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Book license
By purchasing Data Structures & Algorithms in Swift, you have the
following license:

You are allowed to use and/or modify the source code in Data
Structures & Algorithms in Swift in as many apps as you want,
with no attribution required.

You are allowed to use and/or modify all art, images and designs
that are included in Data Structures & Algorithms in Swift in as
many apps as you want, but must include this attribution line
somewhere inside your app: “Artwork/images/designs: from Data
Structures & Algorithms in Swift, available at
www.raywenderlich.com”.

The source code included in Data Structures & Algorithms in
Swift is for your personal use only. You are NOT allowed to
distribute or sell the source code in Data Structures & Algorithms
in Swift without prior authorization.

This book is for your personal use only. You are NOT allowed to
sell this book without prior authorization, or distribute it to
friends, coworkers or students; they would need to purchase their
own copies.

All materials provided with this book are provided on an “as is” basis,
without warranty of any kind, express or implied, including but not
limited to the warranties of merchantability, fitness for a particular
purpose and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability,
whether in an action of contract, tort or otherwise, arising from, out
of or in connection with the software or the use or other dealings in
the software.
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All trademarks and registered trademarks appearing in this guide are
the properties of their respective owners.

Download from finelybook 7450911@qq.com

9



Early access edition
You’re reading an an early access edition of Data Structures &
Algorithms in Swift. This edition contains a sample of the chapters
that will be contained in the final release.

We hope you enjoy the preview of this book, and that you’ll come
back to help us celebrate the full launch of Data Structures &
Algorithms in Swift later in 2018!

The best way to get update notifications is to sign up for our monthly
newsletter. This includes a list of the tutorials that came out on
raywenderlich.com that month, any important news like book updates
or new books, and a list of our favorite development links for that
month. You can sign up here:

www.raywenderlich.com/newsletter

Download from finelybook 7450911@qq.com

10

http://www.raywenderlich.com/newsletter


Who this book is for
This book is for developers who are comfortable with Swift and want
to ace whiteboard interviews, improve the performance of their code,
and ensure their apps will perform well at scale.

If you’re looking for more background on the Swift language, we
recommend our book, the Swift Apprentice, which goes into depth on
the Swift language itself:

https://store.raywenderlich.com/products/swift-apprentice

If you want to learn more about iOS app development in Swift, we
recommend working through our classic book, the iOS Apprentice:

https://store.raywenderlich.com/products/ios-apprentice
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What you need
To follow along with this book, you'll need the following:

A Mac running macOS Sierra 10.12.6, at a minimum, with the
latest point release and security patches installed. This is so you
can install the latest version of the required development tool:
Xcode.

Xcode 9 or later. Xcode is the main development tool for writing
code in Swift. You need Xcode 9 at a minimum, since that version
includes Swift 4. You can download the latest version of Xcode
for free from the Mac App Store, here: apple.co/1FLn51R.

If you haven't installed the latest version of Xcode, be sure to do that
before continuing with the book. The code covered in this book
depends on Swift 4 and Xcode 9 — you may get lost if you try to work
with an older version.
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Book source code and forums
You can get the source code for the book here:

www.raywenderlich.com/store/data-structures-algorithms-
swift/source-code

There, you’ll find all the code from the chapters for your use.

We’ve also set up an official forum for the book at
forums.raywenderlich.com. This is a great place to ask questions
about the book or to submit any errors you may find.
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About the cover
The legendary, elusive kraken has captured the imagination of sailors,
artists and authors for hundreds of years. Most modern-day scientists
believe that the creature known as the kraken is most likely the giant
squid: a deep-water member of the Architeuthidae family that can
grow up to 43 feet in length!

Little is known about the giant squid, due to its preference for cold,
deep-water habitats. It’s much like the data structures and algorithms
that lurk deep within software; although you may not yet understand
how data structures and algorithms form the basis of scalable, high-
performance solutions, this book will be your own personal Nautilus
that will transport you 20,000 leagues under a sea of code!
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Preface
The study of data structures is one about efficiency. Given a particular
amount of data, what is the best way to store it to achieve a particular
goal?

As a programmer, you regularly use a variety of collection types, such
as arrays, dictionaries, and sets. These are data structures that hold a
collection of data, each structure having its own performance
characteristics.

As an example, consider the difference between an array and a set.
Both are meant to hold a collection of elements, but trying to find a
particular element in an array takes a lot longer than finding an
element in a set. On the other hand, you can order the elements an
array, but you can’t order the elements of a set.

Data structures are a well-studied area, and the concepts are language
agnostic; a data structure from C is functionally and conceptually
identical to the same data structure in any other language, such as
Swift. At the same time, the high-level expressiveness of Swift make it
an ideal choice for learning these core concepts without sacrificing
too much performance.

So why should you learn data structures and algorithms?

Interviews

When you interview for a software engineering position, chances are
you’ll be tested on data structures and algorithms. Having a strong
foundation in data structures and algorithms is the “bar” for many
companies with software engineering positions.

Work

Data structures are most relevant when working with large amounts
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Data structures are most relevant when working with large amounts
of data. If you’re dealing with a non-trivial amount of data, using the
appropriate data structure will play a big role in the performance and
scalability of your software.

Self-improvement

Knowing about the strategies used by algorithms to solve tricky
problems gives you ideas for improvements you can make to your own
code. Swift’s Standard Library has small set of general purpose
collection types; they definitely don’t cover every case.

And yet, as you will see, these primitives can be used as a great
starting point for building more complex and special purpose
constructs. Knowing more data structures than just the standard array
and dictionary gives you a bigger collection of tools you can use to
build your own apps.
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Swift Standard Library
Before you dive into the rest of this book, you’ll first look at a few data
structures that are baked into the Swift language. The Swift standard
library refers to the framework that defines the core components of
the Swift language. Inside, you’ll find a variety of tools and types to
help build your Swift apps.

In this chapter you’ll focus on two data structures that the standard
library provides right out of the box: Array and Dictionary.

Arrays
An array is a general-purpose, generic container for storing a
collection of elements, and is used commonly in all sorts of Swift
programs. You can create an array by using an array literal, which is a
comma-separated list of values surrounded with square brackets. For
example:

// An array of `String` elements
let people = ["Brian", "Stanley", "Ringo"]

This is a generic type in that it abstracts across any element type. The
element type has no formal requirements; it can be anything. In the
above example, the compiler type infers the elements to be String
types.

Swift defines arrays using protocols. Each of these protocols layers
more capability on the array. For example, an Array is a Sequence
which means that you can iterate through it at least once. It is also a
Collection which means it can be traversed multiple times, non-
destructively, and it can be accessed using a subscript operator. Array
is also a RandomAccessCollection which makes guarantees about
efficiency.

Download from finelybook 7450911@qq.com

17



For example, the count property is guaranteed to be a "cheap"
constant-time operation written O(1). This means that no matter how
big your array gets, computing count will always take the same
amount of time.

Arrays are also useful for ordering the elements.

Order

Elements in an array are explicitly ordered. Using the above people
array as an example, "Brian" comes before "Stanley".

All elements in an array have a corresponding zero-based, integer
index. For example, the people array from the above example has
three indices, one corresponding to each element.

You can retrieve the value of an element in the array by writing the
following:

people[0] // "Brian"
people[1] // "Stanley"
people[2] // "Ringo"

Order is defined by the array data structure and should not be taken
for granted. Some data structures, such as Dictionary, have a weaker
concept of order.

Random-access

Random-access is a trait that data structures can claim if they can
handle element retrieval in constant O(1) time. For example, getting
"Ringo" from the people array takes constant time. Again, this
performance should not be taken for granted. Other data structures
such as linked lists and trees do not have constant time access.

Array performance
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Aside from being a random-access collection, there are other areas of
performance that are of interest to you as a developer, particularly,
how well or poorly does the data structure fare when the amount of
data it contains needs to grow? For arrays, this varies on two factors.

Insertion location

The first factor is where you choose to insert the new element inside
the array. The most efficient scenario for adding an element to an
array is to append it at the end of the array:

people.append("Charles")
print(people) // prints ["Brian", "Stanley", "Ringo", "Charles"]

Inserting "Charles" using the append method will place the string at
the end of the array. This is a constant-time operation, and is the
most efficient way to add elements into an array. However, there may
come a time that you need to insert an element in a particular
location, such as in the very middle of the array. In such a scenario,
this is an O(n) operation.

To help illustrate why that is the case, consider the following analogy.
You’re standing in line for the theater. Someone new comes along, to
join the lineup. What’s the easiest place to add people to the lineup?
At the end of course!

If the newcomer tried to insert themselves into the middle of the line,
they would have to convince half the lineup to shuffle back to make
room.

And if they were terribly rude, they’d try to insert themselves at the
head of the line. This is the worst-case scenario, because every single
person in the lineup would need to shuffle back to make room for this
new person in front!

This is exactly how the array works. Inserting new elements from
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This is exactly how the array works. Inserting new elements from
anywhere aside from the end of the array will force elements to
shuffle backwards to make room for the new element:

people.insert("Andy", at: 0)
// ["Andy", "Brian", "Stanley", "Ringo", "Charles"]

To be precise, every element must shift backwards by one index,
which takes n steps. Because of this it is considered a linear time or
O(n) operation. If the number of elements in the array doubles, the
time required for this insert operation will also double.

If inserting elements in front of a collection is a common operation
for your program, you may want to consider a different data structure
to hold your data.

The second factor that determines the speed of insertion is the array’s
capacity. If the space that the array pre-allocated (the capacity) is
exceeded it must reallocate storage and copy over the current
elements. This means that any given insertion, even at the end, could
take n steps to complete if a copy is made. However, the standard
library employs a subtle trick to prevent appends from being O(n)
time. Each time it runs out of storage and needs to copy, it doubles
the capacity. Doing this allows arrays to have an amortized cost that
it is still constant time O(1).

Dictionary
A dictionary is another generic collection that holds key-value pairs.
For example, here’s a dictionary containing a user’s name and their
score:

var scores: [String: Int] = ["Eric": 9, "Mark": 12, "Wayne": 

Dictionaries don’t have any guarantees of order, nor can you insert at
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Dictionaries don’t have any guarantees of order, nor can you insert at
a specific index. They also put a requirement on the Key type that it
be Hashable. Fortunately almost all of the standard types are already
Hashable and in the most recent versions Swift, adopting the
Hashable protocol is now trivial.

You can add a new entry to the dictionary with the following syntax:

scores["Andrew"] = 0

This creates a new key-value pair in the dictionary:

["Eric": 9, "Mark": 12, "Andrew": 0, "Wayne": 1]

The "Andrew" key is inserted somewhere into dictionary. Dictionaries
are unordered, so you can’t guarantee where new entries will be put.
It is possible to traverse through the key-values of a dictionary
multiple times as the Collection protocol affords. This order, while
not defined, will be the same every time it is traversed until the
collection is changed (mutated).

The lack of explicit ordering disadvantage comes with some
redeeming traits. Unlike the array, dictionaries don’t need to worry
about elements shifting around. Inserting into a dictionary is always
O(1). Lookup operations are also done in O(1) time, which is
significantly faster than the O(n) lookup time for a particular element
in the array.

Where to go from here?
This chapter covers two of the most common data structures in Swift,
and briefly highlights some trade-offs between the two. The rest of
the book will look at other data structures that have unique
performance characteristics that give them their edge in certain
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scenarios. Surprisingly, many of these other data structures can be
built efficiently using these two simple standard library primitives.
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Linked list
A linked list is a collection of values arranged in a linear
unidirectional sequence. A linked list has several theoretical
advantages over contiguous storage options such as the Swift Array:

Constant time insertion and removal from the front of the list.

Reliable performance characteristics.

As the diagram suggests, a linked list is a chain of nodes. Nodes have
two responsibilities:

1. Hold a value.

2. Hold a reference to the next node. A nil value represents the end
of the list.

Open up the starter playground for this chapter so you can dive right
into the code.

Node

Create a new Swift file in the Sources directory and name it
Node.swift. Add the following to the file:
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Create a new Swift file in the Sources directory and name it
Node.swift. Add the following to the file:

public class Node<Value> {

  public var value: Value
  public var next: Node?
  
  public init(value: Value, next: Node? = nil) {
    self.value = value
    self.next = next
  }
}

extension Node: CustomStringConvertible {

  public var description: String {
    guard let next = next else {
      return "\(value)"
    }
    return "\(value) -> " + String(describing: next) + " "
  }
}

Navigate to the playground page and add the following:

example(of: "creating and linking nodes") {
  let node1 = Node(value: 1)
  let node2 = Node(value: 2)
  let node3 = Node(value: 3)
  
  node1.next = node2
  node2.next = node3
  
  print(node1)
}

You’ve just created three nodes and connected them:

Download from finelybook 7450911@qq.com

24



In the console, you should see the following output:

---Example of creating and linking nodes---
1 -> 2 -> 3

As far as practicality goes, the current method of building lists leaves
a lot to be desired. You can easily see that building long lists this way
is impractical. A common way to alleviate this problem is to build a
LinkedList that manages the Node objects. You’ll do just that!

LinkedList
In the Sources directory, create a new file and name it
LinkedList.swift. Add the following to the file:

public struct LinkedList<Value> {

  public var head: Node<Value>?
  public var tail: Node<Value>?
  
  public init() {}

  public var isEmpty: Bool {
    return head == nil
  }
}

extension LinkedList: CustomStringConvertible {

  public var description: String {
    guard let head = head else {
      return "Empty list"
    }
    return String(describing: head)
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  }
}

A linked list has the concept of a head and tail, which refers to the
first and last nodes of the list respectively:

Adding values to the list
As mentioned before, you’re going to provide an interface to manage
the Node objects. You’ll first take care of adding values. There are
three ways to add values to a linked list, each having their own unique
performance characteristics:

1. push: Adds a value at the front of the list.

2. append: Adds a value at the end of the list.

3. insert(after:): Adds a value after a particular node of the list.

You’ll implement each of these in the next section and analyze their
performance characteristics.

push

Adding a value at the front of the list is known as a push operation.
This is also known as head-first insertion. The code for it is
deliciously simple.

Add the following method to LinkedList:

public mutating func push(_ value: Value) {
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  head = Node(value: value, next: head)
  if tail == nil {
    tail = head
  }
}

In the case where you’re pushing into an empty list, the new node is
both the head and tail of the list.

Head back to the playground page and add the following:

example(of: "push") {
  var list = LinkedList<Int>()
  list.push(3)
  list.push(2)
  list.push(1)
  
  print(list)
}

Your console output should show this:

---Example of push---
1 -> 2 -> 3

append

The next operation you’ll look at is append. This is meant to add a
value at the end of the list, and is known as tail-end insertion.

Head back into LinkedList.swift and add the following code just below
push:

public mutating func append(_ value: Value) {

  // 1
  guard !isEmpty else {
    push(value)
    return
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  }
  
  // 2
  tail!.next = Node(value: value)
  
  // 3
  tail = tail!.next
}

This code is relatively straightforward:

1. Like before, if the list is empty, you’ll need to update both head
and tail to the new node. Since append on an empty list is
functionally identical to push, you simply invoke push to do the
work for you.

2. In all other cases, you simply create a new node after the tail
node. Force unwrapping is guaranteed to succeed since you push
in the isEmpty case with the above guard statement.

3. Since this is tail-end insertion, your new node is also the tail of
the list.

Leap back into the playground and write the following at the bottom:

example(of: "append") {
  var list = LinkedList<Int>()
  list.append(1)
  list.append(2)
  list.append(3)
  
  print(list)
}

You should see the following output in the console:

---Example of append---
1 -> 2 -> 3
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insert(after:)

The third and final operation for adding values is insert(after:).
This operation inserts a value at a particular place in the list, and
requires two steps:

1. Finding a particular node in the list.

2. Inserting the new node.

First, you’ll implement the code to find the node where you want to
insert your value.

Back in LinkedList.swift, add the following code just below append:

public func node(at index: Int) -> Node<Value>? {
  // 1
  var currentNode = head
  var currentIndex = 0
  
  // 2
  while currentNode != nil && currentIndex < index {
    currentNode = currentNode!.next
    currentIndex += 1
  }
  
  return currentNode
}

node(at:) will try to retrieve a node in the list based on the given
index. Since you can only access the nodes of the list from the head
node, you’ll have to make iterative traversals. Here’s the play-by-
play:

1. You create a new reference to head and keep track of the current
number of traversals.

2. Using a while loop, you move the reference down the list until
you’ve reached the desired index. Empty lists or out-of-bounds
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indexes will result in a nil return value.

Now you need to insert the new node.

Add the following method just below node(at:):

// 1
@discardableResult
public mutating func insert(_ value: Value,
                            after node: Node<Value>)
                            -> Node<Value> {
  // 2
  guard tail !== node else {
    append(value)
    return tail!
  }
  // 3
  node.next = Node(value: value, next: node.next)
  return node.next!
}

Here’s what you’ve done:

1. @discardableResult lets callers ignore the return value of this
method without the compiler jumping up and down warning you
about it.

2. In the case where this method is called with the tail node, you’ll
call the functionally equivalent append method. This will take
care of updating tail.

3. Otherwise, you simply link up the new node with the rest of the
list and return the new node.

Hop back to the playground page to test this out. Add the following to
the bottom of the playground:

example(of: "inserting at a particular index") {
  var list = LinkedList<Int>()
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  list.push(3)
  list.push(2)
  list.push(1)
  
  print("Before inserting: \(list)")
  var middleNode = list.node(at: 1)!
  for _ in 1...4 {
    middleNode = list.insert(-1, after: middleNode)
  }
  print("After inserting: \(list)")
}

You should see the following output:

---Example of inserting at a particular index---
Before inserting: 1 -> 2 -> 3
After inserting: 1 -> 2 -> -1 -> -1 -> -1 -> -1 -> 3

Performance analysis

Whew! You’ve made good progress so far. To recap, you’ve
implemented the three operations that add values to a linked list and
a method to find a node at a particular index.

Next, you’ll focus on the opposite action: removal operations.
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Removing values from the list
There are three main operations for removing nodes:

1. pop: Removes the value at the front of the list.

2. removeLast: Removes the value at the end of the list.

3. remove(at:): Removes a value anywhere in the list.

You’ll implement all three and analyze their performance
characteristics.

pop

Removing a value at the front of the list is often referred to as pop.
This operation is almost as simple as push, so let’s dive right in.

Add the following method to LinkedList:

@discardableResult
public mutating func pop() -> Value? {
  defer {
    head = head?.next
    if isEmpty {
      tail = nil
    }
  }
  return head?.value
}

pop returns the value that was removed from the list. This value is
optional, since it’s possible that the list is empty.

By moving the head down a node, you’ve effectively removed the first
node of the list. ARC will remove the old node from memory once the
method finishes, since there will be no more references attached to it.
In the event that the list becomes empty, you set tail to nil.
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Head back inside the playground page and test it out by adding the
following code at the bottom:

example(of: "pop") {
  var list = LinkedList<Int>()
  list.push(3)
  list.push(2)
  list.push(1)
  
  print("Before popping list: \(list)")
  let poppedValue = list.pop()
  print("After popping list: \(list)")
  print("Popped value: " + String(describing: poppedValue))
}

You should see the following output:

---Example of pop---
Before popping list: 1 -> 2 -> 3
After popping list: 2 -> 3
Popped value: Optional(1)

removeLast

Removing the last node of the list is somewhat inconvenient.
Although you have a reference to the tail node, you can’t chop it off
without having a reference to the node before it. Thus, you’ll have to
do an arduous traversal. Add the following code just below pop:

@discardableResult
public mutating func removeLast() -> Value? {
  // 1
  guard let head = head else {
    return nil
  }
  // 2
  guard head.next != nil else {
    return pop()
  }
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  // 3
  var prev = head
  var current = head
  
  while let next = current.next {
    prev = current
    current = next
  }
  // 4
  prev.next = nil
  tail = prev
  return current.value
}

Here’s what’s going on:

1. If head is nil, there’s nothing to remove, so you return nil.

2. If the list only consists of one node, removeLast is functionally
equivalent to pop. Since pop will handle updating the head and
tail references, you’ll just delegate this work to it.

3. You keep searching for a next node until current.next is nil.
This signifies that current is the last node of the list.

4. Since current is the last node, you simply disconnect it using the
prev.next reference. You also make sure to update the tail
reference.

Head back to the playground page and add the following to the
bottom:

example(of: "removing the last node") {
  var list = LinkedList<Int>()
  list.push(3)
  list.push(2)
  list.push(1)

  print("Before removing last node: \(list)")
  let removedValue = list.removeLast()
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  print("After removing last node: \(list)")
  print("Removed value: " + String(describing: removedValue))
}

You should see the following at the bottom of the console:

---Example of removing the last node---
Before removing last node: 1 -> 2 -> 3
After removing last node: 1 -> 2
Removed value: Optional(3)

removeLast requires you to traverse all the way down the list. This
makes for an O(n) operation, which is relatively expensive.

remove(after:)

The final remove operation is removing a particular node at a
particular point in the list. This is achieved much like
insert(after:); You’ll first find the node immediately before the
node you wish to remove, and then unlink it.

Navigate back to LinkedList.swift and add the following method below
removeLast:

@discardableResult
public mutating func remove(after node: Node<Value>) -> Value
  defer {
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    if node.next === tail {
      tail = node
    }
    node.next = node.next?.next
  }
  return node.next?.value
}

The unlinking of the nodes occurs in the defer block. Special care
needs to be taken if the removed node is the tail node, since the tail
reference will need to be updated.

Head back to the playground to try it out. You know the drill:

example(of: "removing a node after a particular node") {
  var list = LinkedList<Int>()
  list.push(3)
  list.push(2)
  list.push(1)
  
  print("Before removing at particular index: \(list)")
  let index = 1
  let node = list.node(at: index - 1)!
  let removedValue = list.remove(after: node)
  
  print("After removing at index \(index): \(list)")
  print("Removed value: " + String(describing: removedValue))
}

You should see the following output in the console:

---Example of removing a node after a particular node---
Before removing at particular index: 1 -> 2 -> 3
After removing at index 1: 1 -> 3
Removed value: Optional(2)

Try adding more elements and play around with the value of index.
Similar to insert(at:), the time complexity of this operation is O(1),
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but it requires you to have a reference to a particular node
beforehand.

Performance analysis

You’ve hit another checkpoint! To recap, you’ve implemented the
three operations that remove values from a linked list:

At this point, you’ve defined an interface for a linked list that most
programmers around the world can relate to. However, there’s work
to be done to adorn the Swift semantics. In the next half of the
chapter, you’ll focus on making the interface as Swifty as possible.

Swift collection protocols
The Swift standard library has a set of protocols that help define
what’s expected of a particular type. Each of these protocols provides
certain guarantees on characteristics and performance. Of these set of
protocols, four are referred to as collection protocols.

Here’s a small sampler of what each protocol represents:

Tier 1, Sequence: A sequence type provides sequential access to
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Tier 1, Sequence: A sequence type provides sequential access to
its elements. This axiom comes with a caveat: Using the
sequential access may destructively consume the elements.

Tier 2, Collection: A collection type is a sequence type that
provides additional guarantees. A collection type is finite and
allows for repeated nondestructive sequential access.

Tier 3, BidirectionalColllection: A collection type can be a
bidirectional collection type if it, as the name suggests, can allow
for bidirectional travel up and down the sequence. This isn’t
possible for the linked list, since you can only go from the head to
the tail, but not the other way around.

Tier 4, RandomAccessCollection: A bidirectional collection type
can be a random access collection type if it can guarantee that
accessing an element at a particular index will take just as long as
access an element at any other index. This is not possible for the
linked list, since accessing a node near the front of the list is
substantially quicker than one that is further down the list.

There’s more to be said for each of these. You’ll learn more about
each of them when you need to conform to them.

A linked list can earn two qualifications from the Swift collection
protocols. First, since a linked list is a chain of nodes, adopting the
Sequence protocol makes sense. Second, since the chain of nodes is a
finite sequence, it makes sense to adopt the Collection protocol.

Becoming a Swift collection
In this section, you’ll look into implementing the Collection
protocol. A collection type is a finite sequence and provides
nondestructive sequential access. A Swift Collection also allows for
access via a subscript , which is a fancy term for saying an index can
be mapped to a value in the collection.
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Here’s an example of using the subscript of a Swift Array:

array[5]

The index of an array is an Int value, 5 in this example. The subscript
operation is defined with the square brackets. Using the subscript
with an index will return you a value from the collection.

Custom collection indexes

A defining metric for performance of the Collection protocol
methods is the speed of mapping an Index to a value. Unlike other
storage options such as the Swift Array, the linked list cannot achieve
O(1) subscript operations using integer indexes. Thus, your goal is to
define a custom index that contains a reference to its respective node.

In LinkedList.swift, add the following extension:

extension LinkedList: Collection {

  public struct Index: Comparable {

    public var node: Node<Value>?
    
    static public func ==(lhs: Index, rhs: Index) -> Bool {
      switch (lhs.node, rhs.node) {
      case let (left?, right?):
        return left.next === right.next
      case (nil, nil):
        return true
      default:
        return false
      }
    }
    
    static public func <(lhs: Index, rhs: Index) -> Bool {
      guard lhs != rhs else {
        return false
      }

Download from finelybook 7450911@qq.com

39



      let nodes = sequence(first: lhs.node) { $0?.next }
      return nodes.contains { $0 === rhs.node }
    }
  }
}

You’ll use this custom index to fulfill Collection requirements. Write
the following inside the extension to complete it:

// 1
public var startIndex: Index {
  return Index(node: head)
}
// 2
public var endIndex: Index {
  return Index(node: tail?.next)
}
// 3
public func index(after i: Index) -> Index {
  return Index(node: i.node?.next)
}
// 4
public subscript(position: Index) -> Value {
  return position.node!.value
}

1. The startIndex is reasonably defined by the head of the linked
list.

2. Collection defines the endIndex as the index right after the last
accessible value, so you give it tail?.next.

3. index(after:) dictates how the index can be incremented. You
simply give it an index of the immediate next node.

4. The subscript is used to map an Index to the value in the
collection. Since you’ve created the custom index, you can easily
achieve this in constant time by referring to the node’s value.
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That wraps up the procedures for adopting Collection. Navigate back
to the playground page and take it for a test drive:

example(of: "using collection") {
  var list = LinkedList<Int>()
  for i in 0...9 {
    list.append(i)
  }
  
  print("List: \(list)")
  print("First element: \(list[list.startIndex])")
  print("Array containing first 3 elements: \(Array(list.prefix
  print("Array containing last 3 elements: \(Array(list.suffix(
  
  let sum = list.reduce(0, +)
  print("Sum of all values: \(sum)")
}

You should see the following output:

---Example of using collection---
List: 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9
First element: 0
Array containing first 3 elements: [0, 1, 2]
Array containing last 3 elements: [7, 8, 9]
Sum of all values: 45

Value semantics and copy-on-write
Another important quality of a Swift collections is that they have
value semantics. This is implemented using copy-on-write, hereby
known as COW. To illustrate this concept, you’ll verify this behavior
using arrays. Write the following at the bottom of the playground
page:

example(of: "array cow") {
  let array1 = [1, 2]
  var array2 = array1
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  print("array1: \(array1)")
  print("array2: \(array2)")
  
  print("---After adding 3 to array 2---")
  array2.append(3)
  print("array1: \(array1)")
  print("array2: \(array2)")
}

You should see the following output:

---Example of array cow---
array1: [1, 2]
array2: [1, 2]
---After adding 3 to array 2---
array1: [1, 2]
array2: [1, 2, 3]

The elements of array1 are unchanged when array2 is modified.
Underneath the hood, array2 makes a copy of the underlying storage
when append is called:

Let’s check whether or not your linked list has value semantics. Write
the following at the bottom of the playground page:

example(of: "linked list cow") {
  var list1 = LinkedList<Int>()
  list1.append(1)
  list1.append(2)
  var list2 = list1
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  print("List1: \(list1)")
  print("List2: \(list2)")
  
  print("After appending 3 to list2")
  list2.append(3)
  print("List1: \(list1)")
  print("List2: \(list2)")
}

You should see the following output:

---Example of linked list cow---
List1: 1 -> 2
List2: 1 -> 2
After appending 3 to list2
List1: 1 -> 2 -> 3
List2: 1 -> 2 -> 3

Unfortunately, your linked list does not have value semantics! This is
because your underlying storage uses a reference type (Node). This is a
serious problem, as LinkedList is a struct and therefore should use
value semantics. Implementing COW will fix this problem.

The strategy to achieve value semantics with COW is fairly
straightforward. Before mutating the contents of the linked list, you
want to perform a copy of the underlying storage and update all
references (head and tail) to the new copy.

Head back to LinkedList.swift and add the following method to
LinkedList:

private mutating func copyNodes() {
  guard var oldNode = head else {
    return
  }
  
  head = Node(value: oldNode.value)
  var newNode = head
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  while let nextOldNode = oldNode.next {
    newNode!.next = Node(value: nextOldNode.value)
    newNode = newNode!.next
    
    oldNode = nextOldNode
  }

  tail = newNode
}

This method will replace the existing nodes of your linked list with
newly allocated ones with the same value.

Now find all other methods in LinkedList marked with the mutating
keyword and call copyNodes at the top of every method.

There are six methods in total:

push

append

insert(after:)

pop

removeLast

remove(after:)

After you’ve completed the retrofits, the last example function call
should yield the following output:

---Example of linked list cow---
List1: 1 -> 2
List2: 1 -> 2
After appending 3 to list2
List1: 1 -> 2
List2: 1 -> 2 -> 3
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Which is what you want! Well, other than introducing a O(n)
overhead on every mutating call...

Optimizing COW
The O(n) overhead on every mutating call is unacceptable.

There are two avenues that help alleviate this problem. The first is to
avoid copying when the nodes only have one owner.

isKnownUniquelyReferenced

In the Swift Standard Library lives a function named
isKnownUniquelyReferenced. This function can be used to determine
whether or not an object has exactly one reference to it. Let’s test this
out in the linked list COW example.

In the last example function call, find the line where you wrote var
list2 = list and update that to the following:

print("List1 uniquely referenced: \(isKnownUniquelyReferenced(&list1.head)
var list2 = list1
print("List1 uniquely referenced: \(isKnownUniquelyReferenced(&list1.head)

You should see two new lines in the console:

List1 uniquely referenced: true
List1 uniquely referenced: false
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Using isKnownUniquelyReferenced, you can check whether or not the
underlying node objects are being shared! Since you’ve verified this
behaviour, remove the two print statements. Your path is clear. Add
the following condition to the top of copyNodes:

guard !isKnownUniquelyReferenced(&head) else {
  return
}

You can be pleased that COW is still very much in effect:

---Example of linked list cow---
List1: 1 -> 2
List2: 1 -> 2
After appending 3 to list2
List1: 1 -> 2
List2: 1 -> 2 -> 3

With this change, your linked list performance will reclaim its
previous performance with the benefits of COW.

Sharing nodes

The second optimization is a partial sharing of nodes. As it turns out,
there are certain scenarios where you can avoid a copy. A
comprehensive evaluation of all the scenarios is beyond the scope of
this book, but you’ll try to get an understanding of how this works.

Take a look at the following example (no need to write this down):

var list1 = LinkedList<Int>()
(1...3).forEach { list1.append($0) }
var list2 = list1
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Now consider the consequence of doing a push operation on list2
with cow disabled:

list2.push(0)

Is list1 affected by push operation on list2? Not in this case! If you
were to print the two lists, you’ll get the following output:

List1: 1 -> 2 -> 3
List2: 0 -> 1 -> 2 -> 3

The result of pushing 100 to list1 in this case is also safe:

list1.push(100)
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If you were to print the two lists now, you’ll get the following output:

List1: 100 -> 1 -> 2 -> 3
List2: 0 -> 1 -> 2 -> 3

The unidirectional nature of the linked list means that head first
insertions can ignore the “COW tax”!

Where to go from here?
You’ve accomplished a lot in this chapter, and if you understood most
of what you’ve read, you’re in great shape.
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Stacks
Stacks are everywhere. Here are some common examples of things
you would stack:

pancakes

books

paper

cash

The stack data structure is identical in concept to a physical stack of
objects. When you add an item to a stack, you place it on top of the
stack. When you remove an item from a stack, you always remove the
topmost item.

Stack
Stacks are useful, and also exceedingly simple. The main goal of
building a stack is to enforce how you access your data. If you had a
tough time with the linked list concepts, you'll bad glad to know that
stacks are comparatively trivial.

There are only two essential operations for a stack:

push - adding an element to the top of the stack

pop - removing the top element of the stack

This means you can only add or remove elements from one side of the
data structure. In computer science, a stack is known as the LIFO (last
in first out) data structure. Elements that are pushed in last are the
first ones to be popped out.
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Stacks are used prominently in all disciplines of programming. To list
a few:

iOS uses the navigation stack to push and pop view controllers
into and out of view.

Memory allocation uses stacks at the architectural level. Memory
for local variables is also managed using a stack.

Search and conquer algorithms, such as finding a path out of a
maze, use stacks to facilitate backtracking.

Implementation
Open up the starter playground for this chapter. In the Sources folder
of your playground, create a file named Stack.swift. Inside the file,
write the following:

public struct Stack<Element> {

  private var storage: [Element] = []

  public init() { }
}

extension Stack: CustomStringConvertible {

  public var description: String {
    let topDivider = "----top----\n"
    let bottomDivider = "\n-----------"

    let stackElements = storage
      .map { "\($0)" }
      .reversed()
      .joined(separator: "\n")
    return topDivider + stackElements + bottomDivider
  }
}
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Choosing the right storage type for your stack is important. The array
is an obvious choice, since it offers constant time insertions and
deletions at one end via append and popLast. Usage of these two
operations will facilitate the LIFO nature of stacks.

push and pop
Add the following two operations to your Stack:

public mutating func push(_ element: Element) {
  storage.append(element)
}

@discardableResult
public mutating func pop() -> Element? {
  return storage.popLast()
}

Fairly straightforward! Head back to the playground page and write
the following:

example(of: "using a stack") {
  var stack = Stack<Int>()
  stack.push(1)
  stack.push(2)
  stack.push(3)
  stack.push(4)

  print(stack)
  
  if let poppedElement = stack.pop() {
    assert(4 == poppedElement)
    print("Popped: \(poppedElement)")
  }
}

You should see the following output:
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---Example of using a stack---
----top----
4
3
2
1
-----------
Popped: 4

push and pop both have a O(1) time complexity.

Non-essential operations

There are a couple of nice-to-have operations that make a stack easier
to use. Head back into Stack.swift and add the following to Stack:

public func peek() -> Element? {
 return storage.last
}

public var isEmpty: Bool {
  return peek() == nil
}

peek is an operation that is often attributed to the stack interface. The
idea of peek is to look at the top element of the stack without
mutating its contents.

Less is more

You may have wondered if you could adopt the Swift collection
protocols for the stack. A stack's purpose is to limit the number of
ways to access your data, and adopting protocols such as Collection
would go against this goal by exposing all the elements via iterators
and the subscript. In this case, less is more!

You might want to take an existing array and convert it to a stack so
that the access order is guaranteed. Of course it would be possible to
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loop through the array elements and push each element. However,
since you can write an initializer that just sets the underlying private
storage. Add the following to your stack implementation:

public init(_ elements: [Element]) {
  storage = elements
}

Now add this example to the main playground:

example(of: "initializing a stack from an array") {
  let array = ["A", "B", "C", "D"]
  var stack = Stack(array)
  print(stack)
  stack.pop()
}

This code creates a stack of strings and pops the top element "D".
Notice that the Swift compiler can type infer the element type from
the array so you can use Stack instead of the more verbose
Stack<String>.

You can go a step further and make your stack initializable from an
array literal. Add this to your stack implementation:

extension Stack: ExpressibleByArrayLiteral {
  public init(arrayLiteral elements: Element...) {
    storage = elements
  }
}

Now go back to the main playground page and add:

example(of: "initializing a stack from an array literal") {
  var stack: Stack = [1.0, 2.0, 3.0, 4.0]
  print(stack)
  stack.pop()
}
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This creates a stack of Doubles and pops the top value 4.0. Again type
inference saves you from having to type the more verbose
Stack<Double>.

Where to go from here?
Stacks are crucial to problems that search trees and graphs. Imagine
finding your way through a maze. Each time you come to a decision
point of left right or straight you can push all possible decisions onto
your stack. When you hit a dead end, simply backtrack by popping
from the stack and continuing until you escape or hit another dead
end.
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Queues
Lines are everywhere, whether you are lining up to buy tickets to your
favorite movie, or waiting for a printer machine to print out your
documents. These real-life scenarios mimic the queue data structure.

Queues use FIFO or first-in-first-out ordering, meaning the first
element that was enqueued will be the first to get dequeued. Queues
are handy when you need to maintain the order of your elements to
process later.

Common operations
Let’s establish a protocol for queues:

public protocol Queue {
  associatedtype Element
  mutating func enqueue(_ element: Element) -> Bool
  mutating func dequeue() -> Element?
  var isEmpty: Bool { get }
  var peek: Element? { get }
}

The protocol describes the common operations for a queue:

enqueue: Insert an element at the back of the queue. Returns true
if the operation was successful.

dequeue: Remove the element at the front of the queue and
return it.

isEmpty: Check if the queue is empty.

peek: Return the element at the front of the queue without
removing it.

Download from finelybook 7450911@qq.com

55



Notice that the queue only cares about removal from the front, and
insertion at the back. You don’t really need to know what the
contents are in between. If you did, you would probably just use an
array.

Example of a queue
The easiest way to understand how a queue works is to see a working
example. Imagine a group of people waiting in line for a movie ticket.

The queue currently holds Ray, Brian, Sam, and Mic. Once Ray has
received his ticket, he moves out of the line. By calling dequeue(), Ray
is removed from the front of the queue.

Calling peek will return Brian since he is now at the front of the line.

Now comes Vicki, who just joined the line to buy a ticket. By calling
enqueue("Vicki"), Vicki gets added to the back of the queue.

In the following sections, you will learn to create a queue in four
different ways:

Using an array

Using a doubly linked list
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Using a ring buffer

Using two stacks

Array-based implementation
The Swift Standard Library comes with core set highly-optimized,
primitive data structures you can use to build higher level
abstractions with. One of them is Array, a data structure that stores a
contiguous, ordered list of elements. In this section, you will use an
array to create a queue.

Open the starter playground. To the QueueArray page, add the
following:

public struct QueueArray<T>: Queue {
  private var array: [T] = []
  public init() {}
}

Here you’ve defined a generic QueueArray struct that adopts the Queue
protocol. Note that the associated type Element is inferred by the type
parameter T.

Next, you’ll complete the implementation of QueueArray to conform
to the Queue protocol.

Leveraging arrays

Add the following code to QueueArray:
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public var isEmpty: Bool {
  return array.isEmpty // 1
}

public var peek: T? {
  return array.first // 2
}

Using the features of Array, you get the following for free:

1. Check if the queue is empty.

2. Return the element at the front of the queue.

These operations are all O(1).

Enqueue

Adding an element to the back of the queue is easy. Just append an
element to the array. Add the following:

public mutating func enqueue(_ element: T) -> Bool {
  array.append(element)
  return true
}

Regardless of the size of the array, enqueueing an element is an O(1)
operation. This is because the array has empty space at the back.

In the example above, notice once you add Mic, the array has two
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In the example above, notice once you add Mic, the array has two
empty spaces.

After adding multiple elements, the array will eventually be full.
When you want to use more than the allocated space, the array must
resize to make additional room.

Resizing is an O(n) operation. Resizing requires the array to allocate
new memory and copy all existing data over to the new array. Since
this doesn’t happen very often (thanks to doubling the size each
time), the complexity still works out to be an ammortized O(1).

Dequeue

Removing an item from the front requires a bit more work. Add the
following:

public mutating func dequeue() -> T? {
  return isEmpty ? nil : array.removeFirst()
}

If the queue is empty, dequeue simply returns nil. If not, it removes
the element from the front of the array and returns it.
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Removing an element from the front of the queue is an O(n)
operation. To dequeue, you remove the element from the beginning
of the array. This is always a linear time operation, because it requires
all the remaining elements in the array to be shifted in memory.

Debug and test

For debugging purposes, you’ll have your queue adopt the
CustomStringConvertible protocol. Add the following at the bottom
of the page:

extension QueueArray: CustomStringConvertible {
  public var description: String {
    return array.description
  }
}

Time to try out the queue you just implemented! Add the following to
the bottom of the page:

var queue = QueueArray<String>()
queue.enqueue("Ray")
queue.enqueue("Brian")
queue.enqueue("Eric")
queue.dequeue()
queue
queue.peek

This code puts Ray, Brian and Eric in the queue, then removes Ray
and peeks at Brian but doesn’t remove him.
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Strengths and weaknesses

Here is a summary of the algorithmic and storage complexity of the
array-based queue implementation. Most of the operations are
constant time except for dequeue() which takes linear time. Storage
space is also linear.

You have seen how easy it is to implement an array-based queue by
leveraging a Swift Array. Enqueue is very fast thanks to an O(1)
append operation.

There are some shortcomings to the implementation. Removing an
item from the front of the queue can be inefficient, as removal causes
all elements to shift up by one. This makes a difference for very large
queues. Once the array gets full, it has to resize and may have unused
space. This could increase your memory footprint over time.

Is it possible to address these shortcomings? Let’s look at a linked
list-based implementation and compare it to a QueueArray.

Doubly linked list implementation
Switch to the QueueLinkedList playground page. Within the page’s
Sources folder you will notice a DoublyLinkedList class. You should
already be familiar with linked lists from Chapter 3, “Linked Lists”. A
doubly linked list is simply a linked list in which nodes also contain a
reference to the previous node.
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Start by adding a generic QueueLinkedList to the very end of the page
as shown below:

public class QueueLinkedList<T>: Queue {
  private var list = DoublyLinkedList<T>()
  public init() {}
}

This implementation is similar to QueueArray, but instead of an array,
you create a DoublyLinkedList.

Next, let’s start conforming to the Queue protocol.

Enqueue

To add an element to the back of the queue simply add the following:

public func enqueue(_ element: T) -> Bool {
  list.append(element)
  return true
}

Behind the scenes, the doubly linked list will update its tail node’s
previous and next references to the new node. This is an O(1)
operation.

Dequeue

To remove an element from the queue, add the following:
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public func dequeue() -> T? {
  guard !list.isEmpty, let element = list.first else {
    return nil
  }
  return list.remove(element)
}

This code checks to see if the list is not empty and the first element of
the queue exists. If it doesn’t, it returns nil. Otherwise, it removes
and returns the element at the front of the queue.

Removing from the front of the list is also an O(1) operation.
Compared to the array implementation, you didn’t have to shift
elements one by one. Instead, in the diagram above, you simply
update the next and previous pointers between the first two nodes of
the linked list.

Checking the state of a queue

Similar to the array implementation, you can implement peek and
isEmpty using the properties of the DoublyLinkedList. Add the
following:

public var peek: T? {
  return list.first?.value
}

public var isEmpty: Bool {
  return list.isEmpty
}
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Debug and test

For debugging purposes, you can add the following at the bottom of
the page:

extension QueueLinkedList: CustomStringConvertible {
  public var description: String {
    return list.description
  }
}

This will leverage the DoublyLinkedList’s default implementation for
the CustomStringConvertible protocol.

That’s all there is to implementing a queue using a linked list! In the
QueueLinkedList page of playground, you can try the example:

var queue = QueueLinkedList<String>()
queue.enqueue("Ray")
queue.enqueue("Brian")
queue.enqueue("Eric")
queue.dequeue()
queue
queue.peek

This test code yields the same results as your QueueArray
implementation.

Strengths and weaknesses

Let’s summarize of the algorithmic and storage complexity of the
doubly-linked-list-based queue implementation.
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One of the main problems with QueueArray is dequeuing an item
takes linear time. With the linked list implementation, you reduced it
to a constant operation, O(1). All you needed to do was update the
node’s previous and next pointers.

The main weakness with QueueLinkedList is not apparent from the
table. Despite O(1) performance, it suffers from high overhead. Each
element has to have extra storage for the forward and back reference.
Moreover, every time you create a new element, it requires a
relatively expensive dynamic allocation. By contrast QueueArray does
bulk allocation which is faster.

Can you eliminate allocation overhead and main O(1) dequeues? If
you don’t have to worry about your queue ever growing beyond a
fixed size, you can use a different approach like the ring buffer. For
example, you might have a game of Monopoly with five players. You
can use a queue based on a ring buffer to keep track of whose turn is
coming up next. You’ll take a look at a ring buffer implementation
next.

Ring buffer implementation
A ring buffer, also known as a circular buffer, is a fixed-size array.
This data structure strategically wraps around to the beginning when
there are no more items to remove at the end. Let’s go over a simple
example of how a queue can be implemented using a ring buffer.
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You first create a ring buffer, that has a fixed size of 4. The ring buffer
has two pointers that keep track of two things:

1. The read pointer keeps track of the front of the queue.

2. The write pointer keeps track of the next available slot so you can
override existing elements that have already been read.

Let’s enqueue an item:

Each time you add an item to the queue, the write pointer increments
by one. Let’s add a few more elements:
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Notice that the write pointer moved two more spots and is ahead of
the read pointer. This means that the queue is not empty.

Next, let’s dequeue two items:

Dequeuing is the equivalent of reading a ring buffer. Notice how the
read pointer moved twice.

Now enqueue one more item to fill up the queue:

Since the write pointer reached the end, it simply wraps around to the
starting index again.
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Finally, dequeue the two remaining items:

The read pointer wraps to the beginning as well.

As final observation, notice that whenever the read and write pointers
are at the same index, that means the queue is empty.

Now that you have a better understanding of how ring buffers make a
queue, let’s implement one!

Go to the QueueRingBuffer playground page. Within the page’s
Sources folder you will notice a RingBuffer class.

Note: If you want to learn more about the implementation of this
class, head over to our Swift to get a full walkthrough at
https://github.com/raywenderlich/swift-algorithm-
club/tree/master/Ring%20Buffer.

In QueueRingBuffer page, add the following:

public struct QueueRingBuffer<T>: Queue {
  private var ringBuffer: RingBuffer<T>

  public init(count: Int) {
    ringBuffer = RingBuffer<T>(count: count)
  }
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  public var isEmpty: Bool {
    return ringBuffer.isEmpty
  }

  public var peek: T? {
    return ringBuffer.first
  }
}

Here you defined a generic QueueRingBuffer. Note that you must
include a count parameter since the ring buffer has a fixed size.

To conform to the Queue protocol, you also created two properties
isEmpty and peek. Instead of exposing ringBuffer, you provide helper
variables to access the front of the queue and to check if the queue is
empty. Both of these are O(1) operations.

Enqueue

Next add the method below:

public mutating func enqueue(_ element: T) -> Bool {
  return ringBuffer.write(element)
}

To append an element to the queue, you simply call write(_:) on the
ringBuffer. This increments the write pointer by one.

Since the queue has a fixed size, you must now return true or false
to indicate whether the element has been successfully added.
enqueue(_:) is still an O(1) operation.

Dequeue

To remove an item from the front of the queue, add the following:

public mutating func dequeue() -> T? {
  return isEmpty ? nil : ringBuffer.read()
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}

This code checks if the queue is empty and if so, returns nil. If not, it
returns an item from the front of the buffer. Behind the scenes, the
ring buffer increments the read pointer by one.

Debug and test

To see your results in the playground, add the following:

extension QueueRingBuffer: CustomStringConvertible {
  public var description: String {
   return ringBuffer.description
  }
}

This code creates a string representation of the Queue by delegating
to the underlying ring buffer.

That’s all there is to it! Test your ring buffer-based queue by adding
the following at the bottom of the page:

var queue = QueueRingBuffer<String>(count: 10)
queue.enqueue("Ray")
queue.enqueue("Brian")
queue.enqueue("Eric")
queue
queue.dequeue()
queue
queue.peek

This test code works just like the previous examples dequeuing Ray
and peeking at Brian.

Strengths and weaknesses

How does the ring-buffer implementation compare? Let’s look at a
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How does the ring-buffer implementation compare? Let’s look at a
summary of the algorithmic and storage complexity.

The ring buffer-based queue has the same time complexity for
enqueue and dequeue as the linked list implementation. The only
difference is the space complexity. The ring buffer has a fixed size
which means that enqueue can fail.

So far you have seen three implementations, a simple array, a doubly
linked list, and a ring buffer. Although they appear to be eminently
useful, you’ll next look at a queue implemented using two stacks. You
will see how its spacial locality is far superior to the linked list. It also
doesn’t need a fixed size like a ring buffer.

Double stack implementation
Open the QueueStack playground page and start by adding a generic
QueueStack as shown below:

public struct QueueStack<T> : Queue {
  private var leftStack: [T] = []
  private var rightStack: [T] = []
  public init() {}
}

The idea behind using two stacks is simple. Whenever you enqueue an
element, it goes in the right stack. When you need to dequeue an
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element, you reverse the right stack and place it in the left stack so
you can retrieve the elements using FIFO order.

Leveraging arrays

Implement the common features of a queue, starting with the
following:

public var isEmpty: Bool {
  return leftStack.isEmpty && rightStack.isEmpty
}

To check if the queue is empty, simply check that both the left and
right stack are empty. This means there are no elements left to
dequeue and no new elements have been enqueued.

Next add the following:

public var peek: T? {
  return !leftStack.isEmpty ? leftStack.last : rightStack.first 
}

You know that peeking looks at the top element. If the left stack is not
empty, the element on top of this stack is at the front of the queue. If
the left stack is empty, the right stack will be reversed and placed in
the left stack. In this case, the element at the bottom of the right
stack is next in the queue.
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Note that the two properties isEmpty and peek are still O(1)
operations.

Enqueue

Next add the method below:

public mutating func enqueue(_ element: T) -> Bool {
  rightStack.append(element)
  return true
}

Recall that the right stack is used to enqueue elements. You simply
push to the stack by appending to the array.

Previously from implementing the QueueArray, you know that
appending an element is an O(1) operation.

Dequeue

Removing an item from a two stack based implementation of a queue
is tricky. Add the following method:

public mutating func dequeue() -> T? {
  if leftStack.isEmpty { // 1
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    leftStack = rightStack.reversed() // 2
    rightStack.removeAll() // 3
  }
  return leftStack.popLast() // 4
}

1. Check to see if the left stack is empty.

2. If the left stack is empty, set it as the reverse of the right stack.

1. Invalidate your right stack. Since you have transferred everything
to the left, just clear it.

2. Remove the last element from the left stack.

Remember, you only transfer the elements in the right stack when the
left stack is empty!

Note: Yes, reversing the contents of an array is an O(n)
operation. The overall dequeue cost is still amortized O(1).
Imagine having a large number of items in both the left and right
stack. If you dequeue all of the elements, first it will remove all of
the elements from the left stack, then reverse-copy the right
stack only once, and then continue removing elements off the
left stack.
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Debug and test

To see your results in the playground, add the following:

extension QueueStack: CustomStringConvertible {
  public var description: String {
    let printList = leftStack + rightStack.reversed()
    return printList.description
  }
}

Here you simply combine the left stack with the reverse of the right
stack, and you print all the elements.

Let’s try out the double stack implementation:

var queue = QueueStack<String>()
queue.enqueue("Ray")
queue.enqueue("Brian")
queue.enqueue("Eric")
queue.dequeue()
queue
queue.peek

Just like all of the examples before, this code enqueues Ray, Brian and
Eric, dequeues Ray and then peeks at Brian.

Strengths and weaknesses

Let’s look at a summary of the algorithmic and storage complexity of
your two-stack-based implementation.
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Compared to the array-based implementation, by leveraging two
stacks, you were able to transform dequeue(_:) into an amortized
O(1) operation.

Moreover, your two stack implementation is fully dynamic and
doesn’t have the fixed size restriction that your ring-buffer-based
queue implementation has.

Finally, it beats the linked list in terms of spacial locality. This is
because array elements are next to each other in memory blocks. So a
large number of elements will be loaded in a cache on first access.

Compare this to a linked list where the elements aren’t in contiguous
blocks of memory. This could lead to more cache misses which will
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increase access time.

Where to go from here?
You’ve learned a lot in this chapter! You implemented four varieties
of the queue and studied their strengths and weaknesses. You will see
queues come up again and again in future chapters as you learn about
more sophisticated algorithms.
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Trees

The tree is a data structure of profound importance. It is used to
tackle many recurring challenges in software development, such as:

representing hierarchical relationships

managing sorted data

facilitating fast lookup operations

There are many types of trees, and they come in various shapes and
sizes. In this chapter, you will learn the basics of using and
implementing a tree.

Terminology
There are many terms associated with trees, so you will get
acquainted with a couple right off the bat.

Node
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Like the linked list, trees are made up of nodes.

Each node encapsulates some data and keeps track of its children.

Parent and child

Trees are viewed starting from the top and branching towards the
bottom, just like a real tree, only upside-down.

Every node (except for the topmost one) is connected to exactly one
node above it. That node is called a parent node. The nodes directly
below and connected to it are called its child nodes. In a tree, every
child has exactly one parent. That’s what makes a tree, a tree.

Root

The topmost node in the tree is called the root of the tree. It is the
only node that has no parent:
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Leaf

A node is a leaf if it has no children:

You will run into more terms later on, but this should be enough to
get into the coding of trees.

Implementation
Open up the starter playground for this chapter to get started. A tree
is made up of nodes, so your first task is to create a TreeNode class.

Create a new file named TreeNode.swift and write the following
inside it:

public class TreeNode<T> {
  public var value: T
  public var children: [TreeNode] = []
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  public init(_ value: T) {
    self.value = value
  }
}

Each node is responsible for a value and holds references to all its
children using an array.

Next, add the following method inside the TreeNode class:

public func add(_ child: TreeNode) {
  children.append(child)
}

This method adds a child node to a node.

Time to give it a whirl. Head back to the playground page and write
the following:

example(of: "creating a tree") {
  let beverages = TreeNode("Beverages")

  let hot = TreeNode("Hot")
  let cold = TreeNode("Cold")

  beverages.add(hot)
  beverages.add(cold)
}

Hierarchical structures are natural candidates for tree structures, so
here you have defined three different nodes and organized them into
a logical hierarchy. This arrangement corresponds to the following
structure:
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Traversal algorithms
Iterating through linear collections such as arrays or linked lists is
straightforward. Linear collections have a clear start and end:

Iterating through trees is a bit more complicated:
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Should nodes on the left have precedence? How should the depth of a
node relate to its precedence? Your traversal strategy depends on the
problem you’re trying to solve. There are multiple strategies for
different trees and different problems.

In the next section, you will look at depth-first traversal, a technique
that starts at the root and visits nodes as deep as it can before
backtracking.

Depth-first traversal

Write the following at the bottom of TreeNode.swift:

extension TreeNode {
  public func forEachDepthFirst(visit: (TreeNode) -> Void) {
    visit(self)
    children.forEach {
      $0.forEachDepthFirst(visit: visit)
    }
  }
}
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This simple code uses recursion process the next node. (You could use
your own stack if you didn't want your implementation to be
recurrsive.) Time to test it out.

Head back to the playground page and write the following:

func makeBeverageTree() -> TreeNode<String> {
  let tree = TreeNode("Beverages")

  let hot = TreeNode("hot")
  let cold = TreeNode("cold")

  let tea = TreeNode("tea")
  let coffee = TreeNode("coffee")
  let chocolate = TreeNode("cocoa")

  let blackTea = TreeNode("black")
  let greenTea = TreeNode("green")
  let chaiTea = TreeNode("chai")

  let soda = TreeNode("soda")
  let milk = TreeNode("milk")

  let gingerAle = TreeNode("ginger ale")
  let bitterLemon = TreeNode("bitter lemon")

  tree.add(hot)
  tree.add(cold)

  hot.add(tea)
  hot.add(coffee)
  hot.add(chocolate)

  cold.add(soda)
  cold.add(milk)

  tea.add(blackTea)
  tea.add(greenTea)
  tea.add(chaiTea)

  soda.add(gingerAle)
  soda.add(bitterLemon)
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  return tree
}

This function creates the following tree:

Next add this:

example(of: "depth-first traversal") {
  let tree = makeBeverageTree()
  tree.forEachDepthFirst { print($0.value) }
}

This produces the following depth first output:

---Example of: depth-first traversal---
Beverages
hot
tea
black
green
chai
coffee
cocoa
cold
soda
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ginger ale
bitter lemon
milk

In the next section, you will look at level-order traversal, a technique
that visits each node of the tree based on the depth of the nodes.

Level-order traversal

Write the following at the bottom of TreeNode.swift:

extension TreeNode {
  public func forEachLevelOrder(visit: (TreeNode) -> Void) {
    visit(self)
    var queue = Queue<TreeNode>()
    children.forEach { queue.enqueue($0) }
    while let node = queue.dequeue() {
      visit(node)
      node.children.forEach { queue.enqueue($0) }
    }
  }
}

forEachLevelOrder visits each of the nodes in level-order:
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Note how you used a queue (not a stack) to make sure the nodes are
visited in the right level-order. A simple recursion (which implicitly
uses a stack) would not have worked!

Head back to the playground page and write the following:

example(of: "level-order traversal") {
  let tree = makeBeverageTree()
  tree.forEachLevelOrder { print($0.value) }
}

In the console, you will see the following output:

---Example of: level-order traversal---
beverages
hot
cold
tea
coffee
cocoa
soda
milk
black
green
chai
ginger ale
bitter lemon

Search

You already have a method that iterates through all the nodes, so
building a search algorithm shouldn’t take long. Write the following
at the bottom of TreeNode.swift:

extension TreeNode where T: Equatable {
  public func search(_ value: T) -> TreeNode? {
    var result: TreeNode?
    forEachLevelOrder { node in
      if node.value == value {
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        result = node
      }
    }
    return result
  }
}

Head back to the playground page to test your code. To save some
time, simply copy the previous example and modify it to test the
search method:

example(of: "searching for a node") {
  // tree from last example
  
  if let searchResult1 = tree.search("ginger ale") {
    print("Found node: \(searchResult1.value)")
  }
  
  if let searchResult2 = tree.search("WKD Blue") {
    print(searchResult2.value)
  } else {
    print("Couldn't find WKD Blue")
  }
}

You will see the following console output:

---Example of: searching for a node---
Found node: ginger ale
Couldn't find WKD Blue

Here you used your level-order traversal algorithm. Since it visits all
of the nodes, if there are multiple matches, the last match will win.
This means that you will get different objects back depending on what
traversal you use.

Where to go from here?
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In this chapter you’ve learned about the general structure of a tree
and a way to traverse through its nodes. In the following chapters,
you’ll learn about specialized trees that solve interesting problems.
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Binary Trees
In the previous chapter, you looked at a basic tree where each node
can have many children. A binary tree is a tree where each node has at
most two children, often referred to as the left and right children:

Binary trees serve as the basis for many tree structures and
algorithms. In this chapter, you’ll build a binary tree and learn about
the three most important tree traversal algorithms.

Implementation
Open the starter project for this chapter. Create a new file and name it
BinaryNode.swift. Add the following inside this file:

public class BinaryNode<Element> {

  public var value: Element
  public var leftChild: BinaryNode?
  public var rightChild: BinaryNode?

  public init(value: Element) {
    self.value = value
  }
}

In the main playground page, add the following:
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var tree: BinaryNode<Int> {
  let zero = BinaryNode(value: 0)
  let one = BinaryNode(value: 1)
  let five = BinaryNode(value: 5)
  let seven = BinaryNode(value: 7)
  let eight = BinaryNode(value: 8)
  let nine = BinaryNode(value: 9)
  
  seven.leftChild = one
  one.leftChild = zero
  one.rightChild = five
  seven.rightChild = nine
  nine.leftChild = eight
  
  return seven
}

This defines a computed variable that returns the following tree:

Building a diagram

Building a mental model of a data structure can be quite helpful in
learning how it works. To that end, you’ll implement a reusable
algorithm that helps visualize a binary tree in the console.
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Note: This algorithm is based on an implementation by Károly
Lőrentey in his book Optimizing Collections, available from
https://www.objc.io/books/optimizing-collections/.

Add the following to the bottom of BinaryNode.swift:

extension BinaryNode: CustomStringConvertible {

  public var description: String {
    return diagram(for: self)
  }
  
  private func diagram(for node: BinaryNode?, 
                       _ top: String = "",
                       _ root: String = "", 
                       _ bottom: String = "") -> String {
    guard let node = node else {
      return root + "nil\n"
    }
    if node.leftChild == nil && node.rightChild == nil {
      return root + "\(node.value)\n"
    }
    return diagram(for: node.rightChild,
                   top + " ", top + "┌──", top + "│ ") 
         + root + "\(node.value)\n" 
         + diagram(for: node.leftChild,
                   bottom + "│ ", bottom + "└──", bottom + " "
  }
}

diagram will recursively create a string representing the binary tree.
To try it out, head back to the playground and write the following:

example(of: "tree diagram") {
  print(tree)
}

You should see the following console output:
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---Example of tree diagram---
 ┌──nil
┌──9
│ └──8
7
│ ┌──5
└──1
 └──0

You’ll be using this diagram for other binary trees in this book.

Traversal algorithms
Previously, you looked at a level-order traversal of a tree. With a few
tweaks, you can make this algorithm work for binary trees as well.
However, instead of re-implementing level-order traversal, you’ll look
at three traversal algorithms for binary trees: in-order, pre-order, and
post-order traversals.

In-order traversal

In-order traversal visits the nodes of a binary tree in the following
order, starting from the root node:

If the current node has a left child, recursively visit this child
first.

Then visit the node itself.

If the current node has a right child, recursively visit this child.

Here’s what an in-order traversal looks like for your example tree:
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You may have noticed that this prints the example tree in ascending
order. If the tree nodes are structured in a certain way, in-order
traversal visits them in ascending order! You’ll learn more about
binary search trees in the next chapter.

Open up BinaryNode.swift and add the following code to the bottom
of the file:

extension BinaryNode {

  public func traverseInOrder(visit: (Element) -> Void) {
    leftChild?.traverseInOrder(visit: visit)
    visit(value)
    rightChild?.traverseInOrder(visit: visit)
  }
}

Following the rules laid out above, you first traverse to the leftmost
node before visiting the value. You then traverse to the rightmost
node.

Head back to the playground page to test this out. Add the following
at the bottom of the page:
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example(of: "in-order traversal") {
  tree.traverseInOrder { print($0) }
}

You should see the following in the console:

---Example of in-order traversal---
0
1
5
7
8
9

Pre-order traversal

Pre-order traversal always visits the current node first, then
recursively visits the left and right child:

Write the following just below your in-order traversal method:

public func traversePreOrder(visit: (Element) -> Void) {
  visit(value)
  leftChild?.traversePreOrder(visit: visit)
  rightChild?.traversePreOrder(visit: visit)
}
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Test it out with the following code:

example(of: "pre-order traversal") {
  tree.traversePreOrder { print($0) }
}

You should see the following output in the console:

---Example of pre-order traversal---
7
1
0
5
9
8

Post-order traversal

Post-order traversal only visits the current node after the left and
right child have been visited recursively.

In other words, given any node, you’ll visit its children before visiting
itself. An interesting consequence of this is that the root node is
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always visited last.

Back inside BinaryNode.swift, write the following below
traversePreOrder:

public func traversePostOrder(visit: (Element) -> Void) {
  leftChild?.traversePostOrder(visit: visit)
  rightChild?.traversePostOrder(visit: visit)
  visit(value)
}

Navigate back to the playground page to try it out:

example(of: "post-order traversal") {
  tree.traversePostOrder { print($0) }
}

You should see the following in the console:

---Example of post-order traversal---
0
5
1
8
9
7

Where to go from here?
Each one of these traversal algorithms has both a time and space
complexity of O(n). While this version of the binary tree isn’t too
interesting, you saw that in-order traversal can be used to visit the
nodes in ascending order. Binary trees can enforce this behavior by
adhering to some rules during insertion. In the next chapter, you’ll
look at a binary tree with stricter semantics: the binary search tree.
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Binary Search Trees
A binary search tree (or BST) is a data structure that facilitates fast
lookup, addition, and removal operations. Each operation has an
average time complexity of O(log n), which is considerably faster than
linear data structures such as arrays and linked lists. A binary search
tree achieves this performance by imposing two rules on the binary
tree you saw in the previous chapter:

The value of a left child must be less than the value of its parent.

The value of a right child must be greater than or equal to the
value of its parent.

These rules let the tree act like a decision tree:

Picking a side forfeits all the possibilities of the other side. Binary
search trees use this property to save you from performing
unnecessary checking.
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Case study: array vs. BST
To illustrate the power of binary search trees, you’ll look at some
common operations and compare the performance of arrays against
the binary search tree.

Consider the following two collections:

Lookup

There’s only one way to do element lookups for an unsorted array.
You need to check every element in the array from the start:

That’s why array.contains(:) is an O(n) operation.

This is not the case for binary search trees:
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Every time the search algorithm visits a node in the BST, it can safely
make these two assumptions:

If the search value is less than the current value, it must be in the
left subtree.

If the search value value is greater than the current value, it must
be in the right subtree.

By leveraging the rules of the BST, you can avoid unnecessary checks
and cut the search space in half every time you make a decision.
That’s why element lookup in a BST is an O(log n) operation.

Insertion

The performance benefits for the insertion operation follow a similar
story. Assume you want to insert 0 into a collection:
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Inserting values into an array is like butting into an existing line:
everyone in the line behind your chosen spot needs to make space for
you by shuffling back.

In the above example, zero is inserted in front of the array, causing all
other elements to shift backwards by one position. Inserting into an
array has a time complexity of O(n).

Insertion into a binary search tree is much more comforting:

By leveraging the rules for the BST, you only needed to make three
traversals to find the location for the insertion, and you didn’t have to
shuffle all the elements around! Inserting elements in a BST is again
an O(log n) operation.

Removal
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Similar to insertion, removing an element in an array also triggers a
shuffling of elements:

This behavior also plays nicely with the lineup analogy. If you leave
the middle of the line, everyone behind you needs to shuffle forward
to take up the empty space.

Here’s what removing a value from a BST looks like:

Nice and easy! There are complications to manage when the node
you’re removing has children, but you’ll look into that later. Even
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with those complications, removing an element from a BST is still an
O(log n) operation.

Binary search trees drastically reduce the number of steps for add,
remove, and lookup operations. Now that you have a grasp of the
benefits of using a binary search tree, you can move on to the actual
implementation.

Implementation
Open up the starter project for this chapter. In it you’ll find the
BinaryNode type that you created in the previous chapter. Create a
new file named BinarySearchTree.swift and add the following inside
the file:

public struct BinarySearchTree<Element: Comparable> {

  public private(set) var root: BinaryNode<Element>?

  public init() {}
}

extension BinarySearchTree: CustomStringConvertible {

  public var description: String {
    return root?.description ?? "empty tree"
  }
}

By definition, binary search trees can only hold values that are
Comparable.

Next, you’ll look at the insert method.

Inserting elements

In accordance with the rules of the BST, nodes of the left child must
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In accordance with the rules of the BST, nodes of the left child must
contain values less than the current node. Nodes of the right child
must contain values greater than or equal to the current node. You’ll
implement the insert method while respecting these rules.

Add the following to BinarySearchTree.swift:

extension BinarySearchTree {

  public mutating func insert(_ value: Element) {
    root = insert(from: root, value: value)
  }
  
  private func insert(from node: BinaryNode<Element>?, value: Element)
      -> BinaryNode<Element> {
    // 1
    guard let node = node else {
      return BinaryNode(value: value)
    }
    // 2
    if value < node.value {
      node.leftChild = insert(from: node.leftChild, value: value)
    } else {
      node.rightChild = insert(from: node.rightChild, value: value)
    }
    // 3
    return node
  }
}

The first insert method is exposed to users, while the second one will
be used as a private helper method:

1. This is a recursive method, so it requires a base case for
terminating recursion. If the current node is nil, you’ve found
the insertion point and you return the new BinaryNode.

1. This if statement controls which way the next insert call should
traverse. If the new value is less than the current value, you call
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insert on the left child. If the new value is greater than or equal
to the current value, you’ll call insert on the right child.

2. Return the current node. This makes assignments of the form
node = insert(from: node, value: value) possible as insert
will either create node (if it was nil) or return node (it it was not
nil).

Head back to the playground page and add the following at the
bottom:

example(of: "building a BST") {
  var bst = BinarySearchTree<Int>()
  for i in 0..<5 {
    bst.insert(i)
  }
  print(bst)
}

You should see the following output:

---Example of: building a BST---
    ┌──4
  ┌──3
  │ └──nil
 ┌──2
 │ └──nil
┌──1
│ └──nil
0
└──nil

That tree looks a bit unbalanced, but it does follow the rules.
However, this tree layout has undesirable consequences. When
working with trees, you always want to achieve a balanced format:
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An unbalanced tree affects performance. If you insert 5 into the
unbalanced tree you’ve created, it becomes an O(n) operation:

You can create structures known as self-balancing trees that use
clever techniques to maintain a balanced structure, but we’ll save
those details for the next chapter. For now, you’ll simply build a
sample tree with a bit of care to keep it from becoming unbalanced.

Add the following computed variable at the top of the playground
page:

var exampleTree: BinarySearchTree<Int> {
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  var bst = BinarySearchTree<Int>()
  bst.insert(3)
  bst.insert(1)
  bst.insert(4)
  bst.insert(0)
  bst.insert(2)
  bst.insert(5)
  return bst
}

Replace your example function with the following:

example(of: "building a BST") {
  print(exampleTree)
}

You should see the following in the console:

---Example of: building a BST---
 ┌──5
┌──4
│ └──nil
3
│ ┌──2
└──1
 └──0

Much nicer!

Finding elements

Finding an element in a BST requires you to traverse through its
nodes. It’s possible to come up with a relatively simple
implementation by using the existing traversal mechanisms you
learned about in the previous chapter.

Add the following to the bottom of BinarySearchTree.swift:

extension BinarySearchTree {
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  public func contains(_ value: Element) -> Bool {
    guard let root = root else {
      return false
    }
    var found = false
    root.traverseInOrder {
      if $0 == value {
        found = true
      }
    }
    return found
  }
}

Next, head back to the playground page to test this out:

example(of: "finding a node") {
  if exampleTree.contains(5) {
    print("Found 5!")
  } else {
    print("Couldn't find 5")
  }
}

You should see the following in the console:

---Example of: finding a node---
Found 5!

In-order traversal has a time complexity of O(n), thus this
implementation of contains has the same time complexity as an
exhaustive search through an unsorted array. However, you can do
better.

Optimizing contains

You can rely on the rules of the BST to avoid needless comparisons.
Back in BinarySearchTree.swift, update the contains method to the
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following:

public func contains(_ value: Element) -> Bool {
  // 1
  var current = root
  // 2
  while let node = current {
    // 3
    if node.value == value {
      return true
    }
    // 4
    if value < node.value {
      current = node.leftChild
    } else {
      current = node.rightChild
    }
  }
  return false
}

Here’s how this works:

1. Start off by setting current to the root node.

2. While current is not nil, check the current node’s value.

3. If the value is equal to what you’re trying to find, return true.

4. Otherwise, decide whether you’re going to check the left or the
right child.

In a balanced binary search tree, this implementation of contains is
an O(log n) operation.

Removing elements

Removing elements is a little more tricky, as there are a few different
scenarios you need to handle.
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Case 1: Leaf node

Removing a leaf node is straightforward:

Simply detaching the leaf node is enough.

For non-leaf nodes however, there are extra steps to be taken.

Case 2: Nodes with one child

When removing nodes with one child, you’ll need to reconnect that
one child with the rest of the tree:
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Case 3: Nodes with two children

Nodes with two children are a bit more complicated, so a more
complex example tree will serve better to illustrate how to handle this
situation. Assume you have the following tree and you want to
remove the value 25:

Simply deleting the node presents a dilemma:
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You have two child nodes (12 and 37) to reconnect, but the parent
node only has space for one child. To solve this problem, you’ll
implement a clever workaround by performing a swap.

When removing a node with two children, replace the node you
removed with smallest node in its right subtree. Based on the rules of
the BST, this is the leftmost node of the right subtree:
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It’s important to note that this produces a valid binary search tree.
Because the new node was the smallest node in the right subtree, all
nodes in the right subtree will still be greater than or equal to the new
node. And because the new node came from the right subtree, all
nodes in the left subtree will be less than the new node.

After performing the swap, you can simply remove the value you
copied, which is just a leaf node.
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This will take care of removing nodes with two children.

Implementation

Open up BinarySearchTree.swift to implementing remove. Add the
following code at the bottom of the file:

private extension BinaryNode {

  var min: BinaryNode {
    return leftChild?.min ?? self
  }
}

extension BinarySearchTree {
  
  public mutating func remove(_ value: Element) {
    root = remove(node: root, value: value)
  }
  
  private func remove(node: BinaryNode<Element>?, value: Element)

Download from finelybook 7450911@qq.com

114



    -> BinaryNode<Element>? {
    guard let node = node else {
      return nil
    }
    if value == node.value {
      // more to come
    } else if value < node.value {
      node.leftChild = remove(node: node.leftChild, value: value)
    } else {
      node.rightChild = remove(node: node.rightChild, value: value)
    }
    return node
  }
}

This should look familiar to you. You’re using the same recursive
setup with a private helper method as you did for insert. You’ve also
added a recursive min property to BinaryNode to find the minimum
node in a subtree.

The different removal cases are handled in the if value ==
node.value clause:

// 1
if node.leftChild == nil && node.rightChild == nil {
  return nil
}
// 2
if node.leftChild == nil {
  return node.rightChild
}
// 3
if node.rightChild == nil {
  return node.leftChild
}
// 4
node.value = node.rightChild!.min.value
node.rightChild = remove(node: node.rightChild, value: node.value)

1. In the case where the node is a leaf node, you simply return nil,
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1. In the case where the node is a leaf node, you simply return nil,
thereby removing the current node.

2. If the node has no left child, you return node.rightChild to
reconnect the right subtree.

3. If the node has no right child, you return node.leftChild to
reconnect the left subtree.

4. This is the case where the node to be removed has both a left and
right child. You replace the node’s value with the smallest value
from the right subtree. You then call remove on the right child to
remove this swapped value.

Head back to the playground page and test remove by writing the
following:

example(of: "removing a node") {
  var tree = exampleTree
  print("Tree before removal:")
  print(tree)
  tree.remove(3)
  print("Tree after removing root:")
  print(tree)
}

You should see the following output in the console:

---Example of: removing a node---
Tree before removal:
 ┌──5
┌──4
│ └──nil
3
│ ┌──2
└──1
 └──0

Tree after removing root:
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┌──5
4
│ ┌──2
└──1
 └──0

Where to go from here?
The BST is a powerful data structure that can delivers great
performance when managing sorted data. In this chapter, you learned
about the insert, remove, and contains methods of the binary search
tree. You also learned about its Achilles’ heel: the performance of
operations on a BST can degrade to O(n) if the tree becomes
unbalanced.

In the next chapter, you’ll learn about a self-balancing binary search
tree: the AVL tree.
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AVL Trees
In the previous chapter, you learned about the O(log n) performance
characteristics of the binary search tree. However, you also learned
that unbalanced trees can deteriorate the performance of the tree, all
the way down to O(n). In 1962, Georgy Adelson-Velsky and Evgenii
Landis came up with the first self-balancing binary search tree: the
AVL Tree.

Understanding balance
A balanced tree is the key to optimizing the performance of the binary
search tree. In this section, you’ll learn about the three main states of
balance.

Perfect balance

The ideal form of a binary search tree is the perfectly balanced state.
In technical terms, this means every level of the tree is filled with
nodes, from top to bottom.

Not only is the tree perfectly symmetrical, the nodes at the bottom
level are completely filled. This is the requirement for being perfectly
balanced.

"Good-enough" balance

Download from finelybook 7450911@qq.com

118



Although achieving perfect balance is ideal, it is rarely possible. A
perfectly balanced tree has to contain the exact number of nodes to
fill every level to the bottom, so it can only be perfect with a
particular number of elements.

As an example, a tree with 1, 3, or 7 nodes can be perfectly balanced,
but a tree with 2, 4, 5, or 6 cannot be perfectly balanced, since the last
level of the tree will not be filled.

The definition of a balanced tree is that every level of the tree must be
filled, except for the bottom level. In most cases of binary trees, this is
the best you can do.

Unbalanced

Finally, there’s the unbalanced state. Binary search trees in this state
suffer from various levels of performance loss, depending on the
degree of imbalance.

Keeping the tree balanced gives the find, insert and remove
operations an O(log n) time complexity. AVL trees maintain balance
by adjusting the structure of the tree when the tree becomes
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unbalanced. You’ll learn how this works as you progress through the
chapter.

Implementation
Inside the starter project for this chapter is an implementation of the
binary search tree as created in the previous chapter. The only
difference is that all references to the binary search tree have been
renamed to AVL tree.

Binary search trees and AVL trees share much of the same
implementation; In fact, all that you’ll be adding is the balancing
component. Open up the starter project to begin.

Measuring balance

To keep a binary tree balanced, you’ll need a way to measure the
balance of the tree. The AVL tree achieves this with a height property
in each node. In tree-speak, the height of a node is the longest
distance from the current node to a leaf node:

Open the starter playground for this chapter and add the following
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Open the starter playground for this chapter and add the following
property to AVLNode in the compiled sources folder:

public var height = 0

You’ll use the relative heights of a node’s children to determine
whether a particular node is balanced.

The height of the left and right children of each node must differ by at
most 1. This is known as the balance factor.

Write the following just below the height property of AVLNode:

public var balanceFactor: Int {
  return leftHeight - rightHeight
}

public var leftHeight: Int {
  return leftChild?.height ?? -1
}

public var rightHeight: Int {
  return rightChild?.height ?? -1
}

The balanceFactor computes the height difference of the left and
right child. If a particular child is nil, its height is considered to be -1.

Here’s an example of an AVL tree:
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This is a balanced tree, where all levels except the bottom one are
filled. The blue numbers represent the height of each node, while the
green numbers represent the balanceFactor.

Here’s an updated diagram with 40 inserted:

Inserting 40 into the tree turns it into an unbalanced tree. Notice how
the balanceFactor changes. A balanceFactor of 2 or -2 is an
indication of an unbalanced tree.
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Although more than one node may have a bad balancing factor, you
only need to perform the balancing procedure on the bottom-most
node containing the invalid balance factor: the node containing 25.

That’s where rotations come in.

Rotations

The procedures used to balance a binary search tree are known as
rotations. There are four rotations in total, for the four different ways
that a tree can become unbalanced. These are known as left rotation,
left-right rotation, right rotation, and right-left rotation.

Left rotation

The imbalance caused by inserting 40 into the tree can be solved by a
left rotation. A generic left rotation of node x looks like this:

Before going into specifics, there are two takeaways from this before
and after comparison:

In-order traversal for these nodes remains the same.

The depth of the tree is reduced by 1 level after the rotation.
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Add the following method to AVLTree, just below
insert(from:value:):

private func leftRotate(_ node: AVLNode<Element>) -> AVLNode
  // 1
  let pivot = node.rightChild!
  // 2
  node.rightChild = pivot.leftChild
  // 3
  pivot.leftChild = node
  // 4
  node.height = max(node.leftHeight, node.rightHeight) + 1
  pivot.height = max(pivot.leftHeight, pivot.rightHeight) + 
  // 5
  return pivot
}

Here are the steps needed to perform a left rotation:

1. The right child is chosen as the pivot. This node will replace the
rotated node as the root of the subtree (it will move up a level).

1. The node to be rotated will become the left child of the pivot (it
moves down a level). This means the current left child of the
pivot must be moved elsewhere.

In the generic example shown in the earlier image, this is node b.
Because b is smaller than y but greater than x, it can replace y as
the right child of x. So you update the rotated node’s rightChild
to the pivot’s leftChild.

2. The pivot’s leftChild can now be set to the rotated node.

3. You update the heights of the rotated node and the pivot.

4. Finally, you return the pivot so it can replace the rotated node in
the tree.

Here are the before and after effects of the left rotation of 25 from the
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Here are the before and after effects of the left rotation of 25 from the
previous example:

Right rotation

Right rotation is the symmetrical opposite of left rotation. When a
series of left children is causing an imbalance, it’s time for a right
rotation. A generic right rotation of node x looks like this:
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To implement this, add the following code just after leftRotate:

private func rightRotate(_ node: AVLNode<Element>) -> AVLNode
  let pivot = node.leftChild!
  node.leftChild = pivot.rightChild
  pivot.rightChild = node
  node.height = max(node.leftHeight, node.rightHeight) + 1
  pivot.height = max(pivot.leftHeight, pivot.rightHeight) + 
  return pivot
}

This is nearly identical to the implementation of leftRotate, except
the references to the left and right children have been swapped.

Right-left rotation

You may have noticed that the left and right rotations balance nodes
that are all left children or all right children. Consider the case where
36 is inserted into the original example tree.
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Doing a left rotation in this case won’t result in a balanced tree. The
way to handle cases like this is to perform a right rotation on the right
child before doing the left rotation. Here’s what the procedure looks
like:

1. You apply a right rotation to 37.

2. Now that nodes 25, 36, and 37 are all right children, you can
apply a left rotation to balance the tree.

Add the following code just after rightRotate:
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private func rightLeftRotate(_ node: AVLNode<Element>) -> AVLNode
  guard let rightChild = node.rightChild else {
    return node
  }
  node.rightChild = rightRotate(rightChild)
  return leftRotate(node)
}

Don't worry just yet about when this is called. You'll get to that in a
second. You first need to handle the final case, left-right rotation.

Left-right rotation

Left-right rotation is the symmetrical opposite of the right-left
rotation. Here’s an example:

1. You apply a left rotation to node 10.

2. Now that nodes 25, 15, and 10 are all left children, you can apply
a right rotation to balance the tree.

Add the following code just after rightLeftRotate:

private func leftRightRotate(_ node: AVLNode<Element>) -> AVLNode
  guard let leftChild = node.leftChild else {
    return node
  }
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  node.leftChild = leftRotate(leftChild)
  return rightRotate(node)
}

That’s it for rotations. Next, you’ll figure out when to apply these
rotations at the correct location.

Balance

The next task is to design a method that uses balanceFactor to decide
whether a node requires balancing or not. Write the following method
below leftRightRotate:

private func balanced(_ node: AVLNode<Element>) -> AVLNode<Element
  switch node.balanceFactor {
  case 2:
    // ...
  case -2:
    // ...
  default:
    return node
  }
}

There are three cases to consider.

1. A balanceFactor of 2 suggests that the left child is “heavier”
(that is, contains more nodes) than the right child. This means
you want to use either right or left-right rotations.

2. A balanceFactor of -2 suggests that the right child is heavier
than the left child. This means you want to use either left or
right-left rotations.

3. The default case suggests that the particular node is balanced.
There’s nothing to do here except to return the node.

The sign of the balanceFactor can be used to determine if a single or
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The sign of the balanceFactor can be used to determine if a single or
double rotation is required:

Update the balanced function to the following:

private func balanced(_ node: AVLNode<Element>) -> AVLNode<Element
  switch node.balanceFactor {
  case 2:
    if let leftChild = node.leftChild, leftChild.balanceFactor == -
      return leftRightRotate(node)
    } else {
      return rightRotate(node)
    }
  case -2:
    if let rightChild = node.rightChild, rightChild.balanceFactor == 
      return rightLeftRotate(node)
    } else {
      return leftRotate(node)
    }
  default:
    return node
  }
}

balanced inspects the balanceFactor to determine the proper course
of action. All that’s left is to call balance at the proper spot.

Revisiting insertion

You’ve already done the majority of the work. The remainder is fairly
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You’ve already done the majority of the work. The remainder is fairly
straightforward. Update insert(from:value:) to the following:

private func insert(from node: AVLNode<Element>?, value: Element)
  guard let node = node else {
    return AVLNode(value: value)
  }
  if value < node.value {
    node.leftChild = insert(from: node.leftChild, value: value)
  } else {
    node.rightChild = insert(from: node.rightChild, value: value)
  }
  let balancedNode = balanced(node)
  balancedNode.height = max(balancedNode.leftHeight, balancedNode.rightHeight) + 
  return balancedNode
}

Instead of returning the node directly after inserting, you pass it into
balanced. This ensures every node in the call stack is checked for
balancing issues. You also update the node’s height.

That’s all there is to it! Head into the playground page and test it out.
Add the following to the playground:

example(of: "repeated insertions in sequence") {
  var tree = AVLTree<Int>()
  for i in 0..<15 {
    tree.insert(i)
  }
  print(tree)
}

You should see the following output in the console:

---Example of: repeated insertions in sequence---
  ┌──14
 ┌──13
 │ └──12
┌──11
│ │ ┌──10
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│ └──9
│  └──8
7
│  ┌──6
│ ┌──5
│ │ └──4
└──3
 │ ┌──2
 └──1
  └──0

Take a moment to appreciate the uniform spread of the nodes. If the
rotations weren’t applied, this would have become a long, unbalanced
link of right children.

Revisiting remove

Retrofitting the remove operation for self-balancing is just as easy as
fixing insert. In AVLTree, find remove and replace the final return
statement with the following:

let balancedNode = balanced(node)
balancedNode.height = max(balancedNode.leftHeight, balancedNode.rightHeight) + 
return balancedNode

Head back to the playground page and add the following code at the
bottom of the file:

example(of: "removing a value") {
  var tree = AVLTree<Int>()
  tree.insert(15)
  tree.insert(10)
  tree.insert(16)
  tree.insert(18)
  print(tree)
  tree.remove(10)
  print(tree)
}

Download from finelybook 7450911@qq.com

132



You should see the following console output:

---Example of: removing a value---
 ┌──18
┌──16
│ └──nil
15
└──10

┌──18
16
└──15

Removing 10 caused a left rotation on 15. Feel free to try out a few
more test cases of your own.

Where to go from here?
Whew! The AVL tree is the culmination of your search for the
ultimate binary search tree. The self-balancing property guarantees
that the insert and remove operations function at optimal
performance with an O(log n) time complexity.

While AVL trees were the first self-balancing implementations of a
BST, others, such as the red-black tree and splay tree, have since
joined the party. If you’re interested, you check those out in the Swift
Algorithm Club. Find them at at:
https://github.com/raywenderlich/swift-algorithm-
club/tree/master/Red-Black%20Tree and
https://github.com/raywenderlich/swift-algorithm-
club/tree/master/Splay%20Tree respectively.
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Tries
The trie (pronounced as try) is a tree that specializes in storing data
that can be represented as a collection, such as English words:

Each character in a string is mapped to a node. The last node in each
string is marked as a terminating node (a dot in the image above).

The benefits of a trie are best illustrated by looking at it in the context
of prefix matching.

Example
You are given a collection of strings. How would you build a
component that handles prefix matching? Here’s one way:

class EnglishDictionary {

  private var words: [String]
  
  func words(matching prefix: String) -> [String] {
    return words.filter { $0.hasPrefix(prefix) }
  }
}
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words(matching:) will go through the collection of strings and return
the strings that match the prefix.

If the number of elements in the words array is small, this is a
reasonable strategy. But if you’re dealing with more than a few
thousand words, the time it takes to go through the words array will
be unacceptable. The time complexity of words(matching:) is O(k*n),
where k is the longest string in the collection, and n is the number of
words you need to check.

The trie data structure has excellent performance characteristics for
this type of problem; as a tree with nodes that support multiple
children, each node can represent a single character.

You form a word by tracing the collection of characters from the root
to a node with a special indicator — a terminator — represented by a
black dot. An interesting characteristic of the trie is that multiple
words can share the same characters.
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To illustrate the performance benefits of the trie, consider the
following example where you need to find the words with the prefix
CU.

First you travel to the node containing C. That quickly excludes other
branches of the trie from the search operation:

Next, you need to find the words that have the next letter U. You
traverse to the U node:

Since that’s the end of your prefix, the trie would return all
collections formed by the chain of nodes from the U node. In this case,
the words CUT and CUTE would be returned. Imagine if this trie
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contained hundreds of thousands of words. The number of
comparisons you can avoid by employing a trie is substantial.

Implementation
As always, open up the starter playground for this chapter.

TrieNode

You’ll begin by creating the node for the trie. In the Sources directory,
create a new file named TrieNode.swift. Add the following to the file:

public class TrieNode<Key: Hashable> {

  // 1
  public var key: Key?
  
  // 2
  public weak var parent: TrieNode?
  
  // 3
  public var children: [Key: TrieNode] = [:]

  // 4
  public var isTerminating = false
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  public init(key: Key?, parent: TrieNode?) {
    self.key = key
    self.parent = parent
  }
}

This interface is slightly different compared to the other nodes you’ve
encountered:

1. key holds the data for the node. This is optional because the root
node of the trie has no key.

2. A TrieNode holds a weak reference to its parent. This reference
simplifies the remove method later on.

3. In binary search trees, nodes have a left and right child. In a trie,
a node needs to hold multiple different elements. You’ve
declared a children dictionary to help with that.

4. As discussed earlier, isTerminating acts as an indicator for the
end of a collection.

Trie

Next, you’ll create the trie itself, which will manage the nodes. In the
Sources folder, create a new file named Trie.swift. Add the following
to the file:

public class Trie<CollectionType: Collection>
    where CollectionType.Element: Hashable {
  
  public typealias Node = TrieNode<CollectionType.Element>
  
  private let root = Node(key: nil, parent: nil)
  
  public init() {}
}
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The Trie class is built for all types that adopt the Collection
protocol, including String. In addition to this requirement, each
element inside the collection must be Hashable. This is required
because you’ll be using the collection’s elements as keys for the
children dictionary in TrieNode.

Next, you’ll implement four operations for the trie: insert, contains,
remove and a prefix match.

Insert

Tries work with any type that conforms to Collection. The trie will
take the collection and represent it as a series of nodes, where each
node maps to an element in the collection.

Add the following method to Trie:

public func insert(_ collection: CollectionType) {
  // 1
  var current = root
  
  // 2
  for element in collection {
    if current.children[element] == nil {
      current.children[element] = Node(key: element, parent: current)
    }
    current = current.children[element]!
  }
  
  // 3
  current.isTerminating = true
}

Here’s what’s going on:

1. current keeps track of your traversal progress, which starts with
the root node.

2. A trie stores each element of a collection in separate nodes. For
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2. A trie stores each element of a collection in separate nodes. For
each element of the collection, you first check if the node
currently exists in the children dictionary. If it doesn’t, you
create a new node. During each loop, you move current to the
next node.

3. After iterating through the for loop, current should be
referencing the node representing the end of the collection. You
mark that node as the terminating node.

The time complexity for this algorithm is O(k), where k is the number
of elements in the collection you’re trying to insert. This is because
you need to traverse through or create each node that represents each
element of the new collection.

Contains

contains is very similar to insert. Add the following method to Trie:

public func contains(_ collection: CollectionType) -> Bool {
  var current = root
  for element in collection {
    guard let child = current.children[element] else {
      return false
    }
    current = child
  }
  return current.isTerminating
}

Here you traverse the trie in a way similar to insert. You check every
element of the collection to see if it’s in the tree. When you reach the
last element of the collection, it must be a terminating element. If
not, the collection was not added to the tree and what you’ve found is
merely a subset of a larger collection.

The time complexity of contains is O(k), where k is the number of
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The time complexity of contains is O(k), where k is the number of
elements in the collection you’re looking for. This is because you need
to traverse through k nodes to find out whether or not the collection
is in the trie.

To test out insert and contains, navigate to the playground page and
add the following code:

example(of: "insert and contains") {
  let trie = Trie<String>()
  trie.insert("cute")
  if trie.contains("cute") {
    print("cute is in the trie")
  }
}

You should see the following console output:

---Example of: insert and contains---
cute is in the trie

Remove

Removing a node in the trie is a bit more tricky. You need to be
particularly careful when removing each node, since nodes can be
shared between two different collections. Write the following method
just below contains:

public func remove(_ collection: CollectionType) {
  // 1
  var current = root
  for element in collection {
    guard let child = current.children[element] else {
      return
    }
    current = child
  }
  guard current.isTerminating else {

Download from finelybook 7450911@qq.com

141



    return
  }
  // 2
  current.isTerminating = false
  // 3
  while let parent = current.parent,
        current.children.isEmpty && !current.isTerminating {
      parent.children[current.key!] = nil
      current = parent
  }
}

Taking it comment-by-comment:

1. This part should look familiar, as it’s basically the
implementation of contains. You use it here to check if the
collection is part of the trie and to point current to the last node
of the collection.

2. You set isTerminating to false so the current node can be
removed by the loop in the next step.

3. This is the tricky part. Since nodes can be shared, you don’t want
to carelessly remove elements that belong to another collection.
If there are no other children in the current node, it means that
other collections do not depend on the current node.

You also check to see if the current node is a terminating node. If
it is, then it belongs to another collection. As long as current
satisfies these conditions, you continually backtrack through the
parent property and remove the nodes.

The time complexity of this algorithm is O(k), where k represents the
number of elements of the collection you’re trying to remove.

Head back to the playground page and add the following to the
bottom:
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example(of: "remove") {
  let trie = Trie<String>()
  trie.insert("cut")
  trie.insert("cute")
  
  print("\n*** Before removing ***")
  assert(trie.contains("cut"))
  print("\"cut\" is in the trie")
  assert(trie.contains("cute"))
  print("\"cute\" is in the trie")
  
  print("\n*** After removing cut ***")
  trie.remove("cut")
  assert(!trie.contains("cut"))
  assert(trie.contains("cute"))
  print("\"cute\" is still in the trie")
}

You should see the following output added to the console:

---Example of: remove---

*** Before removing ***
"cut" is in the trie
"cute" is in the trie

*** After removing cut ***
"cute" is still in the trie

Prefix matching

The most iconic algorithm for the trie is the prefix matching
algorithm. Write the following at the bottom of Trie.swift:

public extension Trie where CollectionType: RangeReplaceableCollection
  
}

Your prefix matching algorithm will sit inside this extension, where
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Your prefix matching algorithm will sit inside this extension, where
CollectionType is constrained to RangeReplaceableCollection. This
is required because the algorithm will need access to the append
method of RangeReplaceableCollection types.

Next, add the following method inside the extension:

func collections(startingWith prefix: CollectionType) -> [CollectionType
  // 1
  var current = root
  for element in prefix {
    guard let child = current.children[element] else {
      return []
    }
    current = child
  }
  
  // 2
  return collections(startingWith: prefix, after: current)
}

1. You start by verifying that the trie contains the prefix. If not, you
return an empty array.

2. After you’ve found the node that marks the end of the prefix, you
call a recursive helper method
collections(startingWith:after:) to find all the sequences
after the current node.

Next, add the code for the helper method:

private func collections(startingWith prefix: CollectionType,
                         after node: Node) -> [CollectionType
  // 1
  var results: [CollectionType] = []
  
  if node.isTerminating {
    results.append(prefix)
  }
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  // 2
  for child in node.children.values {
    var prefix = prefix
    prefix.append(child.key!)
    results.append(contentsOf: collections(startingWith: prefix
                                           after: child))
  }
  
  return results
}

1. You create an array to hold the results. If the current node is a
terminating node, you add it to the results.

2. Next, you need to check the current node’s children. For every
child node, you recursively call
collections(startingWith:after:) to seek out other
terminating nodes.

collection(startingWith:) has a time complexity of O(k*m), where
k represents the longest collection matching the prefix and m
represents the number of collections that match the prefix.

Recall that arrays have a time complexity of O(k*n), where n is the
number of elements in the collection.

For large sets of data where each collection is uniformly distributed,
tries have far better performance as compared to using arrays for
prefix matching.

Time to take the method for a spin. Navigate back to the playground
page and add the following:

example(of: "prefix matching") {
  let trie = Trie<String>()
  trie.insert("car")
  trie.insert("card")
  trie.insert("care")
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  trie.insert("cared")
  trie.insert("cars")
  trie.insert("carbs")
  trie.insert("carapace")
  trie.insert("cargo")

  print("\nCollections starting with \"car\"")
  let prefixedWithCar = trie.collections(startingWith: "car"
  print(prefixedWithCar)

  print("\nCollections starting with \"care\"")
  let prefixedWithCare = trie.collections(startingWith: "care"
  print(prefixedWithCare)
}

You should see the following output in the console:

---Example of: prefix matching---

Collections starting with "car"
["car", "carbs", "care", "cared", "cars", "carapace", "cargo", "card"]

Collections starting with "care"
["care", "cared"]

Where to go from here?
In this chapter, you learned about the trie, a tree structure that
provides great performance metrics in regards to prefix matching.
Tries are often featured in coding interviews, so study up!
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Binary Search
Binary search is one of the most efficient searching algorithms with a
time complexity of O(log n). This is comparable with searching for an
element inside a balanced binary search tree.

There are two conditions that need to be met before binary search
may be used:

The collection must be able to perform index manipulation in
constant time. This means that the collection must be a
RandomAccessCollection.

The collection must be sorted.

Example
The benefits of binary search are best illustrated by comparing it with
linear search. Swift’s Array type uses linear search to implement its
index(of:) method. This means it traverses through the whole
collection, or until it finds the element:

Binary search handles things differently by taking advantage of the
fact that the collection is already sorted.

Here’s an example of applying binary search to find the value 31:
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Instead of eight steps to find 31, it only takes three. Here’s how it
works:

Step 1: Find middle index

The first step is to find the middle index of the collection. This is
fairly straightforward:

Step 2: Check the element at the middle index

The next step is to check the element stored at the middle index. If it
matches the value you’re looking for, you return the index. Otherwise,
you’ll continue to Step 3.

Step 3: Recursively call binary Search

The final step is to recursively call binary search. However, this time
you’ll only consider the elements exclusively to the left or to the right
of the middle index, depending on the value you’re searching for. If
the value you’re searching for is less than the middle value, you
search the left subsequence. If it is greater than the middle value, you
search the right subsequence. Each step effectively removes half of
the comparisons you would otherwise need to perform.
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In the example where you’re looking for the value 31 (which is greater
than the middle element 22), you apply binary search on the right
subsequence:

You continue these three steps until you can no longer split up the
collection into left and right halves, or until you find the value inside
the collection.

Binary search achieves an O(log n) time complexity this way.

Implementation
Open the starter playground for this chapter. Create a new file in the
Sources folder named BinarySearch.swift. Add the following to the
file:

// 1
public extension RandomAccessCollection where Element: Comparable
  // 2
  func binarySearch(for value: Element, in range: Range<Index>? = 
      -> Index? {
    // more to come
  }
}

Things are fairly simple, so far:

1. Since binary search only works for types that conform to
RandomAccessCollection, you add the method in an extension on
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RandomAccessCollection. This extension is constrained as you
need to be able to compare elements.

2. Binary search is recursive, so you need to be able to pass in a
range to search. The parameter range is made optional so you can
start the search without having to specify a range. In this case,
where range is nil, the entire collection will be searched.

Next, implement binarySearch as follows:

// 1
let range = range ?? startIndex..<endIndex
// 2
guard range.lowerBound < range.upperBound else {
  return nil
}
// 3
let size = distance(from: range.lowerBound, to: range.upperBound)
let middle = index(range.lowerBound, offsetBy: size / 2)
// 4
if self[middle] == value {
  return middle
// 5
} else if self[middle] > value {
  return binarySearch(for: value, in: range.lowerBound..<middle)
} else {
  return binarySearch(for: value, in: index(after: middle)..<range.upperBound)
}

Here are the steps:

1. First you check if range was nil. If so, you create a range that
covers the entire collection.

2. Then you check if the range contains at least one element. If it
doesn’t, the search has failed and you return nil.

3. Now that you’re sure you have elements in the range, you find
the middle index in the range.
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4. You then compare the value at this index with the value you’re
searching for. If they match, you return the middle index.

5. If not, you recursively search either the left or right half of the
collection.

That wraps up the implementation of binary search! Head back to the
playground page to test it out. Write the following at the top of the
playground page:

let array = [1, 5, 15, 17, 19, 22, 24, 31, 105, 150]

let search31 = array.index(of: 31)
let binarySearch31 = array.binarySearch(for: 31)

print("index(of:): \(String(describing: search31))")
print("binarySearch(for:): \(String(describing: binarySearch31)

You should see the following output in the console:

index(of:): Optional(7)
binarySearch(for:): Optional(7)

This represents the index of the value you’re looking for.

Where to go from here?
Binary search is a powerful algorithm to learn and comes up often in
programming interviews. Whenever you read something along the
lines of “Given a sorted array...”, consider using the binary search
algorithm. Also, if you are given a problem that looks like it is going
to be O(n²) to search, consider doing some up-front sorting so you
can use binary searching to reduce it down to the cost of the sort at
O(n log n).
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The Heap Data Structure
A heap is a complete binary tree, also known as a binary heap, that
can be constructed using an array.

Heaps come in two flavors:

1. Max heap, where elements with a higher value have a higher
priority.

2. Min heap, where elements with a lower value have a higher
priority.

Have you seen the movie Toy Story, with the claw machine and the
squeaky little green aliens? Imagine that the claw machine is
operating on your heap structure, and will always pick the minimum
or maximum value, depending on the type of heap.

The heap property
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A heap has important characteristic that must always be satisfied.
This is known as the heap invariant or heap property.

In a max heap, parent nodes must always contain a value that is
greater than or equal to the value in its children. The root node will
always contain the highest value.

In a min heap, parent nodes must always contain a value that is less
than or equal to the value in its children. The root node will always
contain the lowest value.
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Another important property of a heap is that it is a complete binary
tree. This means that every level must be filled, except for the last
level. It’s like a video game, where you can’t go to the next level until
you have completed the current one.

Heap applications
Some useful applications of a heap include:

Calculating the minimum or maximum element of a collection

Heap Sort

Constructing a priority queue

Constructing graph algorithms like Prim’s or Dijkstra’s with a
priority queue.

Note: You will learn about Priority Queues in Chapter 13, Heap
Sort in Chapter 17 and Dijkstra’s and Prim’s algorithms in
Chapter 22 and 23.
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Note: Don’t confuse these heaps with memory heaps. The term
heap is sometimes confusingly used in computer science to refer
to a pool of memory. Memory heaps are a different concept and
not what you are studying here.

In this chapter, you will focus on creating a heap, where you’ll see
how convenient it is to fetch the minimum and maximum element of
a collection.

Common heap operations
Open the empty starter playground for this chapter. Start by defining
the following basic Heap type:

struct Heap<Element: Equatable> {

  var elements: [Element] = []
  let sort: (Element, Element) -> Bool
    
  init(sort: @escaping (Element, Element) -> Bool) {
    self.sort = sort
  }
}

This type contains an array to hold the elements in the heap and a
sort function that defines how the heap should be ordered. By passing
an appropriate function in the initializer, this type can be used to
create both min and max heaps.

How do you represent a heap?
Trees hold nodes that store references to their children. In the case of
a binary tree, these are references to a left and right child. Heaps are
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indeed binary trees, but they can be represented with a simple array.

This seems like an unusual way to build a tree. But one of the benefits
of this heap implementation is efficient time and space complexity, as
the elements in the heap are all stored together in memory.

You will see later on that swapping elements will play a big part in
heap operations. This is also easier to do with an array than with a
binary tree data structure.

Let’s take a look at how heaps can be represented using an array. Take
the following binary heap:

To represent the heap above as an array, you would simply iterate
through each element level-by-level from left to right. Your traversal
would look something like this:
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As you go up a level, you’ll have twice as many nodes than in the level
before.

It’s now easy to access any node in the heap. You can compare this to
how you’d access elements in an array: Instead of traversing down the
left or right branch, you can simply access the node in your array
using simple formulas.

Given a node at a zero-based index i:

The left child of this node can be found at index 2i + 1.

The right child of this node can be found at index 2i + 2.

Download from finelybook 7450911@qq.com

157



You might want to obtain the parent of a node. You can solve for i in
this case. Given a child node at index i, this child’s parent node can
be found at index floor( (i - 1) / 2).

Note: Traversing down an actual tree to get the left and right
child of a node is a O(log n) operation. In an random access data
structure such as an array, that same operation is just O(1).

Next, use your new knowledge to add some properties and
convenience methods to Heap:

var isEmpty: Bool {
  return elements.isEmpty
}

var count: Int {
  return elements.count
}

Download from finelybook 7450911@qq.com

158



func peek() -> Element? {
  return elements.first
}

func leftChildIndex(ofParentAt index: Int) -> Int {
  return (2 * index) + 1
}

func rightChildIndex(ofParentAt index: Int) -> Int {
  return (2 * index) + 2
}

func parentIndex(ofChildAt index: Int) -> Int {
  return (index - 1) / 2
}

Now that you have a good understanding of how you can represent a
heap using an array, you’ll look at some important operations of a
heap.

Removing from a heap
A basic remove operation simply removes the root node from the
heap.

Take the following max heap:
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A remove operation will remove the maximum value at the root node.
To do so, you must first swap the root node with the last element in
the heap.

Once you’ve swapped the two elements, you can remove the last
element and store its value so you can later return it.

Now you must check the max heap’s integrity. But first, ask yourself,
“Is it still a max heap?”

Remember: The rule for a max heap is that the value of every parent
node must be larger than, or equal to, the values of its children. Since
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the heap no longer follows this rule, you must perform a sift down.

To perform a sift down, you start from the current value 3 and check
its left and right child. If one of the children has a value that is greater
than the current value, you swap it with the parent. If both children
have a greater value, you swap the parent with the child having the
greater value.

Now you have to continue to sift down until the node’s value is not
larger than the values of its children.
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Once you reach the end, you’re done, and the max heap’s property
has been restored!

Implementation of remove

Add the following method to Heap:

mutating func remove() -> Element? {
  guard !isEmpty else { // 1
    return nil
  }
  elements.swapAt(0, count - 1) // 2
  defer {
    siftDown(from: 0) // 4
  }
  return elements.removeLast() // 3
}

Here’s how this method works:

1. Check to see if the heap is empty. If it is, return nil.

2. Swap the root with the last element in the heap.

3. Remove the last element (the maximum or minimum value) and
return it.

4. The heap may not be a max or min heap anymore, so you must
perform a sift down to make sure it conforms to the rules.

Now to see how to sift down nodes. Add the following method after
remove():

mutating func siftDown(from index: Int) {
  var parent = index // 1
  while true { // 2
    let left = leftChildIndex(ofParentAt: parent) // 3
    let right = rightChildIndex(ofParentAt: parent)
    var candidate = parent // 4
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    if left < count && sort(elements[left], elements[candidate]) {
      candidate = left // 5
    }
    if right < count && sort(elements[right], elements[candidate]) {
      candidate = right // 6
    }
    if candidate == parent {
      return // 7
    }
    elements.swapAt(parent, candidate) // 8
    parent = candidate
  }
}

siftDown(from:) accepts an arbitrary index. This will always be
treated as the parent node. Here’s how the method works:

1. Store the parent index.

2. Continue sifting until you return.

3. Get the parent’s left and right child index.

4. The candidate variable is used to keep track of which index to
swap with the parent.

5. If there is a left child, and it has a higher priority than its parent,
make it the candidate.

6. If there is a right child, and it has an even greater priority, it will
become the candidate instead.

7. If candidate is still parent, you have reached the end, and no
more sifting is required.

8. Swap candidate with parent and set it as the new parent to
continue sifting.
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Complexity: The overall complexity of remove() is O(log n).
Swapping elements in an array takes only O(1), while sifting
down elements in a heap takes O(log n) time.

Now that you know how to remove from the top of the heap, how do
you add to a heap?

Inserting into a heap
Let’s say you insert a value of 7 to the heap below:

First, you add the value to the end of the heap:
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Now you must check the max heap’s property. Instead of sifting
down, you must now sift up since the node you just inserted might
have a higher priority than its parents. This sifting up works much
like sifting down, by comparing the current node with its parent and
swapping them if needed.
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Your heap has now satisfied the max heap property!

Implementation of insert

Add the following method to Heap:

mutating func insert(_ element: Element) {
  elements.append(element)
  siftUp(from: elements.count - 1)
}

mutating func siftUp(from index: Int) {
  var child = index
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  var parent = parentIndex(ofChildAt: child)
  while child > 0 && sort(elements[child], elements[parent]) {
    elements.swapAt(child, parent)
    child = parent
    parent = parentIndex(ofChildAt: child)
  }
}

As you can see, the implementation is pretty straightforward:

insert appends the element to the array and then performs a sift
up.

siftUp swaps the current node with its parent, as long as that
node has a higher priority than its parent.

Complexity: The overall compexity of insert(_:) is O(log n).
Appending an element in an array takes only O(1), while sifting
up elements in a heap takes O(log n).

That’s all there is to inserting an element in a heap.

You have so far looked at removing the root element from a heap, and
inserting into a heap. But what if you wanted to remove any arbitrary
element from the heap?

Removing from an arbitrary index
Add the following to Heap:

mutating func remove(at index: Int) -> Element? {
  guard index < elements.count else {
    return nil // 1
  }
  if index == elements.count - 1 {
    return elements.removeLast() // 2
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  } else {
    elements.swapAt(index, elements.count - 1) // 3
    defer {
      siftDown(from: index) // 5
      siftUp(from: index)
    }
    return elements.removeLast() // 4
  }
}

To remove any element from the heap, you need an index. Let’s go
over how this works:

1. Check to see if the index is within the bounds of the array. If not,
return nil.

2. If you’re removing the last element in the heap, you don’t need
to do anything special. Simply remove and return the element.

1. If you’re not removing the last element, first swap the element
with the last element.

2. Then return and remove the last element.

3. Finally, perform a sift down and a sift up to adjust the heap.

But — why do you have to perform both a sift down and a sift up?
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Assume you are trying to remove 5. You swap 5 with the last element,
which is 8. You now need to perform a sift up to satisfy the max heap
property.

Now assume you are trying to remove 7. You swap 7 gets swapped
with the last element, 1. You now need to perform a sift down to
satisfy the max heap property.

Removing an arbitrary element from a heap is an O(log n) operation.
But how do you actually find the index of the element you wish to
delete?
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Searching for an element in a heap
To find the index of the element you wish to delete, you must perform
a search on the heap. Unfortunately, heaps are not designed for fast
searches. With a binary search tree, you can perform a search in O(log
n) time, but since heaps are built using an array, and the node
ordering in an array is different, you can’t even perform a binary
search.

Complexity: To search for an element in a heap is, in the worst-
case, an O(n) operation, since you may have to check every
element in the array.

func index(of element: Element, startingAt i: Int) -> Int? {
  if i >= count {
    return nil // 1
  }
  if sort(element, elements[i]) {
    return nil // 2
  }
  if element == elements[i] {
    return i // 3
  }
  if let j = index(of: element, startingAt: leftChildIndex(ofParentAt: i)) {
    return j // 4
  }
  if let j = index(of: element, startingAt: rightChildIndex(ofParentAt: i)) {
    return j // 5
  }
  return nil // 6
}

Let’s go over this implementation:

1. If the index is greater than the number of elements in the array,
the search failed. Return nil.
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2. Check to see if the element you are looking for has higher priority
than the current element at index i. If it does, the element you
are looking for cannot possibly be lower in the heap.

3. If the element is equal to the element at index i, return i.

4. Recursively search for the element starting from the left child of
i.

5. Recursively search for the element starting from the right child of
i.

6. If both searches failed, the search failed. Return nil.

Note: Although searching takes O(n) time, you have made an
effort to optimize searching by taking advantage of the heap’s
property and checking the priority of the element when
searching.

Building a heap
You now have all the necessary tools to represent a heap. To wrap up
this chapter, you’ll build a heap from an existing array of elements
and test it out.

Update the initializer of Heap as follows:

init(sort: @escaping (Element, Element) -> Bool,
     elements: [Element] = []) {
  self.sort = sort
  self.elements = elements
  
  if !elements.isEmpty {
    for i in stride(from: elements.count / 2 - 1, through: 0
      siftDown(from: i)
    }
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  }
}

The initializer now takes an additional parameter. If a non-empty
array is provided, you use this as the elements for the heap. To satisfy
the heap’s property, you loop through the array backwards, starting
from the first non-leaf node, and sift down all parent nodes. You loop
through only half of the elements, because there is no point in sifting
down leaf nodes, only parent nodes.

That’s all there is to building a heap!

Testing
Time to try it out. Add the following to your playground:
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var heap = Heap(sort: >, elements: [1,12,3,4,1,6,8,7])

while !heap.isEmpty {
  print(heap.remove()!)
}

This creates a max heap (because > is used as the sorting function)
and removes elements one-by-one until it is empty. Notice that the
elements are removed largest to smallest and the following numbers
are printed to the console.

12
8
7
6
4
3
1
1

Where to go from here?
Here is a summary of the algorithmic complexity of the heap
operations you implemented in this chapter.
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The heap data structure is good for maintaining the highest or lowest
value, depending on the type of heap. You also learned how to
validate the heap by sifting elements up and down to satisfy the max
or min heap property.

In the next few chapters, you will see other uses for heaps such as
building priority queues and sorting a collection of objects.
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Priority Queue
Queues are simply lists that maintain the order of elements using
first-in-first-out (FIFO) ordering. A priority queue is another version
of a queue that, instead of using FIFO ordering, dequeues elements in
priority order. For example, a priority queue can either be:

1. Max-priority, where the element at the front is always the
largest.

2. Min-priority, where the element at the front is always the
smallest.

A priority queue is especially useful when you need to identify the
maximum or minimum value given a list of elements.

Applications
Some useful applications of a priority queue include:
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Dijkstra’s algorithm, which uses a priority queue to calculate the
minimum cost.

A* pathfinding algorithm, which uses a priority queue to track
the unexplored routes that will produce the path with the
shortest length.

Heap sort, which can be implemented using a priority queue.

Huffman coding that builds a compression tree. A min-priority
queue is used to repeatedly find two nodes with the smallest
frequency that do not have a parent node yet.

These are just some of the use cases, but priority queues have many
more applications as well.

Common operations
In Chapter 5, Queues, you established the following protocol for
queues:

public protocol Queue {
  associatedtype Element
  mutating func enqueue(_ element: Element) -> Bool
  mutating func dequeue() -> Element?
  var isEmpty: Bool { get }
  var peek: Element? { get }
}

A priority queue has the same operations as a normal queue, so only
the implementation will be different.

The priority queue will conform to the Queue protocol and implement
the common operations:

enqueue: Inserts an element into the queue. Returns true if the
operation was successful.
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dequeue: Removes the element with the highest priority and
return it. Returns nil if the queue was empty.

isEmpty: Checks if the queue is empty.

peek: Returns the element with the highest priority without
removing it. Returns nil if the queue was empty.

Let’s look at different ways to implement a priority queue.

Implementation
You can create a priority queue in the following ways:

1. Sorted array: This is useful to obtain the maximum or minimum
value of an element in O(1) time. However, insertion is slow and
will require O(n) since you have to insert it in order.

2. Balanced binary search tree: This is useful in creating a double-
ended priority queue, which features getting both the minimum
and maximum value in O(log n) time. Insertion is better than a
sorted array, also in O(log n) .

3. Heap: This is a natural choice for a priority queue. A heap is more
efficient than a sorted array because a heap only needs to be
partially sorted. All heap operations are O(log n) except
extracting the min value from a min priority heap is a lightning
fast O(1). Likewise, extracting the max value from a max priority
heap is also O(1).

Next you will look at how to use a heap to create a priority queue.

Open up the starter playground to get started. In the Sources folder
you will notice the following files:

1. Heap.swift: The heap data structure (from the previous chapter)
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1. Heap.swift: The heap data structure (from the previous chapter)
you will use to implement the priority queue.

2. Queue.swift: Contains the protocol that defines a queue.

In the main playground page, add the following:

struct PriorityQueue<Element: Equatable>: Queue { // 1
  
  private var heap: Heap<Element> // 2
  
  init(sort: @escaping (Element, Element) -> Bool,
       elements: [Element] = []) { // 3
    heap = Heap(sort: sort, elements: elements)
  }

  // more to come ...
}

Let’s go over this code:

1. PriorityQueue will conform to the Queue protocol. The generic
parameter Element must conform to Equatable as you need to be
able to compare elements.

2. You will use this heap to implement the priority queue.

3. By passing an appropriate function into this initializer,
PriorityQueue can be used to create both min and max priority
queues.

To conform to the Queue protocol, add the following right after the
init(sort:elements:) initializer:

var isEmpty: Bool {
  return heap.isEmpty
}

var peek: Element? {
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  return heap.peek()
}

mutating func enqueue(_ element: Element) -> Bool { // 1
  heap.insert(element)
  return true
}

mutating func dequeue() -> Element? { // 2
  return heap.remove()
}

The heap is a perfect candidate for a priority queue. You simply need
to call various methods of a heap to implement the operations of a
priority queue!

1. From the previous chapter, you should understand that by calling
enqueue(_:) you simply insert into the heap and the heap will
sift up to validate itself. The overall complexity of enqueue(_:) is
O(log n) .

2. By calling dequeue(_:) you remove the root element from the
heap by replacing it with the last element in the heap and then
sift down to validate the heap. The overall complexity of
dequeue() is O(log n) .

Testing
Add the following to your playground:

var priorityQueue = PriorityQueue(sort: >, elements: [1,12,3
while !priorityQueue.isEmpty {
  print(priorityQueue.dequeue()!)
}

You’ll notice a priority queue has the same interface as a regular
queue. The previous code creates a max priority queue. Notice that
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the elements are removed largest to smallest. The following numbers
are printed to the console:

12
8
7
6
4
3
1
1

Where to go from here?
A priority queue is basically a heap that is useful when you need to
find the maximum or minimum element immediately.

Not only did you learn how to implement a priority queue, you
learned to apply the heap data structure and conformed to the queue
protocol. Now that’s composition!
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O(n²) Sorting Algorithms
O(n²) time complexity is not great performance, but the sorting
algorithms in this category are easy to understand and useful in some
scenarios. These algorithms are space efficient; they only require
constant O(1) additional memory space. For small data sets, these
sorts compare very favorably against more complex sorts.

In this chapter, you'll be looking at the following sorting algorithms:

Bubble sort

Selection sort

Insertion sort

All of these are comparison-based sorting methods. They rely on a
comparison method, such as the less-than operator, to order the
elements. The number of times this comparison gets called is how you
can measure a sorting technique's general performance.

Bubble sort
One of the simplest sorts is the bubble sort, which repeatedly
compares adjacent values and swaps them, if needed, to perform the
sort. The larger values in the set will therefore "bubble up" to the end
of the collection.

Example

Consider the following hand of cards:
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A single pass of the bubble sort algorithm would consist of the
following steps:

Start at the beginning of the collection. Compare 9 and 4. These
values need to be swapped. The collection then becomes [4, 9,
10, 3].

Move to the next index in the collection. Compare 9 and 10.
These are in order.

Move to the next index in the collection. Compare 10 and 3.
These values need to be swapped. The collection then becomes
[4, 9, 3, 10].

A single pass of the algorithm will seldom result in a complete
ordering, which is true for this collection. It will, however, cause the
largest value — 10 — to bubble up to the end of the collection.

Subsequent passes through the collection will do the same for 9 and 4
respectively:
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The sort is only complete when you can perform a full pass over the
collection without having to swap any values. At worst, this will
require n-1 passes, where n is the count of members in the collection.

Implementation

Open up the Swift playground for this chapter to get started. In the
Sources directory of your playground, create a new file named
BubbleSort.swift. Write the following inside the file:

public func bubbleSort<Element>(_ array: inout [Element])
    where Element: Comparable {
  // 1
  guard array.count >= 2 else {
    return
  }
  // 2
  for end in (1..<array.count).reversed() {
    var swapped = false
    // 3
    for current in 0..<end {
      if array[current] > array[current + 1] {
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        array.swapAt(current, current + 1)
        swapped = true
      }
    }
    // 4
    if !swapped {
      return
    }
  }
}

Here's the play-by-play:

1. There is no need to sort the collection if it has less than two
elements.

2. A single pass bubble the largest value to the end of the collection.
Every pass needs to compare one less value than in the previous
pass, so you essentially shorten the array by one with each pass.

3. This loop performs a single pass; it compares adjacent values and
swaps them if needed.

4. If no values were swapped this pass, the collection must be
sorted, and you can exit early.

Try it out! Head back into the main playground page and write the
following:

example(of: "bubble sort") {
  var array = [9, 4, 10, 3]
  print("Original: \(array)")
  bubbleSort(&array)
  print("Bubble sorted: \(array)")
}

You should see the following output:

---Example of bubble sort---
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Original: [9, 4, 10, 3]
Bubble sorted: [3, 4, 9, 10]

Bubble sort has a best time complexity of O(n) if it's already sorted,
and a worst and average time complexity of O(n²), making it one of
the least appealing sorts in the known universe.

Selection sort
Selection sort follows the basic idea of bubble sort, but improves upon
this algorithm by reducing the number of swapAt operations.
Selection sort will only swap at the end of each pass. You'll see how
that works in the following implementation.

Example

Assume you have the following hand of cards:

During each pass, selection sort will find the lowest unsorted value
and swap it into place:

1. First, 3 is found as the lowest value. It is swapped with 9.

2. The next lowest value is 4. It's already in the right place.

3. Finally, 9 is swapped with 10.
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Implementation

In the Sources directory of your playground, create a new file named
SelectionSort.swift. Write the following inside the file:

public func selectionSort<Element>(_ array: inout [Element])
    where Element: Comparable {
  guard array.count >= 2 else {
    return
  }
  // 1
  for current in 0..<(array.count - 1) {
    var lowest = current
    // 2
    for other in (current + 1)..<array.count {
      if array[lowest] > array[other] {
        lowest = other
      }
    }
    // 3
    if lowest != current {
      array.swapAt(lowest, current)
    }
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  }
}

Here's what's going on:

1. You perform a pass for every element in the collection, except for
the last one. There is no need to include the last element, since if
all other elements are in their correct order, the last one will be
as well.

2. In every pass, you go through the remainder of the collection to
find the element with the lowest value.

3. If that element is not the current element, swap them.

Try it out! Head back to the main playground page and add the
following:

example(of: "selection sort") {
  var array = [9, 4, 10, 3]
  print("Original: \(array)")
  selectionSort(&array)
  print("Selection sorted: \(array)")
}

You should see the following output in your console:

---Example of selection sort---
Original: [9, 4, 10, 3]
Selection sorted: [3, 4, 9, 10]

Just like bubble sort, selection sort has a best, worst, and average time
complexity of O(n²), which is fairly dismal. It's a simple to
understand, though, and it does perform better than bubble sort!

Insertion sort
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Insertion sort is a more useful algorithm. Like bubble sort and
selection sort, insertion sort has an average time complexity of O(n²),
but the performance of insertion sort can vary. The more the data is
already sorted, the less work it needs to do. Insertion sort has a best
time complexity of O(n) if the data is already sorted. The Swift
Standard Library sort algorithm uses a hybrid of sorting approaches
with insertion sort being used for small (<20 element) unsorted
partitions.

Example

The idea of insertion sort is similar to how you'd sort a hand of cards.
Consider the following hand:

Insertion sort will iterate once through the cards, from left to right.
Each card is shifted to the left until it reaches its correct position.
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1. You can ignore the first card, as there are no previous cards to
compare it with.

2. Next, you compare 4 with 9 and shift 4 to the left by swapping
positions with 9.

1. 10 doesn’t need to shift, as it's in the correct position compared
to the previous card.

2. Finally, 3 is shifted all the way to the front by comparing and
swapping it with 10, 9 and 4 respectively.

It's worth pointing out that the best case scenario for insertion sort
occurs when the sequence of values are already in sorted order, and
no left shifting is necessary.
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Implementation

In the Sources directory of your playground, create a new file named
InsertionSort.swift. Write the following inside the file:

public func insertionSort<Element>(_ array: inout [Element])
    where Element: Comparable {
  guard array.count >= 2 else {
    return
  }
  // 1
  for current in 1..<array.count {
    // 2
    for shifting in (1...current).reversed() {
      // 3
      if array[shifting] < array[shifting - 1] {
        array.swapAt(shifting, shifting - 1)
      } else {
        break
      }
    }
  }
}

Here's what you did above:

1. Insertion sort requires you to iterate from left to right once. This
loop does that.

2. Here, you run backwards from the current index so you can shift
left as needed.

3. Keep shifting the element left as long as necessary. As soon as
the element is in position, break the inner loop and start with the
next element.

Head back to the main playground page and write the following at the
bottom:
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example(of: "insertion sort") {
  var array = [9, 4, 10, 3]
  print("Original: \(array)")
  insertionSort(&array)
  print("Insertion sorted: \(array)")
}

You should see the following console output:

---Example of insertion sort---
Original: [9, 4, 10, 3]
Insertion sorted: [3, 4, 9, 10]

Insertion sort is one of the fastest sorting algorithm, if the data is
already sorted. That sounds obvious, but it isn't true for all sorting
algorithms. In practice, a lot of data collections will already be largely
— if not entirely — sorted, and insertion sort will perform quite well
in those scenarios.

Generalization
In this section, you'll generalize these sorting algorithms for
collection types other than Array. Exactly which collection types,
though, depends on the algorithm:

Insertion sort traverses the collection backwards when shifting
elements. As such, the collection must be of type
BidirectionalCollection.

Bubble sort and selection sort really only traverse the collection
front to back, so they can handle any Collection.

In any case, the collection must be a MutableCollection as you
need to be able to swap elements.

Head back to BubbleSort.swift and update the function to the

Download from finelybook 7450911@qq.com

191



Head back to BubbleSort.swift and update the function to the
following:

public func bubbleSort<T>(_ collection: inout T)
    where T: MutableCollection, T.Element: Comparable {
  guard collection.count >= 2 else {
      return
  }
  for end in collection.indices.reversed() {
    var swapped = false
    var current = collection.startIndex
    while current < end {
      let next = collection.index(after: current)
      if collection[current] > collection[next] {
        collection.swapAt(current, next)
        swapped = true
      }
      current = next
    }
    if !swapped {
      return
    }
  }
}

The algorithm stays the same; you simply update the loop to use the
collection's indices. Head back to the main playground page to verify
that bubble sort still works the way it should.

Selection sort can be updated as follows:

public func selectionSort<T>(_ collection: inout T)
    where T: MutableCollection, T.Element: Comparable {
  guard collection.count >= 2 else {
    return
  }
  for current in collection.indices {
    var lowest = current
    var other = collection.index(after: current)
    while other < collection.endIndex {
      if collection[lowest] > collection[other] {
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        lowest = other
      }
      other = collection.index(after: other)
    }
    if lowest != current {
      collection.swapAt(lowest, current)
    }
  }
}

And insertion sort becomes:

public func insertionSort<T>(_ collection: inout T)
    where T: BidirectionalCollection & MutableCollection, 
          T.Element: Comparable {
  guard collection.count >= 2 else {
    return
  }
  for current in collection.indices {
    var shifting = current
    while shifting > collection.startIndex {
      let previous = collection.index(before: shifting)
      if collection[shifting] < collection[previous] {
        collection.swapAt(shifting, previous)
      } else {
        break
      }
      shifting = previous
    }
  }
}

With just a bit of practice, generalizing these algorithms becomes a
fairly mechanical process.

Where to go from here?
In the next chapters, you'll take a look at sorting algorithms that
perform better than O(n²). Up next is a sorting algorithm that uses a
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classical algorithm approach known as divide and conquer — merge
sort!
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Merge Sort
Merge sort is one of the most efficient sorting algorithms. With a time
complexity of O(log n), it’s one of the fastest of all general-purpose
sorting algorithms. The idea behind merge sort is divide and conquer;
to break up a big problem into several smaller, easier to solve
problems and then combine those solutions into a final result. The
merge sort mantra is to split first and merge after.

Assume you’re given a pile of unsorted playing cards:

The merge sort algorithm works as follows:

1. First, split the pile in half. You now have two unsorted piles:

1. Now keep splitting the resulting piles until you can’t split
anymore. In the end, you will have one (sorted!) card in each pile:
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1. Finally, merge the piles together in the reverse order in which
you split them. During each merge, you put the contents in
sorted order. This is easy because each individual pile has already
been sorted:
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Implementation
Open up the starter playground to get started.

Split

In the Sources folder in your playground, create a new file named
MergeSort.swift. Write the following inside the file:

public func mergeSort<Element>(_ array: [Element])
    -> [Element] where Element: Comparable {
  let middle = array.count / 2
  let left = Array(array[..<middle])
  let right = Array(array[middle...])
  // ... more to come
}

Here you split the array into halves. Splitting once isn’t enough,
however; you have to keep splitting recursively until you can’t split
any more, which is when each subdivision contains just one element.=

To do this, update mergeSort as follows:

public func mergeSort<Element>(_ array: [Element])
    -> [Element] where Element: Comparable {
  // 1
  guard array.count > 1 else {
    return array
  }
  let middle = array.count / 2
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  // 2
  let left = mergeSort(Array(array[..<middle]))
  let right = mergeSort(Array(array[middle...]))
  // ... more to come
}

You’ve made two changes here:

1. Recursion needs a base case, which you can also think of as an
“exit condition”. In this case, the base case is when the array only
has one element.

2. You’re now calling mergeSort on the left and right halves of the
original array. As soon as you’ve split the array in half, you’ll try
to split again.

There’s still more work to do before your code will compile. Now that
you’ve accomplished the splitting part, it’s time to focus on merging.

Merge

Your final step is to merge the left and right arrays together. To
keep things clean, you will create a separate merge function for this.

The sole responsibility of the merging function is to take in two
sorted arrays and combine them while retaining the sort order. Add
the following just below the mergeSort function:

private func merge<Element>(_ left: [Element], _ right: [Element])
    -> [Element] where Element: Comparable {
  // 1
  var leftIndex = 0
  var rightIndex = 0
  // 2
  var result: [Element] = []
  // 3
  while leftIndex < left.count && rightIndex < right.count {
    let leftElement = left[leftIndex]
    let rightElement = right[rightIndex]
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    // 4
    if leftElement < rightElement {
      result.append(leftElement)
      leftIndex += 1
    } else if leftElement > rightElement {
      result.append(rightElement)
      rightIndex += 1
    } else {
      result.append(leftElement)
      leftIndex += 1
      result.append(rightElement)
      rightIndex += 1
    }
  }
  // 5
  if leftIndex < left.count {
    result.append(contentsOf: left[leftIndex...])
  }
  if rightIndex < right.count {
    result.append(contentsOf: right[rightIndex...])
  }
  return result
}

Here’s what’s going on:

1. The leftIndex and rightIndex variables track your progress as
you parse through the two arrays.

2. The result array will house the combined array.

1. Starting from the beginning, you compare the elements in the
left and right arrays sequentially. If you’ve reached the end of
either array, there’s nothing else to compare.

2. The smaller of the two elements goes into the result array. If the
elements were equal, they can both be added.

3. The first loop guarantees that either left or right is empty.
Since both arrays are sorted, this ensures that the leftover
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elements are greater than or equal to the ones currently in
result. In this scenario, you can append the rest of the elements
without comparison.

Finishing up

Complete the mergeSort function by calling merge. Because you call
mergeSort recursively, the algorithm will split and sort both halves
before merging them together.

public func mergeSort<Element>(_ array: [Element])
    -> [Element] where Element: Comparable {
  guard array.count > 1 else {
    return array
  }
  let middle = array.count / 2
  let left = mergeSort(Array(array[..< middle]))
  let right = mergeSort(Array(array[middle...]))
  return merge(left, right)
}

This is the final version of the merge sort algorithm. Here’s a
summary of the key procedures of merge sort:

1. The strategy of merge sort is to divide and conquer, so that you
solve many small problems instead of one big problem.

2. It has two core responsibilities: a method to divide the initial
array recursively, and a method to merge two arrays.

3. The merging function should take two sorted arrays and produce
a single sorted array.

Finally - time to see this in action. Head back to the main playground
page and test your merge sort with the following:

example(of: "merge sort") {
  let array = [7, 2, 6, 3, 9]
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  print("Original: \(array)")
  print("Merge sorted: \(mergeSort(array))")
}

This outputs:

---Example of merge sort---
Original: [7, 2, 6, 3, 9]
Merge sorted: [2, 3, 6, 7, 9]

Performance
The best, worst and average time complexity of merge sort is O(n log
n), which isn’t too bad. If you’re struggling to understand where n log
n comes from, think about how the recursion works:

As you recurse, you split a single array into two smaller arrays.
This means an array of size 2 will need 1 level of recursion, an
array of size 4 will need 2 levels, an array of size 8 will need 3
levels, and so on. If you had an array of 1024 elements, it would
take 10 levels of recursively splitting in two to get down to 1024
single element arrays. In general, if you have an array of size n,
the number of levels is log2(n).

A single recursion level will merge n elements. It doesn’t matter
if there are many small merges or one large one; the number of
elements merged will still be n at each level. This means the cost
of a single recursion is O(n).

This brings the total cost to O(log n) × O(n) = O(n log n).

The previous chapter’s sort algorithms were in-place and used swapAt
to move elements around. Merge sort, by contrast, allocates
additional memory to do its work. How much? There are log2(n) levels
of recursion and at each level n elements are used. That makes the
total O(n log n) in space complexity.
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Where to go from here?
Merge sort is one of the hallmark sorting algorithms. It’s relatively
simple to understand, and serves as a great introduction to how
divide-and-conquer algorithms work. Merge sort is O(n log n) and this
implementation requires O(n log n) of space. If you are really clever
with your bookkeeping, you can reduce the memory required to O(n)
by discarding the memory that is not actively being used.
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Radix Sort
In this chapter, you’ll look at a completely different model of sorting.
So far, you’ve been relying on comparisons to determine the sorting
order. Radix sort is a non-comparative algorithm for sorting integers
in linear time.

There are multiple implementations of radix sort that focus on
different problems. To keep things simple, in this chapter you’ll focus
on sorting base 10 integers while investigating the least significant
digit (LSD) variant of radix sort.

Example
To show how radix sort works, you’ll sort the following array:

var array = [88, 410, 1772, 20]

Radix sort relies on the positional notation of integers, as shown here:

First, the array is divided into buckets based on the value of the least
significant digit: the ones digit.
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These buckets are then emptied in order, resulting in the following
partially-sorted array:

array = [410, 20, 1772, 88]

Next, repeat this procedure for the tens digit:

The relative order of the elements didn’t change this time, but you’ve
still got more digits to inspect.

The next digit to consider is the hundreds digit:

For values that have no hundreds position (or any other position
without a value), the digit will be assumed to be zero.

Reassembling the array based on these buckets gives the following:

array = [20, 88, 410, 1772]

Finally, you need to consider the thousands digit:
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Reassembling the array from these buckets leads to the final sorted
array:

array = [20, 88, 410, 1772]

When multiple numbers end up in the same bucket, their relative
ordering doesn’t change. For example, in the zero bucket for the
hundreds position, 20 comes before 88. This is because the previous
step put 20 in a lower bucket than 80, so 20 ended up before 88 in the
array.

Implementation
Open up the starter project for this chapter. In the Sources directory,
create a new file named RadixSort.swift. Add the following to the file:

extension Array where Element == Int {

  public mutating func radixSort() {

  }
}

Here you’ve added a radixSort method to arrays of integers via an
extension. Start implementing the radixSort method using the
following:

public mutating func radixSort() {
  // 1
  let base = 10
  // 2
  var done = false
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  var digits = 1
  while !done {
  
  }
}

This bit is fairly straightforward:

1. You’re sorting base 10 integers in this instance. Since you’ll be
using this value multiple times in the algorithm, you store it in a
constant base.

2. You declare two variables to track your progress. Radix sort works
in multiple passes, so done serves as a flag that determines
whether the sort is complete. The digits variable keeps track of
the current digit you’re looking at.

Next, you’ll write the logic that sorts each element into buckets (also
known as Bucket sort).

Bucket Sort

Write the following inside the while loop:

// 1
var buckets: [[Int]] = .init(repeating: [], count: base)
// 2
forEach {
  number in
  let remainingPart = number / digits
  let digit = remainingPart % base
  buckets[digit].append(number)
}
// 3
digits *= base
self = buckets.flatMap { $0 }

Here’s what you’ve written:
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1. You instantiate the buckets using a two-dimensional array.
Because you’re using base 10, you need 10 buckets.

2. You place each number in the correct bucket.

3. You update digits to the next digit you wish to inspect and
update the array using the contents of buckets. flatMap will
flatten the two-dimensional array to a one-dimensional array, as
if you’re emptying the buckets into the array.

When do you stop?

Your while loop currently runs forever, so you’ll need a terminating
condition in there somewhere. You’ll do that as follows:

1. At the beginning of the while loop, add done = true.

2. Inside the closure of forEach, add the following:

if remainingPart > 0 {
  done = false
}

Since forEach iterates over all the integers, as long as one of the
integers still has unsorted digits, you’ll need to continue sorting.

With that, you’ve learned about your first non-comparative sorting
algorithm! Head back to the playground page and write the following
to try out your code:

example(of: "radix sort") {
  var array = [88, 410, 1772, 20]
  print("Original array: \(array)")
  array.radixSort()
  print("Radix sorted: \(array)")
}
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You should see the following console output:

---Example of: radix sort---
Original: [88, 410, 1772, 20]
Radix sorted: [20, 88, 410, 1772]

Where to go from here?
Radix sort is one of the fastest sorting algorithms. The average time
complexity of radix sort is O(k × n), where k is the number of
significant digits of the largest number, and n is the number of
integers in the array.

Radix sort works best when k is constant, which occurs when all
numbers in the array have the same count of significant digits. Its
time complexity then becomes O(n). Radix sort also incurs a O(n)
space complexity, as you need space to store each bucket.
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Heap Sort
Heapsort is another comparison-based algorithm that sorts an array
in ascending order using a heap. This chapter builds on the heap
concepts presented in Chapter 12, "The Heap Data Structure".

Heapsort takes advantage of a heap being, by definition, a partially
sorted binary tree with the following qualities:

1. In a max heap, all parent nodes are larger than their children.

2. In a min heap, all parent nodes are smaller than their children.

The diagram below shows a heap with parent node values underlined:

Getting started
Open up the starter playground. This playground already contains an
implementation of a max heap. Your goal is to extend Heap so it can
also sort. Before you get started, let's look at a visual example of how
heap sort works.
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Example
For any given unsorted array, to sort from lowest to highest, heap sort
must first convert this array into a max heap.

This conversion is done by sifting down all the parent nodes so they
end up in the right spot. The resulting max heap is:

Which corresponds with the following array:
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Because the time complexity of a single sift down operation is O(log
n), the total time complexity of building a heap is O(n log n).

Let's look at how to sort this array in ascending order.

Because the largest element in a max heap is always at the root, you
start by swapping the first element at index 0 with the last element at
index n - 1. As a result of this swap, the last element of the array is in
the correct spot, but the heap is now invalidated. The next step is thus
to sift down the new root note 5 until it lands in its correct position.

Note that you exclude the last element of the heap as we no longer
consider it part of the heap, but of the sorted array.

As a result of sifting down 5, the second largest element 21 becomes
the new root. You can now repeat the previous steps, swapping 21
with the last element 6, shrinking the heap and sifting down 6.
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Starting to see a pattern? Heap sort is very straightforward. As you
swap the first and last elements, the larger elements make their way
to the back of the array in the correct order. You simply repeat the
swapping and sifting steps until you reach a heap of size 1. The array
is then fully sorted.
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Note: This sorting process is very similar to selection sort from
Chapter 14.

Implementation
Next, you’ll implement this sorting algorithm. The actual
implementation is very simple, as the heavy lifting is already done by
the siftDown method:

extension Heap {
  func sorted() -> [Element] {
    var heap = Heap(sort: sort, elements: elements) // 1
    for index in heap.elements.indices.reversed() { // 2
      heap.elements.swapAt(0, index) // 3
      heap.siftDown(from: 0, upTo: index) // 4
    }
    return heap.elements
  }
}

Here's what's going on:

1. You first make a copy of the heap. After heap sort sorts the
elements array, it is no longer a valid heap. By working on a copy
of the heap, you ensure the heap remains valid.

2. You loop through the array, starting from the last element.

3. You swap the first element and the last element. This moves the
largest unsorted element to its correct spot.

4. Because the heap is now invalid, you must sift down the new root
node. As a result, the next largest element will become the new
root.

Note that in order to support heap sort, you've added an additional
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Note that in order to support heap sort, you've added an additional
parameter upTo to the siftDown method. This way, the sift down only
uses the unsorted part of the array, which shrinks with every iteration
of the loop.

Finally, give your new method a try:

let heap = Heap(sort: >, elements: [6, 12, 2, 26, 8, 18, 21, 
print(heap.sorted())

This should print:

[2, 5, 6, 8, 9, 12, 18, 21, 26]

Performance
Even though you get the benefit of in-memory sorting, the
performance of heap sort is O(n log n) for its best, worse and average
cases. This is because you have to traverse the whole list once, and
every time you swap elements you must perform a sift down, which is
an O(log n) operation.

Heap sort is also not a stable sort because it depends on how the
elements are laid out and put into the heap. If you were heap sorting a
deck of cards by their rank, for example, you might see their suite
change order with respect to the original deck.

Where to go from here?
Heap sort is a natural application of the heap data structure and you
now should have a solid grasp on how heap sorting works. You will
use this as a fundamental building block in future chapters as you
build your algorithm repertoire.
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Quicksort
In the preceding chapters, you’ve learned to sort an array using
comparison-based sorting algorithms, merge sort, and heap sort.

Quicksort is another comparison-based sorting algorithm. Much like
merge sort, it uses the same strategy of divide and conquer.

One important feature of Quicksort is choosing a pivot point. The
pivot divides the array into three partitions:

[ elements < pivot | pivot | elements > pivot ]

In this chapter, you will implement Quicksort and look at various
partitioning strategies to get the most out of this sorting algorithm.

Example
Open up the starter playground. A naïve implementation of Quicksort
is provided in quicksortNaive.swift:

public func quicksortNaive<T: Comparable>(_ a: [T]) -> [T] {
  guard a.count > 1 else { // 1
    return a
  }
  let pivot = a[a.count / 2] // 2
  let less = a.filter { $0 < pivot } // 3
  let equal = a.filter { $0 == pivot }
  let greater = a.filter { $0 > pivot }
  return quicksortNaive(less) + equal + quicksortNaive(greater) 
}

Let’s look at how it works:

1. This is a recursive function, so you must have a base case. There
must be more than one element in the array, otherwise there is
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no need to sort.

2. The partitioning strategy here is to always pick the middle
element of the array as the pivot.

3. Using the pivot, split the original array into three partitions.
Elements less than, equal to or greater than the pivot go into
different partitions.

4. Recursively sort the partitions and then combine them.

Let’s now visualize the code above. Given the unsorted array below:

[12, 0, 3, 9, 2, 18, 8, 27, 1, 5, 8, -1, 21]
                     *

Your strategy in this implementation is to always select the middle
element as the pivot. In this case, the element is 8. Partitioning the
array using this pivot results in the following partitions:

less: [0, 3, 2, 1, 5, -1]
equal: [8, 8]
greater: [12, 9, 18, 27, 21]

Notice that the three partitions aren’t completely sorted yet.
Quicksort will recursively divide these partitions into even smaller
ones. The recursion will only halt when all partitions have either zero
or one element.

Here’s an overview of all the partitioning steps:
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Each level corresponds with a recursive call to Quicksort. Once
recursion stops, the resulting partitions (the numbers in red) are
combined again, resulting in a fully sorted array:

[-1, 1, 2, 3, 5, 8, 8, 9, 12, 18, 21, 27]

While this naïve implementation is easy to understand, it has some
issues:

Calling filter three times on the array is hardly efficient.

Creating a new array for every partition isn’t space efficient.
Could you possibly sort in place?

Is picking the middle element as a pivot a good strategy? What
pivot strategy should you adopt?

Partitioning strategies

In this section, you will look at partitioning strategies and ways to
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In this section, you will look at partitioning strategies and ways to
make this Quicksort implementation more efficient. The first
partitioning algorithm you will look at is Lomuto’s algorithm.

Lomuto’s partitioning

Lomuto’s partitioning algorithm always chooses the last element as
the pivot. Let’s look at how this works in code.

In your playground, create a file called quicksortLomuto.swift and add
the following function declaration:

public func partitionLomuto<T: Comparable>(_ a: inout [T],
                                           low: Int, 
                                           high: Int) -> Int
}

This function takes three arguments:

a is the array you are partitioning.

low and high set the range within the array you will partition.
This range will get smaller and smaller with every recursion.

The function returns the index of the pivot.

Now implement the function as follows:

let pivot = a[high] // 1

var i = low // 2
for j in low..<high { // 3
  if a[j] <= pivot { // 4
    a.swapAt(i, j) // 5
    i += 1
  }
}

a.swapAt(i, high) // 6
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return i // 7

Here’s what this code does:

1. Set the pivot. Lomuto always chooses the last element as the
pivot.

2. The variable i indicates how many elements are less than the
pivot. Whenever you encounter an element that is less than the
pivot, you swap it with the element at index i and increase i.

3. Loop through all the elements from low to high, but not
including high since it’s the pivot.

4. Check to see if the current element is less than or equal to the
pivot.

5. If it is, swap it with the element at index i and increase i.

6. Once done with the loop, swap the element at i with the pivot.
The pivot always sits between the less and greater partitions.

7. Return the index of the pivot.

While this algorithm loops through the array, it divides the array into
four regions:

1. a[low..<i] contains all elements <= pivot.

2. a[i...j-1] contains all elements > pivot.

3. a[j...high-1] are elements you have not compared yet.

4. a[high] is the pivot element.

[ values <= pivot | values > pivot | not compared yet | pivot ]
  low         i-1   i          j-1   j         high-1   high
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Step-by-step

Let’s look at a few steps of the algorithm to get a clear understanding
of how it works.

Given the unsorted array below:

[12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 8]

First, the last element 8 is selected as the pivot.

  0   1  2  3  4  5   6   7   8  9  10  11    12
[ 12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, |  8  ]
  low                                        high
  i
  j

Then, the first element 12 is compared to the pivot. It is not smaller
than the pivot, so the algorithm continues to the next element.

   0  1  2  3  4  5   6   7   8  9  10  11   12
[ 12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, |  8  ]
  low                                        high
  i
      j

The second element 0 is smaller than the pivot, so it is swapped with
the element currently at index i (12) and i is increased.

  0   1  2  3  4  5   6   7   8  9  10  11   12
[ 0, 12, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, |  8  ]
 low                                         high
      i
         j

The third element 3 is again smaller than the pivot, so another swap
occurs.
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  0   1  2  3  4  5   6   7   8  9  10  11   12
[ 0, 3, 12, 9, 2, 21, 18, 27, 1, 5, 8, -1, |  8  ]
 low                                         high
         i
            j

These steps continue until all but the pivot element have been
compared. The resulting array is:

  0   1  2  3  4  5   6   7   8  9  10  11   12
[ 0, 3, 2, 1, 5, 8, -1, 27, 9, 12, 21, 18, |  8  ]
 low                                         high
                         i

Finally, the pivot element is swapped with the element currently at
index i:

  0   1  2  3  4  5   6   7   8  9  10  11     12
[ 0, 3, 2, 1, 5, 8, -1 | 8 | 9, 12, 21, 18, |  27  ]
 low                                          high
                         i

Lomuto’s partitioning is now complete. Notice how the pivot is in
between the two regions of elements less than or equal to the pivot
and elements greater than the pivot.

In the naïve implementation of Quicksort, you created three new
arrays and filtered the unsorted array three times. Lomuto’s algorithm
performs the partitioning in place. That’s much more efficient!

With your partitioning algorithm in place, you can now implement
Quicksort:

public func quicksortLomuto<T: Comparable>(_ a: inout [T], low: Int, high: Int)
  if low < high {
    let pivot = partitionLomuto(&a, low: low, high: high)
    quicksortLomuto(&a, low: low, high: pivot - 1)
    quicksortLomuto(&a, low: pivot + 1, high: high)
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  }
}

Here you simply apply Lomuto’s algorithm to partition the array into
two regions, then recursively sort these regions. Recursion ends once
a region has less than two elements.

You can try out Lomuto’s Quicksort by adding the following to your
playground:

var list = [12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 8]
quicksortLomuto(&list, low: 0, high: list.count - 1)
print(list)

Hoare’s partitioning

Hoare’s partitioning algorithm always chooses the first element as the
pivot. Let’s look at how this works in code.

In your playground, create a file named quicksortHoare.swift and add
the following function:

public func partitionHoare<T: Comparable>(_ a: inout [T], low: Int, high: Int)
  let pivot = a[low] // 1
  var i = low - 1 // 2
  var j = high + 1

  while true {
    repeat { j -= 1 } while a[j] > pivot // 3
    repeat { i += 1 } while a[i] < pivot // 4

    if i < j { // 5
      a.swapAt(i, j)
    } else {
      return j // 6
    }
  }
}
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Let’s go over these steps:

1. Select the first element as the pivot.

2. Indexes i and j define two regions. Every index before i will be
less than or equal to the pivot. Every index after j will be greater
than or equal to the pivot.

3. Decrease j until it reaches an element that is not greater than the
pivot.

4. Increase i until it reaches an element that is not lesser than the
pivot.

5. If i and j have not overlapped, swap the elements.

6. Return the index that separates both regions.

Note: The index returned from the partition does not necessarily
have to be the index of the pivot element.

Step-by-step

Given the unsorted array below:

[  12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 8   ]

First, 12 is set as the pivot. Then i and j will start running through
the array, looking for elements that are not lesser than (in the case of
i) or greater than (in the case of j) the pivot. i will stop at element 12
and j will stop at element 8.

[  12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1,  8  ]
   p
   i                                         j
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These elements are then swapped:

[  8, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 12 ]
   i                                       j

i and j now continue moving, this time stopping at 21 and -1.

[  8, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 12 ]
                   i                    j

Which are then swapped:

[  8, 0, 3, 9, 2, -1, 18, 27, 1, 5, 8, 21, 12 ]
                   i                    j

Next, 18 and 8 are swapped, followed by 27 and 5.

After this swap the array and indices are as follows:

[  8, 0, 3, 9, 2, -1, 8, 5, 1, 27, 18, 21, 12 ]
                         i      j

The next time you move i and j, they will overlap:

[  8, 0, 3, 9, 2, -1, 8, 5, 1, 27, 18, 21, 12 ]
                                i
                            j

Hoare’s algorithm is now complete, and index j is returned as the
separation between the two regions.

There are far fewer swaps here compared to Lomuto’s algorithm. Isn’t
that nice?

You can now implement a quicksortHoare function:

public func quicksortHoare<T: Comparable>(_ a: inout [T], low: Int, high: Int)
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  if low < high {
    let p = partitionHoare(&a, low: low, high: high)
    quicksortHoare(&a, low: low, high: p)
    quicksortHoare(&a, low: p + 1, high: high)
  }
}

Try it out by adding the following in your playground:

var list2 = [12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 8]
quicksortHoare(&list2, low: 0, high: list.count - 1)
print(list2)

Effects of a bad pivot choice
The most important part of implementing Quicksort is choosing the
right partitioning strategy.

You have looked at three different partitioning strategies:

1. Choosing the middle element as a pivot.

2. Lomuto, or choosing the last element as a pivot.

3. Hoare, or choosing the first element as a pivot.

What are the implications of choosing a bad pivot?

Let’s start with the following unsorted array:

[8, 7, 6, 5, 4, 3, 2, 1]

If you use Lomuto’s algorithm, the pivot will be the last element 1.
This results in the following partitions:

less: [ ]
equal: [1]
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greater: [8, 7, 6, 5, 4, 3, 2]

An ideal pivot would split the elements evenly between the less than
and greater than partitions. Choosing the first or last element of an
already sorted array as a pivot makes Quicksort perform much like
insertion sort, which results in a worst-case performance of O(n²).
One way to address this problem is by using the median of three pivot
selection strategy. Here you find the median of the first, middle and
last element in the array and use that as a pivot. This prevents you
from picking the highest or lowest element in the array.

Let’s look at an implementation. Create a new file named
quicksortMedian.swift and add the following function:

public func medianOfThree<T: Comparable>(_ a: inout [T], low: Int, high: Int)
  let center = (low + high) / 2
  if a[low] > a[center] {
    a.swapAt(low, center)
  }
  if a[low] > a[high] {
    a.swapAt(low, high)
  }
  if a[center] > a[high] {
    a.swapAt(center, high)
  }
  return center
}

Here you find the median of a[low], a[center] and a[high] by
sorting them. The median will end up at index center, which is what
the function returns.

Next, let’s implement a variant of Quicksort using this median of
three:

public func quickSortMedian<T: Comparable>(_ a: inout [T], low: Int, high: Int)
  if low < high {
    let pivotIndex = medianOfThree(&a, low: low, high: high)
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    a.swapAt(pivotIndex, high)
    let pivot = partitionLomuto(&a, low: low, high: high)
    quicksortLomuto(&a, low: low, high: pivot - 1)
    quicksortLomuto(&a, low: pivot + 1, high: high)
  }
}

This is simply a variation on quicksortLomuto that adds median of
three as a first step.

Try this out by adding the following in your playground:

var list3 = [12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 8]
quickSortMedian(&list3, low: 0, high: list3.count - 1)
print(list3)

This is definitely an improvement, but can we do better?

Dutch national flag partitioning

A problem with Lomuto’s and Hoare’s algorithms is that they don’t
handle duplicates really well. With Lomuto’s algorithm, duplicates
end up in the less than partition and aren’t grouped together. With
Hoare’s algorithm, the situation is even worse as duplicates can be all
over the place.

A solution to organize duplicate elements is using Dutch national flag
partitioning. This technique is named after the Dutch flag which has
three bands of colors: red, white and blue. This is similar to how you
create three partitions. Dutch national flag partitioning is a good
technique to use if you have lots of duplicate elements.

Let’s look at how it’s implemented. Create a file named
quicksortDutchFlag.swift and add the following function:

public func partitionDutchFlag<T: Comparable>(_ a: inout [T], low: Int, high: Int, pivotIndex: Int)
  let pivot = a[pivotIndex]
  var smaller = low // 1
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  var equal = low // 2
  var larger = high // 3
  while equal <= larger { // 4
    if a[equal] < pivot {
      a.swapAt(smaller, equal)
      smaller += 1
      equal += 1
    } else if a[equal] == pivot {
      equal += 1
    } else {
      a.swapAt(equal, larger)
      larger -= 1
    }
  }
  return (smaller, larger) // 5
}

This is based on Lomuto’s algorithm. Let’s go over how it works:

1. Whenever you encounter an element that is less than the pivot,
move it to index smaller. This means that all elements that come
before this index are less than the pivot.

2. Index equal points to the next element to compare. Elements
that are equal to the pivot are skipped, which means that all
elements between smaller and equal are equal to the pivot.

1. Whenever you encounter an element that is greater than the
pivot, move it to index larger. This means that all elements that
come after this index are greater than the pivot.

2. The main loop compares elements and swaps them if needed.
This continues until index equal moves past index larger,
meaning all elements have been moved to their correct partition.

3. The algorithm returns indices smaller and larger. These point
to the first and last elements of the middle partition.
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Step-by-step

Let’s go over an example using the unsorted array below:

[ 12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 8 ]

Since this algorithm is independent of a pivot selection strategy,
you’ll simply pick the last element 8. You could use median of three
instead. Next, you set up the indices smaller, equal and larger:

[12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 8]
  s
  e
                                          l

The first element to be compared is 12. Since it is larger than the
pivot, it is swapped with the element at index larger and this index is
decremented. Note that index equal is not incremented so the
element that was swapped in (8) is compared next:

[8, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 12]
 s
 e
                                      l

8 is equal to the pivot so you simply increment equal:

[8, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 12]
 s
    e
                                      l

0 is smaller than the pivot so you swap the elements at equal and
smaller and increase both pointers:

[0, 8, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 12]
    s
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       e
                                      l

And so on.

Note how smaller, equal and larger partition the array:

Elements in [low..<smaller] are smaller than the pivot.

Elements in [smaller..<equal] are equal to the pivot.

Elements in [larger>..high] are larger than the pivot.

Elements in [equal...larger] haven’t been compared yet.

To understand how and when the algorithm ends, let’s continue from
the second-to-last step:

[0, 3, -1, 2, 5, 8, 8, 27, 1, 18, 21, 9, 12]
                 s
                        e
                           l

Here, 27 is being compared. It is greater than the pivot, so it is
swapped with 1 and index larger is decremented:

[0, 3, -1, 2, 5, 8, 8, 1, 27, 18, 21, 9, 12]
                 s
                       e
                       l

Even though equal is now equal to larger, the algorithm isn’t
complete. The element currently at equal hasn’t been compared yet.
It is smaller than the pivot, so it is swapped with 8 and both indices
smaller and equal are incremented:

[0, 3, -1, 2, 5, 1, 8, 8, 27, 18, 21, 9, 12]
                    s
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                       l

Indices smaller and larger now point to the first and last elements of
the middle partition. By returning them, the function clearly marks
the boundaries of the three partitions.

You’re now ready to implement a new version of Quicksort using
Dutch national flag partitioning:

public func quicksortDutchFlag<T: Comparable>(_ a: inout [T], low: Int, high: Int)
  if low < high {
    let (middleFirst, middleLast) = partitionDutchFlag(&a, low: low, high: high, pivotIndex: high)
    quicksortDutchFlag(&a, low: low, high: middleFirst - 1)
    quicksortDutchFlag(&a, low: middleLast + 1, high: high)
  }
}

Notice how recursion uses the middleFirst and middleLast indices to
determine the partitions that need to be sorted recursively. Because
the elements equal to the pivot are grouped together, they can be
excluded from the recursion.

Try out your new Quicksort by adding the following in your
playground:

var list4 = [12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 8]
quicksortDutchFlag(&list4, low: 0, high: list4.count - 1)
print(list4)

That’s it!

Where to go from here?
In this chapter, you learned another divide and conquer sorting
algorithm. Quicksort is all about choosing the right pivot for the job
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and then partitioning. You sort the array by breaking it down into
smaller partitions and partition until you can go no further.

Remember that quicksort can perform its best in O(n log n), but when
an array is nearly sorted, it could perform as bad as O(n²).
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Graphs
What do social networks have in common with booking cheap flights
around the world? You can represent both of these real-world models
as graphs!

A graph is a data structure that captures relationships between
objects. It is made up of vertices connected by edges.

In the graph below, the vertices are represented by circles, and the
edges are the lines that connect them.

Weighted graphs
In a weighted graph, every edge has a weight associated with it that
represents the cost of using this edge. This lets you choose the
cheapest or shortest path between two vertices.

Take the airline industry as an example, and think of a network with
varying flight paths:
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In this example, the vertices represent a state or country, while the
edges represent a route from one place to another. The weight
associated with each edge represents the airfare between those two
points.

Using this network, you can determine the cheapest flights from San
Francisco to Singapore for all those budget-minded digital nomads
out there!

Directed graphs

As well as assigning a weight to an edge, your graphs can also have
direction. Directed graphs are more restrictive to traverse, as an edge
may only permit traversal in one direction.

The diagram below represents a directed graph.
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You can tell a lot from this diagram:

There is a flight from Hong Kong to Tokyo.

There is no direct flight from San Francisco to Tokyo.

You can buy a roundtrip ticket between Singapore and Tokyo.

There is no way to get from Tokyo to San Francisco.

Undirected graphs

You can think of an undirected graph as a directed graph where all
edges are bidirectional.

In an undirected graph:

Two connected vertices have edges going back and forth.

The weight of an edge applies to both directions.
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Common operations
Let's establish a protocol for graphs.

Open up the starter project for this chapter. Create a new file named
Graph.swift and add the following inside the file:

public enum EdgeType {
  
  case directed
  case undirected
}

public protocol Graph {
  
  associatedtype Element
  
  func createVertex(data: Element) -> Vertex<Element>
  func addDirectedEdge(from source: Vertex<Element>,
                       to destination: Vertex<Element>,
                       weight: Double?)
  func addUndirectedEdge(between source: Vertex<Element>,
                         and destination: Vertex<Element>,
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                         weight: Double?)
  func add(_ edge: EdgeType, from source: Vertex<Element>,
                             to destination: Vertex<Element>,
                             weight: Double?)
  func edges(from source: Vertex<Element>) -> [Edge<Element>]
  func weight(from source: Vertex<Element>,
              to destination: Vertex<Element>) -> Double?
}

This protocol describes the common operations for a graph:

createVertex(data:): Creates a vertex and adds it to the graph.

addDirectedEdge(from:to:weight:): Adds a directed edge
between two vertices.

addUndirectedEdge(between:and:weight:): Adds an undirected
(or bidirectional) edge between two vertices.

add(from:to:): Uses EdgeType to add either a directed or
undirected edge between two vertices.

edges(from:): Returns a list of outgoing edges from a specific
vertex.

weight(from:to:): Returns the weight of the edge between two
vertices.

In the following sections, you'll implement this protocol in two ways:

Using an adjacency list.

Using an adjacency matrix.

Before you can do that, you must first build types to represent
vertices and edges.
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Defining a vertex

Create a new file named Vertex.swift and add the following inside the
file:

public struct Vertex<T> {
  
  public let index: Int
  public let data: T
}

Here you've defined a generic Vertex struct. A vertex has a unique
index within its graph and holds a piece of data.

You'll use Vertex as the key type for a dictionary, so you need to
conform to Hashable. Add the following extension to implement the
requirements for Hashable:

extension Vertex: Hashable {
  
  public var hashValue: Int {
    return index.hashValue
  }
  
  public static func ==(lhs: Vertex, rhs: Vertex) -> Bool {
    return lhs.index == rhs.index
  }
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}

Because vertices have a unique index, you use the index property to
implement hashValue and ==.

Finally, you want to provide a custom string representation of Vertex.
Add the following right after:

extension Vertex: CustomStringConvertible {
  
  public var description: String {
    return "\(index): \(data)"
  }
}

Defining an edge
To connect two vertices, there must be an edge between them!

Create a new file named Edge.swift and add the following inside the
file:

public struct Edge<T> {
  
  public let source: Vertex<T>
  public let destination: Vertex<T>

Download from finelybook 7450911@qq.com

239



  public let weight: Double?
}

An Edge connects two vertices and has an optional weight. Simple,
isn't it?

Adjacency list
The first graph implementation you'll learn uses an adjacency list. For
every vertex in the graph, the graph stores a list of outgoing edges.

Take as an example the network below:

The adjacency list below describes the network for the network of
flights depicted above:
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There is a lot you can learn from this adjacency list:

1. Singapore's vertex has two outgoing edges. There is a flight from
Singapore to Tokyo and Hong Kong.

2. Detroit has the smallest number of outgoing traffic.

3. Tokyo is the busiest airport, with the most outgoing flights.

In the next section you will create an adjacency list by storing a
dictionary of arrays. Each key in the dictionary is a vertex, and in
every vertex the dictionary holds a corresponding array of edges.

Implementation
Create a new file named AdjacencyList.swift, and add the following:

public class AdjacencyList<T>: Graph {
  
  private var adjacencies: [Vertex<T>: [Edge<T>]] = [:]
  
  public init() {}

  // more to come ...
}
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Here you've defined an AdjacencyList that uses a dictionary to store
the edges. You've already adopted the Graph protocol but still need to
implement its requirements. That's what you'll do in the following
sections.

Creating a vertex

Add the following method to AdjacencyList:

public func createVertex(data: T) -> Vertex<T> {
  let vertex = Vertex(index: adjacencies.count, data: data)
  adjacencies[vertex] = []
  return vertex
}

Here you create a new vertex and return it. In the adjacency list, you
store an empty array of edges for this new vertex.

Creating a directed edge

Recall that there are directed and undirected graphs.

Start by implementing the addDirectedEdge requirement. Add the
following method:
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public func addDirectedEdge(from source: Vertex<T>,
                            to destination: Vertex<T>,
                            weight: Double?) {
  let edge = Edge(source: source,
                  destination: destination,
                  weight: weight)
  adjacencies[source]?.append(edge)
}

This method creates a new edge and stores it in the adjacency list.

Creating an undirected edge

You just created a method to add a directed edge between two
vertices. How would you create an undirected edge between two
vertices?

Remember that an undirected graph can be viewed as a bidirectional
graph. Every edge in an undirected graph can be traversed in both
directions. This is why you'll implement addUndirectedEdge on top of
addDirectedEdge. Because this implementation is reusable, you'll add
it as a protocol extension on Graph.

In Graph.swift, add the following extension:

extension Graph {
  
  public func addUndirectedEdge(between source: Vertex<Element>,
                                and destination: Vertex<Element>,
                                weight: Double?) {
    addDirectedEdge(from: source, to: destination, weight: weight)
    addDirectedEdge(from: destination, to: source, weight: weight)
  }
}

Adding an undirected edge is the same as adding two directed edges.

Now that you've implemented both addDirectionalEdge and
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Now that you've implemented both addDirectionalEdge and
addUndirectedEdge, you can implement add by delegating to one of
these methods. In the same protocol extension, add:

public func add(_ edge: EdgeType, from source: Vertex<Element>,
                                  to destination: Vertex<Element>,
                                  weight: Double?) {
  switch edge {
  case .directed:
    addDirectedEdge(from: source, to: destination, weight: weight)
  case .undirected:
    addUndirectedEdge(between: source, and: destination, weight: weight)
  }
}

The add method is a convenient helper method that creates either a
directed or undirected edge.

This is where protocols can become very powerful! Anyone that
adopts the Graph protocol only needs to implement addDirectedEdge
in order to get addUndirectedEdge and add for free!

Retrieving the outgoing edges from a vertex

Back in AdjacencyList.swift, continue your work on conforming to
Graph by adding the following method:

public func edges(from source: Vertex<T>) -> [Edge<T>] {
  return adjacencies[source] ?? []
}

This is a straightforward implementation: you either return the stored
edges, or an empty array if the source vertex is unknown.

Retrieving the weight of an edge

How much is the flight from Singapore to Tokyo?
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Add the following right after edges(from:):

public func weight(from source: Vertex<T>,
                   to destination: Vertex<T>) -> Double? {
  return edges(from: source)
           .first { $0.destination == destination }?
           .weight
}

Here you find the first edge from source to destination; if there is
one, you return its weight.

Visualizing the adjacency list

Add the following extension to AdjacencyList so you can print a nice
description of your graph:

extension AdjacencyList: CustomStringConvertible {
  
  public var description: String {
    var result = ""
    for (vertex, edges) in adjacencies { // 1
      var edgeString = ""
      for (index, edge) in edges.enumerated() { // 2
        if index != edges.count - 1 {
          edgeString.append("\(edge.destination), ")
        } else {
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          edgeString.append("\(edge.destination)")
        }
      }
      result.append("\(vertex) ---> [ \(edgeString) ]\n") // 3
    }
    return result
  }
}

Here's what's going on in the code above:

1. You loop through every key-value pair in adjacencies.

2. For every vertex, you loop through all its outgoing edges and add
an appropriate string to the output.

3. Finally, for every vertex you print both the vertex itself and its
outgoing edges.

You have finally completed your first graph! Let's now try it out by
building a network.

Building a network

Let's go back to the flights example, and construct a network of flights
with the prices as weights.
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Within the main playground page, add the following code:

let graph = AdjacencyList<String>()

let singapore = graph.createVertex(data: "Singapore")
let tokyo = graph.createVertex(data: "Tokyo")
let hongKong = graph.createVertex(data: "Hong Kong")
let detroit = graph.createVertex(data: "Detroit")
let sanFrancisco = graph.createVertex(data: "San Francisco")
let washingtonDC = graph.createVertex(data: "Washington DC")
let austinTexas = graph.createVertex(data: "Austin Texas")
let seattle = graph.createVertex(data: "Seattle")

graph.add(.undirected, from: singapore, to: hongKong, weight: 
graph.add(.undirected, from: singapore, to: tokyo, weight: 500
graph.add(.undirected, from: hongKong, to: tokyo, weight: 250
graph.add(.undirected, from: tokyo, to: detroit, weight: 450
graph.add(.undirected, from: tokyo, to: washingtonDC, weight: 
graph.add(.undirected, from: hongKong, to: sanFrancisco, weight: 
graph.add(.undirected, from: detroit, to: austinTexas, weight: 
graph.add(.undirected, from: austinTexas, to: washingtonDC, weight: 
graph.add(.undirected, from: sanFrancisco, to: washingtonDC, weight: 
graph.add(.undirected, from: washingtonDC, to: seattle, weight: 
graph.add(.undirected, from: sanFrancisco, to: seattle, weight: 
graph.add(.undirected, from: austinTexas, to: sanFrancisco, weight: 
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print(graph.description)

You should get the following output in your playground:

2: Hong Kong ---> [ 0: Singapore, 1: Tokyo, 4: San Francisco ]
4: San Francisco ---> [ 2: Hong Kong, 5: Washington DC, 7: Seattle, 6: Austin Texas ]
5: Washington DC ---> [ 1: Tokyo, 6: Austin Texas, 4: San Francisco, 7: Seattle ]
6: Austin Texas ---> [ 3: Detroit, 5: Washington DC, 4: San Francisco ]
7: Seattle ---> [ 5: Washington DC, 4: San Francisco ]
0: Singapore ---> [ 2: Hong Kong, 1: Tokyo ]
1: Tokyo ---> [ 0: Singapore, 2: Hong Kong, 3: Detroit, 5: Washington DC ]
3: Detroit ---> [ 1: Tokyo, 6: Austin Texas ]

Pretty cool, huh? This shows a visual description of an adjacency list.
You can clearly see all the outbound flights from any place!

You can also obtain other useful information such as:

How much is a flight from Singapore to Tokyo?

graph.weight(from: singapore, to: tokyo)

What are all the outgoing flights from San Francisco?

print("San Francisco Outgoing Flights:")
print("--------------------------------")
for edge in graph.edges(from: sanFrancisco) {
  print("from: \(edge.source) to: \(edge.destination)")
}

You have just created a graph using an adjacency list, where you used
a dictionary to store the outgoing edges for every vertex. Let's take a
look at a different approach to how to store vertices and edges.

Adjacency matrix
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An adjacency matrix uses a square matrix to represent a graph. This
matrix is a two-dimensional array where the value of matrix[row]
[column] is the weight of the edge between the vertices at row and
column.

Below is an example of a directed graph that depicts a flight network
traveling to different places. The weight represents the cost of the
airfare.

The following adjacency matrix describes the network for the flights
depicted above. Edges that don't exist have a weight of 0.

Compared to an adjacency list, this matrix is a little harder to read.
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Using the array of vertices on the left, you can learn a lot from the
matrix. For example:

[0][1] is 300, so there is a flight from Singapore to Hong Kong
for $300.

[2][1] is 0, so there is no flight from Tokyo to Hong Kong.

[1][2] is 250, so there is a flight from Hong Kong to Tokyo for
$250.

[2][2] is 0, so there is no flight from Tokyo to Tokyo!

Note: There is a blue line in the middle of the matrix. When the
row and column are equal, this represents an edge between a
vertex and itself, which is not allowed.

Implementation
Create a new file named AdjacencyMatrix.swift and add the following
to it:

public class AdjacencyMatrix<T>: Graph {
  
  private var vertices: [Vertex<T>] = []
  private var weights: [[Double?]] = []
  
  public init() {}

  // more to come ...
}

Here you've defined an AdjacencyMatrix that contains an array of
vertices and an adjacency matrix to keep track of the edges and their
weights.
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Just as before, you've already declared conformance to Graph but still
need to implement the requirements.

Creating a Vertex

Add the following method to AdjacencyMatrix:

public func createVertex(data: T) -> Vertex<T> {
  let vertex = Vertex(index: vertices.count, data: data)
  vertices.append(vertex) // 1
  for i in 0..<weights.count { // 2
    weights[i].append(nil)
  }
  let row = [Double?](repeating: nil, count: vertices.count) 
  weights.append(row)
  return vertex
}

To create a vertex in an adjacency matrix, you:

1. Add a new vertex to the array.

2. Append a nil weight to every row in the matrix, as none of the
current vertices have an edge to the new vertex.
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1. Add a new row to the matrix. This row holds the outgoing edges
for the new vertex.

Creating edges

Creating edges is as simple as filling in the matrix. Add the following
method:
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public func addDirectedEdge(from source: Vertex<T>,
                            to destination: Vertex<T>, weight: Double?)
  weights[source.index][destination.index] = weight
}

Remember that addUndirectedEdge and add have a default
implementation in the protocol extension, so this is all you need to
do!

Retrieving the outgoing edges from a vertex

Add the following method:

public func edges(from source: Vertex<T>) -> [Edge<T>] {
  var edges: [Edge<T>] = []
  for column in 0..<weights.count {
    if let weight = weights[source.index][column] {
      edges.append(Edge(source: source,
                        destination: vertices[column],
                        weight: weight))
    }
  }
  return edges
}

To retrieve the outgoing edges for a vertex, you search the row for this
vertex in the matrix for weights that aren not nil. Every non-nil
weight corresponds with an outgoing edge. The destination is the
vertex that corresponds with the column in which the weight was
found.

Retrieving the weight of an edge

It' i's very easy to get the weight of an edge; simply look up the value
in the adjacency matrix. Add this method:

public func weight(from source: Vertex<T>,
                   to destination: Vertex<T>) -> Double? {
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  return weights[source.index][destination.index]
}

Visualize an adjacency matrix

Finally, add the following extension so you can print out a nice,
readable description of your graph:

extension AdjacencyMatrix: CustomStringConvertible {
  
  public var description: String {
    // 1
    let verticesDescription = vertices.map { "\($0)" }
                                      .joined(separator: "\n"
    // 2
    var grid: [String] = []
    for i in 0..<weights.count {
      var row = ""
      for j in 0..<weights.count {
        if let value = weights[i][j] {
          row += "\(value)\t"
        } else {
          row += "ø\t\t"
        }
      }
      grid.append(row)
    }
    let edgesDescription = grid.joined(separator: "\n")
    // 3
    return "\(verticesDescription)\n\n\(edgesDescription)"
  }
}

Here are the steps:

1. You first create a list of the vertices.

2. Then you build up a grid of weights, row by row.

3. Finally, you join both descriptions together and return them.
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Building a network.

You will be reusing the same example from AdjacencyList:

Go to the main playground page and replace:

let graph = AdjacencyList<String>()

with:

let graph = AdjacencyMatrix<String>()

AdjacencyMatrix and AdjacencyList conform to the same protocol
Graph, so the rest of the code stays the same.

You should get the following output in your playground:

0: Singapore
1: Tokyo
2: Hong Kong
3: Detroit
4: San Francisco
5: Washington DC
6: Austin Texas
7: Seattle
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ø       500.0   300.0   ø       ø       ø       ø       ø       
500.0   ø       250.0   450.0   ø       300.0   ø       ø       
300.0   250.0   ø       ø       600.0   ø       ø       ø       
ø       450.0   ø       ø       ø       ø       50.0    ø       
ø       ø       600.0   ø       ø       337.0   297.0   218.0   
ø       300.0   ø       ø       337.0   ø       292.0   277.0   
ø       ø       ø       50.0    297.0   292.0   ø       ø       
ø       ø       ø       ø       218.0   277.0   ø       ø       
San Francisco Outgoing Flights:
--------------------------------
from: 4: San Francisco to: 2: Hong Kong
from: 4: San Francisco to: 5: Washington DC
from: 4: San Francisco to: 6: Austin Texas
from: 4: San Francisco to: 7: Seattle

In terms of visual beauty, an adjacency list is a lot easier to follow and
trace than an adjacency matrix. Let's analyze the common operations
of these two approaches and see how they perform.

Graph analysis

V represents vertices, and E represents edges.

An adjacency list takes less storage space than an adjacency matrix.
An adjacency list simply stores the number of vertices and edges
needed. As for an adjacency matrix, recall that the number of rows
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and columns is equal to the number of vertices. This explains the
quadratic space complexity of O(V²).

Adding a vertex is efficient in an adjacency list: simply create a
vertex, and set its key-value pair in the dictionary. It is amortized as
O(1). When adding a vertex to an adjacency matrix, you are required
to add a column to every row, and create a new row for the new
vertex. This is at least O(V) and if you choose to represent your matrix
with a contiguous block of memory, can be O(V²).

Adding an edge is efficient in both data structures, as they are both
constant time. The adjacency list appends to the array of outgoing
edges. The adjacency matrix simply sets the value in the two-
dimensional array.

Adjacency list loses out when trying to find a particular edge or
weight. To find an edge in an adjacency list, you must obtain the list
of outgoing edges, and loop through every edge to find a matching
destination. This happens in O(V) time. With an adjacency matrix,
finding an edge or weight is a constant time access to retrieve the
value from the two-dimensional array.

Which data structure should you choose to construct your graph?

If there are few edges in your graph, it is considered a sparse graph,
and an adjacency list would be a good fit. An adjacency matrix would
be a bad choice for a sparse graph, because lots of memory will be
wasted since there aren't many edges.

If your graph has lots of edges, it's considered a dense graph, and an
adjacency matrix would be a better fit as you'd be able to access your
weights and edges far more quickly.

Where to go from here?

In this chapter you learned about different types of graphs
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In this chapter you learned about different types of graphs
representations and how these can be applied to real world
applications. You also constructed graphs in two different ways, using
an adjacency list or an adjacency matrix.

You have only scratched the surface of graphs so far. There are many
more algorithms that can be applied to graph data structures. You will
go through some of these in the upcoming chapters!
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Breadth-First Search
In the previous chapter, you explored how graphs can be used to
capture relationships between objects. Remember that objects are just
vertices, and the relationships between them are represented by
edges.

Several algorithms exist to traverse or search through a graph's
vertices. One such algorithm is the breadth-first search (BFS)
algorithm.

BFS can be used to solve a wide variety of problems:

1. Generating a minimum spanning tree.

2. Finding potential paths between vertices.

3. Finding the shortest path between two vertices.

Example
BFS starts off by selecting any vertex in a graph. The algorithm then
explores all neighbors of this vertex before traversing the neighbors of
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said neighbors, and so forth. As the name suggests, this algorithm
takes a breadth-first approach.

Let's go through a BFS example using the undirected graph below:

Note: Highlighted vertices represent vertices that have been
visited.

You will use a queue to keep track of which vertices to visit next. The
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You will use a queue to keep track of which vertices to visit next. The
first in first out approach of the queue guarantees that all of a vertex's
neighbors are visited before you traverse one level deeper.

1. To begin, you pick a source vertex to start from. Here you have
chosen A, which is added to the queue.

2. As long as the queue is not empty, you dequeue and visit the next
vertex, in this case A. Next, you add all of A's neighboring vertices
[B, D, C] to the queue.

Note: It's important to note that you only add a vertex to the
queue when it has not yet been visited and is not already in the
queue.
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1. The queue is not empty, so you dequeue and visit the next vertex,
which is B. You then add B's neighbor E to the queue. A is already
visited so it does not get added. The queue now has [D, C, E].

2. The next vertex to be dequeued is D. D does not have any
neighbors that aren't visited. The queue now has [C, E].

1. Next, you dequeue C and add its neighbors [F, G] to the queue.
The queue now has [E, F, G].

Note that you have now visited all of A's neighbors! BFS now moves
on to the second level of neighbors.
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1. You dequeue E and add H to the queue. The queue now has [F,
G, H]. Note that you don't add B or F to the queue because B is
already visited and F is already in the queue.

1. You dequeue F, and since all its neighbors are already in the
queue or visited, you don't add anything to the queue.

2. Just like the previous step, you dequeue G and don't add anything
to the queue.
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1. Finally, you dequeue H. The breadth-first search is complete since
the queue is now empty!

2. When exploring the vertices, you can construct a tree like
structure, showing the vertices at each level: first the vertex you
started from, then its neighbors, then its neighbors' neighbors,
and so on.

Implementation
Open up the starter playground for this chapter. This playground
contains an implementation of a graph that was built in the previous
chapter. It also includes a stack-based queue implementation which
you will use to implement BFS.

In your main playground file, you will notice a pre-built sample
graph. Add the following below:

extension Graph {

  func breadthFirstSearch(from source: Vertex<Element>)
      -> [Vertex<Element>] {
    var queue = QueueStack<Vertex<Element>>()
    var enqueued: Set<Vertex<Element>> = []
    var visited: [Vertex<Element>] = []

    // more to come

    return visited
  }
}

Here you've defined a method breadthFirstSearch(from:) that takes
in a starting vertex. It uses three data structures:

1. queue keeps track of the neighboring vertices to visit next.
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2. enqueued remembers which vertices have been enqueued before
so you don't enqueue the same vertex twice.

3. visited is an array that stores the order in which the vertices
were explored.

Next, complete the method by replacing the comment with:

queue.enqueue(source) // 1
enqueued.insert(source)

while let vertex = queue.dequeue() { // 2
  visited.append(vertex) // 3
  let neighborEdges = edges(from: vertex) // 4
  neighborEdges.forEach { edge in
    if !enqueued.contains(edge.destination) { // 5
      queue.enqueue(edge.destination)
      enqueued.insert(edge.destination)
    }
  }
}

Here's what's going on:

1. You initiate the BFS algorithm by first enqueuing the source
vertex.

2. You continue to dequeue a vertex from the queue until the queue
is empty.

3. Every time you dequeue a vertex from the queue, you add it to
the list of visited vertices.

4. Then, you find all edges that start from the current vertex and
iterate over them.

5. For each edge, you check to see if its destination vertex has been
enqueued before, and if not, you add it to the code.
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That's all there is to implementing BFS! Let's give this algorithm a
spin. Add the following code:

let vertices = graph.breadthFirstSearch(from: a)
vertices.forEach { vertex in
  print(vertex)
}

Notice the order of the explored vertices using breadth first search:

0: A
1: B
2: C
3: D
4: E
5: F
6: G
7: H

One thing to keep in mind with neighboring vertices is that the order
in which you visit them is determined by how you construct your
graph. You could have added an edge between A and C before adding
one between A and B. In this case, the output would list C before B.

Performance
When traversing a graph using breadth-first search, each vertex is
enqueued once. This has a time complexity of O(V) . During this
traversal, you also visit all the the edges. The time it takes to visit all
edges is O(E) . This means the overall time complexity for breadth-
first search is O(V + E).

The space complexity of BFS is O(V) since you have to store the
vertices in three separate structures: queue, enqueued and visited.
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Where to go from here?
Breadth-first search is an algorithm for traversing or searching a
graph. It's generally good to use this algorithm when your graph
structure has a lot of neighboring vertices, or when you need to find
out every possible outcome or path. Also it's good for generating a
minimum spanning tree as you will see in Chapter 23.
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Depth-First Search
In the previous chapter, you looked at breadth-first search where you
had to explore every neighbor of a vertex before going to the next
level. In this chapter, you will look at depth-first search, another
algorithm for traversing or searching a graph.

There are a lot of applications for depth-first search:

Topological sorting

Detecting a cycle

Path finding, such as in maze puzzles

Finding connected components in a sparse graph

To perform a depth-first search (DFS), you start with a given source
vertex and attempt to explore a branch as far as possible until you
reach the end. At this point, you would backtrack (move a step back)
and explore the next available branch until you find what you are
looking for, or you've visited all the vertices.

Example
Let's go through a DFS example. The example graph below is exactly
the same as the previous chapter. This is so you can see the difference
between BFS and DFS.
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You will use a stack to keep track of the levels you move through. The
stack's last-in-first-out approach helps with backtracking. Every push
on the stack means you move one level deeper. You can pop to return
to a previous level if you reach a dead end.
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1. As in the previous chapter, you choose A as a starting vertex and
add it to the stack.

2. As long as the stack is not empty, you visit the top vertex on the
stack and push the first neighboring vertex that has yet to be
visited. In this case you visit A and push B.

Recall from the previous chapter that the order in which you add
edges influences the result of a search. In this case the first edge
added to A was an edge to B, so B is pushed first.
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1. You visit B and push E because A is already visited.

2. You visit E and push F.

Note that every time you push on the stack, you advance further down
a branch. Instead of visiting every adjacent vertex, you simply
continue down a path until you reach the end and then backtrack.

1. You visit F and push G.

2. You visit G and push C.
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1. The next vertex to visit is C. It has neighbors [A, F, G], but all of
these have been visited. You have reached a dead end, so it's time
to backtrack by popping C off the stack.

2. This brings you back to G. It has neighbors [F, C], but all of these
have been visited. Another dead end, pop G.

1. F also has no unvisited neighbors remaining, so pop F.

2. Now you're back at E. Its neighbor H is still unvisited, so you push
H on the stack.

1. Visiting H results in another dead end, so pop H.
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2. E also doesn't have any available neighbors, so pop it.

1. The same is true for B, so pop B.

2. This brings you all the way back to A, whose neighbor D still needs
to be visited, so you push D on the stack.

1. Visiting D results in another dead end, so pop D.

2. You're back at A, but this time, there are no available neighbors to
push, so you pop A. The stack is now empty and the depth-first
search is complete.
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When exploring the vertices, you can construct a tree like structure,
showing the branches you've visited. You can see how deep DFS went,
compared to BFS.

Implementation
Open up the starter playground for this chapter. This playground
contains an implementation of a graph that as well as a stack which
you'll use to implement DFS.

In your main playground file, you will notice a pre-built sample
graph. Add the following below:

extension Graph {
  
  func depthFirstSearch(from source: Vertex<Element>)
      -> [Vertex<Element>] {
    var stack: Stack<Vertex<Element>> = []
    var pushed: Set<Vertex<Element>> = []
    var visited: [Vertex<Element>] = []
    
    stack.push(source)
    pushed.insert(source)
    visited.append(source)
    
    // more to come ...
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    return visited
  }
}

Here you've defined a method depthFirstSearch(from:), which takes
in a starting vertex and returns a list of vertices in the order they were
visited. It uses three data structures:

1. stack is used to store your path through the graph.

1. pushed remembers which vertices have been pushed before so
you don't visit the same vertex twice. It is a Set to ensure fast
O(1) lookup.

2. visited is an array that stores the order in which the vertices
were visited.

To start the algorithm, you add the source vertex to all three.

Next, complete the method by replacing the comment with:

outer: while let vertex = stack.peek() { // 1
  let neighbors = edges(from: vertex) // 2
  guard !neighbors.isEmpty else { // 3
    stack.pop()
    continue
  }
  for edge in neighbors { // 4
    if !pushed.contains(edge.destination) {
      stack.push(edge.destination)
      pushed.insert(edge.destination)
      visited.append(edge.destination)
      continue outer // 5
    }
  }
  stack.pop() // 6
}
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Here's what's going on:

1. You continue to check the top of the stack for a vertex until the
stack is empty. You have labeled this loop outer so you have a
way to continue to the next vertex, even within nested loops.

2. You find all the neighboring edges for the current vertex.

3. If there are no edges, you pop the vertex off the stack and
continue to the next one.

4. Here you loop through every edge connected to the current
vertex and check to see if the neighboring vertex has been seen.
If not, you push it onto the stack and add it to the visited array.
It may seem a bit premature to mark this vertex as visited (you
haven't peeked at it yet), but since vertices are visited in the
order in which they are added to the stack, it results in the
correct order.

5. Now that you've found a neighbor to visit, you continue the
outer loop and move to the newly pushed neighbor.

6. If the current vertex did not have any unvisited neighbors, you
know you've reached a dead end and can pop it off the stack.

Once the stack is empty, the DFS algorithm is complete! All you have
to do is return the visited vertices in the order you visited them.

To try out your code, add the following to the playground:

let vertices = graph.depthFirstSearch(from: a)
vertices.forEach { vertex in
  print(vertex)
}

Notice the order of the visited nodes using depth-first search:
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0: A
1: B
4: E
5: F
6: G
2: C
7: H
3: D

Performance
Depth-first search will visit every single vertex at least once. This has
a time complexity of O(V).

When traversing a graph in DFS, you have to check all neighboring
vertices to find one available to visit. The time complexity of this is
O(E) , because in the worst case, you have to visit every single edge in
the graph.

Overall the time complexity for depth-first search is O(V + E).

The space complexity of depth-first search is O(V) since you have to
store vertices in three separate data structures: stack, pushed and
visited.

Where to go from here?
Depth-first search is another algorithm to traverse or search a graph.
You have learned to leverage a stack to build DFS, how to use the
stack to keep track of how deep you are in a graph, and why it's a good
idea to keep a history of vertices in the event you need to backtrack.

In this chapter, you created an iterative version of DFS. However, a
recursive implementation is also possible. Check out the recursive
version on the Swift Algorithm Club repo at
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https://github.com/raywenderlich/swift-algorithm-
club/tree/master/Depth-First%20Search.
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Dijkstra’s Algorithm
Have you ever used the Google or Apple Maps app to find the shortest
or fastest from one place to another? Dijkstra’s algorithm is
particularly useful in GPS networks to help find the shortest path
between two places.

Dijkstra’s algorithm is a greedy algorithm. A greedy algorithm
constructs a solution step-by-step, and picks the most optimal path at
every step. In particuar Dijkstra’s algorithm finds the shortest paths
between vertices in either directed or undirected graphs. Given a
vertex in a graph, the algorithm will find all shortest paths from the
starting vertex.

Some other applications of Dijkstra’s algorithm include:

1. Communicable disease transmission: Discover where biological
diseases are spreading the fastest.

2. Telephone networks: Routing calls to highest-bandwidth paths
available in the network.

3. Mapping: Finding the shortest and fastest paths are important to
pretty much everyone who travels.

Example
All the graphs you have looked at thus far have been undirected
graphs. Let’s change it up a little and work with a directed graph!

Imagine the directed graph below represents a GPS network. The
vertices represent physical locations, and the edges between the
vertices represent one way paths of a given cost between locations.
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In Dijkstra’s algorithm, you first choose a starting vertex, since the
algorithm needs a starting point to find a path to the rest of the nodes
in the graph. Assume the starting vertex you pick is vertex A.

First pass

From vertex A, look at all outgoing edges. In this case, you have three
edges:

A to B, has a cost of 8.

A to F, has a cost of 9.

A to G, has a cost of 1.

The remainder of the vertices will be marked as nil, since there is no
direct path to them from A.
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As you work through this example, the table on the right of the graph
will represent a history, or record, of Dijkstra’s algorithm at each
stage. Each pass of the algorithm will add a row to the table. The last
row in the table will be the final output of the algorithm.

Second pass

In the next cycle, Dijkstra’s algorithm looks at the lowest cost path
you have thus far. A to G has the smallest cost of 1, and is also the
shortest path to get to G. This is marked with a dark fill in the output
table.

Now from the lowest cost path, vertex G, look at all the outgoing
edges. There is only one edge from G to C, and its total cost is 4. This
is because the cost from A to G to C is 1 + 3 = 4.

Every value in the output table has two parts: the total cost to reach
that vertex, and the last neighbor on the path to that vertex. For
example, the value 4 G in the column for vertex C means that the cost
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to reach C is 4, and the path to C goes through G. A value of nil
indicates that no path has been discovered to that vertex.

Third pass

In the next cycle, you look at the next-lowest cost. According to the
table, the path to C has the smallest cost, so the search will continue
from C. You fill column C because you’ve found the shortest path to
get to C.

Look at all of C’s outgoing edges:

C to E has a total cost of 4 + 1 = 5.

C to B has a total cost of 4 + 3 = 7.

You’ve found a lower-cost path to B, so you replace the previous value
for B.
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Fourth pass

Now in the next cycle, ask yourself what is the next-lowest cost path?
According to the table, C to E has the smallest total cost of 5, so the
search will continue from E.

You fill column E because you’ve found the shortest path. Vertex E
has the following outgoing edges:

E to C has a total cost of 5 + 8 = 13. Since you have found the
shortest path to C already, disregard this path.

E to D has a total cost of 5 + 2 = 7.

E to B has a total cost of 5 + 1 = 6. According to the table, the

Download from finelybook 7450911@qq.com

283



E to B has a total cost of 5 + 1 = 6. According to the table, the
current shortest path to B has a total cost of 7. You update the
shortest path to be from E to B since it has a smaller cost of 6.

Fifth pass

Next, you continue the search from B.

B has these outgoing edges:
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B to E has a total cost of 6 + 1 = 7, but you’ve already found the
shortest path to E, so disregard this path.

B to F has a total cost of 6 + 3 = 9. From the table, you can tell
that the current path to F from A also has a cost of 9. You can
disregard this path since it isn’t any shorter.

Sixth pass

In the next cycle, you continue the search from D.
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However D has no outgoing edges, so it’s a dead end. You simply
record that you’ve found the shortest path to D and move on.

Seventh pass

F is next up.
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F has one outgoing edge to A with a total cost of 9 + 2 = 11. You can
disregard this edge since A is the starting vertex.

Eighth pass

You have covered every vertex except for H. H has two outgoing edges
to G and F. However, there is no path from A to H. This is why the
whole column for H is nil.
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This completes Dijkstra’s algorithm, since all the vertices have been
visited!

You can now check the final row for the shortest paths and their cost.
For example, the output tells you the cost to get to D is 7. To find the
path, you simply backtrack. Each column records the previous vertex
the current vertex is connected to. You should get from D to E to C to
G and finally back to A.

Download from finelybook 7450911@qq.com

288



Let’s look at how you can build this in code.

Implementation
Open up the starter playground for this chapter. This playground
comes with an adjacency list graph and a priority queue which you
will use to implement Dijkstra’s algorithm.

The priority queue is used to store vertices that have not been visited.
It’s a min-priority queue so that every time you dequeue a vertex, it
gives you vertex with the current tentative shortest path.

Open up Dijkstra.swift and add the following:

public enum Visit<T: Hashable> {
  case start // 1
  case edge(Edge<T>) // 2
}

Here you defined an enum named Visit. This keeps track of two
states:

1. The vertex is the starting vertex.

2. The vertex has an associated edge that leads to a path back to the
starting vertex.

Now define a class called Dijkstra. Add the following after the code
you added above:

public class Dijkstra<T: Hashable> {

  public typealias Graph = AdjacencyList<T>
  let graph: Graph

  public init(graph: Graph) {
    self.graph = graph

Download from finelybook 7450911@qq.com

289



  }
}

As in the previous chapter, Graph is defined as a type alias for
AdjacencyList. You could in the future replace this with an adjacency
matrix if needed.

Helper methods

Before building Dijkstra, let’s create some helper methods that will
help create the algorithm.

Tracing back to the start

You need a mechanism to keep track of the total weight from the
current vertex back to the start vertex. To do this, you will keep track
of a dictionary named paths that stores a Visit state for every vertex.

Add the following method to class Dijkstra:

private func route(to destination: Vertex<T>,
                   with paths: [Vertex<T> : Visit<T>]) -> [Edge
  var vertex = destination // 1
  var path: [Edge<T>] = [] // 2
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  while let visit = paths[vertex], case .edge(let edge) = visit { 
    path = [edge] + path // 4
    vertex = edge.source // 5
  }
  return path // 6
}

This method takes in the destination vertex along with a dictionary
of existing paths, and constructs a path that leads to the destination
vertex. Going over the code:

1. Start at the destination vertex.

2. Create an array of edges to store the path.

3. As long as you have not reached the source case, continue to
extract the next edge.

4. Add this edge to the path.

5. Set the current vertex to the edge’s source vertex. This moves
you closer to the start vertex.

6. Once the while loop reaches the start case you have completed
the path and return it.

Calculating total distance
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Once you have the ability to construct a path from the destination
back to the start vertex, you need a way to calculate the total weight
for that path. Add the following method to class Dijkstra:

private func distance(to destination: Vertex<T>,
                      with paths: [Vertex<T> : Visit<T>]) -> 
  let path = route(to: destination, with: paths) // 1
  let distances = path.flatMap { $0.weight } // 2
  return distances.reduce(0.0, +) // 3
}

This method takes in the destination vertex and a dictionary of
existing paths, and returns the total weight. Going over the code:

1. Construct the path to the destination vertex.

2. flapMap removes all the nil weights values from the paths.

3. reduce sums the weights of all the edges.

Now that you have established your helper methods, let’s implement
Dijkstra’s algorithm.

Generating the shortest paths

After the distance method, add the following:

public func shortestPath(from start: Vertex<T>) -> [Vertex<T
  var paths: [Vertex<T> : Visit<T>] = [start: .start] // 1

  // 2
  var priorityQueue = PriorityQueue<Vertex<T>>(sort: {
    self.distance(to: $0, with: paths) <
    self.distance(to: $1, with: paths)
  })
  priorityQueue.enqueue(start) // 3

  // to be continued
}
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This method takes in a start vertex and returns a dictionary of all the
paths. Within the method you:

1. Define paths and initialize it with the start vertex.

2. Create a min-priority queue to store the vertices that must be
visited. The sort closure uses the distance method you created
to sort the vertices by their distance from the start vertex.

3. Enqueue the start vertex as the first vertex to visit.

Complete your implementation of shortestPath with:

while let vertex = priorityQueue.dequeue() { // 1
  for edge in graph.edges(from: vertex) { // 2
    guard let weight = edge.weight else { // 3
      continue
    }
    if paths[edge.destination] == nil ||
       distance(to: vertex, with: paths) + weight <
       distance(to: edge.destination, with: paths) { // 4
      paths[edge.destination] = .edge(edge)
      priorityQueue.enqueue(edge.destination)
    }
  }
}

return paths

Going over the code:

1. You continue Dijkstra’s algorithm to find the shortest paths until
you’ve visited all the vertices have been visited. This happens
once the priority queue is empty.

2. For the current vertex, you go through all its neighboring edges.

3. You make sure the edge has a weight. If not, you move on to the
next edge.
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4. If the destination vertex has not been visited before or you’ve
found a cheaper path, you update the path and add the
neighboring vertex to the priority queue.

Once all the vertices have been visited, and the priority queue is
empty, you return the dictionary of shortest paths back to the start
vertex.

Finding a specific path

Add the following method to class Dijkstra:

public func shortestPath(to destination: Vertex<T>,
                         paths: [Vertex<T> : Visit<T>]) -> [
  return route(to: destination, with: paths)
}

This simply takes the destination vertex and the dictionary of
shortest and returns the path to the destination vertex.

Trying out your code

Navigate to the main playground, and you will notice the graph above
has been already constructed using an adjacency list. Time to see
Dijkstra’s algorithm in action.
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Add the following code to the playground page:

let dijkstra = Dijkstra(graph: graph)
let pathsFromA = dijkstra.shortestPath(from: a) // 1
let path = dijkstra.shortestPath(to: d, paths: pathsFromA) // 2
for edge in path { // 3
  print("\(edge.source) --(\(edge.weight ?? 0.0))--> \(edge.destination)
}

Here you simply create an instance of Dijkstra by passing in the
graph network, and do the following:

1. Calculate the shortest paths to all the vertices from the start
vertex A.

2. Get the shortest path to D.

3. Print this path.

This outputs:

A --(1.0)--> G
G --(3.0)--> C
C --(1.0)--> E
E --(2.0)--> D
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Performance
In Dijkstra’s algorithm, you constructed your graph using an
adjacency list. You used a min-priority queue to store vertices and
extract the vertex with the minimum path. This has an overall
performance of O(log V). This is because the heap operations of
extracting the minimum element or inserting an element both take
O(log V).

If you recall from the breadth-first search chapter, it takes O(V + E) to
traverse all the vertices and edges. Dijkstra’s algorithm is somewhat
similar to breadth-first search, because you have to explore all
neighboring edges.

This time, instead of going down to the next level, you use a min-
priority queue to select a single vertex with the shortest distance to
traverse down. That means it is O(1 + E) or simply O(E).

So, combining the traversal with operations on the min-priority
queue, it takes O(E log V) to perform Dijkstra’s algorithm.

Where to go from here?
Remember that Dijkstra’s algorithm is useful for finding the shortest
paths between different endpoints. You greedily select the tentative
shortest path, by storing vertices within a priority queue. You also
created a path by using a Visit state to track the edges back to the
start vertex.

Whenever you see a network that has weighted edges and you need to
find the shortest path, think of your good friend Dijkstra!
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Prim’s Algorithm
In previous chapters, you’ve looked at depth-first and breadth-first
search algorithms. These algorithms form spanning trees.

A spanning tree is a subgraph of an undirected graph, containing all
of the graph’s vertices, connected with the fewest number of edges. A
spanning tree cannot contain a cycle, and cannot be disconnected.

Here’s an example of some spanning trees:

From this undirected graph that forms a triangle, you can generate
three different spanning trees, where you require only two edges to
connect all vertices.

In this chapter, you will look at Prim’s algorithm, a greedy algorithm
used to construct a minimum spanning tree. A greedy algorithm
constructs a solution step-by-step, and picks the most optimal path at
every step.

A minimum spanning tree is a spanning tree with weighted edges
where the total weight of all edges is minimized. For example, you
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might want to find the cheapest way to lay out a network of water
pipes.

Here’s an example of a minimum spanning tree for a weighted
undirected graph:

Notice that only the third subgraph forms a minimum spanning tree,
since it has the minimum total cost of 3.

Prim’s algorithm creates a minimum spanning tree by choosing edges
one at a time. It’s greedy because every time you pick an edge, you
pick the smallest weighted edge that connects a pair of vertices.

There are six steps to finding a minimum spanning tree with Prim’s
algorithm:
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Example
Imagine the graph below represents a network of airports. The
vertices are the airports, and the edges between them represent the
cost of fuel to fly an airplane from one airport to the next.

Let’s start working through the example:
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1. Choose any vertex in the graph. I’ll assume you chose vertex 2.

2. This vertex has edges with weights [6, 5, 3]. A greedy algorithm
chooses the smallest weighted edge.

3. Choose the edge that has a weight of 3 and is connected to vertex
5.

1. The explored vertices are {2, 5}.

2. Choose the next shortest edge from the explored vertices. The
edges are [6, 5, 6, 6]. You choose the edge with weight 5, which is
connected to vertex 3.

3. Notice that the edge between vertex 5 and vertex 3 can be
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3. Notice that the edge between vertex 5 and vertex 3 can be
removed since both are already part of the spanning tree.

1. The explored vertices are {2, 3, 5}.

2. The next potential edges are [6, 1, 5, 4, 6]. You choose the edge
with weight 1, which is connected to vertex 1.

3. The edge between vertex 2 and vertex 1 can be removed.

1. The explored vertices are {2, 3, 5, 1}.

2. Choose the next shortest edge from the explored vertices. The
edges are [5, 5, 4, 6]. You choose the edge with weight 4, which is
connected to vertex 6.
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3. The edge between vertex 5 and vertex 6 can be removed.

1. The explored vertices are {2, 5, 3, 1, 6}.

2. Choose the next shortest edge from the explored vertices. The
edges are [5, 5, 2]. You choose the edge with weight 2, which is
connected to vertex 4.

3. The edges [5, 5] connected to vertex 4 from vertex 1 and vertex 3
can be removed.

Note: If all edges have the same weight, you can pick any one of
them.
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This is the minimum spanning tree from our example produced from
Prim’s algorithm.

Next, let’s see how to build this in code.

Implementation
Open up the starter playground for this chapter. This playground
comes with an adjacency list graph and a priority queue which you
will use to implement Prim’s algorithm.

The priority queue is used to store the edges of the explored vertices.
It’s a min-priority queue so that every time you dequeue an edge, it
gives you the edge with the smallest weight.

Start by defining a class Prim. Open up Prim.swift and add the
following:

public class Prim<T: Hashable> {

  public typealias Graph = AdjacencyList<T>
  public init() {}
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}

Graph is defined as a type alias for AdjacencyList. In the future, you
could replace this with an adjacency matrix if needed.

Helper methods

Before building the algorithm, you’ll create some helper methods to
keep you organized and consolidate duplicate code.

Copying a graph

To create a minimum spanning tree, you must include all vertices
from the original graph. Add the following to class Prim:

internal func copyVertices(from graph: Graph, to graph2: Graph)
  for vertex in graph.vertices {
    graph2.createVertex(data: vertex.data)
  }
}

This copies all of a graph’s vertices into a new graph.

Finding edges

Besides copying the graph’s vertices, you also need to find and store
the edges of every vertex you explore. Add the following to class Prim:

internal func addAvailableEdges(
    for vertex: Vertex<T>,
    in graph: Graph,
    check visited: Set<Vertex<T>>,
    to priorityQueue: inout PriorityQueue<Edge<T>>) {
  for edge in graph.edges(from: vertex) { // 1
    if !visited.contains(edge.destination) { // 2
      priorityQueue.enqueue(edge) // 3
    }
  }
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}

This method takes in four parameters:

1. The current vertex.

2. The graph, where the current vertex is stored in.

3. The vertices that have already been visited.

4. The priority queue to add all potential edges.

Within the function you do the following:

1. Look at every edge adjacent to the current vertex.

2. Check to see if the destination vertex has already been visited.

3. If it has not been visited, you add the edge to the priority queue.

Now that we have established our helper methods, let’s implement
Prim’s algorithm.

Producing a minimum spanning tree

Add the following method to class Prim:

public func produceMinimumSpanningTree(for graph: Graph)
    -> (cost: Double, mst: Graph) { // 1
  var cost = 0.0 // 2
  let mst = Graph() // 3
  var visited: Set<Vertex<T>> = [] // 4
  var priorityQueue = PriorityQueue<Edge<T>>(sort: { // 5
    $0.weight ?? 0.0 < $1.weight ?? 0.0
  })
  // to be continued
}
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Here’s what you have so far:

1. produceMinimumSpanningTree takes an undirected graph and
returns a minimum spanning tree and its cost.

2. cost keeps track of the total weight of the edges in the minimum
spanning tree.

3. This is a graph that will become your minimum spanning tree.

4. visited stores all vertices that have already been visited.

5. This is a min-priority queue to store edges.

Next, continue implementing produceMinimumSpanningTree with the
following:

copyVertices(from: graph, to: mst) // 1

guard let start = graph.vertices.first else { // 2
  return (cost: cost, mst: mst)
}

visited.insert(start) // 3
addAvailableEdges(for: start, // 4
                   in: graph,
                check: visited,
                   to: &priorityQueue)

// to be continued

This code initiates the algorithm:

1. Copy all the vertices from the original graph to the minimum
spanning tree.

2. Get the starting vertex from the graph.

3. Mark the starting vertex as visited.
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4. Add all potential edges from the start vertex into the priority
queue.

Finally, complete produceMinimumSpanningTree with:

while let smallestEdge = priorityQueue.dequeue() { // 1
  let vertex = smallestEdge.destination // 2
  guard !visited.contains(vertex) else { // 3
    continue
  }

  visited.insert(vertex) // 4
  cost += smallestEdge.weight ?? 0.0 // 5

  mst.add(.undirected, // 6
          from: smallestEdge.source,
          to: smallestEdge.destination,
          weight: smallestEdge.weight)

  addAvailableEdges(for: vertex, // 7
                    in: graph,
                    check: visited,
                    to: &priorityQueue)
}

return (cost: cost, mst: mst) // 8

Going over the code:

1. Continue Prim’s algorithm till the queue of edges is empty.

2. Get the destination vertex.

3. If this vertex has been visited, restart the loop and get the next
smallest edge.

4. Mark the destination vertex as visited.

5. Add the edge’s weight to the total cost.
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6. Add the smallest edge into the minimum spanning tree you are
constructing.

7. Add the available edges from the current vertex.

8. Once the priorityQueue is empty, return the minimum cost, and
minimum spanning tree.

Testing your code

Navigate to the main playground, and you’ll see the graph above has
been already constructed using an adjacency list.

Time to see Prim’s algorithm in action. Add the following code:

let (cost,mst) = Prim().produceMinimumSpanningTree(for: graph)
print("cost: \(cost)")
print("mst:")
print(mst.description)

This constructs a graph from the example section. You’ll see the
following output:

cost: 15.0
mst:

Download from finelybook 7450911@qq.com

308



5 ---> [ 2 ]
6 ---> [ 3, 4 ]
3 ---> [ 2, 1, 6 ]
1 ---> [ 3 ]
2 ---> [ 5, 3 ]
4 ---> [ 6 ]

Performance
In the algorithm above you maintain three data structures:

1. An adjacency list graph to build a minimum spanning tree.
Adding vertices and edges to an adjacency list is O(1) .

2. A Set to store all vertices you have visited. Adding a vertex to the
set and checking if the set contains a vertex also have a time
complexity of O(1).

1. A min-priority queue to stores edges as you explore more
vertices. The priority queue is built on top of a heap and insertion
takes O(log E) .

The worst-case time complexity of Prim’s algorithm is O(E log E).
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The worst-case time complexity of Prim’s algorithm is O(E log E).
This is because each time you dequeue the smallest edge from the
priority queue you have to traverse all the edges of the destination
vertex ( O(E) ) and insert the edge into the priority queue ( O(logE) ) .

Where to go from here?
This is a great example of using multiple data structures to build a
useful algorithm: a priority queue, a set, and an adjacency list are all
used to construct Prim’s algorithm.

Given the plethora of networks and network-like relationship models
in the real world, you can apply Prim’s algorithm to many different
problems where you’re always seeking the lowest possible cost for a
network.
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Conclusion
We hope you learned a lot about data structures and algorithms in
Swift as you read this book — and had some fun in the process!
Knowing when and why to apply data structures and algorithms goes
beyond just acing that whiteboard interview. With the knowledge
you’ve gained here, you can easily and efficiently solve pretty much
any data manipulation or graph analysis issue put in front of you.

If you have any questions or comments as you work through this
book, please stop by our forums at http://forums.raywenderlich.com
and look for the particular forum category for this book.

Thank you again for purchasing this book. Your continued support is
what makes the tutorials, books, videos, conferences and other things
we do at raywenderlich.com possible, and we truly appreciate it!

Wishing you all the best in your continued algorithmic adventures,

– Kelvin, Vincent, Ray, Steven, and Chris

The Data Structures & Algorithms in Swift team
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More Books You Might Enjoy
We hope you enjoyed this book! If you’re looking for more, we have a
whole library of books waiting for you at
https://store.raywenderlich.com.

New to iOS or Swift?
Learn how to develop iOS apps in Swift with our classic, beginner
editions.

iOS Apprentice

https://store.raywenderlich.com/products/ios-apprentice

The iOS Apprentice is a series of epic-length tutorials for beginners
where you’ll learn how to build 4 complete apps from scratch.

Each new app will be a little more advanced than the one before, and
together they cover everything you need to know to make your own
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apps. By the end of the series you’ll be experienced enough to turn
your ideas into real apps that you can sell on the App Store.

These tutorials have easy to follow step-by-step instructions, and
consist of more than 900 pages and 500 illustrations! You also get full
source code, image files, and other resources you can re-use for your
own projects.

Swift Apprentice

https://store.raywenderlich.com/products/swift-apprentice

This is a book for complete beginners to Apple’s brand new
programming language — Swift 4.

Everything can be done in a playground, so you can stay focused on
the core Swift 4 language concepts like classes, protocols, and
generics.

This is a sister book to the iOS Apprentice; the iOS Apprentice focuses
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This is a sister book to the iOS Apprentice; the iOS Apprentice focuses
on making apps, while Swift Apprentice focuses on the Swift 4
language itself.

Experienced iOS developer?
Level up your development skills with a deep dive into our many
intermediate to advanced editions.

Data Structures and Algorithms in Swift

https://store.raywenderlich.com/products/data-structures-and-
algorithms-in-swift

Understanding how data structures and algorithms work in code is
crucial for creating efficient and scalable apps. Swift’s Standard
Library has a small set of general purpose collection types, yet they
definitely don’t cover every case!

In Data Structures and Algorithms in Swift, you’ll learn how to
implement the most popular and useful data structures, and when
and why you should use one particular datastructure or algorithm
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over another. This set of basic data structures and algorithms will
serve as an excellent foundation for building more complex and
special-purpose constructs. As well, the high-level expressiveness of
Swift makes it an ideal choice for learning these core concepts
without sacrificing performance.

Realm: Building Modern Swift Apps with Realm
Database

https://store.raywenderlich.com/products/realm-building-modern-
swift-apps-with-realm-database

Realm Platform is a relatively new commercial product which allows
developers to automatically synchronize data not only across Apple
devices but also between any combination of Android, iPhone,
Windows, or macOS apps. Realm Platform allows you to run the
server software on your own infrastructure and keep your data in-
house which more often suits large enterprises. Alternatively you can
use Realm Cloud which runs a Platform for you and you start syncing
data very quickly and only pay for what you use.

In this book, you’ll take a deep dive into the Realm Database, learn
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In this book, you’ll take a deep dive into the Realm Database, learn
how to set up your first Realm database, see how to persist and read
data, find out how to perform migrations and more. In the last
chapter of this book, you'll take a look at the synchronization features
of Realm Cloud to perform real-time sync of your data across all
devices.

Design Patterns by Tutorials

https://store.raywenderlich.com/products/design-patterns-by-
tutorials

Design patterns are incredibly useful, no matter what language or
platform you develop for. Using the right pattern for the right job can
save you time, create less maintenance work for your team and
ultimately let you create more great things with less effort. Every
developer should absolutely know about design patterns, and how and
when to apply them. That's what you're going to learn in this book!

Move from the basic building blocks of patterns such as MVC,
Delegate and Strategy, into more advanced patterns such as the
Factory, Prototype and Multicast Delegate pattern, and finish off with
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some less-common but still incredibly useful patterns including
Flyweight, Command and Chain of Responsibility.

Server Side Swift with Vapor

https://store.raywenderlich.com/products/server-side-swift-with-
vapor

If you’re a beginner to web development, but have worked with Swift
for some time, you’ll find it’s easy to create robust, fully-featured web
apps and web APIs with Vapor 3.

Whether you’re looking to create a backend for your iOS app, or want
to create fully-featured web apps, Vapor is the perfect platform for
you.

This book starts with the basics of web development and introduces
the basics of Vapor; it then walks you through creating APIs and web
backends; creating and configuring databases; deploying to Heroku,
AWS, or Docker; testing your creations and more1

iOS 11 by Tutorials
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https://store.raywenderlich.com/products/ios-11-by-tutorials

This book is for intermediate iOS developers who already know the
basics of iOS and Swift development but want to learn the new APIs
introduced in iOS 11.

Discover the new features for developers in iOS 11, such as ARKit,
Core ML, Vision, drag & drop, document browsing, the new changes
in Xcode 9 and Swift 4 — and much, much more.

Advanced Debugging and Reverse Engineering

https://store.raywenderlich.com/products/advanced-apple-
debugging-and-reverse-engineering
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In Advanced Apple Debugging and Reverse Engineering, you'll come
to realize debugging is an enjoyable process to help you better
understand software. Not only will you learn to find bugs faster, but
you’ll also learn how other developers have solved problems similar to
yours.

You'll also learn how to create custom, powerful debugging scripts
that will help you quickly find the secrets behind any bit of code that
piques your interest.

After reading this book, you'll have the tools and knowledge to answer
even the most obscure question about your code — or someone else’s.

RxSwift: Reactive Programming with Swift

https://store.raywenderlich.com/products/rxswift
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This book is for iOS developers who already feel comfortable with iOS
and Swift, and want to dive deep into development with RxSwift.

Start with an introduction to the reactive programming paradigm;
learn about observers and observables, filtering and transforming
operators, and how to work with the UI, and finish off by building a
fully-featured app in RxSwift.

Core Data by Tutorials

https://store.raywenderlich.com/products/core-data-by-tutorials
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This book is for intermediate iOS developers who already know the
basics of iOS and Swift 4 development but want to learn how to use
Core Data to save data in their apps.

Start with with the basics like setting up your own Core Data Stack all
the way to advanced topics like migration, performance,
multithreading, and more!

iOS Animations by Tutorials

https://store.raywenderlich.com/products/ios-animations-by-
tutorials
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This book is for iOS developers who already know the basics of iOS
and Swift 4, and want to dive deep into animations.

Start with basic view animations and move all the way to layer
animations, animating constraints, view controller transitions, and
more!

watchOS by Tutorials

https://store.raywenderlich.com/products/watchos-by-tutorials
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This book is for intermediate iOS developers who already know the
basics of iOS and Swift development but want to learn how to make
Apple Watch apps for watchOS 4.

tvOS Apprentice

https://store.raywenderlich.com/products/tvos-apprentice
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This book is for complete beginners to tvOS development. No prior
iOS or web development knowledge is necessary, however the book
does assume at least a rudimentary knowledge of Swift.

This book teaches you how to make tvOS apps in two different ways:
via the traditional method using UIKit, and via the new Client-Server
method using TVML.

Want to make games?
Learn how to make great-looking games that are deeply engaging and
fun to play!

2D Apple Games by Tutorials

https://store.raywenderlich.com/products/2d-apple-games-by-
tutorials

In this book, you will make 6 complete and polished mini-games,
from an action game to a puzzle game to a classic platformer!

This book is for beginner to advanced iOS developers. Whether you
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This book is for beginner to advanced iOS developers. Whether you
are a complete beginner to making iOS games, or an advanced iOS
developer looking to learn about SpriteKit, you will learn a lot from
this book!

3D Apple Games by Tutorials

https://store.raywenderlich.com/products/3d-apple-games-by-
tutorials

Through a series of mini-games and challenges, you will go from
beginner to advanced and learn everything you need to make your
own 3D game!

This book is for beginner to advanced iOS developers. Whether you
are a complete beginner to making iOS games, or an advanced iOS
developer looking to learn about SceneKit, you will learn a lot from
this book!

Unity Games by Tutorials

https://store.raywenderlich.com/products/unity-games-by-tutorials
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Through a series of mini-games and challenges, you will go from
beginner to advanced and learn everything you need to make your
own 3D game!

This book is for beginner to advanced iOS developers. Whether you
are a complete beginner to making iOS games, or an advanced iOS
developer looking to learn about SceneKit, you will learn a lot from
this book!

Want to learn Android or Kotlin?
Get a head start on learning to develop great Android apps in Kotlin,
the newest first-class language for building Android apps.

Android Apprentice

https://store.raywenderlich.com/products/android-apprentice
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If you’re completely new to Android or developing in Kotlin, this is
the book for you!

The Android Apprentice takes you all the way from building your first
app, to submitting your app for sale. By the end of this book, you’ll be
experienced enough to turn your vague ideas into real apps that you
can release on the Google Play Store.

You’ll build 4 complete apps from scratch — each app is a little more
complicated than the previous one. Together, these apps will teach
you how to work with the most common controls and APIs used by
Android developers around the world.

Kotlin Apprentice

https://store.raywenderlich.com/products/kotlin-apprentice
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This is a book for complete beginners to the new, modern Kotlin
language.

Everything in the book takes place in a clean, modern development
environment, which means you can focus on the core features of
programming in the Kotlin language, without getting bogged down in
the many details of building apps.

This is a sister book to the Android Apprentice the Android
Apprentice focuses on making apps for Android, while the Kotlin
Apprentice focuses on the Kotlin language fundamentals.
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