: [FormBuilder]

10 })

11 export class MyLabelComponent implements OnInit {

12

13 ngOnInit() {

⁸⁰https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins-example

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins-example
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins-example

Advanced Angular 366

14 console.log('My Label Init');

15 }

16

17 }

Once you have component configuration set, you can import the FormBuilder and use its APIs from
within the plugin component.

src/my-label/my-label.component.ts

1 export class MyLabelComponent implements OnInit {

2

3 form: FormGroup;

4

5 constructor(private fb: FormBuilder) {

6 this.form = fb.group({

7 name: fb.group({

8 first: ['Nancy', Validators.minLength(2)],

9 last: 'Drew'

10 }),

11 email: ''

12 });

13 }

14

15 ngOnInit() {

16 console.log('My Label Init');

17 console.log('FB:', this.fb);

18 console.log('Form:', this.form);

19 }

20

21 }

Finally, you need updating the “SystemJS” settings of the main application to include extra libraries
to use for plugins.

In the example below I am adding “@angular/common”, “@angular/forms” and “@angular/plat-
form-browser” to the list. Those libraries will get available for all the loaded plugins.

Advanced Angular 367

src/assets/plugins.config.json

1 {

2 ...,

3

4 "system": {

5 "baseURL": "/assets/modules",

6 "paths": {

7 "npm:": "https://unpkg.com/"

8 },

9 "map": {

10 "@angular/core": "npm:@angular/core/bundles/core.umd.js",

11 "@angular/common": "npm:@angular/common/bundles/common.umd.js",

12 "@angular/forms": "npm:@angular/forms/bundles/forms.umd.js",

13 "@angular/platform-browser": "npm:@angular/platform-browser/bundles/platform-b\

14 rowser.umd.js",

15 "rxjs": "npm:rxjs",

16

17 "plugins-core": "/modules/plugins-core/bundle.js",

18 "plugins-example": "/modules/plugins-example/bundle.js"

19 }

20 },

21 }

You might need to import “FormsModule” and “ReactiveFormsModule” also to the root application
module.

src/app/app.component.ts

1 import { FormsModule, ReactiveFormsModule } from '@angular/forms';

2

3 @NgModule({

4 ...,

5

6 imports: [

7 BrowserModule,

8 HttpModule,

9 FormsModule, ReactiveFormsModule

10],

11

12 ...

13 })

14 export class AppModule { }

Advanced Angular 368

Providing dependencies for your plugins

As I have mentioned earlier, you have full control over what the dynamic module contains. This
opens the door to at least two great scenarios for injecting external content into your plugins at
run-time.

We have already touched the first one. That is the “imports” section and extra libs you can provide
for every plugin you construct. That can be Forms modules, Material modules, you custom or third-
party libraries.

Every time we create an instance of the plugin component of the “componentType”, the component
templates can use form fields, and material buttons provided with the “MatButtonModule” module.

1 const RuntimeModule = NgModule({

2 imports: [

3 CommonModule,

4 FormsModule,

5 ReactiveFormsModule,

6 MatButtonModule

7],

8 declarations: [

9 componentType

10]

11 })(class {})

Another way to inject data into the plugin components is by utilising “providers” section. You can
create and pre-configure the services prior to exposing them to components and other services that
you resolve and create on the fly.

1 const RuntimeModule = NgModule({

2 declarations: [

3 componentType

4],

5 providers: [

6 { provide: Injector, useValue: this.injector },

7 { provide: FormBuilder, useValue: this.fb },

8 { ... }

9]

10 })(class {})

That is a powerful feature that allows you having complete control over the dependency resolution
process for external components.

Advanced Angular 369

Loading plugins into the Application

Switch to the “plugins” application we earlier in this chapter. Use the following commands to link
both “plugins-core” and “plugins-example” libraries to emulate installation from NPM:

npm link plugins-core

npm link plugins-example

Also, you need to install a “systemjs” library. That is a module loader we are going to use to get our
plugins into the running application.

npm install systemjs

SystemJS
Configurable module loader enabling dynamic ES module workflows in browsers and
NodeJS. Built with the ES Module Loader project, which is based on principles and APIs
from the WhatWG Loader specification, modules in HTML and NodeJS.

For more details please refer to the official project page⁸¹.

As we are using Angular CLI for the application, the “systemjs” library needs to be present within
the “scripts” section of the “.angular-cli.json” configuration file.

.angular-cli.json

1 {

2 "$schema": "./node_modules/@angular/cli/lib/config/schema.json",

3 "project": {

4 "name": "plugins"

5 },

6 "apps": [

7 {

8 ...,

9 "scripts": [

10 "../node_modules/systemjs/dist/system.js"

11],

12 ...

13 }

14],

15 ...

16 }

⁸¹https://github.com/systemjs/systemjs/blob/master/README.md

https://github.com/systemjs/systemjs/blob/master/README.md
https://github.com/systemjs/systemjs/blob/master/README.md

Advanced Angular 370

It would be much easier if we also automate plugin bundle copying process. According to our design,
all external plugins need to reside in the “modules” folder of the application, either local or running
at the server side. As we continuously develop our plugin libraries, it is much easier if Angular CLI
automatically copies resulting bundles into appropriate places. We already linked the libraries via
the “npm link” command, the only thing that is left is to add extra rules for the “assets” folder:

.angular-cli.json

1 {

2 "$schema": "./node_modules/@angular/cli/lib/config/schema.json",

3 "project": {

4 "name": "plugins"

5 },

6 "apps": [

7 {

8 ...,

9 "assets": [

10 ...,

11 {

12 "glob": "bundle.js",

13 "input": "../node_modules/plugins-core/dist",

14 "output": "./modules/plugins-core"

15 },

16 {

17 "glob": "bundle.js",

18 "input": "../node_modules/plugins-example/dist",

19 "output": "./modules/plugins-example"

20 }

21],

22 ...,

23 "scripts": [

24 "../node_modules/systemjs/dist/system.js"

25],

26 ...

27 }

28],

29 ...

30 }

For the next step, we need to provide some basic configuration for SystemJS loader. The best way
would be to re-use the same “plugins.config.json” configuration file we have created earlier. In this
case, you can manage both the loader and the plugin configuration in the same place, and also
without rebuilding the application.

Advanced Angular 371

To keep the configuration short, we are going to load all missing dependencies directly from the
“UNPKG⁸²”, a fast CDN for NPM libraries. The “plugins-core” and “plugins-example” point to the
local bundle files we copy with the Angular CLI.

src/assets/plugins.config.json

1 {

2 "system": {

3 "baseURL": "/assets/modules",

4 "paths": {

5 "npm:": "https://unpkg.com/"

6 },

7 "map": {

8 "@angular/core": "npm:@angular/core/bundles/core.umd.js",

9 "rxjs": "npm:rxjs",

10

11 "plugins-core": "/modules/plugins-core/bundle.js",

12 "plugins-example": "/modules/plugins-example/bundle.js"

13 }

14 },

15 "sidebar": {

16 "components": [

17 "app-page2",

18 "app-page1"

19]

20 }

21 }

Update the application component imports sectionwith the “SystemJS” type declaration. That allows
us using auto-completion and type checking for the SystemJS APIs:

src/app/app.component.ts

1 import {..., AfterViewInit} from '@angular/core';

2 import { HttpClient } from '@angular/common/http';

3

4 import { System } from 'systemjs';

5 declare var SystemJS: System;

As you remember, we can load configuration using HttpClient, and use a TypeScript interface to
enable static type checks and IDE support. Let’s start with the basic one:

⁸²https://unpkg.com/

https://unpkg.com/
https://unpkg.com/

Advanced Angular 372

1 interface PluginsConfig {

2 system: any;

3 }

To finish the preparations, add the HttpClient and mark the “ngAfterViewInit” handler as “async”,
like in the next example:

src/app/app.component.ts

1 @Component({...})

2 export class AppComponent implements AfterViewInit {

3 ...

4

5 constructor(..., private http: HttpClient) {

6 ...

7 }

8

9 async ngAfterViewInit() {

10 }

11 }

Let’s try to load the configuration and log its content to the browser console to ensure the file loads
fine:

src/app/app.component.ts

1 @Component({...})

2 export class AppComponent implements AfterViewInit {

3 ...

4

5 constructor(..., private http: HttpClient) {

6 ...

7 }

8

9 async ngAfterViewInit() {

10 const url = '/assets/plugins.config.json';

11 const config = <PluginsConfig> await this.http.get(url).toPromise();

12 console.log(config);

13 }

14 }

Run the application or reload the page. The developer tools console should look similar to the one
below:

Advanced Angular 373

Loaded configuration

Before we load a plugin, the SystemJS loader needs to get configured. We load and apply settings
using the “config” method like in the next example:

1 SystemJS.config(config.system);

You can test the loader by importing the “plugins-core” library:

src/app/app.component.ts

1 export class AppComponent implements AfterViewInit {

2

3 async ngAfterViewInit() {

4 const url = '/assets/plugins.config.json';

5 const config = <PluginsConfig> await this.http.get(url).toPromise();

6 console.log(config);

7

8 SystemJS.config(config.system);

9

10 const core = await SystemJS.import('plugins-core');

11 console.log(core);

12 }

13

14 }

This time the browser console output should contain the “plugins-core” library content:

Advanced Angular 374

Loaded core module

Try expanding the “Extension” and “prototype” sections in the console to check the “registry”
content. It should be an empty object like this:

Extension decorator registry

Next, import the “plugins-example” right after the “plugins-core”:

Advanced Angular 375

src/app/app.component.ts

1 const core = await SystemJS.import('plugins-core');

2 const pluginExample = await SystemJS.import('plugins-example');

3 console.log(core);

Now, the Extension decorator should contain two entries in the registry. As you can see from the
console output they are “my-button” and “my-label”:

Registry with entries

You already know the names of the extensions, because you have defined them in the decorators for
each component. Also, you have the corresponding libraries loaded into the application at runtime.
It is now possible to use the same technique for dynamic module compilation with the component
constructors, fetched using Plugin Manager APIs.

The code below demonstrates the “my-label” plugin compiled and rendered within the “content”
element, similar to what we did earlier in this chapter.

Advanced Angular 376

src/app/app.component.ts

1 export class AppComponent implements AfterViewInit {

2

3 async ngAfterViewInit() {

4 ...

5

6 SystemJS.config(config.system);

7

8 const core = await SystemJS.import('plugins-core');

9 const pluginExample = await SystemJS.import('plugins-example');

10 console.log(core);

11

12 const componentType = core.pluginManager.getType('my-label');

13

14 const RuntimeModule = NgModule({

15 imports: [

16 // extra modules if needed by your plugins

17 // for example: FormsModule, HttpClientModule, etc

18],

19 declarations: [componentType]

20 })(class {});

21

22 const module = this.compiler.compileModuleAndAllComponentsSync(

23 RuntimeModule

24);

25

26 const factory = module.componentFactories.find(

27 f => f.componentType === componentType

28);

29

30 this.content.clear();

31 this.content.createComponent(factory, 0);

32 }

33

34 }

Dynamic modules and NgModule decorator
Please keep in mind that with the “RuntimeModule” you are creating a real Angular
module. Besides “declarations” section you can reuse all other metadata properties exposed
by the “NgModule” decorator. For example, you can use “imports” to store a set of extra
dependencies for your plugins. Or “providers” where you add new, redefine or configure
existing providers.

Advanced Angular 377

Switch to the running application and reload the page, if you do not have live reloading enabled.
The main page now contains the “My Label” element. That is the content of the plugin we have just
dynamically loaded.

Live plugin content

Another challenge to address - dependencies for your plugins. In most common scenarios the plugin
branch needs to be attached to the running application tree, and have access to all the shared
infrastructure. The perfect examples are Authentication layer, Translation services, User Preferences,
Application Configuration. Every loaded plugin should not create a new copy, but reuse already
configured instances of the services.

You can achieve tight integration of the plugins by using custom Injector instances. It is possible to
create the Injector that inherits the main application tree of Injectors, and at the same time contains
custom settings that a plugin brings if you need that level of control.

src/app/app.component.ts

1 import { ..., Injector } from '@angular/core';

2

3 export class AppComponent implements AfterViewInit {

4

5 constructor(private compiler: Compiler,

6 private router: Router,

7 private http: HttpClient,

8 private injector: Injector) {

9 ...

10 }

11

12 async ngAfterViewInit() {

13 ...

14

15 const pluginInjector = Injector.create([

16 ...core.pluginManager.getProviders()

Advanced Angular 378

17], this.injector);

18

19 this.content.clear();

20 this.content.createComponent(factory, 0, pluginInjector);

21 }

22

23 }

First of all, we import an instance of the Injector into the component class constructor. That is
the same Injector that provides all other dependencies for the given class by the way. It is created
for every component and resolves all the required dependencies. If there are no values registered
with the component Injector, the Angular goes up the component tree to the parent component and
checks its Injector. It repeats the same procedure until it reaches the top of the application tree and
its module.

We take the component injector and create a new instance based on it. Moreover, we populate the
“providers” section of the current plugin. That allows a plugin to register new or override existing
providers if needed, and allows Angular traverse the whole injector tree.

1 const pluginInjector = Injector.create([

2 ...core.pluginManager.getProviders()

3], this.injector);

As soon as you have your custom injector, it becomes trivial to create a new component with the
factory, corresponding element position and injector instance:

1 this.content.clear();

2 this.content.createComponent(factory, 0, pluginInjector);

Note the usage of the “Extension.prototype.getProviders” that we have created earlier. That method
allows us to collect all components marked with the “Extension” decorator, and produce a list of
“providers” and their “dependencies”, to attach to any custom injector or dynamic module:

plugins-core:/src/extension.js

1 Extension.prototype.getProviders = function () {

2 var registry = this.registry;

3

4 return Object.keys(registry).map(function (key) {

5 return {

6 provide: key,

7 useClass: registry[key].ctor,

8 deps: registry[key].deps

Advanced Angular 379

9 };

10 });

11 };

Visually the hierarchy of dependencies and injectors should look like the following:

Injectors

Setting plugin properties at runtime

We have already used a few times the “ViewContainerRef.createContent” method to create and
inject content.

Advanced Angular 380

1 this.content.clear();

2 this.content.createComponent(factory, 0, pluginInjector);

The biggest feature of this method is that it returns the instance of the “ComponentRef” type.
That allows you accessing the real instance of the component you have just created, and setting
its properties, or calling methods.

ComponentRef Members

You can try to check how it works by logging the value of one property the plugin defines, for
example a form:

1 console.log(componentRef.instance.form);

Use this technique to set up dynamic components after theyÂ get created. You can set any properties
and call any methods to provide post-constructor setup, or prime your component with extra
infrastructure references.

Sometimes it might be easier for you to set the corresponding properties at run time than piping all
injectors and dependencies.

As plugins can be of many types unknown at compile time, you can create a set of interfaces to
provide a contract for the external developers. For example, you may want all plugin developers to
inherit a “PluginComponent” interface with a set of properties your application can rely at run-time.

Dynamic Routes with plugin content

We have been using manual import of the plugins by their names so far. In real life, you are most
probably going to make the application fully automatic, based on multiple extension points and
configuration settings that are coming either from the file or RESTful service call.

Let’s introduce an application Router extension point similar to the one we have been using before.
This time, however, the application is going to load routes from the configuration file. Every route
now should be powered by the content exposed by the plugin, and not known to the application at
compile time.

There may be many ways to express plugins setup in the configuration. Here’s a simple example for
you to get started:

Advanced Angular 381

1 {

2 "system": {...},

3 "sidebar": {...},

4

5 "plugins": {

6 "modules": {

7 "plugins-core": "/modules/plugins-core/bundle.js" ,

8 "plugins-example": "/modules/plugins-example/bundle.js"

9 },

10 "routes": [

11 {

12 "name": "Plugin 1 (label)",

13 "path": "plugin1",

14 "component": {

15 "module": "plugins-example",

16 "componentType": "my-label"

17 }

18 },

19 {

20 "name": "Plugin 2",

21 "path": "plugin2 (button)",

22 "component": {

23 "module": "plugins-example",

24 "componentType": "my-button"

25 }

26 }

27]

28 }

29 }

In our case, we introduce an extra section “plugins” to our existing “plugin.config.json” file. It
contains the list of available modules and a couple of routes that we want to create when the
application starts. Each route instance consists of the name, route path, and component information:
module and alias that we used within Extension decorator.

To enable static checks, let’s also extend the “PluginsConfig” interface:

Advanced Angular 382

1 interface PluginsConfig {

2 system: any;

3 plugins: {

4 modules: any,

5 routes: Array<{

6 name: string,

7 path: string,

8 component: {

9 module: string,

10 componentType: string

11 }

12 }>

13 };

14 }

Next, edit the “ngAfterViewInit” hook for the main application component class, and add the
“loadExternalRoutes” call right after the SystemJS configuration:

src/app/app.component.ts

1 export class AppComponent implements AfterViewInit {

2 ...

3

4 async ngAfterViewInit() {

5 const url = '/assets/plugins.config.json';

6 const config = <PluginsConfig> await this.http.get(url).toPromise();

7

8 SystemJS.config(config.system);

9 this.loadExternalRoutes(config);

10

11 ...

12 }

13

14 }

At runtime, we can now quickly get a list of the plugins, their modules and custom routes. Also, you
can now get the corresponding component type using its alias and calling “pluginManager.getType”
method.

We have already implemented a way to create a dynamic route and display it on the page. The
challenging part is that Angular requires the route component to be a “known” type. Due to
some architectural reasons, it does not allow us to put an entirely dynamic component type as
“route.componentType” value.

Advanced Angular 383

You can solve the difficulty with the route components by introducing a statically known to the ap-
plication component, that has dynamic content. Let’s imagine we have a “DynamicPageComponent”
component that has an empty template and serves as a wrapper for the dynamic content exported by
the external plugin.We already know it is technically feasible, given the dynamic sidebar component
we have previously created.

The “loadExternalRoutes” implementation may look like the following one:

src/app/app.component.ts

1 ...

2 import { DynamicPageComponent } from './dynamic-page/dynamic-page.component';

3

4 export class AppComponent implements AfterViewInit {

5 ...

6

7 private async loadExternalRoutes(config: PluginsConfig) {

8 const core = await SystemJS.import('plugins-core');

9

10 for (const route of config.plugins.routes) {

11 const module = await SystemJS.import(route.component.module);

12 const componentType = core.pluginManager.getType(

13 route.component.componentType

14);

15

16 this.createRoute(

17 route.name,

18 route.path,

19 DynamicPageComponent,

20 componentType

21);

22 }

23 }

24

25 }

Let’s now adopt the “createRoute” to match our scenario:

Advanced Angular 384

src/app/app.component.ts

1 export class AppComponent implements AfterViewInit {

2 ...

3

4 createRoute(text: string,

5 path: string,

6 componentType: any,

7 factoryType?: any) {

8 this.router.config.unshift({

9 path: path,

10 component: componentType,

11 data: {

12 factory: factoryType

13 }

14 });

15

16 this.links.push({ text, path });

17 }

18 }

As you can see from the example above, we use a known “DynamicPageComponent” for the route,
and also provide the required factory from the Extension decorator. The “data” value contains a
property bagwith arbitrary data that any other component can access, a handyway passing different
optional configurations. In our case, the dynamic page component is going to build its content using
the factory provided in the property bag.

Next, you can generate the “DynamicPageComponent” by running the next Angular CLI command:

1 ng g component dynamic-page --module=app

The component must also be declared as “dynamically created” by putting it to the “entryCompo-
nents” section of the top-level module:

Advanced Angular 385

src/app/app.module.ts

1 @NgModule({

2 ...,

3 entryComponents: [

4 ...,

5 DynamicPageComponent

6],

7 ...

8 })

9 export class AppModule { }

According to our design, the only thing that we need in the component’s template is the container
element:

src/app/dynamic-page/dynamic-page.component.html

1 <div #content></div>

Similar to the dynamic sidebar, the component class implementation needs to get a reference to the
corresponding DOM element, and import injector and compile services, alongside the current route
data:

src/app/dynamic-page/dynamic-page.component.ts

1 import {

2 Component, OnInit, OnDestroy,

3 Injector, ViewChild, ViewContainerRef,

4 Compiler, NgModule, ComponentRef

5 } from '@angular/core';

6 import { ActivatedRoute } from '@angular/router';

7

8 @Component({...})

9 export class DynamicPageComponent implements OnInit, OnDestroy {

10

11 @ViewChild('content', { read: ViewContainerRef })

12 content: ViewContainerRef;

13

14 component: ComponentRef<any>;

15

16 constructor(

17 private route: ActivatedRoute,

18 private injector: Injector,

19 private compiler: Compiler) {

Advanced Angular 386

20 }

21

22 ngOnInit() {

23 }

24

25 ngOnDestroy() {

26 }

27

28 }

The “ActivatedRoute” represents the current route. We can import it to get access to the underlying
details, including the property bag defined earlier, by using “route.snapshot.data” property value.

The code to create and render a dynamic component should already be familiar to you:

src/app/dynamic-page/dynamic-page.component.ts

1 @Component({...})

2 export class DynamicPageComponent implements OnInit, OnDestroy {

3 ...

4

5 ngOnInit() {

6 const componentType = this.route.snapshot.data['factory'];

7

8 if (componentType) {

9 this.compiler.clearCacheFor(componentType);

10

11 const RuntimeModule = NgModule({

12 imports: [/* extra libs */],

13 providers: [/* extra providers */],

14 declarations: [componentType]

15 })(class {});

16

17 const module = this.compiler.compileModuleAndAllComponentsSync(

18 RuntimeModule

19);

20

21 const factory = module.componentFactories.find(

22 f => f.componentType === componentType

23);

24

25 this.content.clear();

26 this.component = this.content.createComponent(

27 factory, 0, this.injector

Advanced Angular 387

28);

29 }

30 }

31

32 ngOnDestroy() {

33 }

34

35 }

A critical thing to keep in mind - users might visit the route multiple times, so we need to manage
all dynamically created resources and clean them up as soon as possible. That is why we call the
following code every time we build a new component:

1 this.compiler.clearCacheFor(componentType);

As soon as the user leaves the page, the component needs to be released from memory as well:

src/app/dynamic-page/dynamic-page.component.ts

1 @Component({...})

2 export class DynamicPageComponent implements OnInit, OnDestroy {

3 ...

4

5 ngOnDestroy() {

6 if (this.component) {

7 this.component.destroy();

8 this.component = null;

9 }

10 }

11

12 }

Now start the application and take a look at the main page. The “Routes” section now contains 5
links - the “Home”, “About” and “Settings” we created earlier, and two more links created with the
plugins:

Advanced Angular 388

Generated routes

Now click the “Plugin 1 (label)” link, and you should see the “My Label” component automatically
created underneath. That content is coming from the plugin, and our application has just compiled
and created it on demand!

Dynamic route with the Label

Next, click the second link to see another component provided by the plugin:

Dynamic route with the Button

Advanced Angular 389

Summary

We have successfully finished the most advanced application setup with fully dynamic external
plugins in action. Feel free to enhance your applications with extension points, and plugins that
other developers can create and run with your apps.

Source code
You can find the source code in the “angular/plugins⁸³” folder.

⁸³https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins

https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/plugins

Reusable Component Libraries
We have already used the Angular CLI to generate applications. For the time being the CLI does not
support creating the reusable libraries, so we are going to use “ng-packagr⁸⁴” tool for this purpose.

The “ng-packagr” transpiles your component libraries using the “Angular Package Format⁸⁵”.
Resulting bundles are ready to be consumed by Angular CLI,Webpack, or SystemJS. For more details
on the features, please refer to the project page.

In this chapter, we are going to use Angular CLI to create a newAngular application and two reusable
component libraries: a header and a sidebar components. Both libraries can be built and published
to NPM separately. Also, the application is going to be linked with the component libraries locally.
That allows developing and testing components with the main application.

Creating new application

Let’s use Angular CLI to create a new application and call it “ng-framework”. You can use that
application to test components before building and publishing them to NPM, or redistributing via
other resources.

ng new ng-framework

For convenience purposes, you can change the “start” script to also launch the application in the
browser. To do that, open the “package.json” file and append “–open” argument to the “start”
command:

1 {

2 "scripts": {

3 "start": "ng serve --open"

4 }

5 }

Next, you need to install the “ng-packagr” library as a development dependency.

npm install ng-packagr --save-dev

At this point, the project setup is complete, and you are ready to start building reusable component
libraries.

⁸⁴https://github.com/dherges/ng-packagr
⁸⁵https://docs.google.com/document/d/1CZC2rcpxffTDfRDs6p1cfbmKNLA6x5O-NtkJglDaBVs/preview

https://github.com/dherges/ng-packagr
https://docs.google.com/document/d/1CZC2rcpxffTDfRDs6p1cfbmKNLA6x5O-NtkJglDaBVs/preview
https://github.com/dherges/ng-packagr
https://docs.google.com/document/d/1CZC2rcpxffTDfRDs6p1cfbmKNLA6x5O-NtkJglDaBVs/preview

Reusable Component Libraries 391

Creating component libraries

Now, we are going to create two separate projects with the “header” and “sidebar” components.
That should be more than enough to demonstrate publishing and consuming multiple component
libraries.

In the root project folder, run the following commands to create an initial folder structure.

mkdir -p modules/header/src

mkdir -p modules/sidebar/src

As you can see, the “modules” folder contains all the component projects as subfolders.

Let’s start with the “header” component first, and you can then perform similar steps to implement
the “sidebar”.

First, create a component class and give it a unique selector to avoid clashes at runtime. The value
can be anything of your choice, for this guide we are going to use “ngfw-header”.

modules/header/src/header.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'ngfw-header',

5 templateUrl: './header.component.html',

6 styleUrls: ['./header.component.css']

7 })

8 export class HeaderComponent {}

The template is going to be very simple. An “h1” element wrapping the “ng-content” is the minimal
implementation we need right now. You can always extend it later with the more sophisticated
layout and behaviour.

modules/header/src/header.component.html

1 <h1>

2 <ng-content></ng-content>

3 </h1>

Add some CSS to be sure the styles are also loaded from the package when we start using it with
the application. In our case, the colour of the header is going to be red.

Reusable Component Libraries 392

modules/header/src/header.component.css

1 h1 {

2 color: red;

3 }

Finally, as per Angular architecture, we need to have a module that imports all necessary depen-
dencies and provides declarations and exports. The most important part of our scenario is to put the
“HeaderComponent” to the “exports” collection.

modules/header/src/header.module.ts

1 import { NgModule } from '@angular/core';

2 import { CommonModule } from '@angular/common';

3 import { HeaderComponent } from './header.component';

4

5 @NgModule({

6 imports: [

7 CommonModule

8],

9 declarations: [

10 HeaderComponent

11],

12 exports: [

13 HeaderComponent

14]

15 })

16 export class HeaderModule { }

As the “header” component it planned to be published as a separate library, we need to provide a
“package.json” file.

Below is a simple set of details that needs to be in “package.json” for a library before publishing.
Note that you can also use NPM scopes to have unique library names associated with your NPM
account for instance.

Reusable Component Libraries 393

modules/header/package.json

1 {

2 "name": "@denysvuika/ng-framework-header",

3 "version": "1.0.0",

4 "author": "Denys Vuika <denys.vuika@gmail.com>",

5 "license": "MIT",

6 "private": false,

7 "peerDependencies": {

8 "@angular/common": "^5.0.0",

9 "@angular/core": "^5.0.0"

10 }

11 }

modules/header/public_api.ts

1 export * from './src/header.module';

Now you can repeat the steps above to implement the second “sidebar” component. The only
difference is the name of the project in the “package.json” file.

modules/sidebar/package.json

1 {

2 "name": "@denysvuika/ng-framework-sidebar",

3 ...

4 }

Also, let’s also change the colour to “green”, just to see we are dealing with two different stylesheets
at runtime.

modules/sidebar/src/sidebar.component.css

1 h1 {

2 color: green;

3 }

Building the packages

To build the project and produce bundles we need to create a “ng-package.json” file for the “ng-
packagr”. The file should live next to the “package.json” in the library root folder.

Reusable Component Libraries 394

modules/header/ng-package.json

1 {

2 "$schema": "../../node_modules/ng-packagr/ng-package.schema.json",

3 "lib": {

4 "entryFile": "public_api.ts"

5 }

6 }

Note that the same file should be present in both our library root folders. Feel free to copy and paste
it, since the file does not contain any project-specific content at this point.

To build a project with “ng-packagr”, we can provide a path to the configuration file. That also allows
us to build more than one project from the NPM scripts. You can refer to the example below, with
only the change needed for the build, for the sake of simplicity.

package.json

1 {

2 "scripts": {

3 ...,

4 "build:modules": "ng-packagr -p ./modules/header/ng-package.json && ng-packa\

5 gr -p ./modules/sidebar/ng-package.json"

6 }

7 }

Now go to the root folder and execute the following command to build our libraries:

npm run build:modules

You should see the output similar to the following:

1 $ ng-packagr -p ./modules/header/ng-package.json

2 Building Angular library

3 Generating bundle for @denysvuika/ng-framework-header

4 Cleaning bundle build directory

5 Processing assets

6 Running ngc

7 Compiling to FESM15

8 Compiling to FESM5

9 Compiling to UMD

10 Minifying UMD bundle

11 Remapping source maps

Reusable Component Libraries 395

12 Copying staged files

13 Writing package metadata

14 Built Angular bundle for @denysvuika/ng-framework-header

15

16 Building Angular library

17 Generating bundle for @denysvuika/ng-framework-sidebar

18 Cleaning bundle build directory

19 Processing assets

20 Running ngc

21 Compiling to FESM15

22 Compiling to FESM5

23 Compiling to UMD

24 Minifying UMD bundle

25 Remapping source maps

26 Copying staged files

27 Writing package metadata

The resulting bundles are in the “dist” folder for every compiled project. Try expanding the one for
the “header” component, and you should see the structure similar to that in the screenshot below:

Reusable Component Libraries 396

Reusable Component Libraries 397

Publishing to NPM

You need to have an NPM account to publish libraries. Once you get it, the process is relatively
simple. You need to run the “npm publish” command from within every “dist” folder the “ng-
packagr” creates. If you publish the very first version of the library, the “access” attribute needs
to be present as well, for example:

1 cd modules/header/dist

2 npm publish --access public

Package scope
You will need to change the scope of your package to be able to publish the project under
your account.

Integrating with the application

Developing components can take time, and you also need to test them and get running in some
demo application before publishing to NPM. For this case, we need to link the projects as if they got
installed from the public source.

First, we modify the root “tsconfig.json” file to map component namespaces to the corresponding
“dist” folders. That should also enable code completion support and type checking in your IDE.

tsconfig.json

1 {

2 "compileOnSave": false,

3 "compilerOptions": {

4 ...,

5

6 "baseUrl": ".",

7 "paths": {

8 "@denysvuika/ng-framework-header": ["modules/header/dist"],

9 "@denysvuika/ng-framework-sidebar": ["modules/sidebar/dist"]

10 }

11 }

12 }

Reusable Component Libraries 398

So now, every time you reference the “@denysvuika/ng-framework-header” namespace, the appli-
cation is going to fetch the code from the “modules/header/dist” folder instead of the “node_mod-
ules” one. Similar behaviour is going to be for the “sidebar” component as well. You can map as
many paths as you need.

For the second step, you need to update the “tsconfig.app.json” file and map the namespaces to
the corresponding “public_api.ts” files. We define the mappings for both “compilerOptions” and
“angularCompilerOptions” as in the next example:

src/tsconfig.app.json

1 {

2 "extends": "../tsconfig.json",

3 "compilerOptions": {

4 "outDir": "../out-tsc/app",

5 "baseUrl": "./",

6 "module": "es2015",

7 "types": [],

8 "paths": {

9 "@denysvuika/ng-framework-header": ["../modules/header/public_api.ts"],

10 "@denysvuika/ng-framework-sidebar": ["../modules/sidebar/public_api.ts"]

11 }

12 },

13 "exclude": [

14 "test.ts",

15 "**/*.spec.ts"

16],

17 "angularCompilerOptions": {

18 "paths": {

19 "@denysvuika/ng-framework-header": ["../modules/header/public_api.ts"],

20 "@denysvuika/ng-framework-sidebar": ["../modules/sidebar/public_api.ts"]

21 }

22 }

23 }

Finally, let’s use our libraries in the application as if they got installed from the NPM. Import
the “HeaderModule” and “SidebarModule” from the corresponding namespaces into the main
application module.

Reusable Component Libraries 399

src/app/app.module.ts

1 import { BrowserModule } from '@angular/platform-browser';

2 import { NgModule } from '@angular/core';

3

4 import { HeaderModule } from '@denysvuika/ng-framework-header';

5 import { SidebarModule } from '@denysvuika/ng-framework-sidebar';

6

7 import { AppComponent } from './app.component';

8

9 @NgModule({

10 declarations: [

11 AppComponent

12],

13 imports: [

14 BrowserModule,

15 HeaderModule,

16 SidebarModule

17],

18 providers: [],

19 bootstrap: [AppComponent]

20 })

21 export class AppModule { }

Replace the content of the main application component template with the next markup:

src/app/app.component.html

1 <ngfw-header>Header</ngfw-header>

2 <ngfw-sidebar>Sidebar</ngfw-sidebar>

Serve the application with “npm start”, and you should see the following output:

The configuration is complete. You are now ready to build, test and publish component libraries.

Reusable Component Libraries 400

See also

Building an Angular 4 Component Library with the Angular CLI and ng-packagr⁸⁶

Source code
You can find the source code in the “ng-framework⁸⁷” repository. Don’t forget to change the
package names and NPM scopes if you intend publishing projects to NPM.

⁸⁶https://medium.com/@ngl817/building-an-angular-4-component-library-with-the-angular-cli-and-ng-packagr-53b2ade0701e
⁸⁷https://gitlab.com/DenysVuika/ng-framework

https://medium.com/@ngl817/building-an-angular-4-component-library-with-the-angular-cli-and-ng-packagr-53b2ade0701e
https://gitlab.com/DenysVuika/ng-framework
https://medium.com/@ngl817/building-an-angular-4-component-library-with-the-angular-cli-and-ng-packagr-53b2ade0701e
https://gitlab.com/DenysVuika/ng-framework

Using with Docker
In this chapter, we are going to provide Docker support for an Angular application. We are about to
create a Docker image that contains the prebuilt code, test it in the container, publish and consume
from Docker Hub, and even automate builds and publishing with Travis CI.

As a prerequisite, you need to get a community edition of the Docker for your platform:

• Docker CE for Mac⁸⁸
• Docker CE for Windows⁸⁹

Additional Resources

If you want to get more information on the Docker and how to use it, please refer to the following
Udemy course: Docker Mastery: The Complete Toolset From a Docker Captain⁹⁰.

If you use Visual Studio Code for development, the “Docker” extension might help you a lot: Docker
for VS Code⁹¹. The Docker extension makes it easy to build and deploy containerized applications
from Visual Studio Code.

Preparing new project

Let’s start by using an Angular CLI to create a new project scaffold. We are going to name it “ng-
docker”.

ng new ng-docker

cd ng-docker

Before we continue, please ensure the project builds and runs successfully on your local machine by
running the following command:

npm start

Next, visit the http://localhost:4200/ to see the default application content that Angular CLI
provides you out of the box.

⁸⁸https://store.docker.com/editions/community/docker-ce-desktop-mac
⁸⁹https://store.docker.com/editions/community/docker-ce-desktop-windows
⁹⁰https://www.udemy.com/docker-mastery/
⁹¹https://marketplace.visualstudio.com/items?itemName=PeterJausovec.vscode-docker

https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://www.udemy.com/docker-mastery/
https://marketplace.visualstudio.com/items?itemName=PeterJausovec.vscode-docker
https://marketplace.visualstudio.com/items?itemName=PeterJausovec.vscode-docker
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://www.udemy.com/docker-mastery/
https://marketplace.visualstudio.com/items?itemName=PeterJausovec.vscode-docker

Using with Docker 402

Creating Dockerfile

First of all, you need to build an application to get the “dist” folder with the content ready to
redistribute.

npm run build

In the project root, create a file named “Dockerfile” with the following content:

Dockerfile

1 FROM nginx

2

3 COPY nginx.conf /etc/nginx/nginx.conf

4

5 WORKDIR /usr/share/nginx/html

6 COPY dist/ .

The image extends the public “nginx⁹²” one. Besides, we provide an external configuration to serve
our application and copy the contents of the “dist” folder into the image.

The minimal “nginx” configuration can be as following:

nginx.conf

1 worker_processes 1;

2

3 events {

4 worker_connections 1024;

5 }

6

7 http {

8 server {

9 listen 80;

10 server_name localhost;

11

12 root /usr/share/nginx/html;

13 index index.html index.htm;

14 include /etc/nginx/mime.types;

15

16 gzip on;

17 gzip_min_length 1000;

18 gzip_proxied expired no-cache no-store private auth;

⁹²https://hub.docker.com/_/nginx/

https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/

Using with Docker 403

19 gzip_types text/plain text/css application/json application/javascript appli\

20 cation/x-javascript text/xml application/xml application/xml+rss text/javascript;

21

22 location / {

23 try_files $uri $uri/ /index.html;

24 }

25 }

26 }

Deployment
There are multiple deployment scenarios documented in the official documentation: “De-
ployment⁹³”. Please refer to that article if you want to get more information on available
options and best practices.

Now, let’s build the image using the next command:

docker image build -t ng-docker .

Note the dot character at the end of the command as it is essential.

You can also list your local images to ensure the “ng-docker” got created successfully.

docker image ls

Excluding the images you may already have created or pulled, you should see the at least the
following output:

REPOSITORY TAG IMAGE ID CREATED SIZE

ng-docker latest 98b129bff2fc 24 seconds ago 114MB

Testing in a container

It is now an excellent time to test our image in a container. Use the following command to create a
temporary container out of our image, and run the application at port 3000:

docker container run -p 3000:80 --rm ng-docker

Once you stop the process with “Ctrl+C”, the Docker is going to perform a cleanup.

⁹³https://angular.io/guide/deployment

https://angular.io/guide/deployment
https://angular.io/guide/deployment
https://angular.io/guide/deployment

Using with Docker 404

Running the container should not take much time. If you now visit the http://localhost:3000/ in
your browser, you should see the Angular CLI application up and running.

Note that the log output gets redirected to your console. You should see the “nginx” output if you
switch to the console right now:

1 172.17.0.1 - - [16/Dec/2017:11:41:33 +0000] "GET / HTTP/1.1" 200 611 "-" "Mozilla/5.\

2 0 (Macintosh; Intel Mac OS X 10.13; rv:57.0) Gecko/20100101 Firefox/57.0"

3 172.17.0.1 - - [16/Dec/2017:11:41:33 +0000] "GET /inline.bundle.js HTTP/1.1" 200 186\

4 3 "http://localhost:3000/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:57.0) G\

5 ecko/20100101 Firefox/57.0"

6 172.17.0.1 - - [16/Dec/2017:11:41:33 +0000] "GET /polyfills.bundle.js HTTP/1.1" 200 \

7 50339 "http://localhost:3000/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:57.\

8 0) Gecko/20100101 Firefox/57.0"

9 172.17.0.1 - - [16/Dec/2017:11:41:33 +0000] "GET /styles.bundle.js HTTP/1.1" 200 393\

10 0 "http://localhost:3000/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:57.0) G\

11 ecko/20100101 Firefox/57.0"

12 172.17.0.1 - - [16/Dec/2017:11:41:33 +0000] "GET /vendor.bundle.js HTTP/1.1" 200 492\

13 190 "http://localhost:3000/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:57.0)\

14 Gecko/20100101 Firefox/57.0"

15 172.17.0.1 - - [16/Dec/2017:11:41:33 +0000] "GET /main.bundle.js HTTP/1.1" 200 2526 \

16 "http://localhost:3000/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:57.0) Gec\

17 ko/20100101 Firefox/57.0"

You can now stop the process and let Docker cleanup the data, or continue experimenting with the
application.

Creating docker-compose.yml

For the next step, let’s create a simple “docker-compose” file with our Angular application.

1 version: '3.1'

2

3 services:

4 app:

5 image: 'ng-docker'

6 build: '.'

7 ports:

8 - 3000:80

Note that we have put the “build” parameter so that Docker builds our local image instead of pulling
it from the repository. The Application runs on port 3000 and maps to port 80 inside the container.

You can now run the following command to test the container and docker compose file:

Using with Docker 405

docker-compose up

The console output should be similar to the following:

1 Creating network "ngdocker_default" with the default driver

2 Creating ngdocker_app_1 ...

3 Creating ngdocker_app_1 ... done

4 Attaching to ngdocker_app_1

Once again, visit the http://localhost:3000 address and ensure the application is up and running.

As soon as you are done testing, press “Ctrl+C” to stop the process, and run the next command if
you want to perform a cleanup operation:

docker-compose down

The Docker cleans only the containers created by our docker-compose file. Add the “–rmi all”
parameter if you want to remove the images as well.

docker-compose down --rmi all

The console output, in this case, should be similar to the example below:

1 Removing ngdocker_app_1 ... done

2 Removing network ngdocker_default

3 Removing image ng-docker

You now need to publish your image to the docker hub to allow other people use your docker-
compose file or build their custom containers with your Angular application image.

Publishing to Docker Hub

In this section, we are going to publish our application image to the public Docker Hub⁹⁴. You can
create a new account if you do not yet have one, this takes a couple of minutes.

If you clone a new copy of the project to publish it directly to the Docker Hub, don’t forget to install
dependencies. In all the cases you should also create a fresh build of the application to be sure the
resulting image contains all the latest source code changes.

⁹⁴https://hub.docker.com/

https://hub.docker.com/
https://hub.docker.com/

Using with Docker 406

npm install

npm run build

Let’s now build the image and tag it for publishing:

docker image build -t account/ng-docker:1.0 .

Note that typically you are going to replace the account prefix with your account name.

To publish the image run the next command with your account name instead of the “account” prefix:

docker push account/ng-docker:1.0

In less than a minute your image should be published and available online.

Consuming from Docker Hub

You have successfully published your Angular application image to the Docker Hub, and before
testing it out locally, you should remove the one created earlier before publishing.

Please use the following command to remove the existing image:

docker image rm account/ng-docker:1.0

Now let’s create a temporary container and pull the image from the public repository. Replace the
“account” prefix with your Docker Hub account name.

docker container run -p 3000:80 --rm account/ng-docker:1.0

This time you should seeDocker downloading and unpacking your image from the internet. Once the
setup is over, visit the http://localhost:3000 and ensure the application is available and running
fine.

Automating with Travis

If you use Travis CI⁹⁵ for your development and testing, you can set it up to automatically build and
deploy images to the Docker Hub.

You can refer to the following “.travis.yml” template as an example:

⁹⁵https://travis-ci.org/

https://travis-ci.org/
https://travis-ci.org/

Using with Docker 407

.travis.yml

1 sudo: required

2

3 language: node_js

4 node_js:

5 - "8"

6

7 cache:

8 directories:

9 - ./node_modules

10

11 services:

12 - docker

13

14 before_install:

15 - "export DISPLAY=:99.0"

16 - "sh -e /etc/init.d/xvfb start"

17

18 script:

19 - npm install

20 - npm run build

21 - npm run test -- --single-run --no-progress

22

23 after_success:

24 - docker build -t account/ng-docker .

25 - docker login -u "$DOCKER_USERNAME" -p "$DOCKER_PASSWORD"

26 - docker push account/ng-docker

The configuration file allows to build your Angular application and run unit tests.

script:

- npm install

- npm run build

- npm run test -- --single-run --no-progress

As soon as test run is successful, we instruct Travis to build a new Docker image, log in to Docker
Hub and push the image to your account.

Using with Docker 408

after_success:

- docker build -t account/ng-docker .

- docker login -u "$DOCKER_USERNAME" -p "$DOCKER_PASSWORD"

- docker push account/ng-docker

Note that we store credentials as encrypted environment variables, and refer to as $DOCKER_USERNAME
and $DOCKER_PASSWORD.

Also, you can either hardcode the correct “account” prefix or use the “$DOCKER_USERNAME”
value there as well.

Now, if you push the code and switch to the Travis output, you are going to see something like the
following:

Using with Docker 409

See also

Using Docker in Builds⁹⁶

Source code
You can find the source code in the “angular/ng-docker⁹⁷” folder.

⁹⁶https://docs.travis-ci.com/user/docker/
⁹⁷https://github.com/DenysVuika/developing-with-angular/tree/master/angular/ng-docker

https://docs.travis-ci.com/user/docker/
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/ng-docker
https://docs.travis-ci.com/user/docker/
https://github.com/DenysVuika/developing-with-angular/tree/master/angular/ng-docker

Webpack
Webpack is the most popular module bundler for modern JavaScript applications. It takes modules
with dependencies and generates static assets representing those modules.

In this chapter, we are going to learn how to integrate Typescript with webpack.

Initial project structure

First, let’s create a basic project structure using npm and node.js. The application is going to be called
webpack-example.

Source code
You can find the source code in the “webpack/webpack-example⁹⁸” folder.

mkdir webpack-example

cd webpack-example

npm init -y

Initial set of dependencies:

npm install --save-dev webpack

npm install --save-dev typescript

npm install --save-dev ts-loader

npm install --save-dev @types/node

Typescript configuration

Create a new tsconfig.json file with the following content:

⁹⁸https://github.com/DenysVuika/developing-with-angular/tree/master/webpack/webpack-example

https://github.com/DenysVuika/developing-with-angular/tree/master/webpack/webpack-example
https://github.com/DenysVuika/developing-with-angular/tree/master/webpack/webpack-example

Webpack 411

1 {

2 "compilerOptions": {

3 "target": "es5",

4 "module": "commonjs",

5 "moduleResolution": "node",

6 "sourceMap": true,

7 "emitDecoratorMetadata": true,

8 "experimentalDecorators": true,

9 "lib": ["es2015", "dom"],

10 "noImplicitAny": false,

11 "suppressImplicitAnyIndexErrors": true,

12 "outDir": "./dist/",

13 "allowJs": true

14 },

15 "exclude": [

16 "node_modules",

17 "dist"

18]

19 }

It is a typical Typescript configuration with additional support for experimental decorators required
by Angular, and source map generation to allow debugging Typescript code in browser developer
tools.

Basic webpack setup

Let’s start with creating a webpack.config.js file in the project root folder:

1 module.exports = {

2 entry: './src/main.ts',

3 output: {

4 path: './dist',

5 filename: 'bundle.js'

6 },

7 module: {

8 rules: [

9 {

10 test: /\.ts$/,

11 loader: 'ts-loader',

12 exclude: /node_modules/,

13 }

14]

Webpack 412

15 },

16 resolve: {

17 extensions: [".ts", ".js"]

18 }

19 };

We are keeping all source files in the src folder. The main entry is going to be ./src/main.ts file.
Based on configuration webpack is going to create a bundle called bundle.js and store it in the dist
folder. If you delete dist folder (in the future you might be doing that before each production build),
it gets automatically recreated during the next bundle compilation.

Also, we define a ts-loader webpack loader to work with all TypeScript files in our project. Your
project may contain many 3rd party libraries stored in the node_modules folder, so we exclude it
processing.

Finally, resolve.extensions config is set to .ts and .js. That means webpack is going to resolve
class imports by appending given extensions.

For example:

1 import { TextWidget } from 'widgets';

Webpack should start probing the following files to get the content for import:

widgets.ts

widgets.js

Enabling source maps

First, you need installing source-map-loader library:

npm install --save-dev source-map-loader

We have already configured sourceMap: true property in the tsconfig.json during previous steps.
Now update the configuration file with the following rules:

Webpack 413

1 ...

2 rules: [

3 {

4 enforce: 'pre',

5 test: /\.js$/,

6 loader: "source-map-loader"

7 },

8 {

9 enforce: 'pre',

10 test: /\.ts$/,

11 use: "source-map-loader"

12 }

13 ...

14]

15 ...

Based on settings above webpack is instructed to run source-map-loader for .js and .ts files before
any other loaders through the enforce: 'pre'.

Finally, we enable source mapping by setting the devtool property value:

1 devtool: 'inline-source-map'

Simple Angular application

Let’s build a minimal Angular application to bundle.

Open your package.json file and put the following Angular libraries to the dependencies section:

1 {

2 "dependencies": {

3 "@angular/common": "2.4.7",

4 "@angular/compiler": "2.4.7",

5 "@angular/compiler-cli": "2.4.7",

6 "@angular/core": "2.4.7",

7 "@angular/forms": "2.4.7",

8 "@angular/http": "2.4.7",

9 "@angular/material": "2.0.0-beta.1",

10 "@angular/platform-browser": "2.4.7",

11 "@angular/platform-browser-dynamic": "2.4.7",

12 "@angular/router": "3.4.7",

13 "core-js": "2.4.1",

14 "reflect-metadata": "0.1.9",

Webpack 414

15 "rxjs": "5.1.0",

16 "zone.js": "0.7.6"

17 }

18 }

Above is a common set of Angular libraries used for web applications. Save the file and run npm

install to download and install all dependencies.

src/main.ts

1 import 'core-js/es6';

2 import 'core-js/es7/reflect';

3 require('zone.js/dist/zone');

4

5 import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

6 import { enableProdMode } from '@angular/core';

7 import { AppModule } from './app/app.module';

8

9 const platform = platformBrowserDynamic();

10 platform.bootstrapModule(AppModule);

src/app/app.component.ts

1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'my-app',

5 template: `

6 <h1>Hello from an Angular app.</h1>

7 `

8 })

9 export class AppComponent { }

src/app/app.module.ts

1 import { NgModule } from '@angular/core';

2 import { BrowserModule } from '@angular/platform-browser';

3

4 import { AppComponent } from './app.component';

5

6 @NgModule({

7 imports: [BrowserModule],

8 declarations: [AppComponent],

9 bootstrap: [AppComponent]

Webpack 415

10 })

11 export class AppModule { }

Generating index page

There’s a very useful webpack plugin html-webpack-plugin that allows generating HTML pages
hosting webpack bundles. Webpack supports hash generation for output file names that change with
every compilation, so automatic page generation becomes handy. The plugin takes care of scripts
files and puts them in proper places in the resulting document.

npm install --save-dev html-webpack-plugin

You can create either default HTML template or provide your custom one. In our case, we are going
to provide a custom template containing Angular application component.

src/index.html

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="UTF-8">

5 <meta name="viewport" content="width=device-width, initial-scale=1">

6 <title>Webpack 2</title>

7 <base href="/">

8 </head>

9 <body>

10 <my-app>Loading AppComponent content here ...</my-app>

11 </body>

12 </html>

You can get more details here: html-webpack-plugin⁹⁹.

In order to integrate the plugin add the following settings to webpack.config.js:

⁹⁹https://www.npmjs.com/package/html-webpack-plugin

https://www.npmjs.com/package/html-webpack-plugin
https://www.npmjs.com/package/html-webpack-plugin

Webpack 416

webpack.config.js

1 const HtmlWebpackPlugin = require('html-webpack-plugin');

2

3 module.exports = {

4

5 plugins: [

6

7 new HtmlWebpackPlugin({

8 template: 'src/index.html'

9 })

10

11]

12

13 }

Development server

Once the page is ready, you need some development server to test it. It is suggested to use
webpack-dev-server that besides serving capabilities also supports watching for file changes and
livereload.

Install it with the following command:

npm install --save-dev webpack-dev-server

Edit webpack.config.js file to add the following settings:

webpack.config.js

1 const path = require('path');

2

3 module.exports = {

4 ...

5

6 devServer: {

7 contentBase: path.join(__dirname, "dist"),

8 host: '0.0.0.0',

9 port: 3000,

10 historyApiFallback: true,

11 compress: true

12 // inline: true

13 }

14 };

Webpack 417

Above is basic configuration section for webpack-dev-server.

• contentBase tells server where static content reside, in our case it is dist subdirectory;
• host and port properties are set to 0.0.0.0:3000, you can use either http://localhost:3000
or http://0.0.0.0:3000 to browse your site once the server is up and running. You can also
access the website from the local network in case you are using multiple computers or virtual
machines.

• by setting historyApiFallback to true you enable single page applicationmode support, the
server responds with index.html content for all 404 responses;

• compress enables gzip compression for all content served, significantly improves the load time
of your web application;

For a full list of available options, please refer to the official documentation¹⁰⁰.

Start command with NPM

The final step is creating a start script to automate compilation and startup. Open the package.json
file and add the following line inside scripts section:

1 {

2 "scripts": {

3 "start": "webpack-dev-server"

4 }

5 }

Now you are ready to compile and run the application:

npm start

Webpack bundles all scripts and serves resulting application at http://localhost:3000. You should
see the following text when browsing the main page at given address:

Hello from an Angular app.

The webpack-dev-server remains running and watching for changes. It also enables live reload

feature for browsers by default. Every time you change and save your source code, the application
is getting recompiled in the background, and the browser should reload automatically.

To test live reload open src/app/app.component.ts and edit template without stopping the server:

¹⁰⁰https://webpack.js.org/configuration/dev-server/

https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/

Webpack 418

src/app/app.component.ts

1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'my-app',

5 template: `

6 <h1>Hello from Angular app and Webpack.</h1>

7 `

8 })

9 export class AppComponent { }

After several seconds your browser page should reload and render updated HTML content:

Hello from Angular app and Webpack.

Another remarkable feature is a fast in-memory compilation. Webpack does not create files on the
disk when running in development mode.

Fixing Angular warnings

You may see one or multiple warnings related to Angular during compilation, something like shown
below:

WARNING in ./~/@angular/core/src/linker/system_js_ng_module_factory_loader.js

71:15-36 Critical dependency: the request of a dependency is an expression

It is a known issue and should be addressed in the future. Meanwhile, there is a workaround for this
involving ContextReplacementPlugin plugin.

Add the following plugin to the plugins collection in your webpack.config.js file:

webpack.config.js

1 const webpack = require("webpack");

2

3 module.exports = {

4

5 plugins: [

6

7 // Workaround for angular/angular#11580

8 new webpack.ContextReplacementPlugin(

9 // The (\\|\/) piece accounts for path separators in *nix and Windows

10 /angular(\\|\/)core(\\|\/)(esm(\\|\/)src|src)(\\|\/)linker/,

Webpack 419

11 path.join(__dirname, 'src'), // location of your src

12 {} // a map of your routes

13)

14

15]

16

17 };

Once dev server is restarted the warnings should go away.

Testing source maps

You have configured source-map-loader earlier. Let’s ensure it is working with webpack and you
can indeed debug TypeScript code.

Add some additional code to app.component.ts to be able setting breakpoints:

app.component.ts

1 @Component(...)

2 export class AppComponent {

3

4 constructor() {

5 console.log('debug');

6 }

7

8 }

Now launch your browser developer tools and detect app.component.ts:

Webpack 420

Try putting a breakpoint at console.log('debug') line and reloading the page.

Note that you are running plain JavaScript, but thanks to source map generation provided by Type-
Script and source-map-loader webpack loader it becomes possible working with and debugging
TypeScript code.

Advanced webpack setup

As per Angular Style Guide¹⁰¹, you might be following the one-thing-per-file rule and storing code,
tests, templates and styles in separate files.

For example:

¹⁰¹https://angular.io/docs/ts/latest/guide/style-guide.html#!#application-structure-and-angular-modules

https://angular.io/docs/ts/latest/guide/style-guide.html#!%23application-structure-and-angular-modules
https://angular.io/docs/ts/latest/guide/style-guide.html#!%23application-structure-and-angular-modules

Webpack 421

app.component.ts

app.component.html

app.component.css

app.component.spec.ts

While Angular provides ways referencing external content it does not do any runtime importing or
path resolution, it relies on module loaders and bundlers instead.

External Html templates

Angular’s Component decorator supports both inline and external templates. We have been using
inline templates earlier:

1 @Component({

2 selector: 'my-app',

3 template: '<h1>Simple inline template</h1>'

4 })

5 export class AppComponent {}

Most of the popular code editors already support mixed content and provide syntax highlighting
and auto-completion. However, while it might be convenient to keep small HTML template close to
the code, once the HTML grows it becomes harder to maintain it. Also, it is recommended splitting
component implementation into different files for better maintainability.

To use an external template you replace template property with the templateUrl one pointing to
the html file:

1 @Component({

2 selector: 'my-app',

3 templateUrl: './path/to/template.html'

4 })

5 export class AppComponent {}

There’s a special angular2-template-loader loader for webpack that inlines all HTML templates
and CSS styles in Angular components.

Install it with the following command:

npm install --save-dev angular2-template-loader

Now it can be associated with the TypeScript files in your project. Replace previously defined .ts

rule in the webpack.config.js file with the following one:

Webpack 422

webpack.config.js

1 module.exports = {

2 module: {

3 rules: [

4 {

5 test: /\.ts$/,

6 use: [

7 'ts-loader',

8 'angular2-template-loader'

9],

10 exclude: /node_modules/

11 }

12]

13 }

14 }

Loaders are invoked from left to right, or as in our case from bottom to top. That means
TypeScript passes every TypeScript file to angular2-template-loader at first. Then ts-loader

receives processed TypeScript files with inlined HTML templates and transpile them to JavaScript.

You also need adding html-loader webpack loader that enables reading HTML files:

npm install --save-dev html-loader

Update webpack.config.js configuration file associate all project .html files with the html-loader:

webpack.config.js

1 module.exports = {

2 module: {

3 rules: [

4 {

5 test: /\.html$/,

6 loader: 'html-loader'

7 }

8]

9 }

10 }

You can now extract and place HTML template of the component into a separate file:

Webpack 423

src/app/app.component.html

1 <h1>Hello from Angular app and Webpack.</h1>

2 <small>(external template)</small>

src/app/app.component.ts

1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'my-app',

5 templateUrl: './app.component.html'

6 })

7 export class AppComponent {}

As you can see besides template property Angular also provides templateUrl for the Component

decorator.

Now if you run the project with npm start script you should see the following content on the main
page:

Hello from Angular app and Webpack.

(external template)

External CSS styles

Angular supports both inline and external styles within Component decorator. You can provide
multiple styles per component using styleUrls property taking an array of values:

src/app/app.component.ts

1 @Component({

2 selector: 'my-app',

3 templateUrl: './app.component.html',

4 styleUrls: ['./app.component.css']

5 })

6 export class AppComponent {}

Create a new app.component.css style next to the html and ts files with the following content:

Webpack 424

src/app/app.component.css

1 .main-title {

2 color: blueviolet;

3 }

Assign newly introduced main-title class to the first element of the app.component.html file:

src/app/app.component.html

1 <h1 class="main-title">Hello from Angular app and Webpack.</h1>

2 <small>(external template)</small>

The angular2-template-loader is capable of loading .html and .css files. It is working best with
the raw-loader that lets you importing files as strings to inline them into compiled Angular code.

npm install --save-dev raw-loader

For current scenario we need to use raw-loader only with our Angular components and their styles,
all other CSS files should not be affected. That is why the rule is restricting loader only to content
coming from src/app folder (and all subfolders):

1 const path = require('path');

2

3 module.exports = {

4 module: {

5 rules: [

6 {

7 test: /\.css$/,

8 include: path.join(__dirname, 'src/app'),

9 loader: 'raw-loader'

10 }

11]

12 }

13 };

Now if you rebuild and start the application with npm start command you should see the styles
applied:

Webpack 425

Loading images

The easiest way to provide support for image loading with webpack is to use file-loader loader.
Install it for your project with the following command:

npm install --save-dev file-loader

Here’s the rule to be added to your webpack.config.js file. The rule is addressing the most common
set of extensions for images, icons and web fonts.

webpack.config.js

1 module.exports = {

2 module: {

3 rules: [

4 {

5 test: /\.(png|jpe?g|gif|svg|woff|woff2|ttf|eot|ico)$/,

6 loader: 'file-loader?name=assets/[name].[hash].[ext]'

7 }

8]

9 }

10 };

Let’s put an angular.svg image to src/resources folder and update app.component.html like
following:

src/app/app.component.html

1 <h1 class="main-title">Hello from Angular app and Webpack.</h1>

2 <small>(external template)</small>

3 <p>

4

5 </p>

Once the application is rebuilt and restarted you should see an image displayed on the page:

Webpack 426

TSLint

TSLint checks your TypeScript code for readability, maintainability, and functionality errors. You
can use it as a standalone utility or part of your webpack pipeline using special loaders and plugins.

Global installation

npm install tslint typescript -g

You may want to install TSLint globally to be able using its CLI commands from any place like for
instance generating new configuration files for a project. Also, many development environments
expect global installation to enable live checking and style error reporting for TypeScript code.

Local installation

npm install tslint --save-dev typescript

It is recommended to install TSLint as a local project library not to depend on specific global version.
That also helps to reduce the number of prerequisites needed to setup and compile your project as
developers need to run only npm install to get all dependencies downloaded and installed.

Configuring rules

Install TSLint globally and locally like shown above and let’s start by creating a minimal configu-
ration file for the project by generating it with the CLI:

tslint --init

You should get a new file tslint.json in the current folder that contains a default set of rules. To
ensure it is working fine just run a quick code style check from the command line:

Webpack 427

tslint -c tslint.json './src/**/*.ts'

The command above runs TSLint with the newly created tslint.json as a configuration file, and
instructs linter to check all .ts files starting with the src folder (including all subfolders).

You should get several errors from the linter related to quote mark usage:

src/app/app.component.spec.ts[1, 30]: ' should be "

src/app/app.component.spec.ts[3, 50]: ' should be "

src/app/app.component.spec.ts[4, 20]: ' should be "

src/app/app.component.spec.ts[5, 30]: ' should be "

src/app/app.component.spec.ts[7, 10]: ' should be "

src/app/app.component.spec.ts[22, 48]: ' should be "

src/app/app.component.spec.ts[25, 8]: ' should be "

src/app/app.component.spec.ts[27, 8]: ' should be "

src/app/app.component.spec.ts[31, 13]: ' should be "

src/app/app.component.ts[1, 27]: ' should be "

src/app/app.component.ts[4, 15]: ' should be "

src/app/app.component.ts[5, 18]: ' should be "

src/app/app.component.ts[6, 17]: ' should be "

src/app/app.component.ts[11, 21]: ' should be "

src/app/app.module.ts[1, 26]: ' should be "

src/app/app.module.ts[2, 31]: ' should be "

src/app/app.module.ts[4, 30]: ' should be "

src/main.ts[1, 8]: ' should be "

src/main.ts[2, 8]: ' should be "

src/main.ts[3, 9]: ' should be "

src/main.ts[5, 40]: ' should be "

src/main.ts[6, 32]: ' should be "

src/main.ts[7, 27]: ' should be "

That is because we have been using single quote marks across the code examples. Now when you
know that the linter works, you can decidewhether to correct the code and switch to “double quotes”,
or change the rule to use single quotation marks instead.

Let’s change the rule. Open tslint.json and find the following section:

Webpack 428

tslint.json
1 {

2 "rules": {

3 "quotemark": [

4 true,

5 "double"

6]

7 }

8 }

Change the setting double to single, save the file and run code check again:

tslint -c tslint.json './src/**/*.ts'

This time linter should exit without any errors or warnings.

Integrating with Webpack

npm install --save-dev tslint-loader

1 module.exports = {

2 module: {

3 rules: [

4 {

5 enforce: 'pre',

6 test: /\.ts$/,

7 loader: 'tslint-loader',

8 exclude: /node_modules/

9 }

10]

11 }

12 }

The rule executes before other rules (enforce: 'pre') and runs for all .ts files in your project folder
and all its subfolders excluding node_modules one. You are going to see warnings every time TSLint
finds an issue with the TypeScript code, including hot reloading when you change the code.

Unit testing

We are going to use Karma with Webpack for unit testing. The benefit of such configuration is that
Webpack transpiles TypeScript into JavaScript in memory and redirects output to Karma test runner
on the fly. No files get created on disk during the process.

Open the package.json file and append the new entry to the scripts section like shown below:

Webpack 429

package.json

1 {

2 "scripts": {

3 ...

4 "test": "karma start"

5 },

6 }

The script we added allows running unit tests with the command npm test.

You also need appending the following entries to the devDependencies section:

package.json

1 {

2 "devDependencies": {

3 ...

4 "@types/jasmine": "2.5.41",

5 "jasmine-core": "2.5.2",

6 "karma": "1.4.1",

7 "karma-chrome-launcher": "2.0.0",

8 "karma-jasmine": "1.1.0",

9 "karma-mocha-reporter": "2.2.2",

10 "karma-webpack": "2.0.2",

11 "null-loader": "0.1.1",

12 "rimraf": "2.5.4"

13 }

14 }

Save the file and run npm install to download and install new libraries.

Next, you need to create a karma-test-shim.js file in your project root folder.

karma-test-shim.js

1 Error.stackTraceLimit = Infinity;

2

3 require('core-js/es6');

4 require('core-js/es7/reflect');

5

6 require('zone.js/dist/zone');

7 require('zone.js/dist/long-stack-trace-zone');

8 require('zone.js/dist/proxy');

9 require('zone.js/dist/sync-test');

10 require('zone.js/dist/jasmine-patch');

Webpack 430

11 require('zone.js/dist/async-test');

12 require('zone.js/dist/fake-async-test');

13

14 var appContext = require.context('./src', true, /\.spec\.ts/);

15

16 appContext.keys().forEach(appContext);

17

18 var testing = require('@angular/core/testing');

19 var browser = require('@angular/platform-browser-dynamic/testing');

20

21 testing.TestBed.initTestEnvironment(

22 browser.BrowserDynamicTestingModule,

23 browser.platformBrowserDynamicTesting()

24);

This file preloads core-js and zone.js libraries and provides basic configuration for the Angular
testing framework. Only files ending with .spec.ts load into the application context.

Finally we need a karma.conf.js file to setup Webpack with Karma:

karma.conf.js

1 var webpackConfig = require('./webpack.test');

2

3 module.exports = function (config) {

4 var _config = {

5 basePath: '',

6

7 frameworks: ['jasmine'],

8

9 files: [

10 { pattern: './karma-test-shim.js', watched: false }

11],

12

13 preprocessors: {

14 './karma-test-shim.js': ['webpack']

15 },

16

17 webpack: webpackConfig,

18

19 webpackMiddleware: {

20 stats: 'errors-only'

21 },

22

Webpack 431

23 webpackServer: {

24 noInfo: true

25 },

26

27 reporters: ['mocha'],

28 port: 9876,

29 colors: true,

30 logLevel: config.LOG_INFO,

31 autoWatch: false,

32 browsers: ['Chrome'],

33 singleRun: true

34 };

35

36 config.set(_config);

37 };

At this point, Webpack is using PhantomJS headless browser and loads karma-test-shim.js that
references the rest of the content. Let’s create a couple of unit tests to see the entire flow in action:

src/app/app.component.spec.ts

1 import { AppComponent } from './app.component';

2

3 import { async, ComponentFixture, TestBed } from '@angular/core/testing';

4 import { By } from '@angular/platform-browser';

5 import { DebugElement } from '@angular/core';

6

7 describe('AppComponent', function () {

8 let de: DebugElement;

9 let comp: AppComponent;

10 let fixture: ComponentFixture<AppComponent>;

11

12 beforeEach(async(() => {

13 TestBed.configureTestingModule({

14 declarations: [AppComponent]

15 })

16 .compileComponents();

17 }));

18

19 beforeEach(() => {

20 fixture = TestBed.createComponent(AppComponent);

21 comp = fixture.componentInstance;

22 de = fixture.debugElement.query(By.css('h1'));

23 });

Webpack 432

24

25 it('should create the component', () => expect(comp).toBeDefined());

26

27 it('should have expected <h1> text', () => {

28 fixture.detectChanges();

29 const h1 = de.nativeElement;

30 expect(h1.innerText).toMatch(/angular/i,

31 '<h1>Hello from Angular app and Webpack."');

32 });

33 });

To run unit tests execute this command:

npm test

You should 2 unit tests compiled and run successfully:

AppComponent

� should create the component

� should have expected <h1> text

Code coverage

Having support for code coverage reports is often critical when running unit tests, especially when
dealing with JavaScript and TypeScript.

It is important to remember that code and unit tests get transpiled from TypeScript to JavaScript
before execution. We are going to use webpack to perform the following:

1. transpile code and unit tests written in TypeScript into JavaScript
2. run unit tests with Jasmine framework and generate report code coverage report
3. remap code coverage report from JavaScript back to TypeScript
4. generate and serve HTML version of the coverage report

Let’s start with adding additional development dependencies to the package.json file:

Webpack 433

package.json

1 {

2 "devDependencies": {

3 ...

4 "karma-coverage": "1.1.1",

5 "karma-remap-istanbul": "0.6.0",

6 "karma-sourcemap-loader": "0.3.7",

7 "sourcemap-istanbul-instrumenter-loader": "0.2.0",

8 "rimraf": "2.5.4",

9 "wsrv": "0.1.6"

10 }

11 }

Save the file and run npm install to download and install newly added dependencies.

That adds libraries required to enable support for re-mapping of code coverage. Also, we are adding
rimraf library to be able cleaning previously generated reports when running unit tests, and a
lightweight web server wsrv to see the final report in the browser.

The webpack setup remains pretty much the same we have created in previous chapters. We only
need appending a rule to instrument JavaScript files with Istanbul for subsequent code coverage
reporting. The rule executes as the last one (via enforce: 'post' setting) after all other rules invoked.

webpack.test.js

1 module.exports = {

2 module: {

3 ...

4 rules: [

5 ...

6 {

7 test: /src\/.+\.ts$/,

8 exclude: /(node_modules|\.spec\.ts$)/,

9 loader: 'sourcemap-istanbul-instrumenter-loader?force-sourcemap=true\

10 ',

11 enforce: 'post'

12 }

13]

14 }

15 }

Next, you need extending preprocessors and reporters sections, as well as adding remapIstanbulReporter
settings:

Webpack 434

karma.conf.js

1 {

2 ...

3

4 preprocessors: {

5 './karma-test-shim.js': [

6 'webpack',

7 'sourcemap'

8]

9 },

10

11 reporters: [

12 'mocha',

13 'karma-remap-istanbul'

14],

15

16 remapIstanbulReporter: {

17 reports: {

18 'html': './coverage',

19 'lcovonly': './coverage/lcov.info'

20 }

21 }

22

23 ...

24 }

We are going to use sourcemap preprocessor together with a webpack one for all unit tests in the
project. There going to be two test reporters: mocha and karma-remap-istanbul.

mocha: Karma reporter with mocha style logging should give you excellent human-readable console
output:

Webpack 435

The karma-remap-istanbul wraps remap-istanbul library as a Karma reporter, used to generate re-
mapped back to TypeScript coverage reports. As a result, we are getting an HTML version of the
report stored in the coverage subfolder.

Now we need to extend our NPM scripts in package.json file:

Webpack 436

package.json

1 {

2 "scripts": {

3 ...

4 "test": "rimraf coverage && karma start",

5 "coverage": "wsrv coverage -o"

6 },

7 }

Upon every test run the karma and webpack are automatically generating code coverage report, re-
mapping it to TypeScript and storing within the coverage folder. To avoid any potential problems
with the subsequent runs we are going to remove previous report folder with the rimraf utility we
have installed earlier.

You can now run tests with the following command:

npm test

Finally, we need a separate command to serve HTML report:

npm run coverage

Once executed this command automatically launches your default browser pointing to the coverage
report. It is possible to browse all instrumented files and see details for TypeScript content:

Webpack 437

Source code
You can find the source code in the “webpack/webpack-example¹⁰²” folder.

Code splitting

Code splitting is one of the most important and popular features of webpack. It allows you to prepare
web applications for production and greatly optimises them by splitting into separate bundles.
Smaller bundles improve application load time as bundle files get cached by the browsers or loaded
on demand.

As a starting point, we are going to use the webpack project created in previous chapters.
Alternatively, you can take the source code from the “webpack/webpack-example¹⁰³” folder

Multiple configurations

For real-life scenarios it is strongly recommended splitting webpack configuration into at least 3
main blocks:

• development settings (webpack.dev.js)
• production build settings (webpack.prod.js)
• unit testing settings (webpack.test.js)

¹⁰²https://github.com/DenysVuika/developing-with-angular/tree/master/webpack/webpack-example
¹⁰³https://github.com/DenysVuika/developing-with-angular/tree/master/webpack/webpack-example

https://github.com/DenysVuika/developing-with-angular/tree/master/webpack/webpack-example
https://github.com/DenysVuika/developing-with-angular/tree/master/webpack/webpack-example
https://github.com/DenysVuika/developing-with-angular/tree/master/webpack/webpack-example
https://github.com/DenysVuika/developing-with-angular/tree/master/webpack/webpack-example

Webpack 438

All configuration filesmay contain same setting blocks, so you should use a shared webpack.common.js
file to avoid code duplication.

Let’s start by installing a webpack-merge library that helps to merge multiple webpack configuration
files:

npm install --save-dev webpack-merge

Nowwe can create webpack.common.js file hosting shared settings. You can take most of the content
already created for the webpack.config.js file in previous chapters. The basic structure of the file
can look like the following:

webpack.common.js

1 const webpack = require("webpack");

2 const path = require('path');

3 const HtmlWebpackPlugin = require('html-webpack-plugin');

4

5 module.exports = {

6 entry: './src/main.ts',

7 output: {

8 path: path.join(__dirname, 'dist'),

9 filename: 'bundle.js'

10 },

11 resolve: {

12 extensions: [".ts", ".js"]

13 },

14 module: {

15 rules: [

16 ...

17]

18 },

19

20 plugins: [

21 ...

22]

23 };

Regardless of the configuration mode (development, production, custom) webpack should be taking
./src/main.ts file as the main entry point, and saving the resulting bundle as ./dist/bundle.js
file.

Webpack 439

Development mode

Note that we do not set devtool and devServer configuration in the webpack.common.js file because
these settings are mode-specific. Running development server makes sense only for development
mode, and style of source mapping to enhance the debugging process (devtool) usually differs across
configurations. Let’s create webpack.dev.js to hold these values.

webpack.dev.js

1 const webpack = require('webpack');

2 const webpackMerge = require('webpack-merge');

3 const path = require('path');

4 const commonConfig = require('./webpack.common.js');

5

6 module.exports = webpackMerge(commonConfig, {

7 devtool: 'source-map',

8 devServer: {

9 contentBase: path.join(__dirname, "dist"),

10 host: '0.0.0.0',

11 port: 3000,

12 historyApiFallback: true,

13 compress: true

14 }

15 });

You can now replace the content of the webpack.config.js with the next code:

webpack.config.js

1 module.exports = require('./webpack.dev.js');

All the tooling that defaults to webpack.config.js is automatically going to use development config.

To test our current setup just use start command:

npm start

You should be able to see running web application at http://localhost:3000.

Production mode

Now let’s create a separate configuration file for production builds. There are many optimisations
that you can add to module settings, but we need webpack to perform at least the following
additional actions:

Webpack 440

• make resulting bundle file as small as possible by minimising JavaScript
• enable production mode for Angular (requires a special function call at runtime)

Create webpack.prod.js file and put the following content:

webpack.prod.js

1 const webpack = require('webpack');

2 const webpackMerge = require('webpack-merge');

3 const path = require('path');

4 const commonConfig = require('./webpack.common.js');

5 const ENV = process.env.NODE_ENV = process.env.ENV = 'production';

6

7 module.exports = webpackMerge(commonConfig, {

8 devtool: 'source-map',

9

10 plugins: [

11 new webpack.NoEmitOnErrorsPlugin(),

12 new webpack.optimize.UglifyJsPlugin({

13 mangle: {

14 keep_fnames: true

15 },

16 compress: {

17 warnings: false

18 },

19 output: {

20 comments: false

21 },

22 sourceMap: true

23 }),

24 new webpack.DefinePlugin({

25 'process.env': {

26 'ENV': JSON.stringify(ENV)

27 }

28 }),

29 new webpack.LoaderOptionsPlugin({

30 htmlLoader: {

31 minimize: false // workaround for ng2

32 }

33 })

34]

35 });

Webpack 441

Creating a bundle can take some time especially when running different optimisations. There may
be multiple loaders and plugins invoked in the bundling process, and an error raised by one usually
means broken bundle files. To save time, we are going to use NoEmitOnErrorsPluginwebpack plugin
that stops the build if there is an error.

The UglifyJsPlugin plugin is used to minify JavaScript we get by transpiling TypeScript. We also
instruct plugin to remove all comments from the code to make resulting bundle much smaller.

The DefinePlugin plugin allows using environment variables in your application code. We use it
to declare process.env object that can later be accessed from main.ts TypeScript file to determine
whether the enableProdMode function should be called.

1 import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

2 import { enableProdMode } from '@angular/core';

3 import { AppModule } from './app/app.module';

4

5 if (process.env.ENV === 'production') {

6 enableProdMode();

7 }

8

9 const platform = platformBrowserDynamic();

10 platform.bootstrapModule(AppModule);

Finally a LoaderOptionsPlugin plugin is used to set or override options of various plugins. In our
case, the minification of HTML is switched off as a workaround for Angular component templates.

Now edit package.json file to add a script for triggering production builds:

package.json

1 {

2 "scripts": {

3 ...

4 "build": "rimraf dist && webpack --config webpack.prod.js --progress --bail"

5 }

6 }

Note that rimraf utility is used to delete the dist folder before each build. In this case, we can be
sure there are no files left from previous runs.

Run the following command to create production build:

npm run build

As a result, you get compiled and bundled application that can be served by any web server of your
choice. To test it locally we can use wsrv tool and the following script in package.json:

Webpack 442

package.json

1 {

2 "scripts": {

3 ...

4 "serve:prod": "wsrv dist --spa --open"

5 }

6 }

Use the next command to serve your production build and run it with the default browser
automatically:

npm run serve:prod

CSS splitting

Webpack allows you to bundle multiple CSS files into a separate bundle that can be loaded and
cached by browsers. With the help of additional plugins and loaders you can use import keyword
for .css files similar to how JavaScript or TypeScript modules are imported:

1 import './main.css';

You need to install three additional libraries to be able importing and bundling CSS with webpack:

npm install --save-dev extract-text-webpack-plugin

npm install --save-dev style-loader

npm install --save-dev css-loader

Based on previous chapterswebpack configuration for the project should already have angular2-template-loader
that inlines all html templates (templateUrl) and styles (styleUrls) for Angular components.

We are going to use extract-text-webpack-plugin plugin to get the rest of the CSS files and put
them into a separate bundle.

Webpack 443

webpack.common.js

1 const ExtractTextPlugin = require('extract-text-webpack-plugin');

2

3 module.exports = {

4 ...

5 module: {

6 rules: [

7 ...

8 {

9 test: /\.css$/,

10 exclude: path.join(__dirname, 'src/app'),

11 loader: ExtractTextPlugin.extract({

12 fallback: 'style-loader',

13 use: 'css-loader?sourceMap'

14 })

15 }

16]

17 }

18 };

Note that src/app folder is excluded as it needs to be processed by angular2-template-loader.

As a next step, you need updating development and production webpack settings to generate
resulting CSS bundle.

webpack.dev.js

1 const ExtractTextPlugin = require("extract-text-webpack-plugin");

2

3 module.exports = webpackMerge(commonConfig, {

4 ...

5 plugins: [

6 new ExtractTextPlugin('[name].css')

7]

8 });

For development mode the webpack-dev-server automatically reloads browser page with the latest
bundle files. That means we do not need maintaining browser cache and generating hash suffixes
for bundles.

The resulting file has a regular format, just a name with an extension, something like main.css.

Webpack 444

webpack.prod.js

1 const ExtractTextPlugin = require("extract-text-webpack-plugin");

2

3 module.exports = webpackMerge(commonConfig, {

4 ...

5 plugins: [

6 new ExtractTextPlugin('[name].[hash].css'),

7]

8 });

For production mode, the CSS file gets a hash suffix based on its content. This allows controlling
browser cache on the client side. Browsers should cache all bundles on the first application load so
that the subsequent loads are much faster. If content of the bundle changes (one of the bundled CSS
files changes for instance), its corresponding hash code updates as well. Updated file be downloaded
and cached like a previous one.

The resulting file will be named like main.0f40125588b03ddb8b86.css.

Now create a simple main.css file to test configuration above:

src/main.css

1 /* Main theme */

2

3 .title {

4 color: black;

5 }

As it was mentioned earlier, you can import CSS files similar to how modules are imported. Open
main.ts file and put the import of the newly created main.css inside:

src/main.ts

1 ...

2 import './main.css';

3

4 const platform = platformBrowserDynamic();

5 platform.bootstrapModule(AppModule);

It is important to note that besides importing styles by relative paths you can also bundle content
from external libraries installed to node_modules. For example getting the deeppurple-amber.css

theme style from the @angular/material library looks like following:

Webpack 445

1 import '@angular/material/core/theming/prebuilt/deeppurple-amber.css';

Now run the production build with the npm command:

npm run build

Once the build is finished you should get two additional files in the dist folder similar to the
following:

main.0f40125588b03ddb8b86.css

main.0f40125588b03ddb8b86.css.map

Webpack not only builds all your additional CSS files into a single bundle, but it also changes the
resulting index.html page to include the bundle:

dist/index.html

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="UTF-8">

5 <meta name="viewport" content="width=device-width, initial-scale=1">

6 <title>Webpack 2</title>

7 <base href="/">

8 <link href="main.0f40125588b03ddb8b86.css" rel="stylesheet">

9 </head>

10 <body>

11 <my-app>Loading AppComponent content here ...</my-app>

12 <script type="text/javascript" src="bundle.js"></script>

13 </body>

14 </html>

Vendor code splitting

You are not going to change third party libraries frequently unlike your application code. So it should
be more efficient putting vendor code into a separate bundle to allow browser caching if for a longer
time. The same applies to various browser polyfills that get updated even less often.

Traditionally web application gets split into three main bundles:

• polyfills bundle
• vendors bundle
• application bundle

Let’s start with the minimal setup as per Angular documentation.

Webpack 446

src/polyfills.ts

1 import 'core-js/es6';

2 import 'core-js/es7/reflect';

3 require('zone.js/dist/zone');

4

5 if (process.env.ENV === 'production') {

6 // Production

7 } else {

8 // Development and test

9 Error['stackTraceLimit'] = Infinity;

10 require('zone.js/dist/long-stack-trace-zone');

11 }

All libraries for the polyfills are resolved via node_modules folder.

For the polyfills bundle, we set core-js and zone.js. If the application is running in development
mode, we also enable long stack traces for zone.js library. That provides more details on exceptions
happened within Angular components.

Based on the application features and target browsers you may need adding more polyfills to this
file.

src/vendor.ts

1 // Angular

2 import '@angular/platform-browser';

3 import '@angular/platform-browser-dynamic';

4 import '@angular/core';

5 import '@angular/common';

6 import '@angular/http';

7 import '@angular/router';

8

9 // RxJS

10 import 'rxjs';

11

12 // Other vendors for example jQuery, Lodash or Bootstrap

13 // You can import js, ts, css, sass, ...

Vendors file contains a bare minimum for a typical Angular-based application. You are going to put
here all additional third party libraries being used. All libraries for the vendors.ts file are resolved
via node_modules folder.

Finally the main.ts file should look like following:

Webpack 447

src/main.ts

1 import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

2 import { enableProdMode } from '@angular/core';

3 import { AppModule } from './app/app.module';

4

5 import './main.css';

6

7 if (process.env.ENV === 'production') {

8 enableProdMode();

9 }

10

11 const platform = platformBrowserDynamic();

12 platform.bootstrapModule(AppModule);

Now let’s tell webpack we have polyfills.ts, vendors.ts and main.ts bundles. You need to change
webpack.common.js like shown below:

webpack.common.js

Before:

1 module.exports = {

2 entry: './src/main.ts',

3 ...

4 }

After:

1 module.exports = {

2 entry: {

3 'polyfills': './src/polyfills.ts',

4 'vendor': './src/vendor.ts',

5 'app': './src/main.ts'

6 },

7 plugins: [

8 ...

9 new webpack.optimize.CommonsChunkPlugin({

10 name: ['app', 'vendor', 'polyfills']

11 })

12]

13 ...

14 }

Webpack 448

We instruct webpack to use three entries instead of a single one and use CommonsChunkPlugin to
improve result greatly.

The CommonsChunkPlugin is an opt-in feature that creates a separate file (known as
a chunk), consisting of common modules shared between multiple entry points. By
separating common modules from bundles, the resulting chunked file can be loaded once
initially, and stored in cache for later use. This results in pagespeed optimisations as the
browser can quickly serve the shared code from cache, rather than being forced to load a
larger bundle whenever a new page is visited.

You can read more details in the official CommonsChunkPlugin¹⁰⁴ documentation.

For the last step, we are going to tune output settings for development and production configuration
files.

webpack.dev.js

1 module.exports = {

2 ...

3 output: {

4 path: path.join(__dirname, 'dist'),

5 filename: '[name].js',

6 chunkFilename: '[id].chunk.js'

7 }

8 }

webpack.prod.js

1 module.exports = webpackMerge(commonConfig, {

2

3 output: {

4 path: path.join(__dirname, 'dist'),

5 publicPath: '/',

6 filename: '[name].[hash].js',

7 chunkFilename: '[id].[hash].chunk.js'

8 },

9 ...

10

11 });

At this point, the minimal configuration should be complete. To see code splitting in action just run
the production build with the build npm command

¹⁰⁴https://webpack.js.org/plugins/commons-chunk-plugin/

https://webpack.js.org/plugins/commons-chunk-plugin/
https://webpack.js.org/plugins/commons-chunk-plugin/

Webpack 449

npm run build

Now if you inspect the dist folder you should see the structure similar to the following one:

Size Name

102 app.e9ba0634398c31b37d5a.css
295 app.e9ba0634398c31b37d5a.css.map
1923 app.e9ba0634398c31b37d5a.js
8716 app.e9ba0634398c31b37d5a.js.map
572 index.html
104047 polyfills.e9ba0634398c31b37d5a.js
792348 polyfills.e9ba0634398c31b37d5a.js.map
1048488 vendor.e9ba0634398c31b37d5a.js
7962491 vendor.e9ba0634398c31b37d5a.js.map

As you can see the app bundle is now very small (± 2kB) and containing only your application-
specific code. Next comes the polyfills bundle (± 104kB) that contains cross-browser support.
Finally the vendor bundle (± 1MB) having Angular framework and all third party libraries used
by your web application combined together.

All files have hash codes in the names, so browsers are able caching them and downloading new
versions only when the content of the files (and so the hash code) changes.

Building a Mobile App with Cordova
and Angular
Apache Cordova is an open-source mobile development framework. It allows you to use standard
web technologies - HTML5, CSS3, and JavaScript for cross-platform development.

You can get an excellent overview and technical details on the official “Overview¹⁰⁵” page.

The Apache Cordova framework allows you to write the same code to address at least the following
platforms:

• Android
¹⁰⁵https://cordova.apache.org/docs/en/latest/guide/overview/index.html

https://cordova.apache.org/docs/en/latest/guide/overview/index.html
https://cordova.apache.org/docs/en/latest/guide/overview/index.html

Building a Mobile App with Cordova and Angular 451

• Blackberry 10
• iOS
• macOS (OS X)
• Ubuntu
• Windows
• WP8

In this chapter, we are going to setup Apache Cordova with the Angular framework and see a simple
iOS application powered by the Angular in action.

Installing command-line tools

Before we start, you need to install the command-line tools for the Cordova development:

npm install -g cordova

We are going to need the Angular CLI tools, so ensure you also have it installed globally:

npm install -g @angular/cli

Angular CLI
You can get more information in the corresponding Angular CLI chapter.

Generating a new Cordova App

In the command-line prompt, navigate to a directory where you want to create your new Cordova
application and run the following commands:

cordova create myCordovaApp

cd myCordovaApp/

With the commands above we get a new Cordova application called “myCordovaApp” in the current
directory and switch to the application directory after that.

By default, Cordova creates just an application scaffold to use with different platforms of your
choice. You need to add each platform manually depending on the requirements.

In this chapter, we are going to focus on two platforms: Browser and iOS.

Building a Mobile App with Cordova and Angular 452

Adding the Browser platform

The “Browser” platform provides you with all the essentials needed to test your code in the browser.
You are probably going to use it frequently during the development process and before testing with
emulators and real devices.

With the Cordova CLI, you add various platforms using the following format:

cordova platform add <platform>

You can add the support for the Browser platform by executing the following Cordova CLI command:

cordova platform add browser

To run the newly created application with the given platform, we are going to use the following
command format:

cordova run <platform> [params]

As with adding a new one, you need to specify the platform name and optionally some parameters
if particular platform plugin supports that.

Let’s see that in action by running the Browser platform we have added earlier.

cordova run browser

With the command above, the Cordova CLI builds the project and launches it within a separate
instance of the browser upon completion:

Building a Mobile App with Cordova and Angular 453

Adding the iOS platform

Now let’s get the iOS platform support to be able to deploy our final application either to an iOS
emulator or a real device.

cordova platform add ios

The Cordova CLI can now build your app for iOS platform alongside the Browser one. We can utilise
the same “cordova run” command to launch the app in the iOS simulator. We just need to provide
the target, for example, let’s try the “iPhone 6s” emulator with our newly generated app:

cordova run ios --target='iPhone-6s'

It may take some time to compile the application for iOS for the first time. Once the compilation
completes, you should get the iPhone emulator up and running with your app.

Building a Mobile App with Cordova and Angular 454

Generating a new Angular App

We have now a basic Cordova application working with two different platforms. It is now time to
start configuring the Angular support, let’s use the Angular CLI utility to generate a new application
scaffold in the “webapp” directory in the project root folder.

Building a Mobile App with Cordova and Angular 455

ng new webapp -dir webapp

Next, edit the “index.html” file created in the “webapp/src” folder, and replace with the following
content:

webapp/src/index.html

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta http-equiv="Content-Security-Policy" content="default-src 'self' data:\

5 gap: https://ssl.gstatic.com 'unsafe-eval'; style-src 'self' 'unsafe-inline'; media\

6 -src *; img-src 'self' data: content:;">

7 <meta name="format-detection" content="telephone=no">

8 <meta name="msapplication-tap-highlight" content="no">

9 <meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-sc\

10 ale=1, minimum-scale=1, width=device-width">

11 <link rel="icon" type="image/x-icon" href="favicon.ico">

12 <meta charset="utf-8">

13 <title>Hello World</title>

14 <base href=".">

15 </head>

16 <body>

17 <script type="text/javascript" src="cordova.js"></script>

18 <app-root></app-root>

19 </body>

20 </html>

The file above is a hybrid made of the default Cordova “index.html” combined with the default
Angular CLI one.

We also need to update the “.angular-cli.json” file and set the default output directory to point to
the “www” folder used by Cordova when preparing the code for various platforms.

webapp/.angular-cli.json

1 {

2 "apps": {

3 "outDir": "../www"

4 }

5 }

Building a Mobile App with Cordova and Angular 456

Build scripts

At this point, our project consists of the code produced and maintained by two different command-
line tools. We are going to use Angular CLI utilities when working with the Angular part of the
project, and Cordova CLI when preparing the code for devices or emulators.

The easiest way to improve the development experience is to create a set of NPM commands
addressing all the common scenarios. Edit the root “package.json” file and put the following content
in the “scripts” section:

1 {

2 "scripts": {

3 "build": "(cd webapp && ng build --prod) && cordova build",

4 "start": "(cd webapp && ng build --prod) && cordova run browser",

5 "ios": "cordova run ios --target='iPhone-6s'",

6 "serve": "cordova serve 3000"

7 }

8 }

The “build” script, executed with the “npm run build” command, is going to build our Angular
application in production mode, and then use Cordova tools to compile the entire project for all the
configured platforms.

You are going to use the “start” script to build your Angular application and run it with the Browser
platform. You can use “npm run start” or shorthand version “npm start” for that.

The third common script we have in the “package.json” is the “ios” one, called with the “npm run
ios” command and is used to invoke iOS emulator targeting the iPhone 6s. Please note that this script
by default does not rebuild everything, and gets typically invoked after “npm run build” command.

Finally, the “serve” command may help you quickly serving the web part in the browser to see the
latest state of your code when your focus is the functionality rather than the platform.

Running Angular in the Browser

With the “scripts” section we created earlier, it becomes quite easy to run the entire project with the
Browser platform. Just use “npm start” in the project root directory:

npm start

Once Angular application compiles and Cordova runs it in the separate browser instance, you should
see the default Angular CLI project template on your screen.

Building a Mobile App with Cordova and Angular 457

Running Angular in the iOS emulator

Next, you can check that the same Angular app works with the iOS emulator without issues. That
is where we use the “ios” command from the “scripts” section:

npm run ios

You should see the emulator window that contains a content similar to that on the picture below:

Building a Mobile App with Cordova and Angular 458

Routing support

Routing is one of themajor features when it comes toMobile apps created with HTML5, so to finalise
our initial project setup we should also ensure, for instance, that the Angular Router works inside
the iOS simulator as expected.

Let’s use Angular CLI to generate a couple of extra components to use with the router outlet:

1 cd webapp

2 ng g component page1

3 ng g component page2

Now update the main application module file “app.module.ts” with the routing settings:

Building a Mobile App with Cordova and Angular 459

1 import { RouterModule } from '@angular/router';

2

3 @NgModule({

4 ...,

5 imports: [

6 ...,

7 RouterModule.forRoot([

8 {

9 path: 'page1',

10 component: Page1Component

11 },

12 {

13 path: 'page2',

14 component: Page2Component

15 }

16])

17],

18 ...

19 })

20 export class AppModule { }

Finally, we need to update the main application component template “app.component.html” with
the following simple Router setup appended to the end of the file:

1

2

3 Page 1

4

5

6 Page 2

7

8

9

10 <router-outlet></router-outlet>

Now let’s run the “build” script to compile everything:

npm run build

First of all, we can test the codewith the Browser platform to see if everythingworks as expected, and
fix the code errors if any. As you can imagine debugging and fixing bugs in the browser developer
tools is much easier than using an emulator and remote debugging.

Building a Mobile App with Cordova and Angular 460

npm start

Once application runs in the browser, scroll to the bottom of the page where “Page 1” and “Page
2” links are rendered, and try clicking them. The content under the links section should change to
reflect current page content. By default, for “Page 2” it is going to be something like “page2 works!”.

Routing in the iOS emulator

For the final step let’s now run the same application in the iOS emulator and ensure the routing
behaviour is the same as in the desktop browser:

npm run ios

Scroll to the bottom of the page and test both routes as we did previously with the Browser platform
plugin. You should see the same “page2 works!” message when tapping the “Page 2” link, and “page1
works!” for the first link.

Building a Mobile App with Cordova and Angular 461

Summary

Congratulations, you now have a working configuration that allows you to compile and run Angular
applications with Apache Cordova, and address various platforms and devices at the same time.

Don’t forget to check out the latest Apache Cordova documentation¹⁰⁶ to get more details on the
framework and scenarios related to cross-platform application development with HTML5.

¹⁰⁶https://cordova.apache.org/docs/en/latest/

https://cordova.apache.org/docs/en/latest/
https://cordova.apache.org/docs/en/latest/

Changelog
This chapter contains a list of notable changes introduced to the book with each version.

Revision 16 (2018-10-23)

• Upgrade all examples to Angular 7 and Angular CLI 7
• Update chapters to use Angular 7 examples
• Setup Travis CI and unit testing for all example projects
• Setup Prettier and provide better code formatting for example projects
• Minor text polishing and link fixes

Revision 15 (2018-06-03)

• Updated: ngOnDestroy
• New Listening for View and Content changes

Revision 14 (2018-04-08)

• Updated Plugins chapter with more details
• Updated Angular CLI chapter with more details on Modules
• Updated Directives chapter with ng-container directive
• Updated Internationalisation (i18n) chapter with a reference to “@ngstack/translate¹⁰⁷”

Revision 13 (2018-02-12)

• Plugins

Revision 12 (2017-12-17)

• Using with Docker
¹⁰⁷https://www.npmjs.com/package/@ngstack/translate

https://www.npmjs.com/package/@ngstack/translate
https://www.npmjs.com/package/@ngstack/translate

Changelog 463

Revision 11 (2017-12-03)

• Reusable component libraries

Revision 10 (2017-11-12)

• Components
– Component Lifecycle

Revision 9 (2017-10-15)

• Components
– Providers
– Host
– Queries

Revision 8 (2017-09-17)

• Global Application Configuration
• Internationalisation (i18n)

Revision 7 (2017-09-14)

• Events

Revision 6 (2017-08-24)

• Building a Mobile Application with Cordova and Angular

Revision 5 (2017-08-13)

• Dependency Injection

Revision 4 (2017-07-22)

• ES6: Destructuring assignment

Changelog 464

Revision 3 (2017-07-09)

• NG: Advanced Angular, Dynamic Content

Revision 2 (2017-07-02)

• NG: Components Chapter (part 1, basic components)
• Updated Introduction with a link to the project board

Revision 1 (2017-06-09)

Initial version of the book published to public.

	Table of Contents
	Introduction
	Book Revision
	Book progress
	Code examples
	Feedback, Bug Reports and Suggestions
	Other publications
	Testimonials

	Prerequisites
	Node
	Visual Studio Code
	Recommended extensions
	Hiding files

	ES6
	Classes
	Inheritance
	Arrow Functions
	Expression Bodies
	Statement Bodies
	Lexical this

	Template Literals
	Extended Parameter Handling
	Default Parameter Values
	Rest Parameter
	Spread Operator

	Destructuring assignment
	Basic example
	Array destructuring
	Value assignment
	Default values
	Swapping values
	Skipping values
	Grouping tail values into a single variable

	Object destructuring
	Unpacking properties
	Renaming properties
	Default values
	Unpacking methods
	Renaming methods

	Using with function parameters
	IDE support

	Modules
	Exporting and Importing Values
	Default Values
	Wildcard Export

	See also

	TypeScript
	Getting Started with TypeScript
	Installing TypeScript
	Using tsc
	Typings
	Linting
	tslint

	TypeScript Features
	Types
	Basic Types
	Arrays
	Enum
	Any
	Void

	Classes
	Properties
	Setters and Getters
	Methods
	Return values
	Method parameters
	Optional parameters
	Default parameters
	Rest Parameters and Spread Operator

	Constructors
	Inheritance
	Access Modifiers
	Public
	Private
	Protected

	Interfaces
	Abstract Classes
	Modules
	Module Loaders
	Running at server side
	Running in browser

	Decorators
	Class Decorators
	Decorators with parameters
	Multiple decorators

	Method Decorators
	Accessor Decorators
	Property Decorators
	Parameter Decorators

	Angular CLI
	Installing
	Your first application
	Running application
	Code Linting
	Unit tests
	Code coverage
	Development and Production builds
	Using blueprints
	Creating modules
	Assigning components to modules

	Routing support
	Generating standalone scripts

	Components
	Creating a simple component
	Generating components with Angular CLI
	Component metadata
	Templates
	Inline templates
	External templates

	Styles
	Inline styles
	External styles

	Input properties
	Output events
	Raising events
	Handling events
	Typed events
	Accessing event parameters
	Aliased outputs

	Providers
	Host
	CSS class
	Host events
	Host attributes
	Host properties

	Queries
	Preparing the project
	@ViewChild
	@ViewChildren
	@ContentChild
	@ContentChildren
	Listening for View and Content changes

	Component Lifecycle
	ngOnChanges
	ngOnInit
	ngDoCheck
	ngAfterContentInit
	ngAfterContentChecked
	ngAfterViewInit
	ngAfterViewChecked
	ngOnDestroy
	Cleaning up subscriptions

	Content Projection
	ng-container directive
	Projecting single entity
	Supporting external content

	Projecting multiple entities
	Projecting with CSS selectors
	Projecting with Component selectors
	Fallback content

	Dependency Injection
	Preparing a project
	Services
	Creating LogService
	Injecting and using LogService

	Providers
	Using a class
	Using a class factory
	Class factories with dependencies

	Using @Inject decorator
	Using a value
	Using an alias

	Injection Tokens
	Type tokens
	String tokens
	Generic InjectionToken

	Injecting multiple instances
	Optional dependencies
	Manual injection with ReflectiveInjector
	Summary

	Events
	Component events
	Bubbling up child events

	DOM events
	Service events

	Modules
	Directives
	Introduction
	Attribute Directives
	Handling host events
	Host members binding
	Binding element attributes
	Binding element properties
	Binding style attributes
	Binding class names

	Built-in attribute directives
	NgStyle
	NgClass
	Binding to String Expression (single):
	Binding to String Expression (space delimited)
	Binding to Object Literal
	Binding to Array

	NgNonBindable

	Structural Directives
	Built-in structural directives
	NgIf
	NgFor
	Binding to arrays
	Binding to class properties or functions
	Using exported variables
	Improving performance with trackBy

	NgSwitch

	Creating a Structural Directive

	Modifying host element layout

	Walkthrough: Upload Directive
	Pipes
	Introduction
	Pipes with Parameters
	Chaining Pipes
	Built-in Pipes
	UpperCase
	LowerCase
	TitleCase
	Date
	Custom formatting rules
	Predefined formatting rules

	Decimal
	Currency
	Percent
	Json
	Slice
	Using with Arrays
	Using with Strings

	I18nSelect
	I18nPlural
	Async
	Using with NgFor directive
	Using with Date object

	Custom Pipes
	Implementing Custom Pipe

	Pure And Impure Pipes
	Preparing Project
	Pure Pipes
	Impure Pipes

	Global Application Configuration
	Preparing the configuration file
	Creating the configuration service
	Loading server-side configuration file
	Registering configuration service
	Using configuration settings

	Internationalisation (i18n)
	Creating Translate Service
	Creating Translate Pipe
	Using Translate Pipe
	Switching languages
	Summary

	Advanced Angular
	Dynamic Content in Angular
	List item templates
	List component
	Row templates
	Typical use cases

	Dynamic Components
	Runtime context
	Typical use cases

	Runtime Compilation
	Binding events
	Typical use cases

	Plugins
	Preparing new project
	Building components based on string names
	Loading configuration from external sources

	Dynamically changing application routes
	External plugins
	Extension decorator
	Creating a Plugins Core library
	Creating an example Plugin library
	Extra libraries and dependencies
	Providing dependencies for your plugins
	Loading plugins into the Application
	Setting plugin properties at runtime
	Dynamic Routes with plugin content

	Summary

	Reusable Component Libraries
	Creating new application
	Creating component libraries
	Building the packages
	Publishing to NPM
	Integrating with the application
	See also

	Using with Docker
	Additional Resources
	Preparing new project
	Creating Dockerfile
	Testing in a container
	Creating docker-compose.yml
	Publishing to Docker Hub
	Consuming from Docker Hub
	Automating with Travis
	See also

	Webpack
	Initial project structure
	Typescript configuration
	Basic webpack setup
	Enabling source maps
	Simple Angular application
	Generating index page
	Development server
	Start command with NPM
	Fixing Angular warnings
	Testing source maps

	Advanced webpack setup
	External Html templates
	External CSS styles
	Loading images
	TSLint

	Unit testing
	Code coverage

	Code splitting
	Multiple configurations
	Development mode
	Production mode

	CSS splitting
	Vendor code splitting

	Building a Mobile App with Cordova and Angular
	Installing command-line tools
	Generating a new Cordova App
	Adding the Browser platform
	Adding the iOS platform

	Generating a new Angular App
	Build scripts
	Running Angular in the Browser
	Running Angular in the iOS emulator

	Routing support
	Routing in the iOS emulator

	Summary

	Changelog
	Revision 16 (2018-10-23)
	Revision 15 (2018-06-03)
	Revision 14 (2018-04-08)
	Revision 13 (2018-02-12)
	Revision 12 (2017-12-17)
	Revision 11 (2017-12-03)
	Revision 10 (2017-11-12)
	Revision 9 (2017-10-15)
	Revision 8 (2017-09-17)
	Revision 7 (2017-09-14)
	Revision 6 (2017-08-24)
	Revision 5 (2017-08-13)
	Revision 4 (2017-07-22)
	Revision 3 (2017-07-09)
	Revision 2 (2017-07-02)
	Revision 1 (2017-06-09)

