
M A N N I N G

Ashley Davis

www.allitebooks.com

http://www.allitebooks.org

Data Wrangling with JavaScript

 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

Data Wrangling
with JavaScript

ASHLEY DAVIS

MANN I NG
Shelter ISland

 www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid- free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

Development editor: Helen Stergius
 Technical development editor: Luis Atencio

Review editor: Ivan Martinović
Project manager: Deirdre Hiam

Copy editor: Katie Petito
Proofreader: Charles Hutchinson

Technical proofreader: Kathleen Estrada
Typesetting: Happenstance Type-O-Rama

Cover designer: Marija Tudor

ISBN 9781617294846
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 23 22 21 20 19 18

 www.allitebooks.com

http://www.allitebooks.org

v

brief contents
1 ■	 Getting started: establishing your data pipeline 1
2 ■	 Getting started with Node.js 25
3 ■	 Acquisition, storage, and retrieval 59
4 ■	 Working with unusual data 99
5 ■	 Exploratory coding 115
6 ■	 Clean and prepare 143
7 ■	 Dealing with huge data files 168
8 ■	 Working with a mountain of data 191
9 ■	 Practical data analysis 217

10 ■	 Browser-based visualization 247
11 ■	 Server-side visualization 274
12 ■	 Live data 299
13 ■	 Advanced visualization with D3 329
14 ■	 Getting to production 358

vii

contents
preface xv
acknowledgments xvii
about this book xix
about the author xxiii
about the cover illustration xxv

1 Getting started: establishing your data pipeline 1
 1.1 Why data wrangling? 1

 1.2 What’s data wrangling? 2

 1.3 Why a book on JavaScript data wrangling? 3

 1.4 What will you get out of this book? 4

 1.5 Why use JavaScript for data wrangling? 5

 1.6 Is JavaScript appropriate for data analysis? 6

 1.7 Navigating the JavaScript ecosystem 7

 1.8 Assembling your toolkit 7

 1.9 Establishing your data pipeline 8
Setting the stage 9 ■ The data-wrangling
process 10 ■ Planning 10 ■ Acquisition, storage, and
retrieval 13 ■ Exploratory coding 15 ■ Clean and
prepare 18 ■ Analysis 19 ■ Visualization 20 ■ Getting
to production 22

viiiviii CONTENTS

2 Getting started with Node.js 25
 2.1 Starting your toolkit 26

 2.2 Building a simple reporting system 27

 2.3 Getting the code and data 27
Viewing the code 28 ■ Downloading the code 28 ■ Installing
Node.js 29 ■ Installing dependencies 29 ■ Running
Node.js code 29 ■ Running a web application 30 ■ Getting
the data 30 ■ Getting the code for chapter 2 31

 2.4 Installing Node.js 31
Checking your Node.js version 32

 2.5 Working with Node.js 33
Creating a Node.js project 33 ■ Creating a command-line
application 36 ■ Creating a code library 38 ■ Creating a
simple web server 40

 2.6 Asynchronous coding 45
Loading a single file 46 ■ Loading multiple
files 49 ■ Error handling 51 ■ Asynchronous coding
with promises 52 ■ Wrapping asynchronous operations in
promises 55 ■ Async coding with “async” and “await” 57

3 Acquisition, storage, and retrieval 59
 3.1 Building out your toolkit 60

 3.2 Getting the code and data 61

 3.3 The core data representation 61
The earthquakes website 62 ■ Data formats covered 64
Power and flexibility 65

 3.4 Importing data 66
Loading data from text files 66 ■ Loading data from a REST
API 69 ■ Parsing JSON text data 70 ■ Parsing CSV text
data 74 ■ Importing data from databases 78 ■ Importing
data from MongoDB 78 ■ Importing data from MySQL 82

 3.5 Exporting data 85
You need data to export! 85 ■ Exporting data to text
files 85 ■ Exporting data to JSON text files 87
Exporting data to CSV text files 89 ■ Exporting data
to a database 90 ■ Exporting data to MongoDB 91
Exporting data to MySQL 92

 ix ix CONTENTS

 3.6 Building complete data conversions 95

 3.7 Expanding the process 95

4 Working with unusual data 99
 4.1 Getting the code and data 100

 4.2 Importing custom data from text files 101

 4.3 Importing data by scraping web pages 104
Identifying the data to scrape 104 ■ Scraping with Cheerio 105

 4.4 Working with binary data 107
Unpacking a custom binary file 108 ■ Packing a custom binary
file 111 ■ Replacing JSON with BSON 113 ■ Converting JSON
to BSON 113 ■ Deserializing a BSON file 114

5 Exploratory coding 115
 5.1 Expanding your toolkit 116

 5.2 Analyzing car accidents 116

 5.3 Getting the code and data 117

 5.4 Iteration and your feedback loop 117

 5.5 A first pass at understanding your data 118

 5.6 Working with a reduced data sample 120

 5.7 Prototyping with Excel 120

 5.8 Exploratory coding with Node.js 122
Using Nodemon 123 ■ Exploring your data 125
Using Data-Forge 128 ■ Computing the trend
column 130 ■ Outputting a new CSV file 134

 5.9 Exploratory coding in the browser 135

 5.10 Putting it all together 141

6 Clean and prepare 143
 6.1 Expanding our toolkit 144

 6.2 Preparing the reef data 145

 6.3 Getting the code and data 145

 6.4 The need for data cleanup and preparation 145

 6.5 Where does broken data come from? 145

xx CONTENTS

 6.6 How does data cleanup fit into the pipeline? 146

 6.7 Identifying bad data 147

 6.8 Kinds of problems 148

 6.9 Responses to bad data 148

 6.10 Techniques for fixing bad data 149

 6.11 Cleaning our data set 150
Rewriting bad rows 150 ■ Filtering rows of data 155 ■ Filtering
columns of data 158

 6.12 Preparing our data for effective use 159
Aggregating rows of data 159 ■ Combining data from different
files using globby 161 ■ Splitting data into separate files 163

 6.13 Building a data processing pipeline with Data-Forge 165

 7 Dealing with huge data files 168
 7.1 Expanding our toolkit 169

 7.2 Fixing temperature data 169

 7.3 Getting the code and data 170

 7.4 When conventional data processing breaks down 171

 7.5 The limits of Node.js 172
Incremental data processing 172 ■ Incremental core
data representation 173 ■ Node.js file streams basics
primer 174 ■ Transforming huge CSV files 178
Transforming huge JSON files 184 ■ Mix and match 190

 8 Working with a mountain of data 191
 8.1 Expanding our toolkit 192

 8.2 Dealing with a mountain of data 192

 8.3 Getting the code and data 193

 8.4 Techniques for working with big data 193
Start small 193 ■ Go back to small 193 ■ Use a more efficient
representation 194 ■ Prepare your data offline 194

 8.5 More Node.js limitations 195

 8.6 Divide and conquer 196

 xi xi CONTENTS

 8.7 Working with large databases 196
Database setup 197 ■ Opening a connection to
the database 198 ■ Moving large files to your
database 199 ■ Incremental processing with a database
cursor 201 ■ Incremental processing with data
windows 202 ■ Creating an index 205 ■ Filtering using
queries 205 ■ Discarding data with projection 207 ■ Sorting
large data sets 208

 8.8 Achieving better data throughput 210
Optimize your code 210 ■ Optimize your
algorithm 210 ■ Processing data in parallel 210

 9 Practical data analysis 217
 9.1 Expanding your toolkit 218

 9.2 Analyzing the weather data 219

 9.3 Getting the code and data 219

 9.4 Basic data summarization 220
Sum 220 ■ Average 221 ■ Standard deviation 221

 9.5 Group and summarize 222

 9.6 The frequency distribution of temperatures 227

 9.7 Time series 231
Yearly average temperature 231 ■ Rolling
average 233 ■ Rolling standard deviation 236 ■ Linear
regression 236 ■ Comparing time series 239 ■ Stacking time
series operations 242

 9.8 Understanding relationships 243
Detecting correlation with a scatter plot 243 ■ Types
of correlation 243 ■ Determining the strength of the
correlation 244 ■ Computing the correlation coefficient 245

 10 Browser-based visualization 247
 10.1 Expanding your toolkit 248

 10.2 Getting the code and data 248

 10.3 Choosing a chart type 249

xiixii CONTENTS

 10.4 Line chart for New York City temperature 250
The most basic C3 line chart 251 ■ Adding real
data 253 ■ Parsing the static CSV file 254 ■ Adding
years as the X axis 256 ■ Creating a custom Node.js web
server 258 ■ Adding another series to the chart 261 ■ Adding
a second Y axis to the chart 263 ■ Rendering a time series
chart 264

 10.5 Other chart types with C3 266
Bar chart 266 ■ Horizontal bar chart 267 ■ Pie
chart 267 ■ Stacked bar chart 269 ■ Scatter plot chart 270

 10.6 Improving the look of our charts 271

 10.7 Moving forward with your own projects 272

 11 Server-side visualization 274
 11.1 Expanding your toolkit 275

 11.2 Getting the code and data 276

 11.3 The headless browser 276

 11.4 Using Nightmare for server-side visualization 278
Why Nightmare? 278 ■ Nightmare and
Electron 278 ■ Our process: capturing visualizations
with Nightmare 279 ■ Prepare a visualization to
render 280 ■ Starting the web server 282 ■ Procedurally
start and stop the web server 283 ■ Rendering the web page to
an image 284 ■ Before we move on . . . 285 ■ Capturing
the full visualization 287 ■ Feeding the chart with
data 289 ■ Multipage reports 292 ■ Debugging code in the
headless browser 294 ■ Making it work on a Linux server 296

 11.5 You can do much more with a headless browser 297
Web scraping 297 ■ Other uses 298

 12 Live data 299
 12.1 We need an early warning system 300

 12.2 Getting the code and data 301

 12.3 Dealing with live data 301

 12.4 Building a system for monitoring air quality 302

 12.5 Set up for development 304

 xiii xiii CONTENTS

 12.6 Live-streaming data 305
HTTP POST for infrequent data submission 305 ■ Sockets
for high-frequency data submission 308

 12.7 Refactor for configuration 310

 12.8 Data capture 312

 12.9 An event-based architecture 314

 12.10 Code restructure for event handling 316
Triggering SMS alerts 317 ■ Automatically generating a
daily report 318

 12.11 Live data processing 321

 12.12 Live visualization 322

 13 Advanced visualization with D3 329
 13.1 Advanced visualization 330

 13.2 Getting the code and data 331

 13.3 Visualizing space junk 331

 13.4 What is D3? 332

 13.5 The D3 data pipeline 333

 13.6 Basic setup 334

 13.7 SVG crash course 335
SVG circle 335 ■ Styling 337 ■ SVG text 337
SVG group 338

 13.8 Building visualizations with D3 339
Element state 339 ■ Selecting elements 340 ■ Manually
adding elements to our visualization 342 ■ Scaling to
fit 344 ■ Procedural generation the D3 way 346 ■ Loading
a data file 349 ■ Color-coding the space junk 351 ■ Adding
interactivity 352 ■ Adding a year-by-year launch
animation 353

 14 Getting to production 358
 14.1 Production concerns 359

 14.2 Taking our early warning system to production 360

 14.3 Deployment 361

 14.4 Monitoring 364

xivxiv CONTENTS

 14.5 Reliability 366
System longevity 366 ■ Practice defensive
programming 366 ■ Data protection 367 ■ Testing
and automation 368 ■ Handling unexpected
errors 372 ■ Designing for process restart 374 ■ Dealing
with an ever-growing database 375

 14.6 Security 375
Authentication and authorization 376 ■ Privacy and
confidentiality 376 ■ Secret configuration 378

 14.7 Scaling 378
Measurement before optimization 378 ■ Vertical
scaling 379 ■ Horizontal scaling 379

 appendix A JavaScript cheat sheet 383

appendix B Data-Forge cheat sheet 387

appendix C Getting started with Vagrant 389

index 393

xv

preface
Data is all around us and growing at an ever-increasing rate. It’s more important than
ever before for businesses to deal with data quickly and effectively to understand their
customers, monitor their processes, and support decision-making.

If Python and R are the kings of the data world, why, then, should you use JavaScript
instead? What role does it play in business, and why do you need to read Data Wrangling
with JavaScript?

I’ve used JavaScript myself in various situations. I started with it when I was a game
developer building our UIs with web technologies. I soon graduated to Node.js back-
ends to manage collection and processing of metrics and telemetry. We also created
analytics dashboards to visualize the data we collected. By this stage we did full-stack
JavaScript to support the company’s products.

My job at the time was creating game-like 3D simulations of construction and engi-
neering projects, so we also dealt with large amounts of data from construction logistics,
planning, and project schedules. I naturally veered toward JavaScript for wrangling and
analysis of the data that came across my desk. For a sideline, I was also algorithmically
analyzing and trading stocks, something that data analysis is useful for!

Exploratory coding in JavaScript allowed me to explore, transform, and analyze my
data, but at the same time I was producing useful code that could later be rolled out
to our production environment. This seems like a productivity win. Rather than using
Python and then having to rewrite parts of it in JavaScript, I did it all in JavaScript. This
might seem like the obvious choice to you, but at the time the typical wisdom was telling
me that this kind of work should be done in Python.

Because there wasn’t much information or many resources out there, I had to learn
this stuff for myself, and I learned it the hard way. I wanted to write this book to document
what I learned, and I hope to make life a bit easier for those who come after me.

xvixvi PREFACE

In addition, I really like working in JavaScript. I find it to be a practical and capable
language with a large ecosystem and an ever-growing maturity. I also like the fact that
JavaScript runs almost everywhere these days:

¡	Server ✓
¡	Browser ✓
¡	Mobile ✓
¡	Desktop ✓

My dream (and the promise of JavaScript) was to write code once and run it in any
kind of app. JavaScript makes this possible to a large extent. Because JavaScript can be
used almost anywhere and for anything, my goal in writing this book is to add one more
purpose:

¡	Data wrangling and analysis ✓

xvii

acknowledgments
In Data Wrangling with JavaScript I share my years of hard-won experience with you.
Such experience wouldn’t be possible without having worked for and with a broad
range of people and companies. I’d especially like to thank one company, the one
where I started using JavaScript, started my data-wrangling journey in JavaScript,
learned much, and had many growth experiences. Thanks to Real Serious Games for
giving me that opportunity.

Thank you to Manning, who have made this book possible. Thanks especially to
Helen Stergius, who was very patient with this first-time author and all the mistakes I’ve
made. She was instrumental in helping draw this book out of my brain.

Also, a thank you to the entire Manning team for all their efforts on the project:
Cheryl Weisman, Deirdre Hiam, Katie Petito, Charles Hutchinson, Nichole Beard,
Mike Stephens, Mary Piergies, and Marija Tudor.

Thanks also go to my reviewers, especially Artem Kulakov and Sarah Smith, friends
of mine in the industry who read the book and gave feedback. Ultimately, their encour-
agement helped provide the motivation I needed to get it finished.

In addition, I’d like to thank all the reviewers: Ahmed Chicktay, Alex Basile, Alex
Jacinto, Andriy Kharchuk, Arun Lakkakula, Bojan Djurkovic, Bryan Miller, David Blu-
baugh, David Krief, Deepu Joseph, Dwight Wilkins, Erika L. Bricker, Ethan Rivett, Ger-
ald Mack, Harsh Raval, James Wang, Jeff Switzer, Joseph Tingsanchali, Luke Greenleaf,
Peter Perlepes, Rebecca Jones, Sai Ram Kota, Sebastian Maier, Sowmya Vajjala, Ubaldo
Pescatore, Vlad Navitski, and Zhenyang Hua. Special thanks also to Kathleen Estrada,
the technical proofreader.

Big thanks also go to my partner, Antonella, without whose support and encourage-
ment this book wouldn’t have happened.

xviiixviii ACKNOWLEDGMENTS

Finally, I’d like to say thank you to the JavaScript community—to anyone who works
for the better of the community and ecosystem. It’s your participation that has made
JavaScript and its environment such an amazing place to work. Working together, we
can move JavaScript forward and continue to build its reputation. We’ll evolve and
improve the JavaScript ecosystem for the benefit of all.

xix

about this book
The world of data is big, and it can be difficult to navigate on your own. Let Data Wran-
gling with JavaScript be your guide to working with data in JavaScript.

Data Wrangling with JavaScript is a practical, hands-on, and extensive guide to working
with data in JavaScript. It describes the process of development in detail—you’ll feel
like you’re actually doing the work yourself as you read the book.

The book has a broad coverage of tools, techniques, and design patterns that you
need to be effective with data in JavaScript. Through the book you’ll learn how to apply
these skills and build a functioning data pipeline that includes all stages of data wran-
gling, from data acquisition through to visualization.

This book can’t cover everything, because it’s a broad subject in an evolving field,
but one of the main aims of this book is to help you build and manage your own toolkit
of data-wrangling tools. Not only will you be able to build a data pipeline after reading
this book, you’ll also be equipped to navigate this complex and growing ecosystem, to
evaluate the many tools and libraries out there that can help bootstrap or extend your
system and get your own development moving more quickly.

Who should read this book
This book is aimed at intermediate JavaScript developers who want to up-skill in data
wrangling. To get the most of this book, you should already be comfortable working in
one of the popular JavaScript development platforms, such as browser, Node.js, Elec-
tron, or Ionic.

How much JavaScript do you need to know? Well, you should already know basic syn-
tax and how to use JavaScript anonymous functions. This book uses the concise arrow
function syntax in Node.js code and the traditional syntax (for backward compatibility)
in browser-based code.

xxxx ABOUT THIS BOOK

A basic understanding of Node.js and asynchronous coding will help immensely,
but, if not, then chapter 2 serves as primer for creating Node.js and browser-based apps
in JavaScript and an overview of asynchronous coding using promises.

Don’t be too concerned if you’re lacking the JavaScript skills; it’s an easy language to
get started with, and there are plenty of learning resources on the internet. I believe you
could easily learn JavaScript as you read this book, so if you want to learn data wrangling
but also need to learn JavaScript, don’t be concerned—with a bit of extra work you
should have no problems.

Also, you’ll need the fundamental computing skills to install Node.js and the other
tools mentioned throughout this book. To follow along with the example code, you
need a text editor, Node.js, a browser, and access to the internet (to download the code
examples).

How this book is organized: a roadmap
In the 14 chapters of this book, I cover the major stages of data wrangling. I cover
each of the stages in some detail before getting to a more extensive example and
finally addressing the issues you need to tackle when taking your data pipeline into
production.

¡	Chapter 1 is an overview of the data-wrangling process and explains why you’d
want to do your data wrangling in JavaScript. To see figures in this and following
chapters in color, please refer to the electronic versions of the book.

¡	Chapter 2 is a primer on building Node.js apps, browser-based apps, and asyn-
chronous coding using promises. You can skip this chapter if you already know
these fundamentals.

¡	Chapter 3 covers acquisition, storage, and retrieval of your data. It answers the
questions: how do I retrieve data, and how do I store it for efficient retrieval? This
chapter introduces reading data from text files and REST APIs, decoding the
CSV and JSON formats, and understanding basic use of MongoDB and MySQL
databases.

¡	Chapter 4 overviews a handful of unusual methods of data retrieval: using regu-
lar expressions to parse nonstandard formats, web scraping to extract data from
HTML, and using binary formats when necessary.

¡	Chapter 5 introduces you to exploratory coding and data analysis—a powerful
and productive technique for prototyping your data pipeline. We’ll first proto-
type in Excel, before coding in Node.js and then doing a basic visualization in the
browser.

¡	Chapter 6 looks at data cleanup and transformation—the preparation that’s usu-
ally done to make data fit for use in analysis or production. We’ll learn the various
options we have for handling problematic data.

¡	Chapter 7 comes to a difficult problem: how can we deal with data files that are
too large to fit in memory? Our solution is to use Node.js streams to incremen-
tally process our data files.

 xxi xxiABOUT THIS BOOK

¡	Chapter 8 covers how we should really work with a large data set—by using a data-
base. We’ll look at various techniques using MongoDB that will help efficiently
retrieve data that fits in memory. We’ll use the MongoDB API to filter, project,
and sort our data. We’ll also use incremental processing to ensure we can process
a large data set without running out of memory.

¡	Chapter 9 is where we get to data analysis in JavaScript! We’ll start with funda-
mental building blocks and progress to more advance techniques. You’ll learn
about rolling averages, linear regression, working with time series data, under-
standing relationships between data variables, and more.

¡	Chapter 10 covers browser-based visualization—something that JavaScript is well
known for. We’ll take real data and create interactive line, bar, and pie charts,
along with a scatter plot using the C3 charting library.

¡	Chapter 11 shows how to take browser-based visualization and make it work on
the server-side using a headless browser. This technique is incredibly useful when
doing exploratory data analysis on your development workstation. It’s also great
for prerendering charts to display in a web page and for rendering PDF reports
for automated distribution to your users.

¡	Chapter 12 builds a live data pipeline by integrating many of the techniques from
earlier chapters into a functioning system that’s close to production-ready. We’ll
build an air-quality monitoring system. A sensor will feed live data into our pipe-
line, where it flows through to SMS alerts, automated report generation, and a
live updating visualization in the browser.

¡	Chapter 13 expands on our visualization skills. We’ll learn the basics of D3—the
most well-known visualization toolkit in the JavaScript ecosystem. It’s compli-
cated! But we can make incredible custom visualizations with it!

¡	Chapter 14 rounds out the book and takes us into the production arena. We’ll
learn the difficulties we’ll face getting to production and basic strategies that
help us deliver our app to its audience.

About the code
The source code can be downloaded free of charge from the Manning website(https://
www.manning.com/books/data-wrangling-with-javascript), as well as via the follow-
ing GitHub repository: https://github.com/data-wrangling-with-javascript.

You can download a ZIP file of the code for each chapter from the web page for each
repository. Otherwise, you can use Git to clone each repository as you work through the
book. Please feel free to use any of the code as a starting point for your own experimen-
tation or projects. I’ve tried to keep each code example as simple and as self-contained
as possible.

Much of the code runs on Node.js and uses JavaScript syntax that works with the
latest version. The rest of the code runs in the browser. The code is designed to run
in older browsers, so the syntax is a little different to the Node.js code. I used Node.js

xxiixxii ABOUT THIS BOOK

versions 8 and 9 while writing the book, but most likely a new version will be available
by the time you read this. If you notice any problems in the code, please let me know by
submitting an issue on the relevant repository web page.

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to highlight
code that has changed from previous steps in the chapter, such as when a new feature
adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the book.
In rare cases, even this wasn’t enough, and listings include line-continuation markers
(➥). Additionally, comments in the source code have often been removed from the list-
ings when the code is described in the text. Code annotations accompany many of the
listings, highlighting important concepts.

Book forum
Purchase of Data Wrangling with JavaScript includes free access to a private web forum run
by Manning Publications, where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum, go
to https://forums.manning.com/forums/data-wrangling-with-javascript. You can also
learn more about Manning’s forums and the rules of conduct at https://forums.manning
.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place.
It isn’t a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions, lest his interest stray! The forum and the
archives of previous discussions will be accessible from the publisher’s website as long as
the book is in print.

Other online resources
Ashley Davis’s blog, The Data Wrangler, is available at http://www.the-data-wrangler.com/.
Data-Forge Notebook is Ashley Davis’s product for data analysis and transformation
using JavaScript. It’s similar in concept to the venerable Jupyter Notebook, but for use
with JavaScript. Please check it out at http://www.data-forge-notebook.com/.

https://forums.manning.com/forums/data-wrangling-with-javascript
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about
http://www.the-data-wrangler.com/
http://www.data-forge-notebook.com/

xxiii

about the author

Ashley Davis is a software craftsman, entrepreneur, and author with
over 20 years' experience working in software development, from
coding to managing teams and then founding companies. He has
worked for a range of companies—from the tiniest startups to the
largest internationals. Along the way, he also managed to contrib-
ute back to the community through open source code.

Notably Ashley created the JavaScript data-wrangling toolkit
called Data-Forge. On top of that, he built Data-Forge Notebook-—a

notebook-style desktop application for data transformation, analysis, and visualization
using JavaScript on Windows, MacOS, and Linux. Ashley is also a keen systematic trader
and has developed quantitative trading applications using C++ and JavaScript.

For updates on the book, open source libraries, and more, follow Ashley on Twitter
@ashleydavis75, follow him on Facebook at The Data Wrangler, or register for email
updates at http://www.the-data-wrangler.com.

For more information on Ashley's background, see his personal page (http://www
.codecapers.com.au) or Linkedin profile (https://www.linkedin.com/in/ashleydavis75).

xxv

about the cover illustration
The figure on the cover of Data Wrangling with JavaScript is captioned “Girl from Lum-
barda, Island Korčula, Croatia.” The illustration is taken from the reproduction,
published in 2006, of a nineteenth-century collection of costumes and ethnographic
descriptions entitled Dalmatia by Professor Frane Carrara (1812–1854), an archaeolo-
gist and historian, and the first director of the Museum of Antiquity in Split, Croatia.
The illustrations were obtained from a helpful librarian at the Ethnographic Museum
(formerly the Museum of Antiquity), itself situated in the Roman core of the medie-
val center of Split: the ruins of Emperor Diocletian’s retirement palace from around
AD 304. The book includes finely colored illustrations of figures from different regions
of Dalmatia, accompanied by descriptions of the costumes and of everyday life.

Dress codes have changed since the nineteenth century, and the diversity by region,
so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of different
continents, let alone different towns or regions. Perhaps we’ve traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technologi-
cal life.

At a time when it’s hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers based
on the rich diversity of regional life of two centuries ago, brought back to life by illustra-
tions from collections such as this one.

1

1Getting started: establishing
your data pipeline

This chapter covers
¡	Understanding the what and why of data wrangling

¡	Defining the difference between data wrangling
and data analysis

¡	Learning when it’s appropriate to use JavaScript for
data analysis

¡	Gathering the tools you need in your toolkit for
JavaScript data wrangling

¡	Walking through the data-wrangling process

¡	Getting an overview of a real data pipeline

1.1 Why data wrangling?
Our modern world seems to revolve around data. You see it almost everywhere you
look. If data can be collected, then it’s being collected, and sometimes you must try
to make sense of it.

Analytics is an essential component of decision-making in business. How are users
responding to your app or service? If you make a change to the way you do business,
does it help or make things worse? These are the kinds of questions that businesses

2 CHAPTER 1 Getting started: establishing your data pipeline

are asking of their data. Making better use of your data and getting useful answers can
help put us ahead of the competition.

Data is also used by governments to make policies based on evidence, and with more
and more open data becoming available, citizens also have a part to play in analyzing and
understanding this data.

Data wrangling, the act of preparing your data for interrogation, is a skill that’s in
demand and on the rise. Proficiency in data-related skills is becoming more and more
prevalent and is needed by a wider variety of people. In this book you’ll work on your
data-wrangling skills to help you support data-related activities.

These skills are also useful in your day-to-day development tasks. How is the perfor-
mance of your app going? Where is the performance bottleneck? Which way is your bug
count heading? These kinds of questions are interesting to us as developers, and they
can also be answered through data.

1.2 What’s data wrangling?
Wikipedia describes data wrangling as the process of converting data, with the help
of tools, from one form to another to allow convenient consumption of the data. This
includes transformation, aggregation, visualization, and statistics. I’d say that data
wrangling is the whole process of working with data to get it into and through your
pipeline, whatever that may be, from data acquisition to your target audience, whoever
they might be.

Many books only deal with data analysis, which Wikipedia describes as the process
of working with and inspecting data to support decision-making. I view data analysis as
a subset of the data-wrangling process. A data analyst might not care about databases,
REST APIs, streaming data, real-time analysis, preparing code and data for use in pro-
duction, and the like. For a data wrangler, these are often essential to the job.

A data analyst might spend most of the time analyzing data offline to produce reports
and visualizations to aid decision-makers. A data wrangler also does these things, but
they also likely have production concerns: for example, they might need their code to
execute in a real-time system with automatic analysis and visualization of live data.

The data-wrangling puzzle can have many pieces. They fit together in many different
and complex ways. First, you must acquire data. The data may contain any number of
problems that you need to fix. You have many ways you can format and deliver the data
to your target audience. In the middle somewhere, you must store the data in an effi-
cient format. You might also have to accept streaming updates and process incoming
data in real time.

Ultimately the process of data wrangling is about communication. You need to
get your data into a shape that promotes clarity and understanding and enables fast
decision-making. How you format and represent the data and the questions you need
to ask of it will vary dramatically according to your situation and needs, yet these ques-
tions are critical to achieving an outcome.

Through data wrangling, you corral and cajole your data from one shape to another.
At times, it will be an extremely messy process, especially when you don’t control the

 3Why a book on JavaScript data wrangling?

source. In certain situations, you’ll build ad hoc data processing code that will be run
only once. This won’t be your best code. It doesn’t have to be because you may never
use it again, and you shouldn’t put undue effort into code that you won’t reuse. For this
code, you’ll expend only as much effort as necessary to prove that the output is reliable.

At other times, data wrangling, like any coding, can be an extremely disciplined pro-
cess. You’ll have occasions when you understand the requirements well, and you’ll have
patiently built a production-ready data processing pipeline. You’ll put great care and
skill into this code because it will be invoked many thousands of times in a production
environment. You may have used test-driven development, and it’s probably some of the
most robust code you’ve ever written.

More than likely your data wrangling will be somewhere within the spectrum between
ad hoc and disciplined. It’s likely that you’ll write a bit of throw-away code to transform
your source data into something more usable. Then for other code that must run in
production, you’ll use much more care.

The process of data wrangling consists of multiple phases, as you can see in figure 1.1.
This book divides the process into these phases as though they were distinct, but they’re
rarely cleanly separated and don’t necessarily flow neatly one after the other. I sepa-
rate them here to keep things simple and make things easier to explain. In the real
world, it’s never this clean and well defined. The phases of data wrangling intersect and
interact with each other and are often tangled up together. Through these phases you
understand, analyze, reshape, and transform your data for delivery to your audience.

The main phases of data wrangling are data acquisition, exploration, cleanup, trans-
formation, analysis, and finally reporting and visualization.

Data wrangling involves wrestling with many different issues. How can you filter or
optimize data, so you can work with it more effectively? How can you improve your code
to process the data more quickly? How do you work with your language to be more
effective? How can you scale up and deal with larger data sets?

Throughout this book you’ll look at the process of data wrangling and each of its con-
stituent phases. Along the way we’ll discuss many issues and how you should tackle them.

1.3 Why a book on JavaScript data wrangling?
JavaScript isn’t known for its data-wrangling chops. Normally you’re told to go to other
languages to work with data. In the past I’ve used Python and Pandas when working
with data. That’s what everyone says to use, right? Then why write this book?

Python and Pandas are good for data analysis. I won’t attempt to dispute that. They
have the maturity and the established ecosystem.

Acquire, store,
retrieve

Explore Clean

Data wrangling

Analyze Visualize

Figure 1.1 Separating data wrangling into phases

4 CHAPTER 1 Getting started: establishing your data pipeline

Jupyter Notebook (formerly IPython Notebook) is a great environment for explor-
atory coding, but you have this type of tool in JavaScript now. Jupyter itself has a plugin
that allows it to run JavaScript. Various JavaScript-specific tools are also now available,
such as RunKit, Observable, and my own offering is Data-Forge Notebook.

I’ve used Python for working with data, but I always felt that it didn’t fit well into
my development pipeline. I’m not saying there’s anything wrong with Python; in many
ways, I like the language. My problem with Python is that I already do much of my work
in JavaScript. I need my data analysis code to run in JavaScript so that it will work in the
JavaScript production environment where I need it to run. How do you do that with
Python?

You could do your exploratory and analysis coding in Python and then move the
data to JavaScript visualization, as many people do. That’s a common approach due
to JavaScript’s strong visualization ecosystem. But then what if you want to run your
analysis code on live data? When I found that I needed to run my data analysis code in
production, I then had to rewrite it in JavaScript. I was never able to accept that this was
the way things must be. For me, it boils down to this: I don’t have time to rewrite code.

But does anyone have time to rewrite code? The world moves too quickly for that. We
all have deadlines to meet. You need to add value to your business, and time is a luxury
you can’t often afford in a hectic and fast-paced business environment. You want to
write your data analysis code in an exploratory fashion, à la Jupyter Notebook, but using
JavaScript and later deploying it to a JavaScript web application or microservice.

This led me on a journey of working with data in JavaScript and building out an open
source library, Data-Forge, to help make this possible. Along the way I discovered that
the data analysis needs of JavaScript programmers were not well met. This state of affairs
was somewhat perplexing given the proliferation of JavaScript programmers, the easy
access of the JavaScript language, and the seemingly endless array of JavaScript visual-
ization libraries. Why weren’t we already talking about this? Did people really think that
data analysis couldn’t be done in JavaScript?

These are the questions that led me to write this book. If you know JavaScript, and
that’s the assumption I’m making, then you probably won’t be surprised that I found
JavaScript to be a surprisingly capable language that gives substantial productivity. For
sure, it has problems to be aware of, but all good JavaScript coders are already working
with the good parts of the language and avoiding the bad parts.

These days all sorts of complex applications are being written in JavaScript. You
already know the language, it’s capable, and you use it in production. Staying in JavaScript
is going to save you time and effort. Why not also use JavaScript for data wrangling?

1.4 What will you get out of this book?
You’ll learn how to do data wrangling in JavaScript. Through numerous examples,
building up from simple to more complex, you’ll develop your skills for working with
data. Along the way you’ll gain an understanding of the many tools you can use that are

 5Why use JavaScript for data wrangling?

already readily available to you. You’ll learn how to apply data analysis techniques in
JavaScript that are commonly used in other languages.

Together we’ll look at the entire data-wrangling process purely in JavaScript. You’ll
learn to build a data processing pipeline that takes the data from a source, processes
and transforms it, then finally delivers the data to your audience in an appropriate form.

You’ll learn how to tackle the issues involved in rolling out your data pipeline to your
production environment and scaling it up to large data sets. We’ll look at the prob-
lems that you might encounter and learn the thought processes you must adopt to find
solutions.

I’ll show that there’s no need for you to step out to other languages, such as Python,
that are traditionally considered better suited to data analysis. You’ll learn how to do it
in JavaScript.

The ultimate takeaway is an appreciation of the world of data wrangling and how it
intersects with JavaScript. This is a huge world, but Data Wrangling with JavaScript will
help you navigate it and make sense of it.

1.5 Why use JavaScript for data wrangling?
I advocate using JavaScript for data wrangling for several reasons; these are summa-
rized in table 1.1.

Table 1.1 Reasons for using JavaScript for data wrangling

Reason Details

You already know JavaScript. Why learn another language for working with data?
(Assuming you already know JavaScript.)

JavaScript is a capable language. It’s used to build all manner of complex applications.

Exploratory coding. Using a prototyping process with live reload (dis-
cussed in chapter 5) is a powerful way to write appli-
cations using JavaScript.

Strong visualization ecosystem. Python programmers often end up in JavaScript to
use its many visualization libraries, including D3,
possibly the most sophisticated visualization library.
We’ll explore visualization in chapters 10 and 13.

Generally strong ecosystem. JavaScript has one of the strongest user-driven eco-
systems. Throughout the book we’ll use many third-
party tools, and I encourage you to explore further to
build out your own toolkit.

JavaScript is everywhere. JavaScript is in the browser, on the server, on the
desktop, on mobile devices, and even on embedded
devices.

JavaScript is easy to learn. JavaScript is renowned for being easy to get started
with. Perhaps it’s hard to master, but that’s also true
of any programming language.

6 CHAPTER 1 Getting started: establishing your data pipeline

Reason Details

JavaScript programmers are easy to find. In case you need to hire someone, JavaScript pro-
grammers are everywhere.

JavaScript is evolving. The language continues to get safer, more reliable,
and more convenient. It’s refined with each succes-
sive version of the ECMAScript standard.

JavaScript and JSON go hand in hand. The JSON data format, the data format of the web,
evolved from JavaScript. JavaScript has built-in tools
for working with JSON as do many third-party tools
and libraries.

1.6 Is JavaScript appropriate for data analysis?
We have no reason to single out JavaScript as a language that’s not suited to data analy-
sis. The best argument against JavaScript is that languages such as Python or R, let’s say,
have more experience behind them. By this, I mean they’ve built up a reputation and an
ecosystem for this kind of work. JavaScript can get there as well, if that’s how you want
to use JavaScript. It certainly is how I want to use JavaScript, and I think once data anal-
ysis in JavaScript takes off it will move quickly.

I expect criticism against JavaScript for data analysis. One argument will be that
JavaScript doesn’t have the performance. Similar to Python, JavaScript is an interpreted
language, and both have restricted performance because of this. Python works around this
with its well-known native C libraries that compensate for its performance issues. Let it be
known that JavaScript has native libraries like this as well! And while JavaScript was never
the most high-performance language in town, its performance has improved significantly
thanks to the innovation and effort that went into the V8 engine and the Chrome browser.

Another argument against JavaScript may be that it isn’t a high-quality language. The
JavaScript language has design flaws (what language doesn’t?) and a checkered history.
As JavaScript coders, you’ve learned to work around the problems it throws at us, and
yet you’re still productive. Over time and through various revisions, the language con-
tinues to evolve, improve, and become a better language. These days I spend more time
with TypeScript than JavaScript. This provides the benefits of type safety and intellisense
when needed, on top of everything else to love about JavaScript.

One major strength that Python has in its corner is the fantastic exploratory coding
environment that’s now called Jupyter Notebook. Please be aware, though, that Jupyter
now works with JavaScript! That’s right, you can do exploratory coding in Jupyter with
JavaScript in much the same way professional data analysts use Jupyter and Python. It’s
still early days for this . . . it does work, and you can use it, but the experience is not yet as
complete and polished as you’d like it.

Python and R have strong and established communities and ecosystems relating to
data analysis. JavaScript also has a strong community and ecosystem, although it doesn’t

Table 1.1 Reasons for using JavaScript for data wrangling (continued)

 7Assembling your toolkit

yet have that strength in the area of data analysis. JavaScript does have a strong data
visualization community and ecosystem. That’s a great start! It means that the output
of data analysis often ends up being visualized in JavaScript anyway. Books on bridg-
ing Python to JavaScript attest to this, but working across languages in that way sounds
inconvenient to me.

JavaScript will never take away the role for Python and R for data analysis. They’re
already well established for data analysis, and I don’t expect that JavaScript could ever
overtake them. Indeed, it’s not my intention to turn people away from those languages.
I would, however, like to show JavaScript programmers that it’s possible for them to do
everything they need to do without leaving JavaScript.

1.7 Navigating the JavaScript ecosystem
The JavaScript ecosystem is huge and can be overwhelming for newcomers. Experi-
enced JavaScript developers treat the ecosystem as part of their toolkit. Need to accom-
plish something? A package that does what you want on npm (node package manager)
or Bower (client-side package manager) probably already exists.

Did you find a package that almost does what you need, but not quite? Most packages
are open source. Consider forking the package and making the changes you need.

Many JavaScript libraries will help you in your data wrangling. At the start of writing,
npm listed 71 results for data analysis. This number has now grown to 115 as I near com-
pletion of this book. There might already be a library there that meets your needs.

You’ll find many tools and frameworks for visualization, building user interfaces,
creating dashboards, and constructing applications. Popular libraries such as Back-
bone, React, and AngularJS come to mind. These are useful for building web apps.
If you’re creating a build or automation script, you’ll probably want to look at Grunt,
Gulp, or Task-Mule. Or search for task runner in npm and choose something that makes
sense for you.

1.8 Assembling your toolkit
As you learn to be data wranglers, you’ll assemble your toolkit. Every developer needs
tools to do the job, and continuously upgrading your toolkit is a core theme of this
book. My most important advice to any developer is to make sure that you have good
tools and that you know how to use them. Your tools must be reliable, they must help
you be productive, and you must understand how to use them well.

Although this book will introduce you to many new tools and techniques, we aren’t
going to spend any time on fundamental development tools. I’ll take it for granted that
you already have a text editor and a version control system and that you know how to
use them.

For most of this book, you’ll use Node.js to develop code, although most of the code
you write will also work in the browser, on a mobile (using Ionic), or on a desktop (using
Electron). To follow along with the book, you should have Node.js installed. Packages
and dependencies used in this book can be installed using npm, which comes with

8 CHAPTER 1 Getting started: establishing your data pipeline

Node.js or with Bower that can be installed using npm. Please read chapter 2 for help
coming up to speed with Node.js.

You likely already have a favorite testing framework. This book doesn’t cover auto-
mated unit or integration testing, but please be aware that I do this for my most import-
ant code, and I consider it an important part of my general coding practice. I currently
use Mocha with Chai for JavaScript unit and integration testing, although there are
other good testing frameworks available. The final chapter covers a testing technique
that I call output testing; this is a simple and effective means of testing your code when
you work with data.

For any serious coding, you’ll already have a method of building and deploying your
code. Technically JavaScript doesn’t need a build process, but it can be useful or neces-
sary depending on your target environment; for example, I often work with TypeScript
and use a build process to compile the code to JavaScript. If you’re deploying your
code to a server in the cloud, you’ll most certainly want a provisioning and deployment
script. Build and deployment aren’t a focus of this book, but we discuss them briefly in
chapter 14. Otherwise I’ll assume you already have a way to get your code into your tar-
get environment or that’s a problem you’ll solve later.

Many useful libraries will help in your day-to-day coding. Underscore and Lodash
come to mind. The ubiquitous JQuery seems to be going out of fashion at the moment,
although it still contains many useful functions. For working with collections of data linq,
a port of Microsoft LINQ from the C# language, is useful. My own Data-Forge library is a
powerful tool for working with data. Moment.js is essential for working with date and
time in JavaScript. Cheerio is a library for scraping data from HTML. There are numer-
ous libraries for data visualization, including but not limited to D3, Google Charts, High-
charts, and Flot. Libraries that are useful for data analysis and statistics include jStat,
Mathjs, and Formulajs. I’ll expand more on the various libraries through this book.

Asynchronous coding deserves a special mention. Promises are an expressive and
cohesive way of managing your asynchronous coding, and I definitely think you should
understand how to use them. Please see chapter 2 for an overview of asynchronous cod-
ing and promises.

Most important for your work is having a good setup for exploratory coding. This pro-
cess is important for inspecting, analyzing, and understanding your data. It’s often called
prototyping. It’s the process of rapidly building up code step by step in an iterative fashion,
starting from simple beginnings and building up to more complex code—a process we’ll
use often throughout this book. While prototyping the code, we also delve deep into your
data to understand its structure and shape. We’ll talk more about this in chapter 5.

In the next section, we’ll talk about the data-wrangling process and flesh out a data
pipeline that will help you understand how to fit together all the pieces of the puzzle.

1.9 Establishing your data pipeline
The remainder of chapter 1 is an overview of the data-wrangling process. By the end
you’ll cover an example of a data processing pipeline for a project. This is a whirlwind

 9Establishing your data pipeline

tour of data wrangling from start to end. Please note that this isn’t intended to be an
example of a typical data-wrangling project—that would be difficult because they all
have their own unique aspects. I want to give you a taste of what’s involved and what
you’ll learn from this book.

You have no code examples yet; there’s plenty of time for that through the rest of the
book, which is full of working code examples that you can try for yourself. Here we seek
to understand an example of the data-wrangling process and set the stage for the rest of
the book. Later I’ll explain each aspect of data wrangling in more depth.

1.9.1 Setting the stage

I’ve been kindly granted permission to use an interesting data set. For various exam-
ples in the book, we’ll use data from “XL Catlin Global Reef Record.” We must thank
the University of Queensland for allowing access to this data. I have no connection
with the Global Reef Record project besides an interest in using the data for examples
in this book.

The reef data was collected by divers in survey teams on reefs around the world. As the
divers move along their survey route (called a transect in the data), their cameras automat-
ically take photos and their sensors take readings (see figure 1.2). The reef and its health
are being mapped out through this data. In the future, the data collection process will
begin again and allow scientists to compare the health of reefs between then and now.

The reef data set makes for a compelling sample project. It contains time-related
data, geo-located data, data acquired by underwater sensors, photographs, and then
data generated from images by machine learning. This is a large data set, and for this
project I extract and process the parts of it that I need to create a dashboard with visual-
izations of the data. For more information on the reef survey project, please watch the
video at https://www.youtube.com/watch?v=LBmrBOVMm5Q.

I needed to build a dashboard with tables, maps, and graphs to visualize and explore
the reef data. Together we’ll work through an overview of this process, and I’ll explain
it from beginning to end, starting with capturing the data from the original MySQL

 © The Ocean Agency / XL Catlin Seaview Survey / Christophe Bailhache and Jayne Jenkins.

Figure 1.2 Divers taking measurements on the reef.

https://www.youtube.com/watch?v=LBmrBOVMm5Q

10 CHAPTER 1 Getting started: establishing your data pipeline

database, processing that data, and culminating in a web dashboard to display the data.
In this chapter, we take a bird’s-eye view and don’t dive into detail; however, in later
chapters we’ll expand on various aspects of the process presented here.

Initially I was given a sample of the reef data in CSV (comma-separated value) files.
I explored the CSV for an initial understanding of the data set. Later I was given access
to the full MySQL database. The aim was to bring this data into a production system. I
needed to organize and process the data for use in a real web application with an opera-
tional REST API that feeds data to the dashboard.

1.9.2 The data-wrangling process

Let’s examine the data-wrangling process: it’s composed of a series of phases as shown
in figure 1.3. Through this process you acquire your data, explore it, understand it,
and visualize it. We finish with the data in a production-ready format, such as a web
visualization or a report.

Figure 1.3 gives us the notion that this is a straightforward and linear process, but
if you have previous experience in software development, you’ll probably smell a rat
here. Software development is rarely this straightforward, and the phases aren’t usually
cleanly separated, so don’t be too concerned about the order of the phases presented
here. I have to present them in an order that makes sense, and a linear order is a useful
structure for the book. In chapter 5 you’ll move beyond the linear model of software
development and look at an iterative exploratory model.

Acquire, store,
retrieve

Explore Clean

Data wrangling

Analyze Visualize

Figure 1.3 The data-wrangling process

As you work through the process in this chapter, please consider that this isn’t the pro-
cess; rather this is an example of what the data-wrangling process looks like for a par-
ticular project. How the process manifests itself will be different depending on your
data and requirements. When you embark on other projects, your own process will
undoubtably look different than what I describe in this chapter.

1.9.3 Planning

Before getting into data wrangling, or any project for that matter, you should under-
stand what you’re doing. What are your requirements? What and how are you going
to build your software? What problems are likely to come up, and how will you deal
with them? What does your data look like? What questions should you ask of the data?
These are the kinds of questions you should ask yourself when planning a new project.

When you’re doing any sort of software development, it’s important to start with
planning. The biggest problem I see in many programmers is their failure to think and
plan out their work before coding. In my experience, one of the best ways to improve as
a coder is to become better at planning.

 11Establishing your data pipeline

Why? Because planning leads to better outcomes through better implementation
and fewer mistakes. But you must be careful not to over plan! Planning for a future that’s
unlikely to happen leads to overengineering.

You might need to do exploratory coding before you can plan! This is an example of the
phases not being cleanly separated. If you don’t have enough information to plan, then
move forward with exploratory coding and return to planning when you have a better
understanding of the problem you’re trying to solve.

Planning is an important part of an effective feedback loop (see figure 1.4). Plan-
ning involves working through the mistakes that will likely happen and figuring out
how to avoid those mistakes. Avoiding mistakes saves you much time and anguish. Each
trip around the feedback loop is a valuable experience, improving your understanding
of the project and your ability to plan and execute.

To plan this project, let’s note several requirements for the end product:

¡	Create a web dashboard to provide easy browsing of the reef data.
¡	Summarize reefs and surveys completed through tables, charts, and maps.

Requirements usually change over time as you develop your understanding of the proj-
ect. Don’t be concerned if this happens. Changing requirements is natural, but be
careful: it can also be symptomatic of poor planning or scope creep.

At this stage, I plan the structure of the website, as shown in the figure 1.5.

Plan

Inspect/
review

Code

Figure 1.4 The
feedback loop

Home

Reef 1
Page per reef

Page per survey

Home page - lists all reefs

Survey 1 Survey 2 Survey 3

Reef 2 Reef 3

Figure 1.5
Dashboard
website
structure

12 CHAPTER 1 Getting started: establishing your data pipeline

Simple wireframe mockups can help us solidify the plan. Figure 1.6 is an example.
During planning, you need to think of the problems that might arise. This will help you
to preemptively plan solutions to those problems, but please make sure your approach
is balanced. If you believe a problem has little chance of arising, you should spend little
effort mitigating against it. For example, here are several of the problems that I might
encounter while working with the reef data set and building the dashboard:

¡	Due to its size, several of the tables contain more than a million records. It might
take a long time to copy the MySQL database, although it can run for as many
hours as we need it to. I have little need to optimize this process because it hap-
pens only once, so it isn’t time critical.

¡	There will likely be problems with the data that need to be cleaned up, but I won’t
know about those until I explore the data set (see chapter 6 for data cleanup and
preparation).

¡	If the visualizations in the dashboard are slow to load or sluggish in performance,
you can prebake the data into an optimized format (see chapters 6 and 7 for
more on this).

Of primary importance in the planning phase is to have an idea of what you want from
the data. Ask yourself the following questions: What do you need to know from the
data? What questions are you asking of the data?

Map Table

Tabs to switch between
map and table

Charts

Map or table, depending
on which tab is selected

Figure 1.6 Dashboard page mockup

 13Establishing your data pipeline

For your example, here are several of the questions to ask of the reef data:

¡	What’s the average temperature per reef in Australia reefs that were surveyed?
¡	What’s the total coverage (distance traversed) for each reef?
¡	What’s the average dive depth per reef?

Often, despite planning, you may find that things don’t go according to plan. When
this happens, take a break and take time to reassess the situation. When necessary,
come back to planning and work through it again. Return to planning at any time
when things go wrong or if you need confirmation that you’re on the right track.

1.9.4 Acquisition, storage, and retrieval

In this phase, you capture the data and store it in an appropriate format. You need the
data stored in a format where you can conveniently and effectively query and retrieve it.

Data acquisition started with a sample CSV file that was emailed from the University
of Queensland. I did a mini exploration of the sample data to get a feel for it. The sample
data was small enough that I could load it in Excel.

I needed to get an idea of what I was dealing with before writing any code. When
looking at the full data set, I used a SQL database viewer called HeidiSQL (figure 1.7)
to connect to the remote database, explore the data, and develop understanding of it.

Due to slow internet speeds, remote data access wasn’t going to work well for explor-
atory coding. I needed to download the data to a local database for efficient access. I
also wanted the data locally so that I could make changes to it as needed, and I couldn’t
make changes to a database that I didn’t own. I planned to copy the data down to a local
MongoDB database (figure 1.8).

Figure 1.7 Inspecting an SQL table in HeidiSQL

14 CHAPTER 1 Getting started: establishing your data pipeline

You might wonder why I chose MongoDB? Well, the choice is somewhat arbitrary. You
need to choose a database that works well for you and your project. I like MongoDB for
several reasons:

¡	It’s simple to install.
¡	It works well with JavaScript and JSON.
¡	It’s easy to store and retrieve data.
¡	The query language is built into the programming language.
¡	Ad hoc or irregular data can be stored.
¡	It has good performance.

If you’re concerned that moving the data from SQL to MongoDB will cause the data to
lose structure, please don’t be: MongoDB can store structured and relational data just
as well as SQL. They’re different, and MongoDB doesn’t have the convenience of SQL
joins and it doesn’t enforce structure or relationships—but these are features that you
can easily emulate in your own code.

Something else that’s important with MongoDB is that there’s no need to predefine
a schema. You don’t have to commit to the final shape of your data! That’s great because
I don’t yet know the final shape of my data. Not using a schema reduces the burden of
designing your data, and it allows you to more easily evolve your data as you come to
understand your project better.

You’ll learn more about SQL, MongoDB, and other data sources in chapter 3.
At this point it’s time to start coding. I must write a script to copy from the SQL database

to MongoDB. I start by using nodejs-mysql to load a MySQL table into memory from the
remote database. With large databases, this isn’t realistic, but it did work on this occasion. In
chapters 8 and 9, we’ll talk about working with data sets that are too large to fit into memory.

With the SQL table loaded into memory, you now use the MongoDB API to insert the
data into our local MongoDB database instance (figure 1.9).

Now I can assemble the code I have so far, and I have a Node.js script that can repli-
cate a MySQL table to MongoDB. I can now easily scale this up and have a script that can
replicate the entire MySQL database to our local MongoDB instance.

How much data am I pulling down and how long will it take? Note here that I’m not
yet processing the data or transforming it in any way. That comes later when I have a
local database and a better understanding of the data.

It took many hours to replicate this database, and that’s with a lousy internet connec-
tion. Long-running processes like this that depend on fragile external resources should
be designed to be fault-tolerant and restartable. We’ll touch on these points again in
chapter 14. The important thing, though, is that most of the time the script was doing
its work without intervention, and it didn’t cost much of my own time. I’m happy to wait

MongoDB
database

Remote PC Local PC

SQL database
Figure 1.8 Pulling the data
from SQL to MongoDB

 15Establishing your data pipeline

for this process to complete because having a local copy of the data makes all future
interactions with it more efficient.

Now that I have a local copy of the database, we are almost ready to begin a more
complete exploration of the data. First, though, I must retrieve the data.

I use the MongoDB API to query the local database. Unlike SQL, the MongoDB
query language is integrated into JavaScript (or other languages, depending on your
language of choice).

In this case, you can get away with a basic query, but you can do so much more with a
MongoDB query, including

¡	Filtering records
¡	Filtering data returned for each record
¡	Sorting records
¡	Skipping and limiting records to view a reduced window of the data

This is one way to acquire data, but many other ways exist. Many different data formats
and data storage solutions can be used. You’ll dive into details on MongoDB in chapter 8.

1.9.5 Exploratory coding

In this phase, you use code to deeply explore your data and build your understanding
of it. With a better understanding, you can start to make assumptions about the struc-
ture and consistency of the data. Assumptions must be checked, but you can do that
easily with code!

We write code to poke, prod, and tease the data. We call this exploratory coding (also
often called prototyping), and it helps us get to know our data while producing poten-
tially useful code.

It’s important to work with a smaller subset of data at this point. Attempting to work
with the entire data set can be inefficient and counterproductive, although of course it
depends on the size of your particular data set.

Exploratory coding is the process of incrementally building your code through an
iterative and interactive process (figure 1.10). Code a few lines, then run the code and
inspect the output, repeat. Repeating this process builds up your code and understand-
ing at the same time.

Remote SQL server

SQL database

SQL table

Node.js

MongoDB database

Local development PC

A Node.js script downloads an SQL table
into memory, then inserts the data into a

MongoDB database.

JavaScript script

Figure 1.9 Downloading an SQL database table with a Node.js script

16 CHAPTER 1 Getting started: establishing your data pipeline

The simplest way to start looking at the data is to use a database viewer. I already used
HeidiSQL to look at the SQL database. Now I use Robomongo (recently renamed to
Robo 3T) to look at the contents of my local MongoDB database (figure 1.11).

Using code, I explore the data, looking at the first and last records and the data types
they contain. I print the first few records to the console and see the following:

> [{ _id: 10001,
 reef_name: 'North Opal Reef',
 sub_region: 'Cairns-Cooktown',
 local_region: 'Great Barrier Reef',
 country: 'Australia',
 region: 'Australia',
 latitude: -16.194318893060213,
 longitude: 145.89624754492613 },
 { _id: 10002,
 reef_name: 'North Opal Reef',
 sub_region: 'Cairns-Cooktown',
 local_region: 'Great Barrier Reef',
 country: 'Australia',
 region: 'Australia',
 latitude: -16.18198943421998,
 longitude: 145.89718533957503 },
 { _id: 10003,
 reef_name: 'North Opal Reef',
 sub_region: 'Cairns-Cooktown',
 local_region: 'Great Barrier Reef',
 country: 'Australia',
 region: 'Australia',
 latitude: -16.17732916639253,
 longitude: 145.88907464416826 }]

Code Evaluate Inspect

Figure 1.10 Exploratory coding process

Each column is a field in
the document.

Each row is
a document in
the collection.

Figure 1.11 Looking at the transects collection in Robomongo

 17Establishing your data pipeline

From looking at the data, I’m getting a feel for the shape of it and can ask the follow-
ing questions: What columns do I have? How many records am I dealing with? Again,
using code, I analyze the data and print the answers to the console:

Num columns: 59
Columns: _id,transectid,exp_id,start_datetime,…
Num records: 812

With the help of my open source data-wrangling toolkit Data-Forge, I can understand
the types of data and the frequency of the values. I print the results to the console and
learn even more about my data:

__index__ Type Frequency Column
--------- ------ ------------------- --------------------------
0 number 100 _id
1 number 100 transectid
2 number 100 exp_id
3 string 100 start_datetime
4 string 100 end_datetime
5 string 100 campaing
…
__index__ Value Frequency Column
--------- -------------------------------- ------------------- -------
0 Australia 31.896551724137932 region
1 Atlantic 28.57142857142857 region
2 Southeast Asia 16.133004926108374 region
3 Pacific 15.024630541871922 region
…

You’ll learn more about using Data-Forge and what it can do throughout the book,
especially in chapter 9.

Now that I have a basic understanding of the data, I can start to lay out our assump-
tions about it. Is each column expected to have only a certain type of data? Is the data
consistent?

Well, I can’t know this yet. I’m working with a large data set, and I haven’t yet looked
at every single record. In fact, I can’t manually inspect each record because I have too
many! However, I can easily use code to test my assumptions.

I write an assumption checking script that will verify my assumptions about the data.
This is a Node.js script that inspects each record in the database and checks that each
field contains values with the same types that we expect. You’ll look at code examples
for assumption checking in chapter 5.

Data can sometimes be frustratingly inconsistent. Problems can easily hide for a long
time in large data sets. My assumption checking script gives me peace of mind and
reduces the likelihood that I’ll later be taken by surprise by nasty issues in the data.

Running the assumption checking script shows that my assumptions about the data
don’t bear out. I find that I have unexpected values in the dive_temperature field that I
can now find on closer inspection in Robomongo (figure 1.12).

Why is the data broken? That’s hard to say. Maybe several of the sensors were faulty or
working intermittently. It can be difficult to understand why faulty data comes into your
system the way it does.

18 CHAPTER 1 Getting started: establishing your data pipeline

What if the data doesn’t meet expectations? Then we have to rectify the data or adapt
our workflow to fit, so next we move on to data cleanup and preparation.

You’ve finished this section, but you haven’t yet finished your exploratory coding.
You can continue exploratory coding throughout all phases of data wrangling. When-
ever you need to try something new with the data, test an idea, or test code, you can
return to exploratory coding to iterate and experiment. You’ll spend a whole chapter
on exploratory coding in chapter 5.

1.9.6 Clean and prepare

Did your data come in the format you expected? Is your data fit for production usage?
In the clean and prepare phase, you rectify issues with the data and make it easier to deal
with downstream. You can also normalize it and restructure it for more efficient use in
production.

The data you receive might come in any format! It might contain any number of
problems. It doesn’t matter; you still have to deal with it. The assumption checking
script has already found that the data isn’t willing to conform to my expectations! I have
work to do now to clean up the data to make it match my desired format.

I know that my data contains invalid temperature values. I could remove records with
invalid temperatures from my database, but then I’d lose other useful data. Instead, I’ll
work around this problem later, filtering out records with invalid temperatures as needed.

For the sake of an example, let’s look at a different problem: the date/time fields
in the surveys collection. You can see that this field is stored as a string rather than a
JavaScript date/time object (figure 1.13).

With date/time fields stored as strings, this opens the possibility that they might be
stored with inconsistent formats. In reality, my sample data is well structured in this
regard, but let’s imagine for this example that several of the dates are stored with time
zone information that assume an Australian time zone. This sort of thing can be an insid-
ious and well-hidden problem; working with dates/times often has difficulties like this.

Figure 1.12 Inspecting bad
temperature values in Robomongo

Figure 1.13 Date/time fields in the
surveys collection are string values.

 19Establishing your data pipeline

To fix this data, I write another Node.js script. For each record, it examines the fields
and if necessary fixes the data. It must then save the repaired data back to the database.
This kind of issue isn’t difficult to fix; it’s spotting the problem in the first place that’s
the difficult part. But you might also stumble on other issues that aren’t so easy to fix,
and fixing them could be time consuming. In many cases, it will be more efficient to
deal with the bad data at runtime rather than trying to fix it offline.

At this stage, you might also consider normalizing or standardizing your data to
ensure that it’s in a suitable format for analysis, to simplify your downstream code, or for
better performance. We’ll see more examples of data problems and fixes in chapter 6.

1.9.7 Analysis

In this phase, you analyze the data. You ask and answer specific questions about the data.
It’s a further step in understanding the data and extrapolating meaningful insights
from it.

Now that I have data that’s cleaned and prepared for use, it’s time to do analysis. I
want to do much with the data. I want to understand the total distance traversed in each
survey. I want to compute the average water temperature for each reef. I want to under-
stand the average depth for each reef.

I start by looking at the total distance traveled by divers for each reef. I need to aggre-
gate and summarize the data. The aggregation takes the form of grouping by reef.
The summarization comes in the form of summing the distance traveled for each reef.
Here’s the result of this analysis:

__index__ reef_name distance
------------- ------------- ------------------
Opal Reef Opal Reef 15.526000000000002
Holmes Reef Holmes Reef 13.031
Flinders Reef Flinders Reef 16.344
Myrmidon Reef Myrmidon Reef 7.263999999999999
Davies Reef Davies Reef 3.297
…

What if the data doesn’t meet expectations? Then we have to rectify the data or adapt
our workflow to fit, so next we move on to data cleanup and preparation.

You’ve finished this section, but you haven’t yet finished your exploratory coding.
You can continue exploratory coding throughout all phases of data wrangling. When-
ever you need to try something new with the data, test an idea, or test code, you can
return to exploratory coding to iterate and experiment. You’ll spend a whole chapter
on exploratory coding in chapter 5.

1.9.6 Clean and prepare

Did your data come in the format you expected? Is your data fit for production usage?
In the clean and prepare phase, you rectify issues with the data and make it easier to deal
with downstream. You can also normalize it and restructure it for more efficient use in
production.

The data you receive might come in any format! It might contain any number of
problems. It doesn’t matter; you still have to deal with it. The assumption checking
script has already found that the data isn’t willing to conform to my expectations! I have
work to do now to clean up the data to make it match my desired format.

I know that my data contains invalid temperature values. I could remove records with
invalid temperatures from my database, but then I’d lose other useful data. Instead, I’ll
work around this problem later, filtering out records with invalid temperatures as needed.

For the sake of an example, let’s look at a different problem: the date/time fields
in the surveys collection. You can see that this field is stored as a string rather than a
JavaScript date/time object (figure 1.13).

With date/time fields stored as strings, this opens the possibility that they might be
stored with inconsistent formats. In reality, my sample data is well structured in this
regard, but let’s imagine for this example that several of the dates are stored with time
zone information that assume an Australian time zone. This sort of thing can be an insid-
ious and well-hidden problem; working with dates/times often has difficulties like this.

Figure 1.12 Inspecting bad
temperature values in Robomongo

Figure 1.13 Date/time fields in the
surveys collection are string values.

20 CHAPTER 1 Getting started: establishing your data pipeline

The code for this can easily be extended. For example, I already have the data grouped
by reef, so I’ll add average temperature per reef, and now I have both total distance
and average temperature:

__index__ reef_name distance temperature
------------- ------------- ------------------ ------------------
Opal Reef Opal Reef 15.526000000000002 22.625
Holmes Reef Holmes Reef 13.031 16.487499999999997
Flinders Reef Flinders Reef 16.344 16.60909090909091
Myrmidon Reef Myrmidon Reef 7.263999999999999 0
…

With slight changes to the code I can ask similar questions, such as what’s the average
temperature by country. This time, instead of grouping by reef, I group by country,
which is a different way of looking at the data:

__index__ country distance
--------- --------- -----------------
Australia Australia 350.4500000000004
Curacao Curacao 38.48100000000001
Bonaire Bonaire 32.39100000000001
Aruba Aruba 8.491
Belize Belize 38.45900000000001

This gives you a taste for data analysis, but stay tuned; you’ll spend more time on this
and look at code examples in chapter 9.

1.9.8 Visualization

Now you come to what’s arguably the most exciting phase. Here you visualize the data
and bring it to life. This is the final phase in understanding your data. Rendering the
data in a visual way can bring forth insights that were otherwise difficult to see.

After you explore and analyze the data, it’s time to visualize it and understand it in
a different light. Visualization completes your understanding of the data and allows
you to easily see what might have otherwise remained hidden. You seek to expose any
remaining problems in the data through visualization.

For this section, I need a more complex infrastructure (see figure 1.14). I need

¡	A server
¡	A REST API to expose your data
¡	A simple web application to render the visualization

I build a simple web server using Express.js. The web server hosts a REST API that
exposes the reef data using HTTP GET. The REST API is the interface between the
server and your web application (figure 1.14).

Database REST API Web app Chart

Figure 1.14 Infrastructure for a web app with a chart

 21Establishing your data pipeline

Next, I create a simple web application that uses the REST API to retrieve the data in
JSON format. My simple web app retrieves data from the database using the REST API, and
I can put that data to work. I’m using C3 here to render a chart. I add the chart to the web
page and use JavaScript to inject the data. We’ll learn more about C3 later in the book.

But I have a big problem with the first iteration of the chart. It displays the tempera-
ture for each survey, but there’s too much data to be represented in a bar chart. And
this isn’t what I wanted anyway. Instead, I want to show average temperature for each
reef, so I need to take the code that was developed in the analysis phase and move that
code to the browser. In addition, I filter down the data to reefs in Australia, which helps
cut down the data somewhat.

Building on the code from the analysis phase, I filter out non-Australian reefs, group
by reef name, and then compute the average temperature for each reef. We then plug
this data into the chart. You can see the result in figure 1.15. (To see the color, refer to
the electronic versions of the book.)

30

25

20

15

10

5

0

Myrmidon Reef Chicken Reef Yongala Reef Wilson Island Reef
One Tree Island Reef Acropolis Reef Ribbon Reef 3 Wreck Island
Heron Island Reef Knife Reef Holmes Reef Flinders Reef
Osprey Reef Ribbon Reef 9 Ribbon Reef 10 North Bondi
Middle Head North Head South Head Balgowlah
Manly Point Manly Outside Shelley Beach Chowder Bay
Shark Bay Clovelly Magic Point Opal Reef
Davies Reef North Opal Reef 14152 Reef 14153 Reef
Tydeman Reef Yonge Reef 15041 Reef 13050 Reef
Wilson Reef Agincourt Reef 5 14034 Reef Day Reef
Ribbon Reef 5 St.Crispin Reef Agincourt Reef 4 13040 Reef
Agincourt Reef 2b Mantis Reef 13074 Reef 13116 Reef
Tijou Reef Norman Reef Great Detached Reef Saunders Reef
Wishbone Reef Tydemann Reef

Figure 1.15 Chart showing temperature of reefs in Australia

22 CHAPTER 1 Getting started: establishing your data pipeline

1.9.9 Getting to production

In this final phase of data wrangling, you deliver your data pipeline to your audience.
We’ll deploy the web app to the production environment. This is arguably the most diffi-
cult part of this process: bringing a production system online. By production, I mean a
system that’s in operation and being used by someone, typically a client or the general
public. That’s where it must exist to reach your audience.

There will be times when you do a one-time data analysis and then throw away the
code. When that’s adequate for the job, you don’t need to move that code to produc-
tion, so you won’t have the concerns and difficulties of such (lucky you), although most
of the time you need to get your code to the place where it needs to run.

You might move your code to a web service, a front end, a mobile app, or a desktop
app. After moving your code to production, it will run automatically or on demand.
Often it will process data in real-time, and it might generate reports and visualizations
or whatever it needs to do.

In this case I built a dashboard to display and explore the reef data. The final dash-
board looks like figure 1.16.

The code covered so far in this chapter is already in JavaScript, so it isn’t difficult to
slot it into place in my JavaScript production environment. This is one of the major ben-
efits of doing all our data-related work in JavaScript. As you move through the explor-
atory phase and toward production, you’ll naturally take more care with your coding.

30

25

20

15

10

5

0
0

30
35

25
20
15
10

5
0

0

Avg temperature per reef

Distance traveled per reef

Figure 1.16 The reef data dashboard

 23Establishing your data pipeline

With a plan and direction, you might engage in test-driven development or another
form of automated testing (more on that in chapter 14).

The dashboard also has a table of reefs where you can drill down for a closer look
(figure 1.17). To make the data display efficiently in the dashboard, I’ve prebaked vari-
ous data analysis into the database.

To get your code into production, you’ll most likely need a form of build or deploy-
ment script, maybe both. The build script will do such things as static error checking,
concatenation, minification, and packaging your code for deployment. Your deploy-
ment script takes your code and copies it to the environment where it will run. You typi-
cally need a deployment script when you’re deploying a server or microservice. To host
your server in the cloud, you may also need a provisioning script. This is a script that
creates the environment in which the code will run. It might create a VM from an image
and then install dependencies—for example, Node.js and MongoDB.

With your code moved to the production environment, you have a whole new set of
issues to deal with:

¡	What happens when you get data updates that don’t fit your initial assumptions?
¡	What happens when your code crashes?
¡	How do you know if your code is having problems?
¡	What happens when your system is overloaded?

You’ll explore these issues and how to approach them in chapter 14.
Welcome to the world of data wrangling. You now have an understanding of what a

data-wrangling project might look like, and you’ll spend the rest of the book exploring
the various phases of the process, but before that, you might need help getting started
with Node.js, so that’s what we’ll cover in chapter 2.

Figure 1.17 Table of
reefs in the dashboard

24 CHAPTER 1 Getting started: establishing your data pipeline

Summary

¡	Data wrangling is the entire process of working with data from acquisition
through processing and analysis, then finally to reporting and visualization.

¡	Data analysis is a part of data wrangling, and it can be done in JavaScript.
¡	JavaScript is already a capable language and is improving with each new iteration

of the standard.
¡	As with any coding, data wrangling can be approached in a range of ways. It has

a spectrum from ad hoc throw-away coding to disciplined high-quality coding.
Where you fit on this spectrum depends on the time you have and the intended
longevity of the code.

¡	Exploratory coding is important for prototyping code and understanding data.
¡	Data wrangling has a number of phases: acquisition, cleanup, transformation,

then analysis, reporting, and visualization.
¡	The phases are rarely cleanly separated; they’re often interspersed and tangled

up with each other.
¡	You should always start with planning.
¡	It’s important to check assumptions about the data.
¡	Moving code to production involves many new issues.

25

2Getting started
with Node.js

This chapter covers
¡	Installing Node.js and creating a project

¡	Creating a command-line application

¡	Creating a reusable code library

¡	Creating a simple web server with a REST API

¡	Reviewing a primer on asynchronous
programming and promises

In this book we’ll use Node.js often, and this chapter will help you become pro-
ductive with it. You’ll learn fundamentals of creating projects and applications with
Node.js. We’ll only cover the basics, but we’ll cover enough for you to use Node.js
for the rest of the book.

Toward the end of this chapter there’s a primer on asynchronous programming
and promises. This is more advanced, but you’ll need it because Node.js and JavaScript
in general rely heavily on the use of asynchronous coding.

If you already have experience with Node.js and asynchronous coding, then you
might want to skip most of this chapter and move directly to chapter 3. First, though,
please at least read the sections “Starting your toolkit” and “Getting the code and
data” before you move on.

26 CHAPTER 2 Getting started with Node.js

2.1 Starting your toolkit
A core theme of this book is building out our data-wrangling toolkit as we learn.
We’ll start developing our toolkit in this chapter and continue to expand it as we go.
Table 2.1 lists the tools that are introduced in this chapter.

Table 2.1 Tools used in chapter 2

Platform Tool Used for

Node.js Command-line app Applications that run from the
command line for all manner of
data-wrangling tasks

Reusable code module Organizing and reusing code in
our Node.js project

Node.js with Express Static web server Serving web pages and static
data to the browser

REST API Serving dynamic data to web
apps and visualizations

Browser Web page / web app Web apps for displaying data,
visualizations, reports, and so on

Node.js and Browser Asynchronous coding The connection between Node.js
and the browser is asynchronous;
therefore, much of your coding in
JavaScript is asynchronous.

Promises Promises are a design pattern
that helps manage asynchronous
operations.

For JavaScript developers, Node.js and the browser are our most fundamental tools.
These days JavaScript can run in so many environments, but this book focuses on the
main places where data wrangling happens:

¡	On your development workstation for regular or ad hoc data processing, manipula-
tion, and visualization

¡	On your production web server for automated data processing, access, and
reporting

¡	Data display, editing, and visualization in the browser

In this chapter we’ll learn how to run code under both Node.js and the browser. We’ll
end each section with template code that you can use throughout the book and beyond
as a starting point for your own data-wrangling projects.

We’ll continue to work on your toolkit throughout this book, and we’ll fill it with code
that we write, third-party libraries, and various software packages. As you gain experience
you’ll also adopt various methods, techniques, and design patterns. These are mental tools,
and they also form an important part of our toolkit. After you finish the book, my hope is
that you’ll continue to build your toolkit through your ongoing day-to-day data wrangling.

 27Getting the code and data

2.2 Building a simple reporting system
It’s always useful to have a problem to solve, even when you’re learning the fundamen-
tals. We’ll produce a simple report for data. We won’t delve into any detail on any data
processing; we’ll keep this early discussion light and focused on Node.js development.

For the examples here, we’ll reuse the reef data from chapter 1. We aren’t ready yet
to deal with importing the data (we’ll come back to that in chapter 3), so we start here
with data embedded directly in our code.

Let’s consider what we’ll build in this chapter. First, we’ll create a command-line
application that produces a report based on data (figure 2.1). We’re keeping things
simple, so the data will be hard-coded into the script, and the “report” will be simple
command-line output. After the command-line app, we’ll create a web server that hosts
a REST API. The server will host a simple web page that retrieves a report from the web
server and displays it in the browser (figure 2.2).

2.3 Getting the code and data
This book comes with a large set of example code and data. You can run many of the
code listings in the book to try them out for yourself. When I say something such as
“You can run this” or “You should run this now,” that’s an instruction that you should
find the appropriate code and run it. When you run the code examples, it takes this
from an academic exercise (reading the book) to a practical experience (running the
code to see what it does), and this makes a huge difference in improving your learning
and ability to recall this knowledge.

Command-line
application

Input data Output data

Figure 2.1 What you’re creating first: a Node.js command-line app to produce a report from data

Server / REST API

Input data
HTTP protocol
via the internet Web page

Figure 2.2 What we’re creating second: displaying data in a web page that is exposed
through a REST API

28 CHAPTER 2 Getting started with Node.js

You should also make your own modifications to the code and try out changes and
experiments that interest you. Don’t be afraid to get your hands dirty and break the
code! Experimenting and breaking the code are essential to the learning process, and
they’re all part of the fun.

Each chapter (besides the first and last) has its own code repository on GitHub contain-
ing the example code and data. This section is a short primer on how to get the code set up
so that you can run it. Please refer to this section throughout the book whenever you need
a refresher. You can find the code on GitHub at https://github.com/data-wrangling-with
-javascript. Browse to that web page and you’ll see the list of code repositories. There’s
Chapter-2, Chapter-3, and so on through to Chapter-13, plus a handful of bonus
repositories.

2.3.1 Viewing the code

If you prefer not to run the code (but I encourage you to run it to get the most out
of this book) or you want to start more simply, you can also browse and read the code
online. Navigate your browser to a repository for a chapter, and you’ll see a list of the
code and data files. You can click on any file to view it and read the content.

Try it now. Point your browser at the repo for this chapter at https://github.com
/data-wrangling-with-javascript/chapter-2.

You’ll see subdirectories such as listing-2.2, listing-2.4, and so on. Many of the code list-
ings in chapter 2 can be found in these subdirectories. Navigate into each subdirectory to
view the code files there. For example, navigate down to listing-2.2 and open index.js. You
can now read the code for listing 2.2 of this chapter.

Most of the code repositories contain one file per listing, for example listing-2.1.js, list-
ing-2.2.js, and so on, although in several of the repositories, for example with chapter 2,
you’ll find subdirectories that contain multiple files for each code listing.

2.3.2 Downloading the code

As you start each chapter, you should download the code and data from the appropri-
ate repository on GitHub. You can do that in one of two ways: by downloading a zip file
of the code or by cloning the code repository.

The first and simplest method is to download the zip file provided by GitHub. For
example, for this chapter, navigate your browser to the following code repository at
https://github.com/data-wrangling-with-javascript/chapter-2.

Now find the Clone or Download button that is usually close to the top right-hand side
of the web page. Click this button and a drop-down appears; now click Download ZIP and
a zip file will download to your downloads directory. Unpack this zip file and you now
have a copy of the code for chapter 2.

The other way to get the code is to clone the Git repository. For this, you need Git
installed on your PC. Then open a command line and change to the directory where
you want the repository to be cloned. For example, let’s use Git to clone the chapter 2
repository:

git clone https://github.com/data-wrangling-with-javascript/chapter-2.git

https://github.com/data-wrangling-with-javascript
https://github.com/data-wrangling-with-javascript
https://github.com/Data-Wrangling-with-JavaScript/Chapter-2
https://github.com/Data-Wrangling-with-JavaScript/Chapter-2
https://github.com/Data-Wrangling-with-JavaScript/Chapter-2

 29Getting the code and data

After the clone has finished, you’ll have a local copy of the code in the subdirectory
Chapter-2.

2.3.3 Installing Node.js

Most of the book’s code examples are applications that run under Node.js, so it goes with-
out saying that you’ll need Node.js installed before you can run many of the code listings.

Section 2.4 gives a brief overview of how to choose a version and install Node.js.
The installation process is usually straightforward, although I don’t go into much detail
because it’s different depending on your operating system.

2.3.4 Installing dependencies

For many of the examples in the book, you’ll need to install third-party dependencies
using npm (the Node.js package manager) or Bower (a client-side package manager).

In most cases, each code listing (although sometimes several code listings are com-
bined) is a working Node.js application or web application. Each application has its
own set of dependencies that must be installed before you can run the code.

The key is to look for either the package.json and/or the bower.json file. These files
indicate to you that external packages must be installed before you can run the code. If
you try to run the code without first installing the dependencies, it’s not going to work.

For Node.js projects, npm packages are installed by running the following command
(in the same directory as package.json):

npm install

For web application projects, packages are installed using Bower with the following
command (in the same directory as bower.json):

bower install

After installation has completed, you have all the dependencies required to run the code.

2.3.5 Running Node.js code

How you run the code depends on whether it’s a Node.js project or a web application
project.

You can identify a Node.js project or application because it will have an index.js (the
JavaScript code that is the entry point for the application) and a package.json (that tracks
the app’s dependencies). Using the name index.js for the entry point file is a common
convention in the Node.js world.

To run a Node.js example script from this book, you’ll need to open a command
line, change directory to the Node.js project (the same directory as the index.js or
package.json), and run node index.js. For example, soon you’ll run chapter 2’s
listing-2.2 like this:

cd Chapter-2
cd listing-2.2
node index.js

30 CHAPTER 2 Getting started with Node.js

Most other chapters have one file per listing—for example, listing-3.1 in chapter 3,
which you’d run like this:

cd Chapter-3
node listing-3.1.js

Running a Node.js script is simple if you make sure you have the dependencies installed
(by running npm install) and know which script you want to run.

2.3.6 Running a web application

Several of the book’s examples are web applications that require a web server to
host them.

You’ll know these projects because they’ll often have an index.html (the main
HTML file for the web app) or an HTML file named after the listing (for example,
listing-1.3.html), and they usually also have a bower.json (to track dependencies) and
often also an app.js (the JavaScript code for the web app).

Several of the more complex web apps require a custom Node.js web server, and
these web apps are often contained within the public subdirectory of a Node.js project.
To run these web apps, you run the Node.js app:

node index.js

Now navigate your browser to http://localhost:3000/ and the web application will render
in the browser. Several of the simpler web apps don’t need a custom Node.js web server.
In those cases, we’ll host the web application using a tool called live-server. This is a simple
command-line web server that you can install live globally on your system as follows:

npm install -g live-server

We can run live-server with no arguments in a directory that contains an index.html:

live-server

This starts a web server for the web app and automatically opens a browser that points
to it. This is a convenient way to prototype web apps and visualizations that don’t
require (or at least don’t yet require) a custom web server. We’ll learn more about live-
server and how to use it in chapter 5.

2.3.7 Getting the data

Many of the code repositories also contain data files. Usually CSV (comma-separated
values) or JSON (JavaScript object notation) data files. To find these data files, search
for files with .csv or .json extensions.

The code listings are set up to read in these data files automatically, but it’s a good
idea to have a look at the data and get a feel for it. CSV files can be loaded in Excel or
your favorite spreadsheet viewer. Both CSV and JSON files can also just be loaded in a
text editor to view the raw data.

The data files in the GitHub repositories are used with many of the code examples
in the book, but they’re also there for you to use however you want, for your own proto-
types, data pipelines, and visualizations.

 31Installing Node.js

2.3.8 Getting the code for chapter 2

We’ve had a brief overview on how to get the code, install dependencies, and run the
various listings in the book. In future chapters, the instructions on getting the code and
data will be brief, so please come back to this chapter whenever you need help on this.

Now please get the code for chapter 2. Download the zip file or clone the Chapter-2
repository at https://github.com/data-wrangling-with-javascript/chapter-2. Next, open a
command line, change to the Chapter-2 directory, and you’re ready to start running the
code examples:

cd Chapter-2

Before you run the code for a listing, say listing 2.2 (presented in the next section),
remember to change to the directory and install the dependencies:

cd listing-2.2
npm install

Now you can run the code as follows:

node index.js

Let’s get into it!

2.4 Installing Node.js
Node.js is our central tool, so please get it installed on your development PC. It can be
installed for Windows, Mac, or Linux. Download the installer for your platform from
https://nodejs.org/en/download. Installation is simple: run the installer and then fol-
low the prompts as it walks you through the process. Node.js can also be installed by
various package managers such as apt-get on Linux. You can read more about that at
https://nodejs.org/en/download/package-manager/.

Which version?
If you don’t already have Node.js installed, your first big question will be: “which version
of Node.js should I install?”

If your team already has code running in production, the answer is easy. Install the same
version of Node.js for development that your team is running in production. Your code will
be much more likely to run correctly in the production environment.

Otherwise, you must decide between the LTS (long-term support) or bleeding-edge versions.
For a mature and reliable version, install the current LTS, or to try the latest features, install
the most recent version.

Still unsure which version? NVM (node version manager) is available (in one form or
another) for all platforms and allows you to manage multiple versions of Node.js simulta-
neously on the same computer. It makes it easy to install new versions or switch between
existing versions. A warning though, this can be more complicated to install than Node.js,
although ultimately it makes Node.js installation, upgrade, and version-switching easier.
For Windows users, I recommend installing NVM through Chocolatey.

https://github.com/Data-Wrangling-with-JavaScript/Chapter-2
https://nodejs.org/en/download
https://nodejs.org/en/download/package-manager/

32 CHAPTER 2 Getting started with Node.js

Another way to run multiple versions of Node.js (and indeed any software) is to use
Vagrant to instantiate a virtual machine (VM) or Docker to instantiate a container. You
can create isolated environments to install and run different versions of Node.js with-
out them interfering with each other. This is also a great way to try out new software
versions or emulate a production environment without having to overwrite your existing
development version. We’ll use Vagrant later in the book. For more information, please
see appendix C, “Getting started with Vagrant.”

2.4.1 Checking your Node.js version

Before we get into development with Node.js, let’s check that it’s installed correctly
with the expected version. Open a command line and run

node --version

You should see output as shown in figure 2.3.

Prints Node.js version
number to the console

Command-
line prompt

Node.js
command

Argument to check
Node.js version

Figure 2.3 Start a command line and verify that
you have the right version of Node.js installed.

Node.js should have been added to your path, so you can run it from anywhere. If
you can’t run Node.js from the command line, try restarting your command line or try
logging out and then back in. Finally try restarting your PC. Depending on your system,
you might have to restart for the updated path to become available, or you may have to
configure the path for yourself.

Node.js REPL
For those new to Node.js, now is a good time to try out the REPL (read-eval-print loop) to
get a feel for the environment. Run node by itself to start the interactive environment.
Here you can execute JavaScript expressions (see figure 2.4), and this is a good way to
test ideas, run code snippets, and even try out third-party libraries. To exit the REPL, type
.exit and press Enter.

REPL
prompt

Node.js command with no
arguments starts the REPL.

Results of
JavaScript
expressions

Figure 2.4 The Node.js REPL is a great way
to try out small snippets of code and test
third-party libraries.

(continued)

 33Working with Node.js

2.5 Working with Node.js
Let’s make a Node.js application!

First, we’ll create a project. Then we’ll get into the coding: we’ll build a command-line
application followed by a simple web server.

2.5.1 Creating a Node.js project

A Node.js project is a directory that contains the JavaScript code and dependencies
that make up your Node.js application. It’s composed of a variety of files: JavaScript
code files, package.json, and a node_modules subdirectory (figure 2.5).

A Node.js project can contain any number of JavaScript files that are either entry
points (runnable from the command line), reusable code modules, or possibly both
(which can be useful for testing your code). By convention, the main entry point is nor-
mally called index.js.

The node_modules subdirectory contains third-party packages that have been
installed using npm, the node package manager. The file package.json contains details
about the project and records the installed dependencies.

package.json records
project information
and dependencies.

Other script files
and reusable
code modules

Main script file,
usually this is the
program entry point

Static files served by
the web server
(that you develop
later in this chapter)

node_modules contains
third-party libraries
and dependencies.

The files that
make up a basic
Node.js project

Figure 2.5 A Node.js project

Another way to run multiple versions of Node.js (and indeed any software) is to use
Vagrant to instantiate a virtual machine (VM) or Docker to instantiate a container. You
can create isolated environments to install and run different versions of Node.js with-
out them interfering with each other. This is also a great way to try out new software
versions or emulate a production environment without having to overwrite your existing
development version. We’ll use Vagrant later in the book. For more information, please
see appendix C, “Getting started with Vagrant.”

2.4.1 Checking your Node.js version

Before we get into development with Node.js, let’s check that it’s installed correctly
with the expected version. Open a command line and run

node --version

You should see output as shown in figure 2.3.

Prints Node.js version
number to the console

Command-
line prompt

Node.js
command

Argument to check
Node.js version

Figure 2.3 Start a command line and verify that
you have the right version of Node.js installed.

Node.js should have been added to your path, so you can run it from anywhere. If
you can’t run Node.js from the command line, try restarting your command line or try
logging out and then back in. Finally try restarting your PC. Depending on your system,
you might have to restart for the updated path to become available, or you may have to
configure the path for yourself.

Node.js REPL
For those new to Node.js, now is a good time to try out the REPL (read-eval-print loop) to
get a feel for the environment. Run node by itself to start the interactive environment.
Here you can execute JavaScript expressions (see figure 2.4), and this is a good way to
test ideas, run code snippets, and even try out third-party libraries. To exit the REPL, type
.exit and press Enter.

REPL
prompt

Node.js command with no
arguments starts the REPL.

Results of
JavaScript
expressions

Figure 2.4 The Node.js REPL is a great way
to try out small snippets of code and test
third-party libraries.

34 CHAPTER 2 Getting started with Node.js

NPM INIT

You usually start Node.js projects by using npm to create the initial package.json:

cd my-project
npm init -y

The –y parameter instructs npm to fill out the details in the package file (see the result-
ing package file in listing 2.1). If we plan to make the package public in the future (for
example, distributed using npm), then we’ll have to go back and revise it later. Otherwise,
we could omit the –y parameter and npm init will interactively prompt for those details.

Listing 2.1 Generated npm package file

{
 "name": "Code",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC"
}

ADDING THE FIRST JAvASCRIPT FILE

To get started, let’s create a Hello world program. Create an empty index.js file and add
a console.log that prints Hello world to the console (as shown in the following listing).

Listing 2.2 Your first script: Hello world

"use strict";

console.log(“Hello world!”);

You’ll find this code in the listing-2.2 subdirectory of the GitHub repository for Chapter-2,
so you don’t have to type this in yourself. If you followed the instructions in “Getting the
code and data,” you have already changed to the listing-2.2 directory and installed depen-
dencies, but to recap, let’s see that again:

cd listing-2.2
npm install

Now run the code as follows:

node index.js

If you only created the project and typed in the code manually, you’d run it like this
instead:

cd my-project
node your-script.js

Lists the
name,
version, and
license for
the package.
These are
important if
you plan to
publish your
package.

Identifies the main script in the package

 35Working with Node.js

You might wonder why you need to install dependencies for such a simple code
example. Well, truth be told—you don’t! I want you to get in the habit of doing this
because most examples do have dependencies and you do need to run npm install
to download the dependencies before you run the code. You only need to do this
once per project, though. Once you have the dependencies installed, you can run
the code listing as many times as you want.

After running the script, we see Hello world! printed to the console.
Note that we executed the node application and specified the name of our script file

(index.js). The general pattern for running a Node.js script is this:

node <script-file.js>

Replace <script-file.js> with whichever script you want to run.

Use strict
Note that the first line of listing 2.2 enables strict mode.

This statement was introduced in ECMAScript 5 and allows you to opt in to a more
restricted and safer version of the language. For example, strict mode means that vari-
ables must be declared before they can be assigned. Otherwise, it’s easy to accidentally
create new global variables when you mistype the name of the variable you intended to
use. Because the use strict statement is enclosed in quotes, it’s ignored by older ver-
sions of JavaScript.

INSTALLING NPM DEPENDENCIES

Now let’s install a third-party dependency into your newly created Node.js project. I’m
choosing to install moment here because it’s the best JavaScript library for working
with dates, and I know that it will make your life easier when you need to work with
dates and times.

If you’re working with a fresh Node.js project, you can install the moment package
into your project like this:

npm install --save moment

Note the --save parameter saves the dependency in package.json and tracks the ver-
sion number (the updated file is shown in listing 2.3). As we install each dependency,
they’re all recorded, which means we can easily restore these packages again later with
this command:

npm install

Listing-2.3 doesn’t have code in the GitHub repository, but if you want to try doing this,
you can practice by installing the moment dependency into the listing-2.2 code.

Listing 2.3 package.json with the addition of the moment dependency

{
 "name": "Code",
 "version": "1.0.0",

36 CHAPTER 2 Getting started with Node.js

 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "dependencies": {
 "moment": "2.18.1"
 }
}

Installing dependencies and tracking the version that’s installed is great. It means we don’t
have to commit our dependencies to version control. Because we can restore packages at
any time (using npm install), we can streamline our project, which makes it super-fast to
clone or copy the code for new developers or when we’re installing it on a new PC.

FINDING USEFUL PACKAGES

We can install as many packages as we need using npm and have so many useful packages
at our fingertips. Point your browser at http://www.npmjs.com and look now. Enter a
search string and you’ll find existing code libraries and command-line tools to help you
accomplish all sorts of tasks.

2.5.2 Creating a command-line application

Command-line applications are useful for all manner of data processing, transforma-
tion, and analysis tasks. Our aim here is to create a simple application to produce a
report from data.

We’ve already added a script to our Node.js project that prints “Hello world” to the
console. This is already a basic command-line application, but we need it to do more.
The output from your application is a simple report, an example of which you can see
in figure 2.6.

To keep things simple for this getting started chapter, we’ll include data directly in
the script. This isn’t scalable or convenient, and ideally, we’d load the data from a file
or database, although we haven’t covered importing data yet, so that’s something that
we’ll return to in chapter 3.

Figure 2.7 shows the data hard-coded in the JavaScript file. We’re reusing a tiny
extract of the reef data from chapter 1. Our command-line app will print a simple sum-
mary of the hard-coded data: the number of rows, the number of columns, and the
names of the columns. You can see the code in listing 2.4; make sure you jump into the
code repository and run this script to see the output.

Records the
project’s
dependencies
in this
section of
package.json

Shows the dependency on version 2.18.1 of the
moment code library. When you install moment,
you’ll see a different version than this because
you installed the latest version of moment.

Figure 2.6 Output from your simple
command-line application: printing
a basic report about our data

Figure 2.7 Simple hard-
coded data embedded
in your JavaScript file
index.js

http://www.npmjs.com

 37Working with Node.js

Listing 2.4 A basic command-line app to produce a simple report from your data

"use strict";

const data = ... array of data, see GitHub code for details ...

function generateReport (data) {
 const columns = Object.keys(data[0]); {
 return {
 numRows: data.length,
 numColumns: columns.length,
 columnNames: columns,
 };
};

const report = generateReport(data);

console.log("Number of rows: " + report.numRows););
console.log("Number of columns: " + report.numColumns););
console.log("Columns: " + report.columnNames.join(", ")););

Generating this report is far from rocket science, but here we want to focus on creating
a simple command-line application.

GENERAL PATTERN FOR A COMMAND-LINE APP

The following listing gives you a general pattern and template for your future
command-line applications. Add the logic that you need.

Listing 2.5 General pattern for a command-line app

"use strict";

const yargs = require('yargs');
const argv = yargs.argv;
const assert = require('chai').assert;

This is hard-coded data, omitted
for brevity. We’ll learn how to
import real data in chapter 3.

Shows a helper function to
generate a report from the data

Generates the
report and
outputs it to
the console

Uses yargs for access to
command-line arguments

Uses chai for its assert
library for validation

 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "dependencies": {
 "moment": "2.18.1"
 }
}

Installing dependencies and tracking the version that’s installed is great. It means we don’t
have to commit our dependencies to version control. Because we can restore packages at
any time (using npm install), we can streamline our project, which makes it super-fast to
clone or copy the code for new developers or when we’re installing it on a new PC.

FINDING USEFUL PACKAGES

We can install as many packages as we need using npm and have so many useful packages
at our fingertips. Point your browser at http://www.npmjs.com and look now. Enter a
search string and you’ll find existing code libraries and command-line tools to help you
accomplish all sorts of tasks.

2.5.2 Creating a command-line application

Command-line applications are useful for all manner of data processing, transforma-
tion, and analysis tasks. Our aim here is to create a simple application to produce a
report from data.

We’ve already added a script to our Node.js project that prints “Hello world” to the
console. This is already a basic command-line application, but we need it to do more.
The output from your application is a simple report, an example of which you can see
in figure 2.6.

To keep things simple for this getting started chapter, we’ll include data directly in
the script. This isn’t scalable or convenient, and ideally, we’d load the data from a file
or database, although we haven’t covered importing data yet, so that’s something that
we’ll return to in chapter 3.

Figure 2.7 shows the data hard-coded in the JavaScript file. We’re reusing a tiny
extract of the reef data from chapter 1. Our command-line app will print a simple sum-
mary of the hard-coded data: the number of rows, the number of columns, and the
names of the columns. You can see the code in listing 2.4; make sure you jump into the
code repository and run this script to see the output.

Records the
project’s
dependencies
in this
section of
package.json

Shows the dependency on version 2.18.1 of the
moment code library. When you install moment,
you’ll see a different version than this because
you installed the latest version of moment.

Figure 2.6 Output from your simple
command-line application: printing
a basic report about our data

Figure 2.7 Simple hard-
coded data embedded
in your JavaScript file
index.js

http://www.npmjs.com

38 CHAPTER 2 Getting started with Node.js

//
// App specific module imports here.
//

//
// Argument checking and preprocessing here.
//

//
// Implement the code for the app here.
//

You can do more with command-line applications, but that’s enough for now. Note that
I’ve added extra npm modules to the template. Yargs is used for reading command-line
arguments for input. The Chai assert library is used for validation and error handling
and reporting.

2.5.3 Creating a code library

Sometimes we might code an entire command-line app in a single file, but we can only
do this when the job is small enough. As the script grows, we can reduce complexity by
abstracting code and extracting it to reusable modules.

Let’s move our generateReport function to a separate code module. To do this, cre-
ate a new JavaScript file, say generate-report.js. Move generateReport to this new file,
as shown in the following listing. The function is exported from the code module by
assigning it to module.exports, a specially named Node.js variable.

Listing 2.6 The generateReport function is moved to a reusable code module

"use strict";

function generateReport (data) {
 const columns = Object.keys(data[0]);
 return {
 numRows: data.length,
 numColumns: columns.length,
 columnNames: columns,
 };
};

module.exports = generateReport;

The code module can now be imported into your command-line app (or indeed any
other code module) using Node’s require function as shown in listing 2.7. This is much
the same as you already saw for importing third-party npm libraries, although to import
our own libraries, we must specify an absolute or relative path. In listing 2.7, we load our
module using the path ./generate-report.js, because this indicates the module resides in
the same directory. Both listings 2.6 and 2.7 work together; you’ll find them together in
the code repository, and to try them out, you only need to run the index.js script.

Exports the function so that it can
be reused in other code modules

 39Working with Node.js

Listing 2.7 Importing the generateReport function into your command-line app

"use strict";

const data = ... array of data, see GitHub code for details ...

const generateReport = require(‘./generate-report.js’);

const report = generateReport(data);

console.log("Number of rows: " + report.numRows);
console.log("Number of columns: " + report.numColumns);
console.log("Columns: " + report.columnNames.join(", "));

GENERAL PATTERN FOR A CODE LIBRARy

The following listing is a template that you can use to create reusable toolkit functions.

Listing 2.8 General pattern for exporting a reusable toolkit function

"use strict";

// Imports here.

module.exports = function (... parameters ...) {

 //
 // Code
 //

 // Return result.
};

Note in listing 2.8 that only a single function is exported. We can also export an object,
and this allows us to export a library of functions. An example of this is shown in the
following listing.

Listing 2.9 General pattern for exporting a library of reusable functions

"use strict";

// Imports here.

module.exports = {
 someFunction1: function (param1, param2, etc) {
 //
 // Code
 //

 // Return result
 },

Requires our
reusable function
from the ‘generate-
report’ code module

We now use the function as if
it were defined in this script.

40 CHAPTER 2 Getting started with Node.js

 someFunction2: function (param1, param2, etc) {
 //
 // Code
 //

 // Return result
 },
};

2.5.4 Creating a simple web server

We created a command-line application in Node.js, and now we’ll learn how to cre-
ate a simple web server. The reason we need a web server is so that we can build web
apps and visualizations. First, we’ll create the simplest possible web server (the output
is shown in figure 2.8). Then we’ll add support for static files, which gives us a basic
foundation for building web visualizations. Last, we’ll add a REST API that allows us to
create web visualizations based on dynamic data, such as data loaded from a database
or data that has been dynamically processed by the server.

The first iteration of your web server is rather basic and far from production-ready,
but that’s all you need to start prototyping web visualizations. At a point, though, we’d
like to scale up and deliver your web visualizations to many thousands of users, but we’ll
save production issues until chapter 14 and focus here on the basics.

You should note that a Node.js web server is still a command-line application. We’ll
continue to build on what we already learned, although we’re now ramping up the com-
plexity and creating a client/server type application.

INSTALLING ExPRESS

To build our web server, we’ll use Express: a popular Node.js framework for building
web servers. We can install Express in a fresh Node.js project using npm as follows:

npm install -–save express

Although if you’re running the example code from listing 2.10 in the GitHub repo, you
need to run npm install in the listing-10 subdirectory to restore the already-registered
Express dependency.

SIMPLEST POSSIBLE WEB SERvER

The simplest possible web server is created by instantiating an Express app and instruct-
ing it to listen for incoming HTTP requests. Your first web server handles a single route
and returns the text “This is a web page!” You can see how easy this is in listing 2.10,
which shows the index.js file for your first and simplest web server.

Figure 2.8 Output from the simplest web server

 41Working with Node.js

Listing 2.10 The simplest possible web server

"use strict";

const express = require('express');
const app = express();

app.get("/", (req, res) => {
 res.send("This is a web page!");
});

app.listen(3000, () => {
 console.log("Web server listening on port 3000!");
});

You should try running this code. Change to the listing-2.10 subdirectory, install depen-
dencies with npm install, and then run node index.js. Now we have a Node.js web
server! Point your browser at http://localhost:3000 to see the web page. You’ll see
“This is a web page!” in your browser (as was shown in figure 2.8).

SERvING STATIC FILES

Having a web page that prints “This is a web page!” isn’t spectacularly useful, but we can
easily expand it to serve static files that are the foundations of any web page, and are simple
web assets such as HTML, JavaScript, and CSS files. We’ll have a public subdirectory under
our Node.js project, and this is where we’ll keep the static assets for your web app (see
figure 2.9).

To add static files to our web server, we’ll use the Express static files middleware. You
can see the code for the expanded web server in the following listing.

Listing 2.11 Adding static files to your web server

"use strict";

const express = require('express');
const path = require('path');

const app = express();

const staticFilesPath = path.join(__dirname, "public");
const staticFilesMiddleWare = express.static(staticFilesPath);
app.use("/", staticFilesMiddleWare);

app.listen(3000, () => {
 console.log("Web server listening on port 3000!");
});

Our web server can now serve static files, and we can create a basic HTML page to test
it. You can see the HTML file for your expanded simplest possible web page in the following
listing; this file lives in the public subdirectory as index.html.

Requires the Express library and
instantiates our Express application

Defines a route for the website

Starts the server and
listens for incoming
HTTP requests

The public
directory contains
static files to
be served.

Instantiates
the Express
static files
middleware

Sets the root of our website
to the public directory

42 CHAPTER 2 Getting started with Node.js

Listing 2.12 Simplest web page

<!doctype html>
<html lang="en">
 <head>
 <title>Simplest web page</title>
 </head>
 <body>
 This is a static web page!
 </body>
</html>

Now run your web server again and point your web browser at http://localhost:3000. You
should see “This is a static web page!” For more information on Express, please see the
Express web page at http://www.expressjs.com.

SERvING STATIC DATA FILES

We now have the tools to build a web server that can host a basic web visualization.
We even have a simple way to get data to the web browser for our visualization!

In addition to regular web assets, we can also put static data—for example, CSV and
JSON files—into our public subdirectory, and from there we can load them into our
web page using AJAX HTTP requests. You may have noticed in figure 2.9 that I had also
snuck a CSV data file into the public subdirectory.

A simpler way to create a web server
You now have everything you need to start building web visualizations based on static
data. All we need now is a REST API, which will allow our web app to access data from a
database or do dynamic processing of data before it’s served to the browser.

However, if you don’t need a REST API, then you may not need to create a Node.js web
server such as how we did in listing 2.11. Instead, you might be able to get by with a
simple command-line web server such as live-server to serve your static web assets and
static data. In chapter 5, we’ll use live-server to quickly prototype web visualizations.

index.html is
the main web
page.

All the other static
files for your website
are stored here as well.

Figure 2.9 Static files are served from the public subdirectory.

 43Working with Node.js

ADDING A REST API
Using static data is great for getting started or prototyping, and it might even be all that
you need! If, however, you need to access data from a database or dynamically process
data before it is served to the browser, then you need a REST API. In this next example,
we’re going to generate our report in the server using the generateReport function
we created earlier. We aren’t doing anything particularly fancy, except displaying for-
matted data in a web page, an example of which can be seen in figure 2.10.

To build a REST API, we must define routes that are addressed by URLs to retrieve
dynamic data through HTTP requests. You can see an example of a REST API in
figure 2.11, where we navigated our browser to http://localhost:3000/rest/data to
view data retrieved from the REST API.

We can add a route to our existing web server by calling the Express get function. We
must specify the route and provide a handler for it. For example, in the following listing we
specify the route as /rest/report and as a response, you return your data in JSON format.
Now you can say that your web server handles HTTP GET for the route /rest/data.

Listing 2.13 Adding a REST API to your web server to dynamically generate a report

"use strict";

const express = require('express');
const path = require('path');
const generateReport = require(‘./generate-report.js’);

const app = express();

const staticFilesPath = path.join(__dirname, "public");
const staticFilesMiddleWare = express.static(staticFilesPath);
app.use("/", staticFilesMiddleWare);

const data = ... hard-coded data ...

app.get("/rest/data", (req, res) => {
 const report = generateReport(data);
 res.json(report);
});

app.listen(3000, () => {
 console.log("Web server listening on port 3000!");
});

In listing 2.13 we’re returning the report that’s generated from the hard-coded data.
The data never changes so it technically isn’t necessary to use a REST API in this situ-
ation. We could have used static data, although I hope you can appreciate that we’re
now ready to scale this web application up to using a real database instead of the hard-
coded data, something we’ll explore further in chapter 3.

Defines a handler for
the route /rest/data

Generates
a report in
response to
an HTTP GET
request

Shows the
response to
the request
to return
the report in
JSON format

44 CHAPTER 2 Getting started with Node.js

We can add as many routes as we need to our web server, using more calls to the get
function. Note that HTTP GET is usually for retrieving data from a web server. We can also
push data to a web server by handling HTTP POST requests with the Express post function.

Using AJAX is simple if we have a library such as the traditional jQuery, the more
modern Axios, or the $http service from AngularJS. The code to query the REST API
and display the data in the browser is shown in the following listing. For convenience,
the JavaScript code has been embedded directly in the HTML file.

Listing 2.14 Simple web page that displays a report retrieved from a REST API

<!doctype html>
<html lang="en">
 <head>
 <title>Simple report</title>
 </head>
 <body>
 <script src="bower_components/jquery/dist/jquery.js"></script>
 <script>
 $.getJSON("/rest/data", function (report) {
 document.write(
 "Num rows: " + report.numRows + "\r\n" +
 "Num columns: " + report.numColumns + "\r\n" +
 "Columns: " + report.columns.join(', ')
);
 });
 </script>
 </body>
</html>

Includes jQuery (available via the
$ variable) so we can use its AJAX

API to interact with your REST API

Makes an
HTTP GET
request to the
REST API
to retrieve
the report as
JSON data

Writes the
formatted
report
into the
browser’s
document

Figure 2.10 Generating a basic report on the
server and displaying it in the browser

Figure 2.11 JSON data from the
REST API viewed in the browser

 45Asynchronous coding

Running this code is a little more complex than before. As usual, we need to install
dependencies for the Node.js project:

cd listing-2.13-and-2.14
npm install

But now we also have a web application project under the public subdirectory. We’ll use
Bower to install its dependencies:

cd public
bower install

Now you can change back to the Node.js project and start the web server:

cd ..
node index.js

Point your browser at http://localhost:3000, and you’re now looking at a web applica-
tion that’s using AJAX to retrieve data from the web server.

Where are we now? We have the ability to create command-line tools for processing
data or other tasks. We can build a simple web server to host a web app or visualization.
We’ve extended our web app to use a REST API, and this will allow us to do server-side
processing of our data or to connect the web app to a database, both of which we’ll look
at later in the book. These are fundamental tools that we’ll rely on in this book; how-
ever, we still need to talk about asynchronous coding.

2.6 Asynchronous coding
Why is asynchronous coding important, and why do we need to address it early on?
It’s important because JavaScript and Node.js rely heavily on the asynchronous coding
paradigm, and we’re going to use it many times in this book. The rest of this chapter is
a short primer on asynchronous coding. This is a difficult topic, but it’s important that
we tackle it now.

When coding in JavaScript, we’ll often find ourselves doing asynchronous coding. The
nature of the connection between the browser and the web server is asynchronous, and
much of Node.js is designed around this concept. We’ve done asynchronous coding
already in this chapter. Did you notice? In the last few code listings, when we started our
web server by calling the listen function, that was our first taste of asynchronous coding.

What’s the difference between synchronous and asynchronous coding? With synchro-
nous coding, each line of code completes in order: by the time the next line of code exe-
cutes, the effects of the previous line of code have finished. This is the way coding works
by default in most programming languages. When coding is done in this way, it’s easy to
understand what’s going on and easy to predict what’s going to happen. This is because with
synchronous coding things happen one after the other in a way that’s predicable. But with
asynchronous coding, we find that the code can execute out of line with the main code flow.
This potential for out of order execution makes it much more difficult to understand the
flow of your code, and it’s harder to predict what the final sequence of code will look like.

Asynchronous coding is especially common in Node.js. In certain cases—for example,
with file operations—Node.js gives both synchronous and asynchronous options. Which
should you use? Well, it depends on your situation. Synchronous coding is certainly

46 CHAPTER 2 Getting started with Node.js

simpler and easier when you can get away with it. In other cases, for example, working
with REST APIs and databases, you must do asynchronous coding because the API gives
you no alternate options.

In this book I try to use only asynchronous coding as much as possible, even when it
might be possible to use synchronous versions of functions. I do this for two reasons. One,
I want to demonstrate consistency, and I’m hoping in the long run that this leads to less
confusion. Two, when working on production systems, I tend to prefer asynchronous cod-
ing. Besides the fact that most APIs mandate this, it’s part of the Node.js culture. Node.
js was designed to be asynchronous first: that’s how we can use it to build a responsive and
performant server, and you can’t ever go far in Node.js without running into asynchro-
nous coding.

In the following sections, I explain the differences between synchronous and asyn-
chronous coding and why and when asynchronous coding is necessary. I’ll give an over-
view of the three major difficulties you’ll face when doing asynchronous coding, and
then I’ll explain how promises help alleviate these problems. Finally, I’ll briefly touch
on the new JavaScript keywords async and await that make asynchronous coding much
easier in the latest version of Node.js.

2.6.1 Loading a single file

Let’s consider the simplest real example of asynchronous coding that I can imagine:
loading a file. Say you want to load a data file called bicycle_routes.txt. You might want
to transform the data in the file, deliver the data to a web application, or generate a
report from the data. Whatever you want to do you, first you must load the file.

Figure 2.12 shows how to do this synchronously. We call Node’s readFileSync func-
tion to start the file loading. The file is then loaded into memory. Afterward, control
returns to the line of code following the call to readFileSync. From there, your code
continues to execute, and we can work with the data that was loaded from the file.

Synchronous coding is simple and easy to explain. But it has a big problem: it blocks the
main thread from doing any other work during the synchronous operation (figure 2.13).

Synchronously load
‘bicycle_routes.txt’

Code continues to
execute after file

loading has completed.

Code executes prior to
loading the file.

Code flow

Figure 2.12 Synchronous code flow when loading a file

HTTP request

Handle request Synchronously load ‘bicycle_routes.txt’

Main thread is blocked during a
synchronous operation and is
unresponsive to further HTTP requests.

Main thread

Main thread is available again
once the synchronous
operation has completed.

The server cannot handle the HTTP
request because the main thread is
unresponsive at this time.HTTP request

Figure 2.13 The main thread is blocked during a synchronous operation.

 47Asynchronous coding

When a blocking operation happens in a UI-based application, the UI becomes unre-
sponsive. When this happens in Node.js, your server becomes unresponsive: for the
duration of the synchronous operation, the server can no longer respond to HTTP
requests. If the operation is over quickly, as it is in this trivial example, it makes little
difference: incoming HTTP requests are queued and actioned as soon as the main
thread is unblocked.

If, however, the synchronous operation is long or if you have multiple synchronous
operations one after the other, then the incoming HTTP request will eventually time
out, leaving your user looking at an error message in their browser instead of looking at
your web page.

This is a problem that becomes bigger the more synchronous operations you use. As
you use more and more synchronous operations, you progressively diminish the capa-
bility of your server to handle concurrent users.

In other languages and environments where synchronous coding is normal, we can
avoid this problem by delegating such resource-intensive operations to a worker thread.
Generally, though, we can’t use threads like this in Node.js, which is typically consid-
ered to be single-threaded.

To avoid blocking the main thread, we must use asynchronous coding. In the next
example, we’ll use Node’s asynchronous file loading function: readFile. Calling this
function starts the file loading operation and returns immediately to the calling code.
While that happens, the content of the file is asynchronously loaded into memory. When
the file load operation completes, your callback is invoked and the data from the file is
delivered to you (figure 2.14).

A callback is a JavaScript function that’s automatically called for you when a single
asynchronous operation has completed. With normal (for example, nonpromise) call-
backs, the callback is eventually called regardless of whether the operation fails or
not—passing an error object to the callback to indicate those times when a failure has
occurred. We’ll come back in a moment to look further at error handling.

simpler and easier when you can get away with it. In other cases, for example, working
with REST APIs and databases, you must do asynchronous coding because the API gives
you no alternate options.

In this book I try to use only asynchronous coding as much as possible, even when it
might be possible to use synchronous versions of functions. I do this for two reasons. One,
I want to demonstrate consistency, and I’m hoping in the long run that this leads to less
confusion. Two, when working on production systems, I tend to prefer asynchronous cod-
ing. Besides the fact that most APIs mandate this, it’s part of the Node.js culture. Node.
js was designed to be asynchronous first: that’s how we can use it to build a responsive and
performant server, and you can’t ever go far in Node.js without running into asynchro-
nous coding.

In the following sections, I explain the differences between synchronous and asyn-
chronous coding and why and when asynchronous coding is necessary. I’ll give an over-
view of the three major difficulties you’ll face when doing asynchronous coding, and
then I’ll explain how promises help alleviate these problems. Finally, I’ll briefly touch
on the new JavaScript keywords async and await that make asynchronous coding much
easier in the latest version of Node.js.

2.6.1 Loading a single file

Let’s consider the simplest real example of asynchronous coding that I can imagine:
loading a file. Say you want to load a data file called bicycle_routes.txt. You might want
to transform the data in the file, deliver the data to a web application, or generate a
report from the data. Whatever you want to do you, first you must load the file.

Figure 2.12 shows how to do this synchronously. We call Node’s readFileSync func-
tion to start the file loading. The file is then loaded into memory. Afterward, control
returns to the line of code following the call to readFileSync. From there, your code
continues to execute, and we can work with the data that was loaded from the file.

Synchronous coding is simple and easy to explain. But it has a big problem: it blocks the
main thread from doing any other work during the synchronous operation (figure 2.13).

Synchronously load
‘bicycle_routes.txt’

Code continues to
execute after file

loading has completed.

Code executes prior to
loading the file.

Code flow

Figure 2.12 Synchronous code flow when loading a file

HTTP request

Handle request Synchronously load ‘bicycle_routes.txt’

Main thread is blocked during a
synchronous operation and is
unresponsive to further HTTP requests.

Main thread

Main thread is available again
once the synchronous
operation has completed.

The server cannot handle the HTTP
request because the main thread is
unresponsive at this time.HTTP request

Figure 2.13 The main thread is blocked during a synchronous operation.

48 CHAPTER 2 Getting started with Node.js

Now that we’re using asynchronous coding, the file loading operation doesn’t lock
up the main thread, keeping it free for other work such as responding to user requests
(figure 2.15).

Still with me? Understanding asynchronous coding can be difficult, but it’s essential for
working with Node.js. I’ve used loading of a single file as a simple example of asynchronous
coding with callbacks in Node.js, but a Node.js application is often built from many such
asynchronous operations. To continue the example, let’s scale up to loading multiple files.

Start asynchronous
load of

‘bicycle_routes.txt’

Code continues to execute
while asynchronous file

load is in progress.

Code executes prior to
loading the file.

Code flow

Callback is invoked,
at some time in the

future, when
asynchronous file

loading has
completed.

Asynchronous
operation

The asynchronous
operation occurs
outside the flow
of the main thread.

console.log('Starting asynchronous file load...');

fs.readFile('bicycle_routes.txt', 'utf8',
 function (err, textFileContent) {
 console.log('...finished asynchronous file load.');
 }
);

console.log("Continuing code execution...');

Figure 2.14 Asynchronous code flow when loading a file

Handle request

Another HTTP request

The main thread is free to handle
HTTP request or do additional work.

Invoke async file load
Return to main thread
and invoke callback.

Execute callbackHandle other request

Asynchronously load ‘bicycle_routes.txt’

The asynchronous file load happens
outside the flow of the main thread.

Main thread

HTTP request

Figure 2.15 The main thread isn’t blocked during an asynchronous operation.

 49Asynchronous coding

2.6.2 Loading multiple files

We couldn’t create a Node.js application with a single asynchronous operation. Any
decent-sized Node.js application will be composed of numerous asynchronous opera-
tions that are sequenced one after the other or woven together to build responses to
HTTP requests.

Let’s expand the example to loading multiple files. Say we have a series of files that we
need to load. The files are separated out by country, for example, bicycle_routes_usa.txt,
bicycle_routes_australia.txt, bicycle_routes_england.txt, and so on. We need to load these
files and combine them to access the full data set. Doing this synchronously causes a big
problem; it will lock up the main thread for a significant amount of time (figure 2.16).

Using asynchronous coding, we can handle this in two different ways. We can either
sequence the asynchronous operations one after the other, or we can execute them in
parallel. Sequencing asynchronous operations one after the other (figure 2.17) in this
way makes them seem like a sequence of synchronous operations, except that the main
thread is not blocked while they’re in progress.

HTTP request

HTTP request

Handle request
Load

‘bicycle_routes_usa.txt’
Load

‘bicycle_routes_australia.txt’
Load

‘bicycle_routes_england.txt’

Main thread is blocked during a
successive synchronous operations.

Main thread

Main thread cannot handle
HTTP request while it is
busy.

Figure 2.16 The main thread is blocked by multiple successive synchronous operations.

Handle request Callback

Load 1st file Load 2nd file Load 3rd file

Callback Final
callback

Multiple files are loaded outside the main thread.

The main thread is mostly free to do additional work.

Main thread

HTTP request

Figure 2.17 Sequential asynchronous operations happen outside the main thread.

50 CHAPTER 2 Getting started with Node.js

Here we’ve reached your first big problem with callback-based asynchronous coding in
JavaScript. Each callback in figure 2.17 must invoke the subsequent asynchronous oper-
ation and set up its callback. This results in the nesting of callback functions: with the
code for each being defined at a new level of indentation. As our chains of asynchronous
operations become longer, the indentation becomes deeper. Nested functions and large
amounts of indentation make code difficult to read and maintain and that’s the problem;
it’s a problem so prevalent that it has a name: callback hell.

For better performance and throughput, we should probably execute multiple asyn-
chronous operations in parallel (figure 2.18). This potentially compresses the time
required to do all the work. It means the CPU and IO systems can work as fast as possible
to bring all the files into memory, but it still does this without blocking the main thread.

After introducing parallel asynchronous operations, we reach our next big prob-
lem with callback-based asynchronous coding. Note the extra complexity that’s intro-
duced when we run asynchronous operations in parallel: the callbacks can be invoked
in any order!

How can we know when all callbacks have completed? They can complete in any
order, so any subsequent operation that depends on the completion of all three must
be coded so that it can be triggered by any of the callbacks. The last callback to execute
will then trigger the subsequent operation. This new problem is all about managing
multiple independent callbacks.

Solving these problems with traditional callbacks often results in ugly and fragile code.
Soon, though, we’ll learn about promises, which can handle these issues in an elegant
manner, but first we need to understand the workings of asynchronous error handling.

HTTP request

Handle request Callback 1 Callback 2 Callback 3

Load 1st file

Load 2nd file

Load 3rd file

The main thread is free for additional work.

NOTE: These callbacks can be
invoked in any order!

Multiple asynchronous operations running
in parallel can potentially finish quicker
than if they were running in sequence.

Callbacks are invoked as each
asynchronous operation has
completed.

Main thread

Figure 2.18 Multiple asynchronous operations running in parallel

 51Asynchronous coding

2.6.3 Error handling

In traditional asynchronous coding, it isn’t possible to use a try/catch statement to
detect and handle errors. We can’t use that because it can’t detect errors in asynchro-
nous code. Instead, we must handle errors by inspecting an error object that’s optionally
passed as the first parameter to our callback. When this parameter is null, it indicates
that no error occurred; otherwise, we can interrogate the error object to determine
the nature of the error.

This simple mechanism is okay when we’re dealing with a single asynchronous oper-
ation. It becomes more complicated when we execute multiple sequential asynchro-
nous operations, where any may fail and they may do so in potentially any order.

It’s further complicated and becomes increasingly difficult to manage when we exe-
cute parallel asynchronous operations or combinations of parallel and sequential oper-
ations. Consider what happens when your second file fails to load (figure 2.19). When
this happens, any subsequent operation that depends on all three files must also fail.
How do we achieve this? Again, the callbacks can be invoked in any order, so each call-
back needs to detect the success or failure of the combined operation, but only the final
callback should invoke the error-handling logic. Managing Node.js callbacks can be
tough, but please don’t be discouraged. In a moment we’ll come to promises, which are
a much better way to deal with these situations.

Asynchronous error handling brings us to the third and last big problem with
callback-based asynchronous coding: every callback must handle its own errors. For
example, in figure 2.19 each of the three callbacks must define its own error handler.
It would be much better if we could share one single error handler between all of the
callbacks. The logic for managing multiple callbacks grows increasingly more com-
plex because it now must understand if any of the operations failed.

HTTP request

Handle request Callback 1 Callback 2 Callback 3

Load 1st file

Load 2nd file

Load 3rd file

Main thread

Figure 2.19 One of the asynchronous operations fails.

52 CHAPTER 2 Getting started with Node.js

With the combination of difficulties you face doing asynchronous coding, it’s no
wonder that asynchronous coding is considered difficult. Now, though, it’s time to intro-
duce promises, which will help you manage and simplify your asynchronous coding.

2.6.4 Asynchronous coding with promises

As the complexity of asynchronous coding quickly rises, the promises design pattern
can help enormously. Promises allow us to chain together and interweave asynchro-
nous operations. They help us manage numerous operations at once and automati-
cally pull together all the callbacks for us.

Through promises we hope to address the following problems with callback-based
asynchronous coding:

1 Callback hell —Promises help minimize the nesting of callbacks.

2 Callback order —Promises automatically weave together multiple callbacks, mean-
ing you’re no longer concerned with their order of completion.

3 Error handling —Promises allow error handlers to be inserted anywhere in the
chain of asynchronous operations. We can share error handlers between as many
asynchronous operations as we need.

Maybe we should start by considering exactly what a promise is. A promise is an object
that wraps an asynchronous operation and promises to deliver an outcome (or an
error) at some time in the future. Promises give us a vocabulary to express chains of
asynchronous operations in a way that almost looks (if you squint your eyes) like it was
a sequence of synchronous operations. The main words in your promises vocabulary
are then, all, and catch.

THEN

Then is used to chain together a sequence of asynchronous operations (figure 2.20).

Start the promise
chain

Synchronous code
continues to execute

while asynchronous file
loading is in progress.

Code executes prior to
loading the file.

Code flow

Final callback
invoked when all
files have been

loaded

Asynchronous
operations

File 1
File 2

File 3

The asynchronous
operations execute
in sequence.

Figure 2.20 Executing sequential asynchronous operations with then

 53Asynchronous coding

I like to visualize a promise chain as a sequence of boxes connected by then arrows
as shown in figure 2.21. Each box represents a stage in a sequence of asynchronous
operations.

All

Promise.all is used to manage asynchronous operations that are running in paral-
lel. It automatically weaves together the callbacks and invokes a single final callback
(figure 2.22). Using all, you no longer need to worry about coordinating multiple
callbacks that might be invoked in any order.

Between then and all, we already have a powerful toolkit for managing asynchro-
nous operations. We can combine them in various ways to piece together arbitrarily
complex sequences with only a little effort. See figure 2.23 for a more complex example.

CATCH

Finally, we’re left with catch, which is used for error handling. Using promises, we can
attach an error handler to the end of our chain (figure 2.24). This allows us to share
the error hander between all our asynchronous operations, and it will be invoked
should any of the operations fail (for example, file 2 fails to load in figure 2.24). I like
to visualize promise error handling as a short circuit out of the promise chain, as shown
in figure 2.25.

Catch allows us to have elegant control over our asynchronous error handling. It gives
us back our try/catch statement in the asynchronous world.

Read file 1 Read file 2 Read file 3 Final callback
thenthenthen

Figure 2.21 Visualizing a promise chain

Start the promise
chain with

Promise.all

Synchronous code
continues to execute

while asynchronous file
loading is in progress.

Code executes prior to
loading the file.

Code flow

Final callback
invoked when all
files have been

loaded

Asynchronous
operations

File 1

File 2

File 3

The asynchronous
operations execute
in parallel.

Asynchronous
operations are
commenced at
the same time.

Figure 2.22 Executing asynchronous operations in parallel with Promise.all

54 CHAPTER 2 Getting started with Node.js

In this example I placed the error handler at the end of the promise chain, although
in reality you can place your error handler anywhere in the chain depending on when
you want to detect and report errors.

Always have at least one error handler
Even if you don’t need error handlers within your promise chain, it’s important to always
include at least one error handler at the end of your chain. If you don’t do this, you risk
errors going unnoticed because you don’t have any code to catch and report them!

Final callback

Note that entire
promise chains can
be nested within
other chains.

Async op

Async op

all

Async op

Async op

Async op

all

thenthenthen

Figure 2.23 A more complex example of promises illustrating how then and all can be used to
weave complex chains of asynchronous logic.

Start the promise
chain

Synchronous code
continues to execute

while asynchronous file
loading is in progress

Code executes prior
to loading the file

Code flow

Error handler
is invoked

Asynchronous
operations

F
ile 1

F
ile 2

F
ile 3

Let’s say file 2 fails to load!
The promise chain is
aborted

The load of file 3 is
aborted

readFile1()
 .then(result => {
 // Do something with the result.
 return readFile2();
 })
 .then(result => {
 // Do something with the result.
 return readFile3();
 })
 .then(() => {
 // Final callback
 // Invoked when all 3 async operations have completed.
 })
 .catch(err => {
 // An error occurred somewhere in the promise chain.
 // Handle the error!
 });

Figure 2.24 Adding an error handler to a promise chain with catch

 55Asynchronous coding

2.6.5 Wrapping asynchronous operations in promises

Now that you know how to use promises and how they can help you simplify the manage-
ment of asynchronous operations, you can look for opportunities to use them.

Often, you’ll find that third-party APIs provide asynchronous functions that already use
promises. In these cases, you call the asynchronous function and it returns to you a prom-
ise, and from there you can chain additional operations and handle errors as you need.

Promises were introduced into JavaScript 6th edition in 2015 (also known as ES6) after
many years of gestation in a variety of third-party libraries. Promises are now available in
Node.js, although the Node.js API hasn’t yet been upgraded to support them properly.
To my knowledge, all Node.js API asynchronous functions are still callback-based. Many
third-party libraries don’t yet support promises.

Don’t worry; we can still use promises even when they aren’t directly supported by
the API we’re using. We have to do the conversion ourselves.

Let’s look back at the example of loading a single file asynchronously and convert it
using a promise. We’ll create a new function called readFilePromise that wraps Node’s
readFile function. We’d like to use our new function as follows:

readFilePromise("bicycle_routes.txt")
 .then(content => {
 console.log(content);
 })
 .catch(err => {
 console.error("An error occurred.");
 console.error(err);
 });

The readFilePromise function creates and returns a Promise object. We can then
interact with this promise to manage the async operation.

Initiates your promise-based
asynchronous file loading operation

Adds a then handler that’s
invoked when the file is loaded.
The content of the file is delivered
as a parameter to the handler.

Adds a catch handler to detect
errors that might occur during
the file load, for example, when
the file doesn’t exist

Read file 1 Read file 2
then

catch

then
Read file 3 Final callback

Error handler
When an error occurs anywhere
in the chain, the chain is exited
and our error handler is invoked.

Figure 2.25 An error aborts the promise chain and invokes the error handler.

56 CHAPTER 2 Getting started with Node.js

We instantiate a Promise object with an anonymous function that initiates the asyn-
chronous file loading operation. The anonymous function is passed two parameters.
The first parameter is a resolve function that we call when the asynchronous operation
has completed and we’re ready to resolve the promise. This will trigger the next then
handler that is chained to the promise. The second parameter is a reject function that
we can call if an error occurs. We can use this to fail the promise and trigger the closest
catch handler in the promise chain:

function readFilePromise (filePath) {
 return new Promise(
 (resolve, reject) => {
 fs.readFile(filePath, "utf8",
 (err, content) => {
 if (err) {
 reject(err);
 return;
 }

 resolve(content);
 }
)
 }
);
};

This technique for wrapping a callback-based asynchronous function in a promise can
easily be applied to any situation where you need to do such a conversion. Here’s a
general pattern that you can use:

function myPromiseBasedFunction (param1, param2, etc) {
 return new Promise(
 (resolve, reject) => {
 ... Start your async operation ...

 if async operation fails
 reject(error);

 when async operation completes
 resolve(optionalResult);
 }
);
};

We create a
new function
to wrap the
asynchronous
file loading in
a promise.

Creates and returns
a promise object

Passes in an anonymous
function that initiates the
asynchronous operation

Initiates the callback-based
file loading operation

Handles the callback
from the file loading
operation

For any errors that occur,
we "reject" the promise to

trigger the closest "catch" error
handler along the promise chain.

Operation success! We "resolve" the
promise to trigger the next "then"

handler in the promise chain.

Creates and returns a
promise object

Provides
an anonymous
function that
initiates the
asynchronous
operation

Initiates the asynchronous
operation. You can put any
code here that starts your
async operation.

If the async operation fails, then
“reject” the promise and pass in an
error object that describes the error.

When the async operation
completes (and it hasn't failed),
then "resolve" the promise and
optionally pass in a value that is
the result of the async operation.

 57Asynchronous coding

2.6.6 Async coding with “async” and “await”

If you’re using Node.js version 7 or later, you might want to use the new async and
await keywords. These new keywords provide syntactic sugar for promises that mean
they’re no longer an API construct, the JavaScript language itself has been updated to
support promises!

These new keywords make a chain of promises seem like a sequence of synchronous
operations. For example, reading, transforming and then writing a data file, as shown
in the following listing.

Listing 2.15 Promise chain rewritten with await

try {
 let textFileContent = await readFilePromise("input-file.csv");
 let deserialiedData = parseCsv(textFileContent);
 let transformedData = transform(deserialiedData);
 let serializedCsvData = serializeCsv(transformedData);
 await writeFilePromise("output-file.csv", serializedCsvData);

 console.log("File transformation completed!");
}
catch (err) {
 console.error(err);
}

The code in listing 2.15 is asynchronous, and yet it isn’t littered with callbacks or promises.
We’ve come full circle back to something that looks much like synchronous code.

This relies on an interpreter trick to translate the await code to promises for you, so
in the end this still ends up being a sequence of then callbacks with a catch at the end.
You don’t see that level of complexity because the interpreter is doing the work for you.

Can’t wait to use the await keyword?
The async and await keywords are new, and you may not have the option use them if
you’re on an older version of Node.js or maybe you want to use them in the browser.

You can use async / await now via Babel, a JavaScript transpiler that can convert your
modern JavaScript code to something that’s suitable for running in older JavaScript inter-
preters. To use Babel, you’ll need to implement a build script.

We’ve covered the fundamentals of making command-line apps and web servers in
Node.js. We’ve had an overview of asynchronous programming with promises. You’re
now ready to get into real data wrangling!

Note the use of the await
keyword to wait for

completion of an asynchronous
operation before continuing to

execute subsequent code.

58 CHAPTER 2 Getting started with Node.js

Summary

¡	You learned how to start a project and install third-party libraries.
¡	You practiced creating a simple command-line application.
¡	You refactored parts of your application into reusable code modules.
¡	You created a simple web server with a REST API.
¡	You learned the importance of asynchronous coding in Node.js and how it can

be better managed with promises.

59

3Acquisition, storage,
and retrieval

This chapter covers
¡	Structuring data pipelines around a design

pattern called the core data representation

¡	Importing and exporting JSON and CSV data
from text files and REST APIs

¡	Importing and exporting data with MySQL and
MongoDB databases

¡	Creating flexible pipelines to convert data
between different formats

Chapter 3 covers a topic that’s crucial to the data-wrangling process: the ability to
acquire data from somewhere and then store it locally so we can work with it effi-
ciently and effectively.

Initially, we must import our data from somewhere: this is acquisition. We’ll prob-
ably then export the data to a database to make it convenient to work with: this is
storage. We might then export the data to various other formats for reporting, shar-
ing, or backup. Ultimately, we must be able to access our data to work with it: this is
retrieval.

60 CHAPTER 3 Acquisition, storage, and retrieval

In chapter 1 we looked at an example of the data-wrangling process where data was
imported from a MySQL database and exported to a MongoDB database. This is one
possible scenario. How you work in any given situation depends on how the data is
delivered to you, the requirements of your project, and the data formats and storage
mechanisms that you choose to work with.

In this chapter, we discuss building a flexible data pipeline that can handle a variety
of different formats and storage mechanisms. This is to show you the range of possi-
bilities. In any real project, you probably wouldn’t work with a large variety of for-
mats. You might, for example, work with only two or three of these data formats, but I
believe it’s good to know all your options: after all, you never know what’s around the
corner, and we need a process in place that can handle whatever kind of data might
come your way.

This chapter is basic—it’s about data pipeline fundamentals. As you read through
it and try out these techniques, you might wonder how they scale to large amounts of
data. The techniques presented in this chapter work with reasonably large data sets,
but there does come a point where our data is so large that these techniques will start to
break down. We’ll come back and discuss these issues of scale in chapters 7 and 8 when
we come to working with large data sets.

3.1 Building out your toolkit
Through this chapter we’ll look at the tools you need to move data from place to place.
We’ll use Node.js and various third-party libraries. Table 3.1 lists the tools we’ll use.

Please note that this is only the tip of the iceberg! These modules are installed
through the Node.js package manager (npm) and are a tiny taste of the many tools
within arm’s reach of any Node.js developer.

Table 3.1 Chapter 3 tools

Type Data Source Data Format Tools Methods

Import Text file JSON Node.js API fs.readFile,

JSON.parse

CSV Node.js API,
PapaParse

fs.readFile

Papa.parse

REST API JSON request-promise request.get

CSV request-promise,
PapaParse

request.get, Papa.
parse

Database MongoDB promised-mongo <database>.find

MySQL nodejs-mysql <database>.exec

 61The core data representation

Type Data Source Data Format Tools Methods

Export Text file JSON Node.js API fs.writeFile,

JSON.stringify

CSV Node.js API,
PapaParse

fs.writeFile,

Papa.unparse

Database MongoDB promised-mongo <database>.insert

MySQL nodejs-mysql <database>.exec

In this chapter, and indeed throughout the book, we’ll continue to build our toolkit.
This is important because we’ll use it again and again on future projects. As we work
through various examples, we’ll create a library of Node.js functions for working with
data in JavaScript.

3.2 Getting the code and data
The data theme of this chapter is earthquakes with data downloaded from the United
States Geological Survey website. Additional data was downloaded from the Seismi
earthquake data visualization project. Please note that the Seismi website no longer
appears to be operational.

The code and data for this chapter are available in the Chapter-3 repository in the
Data Wrangling with JavaScript GitHub organization at https://github.com/data
-wrangling-with-javascript/chapter-3. Please download the code and install the depen-
dencies. Refer back to “Getting the code and data” in chapter 2 if you need help with this.

The Chapter-3 code repository and most others for this book are a bit different to
what you saw in chapter 2. They contain the code for each code listing in separate
JavaScript files in the same directory, and they’re named according to the listing num-
ber, for example, listing_3.1.js, listing_3.3.js, and so on. You can install all third-party
dependencies for all code listings at once by running npm install once in the root
directory of the repository. The toolkit subdirectory contains the toolkit functions that
we’ll create in this chapter.

Later in this chapter we’ll work with databases. Database setup can be complicated,
so to make things convenient, the GitHub repository for chapter 3 includes Vagrant
scripts that boot up virtual machines complete with databases and example data. We’ll
talk more about Vagrant later in the chapter.

3.3 The core data representation
I’d like to introduce you to the core data representation (CDR). This is a design pattern
for structuring data pipelines. The CDR allows us to piece together flexible data pipe-
lines from reusable code modules. With this design pattern, we can produce an almost
infinite variety of data processing and conversion pipelines.

https://github.com/data-wrangling-with-javascript/chapter-3
https://github.com/data-wrangling-with-javascript/chapter-3

62 CHAPTER 3 Acquisition, storage, and retrieval

The stages in our data pipeline use the CDR to communicate; you might say the
CDR is the glue that binds together our data pipeline (see figure 3.1). The CDR is a
shared representation of our data, and its purpose is to allow our pipeline stages to
communicate and be cleanly separated with no hard dependencies on each other. This
separation is what allows us to build reusable code modules that we can then rearrange
to create other data pipelines.

The separation of the stages also gives us flexibility—we can restructure our data
pipeline by rearranging the stages or by adding and removing stages. These modifica-
tions are easily made because the stages are only dependent on the CDR, and they don’t
require any particular sequence of preceding stages.

In this chapter, we’ll use the CDR to bridge the gap between our import and export
code. This allows us to piece together data conversion pipelines from reusable code
modules. We can mix and match import and export code to build a pipeline that con-
verts data from any one format to any other.

3.3.1 The earthquakes website

Let’s start with an example to help understand the CDR. Let’s say that we’re maintaining
a website that reports on global earthquake activity. The site collates data on the world’s
earthquakes from various sources into a central location. It’s useful for researchers and
concerned citizens to have one place from which to obtain news and data.

Where does the data come from? Let’s say that our website must read data from a
variety of different sources and in many different formats. Flexibility is key. We must
accept data from other websites and organizations in whatever format they provide it.

Input

earthquakes.csv

A data pipeline

Import Process

Data pipeline stages

Data set

Data flows forward through the pipeline.

Export
Earthquakes

database

Output

CDR CDR

The stages communicate via the
core data representation (CDR).

Figure 3.1 A data pipeline with stages that communicate through the core data representation

 63The core data representation

We also want to be a good data sharing citizen, so not only do we make the data available
through web pages and visualizations, we also want to make the data available in various
machine-readable formats. Put succinctly, we must both import and export a variety of
formats into and out of our data pipeline.

Let’s look at the import and export of one particular data format. Say we’ve imported
the data file earthquakes.csv to the CDR. It’s going to look like what’s shown in figures 3.2
and 3.3.

The CDR should be simple to understand: after all it’s just a JavaScript array
of data. Each array element corresponds to a row in earthquakes.csv (as illustrated
in figure 3.2). Each array element contains a JavaScript object, or a record if you
will, and each field corresponds to a column in earthquakes.csv (as illustrated in
figure 3.3).

To create a data conversion pipeline, we must import from a data format and then
export to another. As one example, let’s take earthquakes.csv and import it into a Mon-
goDB earthquakes database. To do this, we’ll need code to import the data from the
CSV file and then code to export the data to the MongoDB database. We’ll look at the
code soon enough; for now, note in figure 3.4 how the data is fed from import to export
using the core data representation that sits in the middle.

We aren’t interested only in CSV files and MongoDB databases. I’ve mentioned those
as a specific example that illustrates how the CDR can connect our code for importing
and exporting. We’re maintaining the earthquakes website, and we need to accept and
share data in any format!

The core data representation:
an in-memory JavaScript data
structure

CSV data file:
earthquakes.csv

Each element in the JavaScript array
corresponds to a row in the CSV file.

Figure 3.2 Elements in a JavaScript array correspond to rows in earthquakes.csv.

64 CHAPTER 3 Acquisition, storage, and retrieval

3.3.2 Data formats covered

Table 3.2 shows the range of data formats we’ll cover in this chapter. By the end, you’ll
have learned the basics for importing and exporting each of these common data for-
mats through the core data representation.

Table 3.2 Data formats covered in chapter 3

Data Format Data Source Notes

JSON Text file, REST API The JSON format is built into JavaScript. It’s conve-
nient and most REST APIs use it.

CSV Text file, REST API CSV is a more compact format than JSON and is
compatible with Excel.

Each field in the JavaScript object
corresponds to a column in the CSV file.

CSV data file:
earthquakes.csv
 The core data representation

Figure 3.3 Fields in JavaScript objects correspond to columns in earthquakes.csv.

Import your data to the CDR.

CSV file

Feed through the CDR.

Core data
representation

An in-memory javaScript
data structure

MongoDB database

Export your data from the CDR.

Your code to export your
data to earthquakes
MongoDB database

ExportImport

Your code to import your
data from earthquakes.csv file

Figure 3.4 Import and export code feeds through the core data representation.

 65The core data representation

Data Format Data Source Notes

MongoDB Database Flexible and convenient, schema-free database.
Ideal when you don’t yet know the format of
your data.

MySQL Database Standard relational database. Mature, robust, and
reliable.

The main idea that I’d like to impart to you is that we can easily plug a variety of data
formats into our workflow as and when we need them.

In this book you learn a common, but necessarily limited, set of data formats, but
it may not cover your favorite data format. For example, I’ve been asked about XML,
Microsoft SQL, PostgreSQL, and Oracle. It’s not an aim for this book to cover every
conceivable data source; that would quickly get boring, so instead we’ll focus on a repre-
sentative and commonly used set of data formats.

CSV is here because it’s so common in data analysis projects. JSON is here because
it’s so common in JavaScript (and it’s so dang convenient). I use MongoDB to represent
the NoSQL class of databases. And finally, I use MySQL to represent the SQL class of
databases.

3.3.3 Power and flexibility

Have you understood the power of the CDR design pattern yet? Have a look in fig-
ure 3.5 at how the data formats fit together. Notice the range of data formats that can
be imported into the CDR and then the range of data formats that can be exported
from it. By wiring together modular import and export code (communicating using
the CDR), we can now build a large variety of data conversion pipelines.

Core data
representation

Plugin data format of your
choice for export

Export
Text file

Plugin data format of your
choice for import

Feeding through the CDR

Text file
Import

JSON / CSV JSON / CSV

JSON / CSV

REST API

Database

MongoDB / SQL

REST API

JSON / CSV

Database

MongoDB / SQL

Always route data through the CDR.

The combination of import and
export allows us to build an
almost infinite variety of data
conversion processes.

Figure 3.5 Select from a variety of data formats to build a custom data conversion process.

66 CHAPTER 3 Acquisition, storage, and retrieval

Need to import JSON and export MongoDB? No problem, we can do that! How
about importing from a REST API and exporting to CSV? We can do that as well!
Using the CDR design pattern, we can easily stitch together whatever data conversion
we need to import from any data format on the left (figure 3.5) and export to any on
the right.

3.4 Importing data
Let’s start by importing data to the CDR. We’ll first understand how to load data from
text files and REST APIs. Both are commonly found in business and data science sce-
narios. After loading text data—either from text file or REST API—we need to parse,
or interpret, it according to a particular data format. That’s usually JSON or CSV, two
common text formats. We’ll finish by loading data from two different types of data-
bases: MongoDB and MySQL.

3.4.1 Loading data from text files

We’re starting with text files—probably the simplest data storage mechanism—they’re
easy to understand and in common use. Through this section we learn to load text files
into memory. Ultimately, we need to parse, or interpret, the data from the file depend-
ing on the data format, but let’s first focus on loading from a file, and we’ll come back
to parsing after we also see how to load text data from a REST API.

What about binary files?
Text files are usually better than binary files for data storage because they’re generally
human readable, which means you can open the file in a text editor and read it. This isn’t
possible with binary files; you can’t read them with your eyes (unless you have a viewer
for the particular format), so you have no way of understanding the content. This is a
major shortcoming of binary files.

Binary files, however, are important for a different reason: usually they are a much
more compact and efficient representation than text files. This makes them faster to
process, and they take up less space in memory. I’ll talk more about using binary files
in chapter 4.

The general process of importing a text file to the core data representation is illus-
trated in figure 3.6. Toward the right of the diagram, notice the pathway branches;
this is where we interpret the incoming data as a particular format and decode it to the
CDR. For the moment, though, let’s load the text file into memory.

In Node.js, we use the fs.readFile function to read the file’s content into memory.
How we parse the file varies according to the data format, but reading the text file into
memory is the same in each case, an example of which is shown in listing 3.1. You can
run this code, and it will print the contents of the file earthquakes.csv to the console.

 67Importing data

Listing 3.1 Reading a text file into memory (listing-3.1.js)

const fs = require('fs');

fs.readFile("./data/earthquakes.csv", "utf8",
 (err, textFileData) => {
 if (err) {
 console.error(“An error occurred!”);
 return;
 }

 console.log(textFileData);
 }
).

Listing 3.1 is a basic example of loading a text file in Node.js, but for the convenience of
managing the asynchronous operation, we’ll now wrap this in a promise. We’re going
to need boilerplate code that we’ll use each time we load a text file. We’ll reuse this
code many times throughout the book, so let’s turn it into a reusable toolkit function.

The following listing is the first function in your toolkit. It lives in a file that I called
file.js, and this defines a Node.js code module called file. For the moment, it contains
the single function called read.

Text file:
earthquakes.csv fs.readFile Text data

or

or

Text data is loaded
 into memory.

Parse the data
format to the CDR.

Parse
JSON

Parse
CSV

Parse
custom

Core data
representation

Load the file from
the filesystem.

fs.readFile is a
Node.js API
function.

Figure 3.6 Importing a text file to the CDR

Requires the Node.js
fs (filesystem) module

Calls Node.js readFile function to read
the file earthquakes.csv into memory

Invokes the asynchronous callback
that’s invoked by Node.js when the
file has been loaded

Error handling, in case the file
doesn’t exist or something
else went wrong

Prints loaded data to console to check
what was loaded. You’ll see this often.

68 CHAPTER 3 Acquisition, storage, and retrieval

Listing 3.2 A promise-based function to read a text file (toolkit/file.js)

const fs = require('fs');

function read (fileName) {
 return new Promise((resolve, reject) => {
 fs.readFile(fileName, "utf8",
 function (err, textFileData) {
 if (err) {
 reject(err);
 return;
 }

 resolve(textFileData);
 }
);
 });
};

module.exports = {
 read: read,
};

Listing 3.3 is an example of how we can use our new read function. The file module
is required, and we can now call file.read to load earthquakes.csv into memory. You
can run the code, and it prints the file’s content to the console. You should compare
the code for listings 3.1 and 3.3. This will help you understand the differences between
callback- and promise-based asynchronous coding.

Listing 3.3 Loading a text file with the promise-based read function (listing-3.3.js)

const file = require('./toolkit/file.js');

file.read("./data/earthquakes.csv")
 .then(textFileData => {
 console.log(textFileData);
 }) //
 .catch(err => {
 console.error("An error occurred!");
 });

Defines our read toolkit function

Instantiates and returns a
promise to wrap the callback-
based asynchronous operation

Calls the Node.js readFile function to
load the file’s content into memory

Rejects the promise if an error occurs

Resolves the promise if the text file was
successfully loaded. The result of the promise
is the data loaded from the text file.

Exports the toolkit function for use in
other Node.js modules

Require our file code module
from file.js

Calls our toolkit function to read the
file earthquakes.csv into memory

Chains a
callback to

handle
success

Prints the file's content to the
console to check it worked okay

Handles any error that might occur,
such as the file not existing

 69Importing data

Loading large files
What happens when we load a large text file that doesn’t fit in memory?

When this happens, Node.js raises an out-of-memory error. Although you might be sur-
prised at how much memory you can get away with, ultimately this can be a big problem.
I talk about it in chapters 7 and 8 when discussing large data sets. I also discuss error
handling and writing resilient code in chapter 14.

Loading data from a text file illustrates one way of getting text data into memory; now
let’s look at another way.

3.4.2 Loading data from a REST API

We can load data from text files, so now let’s look at loading data from a REST (REpre-
sentational State Transfer) API using HTTP (HyperText Transfer Protocol). This is a
common way to retrieve data over the internet from a website or web service. Here
again we’ll look at loading the data into memory; then we’ll come back and see how to
interpret the data according to its format.

The general process of importing data from a REST API is illustrated in figure 3.7. To get
data by HTTP, we use the third-party library request-promise. The Node.js API has built-in
support for HTTP communication, but I like to use the higher-level request-promise library
because it’s easier, more convenient, and it wraps the operation in a promise for us.

To retrieve data from a REST API, we need to install request-promise. If you’re fol-
lowing along with code from GitHub and did the npm install in the code repository,
you already have this dependency installed. If you need to install it in a fresh Node.js
project, you can do it like this:

npm install –-save request-promise request

Retrieve data
via HTTP.

REST API Raw data

Parse
JSON

Parse
CSV

request-
promise or Core data

representation

Parse the data
format to the CDR.

Using third-party library:
request-promise.

This wraps Node.js existing HTTP
functionality in a promise.

Figure 3.7 Importing data from a REST API to the CDR

70 CHAPTER 3 Acquisition, storage, and retrieval

Note that we installed both request-promise and request because one depends on
the other as a peer dependency.

As an example, we’re going to pull data from https://earthquake.usgs.gov
/earthquakes/feed/v1.0/summary/significant_month.geojson. You should open that
link now, and you’ll see what the JSON data looks like in your web browser.

The simplest possible code to retrieve data via HTTP GET is shown in the following
listing using request-promise’s request.get function to make a request to the REST
API. You can run this code, and the retrieved data is printed to the console so that you
can check it.

Listing 3.4 Retrieving data from a REST API (listing-3.4.js)

const request = require('request-promise');

const url = "https://earthquake.usgs.gov" +
 "/earthquakes/feed/v1.0/summary/significant_month.geojson";

request.get(url)
 .then(response => {
 console.log(response);
 })
 .catch(err => {
 console.error(err);
 });

3.4.3 Parsing JSON text data

Now that we can load text data into memory, either from a text file or from a REST
API, we must decide how to decode the content. Working with raw text data can be
painful, time-consuming, and error-prone; however, when we work with a common
or standardized data format such as JSON or CSV, we have the advantage of using an
existing library to import or export the data.

JSON is the first data format we’ll parse from our text data. It’s one of the most com-
mon data formats you’ll encounter when working with JavaScript. It’s simple to under-
stand and goes hand-in-hand with JavaScript. The tools you need for working with JSON
are built into the JavaScript API, and that makes JSON a particularly appealing format
for us.

PARSING A JSON TExT FILE

Before we attempt to import our data file, it’s a good idea to open the file in a text edi-
tor and visually verify that the data is what we think it is. There’s no point trying to work
with a data file that’s corrupted or has other problems, and we can easily and quickly
check for this before we start coding. This won’t catch all conceivable issues, but you

Requires request-promise - third-party
library to request data from a REST API

This is the URL to
access the REST API.

Performs an HTTP GET
request to the REST API

Handles the response; this is the data
that is returned from the REST API.

Handles any error
that might occur

https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/significant_month.geojson
https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/significant_month.geojson

 71Importing data

might be surprised how many data issues you can spot by first doing a simple visual
check. Figure 3.8 shows earthquakes.json loaded in Notepad++ (a text editor that I use
on my Windows PC).

Let’s now import earthquakes.json to the core data representation. This is particu-
larly easy using the tools provided by Node.js and the JavaScript API. The JSON format
is a serialized JavaScript data structure, so it lines up in a direct way with the core data
representation. To read the file, we use our toolkit function file.read. Then we use
the built-in JavaScript function JSON.parse to decode the text data to the CDR. This
process is illustrated in figure 3.9.

The following listing is a new function to import a JSON file to the core data repre-
sentation. We read the file content using our function file.read and then parse the
JSON data using JSON.parse.

Listing 3.5 A function to import a JSON text file (toolkit/importJsonFile.js)

const file = require('./file.js');

//
// Toolkit function to import a JSON file.
//
function importJsonFile (filePath) {
 return file.read(filePath)
 .then(textFileData => {
 return JSON.parse(textFileData);
 });
};

module.exports = importJsonFile;

Figure 3.8 Earthquakes
.json viewed in Notepad++

Requires our file toolkit module

Defines our toolkit function
to import a JSON file

Uses our file.read toolkit function to
read a JSON text file into memory

Invokes the callback to handle the
text data loaded from the file

Uses JSON.parse to parse the
JSON text data to the CDR

Exports the toolkit function so that we
can use it with other Node.js modules

72 CHAPTER 3 Acquisition, storage, and retrieval

The following listing shows how to use our new function to import earthquakes.json.
You can run this code, and the decoded data prints it to the console so that we can visu-
ally verify that the data was parsed correctly.

Listing 3.6 Importing data from earthquakes.json (listing-3.6.js)

const importJsonFile = require('./toolkit/importJsonFile.js');

importJsonFile("./data/earthquakes.json")
 .then(data => {
 console.log(data);
 })
 .catch(err => {
 console.error("An error occurred.");
 console.error(err.stack);
 });

PARSING JSON DATA FROM A REST API
Importing JSON data from a REST API is similar to importing it from a text file. We need
to change where the data is loaded from. Instead of using the file.read function, we
can use our request-promise to load the data from a REST API. The following listing
shows a new function for our toolkit that imports JSON data from a REST API.

JSON text file:
earthquakes.json fs.readFile JSON text data

JSON text data is
loaded into memory.

JSON.parse

Parse JSON text data
to the CDR using
JSON.parse.

Core data
representation

JSON.parse
is part of the
JavaScript API.

Figure 3.9 Importing a JSON text file to the CDR

Requires our importJsonFile
toolkit function

Uses our toolkit function to import
earthquakes.json to the CDR

Invokes the callback to receive the data
that was imported from the JSON filePrints the

data to the
console so

that we can
verify it Handles any error that

might have occurred

 73Importing data

Listing 3.7 Importing JSON data from a REST API (toolkit/importJsonFromRestApi.js)

const request = require('request-promise');

function importJsonFromRestApi (url) {
 return request.get(url)
 .then(response => {
 return JSON.parse(response);
 });
};

module.exports = importJsonFromRestApi;

Listing 3.8 shows how to call importJsonFromRestApi to import data from the example
REST API that was also used earlier in listing 3.4. This code is similar to listing 3.6, but
rather than loading the data from a file, it loads it from the REST API. Run this code
and you’ll see how it operates, grabbing the data and then printing the decoded JSON
data to the console so you can check that it worked as expected.

Listing 3.8 Importing earthquakes data from a REST API (listing-3.8.js)

const importJsonFromRestApi = require('./toolkit/importJsonFromRestApi.js');

const url = "https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/
significant_mont[CA]h.geojson";

importJsonFromRestApi(url)
 .then(data => {
 const earthquakes = data.features.map(feature => {
 const earthquake = Object.assign({},
 feature.properties,
 { id: feature.id }
);
 return earthquake;
 });
 console.log(earthquakes);
 })
 .catch(err => {
 console.error("An error occurred.");
 console.error(err.stack);
 });

Note in listing 3.8 how the incoming data is reorganized to fit our idea of the CDR. The
incoming JSON data isn’t structured exactly how we’d like it to be to fit, so we rewrite
on the fly into a tabular format.

Requires request-promise third-party
library to request data from a REST API

Defines a toolkit function to import
JSON data from a REST API to the CDR

Uses HTTP GET to pull data
from the REST API

Exports the toolkit function for
use in other Node.js modules

Requires our importJsonFromRestApi
toolkit function

Uses our toolkit function to import
JSON data from the REST API

Invokes the callback to receive the
data loaded from the REST API

Restructures
incoming data
to the CDR

Prints the data to the console
so that we can verify it

Handles any error that
might have occurred

74 CHAPTER 3 Acquisition, storage, and retrieval

3.4.4 Parsing CSV text data

The next format we’ll look at is the CSV (comma-separated values) format. This simple
format is in common use in the data science community. It directly represents tabular
data and is a more compact representation than JSON.

Unfortunately, the tools we need to parse CSV files aren’t included with Node.js or
JavaScript, but we can easily get what we need from npm. In this case, we’re going to
install a great third-party library for parsing CSV files called Papa Parse.

PARSING A CSv TExT FILE

As with JSON, we should first should check that the content of our CSV file is well
formed and not corrupted. We could look at the CSV file in Notepad++, like when we
looked at the JSON file, but it’s worth noting that a CSV file can also be loaded as a
spreadsheet! Figure 3.10 shows earthquakes.csv loaded in Excel.

You should note that CSV files can also be exported from regular Excel spreadsheets,
and that means we can use all the power of Excel when working with CSV. I have found
the CSV format to be useful when I need to exchange data with people who use Excel.

Let’s import our CSV file to the core data representation. This is a bit more difficult
than with JSON, but only because we must install the third-party library Papa Parse to
do the job of parsing the CSV data. Unlike JSON, the CSV format doesn’t directly line
up with the CDR, so it needs to be restructured during the import process. Fortunately,
Papa Parse takes care of that.

As with JSON, we start by reading the CSV text file into memory; after that, we use
Papa Parse to decode the text data to the CDR. This process is illustrated in figure 3.11.
You probably already know how a CSV file is structured, but in case you don’t, figure 3.12
shows the anatomy of a CSV file as viewed in Notepad++.

Figure 3.10 Earthquakes
.csv loaded in Excel

CSV text file:
earthquakes.csv

fs.readFile CSV text data

CSV text data is
loaded into memory.

Papa.parse

Parse CSV text data to CDR
using third-party library
PapaParse.

Core data
representation

Figure 3.11 Importing a CSV text file to the CDR

Columns

Rows

Fields separated
by commas

Header line

Figure 3.12 The anatomy of a CSV file

 75Importing data

A CSV file is a plain old text file: each line of the file is a row of data. Each row is then
divided into fields that are separated by commas, hence the name of the data format.
There isn’t much more to this format than what I have just described.

If you are working with the GitHub repository for this chapter and have done the npm
install, you already have Papa Parse installed into the Node.js project. If not, you can
install Papa Parse in a fresh Node.js project as follows:

npm install –-save papaparse

The following listing is our next toolkit function; this one imports a CSV file to the
core data representation. Again, we use our toolkit function file.read to load the file
into memory; then we parse the CSV data using papa.parse.

Listing 3.9 A function to import a CSV text file (toolkit/importCsvFile.js)

const papa = require('papaparse');
const file = require('./file.js');

function importCsvFile (filePath) {
 return file.read(filePath)
 .then(textFileData => {
 const result = papa.parse(textFileData, {
 header: true,
 dynamicTyping: true,
 });

Requires Papa Parse third-party
library for parsing CSV data

Requires our file toolkit module

Defines our toolkit function for
importing a CSV file to the CDR

Reads a CSV
text file into

memory

Callback receives the text data
loaded from the CSV file.

Calls papa.parse
to parse the CSV
data to the CDR

Instructs Papa Parse to recognize the
first line of the CSV data as the header

Enables Papa Parse's
automatic type
conversion

3.4.4 Parsing CSV text data

The next format we’ll look at is the CSV (comma-separated values) format. This simple
format is in common use in the data science community. It directly represents tabular
data and is a more compact representation than JSON.

Unfortunately, the tools we need to parse CSV files aren’t included with Node.js or
JavaScript, but we can easily get what we need from npm. In this case, we’re going to
install a great third-party library for parsing CSV files called Papa Parse.

PARSING A CSv TExT FILE

As with JSON, we should first should check that the content of our CSV file is well
formed and not corrupted. We could look at the CSV file in Notepad++, like when we
looked at the JSON file, but it’s worth noting that a CSV file can also be loaded as a
spreadsheet! Figure 3.10 shows earthquakes.csv loaded in Excel.

You should note that CSV files can also be exported from regular Excel spreadsheets,
and that means we can use all the power of Excel when working with CSV. I have found
the CSV format to be useful when I need to exchange data with people who use Excel.

Let’s import our CSV file to the core data representation. This is a bit more difficult
than with JSON, but only because we must install the third-party library Papa Parse to
do the job of parsing the CSV data. Unlike JSON, the CSV format doesn’t directly line
up with the CDR, so it needs to be restructured during the import process. Fortunately,
Papa Parse takes care of that.

As with JSON, we start by reading the CSV text file into memory; after that, we use
Papa Parse to decode the text data to the CDR. This process is illustrated in figure 3.11.
You probably already know how a CSV file is structured, but in case you don’t, figure 3.12
shows the anatomy of a CSV file as viewed in Notepad++.

Figure 3.10 Earthquakes
.csv loaded in Excel

CSV text file:
earthquakes.csv

fs.readFile CSV text data

CSV text data is
loaded into memory.

Papa.parse

Parse CSV text data to CDR
using third-party library
PapaParse.

Core data
representation

Figure 3.11 Importing a CSV text file to the CDR

Columns

Rows

Fields separated
by commas

Header line

Figure 3.12 The anatomy of a CSV file

76 CHAPTER 3 Acquisition, storage, and retrieval

 return result.data;
 });
};

module.exports = importCsvFile;

Note the options used with Papa Parse. The header option makes Papa Parse recog-
nize the first line of the CSV file as the header line that specifies the column names for
the tabular data.

The dynamicTyping option enables Papa Parse’s automatic type conversion. This
selects a type for each field value, depending on what type the value looks like. This is
needed because the CSV format, unlike JSON, has no special support for data types.
Every field in CSV is just a string value, but Papa Parse will figure out the actual data
types for us. This capability is convenient and works most of the time. Sometimes,
though, it will choose the wrong type, or for some reason, you might want more control
to be able to apply your own conventions.

The following listing uses our new function to import earthquakes.csv. You can run
this code listing, and you will see the decoded data printed to the console so that you
can check that the import worked.

Listing 3.10 Importing data from earthquakes.csv (listing_3.10.js)

const importCsvFile = require('./toolkit/importCsvFile.js');

importCsvFile("./data/earthquakes.csv")
 .then(data => {
 console.log(data);
 })
 .catch(err => {
 console.error("An error occurred.");
 console.error(err.stack);
 });

PARSING CSv DATA FROM A REST API
With CSV, as with JSON, we also have the option of loading CSV from a text file or from
a REST API. To do this, we replace file.read with request-promise to load the data
from a REST API instead of from a text file. The following listing is a new function
importCsvFromRestApi that does this, and we can use it to import CSV data from a
REST API.

Extracts the parsed data
from Papa Parse result

Exports the toolkit function so that
we can use it in other code modules

Requires our importCsvFile
toolkit function

Imports the earthquakes.
csv text file to the CDR

Callback to receive the data
imported from the CSV file.

Prints the data to the console
so that we can verify it.

Handles any errors
that might have
occurred

 77Importing data

Listing 3.11 A function to import CSV data from a REST API (toolkit/
importCsvFromRestApi.js)

const request = require('request-promise');
const papa = require('papaparse');

function importCsvFromRestApi (url) {
 return request.get({
 uri: url,
 json: false
 })
 .then(response => {
 const result = papa.parse(response, {
 header: true,
 dynamicTyping: true
 });

 return result.data;
 });
};

module.exports = importCsvFromRestApi;

Listing 3.12 uses the function importCsvFromRestApi to import CSV data from the
REST API at https://earthquake.usgs.gov/fdsnws/event/1/query.csv. You can run the
following code listing, and it will pull CSV data in over your network, decode it, and
then print it to the console so you can check it.

Listing 3.12 Importing CSV data from a REST API (listing-3.12.js)

const importCsvFromRestApi = require('./toolkit/importCsvFromRestApi.js');

const url = "https://earthquake.usgs.gov/fdsnws/event/1/query.
➥csv?starttime=2017-01-
01&endtime=2017-03-02";

importCsvFromRestApi(url)
 .then(data => { //#D
 console.log(data); //#D
 }) //#D
 .catch(err => {
 console.error(err);
 });

Requires request-promise to
make the REST API request

Requires Papa Parse to
parse the CSV data

Defines a new toolkit function to
import CSV data from a REST API

Makes the request to the REST API
to retrieve the data via HTTP GET

Uses Papa Parse to parse
the CSV data to the CDR

Exports the toolkit function for use
in other Node.js code modules

Requires our toolkit function to import
CSV data from a REST API to the CDR

Shows the URL
of an example
REST API that
returns CSV data

Uses our toolkit function to
import data from the REST API

Prints imported data to the
console to check that it's okay

Handles any errors that
might have occurred

https://earthquake.usgs.gov/fdsnws/event/1/query.csv

78 CHAPTER 3 Acquisition, storage, and retrieval

This brings us to the end of loading and parsing data from text files. Note that other
data formats exist that we might need to load, but here we’ve only used two of the most
common formats: CSV and JSON. In practice, you might also need to handle XML files,
YAML files, and many more—but any new format you can think to add will plug into
your data pipeline through the CDR.

We’ll return to text files in chapter 4 to learn how to deal with unusual text file for-
mats using regular expressions, for those times when we must import custom or propri-
etary data formats.

3.4.5 Importing data from databases

Before we finish looking at importing data, we need to learn how to import from data-
bases to the core data representation. Databases are, as you can imagine, important
in the data-wrangling world. They’re often an integral part of our data pipeline and
necessary to efficiently and effectively work with large amounts of data. Databases are
generally accessed using a network protocol using a third-party access library, as shown
in figure 3.13. Many database products are available, but here we’ll focus on two of the
most common: MongoDB and MySQL.

3.4.6 Importing data from MongoDB

MongoDB is a prevalent NoSQL database, and it’s my preferred database because
it offers a good mix of convenience, flexibility, and performance. MongoDB, being

Retrieve data via
network protocol.

Earthquakes
database

MongoDB
access
library

MySQL
access
library

Core data
representation

Using third-party libraries to
import from the different
types of databases.

Figure 3.13 Importing from a database to the CDR

 79Importing data

NoSQL, is schema-free. MongoDB doesn’t impose a fixed schema on your data, so we
don’t need to predefine the structure of the database.

I find this useful when working with data that I don’t yet understand. MongoDB
means I can throw the data into the database and save questions about the structure for
later. Using MongoDB doesn’t mean we have unstructured data—far from it; we can
easily express structure in MongoDB, but it means that we don’t have to worry about
defining that structure up front. As with any data importing job, we should first look at
the data before writing the import code. Figure 3.14 shows the example earthquakes data-
base viewed through Robomongo.

You have various ways to retrieve data from a MongoDB database. Here we’ll use
promised-mongo, a third-party library that emulates the Mongo shell and provides an
elegant promised-based API. We’re using promised-mongo here because it’s a slightly
easier way to get started with MongoDB and it’s similar to the commands we can also use
in the Mongo shell and in Robomongo. In chapter 8, when we come back to MongoDB,
we’ll use the official MongoDB access library.

We use promised-mongo to import data from MongoDB to the core data representa-
tion as illustrated in figure 3.15. Note that unlike working with text files, no extra parsing
step is necessary; the database access library takes care of that.

If you’re using the GitHub repository and did the npm install, you already have
promised-mongo installed. Otherwise, you can install it in a fresh Node.js project as
follows:

npm install –-save promised-mongo

Earthquakes database

Largest earthquakes
collection

JSON view of documents
contained within the
largest_earthquakes
collection

Figure 3.14 Viewing the earthquakes MongoDB database using Robomongo database viewer

80 CHAPTER 3 Acquisition, storage, and retrieval

The MongoDB database is easy to install: you can find downloads and more informa-
tion at www.mongodb.com. For your convenience, the GitHub repository for Chap-
ter-3 contains a Vagrant script that you can use to boot a virtual machine with the
MongoDB database already installed, complete with example earthquakes data. To use
this, you need Vagrant and Virtual Box installed, which I explain in appendix C, “Get-
ting started with Vagrant.”

Vagrant allows you to create virtual machines that emulate production environments.
I’ve used Vagrant so that you can quickly boot a machine with a database, and this gives
you a convenient data source to try the example code in listings 3.13 and 3.14. If you don’t
want to use Vagrant, but you do want to try out this code, then you’ll need to install Mon-
goDB on your development PC and manually load the data into the database.

Once you have Vagrant and Virtual Box installed, you can boot the virtual machine
as follows:

cd Chapter-3/MongoDB
vagrant up

The virtual machine will take time to prepare. When it completes, you’ll have a Mon-
goDB database with earthquakes data ready to go. Vagrant has mapped the default Mon-
goDB port 27017 to port 6000 on our local PC (assuming that port isn’t already in use).
This means we can access the MongoDB database on our local PC at port 6000 as if that’s
where it was running (rather than on the virtual machine where it’s actually running).

Once you’re finished with the MongoDB virtual machine, don’t forget to destroy it
so it doesn’t continue to consume your system resources:

cd Chapter-3/MongoDB
vagrant destroy

Retrieve data via
MongoDB network
protocol.

MongoDB database:
 earthquakes

promised-
mongo

MongoDB library
automatically deserializes
your data to the CDR.

Core data
representation

Using third-party library:
promised-mongo

This wraps the Node.js MongoDB
driver in promises.

There is a need for an
explicit parsing step here.

Figure 3.15 Importing from MongoDB earthquakes database to the CDR

www.mongodb.com

 81Importing data

The following listing is our next toolkit function. It uses the MongoDB find function
to import data from a MongoDB collection to the core data representation.

Listing 3.13 A function to import data from a MongoDB collection (toolkit/
importFromMongoDB.js)

function importFromMongoDB (db, collectionName) {
 return db[collectionName].find().toArray();
};

module.exports = importFromMongoDB;

The following listing shows how to use the function to import data from the largest
_earthquakes collection. Run this code and it will retrieve the data from the database
and print it to the console for you to check.

Listing 3.14 Importing the largest earthquakes collection from MongoDB
(listing-3.14.js)

const mongo = require('promised-mongo');
const importFromMongoDB = require('./toolkit/importFromMongoDB.js');

const db = mongo(
 "localhost:6000/earthquakes",
 ["largest_earthquakes"]
);

importFromMongoDB(db, "largest_earthquakes")
 .then(data => {
 console.log(data);
 })
 .then(() => db.close())
 .catch(err => {
 console.error(err);
 });

Note in listing 3.14 how we connect to the MongoDB database using the connection
string localhost:6000/earthquakes. This assumes that we’re connecting to a MongoDB
database named earthquakes running on the Vagrant virtual machine and that the
MongoDB database instance is mapped to port 6000 on the host PC.

Defines your toolkit function to
import data from MongoDB

Retrieves database records
from the named collection
in the specified database

Exports the toolkit function for
use in other Node.js modules

Requires promised-mongo third-party
library, used to access the MongoDB
database

Requires our toolkit function to import
from a MongoDB database to the CDR

Connects to the earthquakes database
using port 6000 that is mapped to our
MongoDB virtual machine. MongoDB
normally has a default port of 27017.

Imports data from the
largest_earthquakes collection

Prints the imported data to the
console to check that it’s okay

Closes the database connection
when we’re done with it

Handles any error that might occur

82 CHAPTER 3 Acquisition, storage, and retrieval

You must change this connection string to connect to a different database. For exam-
ple, if you installed MongoDB on your local PC (instead of using the Vagrant virtual
machine), you’ll probably find that MongoDB is using its default port of 27017. If that’s
the case, you need to use the connection string localhost:27017/earthquakes. Con-
sidering that localhost and 27017 are defaults, you can even drop those parts and use
earthquakes as your connection string.

You can also connect to a MongoDB database over the internet by providing a valid
hostname in the connection string. For example, if you have an internet-accessible
database available on a machine with host name my_host.com, then your connection
string might look like this: my_host.com:27017/my_database.

3.4.7 Importing data from MySQL

We couldn’t finish looking at data importing without looking at an SQL-style database.
SQL is a mainstay of the business world, and much data is contained within SQL data-
bases. Here we look at importing data from MySQL, a popular SQL database.

As we’ve done in the other cases, before we get into the code, we should first look at
the data in a database viewer. In figure 3.16 you can see the earthquakes database and
largest_earthquakes collection through the HeidiSQL database viewer.

To read data from the MySQL, we’ll use a third-party library called nodejs-mysql.
Figure 3.17 illustrates the process of retrieving data from an earthquakes database and
importing it to the core data representation.

If you’re using the GitHub repository and did the npm install, you already have
nodejs-mysql installed. Otherwise, you can install it in a fresh Node.js project as follows:

npm install –-save nodejs-mysql

MySQL is a little more difficult to set up than MongoDB. After installation of MySQL
and before you import data, you must define your schema, something that isn’t nec-
essary with MongoDB. Downloads and instructions for installation of MySQL can be
found at http://www.mysql.com.

Figure 3.16 Viewing the largest_earthquakes table using the HeidiSQL database viewer

http://www.mysql.com

 83Importing data

For your convenience, the GitHub repo for Chapter-3 contains another Vagrant
script that will boot up a virtual machine with a MySQL database installed complete
with an earthquakes database that you can use to try the code in listings 3.15 and 3.16.
You’ll need Vagrant and Virtual Box installed, which you might already have installed
from the earlier example with MongoDB.

Boot the virtual machine with the following command:

cd Chapter-3/MySql
vagrant up

The virtual machine will take time to prepare. Once it has completed, you’ll have
a MySQL database with an earthquakes database ready to use. Vagrant has mapped
the default MySQL port 3306 to port 5000 on our local PC (assuming port 5000 isn’t
already in use). You can access the MySQL database on your PC at port 5000 as if that’s
where it was running (rather than on the virtual machine where it’s actually running).

Once you’re finished with the virtual machine, don’t forget to destroy it so it doesn’t
continue to consume your system resources:

cd Chapter-3/MySql
vagrant destroy

For more information on setting up and working with Vagrant, please see appendix C.
Listing 3.15 defines the function importFromMySql with the simple code required

to execute an SQL command against the earthquakes database and import data to the
core data representation.

Retrieve data via
MySQL network
protocol.

nodejs-mysql
automatically
deserializes your
data to the CDR.

MySQL database:
earthquakes

nodejs-
mysql

Core data
representation

Using third-party library:
nodejs.mysql There is no need

for an explicit
parsing step here.

Figure 3.17 Importing data from the SQL database to the CDR

84 CHAPTER 3 Acquisition, storage, and retrieval

Listing 3.15 A function to import data from a MySQL database (toolkit/
importFromMySql.js)

function importFromMySql (db, tableName) {
 return db.exec("select * from " + tableName);
};

module.exports = importFromMySql;

Listing 3.16 shows how to use the importFromMySql function. It connects to the earth-
quakes database and imports data from the largest_earthquakes table. Run this code
and it will retrieve the data from the MySQL database and print it to the console so that
we can check it.

Listing 3.16 Importing largest earthquakes table from MySQL (listing-3.16.js)

const importFromMySql = require('./toolkit/importFromMySql.js');
const mysql = require('nodejs-mysql').default;

const config = {
 host: "localhost",
 port: 5000,
 user: "root",
 password: "root",
 database: "earthquakes",
 dateStrings: true,
 debug: true
};

const db = mysql.getInstance(config);

return importFromMySql(db, "largest_earthquakes")
 .then(data => {
 console.log(data);
 })
 .catch(err => {
 console.error(err);
 });

Defines our toolkit function to
import data from MySQL Executes the SQL command

to retrieve data from the
named table in the
specified database

Exports the toolkit function for
use in other Node.js modules

Requires our toolkit function to import
data from a MySQL database

Configures the connection to the
MySQL earthquakes database

Connects to the database on port 5000;
this is mapped to the MySQL database
running in the virtual machine.

Specifies the name of the
database to connect to

Connects to the database

Uses the toolkit function to
import data from the largest_
earthquakes table

Prints imported data to the
console to check it's okay

Handles any errors that
might have occurred

 85Exporting data

3.5 Exporting data
We’ve finished learning about importing data into memory. In the second half of this
chapter, we look at the other side of the equation: exporting data. We’ll learn to export
data from our data pipeline to various data formats and storage mechanisms. The same
as when we were learning about importing: we’ll start with text files, and we’ll finish
with the databases MongoDB and MySQL.

3.5.1 You need data to export!

Through the code examples to import data, we printed the imported data to the con-
sole to check that everything worked as expected. Exporting is a little different. Before
we can export data, we need example data to export!

For the rest of this chapter, we’ll use earthquakes.csv as our example data. The gen-
eral pattern for the export code examples is shown in figure 3.18. First, we use the tool-
kit function importCsvFile that we created earlier to load earthquakes.csv to the CDR.
This is followed by the remainder of the export process, which depends on the data
format we’re exporting. The following listing shows the general export process in code.
You can see that after importing earthquakes.csv, we have a blank slot where we can
insert our export code.

Listing 3.17 General pattern for your data export example code

const importCsvFile = require('./importCsvFile');

importCsvFile("./data/earthquakes.csv")
 .then(earthquakesData => {
 //
 // ... Export code here ...
 //
 })
 .catch(err => {
 console.error("An error occurred.");
 console.error(err.stack);
 });

3.5.2 Exporting data to text files

Exporting to a text file starts with serialization of the data that we’re holding in the
core data representation. We must start by choosing our data format: here we’ll export
our data either as JSON or as CSV. Our data is serialized to text in memory. Then we
use the Node.js function fs.writeFile to write the text data to the file system. This
process is illustrated in figure 3.19.

Requires our importCsvFile
toolkit function

Uses our toolkit function to load data, so
that we have something to export

Invokes the callback that receives
the loaded data; this is where
we'll add our export code.

Handles any error that
might occur

86 CHAPTER 3 Acquisition, storage, and retrieval

To demonstrate the
various data export
techniques, we need
some example data
to work with!

We'll use earthquakes.csv
as our example data.

Our helper
function
to import
earthquakes.csv

The code listings in
this section demonstrate
data export techniques.

CSV text file:
earthquakes.csv importCsvFile

Core data
representation

Export code Text file or
database

In practice you’ll
replace the import
code depending on
the data format you
need to import.

Our code to export
from the core data
representation to text
file or database

Export

Figure 3.18 General format of the data export examples

Serialize the data
format to a text
representation.

Write to a file in
the filesystem.Serialize

JSON

Core data
representation Text data fs.writeFile

Text file:
earthquakes.

csv

Serialize
CSV

CDR is serialized
into in-memory
text data.

fs.writeFile is a
Node.js API
function.

or

Figure 3.19 Exporting from the CDR to a text file

 87Exporting data

As we did with Node’s fs.readFile function, we create a function that wraps
fs.writeFile in a promise. We want to keep our file-related functions together, so let’s
add the new write function to our existing file module as shown in the following listing.

Listing 3.18 A promise-based function to write a text file (toolkit/file.js)

const fs = require('fs');

//
// ... read toolkit function ...

function write (fileName, textFileData) {
 return new Promise((resolve, reject) => {
 fs.writeFile(fileName, textFileData,
 (err) => {
 if (err) {
 reject(err);
 return;
 }

 resolve();
 }
);
 });
};

module.exports = {
 read: read,
 write: write,
};

We’re going to use our new toolkit function to write our data to JSON and CSV files in
subsequent sections.

3.5.3 Exporting data to JSON text files

To export from the CDR to JSON, use the built-in JavaScript function JSON.stringify.
With our data serialized to text, we then write the text to earthquakes.json, as illus-
trated in figure 3.20. The following listing shows the new function exportJsonFile
that exports our data to a JSON file.

Listing 3.19 A function to export data to a JSON text file (toolkit/exportJsonFile.js)

const file = require('./file.js');

function (fileName, data) {

Defines our write toolkit function

Instantiates and returns a promise to wrap
the callback-based asynchronous operation

Executes the Node.js
function to write the file

Rejects the promise if an error occurs

Resolves the promise if the text
file was successfully saved

Exports toolkit functions for use
in other Node.js modules

Requires our file toolkit module

Defines our toolkit function
to export a JSON file

88 CHAPTER 3 Acquisition, storage, and retrieval

 const json = JSON.stringify(data, null, 4);
 return file.write(fileName, json);
};

module.exports = exportJsonFile;

The following listing uses the exportJsonFile function to export our data to a JSON
file. You can run this code, and you will find that it produces a file in the output folder
called earthquakes.json.

Listing 3.20 Exporting data to earthquakes.json (listing-3.20.js)

const importCsvFile = require('./toolkit/importCsvFile.js');
const exportJsonFile = require('./toolkit/exportJsonFile.js');

importCsvFile("./data/earthquakes.csv")
 .then(data => exportJsonFile("./output/earthquakes.json", data))
 .catch(err => {
 console.error("An error occurred.");
 console.error(err.stack);
 });

Uses JSON.stringify to convert
from CDR to JSON text Uses our file.write toolkit function to

write the JSON data to the filesystem

Exports our toolkit function for
use in other Node.js modules

Serialize CDR to JSON text
data using JSON.stringify.

Core data
representation JSON.stringify JSON text data fs.writeFile JSON text file:

earthquakes.json

JSON.stringify
is part of the
JavaScript API.

CDR is serialized
into in-memory
JSON text data.

Figure 3.20 Exporting from the CDR to a JSON text file

Requires toolkit function
to import a CSV file

Requires toolkit function
to export a JSON file

Imports example data from
earthquakes.csv to the CDR

Exports example data from
CDR to earthquakes.json

 89Exporting data

3.5.4 Exporting data to CSV text files

CSV exporting isn’t built into JavaScript, so again we turn to Papa Parse for this capa-
bility. This time we use the function papa.unparse to serialize our data to CSV text. We
then write the data to earthquakes.csv using our file.write function. The process is
illustrated in figure 3.21. The following listing shows our function exportCsvFile that
exports data to a CSV file using papa.unparse.

Listing 3.21 A function to export data to a CSV text file (toolkit/exportCsvFile.js)

const papa = require('papaparse');
const file = require('./file.js');

function exportCsvFile (fileName, data) {
 const csv = papa.unparse(data);
 return file.write(fileName, csv);
};

module.exports = exportCsvFile;

Listing 3.22 uses the exportCsvFile function to export our data to a CSV file. Run
this code and it will produce the file earthquakes-export.csv in the output folder.

Serialize CDR to CSV
text data using third-party
library PapaParse.

Core data
representation Papa.unparse CSV text data fs.writeFile CSV text file:

earthquakes.csv

CDR is serialized
into in-memory
CSV text data

Figure 3.21 Exporting from the CDR to a CSV text file

Requires Papa Parse for
serializing to the CSV format Requires our file

toolkit module

Defines our toolkit function
to export a CSV file

Uses papa.unparse to convert
from CDR to CSV text data

Uses our file.write toolkit function to
write the CSV data to the filesystem

Exports our toolkit function for use in
other Node.js modules

90 CHAPTER 3 Acquisition, storage, and retrieval

Listing 3.22 Exporting data to earthquakes.csv (listing-3.22.js)

const importCsvFile = require('./toolkit/importCsvFile.js');
const exportCsvFile = require('./toolkit/exportCsvFile.js');

importCsvFile("./data/earthquakes.csv")
 .then(data =>
 exportCsvFile("./output/earthquakes-export.csv", data)
)
 .catch(err => {
 console.error("An error occurred.");
 console.error(err.stack);
 });

3.5.5 Exporting data to a database

Exporting our data to a database is necessary for us to work effectively with data. With a data-
base, we can easily and efficiently retrieve filtered and sorted data whenever it’s needed.

Figure 3.22 shows the general process. The core data representation is fed into a
database access library. Typically, the library interfaces with the database through the
network to store the data.

Requires our toolkit function
to import a CSV file

Requires our toolkit function
to export a CSV file

Imports example data from
earthquakes.csv to the CDR

Exports example data from CDR to
earthquakes-export.csv

Store data via
network protocol.

MongoDB
access
library

Core data
representation

Earthquakes
database

MySQL
access
library

Using third-party libraries
to export to different
types of database

Figure 3.22 Exporting from the CDR to a database

 91Exporting data

3.5.6 Exporting data to MongoDB

We can export data to MongoDB using the third-party library promised-mongo that we
installed earlier. This is illustrated in figure 3.23.

Your toolkit function to export to MongoDB, shown in the following listing, is the
simplest yet. It’s almost not worth having a separate function for this, but I included it
for completeness. For a particular database and collection, it calls the insert function
to insert an array of records.

Listing 3.23 A function to export data to MongoDB (toolkit/exportToMongoDB.js)

function exportToMongoDB (db, collectionName, data) {
 return db[collectionName].insert(data);
 };

module.exports = exportToMongoDB;

A specific example is shown in listing 3.24. This code connects to a MongoDB instance
that’s running on the Vagrant virtual machine. The database access port is mapped
to port 6000 on our development PC. Example data is imported from earthquakes
.csv; then we call our function exportToMongoDB and store the data in the MongoDB
database. You can run this code, and it will create and populate a new collection in the
database that’s named largest_earthquakes_export.

Store data via
MongoDB network
protocol.

Core data
representation

promised-
mongo

MongoDB
database:

earthquakes

Using third party library:
promised-mongo

This wraps the Node.js
MongoDB drive in promises.

Figure 3.23 Exporting from the CDR to a MongoDB database

Defines our toolkit function to
export data to MongoDB

Inserts the array of records in the database
collection. The insert function can either take an

array of records or each individual record.

Exports the toolkit function for
use in other Node.js modules

92 CHAPTER 3 Acquisition, storage, and retrieval

Listing 3.24 Exporting to the MongoDB largest_earthquakes collection (listing-3.24)

const importCsvFile = require('./toolkit/importCsvFile.js');
const exportToMongoDB = require('./toolkit/exportToMongoDB.js');
const mongo = require('promised-mongo');

const db = mongo("localhost:6000/earthquakes",
 ["largest_earthquakes_export"]
);

importCsvFile("./data/earthquakes.csv")
 .then(data =>
 exportToMongoDB(db, "largest_earthquakes_export", data)
)
 .then(() => db.close())
 .catch(err => {
 console.error("An error occurred.");
 console.error(err.stack);
 });

3.5.7 Exporting data to MySQL

We can export data to MySQL using the third-party library nodejs-mysql that we
installed earlier. This process is illustrated in figure 3.24.

Our function to export to MySQL is shown in listing 3.25. This is a bit different from
exporting to MongoDB. With MongoDB, we could insert a large collection of records
with a single call to insert. We can’t do that with this library; instead, we must execute
multiple SQL insert commands. Note how the JavaScript reduce function in the fol-
lowing listing is used to sequence these SQL commands one after the other.

Requires toolkit function
to import a CSV file

Requires toolkit function
to export to MongoDB

Requires promised-mongo: the
library used to access the database

Connects
to the

database

Imports example data
from earthquakes.csv

Exports the data to the largest_
earthquakes_export collection in the
earthquakes database

Closes the database connection
when we’re done with it

Handles any error that
might have occurred

Store data via MySQL
network protocol.

Core data
representation

nodejs-
mysql

MySQL database:
earthquakes

Using third-party library:
nodejs-mysql

Figure 3.24 Exporting from the CDR to a MySQL database

 93Exporting data

Listing 3.25 A function to export data to MySQL (toolkit/exportToMySql.js)

function exportToMySql (db, tableName, data) {
 return data.reduce(
 (prevPromise, record) =>
 prevPromise.then(() =>
 db.exec(
 "insert into " + tableName + " set ?",
 record
)
),
 Promise.resolve()
);
};

module.exports = exportToMySql;

Before inserting the data into our MySQL database, we need to create the database
table. For me, this is one of the disadvantages of using SQL: we have to create tables
and define our schema before we can insert data. This kind of preparation isn’t neces-
sary with MongoDB.

The following listing shows the creation of a largest_earthquakes_export table in the
MySQL database with a schema that matches the format of our example data. You must
run this code to create the database schema for our data.

Listing 3.26 Creating the largest_earthquakes_export table in the MySQL database
(listing-3.26.js)

const mysql = require('nodejs-mysql').default;

const config = {
 host: "localhost",
 port: 5000,
 user: "root",
 password: "root",
 database: "earthquakes",
 dateStrings: true,
 debug: true
};

const db = mysql.getInstance(config);

const createDbCmd =

Defines a toolkit function to export
data to a MySQL database

Uses the reduce function
to visit each record

Sequences a series of asynchronous
insert operations using promises

Inserts a new
record in the

database

Exports the toolkit function for
use in other Node.js modules

Requires nodejs-mysql: The library
used to access the MySQL database

Configures connection for
the MySQL database

Specifies that we’re using
the earthquakes database

Connects to the MySQL database

94 CHAPTER 3 Acquisition, storage, and retrieval

 "create table largest_earthquakes_export (Magnitude double, Time ➥
datetime, Latitude double, Longitude double, `Depth/Km` double)";

db.exec(createDbCmd)
 .then(() => {
 console.log("Database table created!");
 })
 .catch(err => {
 console.error("Failed to create the database table.");
 console.error(err.stack);
 });

After creating the database table, we can now export data to it. In the following listing,
we import the example data from earthquakes.csv and then use our exportToMySql
function to export it to the MySQL database. You can run this code, and it will popu-
late the SQL table largest_earthquakes_export with your data.

Listing 3.27 Exporting to the MySQL largest_earthquakes table (listing-3.27.js)

const importCsvFile = require('./ toolkit/importCsvFile.js');
const exportToMySql = require('./ toolkit/exportToMySql.js');
const mysql = require('nodejs-mysql').default;

const config = {
 host: "localhost",
 port: 5000,
 user: "root",
 password: "root",
 database: "earthquakes",
 dateStrings: true,
 debug: true
};

const db = mysql.getInstance(config);

importCsvFile("./data/earthquakes.csv")
 .then(data =>
 exportToMySql(db, "largest_earthquakes_export", data)
)

Shows the SQL command to create the
largest_earthquakes_export table

Executes the command to create the table
Invokes the callback
when the table has
been created
successfully

Handles any error
that might occur

Requires toolkit function to
import data from the CSV file

Requires toolkit function to
export to MySQL

Requires nodejs-mysql: The
library used to access MySQL

Configures connection to
MySQL database

Specifies that we’re using the
earthquakes database

Connects to the SQL database

Loads example data for exporting

Uses our toolkit function to export the
example data to the largest_earthquakes_

export table in the database

 95Expanding the process

 .catch(err => {
 console.error("An error occurred.");
 console.error(err.stack);
 });

We’ve now completed our journey through importing and exporting a variety of data
formats. How can we use this experience? Well, now we can mix and match data for-
mats, and we can build a large variety of different data pipelines.

3.6 Building complete data conversions
Figure shows a complete picture of a data conversion from a CSV file to a MongoDB
database. We’ve already seen this kind of conversion in the section “Exporting data to
MongoDB.” Note how the import code overlaps with the export code in the middle
with the core data representation.

Let’s take another look at the code for this conversion. The following listing clearly
identifies the import and export components of the conversion. These are nicely
defined as toolkit functions that we created earlier in this chapter.

Listing 3.28 Example data conversion from CSV file to MongoDB collection

const importCsvFile = require('./toolkit/importCsvFile.js');
const exportToMongoDB = require('./toolkit/exportToMongoDB.js');

// ... Initialisation code ...

importCsvFile("./data/earthquakes.csv")
 .then(data => exportToMongoDB(db, "largest_earthquakes", data))
 .then(() => {
 // ... Cleanup code ...
))
 .catch(err => {
 console.error("An error occurred.");
 console.error(err.stack);
 });

Hopefully, you’re starting to get a feel for how you can mix and match data formats
and piece them together to build data pipelines.

3.7 Expanding the process
Let’s come back to the core data representation pattern. You can see in listing 3.28 that
you could easily replace the import and export functions there with functions for work-
ing with any other data format. This forms the pattern that allows you to build almost
any data conversion that you can imagine.

Handles any error that
might have occurred

Imports from earthquakes.csv

Exports to MongoDB largest_
earthquakes_export collection

96 CHAPTER 3 Acquisition, storage, and retrieval

You can now build data conversion for any of the formats we’ve covered so far. Look
at figure 3.26. Pick an import format from the left. Pick an export format from the right.
Then wire these together in JavaScript code that feeds the data through the CDR.

The core data representation pattern is extensible. You aren’t limited to the data
formats presented in this chapter. You can bring your own data formats, either stan-
dard (such as XML or YAML) or even custom formats, and integrate them into your
workflow.

Import and export
overlap at the CDR.

Import Parse CSV text
data to CDR using
PapaParse.

CSV text file:
earthquakes.csv fs.readFiles CSV text

data
Papa.parse

CSV text data
loaded into
memory

Core data
representation

CDR loaded in
memory

promised-
mongo

Export

MongoDB
database:

earthquakes

Store data to
database using
promised-mongo.

Figure 3.25 An example data conversion, CSV to MongoDB

Core data
representation

Plugin data format of your
choice for export

Export
Text file

Plugin data format of your
choice for import

Feeding through the CDR

Text file
Import

JSON / CSV JSON / CSV

JSON / CSV

REST API

Database

MongoDB / SQL

REST API

JSON / CSV

Database

MongoDB / SQL

Always route data
through the CDR.

The combination of import and
export allows us to build an
almost infinite variety of data
conversion processes.

Figure 3.26 The core data representation design pattern is a recipe for constructing data conversion
pipelines.

 97Expanding the process

The kind of data pipeline we’ve looked at so far is generalized in figure 3.27. We
take input data in a format and pass it through code that can decode that format. At
this point, the data resides in memory in the core data representation. Now we pass the
CDR data through export code to get the data where it needs to be. I’m sure you can
imagine how you could add new formats into the mix. As an example, let’s say that you
create toolkit functions for importing and exporting XML. Now you’ve extended your
ability to create data conversion pipelines—for example, XML to CSV, XML to Mon-
goDB, MySQL to XML, and so on.

In the coming chapters, we’ll build on the core data representation pattern. As you
can see in figure 3.28, we’re going to stretch out the middle section of the conversion
pipeline. This is where we’ll add stages to our data pipeline for data cleanup, transfor-
mation, and analysis. Each of these stages operates on the core data representation.
Each stage takes the CDR data as input, does work on it, and then outputs the trans-
formed CDR data, passing it onto the next stage.

Import and export overlap
at the CDR

Import

Input data Import code Core data
representation Export code Output data

Export

Figure 3.27 A general data conversion pipeline

The basic data conversion pipeline
has been expanded to include
multiple stages of data cleanup
and transformation.

Cleanup and transformationImport

Import data Core data
 representation

Core data
representationTransform

step 1

…
Transform

step 2
Transform

step N Export data

Each transformation step
operates on the CDR.

Export

Figure 3.28 The basic data conversion pipeline expanded to include data cleanup and transformation
stages

98 CHAPTER 3 Acquisition, storage, and retrieval

Using the core data representation pattern allows us to create a total of 36 different
data conversions from the techniques we learned in this chapter. Thirty-six is the num-
ber of importers (6) multiplied by the number of exporters (6). Any new formats that
we add to the mix only increase this number. Say that you add the XML format to the
mix; now you have 49 different data conversions at your disposal!

Acquisition, storage, and retrieval are fundamental for building data pipelines. Now
that you’ve tackled these aspects of data wrangling, you can move onto more varied and
advanced topics. You aren’t done with data import yet though, and in chapter 4 we’ll
look into more advanced aspects of it, such as dealing with custom data, web scraping,
and working with binary data.

Summary

¡	You learned that you can wire together flexible data pipelines with code that
feeds data through the core data representation.

¡	You discovered how to import and export JSON and CSV text files.
¡	We discussed importing JSON and CSV data from a REST API via HTTP GET.
¡	You worked through examples on importing and exporting data with MongoDB

and MySQL databases.

99

4Working with
unusual data

This chapter covers
¡	Dealing with various unusual data formats

¡	Parsing custom text file formats using regular
expressions

¡	Using web scraping to extract data from
web pages

¡	Working with binary data formats

In the previous chapter, you learned how to import and export various standard and
common data formats to the core data representation. In this chapter, we’re going
to look at several of the more unusual methods of importing data that you might
need to use from time to time.

Continuing from chapter 3, let’s say that you’re maintaining a website about earth-
quakes and you need to accept new data from a variety of sources. In this chapter,
we’ll explore several of the not-so-regular data formats you might need or want to
support. Table 4.1 shows the new data formats we’ll cover.

100 CHAPTER 4 Working with unusual data

Table 4.1 Data formats covered in chapter 4

Data Format Data Source Notes

Custom text Text file Data sometimes comes in custom or proprietary
text formats.

HTML Web server / REST API Data can be scraped from HTML web pages when
no other convenient access mechanism exists.

Custom binary Binary file Data sometimes comes in custom or proprietary
binary formats.

Or we may choose to use binary data as a more
compact representation.

In this chapter, we’ll add new tools to our toolkit for dealing with regular expressions,
doing web scraping and decoding binary files. These tools are listed in Table 4.2.

Table 4.2 Chapter 4 tools

Data Source Data Format Tools Functions

Custom text Custom text request-promise library request.get, regular
expressions

Web scraping HTML request-promise and
cheerio libraries

request.get, cheerio.load

Binary files Custom Node.js file system API
and Buffer class

fs.readFileSync

fs.writeFileSync

Various Buffer functions

Binary files BSON bson library serialize and deserialize

4.1 Getting the code and data
In this chapter we continue to use the earthquakes data from chapter 3. The code and
data for this chapter are available in the Chapter-4 repository in the Data Wrangling
with JavaScript GitHub organization at https://github.com/data-wrangling-with-
javascript/chapter-4. Please download the code and install the dependencies. Refer to
“Getting the code and data” in chapter 2 if you need help with this.

As was the case with chapter 3, the repository for chapter 4 contains the code for
each code listing in separate JavaScript files in the same directory, and they are named
according to the listing number. You can install all third-party dependencies for all code
listings by running npm install once in the root directory of the repository.

https://github.com/data-wrangling-with-javascript/chapter-4
https://github.com/data-wrangling-with-javascript/chapter-4

 101Importing custom data from text files

4.2 Importing custom data from text files
Occasionally you might come across a custom, proprietary, or ad hoc text format for
which no readily available JavaScript library exists. In cases like this, you must write custom
parsing code to import your data to the core data representation.

Although various methods exist for parsing, including implementing your own
parser by hand, in this section I demonstrate parsing using regular expressions. After
loading our example file earthquakes.txt into memory, we’ll use regular expressions to
interpret the data and extract the interesting parts to the core data representation, as
shown in figure 4.1.

For the first example of regular expressions, we’ll parse the earthquakes.txt text file
that was downloaded from the United States Geological Survey (USGS). As you can see
in figure 4.2, earthquakes.txt looks similar to a CSV file, but rather than commas, it uses
pipe symbols as field separators.

Regular expressions are a powerful tool, and they’re natively supported by JavaScript.
They can help you deal with ad hoc or custom file formats, so you don’t need to hand-
code a parser for every custom format that you come across.

Custom text file:
earthquakes.txt fs.readFile Text data

Parse text data to the CDR
using regular expressions.

JavaScript
regular

expression
Core data

representation

Regular expressions are
part of the JavaScript
language.

Figure 4.1 Importing a custom text file format to the core data representation

Columns

Rows

Fields separated
by a pipe symbol

Figure 4.2 Custom text format data file downloaded from the USGS

102 CHAPTER 4 Working with unusual data

Our first port of call when working with regular expressions should be to an online
testing tool such as https://regex101.com. This tool, shown in figure 4.3, allows us to
create and test our regular expressions before getting anywhere near the code.

In this example, we’re going to use a simple regular expression, but they can be
much more complex than this, and we can use them to parse much more complicated
data formats. A big advantage of using regex101.com is that after we prototype and
test our regular expression, we can then export working JavaScript code that can be
included in our application.

After exporting the code from regex101.com, we must modify it so that it reads from
earthquakes.txt. The resulting code and modifications are shown in the following listing.
You can run this code from the chapter 4 GitHub repository, and it prints out the data that
has been decoded by the regular expression.

Listing 4.1 Importing data from custom text file earthquakes.txt (listing-4.1.js)

const file = require('./tookit/file.js');

function parseCustomData (textFileData) {
 const regex = /(.*)\|(.*)\|(.*)\|(.*)\|(.*)\|(.*)\|(.*)\|(.*)\|(.*)\|(.*)

➥\|(.*)\|(.*)\| (.*)$/gm;

 var rows = [];
 var m;

 while ((m = regex.exec(textFileData)) !== null) {
 // This is necessary to avoid infinite loops with zero-width

➥ matches
 if (m.index === regex.lastIndex) {
 regex.lastIndex++;
 }

 m.shift();

 rows.push(m);
 }

 var header = rows.shift();
 var data = rows.map(row => {
 var hash = {};
 for (var i = 0; i < header.length; ++i) {
 hash[header[i]] = row[i];
 }
 return hash;
 });

 return data;
};

file.read("./data/earthquakes.txt")
 .then(textFileData => parseCustomData(textFileData))
 .then(data => {
 console.log(data);
 })

Defines a helper function to
parse the custom data format

Defines the regular expression
to pattern match each line

This loop matches each
pattern in the text file data.

Discards the
first group in
the match; this
is always the
entire matched
pattern.

Saves the other groups;
each is a row of data.

Extracts the header row so you
know the column names

Transforms the rows. Each
row is an array ordered by
column. Transforms each
row to a record index by
column name.

Returns the imported data

Reads data from earthquakes.txt

Invokes
the helper
function and
parses the
custom data
format

Prints imported data to the console to
verify that everything went okay

 103Importing custom data from text files

 .catch(err => {
 console.error("An error occurred.");
 console.error(err.stack);
 });

Notice that, unlike the examples of reading files that we’ve seen in chapter 3, we haven’t
saved a separate toolkit function from listing 4.1. This is a custom format, and it’s possible
we’ll never see it again, so it might not be worthwhile creating a reusable toolkit function.
In general, we only need to add a function to our toolkit when we’re sure we’ll see that
data format again in the future.

In this example we didn’t add any code to our toolkit, although we did add a technique
to our toolkit. You should recognize regular expressions as a powerful technique for
parsing unusual data formats. Our first regular expression example barely scratched
the surface of what’s possible, so let’s look at other examples to see where else regular
expressions can take this.

With regular expressions, we could create a much more sophisticated pattern for pull-
ing apart each line of our data file. Do you want to ensure that the Time column is a date/
time value? Then create a more advanced pattern that will only recognize data/time
values for that column of data. The same goes for the other columns. You can tighten the
pattern to accept only valid data for that column; this is a great way to validate that your
incoming data conforms to the assumptions that you expect.

Regular expressions are also great for picking out nested data. Say you get a data
dump of customer comments (added through a form or maybe through email) and
you need to pick out pertinent details such as the customer email and the score they’ve
given a particular product.

One thing that you’ll definitely want to use regular expressions for is parsing the log
files generated by your app or server. This is a fairly regular use case for regular expres-
sions—say when you want to extract runtime metrics and other details from your log files.

Handles any error that might occur

Your regular
expression

Matches and
groupsA sample of

your input

Figure 4.3 Testing a regular expression with regex101.com

104 CHAPTER 4 Working with unusual data

When you start working with regular expressions, you’ll find that your patterns
grow complicated quickly. This is one of the downsides of regular expressions: you can
quickly create unreadable patterns that are difficult to modify later. I’ll leave it to your
discretion to further explore regular expressions if they sound useful to you.

4.3 Importing data by scraping web pages
Sometimes we might see data in a web page that would be useful. We’d like to have that
data, but there’s no convenient way to access it. We often find that important data is embed-
ded in a web page and that the company or organization hasn’t shared it in any other way
that’s convenient for us to download, such as a CSV file download or a REST API.

Ideally all organizations would share their data in a format that’s easy to import into
our data pipeline. Unfortunately, though, there are occasionally times when scraping a
web page, extracting the data from it, is the only way to obtain the data we need.

Web scraping is tedious, error-prone, and tiresome work. Your web scraping script
depends on the structure of the page being scraped: if that structure changes, then
your script will be broken. This makes web scraping scripts inherently fragile. For these
reasons web scraping as a data source should be considered a last resort; you should use
a more reliable alternative when possible.

If web scraping is the only way to access a data set, then we can do it easily in JavaScript,
despite the aforementioned caveats. The first part is the same as importing data from
a REST API from chapter 3: we can use request-promise to retrieve the web page. In
this example, we’ll scrape earthquake data from the following URL: https://earthquake
.usgs.gov/earthquakes/browse/largest-world.php.

With the web page downloaded into memory, we’ll use the third-party library Cheerio
to extract the data from the web page and convert it to the core data representation. The
process is shown in figure 4.4.

4.3.1 Identifying the data to scrape

We should start any web scraping project by first using our web browser to inspect the
web page. Figure 4.5 shows the largest earthquakes web page as viewed in Chrome.

Load the web page.

Web page request-
promise

HTML text
data Cheerio

Use third-party library:
Cheerio to extract data from
HTML to the CDR.

Core data
representation

Use third-party library:
request-promise
to retrieve the web page.

HTML text data is
loaded into memory.

Figure 4.4 Importing data by scraping a web page

Columns

Rows

Figure 4.5 Viewing the largest earthquakes web page in a web browser prior to scraping

https://earthquake.usgs.gov/earthquakes/browse/largest-world.php
https://earthquake.usgs.gov/earthquakes/browse/largest-world.php

 105Importing data by scraping web pages

Before we start coding, we must determine the HTML elements and CSS classes that
identify the data embedded in the page. Figure 4.6 shows an inspection of the page’s
element hierarchy using Chrome’s debug tools. The interesting elements are tbody,
tr, and td; these elements make up the HTML table that contains the data.

4.3.2 Scraping with Cheerio

We can now identify the data in the web page, and we’re ready to get into the code. If
you installed all dependencies for the chapter 4 code repository, then you already have
Cheerio installed. If not, you can install Cheerio in a fresh Node.js project as follows:

npm install --save cheerio

Cheerio is a fantastic library that is modeled on jQuery, so if you’re already comfort-
able with jQuery, you’ll be at home with Cheerio. Listing 4.2 is a working example
that scrapes the largest earthquakes web page and extracts the embedded data to the
core data representation. You can run this code, and it will print the scraped data to
the console.

Listing 4.2 Importing data by scraping a web page (listing-4.2.js)

const request = require('request-promise');
const cheerio = require('cheerio');

function scrapeWebPage (url) {

 return request.get(url)

 .then(response => {

 const $ = cheerio.load(response);

Requires
request-
promise. We
use this to
retrieve the
web page to
be scraped.

Requires Cheerio, a third-party library we
use to extract data from the HTML web page

Defines a helper function to
extract data from the web page

Uses request-
promise to
retrieved the
web page
through HTTP

Invokes a callback to handle retrieved data

Loads the web page’s
HTML into Cheerio

When you start working with regular expressions, you’ll find that your patterns
grow complicated quickly. This is one of the downsides of regular expressions: you can
quickly create unreadable patterns that are difficult to modify later. I’ll leave it to your
discretion to further explore regular expressions if they sound useful to you.

4.3 Importing data by scraping web pages
Sometimes we might see data in a web page that would be useful. We’d like to have that
data, but there’s no convenient way to access it. We often find that important data is embed-
ded in a web page and that the company or organization hasn’t shared it in any other way
that’s convenient for us to download, such as a CSV file download or a REST API.

Ideally all organizations would share their data in a format that’s easy to import into
our data pipeline. Unfortunately, though, there are occasionally times when scraping a
web page, extracting the data from it, is the only way to obtain the data we need.

Web scraping is tedious, error-prone, and tiresome work. Your web scraping script
depends on the structure of the page being scraped: if that structure changes, then
your script will be broken. This makes web scraping scripts inherently fragile. For these
reasons web scraping as a data source should be considered a last resort; you should use
a more reliable alternative when possible.

If web scraping is the only way to access a data set, then we can do it easily in JavaScript,
despite the aforementioned caveats. The first part is the same as importing data from
a REST API from chapter 3: we can use request-promise to retrieve the web page. In
this example, we’ll scrape earthquake data from the following URL: https://earthquake
.usgs.gov/earthquakes/browse/largest-world.php.

With the web page downloaded into memory, we’ll use the third-party library Cheerio
to extract the data from the web page and convert it to the core data representation. The
process is shown in figure 4.4.

4.3.1 Identifying the data to scrape

We should start any web scraping project by first using our web browser to inspect the
web page. Figure 4.5 shows the largest earthquakes web page as viewed in Chrome.

Load the web page.

Web page request-
promise

HTML text
data Cheerio

Use third-party library:
Cheerio to extract data from
HTML to the CDR.

Core data
representation

Use third-party library:
request-promise
to retrieve the web page.

HTML text data is
loaded into memory.

Figure 4.4 Importing data by scraping a web page

Columns

Rows

Figure 4.5 Viewing the largest earthquakes web page in a web browser prior to scraping

https://earthquake.usgs.gov/earthquakes/browse/largest-world.php
https://earthquake.usgs.gov/earthquakes/browse/largest-world.php

106 CHAPTER 4 Working with unusual data

 const headers = $("thead tr")
 .map((i, el) => {
 return [$(el)
 .find("th")
 .map((i, el) => {
 return $(el).text();
 })
 .toArray()];
 })
 .toArray();

 const rows = $("tbody tr")
 .map((i, el) => {
 return [$(el)
 .find("td")
 .map((i, el) => {
 return $(el).text();
 })
 .toArray()];
 })
 .toArray();

 return rows.map(row => {
 const record = {};
 headers.forEach((fieldName, columnIndex) => {
 if (fieldName.trim().length > 0) {
 record[fieldName] = row[columnIndex];
 }
 });
 return record;
 });
 });
}; #

const url = "https://earthquake.usgs.gov/earthquakes/browse/largest-world.
➥ php";

scrapeWebPage(url)
 .then(data => {
 console.log(data);
 })
 .catch(err => {
 console.error(err);
 });

Notice that this is another instance, similar to parsing a custom text file, where we
don’t necessarily need to add a reusable function to our toolkit. Scraping a website
is such a custom job that there might be little chance to use this same code again. We
find here that it’s the technique, the ability to scrape a website, that we’ve added to our
toolkit and not the reusable code.

Web scraping with a headless browser
If you have a more complex scraping job to do, for example, one that requires authenti-
cation, browser interaction, or even waiting for the browser’s JavaScript to evaluate, then
this simple approach won’t be enough for you.

Uses Cheerio to extract
table header and convert
to an array

Uses Cheerio to extract table
rows and convert to an array

Takes
header and
data rows,
combines
them, and
converts
to CDR

Shows
the URL
of the web
page that’s
to be
scraped

Invokes the helper function to
scrape the example web page

Prints imported data to console to check it

Handles any errors that
might have occurred

 107Working with binary data

You’ll need to simulate the web page fully using a headless browser —that’s a web browser
that has no visible UI and is driven only by code. That’s a more advanced and flexible way
of doing web scraping. We’ll talk more about using a headless browser in chapter 11.

4.4 Working with binary data
It might seem rare, but on occasion as a JavaScript developer, you might need or want
to work with a binary data format.

The first question you should always ask is, “Why?” Given that we already have great
data formats to work with, such as JSON and CSV, then why work with binary data?

Well, the first consideration is that maybe that’s the data that we’re given to work with. In
the context of the earthquakes website, let’s say we are given a binary data dump for earth-
quakes data. In this case, we need to unpack the binary data so that we can work with it.

That’s one reason we might work with binary data, but here’s another. Binary data
is much more compact than JSON or CSV data. For example, the binary file that we’ll
look at in a moment, earthquakes.bin, is 24% of the size of the equivalent JSON file.
That’s a significant saving for disk space and network bandwidth!

Another reason to choose a binary data format might be due to performance. If
you hand-code a binary serializer and optimize the heck out of it, you can achieve bet-
ter performance than JSON serialization. But I wouldn’t put too much hope into this
reason. The built-in JSON serializer is already well optimized and extremely fast. You’ll
have to be smart and work pretty hard to beat it!

Maybe turn to binary data files if you have to or if you need to use a more compact
format. But think carefully before turning to a binary format to improve performance.
It might be more difficult than you expect to achieve a performance gain, and you can
easily make performance worse!

Here’s one good reason why we shouldn’t use binary files. Text-based data formats are
human readable, and we can open them and read them without the need for a special
viewer app. Don’t underestimate how important this is! It’s a huge help when we’re trying
to understand or debug a data file to open and view that file in a text editor.

td

tr/

tbody/

Figure 4.6 Using Chrome devtools to identify HTML elements containing data to be scraped

108 CHAPTER 4 Working with unusual data

4.4.1 Unpacking a custom binary file

Let’s say you’ve been given the binary file earthquakes.bin and you need to import it
into your database. How can you decode this file?

For a start, you need an idea of how the binary file is structured. This isn’t a text-
based format, so you can’t peruse it in a text editor to understand it. Let’s assume that
the provider of the binary file has explained the layout of the file to us. They’ve said that
it’s a sequence of binary records packed one after the other (figure 4.7). The file starts
by specifying the number of records that it contains, and you can see the Num records field at
the start of the file in figure 4.7.

The provider of our data has also explained that each record describes an earth-
quake through a series of values (figure 4.8). These are double-precision numbers (the
standard number format for JavaScript) that indicate the time, location, depth, and
magnitude of each earthquake.

To work with binary files, we’ll use the Node.js file system functions. We’ll use the syn-
chronous functions—for example, readFileSync—because they make the code simpler,
although in production you’ll probably want to use asynchronous versions for perfor-
mance of your server. In chapter 3, we read text files into memory as strings; here, though,
we’ll read our binary file earthquakes.bin into a Node.js Buffer object.

You can see the steps for this process in figure 4.9. First, you call readFileSync to
load earthquakes.bin to a buffer (1). Then you’ll read the number of records from the
buffer (2). You then start a loop that reads each record from the buffer in sequence (3).
The fields of the record are extracted and used to construct a JavaScript object (4) that’s
added to your array of records.

Sequentially packed
binary records

Binary file:
Earthquakes.bin

Num
records

Record
1

Record
2

Record
N

…

Total number of records
is recorded at the start
of the binary file.

Figure 4.7 Earthquakes.bin
is a binary file that contains a
sequence of packed records,
one after the other.

An earthquake record

Ti
m

e

La
tit

ud
e

Lo
ng

itu
de

D
ep

th
_K

m

M
ag

ni
tu

de

Figure 4.8 Each data record is
a sequence of packed values that
describe an earthquake.

 109Working with binary data

Figure 4.10 depicts the construction of the JavaScript object that represents an
earthquake record. Time (1), latitude (2), and the other fields (3) are read from the
buffer and assigned to the JavaScript object.

The code to unpack earthquakes.bin is remarkably simple, as you can see in the follow-
ing listing. You can run this code, and it will decode the example binary file and print the
data to the console.

Listing 4.3 Unpacking the earthquakes.bin binary files with a Node.js Buffer object
(listing-4.3.js)

const fs = require('fs');
const buffer = fs.readFileSync("./data/earthquakes.bin");

const numRecords = buffer.readInt32LE(0);

let bufferOffset = 4;
const records = [];

for (let recordIndex = 0; recordIndex < numRecords; ++recordIndex) {

 const time = buffer.readDoubleLE(bufferOffset);

 const record = {
 Time: new Date(time),
 Latitude: buffer.readDoubleLE(bufferOffset + 8),
 Longitude: buffer.readDoubleLE(bufferOffset + 16),
 Depth_Km: buffer.readDoubleLE(bufferOffset + 24),
 Magnitude: buffer.readDoubleLE(bufferOffset + 32),
 };

Reads the
binary file into
a Node.js
Buffer object

Reads the number
of records from
the buffer

Loops to read each data record
from the buffer in sequence

Reads fields from
the buffer and
creates a
JavaScript object
that represents
the earthquake

Read earthquakes.bin
into a Node.js
Buffer object.

Read the
number of
records.

Read each sequential
record from the buffer.

Unpack each binary
earthquake record
and append it to a
JavaScript array.

Binary file:
earthquakes.bin

Num
records

Record
1

Record
2

Record
N…

Earthquake
record

Earthquake
record 1

Earthquake
record 2

JavaScript array

Figure 4.9 Reading records from earthquakes.bin using a Node.js Buffer object

110 CHAPTER 4 Working with unusual data

 bufferOffset += 8 * 5;

 records.push(record);
}

console.log(records);

Does this work for large files?
The short answer is no. This technique is simple, but unfortunately it doesn’t scale to
large files. Loading a large file in this way will cause an out-of-memory error.

To work with large files, you’ll need to use Node.js streams (which you’ll look at in
chapter 7) that allow you to iteratively process a large file in chunks. The technique for
dealing with each chunk is then similar to the code in listing 4.3. Each chunk is loaded
into a buffer where you can extract records. The entire file is then processed chunk by
chunk, with only one chunk loaded in memory at any given moment.

Moves the
buffer offset
by a set
amount after
reading each
record

Adds the earthquake object to an array so that you can collect
all the records that are loaded from the binary file

Prints the array of deserialized records
to the console

Time field is read
from the Buffer
and assigned to the
JavaScript object.

Latitude
field is read.

The other fields are
each read in turn and
assigned to the
JavaScript object.

A Node.js Buffer
object containing
an earthquake
record

JavaScript object
representing an
earthquake

Ti
m

e

La
tit

ud
e

Lo
ng

itu
de

D
ep

th
_K

m

M
ag

ni
tu

de

Figure 4.10 Reading fields from a binary earthquake record to a JavaScript object

 111Working with binary data

4.4.2 Packing a custom binary file

In the previous example, we were given earthquakes.bin, a binary file that we had to
decode to make use of the data that it contained. You might be curious to know how
such a file is created in the first place.

Packing earthquakes.bin is essentially the reverse of the process we went through to
unpack it. We start with an array of JavaScript objects that represents the earthquakes.
As you can see in figure 4.11, the fields of an earthquake object are packed sequentially
to form a binary record. First, the Time field is packed (1), followed by the Latitude
field (2), and so on until all the fields are packed (3) into the buffer.

You can see in figure 4.12 that each record is tightly packed, one after the other, into
the buffer. We start by creating a Node.js Buffer object (1). Before writing records to the
buffer, we must first record the number of records (2), because this allows us to know
how many records to expect when we later decode the binary file. Then we pack each
earthquake record sequentially into the buffer (3). Finally, the buffer is written out to
our binary file earthquakes.bin (4). That’s how we produce the file that was given to us
in the earlier example.

The code to convert earthquakes.json to our custom binary format is shown in list-
ing 4.4; this is a bit more complicated than the code required to unpack it, but not by
much. You can run this code, and it will read the example data from earthquakes.json,
pack the data into the binary buffer, and then produce the output file earthquakes.bin.
If you want to test that the output earthquakes.bin is a valid file, you could run it back
through the code in listing 4.3 to test that it can be subsequently unpacked.

JavaScript object
representing an
earthquake A Node.js Buffer

object containing a
packed earthquake
record

Ti
m

e

La
tit

ud
e

Lo
ng

itu
de

D
ep

th
_K

m

M
ag

ni
tu

de

Time field from the
JavaScript earthquake
object is written to the
buffer.

Latitude field is
written to the buffer.

The other fields
are each written in
turn into the buffer.

Figure 4.11 Packing fields from a JavaScript earthquake object into a Node.js buffer

112 CHAPTER 4 Working with unusual data

Listing 4.4 Packing the binary file earthquakes.bin using a Node.js buffer (listing-4.4.js)

const fs = require('fs');
const moment = require('moment');

const records = JSON.parse(
 fs.readFileSync("./data/earthquakes.json", 'utf8')
);

const bufferSize = 4 + 8 * 5 * records.length;
const buffer = new Buffer(bufferSize);

buffer.writeInt32LE(records.length);

let bufferOffset = 4;

for (let i = 0; i < records.length; ++i) {

 const record = records[i];
 const time = moment(record.Time).toDate().getTime();
 buffer.writeDoubleLE(time, bufferOffset);
 bufferOffset += 8;

 buffer.writeDoubleLE(record.Latitude, bufferOffset);
 bufferOffset += 8;

 buffer.writeDoubleLE(record.Longitude, bufferOffset);
 bufferOffset += 8;

 buffer.writeDoubleLE(record.Depth_Km, bufferOffset);
 bufferOffset += 8;

 buffer.writeDoubleLE(record.Magnitude, bufferOffset);
 bufferOffset += 8;
}

fs.writeFileSync("./output/earthquakes.bin", buffer);

Loads the earthquakes.json
file that we are going to
convert to binary

Determines the size of the buffer needed
to hold all the earthquake records

Creates the
Buffer object
that we will
use to pack
the data

Writes the number of records to the buffer

Writes each record in sequence to the buffer

Writes the fields of a
record to the buffer and
moves the offset forward
by a set amount

Writes the buffer to the
file earthquakes.bin

JavaScript earthquake
object

Binary file:
earthquakes.bin

Num
records

Record
1

Record
2

Record
N...Create a

Node.js Buffer
object large
enough to hold
all records.

Write num
records
to the buffer.

Pack each record
sequentially into
the buffer.

Write the
buffer to a file.

Figure 4.12
Writing earthquake
records to our binary
file earthquakes.bin

 113Working with binary data

Note that a dependency on moment was introduced here. This is the fantastic library
for dealing with dates and times that we first installed in chapter 2.

Creating our own custom binary data formats is problematic. The code is messy and
gets much more complicated if we want to handle larger files. The output format isn’t
human readable, so unless we document the structure of the format, we run the risk of
forgetting how it works. This might make it difficult to decode our data in the future.

You have another option, however, if you want the best of both worlds. You want
something with the convenience and reliability of JSON, but with the compactness of
binary data: then let me present you with BSON (pronounced bison).

4.4.3 Replacing JSON with BSON

BSON, or binary JSON, is a binary encoded serialization of JSON. Although you can’t
open a BSON file in a text editor, it is (like JSON) a self-describing format. You don’t
need documentation to understand or remember how to decode the data file.

BSON is a standard and mature data format. It’s the format that underlies Mon-
goDB. It’s almost a drop-in replacement for JSON, and it’s easy to convert between
JSON and BSON.

BSON will allow you to store your JSON in a more compact way. This might be useful
if you are trying to save disk space or network bandwidth. BSON won’t gain you any-
thing in performance, though, because it’s slightly slower than JSON serialization. To
use BSON, you therefore must make a tradeoff between size and performance.

4.4.4 Converting JSON to BSON

Let’s say that we have a JSON file called earthquakes.json that’s taking up too much space
on our disk. Let’s convert this file to the BSON format so that it takes up less space.

In these couple of examples, we’ll use the bson library. You’ll already have it if you
installed dependencies for the Chapter-4 code repository, or you can install it in a fresh
Node.js project as follows:

npm install --save bson

Listing 4.5 shows how to convert earthquakes.json to a BSON file. We instance the
BSON object and use its serialize function to convert our JavaScript data to the binary
BSON format. The result is a Node.js Buffer object that we write to our new data file
earthquakes.bson. You can run the code for the following listing, and it will convert the
example file earthquakes.json to the BSON file earthquakes.bson.

Listing 4.5 Converting JSON data to BSON (listing-4.5.js)

const fs = require('fs');
const moment = require('moment');
const BSON = require('bson');

const records = JSON.parse(
 fs.readFileSync("./data/earthquakes.json", "utf8")
);

Loads earthquakes.json that
we’re going to convert to BSON

114 CHAPTER 4 Working with unusual data

for (let i = 0; i < records.length; ++i) {
 const record = records[i];
 record.Time = moment(record.Time).toDate();
}

const bson = new BSON();
const serializedData = bson.serialize(records);

fs.writeFileSync("./output/earthquakes.bson", serializedData);

4.4.5 Deserializing a BSON file

Later on, when we need to decode earthquakes.bson, we can deserialize it back to
JavaScript data using the bson library. We first load the file to a Node.js Buffer object.
We then instance a BSON object and use its deserialize function to decode the data in
the buffer. Last, we print our reconstituted JavaScript data structure to the console to
verify that the data is correct. The code is presented in listing 4.6, and you can run it on
the example BSON file to convert it to the equivalent JSON representation. You might
even want to try running the following listing on the BSON file that you generated ear-
lier with the listing 4.5 code. You should be able to loop your files through listing 4.5,
then listing 4.6, and back to listing 4.5 and so on.

Listing 4.6 Deserializing BSON data (listing-4.6.js)

const fs = require('fs');
const BSON = require('bson');

const loadedData = fs.readFileSync("./data/earthquakes.bson");

const bson = new BSON();
const deserializedData = bson.deserialize(loadedData);

console.log(deserializedData);

In the previous chapter, you learned about importing and exporting various data for-
mats. In this chapter, you extended that knowledge to cover several of the more esoteric
methods of acquiring and storing data. We now have several important data-wrangling
fundamentals out of the way. In chapter 5, we’ll move on and learn the value of explor-
atory coding for prototyping code and understanding our data.

Summary

¡	You learned how to deal with unusual data formats.
¡	We discussed parsing custom text file formats using regular expressions.
¡	We did web scraping to extract data from web pages using request-promise

and Cheerio.
¡	We worked through examples of packing and unpacking custom binary formats.
¡	You learned how to work with binary data formats using BSON.

For each record, parse the Time value
from a string to a Date object. Unlike
JSON, BSON can store actual Date objects.Instances a

BSON object
Serializes our data to a Node.js Buffer object

Writes the buffer
to the binary file
earthquakes.bson

Loads earthquakes.bson
to a Node.js Buffer object

Instances
a BSON
object

Deserializes the data

Prints the deserialized data so we can
check that it was loaded correctly

115

5Exploratory coding

This chapter covers
¡	Understanding how having a fast feedback loop

makes you more productive

¡	Prototyping to explore our data and develop our
understanding

¡	Starting prototyping with Excel

¡	Continuing prototyping with Node.js and
the browser

¡	Setting up a live reload coding pipeline, where
code changes automatically flow through to
data and visual output

In this chapter, we’ll use exploratory coding to delve into your data and build your
knowledge and understanding. We’ll use a small example data set that’s easy to
understand, but in the real world the need to explore and understand our data
grows with larger and larger data sets.

This chapter is a microcosm of the data-wrangling process. We’ll move through
acquisition, then exploration and understanding, then analysis, and finally arrive
at visualization. Our focus here though is on fast prototyping, with an emphasis on

116 CHAPTER 5 Exploratory coding

having a streamlined and effective feedback loop so that we can code quickly and see
results immediately.

The output from the exploration phase of the data-wrangling process is

¡	An improved understanding of your data
¡	JavaScript code that’s potentially usable in production

5.1 Expanding your toolkit
In this chapter we’ll expand our data-wrangling toolkit in a number of ways. We’ll
use Excel for initial prototyping and visualization. Once we reach the limits of Excel,
we’ll move to Node.js for exploration and analysis and later still to the browser for
visualization.

Our main mental tool for this chapter is the fast feedback loop. Having quick iterations
and reducing the trip around the feedback loop are vital for your productivity. In this
chapter, I’ll take this idea to the extreme to make a point, so this is more extreme than my
usual real-world process, but it’s not far off and is similar to the way that I normally work.

To streamline our feedback loop, we’ll use Nodemon and live-server, both of which auto-
matically watch and execute our code. This gives us the freedom to write code and watch
the results as we progress. The list of all tools we’ll use in this chapter is in table 5.1.

Table 5.1 Tools used in chapter 5

Platform Tool Used for

Excel Viewer/editor Viewing and editing the data

Excel charts Visualizing the data

Excel formulas Exploratory coding

JavaScript console.log Not to be underrated, console logging is your most
important debugging tool.

Data-Forge JavaScript data-wrangling toolkit

Node.js Formula.js Node.js implementation of Excel formulas

Nodemon Live code reload

Browser live-server Simple web server and live code reload

Flot Visualization

5.2 Analyzing car accidents
The data theme of this chapter is Queensland car accidents. Let’s say that we’ve been
asked the following question: Are fatal car accidents rising or declining in Queensland?
We’d like to bring this data into our pipeline, explore it, understand it, plot the trend,
and forecast into the future.

 117Iteration and your feedback loop

Through Excel and later coding, we’ll progress our understanding of the data. We’ll
create a process for fast iterative coding with almost instant results and a visualization
that’s automatically updated as we type code or modify data.

Our aim is to understand the trend of fatalities in these car accidents and forecast
either a rise or decline into the future. Spoiler alert: figure 5.1 shows our end result for
this chapter—the simple visualization that we’ll produce in the browser.

5.3 Getting the code and data
The data for this chapter was downloaded from the Queensland Government data web-
site. The raw data set is large and includes all individual car crashes. To make the data
easy for you to work with and to keep this chapter simple, I’ve summarized the data
into monthly buckets. The code and the summarized data are available in the Data
Wrangling with JavaScript Chapter-5 repository in GitHub at https://github.com/
data-wrangling-with-javascript/chapter-5.

Because we’re also working in the browser in this chapter, you must install Bower
dependencies as follows in the root directory of the repository:

bower install

As npm is a package manager for Node.js development, Bower is a package manager
for browser development.

If you want to play with the full raw data, you can find it at https://data.qld.gov.au
/dataset/crash-data-from-queensland-roads. Refer to “Getting the code and data” in
chapter 2 for general help in getting the code and data.

5.4 Iteration and your feedback loop
The focus of this chapter is on having a fast feedback loop. What exactly is this, and
why is it important?

Have you ever written a large body of code and then suffered a feeling of dread
before testing it? Larger bodies of code hide more bugs and are more difficult to test.

Figure 5.1 Prototype web
visualization showing the trend
of fatalities over the years 2001
and 2002

https://github.com/data-wrangling-with-javascript/chapter-5
https://github.com/data-wrangling-with-javascript/chapter-5
https://data.qld.gov.au/dataset/crash-data-from-queensland-roads
https://data.qld.gov.au/dataset/crash-data-from-queensland-roads

118 CHAPTER 5 Exploratory coding

While coding, bugs creep in and hide. The longer we code without feedback, the more
bugs we accumulate. The process of troubleshooting and debugging our code is often
time consuming. We can claw back significant amounts of productivity by catching bugs
at the earliest possible time—in the moments immediately after the bug was created.

We should typically code in a fast loop that extends through many iterations (fig-
ure 5.2): write code, get feedback, solve problems, and so on. Each iteration of the
loop must be small, and it must be easy to test the new code we’ve written.

It’s the many small iterations that are important. The output of each iteration is
working code, so we go from working code, to working code, to working code, and so
on. We don’t allow broken code to move forward in this process. Issues are exposed
quickly, and bugs don’t accumulate. This sequence of small changes and feedback ulti-
mately sums up to a large, but reliable, body of code. It gives us confidence that the
code will function correctly in production. It’s also rewarding and motivating to see our
code working continuously throughout this process.

Anything we can do to reduce the time for an iteration will boost productivity. Auto-
mation and streamlining will help, and in this chapter, we’ll look at how to do that using
Nodemon (for Node.js) and live-server (for the browser).

The feedback loop is all about seeing our code working and having practical results
as soon as possible. It also helps us stay focused on our goals: in each iteration we have
a natural opportunity to assess where we are and where we’re going. This allows us to
hone in on our target and take a more direct route to achieving our goals. It prompts us
to work around problems and move through roadblocks quickly. It helps us put aside
distractions and stay on track.

5.5 A first pass at understanding your data
Let me introduce a simple thinking tool that I call the data understanding table. Let’s fill
out this table as we build our understanding of the data. As a first pass, we look at the
data in a viewer to understand its structure.

Results/Feedback
Coding

An iteration

Results/Feedback
Coding

An iteration

Results/Feedback
Coding

An iteration

And so on...

This greatly reduces the chance
that you spend hours heading

in the wrong direction.

Frequent feedback
allows you to adjust
course as you work.

Each iteration gives us the
ability to take feedback.

Time

Each trip around the feedback loop
gives you a better understanding of your
data and potentially usable code.

Shortening the time it takes to
go around the feedback loop
makes you more productive.

Figure 5.2 Exploratory coding is a sequence of iterations that drives you toward your goal and
helps you stay on target.

 119A first pass at understanding your data

At the outset, we know nothing about the data, except that we can expect rows and
columns. Initially, our data understanding table is empty. After working with the data, I
filled out the table as shown in table 5.2.

Table 5.2 Data understanding table: what we know about the data after viewing in Excel

Columns Data Type Expected Values Description

Year Integer 2001, 2002, and so on The year when crashes occurred

Month String January, February, and so on The month when crashes occurred

Crashes Integer Zero or positive values
No negative values

The number of crashes that
occurred in this year/month

Fatalities Integer Zero or positive values
No negative values

The number of fatal crashes that
occurred in this year/month

etc. etc. etc. etc.

Figure 5.3 shows monthly_crashes_full.csv as viewed in Excel. When first looking at this
file, we scan the header line and learn the column names for our tabular data. Next,
we scan the initial rows in the data and make an educated guess about the types of data
and ranges of values that we can expect. We fill out our data understanding table as we
learn about our data.

In this rather simple example, we learned almost everything we need to know by
looking at the data in a viewer. But the rest of the file is under no obligation to follow
these rules! For this example, the input data is already rather clean. In other projects,
the data won’t be so well behaved and could have plenty of problems! We’ll address this
issue in chapter 6.

You can use Excel to
develop your initial
understanding of
the data.

Scan header
line to learn
the columns.

Scan the rows
to first gain
understanding
of data types
and values.

Figure 5.3 Using Excel to develop an initial understanding of your data

120 CHAPTER 5 Exploratory coding

5.6 Working with a reduced data sample
When we start working with a data set, it’s often best to begin with a cut-down sample.
This is especially so when we’re working with a mountain of data, something we’ll dis-
cuss more in chapters 7 and 8. A large data set can be unwieldy and will bog down our
iterations, making us less productive. We should therefore aim to prototype using only
a small sample of the data. We can develop our understanding and code at the same
time, and ultimately, when we’re sure that our code is robust and reliable, we can scale
up to the full data set.

The raw data file downloaded from the Queensland Government was more than 138
MB. It’s not easy working with such large files. I’ve prepared and aggregated that raw
data into the file monthly_crashes_full.csv. With the data I’ve prepared for you, we’re
already working with a smaller data sample in this chapter. The monthly_crashes_full
.csv file weighs in at 13 KB. Our data is already small, but it doesn’t hurt to cut it down
even more. We can do that by loading the data in Excel (or a text editor) and removing
everything after the first 200 rows.

Save the cut-down data as new file monthly_crashes-cut-down.csv. Always be careful
not to overwrite your original data! You don’t want to lose your source data! We can also
use Excel to quickly delete any columns that we don’t need. Extraneous data is extra
baggage that we don’t need.

 We’ve cut down the data significantly. The file size of monthly_crashes-cut-down.csv
is now around 1 KB. Working with a lightweight data set means we can work quickly, and
we won’t be slowed down waiting for any process or tools that might be overwhelmed by
the size of the data.

5.7 Prototyping with Excel
We start our prototyping and data exploration with Excel. We’re only using Excel for
quick prototyping before we move to Node.js, which can save time initially. We already
used it for viewing and cutting down our data. Now let’s use Excel to prototype a for-
mula and a visualization.

We’ll create a new Trend column in our data set. Using Excel’s FORECAST function,
we’ll forecast fatalities based on six months of data. The FORECAST function requires
x and y values as input. We already have our y values: that’s the existing Fatalities col-
umn. But we have no obvious column to use as the x values, so we must generate a new
column that’s a sequence of numbers. I’ve called the column Month# because it identi-
fies the number of the month in the sequence.

We can create this column in Excel by entering a short sequence (1, 2, 3, 4), selecting
the sequence, and then dragging it out for the length of the column. Excel will extrapo-
late our number sequence to fill the entire column.

Now we can go ahead and add our new Trend column. Create a new column and
enter the FORECAST formula after six empty rows, as shown in figure 5.4. Each row
in the Trend column is offset by six rows because it’s computed from the previous six
months of data.

The Month# column
you added FORECAST formula

Newly created
Trend column

FORECAST uses
previous six months
of data to predict the
number of fatalities
for the next month.

Predicted
number of
fatalities for
month# seven

Figure 5.4 Using the FORECAST formula to predict next month’s fatalities

 121Prototyping with Excel

Now we select the cell with the FORECAST formula and drag it out until the end of
the Trend. Figure 5.5 shows the completed Trend column. Each value in the column is
the predicted fatalities for that month based on the previous six months.

We can now use Excel’s charting capabilities to visualize the trend of fatalities from
car crashes over the period 2001 to 2002, as shown in figure 5.6. We can see from this

The newly computed
Trend column

First six months are
blank because the
Trend column is
predicted from
six months of data.

Figure 5.5 Monthly crashes with addition of the Trend column

5.6 Working with a reduced data sample
When we start working with a data set, it’s often best to begin with a cut-down sample.
This is especially so when we’re working with a mountain of data, something we’ll dis-
cuss more in chapters 7 and 8. A large data set can be unwieldy and will bog down our
iterations, making us less productive. We should therefore aim to prototype using only
a small sample of the data. We can develop our understanding and code at the same
time, and ultimately, when we’re sure that our code is robust and reliable, we can scale
up to the full data set.

The raw data file downloaded from the Queensland Government was more than 138
MB. It’s not easy working with such large files. I’ve prepared and aggregated that raw
data into the file monthly_crashes_full.csv. With the data I’ve prepared for you, we’re
already working with a smaller data sample in this chapter. The monthly_crashes_full
.csv file weighs in at 13 KB. Our data is already small, but it doesn’t hurt to cut it down
even more. We can do that by loading the data in Excel (or a text editor) and removing
everything after the first 200 rows.

Save the cut-down data as new file monthly_crashes-cut-down.csv. Always be careful
not to overwrite your original data! You don’t want to lose your source data! We can also
use Excel to quickly delete any columns that we don’t need. Extraneous data is extra
baggage that we don’t need.

 We’ve cut down the data significantly. The file size of monthly_crashes-cut-down.csv
is now around 1 KB. Working with a lightweight data set means we can work quickly, and
we won’t be slowed down waiting for any process or tools that might be overwhelmed by
the size of the data.

5.7 Prototyping with Excel
We start our prototyping and data exploration with Excel. We’re only using Excel for
quick prototyping before we move to Node.js, which can save time initially. We already
used it for viewing and cutting down our data. Now let’s use Excel to prototype a for-
mula and a visualization.

We’ll create a new Trend column in our data set. Using Excel’s FORECAST function,
we’ll forecast fatalities based on six months of data. The FORECAST function requires
x and y values as input. We already have our y values: that’s the existing Fatalities col-
umn. But we have no obvious column to use as the x values, so we must generate a new
column that’s a sequence of numbers. I’ve called the column Month# because it identi-
fies the number of the month in the sequence.

We can create this column in Excel by entering a short sequence (1, 2, 3, 4), selecting
the sequence, and then dragging it out for the length of the column. Excel will extrapo-
late our number sequence to fill the entire column.

Now we can go ahead and add our new Trend column. Create a new column and
enter the FORECAST formula after six empty rows, as shown in figure 5.4. Each row
in the Trend column is offset by six rows because it’s computed from the previous six
months of data.

The Month# column
you added FORECAST formula

Newly created
Trend column

FORECAST uses
previous six months
of data to predict the
number of fatalities
for the next month.

Predicted
number of
fatalities for
month# seven

Figure 5.4 Using the FORECAST formula to predict next month’s fatalities

122 CHAPTER 5 Exploratory coding

graph that fatalities were decreasing through half of the period before rising again, and
then it looks as though the trend is starting to turn around again at the end of the graph.

We know so much more about our data already, and we haven’t even touched any
code yet! This is an extremely fast way to get started with your data and is much quicker
to go from data to visualization than diving directly into the deep end and attempting to
produce a web-based visualization. We can do so much more with Excel, so we shouldn’t
undervalue it. Sometimes it’s all you need.

Why turn to code at all? Well, to start with the basics, you may have noticed manual
preparation of the data was needed when using Excel. We had to drag out the Month# and
Trend columns, and this kind of thing becomes rather tedious on large amounts of data,
but we can make short work of it in code. In addition, I had to manually tweak the data to
produce the nice-looking chart in figure 5.6.

However, the main reason to turn to code is so that you can scale up and automate
tedious and laborious data preparation. We also probably want to deliver an interactive
visualization using the web. Ultimately, we need to have our code run in production. We
want to run our data analysis code on a Node.js server or display an interactive chart in
a web browser. Now is the time to move on from Excel and turn our attention to explor-
atory coding using JavaScript.

5.8 Exploratory coding with Node.js
As we work toward scaling up and processing large amounts of data, we now move
to Node.js for exploratory coding. In this section, we’ll take our Excel prototype and
make it work in Node.js. While doing that, we’ll explore our data with code. We can
build our understanding of the data and at the same time write useful code.

As we work through this section, we’ll evolve a Node.js script. Because the focus of
this chapter is on iterative coding, we’ll go through each small step of the process by
successively upgrading the script until we achieve our objective, which is the output of
the CSV file with the computed Trend column similar to what was shown in figure 5.5.
You can follow along with the evolving script by looking at and running listing-5.1.js,
then listing-5.2.js, and so on up to listing-5.12.js as we progress through this chapter.
The code files are available in the GitHub repository.

Figure 5.6 Fatal car
crashes Trend column
visualized in an Excel
chart

 123Exploratory coding with Node.js

We’ll reproduce the Trend column that we prototyped in Excel. We’ll run our Node.js
script from the command line. It will take monthly_crashes-cut-down.csv as input and pro-
duce a new CSV file called trend_output.csv that contains the computed Trend column.

The important tool that we’ll use here is called Nodemon. This is a tool (built on
Node.js) that watches our code and automatically executes it as we work. This auto-
mates the run code part of our feedback loop. Such automation streamlines our itera-
tions and allows us to move quickly.

Figure 5.7 shows my basic setup for coding. On the left is my code window (using
Visual Studio Code). On the right is the command line running Nodemon (using
ConEmu on Windows). As I edit and save code on the left, I watch the code automati-
cally execute on the right. Usually I run this setup on multiple monitors on my desktop
PC. I often work on my laptop as well, although it’s more difficult to pull off the side-by-
side layout due to having less screen real estate.

Nodemon constantly watches the script file for changes. When changes are detected,
it automatically executes the code and produces new output (this process is illustrated
in figure 5.8). This allows us to code and watch the result.

5.8.1 Using Nodemon

Up to now in the book we’ve worked with npm modules that are installed into our
Node.js projects. Nodemon and, soon, live-server are the first tools that we’ll install glob-
ally on our system rather than locally in our project. To do this, we add the –g (global)
parameter when we use npm to install. Let’s run npm and globally install Nodemon:

npm install -g nodemon

Editing code on the left Watching output on the right

Figure 5.7 Coding on the left, watching output on the right

124 CHAPTER 5 Exploratory coding

Now we can use Nodemon from the command line in place of Node.js. For example,
normally you’d run a Node.js script as follows:

node listing-5.1.js

We then replace Node.js with Nodemon like this:

nodemon listing-5.1.js

Normally when we run Node.js, it will exit once our script runs to completion. Node-
mon, however, doesn’t exit; instead, it pauses once the script has completed and then
waits for the script to be modified. When Nodemon detects that the file has changed, it
executes the code again. This cycle continues until you quit Nodemon with Ctrl-C.

Now let’s look at our first script file listing-5.1.js that we’ll evolve over the course of
this section. Our focus here is on the evolution of the script. We’ll start with something
simple (outputting text), and we’ll incrementally evolve the code until we arrive at our
destination and output the CSV file trend_output.csv.

Listing 5.1 Outputting to the console (listing-5.1.js)

'use strict;'

console.log("Hello world");

Listing 5.1 is about as simple as it gets. I believe it’s always a good idea to start some-
where simple and then build up to something more complex. You can run this code
and easily verify that it works.

I wouldn’t usually start with code this simple, but I wanted to start with console.log
because it’s an important tool. The console.log function is your best friend. We’ve
already used it extensively in chapters 3 and 4 to verify our data, and we’ll continue to
use it throughout the book.

Nodemon

Code

Nodemon watches
code for changes.

Output

Nodemon automatically
executes code when
changes are detected.

Nodemon executes the
code which produces output.

Write code. View output.
Figure 5.8 Nodemon watches
your code and executes it
automatically when you
make changes.

 125Exploratory coding with Node.js

Now run the script from the command line using Nodemon:

nodemon listing-5.1.js

Make sure you’re set up to make code changes and see the output from Nodemon. You
might want to arrange your editor and output windows side by side, as was shown in
figure 5.7.

Now change the text Hello world to something else, say Hello data analysis. Node-
mon will pick up the change, execute the code, and you should see output similar to
figure 5.9. This simple test allows you to check that your live-reload coding pipeline works.

5.8.2 Exploring your data

Let’s do some actual data analysis. First, we’ll load the input CSV file (monthly_crashes
-cut-down.csv) using our importCsvFile toolkit function that we created in chapter 3.
We’ll print the content using console.log, as shown in the following listing. Run this
code and check the output on the console.

Listing 5.2 Loading your input CSV file and printing its contents to the console
(listing-5.2.js)

const importCsvFile = require('./toolkit/importCsvFile.js');

importCsvFile("./data/monthly_crashes-cut-down.csv")
 .then(data => {
 console.log(data);
 })
 .catch(err => {
 console.error(err && err.stack || err);
 });

Printing the data to the console gives us our first look at the data from the code’s per-
spective. Unfortunately, we have too much data here, and our output goes offscreen.
We’re already working with a cut-down sample of the data, but still it’s too much and
we want to look at only a few records at a time, as you can see in figure 5.10.

Let’s now use the JavaScript array slice function to chop out a small section of the
data for inspection. You should run the code in the following listing to see the cut-down
data sample. This is the code that produced the output shown in figure 5.10.

Run your script using
nodemon instead of node.

Nodemon has invoked
your script; it is now
waiting for changes
before executing it again.

Your script is executed
the first time.

Your script has executed
again after you changed it.

Figure 5.9 Nodemon automatically executes your code as you work.

Prints your data to the console
so that you can check it

126 CHAPTER 5 Exploratory coding

Listing 5.3 Chopping out and printing a small portion of the data for inspection
(listing-5.3.js)

const importCsvFile = require('./toolkit/importCsvFile.js');

importCsvFile("./data/monthly_crashes-cut-down.csv")
 .then(data => {
 const sample = data.slice(0, 3);
 console.log(sample);
 })
 .catch(err => {
 console.error(err && err.stack || err);
 });

We can also use the slice function to extract data from the middle of our data by spec-
ifying the starting index like this:

var sample = data.slice(15, 5);

The slice function also accepts a negative index to extract data from the end of the
array. This allows us to peek at the records at the end of the data set. For example, let’s
use a negative 3 index to look at the final three records in the data set:

var sample = data.slice(-3);

Now let’s dive in and examine the data in more detail. We can look at the output (for
example, see the output in figure 5.11), and we can check against our data understand-
ing table to see if records from the start, middle, and end of the data set align with our
current understanding of the data. If they don’t, you may have to update your data
understanding table.

Let’s now examine the data types that are present in our data. We can use JavaScript’s
typeof operator to display the type of each field. Figure 5.11 shows the types for the first
record.

The code that produces the output in figure 5.11 is shown in listing 5.4. Look at the
first record and use the typeof operator to check the JavaScript type for each of the fields

Uses the JavaScript array slice function
to extract the first three rows of data

Figure 5.11 Examining the types in the first record using
JavaScript's typeof operator

Figure 5.10 Instead of being overwhelmed with output,
we want to look at only a few records at a time.

 127Exploratory coding with Node.js

in the first record. We’re starting to verify our assumptions about the data. You can run
the following listing, and you’ll see the data types that are present in the data set.

Listing 5.4 Using code to examine your data types (listing-5.4js)

const importCsvFile = require('./toolkit/importCsvFile.js');

importCsvFile("./data/monthly_crashes-cut-down.csv")
 .then(data => {
 const sample = data[0];
 console.log("Year: " + typeof(sample.Year));
 console.log("Month: " + typeof(sample.Month));
 console.log("Crashes: " + typeof(sample.Crashes));
 console.log("Fatalities: " + typeof(sample.Fatalities));
 })
 .catch(err => {
 console.error(err && err.stack || err);
 });

We’ve checked that the first row of the data meets our initial assumptions and that
the data types are exactly what we expected. This is only the first row of data; how-
ever, the rest of the file may not meet your assumptions! It’s worthwhile to run a
quick check to make sure we don’t run into any problems further down the line. In
the following listing we’ve modified our script to iterate over all the data and check
each row using the Node.js assert function.

Listing 5.5 Using assert to check that the data set conforms to your assumptions
(listing-5.5.js)

const assert = require('assert');
const importCsvFile = require('./toolkit/importCsvFile.js');

importCsvFile("./data/monthly_crashes-cut-down.csv")
 .then(data => {
 data.forEach(row => {
 assert(typeof(row.Year) === "number");
 assert(typeof(row.Month) === "string");
 assert(typeof(row.Crashes) === "number");
 assert(typeof(row.Fatalities) === "number");
 });
 })
 .catch(err => {
 console.error(err && err.stack || err);
 });

You can run the code for listing 5.5 to validate assumptions, which is an important step,
but in this case, it doesn’t do much. That’s because our data is already clean and well
behaved. We’ll revisit assumption checking scripts in chapter 6.

Our data already conforms to our assumptions, but we couldn’t have known this ahead
of time. Running a data checking script like this can save us from running into problems
further down the line. This script will be useful again in the future when we scale up to the
full data set. It will also be useful in the future if you need to accept updated data because
we have no guarantee that future data we receive will follow the same rules!

Checks the type of each
data field using JavaScript’s

typeof operator

Checks that every row has fields
with the expected data types

128 CHAPTER 5 Exploratory coding

5.8.3 Using Data-Forge

At this point I’d like to introduce Data-Forge, my open source data-wrangling toolkit
for JavaScript. It’s like a Swiss Army knife for dealing with data and has many useful
functions and features, especially when it comes to exploring our data. We’ll use Data-
Forge in this chapter specifically for its rollingWindow function, which we’ll use to
compute our Trend column. We’ll learn more about Data-Forge later in the book.

If you installed dependencies for the Chapter-5 code
repository, you already have Data-Forge installed; other-
wise, you can install it in a fresh Node.js project as follows:

npm install –-save data-forge

The first thing we’ll do with Data-Forge is to read the
CSV file and print the column names. The output of this
is shown in figure 5.12.

Data-Forge has a readFile function that we use to load
our data set. Data-Forge can read both JSON and CSV files, so we need to call parseCSV
to explicitly tell Data-Forge to deal with the file as CSV data. Then we call getColumnNames
to retrieve the column names. You can run the code for the following listing, and it will
print the column names as shown in figure 5.12.

Listing 5.6 Using Data-Forge to load the CSV file and list the column names
(listing-5.6.js)

const dataForge = require('data-forge');

dataForge.readFile("./data/monthly_crashes-cut-down.csv")
 .parseCSV()
 .then(dataFrame => {
 console.log(dataFrame.getColumnNames());
 })
 .catch(err => {
 console.error(err && err.stack || err);
 });

When we read the CSV file using Data-Forge, it gives us a DataFrame object that con-
tains the data set. DataFrame contains many functions that can slice, dice, and trans-
form our data. Let’s extract and display data rows from the start and end of the data set
using Data-Forge’s head and tail functions. Data-Forge gives nicely formatted output,
as shown in figure 5.13.

Figure 5.12 Using Data-Forge
to output column names from
the CSV file

Requires Data-Forge into the script

Reads the
data file into
memory

Instructs Data-Forge to
parse the data file as CSV

Prints column names to the console

Figure 5.13 Using
Data-Forge to peek at
rows at the head and
tail of the data set

 129Exploratory coding with Node.js

Listing 5.7 uses the head and tail functions to peek into our data. Use of these func-
tions produces a new DataFrame object containing only the first or last X rows of data.
The toString function is then used to produce the nicely formatted tables shown in
figure 5.13. You can run this code and see the output for yourself.

Listing 5.7 Using Data-Forge to peek at rows at the head and tail of the data set
(listing-5.7.js)

const dataForge = require('data-forge');

dataForge.readFile("./data/monthly_crashes-cut-down.csv")
 .parseCSV()
 .then(dataFrame => {
 console.log("=== Head ===");
 console.log(dataFrame.head(2).toString());

 console.log("=== Tail ===");
 console.log(dataFrame.tail(2).toString());
 })
 .catch(err => {
 console.error(err && err.stack || err);
 });

One useful thing that Data-Forge does is summarize the types that are in our data set.
Figure 5.14 shows a nicely presented Data-Forge summary of the data types.

The output in figure 5.14 is produced by the Data-Forge function detectTypes,
which scans the data set and produces a new table that shows the frequency of different
types in our data.

You may have noticed in figure 5.14 that 100% of our data types are strings! Surely,
that’s not correct! Previously, when we used our importCsvFile toolkit function, our data
was loaded with the types we expected: Crashes, Fatalities, and Hospitalized columns were
all numbers. That’s because we used Papa Parse to parse the CSV, and we used its auto-
matic type detection.

The CSV data format, unlike JSON, doesn’t have any special support for data types;
every field is just a string. Papa Parse has extra intelligence built in that looks at the
values to try to figure out what type they look like, but the CSV data format itself has no
built-in understanding of data types, and so Data-Forge doesn’t automatically detect
them. (Note: You can now enable dynamicTyping in the latest version of Data-Forge;
it uses Papa Parse under the hood.) We must explicitly decide how we want our data to
be interpreted and instruct Data-Forge accordingly using the parseFloats function, as
shown in listing 5.8.

Extracts and prints the
first two rows of the data

Extracts and prints the last
two rows of the data

Figure 5.14 Using Data-Forge to
summarize data types in your data
set—they’re all strings!

130 CHAPTER 5 Exploratory coding

Listing 5.8 Parsing data types with Data-Forge (listing-5.8.js)

const dataForge = require('data-forge');

dataForge.readFile("./data/monthly_crashes-cut-down.csv")
 .parseCSV()
 .then(dataFrame => {
 dataFrame = dataFrame.parseFloats([
 "Month#",
 "Year",
 "Crashes",
 "Fatalities",
 "Hospitalized"
]);
 console.log(dataFrame.detectTypes().toString());
 })
 .catch(err => {
 console.error(err && err.stack || err);
 });

Figure 5.15 shows what our output looks like now after parsing the number columns with
Data-Forge. All columns are 100% numbers with the exception of the Month column.

Figure 5.15 After parsing data
types with Data-Forge, we see
the types we expect from the
data set.

5.8.4 Computing the trend column

We’ve explored and understood our data. We’ve checked our assumptions about the
data. It’s now time for the interesting part. We’re going to compute the Trend column.
I introduced Data-Forge in this chapter not only because it’s good for exploring our
data, but also because it makes our next task easier.

The Trend column is computed from the Fatalities column, so we need to extract
the Fatalities column and run our Excel FORECAST formula on it. This generates the
Trend column, but then we must plug the column back into the data set and save it as
the new CSV file trend_output.csv.

We can start by extracting the Fatalities column and printing it to the console. We
don’t need to print the entire column, so we use the Data-Forge head function again to
display only the first few rows of data. The output is shown in figure 5.16.

We extract the Trend column from the DataFrame using the getSeries function.
This returns a Data-Forge Series object that contains the data from the column. The
head function then extracts the first few rows or data, and we use toString to format
the output nicely for display. You can run listing 5.9 and you’ll see the same output from
figure 5.16.

Instructs Data-Forge to parse particular
columns as floating-point numbers

Prints the types in
the DataFrame

Figure 5.16 First few rows of the
Fatalities column extracted and
displayed using Data-Forge

 131Exploratory coding with Node.js

Listing 5.9 Using Data-Forge to extract and display the first few rows of the Fatalities
column (listing-5.9.js)

const dataForge = require('data-forge');

dataForge.readFile("./data/monthly_crashes-cut-down.csv")
 .parseCSV()
 .then(dataFrame => {
 dataFrame = dataFrame.parseFloats([
 "Month#",
 "Year",
 "Crashes",
 "Fatalities",
 "Hospitalized"
]);
 console.log(dataFrame
 .getSeries("Fatalities")
 .head(3)
 .toString()
);
 })
 .catch(err => {
 console.error(err && err.stack || err);
 });

Now that we’ve extracted the Fatalities series, we can compute the trend. We can
easily port Excel formulas to Node.js using the excellent npm module Formula.js. If
you installed dependencies for the Chapter-5 GitHub repository, you already have
Formula.js installed. If not, you can install in in a fresh Node.js project as follows:

npm install –-save formulajs

Formula.js is a JavaScript implementation of most Excel formula functions. It’s conve-
nient for prototyping data analysis in Excel and then reproducing it exactly in Node.js.

Using Formula.js, we can recreate the FORECAST formula that we prototyped ear-
lier in Excel. Our first step is to test the formula on the first six months of data and get a
single forecasted value, as shown by the output in figure 5.17.

We extract Month# and Fatalities series from the DataFrame, taking six rows of each
(for the first six months of data) and using these as input to the FORECAST function. The
code for this is shown in listing 5.10. Run this code, and it will forecast future fatalities
from six months of records and display the result shown in figure 5.17.

Extracts the Fatalities column
and prints the first three rows

Figure 5.17 Forecasting fatalities from the
first six months of data using Formula.js

Listing 5.8 Parsing data types with Data-Forge (listing-5.8.js)

const dataForge = require('data-forge');

dataForge.readFile("./data/monthly_crashes-cut-down.csv")
 .parseCSV()
 .then(dataFrame => {
 dataFrame = dataFrame.parseFloats([
 "Month#",
 "Year",
 "Crashes",
 "Fatalities",
 "Hospitalized"
]);
 console.log(dataFrame.detectTypes().toString());
 })
 .catch(err => {
 console.error(err && err.stack || err);
 });

Figure 5.15 shows what our output looks like now after parsing the number columns with
Data-Forge. All columns are 100% numbers with the exception of the Month column.

Figure 5.15 After parsing data
types with Data-Forge, we see
the types we expect from the
data set.

5.8.4 Computing the trend column

We’ve explored and understood our data. We’ve checked our assumptions about the
data. It’s now time for the interesting part. We’re going to compute the Trend column.
I introduced Data-Forge in this chapter not only because it’s good for exploring our
data, but also because it makes our next task easier.

The Trend column is computed from the Fatalities column, so we need to extract
the Fatalities column and run our Excel FORECAST formula on it. This generates the
Trend column, but then we must plug the column back into the data set and save it as
the new CSV file trend_output.csv.

We can start by extracting the Fatalities column and printing it to the console. We
don’t need to print the entire column, so we use the Data-Forge head function again to
display only the first few rows of data. The output is shown in figure 5.16.

We extract the Trend column from the DataFrame using the getSeries function.
This returns a Data-Forge Series object that contains the data from the column. The
head function then extracts the first few rows or data, and we use toString to format
the output nicely for display. You can run listing 5.9 and you’ll see the same output from
figure 5.16.

Instructs Data-Forge to parse particular
columns as floating-point numbers

Prints the types in
the DataFrame

Figure 5.16 First few rows of the
Fatalities column extracted and
displayed using Data-Forge

132 CHAPTER 5 Exploratory coding

Listing 5.10 Using Formula.js to reproduce the Excel FORECAST formula and forecast
the next month’s fatalities based on the previous six months of data (listing-5.10.js)

const dataForge = require('data-forge');
const formulajs = require('formulajs');

dataForge.readFile("./data/monthly_crashes-cut-down.csv")
 .parseCSV()
 .then(dataFrame => {
 dataFrame = dataFrame.parseFloats([
 "Month#", "Year", "Crashes", "Fatalities",
 "Hospitalized"
]);
 const monthNoSeries = dataFrame.getSeries("Month#");
 const xValues = monthNoSeries.head(6).toArray();
 const fatalitiesSeries = dataFrame.getSeries("Fatalities");
 const yValues = fatalitiesSeries.head(6).toArray();
 const nextMonthNo = monthNoSeries.skip(6).first();
 const nextMonthFatalitiesForecast =
 formulajs.FORECAST(nextMonthNo, yValues, xValues);
 console.log('Forecasted fatalities: ' +
 nextMonthFatalitiesForecast);
 })
 .catch(err => {
 console.error(err && err.stack || err);
 });

We aren’t finished yet, though. We’ve only computed a single forecasted value, and you
still need to compute the entire Trend column.

In a moment we’re going to cover more ground and Data-Forge is going to do much
of the heavy lifting. Please don’t worry too much if you have trouble understanding
what’s going on here; we’ll cover Data-Forge in more detail in later chapters.

For the moment, understand only that we’re using Data-Forge’s rollingWindow
function to iterate our data in six-month chunks (known as data windows), and for each
six-month chunk of data, we’ll forecast a new value, building a rolling forecast of future
values. The output of this process will be our computed Trend column.

This is something we did manually earlier in Excel, and we’re now going to use code
to do the work. The computed Trend column will then be integrated back into the
DataFrame and output to the console, as you can see in figure 5.18.

Extracts Month# series for x
values input to FORECASTExtracts

Fatalities
series for y
values input
to FORECAST Gets the next

Month# for
input to
FORECAST

Forecasts next
month’s number
of fatalities

Prints the forecasted
value to the console

Figure 5.18 The DataFrame
with computed Trend column

 133Exploratory coding with Node.js

Note in listing 5.11 how we use setIndex to set the Month# column as the index for
the DataFrame. Having an index on the DataFrame allows the new Trend column to be
integrated into it using the withSeries function that you can see toward the end of the
code listing. Again, don’t try too hard to understand how rollingWindow is used here;
we’ll come back to it in later chapters. You can run this code, and you will see the output
shown in figure 5.18.

Listing 5.11 Using Data-Forge rollingWindow to compute the Trend column
(listing-5.11.js)

const dataForge = require('data-forge');
const formulajs = require('formulajs');

dataForge.readFile("./data/monthly_crashes-cut-down.csv")
 .parseCSV()
 .then(dataFrame => {
 dataFrame = dataFrame
 .parseFloats([
 "Month#", "Year", "Crashes",
 "Fatalities", "Hospitalized"
])
 .setIndex("Month#");
 const fatalitiesSeries = dataFrame.getSeries("Fatalities");
 const fatalitiesSeriesWithForecast =
 fatalitiesSeries.rollingWindow(6)
 .select(window => {
 const fatalitiesValues = window.toArray();
 const monthNoValues =
 window.getIndex().toArray();
 const nextMonthNo =
 monthNoValues[monthNoValues.length-1] + 1;
 return [
 nextMonthNo,
 formulajs.FORECAST(
 nextMonthNo,
 fatalitiesValues,
 monthNoValues
)
];
 })
 .withIndex(pair => pair[0])
 .select(pair => pair[1]);
 const dataFrameWithForecast = dataFrame.withSeries({
 Trend: fatalitiesSeriesWithForecast
 });
 console.log(dataFrameWithForecast.toString());
 })
 .catch(err => {
 console.error(err && err.stack || err);
 });

Uses Month# as the DataFrame’s
index. This allows the computed
Trend series to be merged back
into the DataFrame.

Uses Data-Forge’s
rollingWindow
function to iterate
the data set in
six-month chunks

Produces a forecast from each
six-month window of data

Restores the
index and
values so the
series can be
merged back
into the
DataFrame

Merges the
computed series
back into the
DataFrame; this
is why we need
Month# as the
index so that each
row in the new
series could be
matched back to
the existing data.

Displays the
contents of the
merged DataFrame
to check our result

134 CHAPTER 5 Exploratory coding

5.8.5 Outputting a new CSV file

We almost have our result! The final thing we must do is to output the data as a new CSV
file. This is made simple with Data-Forge’s asCSV and writeFile functions, as shown in
the following listing. If you run this code, it will output a CSV file called trend_output.csv.

Listing 5.12 Computing the Trend column with the help of Data-Forge and outputting
a new CSV file (listing-5.12.js)

const dataForge = require('data-forge');
const formulajs = require('formulajs');

dataForge.readFile("./data/monthly_crashes-cut-down.csv")
 .parseCSV()
 .then(dataFrame => {
 dataFrame = dataFrame
 .parseFloats(["Month#", "Year", "Crashes",
 "Fatalities", "Hospitalized"]
)
 .setIndex("Month#");
 const fatalitiesSeries = dataFrame.getSeries("Fatalities");
 const fatalitiesSeriesWithForecast =
 fatalitiesSeries.rollingWindow(6)
 .select(window => {
 const fatalitiesValues = window.toArray();
 const monthNoValues =
 window.getIndex().toArray();
 const nextMonthNo =
 monthNoValues[monthNoValues.length-1] + 1;
 return [
 nextMonthNo,
 formulajs.FORECAST(
 nextMonthNo,
 fatalitiesValues,
 monthNoValues
)
];
 })
 .withIndex(pair => pair[0])
 .select(pair => pair[1]);
 const dataFrameWithForecast = dataFrame.withSeries({
 Trend: fatalitiesSeriesWithForecast
 });
 return dataFrameWithForecast
 .asCSV()
 .writeFile("./output/trend_output.csv");
 })
 .catch(err => {
 console.error(err && err.stack || err);
 });

Now that we’ve generated our new CSV file trend_output.csv complete with computed
Trend column, we can take it back to Excel to see what it looks like! Open the CSV file in
Excel, as shown in figure 5.19, and check that it’s well formed and that the new column
looks as we expect.

Instructs Data-Forge to serialize
the data in the CSV format

Writes the CSV data
to your output file

Figure 5.19 Final CSV that we generated from
Node.js with the help of Data-Forge. Notice the
computed Trend column.

 135Exploratory coding in the browser

5.8.5 Outputting a new CSV file

We almost have our result! The final thing we must do is to output the data as a new CSV
file. This is made simple with Data-Forge’s asCSV and writeFile functions, as shown in
the following listing. If you run this code, it will output a CSV file called trend_output.csv.

Listing 5.12 Computing the Trend column with the help of Data-Forge and outputting
a new CSV file (listing-5.12.js)

const dataForge = require('data-forge');
const formulajs = require('formulajs');

dataForge.readFile("./data/monthly_crashes-cut-down.csv")
 .parseCSV()
 .then(dataFrame => {
 dataFrame = dataFrame
 .parseFloats(["Month#", "Year", "Crashes",
 "Fatalities", "Hospitalized"]
)
 .setIndex("Month#");
 const fatalitiesSeries = dataFrame.getSeries("Fatalities");
 const fatalitiesSeriesWithForecast =
 fatalitiesSeries.rollingWindow(6)
 .select(window => {
 const fatalitiesValues = window.toArray();
 const monthNoValues =
 window.getIndex().toArray();
 const nextMonthNo =
 monthNoValues[monthNoValues.length-1] + 1;
 return [
 nextMonthNo,
 formulajs.FORECAST(
 nextMonthNo,
 fatalitiesValues,
 monthNoValues
)
];
 })
 .withIndex(pair => pair[0])
 .select(pair => pair[1]);
 const dataFrameWithForecast = dataFrame.withSeries({
 Trend: fatalitiesSeriesWithForecast
 });
 return dataFrameWithForecast
 .asCSV()
 .writeFile("./output/trend_output.csv");
 })
 .catch(err => {
 console.error(err && err.stack || err);
 });

Now that we’ve generated our new CSV file trend_output.csv complete with computed
Trend column, we can take it back to Excel to see what it looks like! Open the CSV file in
Excel, as shown in figure 5.19, and check that it’s well formed and that the new column
looks as we expect.

Instructs Data-Forge to serialize
the data in the CSV format

Writes the CSV data
to your output file

Figure 5.19 Final CSV that we generated from
Node.js with the help of Data-Forge. Notice the
computed Trend column.

You could even create a chart from this generated data to quickly see what it looks
like in a visualization. We won’t do this now; we’re going to take this CSV file and display
it in a web visualization. Let’s shift our focus to the browser!

5.9 Exploratory coding in the browser
After using Node.js to produce the new CSV file trend_output.csv with the computed
Trend column, let’s now create an interactive web visualization for this data. To produce
the visualization, we’ll use the simple and effective Flot charting library for JavaScript.

Throughout this section, we’ll evolve our web visualization through an HTML file.
As we did in the previous section, we’ll start simple and evolve our code toward our
objectives. Our aim is to produce the visualization shown in figure 5.20. You can follow
along with the evolution of the code by looking at listing-5.13.html, listing-5.14.html,
and listing-5.15.html as we work through the remainder of this chapter. These files are
available in the GitHub repository.

Our main tool for this section is called live-server. Live-server is a simple command-line
web server; although not intended for use in production, it’s fantastic for fast prototyping.

Live-server gives you an instant web server that works as illustrated in figure 5.21. We
don’t need to hand-code a web server to start prototyping our web-based visualization—
this is great because we’re prototyping and we want to move quickly.

Live-server, like Nodemon, helps automate our workflow. It watches our code and
automatically refreshes our web page when changes to the code are detected.

My coding setup for this section is shown in figure 5.22. On the left is the visualiza-
tion code that we’re developing. On the right is the browser that displays our web page.

136 CHAPTER 5 Exploratory coding

As we work on the left, our visualization is automatically refreshed by live-server on the
right to display the updated results.

To use live-server, you should install it globally as follows:

npm install –g live-server

Now you can run live-server from the command line, although before we start our
instant web server, we need to create a simple web page. In the continued spirit of evo-
lutionary coding where we start simple, make sure it works, and then keep it working as
we iterate on our code, we’ll start with the simplest possible web page, as shown in list-
ing 5.13. We’ll use JavaScript to create our web visualization, so the web page contains a
script section that writes “Hello world!” into the web page.

Figure 5.20 Final
output from your web
visualization. Fatalities
trend over time.

File system

Live-server
Standalone HTTP server Browser

Serves
files to

index.html

monthly_crashes_trend.csv

Instant web serverRun live-server in the
directory that contains the
files for your web page.

View your web
visualization here.

Static web
page

Input data Live-server automatically
watches the file system as you
write code and refreshes the
browser automatically. Look at output.

Write code.

Figure 5.21 Run live-server for an instant web server to quickly prototype web visualizations.

 137Exploratory coding in the browser

Listing 5.13 Simplest web page to kick-start iterative coding for your web
visualization (listing-5.13.html)

<!doctype html>
<html lang="en">
 <head>
 <title>My prototype web page</title>
 </head>
 <body>
 <script>
 //
 // Your JavaScript code goes here.
 //
 document.write("Hello world!");
 </script>
 </body>
</html>

Now let’s start the web server. Run live-server from the command line in the directory
for our code repository:

cd Chapter-5
live-server

It’s that easy to create a web page for prototyping! Live-server automatically opens our
default browser, and we can browse to listing-5.13.html to view the web page.

Editing code on the left Watching output on the right

Figure 5.22 With live-server, you can edit your code and see the web page instantly
refresh as you make changes.

138 CHAPTER 5 Exploratory coding

Now let’s update our code. We’re going to need jQuery and Flot. If you installed the
Bower dependencies in the Chapter-5 code repository, then you already have them.
Otherwise, you can install them into a fresh web project as follows:

bower install –-save jquery flot

Now that we have jQuery installed, we can include it in our web page so that we can
use its get function to retrieve our CSV file trend_output.csv that was generated earlier
using HTTP GET (shown in the following listing). As we modify our code, live-server
detects the changes and refreshes the web page, so we can sit back, code, and watch the
browser automatically refresh to run our latest code.

Listing 5.14 Using HTTP GET to retrieve the data from your CSV file (listing-5.14.html)

<!doctype html>
<html lang="en">
 <head>
 <title>My prototype web page</title>
 </head>
 <body>
 <script src="/bower_components/jquery/dist/jquery.min.js"></script>

 <script>
 $.get("./output/trend_output.csv")
 .then(response => {
 console.log(response);
 })
 .catch(err => {
 console.error(err && err.stack || err);
 })
 </script>
 </body>
</html>

We’re still doing evolutionary coding here. We’re doing one small thing at a time and test-
ing as we go. Remember that we’re aiming to move from working code to working code in
small manageable increments. The code in listing 5.14 outputs our data to the browser’s
console. We do this to check that our code in the browser has received the data correctly.

With live-server still running, navigate to the web page for listing 5.14 in your browser
and open the dev tools to check the output on the console. For example, in Chrome you
can open devtools by pressing F12 and looking at the Console tab (as shown in figure 5.23).

We should have the devtools open whenever we’re coding in the browser. This allows
us to see any JavaScript errors that might come from our code, and we can use logging
to verify that our code is working as intended.

Another option we have for checking our data is to add it to the web page using
document.write, although the output of this looks rather messy, as you can see in fig-
ure 5.24.

Okay, it’s high time we get this data into a chart! To make things easier, we’re going to
install Data-Forge for the browser and use it to transform our data for the Flot charting

Adds jQuery to
your web page

Uses jQuery’s
get function to
retrieve our
CSV file from
live-server
using HTTP GET

Prints the loaded data to the
Chrome devtools console so that
we can check we got the data okay

View console.log
output in the browser.

Open Chrome dev tools
with F12.

Figure 5.23 Viewing console.log output in Chrome's devtools console

Figure 5.24 Outputting
CSV data directly into the
web page—not the nicest
visualization!

 139Exploratory coding in the browser

library. If you installed Bower dependencies for the repository, then Data-Forge is
already installed; otherwise, install it in a fresh web project as follows:

bower install –-save data-forge

After we include the Data-Forge script in our web page, we can now create a DataFrame
from our data, index it by Month#, then extract the Trend column from the CSV we
produced in listing 5.12. Next, we use Flot to chart the Trend column. We’re using the
toPairs function to get an array of index/value pairs. Each pair includes the index (we
used Month# as the index) and the data (from the Trend column). We then use the Flot
plot function to plot the chart into the placeholder element of our web page, as shown
in the following listing.

Listing 5.15 Using Data-Forge to extract the Trend column from the data set and
visualize it in a Flot chart (listing-5.15.html)

<!doctype html>
<html lang="en">
 <head>

Now let’s update our code. We’re going to need jQuery and Flot. If you installed the
Bower dependencies in the Chapter-5 code repository, then you already have them.
Otherwise, you can install them into a fresh web project as follows:

bower install –-save jquery flot

Now that we have jQuery installed, we can include it in our web page so that we can
use its get function to retrieve our CSV file trend_output.csv that was generated earlier
using HTTP GET (shown in the following listing). As we modify our code, live-server
detects the changes and refreshes the web page, so we can sit back, code, and watch the
browser automatically refresh to run our latest code.

Listing 5.14 Using HTTP GET to retrieve the data from your CSV file (listing-5.14.html)

<!doctype html>
<html lang="en">
 <head>
 <title>My prototype web page</title>
 </head>
 <body>
 <script src="/bower_components/jquery/dist/jquery.min.js"></script>

 <script>
 $.get("./output/trend_output.csv")
 .then(response => {
 console.log(response);
 })
 .catch(err => {
 console.error(err && err.stack || err);
 })
 </script>
 </body>
</html>

We’re still doing evolutionary coding here. We’re doing one small thing at a time and test-
ing as we go. Remember that we’re aiming to move from working code to working code in
small manageable increments. The code in listing 5.14 outputs our data to the browser’s
console. We do this to check that our code in the browser has received the data correctly.

With live-server still running, navigate to the web page for listing 5.14 in your browser
and open the dev tools to check the output on the console. For example, in Chrome you
can open devtools by pressing F12 and looking at the Console tab (as shown in figure 5.23).

We should have the devtools open whenever we’re coding in the browser. This allows
us to see any JavaScript errors that might come from our code, and we can use logging
to verify that our code is working as intended.

Another option we have for checking our data is to add it to the web page using
document.write, although the output of this looks rather messy, as you can see in fig-
ure 5.24.

Okay, it’s high time we get this data into a chart! To make things easier, we’re going to
install Data-Forge for the browser and use it to transform our data for the Flot charting

Adds jQuery to
your web page

Uses jQuery’s
get function to
retrieve our
CSV file from
live-server
using HTTP GET

Prints the loaded data to the
Chrome devtools console so that
we can check we got the data okay

View console.log
output in the browser.

Open Chrome dev tools
with F12.

Figure 5.23 Viewing console.log output in Chrome's devtools console

Figure 5.24 Outputting
CSV data directly into the
web page—not the nicest
visualization!

140 CHAPTER 5 Exploratory coding

 <title>My prototype web page</title>
 </head>
 <body>
 <table style="text-align:center">
 <tr>
 <td></td>
 <td><h2>Car Accidents<h2></td>
 <td></td>
 </tr>

 <tr>
 <td>Fatalities</td>

 <td>
 <div
 id="placeholder"
 style="width: 700px; height: 400px"
 >
 </div>
 </td>

 <td></td>
 </tr>

 <tr>
 <td></td>
 <td>Month#</td>
 <td></td>
 </tr>

 </table>
 <script src="/bower_components/jquery/dist/jquery.min.js"></script>
 <script src="/bower_components/Flot/jquery.flot.js"></script>
 <script src="bower_components/data-forge/data-forge.dist.js">

➥</script>

 <script>
 $.get("./output/trend_output.csv")
 .then(response => {
 var dataFrame = new dataForge
 .fromCSV(response)
 .parseFloats(["Month#", "Trend"])
 .setIndex("Month#");
 var data = dataFrame
 .getSeries("Trend")
 .toPairs();
 $.plot("#placeholder", [data]);
 })
 .catch(err => {
 console.error(err && err.stack || err);
 })
 </script>
 </body>
</html>

Includes
Flot and
Data-Forge
scripts in
our web
page

Loads data into a DataFrame

Transforms data to index/value
pairs as expected by Flot

Plots our data
using Flot into
the placeholder
element

 141Putting it all together

With live-server running, navigate to the web page for listing 5.15, and you should now
see the final result that’s shown in figure 5.25. We’ve plotted the Trend column using
the Flot charting library. This is a basic visualization as far as these things go, but it’s a
great result from a short and fast-paced prototyping session.

In case you’re wondering why the placeholder div for the chart in listing 5.15 is
embedded within a table, this is purely for cosmetic reasons. The table is used to
arrange the chart’s title and the labels for the X axis and the Y axis.

5.10 Putting it all together
We’ve tackled the coding for this chapter separated into Node.js and browser cod-
ing. In practice, though, there’s no reason to separate these two activities. We can run
Nodemon and be coding in Node.js at the same time we’re running live-server and
coding the web visualization. This makes for a complete coding pipeline, as illustrated
in figure 5.26. Nodemon picks up changes to the Node.js code, which automatically

Figure 5.25 Final product
of your prototyping—a basic
visualization of the Fatalities
data in the Flot charting
library

Node.js
code

trend_
output.csv

monthly_
crashes.csv

Nodemon

Generates trend
column and
outputs CSV file

Watches code

Browser
code

Web
visualization

Live-server

Watches code Serves / refreshes
web page

Reads CSV
file HTTP GET
request from
Web server

Data is rendered
in the browser
using the Flot
charting library.

Reads input
data from
CSV file

Executes code

Figure 5.26 The complete pipeline—from Node.js through to browser with automated code execution
by Nodemon and live-server

142 CHAPTER 5 Exploratory coding

flow through to the output CSV file. Live-server detects changes to the CSV file and the
code for the web page, which automatically flow through to the browser visualization.

You did good work here, although this isn’t the whole story. Recall that in this chapter
you’re only working with a cut-down sample of the data. The aim was to better under-
stand the data and better understand the problem you’re trying to solve.

Through this chapter you’ve built up your knowledge while coding. Along the way
you built code that’s going to be useful later when you scale up to the full data set and
put this web visualization into production. But for now, you’ve achieved your goal: better
understanding through exploratory coding and with useful code produced along the
way. In chapter 6, you’ll dig deeper into potential issues in your data and learn how you
can correct problems or work around them.

Summary

¡	You learned how to build a fast and streamlined feedback loop for quick iterations
and improved productivity.

¡	You discovered how to prototype data analysis and visualization in Excel before
getting to coding.

¡	You reproduced Excel data analysis in Node.js using Formulajs.
¡	You practiced how to build a quick web-based visualization using Flot.
¡	You learned that you can use Nodemon and live-server to build a coding pipeline

that automatically refreshes as you work.

143

6Clean and prepare

This chapter covers
¡	Understanding the types of errors that you

might find in your data

¡	Identifying problems in your data

¡	Implementing strategies for fixing or working
around bad data

¡	Preparing your data for effective use in
production

When we’re working with data, it’s crucial that we can trust our data and work with
it effectively. Almost every data-wrangling project is front-loaded with an effort to fix
problems and prepare the data for use.

You may have heard that cleanup and preparation equal 80% of the work! I’m not
sure about that, but certainly preparation is often a large proportion of the total work.

Time invested at this stage helps save us from later discovering that we’ve been
working with unreliable or problematic data. If this happens to you, then much of
your work, understanding, and decisions are likely to be based on faulty input. This
isn’t a good situation: you must now backtrack and fix those mistakes. This is an
expensive process, but we can mitigate against this risk by paying attention early in
the cleanup phase.

144 CHAPTER 6 Clean and prepare

In this chapter, we’ll learn how to identify and fix bad data. You’ll see so many different
ways that data can go wrong, so we can’t hope to look at them all. Instead, we’ll look at
general strategies for addressing bad data and apply these to specific examples.

6.1 Expanding our toolkit
In this chapter, we take a closer look at JavaScript and Data-Forge functions for slicing,
dicing, and transforming your data. We’ll also rely on our toolkit from chapter 3, using
our importCsvFile and exportCsvFile to load and save CSV files.

Table 6.1 lists the various tools that we cover in this chapter.

Table 6.1 Tools used in chapter 6

API/Library Function/Operator Notes

JavaScript Map Builds a new array after transforming every element of
the input array

Filter Builds a new array filtering out unwanted elements

Concat Concatenates two or more arrays into a single array

Delete JavaScript operator that deletes a field from a Java
Script object

Reduce Collapses an array to a single value; can be used to
aggregate or summarize a data set

DataForge select Similar to JavaScript map function, builds a new
DataFrame after transforming every row of the
input DataFrame

where Similar to JavaScript filter function, builds a new
DataFrame filtering out unwanted rows of data

concat Similar to JavaScript concat function, concatenates
two or more DataFrames into a single DataFrame

dropSeries Removes an entire named series from a DataFrame.
Use this to remove entire columns of data from your
data set.

groupBy Organizes rows of data into groups by criteria that
you specify

aggregate Similar to the JavaScript reduce function, collapses a
DataFrame to a single value; can be used to aggregate
or summarize a data set

Globby globby Function used to read the file system and determine
which files match a particular wildcard. We’ll use this
to merge multiple files into a single file.

Our main mental tool here is that of the data pipeline. As we look at the different ways
we can transform data, keep in mind that we’re working toward building a flexible data
pipeline. How you structure this, well, that’s up to you, but by the end of the chapter, I’ll
show you an elegant and flexible way of chaining your data transforms using Data-Forge.

 145Where does broken data come from?

6.2 Preparing the reef data
When we acquire data, it isn’t always going to come in as we’d like it to be. Let’s return
to our reef data set that we saw in chapters 1 and 2. We have several problems with this
data that we might want to fix before we start to use it.

First, though, let’s work through several of the general issues relating to data
cleanup and preparation. We’ll look at where bad data comes from and how we go
about identifying it. Then we’ll cover general techniques for dealing with problematic
data. After that, we’ll look at specific examples based on the reef data set.

I should say that we don’t necessarily need our data to be perfect! Besides being
difficult to achieve that (who gets to define perfection?), our data only needs to be
fit for the purpose. We’d like to work effectively with data that’s problem-free to the
extent that it’s accurate for our business needs. Let’s get into it.

6.3 Getting the code and data
The code and data are available in the Chapter-6 repository in GitHub at https://github
.com/data-wrangling-with-javascript/chapter-6. The example data is located under the
data directory in the repository. Output generated by code is located under the output
directory (but isn’t included in the repo). Refer to “Getting the code and data” in
chapter 2 for help getting the code and data.

6.4 The need for data cleanup and preparation
Why do we need to clean up and prepare our data? Ultimately, it’s about fixing problems
in the data. We need to do this for the following reasons:

¡	To make sure we don’t draw the wrong conclusions and make bad decisions
based on broken or inaccurate data.

¡	To avoid negative business impact—for example, losing trust with customers/
clients who notice broken data.

¡	Working with data that’s clean, accurate, and reliable makes our job easier and
more straightforward.

¡	We should fix data problems early, when they’re cheap to fix. The longer you
leave them, the more expensive they are to rectify.

¡	We may need to prepare our data offline for efficient use in production. To get
timely results so that we can take quick action, we need data that’s already in the
best format to be used with adequate performance.

We have a variety of reasons why we must put effort into fixing our data, but that begs
the question: Why is data broken in the first place?

6.5 Where does broken data come from?
Data can have errors for any number of reasons. We don’t often control the source,
although if we do, we can ensure that we have good validation at the collection point.
We can save time and effort by ensuring that data is clean at the moment it’s collected.

https://github.com/data-wrangling-with-javascript/chapter-6
https://github.com/data-wrangling-with-javascript/chapter-6

146 CHAPTER 6 Clean and prepare

However, even when we control the source, we can’t always achieve good data quality.
For example, if we read data from electronic sensors, they might occasionally return
spurious or faulty readings. They might have intermittent problems and drop out for
periods of time, leaving gaps in the data.

We could have software that’s responsible for collecting or synthesizing our data.
Latent bugs in that software might be generating bad data, and we don’t even know it
yet! Bugs such as these might go unnoticed for significant periods of time.

Maybe we’re generating data with buggy software, and we know bugs are causing bad
data. Are we in a position to fix them? We might not be able to! Various reasons exist
why we might be unable to fix the bugs in the program. For a start, we might not have
access to the source code, and therefore, we can’t update the program. Or we might
be working with complex legacy code and are hesitant to make changes—changes that
potentially cause more bugs (you know what I mean if you’ve ever worked with legacy
code). When you can’t change the code, or changing the code is too hard, the only
other option is to work around the bad data.

Most often we’ll acquire our data from external sources over which we have no con-
trol. We must therefore expect that our data contains any number of problems that
must be fixed before we can work with it.

Whichever way we acquire data, it seems impossible to avoid bad data, hence the need
for data cleanup and preparation. We must invest time to check our data for errors and,
when necessary, fix problems and prepare our data for efficient usage in production.

6.6 How does data cleanup fit into the pipeline?
In chapter 3 I introduced the core data representation (CDR) design pattern. This is
the idea that we can piece together flexible data pipelines by connecting the stages
with a shared data representation.

At the end of chapter 3, the conceptual model of our data conversion pipeline
looked like figure 6.1. The import code produces data in the core data representation
that’s fed into the export code.

Code that imports
from your desired
format

CDR loaded in
memory

Code that exports to
your desired format

Export formatCore data
representation Export codeImport format Import code

Import ExportMemory

Figure 6.1 A basic data pipeline: data is converted from one format to another through the core data
representation.

 147Identifying bad data

In this chapter, we extend the conceptual model of our data pipeline to include multiple
transformation stages to clean up, prepare, and transform our data. Figure 6.2 shows
how arbitrary cleanup and preparation stages fit into the pipeline. It demonstrates how
we can include any number of data transformation stages between import and export.
We can use this model to build a data pipeline that can import from any one format,
transform the data through multiple stages, and then export to any other format.

The space between the transformation stages is where we use the core data repre-
sentation. Figure 6.3 illustrates how the core data representation connects our modular
data transformation stages. The input and output to any transformation stage are a blob
of data in the shared format. We can link together multiple stages and build flexible data
pipelines from reusable code modules.

6.7 Identifying bad data
You might well ask: How do we detect bad data? You can approach this in various ways.

Early on we can look at the data in a text editor or viewer and find problems by eye.
We need to do this anyway to get a feel for the shape of our data, but it can also help us
quickly detect any obvious issues. This approach can get us started, and it can work for a
small data set, but obviously it doesn’t scale to large data sets. The human eye is good at
picking out problems, but it’s also fallible, so we can miss problems easily.

My approach is to analyze a small portion of data by eye, then make assumptions about
how it’s structured and formatted. I then write a script to check those assumptions across

Export
code

Import
code

Core data
representation

Core data
representation Clean up Clean up Optimize

Data cleanup and preparation phases

Import Memory Export

Figure 6.2 A more complete data pipeline with the addition of cleanup and preparation stages

Clean up Clean up
Core data

representation

Phases are linked
together via the CDR.

Figure 6.3 Phases in the data pipeline are linked together using the
core data representation.

148 CHAPTER 6 Clean and prepare

the entire data set. This is the assumption-checking script that we talked about in chap-
ter 5. It can take a significant amount of time to run this script, but it’s worth it because
you’ll know then if your assumptions bear out or not. The job of this script is to tell you if
problems exist in your data.

It might be worthwhile to optimize your assumption-checking script to speed up the
process, especially because you might want to run your assumption-checking script in
production and so you can accept streaming data updates into your live data pipeline.
We’ll talk more about live data pipelines in chapter 12.

One final way to detect bad data that you might want to consider is to crowd-source the
problem and allow your users to find and report broken data. You might want to con-
sider canarying your production release, which is making a new version available to a
subset of users who’ll help you find problems before it’s generally released. Whether this
approach makes sense depends on your product: you’ll need a huge data set (otherwise
why would you need to do this) and a large and active user base.

6.8 Kinds of problems
The kinds of problems we might see in data are many and varied. Here are several
examples for illustration:

¡	Extra white space—Blank rows or whitespace around field values.
¡	Missing data—Empty, null, or NaN fields.
¡	Unexpected data —Can your code handle new and unexpected values?
¡	Inaccurate data—Sensor readings that are off by a certain amount.
¡	Inconsistencies—Street and St, Mister and Mr, data in different currencies, incon-

sistent capitalization.
¡	Badly formatted fields—Email, phone number, misspelled categories, and so on.
¡	Broken data—Date/time with missing time zone or faulty sensor readings.
¡	Irrelevant data—Data that isn’t useful to us.
¡	Redundant data—Data that’s duplicated.
¡	Inefficient data—Data that isn’t organized for effective use.
¡	Too much data—We have more data than we can deal with.

Soon we’ll delve into specific examples for code to fix several of these problems.

6.9 Responses to bad data
We’ve identified bad data, but how do we respond to it?

This depends on your situation and the scale of your data, but we have various
responses to bad data at our disposal that we can deploy. Consider the following options:

¡	We can fix the data—If that’s possible.
¡	We can optimize the data—If it’s in an ineffective or inefficient format.
¡	We could ignore the problem—We need to ask: what’s the worst that could happen?

 149Techniques for fixing bad data

¡	We can work around the problem—Maybe we can deal with the problem in produc-
tion, rather than offline?

¡	We could filter out the broken data—Maybe it costs more to fix than it’s worth to us.
¡	We could generate the data again—If possible, maybe we can fix the source of the

problem and then capture or generate the data from scratch. If the data was
cheap to generate in the first place, regeneration might be less expensive than
trying to fix the data.

When we talk about responding to bad data, we must also consider where we’ll respond
to it. Most of this chapter assumes that we’ll fix our data offline, although it’s useful to
note that most of these techniques will also work online in a live data pipeline, such as
the example we’ll cover in chapter 12.

Shouldn’t we always fix our data offline? It’s certainly better for the performance of
our production system if we do fix our data offline, but cases exist where doing so might
not be feasible. For example, imagine that you have a huge data set and it has errors,
but the errors are only pertinent to a small number of users and access is infrequent. In
this case it might be more effective to have the live system fix such errors just in time,
the so-called lazy pattern, and then bake the fixed records back into the database. This
allows our production system to slowly rectify itself over time without needing large
amounts of offline time and resources and without unduly affecting our user base.

6.10 Techniques for fixing bad data
We haven’t yet addressed what we need to do to fix broken data. A huge number of
problems can occur in data; fortunately, we have a simple set of strategies that we can
deploy to fix broken data.

Table 6.2 lists the techniques for fixing bad data that we’ll now add to our toolkit.

Table 6.2 Techniques for fixing bad data

Technique How? Why?

Modify the data Iterate and update rows and columns. For normalizing and standardizing data

For fixing broken data

Remove the data Filter out rows and columns. To remove irrelevant and redundant data

To reduce data when we have too much

Aggregating data To merge, combine, and summarize data To optimize data for efficient access

To reduce data when we have too much

Splitting data Separating data out into separate data sets For efficient access

We’ll spend the rest of the chapter exploring code examples of these techniques.

150 CHAPTER 6 Clean and prepare

6.11 Cleaning our data set
It’s time to get into code examples! We’ll first look at what’s probably the most common
technique: rewriting rows of data to fix the issues we found. Then we’ll look at a com-
mon alternative: filtering out rows or columns to remove broken or irrelevant data.

We’ll use important JavaScript functions in these examples, so please pay attention.
I’ll also show how to do this kind of work in Data-Forge. To load data, we’ll fall back on
our toolkit functions for importing and export CSV files that we created in chapter 3.

6.11.1 Rewriting bad rows

Our first problem to fix in the reef data is a date/time problem. Working with date/
time values can cause many problems, although the solutions are often easy after you
understand the problem. In this case, the problem is that the date/time is stored as
a string representation that doesn’t include time zone information (see figure 6.4).
The reef database contains records from many different time zones, so it’s important
that we have the correct time zone encoded in our dates. Many production issues have
been caused by dates that are in the wrong time zone for users of our products.

Our aim here is to convert all the date/time values to the standard UTC format with
the correct time zone encoded (shown in figure 6.5). We’ll use the JavaScript date/
time library moment to achieve this. It’s one of the handiest JavaScript libraries you’ll
ever find. You might remember that we first installed it in chapter 2 and used it again in
chapter 4. It’s an invaluable tool for dealing with date and time values.

Dates Time zones

Figure 6.4 Dates and time zones are stored in separate columns.

2012-09-16T16:16+10:00

16/09/2012 16:16 10

Separate date and time zone columns

Combined UTC formatted date
Figure 6.5 Separate date and time zone columns are merged
into a UTC formatted date that includes the time zone.

 151Cleaning our data set

In this case we have all the information we need already because each record encodes
the time zone as a separate field. We need to combine these two fields into a single
international date/time value that reflects the right date/time in the right time zone.
We can easily do this using moment as indicated in figure 6.5.

To rewrite every row in our data set, we’ll use the JavaScript map function. This function
accepts as input an array—our input data set. We also pass a transformation function into
the map function. This function applies a modification to each record in our data set. The
output of the map function is a modified data set—the result of transforming each record
and building a new array.

We can say that the map function rewrites our data set by applying the specified mod-
ification to every record. You can see in figure 6.6 how the transformRow function is
applied to every element of the input array to build the output array.

transformRow

transformRow

transformRow

transformRow

transformRow

transformRow

0

5

3

2

1

4

0

5

3

2

1

4

Produces a new array by running a
function on every element of the input array

The transformRow
function produces a
new output element
for each input element.

var outputData = inputData.map(transformRow);

Array
elements

JavaScript input array New array, transformed
from the input array

outputDatainputData

Figure 6.6 Using the JavaScript map function to transform an array of data from one structure to another

152 CHAPTER 6 Clean and prepare

Listing 6.1 shows the code that uses the map function to fix date/time values in our reef
data set. The important functions to look at are transformData and transformRow.
transformData transforms the entire data set. transformRow fixes each record in the
data set. We use the moment library to combine the string representation of the date/
time with the time zone value from each record.

The map function essentially splits apart the input array and then modifies each record
by passing it through transformRow. Finally, it glues the modified records together into a
new array, outputting a new data set with the broken data repaired. After you run the fol-
lowing listing, and it generates the output file (surveys-with-fixed-dates.csv), load the file
in Excel or a text editor to verify it came out correctly.

Listing 6.1 Rewriting rows to fix bad data (listing-6.1.js)

const moment = require('moment');
const importCsvFile = require('./toolkit/importCsvFile.js');
const exportCsvFile = require('./toolkit/exportCsvFile.js');

const importDateFormat = "YYYY-MM-DD HH:mm";
const inputFileName = "./data/surveys.csv";
const outputFileName = "./output/surveys-with-fixed-dates.csv";

function parseDate (inputDate, timezoneOffset) {
 return moment(inputDate, importDateFormat)
 .utcOffset(timezoneOffset)
 .toDate();
}

function transformRow (inputRow) {
 const outputRow = Object.assign({}, inputRow);
 outputRow.start_datetime =
 parseDate(inputRow.start_datetime, inputRow.timezone);
 outputRow.end_datetime =
 parseDate(inputRow.end_datetime, inputRow.timezone);
 return outputRow;
}

function transformData (inputData) {
 return inputData.map(transformRow);
}

importCsvFile(inputFileName)
 .then(inputData => {
 const outputData = transformData(inputData);
 return exportCsvFile(outputFileName, outputData);
 })
 .then(() => {
 console.log('Done!');
 })
 .catch(err => {
 console.error('Error!');
 console.error(err && err.stack || err);
 });

Uses our
toolkit
functions from
chapter 3 to
import and
export CSV
files

The names of the
input and output files

we’re working with

Uses moment to parse our date.
This is the fix for our data. Reading
a date with moment in the correct
time zone will produce a properly
formatted UTC date.Shows our

function to
fix a row
of data

Uses the Object
.assign function to
clone a record.
This is just for
safety; we’ll keep
the original data
set immutable
(conceptually at
least) so we don’t
rewrite the
original record.
For performance,
you might want to
omit this, but be
careful; you will
lose your
in-memory copy of
your source data,
so make sure you
don’t want it for
anything else.

Shows our function
to fix an entire data
set. We use the map
function to transform
the JavaScript array.

Reads our
input file into
memory

Transforms
the data
in-memory Writes out our output file from memory

 153Cleaning our data set

Note in listing 6.1 how we reused the CSV import and export functions that we created
back in chapter 3. We use these now to load the input data from the CSV file surveys.csv
and then, after the broken data has been repaired, we save the data to the new CSV file
surveys-with-fixed-dates.csv.

This technique can be used to rewrite entire rows or, as we did in listing 6.1, to rewrite
specific individual fields. We used this technique to fix our data, but you might also say
we did this to make our production code a bit simpler because now it only has to deal
with the combined date/time value.

GENERAL PATTERN FOR ROW TRANSFORMATION

We can generalize a reusable pattern from this technique so that we can use it for
rewriting any tabular data set. The following listing shows the generalized pattern. Slot
your own code into the transformRow function.

Listing 6.2 General pattern for rewriting bad rows (extract from listing-6.2.js)

function transformRow (inputRow) {
 const outputRow = Object.assign({}, inputRow);
 //
 // TODO: Your code here to transform the row of data.
 //
 return outputRow;
}

function transformData (inputData) {
 return inputData.map(transformRow);
}

importCsvFile(inputFileName)
 .then(inputData => {
 const outputData = transformData(inputData);
 return exportCsvFile(outputFileName, outputData);
 })
 .then(() => {
 console.log("Done! ");
 })
 .catch(err => {
 console.error("Error!");
 console.error(err && err.stack || err);
 });

USING DATA-FORGE TO REWRITE BROKEN DATA

We can also use Data-Forge to rewrite our data set in a way that looks similar to plain
old JavaScript. Why should we use Data-Forge for this? Because data transformations like
this fit nicely into a flexible, convenient, and elegant Data-Forge data pipeline. At the end
of the chapter, you’ll see a more complete Data-Forge example to show you this all fits
together in the context of a bigger data pipeline, but for now let’s rewrite listing 6.1 using
Data-Forge.

You’ll notice that listing 6.3 is similar to listing 6.1. We have the familiar transformData
and transformRow functions. In fact, transformRow is exactly the same as in listing 6.1.

Add your own
transformation logic
here, your code to
transform each row.

Transforms the
entire data set

Imports
the original
data file

Exports the transformed data file

154 CHAPTER 6 Clean and prepare

However, transformData is different. In this case, it accepts a Data-Forge DataFrame as
input and returns a new, modified DataFrame as output. Instead of JavaScript’s map func-
tion, we are using Data-Forge’s select function to transform the data set. map and select
are conceptually equivalent: they both pull apart a sequence of data, modify each record,
and then merge the output to create a new sequence. You can run the following listing, and
it will output the file surveys-with-fixed-dates-using-data-forge.csv.

Listing 6.3 Using Data-Forge to rewrite bad records (listing-6.3.js)

const moment = require('moment');
const extend = require('extend');
const dataForge = require('data-forge');

const importDateFormat = "YYYY-MM-DD HH:mm";
const inputFileName = "./data/surveys.csv" ;
const outputFileName =
 "./output/surveys-with-fixed-dates-using-data-forge.csv";

function parseDate (inputDate, timezoneOffset) {
 return moment(inputDate, importDateFormat)
 .utcOffset(timezoneOffset)
 .toDate();
}

function transformRow (inputRow) {
 const outputRow = Object.assign({}, inputRow);
 outputRow.start_datetime = parseDate(
 inputRow.start_datetime, inputRow.timezone
);
 outputRow.end_datetime = parseDate(
 inputRow.end_datetime, inputRow.timezone
);
 return outputRow;
}

function transformData (inputDataFrame) {
 return inputDataFrame.select(transformRow);
}

dataForge.readFile(inputFileName)
 .parseCSV()
 .then(inputDataFrame => {
 const outputDataFrame = transformData(inputDataFrame);
 return outputDataFrame
 .asCSV()
 .writeFile(outputFileName);
 })
 .then(() => {
 console.log("Done! ");
 })
 .catch(err => {
 console.error("Error!");
 console.error(err && err.stack || err);
 });

Requires the Data-Forge library

Shows our helper function
to fix an entire data set. Note
that we use Data-Forge’s
select function to rewrite the
DataFrame (as opposed to
JavaScript’s map function,
that we used in listing 6.1).

Uses Data-Forge to read our input
file into memory as a DataFrame

Transforms the DataFrame in-memory

Uses Data-Forge to write out
our output DataFrame to a file

 155Cleaning our data set

Listing 6.3 isn’t so different from listing 6.1, and it doesn’t yet show you the power of
Data-Forge. One of the benefits of Data-Forge, among others, is that it’s easy to chain
data transformations and build a pipeline. Let’s work through the remainder of the
examples before we see how they can be chained together into a more complex pipeline
using Data-Forge.

6.11.2 Filtering rows of data

Our second problem to fix in the reef data is that we’re only interested in Australian reefs.
That’s what we’re focusing on, and the rest of the data isn’t relevant to our data analysis,
so let’s remove the rows in which we have no interest. We can filter out data when it isn’t
useful to us or when we detect duplication or redundancy. We might also want to filter out
data that’s broken when we have no cost-effective way of fixing it.

As we already discussed in chapter 5, working with a cut-down data set is going to
make our process quicker and more streamlined. Also, the data you are interested in
will be clearer because it’s not cluttered up with additional data that’s not relevant.
You should definitely remove the parts of the data that you don’t need. As always, take
care not to overwrite your source data. The data that you are about to remove might be
needed one day, so be careful to stash aside a copy of the original unmodified data.

Our aim here is to remove data for reefs that aren’t in Australia. We’ll use the JavaScript
filter function to achieve this. We’ll call the filter function on our array of data and
pass in a user-defined predicate function that specifies which records to filter out. The pred-
icate function must return Boolean true to keep the record or false to remove it. Like
the map function that we examined earlier, the filter function pulls apart the input array
and then, based on the results of the predicate function, it stitches together a new array but
minus any records that were filtered out.

We can say that the filter function rewrites our data set by removing the records
that we no longer want. You can see in figure 6.7 how the filterRow predicate func-
tion is applied to every element of the input array to determine if the record should be
included in the output array.

Listing 6.4 demonstrates use of the JavaScript filter function to remove rows from
our reef data set. We see here again the transformData function from previous listings,
although this time we use the filter function, instead of the map function, to transform
the data set.

Notice the filterRow function: this is our predicate function that’s called for each
record and determines whether the record should stay or go. filterRow returns true
for each record that’s in Australia and so it keeps those records. On the flip side, it
returns false for every other record and removes those records not in Australia.

The filter function splits apart the input array, and it calls filterRow for each
record. It produces a new array containing only those records that passed the filter—
the output array only contains records for which filterRow returned true. It outputs
a new data set, not including the records that we wanted removed. You should run the
following listing and inspect the file surveys-but-only-Australia.csv that it outputs.

156 CHAPTER 6 Clean and prepare

Listing 6.4 Filtering out unwanted or bad data (extract from listing-6.4.js)

function filterRow (inputRow) {
 return inputRow.country === 'Australia';
}

function transformData (inputData) {
 return inputData.filter(filterRow);
};

GENERAL PATTERN FOR FILTERING ROWS

We can make a general pattern for filtering out rows of data from our data sets. List-
ing 6.5 is a template for this, and you can insert your own filtering code. Remember
that your predicate function must return true for the records that you want to keep
and false for the records you want removed.

Your predicate function to filter out
rows of data. This example is filtering
out any rows from countries that
aren’t Australia.

Uses the JavaScript array filter
function to remove rows of data
that don’t match our filter criteria

filterRow

filterRow

filterRow

filterRow

filterRow

filterRow5

3

2

1

4

0

5

3

1

Certain elements have
been filtered out by the
predicate function.

The filterRow function
returns true to include
an element in the
output array or false
to remove it.

Array elements

outputData

var outputData = inputData.filter(filterRow);

JavaScript filter function:
Produces a new array with certain
elements from the input array filtered out

0

inputData

Figure 6.7 Using the JavaScript filter function to produce a new array with certain elements filtered out

 157Cleaning our data set

Listing 6.5 General pattern for filtering out bad data (listing-6.5.js)

function filterRow (inputRow) {
 // TODO: Your predicate here.
 // Return true to preserve the row or false to remove it.
 const preserveRow = true;
 return preserveRow;
}

function transformData (inputData) {
 return inputData.filter(filterRow);
};

importCsvFile(inputFileName)
 .then(inputData => {
 const outputData = transformData(inputData);
 return exportCsvFile(outputFileName, outputData)
 })
 .then(() => {
 console.log("Done!");
 })
 .catch(err => {
 console.error("Error!");
 console.error(err && err.stack || err);
 });

USING DATA-FORGE TO FILTER ROWS

Let’s look again at Data-Forge, and this time we’ll learn how we can use it to filter rows
of data. What we see here is similar to how this is achieved in plain old JavaScript.
Because it’s so similar, you might wonder why we’d bother using Data-Forge? The rea-
son for this should become clear at the end of the chapter when I show you how to
chain together multiple Data-Forge functions to build a more complex data pipeline.

Listing 6.6 has the same filterRow function as listing 6.4. Its transformData func-
tion, however, uses Data-Forge’s where function to filter out records instead of the
JavaScript filter function that we used in listing 6.4. Both where and filter func-
tions perform the same conceptual task: they execute a predicate function for each
record that determines which records should remain and which are to be removed.
Our transformData function in listing 6.6 accepts a DataFrame as input and returns
a new, modified DataFrame as output. The output DataFrame retains only the records
that we wanted to keep; all others have been filtered out. When you run this code, it pro-
duces the output file surveys-but-only-Australia-using-data-forge.csv. Inspect the output
file, and you’ll see that it’s the same as that produced by listing 6.4.

Listing 6.6 Using Data-Forge to filter out unwanted or bad data (extract from
listing-6.6.js)

function filterRow (inputRow) {
 return inputRow.country === 'Australia';
}

Add your predicate function
here. Returns true to preserve a
row of data or false to remove it

This is the predicate function that
removes records not in Australia.

158 CHAPTER 6 Clean and prepare

function transformData (inputDataFrame) {
 return inputDataFrame.where(filterRow);
}

We haven’t yet seen the real power of Data-Forge. Hold tight; that’s coming soon!

6.11.3 Filtering columns of data

Our third problem to fix in the reef data involves removing columns. This is similar
to the previous problem where we wanted to remove rows of data. This time, though,
rather than remove entire records, we want to remove individual fields from each
record but leave the remainder of each record intact.

We do this for the same reason that we remove rows: to remove broken, irrelevant,
or redundant data and also to make the data set more compact and easier to work with.
Again, please take care not to overwrite your source data, and stash a copy of it some-
where for safe keeping.

Our aim here is to remove the reef_type field from each record, which removes the
reef_type column from our entire data set. We don’t need this column, and it’s cluttering
up our data.

Removing a field from every item in an array isn’t as convenient as filtering out the
entire item the way we did with the JavaScript filter function; however, JavaScript does
provide a delete operator that does what we need: it removes a field from a JavaScript
object (see figure 6.8).

To use the delete operator, we must iterate over our data set and apply it to each
record as shown in listing 6.7. Note in transformData that we’re again using the map
function to transform the entire array of data. The transformRow function visits each
record and uses the delete operator to remove the reef_type field. Run this code, and
it will produce the output file surveys-with-no-reef-type.csv. The output data is the same
as the input, but with the desired column removed.

Uses the Data-Forge where
function to filter out records
that aren’t from Australia

JavaScript code to delete
a field from an object

JavaScript object: outputRow
JavaScript object after
field has been deleted

reef_type field will be deleted. Modified object does not
contain the reef_type field.

delete outputRow.reef_type;

Figure 6.8 Deleting a field from each element in the array has the effect of deleting a “column” from our
tabular data.

 159Preparing our data for effective use

Listing 6.7 Removing an entire column (extract from listing-6.7.js)

function transformRow (inputRow) {
 const outputRow = Object.assign({}, inputRow);
 delete outputRow.reef_type;
 return outputRow;
}

function transformData (inputData) {
 return inputData.map(filterColumn);
}

USING DATA-FORGE TO FILTER COLUMNS

Continuing our theme of doing it in plain JavaScript, then in Data-Forge, we can also
use Data-Forge to remove entire columns from our data set. In previous examples,
using Data-Forge hasn’t been much different from using plain old JavaScript, but in
this example our task becomes somewhat simpler.

Listing 6.8 shows use of the Data-Forge dropSeries function to remove a named
series (for example, a column of data) from our DataFrame. This is easier than remov-
ing the field individually from each separate record. When you run this code, it pro-
duces the output file surveys-with-no-reef-type-using-data-forge.csv. This is the same
output as produced by listing 6.7 but generated more conveniently using Data-Forge.

Listing 6.8 Removing an entire column using Data-Forge (extract from listing-6.8.js)

function transformData (inputDataFrame) {
 return inputDataFrame.dropSeries("reef_type");
}

This is the first good example of how Data-Forge can simplify and streamline the process
of working with data, but we’re just getting started and Data-Forge has many more func-
tions that help make short work of carving up, transforming, and reintegrating our data.

6.12 Preparing our data for effective use
We cleaned up and fixed various problems that we identified in our data. However, there
may still be work to do to prepare the data for effective use. We might still have too much
data and need to reduce it, or our data might not be amenable to analysis. Let’s now look at
several examples of how we can aggregate or divide our data to make it easier to work with.

6.12.1 Aggregating rows of data

Let’s look at aggregating our data by reef name. If we want to look at statistics for each
reef, it only makes sense that all records for a particular reef should be collapsed down
to one summary record per reef.

Makes a copy of the
data so we don’t modify
the input data

Uses the JavaScript delete operator to remove
the reef_type field from a row of data

Uses the JavaScript map function to
remove the field from all rows. This has
the effect of removing the reef_type
column from our tabular data.

Uses the Data-Forge dropSeries function to
remove the reef_type column from our

DataFrame. This is much simpler and more
concise than the previous example in JavaScript.

160 CHAPTER 6 Clean and prepare

We’ll keep things simple here and look at the cumulative distance that was traveled
for each reef. We need to sum the transects_length field across all records from each
reef. This is simple in terms of data analysis, but it’s all we need for the example in this
chapter. Later in chapter 9 we’ll investigate more advanced data analysis techniques.

Figure 6.9 shows a portion of the source data and how it compares to the aggregated
data. Notice how each row of data on the left has multiple records per reef, but on the
right, it has been condensed into a single row per reef.

To aggregate our data, we perform the following steps:

1 The source data is organized into buckets based on the reef_name field.

2 For each group of records, we compute the sum of the transects_length field.

3 Finally, a new data set is created with a single record per reef and containing the
aggregated data.

Listing 6.9 shows the code to aggregate our reef data. Note the call to Data-Forge’s
groupBy function: this transforms our DataFrame into a series of groups. The function
passed to groupBy specifies how to organize our data into groups. This says that we wish to
group the data by reef_name. The output from groupBy is a Data-Forge Series object that
represents the series of groups. Each group is itself a DataFrame containing a subset of
the original data. We then call select to transform the groups into a new set of summary
records. Here we call the sum function to sum the transects_length fields for the group.

There’s quite a lot going on right here, so please take time to read the code and let
this sink in. You can run this code, and it will generate the file surveys-aggregated.csv
like the example shown on the right-hand side of figure 6.9.

10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012

16/09/2012 16:16
17/09/2012 10:54
18/09/2012 13:30
20/09/2012 12:43
20/09/2012 15:43
20/09/2012 15:45
21/09/2012 13:03
 21/09/2012 9:17
 22/09/2012 8:37
22/09/2012 10:53
23/09/2012 12:19
23/09/2012 14:30

16/09/2012 16:53
17/09/2012 11:54
18/09/2012 14:10
20/09/2012 13:26
20/09/2012 16:26
20/09/2012 16:35
21/09/2012 13:35
21/09/2012 10:00
 22/09/2012 9:21
22/09/2012 11:39
23/09/2012 13:04
23/09/2012 15:20

Opal Reef
Opal Reef
Opal Reef
Holmes Reef
Holmes Reef
Holmes Reef
Holmes Reef
Holmes Reef
Holmes Reef
Holmes Reef
Flinders Reef
Flinders Reef

1.219
2.513
0.898
1.816
1.426
 2
0.669
1.725
1.813
1.765
1.764
1.877

1
2
3
4
5
6
7
8
9

10
11
12
13

transectid

A B C D E
transects_lengthstart_datetime end_datetime reef_name

And so on...Surveys data - pre aggregation

reef_name
Opal Reef
Holmes Reef
flinders Reef
Myrmidon Reef
Davies Reef
Chicken Reef

1
2
3
4
5
6
7

A B
transects_length

 15.526
 13.031
 16.344
 7.264
 3.297
 3.509

Surveys data - post aggregation

A

B

C

The original data is
grouped by reef_name.

The groups are then
aggregated to compute the
sum of transects_length
for each distinct reef.

A new data table is created
that is a summary of the
data for each reef.

Figure 6.9 Aggregating data: grouping by reef name and then summing the transects_length for
each group

 161Preparing our data for effective use

Listing 6.9 Aggregating data using Data-Forge (extract from listing-6.9.js)

function transformData (inputDataFrame) {
 return inputDataFrame
 .parseFloats("transects_length")
 .groupBy(inputRow => inputRow.reef_name)
 .select(group => {
 return {
 reef_name: group.first().reef_name,
 transects_length: group
 .deflate(row => row.transects_length)
 .sum(),
 };
 })
 .inflate();
}

This is another example that only uses Data-Forge. You could write this code in plain
old JavaScript, but the code would be longer and more difficult to read.

Using Data-Forge allows us to express transformations such as this more concisely.
Less code means fewer bugs, so that’s a good thing. Notice how the functions parse-
Floats, groupBy, and select are all chained one after the other? We’ve glimpsed
how Data-Forge functions can be chained one after the other to quickly build data
pipelines.

6.12.2 Combining data from different files using globby

Let’s imagine now that we have received our reef data as a set of files. Say that the reef
data is separated out by country with files Australia.csv, United States.csv, and so on.
We need to load these files from our local filesystem and combine them before we can
work with the data.

Various methods exist to combine data such as this:

¡	Concatenate the rows of the files.
¡	Merge row by row.
¡	Join the data by matching a field (as with a SQL join operation).

In this section, we’ll keep it simple and focus on the concatenation method. We aim
to read multiple files into memory, concatenate them in memory, and then write them
out to a single, large data file. We’ll use a JavaScript library called globby to find the
files. We already have file import and export capability using our toolkit functions.
To do the concatenation, we’ll use JavaScript’s array concat function. The process is
shown in figure 6.10.

Makes sure our CSV data for transects_
length has been parsed to floating-point
values (otherwise, we won’t be able to
sum these values in a moment).

Groups rows of
data by the reef_
name field

Transforms a
group to a new
data row that’s a
summary of the
particular reef

Each new summary record
takes the name of the reef
from the group.

Uses the default function to
extract the series of transects_

length values from the group

Uses the Data-Forge sum function to add together
all the individual transect_length values for the
group. This produces a value that represents the
distance traveled during the survey along the
particular reef.

groupBy outputs a Data-Forge Series object.
To output to CSV, we need to get it back to a
DataFrame, so we call the inflate function to
convert the Series to a DataFrame.

162 CHAPTER 6 Clean and prepare

To concatenate multiple files, we perform the following process:

1 Locate and read multiple CSV files into memory.

2 Use the JavaScript array concat function to concatenate all records into a
single array.

3 Write the concatenated array into a single combined output file.

If you installed the dependencies for the Chapter-6 code repository, you already have
globby installed in your project; otherwise, you can install it in a fresh Node.js project
as follows:

npm install –-save globby

Listing 6.10 shows the code that uses globby and our toolkit function importCsv-
File to load multiple files into memory. We use the JavaScript reduce function to
reduce the selection of imported files into a single concatenated JavaScript array. For
each imported file, we call the concat function to append the imported records into
the combined array. You should run this code and look at the merged output file
surveys-aggregated-from-separate-files.csv that it creates.

United States.csv

Australia.csv

Maldives.csv
Concatenate

Concatenate
N

0

1

2

…

Aggregated output.csv

Read multiple CSV data
files from the file system.

Data is combined in memory
using the JavaScript array
concat function.

Output merged data
to a single CSV data file.

Figure 6.10 Aggregating multiple input files into a single output file

 163Preparing our data for effective use

Listing 6.10 Aggregating multiple files using globby (listing-6.10.js)

const globby = require('globby');
const importCsvFile = require('./toolkit/importCsvFile.js');
const exportCsvFile = require('./toolkit/exportCsvFile.js');

const inputFileSpec = "./data/by-country/*.csv";
const outputFileName =
 "./output/surveys-aggregated-from-separate-files.csv";

globby(inputFileSpec)
 .then(paths => {
 return paths.reduce((prevPromise, path) => {
 return prevPromise.then(workingData => {
 return importCsvFile(path)
 .then(inputData => {
 return workingData.concat(inputData);
 });
 });
 }, Promise.resolve([]));
 })
 .then(aggregatedData => {
 return exportCsvFile(outputFileName, aggregatedData);
 })
 .then(() => {
 console.log("Done!");
 })
 .catch(err => {
 console.error("An error occurred.");
 console.error(err);
 });

Note in listing 6.10 that all imported files are loaded asynchronously. The main pur-
pose of using reduce here is to merge the sequence of asynchronous operations into
a single promise; this allows us to use that one promise to manage the whole chain of
async operations. We could have used Promise.all here as well and processed the files
in parallel rather than in sequential order, but I wanted to demonstrate how to use the
reduce function in this way. If you’re having trouble with this, please refer back to the
primer on asynchronous coding and promises in chapter 2.

Please note that Data-Forge has a concat function that you can use to concatenate
the contents of multiple DataFrames.

6.12.3 Splitting data into separate files

We learned how to merge multiple input files into a single data set. Let’s now look at
the opposite of this: splitting out a big data set into multiple files. We might want to
do this so that we can work with a smaller partitioned section of the data, or maybe it
makes our job easier if we can work with data that is split up based on some criteria.

Requires the
globby library

This wildcard defines the list of input
files that we’d like to merge together.

Invokes globby
Globby delivers a list of paths
that match the file spec.

Works through each
file to asynchronously
load and merge them

Imports each CSV input file in turn

Uses the concat
function to merge
data rows into a
single array

Outputs the aggregated data
to a single output CSV file

164 CHAPTER 6 Clean and prepare

For this example, we’ll do the exact opposite of the previous example, splitting up our
data based on the country, as shown in figure 6.11. This gives us more flexibility on how
we work with the data. In this example, let’s say that we want to work with the data for each
country individually. Or if we have a large amount of data, it might be more productive
to work on a single batch at a time, which is a technique we’ll look at again in chapter 8.

The code in listing 6.11 defines a function called splitDataByCountry. It starts by
calling the getCountries function, which queries the data to determine the unique list
of countries that are represented. Then, for each country, it filters the data set for that
country and exports a new CSV file that contains only the filtered data.

The filter and export logic here is similar to what we saw in listing 6.6, the Data-Forge
example for filtering rows, although we added another layer here that iterates over all the
countries and exports a separate CSV file for each. If you run this code, it will produce an
output for each country: Australia.csv, United States.csv, and so on.

Listing 6.11 Splitting data into multiple files (listing-6.11.js)

const dataForge = require('data-forge');

const inputFileName = "./data/surveys.csv";

function filterRow (inputRow, country) {
 return inputRow.country === country;
}

function transformData (inputDataFrame, country) {
 return inputDataFrame.where(inputRow => {
 return filterRow(inputRow, country);
 });
}

function getCountries (inputDataFrame) {
 return inputDataFrame
 .getSeries("country")
 .distinct();
}

function splitDataByCountry (inputDataFrame) {
 return getCountries(inputDataFrame)
 .aggregate(Promise.resolve(), (prevPromise, country) => {
 return prevPromise.then(() => {
 const outputDataFrame = transformData(
 inputDataFrame,
 country
);
 const outputFileName = "./data/by-country/" +
 country + ".csv";

 return outputDataFrame
 .asCSV()
 .writeFile(outputFileName);
 });
 });
}

This is a predicate function to filter out all
data rows not from a particular country.

This is a helper function to remove
all rows from the input DataFrame
that don’t match our predicate.

This is a helper function to determine the list
of countries represented in our data set.

Uses the
Data-Forge
distinct
function
to remove
duplicate
countries
and return
only the
unique set
of countries

Gets the list of
countries that
we’re going to
use to split
the data

Works
through
each
country,
filtering
the data by
country,
and
outputting
the subset
of data

Produces a new
data set

containing data
only for the

particular
country

Outputs a new CSV file containing
the data for the country

 165Building a data processing pipeline with Data-Forge

dataForge.readFile(inputFileName)
 .parseCSV()
 .then(splitDataByCountry)
 .then(() => {
 console.log("Done! ");
 })
 .catch(err => {
 console.error("Error! ");
 console.error(err && err.stack || err);
 });

In listing 6.11, please note the use of the Data-Forge aggregate function. This works in
a similar way to the JavaScript reduce function that we saw earlier in this chapter, and
we use it here for the same reason: to sequence a series of asynchronous operations
into a single combined promise. Please refer to chapter 2 for a refresher on asynchro-
nous coding and promises.

6.13 Building a data processing pipeline with Data-Forge
One of the main reasons I use Data-Forge is its ability to chain operations to quickly build
flexible data pipelines. I say flexible because the syntax of how Data-Forge functions are
chained is easy to rearrange and extend. We can easily plug in new data transformations,
remove ones we no longer need, or modify the existing ones.

Throughout this chapter you have been building an understanding of how Data-
Forge chaining works and, I hope, an appreciation of the power it can bring to your

15/12/2012 10:01

15/12/2012 11:54

21/12/2012 13:44

19/03/2013 10:26

16/03/2013 10:23

29/03/2013 9:34

9/04/2013 9:59

29/03/2013 11:32

29/03/2013 13:41

9/04/2013 12:11

9/04/2013 14:20

10/04/2013 8:53

2/08/2013 14:09

3/08/2013 12:14

6/08/2013 8:52

15/12/2012 10:47

15/12/2012 12:29

21/12/2012 14:26

19/03/2013 11:18

16/03/2013 11:05

29/03/2013 10:18

9/04/2013 10:47

29/03/2013 12:17

29/03/2013 14:27

9/04/2013 12:58

9/04/2013 15:00

10/04/2013 9:39

2/08/2013 14:55

3/08/2013 13:02

6/08/2013 9:48

Australia

Australia

Australia

Curacao

Curacao

Bonaire

Aruba

Bonaire

Bonaire

Aruba

Aruba

Aruba

Belize

Belize

Belize

country

Australia

Australia

Australia

Australia.csv

Curacao.cvs

start_datetime

19/03/2013 10:26

16/03/2013 10:23

end_datetime

19/03/2013 11:18

16/03/2013 11:05

country

Curacao

Curacao

Aruba.cvs

 9/04/2013 9:59

9/04/2013 12:11

9/04/2013 14:20

10/04/2013 8:53

9/04/2013 10:47

9/04/2013 12:58

9/04/2013 15:00

10/04/2013 9:39

Aruba

Aruba

Aruba

Aruba

start_datetime end_datetime country

Our input data contains entries
from many different countries.

surveys.csv

… and so on

start_datetime

15/12/2012 10:01

15/12/2012 11:54

21/12/2012 13:44

end_datetime

15/12/2012 10:47

15/12/2012 12:29

21/12/2012 14:26

start_datetime end_datetime country

Figure 6.11 Splitting a single file into multiple files by country

166 CHAPTER 6 Clean and prepare

data-wrangling toolkit, but I’d like to make this more explicit now. Let’s look at a
new Data-Forge example that’s combined from a number of the previous code list-
ings. It shows how these transformations can be chained together into a single data
pipeline.

The code for the more complex data pipeline is shown in listing 6.12. You can
see many of the functions we’ve looked at so far in this chapter: where, groupBy,
select, plus several others. You can run the following listing and check the output
file data-pipeline-output.csv that it generates.

Listing 6.12 A more complex data pipeline constructed with Data-Forge (extract from
listing-6.12.js)

dataForge.readFile(inputFileName)
 .parseCSV()
 .then(dataFrame => {
 return dataFrame.dropSeries([
 "exp_id",
 "dive_observations",
 "obs_topography"
])
 .parseDates([
 "start_datetime",
 "end_datetime"
],
 importDateFormat
)
 .where(row =>
 moment(row.start_datetime).year() === 2014
)
 .parseFloats("dive_temperature")
 .where(row => row.dive_temperature !== 0)
 .groupBy(row => row.country)
 .select(group => ({
 country: group.first().country,
 dive_temperature: group
 .select(row => row.dive_temperature)
 .average()
 }))
 .inflate()
 .asCSV()
 .writeFile(outputFileName);
 });

At the start of the pipeline, we
load survey.csv into memory.

Parses CSV data
from the data file

Drops columns in which we
aren’t interested. This makes
the data a bit more compact.

Parses the
columns that
contain dates

Applies a filter because we’re only
interested in rows of data from 2014

Parses the column we’re
interested in as floats

Removes broken rows
because these will
skew our analysis

Groups rows
by country Transforms each

group and creates
new rows with the
average temperature
per country

Inflates to a DataFrame, the output of
groupBy is Series, but we want to return
it to a DataFrame for output to a CSV file.

Outputs the data
in the CSV format

Writes the CSV
data to a file at
the end of the
pipeline

 167Building a data processing pipeline with Data-Forge

In this chapter, we covered quite a bit of ground, and we learned various techniques
for cleaning and preparing our data before trying to use it for analysis or move it to
production. Later in chapter 9 we’ll get into the actual data analysis, but first we need
to deal with something we’ve avoided until now: How can we cope with a huge amount
of data? That’s the topic of chapters 7 and 8, coming up next.

Summary

¡	You learned to use the JavaScript map function and the Data-Forge select func-
tion to rewrite your data set to repair bad data.

¡	You learned to use various other functions to filter out problematic or irrele-
vant data. We looked at the JavaScript filter function, delete operator, and the
Data-Forge where and dropSeries functions.

¡	We looked at examples of aggregation to summarize and reduce your data
set. We used the JavaScript reduce function and Data-Forge’s groupBy and
aggregate functions.

¡	We merged data from multiple files using the globby library.
¡	We split data out to multiple files based on criteria. We used the JavaScript filter

function and the Data-Forge where function.

168

This chapter covers
¡	Using Node.js streams

¡	Processing files incrementally to handle large
data files

¡	Working with massive CSV and JSON files

In this chapter, we’ll learn how to tackle large data files. How large? For this chapter,
I downloaded a huge data set from the National Oceanic and Atmospheric Admin-
istration (NOAA). This data set contains measurements from weather stations
around the world. The zipped download for this data is around 2.7 GB. This file
uncompresses to a whopping 28 GB of data. The original data set contains more
than 1 billion records. In this chapter, though, we’ll work with only a portion of
that data, but even the cut-down example data for this chapter doesn’t fit into the
available memory for Node.js, so to handle data of this magnitude, we’ll need new
techniques.

In the future, we’d like to analyze this data, and we’ll come back to that in that
chapter 9. But as it stands we can’t deal with this data using conventional techniques!
To scale up our data-wrangling process and handle huge files, we need something
more advanced. In this chapter, we’ll expand our toolkit to include incremental pro-
cessing of CSV and JSON files using Node.js streams.

7Dealing with
huge data files

 169Fixing temperature data

7.1 Expanding our toolkit
In this chapter, we’ll use a variety of new tools so that we can use Node.js streams for
incremental processing of our large data files. We’ll revisit the familiar Papa Parse
library for our CSV data, but this time we’ll use it in streaming mode. To work with
streaming JSON data, I’ll introduce you to a new library called bfj (Big-Friendly JSON).

Table 7.1 lists the various tools that we cover in this chapter.

Table 7.1 Tools used in chapter 7

API / Library Function / Class Notes

Node.js fs createReadStream Opens a streaming file for incre-
mental reading

createWriteStream Opens a streaming fie for incre-
mental writing

stream.Readable We instantiate this to create cus-
tom readable data streams.

stream.Writable We instantiate this to create cus-
tom writable data streams.

stream.Transform We instantiate this to create bidi-
rectional transform streams that
can modify our data as it passes
through the stream.

Papa Parse parse / unparse We’re using Papa Parse again,
this time in streaming mode
for CSV data serialization and
deserialization.

Bfj (Big-friendly JSON) walk We’re using third-party
library bfj for streaming JSON
deserialization.

Data-Forge readFileStream Reads a file in streaming mode,
allowing it to be incrementally
transformed

writeFileStream Writes a file in streaming mode

7.2 Fixing temperature data
For this chapter, we’re using the large data set that I downloaded from NOAA. You
could download the raw data set from here, although I wouldn’t recommend it; the
download is 2.7 GB and it uncompresses to 28 GB. These files are available at ftp://
ftp.ncdc.noaa.gov/pub/data/ghcn/daily/.

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/

170 CHAPTER 7 Dealing with huge data files

I did preparatory work to convert this custom data set into 28 GB weather-stations
.csv and an 80 GB weather-stations.json file that could be used to test this chapter’s code
listings. Obviously, I can’t make files of that size available because they’re way too big for
that; however, I made cut-down versions of these files available in the GitHub repository
for chapter 7 (see the next section for details).

I’d like to analyze this data set, but I’ve got a problem. After an initial visual inspec-
tion of a sample of the data, I realized that the temperature fields aren’t in degrees
Celsius. At first, I thought these values must have been in degrees Fahrenheit. But after
experimentation and digging into the data set’s documentation, I discovered that the
temperature values are expressed in tenths of degrees Celsius. This is an unusual unit
of measurement, but apparently it was popular back when these records began and has
been retained for ongoing consistency of the data set.

Anyhow, I feel it’s more natural to work with degrees Celsius, which is our standard
unit of measurement for temperature in Australia. I need to convert all the tempera-
ture fields in these humongous data files! This is almost a continuation of chapter 6,
except now we need new techniques to deal with files this large.

Why not use a database?
At this point you might well ask: Shouldn’t we use a database when working with such a
huge amount of data?

Yes, you’re correct! We should work with a database. But sometimes we have to work
with large data files. Let’s imagine these files have come from a client, and this is the only
form in which they come. We have to deal with it.

We’ll return to this question in chapter 8, where we’ll import our large data files into a
database so that we can work more effectively with the data.

7.3 Getting the code and data
The code and data for this chapter are available in the Data Wrangling with Java-
Script Chapter-7 repository in GitHub. Don’t worry! The example data in GitHub
has been cut down drastically and is much, much smaller than the original raw data
set. You can find the data at https://github.com/data-wrangling-with-javascript/
chapter-7.

The example data is located under the data subdirectory in the repository. Output
generated by code is located under the output directory but isn’t included in the repo,
so please run the code listings to generate the output. Refer to “Getting the code and
data” in chapter 2 if you need help getting the code and data.

https://github.com/data-wrangling-with-javascript/chapter-7
https://github.com/data-wrangling-with-javascript/chapter-7

 171When conventional data processing breaks down

7.4 When conventional data processing breaks down
The methods presented so far in this book work to a large extent: they’re relatively
simple and straightforward, and therefore you can be productive with them. You’ll go
a long way with these techniques. However, there may come a time when you are pre-
sented with a huge data file and are expected to deal with it. At this point, the simple
conventional techniques will break down—that’s because the simple techniques aren’t
scalable to super-large data files.

Let’s understand why that’s the case. Figure 7.1 shows how conventional data pro-
cessing works.

1 We load the entire data file input.json into memory.

2 We process the entire file in memory.

3 We output the entire data file output.json.

Loading an entire data file into memory is simple, and it makes our data-wrangling
process straightforward. Unfortunately, it doesn’t work for huge files. In figure 7.2 you
can see that large-file.json doesn’t fit in our available memory. The process fails at step
1, and we can’t read the entire file into memory at once. Afterward, we can’t process or
output the file. Our process has broken down.

Working on an entire file in memory is convenient, and we should do that where pos-
sible. However, if you know you need to deal with a large data set, then you should start
preparing for it as early as possible. Soon we’ll look at how to deal with large files, but
first let’s explore the limitations of Node.js.

File system

Available memory

File system

When loading a file into
memory to be parsed as
JSON or CSV, we’re limited
by the max string size
in Node.js: around 536 MB
as of Node v8

output.json

JSON data loaded into memory

input.json

Read entire file
into memory.

Process file
in memory.

Write transformed
data back to file system.

Figure 7.1 Conventional data processing: loading the entire file into memory

172 CHAPTER 7 Dealing with huge data files

7.5 The limits of Node.js
At what point exactly does our process break down? How big a file can we load into
Node.js?

I was uncertain what the limits were. Search the web and you get a variety of answers;
that’s because the answer probably depends on your version of Node.js and your operat-
ing system. I tested the limits of Node.js for myself. I used 64-bit Node.js v8.9.4 running
on my Windows 10 laptop, which has 8 GB of memory.

I found that the largest CSV or JSON data file I could load in its entirety was limited by
the size of the largest string that can be allocated in Node.js. In my tests, I found that the
largest string size was around 512 MB (give or take a couple of MB) or around 268 million
characters. This appears to be a limitation of the v8 JavaScript engine that powers Node.js,
and it puts a constraint on the size of the data files that can pass through our conventional
data processing pipeline.

If you want to know more about how I conducted this test or run the test yourself, please
see my code in the following GitHub repositories: https://github.com/javascript-data
-wrangling/nodejs-json-test and https://github.com/javascript-data-wrangling/nodejs
-memory-test.

The second repo more generally probes the limitations of Node.js and will help you
understand how much heap memory, in total, that you can allocate.

7.5.1 Incremental data processing

We have a large data file: weather_stations.csv. We need to do a transformation on this
file to convert the MinTemp and MaxTemp temperature columns to degrees Celsius.
After the conversion, we’ll output the file weather_stations.json. The fields we’re con-
verting are currently expressed in tenths of degrees Celsius, apparently for backward

Available memory

JSON data file loaded into memory

Our data file doesn’t fit in memory!

File system

large-file.json
When our data file is
larger than about 512 MB,
it’s larger than the max
string size in Node.js v8.Read entire file

into memory.

Process file
in memory.

Write transformed
data back to file
system.

Figure 7.2 Conventional techniques break down for large files that are too big to fit into memory.

https://github.com/JavaScript-Data-Wrangling/nodejs-json-test
https://github.com/JavaScript-Data-Wrangling/nodejs-json-test
https://github.com/JavaScript-Data-Wrangling/nodejs-memory-test
https://github.com/JavaScript-Data-Wrangling/nodejs-memory-test

 173The limits of Node.js

compatibility with the older records. The formula to do the conversion is simple: we
must divide each field by 10. Our difficulty is in working with the huge file. The con-
ventional workflow has failed us, and we can’t load the file into memory, so how can we
deal with such a large file?

Node.js streams are the solution. We can use a stream to process the data file incre-
mentally, loading and processing the data chunk by chunk instead of trying to process it
all at once. Figure 7.3 shows how this works. The file is divided into chunks. Each chunk
of data easily fits into the available memory so that we can process it. We never have a
time when we come close to exhausting our available memory.

The conventional data processing pipeline is ultra-convenient, and it works up to a
point. When it starts to break down, we can introduce incremental processing, and this
makes our data processing pipeline scalable to huge files.

How big? We’re limited only by the available space in our file system because this
places a limit on the size of our input and output files. We’re also limited by the time
required to work through the entire file. For example, you might be able to fit a 100 GB
CSV file in your file system, but if it takes a week to process, do you still care? We can
essentially handle any size file, provided the files can fit on our hard drive and also pro-
vided we have the patience to wait for the processing to complete.

7.5.2 Incremental core data representation

As you’ll recall, we’ve been working with a design pattern called the core data repre-
sentation (CDR). The CDR defines a shared data format that connects the stages of
our data processing pipeline. When I first introduced the CDR in chapter 3, we were
working with entire files in memory and the CDR itself was a representation of our
entire data set.

We must now adapt the CDR design pattern to work with incremental data process-
ing. We don’t need to do anything, except maybe evolve our understanding of the CDR.

...

weather-data.csv

1 32

We see the data
file as a sequence
of chunks.

Available memory

2

4

This data file is
too large to fit
into available
memory! Each chunk can fit

in available memory,
even when the entire
file might not.

We work through each chunk incrementally. We can
process the entire file, but we never load the entire

file at once.

N

Figure 7.3 Processing data incrementally: loading only a chunk at a time into memory

174 CHAPTER 7 Dealing with huge data files

The CDR is an array of JavaScript objects, where each object is a record from our
data set. As it stands, each stage in the transformation pipeline operates on the entire data
set. You can see an example of this in figure 7.4 where we take weather-stations.csv and
pass it through several transformations before outputting another file named weather
-stations-transformed.csv.

Let’s change our thinking and redefine the CDR so that instead of representing an
entire data set, it will now represent a chunk of our entire data set. Figure 7.5 shows
how the refashioned CDR can handle chunk-by-chunk processing of our data set in an
incremental fashion.

What this means is that any code modules already in your toolkit written to work with
the CDR will work equally well using either conventional or incremental data process-
ing. Our reusable code modules that work with the CDR take arrays of records, and now
that we’re switching to the incremental version of the CDR, we’re still passing arrays
of records to our transformation stages. But now those arrays each represent a chunk of
records and not the entire data set.

7.5.3 Node.js file streams basics primer

We’ll use Node.js streams to incrementally process our large CSV and JSON files, but
before we can do that, we first need a basic understanding of Node.js streams. If you
already understand how they work, please skip this section.

We need to learn about readable streams, writable streams, and the concept of pip-
ing. We’ll start with the most trivial example possible. Figure 7.6 demonstrates piping a
readable input stream to a writable output stream. This is basically a file copy, but due to
the use of Node.js streams, the data is copied chunk by chunk, never loading the entire
file into memory at once. Node.js automatically chunkifies the file for us, and we don’t
have to be concerned with chunk creation or management.

Data pipeline

Import
entire file

weather-
stations.csv

Transform
X

Transform
Y

Transform
Z

Various transformation phases
that work on the CDR

Export
entire file

weather-stations-
transformed.csv

Data set

In conventional data processing
the entire data set is moved across
the data pipeline in one go.

Figure 7.4 Conventional core data representation applies a transformation to an entire file in memory.

 175The limits of Node.js

Incremental
data pipeline

Open input
stream

weather
-stations.csv

Transform
X

Transform
Y

Transform
Z

Open output
stream

weather-stations
-transformed.csv

Chunk 1 Chunk 1

The transformation pipeline operates on
each chunk instead of the entire file.

Transform
X

Transform
Y

Transform
Z2 2

Transform
X

Transform
Y

Transform
ZN N

Execute the
transformation
pipeline on
each chunk
in sequence.

Close input
stream

Close output
streamThe CDR is the glue between

the transformation steps.

Chunk

With incremental data processing chunks of
data move through the pipeline in a stream.

ChunkChunk Chunk Chunk

…

Figure 7.5 Incremental core data representation: the design pattern is adapted to work incrementally.

File stream

Readable file
stream

Writable file
stream weather-stations.csv weather-stations

-transformed.csv

Huge input file

Input stream

Huge output file

Output stream

The input stream is piped
to the output stream.

Text chunk

We are streaming a text file, so a series
of text chunks pass through the stream.

Text chunkText chunk

Figure 7.6 Piping an input file stream to an output file stream

176 CHAPTER 7 Dealing with huge data files

Listing 7.1 shows the code that implements the process shown in figure 7.6. We open
a readable file stream from weather-stations.csv and a writable file stream for weather
-stations-transformed.csv. The pipe function is called to connect the streams and make
the data flow from input file to output file. Try running the code and look at the trans-
formed file that’s generated into the output subdirectory,

Listing 7.1 Simple Node.js file streaming (listing-7.1.js)

const fs = require('fs');

const inputFilePath = "./data/weather-stations.csv";
const outputFilePath = "./output/weather-stations-transformed.csv";

const fileInputStream = fs.createReadStream(inputFilePath);
const fileOutputStream = fs.createWriteStream(outputFilePath);

fileInputStream.pipe(fileOutputStream);

Pretty simple, right? Admittedly, listing 7.1 isn’t a particularly useful example. We’re
using Node.js streams that don’t understand the structure of our data, but the point
of this is to learn Node.js streams starting with a basic example. The interesting thing
about piping is that we can now add any number of intermediate transformation stages
by piping our stream through one or more transformation streams. For example, a
data stream with three transformations (X, Y, and Z) might look like this:

fileInputStream
 .pipe(transformationX)
 .pipe(transformationY)
 .pipe(transformationZ)
 .pipe(fileOutputStream);

Each intermediate transformation stage can be a separate reusable code module that
you may have created earlier and have now pulled from your toolkit. Or they might be
custom transformations that are specific for your current project.

It’s important to learn Node.js streams because they allow us to construct scalable
data transformation pipelines from reusable code modules. Not only can our data pipe-
lines have any number of intermediate processing stages, but they can now also handle
arbitrarily large files (and that’s what we needed!).

You should visualize a streaming data pipeline in the same way that you visualized
any of the data pipelines in this book—as a series of boxes connected by arrows. See
figure 7.7 for an example. The arrows show the direction of the data flow.

Creates stream for
reading the input file

Creates stream for
writing the output file

Pipes the input stream to the
output stream; this effectively
copies one file to the other.

Pipe

Readable stream Writable stream

The stream is piped through multiple transformation stages.

Transformation X Transformation Y Transformation Z

Figure 7.7 Piping a Node.js stream through multiple transformation stages

 177The limits of Node.js

Listing 7.1 shows the code that implements the process shown in figure 7.6. We open
a readable file stream from weather-stations.csv and a writable file stream for weather
-stations-transformed.csv. The pipe function is called to connect the streams and make
the data flow from input file to output file. Try running the code and look at the trans-
formed file that’s generated into the output subdirectory,

Listing 7.1 Simple Node.js file streaming (listing-7.1.js)

const fs = require('fs');

const inputFilePath = "./data/weather-stations.csv";
const outputFilePath = "./output/weather-stations-transformed.csv";

const fileInputStream = fs.createReadStream(inputFilePath);
const fileOutputStream = fs.createWriteStream(outputFilePath);

fileInputStream.pipe(fileOutputStream);

Pretty simple, right? Admittedly, listing 7.1 isn’t a particularly useful example. We’re
using Node.js streams that don’t understand the structure of our data, but the point
of this is to learn Node.js streams starting with a basic example. The interesting thing
about piping is that we can now add any number of intermediate transformation stages
by piping our stream through one or more transformation streams. For example, a
data stream with three transformations (X, Y, and Z) might look like this:

fileInputStream
 .pipe(transformationX)
 .pipe(transformationY)
 .pipe(transformationZ)
 .pipe(fileOutputStream);

Each intermediate transformation stage can be a separate reusable code module that
you may have created earlier and have now pulled from your toolkit. Or they might be
custom transformations that are specific for your current project.

It’s important to learn Node.js streams because they allow us to construct scalable
data transformation pipelines from reusable code modules. Not only can our data pipe-
lines have any number of intermediate processing stages, but they can now also handle
arbitrarily large files (and that’s what we needed!).

You should visualize a streaming data pipeline in the same way that you visualized
any of the data pipelines in this book—as a series of boxes connected by arrows. See
figure 7.7 for an example. The arrows show the direction of the data flow.

Creates stream for
reading the input file

Creates stream for
writing the output file

Pipes the input stream to the
output stream; this effectively
copies one file to the other.

Pipe

Readable stream Writable stream

The stream is piped through multiple transformation stages.

Transformation X Transformation Y Transformation Z

Figure 7.7 Piping a Node.js stream through multiple transformation stages

To create a transformation like this for a Node.js stream, we need to instantiate the
Transform class. This creates a bidirectional stream that is both readable and writable
at the same time. It needs to be writable so that we can pipe our input data to it. It
needs to be readable so that it can pipe the transformed data to the next stage in the
pipeline.

As an example, let’s look at a working example of a simple transformation. Listing 7.2
is an expansion of listing 7.1 that pipes our data through a transformation stream that
lowercases the text data as it passes through. The Node.js streaming API automatically
divided our text file into chunks, and our transformation stream gets to work on only a
small chunk of text at a time.

I told you this was going to be simple. We’re working with text files, and listing 7.2
copies the input file to the output file. But in the process, it also converts all the text to
lowercase. Run this code and then compare the input file weather-stations.csv to the
output file weather-stations-transformed.csv to see the changes that were made.

Listing 7.2 Transforming a Node.js stream (listing-7.2.js)

//
// … setup is the same as listing 7.1 …
//

function transformStream () {
 const transformStream = new stream.Transform();
 transformStream._transform = (inputChunk, encoding, callback) => {
 const transformedChunk = inputChunk.toString().toLowerCase();
 transformStream.push(transformedChunk);
 callback();
 };

This is a helper function to create
a transformation stream.

Instantiates a
Transform stream

This is a callback to be
invoked for each text chunk.

Applies the
transformation to
each chunk. Here
we’re lowercasing
the text.

Passes the converted chunk
on to the output stream

Invokes the callback function to let the
stream know we’ve transformed the chunk.
This allows for asynchronous
transformation, should we need to use that.

178 CHAPTER 7 Dealing with huge data files

 return transformStream;
};

fileInputStream
 .pipe(transformStream())
 .pipe(fileOutputStream)
 .on("error", err => {
 console.error(err);
 }); //

Note the error handling at the end of listing 7.2. Stream error handling works in a sim-
ilar way to promises: when an error or exception occurs at one stage in the pipeline, it
terminates the entire pipeline.

This has been a brief primer on Node.js streams. We’ve barely scratched the surface,
but already we can do something practical: we can stream our data through a transfor-
mation, and we’ve done it a way that scales to extremely large files.

Promises vs. Streams
Are you wondering what’s the difference between a promise and stream?

They’re similar design patterns. They both help you manage an operation and retrieve a
result. A promise allows you to retrieve a single result. A stream allows you to retrieve a
continuous sequence of results.

Another difference is that promises help you manage asynchronous operations, whereas
Node.js streams are not asynchronous by default.

None of the Node.js streams we work with in this chapter are asynchronous. You can,
however, create your own asynchronous stream by implementing a custom transforma-
tion stream. If you have a keen eye, you might notice in listing 7.2 how this could be
achieved.

7.5.4 Transforming huge CSV files

We aren’t interested only in plain text files; we need to transform structured data. Spe-
cifically, we have the data file weather-stations.csv, and we must enumerate its records
and convert the temperature fields to degrees Celsius.

How can we use Node.js streams to transform a huge CSV file? This could be diffi-
cult, but fortunately Papa Parse, the library we started using in chapter 3, already has
support for reading a Node.js stream.

Unfortunately, Papa Parse doesn’t provide us with a readable stream that we can
easily pipe to another stream. Instead, it has a custom API and triggers its own event
whenever a chunk of data has been parsed from the CSV format. What we’ll do, though,
is create our own adapter for Papa Parse so that we can pipe its output into a Node.js

Returns the new transformation stream
so we can use it in our data pipeline

Pipes the data stream through
the transformation

Handles any error that
might have occurred

 179The limits of Node.js

stream. This is a useful technique in itself—taking a nonstreaming API and adapting it
so that it fits into the Node.js streaming framework.

In figure 7.8 you can see how we’ll pipe our parsed CSV data through a convert tem-
perature stream before piping out to another CSV file.

To give you an idea of what we are trying to accomplish here, consider the following
snippet of code:

openCsvInputStream(inputFilePath) // 1
 .pipe(convertTemperatureStream()) // 2
 .pipe(openCsvOutputStream(outputFilePath)); // 3

So, what’s happening here?

1 We’re opening a readable stream for CSV data. The chunks of data we’re stream-
ing here are expressed in the core data representation.

2 We then pipe the CSV data through a transformation stream. This is where we
convert the temperature fields to degrees Celsius.

3 Finally, we pipe the transformed data to a writable stream for CSV data.

The function convertTemperatureStream could be a reusable code module, although
it seems rather specific to this project, but if it was generally useful, we could give it a
home in our toolkit.

INSTALLING PAPA PARSE

If you’ve installed dependencies for the code repository, you already have Papa Parse
installed; otherwise, you can install it in a fresh Node.js project as follows:

node install --save papaparse

OPENING A READABLE CSv STREAM

The first part of our CSV streaming puzzle is to create a readable stream that can
stream in a CSV file and incrementally parse it to JavaScript objects. It’s the deserial-
ized JavaScript objects that we ultimately want. Figure 7.9 shows how we’ll encapsulate
Papa Parse within a readable CSV data stream. This gives us an input stream that we
can pipe to our data transformation stream.

Pipe

Readable stream
for CSV data

Writable stream
for CSV data

Convert
temperature

stream
weather-stations.csv weather-stations

-transformed.csv

Our data is piped through a stream
that converts the temperature fields.

We are going to encapsulate
Papa Parse in a readable stream.

Figure 7.8 Streaming transformation of a huge CSV file

180 CHAPTER 7 Dealing with huge data files

Let’s create a new toolkit function openCsvInputStream to create and return our read-
able CSV data stream. The code for this is presented in the following listing. It uses
Papa Parse’s custom streaming API. As Papa Parse deserializes each JavaScript object
from the file stream, the deserialized object is passed through to our CSV data stream.

Listing 7.3 Toolkit function to open a CSV file input stream (toolkit/open-csv-input
-stream.js)

const stream = require('stream');
const fs = require('fs');
const papaparse = require('papaparse');

function openCsvInputStream (inputFilePath) {

 const csvInputStream = new stream.Readable({ objectMode: true });
 csvInputStream._read = () => {};

 const fileInputStream = fs.createReadStream(inputFilePath);
 papaparse.parse(fileInputStream, {
 header: true,
 dynamicTyping: true,
 skipEmptyLines: true,
 step: (results) => {
 for (let row of results.data) {
 csvInputStream.push(row);
 }
 },
 complete: () => {

Readable CSV data stream

Node.js file read
stream Other stream

Papa Parse is encapsulated
inside our readable stream.

Papa Parse
deserialization weather-stations.csv

We use a Node.js file read stream to
read the content of the input CSV file.

JavaScript objects deserialized from the CSV
format can be piped to another stream.

Figure 7.9 Encapsulating Papa Parse CSV deserialization in a readable CSV data stream

Our new toolkit function opens
a readable CSV data stream.

Creates a stream that we can read data records
from. Note that object mode is enabled.

We may not need this, but we don’t want to get
halfway through our massive CSV file and then
realize that it contains empty lines!

Instantiates a Writable stream in object
mode for reading the input CSV file

Uses Papa Parse to
deserialize data that’s read
from the input file stream

We must include a stub function here; otherwise,
the Node.js stream API will give you an error.

This callback allows us to
handle incoming rows of
CSV data from Papa Parse.

Forwards results to the readable
CSV data stream as they are
received from Papa Parse

The callback is invoked by Papa Parse when
the input file has been exhausted.

 181The limits of Node.js

 csvInputStream.push(null);
 },

 error: (err) => {
 csvInputStream.emit('error', err);
 }
 });

 return csvInputStream;
};

module.exports = openCsvInputStream;

Notice several key points in listing 7.3. First is that we create the readable stream with
object mode enabled. Normally, a Node.js stream is low level, and it enumerates the raw
contents of the file using Node.js Buffer objects. We want to work at a higher level of
abstraction. We want to retrieve JavaScript objects and not raw file data, and that’s why
we created the readable stream in object mode. This allows us to work with streaming
data that’s expressed in the core data representation.

The next thing to note is how we pass CSV data forward to the readable stream. The
step callback is invoked whenever Papa Parse has a chunk of CSV rows ready for us. We
pass this data onto the readable stream through its push function. You can say that we’re
pushing data into the stream.

The complete callback is invoked when the entire CSV file has been parsed. At this
point, no more CSV rows will come through, and we call the push function with a null
parameter to indicate to the stream that we’ve finished. Last, don’t forget the error
callback: this is how we forward Papa Parse errors to the readable stream.

OPENING A WRITABLE CSv STREAM

On the other side of our CSV streaming puzzle, we must create a writable stream that
we can pass JavaScript objects to and have them written to a file in CSV format. Fig-
ure 7.10 shows how we’ll encapsulate Papa Parse in the writable CSV data stream. This
gives us a stream that we can use to output our transformed data.

Signifies end of streamHandles any error that might occur

Forwards errors to the
readable CSV data stream
for handling up the chain

Exports the toolkit function so that it
can be used from other code modules

Writable CSV data stream

Papa Parse
serializationOther stream Node.js file read

stream
weather-stations
-transformed.csv

We use a Node.js file write stream to
write the content to the output CSV file.

JavaScript objects are passed from another
stream for serialization to the CSV format.

Papa Parse is encapsulated
inside our writable stream.

Figure 7.10 Encapsulating Papa Parse CSV serialization in a writable CSV data stream

182 CHAPTER 7 Dealing with huge data files

The following listing is a new toolkit function openCsvOutputStream that opens
our writable CSV data stream. For each JavaScript object that’s passed into the CSV out-
put stream, it’s serialized to CSV data by Papa Parse before being passed to the file output
stream.

Listing 7.4 Toolkit function to open a CSV file output stream (toolkit/open-csv-output
-stream.js)

const stream = require('stream');
const fs = require('fs');
const papaparse = require('papaparse');

function openCsvOutputStream (outputFilePath) {

 let firstOutput = true;
 const fileOutputStream = fs.createWriteStream(outputFilePath);

 const csvOutputStream = new stream.Writable({ objectMode: true });
 csvOutputStream._write = (chunk, encoding, callback) => {
 const outputCSV = papaparse.unparse([chunk], {
 header: firstOutput
 });
 fileOutputStream.write(outputCSV + "\n");
 firstOutput = false;
 callback();
 };

 csvOutputStream.on("finish", () => {
 fileOutputStream.end();
 });

 return csvOutputStream;
};

module.exports = openCsvOutputStream;

Our new toolkit function opens a
writable CSV data stream.

This allows us to determine when the
first row of CSV data is output.

Creates a
stream for
writing the
output CSV file

Instantiates Writable stream for writing
data records. Note that object mode is
enabled.

The callback is invoked when
chunks of data are written to
the writable CSV data stream.

Enables output of
CSV file headers
only for the first
row of CSV data
that’s output

Uses Papa
Parse to
serialize
chunks of
data to the
CSV format

Writes serialized
CSV data to the

output file
stream

Tracks that the first row of data has
been output; this prevents the CSV
header from being written out for
subsequent rows of data.

Invokes the callback to indicate we’ve
written the serialized chunk of data.
This allows for asynchronous coding.

Handles the finish event and
closes the output file stream

Exports the toolkit function so that it can
be used from other code modules

 183The limits of Node.js

Here again we’re opening our stream with object mode enabled so that we can work with
a stream of JavaScript objects and not Node.js Buffer objects.

Listing 7.4 is somewhat less complicated than listing 7.3. We implement the _write
function to handle chunks of data that are written to the writable CSV data stream. Here
we use Papa Parse to serialize the records and then forward them to the writable file
stream for output.

Note the use of the firstOutput variable to switch off CSV headers for all but the
first record. We allow Papa Parse to output the CSV column names only at the start
of the CSV file. Toward the end of the listing, we handle the writable stream’s finish
event, and this is where we close the writable file stream.

TRANSFORMING THE HUGE CSv FILE

Now that we have our two toolkit functions in place, we can piece together the entire
data pipeline. We can open a stream to read and parse weather-stations.csv. We can
also open a stream to serialize our transformed data and output weather-stations
-transformed.csv. The completed data transformation is presented in the following list-
ing. After running this code, you should visually compare the temperature fields in the
input and output files to make sure they’ve been correctly transformed.

Listing 7.5 Transforming a huge CSV file (listing-7.5.js)

const stream = require('stream');
const openCsvInputStream = require('./toolkit/open-csv-input-stream');
const openCsvOutputStream = require('./toolkit/open-csv-output-stream');

const inputFilePath = "./data/weather-stations.csv";
const outputFilePath = "./output/weather-stations-transformed.csv";

function transformRow (inputRow) { //#A

 const outputRow = Object.assign({}, inputRow);

 if (typeof(outputRow.MinTemp) === "number") {
 outputRow.MinTemp /= 10;
 }
 else {
 outputRow.MinTemp = undefined;
 }

 if (typeof(outputRow.MaxTemp) === "number") {
 outputRow.MaxTemp /= 10;
 }
 else {
 outputRow.MaxTemp = undefined;
 }

 return outputRow;
};

Transforms a single
data record

Clones the record should we
prefer not to modify source data

Converts MinTemp
and MaxTemp fields
from tenths of
degrees Celsius to
normal degrees
Celsius

Returns the transformed data record

184 CHAPTER 7 Dealing with huge data files

function convertTemperatureStream () {
 const transformStream = new stream.Transform({ objectMode: true });
 transformStream._transform = (inputChunk, encoding, callback) => {
 const outputChunk = transformRow(inputChunk);
 transformStream.push(outputChunk);
 callback();
 };
 return transformStream;
};

openCsvInputStream(inputFilePath)
 .pipe(convertTemperatureStream())
 .pipe(openCsvOutputStream(outputFilePath))
 .on("error", err => {
 console.error("An error occurred while transforming the CSV file.");
 console.error(err);
 });

Note that transformRow is the function that transforms a single record of data. It’s
invoked numerous times, record by record, as the entire file is processed in a piece-
meal fashion.

7.5.5 Transforming huge JSON files

Now let’s look at transforming huge JSON files. Arguably this is more difficult than
working with huge CSV files, which is why I’ve saved it until last.

We’ll do a similar transformation to weather-stations.json: converting the tempera-
ture fields to degrees Celsius and then outputting weather-stations-transformed.json.
We’ll use similar principles to when we transformed the huge CSV file.

But why is it more difficult to incrementally process a JSON? Normally, JSON files are
easier to parse than CSV because the functions we need to do this are built into JavaScript
and also because JSON fits so well with JavaScript. It’s more difficult in this case due to
the nature of the JSON data format.

Creates a transformation stream
that we can pipe our data through Instantiates a bidirectional

Transform stream in object mode

This is a callback that’s invoked as
chunks of data pass through the
transformation stream.

Applies our
transformation to
a chunk of data

Forwards the transformed chunk of data
to the output stream

Invokes the callback to indicate we have
finished transforming the chunk of data.
This allows for asynchronous
programming. Opens the readable

CSV data stream

Pipes the CSV data stream to
the transformation stream

Pipes the transformed stream to
the writable CSV data stream

Handles any error that
might have occurred

 185The limits of Node.js

JSON is naturally a hierarchical data format. We can and do express simple and
flat tabular data in JSON—as you’ve already seen in this book—but JSON files can be
deeply nested and much more complicated than simple tabular data. I structured the
code, you’ll see here, such that it assumes the JSON file contains only a flat array of
objects with no nested data. Please be warned that the code presented here doesn’t nec-
essarily work with general-purpose JSON data files, and you may have to adapt it to work
in other situations depending on your needs.

In this section, we’ll use a library called bfj or Big-Friendly JSON. This is a nifty library
for parsing a streaming JSON file. It’s like what we did with Papa Parse; we’ll encapsu-
late bfj in a readable JSON stream, pipe it through the convert temperature stream, and
then pipe it out to weather-stations-transformed.json using a writable JSON stream, as
described in figure 7.11. We’ll reuse the same transformation stream we created earlier,
but this time we’ll embed it in our pipeline between the input and output JSON files.

INSTALLING BFJ

If you installed dependencies for the Chapter-7 code repository, then you’ve already
installed bfj; otherwise, you can install it in a fresh Node.js project as follows:

node install --save bfj

OPENING A READABLE JSON STREAM

We must first create a readable stream that can incrementally read in a JSON file and
parse it to JavaScript objects. Figure 7.12 shows how we’ll encapsulate bfj within our
readable JSON data stream. This gives us an input stream that we can use to read a
JSON file and pipe the deserialized data to another stream.

Let’s create a new toolkit function openJsonInputStream to create our readable
JSON data stream. Bfj is a custom API with events that are emitted because it recog-
nizes structures in the JSON file. It emits events when it recognizes JSON arrays, JSON
objects, properties, and so forth. In listing 7.6 we handle these events to incrementally
build our JavaScript objects and feed them to the readable JSON stream. As soon as we
recognize each complete JSON object, we immediately pass the equivalent deserialized
JavaScript object forward to the JSON data stream.

Pipe

Readable stream
for JSON data

Writable stream
for JSON data

Our data is piped through a stream
that converts the temperature fields.

Convert
temperature

stream
weather-stations.json weather-stations

-transformed.json

We are going to encapsulate
bfj in a readable stream.

We’ll use JSON.stringify in a piecemeal
fashion within a writable stream.

Figure 7.11 Streaming transformation of a huge JSON file

186 CHAPTER 7 Dealing with huge data files

Listing 7.6 Toolkit function to open a JSON file input stream (toolkit/open-json-file
-input-stream.js)

const bfj = require('bfj');
const fs = require('fs');
const stream = require('stream');

function openJsonInputStream (inputFilePath) {

 const jsonInputStream = new stream.Readable({ objectMode: true });
 jsonInputStream._read = () => {};

 const fileInputStream = fs.createReadStream(inputFilePath);

 let curObject = null;
 let curProperty = null;

 const emitter = bfj.walk(fileInputStream);

 emitter.on(bfj.events.object, () => {
 curObject = {};
 });

 emitter.on(bfj.events.property, name => {
 curProperty = name;
 });

 let onValue = value => {
 curObject[curProperty] = value;
 curProperty = null;
 };

 emitter.on(bfj.events.string, onValue);
 emitter.on(bfj.events.number, onValue);
 emitter.on(bfj.events.literal, onValue);

Readable JSON data stream

Node.js file read
stream Other stream

bfj is encapsulated inside
our readable stream.

bfjweather-stations.json

We use a Node.js file read stream to
read the content of the input JSON file.

JavaScript objects deserialized from the JSON
format can be piped to another stream.

Figure 7.12 Encapsulating bfj JSON deserialization in a readable JSON data stream

Toolkit function to open
a JSON data stream

Instantiates a Readable stream in object
mode for reading the input CSV file

We must include this;
otherwise, we get an error.

Creates a
stream for

reading the
input JSON

file

Tracks the current object that’s being deserialized

Tracks the current property
that’s being deserialized

Walks the
JSON data

file using bfj
This is the callback invoked by bfj
when a new object is encountered; we
use this to reset the current object.

This is the callback when a new
property is encountered; we use
this to reset the current property.

This is the callback when a property
value is encountered; we respond to
this by storing the property in the
current object. Then we build
JavaScript objects as the JSON file is
incrementally deserialized.

 187The limits of Node.js

 emitter.on(bfj.events.endObject, () => {
 jsonInputStream.push(curObject);
 curObject = null;
 });

 emitter.on(bfj.events.endArray, () => {
 jsonInputStream.push(null);
 });

 emitter.on(bfj.events.error, err => {
 jsonInputStream.emit("error", err);
 });

 return jsonInputStream;
};

module.exports = openJsonInputStream;

A point to note in listing 7.6 is how we use bfj’s walk function to walk the structure of
the JSON file. The walk terminology is used here because the JSON file is potentially
a hierarchical document. It’s potentially structured as a tree, and we must walk (or
traverse) said tree to process it, even though in this case we aren’t dealing with a hier-
archical document. Instead, we’re assuming that weather-stations.json contains a flat
array of data records. As bfj raises its events for the array, and for each object and prop-
erty, we collect these together and build data records to feed to the JSON data stream
through its push function.

As we expect the input JSON file to be a flat array of records, when the bfj endArray
event is raised, at that point, we signify the end of stream by passing null to the push
function.

OPENING A WRITABLE JSON STREAM

To complete our JSON file transformation stream, we must also have a writable JSON
stream that we can pass JavaScript objects to and have them written out to an output
file in the JSON format. Figure 7.13 shows how we’ll encapsulate JSON.stringify in a
writable JSON data stream. This gives a writable stream that we can incrementally write
objects to and have them serialized in sequence to our output file weather-stations
-transformed.json.

Listing 7.7 shows the toolkit function openJsonOutputStream that opens our writ-
able JSON data stream, so we can start outputting JavaScript objects. For each JavaScript
object that’s passed to the JSON data stream, we serialize it to JSON and pass the serial-
ized JSON data forward to the file output stream.

This is the callback invoked when
the end of an object is encountered.

Forwards the current object into
the readable JSON data stream

At this point, we’ve finished processing a
single object, so we reset the current object.

This is the callback invoked when the
input JSON file has been exhausted,
signifying the end of stream.

Forwards errors to the
writable JSON data stream

Exports the toolkit function so that it can
be used from other code modules

188 CHAPTER 7 Dealing with huge data files

Listing 7.7 Toolkit function to open a JSON file output stream (toolkit/open-json-file
-output-stream.js)

const fs = require('fs');
const stream = require('stream');

function openJsonOutputStream (outputFilePath) {

 const fileOutputStream = fs.createWriteStream(outputFilePath);
 fileOutputStream.write("[");

 let numRecords = 0;

 const jsonOutputStream = new stream.Writable({ objectMode: true });
 jsonOutputStream._write = (chunk, encoding, callback) => {
 if (numRecords > 0) {
 fileOutputStream.write(",");
 }

 // Output a single row of a JSON array.
 const jsonData = JSON.stringify(chunk);
 fileOutputStream.write(jsonData);
 numRecords += chunk.length;
 callback();
 };

Writable JSON data stream

JSON.stringify
(piecemeal) Other stream

We’re using JSON.stringify in a
piecemeal fashion to incrementally
serialize a huge JSON file.

Node.js file read
stream

weather-stations
-transformed.json

We use a Node.js file write
stream to write the content
to the output JSON file.

JavaScript objects are passed from another
stream for serialization to the JSON format.

Figure 7.13 Encapsulating bfj JSON serialization in writable JSON data

Our new toolkit
function opens a
writable JSON
data stream.

Creates a stream for writing
the output JSON file

Manually writes out JSON array start,
end, and element separators

Tracks the number of records
that have been output

Instantiates writable stream for
writing data records; note that
object mode is enabled

This is the callback function invoked
when chunks of data are written to the

writable JSON data stream.

Manually writes out JSON
array start, end, and
element separators

Uses JSON.stringify to serialize
chunks of data to the JSON format

Writes serialized JSON data to
the output file stream

Invokes the callback to indicate we’ve
written the serialized chunk of data; this
allows for asynchronous coding.

 189The limits of Node.js

 jsonOutputStream.on("finish", () => {
 fileOutputStream.write("]");
 fileOutputStream.end();
 });

 return jsonOutputStream;
};

module.exports = openJsonOutputStream;

As we found with the CSV output stream, the code for opening a writable JSON stream
is much simpler than the code for opening a readable JSON stream. Again, we imple-
ment the _write function to serialize records and write them to the file. Here we’re
using JSON.stringify to serialize each data record.

Finally, we handle the finish event and use it to finalize the stream.

TRANSFORMING THE HUGE JSON FILE

With our two new toolkit functions for opening input and output JSON data streams,
we can now transform our massive JSON file, as shown in listing 7.8. To keep the list-
ing small, I’ve omitted several functions that haven’t changed since listing 7.5. This is
another complete code listing that you can run on its own; make sure you check the
output data file to ensure that the data transformation was successful.

Listing 7.8 Transforming a huge JSON file (listing-7.8.js)

const stream = require('stream');
const openJsonInputStream = require('./toolkit/open-json-input-stream.js');
const openJsonOutputStream =
 require('./toolkit/open-json-output-stream.js');

const inputFilePath = "./data/weather-stations.json";
const outputFilePath = "./output/weather-stations-transformed.json";

// ... transformRow, transformData and convertTemperatureStream are omitted
// they are the same as listing 7.5 …

openJsonInputStream(inputFilePath)
 .pipe(convertTemperatureStream())
 .pipe(openJsonOutputStream(outputFilePath))
 .on("error", err => {
 console.error(
 "An error occurred while transforming the JSON file."
);
 console.error(err);
 });

Handles the finish event and
closes the output file stream

Manually writes out JSON array start,
end, and element separators

Exports the toolkit function so that it
can be used from other code modules

Opens the readable JSON data stream

Pipes the JSON data stream through
our transformation stream

Pipes the transformed stream to
the writable JSON data stream

Handles any error that
might have occurred

190 CHAPTER 7 Dealing with huge data files

We can now use Node.js streams to process massive CSV and JSON files. What more
do you want? As a side effect, we can now mix and match our streams, and this gives us
the ability to quickly construct a variety of streaming data pipelines.

7.5.6 Mix and match

With the core data representation acting as the abstraction between the stages in our
data pipeline, we can easily build conversion pipelines between different formats for
huge data files.

For example, consider how we can transform a CSV file to a JSON file:

openCsvInputStream(inputFilePath)
 .pipe(transformationX)
 .pipe(transformationY)
 .pipe(transformationZ)
 .pipe(openJsonOutputStream(inputFilePath));

In this same way, we can transform JSON to CSV, or indeed from any format to any
other format provided we create a stream appropriate for that data format. For exam-
ple, you might want to work with XML, so you’d create a function to open a streaming
XML file and then use that to transform XML files or convert them to CSV or JSON.

In this chapter, we looked at how conventional data processing techniques can break
down in the face of massive data files. Sometimes, hopefully infrequently, we must take
more extreme measures and use Node.js streams to incrementally process such huge
data files.

When you do find yourself getting bogged down in huge data files, you may wonder
if there is a better way to tackle large data sets. Well, I’m sure you already guessed it, but
we should work with a database. In the next chapter, we’ll build a Node.js stream that
outputs our records to a database. This will allow us to move our large data files into a
database for more efficient and convenient access to the data.

Summary

¡	We discussed the memory limitations of Node.js.
¡	You learned that incremental processing can be used to tackle huge data files.
¡	We figured out how to adapt the core data representation design pattern to incre-

mental processing.
¡	We used Node.js streams to build data pipelines from reusable code modules that

are scalable to large data files.
¡	You learned that you can mix and match Node.js streams to build a variety of data

pipelines.

Reads from the CSV file stream

Transform, transform, transform!

Writes to the JSON file stream

191

8Working with a
mountain of data

This chapter covers
¡	Using a database for a more efficient data-

wrangling process

¡	Getting a huge data file into MongoDB

¡	Working effectively with a large database

¡	Optimizing your code for improved data
throughput

This chapter addresses the question: How can we be more efficient and effective
when we’re working with a massive data set?

In the last chapter, we worked with several extremely large files that were orig-
inally downloaded from the National Oceanic and Atmospheric Administration.
Chapter 7 showed that it’s possible to work with CSV and JSON files that are this
large! However, files of this magnitude are too big for effective use in data analysis.
To be productive now, we must move our large data set to a database.

In this chapter, we move our data into a MongoDB database, and this is a big opera-
tion considering the size of the data. With our data in the database, we can work more
effectively with the help of queries and other features of the database API.

192 CHAPTER 8 Working with a mountain of data

I selected MongoDB for this chapter, and the book generally, because it’s my preferred
database. That’s a personal (and I believe also a practical) choice, but really any database
will do, and I encourage you to try out the techniques in this chapter on your database of
choice. Many of the techniques presented here will work with other databases, but you’ll
have to figure out how to translate the code to work with your technology of choice.

8.1 Expanding our toolkit
In this chapter, we’ll use several MongoDB database tools to work with our large data
set. We’ll also use Node.js functions to spawn new operating system processes to execute
data processing operations in parallel on multiple CPU cores.

Table 8.1 lists the various tools that we cover in chapter 8.

Table 8.1 Tools used in chapter 8

API / Library Function Notes

MongoDB find Retrieve a database cursor so that we
can visit each record in the database
incrementally.

skip and limit Retrieve a data window, or collection of
records, so that we can visit every record of
the database in batches.

createIndex Create a database index for efficient query
and sorting.

find(query) Find records using a database query.

find({}, projection) Retrieve records but with certain fields
discarded.

sort Sort records retrieved from the database.

Node.js spawn, fork Create new operating system processes to
operate on data in parallel.

async-await-parallel parallel(sequence, X) Execute a sequence of operations where X
operations are executed in parallel.

8.2 Dealing with a mountain of data
We want to analyze the weather stations data set from the previous chapter. We can’t do
that yet because we have more data than we can deal with effectively.

We have weather-stations.csv, but at 28 GB, it’s not practical to work with this file as it
is. Most data science tutorials and courses have you work with a CSV file to analyze data,
and that’s a great way to work when it’s possible, but it’s effective only at a small scale.
Using CSV files (and JSON files for that matter) doesn’t scale to massive data sets such
as we have now. How are we going to deal with that?

 193Techniques for working with big data

We’re about to move our data to a database, and we’ll then have a number of new
tools available for working with our data. Before looking at the database, though, we’ll
explore simpler techniques that will help you manage your large data sets. Then we’ll
look at the memory limitations of Node.js and how we can go beyond them. Finally,
we’ll look at code optimization and other ways to increase your data throughput.

8.3 Getting the code and data
The code and data for this chapter are available in the Data Wrangling with JavaScript
Chapter-8 repository in GitHub at https://github.com/data-wrangling-with-javascript/
chapter-8. The example data is located under the data subdirectory in the repository.

The GitHub repo contains two Vagrant scripts that bootstrap virtual machines with
the MongoDB database for your convenience. The first script boots a VM with an empty
database that you can use when you run listing 8.2 to practice importing your data into
the database. The second script boots a VM with a database that is already prefilled with
example data for you to try with listing 8.3 and beyond. Refer to “Getting the code and
data” in chapter 2 if you need help getting the code and data.

8.4 Techniques for working with big data
We need our large data set in a database. However, before we get to that, let’s quickly
go through several techniques that will help you be more effective in any case.

8.4.1 Start small

From chapter 5, we already understand that we should start by working with a small
data set. You should first aggressively cut down your large data set into something that
you can work with more easily and effectively.

Working with big data slows you down; you have no way around that, so don’t be too
eager to dive into big data. Tackle your problems and write your code first for a small
data set; small problems are easier to solve than big problems! Focus on building reli-
able and well-tested code at a small scale. Then incrementally scale up to big data only
when you’re confident and ready to deal with it.

8.4.2 Go back to small

When you’re working with big data and you hit a problem, cut back your data so that
you’re again working with a small data set and focusing as closely as possible on the
problem. Trying to solve a problem in a large data set can be like trying to find a needle
in a haystack (figure 8.1). This applies to troubleshooting any kind of coding problem.
You should try to isolate the problem by minimizing the space in which it can hide.

You can do this by progressively cutting out code and data (where possible) until the
problem has nowhere left to hide. The problem should then become obvious or at least
easier to find. To find a problem in a large data set, use a binary search or the bisection
method to progressively cut down the data and home in on the problem.

https://github.com/data-wrangling-with-javascript/chapter-8
https://github.com/data-wrangling-with-javascript/chapter-8

194 CHAPTER 8 Working with a mountain of data

8.4.3 Use a more efficient representation

Make sure you’re using an efficient data representation. CSV files are more efficient
(at least more compact) than JSON files, and using a database is more efficient than
JSON and CSV (figure 8.2). Using either JSON or CSV is effective at a small scale, but
when working at a large scale, we need to bring out the big guns.

8.4.4 Prepare your data offline

Before attempting to scale up, make sure you have adequately prepared your data.
We should go through a preparation and cleanup phase using the various techniques
covered in chapter 6 to reduce the amount of data and deal proactively with problems.
The process of preparing data for production use is summarized in f.

How long does such preparation take? It can take an extraordinary amount of time
depending on the size of your data. For this chapter, I prepared the NOAA weather
stations data, and I ran a script that executed for more than 40 hours! The data was pro-
cessed in parallel on an 8-core CPU using a technique that I’ll cover at the end of this
chapter. Don’t worry, though; you won’t have to go through 40 hours of processing to
learn how to do big data processing.

How long is too long? I advocate that you let your data processing script run for as
long as it needs, but there’s obviously an upper limit to this, and it depends on the nature

JSON

Less efficient More efficient

CSV Database

Figure 8.2 The efficiency spectrum of data formats

Production
data set

ApplicationOffline
preparation

Big data set

Production system

End user

Figure 8.3 Offline preparation of data for use in production

Large data set

An error buried deep
within your data set

Figure 8.1 An error in a large data set is
like a needle in a haystack.

 195More Node.js limitations

of your business. We’d like to get results in a timely fashion. For example, if you need to
deliver a report this Friday, you can’t run a process that goes for longer than that.

Before you get to this stage, you need reliable and robust code (see the section “Start
small”). You should also use a powerful PC. Keep in mind that if I can process 1 billion
plus records in 40 hours (a weekend), you can too. This isn’t rocket science, but it does
require careful preparation and plenty of patience. Later in this chapter, we’ll look at
methods to optimize our data pipeline and achieve greater throughput.

If you plan to run a long data processing operation, please consider the following tips:

¡	Include logging and progress reports so that you can see what’s happening.
¡	Report all the errors. You may have to correct for them later.
¡	Don’t fail the entire process on individual errors. Getting 85% of the way through

a huge data processing operation is better than having to start from scratch when
you encounter problems.

¡	Make sure your process is resumable in case of errors. If you get an error halfway
through that aborts the process, fix the error; then restart the process and have it
recover from where it left off.

8.5 More Node.js limitations
In chapter 7, we worked with several extremely large CSV and JSON files, and we faced
the limitation that we couldn’t load these files entirely into memory. We reached this limit
because we hit the maximum string size that can be allocated in Node.js. At this point we
switched to using Node.js streams and incremental file processing and that allowed us to
deal with these large files. In this chapter, we have a new limitation.

Using a database means we can load a much bigger data set into memory at the one
time. Now, though, we’re limited by the maximum amount of memory that can be
allocated in Node.js before all available memory has been exhausted.

How much memory exactly? It depends on your version of Node.js and your operating
system. I’ve tested the limits myself using 64-bit Node.js v7.7.4 running on my Windows 10
laptop, which has 8 GB of memory. I tested this by allocating Node.js arrays until memory
was exhausted; then I estimated the amount of memory that had been allocated. This isn’t
100% accurate, but it’s a good way to gauge roughly how much memory we can access.

8.4.3 Use a more efficient representation

Make sure you’re using an efficient data representation. CSV files are more efficient
(at least more compact) than JSON files, and using a database is more efficient than
JSON and CSV (figure 8.2). Using either JSON or CSV is effective at a small scale, but
when working at a large scale, we need to bring out the big guns.

8.4.4 Prepare your data offline

Before attempting to scale up, make sure you have adequately prepared your data.
We should go through a preparation and cleanup phase using the various techniques
covered in chapter 6 to reduce the amount of data and deal proactively with problems.
The process of preparing data for production use is summarized in f.

How long does such preparation take? It can take an extraordinary amount of time
depending on the size of your data. For this chapter, I prepared the NOAA weather
stations data, and I ran a script that executed for more than 40 hours! The data was pro-
cessed in parallel on an 8-core CPU using a technique that I’ll cover at the end of this
chapter. Don’t worry, though; you won’t have to go through 40 hours of processing to
learn how to do big data processing.

How long is too long? I advocate that you let your data processing script run for as
long as it needs, but there’s obviously an upper limit to this, and it depends on the nature

JSON

Less efficient More efficient

CSV Database

Figure 8.2 The efficiency spectrum of data formats

Production
data set

ApplicationOffline
preparation

Big data set

Production system

End user

Figure 8.3 Offline preparation of data for use in production

196 CHAPTER 8 Working with a mountain of data

Through testing I can say that I have around 1.4 GB of memory available for use.
That’s a good amount, and it should handle a pretty hefty data set, but we can already
see that Node.js can’t load our 28 GB weather stations data set from NOAA!

If you want to know more about how I conducted this test or you want to run the test
yourself, please see my code in the following GitHub repository at https://github.com
/data-wrangling-with-javascript/nodejs-memory-test.

Giving Node.js more memory
One way to get more memory out of Node.js is to use the command-line parameter
--max-old-space-size. This allows us to set the heap size of Node.js. For example,
the following command runs our script and gives us 16 GB of memory to play with:

node -–max-old-space-size=16000 myscript.js

Although I use this command-line parameter myself, as do many other production
Node.js programmers, I’m not entirely sure if I should recommend it. Please be aware
that if you use this, you’ll be relying on a feature of the underlying V8 JavaScript engine.
It’s not officially a feature of Node.js, and it could be taken away in any new version!

8.6 Divide and conquer
We can’t load the entire weather stations data set into memory, but we can divide it up
for processing in batches, as shown in figure 8.4. Divide and conquer is a classic com-
puter science technique. Put simply, we have a big problem that’s best solved by dividing
it into a number of smaller problems. Smaller problems are easier to solve than bigger
problems (see the sections “Start small” and “Go back to small”). Once we solve each of
the smaller problems, we merge the result, and we have solved the bigger problem.

When we split our data, we must organize it such that each batch is small enough to
fit entirely in memory. Not only does this technique allow us to fit our data in memory
(processed batch by batch), but it can also make processing dramatically faster. At the
end of this chapter, we’ll see how we can process our data in parallel and use multiple
CPU cores to massively increase our data throughput.

8.7 Working with large databases
Using a database is the go-to standard for professional data management. All databases
have features for working with large data sets, and that’s what we’re interested in here.

These are the features we’ll look at:

¡	Incrementally processing one record at a time using a database cursor
¡	Incrementally processing batches of records using data windows
¡	Using queries to filter and discard data
¡	Sorting a large data set

Batch

Process

Batch

Process

Batch

Process

Batch

Process

Big data set

Split

Transformed data set

Merge

Split data for batch
processing on separate
cores or PCs.

Figure 8.4 Splitting data for processing in separate batches

https://github.com/data-wrangling-with-javascript/nodejs-memory-test
https://github.com/data-wrangling-with-javascript/nodejs-memory-test

 197Working with large databases

Although most (if not all) databases have the features we need, we’ll focus on
MongoDB. I had to pick something, and my preference is MongoDB.

Why MongoDB? It’s convenient, easy to use, and flexible. Most of all, it requires no
predefined schema. We can express many kinds of schemas and structured data with
MongoDB, but we don’t have to predefine that structure; we can throw any kind of data
at MongoDB, and it will handle it. MongoDB and its BSON (binary JSON) data format
naturally fit well with JavaScript.

8.7.1 Database setup

Before we can start working with our database, we need to have it set up! You can
download and install MongoDB from http://www.mongodb.org/. Otherwise, you can
use one of the Vagrant scripts that I supplied in the GitHub repo for chapter 8 (see
“Getting the code and data”).

To use the scripts, you first need Virtual Box and Vagrant installed. Then open a
command line and change the directory to the Chapter-8 git repository:

cd chapter-8

Then you can start a virtual machine with an empty MongoDB database using the first
vagrant script:

cd vm-with-empty-db
vagrant up

Through testing I can say that I have around 1.4 GB of memory available for use.
That’s a good amount, and it should handle a pretty hefty data set, but we can already
see that Node.js can’t load our 28 GB weather stations data set from NOAA!

If you want to know more about how I conducted this test or you want to run the test
yourself, please see my code in the following GitHub repository at https://github.com
/data-wrangling-with-javascript/nodejs-memory-test.

Giving Node.js more memory
One way to get more memory out of Node.js is to use the command-line parameter
--max-old-space-size. This allows us to set the heap size of Node.js. For example,
the following command runs our script and gives us 16 GB of memory to play with:

node -–max-old-space-size=16000 myscript.js

Although I use this command-line parameter myself, as do many other production
Node.js programmers, I’m not entirely sure if I should recommend it. Please be aware
that if you use this, you’ll be relying on a feature of the underlying V8 JavaScript engine.
It’s not officially a feature of Node.js, and it could be taken away in any new version!

8.6 Divide and conquer
We can’t load the entire weather stations data set into memory, but we can divide it up
for processing in batches, as shown in figure 8.4. Divide and conquer is a classic com-
puter science technique. Put simply, we have a big problem that’s best solved by dividing
it into a number of smaller problems. Smaller problems are easier to solve than bigger
problems (see the sections “Start small” and “Go back to small”). Once we solve each of
the smaller problems, we merge the result, and we have solved the bigger problem.

When we split our data, we must organize it such that each batch is small enough to
fit entirely in memory. Not only does this technique allow us to fit our data in memory
(processed batch by batch), but it can also make processing dramatically faster. At the
end of this chapter, we’ll see how we can process our data in parallel and use multiple
CPU cores to massively increase our data throughput.

8.7 Working with large databases
Using a database is the go-to standard for professional data management. All databases
have features for working with large data sets, and that’s what we’re interested in here.

These are the features we’ll look at:

¡	Incrementally processing one record at a time using a database cursor
¡	Incrementally processing batches of records using data windows
¡	Using queries to filter and discard data
¡	Sorting a large data set

Batch

Process

Batch

Process

Batch

Process

Batch

Process

Big data set

Split

Transformed data set

Merge

Split data for batch
processing on separate
cores or PCs.

Figure 8.4 Splitting data for processing in separate batches

http://www.mongodb.org/
https://github.com/data-wrangling-with-javascript/nodejs-memory-test
https://github.com/data-wrangling-with-javascript/nodejs-memory-test

198 CHAPTER 8 Working with a mountain of data

When the VM has finished booting up, you’ll have an empty MongoDB database that’s
accessible via mongodb://localhost:6000.

Alternatively, if you want to experiment with a database that already contains a sam-
ple of the weather stations data (I can’t publish the full data set because it’s too large),
please use the second Vagrant script:

cd vm-with-sample-db
vagrant up

When this VM has finished booting up, you’ll have a MongoDB that contains sample
data and is accessible on mongodb://localhost:7000.

After you finish with your virtual machines, please destroy them so they stop consuming
your system resources. To do this, execute the following command for both VMs:

vagrant destroy

You can recreate the VMs at any time by using Vagrant again. For more information on
Vagrant, please see appendix C.

To access the database from JavaScript, we’ll use the official MongoDB library for
Node.js. If you install dependencies for the chapter 8 repository, you have the MongoDB
API installed; otherwise, you can install it in a fresh Node.js project as follows:

npm install --save mongodb

8.7.2 Opening a connection to the database

In all the following code listings, the first thing we must do is connect to our database. To
keep the listings simple, they all use the following code to open the database connection:

const MongoClient = require('mongodb').MongoClient;

const hostName = "mongodb://127.0.0.1:6000";
const databaseName = "weather_stations";
const collectionName = "daily_readings";

function openDatabase () {
 return MongoClient.connect(hostName)
 .then(client => {
 const db = client.db(databaseName);
 const collection = db.collection(collectionName);
 return {
 collection: collection,
 close: () => {
 return client.close();
 },
 };
 });
};

The connection string that you pass to openDatabase determines which database to con-
nect to. For example, the code in listing 8.2 connects to mongodb://127.0.0.1:6000.
That’s the empty database in the Vagrant VM that we started in the previous section.

Requires the
MongoDB API

Specifies the host to connect to

This is the name of the database we’re using.

This is the
collection in
the database
we’re using.

Defines our helper function to
open the database connection

Initiates the connection to the database

Gets the database
we’re usingGets the collection

we’re using
Returns the collection and a
function to close the connection

 199Working with large databases

The other code listings rely on having data to work with already, so they connect to
mongodb://localhost:7000. That’s the database from the other VM, the one that’s
prefilled with example data.

If you aren’t using the VMs and have instead installed MongoDB directly on your PC,
you should set the connection string to mongodb://127.0.0.1:27017 because 27017 is
the default port number for accessing a local install of MongoDB.

8.7.3 Moving large files to your database

To use a database, we must first transfer our data there. In this case we must move our
CSV file weather-stations.csv to the database. To do this, we can build on the techniques
we learned in chapter 7. We’ll combine a readable CSV data input stream with a writable
MongoDB output stream to pipe the data into our database, as shown in figure 8.5.

In chapter 7, we wrote a toolkit function called openCsvInputStream. We’ll reuse
that again here, but we still need a new toolkit function to create a writable MongoDB
output stream. The code for this is presented in the following listing.

Listing 8.1 Toolkit function for opening a MongoDB output stream (toolkit/open-
mongodb-output-stream.js)

const stream = require('stream');

function openMongodbOutputStream (dbCollection) {

 const csvOutputStream = new stream.Writable({ objectMode: true });
 csvOutputStream._write = (chunk, encoding, callback) => {
 dbCollection.insertMany(chunk)
 .then(() => {
 callback();
 })
 .catch(err => {
 callback(err);
 });
 };

 return csvOutputStream;
};

module.exports = openMongodbOutputStream;

This code is similar to the other writable streams that we created in chapter 7. Note
that we’re opening the stream in object mode and inserting each array of objects into the
database using MongoDB’s insertMany function.

Listing 8.2 connects both streams into a data pipeline to populate our database from
the input file weather-stations.csv. You should run this code, give it plenty of time to
compete, and then inspect your database using Robomongo to confirm that the data
has indeed been copied to the database.

Requires
Node.js
streams API

Defines our new toolkit function to
open a writable MongoDB stream

Instantiates a
writable
stream with
object mode
enabled

Implements the
_write function to

handle writes
to the stream

Inserts a collection of
records to the database

The database insertion has completed
successfully; now it invokes the stream’s
callback.

The database
insertion has
failed; now it

invokes the
callback with

the error. Exports the toolkit function
for use in other code modules

200 CHAPTER 8 Working with a mountain of data

Listing 8.2 Moving a huge CSV file to MongoDB (listing-8.2.js)

const openCsvInputStream = require('./toolkit/open-csv-input-stream');
const openMongodbOutputStream = require('./toolkit/open-mongodb-output-

➥stream');
const MongoClient = require('mongodb').MongoClient;

const hostName = "mongodb://127.0.0.1:6000";
const databaseName = "weather_stations";
const collectionName = "daily_readings";

const inputFilePath = "./data/weather-stations.csv";

// ... openDatabase function is omitted ...

function streamData (inputFilePath, dbCollection) {
 return new Promise((resolve, reject) => {
 openCsvInputStream(inputFilePath)
 .pipe(openMongodbOutputStream(dbCollection))
 .on("finish", () => {
 resolve();
 })
 .on("error", err => {
 reject(err);
 });
 });
};

openDatabase()
 .then(client => {
 return streamData(inputFilePath, client.collection)
 .then(() => client.close());
 })
 .then(() => {
 console.log("Done");
 })
 .catch(err => {
 console.error("An error occurred.");
 console.error(err);
 });

Requires our toolkit
function that opens a

readable CSV file stream

Requires
our toolkit
function
that opens
a writable
MongoDB
stream

This is a helper function for streaming
from CSV file to MongoDB.

Wraps our stream
in a promise; the

promise is resolved
when the stream

has finished.

Opens the
input CSV
file stream

Pipes the CSV
stream to the
MongoDB
stream

Resolves the promise when
the stream has finished

Rejects the promise if the stream emits an error

We’ll reuse our readable CSV
data stream from chapter 7.

We’ll create a new MongoDB output stream to
encapsulate the official MongoDB library.

Readable stream
for CSV data

weather-stations.csv
Writable stream
that outputs to
the database

MongoDB database

Pipe

Figure 8.5 Streaming input CSV data to our MongoDB database

 201Working with large databases

Okay, now we have our data in the database! We’re ready to start looking at the ways
that we now have to efficiently retrieve and work with our data.

8.7.4 Incremental processing with a database cursor

With our data in the database, we have multiple ways we can use it to handle our large
data set! The first of these is using a database cursor to visit each and every record in
the database, as illustrated in figure 8.6.

This is another form of incremental data processing, although instead of working
incrementally with a file as we did in chapter 7, we’re now working incrementally with our
database. When working this way, we’re not so concerned with exhausting our available
memory in Node.js—working with one record at a time shouldn’t do that—although
this also depends on what other work your application is doing at the same time.

Listing 8.3 demonstrates how to create a database cursor and traverse the entire data
set, sequentially visiting each record. You can run this script, but make sure you run it
on a database that contains data! Out of this box, this script connects to the database on
port 7000, which is the prefilled database created by the second Vagrant script. Please
change the port number to 6000 if you populated the database yourself from the first
Vagrant script or to 27017 if you’re using a local database that you installed yourself.

Listing 8.3 Using the database cursor to incrementally traverse the database one
record at a time (listing-8.3.js)

// ... openDatabase function is omitted ...

let numRecords = 0;

function readDatabase (cursor) {
 return cursor.next()

.then(record => {
if (record) {

console.log(record);
++numRecords;

return readDatabase(cursor);
}
else {

// No more records.
}

});
};

openDatabase()
 .then(db => {

const databaseCursor = db.collection.find();
return readDatabase(databaseCursor)

.then(() => db.close());
 })
 .then(() => {

console.log("Displayed " + numRecords + " records.");
 })

This is a helper function to
read the entire database

record by record.

Calls the
cursor’s next
function to
traverse to the
next record

Visits a single record. Add your
data processing code here.

Recurses to visit the next record

No more records. This ends the traversal.

Opens a connection to our database Calls the find function to
create a database cursor

Passes the cursor to readDatabase
to initiate the traversal

Closes the
database
when we are
finished

202 CHAPTER 8 Working with a mountain of data

 .catch(err => {
 console.error("An error occurred reading the database.");
 console.error(err);
 });

The database cursor is created with the find function. Then by repeatedly calling the
cursor’s next function, we traverse each record in the database.

This might seem a little like streaming database access—and indeed it’s a fairly simple
task to create a Node.js readable stream that reads from MongoDB—however, I’ll leave
that as a reader exercise. Please feel free to base your code on one of the readable streams
(CSV or JSON) in chapter 7 and combine it with listing 8.3 to create your own readable
MongoDB stream.

8.7.5 Incremental processing with data windows

Visiting every record in the database one by one is hardly the most efficient technique
for data access, although at least we can use it to handle a large data set. However, we
can increase our data throughput by working with multiple records at a time instead
of a single record at a time. This is still incremental processing, but now we’ll use data
windows, where each window is a batch of records, rather than a single record. After
processing each data window, we move the window forward. This allows us to sequen-
tially view each set of records, as shown in figure 8.7.

We can read a window of data by chaining calls to skip and limit after calling Mon-
goDB’s find function. skip allows us to skip a number of records; we use this to select
the starting record in the window. limit allows us to retrieve only a certain number of
records; we can use this to constrain the number of records that are in a window. Code
for this is shown in listing 8.4. You can run this code and it will read database records
window by window. It doesn’t do anything useful though, but it does have a placeholder
where you can add your own data processing code.

The database cursor is moved
forward through the data set.

Data set

The cursor visits each
record in the database.

Database cursor
Records already processed Records yet to be processed

Figure 8.6 A database cursor allows us to visit each record in the database one after the other.

 203Working with large databases

Listing 8.4 Using data windows to process batches of database records (listing-8.4.js)

// ... openDatabase function is omitted

let numRecords = 0;
let numWindows = 0;

function readWindow (collection, windowIndex, windowSize) {
 const skipAmount = windowIndex * windowSize;
 const limitAmount = windowSize;
 return collection.find()
 .skip(skipAmount)
 .limit(limitAmount)
 .toArray();
};

function readDatabase (collection, startWindowIndex, windowSize) {
 return readWindow(collection, startWindowIndex, windowSize)
 .then(data => {
 if (data.length > 0) {
 console.log("Have " + data.length + " records.");

 // Add your data processing code here.

 numRecords += data.length;
 ++numWindows;

 return readDatabase(
 collection,
 startWindowIndex+1,
 windowSize
);
 }
 else {
 // No more data.
 }
 })

};

This is a helper
function to read
a data window
from the
database.

Determines how many records
to skip to get the window

This is the number
of records that the
window contains.

This is the database query that
retrieves the data window.

This is a helper
function to read the

entire database
window by window.

Reads the next data window from the database

We got a data window back;
add your data processing here.

Recurses to read the
next data window

No more data; we have
finished reading the database.

The data window is moved
forward through the data set.

Current data windowData windows
already processed

Data windows yet
to be processed

Data set

Each data window is a
view on multiple records.

Figure 8.7 Dividing a data set into windows for efficient incremental processing

204 CHAPTER 8 Working with a mountain of data

openDatabase()
 .then(db => {
 const windowSize = 100;
 return readDatabase(db.collection, 0, windowSize)
 .then(() => {
 return db.close();
 });
 })
 .then(() => {
 console.log("Processed " + numRecords +
 " records in " + numWindows + " windows."
);
 })
 .catch(err => {
 console.error("An error occurred reading the database.");
 console.error(err);
 });

The readWindow function in listing 8.4 uses the MongoDB API to retrieve a window’s
worth of data. How many records should we include in each window? That’s completely
up to you, but you do need to make sure that each window fits comfortably in available
memory, and that depends on the size of each data record and how much memory the
other parts of your application are already using.

The readDatabase function is responsible for traversing the entire database; it calls
readWindow until all data windows have been visited. readDatabase calls itself repeatedly
until the entire database has been divided up into windows and processed. This looks
like a normal recursive function, but it doesn’t operate the same way. That’s because it
recurses after the readWindow promise has been resolved. Due to the way promises work
in Node.js, the then callback isn’t triggered until the next tick of the event loop. The
readDatabase callstack has exited by the time readDatabase is called again, and the call-
stack isn’t growing with each new call. Therefore, we’re never in danger of exhausting the
stack here as we would be if this were a normal recursive function call.

Processing your database using data windows could also be called pagination: the
process of dividing up data for display in multiple pages, typically for display across
multiple pages of a website. I avoided calling it pagination though, because pagination
is a different use case even though it would also use MongoDB’s find, skip, and limit
functions.

Here again we could create a readable stream for processing all records in batches,
and this would be a stream for visiting multiple records at once instead of a single
record at a time. I’ll leave it as a reader exercise to create such a stream, if that sounds
useful to you.

Processing data in windows allows us to make much more efficient use of the data.
We can process multiple records at a time, but that’s not the main benefit. We now have
the fundamentals in place to do parallel processing of our data, an idea we’ll return to
before the end of the chapter.

Opens the connection to the database
Specifies the size of each data window
and the number of records per window

Initiates traversal of the database

Closes the database when we’re finished

 205Working with large databases

8.7.6 Creating an index

We have yet to look at database queries and sorting. Before we can do that, we must
create an index for our database. The example query and sort in the following sections
make use of the Year field in the database. To make our queries and sorting fast, we
should create an index for this field.

If you’re using the prefilled example database from the second Vagrant script, then
you already have the index you need. If you started with the empty database created by
the first Vagrant script or if you have built your own database from scratch, you can add
the index yourself by opening a MongoDB shell (or Robomongo) and entering the
following commands:

use weather_stations
db.daily_readings.createIndex({ Year: 1 })

When you’re working with a massive database, it can take significant time to create the
index, so please be patient and allow it to complete.

To check if an index already exists or if your new index was successfully created, you
can execute the following commands in the MongoDB shell:

use weather_stations
db.daily_readings.getIndexes()

The getIndexes function will give you a dump of the indexes that have already been
created for the collection.

8.7.7 Filtering using queries

When we’re looking for ways to cut down our data so that it can fit in memory, one
option we have is to use a filter. We can filter our data through a database query to
significantly cut down the amount of data we are working with. For instance, we might
only be interested in analyzing more recent data, so in this example we request that
the database return only those records from the year 2016 or later. The result is a set of
records where all the records prior to 2016 have been omitted, leaving us with only the
recent records. This concept is illustrated in figure 8.8.

The idea here is that we’re proactively culling data that we don’t need, so we can
work with a significantly reduced data set. In listing 8.5 we’re using MongoDB’s $gte
(greater than or equal to) query operator on the Year field to filter out records prior
to 2016. You can run listing 8.5 and the query should execute quickly (because of the
index for the Year field) and print records from 2016 and after to the console.

Listing 8.5 Filtering data with a database query (listing-8.5.js)

// ... openDatabase function omitted ...

openDatabase()
 .then(db => {
 const query = {
 Year: {
 $gte: 2016,

Switches to our database Creates an index for the Year field
on the daily_readings collection

Defines the database query

We’re querying against the Year field.

The year
must be
greater
than or
equal to
2016.

206 CHAPTER 8 Working with a mountain of data

 },
 };
 return db.collection.find(query)
 .toArray()
 .then(data => {
 console.log(data);
 })
 .then(() => db.close());
 })
 .then(() => {
 console.log("Done.");
 })
 .catch(err => {
 console.error("An error occurred reading the database.");
 console.error(err);
 });

Note in listing 8.5 how we define a query object and pass that to the find function. This
is one example of how we can build a query in MongoDB to retrieve filtered records
from the database. MongoDB supports flexible and complex queries, but you have more
to learn that’s outside the scope of this book. Please see the MongoDB documentation to
understand what other types of expressions you can use in your queries.

You should also note that any other time we previously used the find function—for
example, in the earlier sections on incremental processing of records and data windows—
we could also have used a query to filter the data we were looking at. Queries also work with
projection and sorting, as we’ll see in the next two sections.

Executes the query
against the database

Retrieves the results of the query

Closes database when we’re done

.

Filtered recordsQuery

Query
results

5

4

2

6

5

4

3

2

1

Execute a query
to filter records.

All records

Database

Figure 8.8 Filter data with a database query.

 207Working with large databases

8.7.8 Discarding data with projection

Another way to cut down the data we’re working with is through a projection. A pro-
jection allows us to discard fields from the records that are returned for our queries.
Figure 8.9 shows an example of fields being discarded and only allowing those fields
that we want to retrieve to be returned for a query. In this example, we’re choosing
to retrieve only the fields Year, Month, and Precipitation. This is useful when we require
only certain data fields—say we’re doing a study of rainfall—and we don’t need to
retrieve all the fields of the full data set.

As you can see in the following listing, we specify a projection through the find func-
tion, so we can attach our projection onto any other query. If you run this code, it will
print the retrieved data records to the console, but only with the fields that we selected
in the projection.

Listing 8.6 Cutting down on data retrieved using a projection (listing-8.6.js)

// ... openDatabase function is omitted ...

openDatabase()
 .then(db => {
 const query = {};
 const projection = {
 fields: {
 _id: 0,
 Year: 1,
 Month: 1,
 Precipitation: 1
 }
 };
 return db.collection.find(query, projection)
 .toArray()
 .then(data => {
 console.log(data);
 })
 .then(() => db.close());
 })
 .then(() => {
 console.log("Done.");
 })
 .catch(err => {
 console.error("An error occurred reading the database.");
 console.error(err);
 });

Projection allows us to reduce the size of each record and therefore reduce the total
size of the data set that we retrieve from a query. Not only does this increase the number
of records we can fit in memory (because each one is smaller), but it also reduces the
bandwidth required to retrieve a set of records when we’re accessing our database over
the internet.

Using an empty query object
retrieves all records.

Defines the projection This is the set of fields
to keep or discard.

Discards
the _id field;
otherwise, it’s
included by
default.

Specifies other fields to keep. All other
fields are automatically discarded.

Executes the query
against the database

Retrieves cut-down records
with fields discarded

208 CHAPTER 8 Working with a mountain of data

8.7.9 Sorting large data sets

Sorting is a useful and often necessary operation. Most sorting algorithms, for example,
the built-in JavaScript sort function, require that we fit our entire data set into memory.
When working with a data set that doesn’t fit in memory, we can use our database to do
the sorting for us (figure 8.10).

In the following listing, we’re finding and sorting records by the Year field. This will
be efficient because we already have an index for the Year field. You can run this code,
and it will print sorted data records to the console.

Listing 8.7 Sorting a large data set with MongoDB (listing-8.7.js)

// ... openDatabase function is omitted ...

openDatabase()
 .then(db => {
 return db.collection.find()
 .sort({
 Year: 1
 })
 .toArray()
 .then(data => {
 console.log(data);
 })
 .then(() => db.close());
 })
 .then(() => {
 console.log("Done.");
 })

Available memory

Available memory

Small data set

Large data set

When our data doesn’t fit
in memory, we can fall back
on the database for our
sorting.

Conventional sorting
algorithms require all
data to fit in memory.

Figure 8.10 Normally, when sorting, all data must fit in memory.

Execute the query against the database;
in this case no parameters means we’re
retrieving all records.

Sorts records by the Year column

Shows print records that have been
sorted by Year

Precipitation

Month

Year

Precipitation

Snow

Temp Min

Temp Max

Day

Month

Year

_id

Projection

Projection

Execute a query and
use a projection to
discard data.

Projected
record with
discarded data

Database record

Figure 8.9 Using a projection to discard data from each database record

 209Working with large databases

 .catch(err => {
 console.error("An error occurred reading the database.");
 console.error(err);
 });

See how the sort function is chained after the find function. In this example, we haven’t
passed any parameters to the find function, but we could as easily have specified both a
query and a projection to cut down the data before sorting it.

Note also the use of toArray chained after the sort function. This returns the entire
sorted data set, but with a big data set that’s probably not what we wanted. We can easily
drop the toArray function and instead do record-by-record processing using a data-
base cursor the way we did earlier. Alternatively, we can keep the toArray function and
combine it with skip and limit and instead do the window-by-window processing from
earlier. These techniques all revolve around the find function, and they fit together to
help us work with huge data sets.

One final thought on sorting. I think it’s always a good idea to work on sorted data.
Why is that? Because when processing a large set of data, it’s best to have it in a depend-
able order. Otherwise, your records are going to be returned in whatever order the
database wants, which isn’t necessarily the best for you. Having sorted data makes
debugging easier. It makes reasoning about data problems easier. It also makes for a
useful progress indicator! For example, when you can see that the As, Bs, Cs, and Ds are
done, you have a fair idea of what’s left to process and how long it might take.

Data aggregation with MongoDB
If you want to do aggregation of big data, you might want to consider the MongoDB aggre-
gation framework. Through this, you can join data sets, group records, and summarize
using statistical operations such as sum, min, max, and average.

Please read the MongoDB docs to learn more at https://docs.mongodb.com/manual
/aggregation/.

8.7.9 Sorting large data sets

Sorting is a useful and often necessary operation. Most sorting algorithms, for example,
the built-in JavaScript sort function, require that we fit our entire data set into memory.
When working with a data set that doesn’t fit in memory, we can use our database to do
the sorting for us (figure 8.10).

In the following listing, we’re finding and sorting records by the Year field. This will
be efficient because we already have an index for the Year field. You can run this code,
and it will print sorted data records to the console.

Listing 8.7 Sorting a large data set with MongoDB (listing-8.7.js)

// ... openDatabase function is omitted ...

openDatabase()
 .then(db => {
 return db.collection.find()
 .sort({
 Year: 1
 })
 .toArray()
 .then(data => {
 console.log(data);
 })
 .then(() => db.close());
 })
 .then(() => {
 console.log("Done.");
 })

Available memory

Available memory

Small data set

Large data set

When our data doesn’t fit
in memory, we can fall back
on the database for our
sorting.

Conventional sorting
algorithms require all
data to fit in memory.

Figure 8.10 Normally, when sorting, all data must fit in memory.

Execute the query against the database;
in this case no parameters means we’re
retrieving all records.

Sorts records by the Year column

Shows print records that have been
sorted by Year

https://docs.mongodb.com/manual/aggregation/
https://docs.mongodb.com/manual/aggregation/

210 CHAPTER 8 Working with a mountain of data

8.8 Achieving better data throughput
We’ve learned how we can use a database to more effectively manage our large data set.
Now let’s look at techniques we can use to increase our data throughput.

8.8.1 Optimize your code

The obvious advice for better performance is: optimize your code. Mostly this is beyond
the scope of the book, and plenty of information is out there on how to optimize Java-
Script code. For example, don’t use the forEach function in performance-sensitive
code; instead, use a regular for loop.

I will, however, give you two important pieces of advice when it comes to code optimi-
zation that will help you be more productive:

1 Focus on the bottleneck. Time your code and measure the length of time it takes
to run using a library such as statman-stopwatch. Focus on the code that takes
the most time. If you spend time optimizing code that isn’t a bottleneck, you’re
wasting your time because it won’t make any difference to your data throughput.

2 Don’t focus on the code, focus on the algorithm.

8.8.2 Optimize your algorithm

Carefully consider the algorithm you’re using. Selecting an algorithm that’s more appro-
priate to the task will give you a much bigger performance boost than if you’re focusing
on your code. For example, when you need to do a fast lookup, make sure you’re using a
JavaScript hash and not an array. This is just one simple and obvious example.

In general, though, algorithms are a large field and a topic of study unto themselves
(search for Big O notation if you want to follow up on this). But before we end this chap-
ter, let’s look at one particular method that can pay huge performance dividends when
dealing with a large data set.

8.8.3 Processing data in parallel

Node.js is inherently single-threaded. That can be a good thing because generally we can
code away without concerns such as thread safety and locking. In terms of performance,
Node.js normally makes up for its lack of threads by bringing asynchronous coding to
the front and center. But still, running only a single thread can be an inefficient use of
your CPU when you have multiple cores that you could otherwise throw at the problem.

In this section, we’ll look at how we can divide up our data and process it in parallel
using separate operating system processes that make use of multiple cores and can pro-
cess batches of data simultaneously. This an extension of “Divide and conquer” from
earlier and builds on “Incremental processing with data windows.”

You can see how this works in figure 8.11. We have one master process that controls
two or more slave processes. We divide our data set into two or more separate data win-
dows. Each slave is responsible for processing a single data window, and multiple slaves
can operate simultaneously on multiple data windows using separate CPU cores.

Large data set

Master

Slave Slave

Separate OS
processes

Data windows are
processed in parallel.

Each slave operates
on a separate data
window.

The master controls
and coordinates the
slaves.

Core 2Core 1

Figure 8.11 Using multiple OS processes to work on data in parallel

 211Achieving better data throughput

Unfortunately, this kind of application structure makes our application much more com-
plex, and the complexity rises with the number of slave processes that we add. When we
add complexity to our applications, we should ensure that it’s for a good reason. In this
case, we’re doing it for two reasons:

1 We can work on the data in parallel, and this increases our overall data throughput.
We stand to increase our throughput by the number of slaves we’re running. If we
have 8 × slaves (on an 8-core CPU), we stand to increase our throughput × 8.

2 Slightly less obvious is the fact that each slave process is operating in its own mem-
ory space. This increases the amount of memory we have to work with by the
number of slave processes. With 8 slave processes, we’d have 8 × memory.

To get more throughput and more memory, we can add more slaves. This has its limits,
though, because increasing the number of slaves beyond the number of physical CPU
cores has diminishing returns.

In practice, we can empirically adjust the number of slaves to consume an appropri-
ate percentage of our CPU time. We may not want to dedicate 100% of our CPU time
to this because that can impact the performance of other applications on the computer
and even make it run hot and become unstable.

Also, you should have enough physical memory to support the number of slaves
and the amount of memory they’ll consume. Exhausting your physical memory can
be counterproductive because your application will start thrashing as data is swapped
between working memory and the file system.

8.8 Achieving better data throughput
We’ve learned how we can use a database to more effectively manage our large data set.
Now let’s look at techniques we can use to increase our data throughput.

8.8.1 Optimize your code

The obvious advice for better performance is: optimize your code. Mostly this is beyond
the scope of the book, and plenty of information is out there on how to optimize Java-
Script code. For example, don’t use the forEach function in performance-sensitive
code; instead, use a regular for loop.

I will, however, give you two important pieces of advice when it comes to code optimi-
zation that will help you be more productive:

1 Focus on the bottleneck. Time your code and measure the length of time it takes
to run using a library such as statman-stopwatch. Focus on the code that takes
the most time. If you spend time optimizing code that isn’t a bottleneck, you’re
wasting your time because it won’t make any difference to your data throughput.

2 Don’t focus on the code, focus on the algorithm.

8.8.2 Optimize your algorithm

Carefully consider the algorithm you’re using. Selecting an algorithm that’s more appro-
priate to the task will give you a much bigger performance boost than if you’re focusing
on your code. For example, when you need to do a fast lookup, make sure you’re using a
JavaScript hash and not an array. This is just one simple and obvious example.

In general, though, algorithms are a large field and a topic of study unto themselves
(search for Big O notation if you want to follow up on this). But before we end this chap-
ter, let’s look at one particular method that can pay huge performance dividends when
dealing with a large data set.

8.8.3 Processing data in parallel

Node.js is inherently single-threaded. That can be a good thing because generally we can
code away without concerns such as thread safety and locking. In terms of performance,
Node.js normally makes up for its lack of threads by bringing asynchronous coding to
the front and center. But still, running only a single thread can be an inefficient use of
your CPU when you have multiple cores that you could otherwise throw at the problem.

In this section, we’ll look at how we can divide up our data and process it in parallel
using separate operating system processes that make use of multiple cores and can pro-
cess batches of data simultaneously. This an extension of “Divide and conquer” from
earlier and builds on “Incremental processing with data windows.”

You can see how this works in figure 8.11. We have one master process that controls
two or more slave processes. We divide our data set into two or more separate data win-
dows. Each slave is responsible for processing a single data window, and multiple slaves
can operate simultaneously on multiple data windows using separate CPU cores.

Large data set

Master

Slave Slave

Separate OS
processes

Data windows are
processed in parallel.

Each slave operates
on a separate data
window.

The master controls
and coordinates the
slaves.

Core 2Core 1

Figure 8.11 Using multiple OS processes to work on data in parallel

212 CHAPTER 8 Working with a mountain of data

How do we implement this? It’s not as difficult as you might think. First, I’m going to
show you how I tackle this problem by running separate Node.js commands in parallel.
Then I’ll explain how everyone else does it using the Node.js fork function.

ExECUTING SEPARATE COMMANDS IN PARALLEL

Let’s look at how to implement parallel processing with a simplified example. This can
get complicated, so to keep the example simple, we won’t do any actual data process-
ing, and we’ll visit our data windows in parallel. But you’ll see a placeholder where you
can add your own data processing code. It can be a reader exercise to later add data
processing to this framework.

For this example, we need to have yargs installed for reading command-line parame-
ters and also a module called async-await-parallel that we’ll discuss soon. If you installed
dependencies for the chapter 8 repository, you’ll have these installed already; other-
wise, you can install them in a fresh Node.js project as follows:

npm install --save yargs async-await-parallel

My approach is presented in listings 8.8 and 8.9. The first script, listing 8.8, is the slave
process. This script operates on a single data window similar to what we saw earlier in
“Incremental processing with data windows.” The position and size of the data window
are passed to the script using the skip and limit command-line parameters. Look
over this script before we move onto listing 8.9 and note in the function processData a
line where you can insert your own data processing code (or insert a call to one of your
reusable data processing code modules from earlier chapters).

Listing 8.8 The slave process that does the work in parallel (listing-8.8.js)

// ... openDatabase function is omitted ...

function processData (collection, skipAmount, limitAmount) {
 return collection.find()
 .skip(skipAmount)
 .limit(limitAmount)
 .toArray()
 .then(data => {
 console.log(">> Your code to process " + data.length + "

➥ records here!");
 });
};

console.log("Processing records " + argv.skip + " to " + (argv.skip +
➥ argv.limit));

openDatabase()
 .then(db => {
 return processData(db.collection, argv.skip, argv.limit)
 .then(() => db.close());
 })
 .then(() => {
 console.log(
 "Done processing records " + argv.skip +

This is a helper
function to
process a
window of data.

Executes a database query, but only
retrieves the specified data window

The set of records is received, so
add your data processing code here.

Processes data after opening the
database. Here we pass through skip
and limit command-line arguments.

 213Achieving better data throughput

 " to " + (argv.skip + argv.limit)
);
 })
 .catch(err => {
 console.error(
 "An error occurred processing records " + argv.skip +
 " to " + (argv.skip + argv.limit)
);
 console.error(err);
 });

Now let’s look at the master script in listing 8.9. This script invokes the slave script in
listing 8.8 to do the actual work. It will fire off two slaves at a time, wait until they finish,
and then fire off the next two slaves. It continues running slaves in groups of two until
the entire database has been processed. I set the number of slaves at two to keep things
simple. When you run this code for yourself, you should try tuning the maxProcesses
variable to fit the number of cores you have available for data processing.

Listing 8.9 The master process that coordinates the slave processes (listing-8.9.js)

const argv = require('yargs').argv;
const spawn = require('child_process').spawn;
const parallel = require('async-await-parallel');

// ... openDatabase function is omitted ...

function runSlave (skip, limit, slaveIndex) {
 return new Promise((resolve, reject) => {
 const args = [
 "listing-8.8.js",
 "--skip",
 skip,
 "--limit",
 limit
];

 const childProcess = spawn("node", args);

 // … input redirection omitted …

 childProcess.on("close", code => {
 if (code === 0) {
 resolve();
 }
 else {
 reject(code);
 }
 });

 childProcess.on("error", err => {
 reject(err);
 });
 });
};

Requires the Node.js spawn
function that allows us to invoke
operating system commands

This is a helper
function that
initiates the
slave process.

Wraps the slave
process in a
promise These are the arguments to the Node.js slave

process, including the script to run. Note how skip
and limit arguments are passed to the slave, so that
it’s only concerned with a specific data window.

Uses the Node.js spawn function
to initiate the slave process

Handles the close event;
this tells us when the slave
process has ended.

Resolves the promise when the slave ends with
an error code of zero, indicating it completed
successfully

Rejects the promise when the slave has ended
with an error code other than zero, indicating
that it failed

Handles the error event; for some
reason the process failed to start.

Rejects the promise when an error has occurred

214 CHAPTER 8 Working with a mountain of data

function processBatch (batchIndex, batchSize) {
 const startIndex = batchIndex * batchSize;
 return () => {
 return runSlave(startIndex, batchSize, batchIndex);
 };
};

function processDatabase (numRecords) {

 const batchSize = 100;
 const maxProcesses = 2;
 const numBatches = numRecords / batchSize;

 const slaveProcesses = [];
 for (let batchIndex = 0; batchIndex < numBatches; ++batchIndex) {
 slaveProcesses.push(processBatch(batchIndex, batchSize));
 }

 return parallel(slaveProcesses, maxProcesses);
};

openDatabase()
 .then(db => {
 return db.collection.find().count()
 .then(numRecords => processDatabase (numRecords))
 .then(() => db.close());
 })
 .then(() => {
 console.log("Done processing all records.");
 })
 .catch(err => {
 console.error("An error occurred reading the database.");
 console.error(err);
 });

Listing 8.9 starts by calling find().count() on the database collection to determine
how many records it contains. It then divides the database into data windows. For each
window, it calls processBatch. This has the unusual behavior of creating and returning
an anonymous function that wraps up a call to runSlave. I’ll explain that in a moment.

runSlave is the function that starts the slave process. Here we use the Node.js spawn
function to create a new process. We’re invoking Node.js to run the slave script that we
saw in listing 8.8. Note the skip and limit command-line parameters that are being
passed to the slave. These tell the slave which data window it must process.

After processBatch has been called for every window, we now have a list of func-
tions that when executed will invoke runSlave for each batch of data. We need this

This is a helper
function to
sequence the
operation of
a slave for a
specific data
window.

Computes the record at the start of the
index for the current batch of records

Encapsulates
invocation of
the slave in an
anonymous
function; this
allows us to
queue the
operation and
defer it until
later.

Lines up the slave for
deferred invocation

This is a helper function that
processes the entire database.

Specifies the number of records
to include in each data window

Tells the
number of
processes
to run in
parallel.
Increase
this number
when you
have more
CPU cores
to spare.

Computes the total number of data
windows that we must process

Builds a queue of deferred slave
invocations. Each entry in the list is a

function that when invoked will run the
slave for a specific batch of records.

Counts the total number of
records in the database

Initiates parallel processing
of the entire database

 215Achieving better data throughput

kind of deferred action to use with the parallel function that we’re using from the
async-await-parallel library.

We pass to parallel our list of functions and the number of operations to execute
in parallel. parallel does the hard work for us, invoking our deferred functions in par-
allel batches until all have been executed. parallel returns a promise that’s resolved
when the entire sequence has completed or otherwise rejected if any of the individual
operations have failed.

FORKING A NEW PROCESS

We learned one way of doing parallel data processing in Node.js, but we also have a sim-
pler way to build a master/slave type application in Node.js, and that’s using the fork
function. This is the technique that you’ll find most often when searching the internet
on this topic.

We start our application with a single process and then we call fork for as many slaves
as we need. The fork function causes our process to branch into two processes, and
then our code is running in either the master or the slave.

Why not use the fork function if it’s simpler than running separate commands?
Here are a few reasons I prefer my own approach to this:

¡	Running separate commands is more explicit, and it’s easier to ensure the slaves
are operating in parallel.

¡	You have a clean separation between master and slave. You are either in the
master script or the slave script.

¡	It makes the slave easy to test. Because you can run the slave from the command
line, you can easily run it this way for testing and debugging.

¡	I believe it makes the code more reusable. Decomposing your application into mul-
tiple scripts means you have a master that can potentially (with a little refactoring)
be used with different slaves. Also, you have separate slave scripts that can poten-
tially be used in other ways and in other circumstances.

¡	It works with more than Node.js scripts. You might have other tools you want to run,
and the master can run those as easily as it can run Node.js and your slave script.

The end result between the two approaches is much the same; we get to process our
data in parallel. Using fork is the simpler alternative. Running separate commands is
more difficult, but not by a large amount and has the benefits that I outlined. Pick the
method that most suits you.

Through this chapter and the last, we wrangled a massive data set. We took it from a
huge CSV file and imported it into our database. We’re now armed to the teeth with an
array of techniques for building data pipelines, cleaning, and transforming our data—
and now our techniques can be scaled to huge data sets. We’re finally ready for some
data analysis! Bring on chapter 9!

216 CHAPTER 8 Working with a mountain of data

Summary

¡	We discussed how the memory limitations of Node.js constrain the amount of
data you can fit in memory at any one time.

¡	You explored various techniques for working with a large database, including

- How to move a large CSV data file to your MongoDB database

- How to divide your data into batches, where each batch fits in memory and
can be processed separately

- Using a cursor or data window to incrementally process the entire database

- Using queries and projections to reduce your data

- Using the database to sort your data—an operation that's otherwise difficult
when your data doesn't fit into memory

¡	You worked through an example of spawning multiple operating system pro-
cesses to do parallel processing of our data and increase the throughput of our
data pipeline.

217

9Practical data analysis

This chapter covers
¡	Using statistical tools: sum, average, standard

deviation, and frequency distributions

¡	Grouping and summarizing a data set to make
sense of it

¡	Using tools for working with time series data:
rolling average, linear regression, and more

¡	Using data analysis techniques for comparing
data and making predictions

¡	Using correlation to understand the
relationship between data variables

Congratulations, you made it to the data analysis chapter. It took much work to get
here. We’ve had to fetch our data from somewhere, and we had to clean and pre-
pare it. Then it turned out that we had more data than we could deal with, so we had
to move it to our database to deal with it. It’s been a long road.

Data analysis is the study of our data for better understanding, to glean insights,
and answer the questions that we have. For instance, when I’m searching for a place
to live or to visit on vacation, I might have specific requirements for the weather. In

218 CHAPTER 9 Practical data analysis

this chapter, we’ll study 100 years’ worth of weather data from a weather station in New
York City’s Central Park. Later, we’ll compare it to the weather in Los Angeles and see
how it stacks up. I’m also interested in the overall trend: Is it getting hotter? Which city
is heating up more quickly?

In this chapter, we’ll learn data analysis and we’ll practice on the weather stations
data from NOAA that we used in chapters 7 and 8. We’ll start with fundamentals and
build up to more advanced techniques. By the end, we’ll have tools for understanding,
comparing, and forecasting.

This chapter delves into math, but don’t let that put you off. The math we go
into is basic, and for the more advanced math, we’ll rely on third-party libraries that
abstract away the hard stuff. I firmly believe that you don’t need to be a math wizard
to use data analysis; you simply need to know what each technique is good for and
how to use it.

When you understand how powerful these techniques can be, you’ll think of all sorts
of uses for them; they’re going to help even with routine tasks such as understanding
your server’s or app’s performance metrics.

9.1 Expanding your toolkit
In this chapter, we’ll add to our toolkit several data analysis techniques as listed in table 9.1.
We’ll look at how you can code these formulas for yourself. For the more advanced
math, we’ll use third-party libraries. We’ll also use Data-Forge more in this chapter.

Table 9.1 Tools used in chapter 9

Technique Function Notes

Basic statistics sum Sum the total from a set of values.

average Compute the average or central value
from a set of values.

std Compute the standard deviation from
a set of values; this is a measure of
volatility, fluctuation, or dispersion of
our data.

Group and summarize groupBy, select Condense a data set and make it eas-
ier to understand by grouping records
and summarizing them with sum,
average, or standard deviation.

Frequency distribution bucket, detectValues Determine the distribution of values in
a data set, and if it matches a normal
distribution, this gives us certain pre-
dictive powers.

Time series rollingAverage Smooth out time series data, remov-
ing noise so that we can better detect
trends and patterns.

rollingStandardDeviation See the fluctuation or variability of a
data series over time.

 219Getting the code and data

Technique Function Notes

linearRegression Use for forecasting and detecting
trends.

difference Understand the difference between
time series and determine if they’re
diverging.

Data standardization average, std Standardize two data sets for direct
comparison.

Correlation coefficient sampleCorrelation Understand the relationship between
data variables and how strongly (or
weakly) correlated they are.

In this chapter, we’ll look at various code examples that generate charts. As we have yet
to learn about visualization, I’ve prepared a series of toolkit functions that you will use
for rendering charts. All you have to do is pass data into the toolkit function, and it will
render a chart for you to an image.

As we work through this chapter, you’ll see how these functions are used. In the fol-
lowing chapters on visualization (chapters 10 and 11), you’ll learn how to create such
charts from scratch.

9.2 Analyzing the weather data
In this chapter, we analyze the weather data we worked with in the previous two chap-
ters. We have any number of questions we might ask of this data. Already mentioned is
that we might want to move somewhere with an agreeable climate, or we might want to
go on a holiday somewhere warm.

The full weather station data set from NOAA is extremely large, weighing in at 27 GB
uncompressed. If we were doing a global analysis, we’d want to work with and aggregate
this entire data set; however, that’s a massive operation. For this chapter, we’re going to
have a more local focus, so from the big data set, I’ve extracted the data from two particu-
lar weather stations. One is in New York City (NYC), and the other is in Los Angeles (LA).

After loading the massive data set into my MongoDB database, I indexed it by
StationId. The process of loading the database and creating the index took significant
time, but after that it was quick to extract all the data for a particular station. I extracted
the data for NYC and LA to two separate CSV files that are available for you in the
GitHub repository for this chapter.

9.3 Getting the code and data
The code and data for this chapter are available in the Data Wrangling with JavaScript
Chapter-9 repository in GitHub at https://github.com/data-wrangling-with-javascript/
chapter-9. The example data is located under the data subdirectory in the repository.

Much of the example code for this chapter renders charts to image files, which will
be available in the output subdirectory after you run each of the code listings. The code

Table 9.1 Tools used in chapter 9 (continued)

https://github.com/data-wrangling-with-javascript/chapter-9
https://github.com/data-wrangling-with-javascript/chapter-9

220 CHAPTER 9 Practical data analysis

for rendering such charts is in the toolkit subdirectory (we’ll dig into this code in chap-
ters 10 and 11). Refer to “Getting the code and data” in chapter 2 for help on getting the
code and data.

9.4 Basic data summarization
Three basic functions are commonly used in statistics and data analysis. They are for
the operations sum, average, and standard deviation. These statistical tools allow us to
summarize and make comparisons between data sets.

9.4.1 Sum

You can hardly ask for a more basic operation than sum: adding up the values in a data
set. Sum is useful in its own right—say, when we need to tally up the total amount from
individual values—but we’ll soon also need it to compute an average. I thought this
would be a good way to warm up to the more advanced functions.

We’ll compute the sum of all rainfall collected at the NYC weather station in 2016.
We create the sum function using the JavaScript reduce function, and in the process, we
create a new reusable statistics code module to add to our toolkit. This is shown in
the following listing.

Listing 9.1 A sum function for our toolkit (toolkit/statistics.js)

function sum (values) {
 return values.reduce((prev, cur) => prev + cur, 0);
}

module.exports = {
 sum: sum,
};

Listing 9.2 shows how we use our new sum function to compute the total amount of
rainfall. To keep things simple, we’ll start with a hard-coded data set, but soon we’ll
level up to some real data. Try running the following listing, and you should see that it
computes the total rainfall as 1072.2 mm.

Listing 9.2 Computing total rainfall for 2016 (listing-9.2.js)

const sum = require('./toolkit/statistics').sum;

const monthlyRainfall = [
 112.1,
 112,
 // ... data omitted ...
 137.5,
 73.4
];

const totalRainfall = sum(monthlyRainfall);
console.log("Total rainfall for the year: " + totalRainfall + "mm");

Computes the sum of the set of values

Uses the JavaScript
reduce function to
compute the sum
from a set of values

Requires the sum function from
our new statistics code module

Let’s keep things simple
with hard-coded data.

Computes the total
sum of rainfall for 2016

 221Basic data summarization

9.4.2 Average

Now that we have our sum function, we can use it to build our average function. The
average function computes the average or arithmetic mean of a set of values and is one
way to compute a central value for a data set. Average is useful when you want to know
the most common value because we can detect when new values are above or below the
norm. Let’s calculate the average monthly rainfall.

The following listing shows the average function that we built based on the sum func-
tion. This is another function added to our reusable statistics code module.

Listing 9.3 An average function for our toolkit (toolkit/statistics.js)

// ... sum function omitted ...

function average (values) {
 return sum(values) / values.length;
}

module.exports = {
 sum: sum,
 average: average,
};

The following listing shows how we can use our average function to compute the aver-
age from our hard-coded data set. Run this code, and you should see that it computes
an average of roughly 89.35 mm.

Listing 9.4 Computing the average monthly rainfall for 2016 (listing-9.4.js)

const average = require('./toolkit/statistics.js').average;

const monthlyRainfall = [
 // ... hard-coded data omitted ...
];

const averageMonthlyRainfall = average(monthlyRainfall);
console.log("Average monthly rainfall: " + averageMonthlyRainfall + "mm");

9.4.3 Standard deviation

Standard deviation is a more complicated formula. This tells us the average amount
that our values deviate from the average value. It quantifies the amount of variation or
dispersion in our data set.

We can use it to measure the variability or volatility of our data, and this allows us to
understand when our data values are calm and orderly or whether they’re volatile and
all over the place. Let’s compute the standard deviation of monthly rainfall.

In the following listing, we add a std function to our statistics code module for calcu-
lating standard deviation. It builds on the average function we created previously.

Computes the average
of a set of values

Divides the sum of values
by the number of values

Computes the
average monthly
rainfall for 2016

222 CHAPTER 9 Practical data analysis

Listing 9.5 A standard deviation function for our toolkit (toolkit/statistics.js)

// ... sum and average functions omitted ...

function std (values) {
 const avg = average(values);
 const squaredDiffsFromAvg = values
 .map(v => Math.pow(v – avg, 2))
 const avgDiff = average(squaredDiffsFromAvg);
 return Math.sqrt(avgDiff);
}

module.exports = {
 sum: sum,
 average: average,
 std: std,
};

The following listing shows how we use the std function to compute standard devia-
tion for monthly rainfall in 2016. You can run this code, and it should put the standard
deviation at around 40.92 mm.

Listing 9.6 Computing standard deviation of monthly rainfall for 2016 (listing-9.6.js)

const std = require('./toolkit/statistics.js').std;

const monthlyRainfall = [
 // ... hard-coded data omitted ...
];

const monthlyRainfallStdDeviation = std(monthlyRainfall);
console.log("Monthly rainfall standard deviation: " +

➥monthlyRainfallStdDeviation + "mm");

Although standard deviation can be used standalone as a measure of fluctuation, it’s
also used in combination with a distribution so that we can predict the probability of
future values. It can also be used to standardize data so that we may compare different
data sets like for like. We’ll look at both techniques later in the chapter.

9.5 Group and summarize
Now that we have basic statistics in place, we can move on to more advanced data anal-
ysis techniques. The data we’ve worked with so far has been a hard-coded JavaScript
array of monthly rainfall values. How was this data prepared?

That data was prepared by grouping daily values by month and then summing the
daily rainfall in each group to compute the monthly rainfall. This kind of group and sum-
marize operation is frequently used, and I consider it to be a fundamental data analysis
technique.

This is a toolkit function to
compute the standard
deviation for a set of values.

Computes the average
of the values

Computes the squared difference
from the average for each value

Averages the squared
differences

Takes the square root
and we have our
standard deviation

Computes the standard
deviation of monthly
rainfall for 2016

 223Group and summarize

When we’re inundated with data, it’s difficult to glean information, but when we
group and summarize it, we boil it down into something that’s easier to understand. We
might even condense the data down multiple times as we drill down searching for inter-
esting data points or anomalies in the data set.

Let’s start using a real data set instead of hard-coded data. We’ll analyze the data set
from the NYC weather station. The CSV files that accompany this chapter have records
that go back 100 years, but we’ll start by looking at just the data from 2016.

We could look at a bar chart of daily temperature data for all of 2016, but as you can
imagine, such a chart would be rather noisy and wouldn’t provide a good summary
of the data. Let’s instead use our group and summarize technique to condense the
data into monthly summaries resulting in the chart in figure 9.1, which shows average
monthly temperature in degrees Celsius on the Y axis.

Figure 9.1 makes it easy see the hottest and coldest months of the year in NYC. If I’m
planning a trip there, and I’m not keen on the cold weather, it’s probably best to avoid
December, January, and February (I actually like the cold weather, considering I come
from a fairly hot country).

Figure 9.2 illustrates the group and summarize process. We take daily weather data
on the left. We organize all data records into groups based on the Month column.
For each group, we then compute the average temperature. This produces the much-
compressed table that we see on the right of figure 9.2.

Listing 9.7 contains a code example of the group and summarize technique. We’re
moving onto more advanced data analysis techniques here, so we’ll use Data-Forge to
make things easier. If you installed dependencies for the Chapter-9 code repository, you
already have it installed; otherwise, you can install it in a fresh Node.js project as follows:

npm install --save data-forge

In listing 9.7 we first read in the whole data set of 100 years of NYC weather. In this
example, we’re only interested in 2016, so we use the where function to filter down to
records from 2016.

Figure 9.1 Monthly average temperature in NYC for 2016

224 CHAPTER 9 Practical data analysis

We then use the groupBy function to sort the 2016 records into monthly groups.
After that, the select function transforms each group (computing min, max, and aver-
age), and we’ve rewritten our data set. We took it from noisy daily data and condensed
it down to monthly summaries. Run this code, and it prints console output similar to
the right of figure 9.2 and renders a bar chart like figure 9.1 to output/nyc-monthly
-weather.png.

Listing 9.7 Grouping and summarizing daily weather data by month (listing-9.7.js)

const dataForge = require('data-forge');
const renderMonthlyBarChart = require('./toolkit/charts.js').

renderMonthlyBarChart;
const average = require('./toolkit/statistics.js').average;

const dataFrame = dataForge
 .readFileSync("./data/nyc-weather.csv")
 .parseCSV()
 .parseInts("Year")
 .where(row => row.Year === 2016)
 .parseFloats(["MinTemp", "MaxTemp"])
 .generateSeries({
 AvgTemp: row => (row.MinTemp + row.MaxTemp) / 2,
 })
 .parseInts("Month")
 .groupBy(row => row.Month)
 .select(group => {
 return {

In the original data we
have one row per day.

In the condensed data we
have one row per month.

Group and
summarize.

Figure 9.2 Condensing daily data by grouping it by month and summarizing each group

Let's assume we already have
functions to render charts; I'll show

you how to create functions similar to
these in chapters 10 and 11.

Reuses the average function
we created earlier

I'm using synchronous file reading to
make the code easier to read; in
production I’d use the async version.

Parses
the Year
column

from the
CSV file

Filters records; we’re only
interested in 2016.

Parses more
columns

we’re
interested in

Generates a column for
average daily temperature

Parses the Month column

Groups data records
by the Month column

For each month, group generates a new
record that summarizes the month.

 225Group and summarize

 Month: group.first().Month,
 MinTemp: group.deflate(row => row.MinTemp).min(),
 MaxTemp: group.deflate(row => row.MaxTemp).max(),
 AvgTemp: average(group
 .deflate(row => row.AvgTemp)
 .toArray()
)
 };
 })
 .inflate();

console.log(dataFrame.toString());

renderMonthlyBarChart(
 dataFrame,
 "AvgTemp",
 "./output/nyc-monthly-weather.png"
)
 .catch(err => {
 console.error(err);
 });

Note the call to renderMonthlyBarChart at the end of listing 9.7. This is a toolkit func-
tion that I prepared for you so that we can focus on the data analysis and not yet be
concerned with the details of visualization. We’ll come back to visualization and under-
stand how to create such charts in chapters 10 and 11.

In listing 9.7 we only summarized the temperature. We did this by averaging it. We
can add other metrics to our summary. For example, we can easily modify the code in
listing 9.7 to include total rain and total snow per month. The updated code is pre-
sented in the following listing.

Listing 9.8 Adding code to summarize rainfall and snowfall per month (upgraded from
listing 9.7)

// ... Remainder of code omitted, it is as per listing 9.7 ...

 .select(group => {
 return {
 Month: group.first().Month,
 MinTemp: group.deflate(row => row.MinTemp).min(),
 MaxTemp: group.deflate(row => row.MaxTemp).max(),
 AvgTemp: average(group.deflate(row => row.AvgTemp).toArray()),
 TotalRain: sum(group.deflate(row => row.Precipitation).

toArray()),
 TotalSnow: sum(group
 .deflate(row => row.Snowfall)
 .toArray()
)
 };
 })

Extracts MinTemp values for the
month and gets the minimum

Extracts MaxTemp
values for the month

and gets the maximum

Computes the average
temperature for the month

Converts back to a DataFrame because
groupBy returns a series

Prints our data to the
console to double-check it

Renders the NYC monthly
weather chart

Chart rendering is asynchronous,
so we use a callback to handle any
error that might occur.

New: computes total rainfall
and snowfall per month

226 CHAPTER 9 Practical data analysis

As we’re summarizing the new values, we can also add them to our bar chart. Figure 9.3
shows an updated chart with rainfall and snow added, with temperature on the left-
hand axis (degrees Celsius) and snowfall/rainfall on the right-hand axis (millimeters).

It doesn’t take much study of the chart in figure 9.3 to notice the huge spike in snow-
fall that occurred in January. What happened here? Was it a snowy month? Or did the
snow only fall on a handful of days. This is an example of finding an interesting data
point or anomaly in our data. We can’t help but be curious about what’s happening
here. It could even be an error in our data!

You could now drill down and look at a day-by-day chart of January. To do this, you’d
filter down to records from January 2016 and plot a daily bar chart of snowfall—you
could do this with simple modifications to listings 9.7 or 9.8. If you do this, you’ll find
that the snowfall spike occurs on January 23. Search the web for this date in NYC, and
you’ll find that was the day of a massive blizzard. Mystery solved. If you vacation in NYC
in January, you might find yourself stuck in a blizzard! (This happened to me in NYC
about 20 years ago.)

It might be interesting to understand how common an occurrence such an event is.
How often do blizzards occur in NYC? For that, we’d have to do a wider analysis of the
data set, but 100 years of data is available, so how about you try and find other blizzards.
How would you go about doing this?

First, you’d probably want to summarize snowfall by year and generate a chart. Look
for years with spikes in snowfall. Second, drill down to those years and find the months
with spikes. Last, drill down to the daily chart for those years and months and find the
days with spikes.

Here’s a general summary of what we did:

1 Filter down to the records you’re interested in.

2 Group by a metric.

3 Summarize the data for that group.

4 Look for anomalies and then drill down into an interesting group. Then repeat
this process at a more granular level.

Figure 9.3 Weather chart for NYC for 2016 including rainfall and snow

 227The frequency distribution of temperatures

This process of looking at a summary of data and then drilling down to a finer reso-
lution is an effective technique for quickly locating data and events of interest. In this
approach, we start with a bird’s-eye view of the data and progressively home in on the
data points that stand out.

We now have tools that will help us understand our weather data, but we don’t yet
have any technique that might help us predict the likelihood of future values in new
weather data, so now we’ll look at how to do that.

9.6 The frequency distribution of temperatures
Let’s now look at the distribution of temperatures in NYC. As you’ll soon see, this
might allow us to make predictions about the probability of new temperature values.

Figure 9.4 shows a histogram of the frequency distribution of temperature in NYC
for the past 100 years. A chart like this arranges values into a series of buckets with the
amount of values in each bucket represented as a vertical bar. Each bar summarizes
a collection of temperature values with the midpoint of each bucket on the X axis as
degrees Celsius. The height of each bar, the Y axis, indicates the percentage of values
(from the total data set) that fall within the range of the bucket.

Looking at figure 9.4, we can quickly get a feel for the range of temperatures experi-
enced by New York City. For instance, we can see the temperature range that the major-
ity of recorded values falls in and that the largest group of recorded values accounts for
11% of all the values.

12

11

10

9

8

7

6

5

4

3

2

1

0
-19.39 -16.48 -13.57 -10.66 -7.75 -4.84 -1.93 0.98 3.89 6.80

Frequency
9.71 12.62 15.53 18.44 21.35 24.26 27.17 30.08 32.99 35.91

The 11% level

The majority of temperatures
fall within the range -3.38 and
28.62 degrees Celsius.

This bar (or bucket) represents a range of temperatures
from 19.89 to 22.8 degrees Celsius and corresponds to
more than 11% of the data records.

Figure 9.4 Distribution of temperatures in NYC from the past 100 years

228 CHAPTER 9 Practical data analysis

The 11% value isn’t important here—that’s the tallest bar, and it’s a way for us to see
the temperature range where the values are most densely clustered. A histogram like
this can only be rendered after we’ve first produced a frequency distribution table as
shown in figure 9.5. Each row in this particular table corresponds to a bar in the histo-
gram from figure 9.4.

In my limited experience in working with weather data, I anticipated that the
temperature distribution might fall in a normal distribution (which I’ll explain in a
moment), but the actual data failed to oblige my assumption (as is so often the case
when working with data).

Although I did notice that figure 9.4 kind of looked like two normal distributions
jammed up against each other. After some investigation, I decided to split out the win-
ter and summer data. After designating winter and summer months, I then split the
data based on this criterion.

Next, I created separate histograms for each season. When I looked at the new visual-
izations, it became apparent that the temperature distribution for each season aligned
closely with a normal distribution. As an example, you can see the winter temperatures
histogram in figure 9.6.

By this point, especially if you’ve forgotten high school statistics, you’re probably
wondering what a normal distribution is. It’s an important concept in statistics and is
informally known as a bell curve. Is it ringing any bells yet? Data sets that fall in a normal
or close to normal distribution have properties that allow us to estimate the probability
of new data values.

What does this mean in relation to temperature values? It means we can quickly
determine the probability of a particular temperature occurring. Once we know that
a data set falls in a normal distribution, we can now make certain statements about the
data set, such as

¡	68% of values fall within 1 SD (standard deviation) of the average.
¡	95% of values fall within 2 SDs of the average.
¡	99.7% of values fall within 3 SDs of the average.
¡	By the inverse, only 0.3% of values will fall outside of 3 SDs from the average. We

can consider these values to be extreme.

The frequency
of each value

Temperature
value buckets

Figure 9.5 Frequency
distribution table of NYC
temperatures (used to render
the histogram in figure 9.4)

18

16

14

12

10

8

6

4

2

0

-19.78 -17.65 -15.51 -13.38 -11.25 -9.11 -6.98 -2.71-4.84 20.7718.6316.5014.3612.2310.107.965.833.691.56-0.58

Frequency

Figure 9.6 Winter temperatures in NYC align closely to a normal distribution.

 229The frequency distribution of temperatures

How can we know these probabilities? It’s because these are the known properties of the
normal distribution (as illustrated in figure 9.7). Now we don’t have a perfectly normal
distribution, but it’s close enough that we can use the properties to understand our most
common values and to make predictions about values we might see in the future.

For example, if we had an extremely hot day in winter in NYC with a temperature
of, say, 18 degrees Celsius, then we’d know statistically that this is an extreme tempera-
ture. We know that it’s extreme because it’s more than three standard deviations (SDs)
from the average temperature, so a day with this temperature is unlikely to occur. That
doesn’t mean that such a day won’t ever occur, but it means that it has a low probability
based on the data we analyzed from the past 100 years.

What’s interesting about the normal distribution and its properties is that much of
statistics and science depend on it.

Say that we run an experiment, make observations, and record data. We also need
a control group to compare against and understand if the result of the experiment is sig-
nificant. We set up a separate control group that is unaffected by the experiment, and
again we observe and record data.

We can look at the distribution of the data from the control group and see how it
relates to the experimental result. The further away the experimental result is from the
average of the control group, the more confidence we’ll have that the experimental
result is statistically significant. As the experimental result moves more than two SDs away
from the control group result, we gain more and more confidence that the experiment
caused the result and wasn’t just by accident or coincidence. This kind of statistical test-
ing relies upon our data being normally distributed. If you’re trying this at home, please
first verify that your data approximates the normal distribution.

The 11% value isn’t important here—that’s the tallest bar, and it’s a way for us to see
the temperature range where the values are most densely clustered. A histogram like
this can only be rendered after we’ve first produced a frequency distribution table as
shown in figure 9.5. Each row in this particular table corresponds to a bar in the histo-
gram from figure 9.4.

In my limited experience in working with weather data, I anticipated that the
temperature distribution might fall in a normal distribution (which I’ll explain in a
moment), but the actual data failed to oblige my assumption (as is so often the case
when working with data).

Although I did notice that figure 9.4 kind of looked like two normal distributions
jammed up against each other. After some investigation, I decided to split out the win-
ter and summer data. After designating winter and summer months, I then split the
data based on this criterion.

Next, I created separate histograms for each season. When I looked at the new visual-
izations, it became apparent that the temperature distribution for each season aligned
closely with a normal distribution. As an example, you can see the winter temperatures
histogram in figure 9.6.

By this point, especially if you’ve forgotten high school statistics, you’re probably
wondering what a normal distribution is. It’s an important concept in statistics and is
informally known as a bell curve. Is it ringing any bells yet? Data sets that fall in a normal
or close to normal distribution have properties that allow us to estimate the probability
of new data values.

What does this mean in relation to temperature values? It means we can quickly
determine the probability of a particular temperature occurring. Once we know that
a data set falls in a normal distribution, we can now make certain statements about the
data set, such as

¡	68% of values fall within 1 SD (standard deviation) of the average.
¡	95% of values fall within 2 SDs of the average.
¡	99.7% of values fall within 3 SDs of the average.
¡	By the inverse, only 0.3% of values will fall outside of 3 SDs from the average. We

can consider these values to be extreme.

The frequency
of each value

Temperature
value buckets

Figure 9.5 Frequency
distribution table of NYC
temperatures (used to render
the histogram in figure 9.4)

18

16

14

12

10

8

6

4

2

0

-19.78 -17.65 -15.51 -13.38 -11.25 -9.11 -6.98 -2.71-4.84 20.7718.6316.5014.3612.2310.107.965.833.691.56-0.58

Frequency

Figure 9.6 Winter temperatures in NYC align closely to a normal distribution.

230 CHAPTER 9 Practical data analysis

Listing 9.9 shows the code for creating a frequency distribution that’s used to render
the histogram that was shown in figure 9.4. First, we use the Data-Forge bucket function
to organize our temperature values into the buckets required by the histogram. The
detectValues function then summarizes the frequency of the bucketed values. The out-
put is our frequency table. We need to call orderBy to sort the frequency table by value
so that it’s in the right order for the histogram.

Listing 9.9 Computing frequency distribution and histogram for NYC temperatures
(listing-9.9.js)

const dataForge = require('data-forge');
const renderBarChart = require('./toolkit/charts.js').renderBarChart;

function createDistribution (series, chartFileName) {
 const bucketed = series.bucket(20);
 const frequencyTable = bucketed
 .deflate(r => r.Mid)
 .detectValues()
 .orderBy(row => row.Value);
 console.log(frequencyTable.toString());

 const categories = frequencyTable
 .deflate(r => r.Value.toFixed(2))
 .toArray();

Values that fall within
1 SD have a probability of 68%.

This is where the majority
of values fall.

� - 3� � - 2� � - � � + � � + 2� � + 3��

Values that fall
within 2 SDs have a
probability of 95%.

Values that fall
outside 3 SDs are
statistically unlikely.

Only 0.3% fall
outside this range.

Figure 9.7 Examples of how values relate to the normal distribution

This is a helper function that
creates a distribution from a series

and renders a histogram from it.

Sorts the series into
20 evenly spaced buckets

Extracts the midpoint of
each bucket to a new series

Determines
the frequency

of values in
the new

series

Orders by ascending bucket
value; this is the correct order
for rendering the histogram.

Prints to console so
we can double-check

Formats the X axis labels for
display in the histogram

 231Time series

 return renderBarChart(
 "Frequency",
 frequencyTable,
 categories,
 chartFileName
);
};

function isWinter (monthNo) {
 return monthNo === 1 ||
 monthNo === 2 ||
 monthNo === 12;
};

const dataFrame = dataForge.readFileSync("./data/nyc-weather.csv")
 .parseCSV()
 .parseInts("Month")
 .parseFloats(["MinTemp", "MaxTemp"])
 .generateSeries({
 AvgTemp: row => (row.MinTemp + row.MaxTemp) / 2
 });

console.log("Winter temperature distribution:");
const winterTemperatures = dataFrame
 .where(row => isWinter(row.Month))
 .getSeries("AvgTemp");

const outputChartFile = "./output/nyc-winter-temperature-distribution.png";
createDistribution(winterTemperatures, outputChartFile)
 .catch(err => {
 console.error(err);
 });

Note in listing 9.9 how we read the entire 100-year data set for NYC, but we then filter
the data so that we’re left with only temperatures that occurred in winter months.

Now we have tools for describing our data set, comparing data sets, and understand-
ing which values are normal and which are extreme. Let’s turn our attention to tech-
niques for analyzing time series data.

9.7 Time series
A time series is a series of data points that are ordered or indexed by date and/or time.
Our data set for weather in NYC is a time series because it is composed of daily weather
readings ordered by date.

We can use the techniques in this section for detecting trends and patterns that occur
over time and for comparing time series data sets.

9.7.1 Yearly average temperature

Figure 9.8 is a chart of yearly average temperature in NYC over the past 100 years. To
produce this chart, I used the group and summarize technique to create a yearly time
series with the average temperature per year. Then I created the line chart as a visual
representation of the time series data.

Renders the
histogram

Determines if the specified
month is a winter month

Reads the input CSV file and
generates a new column for
average daily temperature

Filters down to only
winter temperatures

Creates the distribution of
winter temperatures and

renders the histogram from it

232 CHAPTER 9 Practical data analysis

Listing 9.10 shows the code that groups the data by year and produces the yearly aver-
age temperature. It calls the renderLineChart toolkit function that I prepared for you.
In chapters 10 and 11, we’ll look more closely at how such charts are created. You can
run this code, and it will produce the chart shown in figure 9.8.

Listing 9.10 Group by year and summarize temperature data for NYC (listing-9.10.js)

const dataForge = require('data-forge');
const renderLineChart = require('./toolkit/charts.js').renderLineChart;
const average = require('./toolkit/statistics.js').average;

function summarizeByYear (dataFrame) {
 return dataFrame
 .parseInts(["Year"])
 .parseFloats(["MinTemp", "MaxTemp"])
 .generateSeries({
 AvgTemp: row => (row.MinTemp + row.MaxTemp) / 2,
 })
 .groupBy(row => row.Year) // Group by year and summarize.
 .select(group => {
 return {
 Year: group.first().Year,
 AvgTemp: average(group.select(row => row.AvgTemp).toArray())
 };
 })
 .inflate();
};

let dataFrame = dataForge.readFileSync("./data/nyc-weather.csv")
 .parseCSV();

dataFrame = summarizeByYear(dataFrame);

const outputChartFile = "./output/nyc-yearly-trend.png";

Figure 9.8 Average yearly temperature in NYC for the past 100 years

Groups and summarizes
our data by year

 233Time series

renderLineChart(dataFrame, ["Year"], ["AvgTemp"], outputChartFile)
 .catch(err => {
 console.error(err);
 });

We might have created a chart from the daily data, but that would be noisy with wild
day-to-day fluctuations. Noisy data makes it more difficult to spot trends and patterns—
that’s why we grouped by year before making the chart.

Summarizing our data on a yearly basis makes it much easier to spot the upward
trend in temperature. However, the data is still noisy. Did you notice the large up and
down movements in the chart? Such variability can make it difficult for us to be sure
about any trends or patterns that we think we see. We think we can see an uptrend in
figure 9.8, but how can we know for sure?

9.7.2 Rolling average

If we want to see the trend more clearly, we need a way to eliminate the noise. One way
to do this is by generating a rolling average (also known as a moving average) from the
yearly temperature time series. We can chart this new time series as shown in figure 9.9.

Notice how figure 9.9 is like a smoothed-out version of the chart in figure 9.8. This
smoothing out eliminates much of the noise and allows us to more clearly see the
upward trend.

To compute the rolling average, we use the Data-Forge rollingWindow function. We
first encountered this function in chapter 5, at which time I said I’d explain it later.
Well, now is the time for a better explanation, so let’s understand how this works.

The rollingWindow function moves a data window across the time series one value
at a time. Each window is a group of values on which we may perform a statistics oper-
ation. In this case we’re using average, but we could just as easily use our functions for
sum or standard deviation. The output of the operation performed on each window is
captured, and in the process, we compute a new time series.

Figure 9.10 illustrates the process of computing a rolling average on a series of val-
ues. For ease of illustration, this is a small set of values and the window size is set to four.
The data window starts at the beginning of the time series, and the first set of four values
is averaged to produce the number 9.025 (A).

Renders a line chart of yearly
average temperature

Figure 9.9 Twenty-year rolling average of NYC temperatures for the past 100 years

234 CHAPTER 9 Practical data analysis

The data window is then moved one value forward, and the operation is repeated on
the next four values, producing the number 8.875 (B).

This process continues until the data window reaches the end of the time series,
where it produces the number 3.225 from the last four values (C). We now have a new
time series that is averaged out over time and produces a smoothed chart similar to that
in figure 9.9.

10.6 8.3 10 7.2 10 -6.7 7.8 10.6 -4.4 -1.1

Average

9.025

Output time series

Input time series

The data window

Compute the average
of the values in the
data window.

The result is placed in
the output time series.

10.6 8.3 10 7.2 10 -6.7 7.8 10.6 -4.4 -1.1

Average

9.025

The data window is rolled
along one value at a time.

8.875

10.6 8.3 10 7.2 10 -6.7 7.8 10.6 -4.4 -1.1

Average

9.025

The data window is rolled
all the way until the end.

3.325

A

B

C

8.875 5.125 4.575 5.425 1.825

Figure 9.10 The process of producing a rolling average from a time series

 235Time series

In the following listing, we create a new code module called time-series.js for our
toolkit. We start it with the function rollingAverage that computes a rolling average
from a time series. The period of the average or the length of the data window is passed
in as a parameter.

Listing 9.11 A new toolkit module with the rollingAverage function (toolkit
/time-series.js)

const average = require('./statistics.js').average;

function rollingAverage (series, period) {
 return series.rollingWindow(period)
 .select(window => {
 return [
 window.getIndex().last(),
 average(window.toArray())
];
 })
 .withIndex(pair => pair[0])
 .select(pair => pair[1]);
};

module.exports = {
 computeRollingAverage: computeRollingAverage,
};

Note in listing 9.11 how we reuse the average function that we created earlier.
The following listing shows how we can use our new rollingAverage function to

compute the rolling average temperature for NYC using a period of 20 years. At the
end of listing 9.12, we render a line chart. You can run this code, and it will produce the
chart shown in figure 9.9.

Listing 9.12 Computing a 20-year rolling average of NYC temperature (listing-9.12.js)

const dataForge = require('data-forge');
const renderLineChart = require('./toolkit/charts.js').renderLineChart;
const average = require('./toolkit/statistics.js').average;
const rollingAverage = require('./toolkit/time-series.js').rollingAverage;

// ... summarizeByYear function omitted ...

let dataFrame = dataForge.readFileSync("./data/nyc-weather.csv")
 .parseCSV();

dataFrame = summarizeByYear(dataFrame)
 .setIndex("Year")
 .withSeries("TempMovingAvg", dataFrame => {
 const temperatureSeries = dataFrame.getSeries("AvgTemp");
 return rollingAverage(temperatureSeries, 20)
 });

Computes the rolling
average for a time series

Returns the last index from the period;
this allows the new series to correctly
line up with records in the DataFrame.

Computes the average
for the time period

We need to set an index so that we can
reintegrate the moving average series.

Generates
a rolling
average

series

Extracts the time series
from the DataFrame

Computes 20-year rolling
average of temperature

236 CHAPTER 9 Practical data analysis

const outputChartFile = "./output/nyc-yearly-rolling-average.png";
renderLineChart(
 dataFrame,
 ["Year"],
 ["TempMovingAvg"],
 outputChartFile
) // #E
 .catch(err => {
 console.error(err);
 });

9.7.3 Rolling standard deviation

We can also use Data-Forge’s rollingWindow function to create a rolling standard
deviation.

Assuming we compute a rolling standard deviation over a rolling average of NYC
temperature and then plot it as a line chart, we would end up with the chart similar to
what’s shown in figure 9.11.

This allows us to see how temperatures are fluctuating over time. We’re using stan-
dard deviation as a way to visualize variability or volatility over time. We can see from the
chart that in the 1960s, temperature fluctuations declined and stabilized. Since the start
of the 1970s, temperature variability has been on the rise, and this might indicate that
in the future we can expect more extreme fluctuations in temperature.

If you added a rollingStandardDeviation function to your time series code mod-
ule, it would be similar to the rollingAverage function we created in the last section
but computed with the std function instead of the average function. I’ll leave it as a
reader exercise to create this function if you’d like to plot a chart like figure 9.11.

9.7.4 Linear regression

Using a rolling average isn’t our only option for highlighting trends in a time series.
We can also use linear regression. In addition, with linear regression we can forecast
and predict future data points.

Renders the chart

Figure 9.11 Twenty-year rolling standard deviation of NYC temperatures

 237Time series

We first saw an example of linear regression in chapter 5 when we used Excel’s FORE-
CAST function to forecast a data point into the future. Under the hood, this was using
linear regression, a modeling technique that fits a line to our data set. We can then use
the equation of that line to forecast a trend into the future.

Figure 9.12 shows the yearly temperature in NYC for the past 100 years. We com-
puted and overlaid a linear regression of this chart (the orange line). This makes the
upward trend unambiguous. We forecasted the temperature out to 2100 so that we can
predict how much it might rise by heading into the future.

Creating a linear regression involves complex math that figures out how to best fit a
line to our data points. It’s the toughest math yet in this book. Let’s avoid that and use
a third-party library to do the heavy lifting for us. If you installed dependencies for the
Chapter-9 code repository, you already have simple-statistics installed. If not, you can
install it in a fresh Node.js project as follows:

npm install --save simple-statistics

In listing 9.13, we add a linearRegression function to our time-series.js code
module. This is based on the rollingAverage function that we created earlier in list-
ing 9.12, but instead of computing the average of the data window, we compute the
linear regression using the simple-statistics library.

Listing 9.13 Adding a linear regression function to our time series toolkit (toolkit
/time-series.js)

const statistics = require('./statistics.js');
const average = statistics.average;
const std = statistics.std;
const simpleStatistics = require('simple-statistics');
const dataForge = require('data-forge');

// ... rollingAverage function omitted ...

function linearRegression (series, period,
 forecastIndexA, forecastIndexB) {
 const regressionInput = series.toPairs();
 const regression =
 simpleStatistics.linearRegression(regressionInput);
 const forecaster =
 simpleStatistics.linearRegressionLine(regression);

 return new dataForge.Series({
 values: [forecaster(forecastIndexA), forecaster(forecastIndexB)],
 index: [forecastIndexA, forecastIndexB],
 });
};

module.exports = {
 rollingAverage: rollingAverage,
 linearRegression: linearRegression,
};

Computes a linear regression for a series
and uses it to produce a forecast

Extracts index/value pairs of data. These
are the x and y values that we use as

input to the linear regression.

Creates
the linear

regression

Creates a forecaster that can
predict future values for us

238 CHAPTER 9 Practical data analysis

The following listing shows how we use our new linearRegression function to com-
pute a linear regression from our NYC temperature time series. You should run this
listing to see that it produces the chart from figure 9.12.

Listing 9.14 Computing a linear regression to forecast the temperature in 2100
(listing-9.14.js)

const dataForge = require('data-forge');
const renderLineChart = require('./toolkit/charts.js').renderLineChart;
const linearRegression = require('./toolkit/time-series.js').

linearRegression;

// ... summarizeByYear ommitted ...

let dataFrame = dataForge.readFileSync("./data/nyc-weather.csv")
 .parseCSV();

dataFrame = summarizeByYear(dataFrame)
 .concat(new dataForge.DataFrame([
 {
 Year: 2100
 }
]))
 .setIndex("Year");

const forecastSeries = linearRegression(
 dataFrame.getSeries("AvgTemp"),
 1917,
 2100
);
dataFrame = dataFrame
 .withSeries({
 ForecastYear: new dataForge.Series({

The linear regression
predicts future values
for temperature in NYC.

1917

15

14.5

14

13.5

13

12.5

12

11.5

11

10.5

1928 1939 1950 1961 1972 1983 1994 2005 2016 2100

AvgTemp Forecast

Figure 9.12 Linear regression used to forecast the average temperature for NYC in 2100

Adds in a stub record for forecasted
year; we’ll soon populate this with a
forecasted value.

Indexes by year so we can merge
in the forecasted time series

Computes the linear regression
for the temperature time series

Merges the forecast
into the DataFrame

We must provide this extra series
as a new X axis for the chart.

 239Time series

 values: [1917, 2100],
 index: [1917, 2100],
 }),
 Forecast: forecastSeries,
 });

const outputChartFile = "./output/nyc-yearly-trend-with-forecast.png";
renderLineChart(dataFrame, ["Year", "ForecastYear"], ["AvgTemp", "Forecast"],

outputChartFile)
 .catch(err => {
 console.error(err);
 });

9.7.5 Comparing time series

How do we compare one time series to another? Say that we want to compare the tem-
perature in NYC to LA. We could describe each data set using average and standard
deviation, but what’s more informative when dealing with time series data is to visualize
and compare in a chart.

We could render both time series in a chart, as shown in figure 9.13, but this chart
makes the comparison difficult because of the large vertical gap between the time
series. It would be better if we could make the comparison side by side, although to do
this, we have to find a way to overlay time series so that they’re directly comparable.

MEASURING DIFFERENCE

One way to compare the two time series is to compute the difference between them.
We can then chart the difference, as shown in figure 9.14. This data series fluctuates
wildly, so we might fit a linear regression (the orange line) to more easily see the trend.
This looks like a slight upward trend in the difference between LA and NYC tempera-
tures. What does this mean? It means that LA is getting hotter slightly more quickly
than NYC.

We must provide an index by
year to integrate the new data
points into the DataFrame!

21

20

19

18

17

16

15

14

13

12

11

10

1921 1931 1941 1951 1961 1971 1981 1991

TempLA TempNYC

2001 2011

This large gap between the two data series
makes them difficult to compare when
rendered together in the same chart.

Figure 9.13 Comparing NYC and LA temperature in the same chart

240 CHAPTER 9 Practical data analysis

Listing 9.15 shows how we might add a difference function to our time series code mod-
ule to compute the difference between two time series. This uses Data-Forge’s zip function
to zip together our two-time series. The zip function produces a new series using the func-
tion we provide. The function computes the difference between each value in the series.

Listing 9.15 Adding a difference function to our time series toolkit (toolkit
/time-series.js)

const statistics = require('./statistics.js');
const average = statistics.average;
const std = statistics.std;
const simpleStatistics = require('simple-statistics');
const dataForge = require('data-forge');

// ... rollingAverage and linearRegression functions omitted ...

function difference (seriesA, seriesB) {
 return seriesA.zip(seriesB, (valueA, valueB) => valueA - valueB);
};

module.exports = {
 rollingAverage: rollingAverage,
 linearRegression: linearRegression,
 difference: difference,
};

To put our new difference function to work, we must load two data sets. The code to
compute the chart shown in figure 9.14 is similar to listings 9.12 and 9.14, but we don’t
load only the weather data for NYC; we also load the data for LA. When we have the
two time series loaded, we can use our difference function to compute the difference
between them. As you can see in figure 9.14, I also used our linearRegression func-
tion to produce a linear regression of the difference. I’ll leave this as an exercise for
you to create the code that produces figure 9.14.

Figure 9.14 Measuring the difference between NYC and LA temperatures

Computes the difference
between two series

 241Time series

STANDARDIzING THE DATA POINTS FOR COMPARISON

Assuming that we do want to plot both NYC and LA temperatures in a chart and com-
pare them directly, we must standardize our data.

When I say standardize the data, I mean that we’re bringing both our time series into
a common scale so that they’re directly comparable. The reason we’re doing this for
temperature data (which technically is already in the same scale) is that we don’t care
about the actual temperatures. Instead, we want to compare the year-to-year fluctua-
tions. In statistics speak, we’d say that we’re converting our data to standard scores, also
known as z-values or z-scores.

In figure 9.15 you can see the comparison of NYC and LA temperatures after they’ve
been standardized. I should add that this kind of standardization isn’t only for time
series data, it actually works for any kind of data that we might wish to compare.

How do we standardize our data? It’s simple. We must convert each data point to the
number of standard deviations from the average. We first compute the average and the
standard deviation (we keep coming back to these fundamental statistics tools!). Our
code then visits each data point and subtracts its value from the average. The following
listing shows this in action. If you run this code, it will generate the chart from figure 9.15.

Listing 9.16 Standardizing NYC and LA temperature data for easier comparison
(listing-9.16.js)

const dataForge = require('data-forge');
const renderLineChart = require('./toolkit/charts.js').renderLineChart;
const statistics = require('./toolkit/statistics.js');
const average = statistics.average;
const std = statistics.std;

// ... summarizeByYear function omitted ...

function standardize (dataFrame, seriesName) {
 const series = dataFrame.getSeries(seriesName);
 const values = series.toArray();
 const avg = average(values);
 const standardDeviation = std(values);
 const standardizedSeries = series
 .select(value => (value - avg) / standardDeviation);
 return dataFrame.withSeries(seriesName, standardizedSeries);
};

let nycWeather = dataForge.readFileSync("./data/nyc-weather.csv").parseCSV();
let laWeather = dataForge.readFileSync("./data/la-weather.csv").parseCSV();

nycWeather = summarizeByYear(nycWeather)
 .setIndex("Year");
laWeather = summarizeByYear(laWeather)
 .setIndex("Year");

nycWeather = standardize(nycWeather, "AvgTemp");
laWeather = standardize(laWeather, "AvgTemp");

This is a helper function to
standardize a data set for
comparison against other
data sets.

Transforms the series so that each value
is standard deviations from the mean

Standardizes NYC
temperature data

Standardizes LA
temperature data

242 CHAPTER 9 Practical data analysis

const combinedWeather = laWeather
 .renameSeries({
 AvgTemp: "TempLA",
 })
 .withSeries({
 TempNYC: nycWeather
 .setIndex("Year")
 .getSeries("AvgTemp")
 });

const outputChartFile = "output/standardised-yearly-comparision.png";
renderLineChart(
 combinedWeather,
 ["Year", "Year"],
 ["TempLA", "TempNYC"],
 outputChartFile
)
 .catch(err => {
 console.error(err);
 });

9.7.6 Stacking time series operations

You’ve probably noticed this already, but I’d like to point it out explicitly. The time
series operations we’ve created so far (rolling average, rolling standard deviation,
linear regression, and difference) can all be stacked up like normal mathematical
operations.

You’ve already seen in section 9.7.5 where we computed the difference between NYC
and LA temperatures and then stacked a linear regression on top of that. We can apply
the operations in almost any order that we want or at least any order that makes sense
and suits our purpose.

For instance, we might produce a rolling average from NYC temperature and
then layer a linear regression on top of that, or we might create a rolling standard
deviation and stack a moving average on top of that. We can mix and match these
operations as we need, depending on the understanding that we’re trying to extract
from our data.

Figure 9.15 Comparing standardized NYC and LA temperatures

 243Understanding relationships

9.8 Understanding relationships
Say we have two data variables and we suspect a relationship between them. We can
use a scatter plot chart to help us identify the relationship. Looking at the scatter plot,
perhaps you’ll notice that when one variable goes up, the other also goes up and vice
versa. In statistics, this is called correlation.

Staying with the weather theme, let’s say we want to see if there’s a relationship
between rainfall and umbrella sales. Now as you might imagine, it’s difficult to find data
on umbrella sales, so I’ve synthesized data (using custom JavaScript code) so that I can
show you what correlated data looks like. If your business is being an umbrella salesper-
son in New York’s Central Park, then you might want to use this technique to determine
how the amount of rainfall affects your sales!

9.8.1 Detecting correlation with a scatter plot

Figure 9.16 is a scatter plot chart of umbrella sales versus rainfall. The Y axis shows the
number of umbrellas that were sold. The X axis shows the amount of rainfall (in mm).
You can see that the data points are scattered in a noticeable band from bottom left
to top right. The points aren’t particularly evenly distributed, but you can easily see
that they’re more or less arranged in a line that’s pointing diagonally up and to the
right. From this, we can infer a kind of positive relationship or correlation between the
amount of rainfall and the number of umbrellas that we’ll sell on any given day.

9.8.2 Types of correlation

Figure 9.16 shows a level of positive correlation between rainfall and umbrella sales.
A positive correlation means that as one variable increases, the other does as well. We
might also have seen a negative correlation or no correlation, as shown in figure 9.17.

Figure 9.16 Scatter
plot of rainfall vs
umbrella sales

244 CHAPTER 9 Practical data analysis

When we’ve seen a relationship between two variables in this way, we can use it to pre-
dict future values. We’d do this by computing a linear regression with our two data
series as input. This gives us the ability to forecast one value based on the other.

Such forecasting is limited by the strength of the correlation. If your data points are
scattered close to your linear regression line, then the correlation is high, and your
forecasting ability will be good. When the data points are scattered further apart, this
reduces the predictive ability of the linear regression.

9.8.3 Determining the strength of the correlation

We don’t have to rely on our visual judgment to determine the strength of the cor-
relation between two variables. We can quantify the amount and type of correlation
using the correlation coefficient, which is a numerical measure of correlation. The values of
the correlation coefficient range from –1 to +1, with –1 indicating a perfect negative
correlation and +1 indicating a perfect positive correlation. This forms the spectrum
shown in figure 9.18. Negative correlation is on the left, positive on the right, and no
correlation is in the middle.

The correlation coefficient for rainfall versus umbrella sales turns out to be around
0.64. Figure 9.18 shows that this value fits in the spectrum under the category of strong
positive correlation.

No correlationPositive correlation Negative correlation

Figure 9.17 Comparing positive, negative, and no correlation

Perfect
negative

correlation

-1

Perfect
positive

correlation

+1

No
correlation

0-0.5 +0.5

Weak or no correlationStrong negative correlation Strong positive correlation

The correlation coefficient for
rainfall vs umbrella sales

Figure 9.18 The correlation coefficient for rainfall vs umbrella sales on the spectrum of possible values

 245Understanding relationships

In this case, it’s obvious that more rainfall causes more people to buy umbrellas. We’d
like to say this is a causal relationship, but we can’t know that for sure! This should make
us think of the popular saying “correlation doesn’t imply causation.”

What does that mean? When we see strong correlation between two data variables,
we’re enticed to think that one data variable causes the other, but correlation doesn’t
work this way. In this example, it seems obvious that the variables are causally linked
(well, at least I synthesized the data so it would look that way). Although in other cases it
won’t be so clear cut and you shouldn’t assume that one variable causes the other, it’s
entirely possible that another as yet undiscovered variable is the causal variable and
is responsible for the relationship between the two variables under examination. For
example, it might be the forecasted news of the rainfall that drives up umbrella sales,
and then the rain comes later! I bet you hadn’t thought of that.

9.8.4 Computing the correlation coefficient

You have various ways to compute the correlation coefficient, and in each case the
math is rather complicated. Fortunately, we already have the simple-statistics code
module, and it has a convenient sampleCorrelation function ready for us to use. The
following listing shows how we can use this function to compute the correlation coeffi-
cient for rainfall versus umbrella sales since 2013.

Listing 9.17 Computing the correlation coefficient for rainfall vs umbrella sales since
2013 (listing-9.17.js)

const dataForge = require('data-forge');
const simpleStatistics = require('simple-statistics');

let dataFrame = dataForge.readFileSync("./data/nyc-weather.csv")
 .parseCSV()
 .parseInts(["Year", "Month", "Day"])
 .where(row => row.Year >= 2013)
 .parseFloats("Precipitation")
 .generateSeries({
 Date: row => new Date(row.Year, row.Month-1, row.Day),
 })
 .setIndex("Date");

const umbrellaSalesData = dataForge
 .readFileSync("./data/nyc-umbrella-sales.csv")
 .parseCSV()
 .parseDates("Date", "DD/MM/YYYY") //
 .parseFloats("Sales")
 .setIndex("Date");

dataFrame = dataFrame

Loads and parses
weather data

Removes all records
prior to 2013

Generates a
date from
year, month,
and day
columns

Indexes by date so that we
can merge our data

Loads and parses
umbrella sales data

Indexes by date so that
we can merge our data

246 CHAPTER 9 Practical data analysis

 .withSeries(
 "UmbrellaSales",
 umbrellaSalesData.getSeries("Sales")
)
 .where(row => row.Precipitation !== undefined
 && row.UmbrellaSales !== undefined);

const x = dataFrame.getSeries("Precipitation").toArray();
const y = dataFrame.getSeries("UmbrellaSales").toArray();
const correlationCoefficient = simpleStatistics
 .sampleCorrelation(x, y);
console.log(correlationCoefficient);

You can run listing 9.17, and it will print a correlation coefficient of around 0.64, which
should meet our expectations after having visually studied the scatter plot chart in
figure 9.16. We expected a strong positive correlation, but not a perfect correlation.
We’ve quantified the relationship between rainfall and umbrella sales.

You now have various tools at your disposal for analyzing your data. You can find
trends and patterns, compare your data sets, and make predictions about future data
points.

In this chapter, we used specially prepared functions to create our charts. In the com-
ing chapters 10 and 11, we’ll take a step back and learn how to create such charts both
in the browser (chapter 10) and on the server side (chapter 11).

Summary

¡	You learned about fundamental statistics operations: sum, average, and standard
deviation.

¡	You discovered how to group and summarize a data set to boil it down and make
it easier to understand.

¡	We discussed how to compare data sets using standardization, differences, and
the distribution of values.

¡	You learned how to make predictions about new values using a distribution.
¡	We explored analysis of time series data using rolling average, rolling standard

deviation, and linear regression.
¡	You learned that you can quantify the relationship of two data variables using the

correlation coefficient.

Merges umbrella sales into
the DataFrame. This ensures
that our dates line up.

Drops rows with missing values.
Rows in the CSV file may not line up.

Extracts x values
for the correlation
coefficient

Extracts y values for the
correlation coefficient

Computes the correlation coefficient
Prints to console to see the result

247

10Browser-based
visualization

This chapter covers
¡	Using C3 for browser-based visualization

¡	Understanding various charts: line, bar, pie,
and scatter plot

¡	Building a chart template so that you can start
new projects quickly

¡	Prototyping charts quickly

¡	Creating a simple web server and REST API to
serve data to your visualization

¡	Adding various visual and interactive
improvements to your charts

Now we come to the aspect of data wrangling for which JavaScript is best known!
JavaScript in the web browser is the place to host interactive visualizations.

Through visualization we’ll bring our data out into the light for all to see. It’s the way
we can better understand our data. Seeing the data in this way can deliver the infor-
mation more effectively to our brains than we could ever hope to achieve by looking
at the raw numbers.

248 CHAPTER 10 Browser-based visualization

Visualization is the way we communicate information about our data to our audi-
ence, whoever they might be; it allows the transfer of knowledge and understanding.
We can easily identify and point out interesting trends, patterns, or data points.

In chapter 9 we analyzed our data, and while doing so, we looked at multiple charts.
In this chapter, let’s take a step back and learn how we can create charts like this for
ourselves.

We’ll use the C3 visualization library and create a series of simple working web apps
that each contain a chart. We’ll start with a line chart of yearly temperatures from New
York City. We’ll work through various improvements to our first chart before trying
other chart types.

10.1 Expanding your toolkit
The main tool we’ll use in this chapter is the C3 visualization library. JavaScript has
many visualization libraries, so why did I choose C3 for this chapter?

Well, we have to start somewhere, and C3 is a convenient and easy place to start. Most
simple charts are declarative (they can often be declared with a chart definition speci-
fied in a JSON file) although we also have the power of using code when we need it. C3
gives us interactivity right out of the box, and we can even make simple animated charts.

C3 is widely used, has strong support in the community, and is under constant devel-
opment and refinement. But no library is perfect, and C3 has its limitations. We’ll find
its restrictions when we move beyond simple charts; however, I believe that C3’s ease of
use and ability to quickly prototype simple charts make it a great addition to our toolkit.

Another good reason to choose C3 is that it’s based on D3, which, as you may well
know, is the preeminent visualization toolkit for JavaScript. But if D3 is so good, why
then choose C3 over it?

D3 is an advanced toolkit for developing dynamic and interactive visualizations for
the web; we’ll learn more about it in chapter 13. D3 is great, but on the downside it’s
also complex and has a steep learning curve. C3 is a simplified wrapper over D3 and is
much easier to use when creating the common types of charts. C3 gives us a bunch of
template charts that we can configure, but with the power of D3 under the hood.

I note D3 not only because of its importance in the JavaScript visualization com-
munity. You also need to know that when you reach the limits of C3 you can then
start customizing your charts using the D3 API. This leads to a whole other level of
complexity, but it does give us a way to move forward when we reach the limits of C3,
and in this way we can view C3 as a stepping stone toward full D3, assuming that’s what
you’re aiming for.

10.2 Getting the code and data
The code and data for this chapter are available in the Data Wrangling with JavaScript
Chapter-10 repository in GitHub at https://github.com/data-wrangling-with-javascript
/chapter-10. Each subdirectory in the repository corresponds to a code listing in this
chapter and contains a complete and working browser-based visualization.

https://github.com/data-wrangling-with-javascript/chapter-10
https://github.com/data-wrangling-with-javascript/chapter-10

 249Choosing a chart type

These examples can be run using live-server as your web server. Install live-server
globally as follows:

npm install -g live-server

You may now use live-server to run listings 10.1 to 10.3, for example (also installing
dependencies):

cd Chapter-10/listing-10.1
bower install
live-server

Live-server conveniently opens a browser to the correct URL, so you should immediately
see your visualization onscreen.

The later code examples in this chapter include a Node.js–based web server, so you
must use both npm and Bower to install dependencies, for example:

cd Chapter-10/listing-10.4
npm install
cd public
bower install

You must run the Node.js app to start the web server for listing 10.4 and on as follows:

cd Chapter-10/listing-10.4
node index.js

You can now open your browser to the URL http://localhost:3000 to view your visual-
ization. Refer to “Getting the code and data” in chapter 2 for help on getting the code
and data.

10.3 Choosing a chart type
When starting a visualization, we must first choose a chart type. In this chapter, we’ll
cover the chart types shown in figure 10.1. Table 10.1 lists the chart types along with a
brief explanation of the best use of each type of chart.

Table 10.1 Chart types and their uses

Chart Type Uses Example

Line chart Time series data or continuous data set NYC yearly temperature

Bar chart Comparing groups of data to each other NYC monthly temperature

Analyzing distributions of data (also
known as a histogram)

Understanding the distribution of tem-
peratures in NYC

Stacked bar chart Comparing groups to the whole, but as
a time series (kind of like an ongoing
pie chart)

Comparing monthly temperatures
between NYC and LA

Pie chart Comparing groups to the whole, but only
a snapshot in time

Comparing the monthly temperatures
in 2016

Scatter plot Understanding the relationship and
correlation between data variables

Understanding the relationship between
rainfall and umbrella sales

250 Chapter 10 Browser-based visualization

To get started, we have to pick one type of chart. We’ll start with a line chart because
that’s one of the most common charts, and it also happens to be the default for C3
when you don’t choose any particular type of chart.

10.4 Line chart for New York City temperature
We’re going to start with C3 by learning how to construct a line chart. We’ll first create
a simple chart template with hard-coded data and use live-server so that we can proto-
type our chart without having to first build a web server.

We’ll then add in a CSV data file so that we’re rendering our chart from real data.
Ultimately, we’ll work up to building a simple web server that delivers the data to our
web app for rendering in the chart. Figure 10.2 shows what you can expect from the
end product: a line chart of the yearly average temperature in New York City. You might
remember this chart from chapter 9.

Figure 10.2 A line chart showing yearly average temperature for New York City

Figure 10.1 The types of charts we'll
create in chapter 10

 251Line chart for New York City temperature

Even though we’re starting our visualization journey with a line chart, it’s easy to con-
vert to almost any other chart type. Indeed, C3 has a facility that allows us to create
an animated transition from one chart type to another. For example, we could do an
animated transition from the line chart to a bar chart. But let’s not get ahead of our-
selves; we need to start with the basics, and then later in the chapter we’ll learn more
about the advanced features.

10.4.1 The most basic C3 line chart

When I start work on a project, I like to start as simply as possible. As you’ve learned
from other chapters, my philosophy on coding is to start small, get it to work, then
evolve and refine it through incremental changes, all the while keeping it working. I
like to take my code through an evolution toward my end goal. On the way, I take it
through a series of transitions from working state to working state so that I keep the
code working and problems aren’t allowed to accumulate.

We’re going to start our web-based visualization with a simple web app. We’ll use
static web assets and hard-coded data so that we don’t have to build a custom web server.
Instead, we’ll use live-server as our off-the-shelf web server (live-server was first intro-
duced in chapter 5). We can install live-server globally on our system as follows:

npm install -g live-server

Now we can run live-server from the command line in the same directory as our web
project, and we’ll have an instant web server. To see this in action, open a command
prompt, change directory to the listing-10.1 subdirectory in the GitHub repo for this
chapter, install dependencies, and then run live-server as follows:

> cd Chapter-10/listing-10.1
> bower install
> live-server

Live-server automatically opens a web browser, so we should now see our first C3 chart
rendered as shown in figure 10.3. You can follow this same pattern for each of the
code listings up to listing 10.4 (where we abandon live-server and create our own web
server). Change the directory to the appropriate subdirectory for the code listing and
run the live-server command (making sure you install dependencies the first time
you run each listing).

Our web app project is composed of an HTML file (index.html), a JavaScript file
(app.js), and a collection of third-party components installed through Bower. You can
see what the file system for this project looks like on the left-hand side of figure 10.4.

When we run live-server in the same directory as our project, it connects the web
browser to our web project, and what we’re looking at is index.html rendered in the
browser after the JavaScript has executed and rendered our chart (as represented on
the right-hand side of figure 10.4).

Listings 10.1a and 10.1b show the HTML and JavaScript files for our first C3 chart.
If you haven’t already, please run live-server for listing 10.1 so you can see the results of
the code later. Don’t forget to first install the Bower dependencies.

252 CHAPTER 10 Browser-based visualization

Listing 10.1a The HTML file for our C3 chart template (listing-10.1/index.html)

<!doctype html>
<html lang="en">
 <head>
 <title>C3 chart template</title>

 <link href="bower_components/c3/c3.css" rel="stylesheet">
 </head>
 <body>
 <div id='chart'></div>

 <script src="bower_components/jquery/dist/jquery.js"></script>
 <script src="bower_components/d3/d3.js"></script>
 <script src="bower_components/c3/c3.js"></script>
 <script src="app.js"></script>
 </body>
</html>

Listing 10.1a is a minimal HTML file for our C3 chart. It includes CSS and JavaScript
files for C3. It includes jQuery so that we can have a callback when the document is

Includes the C3 CSS file for styling

The placeholder for the chart;
C3 will render our chart here. Includes jQuery for its

AJAX capabilities and
other useful features

Includes D3
JavaScript
file; C3
depends
on this.

Includes C3 JavaScript
file so that we can
use C3 charts

Includes our own custom JavaScript file;
this is where we define our chart.

Figure 10.3 The most basic possible C3 chart; we’ll use this as our template chart.

Our web assets: HTML,
JavaScript, and CSS

The file system

Live-server

Live-server acts as our web
server and makes our web
assets available in the browser.

The web browser

Figure 10.4 Live-server is our web server while prototyping.

 253Line chart for New York City temperature

loaded and for its AJAX capabilities. It also includes the JavaScript file for D3 because
C3 depends on that. Finally, it includes our own custom JavaScript file that is presented
in the following listing.

Listing 10.1b The JavaScript file for our C3 chart template (listing-10.1/app.js)

$(function () {

 var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: {
 "my-data": [30, 200, 100, 400, 150, 250],
 }
 }
 });
});

Listing 10.1b is the JavaScript file that creates our first C3 chart. It initializes the
chart after jQuery invokes our document ready callback. The chart is created by the call
to c3.generate. We pass our chart definition as a parameter. Note that we supplied the
chart with simple hard-coded data using the json field of the chart definition.

We use such simple data here as a starting point to check that our basic chart works,
but for our next step let’s get real data in there.

To sum up, this is what we’ve done:

¡	We created a simple web app containing the most basic C3 chart.
¡	We used hard-coded data to get started.
¡	We used live-server as our web server and viewed our basic chart in the browser.

10.4.2 Adding real data

Now we’re going to introduce real data into our chart. We’ll read the data from a CSV
data file that we’ll put in our web project. Figure 10.5 is a screenshot of our data file
loaded in Excel; it includes the yearly average temperatures for New York City. You
can find this data in the file data.csv in the listing-10.2 subdirectory of the Chapter-10
GitHub repo.

Invokes this callback when
the web page has loaded

Uses C3
to generate
the chart

Specifies the
element in the
HTML document
where C3 will
render the chart.
You can change
this if you want to
render your chart
to a different
HTML element.

Specifies the data to render in the chart

We’re using a hard-coded data series
to quickly see that the chart works.

Figure 10.5 NYC yearly
temperature CSV file

254 CHAPTER 10 Browser-based visualization

After we plug our new CSV data file into our C3 chart and refresh the browser, we’ll
see a line chart that looks like figure 10.6.

We’re going to load our data from data.csv. We’ve placed this file in our web project
next to our web assets, as you can see on the left-hand side of figure 10.7. I’ve given this
file the generic data.csv filename to make it easier for you to use this code as a template
for your own visualizations. In a bigger project that might have multiple data files, we’d
probably want to give them more specific names—for example, NYC_yearly_tempera-
tures.csv.

Even though we’re using real data now, we still don’t need a web server. This is
because live-server gives us access to the file system of our web project. We use jQuery’s
AJAX API to retrieve our CSV data file using an asynchronous HTTP transfer.

10.4.3 Parsing the static CSV file

Getting the data is only part of the problem. The data we get back through live-server
and jQuery is text data, and our simple visualization doesn’t yet have the capability to
understand our CSV data. However, we’ve already learned the tools we need!

We’ll use Papa Parse again here, which we first used way back in chapter 3. Papa
Parse also works in the browser. If you followed the instructions in “Getting the code

Figure 10.6 NYC average yearly temperature rendered from a static CSV file

Live-server

The web browser

We can simply add static
CSV files to our project, and
they will be available for
visualization in the browser
through live-server.

The file system

Our web assets: HTML,
JavaScript, and CSS

Figure 10.7 We add data file data.csv to our web project, and we can render a chart from it in
the browser.

 255Line chart for New York City temperature

and data” and you’ve installed dependencies for the listing-10.2 subdirectory of the
GitHub repo, you already have Papa Parse installed; otherwise, you can install it in a
fresh web project as follows:

bower install --save papaparse

Listing 10.2a shows an updated HTML file. We’ve included Papa Parse’s JavaScript file
so that we can use it to deserialize our CSV data. Note that we’ve also updated the title
of the web page; that’s a small visual improvement to our web page.

Listing 10.2a HTML file for our chart of NYC average yearly temperature (listing-10.2
/index.html)

<!doctype html>
<html lang="en">
 <head>
 <title>NYC average yearly temperature</title>

 <link href="bower_components/c3/c3.css" rel="stylesheet">
 </head>
 <body>
 <div id='chart'></div>

 <script src="bower_components/jquery/dist/jquery.js"></script>
 <script src="bower_components/d3/d3.js"></script>
 <script src="bower_components/c3/c3.js"></script>
 <script src="bower_components/papaparse/papaparse.js"></script>
 <script src="app.js"></script>
 </body>
</html>

The changes to the JavaScript file in listing 10.2b are more substantial. We’re now using
jQuery’s $.get function to get our data from the web server (in this example that’s still
live-server). This creates an HTTP GET request to live-server that is resolved asynchro-
nously and eventually triggers our then callback when the data has been fetched (or
otherwise calls the error handler if something went wrong).

Once the data is retrieved, we deserialize it from CSV data to a JavaScript array using
Papa Parse. We now have the data in our core data representation (read chapter 3 for a
refresher on that), and we can plug the data into our chart using the json field in the
chart definition. Because we have the data in the core data representation, any of our
reusable JavaScript modules for transforming such data could potentially be reused here.

Listing 10.2b Retrieving CSV data to render to the C3 chart (listing-10.2/app.js)

$(function () {

 $.get("data.csv")
 .then(function (response) {
 var parseOptions = {
 header: true,

Let's set a nice title for our web page.

Now we include Papa Parse so
that we can parse CSV data.

Uses HTTP GET (via live-server) to retrieve data
from the static CSV file that we included with
our web assets

Executes the
callback when

data is
asynchronously

received
These are the options
given to Papa Parse.

Allows Papa Parse
to derive field
names from the
CSV header line

256 CHAPTER 10 Browser-based visualization

 dynamicTyping: true
 };
 var parsed = Papa.parse(response, parseOptions);

 var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: parsed.data,
 keys: {
 value: [
 "AvgTemp"
]
 }
 }
 });
 })
 .catch(function (err) {
 console.error(err);
 });

});

Did you notice that the chart definition between listings 10.1b and 10.2b barely
changed? In 10.2b we plugged in the real data that was retrieved from our CSV data
file. The other change we made was to use the keys and value fields of the chart defi-
nition to specify the column from the CSV file to render in the line chart. A CSV file
may contain many columns, but we don’t necessarily want them all to appear in our
chart, so we restrict the chart to the column or columns we care about.

We’ve now added some real data to our chart. We added our CSV data file to our web
project and relied on live-server to deliver the data to the browser where it was rendered
to the chart.

I chose to use CSV here because it’s a common format for data like this. We might
also have used a JSON file and that would have saved us effort because then we wouldn’t
have needed Papa Parse to deserialize the data.

10.4.4 Adding years as the X axis

If you take another look at figure 10.6, you will notice that the labels on the X axis indi-
cate sequential numbers starting at 0. This is supposed to be a chart of yearly average
temperature, so how does the X axis in figure 10.6 relate to the year of each record?

The problem is that we didn’t explicitly tell C3 which column in the CSV file to use
as the values for the X axis, so C3 defaulted to using a zero-based index for each data
point. Look again at figure 10.5, and you can see a Year column that’s clearly an obvious
candidate for the X axis; however, C3 has no way of knowing these are the correct values
for the X axis!

We need to tell C3 to use the Year column for the X axis in our chart. When C3 knows
this, it will now render the chart shown in figure 10.8. Notice now that the labels along
the X axis show the correct years for the data points on the Y axis.

Tells Papa
Parse to parse
CSV string
fields to the
correct types
for us

Parses the CSV
data retrieved

from live-serverGenerates our chart

Plugs the parsed CSV data into the chart

Specifies the column from the
CSV file to appear in the chart

Handles any error that might have occurred

Figure 10.8 NYC
average yearly
temperature now
using the year as
the X axis

 257Line chart for New York City temperature

We use the keys and x fields of the chart definition to set the data for our X axis.
Note that listing 10.3 is similar to what’s shown in listing 10.2b, but we’ve set the x field
to Year. Now C3 extracts the Year field from the data for use as the X axis.

Listing 10.3 Adding an X axis to the NYC temperature chart (extract from
listing-10.3/app.js)

var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: parsed.data,
 keys: {
 x: "Year",
 value: [
 "AvgTemp"
]
 }
 }
});

Now we’ve prototyped a line chart within a simple web app. We’ve used live-server so
that we didn’t have to create a web server. We started with hard-coded data, and then
we upgraded it to read data from a CSV file. We haven’t yet seen any need to create a
custom web server. As you can see, we can go a long way in our prototyping and devel-
opment before we need to invest the time to build a custom Node.js web server.

You might even find that you don’t need to build a Node.js web server at all. I’m not
saying you should use live-server to host a public website or visualization—you’d have
production issues with that—but you could take any off-the-shelf web server (for exam-
ple, Apache or nginx) and use it to host a public visualization such as we’ve produced so
far in this chapter.

Maybe you’re creating a visualization that’s for yourself and not for public consump-
tion? For example, you want to improve your own understanding of a data set or to take
a screenshot to save for later. When you create a visualization that isn’t public-facing,
you won’t require a production web server. We’ll have many times, however, when we’ll
want to build our own custom web server, and it’s not particularly difficult, so let’s now
learn how to do that.

Specifies the CSV file column
to use as the X axis

 dynamicTyping: true
 };
 var parsed = Papa.parse(response, parseOptions);

 var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: parsed.data,
 keys: {
 value: [
 "AvgTemp"
]
 }
 }
 });
 })
 .catch(function (err) {
 console.error(err);
 });

});

Did you notice that the chart definition between listings 10.1b and 10.2b barely
changed? In 10.2b we plugged in the real data that was retrieved from our CSV data
file. The other change we made was to use the keys and value fields of the chart defi-
nition to specify the column from the CSV file to render in the line chart. A CSV file
may contain many columns, but we don’t necessarily want them all to appear in our
chart, so we restrict the chart to the column or columns we care about.

We’ve now added some real data to our chart. We added our CSV data file to our web
project and relied on live-server to deliver the data to the browser where it was rendered
to the chart.

I chose to use CSV here because it’s a common format for data like this. We might
also have used a JSON file and that would have saved us effort because then we wouldn’t
have needed Papa Parse to deserialize the data.

10.4.4 Adding years as the X axis

If you take another look at figure 10.6, you will notice that the labels on the X axis indi-
cate sequential numbers starting at 0. This is supposed to be a chart of yearly average
temperature, so how does the X axis in figure 10.6 relate to the year of each record?

The problem is that we didn’t explicitly tell C3 which column in the CSV file to use
as the values for the X axis, so C3 defaulted to using a zero-based index for each data
point. Look again at figure 10.5, and you can see a Year column that’s clearly an obvious
candidate for the X axis; however, C3 has no way of knowing these are the correct values
for the X axis!

We need to tell C3 to use the Year column for the X axis in our chart. When C3 knows
this, it will now render the chart shown in figure 10.8. Notice now that the labels along
the X axis show the correct years for the data points on the Y axis.

Tells Papa
Parse to parse
CSV string
fields to the
correct types
for us

Parses the CSV
data retrieved

from live-serverGenerates our chart

Plugs the parsed CSV data into the chart

Specifies the column from the
CSV file to appear in the chart

Handles any error that might have occurred

Figure 10.8 NYC
average yearly
temperature now
using the year as
the X axis

258 CHAPTER 10 Browser-based visualization

10.4.5 Creating a custom Node.js web server

Although creating our own web server in Node.js isn’t strictly necessary for any of the
visualizations in this chapter, it’s handy for a variety of reasons. In this section, we’ll
expand on what we learned back in chapter 2 and build a simple web server and REST
API that can host both our web app and the data it needs.

Each code listing that we’ve seen so far in this chapter (listings 10.1 to 10.3) has been
a simple web project with static assets delivered to the browser through live-server. Now
we’re going to move our web project into the context of a Node.js project that’s the web
server that hosts the visualization.

We move our web project to the public subdirectory in the new Node.js project that’s
shown on the left-hand side of figure 10.9. Also notice the data subdirectory. We’re still
going to use a CSV data file, but we’ve moved it from the web project to the data sub-
directory. This is a convenient location where we can organize our data.

When we run the Node.js project, it will create a web server to host our web app and
a REST API that delivers the data to it. Our web server now becomes the middleman
between the server-side file system and the web app running in the browser (as shown in
figure 10.9). What you should understand from this is that our data is no longer directly
accessible to the public; we’re now forcing access to our data to go through our REST
API. Because of this, we have the potential to control access to the data in whatever way
we need. We’ll revisit this idea again soon.

Listing 10.4a shows the Node.js code for a simple web server, which does two things:

1 Exposes the public subdirectory as static web assets. This allows the web app to be
served to the web browser (similar to what live-server did).

2 Creates a REST API that delivers our data to the web app.

You can run this script now like any other Node.js app. Open a command line, install
npm and Bower dependencies, and then run the Node.js script:

> cd Chapter-10/listing-10.4
> npm install
> cd public
> bower install
> cd ..
> node index.js

The web browserThe web serverThe file system The REST API

Our Node.js project REST APIOur Node.js web
server

Our browser-based
web app interacts
with our web server
via the REST API.

We are still serving
data.csv, but now it is
contained within the
subdirectory in our Node.js
project and is not part
of the public

data

web assets.

Figure 10.9 After adding our Node.js web server and REST API, we take full control of how data is
accessed from the browser.

 259Line chart for New York City temperature

Note that you might also want to use nodemon for live reload of the Node.js project;
please refer to chapter 5 for details on that. Here we’re using the express library for
our web server. You may have installed that in the example project already with npm
install, or you can install it in a fresh Node.js project using the command:

npm install --save express.

Now open your web browser and enter http://localhost:3000 into the address bar. You
should see a line chart of NYC yearly temperature. Please take note of the steps you fol-
lowed; this is how you’ll run all subsequent code listings in the chapter. The following
listing starts our web server.

Listing 10.4a Node.js web server to host our web app (listing-10.4/index.js)

const express = require('express');
const path = require('path');
const importCsvFile = require('./toolkit/importCsvFile.js');

const app = express();

const staticFilesPath = path.join(__dirname, "public");
const staticFilesMiddleWare = express.static(staticFilesPath); //
app.use("/", staticFilesMiddleWare);

app.get("/rest/data", (request, response) => {

 importCsvFile("./data/data.csv")
 .then(data => {
 response.json(data);
 })
 .catch(err => {
 console.error(err);

 response.sendStatus(500);
 });
});

app.listen(3000, () => {
 console.log("Web server listening on port 3000!");
});

Note in listing 10.4a that we’re using the importCsvFile toolkit function that we created
in chapter 3. You’ll find that your most useful toolkit functions will be used time and
again. This is the definition of a good reusable function!

We also now have a REST API. In listing 10.4a we attached an HTTP GET request
handler to the URL /rest/data. We could have made this URL whatever we wanted,
and we could have called it something more specific such as /rest/nyc-temperature,
but in the interest of reusing this code listing as a template for your own visualizations,
I’ve chosen to have a more generic name for the URL.

Makes our public subdirectory
accessible using HTTP

Sets up an HTTP GET request handler
that serves our data to the web app

Loads the CSV file from the server's file system

Sends the content of the CSV file
(as JSON) to the web app

Lets the web app know
that an error has occurred

Starts our web server!

260 CHAPTER 10 Browser-based visualization

We can test that our REST API works with our browser. Enter http://localhost:300
/rest/data into your browser’s address bar, and you should see something similar to fig-
ure 10.10. This is what the data looks like when I view it in the browser (using Chrome
with nice formatting provided by the JSON Viewer plugin).

To connect our web app to the REST API, we must change how it loads the data.
Instead of loading the data from a static CSV data file (as we did in listing 10.2b), we
now load it from the REST API as shown in listing 10.4b. Note that in both cases we’re
still doing an HTTP GET request to the web server through jQuery’s $.get function,
but now we’re using the URL of our new REST API rather than the URL of the CSV file.

In addition to the change in how the data is loaded, you’ll see another difference
between listings 10.2b and 10.4b. We no longer need Papa Parse! We’re sending our data
from server to web app in the JSON data format. jQuery $.get automatically deserializes
the JSON data to a JavaScript data structure (the core data representation; see chapter 3).
This simplifies the code for our web app, and it’s always nice when that happens.

Listing 10.4b The web app gets data from the REST API (extract from listing-10.4/
public/app.js)

$.get("/rest/data")
 .then(function (data) {
 var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: data,
 keys: {
 x: "Year",
 value: [
 "AvgTemp"
]
 },
 type: "line"
 }
 });
 })

Why is it important to create our own web server and REST API? Well, I’ve already
mentioned that it gives us the ability to control access to our data. To take this web app
to production, we probably need a form of authentication. If our data is sensitive, we
don’t want anyone to access it—we should make them log in before they can see data
like that. We’ll talk more about authentication again in chapter 14.

Other important benefits exist for creating our own web server. One primary reason
is so that we can create visualizations from data in a database. Figure 10.11 shows how
we can put a database behind our web server (instead of CSV files in the file system).
We can also use our REST API to dynamically process our data (retrieved from either
database or files) before it’s sent to the web browser. Having a REST API is also useful in
situations when we’re working with live data; that’s data that is fed into our pipeline in
real time, an idea we’ll revisit in much detail in chapter 12.

Figure 10.10 Browsing our temperature data REST API
in the browser

Retrieves the data via our REST API

Generates the chart the same as before

Sets the type of the chart; “line” is the
default value, so it’s unnecessary in this
case, but I've added it so you know what
you need to change when we later
change the chart type.

REST APIOur Node.js web server

The padlock indicates the
authentication we would
need to add to our REST API
to prevent unauthorized
access to our data.

We have moved our data to a
database. The job of the web
server and REST API now is to
be a secure gateway to our data.

The web serverThe database The REST API The web browser

Figure 10.11 Our data in a database with the web server as a secure gateway

 261Line chart for New York City temperature

As a parting note on REST APIs, please remember that it’s not always necessary to
create a web server. In fact, I recommend that you go as far as you can prototyping your
visualization before adding the extra complexity. Extra complexity slows you down. For
the rest of this chapter, we don’t need the REST API, but I wanted to make sure that
you’re ready to go with it because it’s commonplace to develop visualizations based on a
database. And for that, you do need the REST API.

We’ve now created a web server and a REST API to serve our web app and feed it with
data. You could say this is now a completed browser-based visualization. Although we still
need to explore other types of charts, first let’s make improvements to our line chart.

10.4.6 Adding another series to the chart

Let’s make upgrades and improvements to our chart. To start, we’ll add another data
series to the chart to compare temperature between New York City and Los Angeles,
similar to what we saw in chapter 9. The resulting chart is shown in figure 10.12.

We can test that our REST API works with our browser. Enter http://localhost:300
/rest/data into your browser’s address bar, and you should see something similar to fig-
ure 10.10. This is what the data looks like when I view it in the browser (using Chrome
with nice formatting provided by the JSON Viewer plugin).

To connect our web app to the REST API, we must change how it loads the data.
Instead of loading the data from a static CSV data file (as we did in listing 10.2b), we
now load it from the REST API as shown in listing 10.4b. Note that in both cases we’re
still doing an HTTP GET request to the web server through jQuery’s $.get function,
but now we’re using the URL of our new REST API rather than the URL of the CSV file.

In addition to the change in how the data is loaded, you’ll see another difference
between listings 10.2b and 10.4b. We no longer need Papa Parse! We’re sending our data
from server to web app in the JSON data format. jQuery $.get automatically deserializes
the JSON data to a JavaScript data structure (the core data representation; see chapter 3).
This simplifies the code for our web app, and it’s always nice when that happens.

Listing 10.4b The web app gets data from the REST API (extract from listing-10.4/
public/app.js)

$.get("/rest/data")
 .then(function (data) {
 var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: data,
 keys: {
 x: "Year",
 value: [
 "AvgTemp"
]
 },
 type: "line"
 }
 });
 })

Why is it important to create our own web server and REST API? Well, I’ve already
mentioned that it gives us the ability to control access to our data. To take this web app
to production, we probably need a form of authentication. If our data is sensitive, we
don’t want anyone to access it—we should make them log in before they can see data
like that. We’ll talk more about authentication again in chapter 14.

Other important benefits exist for creating our own web server. One primary reason
is so that we can create visualizations from data in a database. Figure 10.11 shows how
we can put a database behind our web server (instead of CSV files in the file system).
We can also use our REST API to dynamically process our data (retrieved from either
database or files) before it’s sent to the web browser. Having a REST API is also useful in
situations when we’re working with live data; that’s data that is fed into our pipeline in
real time, an idea we’ll revisit in much detail in chapter 12.

Figure 10.10 Browsing our temperature data REST API
in the browser

Retrieves the data via our REST API

Generates the chart the same as before

Sets the type of the chart; “line” is the
default value, so it’s unnecessary in this
case, but I've added it so you know what
you need to change when we later
change the chart type.

REST APIOur Node.js web server

The padlock indicates the
authentication we would
need to add to our REST API
to prevent unauthorized
access to our data.

We have moved our data to a
database. The job of the web
server and REST API now is to
be a secure gateway to our data.

The web serverThe database The REST API The web browser

Figure 10.11 Our data in a database with the web server as a secure gateway

262 CHAPTER 10 Browser-based visualization

This example uses almost the exact same code as listing 10.4. We’re changing only
two things:

1 We replace data.csv in the Node.js project with a new data file that contains
temperature columns for both NYC and LA.

2 We modify the chart definition to add the new series to the chart. The updated
code is shown in listing 10.5.

You can use this same process to create new visualizations for yourself. Take the code
from listing 10.4 (or another listing that’s closer to your needs), replace the data with
whatever new data you want, and then change the chart definition to suit your data. Con-
tinue to tweak the chart definition until you have a visualization that you’re happy with.

Listing 10.5 Rendering two data series into our chart to compare NYC temperature
against LA (extract from listing-10.5/public/app.js)

var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: data,
 keys: {
 x: "Year",
 value: [
 "TempNYC",
 "TempLA"
]
 }
 }
});

Again, in listing 10.5 we use the json and keys fields in the chart definition to spec-
ify the data to render in the chart. Note that we’ve specified both the TempNYC and
TempLA columns using the value field. This is what causes both data series to be ren-
dered in the chart.

Now we’re rendering two columns
from our CSV file into the chart.

Figure 10.12 Combined chart with NYC and LA yearly temperatures

 263Line chart for New York City temperature

10.4.7 Adding a second Y axis to the chart

Another thing we might want to do is add a second Y axis to our chart. Let’s say we want
to compare temperature and snowfall in NYC. We take our chart from figure 10.8, and
we add a snowfall data series to it. The result is shown in figure 10.13. Can you tell me
what’s wrong with this chart?

The problem is that temperature and snowfall have values that are on different
scales, and this makes comparison impossible. Note that the line for temperature in
figure 10.13 is basically a straight line even though we know that if we zoom in on it what
we’ll see is not going to be a straight line (see figure 10.8 for a reminder). Now we could
deal with this by standardizing both temperature and snowfall data sets the way we did in
chapter 9. This would have the effect of bringing both data sets into a comparable scale,
but it would also change the values, and if the actual values are what we want to see in
the chart, this isn’t going to work for us.

The simple fix for this is to add a second Y axis to our chart. You can see in figure 10.14
that we now have the temperature Y axis on the left-hand side of the chart and the snow-
fall Y axis on the right-hand side. This simple change allows us to compare data series
side by side without having to make any modifications to our data.

Figure 10.13 Adding the snowfall series to the NYC yearly temperature chart. What’s wrong
with this picture?

Figure 10.14 Adding the snowfall series as the secondary Y axis makes it easier to
compare the two series.

264 CHAPTER 10 Browser-based visualization

Listing 10.6 shows the simple changes we must make to our chart definition to move
one of our data sets to the second Y axis. With the addition of the axes field, we specify
which data series belongs to which Y axis. It’s important to note that the second Y axis
is enabled under the axis field. The second Y axis is disabled by default, and you must
enable it. Otherwise, it won’t appear in the chart!

Listing 10.6 Adding a second Y axis to the chart (extract from listing-10.6/public
/app.js)

var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: data,
 keys: {
 x: "Year",
 value: [
 "AvgTemp",
 "Snowfall"
]
 },
 axes: {
 AvgTemp: "y",
 Snowfall: "y2"
 }
 },
 axis: {
 y2: {
 show: true
 }
 }
});

10.4.8 Rendering a time series chart

We haven’t rendered a proper time series chart, although we did use the year as our
X axis. This might seem like a time series to us, but on a technical level, C3 will only
consider it as a time series if we use actual dates as our X axis. Let’s have a quick look at
how to do that.

In this example we’ll change our data to be a temperature time series for each day in
2016. You can see an example of what this data looks like in figure 10.15. Note that the

Average temperature should
be attached to the first Y axis.

Snowfall should be attached
to the second Y axis.

Enables the second Y axis;
by default it’s disabled.

Figure 10.15 CSV file containing NYC daily
temperatures (viewed in Excel)

 265Line chart for New York City temperature

Date column contains dates (in the Australian format, sorry U.S. readers). Our new time
series data is rendered by C3, as shown in figure 10.16.

To render our time series data correctly, we must make small changes to our chart
definition. The updated chart definition is shown in listing 10.7. First, we set the X axis
to the Date column, but this isn’t anything groundbreaking yet.

The most important thing is that we set the X axis type to timeseries. C3 now inter-
prets the Date series as date/time values. We haven’t used time in this example, but you
could easily also add time to your date format.

Listing 10.7 Rendering a time series chart with formatted dates as labels for the X
axis (extract from listing-10.7/public/app.js)

var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: data,
 keys: {
 x: "Date",
 value: ["AvgTemp"]
 }
 },
 axis: {
 x: {
 type: 'timeseries',
 tick: {
 rotate : 50,
 format: '%Y-%m-%d',
 count: 12
 }
 }
 },
 point: {
 show: false
 }
});

The other changes to note in listing 10.7 are cosmetic. We’ve improved the look of the
chart by setting the format and rotation of the tick labels.

Uses a date as our X axis

Sets the type of the X axis
to timeseriesRotates the X axis off

the horizontal for a
better layout Formats the string so that C3

can render the X axis labels

Shows the maximum number of ticks/labels
to render so they aren't too cluttered

Disables the rendering of points
so the chart looks less cluttered

Figure 10.16 Rendering average daily temperature for NYC as a time series chart

266 CHAPTER 10 Browser-based visualization

10.5 Other chart types with C3
We know how to create line charts with C3, but how do we create the other chart types?
It all comes down to the chart definition. We can change the chart definition and turn
our line chart into any of the other chart types. This is trivial for bar charts, but for pie
charts and scatter plots, we’ll have more work to prepare our data.

10.5.1 Bar chart

Figure 10.17 is a bar chart that shows monthly temperature data for 2016 in NYC. The
code that produces this bar chart is almost identical to the code for the line chart in
listing 10.4. We’ve replaced the data, of course. The data shown in this chart was pro-
duced from raw data using the group and summarize technique that we covered in
chapter 9.

Figure 10.17 NYC average monthly temperature for 2016 as a bar chart

We can start with the code from listing 10.4 and change the data; then we have one
other thing we must do to turn it into a bar chart. As shown in listing 10.8, we change
the type field in the data section to be bar. That’s it!

That’s all we need to do to convert a line chart to a bar chart. Listing 10.8 isn’t
included in the Chapter-10 code repository, but you can try this yourself by taking list-
ing 10.4 and setting the type to bar. Your result won’t look like figure 10.17 (you’ll need
to update the data for that), but it will be a bar chart.

Listing 10.8 Changing the line chart to a bar chart

var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: data,
 keys: {
 x: "Month",
 value: ["AvgTemp"]
 },
 type: "bar"
 }
});

Changes the chart type to bar, and the
chart is rendered as a bar chart instead
of a line chart.

 267Other chart types with C3

10.5.2 Horizontal bar chart

It’s also trivial to convert our vertical bar chart to a horizontal bar chart, as shown in
figure 10.18.

Listing 10.9 shows the small code change we make to listing 10.8 to make our bar
chart horizontal. We set the rotated field from the axis section to true. We now have
a horizontal bar chart!

Figure 10.18 NYC average monthly temperature for 2016 as a horizontal bar chart

Listing 10.9 Converting the vertical bar chart to a horizontal bar chart

var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: data,
 keys: {
 x: "Month",
 value: ["AvgTemp"]
 },
 type: "bar"
 },
 axis: {
 rotated: true
 }
});

10.5.3 Pie chart

Pie charts are great for showing how various parts compare to the whole. It may seem
like an odd choice to plug temperature data into a pie chart, as shown in figure 10.19,
but this does serve a purpose. Here we can easily pick out the hottest and coldest
months in NYC by looking for the largest and smallest slices of the pie. In addition, we
can use color coding to help identify the hottest and coldest months.

Preparation of the data for a pie chart is a bit different to the other charts in this
chapter, so listing 10.10 is a larger code listing. In this code listing, we organize our data
as a JavaScript object that maps the name of each month to the average temperature of
that month. The chart definition for a pie chart is simple; it’s the data preparation that
makes this a little more difficult.

Rotates the bars to create
a horizontal bar chart

268 CHAPTER 10 Browser-based visualization

Listing 10.10 Restructuring the data and rendering a pie chart (listing-10.10/public
/app.js)

var monthNames = [
 // ... Array that specifies the name of each month ...
];

var monthColor = [
 // ... Array that specifies the color for each month in the chart ...
];

function getMonthName (monthNo) {
 return monthNames[monthNo-1];
}

function getMonthColor (monthNo) {
 return monthColor[monthNo-1];
}

$(function () {

 $.get("/rest/data")
 .then(function (data) {
 var chartData = {};
 var chartColors = {};
 for (var i = 0; i < data.length; ++i) {
 var row = data[i];
 var monthName = getMonthName(row.Month);
 chartData[monthName] = row.AvgTemp;
 chartColors[monthName] = getMonthColor(row.Month);
 }

 var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: [chartData],
 keys: {
 value: monthNames
 },
 type: "pie",

Gets the month name
from the month number

Gets the color to use for the month

Restructures our data for the pie chart

Organizes our temperature data by month

Changes the chart type to pie

Figure 10.19 NYC average monthly temperature as a pie
chart. The size of each slice and the color make it easy to pick
out the hottest and coldest months in New York.

To see this figure in color, refer to the electronic versions of
this book.

 269Other chart types with C3

 order: null,
 colors: chartColors
 }
 });
 })
 .catch(function (err) {
 console.error(err);
 });

});

Pie charts are best used to show a snapshot of data composition at a particular point in
time and can’t easily be used to represent time series data. If you’re looking for a type
of chart that can be used to compare parts to the whole (like a pie chart) but over time,
then consider using a stacked bar chart.

10.5.4 Stacked bar chart

Figure 10.20 shows a bar chart with two data series. This sort of chart can be useful
for comparing data side by side. It’s a bar chart with two data series, like the line chart
shown in figure 10.12 but with the type set to bar.

We can easily convert our two-series bar chart shown in figure 10.20 to a stacked bar
chart. The result is shown in figure 10.21.

Figure 10.20 A normal bar chart used for comparing average monthly temperature in
NYC and LA

Figure 10.21 Converting the normal bar chart to a stacked bar chart might help us
compare the proportions.

270 CHAPTER 10 Browser-based visualization

We stack our data series like this by organizing them into groups. In listing 10.11 we
use the groups field to make groups from our data series and create the stacked bar
chart from figure 10.21. There’s no code in the repository for listing 10.11, but you can
easily create this yourself with a small modification to listing 10.5. Why don’t you try
doing that?

Listing 10.11 Creating a stacked bar chart from two data series

var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: data,
 keys: {
 x: "Month",
 value: ["TempNYC", "TempLA"]
 },
 type: "bar",
 groups: [
 ["TempNYC", "TempLA"]
]
 }
});

10.5.5 Scatter plot chart

The scatter plot is probably my favorite kind of chart, and it’s easy to create with C3. As
we learned in chapter 9, scatter plot charts are used to identify relationships between
data variables. Figure 10.22 shows the scatter plot of rainfall versus umbrella sales that
you might remember from chapter 9. Let’s learn how to create this chart, and then
we’ll improve the look of it.

Listing 10.12 shows the simple chart definition required to create a scatter plot.
We’re using the Precipitation (rainfall) column as our X axis and the UmbrellaSales col-
umn as our Y axis. The difference to the other charts is that we set the type field to
scatter. That’s it, job done, we’ve created a scatter plot. Not difficult at all.

Changes the chart type to bar

Groups the data series together
so that they’re stacked when
the chart is rendered

Figure 10.22 Scatter plot chart
of NYC rainfall vs. umbrella sales

 271Improving the look of our charts

Listing 10.12 Creating a scatter plot chart comparing rainfall to umbrella sales in
NYC (extract from listing-10.12/public/app.js)

var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: data,
 keys: {
 x: "Precipitation",
 value: ["UmbrellaSales"]
 },
 type: "scatter"
 }
});

10.6 Improving the look of our charts
We have many ways we can improve our charts, starting with simple built-in options
all the way up to advanced customizations using D3. In this section, we’ll learn the
simple options.

Look again at the scatter plot from figure 10.22. The X axis ticks are all bunched up.
Let’s fix that and make other improvements.

We can easily control the number of ticks that are rendered on an axis and the for-
matting of the labels for the ticks. In figure 10.23 we’ve cleaned up the scatter plot,
added nicely positioned labels for the X and Y axes, and hidden the legend (which
wasn’t adding anything useful to this particular chart).

Listing 10.13 shows the changes and additions made to listing 10.12 to get the
desired formatting for our chart. Note that the labels for the axes and ticks have
been set, formatted, and positioned. The legend is disabled to reduce clutter in the
chart.

Figure 10.23 The scatter plot finished with nicely formatted axis labels and the
legend hidden

Uses rainfall as the X axis in the scatter plot

Uses umbrella sales as the
Y axis in the scatter plot

Sets our chart type to scatter

272 CHAPTER 10 Browser-based visualization

Listing 10.13 Various visual improvements have been applied to the scatter plot
(extract from listing-10.13/public/app.js)

var chart = c3.generate({
 bindto: "#chart",
 data: {
 json: data,
 keys: {
 x: "Precipitation",
 value: ["UmbrellaSales"]
 },
 type: "scatter"
 },
 axis: {
 x: {
 label: {
 text: 'Rainfall',
 position: 'outer-center',
 },
 tick: {
 count: 8,
 format: function (value) {
 return value.toFixed(2);
 }
 }
 },
 y: {
 label: {
 text: 'Umbrella Sales',
 position: 'outer-middle'
 }
 }
 },
 legend: {
 show: false
 }
});

We could do more to this chart, including interactive features such as adding anima-
tion and dynamically adding new data points. C3 charts, by default, are interactive,
so we already get nice tooltips and a legend that allows us to focus and highlight each
data series.

10.7 Moving forward with your own projects
As I’ve indicated already, you can use any of the code listings in this chapter as tem-
plates or starting points for your own C3 visualization projects. To make a line or bar
chart, you can start with listing 10.2 (if you don’t need a web server) or listing 10.4 (if
you do need a web server). If you’re making a pie chart, you can start with listing 10.11.
If you’re making a scatter plot, you can start with listing 10.13. Next, add your own data
file; you can find other example CSV and JSON files in the GitHub repos for other
chapters of this book. Then set the chart type to line, bar, pie, or scatter, depending on
what you’re trying to achieve. Finish by tweaking the chart to make it look nice.

Sets label text
for the X axis Places the X axis label in a good position

Sets a maximum of eight ticks on the
X axis so they’re nicely spaced out

Rounds X axis tick labels
to two decimal places

Sets label text for the Y axis

Sets the position for the Y axis label

Disables the legend. We don't need it, and
hiding it makes for a less-cluttered chart.

 273Moving forward with your own projects

The process in summary:

1 Copy listing 10.2 or listing 10.4 (or create your own template web app from
scratch) from the Chapter-10 GitHub repo.

2 Replace the data file in the project with new data of your choosing.

3 Set the chart type.

4 Tweak the chart definition to make it look nice.

We covered the standard charts that are available through the C3 library. C3 has much
more to offer: other chart types, the ability to combine chart types, more configura-
tion options, customization using D3, and support for interactivity. I encourage you to
browse their example gallery and documentation to learn more.

In this chapter, we covered web-based interactive charts, but that’s not exactly what
we were using for data analysis in chapter 9. If you recall, we rendered charts in Node.js (on
the server side), and we didn’t even once open a browser. We can easily render charts in
Node.js, and this is incredibly useful when doing exploratory coding in Node.js when
we don’t need or want an interactive visualization. We’ll continue our visualization jour-
ney in chapter 11 and learn how to render charts on the server-side in Node.js.

Summary

¡	You learned about most common types of charts—line, bar, pie, and scatter
plots—and how to create them using C3.

¡	We used live-server to quickly start prototyping visualizations without having to
create a web server.

¡	We also created a custom web server and REST API to control how data is delivered
to your browser-based visualization.

¡	We finished by learning how to format axis and tick labels for better-looking charts.

274

11Server-side
visualization

This chapter covers
¡	Rendering charts and visualizations with Node.js

¡	Building reusable functions for rendering
charts that we can use when doing exploratory
data analysis

¡	Using a headless browser to capture web pages
to PNG image files and PDF documents

¡	Taking web scraping to the next level with a
headless browser

When we’re doing exploratory coding (chapter 5) or data analysis (chapter 9), we
want to render charts and visualizations to explore and understand our data. In
chapter 10, we learned how to create web-based interactive visualizations for the
browser. That’s a normal and common way to create visualizations in JavaScript.
Browser-based visualization techniques are well known and well understood, and
you can easily find help on the internet.

How about we take the browser out of the equation? What if we want to render our
charts and visualization on the server directly from Node.js? Well, we can do that, but
unlike browser-based visualization, this isn’t a common use case, and it can be diffi-
cult to find the help you need online.

 275Expanding your toolkit

First, though, you might wonder why it’s useful to render charts on the server side?
It’s convenient for us to render charts directly from Node.js while doing exploratory
data analysis (that’s what we were doing in chapter 9). This approach to data analysis is
common in Python, and it would be nice if we could replicate it in Node.js.

It’s also a useful capability for us to prerender visualizations on the server side. We
might do this so that we can generate reports or to precache images for display in a web
page. Server-side rendering of visualizations is so useful that I think it’s worth pushing
through the complexity and difficulty of getting set up so that we can add this tech-
nique to our toolkit.

Remember that we worked through data analysis techniques in chapter 9, and we
rendered various charts to illustrate those techniques. We created those charts from
Node.js by calling toolkit functions such as renderLineChart and renderBarChart. In
chapter 9, I provided those functions for you. But in this chapter, you’ll learn how to
create such functions and render static visualizations in Node.js.

11.1 Expanding your toolkit
How might we go about rendering charts in Node.js? When working in the browser, we
have so many visualization libraries at our disposal, although ordinarily we can’t use
any of these options directly from Node.js. Wouldn’t it be great if we could take our
pick from any of the browser-based visualization libraries and use them from Node.js?

Well, I’m here to tell you that you can use any of the browser-based visualization librar-
ies to create visualizations from Node.js, although we still do need a web browser oper-
ating somewhere under the hood. In this chapter, we’ll use something called a headless
browser to make browser-based visualization libraries work for us under Node.js.

A headless browser is a web browser, but it’s one that has no visible user interface.
You can think of it as a browser that’s invisible. In this chapter, we’ll add Nightmare to
our toolkit. This Node.js library that you can install through npm allows you to control
the Electron web browser in a headless manner. You won’t use Electron directly; it will
be controlled only from code through the Nightmare API. It’s important to note that
Electron is a web browser similar to Chrome or Edge; in fact, it’s similar to Chrome
because it’s built from the same open source code base.

A headless browser is useful for many tasks, but we’ll focus on how we can render
visualizations and reports under Node.js. We’ll learn how to remotely control our head-
less browser from Node.js and capture web-based charts and visualizations to static
image files. In the process, we’ll recreate the renderLineChart function that we used
previously in chapter 9; this is an example of a function that we can use to render a
chart from Node.js without having to explicitly create or interact with a web-based visu-
alization, even though there will be a web-based visualization running under the hood!
We’ll also learn how we can use these techniques to render multipage PDF reports that
include graphics and charts.

276 CHAPTER 11 Server-side visualization

11.2 Getting the code and data
The code and data for this chapter are available in the Data Wrangling with JavaScript
Chapter-11 repository in GitHub at https://github.com/data-wrangling-with-javascript
/chapter-11. Each subdirectory in the repository is a complete working example and
corresponds to one of the listings throughout this chapter. Before attempting to run
the code in each subdirectory, please be sure to install npm and browser dependencies
as necessary.

Listing 11.11 comes with a Vagrant script to demonstrate how to use this technique
on a headless Linux server. Refer to “Getting the code and data” in chapter 2 for help on
getting the code and data.

11.3 The headless browser
When we think of a web browser, we often think of the graphical software that we inter-
act with on a day-to-day basis when browsing the World Wide Web. Normally, we interact
with such a browser directly, viewing it with our eyes and controlling it with our mouse
and keyboard, as shown in figure 11.1.

A headless browser is a web browser that has no graphical user interface and no
direct means for us to control it. You might ask, what’s the use of a browser that we can’t
directly see or interact with?

Web server

Node.js

User

The web browserindex.html

index.js

index.css

nyc-temperature.csv
The user interacts
with our visualization
directly in their web
browser.

Our web assets and
data are for a regular
web app, the same
as we used in
chapter 10.

Our visualization
renders in the
browser.

Figure 11.1 The normal state of affairs: our visualization renders in a browser, and the user interacts
directly with the browser.

https://github.com/data-wrangling-with-javascript/chapter-11
https://github.com/data-wrangling-with-javascript/chapter-11

 277The headless browser

As developers, we’d typically use a headless browser for automating and testing web-
sites. Let’s say that you’ve created a web page and you want to run a suite of automated
tests against it to prove that it works as expected. The test suite is automated, which
means it’s controlled from code, so we need to drive the browser from code.

We use a headless browser for automated testing because we don’t need to directly
see or interact with the web page that’s being tested. Viewing such an automated test
in progress is unnecessary; all we need to know is if the test passed or failed—and if
it failed, we’d like to know why. Indeed, having a GUI for the browser would be a hin-
drance for a continuous-integration or continuous-deployment server, where we want
many such tests to run in parallel.

Headless browsers are often used for automated testing of our web pages, but I’ve
also found that they’re incredibly useful for capturing browser-based visualizations and
outputting them to PNG images or PDF files. To make this work, we need a web server
and a visualization, which we learned about in chapter 10. We must then write code to
instance a headless browser and point it at our web server. Our code then instructs the
headless browser to take a screenshot of the web page and save it to our file system as a
PNG or PDF file.

For a more specific example, see figure 11.2. Here we take the New York City tem-
perature chart from chapter 10 and use our headless browser to capture a screenshot to
the file nyc-temperature.png. In a moment we’ll learn how easy it is to do this, at least in
development. By the end of the chapter, we’ll face up to the difficulties of getting this to
work in our production environment.

Web server

Node.js

nyc-temperature.png

Headless web browserindex.html

index.js

index.css

nyc-temperature.csv
The headless browser takes
a screenshot of our
visualization and outputs it
to an image file.

Our web assets and
data are for a regular
web app, the same
as we used in
chapter 10.

Our visualization
renders in the
headless browser.

The headless browser
being scripted under the
control of Node.js

Figure 11.2 We can use a headless browser under Node.js to capture our visualization to a static image file.

278 CHAPTER 11 Server-side visualization

11.4 Using Nightmare for server-side visualization
Nightmare is the headless browser we’ll use. It’s a Node.js library (installed using npm)
that’s built on Electron. Electron is a web browser that’s normally used for building
cross-platform desktop apps that are based on web technologies. We don’t need to
directly interact with or understand how to use Electron; we’ll interact with it only
through Nightmare, and we can think of Electron as if it were a standard web browser.

11.4.1 Why Nightmare?

The browser is called Nightmare, but it’s definitely not a nightmare to use. In fact,
it’s the simplest and most convenient headless browser that I’ve used. It automatically
includes Electron, so to get started, we install Nightmare into our Node.js project as
follows:

npm install --save nightmare

That’s all we need to install Nightmare, and we can start using it immediately from
JavaScript!

Nightmare comes with almost everything we need: a scripting library with an embed-
ded headless browser. It also includes the communication mechanism to control the
headless browser from Node.js. For the most part, it’s seamless and well integrated into
Node.js, but the API can take a bit of getting used to.

Over the following sections, we’ll build up a new function to render a chart under
Node.js. We’ll add this function to our toolkit, and you can reuse it on your develop-
ment workstation for exploratory coding and data analysis.

When it comes to production usage—say, building an automated reporting system—
Nightmare is a bit trickier to get working. We’ll need to do extra work, but we’ll deal
with the difficulties later in the chapter.

Don’t confuse it with Nightmarejs
Please don’t confuse Nightmare with the older Nightmarejs package that’s on npm. They
might be related somewhere back along the line, but they’re definitely not the same thing
now. You can tell the difference because Nightmarejs hasn’t been updated for years,
whereas Nightmare is updated frequently.

11.4.2 Nightmare and Electron

When you install Nightmare using npm, it automatically comes with an embedded
version of Electron. We can say that Nightmare isn’t only a library for controlling a
headless browser; it effectively is the headless browser. This is another reason I like
Nightmare. With several of the other headless browsers, the control library is separate,
or it’s worse than that, and they don’t have a Node.js control library at all. In the worst
case, you have to roll your own communication mechanism to control the headless
browser.

 279Using Nightmare for server-side visualization

Nightmare creates an instance of the Electron process using the Node.js child_process
module. It then uses interprocess communication and a custom protocol to control the
Electron instance. The relationship is shown in figure 11.3.

Electron is built on Node.js and Chromium and maintained by GitHub. It is the basis
for other popular desktop applications, although from our point of view, we can think
of it as an ordinary web browser.

These are the reasons that I choose to use Nightmare over any other headless
browser:

¡	Electron is stable.
¡	Electron has good performance.
¡	The API is simple and easy to learn.
¡	It doesn’t have a complicated configuration (you can start using it quickly).
¡	It’s well integrated with Node.js.

Electron can be a little tricky to get working in your production environment, but we’ll
solve that soon enough.

11.4.3 Our process: capturing visualizations with Nightmare

Let’s look at the process for rendering a visualization to an image file. To start with, our
data will be hard-coded in our visualization. As we iterate and evolve our code, we’ll
build a new toolkit function for rendering a chart. Ultimately, we’d like to pump our
data from Node.js into this chart, and that means the data will have to be external to
the visualization.

Node.js

Your JavaScript code

Nightmare

Electron

Chromium

Nightmare creates the Electron
process using the Node.js
child_process module and then
communicates with it via
interprocess-communication
and a custom protocol.

Your JavaScript
code to control the
headless browser
runs here.

Nightmare is
a Node.js library
to run Electron
in headless mode.
This allows us to
control Electron
from JavaScript.

Electron is a
browser based on
Chromium; it is
usually used to
create desktop
apps with JavaScript.

Figure 11.3 Nightmare allows us to control Electron running as a headless browser.

280 CHAPTER 11 Server-side visualization

This is the full process that we’re aiming for:

1 Acquire our data.

2 Start a local web server to host our visualization.

3 Inject our data into the web server.

4 Instance a headless browser and point it at our local web server.

5 Wait for the visualization to be displayed.

6 Capture a screenshot of the visualization to an image file.

7 Shut down the headless browser.

8 Shut down the local web server.

This process probably all sounds rather complicated, but don’t worry; in our usual fash-
ion we’ll start simple and ramp up the complexity over multiple iterations. By the end,
we’ll have this process wrapped up in a convenient and easy-to-reuse toolkit function.

11.4.4 Prepare a visualization to render

The first thing we need is to have a visualization. We’ll start with one that you’re
familiar with from chapter 10. Figure 11.4 shows the yearly chart of average New York
temperatures.

The code for this chart is shown in listings 11.1a and 11.1b. It’s similar to listing 10.3
in chapter 10. You can test this chart now using live-server (the same as we did in chap-
ter 10):

cd listing-11.1
bower install
live-server

Running live-server in the listing-11.1 subdirectory opens a browser automatically, and
you should see a visualization like figure 11.4.

Figure 11.4 The chart
we'll use from chapter
10: NYC average yearly
temperature

 281Using Nightmare for server-side visualization

It’s a good idea to check that your visualization works directly in a browser before you
try to capture it in a headless browser because there could easily be something wrong
with it. Problems are much easier to troubleshoot in a real browser than in the headless
browser.

Listing 11.1a HTML file for the browser-based visualization (listing-11.1/index.html)

<!doctype html>
<html lang="en">
 <head>
 <title>NYC average yearly temperature</title>

 <link href="bower_components/c3/c3.css" rel="stylesheet">
 </head>
 <body>
 <div id='chart'></div>

 <script src="bower_components/jquery/dist/jquery.js"></script>
 <script src="bower_components/d3/d3.js"></script>
 <script src="bower_components/c3/c3.js"></script>
 <script src="bower_components/papaparse/papaparse.js"></script>
 <script src="app.js"></script>
 </body>
</html>

Listing 11.1b JavaScript file for the browser-based visualization (listing-11.1/app.js)

function renderChart (bindto, data, size) {
 var chart = c3.generate({
 bindto: bindto,
 size: size,
 data: {
 json: data,
 keys: {
 x: "Year",
 value: [
 "AvgTemp"
]
 }
 },
 transition: {
 duration: 0
 }
 });
};

$(function () {

 $.get("nyc-temperature.csv")
 .then(function (response) {
 var parseOptions = {

This is the placeholder where
the C3 chart is rendered.

Includes the JavaScript file for our
browser-based visualization

This helper function renders a chart
to a particular element on the page.

Disables animated transitions when
we’re capturing a static image

Gets CSV data file
from the web server

282 CHAPTER 11 Server-side visualization

 header: true,
 dynamicTyping: true
 };
 var parsed = Papa.parse(response, parseOptions);
 renderChart("#chart", parsed.data);
 })
 .catch(function (err) {
 console.error(err);
 });

});

I have an important addition to listing 11.1b to explain. Look at the chart definition
and notice where I set the duration of the animated transition to zero. This effectively
disables animation in the C3 chart. Animation isn’t useful here because we’re render-
ing the chart to a static image, and it can cause problems in our captured image file, so
it’s best to disable the animation.

By default, C3 animates our data into the chart, which means that it fades in. If this
happens while we’re capturing the image (it’s a timing thing), then we’ll end up cap-
turing a chart that’s partially transparent, which probably isn’t what we wanted, and the
effect won’t be consistent. It drove me half-crazy trying to figure out why my charts were
partially transparent when I first started rendering visualizations using this method.

11.4.5 Starting the web server

To host our visualization, we’ll need a web server. Again, we can start by reusing code
from chapter 10. Note that we could serve our web page from the file system by point-
ing our headless browser at index.html and preceding it with the file:// protocol.
This approach can work well in simple cases, but we need a custom way to feed our
data into the visualization, so let’s jump straight into using a custom Node.js web server
to host our visualization.

Please note that depending on your requirements, you may not need the custom web
server. You might simplify your own process by serving your visualization using the file
system or maybe using something off-the-shelf such as live-server.

Listing 11.2 shows the code for our web server. This is similar to listing 10.4 from
chapter 10. Before trying to capture the visualization in the headless browser, let’s test
that it works in the normal way:

cd listing-11.2
cd public
bower install
cd ..
npm install
node index

Now open a regular web browser and point it at http://localhost:3000. You should see
the same chart of NYC yearly average temperature that we saw earlier in figure 11.4.

Parses CSV data
to JavaScript data

Uses C3 to render
the chart

 283Using Nightmare for server-side visualization

Listing 11.2 Basic Node.js web server for the browser-based visualization
(listing-11.2/index.js)

const express = require('express');
const path = require('path');

const app = express();

const staticFilesPath = path.join(__dirname, "public");
const staticFilesMiddleWare = express.static(staticFilesPath);
app.use("/", staticFilesMiddleWare);

app.listen(3000, () => {
 console.log("Web server listening on port 3000!");
});

This is a simple web server, but it’s not enough to meet our needs. We also need to
dynamically start and stop it.

11.4.6 Procedurally start and stop the web server

Let’s make changes to our web server so that we can programmatically start and stop it.
We’ll start it before we capture the visualization and then stop it afterward.

Let’s upgrade the code from listing 11.2 to achieve this. We’ll start by refactoring the
web server into a separate reusable code module, as shown in the following listing.

Listing 11.3a Our web server is refactored into a reusable code module (listing-11.3
/web-server.js)

const express = require('express');
const path = require('path');

module.exports = {
 start: () => {
 return new Promise((resolve, reject) => {
 const app = express();

 const staticFilesPath = path.join(__dirname, "public");
 const staticFilesMiddleWare = express.static(staticFilesPath);
 app.use('/', staticFilesMiddleWare);

 const server = app.listen(3000, err => {
 if (err) {
 reject(err);
 }
 else {
 resolve(server);
 }
 });
 });
 }
}

Makes our public
subdirectory accessible
through HTTP

Starts our web server

Exports a start function so
our main module can start
the web server at its leisure

Wraps the web server
startup in a promise

Makes our public
subdirectory accessible

through HTTP

Starts our
web server

Handles any error that might occur
while starting the web server

Notifies that the web
server started okay

284 CHAPTER 11 Server-side visualization

The code module in listing 11.3a exports a start function that we can call to kick-start
our web server. An example of how we’ll use this is shown in listing 11.3b, where we
start the web server and then subsequently stop it. In between you can see a place-
holder where we’ll soon add code to render the web page and take a screenshot.

Listing 11.3b Using the reusable code module to start and stop the web server
(listing-11.3/index.js)

const webServer = require('./web-server.js');

webServer.start()
 .then(server => {
 console.log("Web server has started!");

 // ... Do something with the web server here,
 // eg capture a screen shot of the web page or
 // run automated integration tests against it ...

 server.close();
 })
 .then(() => {
 console.log("Web server has stopped.");
 })
 .catch(err => {
 console.error("Web server failed to start :(");
 console.error(err);
 });

This technique, starting and stopping our web server, is also useful for doing auto-
mated integration testing on a website. Imagine that the placeholder comment in list-
ing 11.3b is replaced by a series of tests that poke and prod the web page to see how it
responds. We’ll take another look at automated testing in chapter 14.

Now we have our browser-based visualization, and we also have a web server that can
be started and stopped on demand. These are the raw ingredients we need for captur-
ing server-side visualizations. Let’s mix it up with Nightmare!

11.4.7 Rendering the web page to an image

Now let’s replace the placeholder comment from listing 11.3b with code that captures
a screenshot of our visualization. Listing 11.4 has new code that instances Nightmare,
points it at our web server, and then takes a screenshot. You can run this code, and it
will render the chart and produce the file nyc-temperatures.png to the output subdi-
rectory under the listing-11.4 directory.

Listing 11.4 Capturing the chart to an image file using Nightmare (listing-11.4
/index.js)

const webServer = require('./web-server.js');
const Nightmare = require('nightmare');

webServer.start()
 .then(server => {

Requires our reusable
web server moduleStarts the web server

Stops the web server when
we’re finished with it

Starts the web server

 285Using Nightmare for server-side visualization

 const outputImagePath = "./output/nyc-temperatures.png";

 const nightmare = new Nightmare();
 return nightmare.goto("http://localhost:3000")
 .wait("svg")
 .screenshot(outputImagePath)
 .end()
 .then(() => server.close());
 })
 .then(() => {
 console.log("All done :)");
 })
 .catch(err => {
 console.error("Something went wrong :(");
 console.error(err);
 })

Note the use of the goto function; this is what directs the browser to load our visualiza-
tion. Web pages usually take time to load. That’s probably not going to be long, espe-
cially because we’re running a local web server, but still we face the danger of taking a
screenshot of the headless browser before or during its initial paint.

Also, because we’re loading the data into our chart asynchronously, we need to
ensure that the data is loaded in the chart before we take the screenshot. That’s why we
must use the wait function shown in listing 11.4 to wait until the chart’s svg element
appears in the browser’s DOM before we call the screenshot function.

Eventually, the end function is called. Up until now, we effectively built a list of com-
mands to send to the headless browser. The end function flushes the command list;
then the commands are sent to the browser, which visits the page, renders the chart,
takes the screenshot, and outputs the file nyc-temperatures.png. After the image file
has been captured, we finish up by shutting down the web server.

Note that we could have used goto to send the browser to any website, not only our
own web server. We could have also used the file:// protocol to point the browser at
any HTML file in our local filesystem. This gives you, with such a small amount of code,
the impressive ability to procedurally capture screenshots of any website or HTML file.

11.4.8 Before we move on . . .

Hopefully getting this far hasn’t been too taxing, but now things are going to start get-
ting more complicated. Before that, though, let’s tidy up what we’ve done so far.

Unfortunately, running listing 11.4 leaves us with a captured image that has a trans-
parent background. To fix this, we must set the background color of our visualization to
a solid color. In listings 11.5a and 11.5b, you can see how I’ve used CSS to set the back-
ground of the body element to white. That makes our background opaque.

Creates the Nightmare instance
Points the browser at the
web server we started

Waits until an svg element appears onscreen,
indicating that the chart has loaded

Captures a screenshot to an image file

Ends the Nightmare
session. Any queued
operations are
completed, and the
headless browser is
terminated.

Stops the web
server when
we’re done

286 CHAPTER 11 Server-side visualization

Listing 11.5a Setting the background of the web page (listing-11.5/public/app.css)

body {
 background: white;
}

Listing 11.5b Adding app.css to our browser-based visualization (listing-11.5/public
/index.html)

<!doctype html>
<html lang="en">
 <head>
 <title>NYC average yearly temperature</title>

 <link href="bower_components/c3/c3.css" rel="stylesheet">
 <link href="app.css" rel="stylesheet">
 </head>
 <body>
 <div id='chart'></div>

 <script src="bower_components/jquery/dist/jquery.js"></script>
 <script src="bower_components/d3/d3.js"></script>
 <script src="bower_components/c3/c3.js"></script>
 <script src="bower_components/papaparse/papaparse.js"></script>
 <script src="app.js"></script>
 </body>
</html>

As we’re updating the CSS for your visualization, I hope it occurs to you that we’re
dealing with a normal web page here, and we can add anything to it that we might add
to any other web page: JavaScript, CSS, other Bower modules, and so on. You can use
this technique to capture anything that you can fit on a web page.

The other thing I wanted to do before we move on is to refactor our current code so
that we have a reusable toolkit function for capturing a web page. I’m doing this now
because it’s a convenient way to reuse and extend this code throughout the rest of the
chapter. The following listing shows the refactored function captureWebPage that we
can use to capture any web page given its URL.

Listing 11.5c A reusable toolkit function for server-side chart rendering (listing-11.5
/toolkit/capture-web-page.js)

const Nightmare = require('nightmare');

function captureWebPage (urlToCapture,
 captureElementSelector, outputImagePath) {

 const nightmare = new Nightmare();

Sets the background of the
web page to solid white

We've added app.css to our
browser-based visualization.

This is a toolkit function that
captures the web page specified by
URL to the specified image file.

Creates the Nightmare
instance

 287Using Nightmare for server-side visualization

 return nightmare.goto(urlToCapture)
 .wait(captureElementSelector)
 .screenshot(outputImagePath)
 .end();
};

module.exports = captureWebPage;

The following listing is an example of how we use our new toolkit function cap-
tureWebPage to capture our visualization.

Listing 11.5d Using our reusable toolkit function to render the server-side chart
(listing-11.5/index.js)

const webServer = require('./web-server.js');
const captureWebPage = require('./toolkit/capture-web-page.js');

webServer.start()
 .then(server => {
 const urlToCapture = "http://localhost:3000";
 const outputImagePath = "./output/nyc-temperatures.png";
 return captureWebPage(urlToCapture, "svg", outputImagePath)
 .then(() => server.close());
 })
 .then(() => {
 console.log("All done :)");
 })
 .catch(err => {
 console.error("Something went wrong :(");
 console.error(err);
 });

Now that we have the bare bones of a reusable code module, let’s make improvements
and tackle several of its deficiencies.

11.4.9 Capturing the full visualization

If you scrutinize the visualization that we’ve captured so far, you may notice that we’ve
captured extra unnecessary space around the chart! This is happening because we’re
capturing the entire visible area of the browser. What we want is to constrain our
screenshot to only the exact area of the chart.

Alternatively, if our chart were bigger, it wouldn’t fit within the visible area of the
browser. Plus, in our captured image, we’d see the browser’s scrollbars, and only part of
the chart would be visible.

Points the browser at the
requested web page

Waits until the specified HTML
element appears on the screen

Captures a screenshot to an image file

Ends the Nightmare session. Any queued
operations are completed, and the
headless browser is terminated.

Exports the function so we can
use it in other code modules

Requires our new
toolkit function

Uses the function to render
and capture the chart

288 CHAPTER 11 Server-side visualization

To fix these problems, we need to do two things:

1 Expand the visible area of the browser so that it completely contains the chart (so
that we don’t capture any scrollbars).

2 Constrain the screenshot to the area of the chart (so that we don’t capture any
extra space).

Our solution to this problem is complicated because we must now execute code within
the headless browser to determine the size of the chart and the size of the web page.

Listing 11.6 is an extended code example that can capture the entire chart no mat-
ter how small or large it might be. Note how we use the evaluate function to execute
JavaScript code within the headless browser. This code determines the size of the chart
and scrollable area of the web page. Nightmare then copies this data from the headless
browser process back to Node.js so that we may use it.

We now call the viewport function to expand the browser’s viewport and make vis-
ible the entire scrollable area of the web page. This removes the scrollbars from our
captured image.

We’ve also modified the call to screenshot to pass in a rectangle that defines the
part of the web page that we want to capture. This limits the screenshot so that it cap-
tures only the chart and nothing else that might also be on the web page.

Listing 11.6 Capturing the entire chart (listing-11.6/toolkit/capture-web-page.js)

function captureWebPage (urlToCapture, captureElementSelector,
outputImagePath) {

 const nightmare = new Nightmare();
 return nightmare.goto(urlToCapture)
 .wait(captureElementSelector)
 .evaluate(captureElementSelector => {
 const body = document.querySelector("body");
 const captureElement =
 document.querySelector(captureElementSelector);
 const captureRect =
 captureElement.getBoundingClientRect();
 return {
 documentArea: {
 width: body.scrollWidth,
 height: body.scrollHeight
 },
 captureArea: {
 x: captureRect.left,
 y: captureRect.top,
 width: captureRect.right - captureRect.left,
 height: captureRect.bottom - captureRect.top
 }

Evaluates JavaScript code
within the headless browser

Finds the body
element of the
web page

Finds the HTML element to be
captured in the DOM

Gets the area
that we want
to capture

Returns details
computed in
the headless

browser to
Node.js

Returns the scrollable area of the page.
We’ll expand the size of the browser
window to cover the entire document
(removing any scrollbars we might
otherwise capture).

Returns the rect of the area of the page
(e.g., the chart) that we want to capture

 289Using Nightmare for server-side visualization

 };
 }, captureElementSelector)
 .then(pageDetails => {
 return nightmare.viewport(
 pageDetails.documentArea.width,
 pageDetails.documentArea.height
)
 .screenshot(outputImagePath, pageDetails.captureArea)
 .end();
 });
};

Note how we pass captureElementSelector into the evaluate function. This allows us
to use this variable in the browser code, which is normally cut off from the Node.js code.
The headless browser runs in a separate process, so we can’t directly access Node.js
variables from the browser code. Any data that we require in the browser code must be
passed as a parameter to the evaluate function.

11.4.10 Feeding the chart with data

We’re now finally in a position to recreate the renderLineChart function that we used
in chapter 9. We have everything we need to render and capture a chart under Node.js;
now we need to package it up into a function that we can feed with the data to be
visualized.

The function that we used in chapter 9 was based on c3-chart-maker, a code module
of mine that’s available on npm and that you can integrate in your own Node.js applica-
tions for server-side rendering of C3 charts. For the sake of learning, though, we won’t
use c3-chart-maker here. We’ll implement this from scratch based on everything we’ve
already learned.

We already have a web server and visualization for a line chart. We have our cap-
tureWebPage function from listing 11.6 that we can use to render our visualization to
an image file. Let’s adapt these so that we can mix in whatever data we want. To achieve
this, we must take full advantage of our custom web server. We’ll feed the data to the
web server, and it will then feed the data to the visualization.

These changes will go all the way through our code. First, we need to change our web
app (shown in the following listing) to accept the data (and the chart size) from the web
server.

Listing 11.7a Modify our web app to retrieve data from our Node.js app (listing-11.7
/toolkit/template-chart/public/app.js)

function renderChart (bindto, data, size) {
 var chart = c3.generate({
 bindto: bindto,
 size: size,
 data: data,
 transition: {
 duration: 0

Retrieves details computed in the headless
browser. We can now use these values in
subsequent Node.js code.

Sets the viewport
to cover the area
of the chart

Captures a screenshot
to an image file

The entire data object is now being
passed through from Node.js.

290 CHAPTER 11 Server-side visualization

 }
 });
};

$(function () {

 $.get("chart-data")
 .then(function (response) {
 renderChart("#chart", response.data, response.chartSize);
 })
 .catch(function (err) {
 console.error(err);
 });
});

Next, we must modify our web server so that it can be passed the data (and the chart
size) and then expose them to the web app through the REST API (see the following
listing).

Listing 11.7b Modify the web server to pass the C3 data object through to the web
app (listing-11.7/toolkit/template-chart/web-server.js)

const express = require('express');
const path = require('path');

module.exports = {
 start: (data, chartSize) => {
 return new Promise((resolve, reject) => {
 const app = express();

 const staticFilesPath = path.join(__dirname, "public");
 const staticFilesMiddleWare = express.static(staticFilesPath);
 app.use("/", staticFilesMiddleWare);

 app.get("/chart-data", (request, response) => {
 response.json({
 data: data,
 chartSize: chartSize,
 });
 });

 const server = app.listen(3000, err => {
 if (err) {
 reject(err);
 }
 else {
 resolve(server);
 }
 });
 });
 }
}

Uses a new chart-data
REST API that provides
the entire data object
for the chart

Starts a web server. We pass the C3 data
object to the web server through the
start function.

Makes the data
available to the
web app through
the REST API
(HTTP GET)

Starts our web
server

 291Using Nightmare for server-side visualization

Now that we can feed data through the web server to our line chart, we can create our
function renderLineChart. As you can see in listing 11.7c, this function accepts data,
the chart size, and the output path for the rendered image file. It’s similar to what
we’ve seen throughout this chapter: start the web server (but this time feeding data
into it) and then capture the web page using Nightmare.

Listing 11.7c The new toolkit function renderLineChart that can render a data set to a
chart (listing-11.7/toolkit/charts.js)

const webServer = require('./template-chart/web-server.js');
const captureWebPage = require('./capture-web-page.js');

function renderLineChart (data, chartSize, outputImagePath) {
 return webServer.start(data, chartSize)
 .then(server => {
 const urlToCapture = "http://localhost:3000";
 return captureWebPage(urlToCapture, "svg", outputImagePath)
 .then(() => server.close());
 });
};

module.exports = {
 renderLineChart: renderLineChart,

 // ... You can add functions for other chart types here ...
};

The last thing to do is to show you how to use the new function. The following listing
demonstrates the function by feeding hard-coded data into our new renderLineChart
function. You can run this code yourself and inspect the image file that is written to the
output subdirectory.

Listing 11.7d Calling the new renderLineChart toolkit function (listing-11.7/index.js)

const charts = require('./toolkit/charts.js');

const chartSize = {
 width: 600,
 height: 300
};

const myData = {
 json: [
 {
 "Year": 1917,
 "AvgTemp": 10.54724518
 },
 {
 "Year": 1918,
 "AvgTemp": 11.82520548
 },

This is a reusable toolkit function to
render data to a line chart. Outputs an

image file at the specified path.

Specifies the size of the chart

Specifies the data for the chart.
This is used directly as the data
field in the C3 chart definition.

A little hard-coded JSON data to
show that you can plug whatever
data you want into this chart

292 CHAPTER 11 Server-side visualization

 // ... Much data omitted ...
],
 keys: {
 x: "Year",
 value: [
 "AvgTemp"
]
 }
};

const outputImagePath = "./output/my-output-file.png";

charts.renderLineChart(myData, chartSize, outputImagePath)
 .then(() => {
 console.log("Line chart renderered!");
 })
 .catch(err => {
 console.error("Failed to render line chart.");
 console.error(err);
 });

We now have a reusable function for rendering a line chart under Node.js! It’s taken
much work for us to get to this point, but our new function is simple and easy to use.
We can use it over and over again with different data sets and reap the benefit of the
investment that we made to make this function possible.

Even though there are improvements we could still make, the important thing is that
we have something that works! And I believe it’s always better to have something that
works before trying to strive for perfection.

You can easily adapt renderLineChart and create your own toolkit functions to ren-
der different chart types or to add different configuration options or to control the look
and function of the chart. Feel free to experiment and see where you can take it next!

11.4.11 Multipage reports

Up to now, we’ve only captured a single chart from a web page. What would also be use-
ful— say, for generating a data analysis report—would be if we could capture multiple
pages of information to a PDF file. Nightmare supports this capability directly, and we
can use the pdf function to capture multipage documents.

Let’s copy our toolkit function captureWebPage, rename it to captureReport, and
make the following changes so that we can capture a report:

1 We need to restructure our template web page to have multiple pages.

2 We call the pdf function instead of the screenshot function.

3 We capture the entire web page and not only the individual chart.

RESTRUCTURE THE PAGE

First, we have to divide our HTML document into multiple pages. Each page will be
a separate page in the output PDF file. In the following listing, you can see that we’ve
added the page class to the CSS file, and we’ll use this to define each individual page.

Passes in the
data and
renders the
chart to the
image file

 293Using Nightmare for server-side visualization

Listing 11.8a Additional CSS for defining a page (extract from listing-11.8/public/app.css)

.page {
 page-break-before: always;
 width: 29.7cm;
 height: 21cm;
}

We use the page class to delineate three separate pages as shown in the following list-
ing, and we’ve put a separate chart in each page.

Listing 11.8b Adding separate pages to the HTML document (extract from
listing-11.8/public/index.html)

 <body>
 <div class="page">
 <h1>Page 1</h1>
 <div id='chart1'></div>
 </div>
 <div class="page">
 <h1>Page 2</h1>
 <div id='chart2'></div>
 </div>
 <div class="page">
 <h1>Page 3</h1>
 <div id='chart3'></div>
 </div>
 </body>

CALL THE PDF FUNCTION AND CAPTURE THE ENTIRE PAGE

Listing 11.8c shows the new captureReport function that can render a web page to a
PDF file. We’ve copied and evolved this code from the earlier captureWebPage func-
tion. The main changes are that we’re now capturing the entire web page, and we’re
calling the pdf function to render it to a PDF file.

Listing 11.8c Rendering a multipage report to a PDF file (extract from listing-11.8
/index.js)

function captureReport (urlToCapture,
 captureElementSelector, outputPdfFilePath) {

 const nightmare = new Nightmare();
 return nightmare.goto(urlToCapture)
 .wait(captureElementSelector)
 .evaluate(() => {
 const body = document.querySelector("body");
 return {

This CSS class defines a
single page in the report.

Inserts a page break
between pages

Sets the width and height of a page
in centimeters. These values match
the A4 page specification, but in
landscape orientation.

This is the first page.

This is the second page.

This is the third page.

This is a toolkit function
that captures a multipage
report to a PDF file.

Finds the body
element of the
web page

Returns details computed in the
headless browser to Node.js

294 CHAPTER 11 Server-side visualization

 documentArea: {
 width: body.scrollWidth,
 height: body.scrollHeight
 },
 };
 })
 .then(pageDetails => {
 const printOptions = {
 marginsType: 0,
 pageSize: {
 width: 297000,
 height: 210000,
 },
 landscape: true,
 };
 return nightmare.viewport(
 pageDetails.documentArea.width,
 pageDetails.documentArea.height
)
 .pdf(outputPdfFilePath, printOptions)
 .end();
 });
};

Note the printOptions that we are passing to the pdf function. This allows us to con-
trol aspects of the generated PDF file. We clear out the margins (we can now control
the margins in CSS), we set the page size (in microns, oddly enough), and we can set
either landscape or portrait orientation.

Making it work on different platforms
The way a PDF file is rendered can vary between platforms. Personally, I’ve seen the
font size come out differently between Windows (where the report was prototyped) and
Ubuntu (where the automated reporting system was in operation).

Please take care to test your report on the platform where it will be generated to be sure
that the layout and visuals are rendered as you expect.

11.4.12 Debugging code in the headless browser

What happens when we have problems in the code for our visualization? We can’t
see the headless browser, and we haven’t talked about error handling yet. How do we
debug any issues that might come up?

Returns the scrollable area of the page. We’ll
expand the size of the browser window to
cover the entire documents (removing any
scrollbars we might otherwise capture).

Retrieves details computed in the
headless browser. We can now use these
values in subsequent Node.js code.

Specifies no
margins. This

allows us to
explicitly set
our margins

via CSS.

Lists the size of each page. These
values match the specification for
the A4 page size standard, but in
landscape.

Sets the width of
the page, 29.7 cm
(in microns. Don't
ask me why they
put this is in
microns.)

Sets the height of the
page, 21 cm (in microns)

Sets the viewport to cover
the area of the chart

Captures the entire
web page to a PDF
report

 295Using Nightmare for server-side visualization

First, if you think you have a problem in the visualization, run it under a real browser
(instead of the headless browser). Now you can use your browser’s console and devtools
to debug the problem as you would with any normal web app.

The most effective way to prevent problems is to thoroughly test and debug your visu-
alization before you put it under the headless browser. However, if it works in a normal
browser but then you have problems in the headless browser, you’ll want to use Night-
mare’s debugging features along with proper error handling.

Listing 11.9 shows how we can create the Nightmare instance and display the brows-
er’s window (it’s useful to see what’s being rendered) and also to enable the browser’s
devtools (Electron is based on Chromium, so we get all the same lovely devtools that are
in Chrome). This makes it much easier for us to debug issues that are happening within
the headless browser (because it’s not so headless anymore).

Listing 11.9 Creating the Nightmare instance for debugging

const nightmare = Nightmare({
 show: true,
 openDevTools: { mode: "detach" }
});

It’s also important to make sure we can see any errors that might come from the head-
less browser. We should have included error handling from the start, but I didn’t want
to complicate things too early.

The following listing attaches an error handler to the Nightmare instance. Now any
console logging or errors that occur within the headless browser are passed back to
Node.js so we can deal with them.

Listing 11.10 Adding error handling to the Nightmare instance

nightmare.on("console", function (type, message) {

 if (type === "log") {
 console.log("LOG: " + message);
 return;
 }

 if (type === "warn") {
 console.warn("LOG: " + message);
 return;
 }

 if (type === "error") {
 throw new Error("Browser JavaScript error: " + message);
 }
});

Shows the headless browser window. Ultimately,
we don’t want this, but it’s useful to see what’s
going on when we’re debugging.

Opens the devtools for the web page so
we can troubleshoot if necessary

Prints browser log messages
to the Node.js console

Also prints warning
messages

JavaScript error messages throw an
exception to abort the capture process.

296 CHAPTER 11 Server-side visualization

11.4.13 Making it work on a Linux server

Using Nightmare becomes more complicated on a headless Linux server. Electron
isn’t truly headless (at least not yet), so it still requires a framebuffer for its (invisible)
rendering.

If you’re rendering visualizations on your development workstation with a normal
UI-based operating system, then you’re all good, and you can make visualizations as
part of your data analysis or for reports and presentations and so on. The problem
comes when you want to capture visualizations as part of an automated process on a
headless Linux server.

Say that you have an automated pipeline for report generation (you’ll see how this
can work in chapter 12). In response to an event or maybe as a scheduled task, your
Linux server aggregates recent data in your database, and either your captureWebPage
or captureReport function generates an image or PDF file.

Unfortunately, this won’t work using Nightmare by itself because your headless
Linux server (that is, Linux running without a graphical UI) doesn’t have a framebuffer
that Electron can render to. Like I said earlier, Electron isn’t truly headless, and it still
needs somewhere to be rendered.

Fortunately, we can install software on Linux that creates a virtual framebuffer. I’m not
going to cover how to install such software because that’s likely to be different depend-
ing on your flavor of Linux. But after we have this software installed, we can use the xvfb
npm module to start a virtual framebuffer, and this enables us to capture visualizations
from our headless Linux server.

You can see how this works in listing 11.11. Most of the code is the same as the earlier
version of captureWebPage, except now we’re starting the virtual framebuffer before we
capture our visualization and then stop it afterward.

If you want to try this for yourself, please use the Vagrant script that you’ll find in
the listing-11.11 subdirectory of the repo. This Vagrant script boots an Ubuntu virtual
machine and installs the Xvfb software ready for you to use. If you shell into the vir-
tual machine, you can run the xvfb-version of the code that’s presented in the following
listing.

Listing 11.11 Using a virtual framebuffer for server-side chart rendering on a headless
Linux server (listing-11.11/xvfb-version/toolkit/capture-web-page.js)

const Nightmare = require('nightmare');
const Xvfb = require('xvfb');

function captureWebPage (urlToCapture,
 captureElementSelector, outputImagePath) {

 const xvfb = new Xvfb();
 xvfb.startSync();

 const nightmare = Nightmare();
 return nightmare.goto(urlToCapture)

Requires the Xvfb virtual
framebuffer module

Starts the virtual framebuffer

 297You can do much more with a headless browser

 .wait(captureElementSelector)
 .evaluate(captureElementSelector => {
 const body = document.querySelector("body");
 const captureElement =
 document.querySelector(captureElementSelector);
 const captureRect = captureElement.getBoundingClientRect();
 return {
 documentArea: {
 width: body.scrollWidth,
 height: body.scrollHeight
 },
 captureArea: {
 x: captureRect.left,
 y: captureRect.top,
 width: captureRect.right - captureRect.left,
 height: captureRect.bottom - captureRect.top
 }
 };
 }, captureElementSelector)
 .then(pageDetails => {
 return nightmare.viewport(
 pageDetails.documentArea.width,
 pageDetails.documentArea.height
)
 .screenshot(outputImagePath, pageDetails.captureArea)
 .end();
 })
 .then(() => xvfb.stopSync());
};

In the repo you’ll find both Xvfb and non-Xvfb versions of this code. Feel free to try
the non-Xvfb version on the headless Ubuntu virtual machine; you’ll see that trying to
use Nightmare without the virtual framebuffer will hang your script.

The Xvfb version does work on the headless Ubuntu virtual machine. In fact, it will
only work on a machine that has Xvfb installed. If you were to try running this—for
example, on a Windows PC—it would give you errors.

11.5 You can do much more with a headless browser
At this point you might wonder what else we can do with a headless browser. Early in
the chapter, I mentioned that the primary reason a developer uses a headless browser
is for automated testing of web applications. We’ve also seen in this chapter how useful
a headless browser is for rendering browser-based visualizations under Node.js. Here
are other reasons you might want to use a headless browser.

11.5.1 Web scraping

We touched briefly on web scraping in chapter 4, and I avoided issues that you’d prob-
ably encounter if you were to delve further into web scraping—issues such as authenti-
cation or executing JavaScript in the web page before scraping it. The headless browser
is the tool we need to take our web scraping to the next level.

Shuts down the virtual framebuffer

298 CHAPTER 11 Server-side visualization

We can use Nightmare to completely simulate the web page we’re trying to scrape—
that means JavaScript in the page has executed normally before we try to scrape it. We
can also procedurally interact with the page—that means we can authenticate with the
server or whatever else we need to prepare the web page for scraping.

One thing can make this even easier. We can install the Daydream Chrome exten-
sion. This allows us to use a web page and simultaneously record a Nightmare script of
our actions. We can essentially rehearse and then replay any sequence of actions that we
might need to perform to make web scraping possible.

11.5.2 Other uses

We can use a headless browser for many other tasks, such as capturing screenshots for
documentation and marketing or prerendering visualization for our website (maybe as
part of our build process). We also might use it to wrap a legacy web page as an API. I’m
sure you can dream of other uses for a headless browser because it’s such a useful tool
to have in your toolkit.

We’ve come full circle! In chapter 9, we learned about data analysis with the aid
of several toolkit functions to render charts directly from Node.js. In chapter 10, we
learned how to create such charts to run in the browser using the C3 charting library. In
this chapter, we learned how to render visualizations from Node.js and even how to do
so on a headless Linux server. We are now able to capture any web page to an image or
PDF file.

After learning this technique, we now understand how the chart rendering func-
tions from chapter 9 worked, and we can create our own functions to render any
browser-based visualization that we can conceive. We can easily produce reports that
might be needed for our business. In chapter 12, we’ll look at how automated reporting
might be used in a live data pipeline.

Summary

¡	You learned how to use Nightmare to capture charts to images under Node.js.
¡	You saw how to capture a multipage report to a PDF document.
¡	You know that you must use Xvfb to create a virtual framebuffer so that you can

run Nightmare on a headless Linux server.
¡	You learned that a headless browser can take your web scraping to the next level.

299

12Live data

This chapter covers
¡	Working with a real-time data feed

¡	Receiving data through HTTP POST and sockets

¡	Decoupling modules in your server with an
event-based architecture

¡	Triggering SMS alerts and generating
automated reports

¡	Sending new data to a live chart through
socket.io

In this chapter we bring together multiple aspects of data wrangling that we’ve
already learned and combine them into a real-time data pipeline. We’re going to
build something that’s almost a real production system. It’s a data pipeline that will
do all the usual things: acquire and store data (chapter 3), clean and transform the
data (chapter 6), and, in addition, perform on-the-fly data analysis (chapter 9).

Output from the system will take several forms. The most exciting will be a
browser-based visualization, based on our work from chapter 10, but with live data
feeding in and updating as we watch. It will automatically generate a daily report

300 CHAPTER 12 Live data

(using techniques from chapter 11) that’s emailed to interested parties. It will also
issue SMS text message alerts about unusual data points arriving in the system. To be
sure, the system we’ll build now will be something of a toy project, but besides that, it
will demonstrate many of the features you’d want to see in a real system of this nature,
and on a small scale, it could work in a real production environment.

This will be one of the most complex chapters yet, but please stick with it! I can promise
you that getting to the live visualization will be worth it.

12.1 We need an early warning system
For many cities, monitoring the air quality is important, and in certain countries, it’s
even regulated by the government. Air pollution can be a real problem, regardless of
how it’s caused. In Melbourne, Australia, in 2016, an incident occurred that the media
were calling thunderstorm asthma.

A major storm hit the city, and the combination of wind and moisture caused pollen
to break up and disperse into particles that were too small to be filtered out by the nose.
People with asthma and allergies were at high risk. In the following hours, emergency
services were overwhelmed with the large volume of calls. Thousands of people became
ill. In the week that followed, nine people died. Some kind of early warning system might
have helped prepare the public and the emergency services for the impending crisis, so
let’s try building something like that.

In this chapter, we’ll build an air quality monitoring system. It will be somewhat
simplified but would at least be a good starting point for a full production system.
We’re building an early warning system, and it must raise the alarm as soon as poor air
quality is detected.

What are we aiming for here? Our live data pipeline will accept a continuous data
feed from a hypothetical air quality sensor. Our system will have three main features:

¡	To allow air quality to be continuously monitored through a live chart
¡	To automatically generate a daily report and email it to interested parties
¡	To continuously check the level of air quality and to raise an SMS text message

alert when poor air quality is detected

This chapter is all about dealing with live and dynamic data, and we’ll try to do this in
a real context. We’ll see more software architecture in this chapter than we’ve yet seen
in the book because the work we’re doing is getting more complex and we need more
powerful ways to organize our code. We’ll work toward building our application on
an event-based architecture. To emulate how I’d really do the development, we’ll start
simple and then restructure our code partway through to incorporate an event hub
that will decouple the components of our app and help us to manage the rising level
of complexity.

 301Dealing with live data

12.2 Getting the code and data
The code and data for this chapter are available in the Data Wrangling with JavaScript
Chapter 12-repository in GitHub: https://github.com/data-wrangling-with-javascript
/chapter-12. Data for this chapter was acquired from the Queensland Government open
data website at https://data.qld.gov.au/.

Each subdirectory in the code repo is a complete working example, and each corre-
sponds to code listings throughout this chapter. Before attempting to run the code in each
subdirectory, please be sure to install the npm and Bower dependencies as necessary. Refer
to “Getting the code and data” in chapter 2 for help on getting the code and data.

12.3 Dealing with live data
Creating a live data pipeline isn’t much different from anything else we’ve seen so
far in the book, except now we’ll have a continuous stream of data pushed to us by a
communication channel. Figure 12.1 gives the simplified overall picture. We’ll have an
air pollution sensor (our data collection device) that submits the current metric of air
quality to our Node.js server on an hourly basis, although we’ll speed this up dramati-
cally for development and testing.

For a more in-depth understanding of how the data feed fits into our pipeline, see
figure 12.2. Incoming data arrives in our system on the left of the diagram at the data
collection point. The data then feeds through the processing pipeline. You should rec-
ognize the various pipeline stages here and already have an idea what they do. Output is
then delivered to our user through alerts, visualizations, and a daily report.

Air pollution sensor
(the data collection device)

Our Node.js server
(the live data pipeline)

Communication
channel

Figure 12.1 An air pollution sensor pushes data to our Node.js server.

Live data pipeline
Alert

Visualize

Report

AnalyzeClean &
Transform

Acquire
& store

Data flows through our
pipeline in real-time.

Output is delivered
through various

means

Data
collection

point

Data arrives in
our system at the
data collection point.

Incoming
data

Figure 12.2 We’ll now have a continuous stream of data flowing into our data pipeline.

https://github.com/data-wrangling-with-javascript/chapter-12
https://github.com/data-wrangling-with-javascript/chapter-12
https://data.qld.gov.au/

302 CHAPTER 12 Live data

12.4 Building a system for monitoring air quality
Before we dive into building our air quality monitoring system, let’s look at the data we
have. The CSV data file brisbanecbd-aq-2014.csv is available under the data subdirectory
of the Chapter-12 GitHub repository. As usual, we should take a good look at our data
before we start coding. You can see an extract from the data file in figure 12.3. This
data was downloaded from the Queensland Government open data website.1 Thanks
to the Queensland Government for supporting open data.

The data file contains an hourly reading of atmospheric conditions. The metric of
interest is the PM10 column. This is the count of particles in the air that are less than
10 micrometers in diameter. Pollen and dust are two examples of such particles. To
understand how small this is, you need to know that a human hair is around 100 microm-
eters wide, so 10 of these particles can be placed on the width of a human hair. That’s tiny.

Particulate matter this small can be drawn into the lungs, whereas bigger particles
are often trapped in the nose, mouth, and throat. The PM10 value specifies mass per
volume, in this case micrograms per cubic meter (µg/m3).

1 For more information, see https://data.qld.gov.au/dataset/air-quality-monitoring-2014.

PM10 is the column
we are interested in.

These large values
(greater than 80)
indicate poor air
quality at this time.

…

Figure 12.3 The data for this chapter. We’re interested in the PM10 column for monitoring air quality.

https://data.qld.gov.au/dataset/air-quality-monitoring-2014

 303Building a system for monitoring air quality

Notice the larger values for PM10 that are highlighted in figure 12.3. At these times,
we’ve got potentially problematic levels of atmospheric particulate matter. On the
chart in figure 12.4, we can easily see this spike between 12 p.m. and 3 p.m.—this is
when air quality is worse than normal. Figure 12.4 also shows the chart that we’ll make
in this chapter.

For the purposes of our air quality monitoring system, we’ll regard any PM10 value
over 80 as a poor quality of air and worthy of raising an alarm. I’ve taken this number
from the table of air quality categories from the Environmental Protection Authority
(EPA) Victoria.

What will our system look like? You can see a schematic of the complete system in fig-
ure 12.5. I’m showing you this system diagram now as a heads-up on where we’re head-
ing. I don’t expect you to understand all the parts of this system right at the moment,
but you can think of this as a map of what we’re creating, and please refer back to it
from time to time during this chapter to orient yourself.

I told you this would be the most complicated project in the book! Still, this system will
be simple compared to most real production systems. But it will have all the parts shown in
the schematic even though we’ll only be examining parts of this whole. At the end of the
chapter, I’ll present the code for the completed system for you to study in your own time.

Our system starts with data produced by an air pollution sensor (shown on the left of
figure 12.5). The sensor detects the air quality and feeds data to the data collection point
at hourly intervals. The first thing we must do is store the data in our database. The worst
thing we can do is lose data, so it’s important to first make sure the data is safe. The data
collection point then raises the incoming-data event. This is where our event-based archi-
tecture comes into play. It allows us to create a separation of concerns and decouple our
data collection from our downstream data operations. To the right of figure 12.5, we see
the outputs of our system, the SMS alert, the daily report, and the live visualization.

This big spike in PM10 indicates poor
air quality between 12 and 3 p.m.

Our live data system will collect data at
hourly intervals (although we’ll speed
this up drastically so we don’t have to
wait an hour to get results).

160

140

120

100

80

60

40

20

0

2014/1/1 33 AM 06 AM 09 AM

PM10 (ug/m∧3)

12 PM 03 PM 06 PM

Figure 12.4 Charting the PM10 value, we can see the big spike between 12 and 3 p.m.

304 CHAPTER 12 Live data

12.5 Set up for development
To build this system, we must create a kind of artificial scaffold in which to run it. You prob-
ably don’t have an actual particulate matter sensor on hand—although you can actually
buy these at a reasonable price if you’re particularly motivated by this example project.

Instead, we’ll use JavaScript to create a sort of mock sensor to simulate the real sensor.
The code we’ll write might be pretty close to what the real thing would look like. For
example, if we could attach a Raspberry PI to the real sensor and install Node.js, we could
then run code that might be similar to the mock sensor we’re going to build in a moment.

We don’t have a real sensor, so we’ll need precanned data for the mock sensor to “gener-
ate” and feed to our monitoring system. We already have realistic data, as seen in figure 12.3,
although this data is hourly. If we’re to use it in a realistic fashion, then our workflow would
be slow because we’d have to wait an hour for each new data point to come in.

To be productive, we need to speed this up. Instead of having our data come in at
hourly intervals, we’ll make it come in every second. This is like speeding up time and
watching our system run in fast forward. Other than this time manipulation, our system
will run in a realistic fashion.

Each code listing for this chapter has its own subdirectory under the Chapter-12
GitHub repository. Under each listing’s directory, you’ll find a client and a server direc-
tory. You can get an idea of what this looks like in figure 12.6.

For each code listing, the mock sensor, our data collection device, lives in the client
subdirectory, and our evolving air monitoring system lives in the server subdirectory. To
follow along with the code listings, you’ll need to open two command-line windows. In
the first command line, you should run the server as follows:

cd listing-12.1
cd server
node index.js

Each client and server
subdirectory contains a
complete and working
Node.js project.

Each code listing for this
chapter contains both a client
and a server subdirectory

Each client subdirectory contains a
simple mock air quality sensor that
sends data to our server.

Each server subdirectory contains
the air quality monitoring system
that we are evolving throughout
this chapter.

Figure 12.6 The project structure for code listings in chapter 12

Our Node.js server

Data operations

Data
collection

point

Air pollution
sensor

Data stream

Incoming data
is stored in the
database.

Raise event
incoming-data

Check data

Scheduler

SMS alert

Update
visualization

Various
events trigger
downstream
operations.

Aggregate
data

Email
report

Trigger an SMS
text alert when
poor air quality is
detected.

Event hub

Data is fed into
downstream operations.

Triggers time-
based events

Live chart

Generate
and email a
daily report.

This is our data
collection device.

Figure 12.5 Schematic of our air quality monitoring system

 305Live-streaming data

In the second command line, you should run the client (mock sensor) as follows:

cd listing-12.1
cd client
node index.js

The client and server are now both running, and the client is feeding data to the server.
When moving onto the next code listing, change the listing number depending on
where you are. Make sure you install the npm and Bower dependencies before trying
to run each code listing.

Live reload
Don’t forget that you can also use nodemon in place of node when running scripts to enable
live reload, which allows you to make changes to the code. nodemon will automatically
rerun your code without you having to restart it manually. Please check chapter 5 for a
refresher on this.

12.6 Live-streaming data
The first problem we must solve is how to connect our sensor to our monitoring
system. In the coming sections, we’ll cover two network-based mechanisms: HTTP
POST and sockets. Both protocols build on the TCP network protocol and are
directly supported by Node.js. Which protocol you choose depends on the frequency
at which you expect data to be submitted.

12.6.1 HTTP POST for infrequent data submission

Let’s start by looking at data submission via HTTP POST. We can use this when data
submission is infrequent or ad hoc. It’s also simplest and so is a good place to start. Fig-
ure 12.7 shows how our air pollution sensor is going to send single packets of data to our
Node.js server. In this case, our data collection point, the entry point for data arriving at
our server, will be an HTTP POST request handler. From there, the data is fed into our
live data pipeline.

12.5 Set up for development
To build this system, we must create a kind of artificial scaffold in which to run it. You prob-
ably don’t have an actual particulate matter sensor on hand—although you can actually
buy these at a reasonable price if you’re particularly motivated by this example project.

Instead, we’ll use JavaScript to create a sort of mock sensor to simulate the real sensor.
The code we’ll write might be pretty close to what the real thing would look like. For
example, if we could attach a Raspberry PI to the real sensor and install Node.js, we could
then run code that might be similar to the mock sensor we’re going to build in a moment.

We don’t have a real sensor, so we’ll need precanned data for the mock sensor to “gener-
ate” and feed to our monitoring system. We already have realistic data, as seen in figure 12.3,
although this data is hourly. If we’re to use it in a realistic fashion, then our workflow would
be slow because we’d have to wait an hour for each new data point to come in.

To be productive, we need to speed this up. Instead of having our data come in at
hourly intervals, we’ll make it come in every second. This is like speeding up time and
watching our system run in fast forward. Other than this time manipulation, our system
will run in a realistic fashion.

Each code listing for this chapter has its own subdirectory under the Chapter-12
GitHub repository. Under each listing’s directory, you’ll find a client and a server direc-
tory. You can get an idea of what this looks like in figure 12.6.

For each code listing, the mock sensor, our data collection device, lives in the client
subdirectory, and our evolving air monitoring system lives in the server subdirectory. To
follow along with the code listings, you’ll need to open two command-line windows. In
the first command line, you should run the server as follows:

cd listing-12.1
cd server
node index.js

Each client and server
subdirectory contains a
complete and working
Node.js project.

Each code listing for this
chapter contains both a client
and a server subdirectory

Each client subdirectory contains a
simple mock air quality sensor that
sends data to our server.

Each server subdirectory contains
the air quality monitoring system
that we are evolving throughout
this chapter.

Figure 12.6 The project structure for code listings in chapter 12

306 CHAPTER 12 Live data

Our code at this point will be incredibly simple. Starting off, we want to get the data
feed moving from the mock sensor into our Node.js server. You can run this code, but you
must start it in the right order—first the server and then the client (mock sensor). Our
Node.js server receives data and then prints it to the console (as shown in figure 12.8).
We’re starting simple, and that’s all it does at this point. We do this to check that our data
is coming across to our server correctly.

Node.js directly supports HTTP POST, but in this case, we’ll use request-promise,
a higher-level library, to make this a bit easier and also to wrap our HTTP request
in promises.

If you installed dependencies already, then you have request-promise installed in
your project; otherwise, you can install it in a fresh Node.js project like this:

npm install --save request-promise

Figure 12.8 Output displayed as our
Node.js server receives data using
HTTP POST.

Our Node.js server

HTTP POST handlerAir pollution sensor

The device sends infrequent
packets of data.

Live data pipeline

Our data collection
point is an HTTP POST
request handler.

The data is then
fed into our live
data pipeline.

Figure 12.7 HTTP POST is used to send single packets of data to our server.

 307Live-streaming data

The following listing shows the code for our first mock air pollution sensor. It reads
our example CSV data file. Once per second it takes the next row of data and submits it
to the server using HTTP POST.

Listing 12.1a Air pollution sensor that submits data to the server via HTTP POST
(listing-12.1/client/index.js)

const fs = require('fs');
const request = require('request-promise');
const importCsvFile = require('./toolkit/importCsvFile.js');

const dataFilePath = "../../data/brisbanecbd-aq-2014.csv";
const dataSubmitUrl = "http://localhost:3000/data-collection-point";

importCsvFile(dataFilePath)
 .then(data => {
 let curIndex = 0;

 setInterval(() => {

 const outgoingData = Object.assign({}, data[curIndex]);
 curIndex += 1;

 request.post({
 uri: dataSubmitUrl,
 body: outgoingData,
 json: true
 });

 }, 1000);
 })
 .catch(err => {
 console.error("An error occurred.");
 console.error(err);
 });

On the server side, we use the express library to accept incoming data using HTTP POST.
As we did with request-promise, we use the express library to make our lives a little easier.
Node.js already has everything we need to build an HTTP server, but it’s common practice
to use a higher-level library like express to simplify and streamline our code.

Again, if you installed dependencies, then you already have the express library
installed; otherwise, you install it and the body-parser middleware as follows:

npm install --save express body-parser

We’re using the body-parser middleware to parse the HTTP request body from JSON
when it’s received. This way we don’t have to do the parsing ourselves. It will happen
automatically.

Listing 12.1b shows the code for a simple Node.js server that accepts data using the
URL data-collection-point. We print incoming data to the console to check that it’s
coming through correctly.

This is the path
to the CSV file

containing
example data.

This is the URL for submitting
data to our Node.js server.

Loads the
example
data from
the CSV file

Once per second, it sends a
chunk of data to the server.

Clones the data so
we can modify it
without overwriting
the original

Iterates through
the example data
one row at a time

Uses HTTP POST to submit a
packet of data to the server

Specifies the URL to submit data to

This is the data being submitted.

Uses JSON encoding. The
data is sent over the wire
using the JSON data format.

308 CHAPTER 12 Live data

Listing 12.1b Node.js server that can accept data via HTTP POST (listing-12.1/
server/index.js)

const express = require('express');
const app = express();
const bodyParser = require('body-parser');

app.use(bodyParser.json());

app.post("/data-collection-point", (req, res) => {
 console.log(req.body);
 res.sendStatus(200);
});

app.listen(3000, () => { // Start the server.
 console.log("Data collection point listening on port 3000!");
});

We now have a mechanism that allows us to accept an infrequent or ad hoc data feed.
This would be good enough if we were only receiving incoming data on an hourly
basis—as we would be if this were a real-life system. But given that we’re sending our
data through every second, and because it’s an excuse to do more network coding, let’s
look at using sockets to accept a high-frequency real-time data feed into our server.

12.6.2 Sockets for high-frequency data submission

We’ll now convert our code over to using a socket connection, which is a better alter-
native when we have a high frequency of data submission. We’re going to create a
long-lived communication channel between the sensor and the server. The communi-
cation channel is also bidirectional, but that’s not something we’ll use in this example,
although you could later use it for sending commands and status back to your sensor if
that’s what your system design needed.

Figure 12.9 shows how we’ll integrate the socket connection into our system. This
looks similar to what we did with HTTP POST, although it shows that we’ll have a stream

Requires the body-parser middleware so
that the HTTP request body is automatically
parsed from JSON data

Defines a REST API endpoint that
receives packets of data that were
submitted to the server

We’re not doing anything with the
data yet, only printing to check that
it’s coming through.

Responds
to the client
with HTTP
status 200
(status okay)

Our Node.js server

Socket handlerAir pollution sensor

The device is sending a
continuous stream of data
over a socket connection.

Live data pipeline

Our data collection point
receives a continuous feed
of data from the socket
connection.

The data is then
fed into our
live data pipeline.

Figure 12.9 A long-lived socket connection is used to receive continuous and high-frequency
streaming data into our server.

 309Live-streaming data

of data coming through and arriving at the socket handler, which replaces the HTTP
post handler and is our new data collection point.

In the following listing, we adapt our mock sensor from listing 12.1a so that it writes
the outgoing data to the socket connection. Besides the connection setup and the call
to socket.write, this listing is similar to listing 12.1a.

Listing 12.2a Air pollution sensor that submits data to the server via a socket
connection (listing-12.2/client/index.js)

// ... initial setup as per listing 12.1a ...

const serverHostName = "localhost";
const serverPortNo = 3030;

const client = new net.Socket();
client.connect(serverPortNo, serverHostName, () => {
 console.log("Connected to server!");
});

client.on("close", () => {
 console.log("Server closed the connection.");
});

importCsvFile(dataFilePath)
 .then(data => {
 let curIndex = 0;

 setInterval(() => {

 const outgoingData = Object.assign({}, data[curIndex]);
 curIndex += 1;

 const outgoingJsonData = JSON.stringify(outgoingData);

 client.write(outgoingJsonData);

 }, 1000);
 })
 .catch(err => {
 console.error("An error occurred.");
 console.error(err);
 });

In listing 12.2b, we have a new Node.js server that listens on a network port and
accepts incoming socket connections. When our mock sensor (the client) connects,
we set a handler for the socket’s data event. This is how we intercept incoming data;
we’re also starting to see that event-based architecture that I mentioned earlier. In
this example, as before, we print the data to the console to check that it has come
through correctly.

Sets up the server connection details

Connects the socket
to our Node.js server

This callback is invoked when the
server has closed the connection.

Loads the example data from the CSV file

Once per second, it sends a
chunk of data to the server.

Serializes
outgoing data
to JSON format

Sends JSON data over the wire

310 CHAPTER 12 Live data

Listing 12.2b Acquiring real-time data through a socket connection (listing-12.2
/server/index.js)

const net = require('net');

const serverHostName = "localhost";
const serverPortNo = 3030;

const server = net.createServer(socket => {
 console.log("Client connected!");

 socket.on("data", incomingJsonData => {

 const incomingData = JSON.parse(incomingJsonData);

 console.log("Received: ");
 console.log(incomingData);
 });

 socket.on("close", () => {
 console.log("Client closed the connection");
 });

 socket.on("error", err => {
 console.error("Caught socket error from client.");
 console.error(err);
 });
});

server.listen(serverPortNo, serverHostName, () => {
 console.log("Waiting for clients to connect.");
});

Note how we’re sending the data over the wire in the JSON data format. We did this in
the HTTP example as well, but in that case request-promise (on the client) and express
(on the server) did the heavy lifting for us. In this case, we’re manually serializing the
data to JSON (on the client) before pushing it onto the network and then manually
deserializing when it comes out at the other end (on the server).

12.7 Refactor for configuration
To this point, our server code has been simple, but in a moment the complexity will
start to rise sharply. Let’s take a moment and do a refactor that will cleanly separate our
configuration from our code. We won’t go too far with this; it’s a simple restructure
and will help us keep the app tidy as it grows.

The only configuration we have at the moment is the socket server setup details from
listing 12.2b. We’re going to move these to a separate configuration file, as shown in
figure 12.10. This will be a central place to consolidate the configuration of the app and
where we’ll need to go to later change its configuration.

Listing 12.3a shows our simple starting configuration for the project. You might well
ask, “Why bother?” We’ll, it’s because we have a bunch of configuration details yet to

Sets up the server connection details

Creates the socket server
for data collection

Handles incoming-data packets
Deserializes
incoming
JSON data

Logs data received so that we can
check that it’s coming through okay

This callback is
invoked when
the client has
closed the
connection.

Adds an error handler, mainly for ECONNRESET
when the client abruptly disconnects

Starts listening for
incoming socket
connections

Our Node.js project for
the server now contains
a configuration file.

Figure 12.10 The new configuration
file in our Node.js project

 311Refactor for configuration

come. The database, SMS alerts, and report generation all require their own configura-
tion, and it’s nice to gather them in this one place.

Listing 12.3a Adding a simple configuration file to the Node.js project (listing-12.3
/server/config.js)

module.exports = {
 server: {
 hostName: "localhost",
 portNo: 3030
 }
};

Listing 12.3b shows how we load and use the configuration file. Nothing is complex
here; our configuration is a regular Node.js code module with exported variables. This
is a simple and convenient way to get started adding configuration to your app. It costs
us little time to get this in place, and it’s useful in the long run.

Listing 12.3b The Node.js server is modified to load and use the configuration file
(listing-12.3/server/index.js)

const net = require('net');
const config = require('./config.js');

const server = net.createServer(socket => {
 // ... code omitted, same as listing 12.1b ...
});

server.listen(config.server.portNo, config.server.hostName, () => {
 console.log("Waiting for clients to connect.");
});

You may wonder why I chose to use a Node.js code module as a configuration file. Well,
my first thought was for simplicity. Normally, in production, I’ve used a JSON file for
this kind of thing, and that’s just as easy to drop into this example. Believe it or not, you
can require a JSON file in Node.js the same way that you require a JavaScript file. For
example, you could have also done this:

const config = require('./config.json');

It’s cool that you can do that: it’s a simple and effective way to load data and configu-
ration into your Node.js app. But it also occurred to me that using JavaScript as your
configuration file means you can include comments! This is a great way to document
and explain configuration files and isn’t something you can ordinarily do with JSON
files. (How many times do you wish you could have added comments to JSON files?!)

The first details in our configuration file;
specifies the server configuration

Loads the configuration file just
like any other Node.js code module

Starts the socket server with details
loaded from the configuration file

Listing 12.2b Acquiring real-time data through a socket connection (listing-12.2
/server/index.js)

const net = require('net');

const serverHostName = "localhost";
const serverPortNo = 3030;

const server = net.createServer(socket => {
 console.log("Client connected!");

 socket.on("data", incomingJsonData => {

 const incomingData = JSON.parse(incomingJsonData);

 console.log("Received: ");
 console.log(incomingData);
 });

 socket.on("close", () => {
 console.log("Client closed the connection");
 });

 socket.on("error", err => {
 console.error("Caught socket error from client.");
 console.error(err);
 });
});

server.listen(serverPortNo, serverHostName, () => {
 console.log("Waiting for clients to connect.");
});

Note how we’re sending the data over the wire in the JSON data format. We did this in
the HTTP example as well, but in that case request-promise (on the client) and express
(on the server) did the heavy lifting for us. In this case, we’re manually serializing the
data to JSON (on the client) before pushing it onto the network and then manually
deserializing when it comes out at the other end (on the server).

12.7 Refactor for configuration
To this point, our server code has been simple, but in a moment the complexity will
start to rise sharply. Let’s take a moment and do a refactor that will cleanly separate our
configuration from our code. We won’t go too far with this; it’s a simple restructure
and will help us keep the app tidy as it grows.

The only configuration we have at the moment is the socket server setup details from
listing 12.2b. We’re going to move these to a separate configuration file, as shown in
figure 12.10. This will be a central place to consolidate the configuration of the app and
where we’ll need to go to later change its configuration.

Listing 12.3a shows our simple starting configuration for the project. You might well
ask, “Why bother?” We’ll, it’s because we have a bunch of configuration details yet to

Sets up the server connection details

Creates the socket server
for data collection

Handles incoming-data packets
Deserializes
incoming
JSON data

Logs data received so that we can
check that it’s coming through okay

This callback is
invoked when
the client has
closed the
connection.

Adds an error handler, mainly for ECONNRESET
when the client abruptly disconnects

Starts listening for
incoming socket
connections

Our Node.js project for
the server now contains
a configuration file.

Figure 12.10 The new configuration
file in our Node.js project

312 CHAPTER 12 Live data

You have more scalable and secure ways to store configuration, but simplicity serves
our needs here, and this is something we’ll touch on again in chapter 14.

12.8 Data capture
Now we’re more than ready to do something with our data, and the first thing we
should do is to make sure that it’s safe and secure. We should immediately capture it to
our database so that we’re at no risk of losing it.

Figure 12.11 shows what our system looks like at this point. We have data incoming
from the sensor, the data arrives at the data collection point, and then it’s stored in our
database for safe-keeping. This time, after we run our code, we use a database viewer such
as Robomongo to check that our data has arrived safely in our database (see figure 12.12).

To connect to the database, we need to get our database connection details from
somewhere. In the following listing, we’ve added these to our configuration file.

Listing 12.4a Adding the database connection details to the configuration file
(listing-12.4/server/config.js)

module.exports = {
 server: {
 hostName: "localhost",
 portNo: 3030
 },

 database: {
 host: "mongodb://localhost:27017",
 name: "air_quality"
 }
};

Note that we’re using the default port 27017 when connecting to MongoDB in listing
12.4a. This assumes that you have a default installation of MongoDB on your develop-
ment PC. If you want to try running this code, you’ll need to install MongoDB; other-
wise, you could boot up the Vagrant VM that’s in the vm-with-empty-db subdirectory

Our Node.js server

Data collection pointAir pollution sensor

Immediately store our data
in the database; we don’t
want to lose any of it!

Figure 12.11 Immediately store received data into our database before taking any
further action.

Our PM10 values
are stored safely in
the database.

Figure 12.12 Using Robomongo to check that our incoming data has been captured to the database
These are the connection
details for our database.

 313Data capture

of the Chapter-8 Github repository. Booting that VM will give you an empty MongoDB
database on port 6000 to use for code listings in this chapter. Make sure you modify the
code to refer to the correct port number. For example, in listing 12.4a you’d change the
connection string from mongodb://localhost:27017 to mongodb://localhost:6000.
For help on Vagrant, please see appendix C.

The following listing shows the code that connects to MongoDB and stores the data
that arrives at our data collection point immediately after it’s received.

Listing 12.4b Storing incoming data into the MongoDB database (listing-12.4
/server/index.js)

const mongodb = require('mongodb');
const net = require('net');
const config = require('./config.js');

mongodb.MongoClient.connect(config.database.host)
 .then(client => {
 const db = client.db(config.database.name);
 const collection = db.collection("incoming");

 console.log("Connected to db");

 const server = net.createServer(socket => {
 console.log("Client connected!");

Opens a connection to the
database server before we

start accepting incoming data

Retrieves the database
we’re using

Retrieves the
MongoDB
collection
where we’ll
store
incoming data

You have more scalable and secure ways to store configuration, but simplicity serves
our needs here, and this is something we’ll touch on again in chapter 14.

12.8 Data capture
Now we’re more than ready to do something with our data, and the first thing we
should do is to make sure that it’s safe and secure. We should immediately capture it to
our database so that we’re at no risk of losing it.

Figure 12.11 shows what our system looks like at this point. We have data incoming
from the sensor, the data arrives at the data collection point, and then it’s stored in our
database for safe-keeping. This time, after we run our code, we use a database viewer such
as Robomongo to check that our data has arrived safely in our database (see figure 12.12).

To connect to the database, we need to get our database connection details from
somewhere. In the following listing, we’ve added these to our configuration file.

Listing 12.4a Adding the database connection details to the configuration file
(listing-12.4/server/config.js)

module.exports = {
 server: {
 hostName: "localhost",
 portNo: 3030
 },

 database: {
 host: "mongodb://localhost:27017",
 name: "air_quality"
 }
};

Note that we’re using the default port 27017 when connecting to MongoDB in listing
12.4a. This assumes that you have a default installation of MongoDB on your develop-
ment PC. If you want to try running this code, you’ll need to install MongoDB; other-
wise, you could boot up the Vagrant VM that’s in the vm-with-empty-db subdirectory

Our Node.js server

Data collection pointAir pollution sensor

Immediately store our data
in the database; we don’t
want to lose any of it!

Figure 12.11 Immediately store received data into our database before taking any
further action.

Our PM10 values
are stored safely in
the database.

Figure 12.12 Using Robomongo to check that our incoming data has been captured to the database
These are the connection
details for our database.

314 CHAPTER 12 Live data

 socket.on("data", incomingJsonData => {
 console.log("Storing data to database.");

 const incomingData = JSON.parse(incomingJsonData);

 collection.insertOne(incomingData)
 .then(doc => {
 console.log("Data was inserted.");
 })
 .catch(err => {
 console.error("Error inserting data.");
 console.error(err);
 });
 });

 socket.on("close", () => {
 console.log('Client closed the connection');
 });

 socket.on("error", err => {
 console.error("Caught socket error from client.");
 console.error(err);
 });
 });

 server.listen(config.server.portNo, config.server.hostName, () => {
 console.log("Waiting for clients to connect.");
 });
 });

The fact that we’re storing this data in the database immediately after receiving it is a
design decision. I believe that this data is important and that we shouldn’t risk doing any
initial processing on it before we’ve safely stored it. We’ll touch on this idea again soon.

12.9 An event-based architecture
Let’s now look at how we can better evolve our application over time. I wanted an
opportunity to show how we can deploy a design pattern to structure our app and help
manage its complexity.

You might argue that I’m overengineering this simple toy application, but what I
want to show you is how separation of concerns and decoupling of components can
give us the foundation for a solid, reliable, and extensible application. This should
become obvious as we ramp up complexity culminating in the complete system at the
end of the chapter.

Figure 12.13 shows how we’ll use an event hub to decouple our data collection from
any downstream data processing operation; for example, update visualization, which is
responsible for forwarding incoming data to a live chart in the web browser.

The event hub is like a conduit for our events: the incoming-data event is raised by the
data collection point, and the update visualization event handler responds to it. With this
kind of infrastructure in place, we can now easily slot in new downstream data operations
to extend the system.

Inserts incoming data
into the database

The data was
inserted

successfully.

Shows that
something went

wrong while
inserting the data

Our Node.js server

Update visualizationData collection point

Raises the
incoming-data event

Handles the
incoming-data event

Code is decoupled.

Event hub

Figure 12.13 An event-handling architecture allows us to decouple our code modules.

 315An event-based architecture

Figure 12.14, for example, shows how we’ll plug in an SMS alert module so that our
system can raise the alarm when it has detected poor-quality air.

Using an event-based architecture like this gives us a framework on which to hang
new code modules. We’ve added a natural extension point where we can plug in new
event sources and event handlers. This means we’ve designed our application to be
upgraded. We’re now better able to modify and extend our app without turning it into a
big mess of spaghetti code—at least that’s the aim. I won’t claim that it’s easy to keep an
evolving application under control, but design patterns like this can help.

The important thing for us in this project is that we can add new code modules such
as update visualization and SMS alert without having to modify our data collection point.
Why is this important here and now? Well, I wanted to make the point that the safety
of our data is critical, and we must ensure that it’s safe and sound before anything else

Our Node.js server

Update visualization

Data collection point

SMS alert

Additional downstream systems can
be added without modifying the data
collection point. The system is now
easier to upgrade over time.

Event hub

Raises the incoming-data event

Multiple handlers for the
incoming-data event

Figure 12.14 We can now expand our system, adding new downstream operations
without refactoring or restructuring the data collection point.

 socket.on("data", incomingJsonData => {
 console.log("Storing data to database.");

 const incomingData = JSON.parse(incomingJsonData);

 collection.insertOne(incomingData)
 .then(doc => {
 console.log("Data was inserted.");
 })
 .catch(err => {
 console.error("Error inserting data.");
 console.error(err);
 });
 });

 socket.on("close", () => {
 console.log('Client closed the connection');
 });

 socket.on("error", err => {
 console.error("Caught socket error from client.");
 console.error(err);
 });
 });

 server.listen(config.server.portNo, config.server.hostName, () => {
 console.log("Waiting for clients to connect.");
 });
 });

The fact that we’re storing this data in the database immediately after receiving it is a
design decision. I believe that this data is important and that we shouldn’t risk doing any
initial processing on it before we’ve safely stored it. We’ll touch on this idea again soon.

12.9 An event-based architecture
Let’s now look at how we can better evolve our application over time. I wanted an
opportunity to show how we can deploy a design pattern to structure our app and help
manage its complexity.

You might argue that I’m overengineering this simple toy application, but what I
want to show you is how separation of concerns and decoupling of components can
give us the foundation for a solid, reliable, and extensible application. This should
become obvious as we ramp up complexity culminating in the complete system at the
end of the chapter.

Figure 12.13 shows how we’ll use an event hub to decouple our data collection from
any downstream data processing operation; for example, update visualization, which is
responsible for forwarding incoming data to a live chart in the web browser.

The event hub is like a conduit for our events: the incoming-data event is raised by the
data collection point, and the update visualization event handler responds to it. With this
kind of infrastructure in place, we can now easily slot in new downstream data operations
to extend the system.

Inserts incoming data
into the database

The data was
inserted

successfully.

Shows that
something went

wrong while
inserting the data

Our Node.js server

Update visualizationData collection point

Raises the
incoming-data event

Handles the
incoming-data event

Code is decoupled.

Event hub

Figure 12.13 An event-handling architecture allows us to decouple our code modules.

316 CHAPTER 12 Live data

happens. Any time we make code changes to the data collection point, we run the risk
of breaking this code. It’s imperative that we minimize the changes that we make to this
code in the future, and the event-based architecture means we can add new code mod-
ules without having to change the code at the data collection point.

As well as helping structure our app and make it more extensible, the event-based
architecture also makes it easy to partition our system so that, if necessary for scaling
up, we can distribute the application across multiple servers or virtual machines with
the events being transmitted across the wire. This kind of architecture can help enable
horizontal scaling that we’ll discuss further in chapter 14.

12.10 Code restructure for event handling
Let’s restructure our code so that it’s based around the notion of an event hub that
coordinates the raising and handling of events. We’ll use the Node.js EventEmitter
class because it’s designed for this sort of thing.

In listing 12.5a you can see the code for our new event hub. This is super simple: the
entire module instantiates an EventEmitter and exports it for use in other modules.
No one said this needed to be complex, although you can surely build a more sophisti-
cated event hub than this!

Listing 12.5a Creating an event hub for the server (listing-12.5/server/event-hub.js)

const events = require('events');
const eventHub = new events.EventEmitter();

module.exports = eventHub;

Now that we have our event hub, we can wire it up to the existing code. The first thing
we have to do is raise the incoming-data event when data is received by the server. We
do this by calling the emit function on the event hub.

As you can see from the code extract in the following listing, the event is raised imme-
diately after the data has been successfully stored in the database. For safety, we store
the data first and everything else happens later.

Listing 12.5b Raising the incoming-data event (extract from listing-12.5/server/
data-collection-point.js)

incomingDataCollection.insertOne(incomingData)
 .then(doc => {
 eventHub.emit('incoming-data', incomingData);
 })
 .catch(err => {
 console.error("Error inserting data.");
 console.error(err);
 });

With the incoming-data event in place and being raised whenever we have data arriving
at the server, we’re in a position to start building downstream data processing modules.

Instantiates a Node.js
EventEmitter as our event hub

Exports the event hub for
other modules to rely on

Inserts data
into the
database Raises the incoming-data

event and passes through
the data

 317Code restructure for event handling

12.10.1 Triggering SMS alerts

The next thing we care about is knowing in real time when the quality of the air is dete-
riorating. We can now add an event handler to monitor incoming PM10 values and
raise an alarm when poor air quality is detected.

To handle the event, we first import the event hub into our code. Then we call
the on function to register an event handler function for a named event such as the
incoming-data event we added a moment ago. This is shown in the following listing:
checking the incoming data for PM10 values greater than or equal to the max safe
level, which is set to 80 in the configuration file. When such values are detected, we
sound the alarm and send an SMS text message to our users.

Listing 12.5c Handle event and trigger alert when PM10 exceeds safe value
(listing-12.5/server/trigger-sms-alert.js)

const eventHub = require('./event-hub.js');
const raiseSmsAlert = require('./sms-alert-system.js');
const config = require('./config.js');

eventHub.on("incoming-data", incomingData => {
 const pm10Value = incomingData["PM10 (ug/m^3)"];
 const pm10SafeLimit = config.alertLimits.maxSafePM10;
 if (pm10Value > pm10SafeLimit) {
 raiseSmsAlert("PM10 concentration has exceeded safe levels.");
 }
});

The code in listing 12.5c is an example of adding a downstream data operation that
does data analysis and sequences an appropriate response. This code is simple, but we
could imagine doing something more complex here, such as checking whether the roll-
ing average (see chapter 9) is on an upward trend or whether the incoming value is more
than two standard deviations above the normal average (again, see chapter 9). If you’d
prototyped data analysis code using exploratory coding (such as we did in chapter 5 or
9), you can probably imagine slotting that code into the system at this point.

Now if you run this code (listing 12.5) and wait for a bit, you’ll see an “SMS alert”
triggered. You only have to wait a few moments for this to happen (when those large
PM10 values between 12 p.m. and 3 p.m. come through). The code that would send
the SMS message is commented out for the moment, though, so all you’ll see is con-
sole logging that shows you what would have happened.

To get the SMS code working, you’ll need to uncomment the code in the file
listing-12.5/server/sms-alert-system.js. You’ll need to sign up for Twilio (or similar
service) and add your configuration details to the config file. Also make sure you add
your own mobile number so that the SMS message will be sent to you. Do all this, run
the code again, and you’ll receive the alert on your phone.

Requires the
event hub so
we can handle
events

Requires the SMS alert system so
we can send SMS text messages

Handles the incoming-data event
Extracts the
value from the
data that we’re
interested in

The max safe
limit is read from
the configuration
file.

Has the incoming data
exceeded the safe limit?

Yes, it has, so send the SMS alert.

318 CHAPTER 12 Live data

12.10.2 Automatically generating a daily report

Let’s look at another example of raising and handling events. For the next feature,
we’ll add automatically generated daily reports. The report won’t be anything fancy;
we’ll render a chart of PM10 to a PDF file and then have that emailed to our users. But
you can imagine going much further with this, say, rendering other statistics or attach-
ing a spreadsheet with a summary of recent data.

Because we want to generate our reports daily, we now need a way to generate time-
based events. For this, we’ll add a scheduler to our system, and we’ll program it to raise
a generate-daily-report event once per day. A separate daily report generator module will
handle the event and do the work. You can see how this fits together in figure 12.15.

To implement the scheduler, we’ll need a timer to know when to raise the event. We
could build this from scratch using the JavaScript functions setTimeout or setInterval.
Although these functions are useful, they’re also low-level, and I’d like us to use some-
thing more expressive and more convenient.

RAISING THE GENERATE DAILy REPORT EvENT

To schedule our time-based events, we’ll rely on the cron library from npm to be our
timer. With this library we can express scheduled jobs using the well-known UNIX cron
format. As with any such library, you have many alternatives available on npm; this is
the one that I use, but it’s always good to shop around to make sure you’re working
with a library that best suits your own needs.

In listing 12.6a we create an instance of CronJob with a schedule retrieved from our
config file and then start the job. This invokes generateReport once per day, and this is
where we raise the generate-daily-report event.

Listing 12.6a Using the cron library to emit the time-based generate-daily-report
event (listing-12.6/server/scheduler.js)

const eventHub = require('./event-hub.js');
const cron = require('cron');
const config = require('./config.js');

function generateReport () {
 eventHub.emit("generate-daily-report");
};

const cronJob = new cron.CronJob({
 cronTime: config.dailyReport.schedule,
 onTick: generateReport
});

cronJob.start();

Our Node.js server

Daily report generatorScheduler

Raises time-based events,
like the daily event
generate-daily-report

Handles the generate-daily-report
event and then generates and
emails a report

Event hub

Figure 12.15 Our scheduler feeds an event into the system once per day to generate
a daily report.

Requires the event hub so we can raise events

Requires the cron library for
scheduled time-based tasks

This callback
is invoked
on a daily
schedule.

Raises the event generate-daily-report and
lets the rest of the system deal with it

Creates the cron job
Configures the regular schedule
at which to tick the job

Specifies the callback to
invoke for each scheduled tick

Starts the
cron job

 319Code restructure for event handling

The cron format we’ll use for our daily cron job is specified in the configuration file
and looks like this:

00 00 06 * * 1-5

This looks cryptic, but we can read it from right to left as Monday to Friday (days 1–5),
every month (the asterisk), every day of the month (the next asterisk), 6 a.m. at the
zero minute, and the zero second. This specifies the time at which to invoke the job. To
put it more succinctly: we generate our report each weekday at 6 a.m.

The problem with this schedule is that it takes far too long to test. We can’t wait
a whole day to test the next iteration of our report generation code! As we did with
the incoming-data stream, we need to speed things up, so we’ll comment out the daily
schedule (we’ll need it again to put this app into production) and replace it with one
that runs more frequently:

00 * * * * *

This specifies a schedule that runs every minute (you can read it right to left as every
day, every month, every day of month, every hour, every minute, and at the zero second
of that minute).

We’ll generate a new report every minute. This is a fast pace to be sure, but it means
we have frequent opportunities to test and debug our code.

HANDLING THE GENERATE REPORT EvENT

Now we’re ready to handle the generate-daily-report event and generate and email the
report. The following listing shows how the event is handled and then calls down to a
helper function to do the work.

Listing 12.6b Handling the generate-daily-report event and generating the report
(listing-12.6/server/trigger-daily-report.js)

const eventHub = require('./event-hub.js');
const generateDailyReport = require('./generate-daily-report.js');

function initGenerateDailyReport (db) {

Requires the
event hub so
we can handle
events

This function initializes our
report generation event handler
(the database is passed in).

12.10.2 Automatically generating a daily report

Let’s look at another example of raising and handling events. For the next feature,
we’ll add automatically generated daily reports. The report won’t be anything fancy;
we’ll render a chart of PM10 to a PDF file and then have that emailed to our users. But
you can imagine going much further with this, say, rendering other statistics or attach-
ing a spreadsheet with a summary of recent data.

Because we want to generate our reports daily, we now need a way to generate time-
based events. For this, we’ll add a scheduler to our system, and we’ll program it to raise
a generate-daily-report event once per day. A separate daily report generator module will
handle the event and do the work. You can see how this fits together in figure 12.15.

To implement the scheduler, we’ll need a timer to know when to raise the event. We
could build this from scratch using the JavaScript functions setTimeout or setInterval.
Although these functions are useful, they’re also low-level, and I’d like us to use some-
thing more expressive and more convenient.

RAISING THE GENERATE DAILy REPORT EvENT

To schedule our time-based events, we’ll rely on the cron library from npm to be our
timer. With this library we can express scheduled jobs using the well-known UNIX cron
format. As with any such library, you have many alternatives available on npm; this is
the one that I use, but it’s always good to shop around to make sure you’re working
with a library that best suits your own needs.

In listing 12.6a we create an instance of CronJob with a schedule retrieved from our
config file and then start the job. This invokes generateReport once per day, and this is
where we raise the generate-daily-report event.

Listing 12.6a Using the cron library to emit the time-based generate-daily-report
event (listing-12.6/server/scheduler.js)

const eventHub = require('./event-hub.js');
const cron = require('cron');
const config = require('./config.js');

function generateReport () {
 eventHub.emit("generate-daily-report");
};

const cronJob = new cron.CronJob({
 cronTime: config.dailyReport.schedule,
 onTick: generateReport
});

cronJob.start();

Our Node.js server

Daily report generatorScheduler

Raises time-based events,
like the daily event
generate-daily-report

Handles the generate-daily-report
event and then generates and
emails a report

Event hub

Figure 12.15 Our scheduler feeds an event into the system once per day to generate
a daily report.

Requires the event hub so we can raise events

Requires the cron library for
scheduled time-based tasks

This callback
is invoked
on a daily
schedule.

Raises the event generate-daily-report and
lets the rest of the system deal with it

Creates the cron job
Configures the regular schedule
at which to tick the job

Specifies the callback to
invoke for each scheduled tick

Starts the
cron job

320 CHAPTER 12 Live data

 eventHub.on("generate-daily-report", () => {
 generateDailyReport(db)
 .then(() => {
 console.log("Report was generated.");
 })
 .catch(err => {
 console.error("Failed to generate report.");
 console.error(err);
 });
 });
};

module.exports = initGenerateDailyReport;

GENERATING THE REPORT

Generating the report is similar to what we learned in chapter 11; in fact, listing 12.6c
was derived from listing 11.7 in chapter 11.

Before generating the report, we query the database and retrieve the data that’s to be
included in it. We then use the generateReport toolkit function, which, the way we did
in chapter 11, starts an embedded web server with a template report and captures the
report to a PDF file using Nightmare. Ultimately, we call our helper function sendEmail
to email the report to our users.

Listing 12.6c Generating the daily report and emailing it to interested parties
(listing-12.6/server/generate-daily-report.js)

const generateReport = require('./toolkit/generate-report.js');
const sendEmail = require('./send-email.js');
const config = require('./config.js');

function generateDailyReport (db) {

 const incomingDataCollection = db.collection("incoming");

 const reportFilePath = "./output/daily-report.pdf";

 return incomingDataCollection.find()
 .sort({ _id: -1 })
 .limit(24)
 .toArray()
 .then(data => {
 const chartData = {
 xFormat: "%d/%m/%Y %H:%M",
 json: data.reverse(),
 keys: {
 x: "Date",
 value: [
 "PM10 (ug/m^3)"
]
 }
 };
 return generateReport(chartData, reportFilePath);
 })

Handles the generate-
daily-report event

Generates the
report

Requires
the toolkit
function to
generate
the report

Requires the helper function
to send the email

This is a helper function to generate the daily
report and email it to interested parties.

This is the file path for the
report we’re generating
and writing to a file.

Queries the database for records

Gets the most recent records first,
a convenient method of sorting
based on MongoDB ObjectIds

Limits to entries
for the most
recent 24 hours

Prepares the
data to display
in the chart

Specifies the format of the Date
column used by C3 to parse the
data series for the X axis

Reverses the data so it’s in chronological
order for display in the chart

Renders a report to a PDF file

 321Live data processing

 .then(() => {
 const subject = "Daily report";
 const text = "Your daily report is attached.";
 const html = text;
 const attachments = [
 {
 path: reportFilePath,
 }
];
 return sendEmail(
 config.dailyReport.recipients,
 subject, text, html, attachments
);
 });
};

module.exports = generateDailyReport;

To run the code for listing 12.6, you’ll need to have an SMTP email server that you
can use to send the emails. Typically, I’d use Mailgun for this (which has a free/trial
version), but you have plenty of other alternatives, such as Gmail. You need access to
a standard SMTP account and then can put your SMTP username and password and
report-related details in the config file. You can now run listing 12.6 and have it email
you a daily report once every minute (please don’t leave it running for too long—you’ll
get a lot of emails!).

You might now be interested to peruse the code in listing-12.6/server/send-email.js to
understand how the email is sent using the Nodemailer library (the preeminent Node.js
email sending library).

12.11 Live data processing
We’ll get to the live visualization in a moment and finish up this chapter, but before
that, I want to have a quick word about adding more data processing steps to your live
pipeline.

Say that you need to add more code to do data cleanup, transformation, or maybe
data analysis. Where’s the best place to put this?

Specifies the subject and
the body of the email

This could also include a fancy HTML-formatted
version of the email here.

Specifies attachments
to send with the email

We only need a single attachment
here, but you could easily add more.Attaches our

generated
report to
the email Emails the report to

specified recipients

Our Node.js server

Data collection point Data transformationAir pollution sensor

Store in the database
after transformation.

If something goes wrong
here, we’ll lose data!

Figure 12.16 Data transformation during acquisition (if it goes wrong, you lose your data)

322 CHAPTER 12 Live data

We could put code like this directly in our data collection point before we store the
data, as shown in figure 12.16. Obviously, I don’t recommend this because it puts us at
risk of data loss should anything go wrong with the data transformation (and I’ve been
around long enough to know that something always goes wrong).

To properly mitigate this risk using what I believe is the safest way to structure this
code, we can make our downstream data operations always happen on the other side of
the event hub. We store the data quickly and safely before triggering any downstream
work. As shown in figure 12.17, subsequent operations independently decide how they
want to retrieve the data they need, and they have their own responsibility to safely store
any data that has been modified.

The data required by the downstream data operation might be passed through the
event itself (as we’ve done with the incoming-data event), or the operation can be made
completely independent and must query the database itself to find its own data.

If you now have modified data that needs to be stored, you could overwrite the original
data. I wouldn’t recommend this approach, however, because if any latent bugs should
manifest, you might find that your source data has been overwritten with corrupted data.
A better solution is to have the transformed data stored to a different database collection;
at least this provides you with a buffer against data-destroying bugs.

12.12 Live visualization
We’re finally here at the most exciting part of the chapter, the part that you have been
waiting for: let’s get live data feeding into a dynamically updating chart.

Figure 12.18 shows what our live data chart looks like. When this is running, you can
sit back and watch new data points being fed into the chart each second (based on our
accelerated notion of time).

To make our live updating visualization, we must do two things:

1 Put the initial data into the chart.

2 Feed new data points into the chart as they arrive.

Figure 12.18 The
chart we'll be
producing from the
live data stream

Our Node.js server

Data collection pointAir pollution sensor Data transformationEvent hub

Transformation is
downstream of the
event hub.

Store the data straight away, before
any transformation. This makes it
more difficult to lose the data.

Figure 12.17 Data transformation is downstream from storage (a safer way to manage your data
acquisition).

 323Live visualization

The first one should be familiar to us by now, because we’ve already seen how to create
charts in chapters 10 and 11. Now we’ll add the second step into the mix and create a
dynamic chart that automatically updates as new data becomes available.

We already have part of the infrastructure we need to make this happen. Let’s add a
new code module, update visualization, to handle the incoming-data event and forward
new data points to the browser. See how this fits together in figure 12.19.

I would be remiss if I wrote this chapter and didn’t mention socket.io. It’s an
extremely popular library for real-time events, messaging, and data streaming in
JavaScript.

Socket.io allows us to open a bidirectional communication channel between our
server and our web app. We can’t use regular sockets to communicate with a sandboxed
web app, but socket.io uses web sockets, a technology that’s built on top of regular
HTTP and gives us the data streaming conduit that we need to send a stream of data to
the browser. Socket.io also has a fallback mode, so if web sockets aren’t available, it will
gracefully degrade to sending our data using regular HTTP post. This means our code
will work on older browsers.

Our Node.js server

Data collection
point

Air pollution
sensor

Continuous
stream of data

Raise event
incoming-data.

Handle the incoming-data
event and update the
visualization in the
web browser.

Event hub

Visualization is
viewed in the
web browser.

Update
visualization

Figure 12.19 Data flowing through to a live visualization

We could put code like this directly in our data collection point before we store the
data, as shown in figure 12.16. Obviously, I don’t recommend this because it puts us at
risk of data loss should anything go wrong with the data transformation (and I’ve been
around long enough to know that something always goes wrong).

To properly mitigate this risk using what I believe is the safest way to structure this
code, we can make our downstream data operations always happen on the other side of
the event hub. We store the data quickly and safely before triggering any downstream
work. As shown in figure 12.17, subsequent operations independently decide how they
want to retrieve the data they need, and they have their own responsibility to safely store
any data that has been modified.

The data required by the downstream data operation might be passed through the
event itself (as we’ve done with the incoming-data event), or the operation can be made
completely independent and must query the database itself to find its own data.

If you now have modified data that needs to be stored, you could overwrite the original
data. I wouldn’t recommend this approach, however, because if any latent bugs should
manifest, you might find that your source data has been overwritten with corrupted data.
A better solution is to have the transformed data stored to a different database collection;
at least this provides you with a buffer against data-destroying bugs.

12.12 Live visualization
We’re finally here at the most exciting part of the chapter, the part that you have been
waiting for: let’s get live data feeding into a dynamically updating chart.

Figure 12.18 shows what our live data chart looks like. When this is running, you can
sit back and watch new data points being fed into the chart each second (based on our
accelerated notion of time).

To make our live updating visualization, we must do two things:

1 Put the initial data into the chart.

2 Feed new data points into the chart as they arrive.

Figure 12.18 The
chart we'll be
producing from the
live data stream

324 CHAPTER 12 Live data

Listing 12.7a shows the code for the web server that hosts our new live visualization.
This does three main tasks:

¡	Serves the assets for the web app itself
¡	Provides the initial data for the chart
¡	Registers Socket.io connections with our new code module update-visualization

You can see about halfway through the code listing where the web server starts accept-
ing incoming Socket.io connections and registers each with our new update-visualization
module.

Listing 12.7a Web server for a web app with a live chart for PM10 (listing-12.7
/server/web-server.js)

const path = require('path');
const http = require('http');
const socket.io = require('socket.io');
const updateVisualization = require('./update-visualization.js');

function startWebServer (db) {

 const incomingDataCollection = db.collection("incoming");

 const app = express();

 const httpServer = http.Server(app);
 const socket.ioServer = socket.io(httpServer);

 const staticFilesPath = path.join(__dirname, "public");
 const staticFilesMiddleWare = express.static(staticFilesPath);
 app.use("/", staticFilesMiddleWare);

 app.get("rest/data", (req, res) => {
 return incomingDataCollection.find()
 .sort({ _id: -1 })
 .limit(24)
 .toArray()
 .then(data => {
 data = data.reverse(),
 res.json(data);
 })
 .catch(err => {
 console.error("An error occurred.");
 console.error(err);

 res.sendStatus(500);
 });
 });

 socket.ioServer.on("connection", socket => {
 updateVisualization.onConnectionOpened(socket);

 socket.on("disconnect", () => {
 updateVisualization.onConnectionClosed(socket);
 });

This is a helper
function to start a
web server that hosts
our web app and live
data visualization.
The database is
passed in.

Creates a Socket.io server so
that we have a streaming data

connection with the web app

Defines a REST API to deliver data
to the web app and its visualization

Queries the database for records

Sends the data
to the web app

Keeps track of connections and
disconnections. We want to be
able to forward incoming data
to the web app.

 325Live visualization

 });

 httpServer.listen(3000, () => { // Start the server.
 console.log("Web server listening on port 3000!");
 });
};

module.exports = startWebServer;

Listing 12.7b shows the code for our new update-visualization module, which tracks
all open connections, because there could be multiple instances of our web app con-
nected at any one time. Notice where it handles the incoming-data event; here we call
socket.emit to forward each packet of data to the web app. This is how new data
points are sent to the web app to be added to the chart.

Listing 12.7b Forwarding incoming data to the web app (listing-12.7/server
/update-visualization.js)

const eventHub = require('./event-hub.js');

const openSockets = [];

function onConnectionOpened (openedSocket) {
 openSockets.push(openedSocket);
};

function onConnectionClosed (closedSocket) {
 const socketIndex = openSockets.indexOf(closedSocket);
 if (socketIndex >= 0) {
 openSockets.splice(socketIndex, 1);
 }
};

eventHub.on("incoming-data", (id, incomingData) => {
 for (let i = 0; i < openSockets.length; ++i) {
 const socket = openSockets[i];
 socket.emit("incoming-data", incomingData);
 }
});

module.exports = {
 onConnectionOpened: onConnectionOpened,
 onConnectionClosed: onConnectionClosed
}

We also need to look at what is happening in the code for the web app. You can see in
listing 12.7c that it’s mostly the same as what you’d expect to see in a C3 chart (for a
refresher, see chapter 10). This time, in addition, we’re creating a socket.io instance and
receiving incoming-data events from our web server. It’s then a simple job to add the
incoming-data point to our existing array of data and load the revised data using the C3
load function. C3 conveniently provides an animation for the new data, which gives the
chart a nice flowing effect.

This is an array that tracks currently
open Socket.io connections.

This callback function is
invoked when a Socket.io
connection has been opened.

This callback function
is invoked when a
Socket.io connection
has been closed.

For each web app that
has connected . . .

...forwards the incoming
data to the web app

326 CHAPTER 12 Live data

Listing 12.7c Adding new data to the chart as it arrives (listing-12.7/server/public
/app.js)

function renderChart (bindto, chartData) {
 var chart = c3.generate({
 bindto: bindto,
 data: chartData,
 axis: {
 x: {
 type: 'timeseries',
 }
 }
 });
 return chart;
};

$(function () {

 var socket = io();

 $.get("/rest/data")
 .then(function (data) {
 var chartData = {
 xFormat: "%d/%m/%Y %H:%M",
 json: data,
 keys: {
 x: "Date",
 value: [
 "PM10 (ug/m^3)"
]
 }
 };

 var chart = renderChart("#chart", chartData);

 socket.on("incoming-data", function (incomingDataRecord) {
 chartData.json.push(incomingDataRecord);
 while (chartData.json.length > 24) {
 chartData.json.shift();
 }

 chart.load(chartData);
 });
 })
 .catch(function (err) {
 console.error(err);
 });
});

One last thing to take note of is how we make Socket.io available to our web app. You
can see in listing 12.7d that we’re including the socket.io client’s JavaScript file into the
HTML file for our web app. Where did this file come from?

Makes the socket.io
connection to the server

Hits the REST API and pulls down
the initial data from the server

Sets up chart data that we can update
as new data comes down the wire

Does the initial render of the chart

Handles data that’s incoming
over the socket.io connection

Adds the incoming data
to our existing chart data

Keeps only the
most recent
24 hours of

records

Removes the oldest data records

Reloads the chart’s data

 327Live visualization

Well, this file is automatically made available and served over HTTP by the Socket.io
library that we included in our server application. It’s kind of neat that it’s made available
like magic, and we don’t have to install this file using Bower or otherwise manually install it.

Listing 12.7d Socket.io is automatically available to the client by the server
(listing-12.7/server/public/index.html)

<!doctype html>
<html lang="en">
 <head>
 <title>Live data visualization</title>

 <link href="bower_components/c3/c3.css" rel="stylesheet">
 <link href="app.css" rel="stylesheet">

 <script src="bower_components/jquery/dist/jquery.js"></script>
 <script src="bower_components/d3/d3.js"></script>
 <script src="bower_components/c3/c3.js"></script>
 <script src="/socket.io/socket.io.js"></script>
 <script src="app.js"></script>
 </head>
 <body>
 <div>
 No need to refresh this web page,
 the chart automatically updates as the data
 flows through.
 </div>
 <div id='chart'></div>
 </body>
</html>

When you run the code for listing 12.7, keep in mind one caveat: each time you run it
fresh (the mock sensor and the server), please reset your incoming MongoDB collec-
tion each time (you can remove all documents from a collection using Robomongo).
Otherwise, your live chart will come out wonky due to the chronological nature of the
data and the fact that we’re replaying our fake data. This is an artifact of the way we’ve
set up our development framework with a mock sensor and fake data. This won’t be an
issue in production. This is a pain during development, so for continued development,
you might want to have an automatic way to reset your database to starting conditions.

Well, there you have it. We’ve built a complete system for processing a continuous
feed of live data. Using this system, we can monitor air quality, and hopefully we can
be better prepared for emergencies and can respond in real time. You can find the
full code under the complete subdirectory of the GitHub repo for chapter 12. It brings
together all the parts we’ve discussed in this chapter and combines them into a cohesive
functioning system.

The work we’ve done in this chapter has been a major step toward a full production
system, but we’re not quite there yet. We still have many issues to address so that we can
rely on this system, but we’ll come back and discuss those in chapter 14. Let’s take a break
from the serious stuff, and in chapter 13 we’ll upgrade our visualization skills with D3.

Includes Socket.io
into the HTML file
for our web app

328 CHAPTER 12 Live data

Summary

¡	You learned how to manage a live data pipeline.
¡	You worked through examples of sending and receiving data through HTTP post

and sockets.
¡	We refactored our code to extract a simple configuration file.
¡	We brought in an event-based architecture to our app using Node.js’ EventEmit-

ter to add a simple event hub for our server.
¡	We used the cron library to create time-based scheduled jobs.
¡	We explored using Socket.io for sending data to a live updating C3 chart.

329

13Advanced
visualization with D3

This chapter covers
¡	Creating vector graphics with SVG

¡	Creating out-of-the-ordinary visualizations with D3

I couldn’t end this book without coverage of D3: the preeminent visualization frame-
work for building interactive and animated browser-based visualizations in JavaScript.
D3 (data-driven documents) is a complicated library; that’s why this is called the
advanced visualization chapter. D3 has a large API and sophisticated concepts. This is
a powerful addition to your toolkit, but unfortunately it comes with a steep learning
curve! For most routine charts you’re better off using a simpler API, such as C3, which
we covered in chapter 10. When you reach the limitations of C3, however, or you want
to create something completely out of the box, that’s when you’ll reach for D3.

I can’t hope to fully teach you D3; that would require a whole book. But I do hope
to teach you fundamental concepts and how they relate. For example, we’ll learn one
of D3’s core concepts, the data join pattern, and how to use it to translate our data to a
visualization. D3 is a large and complex API, so we’ll only scratch the surface.

Are you ready to create a more advanced visualization? In this chapter, we’ll make
something out of the ordinary, something that we couldn’t do with C3. This exam-
ple will give you an inkling of how powerful D3 is, and along the way, we’ll learn core
D3 skills.

330 CHAPTER 13 Advanced visualization with D3

13.1 Advanced visualization
In this chapter, we’ll create a scalable vector graphics (SVG) visualization using D3.
We could also use D3 with HTML or Canvas, but it’s common to use it with SVG and
we can definitely build something visually impressive that way. Don’t worry too much if
you don’t know SVG, though, because we’ll start with a short SVG crash course.

The visualization we’ll create is shown in figure 13.1. This is a to-scale rendition of
U.S. space junk in orbit around the Earth. By space junk, I mean the remnants of rock-
ets, satellites, and other such things that are now abandoned but remain in space.

In figure 13.1 the Earth is colored blue and surrounded by yellow, orange, and red
objects: the space junk visuals have been color-coded according to their size. This col-
oration was applied by CSS styles, as you’ll see later. (To see figures in this chapter in
color, please refer to the electronic versions of the book.) This visualization is interac-
tive: as you hover your mouse pointer over an object of space junk, explanatory text will
appear, as shown in figure 13.2.

Figure 13.1 The finished product for this chapter: an animated, year-by-year, 2D visualization of US
space junk orbiting the Earth

Figure 13.2 Explanatory text appears when you hover the mouse over a space junk object.

 331Visualizing space junk

This visualization is also animated: notice in figure 13.1 that the year is displayed at the
top. Our animation will drive this visualization forward in time one year after the other.
At each iteration of the animation, it will show the objects that were launched in that
year and how much space junk has accumulated over the decades.

13.2 Getting the code and data
The code and data for this chapter are available in the Data Wrangling with JavaScript
Chapter-13 repository in GitHub at https://github.com/data-wrangling-with-javascript
/chapter-13. Each subdirectory in the respository contains a complete working exam-
ple, and each corresponds to various listings throughout this chapter. Before attempt-
ing to run the code in each subdirectory, please be sure to install Bower dependencies.

You can run each listing using live-server:

 cd Chapter-13/listing-13.5
 live-server

This will open your browser and navigate to the web page. Refer to “Getting the code
and data” in chapter 2 for help on getting the code and data.

13.3 Visualizing space junk
Why space junk? I was looking for a visualization that would show off the power of D3,
and I was inspired after attending a lecture on the proliferation of space junk at the
World Science Festival. I did my own research after the lecture and found an amazing
and accurate 3D visualization of space junk at http://stuffin.space/.

I decided to reproduce something similar to this for the book, but in 2D and using
D3. I’ve prefiltered the data to only U.S. space junk; otherwise, we’d have too much data
and that would make for a cluttered visualization.

The data we’ll be using is in the JSON file us-space-junk.json that you can find in the
Chapter-13 GitHub repository. As you can see in figure 13.3, each data record represents
one object of space junk and is described by its name, size, launch date, and perigee.

Perigee is the nearest approach of the object to the Earth. We’ll use this in our visual-
ization to approximate the object’s distance from the Earth.

13.1 Advanced visualization
In this chapter, we’ll create a scalable vector graphics (SVG) visualization using D3.
We could also use D3 with HTML or Canvas, but it’s common to use it with SVG and
we can definitely build something visually impressive that way. Don’t worry too much if
you don’t know SVG, though, because we’ll start with a short SVG crash course.

The visualization we’ll create is shown in figure 13.1. This is a to-scale rendition of
U.S. space junk in orbit around the Earth. By space junk, I mean the remnants of rock-
ets, satellites, and other such things that are now abandoned but remain in space.

In figure 13.1 the Earth is colored blue and surrounded by yellow, orange, and red
objects: the space junk visuals have been color-coded according to their size. This col-
oration was applied by CSS styles, as you’ll see later. (To see figures in this chapter in
color, please refer to the electronic versions of the book.) This visualization is interac-
tive: as you hover your mouse pointer over an object of space junk, explanatory text will
appear, as shown in figure 13.2.

Figure 13.1 The finished product for this chapter: an animated, year-by-year, 2D visualization of US
space junk orbiting the Earth

Figure 13.2 Explanatory text appears when you hover the mouse over a space junk object.

https://github.com/data-wrangling-with-javascript/chapter-13
https://github.com/data-wrangling-with-javascript/chapter-13
.
http://stuffin.space/
.

332 CHAPTER 13 Advanced visualization with D3

13.4 What is D3?
D3, data-driven documents, is a JavaScript API for producing visualizations. People
often call it a general-purpose visualization toolkit, by which they mean we aren’t lim-
ited or restricted in the types of visualizations that we can create with it. If you can
imagine a visualization—well, a visualization that could be created in HTML, SVG, or
Canvas—then you can most certainly create it using D3.

D3 isn’t specifically for building charts or any particular type of visualization; it’s pow-
erful enough to express anything, and you only have to do an image search for D3
examples to see what I mean. I continue to be amazed by the range of visualizations that
have been produced with D3.

D3 was born out of the New York Times visualization department at the hands of
Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. It’s the latest and greatest in a
lineage of visualization APIs and has maturity and experience behind it.

We’ll use D3 to create a recipe for our space junk visualization. Adding our data to
this recipe produces the visualization. No set process exists for turning data into a visu-
alization with D3. We must explicitly write the code that transforms our data into the
visualization. We’re building a custom translation from data to visualization. As you can
imagine, this is a powerful way to build a unique or custom visualization, but it quickly
becomes tedious when you want a standard line or bar chart.

D3 has overlap with jQuery: it allows us to select and create DOM nodes and then set
values for their attributes in a way that may feel familiar if you’re already comfortable
with jQuery. We can also add event handlers to DOM nodes to create interactivity; for
example, in response to mouse hover and mouse clicks.

Name of the object

This is the closest distance to
the Earth the object will
approach in its orbit.

The size category
of the object

The year the object
was launched

Each row of data represents
one object of space junk.

...

Figure 13.3 JSON data that describes each object of space junk (an extract from us-space-junk.json)

 333The D3 data pipeline

D3 is likely to stretch you, though. Its power is built on abstract concepts, and this is
what makes D3 hard to learn. D3 also requires advanced knowledge of JavaScript, but
I’ll endeavor to keep things easy to understand, and we’ll build up from simple begin-
nings to a more complex visualization.

D3 might be useful to you for creating visualizations from scratch, and we can also
use our D3 skills to extend our C3 charts. It’s easy to hit the limits of C3—say, when you
want to add extra graphics, interactivity, or animation to your C3 chart. But because C3
is built on D3, we can use the D3 API to extend C3 and add extra functionality to our C3
charts.

I’ve extolled the virtues of D3, but also hopefully I’ve convinced you not to take
this lightly. The only reason to use D3 is to create an advanced visualization that you
couldn’t otherwise create with a simpler API (such as C3). For example, you wouldn’t
use D3 to create a bar chart of your company’s weekly sales. It’s not worthwhile—kind of
like using a power hammer to apply a thumbtack, that would be overkill.

13.5 The D3 data pipeline
I’ve said that we’ll use D3 to create a recipe for our data visualization. Thinking of it as
a recipe is one way to picture how D3 works. Another analogy I like is to think of our
D3 recipe as a data pipeline. As you can see in figure 13.4, our data set goes through
the pipeline and comes out the other side as a visualization.

However, D3 isn’t only for creating a new visualization in an empty DOM. Our D3
recipe can also describe how to add data to an existing visualization. This is what makes
D3 so powerful; we can use it to update a live visualization as new data becomes available
(see figure 13.5).

The D3 pipeline that we’ll build will operate on a set of data records, as shown in
figure 13.6. The pipeline visits each data record in turn and produces a DOM node to
represent each object of space junk. This process results in a collection of new DOM
nodes that collectively make up our visualization.

Are you ready to start coding up the space junk visualization?

Web browser

us-space-junk.json D3 data pipeline

D3 creates a data pipeline
that converts data to visuals
for display in the browser.

Generated visuals
can be HTML or SVG.

Read data from a
JSON or CSV file.

Data file
retrieved from
web server

Figure 13.4 D3 creates a pipeline that converts our data set to a visualization.

334 CHAPTER 13 Advanced visualization with D3

13.6 Basic setup
First, let’s lay down the basic setup. Listing 13.1 show an HTML template for our D3
visualization. Eventually, we’ll use D3 to generate all our visuals, so this empty HTML
template mostly suffices for our purposes in this chapter.

Web browser

Existing visuals are
updated to account
for the new data.

us-space-junk.json

D3 data pipeline

Our D3 data pipeline can
incorporate new data into
an existing visualization.

Existing visuals

D3 can be used to update
existing visuals to bring new
data into a visualization over
time (animated of course!).

Figure 13.5 A D3 data pipeline can update an existing visualization with new data.

Data record 0

Data record 1

Data record N

Data record 3

Data record 2

…

The space junk
data set

D3 data
pipeline

Bound DOM node

DOM node

Data record

The D3 data pipeline
converts each data record
to a bound DOM node.

The result is a
collection of DOM
nodes that comprise
our visualization.

Figure 13.6 D3 produces “bound DOM nodes” for each data record.

 335SVG crash course

Listing 13.1 The HTML file for the D3 visualization (listing-13.1/index.html)

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Space junk visualization</title>
 <link rel="stylesheet" href="app.css">
 <script src="bower_components/d3/d3.js"></script>
 <script src="app.js"></script>
 </head>
 <body>
 <svg class="chart"></svg>
 </body>
</html>

Note that the HTML file includes CSS and JavaScript files: app.css and app.js. As we
start this chapter, both files are effectively empty. Soon, though, we’ll start adding D3
code to app.js, and we’ll style our visualization through app.css.

This is a blank canvas into which we’ll create our visualization. We’ll use D3 to proce-
durally generate the visuals, but before we do that, let’s manually add some SVG primi-
tives directly to the HTML file so that we can get a handle on how SVG works.

13.7 SVG crash course
SVG is an XML format, not unlike HTML, that’s used to render 2D vector graph-
ics. Like HTML, SVG can be interactive and animated—something we’ll use in our
visualization.

SVG is an open standard that has been around for a significant amount of time. It
was developed in 1999, but in more recent history has received support in all modern
browsers and can thus be directly embedded in an HTML document.

This section serves as a quick primer for the SVG primitives we’ll use in our space
junk visualization. If you already understand SVG primitives, attributes, element nest-
ing, and translation, please skip this section and jump directly to “Building visualiza-
tions with D3.”

13.7.1 SVG circle

Let’s start with an svg element and set its width and height. This creates a space in
which we can paint with vector graphics.

The main primitive we’ll use is the circle element. Figure 13.7 shows an SVG circle
(on the left), what the DOM looks like in Chrome’s DevTools (in the middle), and a
schematic diagram (on the right) that relates the circle element to the svg element:
the circle element is a child of the svg element.

Listing 13.2 is the code for this simplest of visualizations. Note how attributes are
used to set the position (cx and cy), radius (r), and color (fill) of the circle. You can also
inspect the values of these attributes in Chrome’s DevTools (as shown in the middle of
figure 13.7).

Includes D3 in our web page

336 CHAPTER 13 Advanced visualization with D3

Listing 13.2 Adding a circle element to the SVG (listing-13.2/index.html)

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Space junk visualization</title>
 <link rel="stylesheet" href="app.css">
 <script src="bower_components/d3/d3.js"></script>
 <script src="app.js"></script>
 </head>
 <body>
 <svg
 class="chart"
 width="500"
 height="500"
 >
 <circle
 cx="250"
 cy="250"
 r="50"
 fill="#01499D"
 />
 </svg>
 </body>
</html>

With this simple example, we probably don’t need to use the DevTools to inspect the
DOM and the attribute values. We already know what they’re going to look like because
that’s what we entered into the HTML file. But soon we’ll procedurally generate these
circles using D3, so we won’t simply know how this looks. We need to inspect the actual
results so that when things go wrong, we can troubleshoot and solve problems.

Please take a moment now to run this simple visualization in the browser and use
your browser’s DevTools to inspect the DOM structure and the circle’s attributes. It’s
good practice to embed this kind of behavior early so that later when things get compli-
cated and messed up, you’ll be better positioned to figure it out.

This is the parent svg element.
Sets the dimensions of the svg

Makes the circle element a
child of the svg element

Configures the various attributes of the circle.
Notice how it’s centered within the svg.

The DOMThe visualization

svg

circle

Schematic diagram

Figure 13.7 An SVG circle element manually added to our SVG (with DOM viewed in Chrome
DevTools)

 337SVG crash course

13.7.2 Styling

We can style SVG elements in the same way that we style HTML elements: using CSS styl-
ing. For example, in our simple circle visualization, we can move the circle’s fill color
to CSS and separate our style from our structure. The following listing shows the mod-
ified circle element with the fill attribute removed; then listing 13.3b shows how we
have moved the fill color to a CSS style.

Listing 13.3a The circle’s fill attribute has been moved to CSS (extract from
listing-13.3/index.html)

<circle
 cx="250"
 cy="250"
 r="50"
 />

Listing 13.3b The circle’s fill color is now specified in CSS (listing-13.3/app.css)

.chart circle {
 fill: #01499D;
}

We’ll use more CSS styling later in our visualization.

13.7.3 SVG text

Let’s now add a text element as a title to accompany our circle, naming the circle as
the Earth. Figure 13.8 shows our updated visualization (on the left) and a schematic dia-
gram (on the right) that illustrates how the circle and text relate to the svg in the DOM.

Listing 13.4a shows the addition of the text element, and we now have a simple visu-
alization of the Earth. Feel free to load this up in your browser, open the DevTools, and
inspect the DOM to see how it looks now.

The fill attribute has been moved to CSS.

svg

circle text

The visualization

The Earth

Schematic diagram

Figure 13.8 Using a text element to add a title to our Earth visual

338 CHAPTER 13 Advanced visualization with D3

Listing 13.4a Adding a title to our Earth visual (extract from listing-13.4/index.html)

<svg
 class="chart"
 width="500"
 height="500"
 >
 <circle
 cx="250"
 cy="250"
 r="50"
 />
 <text
 x="250"
 y="320"
 >
 The Earth
 </text>
</svg>

To accompany our text, we’ll add a new CSS style. As shown in the following listing, we
set text-anchor to middle and this centers our text around its position—a nice touch
for its use as a title.

Listing 13.4b CSS styling for the new text element (extract from listing-13.4
/app.css)

.chart text {
 text-anchor: middle;
}

13.7.4 SVG group

It’s been simple so far, but let’s get more serious. We need a way to position our space
junk around our Earth. We’ll use the SVG g element to assemble a group of SVG prim-
itives and position them as a single entity. The schematic diagram in figure 13.9 shows
how our circle and text relate to the group that’s now nested under the svg.

Listing 13.5 shows how we enclose the circle and text in the g element. Note
the transform attribute on the group, along with a translate command that work
together to set the group’s position. This allows us to position both the circle and the
text at any location within the SVG element. Try loading the following listing into your
browser and then modify the translate coordinates to move the group to various other
locations.

Listing 13.5 Grouping the visuals in a g element to treat them as a single entity
(extract from listing-13.5/index.html)

<svg
 class="chart"
 width="500"
 height="500"

Shows our new title element

Centers the text on the location where
we position it

 339Building visualizations with D3

 >
 <g
 transform="translate(250, 250)"
 >
 <circle
 r="50"
 />
 <text
 y="70"
 >
 The Earth
 </text>
 </g>
</svg>

We’re now armed with enough SVG basics to build our D3 visualization. We know how
to use circle, text, and g elements to create an SVG visualization. Now let’s learn D3.

g

circle text

svg
The circle and text are now
grouped under a g element;
this is a construct that we
could use to represent a
piece of space junk.

We can now translate the
g element to position the
group as a single entity.

Figure 13.9 Schematic
diagram showing our DOM
with circle and text grouped
together under a g element

13.8 Building visualizations with D3
To build a D3 visualization, we must select, create, configure, and modify our SVG ele-
ments. Let’s start with configuring element state.

13.8.1 Element state

Each element has an associated state that’s specified through its attributes. We’ve
already seen how to manually set various SVG attributes—for example, the circle’s cx,
cy, r, and fill attributes. Table 13.1 is a summary of the attributes and the values
we’ve already assigned.

Table 13.1 Element state for the circle from listing 13.2

Attribute Value Purpose

cx 250 X position of the circle

cy 250 Y position of the circle

r 50 Radius of the circle

fill #01499D Fill color for the circle (earth blue)

Groups our circle and text visuals in a g element

The transform attribute is used to
position the group as a single entity.

Offsets the text relative to the circle

340 CHAPTER 13 Advanced visualization with D3

Figure 13.10 highlights how these attributes look when viewed in Chrome’s DevTools.
This looks the same regardless of whether the attributes were set manually in SVG or if
we use the D3 API to set their values.

To set attribute values using D3, we’ll use the attr function. Assuming we already
have a reference to our circle element, we can set attributes in code as follows:

var circle = ...
circle.attr("cx", "250")
 .attr("cx", "250")
 .attr("r", "50")
 .attr("fill", "#01499D");

We can’t set attributes on an element unless we have a reference to it, so let’s now look
at how to select an element so that we can work on it.

13.8.2 Selecting elements

With D3 we have three basic ways to reference an element. We can select a single exist-
ing element. We can select multiple elements at once. Or we can procedurally create
elements and add them to the DOM. Ultimately, we need all three of these methods,
but it’s the last one that we’ll use to generate our initial visualization.

SINGLE ELEMENT

We can select a single element with D3’s select function. You can see in figure 13.11
that I’m representing the current D3 selection with a dotted box that has selected our
circle element.

Assuming we already have an existing element, say our circle element, we can use
the D3 select function to select our circle using a CSS-style selector:

var circle = d3.select("circle");

Gets a D3 selection. This is an object that
represents one or more DOM nodes.

Sets the position of the circle
Sets the radius

Sets the fill color

svg

circleD3 selection Figure 13.11 Use the D3
select function to operate on
a single existing DOM node.

The svg attributes for the circle

Figure 13.10 Viewing the attributes of the circle element in Chrome DevTools

 341Building visualizations with D3

Listing 13.6a shows a real example. Here we’re selecting the svg element and setting
its width and height based on the dimensions of the document. This sizes our visualiza-
tion to make full use of the space available in the browser window.

Listing 13.6a Selecting the svg element and setting its dimensions (extract from
listing-13.6/app.js)

var width = window.innerWidth;
var height = window.innerHeight;

var svgElement = d3.select("svg.chart")
 .attr("width", width)
 .attr("height", height);

Note that we’re also referencing the svg element by its CSS class name. This makes
our selection a bit more specific, in case we have multiple visualizations in the same page.

The svg.chart that we see here is like a CSS selector. If you’re familiar with jQuery,
you’ll be comfortable with this code because jQuery selection by CSS selector and set-
ting attribute values are similar to this.

MULTIPLE ELEMENTS

We can also use D3 to select and operate on multiple elements simultaneously. You
can see in figure 13.12 that the dotted box representing the D3 selection now encloses
multiple existing circle elements.

We can use D3’s selectAll function to select multiple existing elements as follows:

var circle = d3.selectAll("circle")
circle
 .attr("r", 50)
 .attr("fill", "#01499D");

Note that when we call attr on a selection with multiple elements, the value of the
attribute will be updated for all those elements. This allows us to configure a set of ele-
ments at once, something that will be useful when we want to configure the visuals for
our full set of space junk objects.

Dimensions for our visualization are derived
from the size of the browser window.

Selects the root svg element
for our visualization

Sets the width and height of the element

svg

circleD3 selection circle circle circle

Figure 13.12 Using D3 to select and operate on multiple DOM nodes at once

Selects all circle elements in the DOM

Sets the radius for all circles

Sets the fill color for all circles

342 CHAPTER 13 Advanced visualization with D3

ADDING A NEW ELEMENT

The last way to select an element is to add a new element. When we add a new element,
it’s automatically selected so that we can set its initial state. Pay attention now, because
this is how we’ll procedurally create visuals for our space junk. We have many pieces
of space junk to represent in our visualization, and we need to programmatically add
DOM elements. If we added them manually, that would be tedious work, not to men-
tion that we couldn’t easily animate a manually prepared visualization.

Listing 13.6b shows how we’ll add a procedurally generated Earth to our visualiza-
tion using D3’s append function. Appending an element results in a selection, although
in this case it’s a selection that contains a single DOM node. We can still set attributes
on the element, and we use that here to set the class, position, and radius for the Earth.

Listing 13.6b Adding the “earth” to our visualization (extract from listing-13.6/app.js)

var earthRadius = 50;
var earthTranslation =
 "translate(" + (width/2) + ", " + (height/2) + ")";

var theEarth = svgElement.append("circle")
theEarth.attr("class", "earth")
 .attr("transform", earthTranslation)
 .attr("r", earthRadius);

13.8.3 Manually adding elements to our visualization

The right way to use the D3 API is to map over our data and procedurally create visuals
for each of our space junk data records. That’s a bit of a leap to make right now and
might be difficult to understand. Let’s first look at this in a more straightforward way.

What’s the simplest way that we might add visuals for each of our data records? Well,
we could loop over our array of data and call the append function to add a new visual for
each object of space junk.

Anyone who knows anything about D3 will tell you that this isn’t the right way to use
D3, and they’re correct, but I’d like us to first take a simpler approach so that later we
might better appreciate the magic that D3 will do on our behalf.

If we instantiate DOM elements to correspond to our space junk data, we’ll end up
with something like figure 13.13. It won’t look exactly the same, though, because we’re
using randomized coordinates for our space junk. It will choose different positions
each time we run it. The DOM is displayed on the right so that you can see the DOM
node for each space junk object.

Sets the radius of the “earth” to 50 pixelsSets up a translation to position the
“earth” at the center

Adds a circle to the svg to represent the “earth”

Sets the CSS class for the element to so
that we can style our “earth”

Positions the circle in the
middle of the visualization

Sets the radius of the “earth”

 343Building visualizations with D3

To the right of figure 13.13, you can see how I’ve hovered the mouse pointer over
the DOM node in Chrome’s DevTools. This is a useful debugging technique because it
highlights the corresponding element in the visualization.

The following listing shows the code for looping over your data and adding a visual
for each data record. You can see that for each data record we call D3’s append function
to flesh out our visualization.

Listing 13.7 Manually adding space junk elements to our D3 visualization (extract
from listing-13.7/app.js)

for (var rowIndex = 0; rowIndex < spaceJunkData.length; ++rowIndex) {
 var spaceJunk = svgElement.append("g");
 spaceJunk.attr("class", "junk")
 .attr("transform", function(row, index) {
 var orbitRadius = earthRadius + orbitDistance;
 var randomAngle = Math.random() * 360;
 var point = pointOnCircle(
 orbitRadius,
 randomAngle
);
 var x = (width/2) + point.x;
 var y = (height/2) + point.y;
 return "translate(" + x + ", " + y + ")" ;
 })
 .append("circle")
 .attr("r", 5);
}

Manually loops our data and
adds it to the visualization

Adds a group. This means we can have multiple sub
elements to comprise the visuals for a piece of space junk.

Sets a CSS
class so we
can style
our space
junk

Sets the transform element to position
the space junk in orbit around the Earth

The distance from the center
of the Earth that the space
junk is orbiting

Translates the space
junk coordinates into
visualizationrelative
coordinates

Chooses a random
position in orbit that’s
relative to the Earth

Synthesizes an svg
transform attribute
to position the
space junk around
the Earth

Adds a circle to the group to
represent the space junk

Sets the radius of the circle

The DOM hierarchy for our
evolving visualization

Hover the mouse over a DOM node in Chrome
DevTools and the browser will identify the
relevant element for you—a useful tool for
debugging your visualization.

Figure 13.13 Viewing the DOM hierarchy for our manually added DOM nodes in Chrome DevTools: our
visualization is starting to take shape.

344 CHAPTER 13 Advanced visualization with D3

Looping over our data manually like this and calling append multiple times isn’t the
right way to use D3, but I’m hoping that taking this stepping stone has made it easier
for you to understand how D3 works. In a moment, we’ll look at how to do this the
right way. First, though, we should get our scaling in order.

13.8.4 Scaling to fit

Up to now, with our visualization we’ve used a bunch of hard-coded coordinates and
measurements. For example, we set the radius of the Earth to 50 pixels in listing 13.6b,
and although you can’t see it in listing 13.7, the orbit distance of the space junk is also a
hard-coded value. We’d like to replace these values with to-scale versions that do repre-
sent the actual size of the Earth and the real orbit distance for each object of space junk.

Also, we haven’t made effective use of the space within our visualization, as you can
see on the left side of figure 13.14. What we want is for our visualization to take up all
the available space and be more like the right side of figure 13.14.

D3 has support for scaling, and we’ll use the scaleLinear function as demonstrated
in listing 13.8a. This creates a D3 scale that linearly maps the actual radius of our Earth
(6,371 KMs) to fit neatly within the available space.

Listing 13.8a Scaling the size of the Earth to fit the space available (extract from
listing-13.8/app.js)

var earthRadius = 6371;
var earthTranslation = "translate(" + (width/2) + ", " + (height/2) + ")";
var maxOrbitRadius = d3.max(
 spaceJunkData.map(
 spaceJunkRecord => earthRadius + spaceJunkRecord.PERIGEE
)
);

var radiusScale = d3.scaleLinear()
 .domain([0, maxOrbitRadius])
 .range([0, Math.min(height/2, width/2)]);

var theEarth = svgElement.append("circle")
theEarth.attr("class", "earth")
 .attr("transform", earthTranslation)
 .attr("r", radiusScale(earthRadius));

Also notice in listing 13.8a how we also account for the orbit distance of each object of
space junk. The greatest of these values is determined using the D3 max function.

The scale that we produce, radiusScale, is a JavaScript function. Nothing more or
nothing less. We can pass real values (such as the radius of the Earth) to this function,
and it will produce a scaled value in pixels that fits within our browser window.

This is the real radius of the Earth!

Determines the maximum orbit
distance from the Earth

Creates a scale for the radius

We want our visualization to scale so
that it takes up the full space available.

We’re now scaling the radius of the Earth so
that it fits comfortably in the visualization.

 345Building visualizations with D3

We also use the same radiusScale function to scale the orbit distance for our space
junk, as you can see in listing 13.8b. The orbit radius is derived from the radius of the
Earth plus the perigee (nearest orbital approach) of the space junk. This value is then
passed through radiusScale to convert the value to pixels. This is then used to position
the space junk within the visualization.

Listing 13.8b The orbital distance of each object of space junk is also scaled to fit
(extract from listing-13.8/app.js)

var spaceJunk = svgElement.append("g");
spaceJunk.attr("class", "junk")
 .attr("transform", function () {
 var orbitRadius = radiusScale(
 earthRadius + spaceJunkRecord.PERIGEE
);
 var randomAngle = Math.random() * 360;
 var point = pointOnCircle(orbitRadius, randomAngle);
 var x = (width/2) + point.x;
 var y = (height/2) + point.y;
 return "translate(" + x + ", " + y + ")" ;
 })
 .append("circle")
 .attr("r", 5);

Okay, we have our scaling sorted. We’re close to having the first version of our visualiza-
tion ready. What we need to do now is make sure our space junk visuals are produced
in the D3 way rather than the manual loop and append that we used earlier.

Uses the real orbital
distance for the
space junk and
scales it to fit

Listing 13.7
with no scaling

Listing 13.8, in which
the visualization is scaled
to fit the available space

Figure 13.14 Side-by-side examples to demonstrate the effects of scaling. The visualization on the right
uses real-world dimensions but is scaled down to snuggly fit the available space in the browser window.

346 CHAPTER 13 Advanced visualization with D3

13.8.5 Procedural generation the D3 way

This is where things start to get rather tricky. You must now come to terms with what’s
known as the D3 concepts of data join and entry selection. These are difficult to under-
stand because they have two purposes, although to start with we only need one of those.
We’ll use this technique now to create our visualization from nothing. Later on, when
we come to building our animation, we’ll use this same technique to add new data to
our preexisting visualization.

I’m telling you this now because it’s difficult to understand how a data join works with-
out also understanding that it’s not only for producing a fresh visualization. The reason
that it’s complicated is that this technique is also for updating an existing visualization.

What’s the purpose of D3 data join?

¡	To pair DOM nodes and data records
¡	To sort out new and existing data records
¡	To animate the addition and removal of data records

We’re going to use D3’s selectAll function to produce a selection of g elements, but
because we don’t even have any such elements in our visualization yet, this is going to
give us what’s called an empty selection.

After calling selectAll, we’ll call D3’s data function passing in our space junk data
set. This creates the so-called data join and produces a selection of DOM nodes that are
bound to our data records. But wait, we don’t have any DOM nodes yet! What do we get
out of this operation? As depicted in figure 13.15, these aren’t ordinary DOM nodes.
We don’t have any DOM nodes in our visualization yet, so D3 created a set of place-
holder DOM nodes with one placeholder per record of data. Soon we’re going to fill in
these blanks with actual DOM nodes to represent our space junk.

Figure 13.16 illustrates how joining an empty selection of g elements with our data
produces the set of placeholder DOM nodes that are bound to our data.

If you’re confused at this point, well, I can feel your pain. In my opinion, the data
join and the concept of placeholder DOM nodes is probably the most confusing thing
you’ll be confronted with when learning D3. If you can get your head around this, then
the rest of D3 won’t be as difficult.

Bound DOM node New data records that don’t yet
have a corresponding DOM
node in the visualization are
assigned a placeholder DOM
node.

In a moment we’ll replace this
with a real DOM node that
represents the data record in
the visualization.

Placeholder DOM
node

New data record

Figure 13.15 Our initial data join produces placeholder DOM nodes that are bound to our data records.

 347Building visualizations with D3

The selection we now have from the data join represents DOM nodes that don’t yet
exist. If there were SVG group elements already in our visualization, they’d appear in
the selection alongside the placeholder elements for new data, but we don’t have any
group elements yet.

Listing 13.9 shows the code that produces our data join. Calling selectAll yields the
empty selection. Our data set is then joined using the data function. Next, note the use
of the enter function, which filters the selection for new data records. The enter func-
tion allows us to specify what happens when new data is added to our visualization. This
is where we call D3’s append function. When we call append in the context of the enter
selection, D3 will replace the placeholder DOM nodes with the elements that we want
to add to our visualization.

Listing 13.9 Doing a data join and procedurally generating space junk visuals (extract
from app.js)

// ... other code here ...

var spaceJunk = svgElement.selectAll("g")
 .data(spaceJunkData);

Selects all g elements. Because none
exist, this yields an empty selection.

Creates the data join

Selection of bound DOM nodes

.data()

selectAll(“g”)

Space junk data set

Data
record 0

Data
record 1

Data
record N…

This is an empty
selection because
the visualization
hasn’t yet been
created.

Joining the empty selection
with a data set produces a new
selection of bound DOM nodes.

Call the D3 data
function to join
our selection with
our data set.

Our space
junk data set

…

Because there weren’t any DOM nodes
to start with, D3 has filled out our
selection with placeholder DOM nodes.

Bound DOM node

Placeholder
DOM node

Data
record 0

Bound DOM node

Placeholder
DOM node

Data
record 1

Bound DOM node

Placeholder
DOM node

Data
record N

Figure 13.16 Calling the D3 data function on a selection (even an empty selection) joins the selection
with our data set. This is called a data join.

348 CHAPTER 13 Advanced visualization with D3

var enterSelection = spaceJunk.enter();
enterSelection.append("g")
 .attr("class", "junk")
 .attr("transform", spaceJunkTranslation)
 .append("circle")
 .attr("r", 5);

Listing 13.9 defines the core of what I’m calling the visualization recipe. This is the
instruction to D3 that says, “please take all my space junk data and create a visual rep-
resentation.” If you understand this the way that I do, you can see why I like to think of
it as a data pipeline. Listing 13.9 is a snippet of code that consumes data and produces
a visualization.

Now that we’ve joined our data and created the space junk visuals, you can run this
code and inspect the DOM hierarchy in your browser’s DevTools to better understand
how DOM nodes and data records are bound together. Select one of the space junk
DOM nodes as shown in figure 13.17. Now open the browser’s console.

Google Chrome has a special variable named $0. If you enter this in the console and
press Enter, the selected DOM element will be displayed for your inspection. Now type
$0.__data__ and press Enter. This displays the data record that’s bound to the DOM

Creates the enter selection.
This is the selection of new
data records bound to
placeholder DOM nodes.

Creates the space junk visual and
replaces placeholder DOM nodes with it

Select an item of space
junk in the Elements tab
of Chrome’s DevTools.

Now, in Chrome’s DevTools
Console, type $0.

Now type $0._data__
and press Enter.

This prints the value of
the __data__ property of
the DOM node. This is
how D3 attaches data to
each DOM node.

Press Enter, and the
selected DOM node
is logged.

Figure 13.17 Inspecting the data attached to a bound DOM using Chrome’s DevTools

 349Building visualizations with D3

node. The __data__ property was added by D3, and it’s instructive to see how D3 keeps
track of its data bindings.

We’re almost done with the first pass of our visualization, and for the moment, we
have only one more thing to consider. Soon, though, we’ll return to selections and data
joins and learn how to add new data into our visualization and animate it over time.

13.8.6 Loading a data file

To this point, we’ve only used a small selection of data that’s hard-coded into app.js. It’s
high time that we let this bad boy loose on real data. In the following listing we use D3’s
json function to asynchronously retrieve our data from the web server in JSON format
(we could also use CSV data).

Listing 13.10a Using D3 to load a real data file (extract from listing-13.10/app.js)

d3.json("data/us-space-junk.json")
 .then(function (spaceJunkData) {
 // ... Build your visualization here ...
 })
 .catch(function (err) {
 console.error("Failed to load data file.");
 console.error(err);
 });

That’s the first pass of our space junk visualization complete. We’re going to add more
to it in a moment, but take this opportunity to run the code and use your browser’s
DevTools to explore and understand the DOM that we have constructed using D3.
Your visualization should look similar to figure 13.18.

Uses D3 to load our data file

Handles any error
that might occur

Figure 13.18 Our partially completed space junk visualization

350 CHAPTER 13 Advanced visualization with D3

Most of the code is presented in listing 13.10b. The most difficult thing we’ve learned
so far is the concept of the data join and the enter selection and how that results in a
set of placeholder DOM elements, which we then replace with our space junk visuals.
As you read listing 13.10b, please be on the lookout for the calls to selectAll, data,
enter, and append.

Listing 13.10b The code for the space junk visualization so far (extract from
listing-13.10/app.js)

var width = window.innerWidth;
var height = window.innerHeight;

var earthRadius = 6371;
var earthTranslation = "translate(" + (width/2) + ", " + (height/2) + ")";
var maxDistanceFromEarth = 6000;

d3.json("data/us-space-junk.json")
 .then(function (spaceJunkData) {

 var filteredData = spaceJunkData.filter(
 spaceJunkRecord =>
 spaceJunkRecord.PERIGEE <=
 maxDistanceFromEarth
);

 var maxOrbitRadius = d3.max(filteredData.map(
 spaceJunkRecord =>
 earthRadius +
 spaceJunkRecord.PERIGEE
));

 var radiusScale = d3.scaleLinear()
 .domain([0, maxOrbitRadius])
 .range([0, Math.min(height/2, width/2)]);

 var svgElement = d3.select("svg.chart")
 .attr("width", width)
 .attr("height", height);

 var theEarth = svgElement.append("circle")
 theEarth.attr("class", "earth")
 .attr("transform", earthTranslation)
 .attr("r", scaleRadius(earthRadius));

 svgElement.selectAll("g")
 .data(filteredData)
 .enter()
 .append("g")
 .attr("class", "junk")
 .attr("transform", spaceJunkTranslation)
 .append("circle")
 .attr("r", 2);
 })

Dimensions for our visualization are derived
from the size of the browser window.

Let's put a limit on what we can display.

Loads our JSON data for US space junk

Filters out data beyond our limit

Determines the maximum
orbit distance from the Earth

Creates a scale for the radius

Sets the size of the visualization

Adds "the Earth" to
the visualization

Scales the visualization
to fit the space available

Joins with our data to produce
the DOM elements for the space junk

Specifies what happens for
each incoming data point

Creates the visual representation of
space junk for each data record

 351Building visualizations with D3

 .catch(function (err) {
 console.error("Failed to load data file.");
 console.error(err);
 });
};

Once you’ve internalized the code in listing 13.10b, you’ll probably realize that there
isn’t that much to it. You might even wonder why you thought D3 was so difficult in the
first place.

Well, we aren’t finished yet, and the code is going to become a bit more complicated.
Before we’re done in this chapter, we’re going to color-code the space junk according
to size, add simple interactivity to the visualization, and then the crowning glory: we’ll
animate the visualization year by year so we can clearly see how the space junk has accu-
mulated over time.

13.8.7 Color-coding the space junk

At the start of this chapter, you might have noticed that our data specifies the size of
each space junk object as either small, medium, or large. We’ll now use this informa-
tion to color-code the space junk in the visualization according to size.

We’ll apply the color through CSS classes and styling. In the following listing, we
assign a CSS class name SMALL, MEDIUM, or LARGE to our space junk visuals. This
value is pulled directly from the data and becomes the CSS class name.

Listing 13.11a Setting space junk class based on its size (extract from listing-13.11
/app.js)

spaceJunk.enter()
.append("g")
 .attr("class", function (spaceJunkRecord) {
 return "junk " + spaceJunkRecord.RCS_SIZE;
 })

The following listing shows how we can now add CSS styles to set the fill color for our
circle elements differently for the different sizes of space junk.

Listing 13.11b CSS to set the color of space junk based on its size (extract from
listing-13.11/app.css)

.junk.SMALL {
 fill: yellow;
}

.junk.MEDIUM {
 fill: orange;
}

.junk.LARGE {
 fill: red;
}

Adds space junk visual to the DOM Sets the class of the
space junk visual

Sets class name based on the size of the
space junk: SMALL, MEDIUM, or LARGE

Most of the code is presented in listing 13.10b. The most difficult thing we’ve learned
so far is the concept of the data join and the enter selection and how that results in a
set of placeholder DOM elements, which we then replace with our space junk visuals.
As you read listing 13.10b, please be on the lookout for the calls to selectAll, data,
enter, and append.

Listing 13.10b The code for the space junk visualization so far (extract from
listing-13.10/app.js)

var width = window.innerWidth;
var height = window.innerHeight;

var earthRadius = 6371;
var earthTranslation = "translate(" + (width/2) + ", " + (height/2) + ")";
var maxDistanceFromEarth = 6000;

d3.json("data/us-space-junk.json")
 .then(function (spaceJunkData) {

 var filteredData = spaceJunkData.filter(
 spaceJunkRecord =>
 spaceJunkRecord.PERIGEE <=
 maxDistanceFromEarth
);

 var maxOrbitRadius = d3.max(filteredData.map(
 spaceJunkRecord =>
 earthRadius +
 spaceJunkRecord.PERIGEE
));

 var radiusScale = d3.scaleLinear()
 .domain([0, maxOrbitRadius])
 .range([0, Math.min(height/2, width/2)]);

 var svgElement = d3.select("svg.chart")
 .attr("width", width)
 .attr("height", height);

 var theEarth = svgElement.append("circle")
 theEarth.attr("class", "earth")
 .attr("transform", earthTranslation)
 .attr("r", scaleRadius(earthRadius));

 svgElement.selectAll("g")
 .data(filteredData)
 .enter()
 .append("g")
 .attr("class", "junk")
 .attr("transform", spaceJunkTranslation)
 .append("circle")
 .attr("r", 2);
 })

Dimensions for our visualization are derived
from the size of the browser window.

Let's put a limit on what we can display.

Loads our JSON data for US space junk

Filters out data beyond our limit

Determines the maximum
orbit distance from the Earth

Creates a scale for the radius

Sets the size of the visualization

Adds "the Earth" to
the visualization

Scales the visualization
to fit the space available

Joins with our data to produce
the DOM elements for the space junk

Specifies what happens for
each incoming data point

Creates the visual representation of
space junk for each data record

352 CHAPTER 13 Advanced visualization with D3

This hasn’t added much complexity to our code, but it makes the visualization look
better, and it’s a good example of conditional CSS styling that depends on the content
of our data.

13.8.8 Adding interactivity

We’ve built an unusual visualization with D3, and this shows its power. But we also need
to see examples of interactivity and animation to really understand how far we can go
with D3.

First, let’s tackle interactivity. In figure 13.19, we can see our newly color-coded space
junk in addition to descriptive mouse hover text. We’ll create this hover text in the same
way that we might create any browser-based interactivity with JavaScript. We can respond
to user input through events; in this case we’ll use mouse hover and unhover, as shown
in the following listing.

Listing 13.11c Handling mouse hover events for space junk visuals (extract from
listing-13.11/app.js)

var spaceJunk = svgElement.selectAll("g")
 .data(filteredData);
spaceJunk.enter()
 .append("g")
 .attr("class", function (spaceJunkRecord) {
 return "junk " + spaceJunkRecord.RCS_SIZE;
 })
 .attr("transform", spaceJunkTranslation)
 .on("mouseover", hover)
 .on("mouseout", unhover)
 .append("circle")
 .attr("r", 2);

In response to the mouse hover event, we’ll make modifications to the visualization. In
listing 13.11d, we attach new text elements for the descriptive text. We also modify the
size of the space junk (by increasing the radius of the circle element). This visually
brings attention to the particular object we have the mouse pointer hovered over.

Figure 13.19 Color-coded space junk with mouse hover text

Sets the CSS class name for
colorcoding based on space junk size

Wires up event handlers
for mouse hover

 353Building visualizations with D3

Listing 13.11d Adding hover text to the visualization while the mouse is hovered over
space junk (extract from listing-13.11/app.js)

function addText (className, text, size, pos, offset) {
 return svgElement.append("text")
 .attr("class", className)
 .attr("x", pos.x)
 .attr("y", pos.y + offset)
 .text(text);
};

function hover (spaceJunkRecord, index) {

 d3.select(this)
 .select("circle")
 .attr("r", 6);

 var pos = computeSpaceJunkPosition(spaceJunkRecord);

 addText("hover-text hover-title", row.OBJECT_NAME, 20, pos, 50)
 .attr("font-weight", "bold");

 addText("hover-text",
 "Size: " + spaceJunkRecord.RCS_SIZE, 16, pos, 70
);
 addText("hover-text",
 "Launched: " + spaceJunkRecord.LAUNCH, 16, pos, 85
);
};

function unhover (spaceJunkRecord, index) {

 d3.select(this)
 .select("circle")
 .attr("r", 2);

 d3.selectAll(".hovertext")
 .remove();
};

Also note in listing 13.11d how we clean up in response to the mouse unhover event by
removing the descriptive text and reverting the space junk circles to their original size.

13.8.9 Adding a year-by-year launch animation

The final touch to our visualization is a year-by-year animation to show space junk being
launched and accumulating in orbit. This will complete our understanding of the D3
data join, and we’ll learn how it’s used to add new data to an existing visualization.

This is a helper function that
adds hover text.

Appends the hover text to the end of the SVG so it’s
rendered over the top of everything else

Sets the class so we can style the text from CSS

Offsets the Y position slightly so
the text is below the space junk

This callback function is invoked
when space junk is mouse hovered.

Makes the hovered
space junk larger

Adds the hover text
on the mouse hover event

This callback function is invoked
when the space junk is unhovered.

Reverts the hovered space
junk to normal size

Removes all hover text

354 CHAPTER 13 Advanced visualization with D3

Figure 13.20 shows the general form our animation will take: we’ll animate forward
in time year by year into the future. Each iteration of the animation takes one second in
real time, but it represents a whole year of launches.

Before the animation starts, we’ll have an empty visualization. Then as each iteration
completes, we’ll have more and more space junk added to the visualization, and you’ll
see it building up around the Earth.

In the first iteration of the animation, our D3 data join operates as we saw earlier
in figure 13.16. Our visualization is empty, so we’re joining the first year’s data with an
empty selection to produce a selection of placeholder DOM nodes.

The second and subsequent iterations all work with the existing visualization and
add new data to it. Now we do have a selection of existing g elements that are already
bound to data records. Figure 13.21 shows that the result of our data join is a set
of bound DOM nodes: now it contains existing DOM nodes for data records that were
previously added to the visualization, and it also contains placeholder DOM nodes for
new data records.

Again, we use the enter function and append function to replace placeholder DOM
nodes with space junk visuals, which updates the visualization and adds the new data.
If you were thinking earlier “what’s the point of the enter function,” maybe now this
becomes more obvious. The enter function allows us to add new elements while ignor-
ing existing elements.

Listing 13.12 shows the code for our animated visualization. Pay attention to how
setInterval creates the iterations of our animation and how the data is filtered for
each iteration so that we can progressively feed new data into our D3 pipeline.

Note in listing 13.12 the D3 transition function that’s used to animate the addition
of the space junk to the visualization. This makes the space junk appear to launch from
the surface of the Earth and then travel to its final position. The radius of the space
junk’s circle is also animated to bring attention to the launch.

…and so on…

1957 1958

Add the space junk
from 1957 here.

1960

Add the space junk
from 1958 here.

Add the space junk
from 1959 here.

1 iteration:
1 year = 1 second

1959

Time moves this way.

Figure 13.20 Animating the visualization year by year, adding space junk for each year in turn

 355Building visualizations with D3

Selection of bound DOM nodes

.data()
Space junk data set

Data
record 0

Data
record 1

Data
record N…

Our selection now contains
all the existing space junk
visuals from previous iterations
of the animation.

Joining a selection of existing DOM
nodes with our data set produces a new
selection that contains existing DOM
nodes and placeholder DOM nodes.

Call the D3 data
function to join
our selection
with our data set.

Our space
junk data set

Existing DOM nodes… Placeholder DOM nodes…

selectAll(“g”)

g 0 g 1 … g N

Figure 13.21 Joining a non-empty selection with data produces selection of bound DOM nodes. This
contains existing DOM nodes and also placeholder DOM nodes for any new data records.

Listing 13.12 Animating the space junk year by year according to launch dates
(extract from listing-13.12/app.js)

var currentYear = 1957;
addText("title-text",
 currentYear.toString(), { x: width/2, y: 30 }, 0
);

var dateFmt = "DD/MM/YYYY";

setInterval(function () {
 ++currentYear;

 svgElement.select(".title-text")
 .text(currentYear.toString());

Specifies the starting year for
the yearbyyear animation

Adds title text to the visualization that
shows the current year

Animates forward in time

Updates the title text for the current year

356 CHAPTER 13 Advanced visualization with D3

 var currentData = filteredData.filter(
 spaceJunkRecord =>
 moment(spaceJunkRecord.LAUNCH, dateFmt).year() <=
 currentYear
);

 const spaceJunk = svgElement.selectAll("g")
 .data(currentData, function (row) { return row.id; });
 spaceJunk.enter()
 .append("g")
 .on("mouseover", hover)
 .on("mouseout", unhover)
 .attr("class", function (spaceJunkRecord) {
 return "junk " + spaceJunkRecord.RCS_SIZE;
 })
 .attr("transform", spaceJunkTranslationStart);

 spaceJunk.transition()
 .duration(1000)
 .attr("transform", spaceJunkTranslationEnd)
 .ease(d3.easeBackOut);

 spaceJunk.append("circle")
 .attr("r", 5)
 .transition()
 .attr("r", 2);

}, 1000);

This chapter has been an overview of the basic concepts and ideas behind D3. I
hope it has inspired you to learn more about D3 and to delve further into the world of
advanced visualizations.

Your biggest takeaway should be an understanding of the data join and entry selection
concepts in D3. In my opinion, these two concepts are the hardest parts of D3 to get
your head around. If you’ve understood these, then you’re well on your way to mas-
tering D3, but don’t stop here. D3 is a big API and you have much more to explore, so
please keep on with it. For more background on D3, please see the Stanford paper by
Bostock, Ogievetsky, and Heer at http://vis.stanford.edu/files/2011-D3-InfoVis.pdf.

The end of the book is now drawing near! We’ve covered the main aspects of data
wrangling: acquisition, storage, retrieval, cleanup, preparation, transformation, visu-
alization, and live data. What still remains? Assuming the code you’ve written isn’t for
personal or one-time use, which it can be (there’s nothing wrong with that), we must
now deploy our code to a production environment.

Prototyping, development, and testing are only part of the battle. Putting your code
in front of your user—or many and often-demanding users—will push your code to its
limits and is likely to expose many problems. The last chapter, “Getting to production,”
provides a tour of these problems and the strategies that can help you deal with them.

Filters data up until
the current year.
This allows us to
progressively add
new data to the
visualization for
each new year.

We now need to set an
ID for each data record
so that D3 can know the
difference between new
and existing space junk.

Adds new DOM nodes for space junk
for the current year; existing DOM
nodes remain unchanged.

Animates the space junk
to its destination position

Animates the radius of the space
junk circle from large to small

Goes forward one year every second

http://vis.stanford.edu/files/2011-D3-InfoVis.pdf
.

 357Building visualizations with D3

Summary

¡	You did a crash course in SVG, learning the primitives: circle, text, and
g elements.

¡	You learned how to do element selection and creation with D3.
¡	We configured an element’s state with D3.
¡	We discussed doing a data join to produce an animated D3 visualization from data.
¡	We added interactivity to our visualization using mouse events.
¡	We upgraded to real data by loading a JSON file to produce the visualization.

358

This chapter covers
¡	Addressing concerns, risks, and problems when

taking your data pipeline to production

¡	Employing strategies for building a production-
ready application

Our data-wrangling journey together is coming to a close, although it’s at this stage
where your real work is about to begin. Although it may seem that exploratory cod-
ing, development, and testing are a pile of work, you ain’t seen nothing yet. Build-
ing and testing your data pipeline are often only small parts of the project lifecycle.

An ugly truth of software development is that most developers will spend the
majority of their time maintaining existing applications after they’ve entered pro-
duction. Getting to production is a big deal: we need to deploy our application, mon-
itor it, and understand its behavior.

We then need to update our app so that we can deploy bug fixes or upgrade its
feature set. At the same time, we need a solid testing regime to ensure that it doesn’t
explode in a smoldering mess. These are several of the things we must deal with after
our application enters the production phase.

14Getting to
production

 359Production concerns

This final chapter of Data Wrangling with JavaScript takes you on a whirlwind tour of
production concerns and problems. We’ll learn the problems to anticipate, how to handle
unanticipated problems, and various strategies for dealing with them. This chapter isn’t
hands-on, and it’s also not exhaustive; it’s a taste of the issues you’ll face getting to produc-
tion. This is such a huge topic, and we don’t have much time left, so please strap in!

14.1 Production concerns
Are you ready to move your app to its production environment? This is where we need
our app to deliver it to the intended audience. We might push our code to a hosted
server or a virtual machine in the cloud. Wherever we host our application, we need to
get it there and make it available to as many users as necessary. This is one aim of pro-
duction deployment. Other aims are listed in table 14.1.

Table 14.1 Production aims

Aim Description

Delivery Deliver our software to the intended audience.

Capacity Serve as many users as needed.

Deployment Update our software without failure or problems.

Recovery Recover quickly from any failures that do occur.

System longevity Operate for its intended period of longevity.

Through these aims, we face many risks. Chief among them is the risk that we’ll deploy
bad code and our app will be broken. Other potential risks are listed in table 14.2. Dif-
ferent projects will also have their own unique risks.

What exactly are we risking here? Well, we risk our app failing to function as intended.
Our app might break for whatever reason. It then can no longer handle its workload, it
becomes unresponsive, or it causes us to make business decisions based on broken data.

Why is this important? Well, broken systems cost money because organizations stop
working when systems go down. Also, when we act on bad or broken data, we make the
wrong decisions for our business. Broken systems can also make for frustrated users
and a loss in goodwill, although reputation loss is much harder to quantify. At the worst
extreme, for example, with our early warning system from chapter 12, people can come
to harm as a result of system failure. We need to think about the damage that could
result from a failure in our app. This will help us determine the amount of precaution
to take when setting up our app for production use.

360 CHAPTER 14 Getting to production

Table 14.2 Production risks

Risk Description

Broken code is deployed. The system breaks on initial release or update. This probably high-
lights an inadequate testing regime.

The demand or load is more than
the app can handle.

Demand for the system exceeds the capacity of the system to
respond effectively. The system either responds slowly or is broken
due to being overwhelmed.

Incoming data is corrupt or invalid. Bad data coming in is something that should be expected, and our
system should be resilient enough to deal with it.

Broken code is manifested by
new input, use case, or changed
conditions.

A bug can remain hidden in code for a significant time until some-
thing changes (input, the way the system is used, another code mod-
ule) that causes the bug to manifest.

In this chapter we’ll address a series of production concerns. These are listed in table
14.3. We’ll discuss each of these briefly throughout this chapter.

Table 14.3 Production concerns

Concern Description

Deployment We must deploy our app to production in a way that’s safe, conve-
nient, and easy to reverse should something go wrong.

We need a deployment pipeline.

Monitoring How do we know the system is operational and functioning
adequately?

We need a monitoring system.

Reliability Our system must be operating effectively and reliably. It must be
there when its users need it.

We need techniques that ensure reliable functioning. The system
should gracefully handle failures and bounce back into operation.

Security Our system should be as secure as it needs to be to prevent
unwanted intrusion or snooping.

We need security principles and mechanisms to protect our system.

Scalability How will our system handle large bursts of user activity?

How will we scale our system to meet the user demand without it
failing over?

14.2 Taking our early warning system to production
In chapter 12 we developed an early warning system for air pollution monitoring. Let’s
now talk about bringing this project to production. We’ll need to deploy the applica-
tion to a production environment; that’s an environment through which the app is
delivered to its users.

 361Deployment

What exactly are we delivering, and what issues do we face? We might have a dash-
board that can be viewed by thousands of people. Can our system handle that many
concurrent users? Does it respond to them in a timely fashion?

We might have an automated report that’s sent to hundreds of users who need that
information on a daily basis. Can it do that consistently without failing over? When our
emergency warning system triggers and the SMS alert is sent to emergency responders,
how do we ensure the system can do that without issue? These are the kinds of issues we
must ponder when moving to production.

Getting to production requires an update to our workflow. The workflow shown in
figure 14.1 is different to what you might remember from chapter 1 of this book. It now
shows that the end result of development is the production deployment of the applica-
tion. That’s to say that the code for the app is eventually moved from development to its
production environment.

Figure 14.1 indicates that we need to start thinking about production way back in our
planning stage. Thinking more about architecture and design, not to mention testing,
early on in development can save us much pain later when we’ll inevitably run into
issues relating to reliability, security, and performance.

Our first problem is how to get our app into its production environment. Figure 14.2
shows a common software development process called continuous delivery—an ongoing
sequence of iterations—where each iteration is followed by production deployment. To
implement continuous delivery, we’ll need a deployment pipeline.

14.3 Deployment
How we deploy our app to production depends on where we’re deploying it to because
different environments will require different mechanisms. Generally, though, it’s
common to have a scripted/automated deployment pipeline, an example of which
is depicted in figure 14.3. Each phase in the pipeline (the boxes with dashed lines) is
implemented by a build or deployment script, and gateways (the diamonds) between
each phase that control entry (or not) to the next phase. The gateways might be

Development iteration

Exploratory
coding

Develop Testing ProductionPlan

Start thinking about
production here!

Your app is available
to the public.

Figure 14.1 Development workflow and when you should start thinking about production

362 CHAPTER 14 Getting to production

automatic, or they might require manual activation, depending on what’s appropriate
for your project.

We start on the left by committing a code change to our version control system. This
triggers invocation of your continuous integration system, which automatically builds
and tests your code. If the code builds and passes its tests, then we enter the production
deployment phase.

We can write scripts for this phase to deploy our code to the production environ-
ment. If the deployment phase is successful, we enter the automated monitoring phase.
In this phase, we might run a smoke test or health check followed by regular automated
monitoring. Congratulations! Your app has made it through a production deployment.

It’s important to note that code deployments, the updates to your app, are often
the biggest cause of application failure. Figure 14.4 provides an example. All is well on

Automated monitoringProduction deploymentContinous integration

Automated
tests

Deployment
script

Test
pass?

Deployment
successful?

Commit
code change ProductionSmoke test /

health check
Test
pass?

Gateways to production

Changes flow through
the pipeline.

You change and
commit code to
version control.

Your code has
passed all the
gateways.

Figure 14.3 A continuous delivery deployment pipeline

Development iteration 1 Production

Development iteration 2 Production

Development iteration 3 Production

… and so on …

Time

Deployment to production
automatically follows an iteration
of development and testing.

Figure 14.2 Continuous delivery: Our app is frequently and routinely deployed to production.

 363Deployment

our first and second release, but then, for example, on the third release, we may find
a major bug that somehow got through our testing regime and blammo—the system
fails over.

What should we do when we have a major system failure? The simplest solution, the
one that’s least disruptive to our users, is to immediately roll the whole thing back to the
previous working version. This highlights an important requirement for our deploy-
ment pipeline. We should strive for a deployment system that makes it easy to roll back
or redeploy an earlier version of the app.

Unfortunately, though, errors can go unnoticed for a long period of time before
being discovered. We must be prepared for errors to manifest in the future, and they’ll
often appear at the most inconvenient times. For big system failures, it might be obvi-
ous that the app isn’t working, but what happens for less drastic problems? How do
we know whether the system is functioning normally or abnormally? We need a way to
monitor our app.

Release version 3

Unexpected
failure

Collect evidence

Release version 1

Release version 2

Roll back to
version 2 and restore
the system so
your users aren't
unduly affected
by the failure.

…we release
version 3 and
the system
fails over!

System in
operation

System in
operation

Make sure we have
enough data to
troubleshoot this
problem after we have
restored the system.

Everything is
awesome,
until…

Figure 14.4 Failures often occur when new software is released. The fastest way to deal
with them is to roll back to the previous working version.

364 CHAPTER 14 Getting to production

14.4 Monitoring
Deploying our code to production is the first step. Now we need to know if the app is
functioning or not. It’s imperative that we have transparency over what the app is doing;
we can’t fix problems if we don’t know about them. We need to check if the app is behav-
ing normally and whether it’s already experienced a failure and since recovered.

Debugging your code thoroughly while in development is important. Reading every
line of code isn’t the same as watching each line of code execute. Debugging is a tool we
can use to understand what our code is doing and not what we think it’s doing.

Unfortunately, though, we can’t easily debug our code when it’s running in produc-
tion. You must do adequate testing and debugging on your development workstation
before you attempt to get your code working in production.

Instead of debugging production code, to know what’s going on, we can use logging
and reporting of events and metrics to understand how our app is behaving. A simple
way to do this (assuming you already have a database at hand) is to record your logging
and metrics to your database, as shown in figure 14.5.

Database
System in
operation

Record logs, errors, and
metrics to your database.

Figure 14.5 Collect logs, errors, and metrics from your system so you can have visibility of its activity.

We might be tempted to log to standard output or a file, which is a great way to start
and is useful during development, but it’s less useful when the app goes to production.

If we put our logs and metrics in our database, we can start to do interesting things.
First, we can view the data remotely using a database viewer, which is great when we’re
physically separated from the server that’s running our app. Second, we can use our
data-wrangling and analysis skills to transform, aggregate, and understand the behavior
of our app. We might even build a custom log or metrics viewer or use an off-the-shelf
system to search and interrogate the history of our app.

We can take our logging and monitoring system even further—say, if we need to
support a distributed system (a collection of applications). To do this, we can create (or
buy) a dedicated monitoring server, as shown in figure 14.6, to service multiple apps
and integrate their logging and metrics into a single searchable system.

Centralizing our server monitoring system gives us more power for understanding
our distributed system. We now have one place to manage how we monitor and report
on our production applications. It’s similar to the reporting and alert system for our
early warning system from chapter 12, and we can reuse those same ideas here. For
example, we might want to send daily reports on application performance or trigger
SMS alerts when failures are detected.

 365Monitoring

Another improvement on the server monitoring system is to give it the capability
to actively monitor the app. As shown in figure 14.7, the server monitoring system can
have a bidirectional communication channel with the app and be actively pinging it to
check that it’s still alive, responding quickly, and isn’t overloaded.

With the capability to understand what our app is doing, we can now have a contin-
uous understanding of its state: whether it’s working or broken. But this still raises the
question of how we can best structure our code to ensure it continues to work and has a
high tolerance for failures.

Monitoring Server

Database

Multiple systems are feeding
into a single monitoring system.

Monitoring API
Monitoring
dashboard

Server

System in
operation

Server

System in
operation

System in
operation

Server

System in
operation

Figure 14.6 Multiple systems can feed into a single server monitoring system.

Server Monitoring Server

Database

This relationship can be
bidrectional. The monitoring API
is now actively checking the
health and load of our system.

Monitoring API Monitoring
dashboard

System in
operation

Figure 14.7 We can make the relationship between our system and the monitoring API bidirectional;
the monitoring API is now actively checking the health of our system.

366 CHAPTER 14 Getting to production

14.5 Reliability
When we take our app to production, we have an expectation that it will perform with
a level of reliability. We have ways to prepare early on to create robust and stable code;
inevitably, though, problems will happen, and we should take care to write code that
can quickly bounce back from failure.

Many tactics can be used to improve the reliability and stability of our code, not least
of which is adequate testing, which we’ll come to soon. We’ll also discuss various tech-
niques that will help you create fault tolerant code.

14.5.1 System longevity

It’s important that we understand how long our application is expected to remain
in operation. By this, I mean the amount of time it must reliably operate before it’s
restarted or its host is rebooted. If you’re using the continuous delivery process, then
your delivery cycle will dictate the time between reboots, as indicated in figure 14.8.

If your delivery schedule is monthly, the system must survive and continue to operate
for at least a month. We’ll need to gear our testing around this period of time.

14.5.2 Practice defensive programming

I usually like to be coding in the mindset of defensive programming. This is a mode
of working where we always expect that errors will occur, even if we don’t yet know
what they’ll be. We should expect that we’ll get bad inputs. We should expect that the
function we’re calling or the service we’re depending on is going to behave badly or be
unresponsive.

You can think of this as Murphy’s Law: if something can go wrong, it will go wrong. If
you’re coding, and you find yourself avoiding a problem and telling yourself the prob-
lem will never occur—well, that’s the time to assume that it will go wrong! When we
practice defensive programming, we assume that any and all such problems can occur,
and we take measures to allow our code to survive and report failures. Cultivating this
attitude will help you build resilient software.

… and so on …

Intended time between
reboots

Deployment Deployment Deployment

New code is deployed,
and the production
system is rebooted.

Time moves this way

Figure 14.8 Your deployment schedule dictates the longevity of your system (the time between system
reboots).

 367Reliability

14.5.3 Data protection

If we have a first rule of data wrangling, then it should be this: don’t lose your data! What-
ever happens, protection of your data is paramount. Internalize and live by these rules:

¡	Safely record your data as soon as it’s captured.
¡	Never overwrite your source data.
¡	Never delete your source data.

If you follow these rules, your data will be protected. In certain circumstances, for
example, when your expanding database starts to impact on your system longevity, you
may need to break these rules, but be careful when you do—here be dragons.

In chapter 12 when working on the early warning system, we discussed the impli-
cations of transforming your data before or after capturing it to your database. I’ll
reiterate it again here. You should capture your important data first—making sure it’s
safe—before doing any additional work on it. Figure 14.9 indicates the right way to
approach this. The code that captures your data is the code that protects your data; it
should be your most well-tested code. You should also minimize the amount of code
that does this job. Small amounts of code are easier to test and easier to prove correct.

When transforming data and writing it back to the database, never overwrite your
source data. If you do this, any problem in your transformation code could result in cor-
ruption of your source data. Bugs happen; losing your data should not. This is a risk that
you shouldn’t take. Please store your transformed data separately to your source data.
Figure 14.10 shows the approach to take.

It might seem obvious, but you should also be backing up your source data. In the
industry, we like to say that it doesn’t exist unless we have at least three copies of it! Also,
if your source data is being updated or collected routinely, you should also back it up
routinely. If this becomes tedious, then you need to automate it!

Incoming data Trigger downstream
data operations

Store in
database

Incoming data Downstream data
operations

Store in
database

Figure 14.9 Capture your incoming data to the database before doing any work. Don't risk losing your
data!

368 CHAPTER 14 Getting to production

14.5.4 Testing and automation

Testing is an essential factor in producing robust code although we’ve barely covered
it in this book—but that doesn’t mean it’s not important! As we worked through the
code in the various chapters, we tested manually as we went, and we didn’t do any
automated testing. But automated testing is important when you’re aiming to achieve
accurate and highly reliable software.

To make your testing worthwhile, you also need to do it in a testing environment
that emulates your production environment as closely as possible. Many broken pro-
duction deployments have been followed with the familiar excuse “but it worked on my
computer!” If your development workstation is different from your production envi-
ronment, which it probably is, then you should use either Vagrant or Docker to simu-
late your production machines. You might also consider using Docker to provision your
production environment.

Let’s discuss several popular types of testing that I believe work well for data pipe-
lines. All the types of testing mentioned here can be automated, so once you create a
test, it can thereafter run automatically as part of your continuous delivery pipeline (as
discussed in section 14.3).

TEST-DRIvEN DEvELOPMENT

Test-driven development (TDD) starts with building a failing test. We then write the
code to satisfy that test and make it pass. Last, we refactor to improve the code (shown
in figure 14.11). The TDD cycle results in reliable code that can evolve quickly. It’s
commonly known as the process of building granular unit tests to exercise your code
and verify that it functions correctly. A single unit test will test a single aspect of your
code. A collection of such tests is called a test suite.

Using TDD results in your having a significant suite of tests that cover the functionality of
your app. These tests run automatically whenever you make a change to your code. In prac-
tice, at least if you have good test coverage, this makes it difficult to break your application
and allows you to aggressively refactor and restructure to improve its design—ultimately

Read incoming
data collection

Write incoming
data collectionTransform data

Read incoming
data collection

Write processed
data collectionTransform data

Figure 14.10 When transforming data, write the output to a separate database table/collection. Don't
risk corrupting your source data!

Refactor the code
Write code that
passes the test

Make a failing test We start the cycle
with a failing test!

Figure 14.11 The test-driven development cycle

 369Reliability

14.5.4 Testing and automation

Testing is an essential factor in producing robust code although we’ve barely covered
it in this book—but that doesn’t mean it’s not important! As we worked through the
code in the various chapters, we tested manually as we went, and we didn’t do any
automated testing. But automated testing is important when you’re aiming to achieve
accurate and highly reliable software.

To make your testing worthwhile, you also need to do it in a testing environment
that emulates your production environment as closely as possible. Many broken pro-
duction deployments have been followed with the familiar excuse “but it worked on my
computer!” If your development workstation is different from your production envi-
ronment, which it probably is, then you should use either Vagrant or Docker to simu-
late your production machines. You might also consider using Docker to provision your
production environment.

Let’s discuss several popular types of testing that I believe work well for data pipe-
lines. All the types of testing mentioned here can be automated, so once you create a
test, it can thereafter run automatically as part of your continuous delivery pipeline (as
discussed in section 14.3).

TEST-DRIvEN DEvELOPMENT

Test-driven development (TDD) starts with building a failing test. We then write the
code to satisfy that test and make it pass. Last, we refactor to improve the code (shown
in figure 14.11). The TDD cycle results in reliable code that can evolve quickly. It’s
commonly known as the process of building granular unit tests to exercise your code
and verify that it functions correctly. A single unit test will test a single aspect of your
code. A collection of such tests is called a test suite.

Using TDD results in your having a significant suite of tests that cover the functionality of
your app. These tests run automatically whenever you make a change to your code. In prac-
tice, at least if you have good test coverage, this makes it difficult to break your application
and allows you to aggressively refactor and restructure to improve its design—ultimately

Read incoming
data collection

Write incoming
data collectionTransform data

Read incoming
data collection

Write processed
data collectionTransform data

Figure 14.10 When transforming data, write the output to a separate database table/collection. Don't
risk corrupting your source data!

Refactor the code
Write code that
passes the test

Make a failing test We start the cycle
with a failing test!

Figure 14.11 The test-driven development cycle

making it easier to slot in new features. This allows for rapid forward progress, but at the
same time you have a safety net to catch problems when things go wrong.

You might remember in chapter 1 where I said the biggest failure for many coders
is a failure to plan their work and all the problems that this causes later. Well, in my
opinion, TDD goes a long way to fixing this problem. You can’t do TDD unless you also
do planning. They go hand in hand—you must plan your tests before you can code a
system. TDD forces you to do planning and helps you foresee and mitigate risks that
might otherwise have troubled you in the future. This never works perfectly, but it can
go a long way to correcting the no-planning defect in our workflow.

Unfortunately, TDD doesn’t go so well with exploratory coding. That’s because
exploratory coding is the part of our process where we’re trying to understand the data
we have and also discover the requirements of our application. In this sense, explor-
atory coding feeds into our planning phase. To make it work, we must extract it from
the TDD phase. You can see the updated workflow in figure 14.12. We use exploratory
coding to understand our data and requirements before moving into TDD. After each
round of development, we deploy to production, and like any agile process, the cycle
repeats iteration after iteration until the app is complete.

I love the test-first philosophy, and I think it applies to much more than unit testing.
Proper practice of TDD gets you into the habit of thinking about how you’ll test your
system before you start coding. In my mind, that’s its biggest benefit. Once you make

Exploratory coding Test-driven
development Production

Exploratory coding should
usually come before test-driven
development.

Iteration is the key
to any agile process.

Figure 14.12 Successful TDD relies on good planning; exploratory coding builds understanding and
feeds into planning, so it will usually come before TDD.

370 CHAPTER 14 Getting to production

the switch to this mindset, it will have a positive payoff in more reliable and better tested
systems.

We can do TDD in JavaScript using any one of the popular testing frameworks that
are available. My personal choice is to use Mocha.

OUTPUT TESTING

This form of testing, which I like to call output testing, is simple and works well for
data-oriented applications. It’s rather simplistic: compare the output from previous
and current iterations of the code. Then ask the following questions: Did the output
change? Was the change expected? This will help you understand if changes to the
code have broken your data pipeline.

The output can be anything that makes sense for your application. In a data pipeline,
the output could be the textual version of the data that’s output from the pipeline. In
a different kind of app, the output might be text logging that describes the behavior of
the application. Figure 14.13 illustrates the process.

This testing process allows you to detect unexpected code breakages, and it gives you
the freedom to refactor and restructure your data pipeline with little fear of breaking it.

I often use version control software (for example, Git or Mercurial) to manage my
output testing. I store my output data in a separate repository. Then after a test run, I
use the version-control software to detect if the output changed and, if so, look at the
comparison to understand the difference.

This method of testing might seem to you like a brute-force approach. But it’s simple,
effective, and easy to work with.

INTEGRATION TESTING

Integration testing is a higher-level form of testing than unit testing. Typically, a single inte-
gration test will test multiple components or multiple aspects of your code. Integration
testing tends to cover more ground per test than unit testing and isn’t as tedious—you

Test process N Test output

Record the output
of the test process.

Compare output

Compare output of each
new test run to the output
of the previous test run.

Test process N-1

The latest
test run

The previous test run

Test output

Did the
output

change?

Was the
change

expected?

Yes We have
a problem

No

All is well

No Yes

Figure 14.13 Comparing the output of test runs, what I call output testing, is a great way to test code
changes to data pipelines.

 371Reliability

get more bang for the buck. For this reason, I believe that integration testing can be
more cost effective than unit testing.

Please don’t get me wrong, though; I do believe unit testing is effective and that it’s
the best way to produce bulletproof code. It’s also time consuming, and the investment
in time needs to be worthwhile. Consider using integration testing for full test coverage
and save unit testing for your most valuable code or for the code that needs to be the
most reliable.

Integration testing works best when you have a natural boundary in your system that
you can apply the tests to. I mention this because in our early warning system we have an
appropriate system boundary. Our REST API is delivered through an HTTP interface,
and integration testing happens to work fantastically well with HTTP.

We can use any of the JavaScript testing frameworks to do automated integration
testing. Figure 14.14 indicates how Mocha is applied to test a REST API. In this instance,
we can start our web server for testing the way we did in chapter 11. Once the tests have
run their course, we evaluate the results, Mocha informs of the test pass/fail, and we
then stop the web server.

RECORD AND REPLAy

Another useful testing technique is what I like to call record and replay. This works well
with data pipelines, especially when you can decouple the pipeline stages to the extent
where the results of each stage can be recorded and then replayed to create an auto-
mated test for the next stage. This allows us to create a kind of unit testing for each
stage of our data pipeline. But if stage-by-stage testing isn’t feasible for you, then you
could still use record and replay to test your entire data pipeline.

We already did this in a fashion. Think back to chapter 12 where we took prere-
corded air pollution data (our test data) and fed it to our system. We used precanned
data so that we had a convenient way to develop and evolve our system, but we might
also use this recorded data to create an automated test for the system.

I’ve seen the replay technique used in the games industry, where having a replay
feature is often important to game play. I’ve also seen this technique used effectively in

Node.js

Web server

Your REST API
Mocha

(testing framework)

Execute test.

Check for
expected result.

Figure 14.14 HTTP REST APIs can easily be tested using standard JavaScript testing frameworks such
as Mocha.

372 CHAPTER 14 Getting to production

client/server-type applications where one side of that equation can be recorded and
then simulated by replaying the recording to the other side.

LOAD TESTING

Load testing is a different form of testing that we can apply to our web server or REST
API. This is the process of applying or simulating load on the system to determine how
much it can handle. Figure 14.15 indicates how we might send a stream of requests to
our server to test its capacity.

Online services exist that we can use for load testing, or we might roll our own script
that’s a custom fit for our app. Either way, we can now optimize our system so that it can
handle more load. Without any performance testing like this, we have no way of know-
ing if our optimization helps the situation or whether it makes it worse.

Load testing is similar to stress testing, but the difference is subtle. In load testing, we
seek to test that the system can handle the load that we intended, but with stress testing,
we’re actively trying to push the system to its breaking point to understand where that
point is.

SOAK TESTING

The last form of testing to mention is soak testing. This is a long-running test to deter-
mine if your system is capable of running for its intended system longevity. For exam-
ple, earlier we decided that our system longevity would be one month to coincide with
our continuous delivery schedule. Our system must survive in the wild and under load
for at least one month.

To believe that our app can survive this long, we can simulate its operation under
load for this amount of time. This is what we call soak testing. During testing, you need
to collect metrics from the app. For example, metrics include measuring its memory
usage and response time over the duration of the test. Now use your data analysis and
visualization skills to understand what this data is telling you. Can the system go the dis-
tance? Is its performance stable over time? If not, then you may need to take corrective
measures.

14.5.5 Handling unexpected errors

Errors happen. Software fails. If we planned effectively, we already have a good under-
standing of the anticipated ways that our data pipeline will fail. For example, when
reading data from sensors, eventually they’re going to give us faulty data. Or when we

Web server / REST APIRequest

Send huge numbers of requests
to your web server or REST API.

Request

How much can it handle
before it fails over?

RequestRequest

Figure 14.15 Load test your server to see how much traffic and workload it can handle.

 373Reliability

have humans doing data entry, the data will contain occasional errors. These are risks
that we can easily anticipate, plan for, and mitigate in the design of our software.

What happens when errors occur that we didn’t expect? How will our app deal with
it? Well, we can’t anticipate every problem that might occur in production. This is espe-
cially so when we’re building software in a new domain or a domain that’s unique. How-
ever, we can plan for our app to handle unexpected situations gracefully and recover as
best it can.

Different people are going to tell you to deal with this problem in different ways.
My preferred approach is that an unexpected error shouldn’t cripple your application.
Instead, the problem should be reported and the app allowed to continue, as shown in
figure 14.16.

The easiest way to achieve this is to handle the Node.js uncaught exception event as
shown in the following listing. Here we can report the error (for example, to our mon-
itoring server from section 14.4) and then allow the program to attempt to continue.

Listing 14.1 Handling an uncaught exception in Node.js

process.on("uncaughtException", (err) => {
 // ... Report the error ...
});

Certain people advocate for not handling uncaught exceptions. They say that we
should let the program crash and restart; then we should monitor for crashes and
correct these crashes as they’re found. I think this can be a valid approach at times,

Data pipeline

Report error
to database

Unexpected
error

Incoming data ???

Data pipeline Unexpected
error

Incoming data Unhandled
error handler

Figure 14.16 Unexpected errors shouldn't cripple your app. Make sure it can handle them as best it can
and continue.

374 CHAPTER 14 Getting to production

depending on the situation at hand, but in the context of a data pipeline, I find it
rather disturbing.

If you let your program be terminated, what happens to asynchronous operations
that are in progress? They will be aborted, and this may result in data loss (refer to the
first rule of data wrangling—“don’t lose your data”—from section 14.5.3). I prefer to
explicitly handle unhandled exceptions, report the error to an error tracking system,
and then let our system recover as best it can. We still have visibility over problems that
occur, and I believe we’re now at less of a risk of data loss.

Similarly, we should also handle unhandled rejected promises, as shown in list-
ing 14.2. This is a slightly different scenario. Regardless of how you want to deal with
uncaught exceptions, you should always set up a handler for unhandled promise rejec-
tion. If you don’t do this, you risk unhandled rejections going into production, where
you’ll have no idea that you have missed a catch somewhere (you can tell when this
happens in development by reading the Node.js console).

Listing 14.2 Handing an unhandled promise rejection in Node.js

process.on("unhandledRejection", (reason, promise) => {
 // ... Report the error ...
});

Even if you could tell me that you always put a catch on the end of your promise chains
(you never forget that, right?), can you also tell me that you never have an error in your
catch callback? All it takes is one exception in your final catch handler, and you now
have an unhandled promise rejection that can go unnoticed into production. That’s
what makes this such an insidious problem.

Errors do happen, and your data pipeline shouldn’t cease operation because of
them. Also, don’t forget to test your uncaught exception handlers. Like all other code,
this code needs to be tested; otherwise, you can’t have confidence that your system can
cope with these worst-case scenarios.

14.5.6 Designing for process restart

For any long-running and expensive process—for example, that database copy that I
mentioned way back in chapter 1—you should design the process so that it can handle
being interrupted and resumed.

You never know when something is going to interrupt your code. It might be a bug
that manifests or a network outage. Someone might trip over a cable and turn off your
workstation. To avoid wasting time, make sure the process can restart from the point (or
nearby) where it was interrupted. See figure 14.17 to understand how this might work.

The long-running process should commit its result periodically and record its prog-
ress somehow, for example, to your database. If the process needs to restart, it must
then check the database and determine where to resume its work.

 375Security

14.5.7 Dealing with an ever-growing database

Any long-running application with a growing database will eventually run out of mem-
ory or disk space. We must decide how to deal with this before it becomes a problem.
We can deal with it using a combination of the following strategies:

¡	Purge old data. We can periodically purge data, but only if old data is no longer
relevant; otherwise, this is a violation of our rule “don’t lose your data.”

¡	Archive old data. If we do need to retain old data, then we must periodically
archive it to a low-cost storage solution. Be careful with the code that archives
your data. A problem here means you’ll lose data.

¡	Purge or archive and summarize. Periodically purge or archive old data but
aggregate it and retain a summary of pertinent details of the old data.

What happens if we run out of space before the periodic purge or archive kicks in?
If this is a danger, then we need to monitor the situation through metrics (section
14.4) and either be automatically alerted before the situation becomes dire or have the
purge or archive process activate automatically as necessary.

14.6 Security
Security will be more or less of an issue for you depending on how valuable and/or sen-
sitive your data and systems are. The data in our early warning system isn’t sensitive per
se, but we still don’t want anyone to tamper with it and hide an emergency or trigger a
false alarm. Possibly more important is the need to secure access to the system so that it
can’t be disrupted in any way.

Lengthy
transformation

process

Unexpected
interruption

Big input data Restart the
long process

Resume the long process
from the last valid point.

Record the process so that we
can resume should the long
process be interrupted.

Record
progress in
database

Figure 14.17 Design long processes to restart and resume in case of unexpected interruption.

376 CHAPTER 14 Getting to production

We can’t hope to cope with all possible security issues, but we can prepare as well as
possible by taking a layered approach. Like a castle that has both walls and a moat, mul-
tiple layers can make our system more secure.

14.6.1 Authentication and authorization

Our first layer of security is to ensure that whoever accesses our data and system is
someone we’ve allowed to do so. Through authentication, we confirm that people are
who they say they are. With authorization, we’re checking that a person is allowed to
access a certain system or database.

Authentication usually takes the form of validating a user’s password before that user
can use a system. Because an HTTP service is stateless, we must somehow remember (at
least for a period of time) the user’s security credentials. A session stored in the server
or database remembers such details. On the client side, the user is identified by a cookie
from the browser; the server then associates the cookie with the session and can remem-
ber the authenticated user. This scenario is shown in figure 14.18.

When working under Node.js, we can use the de facto standard Passport library to
manage our authentication.

We might implement authorization by recording some extra data in our database
against each user; this extra data would record the user’s level of privilege in our system.
For example, they might be marked as an ordinary user or an admin user or as a level
of privilege in between. We can then read the user’s privilege level from the database
as necessary to know if we should allow or deny access to sensitive server-side data or
operations.

14.6.2 Privacy and confidentiality

To mitigate the risk of a third-party intercepting and snooping on our data, we could
encrypt it at all points. This isn’t a concern for our early warning system where the
data itself isn’t so secret, but in another more secure system, you might want to con-
sider using the built-in Node.js Crypto module to encrypt your sensitive data. You
might want to use HTTPs to encrypt communications between your client and server.

Browser

Cookie

Server

User session

The user’s cookie
identifies them
to the server.

The server records
the user’s session
and associates it
with the cookie.

Figure 14.18 A cookie identifies a user to the server; the server remembers the user's authentication
in a session.

 377Security

Encryption may even be supported by your database, which is something to look into
for that ultimate level of data protection.

If you’re managing data about individual users, then you should consider anonymiz-
ing the stored data. Scrub each record clean of any fields that identify it with a particular
individual, so if your database is somehow lost, the sensitive data cannot be connected
with anyone in particular. This helps reduce your privacy concerns.

Of more interest in our current example project is securing the system that manages
and stores our data. In particular, our database should be on a private network and
behind a firewall so that it isn’t directly accessible by the outside world, as indicated in
figure 14.19.

If we had sensitive business logic and/or significant intellectual property to protect,
we might also take this a step further and divide our server into public and private com-
ponents, then move the private server behind the firewall alongside the database, as
shown in figure 14.20.

As an example, imagine that you have a secret algorithm for analyzing your data to
produce the daily report for the early warning system. The output of the report isn’t so
much secret, only the formula used to interpret the data, and you consider this to be
valuable intellectual property. You could move the algorithm that produces the report
behind the firewall, where it will be less vulnerable to external intrusion.

This kind of compartmentalization of your system and isolation of the most sensi-
tive parts of it is another example of creating multiple layers of security. To breach the
most sensitive parts of the system, a would-be attacker must penetrate the security at
multiple levels.

No doubt you have already heard this, but it’s also important that you keep your
server operating system and software updated to stay on top of the latest known security
vulnerabilities. It’s important for you to understand that your whole system is only as
secure as its weakest link.

Private network

DatabaseServerClient

Firewall
The client can only access
the server and has no direct
access to the database.

Figure 14.19 Our database is hidden behind a firewall on a private network. It can't be accessed from
the outside world and is more secure.

378 CHAPTER 14 Getting to production

14.6.3 Secret configuration

One last point to note on security is that you need a secure way to store your applica-
tion’s secrets. Recall in chapter 12 the file that we created to store the configuration
details of our application—for example, storing the login details to your email server.

This approach encouraged you to store your configuration details in version control,
but that’s the least secure way of managing sensitive configuration. We did it that way
purely for simplicity, but in a production system, we need to consider the security impli-
cations of this. For example, in this case we probably don’t want granting access to the
source code repository to also grant access to the email server.

The way we should securely deal with this problem in production depends on the
cloud provider that we go with, but we should use the secure storage or vault provided
(or one by a trusted third-party) because rolling your own secure storage for secrets is
fraught with danger.

14.7 Scaling
What do we do when we get to production and find out our application isn’t handling
the work load that it needs to? How can we increase the application’s capacity? We
need to be able to scale our application.

As with any of the topics discussed in this chapter, any level of thought we can put
into this while planning is going to save us much pain later on.

14.7.1 Measurement before optimization

Before we can understand and improve the performance of our system, we must mea-
sure it. We have many different metrics to choose from: data throughput (for example,
bytes per second), server response time (in milliseconds), or the number of concur-
rent users that can be serviced by the app.

The main point is that, like any optimization process, we can’t hope to improve per-
formance until we can measure it. Once we can measure performance, we can now con-
duct experiments and show categorically if our optimization efforts have yielded results.

Private network

DatabasePublic serverClient

Firewall

The client can only access the public
server; it has no direct access to the
private server or the database.

Private server

We have added a private server that
is not accessible from the outside
world. This is a good home for code
that represents sensitive business
logic or valuable intellectual property.

Figure 14.20 Divide our server into public and private components; then put the private server behind
the firewall. We now have a more secure home for sensitive operations and intellectual property.

 379Scaling

We can evaluate a system’s performance by capturing, recording, and analyzing
appropriate system metrics. Your data analysis skills from chapter 9 will come in handy
here for determining the trend and finding patterns in your metrics. With a system in
place to measure performance, you can now think about scaling to increase your app’s
performance.

14.7.2 Vertical scaling

The first method of scaling we should consider is called vertical scaling. This is the eas-
iest method of scaling and generally doesn’t require changes to your app. As indicated
in figure 14.21, we increase the size of the PC that the app is running on. This is diffi-
cult to do if we’re running it on physical hardware but is trivial when we’re running on
a virtual machine (VM) with any of the major cloud providers.

All we’re doing here is scaling up the size of the PC used to run our app. We’ve
increased the CPU, memory, and disk and hopefully increased the capacity of our app
at the same time. There’s a limit to this, though, and eventually we’ll exhaust the capac-
ity of the server. At this point, we must now turn to horizontal scaling.

14.7.3 Horizontal scaling

The second option we have for scaling is called horizontal scaling. The simplest ver-
sion of this is when we replicate our app to multiple virtual machines (VMs) running in
the cloud and use a load balancer to distribute the load between the various instances
of our app, as shown in figure 14.22.

This form of scaling is more complicated to manage and configure than vertical scal-
ing, but it can be more cost effective, especially because the scaling can be automatic
where new instances are created on demand to expand capacity and meet the workload.

This approach is more difficult when the application instances must share a
resource. For example, all instances might share the same database, and that has
the potential to be a performance bottleneck. Similar to what we talked about with

Small VM Big VM

Your server

Your server

Figure 14.21 You can scale your server up by increasing the size of the virtual machine that hosts it.

380 CHAPTER 14 Getting to production

security, your application can have performance only as good as its weakest link—
what we call the bottleneck. Fortunately, most modern databases such as MongoDB
can be scaled in the same way and can be distributed over multiple machines.

Horizontal scaling also gives another benefit. It gives us redundancy and another
way to handle application failures. If the app fails, the load balancer can automatically
redistribute traffic away from the broken instance to be handled by other instances
while the failed server is fixed or rebooted.

I wouldn’t be surprised if you come away from this chapter feeling a little over-
whelmed. Getting to production is a difficult affair, and you have so much to consider.
But if you should take away one thing from this chapter, it’s not that production is com-
plicated (although it is), and it’s not that getting to production involves solving many
problems (although it does).

If you remember one thing, please remember this: the problems that come with pro-
duction are good problems to have. That’s because these are the problems that come
with success. If your app isn’t successful, you won’t have these problems.

Now you have something of a handle on many of the facets of bringing your data
pipeline to production. This is indeed a big and complex area, and when you come to
production, you’ll surely encounter your own unique problems. I could write a whole
book on this subject, but hopefully you have enough for now to start on your own road
to production and the completion of your product, whatever that may be. Good luck,
my friend. Please enjoy the journey and always be learning new things.

Summary

¡	You learned that there’s a whole new world of problems to deal with bringing
your data pipeline to product.

¡	We discussed what deployment might look like for your app using the continu-
ous delivery technique.

¡	We described how being able to roll back a broken deployment is an essential
feature of any deployment script.

VM

Your server

VM

Your server

VM

Your server

VM

Your server

Load balancer

Figure 14.22 Horizontal scaling distributes the load across multiple instances of your app.

 381Summary

¡	We explored the structure of a monitoring system that would allow us to check
that our app is functioning well with good performance.

¡	We learned various ways to improve the reliability of our code for increased
system longevity, better protection of our data, and graceful handling of unex-
pected errors.

¡	You learned that good security is a multilayered approach, and a potential
attacker must breach numerous layers to compromise the security of your
application.

¡	Finally, you gained an understanding of how the capacity of an application can
be increased through vertical and horizontal scaling.

383

appendix A
JavaScript cheat sheet

Updates
You can find an updated and evolving version of this cheat sheet online at
http://jscheatsheet.the-data-wrangler.com.

Logging
Logging is your best friend. It’s the easiest way to inspect and check your data:

console.log("Your logging here"); // General text logging for debugging.

const arr = [1, 2, 3]; // Your data.
console.log(arr);

console.trace(); // Show callstack for current function.

Objects

let o = { A: 1, B: 2 }; // Your data

let v1 = o["A"]; // Extract field value
let v2 = o.A;

o["A"] = 3; // Set field value
o.A = 3;

delete o["A"]; // Delete a field value
delete o.A;

let c = Object.assign({}, o); // Clone an object
let ovr = { /* ... */ };
let c = Object.assign({}, o, ovr); // Clone and override fields

384 APPENDIx A JavaScript cheat sheet

Arrays

let a = [1, 2, 3, 4, 5, 6]; // Your data
a.forEach(element => {
 // Visit each element in the array.
});

let v = a[5]; // Get value at index
a[12] = v; // Set value at index

a.push("new item"); // Add to end of array

let last = a.pop(); // Remove last element

a.unshift("new item"); // Add to start of array

let first = a.shift(); // Remove first element

let a1 = [1, 2, 3];
let a2 = [4, 5, 6];
let a = a1.concat(a2); // Concatenate arrays

let e = a.slice(0, 3); // Extract first 3 elements

let e = a.slice(5, 11); // Extract elements 5 to 10

let e = a.slice(-4, -1); // Negative indices relative to end
 // of the array

let e = a.slice(-3); // Extract last three elements

let c = a.slice(); // Clone array

let i = a.indexOf(3); // Find index of item in array
if (i >= 0) {
 let v = a[i]; // The value exists, extract it
}

a.sort(); // Ascending alphabetical sort

a.sort((a, b) => a - b); // Customize sort with a user-defined
 // function

let f = a.filter(v => predicate(v)); // Filter array

let t = a.map(v => transform(v)); // Transform array

let t = a.reduce((a, b) => a + b, 0) // Aggregate an array

 385 JavaScript cheat sheet

Regular expressions

let re = /search pattern/; // Define regular expression
let re = new RegExp("search pattern");

let re = /case insensitive/ig // Case insensitive + global

let source = "your source data";
let match = re.exec(source); // Find first match.

while ((match = re.exec(source)) !== null) {
 // Find all matches.
}

Read and write text files (Node.js, synchronous)

const fs = require(‘fs’);

const text = “My text data”; // Data to write.

fs.writeFileSync(“my-file.txt”, text); // Write the to file.

const loaded =

 fs.readFileSync(“my-file.txt”, “utf8”); // Read from file.

console.log(loaded);

Read and write JSON files (Node.js, synchronous)

const fs = require(‘fs’);

const data = [

 { item: “1” },

 { item: “2” },

 { item: “3” }

];

const json = JSON.stringify(data); // Serialize to JSON

fs.writeFileSync(“my-file.json”, json); // Write to file.

const loaded = fs.readFileSync(“my-file.json”, “utf8”); // Read file.

const deserialized = JSON.parse(loaded); // Deserialize JSON.

console.log(deserialized);

386 APPENDIx A JavaScript cheat sheet

Read and write CSV files (Node.js, synchronous)

const fs = require(‘fs’);

const Papa = require(‘papaparse’);

const data = [

 { item: “1”, val: 100 },

 { item: “2”, val: 200 },

 { item: “3”, val: 300 }

];

const csv = Papa.unparse(data); // Serialize to CSV.

fs.writeFileSync(“my-file.csv”, csv); // Write to file.

const loaded = fs.readFileSync(“my-file.csv”, “utf8”); // Read file.

const options = { dynamicTyping: true, header: true };

const deserialized = Papa.parse(loaded, options); // Deserialize CSV.

console.log(deserialized.data);

let source = "your source data";

let match = re.exec(source); // Find first match.

387

appendix B
Data-Forge cheat sheet

Updates
You can find an updated and evolving version of this cheat sheet online at
http://dfcheatsheet.the-data-wrangler.com.

Loading data into a DataFrame
You can load data from memory into a Data-Forge DataFrame:

let data = [/* ... your data ... */];
let df = new dataForge.DataFrame(data);
console.log(df.toString());

Loading CSV files
Load data from a CSV file into a DataFrame:

let df = dataForge
 .readFileSync("./example.csv", { dynamicTyping: true })
 .parseCSV();
console.log(df.head(5).toString()); // Preview first 5 rows

Loading JSON files
Also load a JSON file into a DataFrame:

let df = dataForge
 .readFileSync("./example.json")
 .parseJSON();

console.log(df.tail(5).toString()); // Preview last 5 rows.

388 APPENDIx B Data-Forge cheat sheet

Data transformation
Transform or rewrite your data set using the select function:

df = df.select(row => transformRow(row));

Data filtering
Filter data with the where function:

df = df.where(row => predicate(row));

Removing a column
Remove a column of data with the dropSeries function:

df = df.dropSeries("ColumnToRemove");

Saving CSV files
Save your modified data to a CSV file:

df.asCSV().writeFileSync("./transformed.csv");

Saving JSON files
Save your modified data to a JSON file:

df.asJSON().writeFileSync("./transformed.json");

389

appendix C
Getting started

with Vagrant

Vagrant is an open source software product for building and running virtual
machines. You can use it to simulate a production environment or test your code on
various operating systems. It’s also a great way to try out new software in an environ-
ment that’s isolated from your development workstation.

Updates
You can find an updated and evolving version of this getting started guide online at
http://vagrant-getting-started.the-data-wrangler.com.

Installing VirtualBox
First, you must install VirtualBox. This is the software that runs the virtual machine
within your regular computer (the host). You can download it from the VirtualBox
download page at https://www.virtualbox.org/wiki/Downloads.

Download and install the package that fits your host operating system. Please fol-
low the instructions on the VirtualBox web page.

Installing Vagrant
Now you should install Vagrant. This is a scripting layer on top of VirtualBox that
allows you to manage the setup of your virtual machine through code (Ruby code).
You can download it from the Vagrant downloads page at https://www.vagrantup
.com/downloads.html.

Download and install the package that fits your host operating system. Please fol-
low the instructions on the Vagrant web page.

https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html

390 APPENDIx C Getting started with Vagrant

Creating a virtual machine
With VirtualBox and Vagrant installed, you’re now ready to create a virtual machine.
First, you must decide which operating system to use. If you already have a production
system in place, choose that same operating system. If not, choose a long-term support
(LTS) version that will be supported for a long time. You can search for operating sys-
tems on this web page at https://app.vagrantup.com/boxes/search.

I’m a fan of Ubuntu Linux, so for this example, we’ll use Ubuntu 18.04 LTS (Bionic
Beaver). The Vagrant name for the box that we’ll install is ubuntu/bionic64.

Before creating the Vagrant box, open a command line and create a directory in
which to store it. Change to that directory; then run the vagrant init command as
follows:

vagrant init ubuntu/bionic64

This creates a barebones Vagrantfile in the current directory. Edit this file to change the
configuration and setup for your virtual machine.

Now launch your virtual machine:

vagrant up

Make sure you run this command in the same directory that contains the Vagrantfile.
This can take time, especially if you don’t already have the image for the operating

system locally cached. Please give it plenty of time to complete. Once it has finished,
you’ll have a fresh Ubuntu virtual machine to work with.

Installing software on your virtual machine
With your virtual machine running, you’ll need to install software on it. You can shell
into the machine with the following command:

vagrant ssh

To update your operating system and install software on the virtual machine, you’ll use
commands that are specific to that particular operating system. We’re using Ubuntu in
this example, so the next three commands are for Ubuntu. If you’ve chosen a different
operating system, you’ll need to use commands appropriate for it.

The first thing to do with your new virtual machine is to update the operating system.
You can do this in Ubuntu with this command:

sudo apt-get update

You can now install whatever software you need. For example, let’s install Git so we can
clone our code:

sudo apt-get install git

Much software can be installed on Ubuntu following the same pattern. Unfortunately,
it’s slightly more complicated to get the latest version of Node.js that isn’t yet supported
by the package-manager. For that, it’s best to follow the instructions in the Node.js doc-
umentation at https://nodejs.org/en/download/package-manager/.

https://app.vagrantup.com/boxes/search
https://nodejs.org/en/download/package-manager/

 391Getting started with Vagrant

For Ubuntu, it says we install Node.js version 8 using the following commands:

curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -
sudo apt-get install -y nodejs

That’s more complicated than the previous example, but now we have a recent ver-
sion of Node.js installed. You can also install Node.js manually (for example, not using
package-manager) by following the instructions for your operating system on the
Node.js downloads page at https://nodejs.org/en/download/.

Running code on your virtual machine
With Node.js installed on your virtual machine, you’re now ready to run code. This is
easily achieved by, on your development workstation, copying your code to the same
directory as your Vagrantfile. Files placed in this directory are automatically made
available within the virtual machine under this directory:

/vagrant

If you have index.js next to your Vagrantfile, when you’re shelled into the virtual
machine, you can run it like this:

cd /vagrant
node index.js

It’s common practice for developers to commit their Vagrantfile to version control.
That way, new developers (or you on a different workstation) only have to clone the
repository and then run vagrant up to build the development environment.

You might even go as far as putting custom setup and code in the Vagrantfile to
install dependencies and launch your application or server within the virtual machine.
You might recall that in several chapters in the book I provided Vagrantfiles that boot
a virtual machine, install a database, and then populate it with data, creating a kind of
instant database. By the time the virtual machine has finished booting, you have a system
that’s ready to work with.

Turning off your virtual machine
After you’ve completely finished with your virtual machine, you can destroy it with the
following command:

vagrant destroy

If you’re only temporarily finished with the machine and want to reuse it again later,
suspend it with the following command:

vagrant suspend

A suspended machine can be resumed at any time by running vagrant resume.
Please remember to destroy or suspend your virtual machines when you aren’t using

them; otherwise, they’ll unnecessarily consume your valuable system resources.

https://nodejs.org/en/download/

393

index

Symbols
$gte operator 205

A
aggregating data 149, 159–161
algorithms, optimizing 210
all function 53
analyzing data

JavaScript for 6–7
overview of 19–20

animations, launch 353–356
append function 342
apt-get, Linux 31
arithmetic mean 221
arrays 384
asCSV function 134
assert function 127
assumption checking script 17
async-await-parallel model 212
asynchronous coding 8, 45–58

error handling 51–52
loading multiple files 49–50
loading single file 46–48
with async keyword 57–58
with await keyword 57–58
with promises 52–54

all 53
catch 53–54
then 52–53

wrapping asynchronous
operations in
promises 55–56

asynchronous operations
55–56, 178

async keyword 57–58
attr function 340
authentication 376
authorization 376
averages

overview of 221
rolling 233–235

await keyword 57–58

B
background colors 285–287
bad data

identifying 147–148
responses to 148–149
sources of 145–146
techniques for fixing 149

bar charts 266
bell curve 228
bfj (Big-Friendly JSON) 169
bfj interpreter/compiler,

installing 185
big data, techniques for working

with 193–195
cutting data back 193
efficient data

representation 194
preparing data offline

194–195
starting small 193

binary data 107–114
converting JSON to

BSON 113
deserializing BSON files 114
packing custom binary

files 111–113
replacing JSON with

BSON 113
unpacking custom binary

files 108–109
binary files 66
binary search 193
bisection method 193
bleeding-edge version 31
body-parser middleware 307
broken data 148
browser-based visualization 278
browsers. See also headless

browsers
exploratory coding in

135–141
BSON format

converting JSON to 113
deserializing files 114
replacing JSON with 113

buckets 227

C
C3 visualization library

bar charts with 266
horizontal bar charts

with 267
line charts with 251–253

394 index

pie charts with 267–269
scatter plot charts with 270
stacked bar charts with

269–270
callback-based functions 55
callback hell 50, 52
callback order 52
callbacks 47
canarying 148
captureElementSelector

function 289
captureReport function 292
captureWebPage function

286, 289
capturing

data 312–314
pages 293–294
visualizations

overview of 287–289
with Nightmare 279–280

catch 53–54
CDR (core data

representation) 61–66
incremental 173–174
power and flexibility of

65–66
chart definition 253
charts

choosing type of 249–250
feeding with data 289–292
improving appearance

of 271–272
with C3 266–270

bar charts 266
horizontal bar charts 267
line charts 251–253
pie charts 267–269
scatter plot charts 270
stacked bar charts

269–270
Cheerio package 105–106
circle element 335–336
cleaning data 18–19

filtering columns of
data 158–159

filtering rows of data
155–158

pipelines and 146–147
rewriting bad rows 150–155
why needed 145

cloning code 28
code libraries

creating 38–45
adding REST API 43–45
creating web servers 40
installing Express 40
serving static data files 42
serving static files 41–42

general patterns for 39–40
coefficients of

correlations 245–246
columns

filtering 158–159
removing in Data-Forge 388

combining data from different
files using globby
161–163

command-line applications,
creating 36–38

command-line parameters 196
commands, executing in

parallel 212–215
comma-separated values. See CSV

(comma-separated
values)

complete callback 181
concat function 161
confidentiality 376–377
configuring

refactoring for 310–312
secrets 378

connections to databases,
opening 198–199

console.log function 124
control groups 229
converting JSON to BSON 113
convertTemperatureStream

function 179
cookies 376
core data representation.

See CDR (core data
representation)

correlations
computing coefficients

of 245–246

detecting with scatter
plots 243

determining strength
of 244–245

types of 243–244
cron library 318
crowd-sourcing 148
CSV (comma-separated

values) 183–184
exporting data to 89
loading files in Data-

Forge 387
outputting new files 134–135
parsing data from REST

APIs 76–78
parsing static files 254–256
parsing text data 74–78
parsing text files 74–76
saving files in Data-Forge 388
transforming huge files

178–184
installing Papa Parse 179
opening readable CSV

streams 179–181
opening writable CSV

streams 181–183

D
D3 (data-driven documents)

library
data pipeline 333
overview of 332–333
visualizations with 329–356

adding interactivity
352–353

adding launch
animations 353–356

building 339–356
color-coding 351–352
data join 346–349
element state 339–340
entry selection 346–349
loading data files 349–351
manually adding elements

to visualizations
342–344

scaling to fit 344–345

 395index

selecting elements
340–342

setting 334–335
data. See also binary data; See

also live data
acquiring 13–15
aggregating rows of 159–161
analyzing 7–19
bad data

identifying 147–148
responses to 148–149

big data, techniques for
193–195

cutting data back 193
efficient data

representation 194
preparing data

offline 194–195
start small 193

capturing 312–314
cleaning 18–19, 150–159,

143–167
pipelines and 146–147
rewriting bad rows

150–155
why needed 145

combining from different
files with globby
161–163

discarding with
projection 207

efficient representation
of 194

exploring 125–127
exporting 85–95

to CSV (comma-separated
values) 89

to databases 90
to JSON text files 87–88
to MongoDB 91
to MySQL 92–95
to text files 85–87

filtering columns of 158–159
filtering in Data-Forge 388
filtering rows of 155–158

general pattern for 156
using Data-Forge to filter

rows 157–158
grouping 222–227

HTTP POST for infrequent
submissions of 305–308

huge files of 168–190
importing 66–84

by scraping web
pages 104–106

from databases 78
from MongoDB 78–82
from MySQL 82–84
from REST APIs 69–70
from text files 66–69,

101–104
parsing CSV text data

74–78
parsing JSON text data 70

incremental processing
172–173

loading into DataFrame 387
preparing 18–19, 143–167

offline 194–195
why needed 145

problems with 148
processing in parallel

210–215
executing separate

commands in
parallel 212–215

forking new processes 215
retrieving 13–15, 59–98
rewriting using Data-

Forge 153–155
sockets for high-frequency

submissions of 308–310
sorting large sets of 208–209
sources of broken 145–146
splitting into separate

files 163–165
storing 13–15, 59–98
summarizing 220–227

average 221
standard deviation

221–222
sum 220

techniques for fixing 149
throughput of 210–215

optimizing algorithms 210
optimizing code 210
processing data in

parallel 210–215

transforming
general patterns for 153
in Data-Forge 388

wrangling 2–10
JavaScript for 5
overview of 2–3

data aggregation 209
data analysis 7
database cursors 201–202
databases

exporting data to 90
importing data from 78
large 196–209

creating indexes 205
discarding data with

projection 207
filtering using

queries 205–206
incremental processing with

database cursors
201–202

incremental processing with
data windows 202–204

moving large files to
databases 199–201

opening connections to
databases 198–199

setting up 197–198
sorting large data sets

208–209
reliability of 375

data conversions 95
data directory 145
data-driven documents library.

See D3 (data-driven
documents) library

Data-Forge toolkit 128–130,
387–388

building data processing
pipelines with 165–167

data filtering 388
data transformation 388
filtering columns of data

with 159
filtering rows of data

with 157–158
loading CSV files 387
loading data into

DataFrame 387

396 index

loading JSON files 387
removing columns 388
rewriting broken data

with 153–155
saving CSV files 388
saving JSON files 388
updating 387

DataFrame data structure 387
data joins 346–349
data points, standardizing 241
data subdirectory 258
debugging 294–295, 364
defensive programming 366
delete operator 158
dependencies

installing
npm dependencies 35–36
overview of 29

tracking 30
deploying 361–363
deserialize function 114
deserializing BSON files 114
detectTypes function 129
detectValues function 230
devtools console, Chrome 138
difference function 240
discarding data with

projection 207
document ready callbacks 253
dropSeries function 159, 388
dynamicTyping option 76, 129

E
Electron framework, Nightmare

and 278–279
elements, in D3

adding new 342
element state 339–340
manually adding to

visualizations 342–344
selecting 340–342

multiple elements 341
single elements 340–341

emit function 316
empty selection 346
endArray event 187

enter function 347
entry selection 346–349
error callback 181
error handling 51, 372–374
event-based architecture

314–316
EventEmitter class 316
event handling, code

restructuring for
316–321

automatically generating daily
reports 318–321

triggering SMS alerts 317
events

handling generate report
events 319

raising generate daily report
events 318–319

Excel software, prototyping
with 120–122

exploratory coding 15–18,
115–142

feedback loops 117–118
in browsers 135–141
iterations 117–118
overview of 11
prototyping with Excel

120–122
reduced data samples 120
with Node.js 122–135

exploring data 125–127
outputting new CSV

files 134–135
using Data-Forge 128–130
using Nodemon 123–125

export code 65
exportCsvFile function 89, 144
exporting data 85–95

to CSV 89
to databases 90
to JSON text files 87–88
to MongoDB 91
to MySQL 92–95
to text files 85–87

exportJsonFile function 87
exportToMongoDB

function 91

exportToMySql function 94
express library 307

F
fast feedback loop 116
feedback loops 11, 117–118
file.read function 71
file.write function 89
fill attribute 337
filter function 155
filtering

columns of data 158–159
data in Data-Forge 388
rows of data 155–158

general pattern for 156
using Data-Forge 157–158

with queries 205–206
filterRow function 155
find function 202, 207
firstOutput variable 183
flexibility 62
forEach function 210
FORECAST function,

Excel 120
fork function 215
forking new processes 215
frequency distributions

227–231
fs.readFile function 66, 87
fs.writeFile function 85

G
g element 339
generate-daily-report event 318
generateReport function 38,

43, 318
getColumnNames function 128
getCountries function 164
get function 43
getSeries function 130
g (global) parameter 123
globby function 144, 161–163
goto function 285
groupBy function 160, 224
group element 338–339
grouping data 222–227

 397index

H
head function 129
headless browsers

debugging code in 294–295
overview of 107, 276–277
web scraping 297–298

HeidiSQL 13
horizontal bar charts 267
horizontal scaling 379–380
HTTP POST for infrequent data

submissions 305–308

I
images, rendering web pages

to 284–285
importCsvFile function 85, 125,

144, 259
importCsvFromRestApi

function 76
importFromMySql function 83
importing data 66–84

by scraping web pages
104–106

from databases 78
from MongoDB 78–82
from MySQL 82–84
from REST APIs 69–70
from text files 66–69,

101–104
parsing CSV text data 74–78
parsing JSON text data 70

importJsonFromRestApi
function 73

inaccurate data 148
incoming-data event 314
indexes 205
inefficient data 148
insert function 91
insertMany function 199
installing

bfj 185
dependencies 29
Express 40
Node.js 29–32
npm dependencies 35–36

Papa Parse 179
software on virtual

machines 390–391
Vagrant 389
VirtualBox 389

integration testing 370–371
intellisense 6
interactivity, adding in D3

352–353
irrelevant data 148
iterations 117–118

J
JavaScript programming

language 383–385
arrays 384
for data analysis 6–7
for data wrangling 5
logging 383
navigating 7
objects 383
regular expressions 385
updating 383

join operation, SQL 161
JSON.parse function 71
JSON.stringify function 87, 189
JSON syntax

converting to BSON 113
exporting data to text

files 87–88
loading files in Data-

Forge 387
parsing data from REST

APIs 72–73
parsing text data 70
parsing text files 70–72
replacing with BSON 113
saving files in Data-Forge 388
transforming huge files

184–190
installing bfj 185
opening readable JSON

streams 185–187
opening writable JSON

streams 187–189
Jupyter Notebook 4

L
large files, loading 69, 110
libraries. See code libraries
limit function 202
linear regression 236–238
linearRegression function 237
line charts 250–265

adding data to 253–254
adding second Y axis

263–264
adding series 261–262
adding X axis 256–257
creating custom Node.js web

servers 258–261
parsing static CSV files

254–256
rendering 264–265
with C3 251–253

Linux servers 296–297
listen function 45
live data 299–327

code restructuring for event
handling 316–321

automatically generating
daily reports
318–321

triggering SMS alerts 317
data capture 312–314
event-based

architecture 314–316
live-streaming data 305–310

HTTP POST for
infrequent data
submissions 305–308

sockets for high-frequency
data submissions
308–310

live visualizations 322–327
processing 321–322
refactoring for

configuration 310–312
set up for development

of 304–305
live reload 305
live-server command 251
live-streaming data 305–310

398 index

HTTP POST for infrequent
data submissions
305–308

sockets for high-frequency
data submissions
308–310

live visualizations 322–327
load function, C3 325
load testing 372
logging JavaScript 383
longevity of systems 366
LTS (long-term support)

31, 390

M
map function 151, 154
master processes 210
max-old-space-size

parameter 196
maxProcesses function 213
measuring before

optimizing 378–379
missing data 148
modifying data 149
modular import 65
MongoDB

exporting data to 91
importing data from 78–82

monitoring 364–365
moving average. See rolling

averages
Murphy's Law 366
MySQL system

exporting data to 92–95
importing data from 82–84

N
Nightmare browser

advantages of using 278
capturing visualizations

with 279–280
Electron and 278–279
for server-side

visualizations 278–297
capturing full

visualizations 287–289
debugging code in headless

browsers 294–295

feeding charts with
data 289–292

multipage reports
292–294

on Linux servers 296–297
preparing visualizations for

rendering 280–282
rendering web pages to

images 284–285
setting background

colors 285–287
starting and stopping web

servers 283–284
starting web servers

282–283
Node.js environment

asynchronous coding 45–58
error handling 51–52
loading multiple files

49–50
loading single file 46–48
with async keyword 57–58
with await keyword 57–58
with promises 52–54
wrapping asynchronous

operations in
promises 55–56

checking version of 32
creating code libraries 38–45

adding REST API 43–45
creating web servers 40
general patterns for code

libraries 39–40
installing Express 40
serving static data files 42
serving static files 41–42

creating command-line
applications 36–38

creating projects 33–36
adding JavaScript files

34–35
finding useful packages 36
installing npm

dependencies 35–36
npm init 34

exploratory coding with
122–135

exploring data 125–127

outputting new CSV
files 134–135

using Data-Forge 128–130
using Nodemon 123–125

file streams 174–178
installing 29–32
limits of

incremental CDR 173–174
incremental data

processing 172–173
mixing and matching

streams 190
transforming huge CSV

files 178–184
transforming huge JSON

files 184–190
web servers 258–261

nodejs-mysql library 82, 92
Nodemailer library 321
Nodemon utility 118,

123–125, 305
node package manager

(npm) 7, 35–36, 60
node version manager

(NVM) 31
npm install command 34
npm (node package

manager) 7, 35–36, 60
Num records field 108
NVM (node version

manager) 31

O
object mode 181, 199
objects 383
openCsvInputStream

function 180, 199
openCsvOutputStream

function 182
openDatabase function 198
openJsonInputStream

function 185
openJsonOutputStream

function 187
optimizing

algorithms 210
code 210
measuring before 378–379

 399index

out-of-memory error 69, 110
output testing 8, 370

P
packages 36
packing binary files 111–113
pagination 204
Papa Parse 74, 179
papa.unparse function 89
parallel

executing separate commands
in 212–215

processing data in 210–215
parseFloats function 129, 161
parsing

CSV data from REST
APIs 76–78

CSV text data 74–78
CSV text files 74–76
JSON data from REST

APIs 72–73
JSON text data 70
JSON text files 70–72
static CSV files 254–256

Passport library 376
pdf function 293
PDF functions, calling

293–294
pie charts 267–269
pipelines

data cleanup and 146–147
for processing data 165–167
overview of 8–24

planning 10–13
plot function 139
precanned data 304, 371
predicate function 155
primitives, SVG 338
printOptions function 294
privacy 376–377
processBatch function 214
processData function 212
processes, forking 215
processing

data conventionally, limits
of 171

data in parallel 210–215
executing separate

commands in
parallel 212–215

forking new processes 215
incrementally 172–173

with database cursors
201–202

with data windows
202–204

live data 321–322
process restart 374
production

concerns with 359
overview of 22–24

programming defensively 366
projection, discarding data

with 207
promised-mongo library 79, 91
promises

asynchronous coding
with 52–54

all 53
catch 53–54
then 52–53

overview of 8, 178
wrapping asynchronous

operations in 55–56
prototyping

overview of 8, 15
with Excel 120–122

public subdirectory, Node.js
project 30, 41

push function 181

Q
queries, filtering with 205–206
query operators 205

R
radiusScale function 345
readDatabase function 204
read-eval-print loop (REPL) 32
readFile function 47
readFilePromise function 55
readFileSync function 46, 108
read function 68

readWindow function 204
record and replay testing

technique 371–372
reduced data samples 120
reduce function 162
redundant data 148
refactoring for

configuration 310–312
regular expressions 101,

103, 385
reject function 56
relationships 243–246

computing correlation
coefficients 245–246

detecting correlations with
scatter plots 243

determining strength of
correlations 244–245

types of correlations 243–244
reliability 366–375

data protection 367
defensive programming 366
designing for process

restart 374
handling unexpected

errors 372–374
of databases 375
system longevity 366
testing 368–372

integration testing
370–371

load testing 372
output testing 370
record and replay testing

technique 371–372
soak testing 372
TDD 368–370

removing data 149
renderBarChart function 275
rendering

charts 264–265
preparing visualizations

for 280–282
web pages to images 284–285

renderLineChart function 232,
275, 289

renderMonthlyBarChart
function 225

400 index

REPL (read-eval-print loop) 32
reports

generating automatically
318–321

handling generate report
events 319

raising generate daily report
events 318–319

multipage 292–294
calling PDF functions

293–294
capturing pages

293–294
restructuring pages

292–293
request-promise 306
require function 38
resolve function 56
REST (REpresentational State

Transfer) API
adding 43–45
importing data from 69–70
parsing CSV data from 76–78
parsing JSON data from

72–73
restructuring

code for event handling
316–321

automatically generating
daily reports 318–321

triggering SMS alerts 317
pages 292–293

rewriting
bad rows 150–155

general pattern for row
transformation 153

using Data-Forge to rewrite
broken data 153–155

broken data using Data-
Forge 153–155

Robomongo 16, 312
rollingAverage function 235
rolling averages 233–235
rollingStandardDeviation

function 236
rollingWindow function 128,

132, 233
routes 43

rows
filtering 155–158

general pattern for 156
using Data-Forge 157–158

rewriting 150–155
general pattern for row

transformation 153
using Data-Forge to rewrite

broken data 153–155
runSlave function 214

S
sampleCorrelation

function 245
scalable vector graphics. See SVG

format
scaleLinear function 344
scaling 378–380

horizontal scaling 379–380
in D3 344–345
measuring before

optimizing 378–379
vertical scaling 379

scatter plot charts
detecting correlations

with 243
with C3 270

screenshot function 285
secrets, configuring

overview of 378
web pages 297–298

identifying data to
scrape 104–105

to import data 104–106
with Cheerio 105–106

security 375–378
authentication 376
authorization 376
confidentiality 376–377
configuring secrets 378
privacy 376–377

selectAll function 341, 346
select function 154, 340, 388
sendEmail function 320
serialize function 113
series, adding to charts

261–262

servers. See web servers
server-side visualizations

274–298
headless browsers 298

overview of 276–277
web scraping 297–298

Nightmare for 278–297
advantages of using 278
capturing full

visualizations 287–289
capturing visualizations with

Nightmare 279–280
debugging code in headless

browsers 294–295
Electron and 278–279
feeding charts with

data 289–292
multipage reports

292–294
on Linux servers 296–297
preparing visualizations for

rendering 280–282
rendering web pages to

images 284–285
setting background

colors 285–287
starting and stopping web

servers 283–284
starting web servers

282–283
setInterval function 318, 354
setTimeout function 318
short circuit 53
side by side comparisons 239
skip function 202
slave processes 210
slice function 125
SMS alerts 317
soak testing 372
socket.emit function 325
sockets for high-frequency

data submissions
308–310

sort function 208
sorting large data sets

208–209
splitDataByCountry

function 164

 401index

splitting data
into separate files 163–165
overview of 149

stacked bar charts 269–270
stacking time series

operations 242
standard deviations

overview of 221–222
rolling 236

standardizing data points 241
standard scores 241
start function 284
static files, serving 42
statman-stopwatch library 210
streams

Node.js file streams 174–178
opening readable CSV

streams 179–181
opening readable JSON

streams 185–187
opening writable CSV

streams 181–183
opening writable JSON

streams 187–189
stress testing 372
strict mode 35
strong positive correlation 244
sum 220
summarizing data 220–227

average 221
standard deviation 221–222
sum 220

SVG format 335–339
circle element in 335–336
group element in 338–339
styling 337
text element in 337–338

T
tail function 129
tbody element 105
TDD (test-driven

development) 3,
368–370

td element 105
testing 368–372
text element 337–338

text files
CSV, parsing 74–76
exporting data to 85–87
importing data from 66–69,

101–104
JSON

exporting data to 87–88
parsing 70–72

then function 52–53
thrashing data 211
threads 47
throughput, of data 210–215

optimizing algorithms 210
optimizing code 210
processing data in

parallel 210–215
time series 231–242

comparing 239–241
measuring

differences 239–240
standardizing data points

for comparison 241
linear regression 236–238
rolling averages 233–235
rolling standard

deviation 236
stacking operations 242

toArray function 209
toolkit subdirectory 61, 219
toPairs function 139
toString function 129
tracking dependencies 30
transform attribute 338
Transform class 177
transformData function 152,

154, 157
transforming

CSV files 178–184
installing Papa Parse 179
opening readable CSV

streams 179–181
opening writable CSV

streams 181–183
data

general patterns for 153
in Data-Forge 388

JSON files 184–190
installing bfj 185

opening readable JSON
streams 185–187

opening writable JSON
streams 187–189

transformRow function
151, 154

transition function 354
translate command 338
tr element 105
triggering SMS alerts 317
try/catch statement 53
typeof operator 126
type safety 6

U
unexpected data 148
unpacking custom binary

files 108–109
update visualization 314, 324
updating

Data-Forge 387
JavaScript 383
Vagrant 389

V
Vagrant software 389–391

creating virtual
machines 390

installing 389
installing software on virtual

machines 390–391
installing VirtualBox 389
running code on virtual

machines 391
turning off virtual

machines 391
updating 389

vertical scaling 379
viewport function 288
VirtualBox 80, 389
virtual framebuffer 296
virtual machine. See VM (virtual

machines)
visualizations 20. See also server-

side visualizations
browser-based 247–273

chart types with C3
266–270

402 index

choosing chart type
249–250

improving appearance of
charts 271–272

line charts for
temperatures 250–265

building with D3 329–356
adding interactivity

352–353
adding launch

animations 353–356
color-coding 351–352
data join 346–349
element state 339–340
entry selection 346–349
loading data files

349–351
manually adding elements

to visualizations
342–344

scaling to fit 344–345
selecting elements

340–342
setting up 334–335

capturing
overview of 287–289
with Nightmare 279–280

live 322–327
preparing for

rendering 280–282
VM (virtual machines)

creating 390
installing software on

390–391
overview of 32, 379
running code on 391
turning off 391

W
walk function 187
web pages

rendering to images 284–285
scraping 297–298

web servers
creating

Node.js 258–261
overview of 40

starting 283

stopping 283–284
where function 388
white space 148
withSeries function 133
worker thread 47
wrangling data 2–10

JavaScript for 5
overview of 2–3

wrapping asynchronous
operations in
promises 55–56

X
X axis, adding to charts

256–257

Y
yargs 212
Y axis, adding to charts 263–264
y parameter 34

Z
zip function 240
z-scores 241

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Secrets of the JavaScript Ninja,
Second Edition
by John Resig, Bear Bibeault, and Josip Maras

ISBN: 9781617292859
464 pages
$44.99
August 2016

R in Action, Second Edition
Data analysis and graphics with R
by Robert I. Kabacoff

ISBN: 9781617291388
608 pages
$59.99
May 2015

The Quick Python Book, Third Edition
by Naomi Ceder

ISBN: 9781617294037
472 pages
$39.99
May 2018

https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/the-quick-python-book-third-edition
https://www.manning.com/books/r-in-action-second-edition

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Beyond Spreadsheets with R
by Dr. Jonathan Carroll

ISBN: 9781617294594
375 pages
$49.99
November 2018

Grokking Deep Learning
by Andrew W. Trask

ISBN: 9781617293702
325 pages
$49.99
December 2018

Think Like a Data Scientist
Tackle the data science process step-by-step
by Brian Godsey

ISBN: 9781633430273
328 pages
$44.99
March 2017

https://www.manning.com/books/beyond-spreadsheets-with-r
https://www.manning.com/books/grokking-deep-learning

Ashley Davis

W
hy not handle your data analysis in JavaScript? Mod-
ern libraries and data handling techniques mean you
can collect, clean, process, store, visualize, and present

web application data while enjoying the effi ciency of a single-
language pipeline and data-centric web applications that stay
in JavaScript end to end.

Data Wrangling with JavaScript promotes JavaScript to the cen-
ter of the data analysis stage! With this hands-on guide, you’ll
create a JavaScript-based data processing pipeline, handle
common and exotic data, and master practical troubleshooting
strategies. You’ll also build interactive visualizations and deploy
your apps to production. Each valuable chapter provides a
new component for your reusable data wrangling toolkit.

What’s Inside
● Establishing a data pipeline
● Acquisition, storage, and retrieval
● Handling unusual data sets
● Cleaning and preparing raw data
● Interactive visualizations with D3

Written for intermediate JavaScript developers. No data analy-
sis experience required.

Ashley Davis is a software developer, entrepreneur, author,
and the creator of Data-Forge and Data-Forge Notebook,
software for data transformation, analysis, and visualization
in JavaScript.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/data-wrangling-with-javascript

$49.99 / Can $65.99 [INCLUDING eBOOK]

Data Wrangling with JavaScript

JAVASCRIPT/DATA SCIENCE

M A N N I N G

“A thorough and
comprehensive step-by-step

guide to managing data
 with JavaScript.”

—Ethan Rivett, Powerley

“Do you still think that
you need R and Python skills

to do data analysis? This
mind-shifting book explains
that JavaScript is enough!”
—Ubaldo Pescatore, Datalogic

“Does a fantastic job
detailing the wrangling

process, the tools involved,
and the issues and concerns

to expect without ever leaving
the JavaScript domain.”—Alex Basile, Bloomberg

“Excellent real-world
examples for full-stack

JavaScript developers.”
—Sai Kota, LendingClub

See first page

	Data Wrangling with JavaScript
	brief contents
	contents
	preface
	acknowledgments
	about this book
	about the author
	about the cover illustration
	1 Getting started: establishing your data pipeline
	1.1	Why data wrangling?
	1.2	What?s data wrangling?
	1.3	Why a book on JavaScript data wrangling?
	1.4	What will you get out of this book?
	1.5	Why use JavaScript for data wrangling?
	1.6	Is JavaScript appropriate for data analysis?
	1.7	Navigating the JavaScript ecosystem
	1.8	Assembling your toolkit
	1.9	Establishing your data pipeline
	1.9.1	Setting the stage
	1.9.2	The data-wrangling process
	1.9.3	Planning
	1.9.4	Acquisition, storage, and retrieval
	1.9.5	Exploratory coding
	1.9.6	Clean and prepare
	1.9.7	Analysis
	1.9.8	Visualization
	1.9.9	Getting to production

	2 Getting started with Node.js
	2.1	Starting your toolkit
	2.2	Building a simple reporting system
	2.3	Getting the code and data
	2.3.1	Viewing the code
	2.3.2	Downloading the code
	2.3.3	Installing Node.js
	2.3.4	Installing dependencies
	2.3.5	Running Node.js code
	2.3.6	Running a web application
	2.3.7	Getting the data
	2.3.8	Getting the code for chapter 2

	2.4	Installing Node.js
	2.4.1	Checking your Node.js version

	2.5	Working with Node.js
	2.5.1	Creating a Node.js project
	2.5.2	Creating a command-line application
	2.5.3	Creating a code library
	2.5.4	Creating a simple web server

	2.6	Asynchronous coding
	2.6.1	Loading a single file
	2.6.2	Loading multiple files
	2.6.3	Error handling
	2.6.4	Asynchronous coding with promises
	2.6.5	 Wrapping asynchronous operations in promises
	2.6.6	Async coding with ?async? and ?await?

	3 Acquisition, storage, and retrieval
	3.1	Building out your toolkit
	3.2	Getting the code and data
	3.3	The core data representation
	3.3.1	The earthquakes website
	3.3.2	Data formats covered
	3.3.3	Power and flexibility

	3.4	Importing data
	3.4.1	Loading data from text files
	3.4.2	Loading data from a REST API
	3.4.3	Parsing JSON text data
	3.4.4	Parsing CSV text data
	3.4.5	Importing data from databases
	3.4.6	Importing data from MongoDB
	3.4.7	Importing data from MySQL

	3.5	Exporting data
	3.5.1	You need data to export!
	3.5.2	Exporting data to text files
	3.5.3	Exporting data to JSON text files
	3.5.4	Exporting data to CSV text files
	3.5.5	Exporting data to a database
	3.5.6	Exporting data to MongoDB
	3.5.7	Exporting data to MySQL

	3.6	Building complete data conversions
	3.7	Expanding the process

	4 Working with unusual data
	4.1	Getting the code and data
	4.2	Importing custom data from text files
	4.3	Importing data by scraping web pages
	4.3.1	Identifying the data to scrape
	4.3.2	Scraping with Cheerio

	4.4	Working with binary data
	4.4.1	Unpacking a custom binary file
	4.4.2	Packing a custom binary file
	4.4.3	Replacing JSON with BSON
	4.4.4	Converting JSON to BSON
	4.4.5	Deserializing a BSON file

	5 Exploratory coding
	5.1	Expanding your toolkit
	5.2	Analyzing car accidents
	5.3	Getting the code and data
	5.4	Iteration and your feedback loop
	5.5	A first pass at understanding your data
	5.6	Working with a reduced data sample
	5.7	Prototyping with Excel
	5.8	Exploratory coding with Node.js
	5.8.1	Using Nodemon
	5.8.2	Exploring your data
	5.8.3	Using Data-Forge
	5.8.4	Computing the trend column
	5.8.5	Outputting a new CSV file

	5.9	Exploratory coding in the browser
	5.10	Putting it all together

	6 Clean and prepare
	6.1	Expanding our toolkit
	6.2	Preparing the reef data
	6.3	Getting the code and data
	6.4	The need for data cleanup and preparation
	6.5	Where does broken data come from?
	6.6	How does data cleanup fit into the pipeline?
	6.7	Identifying bad data
	6.8	Kinds of problems
	6.9	Responses to bad data
	6.10	Techniques for fixing bad data
	6.11	Cleaning our data set
	6.11.1	Rewriting bad rows
	6.11.2	Filtering rows of data
	6.11.3	Filtering columns of data

	6.12	Preparing our data for effective use
	6.12.1	Aggregating rows of data
	6.12.2	Combining data from different files using globby
	6.12.3	Splitting data into separate files

	6.13	Building a data processing pipeline with Data-Forge

	7 Dealing with huge data files
	7.1	Expanding our toolkit
	7.2	Fixing temperature data
	7.3	Getting the code and data
	7.4	When conventional data processing breaks down
	7.5	The limits of Node.js
	7.5.1	Incremental data processing
	7.5.2	Incremental core data representation
	7.5.3	Node.js file streams basics primer
	7.5.4	Transforming huge CSV files
	7.5.5	Transforming huge JSON files
	7.5.6	Mix and match

	8 Working with a mountain of data
	8.1	Expanding our toolkit
	8.2	Dealing with a mountain of data
	8.3	Getting the code and data
	8.4	Techniques for working with big data
	8.4.1	Start small
	8.4.2	Go back to small
	8.4.3	Use a more efficient representation
	8.4.4	Prepare your data offline

	8.5	More Node.js limitations
	8.6	Divide and conquer
	8.7	Working with large databases
	8.7.1	Database setup
	8.7.2	Opening a connection to the database
	8.7.3	Moving large files to your database
	8.7.4	Incremental processing with a database cursor
	8.7.5	Incremental processing with data windows
	8.7.6	Creating an index
	8.7.7	Filtering using queries
	8.7.8	Discarding data with projection
	8.7.9	Sorting large data sets

	8.8	Achieving better data throughput
	8.8.1	Optimize your code
	8.8.2	Optimize your algorithm
	8.8.3	Processing data in parallel

	9 Practical data analysis
	9.1	Expanding your toolkit
	9.2	Analyzing the weather data
	9.3	Getting the code and data
	9.4	Basic data summarization
	9.4.1	Sum
	9.4.2	Average
	9.4.3	Standard deviation

	9.5	Group and summarize
	9.6	The frequency distribution of temperatures
	9.7	Time series
	9.7.1	Yearly average temperature
	9.7.2	Rolling average
	9.7.3	Rolling standard deviation
	9.7.4	Linear regression
	9.7.5	Comparing time series
	9.7.6	Stacking time series operations

	9.8	Understanding relationships
	9.8.1	Detecting correlation with a scatter plot
	9.8.2	Types of correlation
	9.8.3	Determining the strength of the correlation
	9.8.4	Computing the correlation coefficient

	10 Browser-based visualization
	10.1	Expanding your toolkit
	10.2	Getting the code and data
	10.3	Choosing a chart type
	10.4	Line chart for New York City temperature
	10.4.1	The most basic C3 line chart
	10.4.2	Adding real data
	10.4.3	Parsing the static CSV file
	10.4.4	Adding years as the X axis
	10.4.5	Creating a custom Node.js web server
	10.4.6	Adding another series to the chart
	10.4.7	Adding a second Y axis to the chart
	10.4.8	Rendering a time series chart

	10.5	Other chart types with C3
	10.5.1	Bar chart
	10.5.2	Horizontal bar chart
	10.5.3	Pie chart
	10.5.4	Stacked bar chart
	10.5.5	Scatter plot chart

	10.6	Improving the look of our charts
	10.7	Moving forward with your own projects

	11 Server-side visualization
	11.1	Expanding your toolkit
	11.2	Getting the code and data
	11.3	The headless browser
	11.4	Using Nightmare for server-side visualization
	11.4.1	Why Nightmare?
	11.4.2	Nightmare and Electron
	11.4.3	Our process: capturing visualizations with Nightmare
	11.4.4	Prepare a visualization to render
	11.4.5	Starting the web server
	11.4.6	Procedurally start and stop the web server
	11.4.7	Rendering the web page to an image
	11.4.8	Before we move on . . .
	11.4.9	Capturing the full visualization
	11.4.10	Feeding the chart with data
	11.4.11	Multipage reports
	11.4.12	Debugging code in the headless browser
	11.4.13	Making it work on a Linux server

	11.5	You can do much more with a headless browser
	11.5.1	Web scraping
	11.5.2	Other uses

	12 Live data
	12.1	We need an early warning system
	12.2	Getting the code and data
	12.3	Dealing with live data
	12.4	Building a system for monitoring air quality
	12.5	Set up for development
	12.6	Live-streaming data
	12.6.1	HTTP POST for infrequent data submission
	12.6.2	Sockets for high-frequency data submission

	12.7	Refactor for configuration
	12.8	Data capture
	12.9	An event-based architecture
	12.10	Code restructure for event handling
	12.10.1	Triggering SMS alerts
	12.10.2	Automatically generating a daily report

	12.11	Live data processing
	12.12	Live visualization

	13 Advanced visualization with D3
	13.1	Advanced visualization
	13.2	Getting the code and data
	13.3	Visualizing space junk
	13.4	What is D3?
	13.5	The D3 data pipeline
	13.6	Basic setup
	13.7	SVG crash course
	13.7.1	SVG circle
	13.7.2	Styling
	13.7.3	SVG text
	13.7.4	SVG group

	13.8	Building visualizations with D3
	13.8.1	Element state
	13.8.2	Selecting elements
	13.8.3	Manually adding elements to our visualization
	13.8.4	Scaling to fit
	13.8.5	Procedural generation the D3 way
	13.8.6	Loading a data file
	13.8.7	Color-coding the space junk
	13.8.8	Adding interactivity
	13.8.9	Adding a year-by-year launch animation

	14 Getting to production
	14.1	Production concerns
	14.2	Taking our early warning system to production
	14.3	Deployment
	14.4	Monitoring
	14.5	Reliability
	14.5.1	System longevity
	14.5.2	Practice defensive programming
	14.5.3	Data protection
	14.5.4	Testing and automation
	14.5.5	Handling unexpected errors
	14.5.6	Designing for process restart
	14.5.7	Dealing with an ever-growing database

	14.6	Security
	14.6.1	Authentication and authorization
	14.6.2	Privacy and confidentiality
	14.6.3	Secret configuration

	14.7	Scaling
	14.7.1	Measurement before optimization
	14.7.2	Vertical scaling
	14.7.3	Horizontal scaling

	appendix A JavaScript cheat sheet
	appendix B Data-Forge cheat sheet
	appendix C Getting started with Vagrant
	index

