
Safety Area: All Text, Logos & Barcode should remain inside the Pink Dotted Lines

Bleed Area: All Backgrounds should extend to, but not past, the Blue Dotted Lines

CSS
MASTER

BY TIFFANY B. BROWN

ORGANIZED, EFFICENT, POWERFUL–CSS DONE RIGHT!

C
S

S
C

S
S

 M
A

S
TE

R
B

R
O

W
N

SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your website

 Make learning easy and fun

WEB DEVELOPMENT
PRINT ISBN: 978-0-9941826-2-3

EBOOK ISBN: 978-0-9943469-4-0

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

USD $39.95 CAD $45.95

ALL SOURCE CODE AVAILABLE TO DOWNLOAD

CSS has grown from a language for formatting documents into
a robust language for designing web applications. Its simplicity
is deceptive, however. It belies the complexity of the box model,
stacking contexts, specificity, and the cascade. It’s tough to
develop interfaces that work across a variety of screen sizes and
with an assortment of input mechanisms. CSS mastery lies in
understanding these concepts and how to mitigate them, as well
as understanding and using new tools such as linters, optimizers,
and preprocessors.

This book will show you how to write better, more efficient CSS,
and to take advantage of the plethora of the new cutting-edge
CSS features available to the front-end developer. You’ll also learn
to master tools that will improve your workflow.

•	 Organize your CSS to create efficient, reusable, and maintainable code

•	 Discover complex layout techniq ues: grid layouts, multi-column layouts, 	

	 and more

•	 Use advanced effects: transitions, transforms, filter effect, and animations

•	 Take advantage of preprocessors to maximize your efficiency

•	 Combine CSS and SVG to create seriously powerful graphics

And much more…

TAKE YOUR CSS SKILLS TO THE
NEXT LEVEL

YOUR AUTHOR

TIFFANY B. BROWN

Tiffany B. Brown is a freelance web
developer and writer based in Los
Angeles, California. She has worked
on the web for more than a decade,
for a mix of media companies and
agencies.

Brown is also a co-author of
SitePoint’s “Jump Start: HTML5.”
Before founding her consultancy,
Webinista, Inc, she was part of the
Opera Software Developer Relations
& Tools team. Now she offers web
development and consulting services
to agencies and small design teams.

Summary of Contents

Preface . xvii

1. Selectors . 1

2. CSS Architecture and Organization . 71

3. Debugging and Optimization . 95

4. Complex Layouts . 129

5. Transitions and Animation . 189

6. CSS Transforms . 223

7. Applying CSS Conditionally . 277

8. Using CSS with SVG . 305

9. Preprocessors . 329

10. Conclusion . 351

CSS MASTER
BY TIFFANY B. BROWN

CSS Master
by Tiffany B. Brown

Copyright © 2015 SitePoint Pty. Ltd.

English Editor: Ralph MasonProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Reviewer: Rachel Andrew

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9941826-2-3 (print)

ISBN 978-0-9943469-4-0 (ebook)

Printed and bound in the United States of America

iv

About Tiffany B. Brown

Tiffany B. Brown is a freelance web developer and writer based in Los Angeles, California.

She has worked on the web for more than a decade, for a mix of media companies and

agencies. Brown is also a co-author of SitePoint's "Jump Start: HTML5." Before founding her

consultancy, Webinista, Inc, she was part of the Opera Software Developer Relations & Tools

team. Now she offers web development and consulting services to agencies and small design

teams.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

v

http://www.sitepoint.com/

To Molly H.

Table of Contents

Preface . xvii

Who Should Read This Book . xvii

Conventions Used . xviii

Code Samples . xviii

Tips, Notes, and Warnings . xix

Supplementary Materials . xix

Want to take your learning further? . xx

Chapter 1 Selectors . 1

Combinators . 2

The Descendant Combinator . 5

The Child Combinator . 7

The Adjacent Sibling Combinator . 8

The General Sibling Combinator . 10

Attribute Selectors . 12

Matching Attribute Presence . 13

Matching Hyphenated Attribute Values . 14

Matching Attribute Values by Substring . 17

Pseudo-classes versus Pseudo-elements . 19

Pseudo-elements . 19

::before and ::after . 20

Creating Typographic Effects with ::first-letter 23

Creating Typographic Effects with ::first-line 31

User Interface Fun with ::selection . 35

Pseudo-classes . 38

Highlighting Page Fragments with :target 38

Negating Selectors with :not() . 42

Selecting Elements by Their Index . 45

Selecting Elements of a Particular Type by their Index 56

Styling Form Fields Based on Input . 62

Selectors and Specificity . 68

Conclusion . 70

Chapter 2 CSS Architecture and
Organization . 71

CSS File Organization . 72

How many files? . 73

Managing Styles for Legacy Browsers . 75

Using Conditional Comments (IE9 and Earlier) 75

Using CSS Parsing to Our Advantage . 76

Golden Guidelines for Writing Clean CSS . 77

Avoid Global Selectors . 77

Avoid Overly Specific Selectors . 79

Use Semantic Class Names . 82

Avoid Tying CSS Closely to Markup . 83

Block-Element-Modifier (BEM) . 84

Atomic CSS . 88

The Case Against Atomic CSS . 91

BEM versus Atomic CSS . 92

Conclusion . 92

Chapter 3 Debugging and Optimization 95

Browser-based Developer Tools . 96

Using the Styles Panel . 99

Multi-device Tools . 103

Debugging for UI Responsiveness . 107

x

What is a reflow? . 107

Timeline Tools . 108

Identifying Lines to Remove . 116

Minification . 116

Installing CSSO . 117

Minification with CSSO . 118

Code-quality Tools . 120

CSS Lint . 121

analyze-css . 123

UnCSS . 125

Consider a Task Runner . 126

Conclusion . 127

Chapter 4 Complex Layouts . 129

Managing the CSS Box Model . 129

Choosing a Box Model with box-sizing 132

Managing Layers with position and z-index 136

Using CSS Multicolumn Layout . 147

Defining Column Number and Width Using columns 148

Spacing Columns with column-gap and column-rule 154

Images Within Columns . 158

Making Elements Span Columns . 161

Managing Column Breaks . 163

Optimizing the User Interface . 166

Creating Flexible Layouts with Flexbox . 169

Creating Simple Grids with flex-wrap . 173

Creating Flexible Components with flex 177

Letting Source Order Diverge from Layout: the order

Property . 180

Vertical Centering with Flexbox . 183

xi

Conclusion . 187

Chapter 5 Transitions and Animation 189

CSS Transitions . 190

Creating Your First Transition . 191

Using the transition Property . 197

Transition Durations and Delays . 198

Timing Functions . 199

Transitioning Multiple Properties . 203

Multiple Transitions and transitionend Events 208

CSS Animation . 208

Creating Your First Animation . 210

Animation Properties . 212

To Loop or Not to Loop: The animation-iteration-count

Property . 214

Playing Animations: the animation-direction Property 215

Using Percentage Keyframes . 216

The animation-fill-mode Property . 217

Pausing Animations . 217

Detecting When Animations Start, End, or Repeat 219

A Note About Accessibility . 219

A Note About Performance . 220

Conclusion . 221

Chapter 6 CSS Transforms . 223

The Current State of Transforms . 226

How Transforms Affect Layout . 227

transform Creates a Containing Block . 227

transform Creates a New Stacking Context 228

transform Creates a Local Coordinate System 231

xii

2D Transform Functions . 235

rotate() . 235

2D Scaling Functions: scale, scaleX, and scaleY 236

2D Translation Functions: translateX, translateY, and

translate . 238

skew, skewX, and skewY . 240

Current Transform Matrix . 242

Matrix Multiplication and the Matrix Functions 245

3D Transform Functions . 248

rotateX() and rotateY() . 249

Rotating around Multiple Axes with rotate3d() 251

perspective() Function . 253

Translating Depth with translateZ() and

translate3d() . 256

Scaling the Z-dimension: scaleZ() and scale3d() 258

Creating Depth with the perspective Property 260

Modifying the Point of View with perspective-origin 262

Preserving Three Dimensions with transform-style 265

Showing Both Faces with the backface-visibility Property . . . 270

Conclusion . 276

Chapter 7 Applying CSS Conditionally 277

Media Queries and @media . 278

Media Query Syntax: The Basics . 279

Range Media Feature Queries and min- and max- Prefixes 281

Discrete Media Feature Queries . 284

Nesting @media Rules . 287

Working around Legacy Browser Support with only 288

Negating Media Queries . 289

Other Ways to Use Media Queries . 290

xiii

Content-driven Media Queries . 292

Using Media Queries with JavaScript . 295

Listening for Media Changes . 297

Conditional Rules with @supports . 299

CSS.supports DOM API . 301

Understanding the Cascade for @supports and @media 302

Conclusion . 303

Chapter 8 Using CSS with SVG 305

Vector Images versus Raster Images . 305

Associating CSS with SVG Documents . 306

Using the style Attribute . 306

Embedding CSS in SVG Documents . 308

Linking from SVG to an External CSS File . 309

Differences between SVG and HTML . 310

SVG Does Not Adhere to the CSS Box Model 311

SVG Elements Cannot be Positioned . 311

Styling an SVG Element . 311

Creating SVG Sprites . 313

Animating and Transitioning SVG CSS Properties 317

Using SVG with Media Queries . 320

Using Media Queries with background-size 325

Conclusion . 327

Chapter 9 Preprocessors . 329

Installing Less . 330

Using Less from the Command Line . 330

Installing Sass . 331

Using Sass from the Command Line . 332

Ruleset Nesting . 333

xiv

@import and Partials . 336

Variables . 339

Variable Interpolation . 340

Mixins . 342

Mixins in Less . 342

Mixins in Sass . 344

Extending Selectors . 345

Extending in Less . 345

Extending in Sass . 347

Conclusion . 349

Chapter 10 Conclusion . 351

Grid Layout . 352

CSS Shapes . 355

Scroll Snap Points . 357

Blend Modes and CSS Filters . 359

How to Follow Changes and Additions to CSS . 361

xv

Preface
CSS has grown from a language for formatting documents into a robust language

for designing web applications. Its syntax is easy to learn, making CSS a great entry

point for those new to programming. Indeed, it's often the second language that

developers learn, right behind HTML.

The simplicity of CSS is deceptive, however. It belies the complexity of the box

model, stacking contexts, specificity, and the cascade. It's tough to develop interfaces

that work across a variety of screen sizes and with an assortment of input mechan-

isms. CSS mastery lies in understanding these concepts and how to mitigate them.

Mastering CSS development also means learning how to work with new tools such

as linters, optimizers, and preprocessors. Linters inspect your code for potential

trouble spots. Preprocessors make writing and organizing CSS easier. Optimizers

improve CSS quality, and reduce the number of bytes delivered to the browser. And

of course, there's the question of CSS architecture: which selectors to use, how to

modularize files, and how to prevent selector creep.

CSS is also growing in its capabilities. Until now, we've had to use clunky methods

such as float, or weighty JavaScript libraries to create the kinds of layouts made

possible with the flexbox and multi-column layout modules. Three-dimensional

effects were impossible―or required images―before the rise of CSS transforms.

What's on the horizon is even more exciting.

It's really a fascinating time to be a front-end developer. My hope is that you'll come

away from this book with a better sense of how CSS works and how to write it well.

Who Should Read This Book
This book is for intermediate-level CSS developers, as it assumes a fair amount of

experience with HTML and CSS. No time is spent covering the basics of CSS syntax.

Coverage of CSS concepts such as the box model and positioning are included to

illuminate tricky concepts for the experienced developer. They're not meant as an

introduction for beginners. Experience with JavaScript/DOM Scripting is helpful,

but not necessary.

Conventions Used
You'll notice that we've used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book's code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Where existing code is required for context, rather than repeat all of it, ⋮ will be

displayed:

xviii

function animate() {
 ⋮
 return new_variable;
}

Some lines of code should be entered on one line, but we've had to wrap them be-

cause of page constraints. An ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
➥testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
https://www.sitepoint.com/premium/books/csspro1

The book's website, containing links, updates, resources, and more.

https://github.com/spbooks/csspro1/

The downloadable code archive for this book.

xix

https://www.sitepoint.com/premium/books/csspro1
https://github.com/spbooks/csspro1/

http://community.sitepoint.com/

SitePoint's forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Want to take your learning further?
Thanks for choosing to buy a SitePoint book. Would you like to continue learning?

You can now gain unlimited access to ALL SitePoint books and courses plus high-

quality books from our selected partners at SitePoint Premium1. Enroll now and

start learning today!

1 https://www.sitepoint.com/premium/home

xx

http://community.sitepoint.com/
https://www.sitepoint.com/premium/home

Chapter1
Selectors
CSS rules are matched to elements with selectors. There are a number of ways to

do this, and you’re probably familiar with most of them. Element type, class name,

ID, and attribute selectors are all well-supported and widely used.

The Selectors Level 31 and Level 42 specifications introduced several new selectors.

In some cases, these are new variations of existing types. In other cases, they are

new features of the language.

In this chapter, we’ll look at the current browser landscape for CSS selectors, with

a focus on newer selectors. This includes new attribute selectors and combinators,

and a range of new pseudo-classes. In the section Choosing Selectors Wisely, we

look at the concept of specificity.

This chapter stops short of being a comprehensive look at all selectors―that could

be a book unto itself. Instead, we’ll focus on selectors with good browser support

that are likely to be useful in your current work. Some material may be old hat, but

it’s included for context.

1 http://dev.w3.org/csswg/selectors-3/
2 http://dev.w3.org/csswg/selectors-4/

http://dev.w3.org/csswg/selectors-3/
http://dev.w3.org/csswg/selectors-4/

Browser Coverage for Selectors

A comprehensive look at the current state of browser support for selectors can be

found at CSS4-Selectors.3

Combinators
Combinators are character sequences that express a relationship between the select-

ors on either side of it. Using a combinator creates what’s known as a complex se-

lector. Complex selectors can, in some cases, be the most concise way to define

styles.

You should be familiar with most of these combinators:

■ descendant combinator, or whitespace character
■ child combinator, or >
■ adjacent sibling combinator, or +
■ general sibling combinator, or ~

Let’s illustrate each of these combinators. We’ll use them to add styles to the HTML

form shown in Figure 1.1.

3 http://css4-selectors.com/

CSS Master2

http://css4-selectors.com/

Figure 1.1. Our HTML form that we’ll style using combinators

This form was created using the following chunk of HTML:

<form method="GET" action="/processor">
 <h1>Buy Tickets to the Web Developer Gala</h1>
 <p>Tickets are $10 each. Dinner packages are an extra $5. All
➥ fields are required.</p>
 <fieldset>
 <legend>Tickets and Add-ons</legend>

 <p>
 <label for="quantity">Number of Tickets</label>
 Limit 8
 <input type="number" value="1" name="quantity"
➥ id="quantity" step="1" min="1" max="8">
 </p>

 <p>
 <label for="quantity">Dinner Packages</label>
 Serves 2

3Selectors

 <input type="number" value="1" name="quantity"
➥ id="quantity" step="1" min="1" max="8">
 </p>

 </fieldset>
 <fieldset>
 <legend>Payment</legend>
 <p>
 <label for="ccn">Credit card number</label>
 No spaces or dashes, please.
 <input type="text" id="ccn" name="ccn" placeholder=
➥"372000000000008" maxlength="16" size="16">
 </p>
 <p>
 <label for="expiration">Expiration date</label>
 <abbr title="Two-digit month">MM
➥</abbr>/<abbr title="Four-digit Year">MM</abbr>YYYY
 <input type="text" id="expiration" name="expiration"
➥placeholder="01/2018" maxlength="7" size="7">
 </p>

 </fieldset>
 <fieldset>
 <legend>Billing Address</legend>
 <p>
 <label for="name">Name</label>
 <input type="text" id="name" name="name" placeholder=
➥"ex: John Q. Public" size="40">
 </p>
 <p>
 <label for="street_address">Street Address</label>
 <input type="text" id="name" name="name" placeholder=
➥"ex: 12345 Main Street, Apt 23" size="40">
 </p>

 <p>
 <label for="city">City</label>
 <input type="text" id="city" name="city" placeholder=
➥"ex: Anytown">
 </p>

 <p>
 <label for="state">State</label>
 <input type="text" id="state" name="state" placeholder=
➥"CA" maxlength="2" pattern="[A-W]{2}" size="2">

CSS Master4

 </p>

 <p>
 <label for="zip">ZIP</label>
 <input type="text" id="zip" name="zip" placeholder=
➥"12345" maxlength="5" pattern="0-9{5}" size="5">
 </p>
 </fieldset>

 <button type="submit">Buy Tickets!</button>
</form>

The Descendant Combinator
You’re probably quite familiar with the descendant combinator. It’s been around

since the early days of CSS (though it was without a type name until CSS2.1). It’s

widely used and widely supported.

The descendant combinator is just a whitespace character. It separates the parent

selector from its descendant, following the pattern A B, where B is an element

contained by A. Let's add some CSS to our markup from above and see how this

works:

01-selectors/descendent-combinator.html (excerpt)

form h1 {
 color: #009;
}

We’ve just changed the color of our form title, the result of which can be seen in

Figure 1.2.

5Selectors

Figure 1.2. The effect of a descendant combinator

Let’s add some more CSS, this time to increase the size of our pricing message

(“Tickets are $10 each”):

01-selectors/descendent-combinator.html (excerpt)

form p {
 font-size: 22px;
}

There’s a problem with this selector, however, as you can see in Figure 1.3. We’ve

actually increased the size of the text in all of our form’s paragraphs, which isn’t

what we want. How can we fix this? Let’s try the child combinator.

CSS Master6

Figure 1.3. Oops! Our selector is too broad

The Child Combinator
In contrast to the descendant combinator, the child combinator (>) selects only the

immediate children of an element. It follows the pattern A > B, matching any element

B where A is the immediate ancestor.

If elements were people, to use an analogy, the child combinator would match the

child of the mother element. But the descendant combinator would also match her

grandchildren, and great-grandchildren. Let’s modify our previous selector to use

the child combinator:

01-selectors/child-combinator.html (excerpt)

form > p {
 font-size: 22px;
}

Now only the direct children of article are affected, as shown in Figure 1.4.

7Selectors

Figure 1.4. The effect of the child combinator

The Adjacent Sibling Combinator
With the adjacent sibling combinator (+), we can select elements that follow each

other and have the same parent. It follows the pattern A + B. Styles will be applied

to B elements that are immediately preceded by A elements.

Let’s go back to our example. Notice that our labels and inputs sit next to each

other. That means we can use the adjacent sibling combinator to make them sit on

separate lines:

label + input {
 display: block;
 clear: both;
}

You can see the results in Figure 1.5.

CSS Master8

Figure 1.5. Adjacent combinator to the rescue

Let’s look at another example that combines the universal selector (*) with a type

selector:

01-selectors/adjacent-sibling-combinator.html (excerpt)

* + fieldset {
 margin: 5em 0;
}

This example adds a 5em margin to the top and bottom of every fieldset element,

shown in Figure 1.6. Since we’re using the universal selector, there’s no need to

worry about whether the previous element is another fieldset or p element.

9Selectors

Figure 1.6. Using the adjacent sibling combinator to adjust the bottom margin for our fieldset elements

More Uses of the Adjacent Sibling Selector

Heydon Pickering explores more clever uses of the adjacent sibling selector in his

article “Axiomatic CSS and Lobotomized Owls.”4

What if we want to style a sibling element that isn’t adjacent to another, as with our

Number of Tickets field? In this case, we can use the general sibling combinator.

The General Sibling Combinator
With the general sibling combinator―a tilde―we can select elements that share

the same parent without considering whether they’re adjacent. Given the pattern

A ~ B, this selector matches all B elements that are preceded by an A element,

whether or not they’re adjacent.

4 http://alistapart.com/article/axiomatic-css-and-lobotomized-owls

CSS Master10

http://alistapart.com/article/axiomatic-css-and-lobotomized-owls

Let’s look at the Number of Tickets field again. Its markup looks like this:

<p>
 <label for="quantity">Number of Tickets</label>
 Limit 8
 <input type="number" value="1" name="quantity" id="quantity"
➥ step="1" min="1" max="8">
</p>

Our input element follows the label element, but there is a span element in

between. Since a span element sits between input and label, the adjacent sibling

combinator will fail to work here. Let’s change our adjacent sibling combinator to

a general sibling combinator:

01-selectors/general-sibling-combinator.html (excerpt)

label ~ input {
 display: block;
}

Now all of our input elements sit on a separate line from their label elements, as

seen in Figure 1.7.

11Selectors

Figure 1.7. The ~ combinator targets sibling elements, regardless of whether they’re adjacent

Using the general sibling combinator is the most handy when you lack full control

over the markup. Otherwise, you’d be better off adjusting your markup to add a

class name. Keep in mind that the general sibling combinator may create some un-

intended side effects in a large code base, so use with care.

Attribute Selectors
Attribute selectors match elements based on their attributes. This can be an attribute

alone, such as [type], or it can be an attribute and value combination, such as

[type=checkbox] or [for="email"].

We can also do attribute presence and substring matching with attribute selectors.

For example, we can match attribute values in a space-separated list, or we can

match attribute values that start with tel:. We can even match hyphenated attribute

values such as en-US.

CSS Master12

Some of the attribute selectors we’ll cover here are old hat. Both the hyphenated

attribute value selector and the space-separated attribute value selector were defined

in CSS2. Selectors Level 3, on the other hand, adds a few powerful selectors that

let us match partial attribute values.

We’ll focus on the new and lesser-known attribute selectors in this section. Let’s

take a look.

Matching Attribute Presence
It’s common to match elements based on the exact value of their attributes. Reset

style sheets commonly use selectors selector such as [type=text] and [type=email].

But we can also match attributes when there are multiple space-separated values.

We need to use our space-separated attribute value selector: [att~=val].

The space-separated attribute value selector matches elements with the attribute

att and a list of values, one of which is val. This can be any attribute that accepts

space-separated values, including class or data-*.

Space-separated lists of attributes are admittedly uncommon. They are sometimes

used with the rel attribute and microformats5 to describe relationships between

people and documents. We might mark up an external link like so:

Bob

We can then use this presence-based attribute selector to match this link and links

like it:

01-selectors/attribute-space-separated.html (excerpt)

[rel~=friend] {
 font-size: 2em;
 background: #eee;
 padding: 4px;
 text-decoration: none;
 border-bottom: 3px solid #ccc;
}
[rel~=friend]:link,
[rel~=friend]:visited {

5 http://microformats.org/wiki/existing-rel-values

13Selectors

http://microformats.org/wiki/existing-rel-values

 color: #34444C;
}
[rel~=friend]:hover{
 background: #ffeb3b;
 border-color: #ffc107;
}

This gives us the image in Figure 1.8.

Figure 1.8. A link to Bob’s website styled using an attribute selector

Matching Hyphenated Attribute Values
One of the more interesting tasks we can do with attribute selectors is match elements

with hyphenated attribute values by using [attr|=val]. This selector matches

elements by attribute when its value is hyphenated and its prefix equals val.

CSS Master14

At first glance, this may seem like a useless selector; however, it’s quite practical

for working with languages and language codes—such as en-US or es-MX—which

is its intended use.

Let’s say we have a site targeting English speakers. Our site also supports two re-

gional variations in English: United Kingdom and United States. The language codes

for these languages are en-GB and en-US respectively. We’ve also set the language

on our html tag; for example, <html lang="en-US">.

Our site teaches English speakers to be conversant in French, Spanish, and Por-

tuguese. It contains lots of markup similar to this example:

<p lang="fr-FR"><q>Tout le monde.</q></p>
<p><q>All the world.</q>, or <q>Everyone</q></p>

Let’s italicize our French text and add language-appropriate angle quotes (« and »)

to either side of it:

[lang|="fr"] {
 font-style: italic;
}
[lang|="fr"] q:before{
 content: '\00AB'; /* Left angle quote */
}
[lang|="fr"] q:after{
 content: '\00BB'; /* Right angle quote */
}

What’s cool about this selector is that it will also match if the attribute equals the

prefix. These styles would also apply to <p lang="fr">. We could further limit the

scope of these selectors, for example, by adding a p element to the lang attribute:

p[lang|="fr"].

Though intended to be used with language codes, this selector isn’t limited to them.

We can use it with any hyphenated attribute value. Consider the following markup:

<article class="articlepromo">
 <h3>U.S. ratifies Kyoto Protocol</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing</p>
</article>

15Selectors

<article class="articlepromo-entertainment">
 <h3>Kardashian-Wests welcome South to the world</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing</p>
</article>

<article class="articlepromo-sports">
 <h3>New York Knicks win NBA title</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing</p>
</article>

<article class="articlepromo-business">
 <h3>Google Buys EverythingOnTheInternet.com</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing</p>
</article>

These are all article promos or teasers. They share some of the same visual charac-

teristics and behavior, along with an articlepromo prefix. Here, too, we can use

the hyphenated attribute selector to match these class names:

01-selectors/attribute-hyphenated.html (excerpt)

[class|="articlepromo"] {
 border-top: 5px solid #4caf50;
 color: #555;
 line-height: 1.3;
 padding-top: .5em;
}

[class|="articlepromo"] h3 {
 color: #000;
 font-size: 1.2em;
 margin:0;
}

[class|="articlepromo"] p {
 margin: 0 0 1em;
}

Follow this up with specific border colors for each section type, and you’ll achieve

something along the lines of the layout you see in Figure 1.9.

CSS Master16

Figure 1.9. Using hyphenated attributes to style elements

We can also use it with id names; for example, [id|=global]would match #global-

footer, #global-menu, and so on.

Now, just because you can do something doesn’t necessarily mean you should. The

hyphenated attribute value selector is ideal for styling differences in language. For

any other usage, though, you’d do just as well to use a class name selector. Class

names provide a lower risk of unintended effects in a large project. They’re also a

must if your project still requires Internet Explorer 8 support, since IE8 does not

support this selector.

Matching Attribute Values by Substring
We can also select elements when the attribute values match a particular substring.

Three character sequences let us match elements depending on whether this sub-

string sits at the beginning, end, or elsewhere in the attribute value:

^= matches when the substring sits at the beginning of the string.

17Selectors

$= matches when the substring sits at the end of the string.

*= matches when the substring is present at any position within the string.

When might these selectors come in handy? Think about links using tel: (non-

standard) or mailto:. "Since they behave differently from other hyperlinks, it makes

sense to style them differently just as a hint to the user. Take the Call this business

link:

Call this business

We can select this and other tel: links by using the ^= character sequence:

[href^="tel:"]. Let’s add some declarations:

01-selectors/attribute-substring-combinator.html (excerpt)

[href^="tel:"] {
 background: #2196f3 url(../images/phone-icon.svg) 10px center /
➥ 20px auto no-repeat;
 border-radius: 100px;
 padding: .5em 1em .5em 2em;
}

You can see the result in Figure 1.10.

Figure 1.10. Our new Call this business button

To match elements when the attribute value ends with a substring, change ^ to $.

If, for some odd reason―and let me emphasize that it would be odd―we wanted

to match the last four digits of our phone number (5555), we might use the following:

CSS Master18

[href$="5555"] {
 background: #e91e63;
}

It’s more useful, obviously, to match elements that end with the same suffix. For

example, you could match both <aside class="sports-sidebar"> and <aside

class="arts-sidebar"> with [class$=sidebar].

Using $= won’t, however, match an element with the class name sports-sidebar-

a. For that we’d need to use the *= sequence. Changing our selector to

[class*=sidebar] does the job.

Most of the new selectors added in CSS3 and CSS4 are not attribute selectors at all.

They’re pseudo-classes or pseudo-elements. We’ll discuss these over the next few

sections.

Pseudo-classes versus Pseudo-elements
Though you’ve probably used pseudo-classes and pseudo-elements in your code,

you may not have thought about what they are or the difference between them.

Pseudo-classes let us style objects based on information distinct from the document

tree, or that’s unable to be expressed using simple selectors. For example, an element

can only have a hover or focus state once the user interacts with it. With the :hover

and :focus pseudo-classes, we can define styles for those states. Otherwise, we’d

have to rely on scripting to add and remove class names.

Pseudo-elements, on the other hand, let us style elements that aren’t directly present

in the document tree. There's no firstletter element in HTML, so we need another

way to select it. The ::first-letter pseudo-element gives us that capability.

Pseudo-elements
The CSS Pseudo-elements Module Level 4 specification 6clarifies behavior for ex-

isting pseudo-elements and defines several new ones. Only a few, however, have

any degree of support in current browsers. Those are the ones we’ll focus on here:

6 http://dev.w3.org/csswg/css-pseudo-4/

19Selectors

http://dev.w3.org/csswg/css-pseudo-4/

::before inserts additional generated content before the content of an

element

::after inserts additional generated content after the content of an

element

::first–letter selects the first letter of an element

::first–line selects the first line of an element

::selection styles text selected by the cursor

Of these, ::first–letter, ::first–line, and ::selection affect content that’s

part of the document source. The ::before and ::after pseudo-elements, on the

other hand, inject content into a document without it existing in the document

source. Let’s look at each of these pseudo-elements more closely.

Single-colon Syntax

You may come across single-colon versions of ::first–letter, ::first–line,

::before, and ::after in old CSS. These pseudo-elements were defined in

CSS2 with a single :. Though Internet Explorer 8 requires single-colon syntax,

most other browsers support both versions. It is recommeded to use the double-

colon syntax.

::before and ::after
Most pseudo-elements allow us to select content that’s already part of the document

source—in other words, the HTML you authored—but not specified by the language.

With ::before and ::after, however, matters work differently. These pseudo-

elements add generated content to the document tree. This content does not exist

in the HTML source, but it is available visually.

Why would you want to use generated content? You might, for example, want to

indicate which form fields are required by adding content after its label:

/* Apply to the label element associated with a required field */
.required::after {
 content: ' (Required) ';

CSS Master20

 color: #c00;
 font-size: .8em;
}

Required form fields use the required HTML property. Since that information is

already available to the DOM, using ::before or ::after to add helper text is

supplemental. It isn’t critical content, so it’s okay that it’s not part of the document

source.

Generated Content and Accessibility

Some screen-reader and browser combinations recognize and read generated

content, but most do not. Avoid relying on content generated using ::before or

::after being available to assistive technology users. More on this is available

in Leonie Watson’s piece “Accessibility support for CSS generated content.”7

Another use case for ::before or ::after is adding a prefix or suffix to content.

Perhaps the aforementioned form includes helper text, as shown here:

<form method="post" action="/save">
 <fieldset>
 <legend>Change Your Password</legend>
 <p>
 <label for="password">Enter a new password</label>
 <input type="password" id="password" name="password">
 </p>
 <p>
 <label for="password2">Retype your password</label>
 <input type="password" id="password2" name="password2">
 </p>
 <p class="helptext">Longer passwords are stronger.</p>
 <p><button type="submit">Save changes</button></p>
 </fieldset>
</form>

Let’s enclose our helper text in parentheses using ::before and ::after:

7 http://tink.uk/accessibility-support-for-css-generated-content/

21Selectors

http://tink.uk/accessibility-support-for-css-generated-content/

.helptext::before {
 content: '(';
}
.helptext::after {
 content: ')';
}

The result is shown in Figure 1.11.

Figure 1.11. Using ::before and ::after to add supplemental content

Perhaps the most useful way to use ::before and ::after is to clear floated ele-

ments. Nicolas Gallagher introduced this technique (which builds on the work of

Thierry Koblentz) in his post “A new micro clearfix hack”:8

/* Use :before and :after if you need to support IE <= 8 */

.clearfix::before,

.clearfix::after {
 content: " "; /* Note the space between the quotes. */
 display: table;
}

8 http://nicolasgallagher.com/micro-clearfix-hack/

CSS Master22

http://nicolasgallagher.com/micro-clearfix-hack/

.clearfix::after {
 clear: both;
}

Add the clearfix class to any element that needs to be cleared after a floated ele-

ment.

Both ::before and ::after behave just like regular descendants of the element to

which they’re attached. They inherit all inheritable properties of their parent, and

sit within the box created by their parent. But they also interact with other element

boxes as though they were true elements. Adding display: block or display:

table to ::before or ::after works the same way as it does for other elements.

One Pseudo-element per Selector

Currently, only one pseudo-element is allowed per selector. This means that a

selector such as p::first-line::before is invalid.

Creating Typographic Effects with ::first-letter
While the ::before and ::after pseudo-elements inject content, ::first-letter

works with content that exists as part of the document source. With it, we can create

initial or drop-capital letter effects, as you might see in a magazine or book layout.

Initial and Drop Capitals

An initial capital is an uppercase letter at the start of a text set in a larger font

size than the rest of the body copy. A drop capital is similar to an initial capital,

but is inset into the first paragraph by at least two lines.

This CSS snippet adds an initial capital letter to every p element in our document:

p::first-letter {
 font-family: serif;
 font-weight: bold;
 font-size: 3em;

23Selectors

 font-style: italic;
 color: #3f51b5;
}

The result can be viewed in Figure 1.12.

Figure 1.12. Creating initial caps with the ::first-letter pseudo-element

As you may have noticed from this screenshot, ::first–letter will affect the line-

height of the first line if you’ve set a unitless line-height for the element. In this

case, each p element inherits a line-height value of 1.5 from the body element.

There are three ways to mitigate this:

1. Decrease the value of line-height for the ::first–letter pseudo-element. A

value of .5 seems to work most of the time.

2. Set a line-height with units on the ::first–letter pseudo-element.

3. Set a line-height with units on either the body or the ::first–letter parent.

CSS Master24

The first option preserves the vertical rhythm that comes with using unitless line-

heights.9 The second option limits the side effects of using fixed line-heights just

to those pseudo-elements. Option three is the worst of these options because there’s

a high likelihood that you’ll create a side effect that requires more CSS to override

it.

In this case, let’s decrease the line-height value for p::first-letter to .5 (and

rewrite our file properties to use the font shorthand):

01-selectors/pseudo-el-first-letter-init.html (excerpt)

p::first-letter {
 font: bold italic 3em / .5 serif;
 color: #3f51b5;
}

This change produces the result shown in Figure 1.13. Notice here that we also had

to adjust the bottom margin of each p element to compensate for the reduced line-

height of p::first-letter.

Figure 1.13. Mitigating the effect of ::first-letter on line-height

9 The Mozilla Developer Network entry for line-height explains why unitless values

[https://developer.mozilla.org/en-US/docs/Web/CSS/line-height] are the way to go.

25Selectors

https://developer.mozilla.org/en-US/docs/Web/CSS/line-height

Creating a drop capital requires a few more lines of CSS. Unlike an initial capital,

the adjacent text to the drop capital letter wraps around it. This means that we need

to add float: left; to our rule set. We’ll also add top, right, and bottom margins:

01-selectors/pseudo-el-first-letter-drop.html (excerpt)

p::first-letter {
 font: bold italic 3em / .5 serif;
 font-style: italic;
 color: #607d8b;
 float: left;
 margin: 0.2em 0.25em .01em 0;
}

Floating an element, or in this case a pseudo-element, causes the remaining text to

flow around it, as illustrated in Figure 1.14.

Figure 1.14. Creating a drop capital with ::first-letter

Be aware that ::first-letter can be difficult to style with pixel-perfect accuracy

across browsers, unless you use px or rem units for size, margin, and line height.

Sometimes the first letter of a text element is actually punctuation; for example, a

news story that begins with a quote:

CSS Master26

<p>“Lorem ipsum dolor sit amet, consectetur adipiscing elit.
➥” Fusce odio leo, sollicitudin vel mattis eget, ...</p>

In this case, the styles defined for ::first-letter will affect both the opening

punctuation mark and the first letter, as presented in Figure 1.15. All browsers

handle this in the same way.

Figure 1.15. Punctuation is affected by ::first-letter styles if it immediately precedes the first letter character

However, this isn’t necessarily how it works when the punctuation mark is generated

by an element. Consider the following markup:

<p><q>Lorem ipsum dolor sit amet, consectetur adipiscing elit.</q>
➥ Fusce odio leo, sollicitudin vel mattis eget, iaculis sit ...</p>

Current browsers typically render the q element with language-appropriate quotation

marks before and after the enclosed text; however, not all browsers treat those

quotation marks the same way. In Firefox 42 (Figure 1.16), Safari 8, and earlier

versions, ::first-letter only affects the opening quotation mark.

27Selectors

Figure 1.16. ::first-letter only affects the opening quotation mark in Firefox 40

In Chrome, Opera, and Yandex, neither the opening quotation mark for q nor the

first letter of the paragraph are restyled. Figure 1.17 shows how this looks like in

Chrome.

CSS Master28

Figure 1.17. Chrome ignores the opening quotation mark and first letter when using q

Internet Explorer, however, applies first-letter styles to both the opening quotation

mark and the first letter of the paragraph, as shown in Figure 1.18.

29Selectors

Figure 1.18. Internet Explorer includes punctuation in first-letter styles

According to the CSS Pseudo-elements Module Level 4 specification,10 punctuation

that immediately precedes or succeeds the first letter or character should be included;

however, the specification is unclear about whether this also applies to generated

punctuation.11

Browser Bugs When Using ::first-letter
For the most part, ::first-letter works as expected across browsers. As with any

CSS feature, there are some edge cases and browser bugs of which to be aware.

In Firefox 39 and earlier, some punctuation characters cause Firefox to ignore a

::first–letter rule set altogether:

- (dash)

$ (dollar sign)

^ (caret)

10 http://dev.w3.org/csswg/css-pseudo-4/#first-letter-pseudo
11 The specification actually uses the phrase “typographic letter unit.” This includes Unicode letters

and numbers, but also characters used in East Asian and Middle Eastern writing systems.

CSS Master30

http://dev.w3.org/csswg/css-pseudo-4/#first-letter-pseudo

_ (underscore)

+ (plus sign)

` (back tick)

~ (tilde)

> (greater than sign)

< (less than sign)

This is true whether the first character is set using ::before and the content

property, or included in the document source. There is no fix for this. You’ll need

to avoid using these characters as the first character if you’re also using ::first-

letter.

Bugs in Blink-based Browsers

Some versions of Blink-based browsers will not apply ::first–letter rules if

the parent element has a display value of inline or table. This bug exists in

Chrome 42, Opera 29, and Yandex 15. It’s fixed in Chrome 44, however, which

should be released by the time this book reaches your hands. If you need to work

around this bug, the easiest fix is to add display: inline-block, display:

block, or display: table-cell to the parent element.

Creating Typographic Effects with ::first-line
The ::first-line pseudo-class works similarly to ::first-letter, but affects the

entire first line of an element. We could, for example, make the first line of every

paragraph element be a larger text size and different color than the rest of each

paragraph:

01-selectors/pseudo-el-first-line.html (excerpt)

p::first-line {
 font: bold 1.5em serif;
 font-style: italic;
 color: #673ab7;
}

You can see the result in Figure 1.19. Notice that the first line of each paragraph is

affected, rather than the first sentence. How many characters fit on this first line is

determined by font size and element width.

31Selectors

Figure 1.19. Using the ::first-line pseudo-element

It is possible to force the end of a first line by using a br or hr element, as shown

in Figure 1.20. Unfortunately, this is far from perfect. If your element is only wide

enough to accommodate 72 characters, adding a
 tag after the 80th character

won’t affect the ::first-line pseudo-element. You’ll end up with an oddly placed

line break.

CSS Master32

Figure 1.20. Forcing the end of a line with a br element

Similarly, using a non-breaking space () to prevent a line-break between

words won’t affect ::first-line. Instead, the word that sits before will be

forced on to the same line as the text that comes after it.

Generated content that’s added using ::before will become part of the first line,

as shown in Figure 1.21.

33Selectors

Figure 1.21. Generated content becomes part of the first line

If the generated text is long enough, it will fill the entire first line. However, if we

add a display: block declaration―for example, p::before {content: '!!!';

display: block;}―that content will become the entire first line Figure 1.22.

CSS Master34

Figure 1.22. Adding display: block to content added with ::before means that styles defined for p::first-line

will affect that content

Unfortunately, this is yet to work in Firefox version 40 or earlier. Firefox ignores

the rule set completely.

User Interface Fun with ::selection
The ::selection pseudo-element is one of the so-called “highlight pseudo-elements”

defined by CSS Pseudo-Elements Module Level 4.12 Formerly part of the Selectors

Level 3 specification, it’s the only highlight pseudo-element implemented by

browsers.13

With ::selection, we can apply CSS styles to content that users have highlighted

with their mouse. By default, the background and text color of highlighted content

is determined by system settings; however, developers can change what that highlight

looks like, as indicated in Figure 1.23.

12 http://dev.w3.org/csswg/css-pseudo-4/
13 In Firefox, this pseudo-element requires a -moz- prefix, like so ::-moz-selection.

35Selectors

http://dev.w3.org/csswg/css-pseudo-4/

Figure 1.23. An example of a highlight set using ::selection

Not every CSS property can be used with ::selection. As outlined in the specific-

ation, only these properties will work:

■ color

■ background-color

■ cursor

■ outline and its expanded properties
■ text-decoration and related properties (such as text-decoration-style)
■ text-emphasis-color

■ text-shadow

In practical terms, only color and background-color have been implemented in

multiple browsers. Let’s look at an example:

CSS Master36

01-selectors/pseudo-el-selection.html (excerpt)

::selection {
 background: #9f0;
 color: #600;
}

This CSS adds a lime green background to any element the user highlights, and

changes the text color to a deep red. The example works in every browser that

supports ::selection, and you can see the effect in Figure 1.24.

Figure 1.24. Deep red text on a lime green background set using the ::selection pseudo-element

Color Combinations

When selecting foreground and background colors to use with ::selection,

keep accessibility in mind. Some color combinations fail to generate enough

contrast to be read by low-vision users. Other color combinations may be illegible

for color-blind users. Be sure to use a contrast checker and color-blindness simu-

lator before selecting your final colors.

37Selectors

The ::spelling-error and ::grammar-error pseudo-classes are also defined by

the Pseudo-Elements Module. When implemented, these pseudo-classes will let us

style text that is misspelled or ungrammatical according to the browser’s dictionary.

Pseudo-classes
As mentioned earlier in this chapter, pseudo-classes help us define styles for docu-

ments based on information that is unable to be gleaned from the document tree or

can’t be targeted using simple selectors. These include logical and linguistic pseudo-

classes such as :not() and :lang(). It also includes user-triggered pseudo-classes

such as :hover and :focus.

In this section, we’ll cover some esoteric and lesser-known pseudo-classes with a

focus on what is available in browsers: child-indexed and typed child-indexed

pseudo-classes, and input pseudo-classes. Child-indexed and typed child-indexed

pseudo-classes let us select elements by their position in the document subtree.

Input pseudo-classes target form fields based on their input values and states.

Highlighting Page Fragments with :target
A fragment identifier is the part of a URL that follows the #; for example, #top or

#footnote1. You’ve probably used them to create in-page navigation: a so-called

“jump link.” With the :target pseudo-class, we can highlight the portion of the

document that corresponds to that fragment, and we can do it without JavaScript.

Say, for example, that you have series of comments or a discussion board thread:

<section id="comments">
 <h2>Comments on this post</h2>
 <article class="comment" id="comment-1146937891">...</article>
 <article class="comment" id="comment-1146937892">...</article>
 <article class="comment" id="comment-1146937893">...</article>
</section>

With some CSS and other fancy bits, it looks a little like what you see in Figure 1.25.

CSS Master38

Figure 1.25. A comments section as you might find on a blog

Each comment in the aforementioned code has a fragment identifier, which means

we can link directly to it. For example, . Then

all we need to do is specify a style for this comment using the :target pseudo-class:

.comment:target {
 background: #ffeb3b;
 border-color: #ffc107
}

When the fragment identifier part of the URL matches that of a comment (for ex-

ample, http://example.com/post/#comment-1146937891), that comment will have

a yellow background, seen in Figure 1.26.

39Selectors

Figure 1.26. A comments section with a yellow background

You can use any combination of CSS with :target, which opens up some fun

possibilities such as JavaScript-less tabs. Craig Buckler details this technique in his

tutorial “How to Create a CSS3-only Tab Control Using the :target Selector.”14

We’ll update it a bit to use more CSS3 features. First, let’s look at our HTML:

01-selectors/pseudo-class-target.html (excerpt)

<div class="tabbed-widget">
 <div class="tab-wrap">
 Tab 1
 Tab 2
 Tab 3
 </div>

 <ul class="tab-body">
 <li id="tab1">
 <p>This is tab 1.</p>

14 http://www.sitepoint.com/css3-tabs-using-target-selector/

CSS Master40

http://www.sitepoint.com/css3-tabs-using-target-selector/

 <li id="tab2">
 <p>This is tab 2</p>

 <li id="tab3">
 <p>This is tab 3.</p>

</div>

It’s fairly straightforward, consisting of tabs and associated tab content. Let’s add

some CSS:

css/chapter1/selectors-target.css (excerpt)

[id^=tab] {
 position: absolute;
}
[id^=tab]:first-child {
 z-index: 1;
}
[id^=tab]:target {
 z-index: 2;
}

Here’s where the magic happens. First, we’ve absolutely positioned all of our tabs.

Next, we’ve made our first tab the topmost layer by adding z-index: 1. This is only

important if you want the first tab in the source order to be the first tab users see.

Lastly, we’ve added z-index: 1 to our target tab. This ensures that the targeted

layer will always be the topmost one. You can see the result in Figure 1.27.

41Selectors

Figure 1.27. Using the :target selector to create tabs sans JavaScript

Improving Accessibility

A more accessible version might also use JavaScript to toggle the hidden or aria-

hidden=true attributes based on the visibility of each tab body.

Clicking a tab updates the URL with the new document fragment identifier. This

in turn, triggers the :target state.

Negating Selectors with :not()
Perhaps the most powerful of this new crop of pseudo-classes is :not(). It returns

all elements except for those that match the selector argument. For example,

p:not(.message) selects every p element that lacks a message class.

The :not() pseudo-class is what’s known as a functional pseudo–class. It accepts

a single argument, much like functions in other programming languages do. Any

argument passed to :not() must be a simple selector such as an element type, a

class name, an ID, or another pseudo-class. Pseudo-elements will fail, as will com-

pound selectors such as label.checkbox or complex selectors such as p img.

Here’s an example of a form that uses textual input types and radio buttons:

CSS Master42

01-selectors/pseudo-class-target.html (excerpt)

<form method="post" action="#">
 <h1>Join the Cool Kids Club</h1>
 <p>
 <label for="name">Name:</label>
 <input type="text" id="name" name="name" required>
 </p>

 <p>
 <label for="email">Email:</label>
 <input type="email" id="email" name="email" required>
 </p>
 <fieldset>
 <legend>Receive a digest?</legend>
 <p>
 <input type="radio" id="daily" name="digest">
 <label for="daily" class="label-radio">Daily</label>
 <input type="radio" id="weekly" name="digest">
 <label for="weekly" class="label-radio">Weekly</label>
 </p>
 </fieldset>
 <button type="submit">Buy Tickets!</button>
</form>

In the HTML, labels associated with a radio type have a .label-radio class. We

can use the :not() pseudo-class: to target those elements without a label-radio

class, as shown in Figure 1.28:

43Selectors

label:not(.label-radio) {
 font-weight: bold;
 display:block;
}

Figure 1.28. Using the :not() pseudo class to style form labels

Here’s a trickier example. Let’s create styles for textual inputs. These include input

types such as number, email, and text along with password and url. But let’s do

this by excluding radio button, check box, and range inputs. Your first instinct

might be to use the following selector list:

input:not([type=radio]),
input:not([type=checkbox]),
input:not([type=range]) {
 ...
}

Unfortunately, this won’t work, as each selector overrides the previous one. It’s the

equivalent of typing:

CSS Master44

input:not([type=radio]){ ... }
input:not([type=checkbox]) { ... }
input:not([type=range]) {... }

Instead, we need to chain our :not() pseudo-classes, so that they all filter the input

element:15

input:not([type=radio]):not([type=checkbox]):not([type=range]) {
 ...
}

Using pseudo-classes (and pseudo-elements) without a simple selector is the equi-

valent of using it with the universal selector. In other words, :not([type=radio])

is the same as *:not([type=radio]). In this case, every element that lacks a type

attribute and value of radio will match―including html and body. To prevent this,

use :not() with a selector such as a class name, ID, or attribute selector. By the

way, this also holds true true for class name, ID, and attribute selectors: .warning

and [type=radio] are the same as *.warning and *[type=radio].

CSS Selectors Level 4 refines the way :not() works, so that it can accept a list as

an argument, and not just simple selectors. Rather than chaining pseudo-classes as

previously, we’ll be able to use a comma-separated argument:

input:not([type=radio], [type=checkbox], [type=range]) {
 ...
}

Unfortunately, no major browser supports this yet, so use chaining in the meantime.

Selecting Elements by Their Index
CSS also provide selectors for matching elements based on their position in the

document subtree. These are known as child–indexed pseudo-classes, because they

rely on the position or order of the element rather than its type, attributes, or ID.

There are five:

15 The selector chain below will also match [type=image], [type=reset], [type=color],

and [type=submit] elements.

45Selectors

■ :first-child

■ :last-child

■ :only-child

■ :nth-child()

■ :nth-last-child()

:first-child and :last-child
As you’ve probably guessed from the names, the :first-child and :last-child

pseudo-classes make it possible to select elements that are the first child or last

child of a node (element). As with other pseudo-classes, :first-child and :last-

child have the fewest side effects when qualified by a simple selector.

Let’s take a look at the HTML and CSS below:

<!DOCTYPE html>
 <html lang="en-US">
 <head>
 <meta charset="utf-8">
 <title>:first-child and :last-child</title>
 <style type="text/css">
 body {
 font: 16px / 1.5 sans-serif;
 }
 :first-child {
 color: #e91e63;
 }
 :last-child {
 color: #4caf50;
}
 </style>
</head>
<body>
 <h2>List of fruits</h2>

 Apples
 Bananas
 Blueberries
 Oranges
 Strawberries

CSS Master46

 </body>
</html>

You can see what this looks like in Figure 1.29.

Figure 1.29. Using :first-child by itself matches more elements than we want

Because :first-child is unqualified, both the h2 element and first li element are

hot pink. After all, h2 is the first child of body, and li is the first child of the ul

element. But why are the remaining li elements green? Well, that’s because :last-

child is also unqualified, and ul is the last child of body. We’ve essentially typed

*:first-child and *:last-child.

If we qualify :first-child and :last-child by adding a simple selector, it all

makes more sense. Let’s limit our selection to list items. Change :first-child to

li:first-child and :last-child to li:last-child. Figure 1.30 shows the result.

47Selectors

Figure 1.30. Qualifying :first-child and :last-child with a simple selector

:nth-child() and :nth-last-child()
The ability to select the first and last children of a document is fine. But what if we

want to select odd or even elements instead? Perhaps we’d like to pick the sixth

element in a document subtree, or apply styles to every third element. This is where

the :nth-child() and the :nth-last-child() pseudo-classes come into play.

Like :not(), :nth-child() and :nth-last-child() are also functional pseudo-

classes. They accept a single argument, which should be either:

■ the odd keyword

■ the even keyword

■ an integer such as 2 or 8, or

■ an argument in the form An+B16 where A is a step interval, B is the offset, and

n is a variable representing a positive integer.

16 This An+B syntax is described in CSS Syntax Module Level 3.

[http://www.w3.org/TR/css-syntax-3/#anb]

CSS Master48

http://www.w3.org/TR/css-syntax-3/#anb

That last item has a degree of complexity. We'll come back to it in a moment.

What’s the difference between :nth-child() and :nth-last-child()? The starting

point: :nth-child() counts forwards and :nth-last-child() counts backwards.

CSS indexes use counting numbers and start with one rather than zero.

Both :nth-child() and :nth-last-child() are useful for alternating patterns.

Creating zebra-striped table row colors is the perfect use case. The CSS that follows

gives even-numbered table rows a light bluish-gray background, the result of which

can be seen in Figure 1.31:

css/chapter1/selectors-nth-child.css (excerpt)

tr:nth-child(even) {
 background: rgba(96, 125, 139, 0.1);
}

Figure 1.31. Using :nth-child(even) to style table rows

Switching :nth-child to :nth-last-child inverts this banding, since the counting

begins from the bottom, shown in Figure 1.32.

49Selectors

Figure 1.32. Counting starts from the bottom with :nth-last-child()

How about trying some complex examples using more complex arguments? We’ll

start with the document shown below in Figure 1.33, which contains 20 items.

CSS Master50

Figure 1.33. A document of 20 div elements

With :nth-child() and :nth-last-child(), we can select a single child at a par-

ticular position. We can select all of the children after a particular position, or we

can select elements by multiples, with an offset. Let’s change the background color

of the sixth item:

.item:nth-child(6) {
 background: #e91e63;
}

This gives us the result in Figure 1.34.

51Selectors

Figure 1.34. Using :nth-child() to select a single item by its index

But what if we want to select every third element? Here’s where the An+B syntax

comes in:

.item:nth-child(3n) {
 background: #e91e63;
}

Again, A is a step interval. It’s almost like a multiplier for n, which starts at 1. So

if A = 3, then 3n would match the 3rd, 6th, 9th, and so on elements. That’s exactly

what happens, as you can see in Figure 1.35.

CSS Master52

Figure 1.35. Using An+B syntax to select every third element

Here’s where matters become a little more interesting. We can use :nth-child()

and :nth-last-child() to select all elements after a certain point. Let’s try selecting

all but the first seven elements:

.item:nth-child(n+8) {
 background: #e91e63;
}

Here, there is no step value. As a result, n+8 matches every element n beginning

with the eighth element, as shown in Figure 1.36.

53Selectors

Figure 1.36. Using the step An+B microsyntax to select items 8 through 20

Negative Offsets

Negative offset and range values are also valid. Using :nth-child(-n+8)would

invert our selection, and match the first eight elements.

We can also use the offset and step values to select every third element, starting

with the fifth:

.item:nth-child(3n+5) {
 background: #e91e63;
}

You can see the results of this selector in Figure 1.37.

CSS Master54

Figure 1.37. Selecting every third element, starting with the fifth

:only-child

The :only-child pseudo-class matches elements if they are the only child of another

element. Below are two unordered lists. The first has one item while the second

contains three:

01-selectors/pseudo-class-only-child.html (excerpt)

 Apple

 Orange
 Banana
 Raspberry

Using li:only-child{color: #9c27b0;} will select Apple, since it’s

the only child of our first list. None of the items in the second list match, however,

because there are three siblings. You can see what this looks like in Figure 1.38.

55Selectors

Figure 1.38. Matching elements with li:only-child

:empty

It’s also possible to select elements that have no children using the :empty pseudo-

class. Now when we say :empty, we mean empty. In order for an element to match

the :empty pseudo-class, it can’t contain anything else—not even whitespace. In

other words, <p></p> will match, but <p> </p> will not.

Sometimes WYSIWYG (What You See Is What You Get) editors insert empty p ele-

ments to your content. You could use :empty in combination with the :not()

pseudo-class to avoid applying styles to these elements; for example p:not(:empty).

Selecting Elements of a Particular Type by their Index
The pseudo-classes discussed in the previous section match elements if they occupy

the given position in a document subtree. For instance, p:nth-last-child(2) selects

every p element that is the next-to-last element of its parent.

In this section, we’ll discuss typed child-indexed pseudo-classes. These pseudo-

classes also match elements based on the value of their indexes; however, matches

are limited to elements of a particular type. Selecting the fifth p element, or even-

indexed h2 elements, for example.

CSS Master56

There are five such pseudo-classes with names that mirror those of their untyped

counterparts:

■ :first-of-type

■ :last-of-type

■ :only-of-type

■ :nth-of-type()

■ :nth-last-of-type()

The difference between these and child-indexed pseudo-classes is a subtle one.

Where p:nth-child(5) matches the fifth item only if it is a p element, p:nth-of-

type(5) matches all p elements, then finds the fifth p element among those.

Let’s start with a slightly different document. It still has 20 items, but some of them

are p elements and some of them are div elements. The p elements have rounded

corners, as can be seen in Figure 1.39.

Figure 1.39. A document of 20 items, with p elements indicating rounded corners

Using :first-of-type, :last-of-type, and :only-type
With :first-of-type, we can select the first element that matches a selector. How

about we give our first p element a lime green background:

57Selectors

p:first-of-type {
 background: #cddc39;
}

This will match every p element that’s the first p element of its parent, shown in

Figure 1.40.

Figure 1.40. Matching the first child p element

The :last-of-type pseudo-class works similarly, matching the last such element

of its parent as presented in Figure 1.41. However, :only-of-type will match an

element if it’s the only child element of that type of its parent, illustrated in Fig-

ure 1.42.

CSS Master58

Figure 1.41. The :last-of-type pseudo-class matches the last element of a type

Figure 1.42. Using p:only-of-type to match the only child that’s a paragraph element

Let’s look at another example of using :first-of-type, but this time with a pseudo-

element. Remember the ::first-letter pseudo-element from earlier in this chapter?

Well, as you saw, it created an initial capital for every element to which it was ap-

plied. How about we go one step further, and limit this initial capital to the first

paragraph instead:

59Selectors

01-selectors/pseudo-class-first-of-type-first-letter.html (excerpt)

p:first-of-type::first-letter {
 font: bold italic 3em / .5 serif;
 color: #3f51b5;
}

As Figure 1.43 shows, now our paragraph will have an initial capital, even if it’s

preceded by a headline.

Figure 1.43. Using :first-of-type with the ::first-letter pseudo-element

Using :nth-of-type and :nth-last-of-type
The :nth-of-type() and :nth-last-of-type() are also functional pseudo-classes.

They accept the same arguments as :nth-child() and :nth-last-child(). But

like :first-of-type and :last-of-type, the indexes resolve to elements of the

same type. For example, to select the first p element and every other subsequent p

element, we can use the odd keyword with :nth-of-type():

CSS Master60

p:nth-of-type(odd) {
 background: #cddc39;
 color: #121212;
}

As you can see from Figure 1.44, this only matches odd-numbered p elements, rather

than odd-numbered children.

Figure 1.44. Selecting odd-indexed p elements with :nth-of-type(odd)

Similarly, using :nth-last-of-type(even) selects even-numbered p elements, but

the count begins from the last p element in the document—in this case, item 18

(Figure 1.45).

61Selectors

Figure 1.45. Selecting even-indexed p elements with :nth-last-of-type(even)

If this still seems fuzzy, play with Paul Maloney’s Nth-Test tool,17 or view the ex-

amples at Nth Master.18 Both projects are excellent ways to learn more about these

pseudo-classes.

Styling Form Fields Based on Input
Let’s take a look at some pseudo-classes that are specific to form fields and form

field input. These pseudo-classes can be used to style fields based on the validity

of user input, whether the field is required or currently enabled.

All of the pseudo-classes that follow are specific to forms. As a result, there’s less

of a need to limit the scope with a selector. Using :enabled won’t introduce side

effects for span elements. Limiting the scope is helpful, however, when you want

to syle various types of form controls differently.

:enabled and :disabled
As their name suggests, these pseudo-classes match elements that have (or lack) the

disabled HTML5 attribute. This can be an input control such as input, select, or

button element (seen shortly), or it can be a fieldset element:

17 http://nth-test.com/
18 http://nthmaster.com/

CSS Master62

http://nth-test.com/
http://nthmaster.com/

<button type="submit" disabled>Save draft</button>

Form elements are enabled by default; that is, they only become disabled if the

disabled attribute is set. Using input:enabled will match every input element

that is without a disabled attribute set. Conversely, button:disabled would match

all button elements with a disabled attribute:

css/chapter1/selectors-nth-child.css (excerpt)

button:disabled {
 opacity: .5;
}

Figure 1.46 shows the :enabled and :disabled states for our button element.

Figure 1.46. A button in :enabled (left) and :disabled (right) states

:required and :optional
Required and optional states are determined by the presence or absence of the re-

quired attribute on the field.19 For example:

01-selectors/input-pseudo-class.html (excerpt)

<p>
 <label for="email">E-mail:</label>
 <input type="email" id="email" name="email" placeholder=
➥"example: jane.doe@example.com" required>
</p>

Most browsers only indicate whether a field is required once the form is submitted.

With the :required pseudo-class, we can indicate to the user that the field is re-

19 Remember that in HTML5, the presence or absence of the attribute determines its value. In other

words,required="false" has the same effect asrequired="true",required="required"

and required.

63Selectors

quired before submission. For example, the following CSS will add a yellow border

to our email field from above, and is shown in Figure 1.47:

css/chapter1/selectors-input.css (excerpt)

input:required {
 border: 1px solid #ffc107;
}

Figure 1.47. Indicating that a field is required with :required

The :optional class works similarly, by matching elements that do not have a re-

quired attribute. For example, the CSS that follows gives us the results seen in

Figure 1.48.

css/chapter1/selectors-input.css (excerpt)

select:optional {
 border: 1px solid #ccc;
}

Figure 1.48. An optional select element styled with the :optional pseudo-class rendered in Firefox 40

:checked

Unlike the other pseudo-classes that we’ve covered, :checked only applies to radio

and checkbox form controls. As the name indicates, this pseudo-class lets us define

separate styles for selected inputs.

Unfortunately, styling radio controls and checkboxes in most browsers is about as

pleasant as a trip to the dentist for a filling. CSS Basic User Interface Module Level

420 attempts to address this with the appearance property, but this property is not

20 http://dev.w3.org/csswg/css-ui-4/#appearance-switching

CSS Master64

http://dev.w3.org/csswg/css-ui-4/#appearance-switching
http://dev.w3.org/csswg/css-ui-4/#appearance-switching

yet supported. WebKit/Blink-based browsers and Firefox do, however, support

nonstandard, vendor-prefixed versions of it.

In order to create custom radio button and checkbox inputs that work well across

browsers, we need to become clever with our selectors. We’ll use a sibling combin-

ator, a pseudo-element, and :checked to create custom radio button and checkbox

controls. For example, to change the style of a label when its associated radio button

is checked, we could use the following CSS:

[type=radio]:checked + label {
 font-weight: bold;
 font-size: 1.1rem;
}

This makes the label bold and increases its size when its associated control is

checked. We can improve this, though, by using the ::before pseudo-element with

our label element to inject a custom control:

css/chapter1/selectors-input.css (excerpt)

[type=radio] { opacity: 0; }

[type=radio] + label::before {
 background: #fff;
 content: '';
 display: inline-block;
 border: 1px solid #444;
 height: 1.2rem;
 margin-right: 1em;
 vertical-align: middle;
 width: 1.2rem;
}

[type=radio]:checked + label::before {
 background: #4caf50;
}

This gives us the customized controls you see in Figure 1.49.

65Selectors

Figure 1.49. Using the adjacent sibling combinator and ::before pseudo-class to create custom radio controls

In order for this technique to work, of course, our HTML needs to be structured

appropriately:

■ The label element must be immediately adjacent to its input control.

■ The form control must have an id attribute in addition to the name attribute (for

example, <input type="radio" id="chocolate" name="flavor">).

■ The label must have a for attribute, and its value must match the id of the form

control (for example, <label for="chocolate">Chocolate</label>).

Associating the label using for with the input ensures that the form input will be

selected when the user clicks or taps the label or its child pseudo-element (::before).

:in-range and :out-of-range
The :in-range and :out-of-range pseudo-classes can be used with range, number,

and date input controls. Using :in-range and :out-of-range requires setting min

and/or max attribute values for the control. Here’s an example using the number input

type:

<p>
 <label for="picknum">Enter a number from 1-100</label>
 <input type="number" min="1" max="100" id="picknum" name=
➥"picknum" step="1">
</p>

Let’s add a little bit of CSS to change styles if the values are within or outside of

our range of one to 100:

CSS Master66

css/chapter1/selectors-input.css (excerpt)

:out-of-range {
 background: #ffeb3b;
}

:in-range {
 background: #fff;
}

Should the user enter -3 or 101, the background color of #picknum will change to

yellow as defined in our :out-of-range rule set (see Figure 1.50). Otherwise, it

will remain white as defined in our :in-range rule set.

Figure 1.50. Styling :out-of-range values

:valid and :invalid
With the :valid and :invalid pseudo-classes, we can set styles based on whether

or not the form input meets our requirements. This will depend on the validation

constraints imposed by the type or pattern attribute value. For example, an input

with type="email" will be invalid if the user input is “foo 123,” as represented in

Figure 1.51.

Figure 1.51. An email field in the :invalid state

A form control will have an invalid state under the following conditions:

■ when a required field is an empty field

■ when the user’s input does not match the type or pattern constraints

■ when the field’s input falls outside of the range of its min and max attribute values

67Selectors

Optional fields with empty values are valid by default. Obviously, if user input

satisfies the constraints of the field, it exists in a valid state.

Form controls can have multiple states at once. So you may find yourself managing

specificity (discussed in the next section) and cascade conflicts. A way to mitigate

this is by limiting which pseudo-classes you use in your projects. For example,

don’t bother defining an :optional rule set if you’ll also define a :valid rule set.

It’s also possible, however, to chain pseudo-classes. For example, we can mix the

:focus and :invalid pseudo-classes to style an element only while it has focus:

input:focus:invalid. By chaining pseudo-classes, we can style an element that

has more than one state.

Selectors and Specificity
Think of specificity as a score or rank that determines which style declarations are

ultimately applied to an element. The universal selector (*) has low specificity. ID

selectors are highly specific. Descendant selectors such as p img and child selectors

such as .panel > h2 are more specific than type selectors such as p, img, or h1.

Calculating exact specificity values seems tricky at first. As explained in Selectors

Level 3,21 you need to:

■ count the number of ID selectors in the selector (= A)

■ count the number of class selectors, attribute selectors, and

pseudo-classes in the selector (= B)

■ count the number of type selectors and pseudo-elements in the

selector (= C)

■ ignore the universal selector

These A, B, and C values are then combined to form a final specificity value. An ID

selector such as #foo has a specificity of 1,0,0. Attribute selectors, such as

[type=email] and class selectors such as .chart have a specificity of 0,1,0. Adding

a pseudo-class such as :first-child (for example, .chart:first-child) gives us

21 http://dev.w3.org/csswg/selectors-3/#specificity

CSS Master68

http://dev.w3.org/csswg/selectors-3/#specificity
http://dev.w3.org/csswg/selectors-3/#specificity

a specificity of 0,2,0. But using a simple type or element selector such as h1 or p

only gives us a specificity of 0,0,1.

Calculating Specificity

Keegan Street’s Specificity Calculator22 and Joshua Peek’s CSS Explain23 are

helpful for learning about and calculating selector specificity.

Complex and combinator selectors, of course, give us higher specificity values. Let’s

look at an example. Consider the following CSS:

ul#story-list > .book-review {
 color: #0c0;
}

#story-list > .book-review {
 color: #f60;
}

These two rule sets are similar, but they are not the same. The first selector,

ul#story-list > .bookreview, contains a type selector (ul), an ID selector, (#story-

list), and a class selector (.bookreview). It has a specificity value of 1,1,1. The

second selector, #story-list > .book-review only contains an ID and a class se-

lector. Its specificity value is 1,1,0. Even though our #story-list > .book-review

rule succeeds ul#story-list > .bookreview, the higher specificity of the former

means that those elements with a .book-review class will be green rather than or-

ange.

Pseudo-classes such as :link or :invalid have the same level of specificity as class

selectors. Both a:link and a.external have a specificity value of 0,1,1. Similarly,

pseudo-elements such as ::before and ::after are as specific as type or element

selectors. In cases where two selectors are equally specific, the cascade kicks in.

Here’s an example:

22 http://specificity.keegan.st/
23 http://josh.github.io/css-explain/

69Selectors

http://specificity.keegan.st/
http://josh.github.io/css-explain/

a:link {
 color: #369;
}
a.external {
 color: #f60;
}

If we applied this CSS, every link would be slate blue except for those with

class="external" applied. Those links would be orange instead.

Keeping specificity low helps prevent selector creep, or the tendency for selector

specificity and length to increase over time. This often happens as you add new

developers to a team, or new forms of content to a website. Selector creep also

contributes to long-term maintenance headaches. You either end up using more

specific selectors to override other rule sets, or needing to refactor your code. Longer

selectors also increase the weight of your CSS files.

We discuss strategies for keeping specificity low in Chapter 2.

Conclusion
After reading this chapter, you should have a good understanding of CSS selectors.

Specifically, you should now know how to:

■ use selectors to apply CSS to particular elements, pseudo-elements, and pseudo-

classes

■ understand the difference between pseudo-elements and pseudo-classes

■ employ newer pseudo-classes introduced by the Selectors Level 3 and 4 specific-

ations

■ calculate specificity

In the next chapter, we’ll address some golden rules for writing maintainable,

scalable CSS.

CSS Master70

Chapter2
CSS Architecture and Organization
If you’ve ever worked on a CSS code base of any size—or even a small code base

with multiple developers—you quickly realize how difficult it is to create CSS that

is predictable, reusable, and maintainable without being bloated. With added de-

velopers often comes added complexity: longer selectors, colliding selectors, and

heavier CSS.

In this chapter, we’ll explore CSS architecture and organization. First up is file

structure. We’ll take a look at how to manage CSS across large sites, or as part of

your own CSS framework. We’ll also address how to manage CSS for older browsers.

Next we’ll discuss some guidelines for writing CSS. Even if you disavow the CSS

architecture methodologies we cover later, you should adhere to these golden

guidelines. These rules make it easier to avoid selector-naming collisions and overly

long selectors—the kinds of issues that come up within teams.

Finally, we’ll take a look at two CSS architecture methodologies: Block-Element-

Modifier (BEM) and Atomic CSS. They’re radically different to each other, but each

approach has its advantages. In both cases, the goal is to create highly reusable,

lightweight CSS.

CSS File Organization
Part of a good CSS architecture is file organization. A monolithic file is fine for solo

developers or very small projects. For large projects—sites with multiple layouts

and content types, or multiple brands under the same design umbrella—it’s smarter

to use a modular approach and split your CSS across multiple files.

Splitting your CSS across files makes it easier to parcel tasks out to teams. One de-

veloper can work on typography-related styles, while another can focus on develop-

ing grid components. Teams can split work sensibly and increase overall productiv-

ity.

So what might a good file structure that splits the CSS across files look like? Here’s

a structure similar to ones I’ve used in recent projects:

■ reset.css: reset and normalization styles; minimal color, border, or font-related

declarations

■ typography.css: font faces, weights, line heights, sizes, and styles for headings

and body text

■ layouts.css: styles that manage page layouts and segments, including grids

■ forms.css: styles for form controls and labels

■ lists.css: list-specific styles

■ tables.css: table-specific styles

■ carousel.css: styles required for carousel components

■ accordion.css: styles for accordion components

If you’re using a preprocessor, such as Sass or Less, you may also want to include

a _config.scss or _config.less file that contains color variables and the like.

In this structure, each CSS file has a specific and narrow scope. How many files

you’ll ultimately end up with depends on how many visual patterns or components

are called for by your site’s design.

CSS Master72

CSS frameworks such as Foundation1 and Bootstrap2 use this approach. Both become

quite granular with separate files for progress bars, range inputs, close buttons, and

tooltips. This allows developers to include only the components that they need for

a project.

Pattern Libraries

A closely related concept to splitting CSS across files like this is the pattern library.

A great primer on the subject is Anna Debenham’s “Getting Started with Pattern

Libraries.”3

How many files?
Even though we’re using several CSS files for development, we’re not going to serve

all of them to the browser in this form. The number of HTTP requests that we’d re-

quire would make our site take lonegr to load. Instead, we’ll concatenate our

smaller CSS files into a few larger ones for production.

Concatenation, in this context, means combining multiple files into a single CSS

payload. It eliminates the need for @import statements or multiple link elements.

Current browsers have limits on how many files they can download at once. We

can use concatenation to reduce the number of network requests, getting your content

to users in less time.

Often your web development framework will handle concatenation as part of its

asset management features, such as Ruby on Rails. Some content management sys-

tems do the same, whether as a core feature or an add-on. Preprocessors—introduced

in Chapter 9—also make concatenation easy. If neither preprocessors nor develop-

ment frameworks are part of your workflow, chances are that your operating system

has a concatenation utility that you can use instead.

For Mac OS X or Linux, concatenate files using the cat utility:

1 http://foundation.zurb.com
2 http://getbootstrap.com/
3 http://alistapart.com/blog/post/getting-started-with-pattern-libraries/

73CSS Architecture and Organization

http://foundation.zurb.com
http://getbootstrap.com/
http://alistapart.com/blog/post/getting-started-with-pattern-libraries/
http://alistapart.com/blog/post/getting-started-with-pattern-libraries/

cat file1.css file2.css > combined-output-file.css

Using Windows? Try the type utility:

type file1.css file2.css > combined-output-file.css

You can also write your own concatenation script using Bash, PHP, Python, or an-

other scripting language of your choice.

CSS Optimization

Concatenation is one aspect of CSS optimization. It’s just as important to minify

your files to remove excess characters and whitespace. Minification tools are

covered in Chapter 3.

So how many files should you use? That’s where it gets tricky. The current best

practice is to identify your critical path CSS—the minimum amount of CSS your

page needs to render—and embed it in your pages using the style element. Addi-

tional CSS files should be loaded using JavaScript. Addy Osmani’s presentation

“CSS Performance Tooling”4 provides an excellent overview of this technique and

some tools you can use to implement it. Also see the Filament Group’s loadCSS.5

If your content will be served using the SPDY or HTTP/2 protocols, concatenation

may be unnecessary. With HTTP/1.1, browsers download assets sequentially; the

next request begins when the previous one ends. Under that model, reducing the

number of network requests improves site performance; however, SPDY and HTTP/2,

can download multiple assets at once. As a result, there is no real benefit to reducing

the number of requests. There is, however, a cost to sending more bytes than neces-

sary to render the page. William Chan's “HTTP/2 Considerations and Tradeoffs”6

explains this in greater detail. The best approach would be to identify if your server

is serving HTTP/2 and, if so, check whether more of you users will benefit from

actually splitting your assets down and only loading that which the page needs, or

continuing to work in the old way. If you're interested in learning more about per-

4 https://www.youtube.com/watch?v=FEs2jgZBaQA
5 https://github.com/filamentgroup/loadCSS
6 https://insouciant.org/tech/http-slash-2-considerations-and-tradeoffs/

CSS Master74

https://www.youtube.com/watch?v=FEs2jgZBaQA
https://github.com/filamentgroup/loadCSS
https://insouciant.org/tech/http-slash-2-considerations-and-tradeoffs/

formance optimization methods, the SitePoint book Lean Websites7 is a useful re-

source.

Managing Styles for Legacy Browsers
Cross-browser compatibility is the best it’s ever been. The speed with which users

upgrade their browsers is also the best it’s ever been. Unfortunately, not all web

users are using the latest and greatest version of their browser, so we’ll still need

to manage CSS for those browsers. There are a couple of ways to do this.

Using Conditional Comments (IE9 and Earlier)
Internet Explorer 9 and earlier versions support conditional comments, which enable

us to serve CSS, JavaScript, or portions of HTML only to IE users:

<!--[if IE]>
CSS, JavaScript, or HTML goes here.
<![endif]-->

Conditional comments use a collection of operators to specify the condition under

which the code contained within it should be applied, as shown in Table 2.1.8

Table 2.1. Commonly used conditional comments operators

PurposeOperator

NOT operator; negates the condition!

Less-than operatorlt

Less-than or equal-to operatorlte

Greater-than operatorgt

Greater-than or equal-to operatorgte

To serve CSS to Internet Explorer 9 alone, you could use the following:

7 https://www.sitepoint.com/premium/books/lean-websites
8 The Microsoft Developer Network documentation features a complete list of conditional comment

operators. [https://msdn.microsoft.com/en-us/library/ms537512%28v%3Dvs.85%29.aspx]

75CSS Architecture and Organization

https://www.sitepoint.com/premium/books/lean-websites
https://msdn.microsoft.com/en-us/library/ms537512%28v%3Dvs.85%29.aspx
https://msdn.microsoft.com/en-us/library/ms537512%28v%3Dvs.85%29.aspx

<!--[if IE 9]>
<link rel="stylesheet" href="ie9.css" type="text/css">
<![endif]-->

A better approach, however—particularly if you still need to support Internet Ex-

plorer 8—is to add the less-than or equal-to operator:

<!--[if lte IE 9]>
<link rel="stylesheet" href="ie.css" type="text/css">
<![endif]-->

Conditional comments are deprecated in Internet Explorer 10+; they aren’t available

in standards mode. That brings us to our other approach.

Using CSS Parsing to Our Advantage
Another approach to supporting older browsers is inherent to CSS. We can take

advantage of CSS error handling and the cascade to define styles for older browsers.

This method relies on two rules of CSS parsing:

1. The last declaration parsed is the one that’s used.

2. If a browser fails to understand a rule, it will ignore it.

In other words, we can provide a fallback value and an enhanced value for a property.

The browser will choose which to implement based on what it supports. Here’s an

example:

.title {
 text-decoration: underline;
 text-decoration: underline wavy #c09;
}

In browsers that support CSS 3 text-decoration values, users will see a wavy pink

line under elements with the title class; in browsers without support, they’ll see

a plain underline. These rules can exist within the same CSS file and declaration

block, but you may decide to segregate legacy rules in their own file so that they

can be removed as your audience adopts newer browsers.

Now that we’ve discussed the basics of CSS file structure and legacy browser man-

agement, let’s look at some CSS architecture techniques.

CSS Master76

Golden Guidelines for Writing Clean CSS
As mentioned, there are some rules for writing clean CSS that you should try your

best to avoid breaking. They’ll help you write CSS that is lightweight and reusable:

■ Avoid global and element selectors
■ Omit overly specific selectors
■ Use semantic class names
■ Don’t tie CSS too closely to markup structure

Let’s look at these one by one.

Avoid Global Selectors
Global selectors include the universal selector (*), element selectors such as p,

button, and h1, and attribute selectors such as [type=checkbox]. Style declarations

applied to these selectors will be applied to every such element across the site.

Here’s an example:

button {
 background: #FFC107;
 border: 1px outset #FF9800;
 display: block;
 font: bold 16px / 1.5 sans-serif;
 margin: 1rem auto;
 width: 50%;
 padding: .5rem;
}

This seems innocuous enough. But what if we want to create a button that’s styled

differently? Let’s style a .close button that will be used to close dialog modules:

77CSS Architecture and Organization

<section class="dialog">
 <button type="button" class="close">Close</button>
</section>

Why not use dialog?

We’re using section here instead of the dialog element because support for

dialog is limited to Blink-based browsers such as Chrome/Chromium, Opera,

and Yandex.

Now we need to write CSS to override every line that we don’t want to inherit from

the button rule set:

.close {
 background: #e00;
 border: 2px solid #fff;
 color: #fff;
 display: inline-block;
 margin: 0;
 font-size: 12px;
 font-weight: normal;
 line-height: 1;
 padding: 5px;
 border-radius: 100px;
 width: auto;
}

We’d still need many of these declarations to override browser defaults. But what

if we scope our button styles to a .default class instead? We can then drop the

display, font-weight, line-height, margin, padding, and width declarations from

our .close rule set. That’s a 23% reduction in size:

.default {
 background: #FFC107;
 border: 1px outset #FF9800;
 display: block;
 font: bold 16px / 1.5 sans-serif;
 margin: 1rem auto;
 width: 50%;
 padding: .5rem;
}

CSS Master78

.close {
 background: #e00;
 border: 2px solid #fff;
 color: #fff;
 font-size: 12px;
 padding: 5px;
 border-radius: 100px;
}

Just as importantly, avoiding global selectors reduces the risk of styling conflicts.

A developer working on one module or document won’t inadvertently add a rule

that creates a side effect in another module or document.

Global styles and selectors are perfectly okay for resetting and normalizing default

browser styles. In most other cases, however, they invite bloat.

Avoid Overly Specific Selectors
Maintaining low specificity in your selectors is one of the keys to creating light-

weight, reusable, and maintainable CSS. As you may recall from the previous

chapter’s section on specificity, a type selector has the specificity 0,0,1. Class select-

ors, on the other hand, have a specificity of 0,1,0:

/* Specificity of 0,0,1 */
p {
 color: #222;
 font-size: 12px;
}

/* Specificity of 0,1,0 */
.error {
 color: #a00;
}

When you add a class name to an element, the rules for that selector take precedence

over more generic-type selector rules. There’s no need to further qualify a class se-

lector by combining it with a type selector. Doing so increases the specificity of that

selector and increases the overall file size.

79CSS Architecture and Organization

Put differently, using p.error is unnecessarily specific because .error achieves

the same goal. Another advantage is that .error can be reused with other elements.

A p.error selector limits the .error class to p elements.

Don’t Chain Classes
Also avoid chaining class selectors. Selectors such as .message.warning have a

specificity of 0,2,0. Higher specificity means they’re hard to override, plus chaining

often causes side effects. Here’s an example:

.message {
 background: #eee;
 border: 2px solid #333;
 border-radius: 1em;
 padding: 1em;
}
.message.error {
 background: #f30;
 color: #fff;
}
.error {
 background: #ff0;
 border-color: #fc0;
}

Using <p class="message"> with this CSS gives us a nice gray box with a dark

gray border, as seen in Figure 2.1.

Figure 2.1. The visual effect of our .message selector

Using <p class="message error">, however, gives us the background of .mes-

sage.error and the border of .error shown in Figure 2.2.

Figure 2.2. The visual result of using .message.error as a selector

The only way to override a chained class selector would be to use an even more

specific selector. To be rid of the yellow border, we’d need to add a class name or

CSS Master80

type selector to the chain: .message.warning.exception or div.message.warning.

It’s more expedient to create a new class instead. If you do find yourself chaining

selectors, go back to the drawing board. Either the design has inconsistencies, or

you’re chaining prematurely in an attempt to prevent problems that you don’t have.

Fix those problems. The maintenance headaches you’ll prevent and the reusability

you’ll gain are worth it.

Avoid Using id Selectors
Because you can only have one element per id per document, rule sets that use id

selectors are hard to repurpose. Doing so typically involves using a list of id select-

ors; for example, #sidebar-features and #sidebar-sports.

Identifiers also have a high degree of specificity, so we’ll need longer selectors to

override declarations. In the CSS that follows, we need to use #sidebar.sports

and #sidebar.local to override the background color of #sidebar:

#sidebar {
 float: right;
 width: 25%;
 background: #eee;
}
#sidebar.sports {
 background: #d5e3ff;
}
#sidebar.local {
 background: #ffcccc;
}

Switching to a class selector, such as .sidebar, lets us simplify our selector chain:

.sidebar {
 float: right;
 width: 25%;
 background: #eee;
}
.sports {
 background: #d5e3ff;
}

81CSS Architecture and Organization

.local {
 background: #ffcccc;
}

As well as saving us a few bytes, our .sports, and .local rule sets can now be

added to other elements.

Using an attribute selector such as [id=sidebar] lets us get around the higher

specificity of an identifier. Though it lacks the reusability of a class selector, the

low specificity means that we can avoid chaining selectors.

When the High Specificity of id Selectors is Useful

In some circumstances, you might want the higher specificity of an id selector.

For example, a network of media sites might wish to use the same navigation bar

across all of its web properties. This component must be consistent across sites

in the network, and should be hard to restyle. Using an id selector reduces the

chances of those styles being accidentally overridden.

Finally, let’s talk about selectors such as #main article.sports table#stats

tr:nth-child(even) td:last-child. Not only is it absurdly long, but with a spe-

cificity of 2,3,4, it’s also not reusable. How many possible instances of this selector

can there be in your markup? Let’s make this better. We can immediately trim our

selector to #stats tr:nth-child(even) td:last-child. It’s specific enough to do

the job. Yet the far better approach—for both reusability and to minimize the number

of bytes—is to use a class name instead.

A Symptom of Preprocessor Nesting

Overly specific selectors are often the result of too much preprocessor nesting.

We’ll discuss this more in Chapter 9.

Use Semantic Class Names
When we use the word semantic, we mean meaningful. Class names should describe

what the rule does or the type of content it affects. We also want names that will

endure changes in the design requirements. Naming is harder than it looks.

CSS Master82

Here are examples of what not to do: .red-text, .blue-button, .border-4px,

.margin10px. What’s wrong with these? They are too tightly coupled to the existing

design choices. Using class="red-text" to mark up an error message does work.

But what happens if the design changes and error messages become black text inside

orange boxes? Now your class name is inaccurate, making it tougher for you and

your colleagues to understand what’s happening in the code.

A better choice in this case is to use a class name such as .alert, .error, or .mes-

sage-error. These names indicate how the class should be used and the kind of

content (error messages) that they affect. For class names that define page layout,

add a prefix such as layout-, grid-, col-, or simply l- to indicate at a glance what

it is they do. The section on BEM methodology later on describes a process for this.

Avoid Tying CSS Closely to Markup
You’ve probably used child or descendant selectors in your code. Child selectors

follow the pattern E > F where F is an element, and E is its immediate parent. For

example, article > h1 affects the h1 element in <article><h1>Advanced

CSS</h1></article>, but not the h1 element in <article><section><h1>Advanced

CSS</h1></section></article>. A descendant selector, on the other hand, follows

the pattern E F where F is an element, and E is an ancestor. To use our previous

example, article h1 selects the h1 element in both cases.

Neither child nor descendant selectors are inherently bad. In fact, they work well

to limit the scope of CSS rules. But they’re far from ideal, however, because markup

occasionally changes.

Raise your hand if you’ve ever experienced the following. You’ve developed some

templates for a client and your CSS uses child and descendant selectors in several

places. Most of those children and descendants are also element selectors, so select-

ors such as .promo > h2 and .media h3 are all over your code. Your client also

hired an SEO consultant, who reviewed your markup and suggested you change

your h2 and h3 elements to h1 and h2 elements. The problem is that we also have

to change our CSS.

Once again, class selectors reveal their advantage. Using .promo > .headline or

.media .title (or more simply .promo-headline and .media-title) lets us change

our markup without having to change our CSS.

83CSS Architecture and Organization

Of course, this rule assumes that you have access to and control over the markup.

This may not be true if you’re dealing with a legacy CMS. It’s appropriate and ne-

cessary to use child, descendant, or pseudo-class selectors in such cases.

More Architecturally Sound CSS Rules

Philip Walton discusses these and other these rules in his article “CSS Architec-

ture.”9 I also recommend Harry Roberts’ site CSS Guidelines10 and Nicolas

Gallagher’s post About HTML Semantics and Front-end Architecture11 for more

thoughts on CSS architecture.

We’ll now look at two methodologies for CSS architecture. Both methods were

created to improve the development process for large sites and large teams; however,

they work just as well for teams of one.

Block-Element-Modifier (BEM)
BEM,12 or Block-Element-Modifier, is a methodology, a naming system, and a suite

of related tools. Created at Yandex,13 BEM was designed for rapid development by

sizable development teams. In this section, we’ll focus on the concept and the

naming system.

BEM methodology encourages designers and developers to think of a website as a

collection of reusable component blocks that can be mixed and matched to create

interfaces. A block is simply a section of a document, such as a header, footer, or

sidebar, illustrated in Figure 2.3. Perhaps confusingly, “block” here refers to the

segments of HTML that make up a page or application.

9 http://philipwalton.com/articles/css-architecture/
10 http://cssguidelin.es/
11 http://nicolasgallagher.com/about-html-semantics-front-end-architecture/
12 https://en.bem.info/
13 https://www.yandex.com/

CSS Master84

http://philipwalton.com/articles/css-architecture/
http://philipwalton.com/articles/css-architecture/
http://cssguidelin.es/
http://nicolasgallagher.com/about-html-semantics-front-end-architecture/
https://en.bem.info/
https://www.yandex.com/

Figure 2.3. A home page might have header, main, and footer blocks

Blocks can contain other blocks. For example, a header block might also contain

logo, navigation, and search form blocks as seen in Figure 2.4. A footer block might

contain a site map block.

Figure 2.4. A header block that contains logo, navigation, and search blocks

More granular than a block is an element. As the BEM documentation explains:14

An element is a part of a block that performs a certain function.

Elements are context-dependent: they only make sense in the context

of the block they belong to.

A search form block, for example, contains a text input element and a submit button

element, as evident in Figure 2.5. To clarify, we’re using “element” in the design

element sense rather than the HTML element sense.

14 https://en.bem.info/method/definitions/

85CSS Architecture and Organization

https://en.bem.info/method/definitions/

Figure 2.5. A search block with text input and submit button elements

A main content block, on the other hand, might have an article list block. This article

list block might contain a series of article promo blocks. And each article promo

block might contain image, excerpt, and Read More elements, as presented in Fig-

ure 2.6.

Figure 2.6. A promotional block for a website article

Together, blocks and elements form the basis of the BEM naming convention. Ac-

cording to the rules of BEM:

■ Block names must be unique within a project.

■ Element names must be unique within a block.

■ Variations of a block―say, a search box with a dark background―should add a

modifier to the class name.

Block names and element names are usually separated by a double underscore

(.block__element). Block and element names are typically separated from modifier

CSS Master86

names by a double hyphen (for example, .block--modifier or .block__element-

-modifier).

Here’s what BEM looks like using a search form example:

<form class="search">
 <div class="search__wrapper">
 <label for="s" class="search__label">Search for: </label>
 <input type="text" id="s" class="search__input">
 <button type="submit" class="search__submit">Search</button>
 </div>
</form>

A variation of this form with a dark background might use the following markup:

<form class="search search--inverse">
 <div class="search__wrapper search__wrapper--inverse">
 <label for="s" class="search__label search_label--inverse">
➥Search for: </label>
 <input type="text" id="s" class="search__input search__input
➥--inverse">
 <button type="submit" class="search__submit search__submit--
➥inverse">Search</button>
 </div>
</form>

Our CSS might look like this:

.search {
 color: #333;
}
.search--inverse {
 color: #fff;
 background: #333;
}
.search__submit {
 background: #333;
 border: 0;
 color: #fff;
 height: 2rem;
 display: inline-block;
}
.search__submit--inverse {

87CSS Architecture and Organization

 color: #333;
 background: #ccc;
}

In both our markup and CSS, search--inverse and search__label--inverse are

additional class names. They’re not replacements for search and search__label.

Class names are the only type of selector used in a BEM system. Child and descend-

ant selectors may be used, but descendants should also be class names. Element

and ID selectors are verboten. This ensures that selector specificity remains low,

selectors are without side effects, and CSS is independent of markup patterns. En-

forcing block and element name uniqueness also prevents naming collisions, which

can become a problem among teams.

There are several advantages to this approach:

■ it’s easy for new team members to read the markup and CSS, and understand

its behavior

■ adding more developers increases team productivity

■ consistent naming reduces the possibility of class name collisions and side effects

■ CSS is independent of markup

■ CSS is highly reusable

There’s a lot more to BEM than what can comfortably fit in a section of a chapter.

The BEM site describes this methodology in much greater detail, and also features

tools and tutorials to get you started. To learn more about the naming convention

aspect of BEM, another fantastic resource is Get BEM.15

Atomic CSS
If BEM is the industry darling, Atomic CSS is its rebellious maverick. Named and

explained by Thierry Koblentz of Yahoo in his 2013 piece, “Challenging CSS Best

Practices,”16 Atomic CSS uses a tight library of class names. These class names are

often abbreviated and divorced from the content they affect. In an Atomic CSS

15 http://getbem.com/introduction/
16 http://www.smashingmagazine.com/2013/10/21/challenging-css-best-practices-atomic-approach/

CSS Master88

http://getbem.com/introduction/
http://www.smashingmagazine.com/2013/10/21/challenging-css-best-practices-atomic-approach/
http://www.smashingmagazine.com/2013/10/21/challenging-css-best-practices-atomic-approach/

system, you can tell what the class name does; but there is no relationship between

class names—at least, not those used in the stylesheet—and content types.

Let’s illustrate with an example. Below is a set of rules in what we might call a

conventional CSS architecture. These rule sets use class names that describe the

content to which they apply: a global message box, and styles for “success,”

“warning,” and “error” message boxes:

.msg {
 background-color: #a6d5fa;
 border: 2px solid #2196f3;
 border-radius: 10px;
 font-family: sans-serif;
 padding: 10px;
}
.msg-success {
 background-color: #aedbaf;
 border: 2px solid #4caf50;
}
.msg-warning {
 background-color: #ffe8a5;
 border-color: #ffc107;
}
.msg-error {
 background-color: #faaaa4;
 border-color: #f44336;
}

To create an error message box, we’d need to add both the msg and msg-error class

names to the element’s class attribute:

<p class="msg msg-error">An error occurred.</p>

Let’s contrast this with an atomic system, where each declaration becomes its own

class:

.bg-a {
 background-color: #a6d5fa;
}
.bg-b {
 background-color: #aedbaf;
}

89CSS Architecture and Organization

.bg-c {
 background-color: #ffe8a5;
}
.bg-d {
 background-color: #faaaa4;
}
.bc-a{
 border-color: #2196f3;
}
.bc-b {
 border-color: #4caf50;
}
.bc-c {
 border-color: #ffc107;
}
.bc-d {
 border-color: #f44336;
}
.br-1x {
 border-radius: 10px;
}
.bw-2x {
 border-width: 2px;
}
.bss {
 border-style: solid;
}
.sans {
 font-style: sans-serif;
}
.p-1x {
 padding: 10px;
}

That’s a lot more CSS. Let’s now recreate our error message component. Using

Atomic CSS, our markup becomes:

<p class="bw-2 bss p-1x sans br-1x bg-d bc-d">
 An error occurred.
</p>

Our markup is also more verbose. But what happens when we create a warning

message component?

CSS Master90

<p class="bw-2 bss p-1x sans br-1x bg-c bc-c">
 Warning: The price for that item has changed.
</p>

Two class names changed: bg-d and bc-d were replaced with bg-c and bc-c. We’ve

reused five rule sets. Now, let’s create a button:

<button type="button" class="p-1x sans bg-a br-1x">Save</button>

Hey now! Here we’ve reused four rule sets and avoided adding any more rules to

our stylesheet. In a robust atomic CSS architecture, adding a new HTML component

such as an article sidebar won’t require adding more CSS (though, in reality, it might

require adding a bit more). Atomic CSS is a bit like using utility classes in your

CSS, but taken to the extreme. Specifically, it:

■ keeps CSS trim by creating highly granular, highly reusable styles, instead of a

rule set for every component

■ greatly reduces specificity conflicts by using a system of low-specificity selectors

■ allows for rapid HTML component development once the initial rule sets are

defined

However, Atomic CSS is not without controversy.

The Case Against Atomic CSS
Atomic CSS runs counter to just about everything we’ve been taught on writing

CSS. It feels almost as wrong as sticking style attributes everywhere. Indeed, this

is one of the major criticisms of the Atomic CSS methodology: it blurs the line

between content and presentation. If class="fl m-1x" floats an element to the left

and adds a ten-pixel margin, what do we do when we no longer want that element

to float left?

One answer, of course, is to remove the fl class from our element. But now we’re

changing HTML. The whole reason behind using CSS is so that markup is unaffected

by presentation and vice versa. (We can also solve this problem by removing the

.fl {float: left;} rule from our stylesheet, although that would affect every

91CSS Architecture and Organization

element with a class name of fl). Still, updating the HTML may be a small price to

pay for trimmer CSS.

In Koblentz’s original post, he used class names such as .M-10 for margin: 10px

and .P-10 for padding: 10px. The problem with such a naming convention should

be obvious. Changing to a margin of five or 20 pixels means we’d need to update

our CSS and our HTML, or risk having class names that fail to accurately describe

their effect.

Using class names such as p-1x, as done in this section, resolves that issue. The 1x

part of the class name indicates a ratio rather than a defined number of pixels. If

the base padding is five pixels (that is, .p-1x { padding: 5px; }), then .p-2x

would set ten pixels of padding. Yes, that’s less descriptive of what the class name

does, but it also means that we can change our CSS without updating our HTML,

or without creating a misleading class name.

An atomic CSS architecture doesn’t prevent us from using class names that describe

the content in our markup. You can still add .button-close or .accordion-trigger

to your code. Such class names are preferable for JavaScript and DOM manipulation.

BEM versus Atomic CSS
BEM works best when you have a large number of developers building CSS and

HTML modules in parallel. It helps to prevent the kind of mistakes and bugs that

are created by sizable teams. It scales well, in part, because the naming convention

is descriptive and predictable. BEM isn’t only for large teams; but it works really

well for large teams.

Atomic CSS works better when there is a small team or a single engineer responsible

for developing a set of CSS rules, with full HTML components built by a larger team.

With Atomic CSS, developers can just look at a style guide—or the CSS source—to

determine which set of class names they’ll need for a particular module.

Conclusion
After reading this chapter, you should now know:

■ why class selectors are the most flexible selector for writing scalable, maintainable

CSS

CSS Master92

■ how to make your CSS work independently of your markup
■ the basics of BEM and Atomic CSS, along with knowing the pros and cons of

each

In the next chapter, you’ll learn what to do when you find a bug in your CSS. We’ll

also discuss several tools for making your CSS files smaller.

93CSS Architecture and Organization

Chapter3
Debugging and Optimization
On your road to becoming an advanced CSS developer, you’ll need to know how

to troubleshoot and optimize your CSS. How do you diagnose and fix rendering

problems? How do you ensure that your CSS creates no performance lags for end

users?

It’s also important to ensure code quality. Were you a little too verbose with your

comments? Do we have too many unused selectors? Are our selectors overly specific

in a way that could affect performance?

Knowing which tools to use will help you ensure that your front end works well.

In this chapter, we’ll look at tools to help you analyze and troubleshoot your CSS.

They fall into three categories:

1. Debugging tools, such as browser-based developer tools and remote debugging

services

2. Minification tools

3. Code-quality tools

In this chapter, we’ll delve into the browser-based developer tools for Chrome, Safari,

Firefox, and Internet Explorer. We’ll also explore a few command-line Node.js-based

tools to help you streamline the CSS you put into production.

Browser-based Developer Tools
Most modern browsers include an element inspector feature that you can use to

troubleshoot your CSS. Start using this feature by right-clicking and selecting Inspect

Element from the menu. Mac users can also inspect an element by clicking the ele-

ment while pressing the Ctrl key. Figure 3.1 indicates what you should expect to

see in Firefox.

Figure 3.1. The developer tools of Firefox Developer edition

In Firefox, Chrome, Opera, and Safari, you can also press Ctrl + Shift + I (Windows

/ Linux) or Cmd + Option + I (OS X) to open the developer tools panel. Figure 3.2

reveals how Chrome should look.

CSS Master96

Figure 3.2. Chrome 40 developer

While in Internet Explorer or Microsoft Edge, open developer tools by pressing the

F12 key, as seen in Figure 3.3.

Figure 3.3. Internet Explorer 11 F12 Developer Tools

You can also open each browser’s developer tools using the application’s menu:

97Debugging and Optimization

■ Microsoft Edge and Internet Explorer: Tools > F12 Developer Tools

■ Firefox: Tools > Web Developer

■ Chrome (and Opera 15+): View > Developer

■ Safari: Develop > Show Web Inspector

In Safari, you may first have to enable the Develop menu by going to Safari > Prefer-

ences > Advanced and checking the box next to Show Develop menu in toolbar. The

view for Safari developer tools is illustrated in Figure 3.4.

Figure 3.4. Safari 8 developer tools

After opening the developer tools interface, you may then need to select the correct

panel:

■ Internet Explorer: DOM Explorer

■ Firefox: Inspector

■ Chrome (and Opera): Elements

■ Safari: Inspect and Styles.

You’ll know you’re in the right place when you see HTML on one side of the panel,

and CSS rules on the other.

CSS Master98

Markup in HTML Panel May Differ from Original

The markup you’ll see in the HTML panel is a representation of the DOM. It’s

generated when the browser finishes parsing the document and may differ from

your original markup.

Using the Styles Panel
Sometimes an element doesn’t behave as expected. Maybe a typographical change

failed to take or there’s less padding around a paragraph than you wanted. You can

determine which rules are affecting an element by using the Styles panel of the Web

Inspector.

Browsers are fairly consistent in how they organize the Styles panel, seen in Fig-

ure 3.5. Inline styles, if any, are typically listed first. These are styles set using the

style attribute of HTML, whether by the CSS author or programmatically via

scripting.

Figure 3.5. Inspecting styles in Safari

Inline styles are followed by a list of style rules applied via author stylesheets―those

written by you or your colleagues. Styles in this list may be grouped by media query

and/or filename.

99Debugging and Optimization

Authored style rules precede user agent styles. These are the browser’s own default

styles that have an impact on your site’s look and feel.1

Properties and values are grouped by selector. A checkbox sits next to each property,

letting you toggle specific rules on and off. Clicking on a property or value allows

you to change it, so you can avoid having to edit, save and reload.

Identifying Cascade and Inheritance Problems
As you inspect styles, you may notice that some properties appear crossed out.

These properties have been overridden either by a cascading rule, a conflicting rule,

or a more specific selector, as depicted in Figure 3.6.

Figure 3.6. The width for .wide overrides the width for the div element selector

1 In Firefox, you may have to select the Show Browser Styles option in order to view user agent styles.

You can find this setting in the Toolbox Options panel.

CSS Master100

Spotting Invalid Properties and Values
You can also use the element inspector to spot invalid properties or property values.

In Chrome and Opera, invalid CSS rules both have a line through them and an ad-

jacent warning icon, which can be seen in Figure 3.7.

Figure 3.7. Spotting an invalid CSS property value using Chrome

In Figure 3.8, Safari strikes through invalid rules with a red line.

101Debugging and Optimization

Figure 3.8. An invalid CSS property value in Safari

Microsoft Edge also uses a strike-through to indicate invalid rules. However, Internet

Explorer 10 and 11 use a squiggly red underline, seen in Figure 3.9.

Figure 3.9. An unsupported CSS property value in Internet Explorer 11

CSS Master102

Earlier versions of Internet Explorer and current versions of Firefox ignore unrecog-

nized properties and values, and don’t display them in the styles inspector.

When it comes to basic debugging and inheritance conflicts, whichever browser

you use is of no consequence. You should still familiarize yourself with all of them

for those occasions when you need to diagnose a browser-specific issue.

Multi-device Tools
On-device testing is always best, but during development, it’s often helpful to sim-

ulate mobile devices with your desktop browser. All major desktop browsers except

for Safari < 9 include a mode for responsive debugging.

Chrome and Opera
Chrome and Opera 19+ offer a device mode feature as part of its developer toolkit.

To use it, click the device icon (pictured in Figure 3.10) in the upper-left corner,

next to the search icon.

Figure 3.10. The device mode icon in Chrome 40

Device mode lets you emulate several kinds of Android and iOS devices, including

the BlackBerry Z10 and iPhone, as shown in Figure 3.11. Device mode also includes

a network throttling feature for approximating different network speeds.

103Debugging and Optimization

Figure 3.11. Emulating mobile devices and network speeds using your desktop browser

Firefox
In Firefox, the equivalent mode is known as responsive design mode. It's the square-

within-a-square icon in the developer tools panel seen in Figure 3.12.

Figure 3.12. Look for the square-within-a-square icon to activate Firefox's responsive mode

In responsive mode, you can toggle between portrait and landscape orientations,

simulate touch events, and capture screenshots, as shown in Figure 3.13.

CSS Master104

Figure 3.13. Responsive mode in action in Firefox 35

Microsft Edge and Internet Explorer 11
Both Microsoft Edge and Internet Explorer 11 makes it possible to mimic Windows

Phone devices with its Emulation tab. Select Windows Phone from the Browser profile

menu seen in Figure 3.14.

105Debugging and Optimization

Figure 3.14. SitePoint.com using Internet Explorer 11’s device emulation mode

In addition to mimicking orientation and resolution, emulation mode enables you

to test geolocation features.

Safari 9+
Safari 9 has a responsive design mode in its developer toolkit; previous versions

lacked such a feature. It’s similar to the responsive mode in Firefox, but adds the

ability to mimic iOS devices as illustrated in Figure 3.15.

CSS Master106

Figure 3.15. SitePoint.com as viewed using Safari 9’s responsive design mode

To enter Safari 9’s responsive design mode, select Develop > Responsive Design Mode,

or Alt + Command + R.

Debugging for UI Responsiveness
CSS properties and values that trigger reflows are particularly expensive. They can

slow user interface responsiveness―page rendering, animation smoothness, and

scroll performance―especially on low-powered devices such as phones and smart

TVs.

What is a reflow?
A reflow is any operation that changes the layout of part or all of a page. Examples

include changing the dimensions of an element or updating its left position. They’re

107Debugging and Optimization

because they force the browser to recalculate the height, width, and position of

other elements in the document.

Repaints are similar to reflows in that they force the browser to re-render part of

the document. Changing the color of a button when in a :hover state is one example

of a repaint. They’re a bit less troublesome than reflows because they do not affect

the dimensions or position of nodes; however, repaints should still be kept to a

minimum.

Reflows and repaints are most often triggered by DOM operations; for example,

adding to or removing elements. But they can also be caused by changes to properties

that affect the dimensions, visibility, or position of an element. This is true whether

the change is caused by JavaScript or a CSS-based animation.

Page Loads

Page loads will always trigger reflow and repaints as the browser parses the initial

HTML, CSS, and JavaScript.

It’s difficult to completely banish repaints and reflows from a project. We can,

however, identify them and reduce their impact using timeline tools.

Timeline Tools
Timeline tools are a bit befuddling at first. They measure the performance of your

front end, capturing how much time it takes for various tasks to complete. By record-

ing activity while interacting with our pages, we can spot what lines of our CSS

may be causing performance bottlenecks.

To use the timeline, click the timeline tab in the developer tools interface. In Chrome,

Opera, and Firefox, it’s appropriately named Timeline. Safari makes it plural, so it’s

Timelines. Internet Explorer 11 uses the more descriptive UI Responsiveness.2

In any browser, press the Record button to start the recording process. Interact with

the problematic portions of the page and, when you’re done, click the appropriate

button to stop recording.

2 In Firefox, you may have to enable the timeline feature in the Web Inspector. You can find this setting

under Toolbox Options.

CSS Master108

Depending on which browser you use, you may see data immediately or after you

stop recording. Safari and Firefox display data in real time, while Chrome, Opera,

and Internet Explorer render a performance chart after you stop recording.

Document loads, function calls, DOM events, style recalculations, and paint actions

are all logged in every browser, giving us an overview of performance bottlenecks.

What we’re looking for, at least as far as CSS performance is concerned, are two

related aspects:

■ large numbers of style recalculation and paint operations
■ operations that take a long time, as indicated by larger blocks in the timeline

To see what this looks like in practice, we’ll compare two basic documents, Examples

A and B. In both cases, we’re moving a series of div elements from an x-position of

zero to an x-position of 1,000. Both examples use CSS transitions. In Example A,

however, we’re going to animate the left property. In Example B, we’re going to

use a translation transform and animate the transform property.

Our markup for both is the same (the result can be seen in Figure 3.16):

<!DOCTYPE html>
 <html lang="en-US">
 <head>
 <meta charset="utf-8">
 <title>Performance example</title>
 <style type="text/css">
 /* CSS will go here. */
 </style>
 </head>
 <body>
 <button type="button" id="move">Move</button>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>

109Debugging and Optimization

 <script type="text/javascript" src="toggle-move-class.js">
➥</script>
 </body>
</html>

Figure 3.16. Our HTML demo page of div elements in Safari

Our JavaScript for both documents is also the same. Clicking the Move button toggles

the moved class on each div element:

var move = document.getElementsById('move');
move.addEventListener('click', function(e) {
 var objs = document.body.querySelectorAll('div');
 Array.prototype.map.call(objs, function(o){
 o.classList.toggle('moved');
 });
});

Our CSS is where matters diverge. The CSS used in Example A follows:

CSS Master110

div {
 background: #36f;
 margin-bottom: 1em;
 width: 30px;
 height: 30px;
 position: relative;
 left: 0;
 transition: left 2s ease-in;
}

.moved {
 left: 1000px;
}

When triggered, this animation will generate a lot of style calculation and repaint

indicators in our timeline. The images that follow show timeline output for this

transition in Safari (Figure 3.17), Chrome (Figure 3.18), Internet Explorer (Fig-

ure 3.19), and Firefox (Figure 3.20).

Figure 3.17. Safari timeline output for left-position transition

111Debugging and Optimization

Figure 3.18. The same again in Chrome

Figure 3.19. Internet Explorer 11 timeline output for left-position transition

CSS Master112

Figure 3.20. And how it looks in Firefox

The reason for the style calculations and repaints has to do with the property we’re

transitioning: left. The left property triggers a reflow whenever it is changed,

even if that change is caused by an animation or transition.

Now, let’s take a look at the CSS for Example B:

div {
 background: #f3f;
 margin-bottom: 1em;
 width: 30px;
 height: 30px;
 position: relative;
 left: 0;
 transition: transform 2s ease-in;
 transform: translateX(0);

}

113Debugging and Optimization

.moved {
 transform: translateX(1000px);
}

Here we’re using a transform and transitioning bteween translateX(0) and

translateX(1000px).

In most browsers, transforms don’t trigger reflows, and our timelines will contain

far fewer repaint operations. This is evident in Safari (Figure 3.21), Chrome (Fig-

ure 3.22), and Internet Explorer (Figure 3.23). Firefox is the exception here; compare

Figure 3.20 to Figure 3.24. The timelines for a left transition and a translation

transformation are very similar.

Figure 3.21. Safari timeline output for a transition of the -webkit-transform property

CSS Master114

Figure 3.22. The same for Chrome, this time utilizing the transform property

Figure 3.23. How it looks in Internet Explorer 11

115Debugging and Optimization

Figure 3.24. Firefox timeline output for a transition of the transform property

Identifying Lines to Remove
Unfortunately, there is no definitive list of which properties cause reflows and re-

paints. Paul Lewis’ CSS Triggers comes closest,3 but it’s Chrome-specific. Browsers

do behave similarly for many of these properties, however, so this resource will at

least give you an idea of what properties may be causing trouble.

Once you know which properties could be problematic, the next step is to test the

hypothesis. Disable that property―either with a comment or by adding a temporary

x- prefix―and rerun the timeline test.

Remember that performance is relative, not absolute or perfect. The goal is improve-

ment: make it perform better that it did before. If a property or effect is performing

unacceptably slow, eliminate it altogether.

Minification
Developer tools help you find and fix rendering issues, but what about efficiency:

are our file sizes as small as they can be? For that, we need minification tools.

3 http://csstriggers.com/

CSS Master116

http://csstriggers.com/

Minification in the context of CSS simply means “removing excess characters.”

Consider, for example, this block of code:

h1 {
 font: 16px / 1.5 'Helvetica Neue', arial, sans-serif;
 width: 80%;
 margin: 10px auto 0px;
}

That’s 98 bytes long, including line breaks and spaces. Let’s look at a minified ex-

ample:

h1{font:16px/1.5 'Helvetica Neue',arial,sans-serif;width:80%;
➥margin:10px auto 0}

Now our CSS is only 80 bytes long―an 18% reduction. Fewer bytes, of course,

means faster download times and data transfer savings for you and your users.

In this section, we’ll look at CSS Optimizer, or CSSO, a minification tool that runs

on Node.js.4 To install CSSO, you’ll first have to install Node.js and NPM.5 NPM is

installed as part of the Node.js installation process, so you’ll only need to install

one package.

Using CSSO does require you to be comfortable using the command-line interface.

Linux and OS X users can use the Terminal application (Applications > Terminal.app

for OS X). If you’re using Windows, utilize the command prompt. Go to the Start or

Windows menu and type cmd in the search box.

Installing CSSO
Once you have set up Node.js and NPM , you can install CSSO. At a command line

prompt, type:

npm install -g csso

The -g flag installs CSSO globally so that we can use it from the command line. OS

X and Linux users may need to use sudo (sudo npm install -g csso). You’ll know

4 http://nodejs.org
5 https://www.npmjs.com/

117Debugging and Optimization

http://nodejs.org
https://www.npmjs.com/

it’s installed when NPM prints its installation path to the command line window,

and the command line prompt reappears, as depicted in Figure 3.25.

Figure 3.25. Installing CSSO using Windows’ command prompt

Now we’re ready to minify our CSS.

Minification with CSSO
To minify CSS files, run the csso command, passing the name of a file as an argu-

ment:

csso style.css

This will perform basic compression. CSSO strips unneeded whitespace, removes

superflous semicolons, and deletes comments from your CSS input file.

Once complete, CSSO will print the optimized CSS to standard output, meaning

the current terminal or command prompt window. In most cases, however, we’ll

want to save that output to a file. To do that, pass a second argument to csso―the

name of the minified file. For example, if we wanted to save the minified version

of style.css as style.min.css, we’d use the following:

CSS Master118

csso style.css style.min.css

By default, CSSO will rearrange parts of your CSS. It will, for example, merge de-

claration blocks with duplicated selectors and remove some overriden properties.

Consider the following CSS:

body {
 margin: 20px 30px;
 padding: 100px;
 margin-left: 0px;
}

h1 {
 font: 200 36px / 1.5 sans-serif;
}

h1 {
 color: #ff6600;
}

In this snippet, margin-left overrides the earlier margin declaration. We’ve also

repeated h1 as a selector for consecutive declaration blocks. After optimization and

minification, we end up with this:

body{padding:100px;margin:20px 30px 20px 0}h1{font:200 36px/1.5
➥ sans-serif;color:#f60}

CSSO removed extraneous spaces, line breaks, and semicolons, and shortened

#ff6600 to #f60. CSSO also merged the margin and margin-left properties into

one declaration (margin: 20px 30px 20px 0) and combined our separate h1 selector

blocks into one.

Now, if you’re skeptical of how CSSO will rewrite your CSS, you can disable its

restructuring features. Just use the --restructure-off or -off flags. For example,

running csso style.css style.min.css -off gives us the following:

119Debugging and Optimization

body{margin:20px 30px;padding:100px;margin-left:0}h1{font:200 36px/
➥1.5 sans-serif}h1{color:#f60}

Now our CSS is minified, but not optimized. Disabling restructuring will keep your

CSS files from being as small as they could be. Avoid disabling restructuring unless

you run into problems.

Preprocessors, introduced in Chapter 9, offer minification as part of their tool set;

however, using CSSO can shave additional bytes from your file sizes.

Code-quality Tools
Finally, let’s discuss tools that help you analyze the quality of your CSS. Though

several CSS code-quality tools exist, in this section we’ll focus on three:

■ CSS Lint
■ analyze-css
■ UnCSS

The first two tools, CSS Lint and analyze-css, check your CSS for problems such as

inefficient selectors, invalid rules, or unnecessary specificity. These have the greatest

impact on CSS maintainability, although inefficient selectors can also affect front-

end performance.

The third tool, UnCSS, checks your CSS for unused selectors and style rules. It

parses a stylesheet and a list of HTML pages, and returns a CSS file that’s stripped

of unused rules.

All of these tools are available as Node.js packages, and can also be installed using

NPM.

If you’re working on a small site, such as a few pages that are updated infrequently

or a personal blog, many of the problems that these tools flag can safely be ignored.

You’ll spend time refactoring for little gain in maintainability and speed. For larger

projects, however, they’re invaluable. They’ll help you head off maintability prob-

lems before they start.

CSS Master120

CSS Lint
CSS Lint is the grandmother of these code-quality tools. Created by Nicole Sullivan

and Nicholas Zakas, it’s available both as an NPM package and online at CSS-

Lint.net.6 We’ll discuss the NPM package here.

Installation
Install CSS Lint as you would any other NPM package:

npm install -g csslint

Basic Usage
To check for errors, or lint your CSS, run the CSS Lint command passing the path

to your CSS filename as an argument:

csslint stylesheet.css

Running this command causes CSS Lint to return a list of issues with your CSS, as

evidenced in Figure 3.26.

6 http://csslint.net/

121Debugging and Optimization

http://csslint.net/
http://csslint.net/

Figure 3.26. Terminal output from CSS Lint

CSS Lint inspects your stylesheets for four kinds of CSS problems:

Compatibility: problems that affect a particular browser version

Performance: problems that can cause slow page loads and

rendering

Maintainability and duplication

problems:

issues that will make your colleagues pull their

hair out and perhaps yours as well

Accessibility: CSS that has a negative impact on users of assist-

ive software

It reports each error separately as a separate block of text, with each block containing

the following:

■ filename (here, that’s s.css)

■ error location; for example, warning at line 92, col 1

■ guideline of which you’ve run afoul (for example, “unqualified attribute selectors

are known to be slow” or “outlines should only be modified using :focus”)

CSS Master122

■ selector or declaration at fault

CSS Lint prints output to the terminal window. If you’d rather save it as a file, use

the redirection operator. This applies to most systems, whether Linux, OS X, or

Windows:

csslint stylesheet.css > csslintoutput.txt

CSS Lint is also configurable; you can disable checks for any of its rules by using

the --ignore flag. Say that you’ve finally dropped support for Internet Explorer 6

and 7. You can tell CSS Lint to ignore the box-sizing rule by passing --ignore=box-

sizing as an argument:

csslint /path/to/stylesheet.css --ignore=box-sizing

CSS Lint is more pragmatic than bleeding edge. It will raise vendor-prefix warnings

for properties such as transitions that you may not need to include, depending on

the browser distribution of your site’s audience. If your site’s visitors use modern

browsers, you may be able to disable the following rules:

■ gradients

■ box-sizing

■ compatible-vendor-prefixes

■ fallback-colors (enable if you still have a significant share of IE8 users)

To view a list of rule identifiers and what they mean, use csslint --list-rules.

Type csslint --help for the full menu of CSS Lint options. For more in-depth

documentation, consult the CSS Lint Wiki.7

analyze-css
Like CSS Lint, analyze-css inspects your CSS for complexity and performance. It

does not, however, check for accessibility or compatibility. Instead, it produces a

series of metrics and offending selectors that you should examine further.

7 https://github.com/CSSLint/CSSLint/wiki

123Debugging and Optimization

https://github.com/CSSLint/CSSLint/wiki

Installation
You’re probably sensing a pattern here. Install analyze-css using NPM with the

following command:

npm install -g analyze-css

Basic Usage
analyze-css can handle both local files and URLs. To analyze a local file, use the

--file flag:

analyze-css --file stylesheet.css

To analyze a remote asset instead, use the --url flag:

analyze-css --url http://example.com/css/stylesheet.css

analyze-css outputs JSON-formatted data to standard output (again, this means the

terminal or command prompt window) by default. But we’ll redirect it to a file:

analyze-css --file stylesheet.css > nameoffile.json

analyze-css reports a variety of details about your CSS in a metrics field. These

include oldPropertyPrefixes (the number of properties that no longer require a

vendor prefix), and length (file size in bytes). But the real meat of the report lies

in the offenders field. Below is a snippet of output from analyze-css:

{
 "generator": "analyze-css v0.9.1",
 "metrics": {...
 },
 "offenders": {
 "universalSelectors": [
 "[type=submit] @ 108:3",
 "[type=submit]:hover @ 116:3",
 "[type=submit]:focus @ 116:3",
 "[disabled] @ 133:1",
 "[id=landing] @ 173:3",
 "[id=landing] header @ 174:3"
],

CSS Master124

 "oldPropertyPrefixes": [
 "[id=landing] .logo { -moz-transition: transform 150ms ease-in
➥ 10ms, opacity 150ms ease-in } // was required by firefox 15 and
➥ earlier @ 182:5",
 "[id=landing] .logo { -o-transition: transform 150ms ease-in
➥ 10ms, opacity 150ms ease-in } // was required by opera 12 and
➥ earlier @ 184:5",
],
 "qualifiedSelectors": [
 "span.error @ 147:1"
],
 "multiClassesSelectors": [
 ".dance.logo @ 186:5"
], ...
 }
}

offenders lists potential problems with your CSS. For example, the qualifiedSe-

lectors property lists every class selector that’s overly qualified by an element.

Here it’s span.error on line 147, character 1 of our CSS file. The multiClassesSe-

lectors property lists instances of selectors that combine two or more class names;

in this case .dance.logo on line 186. In both cases, we’re sending overly specific

CSS that uses more bytes than we need.

A full stylesheet analysis might include the incidences of !important (the import-

ants property), a list of color declarations, Internet Explorer hacks (oldIEFixes),

and duplicated properties or selectors.

UnCSS
UnCSS parses your HTML and CSS files, removing unused CSS. If your projects

include a CSS framework such as Bootstrap or use a reset stylesheet, consider adding

UnCSS to your workflow. It will shave unnecessary CSS—and bytes—from your

code.

Installation
As with other NPM packages, you can install UnCSS using the following command:

125Debugging and Optimization

npm install -g uncss

Using UnCSS from the Command Line
UnCSS requires the filepath or URL of an HTML page that contains a linked CSS

file; for example:

uncss http://sitepoint.com/

UnCSS will parse the HTML and its linked stylesheets, and print the optimized

CSS to standard output. To redirect to a file, use the redirect operator (>):

uncss http://sitepoint.com/ > optimized.css

You can also pass multiple filepaths or URLs to the command line. CSS will analyze

each file and dump optimized CSS that contains rules affecting one or more pages:

uncss index.html article-1.html article-2.html > optimized.css

For a full list of commands―and an example of how to use UnCSS with a Node.js

script―consult the UnCSS docs.8

Consider a Task Runner
This probably sounds like a lot of extra time and steps to add to your workflow, but

you should consider a task runner such Grunt9 or build system such as Gulp.10 It’s

where automation can help quite a bit.

Grunt is the more established of the two tools, so there are more plugins and a larger

community. I happen to be partial to Gulp’s syntax. Use whichever tool works best

for you and your colleagues.

What’s great about Grunt and Gulp is that you can assemble a toolchain that will

automatically run concatenation, minification, and optimization tasks for CSS,

JavaScript, and image files. Because the configuration and build script files are JSON

8 https://github.com/giakki/uncss
9 http://gruntjs.com
10 http://gulp.js

CSS Master126

https://github.com/giakki/uncss
http://gruntjs.com
http://gulp.js

and JavaScript, you can easily reuse them across projects or share them with a team.

CSS Lint, UnCSS, and CSSO are all available as both Grunt and Gulp plugins,

making them easier to integrate.

Getting started with Grunt or Gulp can be intimidating. Luckily, a few developers

have demystified them both. Grunt newbies should read Chris Coyier’s 24 Ways

article, “Grunt for People Who Think Things Like Grunt are Weird and Hard.”11

SitePoint’s Craig Buckler wrote a nice tutorial for getting started with Gulp.js.12

It’s very easy to become overwhelmed by the options. Take a pragmatic approach

to building your toolkit. Add tools that you think will enhance your workflow and

improve the quality of your output.

Conclusion
In this chapter, we’ve looked at some tools to help you diagnose, debug, and optimize

your CSS. In the next chapter, we’ll look at advanced layout techniques, including

Flexbox.

11 http://24ways.org/2013/grunt-is-not-weird-and-hard/
12 http://www.sitepoint.com/introduction-gulp-js/

127Debugging and Optimization

http://24ways.org/2013/grunt-is-not-weird-and-hard/
http://www.sitepoint.com/introduction-gulp-js/

Chapter4
Complex Layouts
In this chapter, we’ll dig into a few CSS layout topics. In the first half, we’ll tackle

two fundamentals of CSS layout: the box model and stacking context. Understanding

these concepts will help you create complex layouts and diagnose layout bugs.

In the second half of the chapter, we’ll look at two newer layout-related CSS spe-

cifications: the CSS multicolumn layout module and the flexible box module (better

known as flexbox). Both modules allow developers to create layouts that are robust

and adaptable across a range of device sizes.

Managing the CSS Box Model
Perhaps the most important point to understand about CSS is this: Everything is a

box. More specifically, every element in a document generates a box. This box may

be a block-level box, or it may be an inline-level box. The box type determines how

the element affects page layout.

Whether or not an element creates a box and which type of box it creates will depend

on the markup language. CSS developed as a way to style HTML documents so, as

a result, much of the CSS visual rendering model is rooted in HTML4’s distinction

between block-level and inline elements. By default, elements such as p and section

create block-level boxes but a, span, and em create inline boxes. SVG, on the other

hand, does not use the box model, so most layout-related CSS properties fail to

work with SVG. (This is covered in Chapter 8.)

Block-level boxes create new blocks of content as can be seen in Figure 4.1. Block-

level boxes are rendered vertically according to their source order and (except for

tables) expand to fill the available width of their containing element. This is known

as normal flow. Block-level boxes have a display value of block, list-item, table,

or any of the table-* values (for example, table-cell).

Figure 4.1. Block-level boxes featuring h1, p, ul, and table elements within a containing element (gray area)

Inline-level boxes, by contrast, do not form new blocks of content. Instead, these

boxes make up the lines inside a block box. They’re displayed horizontally and fill

the width of the containing box, wrapping across lines if necessary, as shown in

Figure 4.2. Inline-level boxes have a display value of inline, inline-block, inline-

table, or ruby.

CSS Master130

Figure 4.2. An example of an inline box with margin: 1em and padding: 5px applied

But how are the dimensions of the box calculated? Here is where it becomes more

complicated. As seen in Figure 4.3, box dimensions are the sum of the box’s content

area, plus its padding width, and border width as defined in CSS2.1 The margin

width creates a margin box for the element, and affects other elements in the docu-

ment; however, the margin width has no effect on the dimensions of the box itself.

Figure 4.3. The CSS 2.1 box model

For instance, a p element with width: 300px, padding: 20px, and border: 10px

has a calculated width of 360 pixels. That’s the sum of its width, left and right

padding, and left and right border-width properties. To create an element that is

1 http://dev.w3.org/csswg/css2/box.html

131Complex Layouts

http://dev.w3.org/csswg/css2/box.html

300 pixels wide with 20 pixels of padding and a 10 pixel border, the width needs

to be 240px. Most leading browsers calculated the width in just this way. Internet

Explorer 5.5, however, did not.

Instead, IE5.5 used the width property as the final arbiter of box dimensions, with

padding and border drawn inside the box as seen in Figure 4.4. Both values were,

in effect, subtracted from width, decreasing the size of the content area. Though it’s

the exact opposite of the behavior defined in the specification, many web developers

thought it was the more sensible approach.2

Figure 4.4. The CSS 2.1 box model versus the old Internet 5.5 “quirks mode” box model

Partly as a way to resolve these competing models, the CSS working group introduced

the box–sizing property. It lets us choose the box model implementation that we

prefer, and greatly simplifies calculations when working with responsive designs.

Choosing a Box Model with box-sizing
The box-sizing property is defined in the CSS Basic User Interface Module Level

3 specification.3 It has two possible values: content-box and border-box.

Initially, the value of box-sizing is content-box. With this value, setting the width

and height properties of an element affect the size of its content area. This matches

the behavior defined by the CSS 2.1 specification, and it’s the default behavior in

modern browsers (as presented in Figure 4.4).

2 A great tool for visualizing these differences is Caroline Artz’ Box Sizing Demo.

[http://codepen.io/carolineartz/full/ogVXZj/]
3 http://www.w3.org/TR/css3-ui/#box-sizing

CSS Master132

http://www.w3.org/TR/css3-ui/#box-sizing
http://www.w3.org/TR/css3-ui/#box-sizing
http://codepen.io/carolineartz/full/ogVXZj/

Setting the value of box-sizing to border-box creates a little bit of magic. Now,

the values of width and height will be applied to the outer border edge instead of

the content area. Borders and padding are drawn inside the element box, matching

the old Internet Explorer 5.5 behavior. Let’s look at an example that mixes percentage

widths and px units for padding and borders:

<div class="wrapper">
 <article>
 <h2>This is a headline</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing ... </p>
 </article>
 <aside>
 <h2>This is a secondary headline</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing ... </p>
 </aside>
</div>

Both our article and aside elements have the following CSS applied, which gives

us the layout shown in Figure 4.5 where the first element has a width of 60% while

the second has a width of 40%:

article, aside {
 background: #FFEB3B;
 border: 10px solid #9C27B0;
 float: left;
 padding: 10px;
}
article {
 width: 60%;
}

133Complex Layouts

aside {
 width: 40%;
}

Figure 4.5. Elements with box-sizing: content-box

By default, both aside and article have a box-sizing value of content-box. The

border-width and padding values add 40 pixels to the width of each element, which

throws off the 60%/40% split considerably. Now let’s add box-sizing: border-

box to the article and aside elements:

article, aside {
 box-sizing: border-box;
}

You can see the change in Figure 4.6: the elements have the same width, but the

box-sizing: border-box means that the width includes the border and padding.

Because the width property applies to the border edge instead of the content area,

our elements now fit side by side.

CSS Master134

Figure 4.6. Elements with box-sizing: border-box.

I'd suggest that you use box-sizing: border-box in your projects. It makes life

easier, as there’s no need to calculate the width value to account for the values of

padding and border, and boxes behave more predictably.

The best way to apply box-sizing: border-box is with reset rules. The following

example is from Chris Coyier’s CSS-Tricks post, “Inheriting box-sizing Probably

Slightly Better Best-Practice”4:

html {
 box-sizing: border-box;
}

4 https://css-tricks.com/inheriting-box-sizing-probably-slightly-better-best-practice/

135Complex Layouts

https://css-tricks.com/inheriting-box-sizing-probably-slightly-better-best-practice/
https://css-tricks.com/inheriting-box-sizing-probably-slightly-better-best-practice/

*, *:before, *:after {
 box-sizing: inherit;
}

This applies border-box sizing to every element by default, without affecting the

box-sizing behavior of existing parts of your project. If you know that there will be

no third-party or legacy components that rely on content-box behavior, you can

simplify these rules:

*,
*:before,
*:after {
 box-sizing: border-box;
}

Table 4.1 shows curent bowser support for box-size: border-box

Table 4.1. Browser support for box-size: border-box

AndroidOperaChromeSafariFirefoxInternet
Explorer

2.1+ (versions

< 4 require

-webkit-

prefix)

10.1+4+ (versions <

9 require

-webkit-

prefix)

3.1+ (versions

< 5.1 require

-webkit-

prefix)

2+ (versions <

29 require

-moz- prefix)

8+

Managing the box model is just one ingredient in understanding how to create

complex layouts. Let’s dig into layering elements in the next section.

Managing Layers with position and
z-index
Every element in a document participates in a stacking context. The stacking context

is a model―a set of rules, really―for how elements are painted to the screen. If

you’ve ever used the z-index property, you’ve worked with stacking contexts.

The root html element creates a root stacking context. Some CSS properties and

values can also trigger a local stacking context for the elements to which they’re

CSS Master136

applied. Whether part of a root or local context, children within a stacking context

are painted to the screen from back-to-front as follows:

1. Child stacking contexts with a negative stack level (for example, positioned and

z-index: -1)

2. Non-positioned elements

3. Child stacking contexts with a stack level of 0 (for example, positioned and z-

index: auto)

4. Child stacking contexts with positive stack levels (for example, positioned and

z-index: 1)5

If two elements have the same stack level, they’ll be layered according to their order

in the source HTML.6

Let’s look at an example. Here’s our HTML:

<div id="a">
 <p>div#a</p>
</div>
<div id="b">
 <p>div#b</p>
</div>
<div id="c">
 <p>div#c</p>
</div>
<div id="d">
 <p>div#d</p>
</div>
 <div id="e">
 <p>div#e</p>
</div>

And here’s our CSS:

5 An element is positioned if its position value is something other than static.
6 This is discussed in far greater detail in Appendix E of the CSS2 specification.

[http://dev.w3.org/csswg/css2/zindex.html]

137Complex Layouts

http://dev.w3.org/csswg/css2/zindex.html

#a {
 background: rgba(233, 30, 99, 0.5);
}

#b, #c, #d, #e {
 position: absolute;
}

#b {
 background: rgba(103, 58, 183, 0.8);
 bottom: 120px;
 width: 410px;
 z-index: 2;
}

#c {
 background: rgba(255, 235, 59, 0.8);
 top: 190px;
 z-index: 1;
}

#d {
 background: #03a9f4;
 height: 500px;
 top: 10px;
 z-index: -1;
}

#e {
 background: rgba(255, 87, 34, 0.7);
 top: 110px;
 z-index: 1;
}

This will produce the stacking order shown in Figure 4.7. The bottom-most layer

is #d because its z-index value is -1. Since #a isn’t positioned, it sits above #d, but

below the positioned elements (#b, #c, and #e). The next layer is #c, followed by

#e. Since both elements have the same z-index value, #e is stacked higher because

it’s last in the source order. The top-most layer is #b, due to its z-index of 2.

CSS Master138

Figure 4.7. A stacking context with positioned and unpositioned elements of varying z-index values

All the elements in the previous example are part of the root stacking context. But

let’s see how stacking is affected by a property that forces a local context: opacity

when its value is less than 1. Consider the following HTML:

<div id="f">
 <p>div#f</p>
</div>
<div id="g">
 <p>div#g</p>
</div>

It’s paired with this CSS:

139Complex Layouts

#f, #g {
 position: absolute;
}
#f {
 background: rgba(255,193,7,.9);
}
#f p {
 background: rgb(34,34,34);
 color: whitesmoke;
 position: relative;
 z-index: 1;
}
#g {
 background: rgba(3,169,244,.7);
 top: 50px;
 left: 100px;
}

According to the rules of the stacking context, #f p occupies the top-most layer in

the stack. That’s what we see in Figure 4.8.

Figure 4.8. The rendered version of our sample HTML and CSS

But if we change our CSS and add opacity: .99 to the #f rule set, something inter-

esting happens:

CSS Master140

#f {
 background: rgba(255,193,7,.9);
 opacity: .99;
}

The opacity property creates a new stacking context any time its value is less than

1. As a result, the z-index for its child element becomes relative to its parent rather

than the root stacking context. You can see how this works in Figure 4.9. Notice

that #g now occupies the top-most layer.7

Figure 4.9. How opacity affects stacking order

Let’s add an absolutely positioned div element to #f and give it a z-index value of

2. Now div is stacked on top of #f p (see Figure 4.10), but it’s still layered behind

#g because #f has a local stacking context. Children of a local stacking context can

only be reordered relative to that context. Elements that sit in other contexts can’t

be layered within a local one.

7 A handful of other property-value combinations also trigger a new stacking context. The stacking

context

[https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Understanding_z_index/The_stacking_context]

from Mozilla Developer Network details them all.

141Complex Layouts

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Understanding_z_index/The_stacking_context
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Understanding_z_index/The_stacking_context

Figure 4.10. Multiple elements in a stacking context

Handling Undesired Behaviors with opacity

Because opacity triggers a new stacking context, you may run into undesired

behavior when transitioning the opacity of layers that overlap. To work around

this, use rgba() or hsla() values for color or background-color and trans-

ition those instead.

Let’s look at an example of using the stacking context to manage layers and posi-

tioned elements. In this case, we’ll create a menu that slides in from the top of the

screen. But rather than slide in over the logo and Menu button, we’ll make it slide

in beneath it. First our HTML:

04-layouts/stacking-context.html (excerpt)

<header>

 <button type="button" id="menu">

 </button>
 <nav>
 <ul id="menu-list">
 Sports
 Politics
 Arts & Entertainment

CSS Master142

 Business
 Travel

 </nav>
</header>

Clicking the button element causes the element to slide into view. Now for our

(edited) CSS:

header {
 background: #222629;
 color: whitesmoke;
 position: fixed;
 top: 0;
 width: 100%;
}
nav {
 background: #222629;
 position: absolute;
 width: 100%;
 left: 0;
 top: -33vw;
 transition: top 500ms;
}
.open {
 top: 9vw;
}

This CSS above creates a menu that slides down from the top when triggered. But

as it slides in, it passes over the AwesomeNews logo as you can see in Figure 4.11.

143Complex Layouts

Figure 4.11. The menu slides over the AwesomeNews logo

Our menu (the nav element) slides over the logo and Menu button because it has a

higher stack level. Remember that when multiple elements have the same z-index

value, the last one in the source will be the top-most layer.

Let’s change this. What happens when we add z-index: -1 to the nav rule set?

Well, you get the mess you see in Figure 4.12.

CSS Master144

Figure 4.12. Adding z-index: -1 forces nav to the bottom of the stack

The navigation slides in behind the logo and Menu button, but it also slides in behind

the content. It’s hard to read and impossible to click.

Because its parent element (header) has a z-index of auto, the nav element is still

part of the root stacking context. Adding z-index: -1 shoves it to the bottom of

the root element’s stack, which means it sits behind other elements in the root

stacking context.

So how do we fix this? By creating a new stacking context for nav. We already know

that the opacity property will create a new stacking context when its value is less

than 1. But positioned elements can also create a new stacking context if the z-index

value is something other than auto or 0. Our header element already has posi-

tioned: fixed. Now we just need to add z-index: 1 to its rule set:8

8 WebKit- and Blink-based browsers create a new stacking context whenever an element has position:

fixed, even if its z-index value is auto. Firefox and Internet Explorer do not.

145Complex Layouts

css/chapter4/menu.css (excerpt)

header {
 background: #222629;
 color: whitesmoke;
 position: fixed;
 top: 0;
 width: 100%;
 z-index: 1;
}

Now our nav element is contained within the stacking context of its parent. Since

header has a stack level of 1 and nav is its child, the menu sits above the rest of our

content. But because nav has a negative stack level, it sits at the bottom of the

header element’s stacking context, as illustrated in Figure 4.13.

Figure 4.13. Managing elements within a local stacking context

For the rest of this chapter, we’ll switch gears and talk about two modules for creating

complex layouts: multiple column and flexible layout. Both modules make previ-

ously difficult layouts straightforward, and previously impossible layouts possible.

CSS Master146

With them, we can create adaptive columns and grid-based layouts without the

need for extra wrapping div elements or expensive DOM manipulations.

Using CSS Multicolumn Layout
Multiple-column (multicolumn) layout allows text and elements to flow from one

column to another, and automatically adjust to the width of the viewport or contain-

er. With it, we can create text layouts that mimic those found in newspapers,

magazines, and ebooks. We can also use it to create space-efficient user interfaces.

Although the specification is mature, the state of browser support is so-so. Basic

support for multiple-column layout is quite good. All major browsers support the

ability to create columns (columns property), set an optimal column width (column-

width), set the size of the gutter (column-gap), and add rules between columns

(column-rule).

Chrome ≤ 45 / Opera ≤ 30 and Firefox ≤ 41 do require vendor prefixes: -webkit-

and -moz- respectively. To date, Chrome and Opera lack support for column-fill

(or -webkit-column-fill) while Firefox lacks support for column-span (or -moz-

column-span). Neither Internet Explorer 10+ nor Safari 9+ require vendor prefixes.

Support for break-before, break-after, and break-inside, on the other hand, is

less robust. These properties specify how the children of a multicolumn element

should be distributed across columns or pages. Internet Explorer supports these

properties, while Firefox does not. Safari, Chrome, and Opera currently support the

non-standard -webkit-column-break-before, -webkit-column-break-after, and

-webkit-column-break-inside properties instead. Table 4.2 details the level of

browser support for multicolumn layout.

147Complex Layouts

Table 4.2. Browser support for multiple-column layout (source:
CanIUse.com9).

AndroidOperaChromeSafariFirefoxInternet
Explorer

2.1+ (partial;

requires

-webkit-

prefix)

11.5+ (partial;

requires

-webkit-

prefix in

versions 15+)

1+ (partial;

requires

-webkit-

prefix)

9+ (versions <

9 have partial

support,

require

-webkit-

prefix; uses

non-standard

properties)

2+ (partial;

requires

-moz- prefix)

10+

Despite the current state of support, it’s safe to use these properties in projects.

Multicolumn layout is a progressive enhancement. If the browser does not support

it, text will default to the normal flow.

Defining Column Number and Width Using columns
To create multiple columns, set the columns property:

<div style="columns: 2">
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing ... </p>
 <p>Duis aute irure dolor in reprehenderit in voluptate ... </p>
</div>

The columns property is a shorthand property for column-width and column-number.

With columns, the first value that can be interpreted as a length becomes the value

of column-width. The first value that can be interpreted as an integer becomes the

value of column-number. The order in which you specify each value is of no con-

sequence. As has been shown, there’s no need to specify both. Unspecified values

default to their initial values of auto. All of the following examples are valid values

for columns:

■ columns: 10em 3 (Same as column-width: 10em; column-number: 3)
■ columns: 3 (Same as column-width: auto; column-number: 3)

9 http://caniuse.com/#feat=multicolumn

CSS Master148

http://caniuse.com/#feat=multicolumn

■ columns: 3 20em

■ columns: 10em (Same as column-width: 10em; column-number: auto)
■ columns: 4 auto

Avoid Being Caught Short Using Firefox

Firefox only supports the -moz-columns/columns shorthand. Setting column-

number or -moz-column-number will fail to work.

Setting column-width determines the optimal size for each column. Its value should

be in length units; for example, column-width: 200px or column-width: 10em.

Percentages will not work, and its initial value is auto.

“Optimal,” of course, means that column-width sets the ideal width, not necessarily

its actual width. Columns may be wider or narrower depending on the available

space and/or viewport size. In Figure 4.14, for example, the container is 760 pixels

wide and the column-width value is 15em. That gives us three columns.

Figure 4.14. A multicolumn layout with column-width: 15em at a container width of 760px

149Complex Layouts

But if we expand the container to 1080 pixels wide as in Figure 4.15, there’s now

room for four columns.

Figure 4.15. A container width of 1080px provides room for four columms when the column-width property value is

15em

Shrinking the container to 335 pixels wide, on the other hand, reduces our columns

to one, as seen in Figure 4.16.

CSS Master150

Figure 4.16. When the container is 355px wide, we only have room for one column at 15em

Setting the column-number property, on the other hand, defines the optimal number

of columns to create. Its value must be an integer greater than 0. If column-width

is something other than auto, the browser will create columns of that width up to

the number of columns specified by column-number. If column-width: auto, the

browser will create the number of columns specified by column-number. That’s a

bit tricky to understand, so let’s illustrate with some screenshots.

In the figures that follow, our container has a column-number value of 3, and a

column-width value of auto. Whether our container is 760 pixels wide (as in Fig-

ure 4.17) or 355 pixels wide (as in Figure 4.18), we still have three columns.

151Complex Layouts

Figure 4.17. When column-width is auto and column-number: 3 in a 760px container

CSS Master152

Figure 4.18. When column-width is auto and column-number: 3 in a 355px container

Now, compare these to Figure 4.19, where our container has a column-number value

of 3, and a column-width value of 8em. Inside a 760 pixels wide container, our

number of columns remains the same. But when our container is 355 pixels wide,

we can only fit two columns.

153Complex Layouts

Figure 4.19. column-width: 8em and column-number: 3 in a 355px container

This goes out of the window entirely, though, if we set the height of a column

container. Setting a fixed height on a container forces the browser to create additional

columns to accommodate the container’s content. In this case, the column-number

property will be ignored.

Spacing Columns with column-gap and column-rule
How many columns will fit in a container also depends on the value of column-gap.

Known as the gutter in print design, the column gap sets the distance between each

column. The initial value of column-gap is normal. In most browsers, that’s about

1em.

Increasing or decreasing its width has no effect on the width of each column, just

the space in between. If an element is 45em wide with column-width: 15em and

column-gap: normal applied, the content will be divided into two columns rather

than three, as can be seen in Figure 4.20.

CSS Master154

Figure 4.20. Columns that are 15em wide inside a 45em container with the default column-gap value

Changing column-gap to 0, however, gives us our full three-column layout as shown

in Figure 4.21. Without a column-gap, there’s now sufficient room for three columns.

As with column-width, the value of column-gap should be either 0 or a positive

length value. Negative lengths such as -2em are invalid.

155Complex Layouts

Figure 4.21. 15em wide columns inside a 45em wide container with column-gap: 0

With column-rule, we can add lines to visually separate columns. It functions

similarly to border, and accepts the same values. For example:

.multi-col {
 -webkit-column-rule: thin dashed #607d8b;
 -moz-column-rule: thin dashed #607d8b;
 column-rule: thin dashed #607d8b;
}

Like border, column-rule is really a shorthand for the column-rule-width, column-

rule-style, and column-rule-color properties. Each column-rule-* property

accepts the same values as its border counterpart, and is demonstrated in Fig-

ure 4.22.

CSS Master156

Figure 4.22. Adding a column-rule

Column width is not affected by changes to column-rule. Instead, column rules sit

at the midpoint of the column gap. If the width of the rule exceeds that of the gap,

the column rule will render beneath the columns’ contents as shown in Figure 4.23.

157Complex Layouts

Figure 4.23. What happens when the width of a column rule exceeds the column gap

Images Within Columns
If the width of an image exceeds that of its column, the overflowing portion of that

image will be hidden, as shown in Figure 4.24. This is the behavior outlined in the

multicolumn specification, and it’s what Internet Explorer, Chrome, Safari, and

Opera do.

CSS Master158

Figure 4.24. Images are clipped to the width of their column

Unfortunately, Firefox version 42 (and prior) is yet to follow suit. As witnessed in

Figure 4.25, images overflow the column width and are positioned at the bottom of

the stacking context in Firefox.

159Complex Layouts

Figure 4.25. Images within a column sit at the bottom of the stacking context in Firefox 41

You can work around this by adding a width: 100% declaration to the image or

object. Doing so constrains the width of the image to that of the column box as

shown in Figure 4.26.

CSS Master160

Figure 4.26. Using img{width: 100%} inside a multicolumn container

Making Elements Span Columns
We can also make a particular element span columns with the column-span property.

This property accepts two values: none and all. Using none means that the element

will be part of the normal column flow; all will make the element span every

column.

It’s currently not possible to make an element span a particular number of columns.

We’re limited to specifying whether it should span all columns or none at all.

Consider the layout shown in Figure 4.27.

161Complex Layouts

Figure 4.27. How an h1 element fits into the multicolumn layout flow

Here the h1 element (the article headline “Dog bites man ...”) is part of the multi-

column layout flow. It sits within a column box, wrapping as appropriate. Now let’s

add column-span: all:10

article > h1 {
 -webkit-column-span: all;
 column-span: all;
}

This gives us the layout shown in Figure 4.28, with a headline that spans both

columns.

10 Firefox ≤ 41 is without support for column-span, even with a prefix.

CSS Master162

Figure 4.28. Using column-span to make an element span multiple columns

Managing Column Breaks
In a multiple-column layout, a long block of text may start in one column and end

in another, as shown in Figure 4.29.

163Complex Layouts

Figure 4.29. Elements may break across columns in a multicolumn layout

To prevent this, use break-inside: avoid or break-inside: avoid-column. The

break-inside property applies to the children of a multicolumn container. For

example, to prevent all children of .multi-col from breaking across column boxes,

use the following:11

.multi-col > * {
 break-inside: avoid-column;
}

Now the purple paragraph no longer breaks across columns, as can be seen in Fig-

ure 4.30. The break-inside property also affects paged media,12 which explains

why there are both avoid and avoid-column values. The difference is that avoid-

column prevents a box from breaking across columns while avoid prevents a box

from breaking across columns and pages.

11 WebKit- and Blink-based browsers currently use the non-standard -webkit-column-break-

inside property. It works the same way, but avoid is its only valid value.
12 http://www.w3.org/TR/css3-page/

CSS Master164

http://www.w3.org/TR/css3-page/

Figure 4.30. Preventing column breaks inside elements with break-inside

CSS Fragmentation Module Level 3

The CSS Fragmentation Module Level 313 specification is closely related to the

multiple-column and paged media specifications. It further defines how block

boxes should break across columns, pages, and regions.

It’s also possible to force a break before or after an element using break-before and

break-after. Let’s force a column break before the third paragraph:

.multi-col p:nth-of-type(3) {
 background-color: #e91e63;
 break-before: column;
}

Here we’ve used the column value to force a column break before the selected element

(see Figure 4.31). The break-after property works similarly, forcing a column

break after the selected element. The always value also forces column breaks, but

always will also force a column break in paged media.

13 http://dev.w3.org/csswg/css-break-3/

165Complex Layouts

http://dev.w3.org/csswg/css-break-3/

Figure 4.31. Forcing a column break before an element

Webkit- and Blink-based browsers use -webkit-column-break-before and -webkit-

column-break-after. Both properties are holdovers from an earlier version of the

specification. For those properties, the column value is unsupported, so use always

instead. Firefox is yet to support any of these values, or support a vendor-prefixed

equivalent.

Optimizing the User Interface
Arranging paragraphs of text isn’t the only use case for multiple-column layouts.

We can also use it with lists to make use of horizontal space. Consider the layout

shown in Figure 4.32.

CSS Master166

Figure 4.32. A list split into three columns

The old-school way of creating this layout is to split our list into three separate ones

and float them to the left or right of a containing element. Here’s what the markup

might look like:

<div class="clearfix">
 <ul class="column-float-left">
 Apples
 Oranges
 Bananas
 Dragon fruit

 <ul class="column-float-left">
 Cherries
 Strawberries
 Blueberries
 Raspberries

 <ul class="column-float-left">
 Durian
 Mangosteen

167Complex Layouts

 Mangoes

</div>

And the accompanying CSS:

.columned-list {
 float:left;
 width: 33%;
 min-width: 150px;
 margin: 0;
}
.clearfix::after {
 clear:both;
 content: ' ';
 display: block;
}

While this approach works, it requires more markup than a single-list element.

We’re using three li elements instead of one. And we have to manage floated ele-

ments and clearing those floats. With a multiple-column layout, we can use a single

element without worrying about clearing floats:

<ul style="columns: 3">
 Apples
 Oranges
 Bananas
 Dragon fruit
 Cherries
 Strawberries
 Blueberries
 Raspberries
 Durian
 Mangosteen
 Mangoes

Blink- and WebKit-based Browsers

Blink- and WebKit-based browsers remove bullets and numbers from some or all

list items in a multicolumn layout. As a workaround, add a left margin (or right

CSS Master168

margin in a right-to-left language) of at least 20px to li elements within a multi-

column container.

Another use-case for multicolumn layouts is wrangling lists of checkbox inputs.

Here, too, we can maximize the use of horizontal space to create more compact

forms, as shown in Figure 4.33.

Figure 4.33. Utilizing horizontal space to create more compact forms

Use multicolumn layout when you have blocks of content to be automatically dis-

tributed and evenly spaced across several columns. It is not a great choice for

overall page layouts. It is a great choice for components.

Creating Flexible Layouts with Flexbox
A better choice for page layouts is flexbox, or the Flexible Box Layout Module.14

Flexbox provides an easy way to align elements and create flexible components and

grids.

14 http://dev.w3.org/csswg/css-flexbox-1/

169Complex Layouts

http://dev.w3.org/csswg/css-flexbox-1/

Flexbox is approaching maturity as a specification. The latest versions of most

browsers now support its properties and values without a vendor prefix.

Before we dig into flexbox, here’s a quick review of its history: the original 2009

specification went through a huge rewrite in 2012 where several properties and

values were renamed and some behaviors were adjusted. And then the specification

went through another rewrite that brought it very close to where it began.

Different browser vendors implemented the specification at different points, which

means that the browser landscape is fragmented. Safari ≤ 6, Android ≤ 4.3, and

UC Browser support the original 2009 version of the flexbox specification.15 Internet

Explorer 10 implements the 2012 version, details of which implementation are

available from the Microsoft Developer Network.16

Table 4.3 shows current browser support for flexbox.

The full history of the flexbox rewrite process is buried in the annals of the www-

style@w3.org mailing list archives; however, the specification editor Tab Atkins

wrote two blog posts that explain the differences. See Atkins’ “Flexbox is dead,

long live flexbox!”17.

Table 4.3. Browser support for the current flexbox module specification
(Source: CanIUse.com18)

AndroidOperaChromeSafariFirefoxInternet
Explorer

4.4+12.1+ (versions

15 and 16

require

-webkit-

prefix)

21+ (versions

28 require

-webkit-

prefix)

6.1+ (versions

 9 require

-webkit-

prefix)

28+11

15 http://www.w3.org/TR/2009/WD-css3-flexbox-20090723/#packing
16 https://msdn.microsoft.com/en-us/library/hh673531(v=vs.85).aspx
17 http://www.xanthir.com/blog/b4Dm0
18 http://caniuse.com/#feat=flexbox

CSS Master170

http://www.w3.org/TR/2009/WD-css3-flexbox-20090723/#packing
https://msdn.microsoft.com/en-us/library/hh673531(v=vs.85).aspx
http://www.xanthir.com/blog/b4Dm0
http://www.xanthir.com/blog/b4Dm0
http://caniuse.com/#feat=flexbox

The upside, however, is that the latest versions of all major browsers support the

latest version of the flexbox specification. That’s the version we’ll focus on here.19

A basic flexible box layout is very simple to create: add display: flex or display:

inline-flex to the containing element. Safari 8 and UC Browser 9.9 do require a

vendor prefix. In those browsers, you’ll need to use display: -webkit-flex or

display: -webkit-inline-flex.

When you add display: flex or display: inline-flex to a containing element,

its immediate children become flex items, shown in Figure 4.34. If no other proper-

ties are set, each flex item will:

■ have the same height as its tallest element, and
■ stack horizontally with no space between the edges of each box

Figure 4.34. A list with display: flex applied to the ul containing element (note how each child li stacks horizontally)

19 If you’d like an introduction to cross-browser flexbox that includes older versions of the specification,

read Chris Mills’ piece, “Advanced cross-browser flexbox”

[https://dev.opera.com/articles/advanced-cross-browser-flexbox/].

171Complex Layouts

https://dev.opera.com/articles/advanced-cross-browser-flexbox/

That may not seem like such a big deal, but it simplifies the CSS necessary for a

range of user interface patterns. One use case is creating the Holy Grail of layout.20

Here’s our markup:

<div class="flex">
 <div>...</div>
 <div>...</div>
 <div>...</div>
</div>

Now all we need to do is add .flex {display: flex;} to our CSS to end up with

the layout shown in Figure 4.35. The length of the content in the middle column

affects the height of the exterior columns.

Figure 4.35. Flexbox makes columns easy

Using flexbox for page layout does have its risks, though, as that wasn't what it was

originally designed to do. Because content affects layout, users with slower connec-

tions may experience a jump in the page layout as the document loads. This is ex-

plained in greater detail in Jake Archibald’s “Don’t use flexbox for overall page

20 https://en.wikipedia.org/wiki/Holy_Grail_(web_design

CSS Master172

https://en.wikipedia.org/wiki/Holy_Grail_(web_design
http://jakearchibald.com/2014/dont-use-flexbox-for-page-layout/

layout.”21 A better option for layout would be CSS Grid, which we'll take a look at

in Chapter 10.

Creating Simple Grids with flex-wrap
Flexbox also makes it easy to create components in a grid with the flex-wrap

property. Initially, the value of flex-wrap is nowrap. Flex items will simply fill the

width of the container, growing or shrinking as necessary to fit on one line. If we

set it to flex-wrap: wrap, however, flex items will drop to the next line if their

width exceeds that of the container.

Let’s build a four-across grid based on the markup:

<div class="grid">
 <div class="alpha">A</div>
 <div class="beta">B</div>
 <div class="gamma">C</div>
 <div class="delta">D</div>
 <div class="epsilon">E</div>
 <div class="zeta">F</div>
 <div class="eta">G</div>
</div>

We’ve added display: flex to our .grid rule set to trigger a flexible layout context.

We’ve also added flex-wrap: wrap so that our flex items will wrap:

.grid{
 display: flex;
 flex-wrap: wrap;
}

.grid > * {
 flex: 0 0 25%;
}

Our .grid > * rule set uses the flex property to give all items a flex-basis (a

width) of 25%. This gives us two rows of evenly sized boxes, shown in Figure 4.36.

21 http://jakearchibald.com/2014/dont-use-flexbox-for-page-layout/

173Complex Layouts

http://jakearchibald.com/2014/dont-use-flexbox-for-page-layout/

Figure 4.36. Creating components in a grid with flexbox

This grid looks a bit awkward, though: our second row has a gap. Let’s fix that. We

just need to change our flex-grow value:

.grid > * {
 flex: 1 0 25%;
}

Now the elements in our second row will expand evenly to fill the container, as

presented in Figure 4.37.

CSS Master174

Figure 4.37. Gridded items in a flex container can also expand to fill available space

To evenly distribute items across the width of a flex container, use justify-content:

space-between or justify-content: space-around. The former evenly distributes

the space between flex items, aligning the first and last items with the edges of the

container (Figure 4.38). The latter centers flex items and evenly distributes space

around them (Figure 4.39).

Figure 4.38. Distributing flex items with justify-content: space-between

175Complex Layouts

Figure 4.39. Distributing flex items with justify-content: space-around

It’s also possible to center flex items in a row with justify-content: center, as

seen in Figure 4.40. In that case, the items in our second row will be centered in

the middle of the row.

Figure 4.40. Distributing flex items with justify-content: center

Creating grids with flexbox requires far less markup and CSS than other methods.

CSS Master176

Creating Flexible Components with flex
Another use case for flexbox is creating flexible, vertically aligned form components.

Consider the interface pattern shown in Figure 4.41.

Figure 4.41. A form field with an adjacent button

Here we have a form input control and an adjacent button. Both are vertically

aligned, and our button is 110 pixels wide.

What if we want our input element to expand to fill the available space in its con-

tainer? Without flexbox, we’d require some JavaScript and hand-waving to update

the width of input in response to changes in the width of its parent. With flexbox,

however, we can just use flex.

The flex property is actually shorthand for three other properties:

flex-grow: indicates that an element should grow if necessary and must be

a positive integer; initial value is 0

flex-shrink: indicates that an element should shrink if necessary and must be

a positive integer; initial value is 1

flex-basis: indicates the initial or minimum width (when the flex axis is

horizontal) or height of an element (when it’s vertical); may be a

length or percentage, or auto, and its initial value is auto

Though it’s possible to set each of these individually, the specification strongly re-

commends using the flex shorthand. Here’s an example:

div {
 display: flex;
 justify-content: center;
}

input[type="text"],

177Complex Layouts

button {
 border:0;
 display: inline;
 font: inherit;
}

input[type="text"] {
 flex: 1 0 auto;
}

button {
 background: #003;
 color: whitesmoke;
 display: block;
 text-align: center;
 flex: 0 0 110px;
}

Remember the Prefix for WebKit-based Browsers

Just a reminder that some recent versions of WebKit browsers require a -webkit-

prefix for flexbox properties. For those browsers, justify-content needs to be

-webkit-justify-content and flex should be -webkit-flex.

Here we’ve used flex: 1 0 auto for our input element. Since its flex-grow value

is 1, it will grow to fill the available space of its parent. For the button element,

however, we’ve used flex: 0 0 110px. The 0 values for flex-grow and flex-

shrink prevent the width of the button from increasing or decreasing, while the

flex-basis value of 110px sets its width.

As you can see in Figure 4.42, our button remains the same size, but the width of

input expands to fill the remaining space.

CSS Master178

Figure 4.42. Our form field component at 330 (top) and 840-pixels wide

Here’s the tricky bit about flex-grow and flex-shrink values: they’re proportional.

Yes, flex: 1 0 auto means our input element will be wider than our button. But

changing the value of our button’s flex property to flex: 1 0 auto doesn’t neces-

sarily mean that both elements will have the same size, as shown in Figure 4.43.

179Complex Layouts

Figure 4.43. Both items have the same flex value, but are still different sizes

Instead, flex items will be resized to fill the container, taking their used min-width

and max-width values into account (which may be their initial values).

Letting Source Order Diverge from Layout: the order
Property
The source order of a document is important. Whether a search box comes before

or after the sitemap links in your footer has implications for assistive technology

and flexibility of layout. Take a look at the footer component shown in Figure 4.44.

CSS Master180

Figure 4.44. Distributing flex items with justify-content: center

Here our Topics subsection comes first, followed by the Contact Us, Search this site,

and a “copyleft” notice. But this is what our markup looks like:

04-layouts/flex-footer.html (excerpt)

<footer class="flex align-top wrap">
 <!-- Search form -->
 <form class="flex wrap">
 <div><label>Search this site</label></div>
 <p class="flex same-height">
 <input type="search">
 <button type="submit">Search</button>
 </p>
 </form>
 <!-- Topics -->
 <section id="topics">
 <h2>Topics </h2>
 <ul class="taglist">
 ActionScript
 Apache
 CSS3
 Cyberduck
 DevOps
 HTTP

181Complex Layouts

 JavaScript
 Python
 Nginx
 Sass
 SQL
 Software
 Ruby
 WordPress
 XHR

 </section>
 <!-- Contact -->
 <section id="contact">
 <h2>Contact Us</h2>
 <p>SitePoint Pty Ltd
48 Cambridge St,
Collingwood VIC
layouts-tabflexbox 3066
Australia</p>
 </section>
 <!-- Copyleft -->
 <p class="copyleft">
 © 2015. No rights reserved.
 </p>
</footer>

Our source order doesn't match our rendering order. In the source, our search box

is first, followed by the list of tags, address, and copyleft notice. What kind of

trickery is this? Here are the relevant portions of our CSS:

04-layouts/flex-footer.html (excerpt)

form {
 flex-wrap: wrap;
 flex: 0 0 30%;
 order: 1
}

[id=topics] {
 flex: 1 1 auto;
 order: -1
}

[id=copyleft] {
 flex: 0 0 100%;
 order: 1;
}

CSS Master182

[id=contact] {
 flex: 0 0 25%;
}

Each rule set has an order property―that is, except for [id=contact]. We’ll come

back to that point in a moment. The order property determines the sequence of flex

items on screen. Its value must be an integer and negative values are perfectly valid.

Its initial value is 0.

With order, the actual number matters less than its value relative to the order

property of its siblings. As you can see in the previous example, a flex item with

order: 1 will succeed a flex item with an order value of 0. This is true whether

order: 0 is declared or computed. That’s why [id=contact] is the second item in

our display order. A flex item with order: -1, on the other hand, will precede a

flex item with an order value of 0. Two items with the same order value will be

displayed according to their order in the source.

Vertical Centering with Flexbox
Finally, let’s take a look at how to vertically center content with flexbox. Vertically

centering elements is one of the more difficult tasks to achieve with CSS, particularly

if the height of your content is unknown. But with flexbox, we require just one line

of CSS: align-items: center:

.flex-container {
 display: flex;
 align-items: center;
}

This will position flex items so that there is an equal amount of space above and

below the row, as in Figure 4.45.

183Complex Layouts

Figure 4.45. Distributing flex items with justify-content: center

But that’s not all. If our flex items wrap, those rows will also be centered within its

parent.

In Figure 4.46, our rows of flex items are centered, but there’s still a great deal of

space between each row.

CSS Master184

Figure 4.46. Vertically centering rows of flex items

We can manage this space with the align-content property. Using align-content:

center eliminates the space between rows, as in Figure 4.47.

185Complex Layouts

Figure 4.47. Eliminating space between rows of flex items using align-content: center

We can use align-content: center with align-items: center, or by itself. The

CSS that follows will also create the layout shown in Figure 4.47:

.flex-container {
 display: flex;
 align-content: center;
}

The align-content property only has an effect, however, when there are mutiple

rows of flex items. Otherwise, align-items is sufficient.

Vertical Centering with Box Alignment

It's worth noting that the Box Alignment module22, currently in working draft,

should bring vertical centering to all layout methods, including block.

22 http://www.w3.org/TR/css-align-3/

CSS Master186

http://www.w3.org/TR/css-align-3/

There’s a bit more to flexbox than what we’ve covered here. CSS-Tricks’ “A Guide

to flexbox”23 digs into all the properties and values. You can also check out Philip

Walton’s “Solved by flexbox,”24 which showcases several UI patterns that are made

easier with flexbox.

Conclusion
Now that this chapter is complete, you should understand some of the tricks and

challenges of creating complex layouts. Specifically, you should now understand:

■ why and how to use the box-sizing property
■ how stacking contexts work and how to create them
■ when and how to use multiple-column layout
■ what kinds of layout challenges you can solve with flexbox

Stacking context comes up again in Chapter 6, in which we discuss transforms. But

first, let’s look at CSS transitions.

23 https://css-tricks.com/snippets/css/a-guide-to-flexbox/
24 http://philipwalton.github.io/solved-by-flexbox/

187Complex Layouts

https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
http://philipwalton.github.io/solved-by-flexbox/

Chapter5
Transitions and Animation
Now that we’ve covered some advanced CSS layouts, let’s look at how to add some

whimsy, delight, and polish to our documents with CSS transitions and animations.

Transitions and animations can often clarify the effect of an action. A menu that

slides into view, for example, is less abrupt and jarring than one that appears sud-

denly after a button is clicked. Transitions and animations can also draw attention

to a page change or problem. You might, for instance, transition the border color of

a form field to highlight that its value is invalid.1

This is probably a good time to explain how animations and transitions differ. With

a transition, you define start and end states, and the browser fills in the states in

between. With animations, on the other hand, you can define those in-between

states and control how the animation progresses.

1 “Animation for Attention and Comprehension” [http://www.nngroup.com/articles/animation-usability/]

from the Nielsen Norman Group is a nice backgrounder on how animations and transitions can enhance

usability.

http://www.nngroup.com/articles/animation-usability/

CSS Transitions
CSS transitions2 are a CSS-based way to update the value of a CSS property over a

specified duration. Given a start value and an end value, the browser will interpolate

in-between values over the course of the transition. They’re great for simple effects

where you don’t mind giving up control over how the animation progresses.

In my own work, I often use transitions for :hover states. I also use them when re-

vealing or concealing content, such as showing an off-screen menu. You could create

animations for such effects, but animations are generally more verbose, as you’ll

see later in the chapter.

Browser support for CSS transitions is quite good (see Table 5.1), with the latest

versions of all major desktop and mobile browsers supporting them. In most—UC

Browser being the exception—no vendor prefix is necessary. Of course, if your

audience is still heavy with people who use older versions of Firefox or Safari,

you’ll want to include the appropriate prefixes (-moz- and -webkit- respectively).

Table 5.1. Browser support for CSS transitions (Source CanIUse.com3)

UC BrowserAndroidSafariOperaInternet
Explorer

FirefoxChrome

9+ (require

-webkit-

prefix)

2.1 (versions

< 4.4

require

-webkit-

prefix)

3.1+

(versions

6.1 require

-webkit-

prefix)

10.5+

(versions <

12.1 require

-o- prefix)

10+4+ (versions

< 16 require

-moz-

prefix)

4+ (versions

< 26 require

-webkit-

prefix)

Transitions also degrade gracefully. In browsers without support for them, users

will just see a transition-free change between the two values. This may be jarring—for

example, when showing or hiding content—but it won’t break your site’s function-

ality. An alternative is to use a JavaScript library. jQuery, for example, has several

simple animation methods.4 First test to see whether the browser supports transitions

(or animations), and fall back to JavaScript methods if it does not.

2 http://dev.w3.org/csswg/css-transitions/
3 http://caniuse.com/#search=transitions
4 http://api.jquery.com/category/effects/

CSS Master190

http://dev.w3.org/csswg/css-transitions/
http://caniuse.com/#search=transitions
http://api.jquery.com/category/effects/

Not all properties can be animated or transitioned. Only properties that accept in-

terpolatable values can. Interpolation is a method of calculating values that fall

within a range. Interpolatable values are typically numeric unit values such as

lengths, percentages, or colors, so they can’t be used with properties such as visib-

ility or display. Nor can we animate to or from auto values.5

Creating Your First Transition
In this example, we’ll make our link color transition from blue to pink when users

move their mouse over it, and back to blue when users moves their mouse off it.

Here’s our bare-bones HTML:

05-animations/transitions/simple.html (excerpt)

<!DOCTYPE html>
 <html lang="en-US">
 <head>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <p>Mouse over this link
➥ to see the transition effect.</p>
 </body>
</html>

This gives us the page shown in Figure 5.1.

5 The CSS Transitions specification includes a list of animatable CSS properties and values

[http://dev.w3.org/csswg/css-transitions-1/#animatable-css].

191Transitions and Animation

http://dev.w3.org/csswg/css-transitions-1/#animatable-css

Figure 5.1. A basic HTML page with a link

Now let’s add the following CSS to our style.css

a {
 transition: 1s;
}
a:link {
 color: #309;
}
a:hover {
 color: #f0c;
}

This is the bare minimum CSS required for a transition to work: a start value (color:

#309), an end value (color: #f0c), and a transition duration (transition: 1s;).

When you mouse over the link, you’ll see a gradual transition from blue to hot pink,

as illustrated in Figure 5.2.

CSS Master192

Figure 5.2. Once the transition has completed

Transitions need to be triggered by some kind of event. Often, this is a user interac-

tion. We might transition between colors when entering and leaving a :hover state,

as we’ve done here. But we can also trigger a transition by adding or removing a

class name using JavaScript. In the example following, we’ve modified element’s

classList attribute to do just that:

05-animations/transitions/simple-withjs.html (excerpt)

<script type="text/javascript">
 var btn = document.querySelector('button');
 btn.addEventListener('click', function() {
 document.body.classList.toggle('change');
 });
</script>

In the code, we’ve first defined a variable named btn. If you’re unfamiliar with

programming, a variable is simply a bucket of sorts that holds a value. We can then

use the variable anywhere we need that value. The value of btn is our button element,

as returned by document.querySelector('button'). The document.querySelect-

193Transitions and Animation

or() method is defined by the Selectors API specification.6 It accepts any CSS se-

lector as its argument, and returns the first item that matches. It’s a way to select

elements that will be manipulated with JavaScript.

Next, we’ve added what’s known as an event listener for the click event using ad-

dEventListener. The addEventListener method is part of the Document Object

Model. It allows us to define a function that will be called when a particular event

occurs. This function is known as an event handler or callback function. In this

case we’re listening—or waiting—for a click event on the button element.

The magic happens within the click event handler. We’re using the class-

List.toggle() method to add or remove the change class from the body element

(document.body). When the classList value changes, it will trigger the animation.

The classList property is a newer part of the Document Object Model API. It

provides a handful of methods that simplify the process of manipulating the class

names of an element.7

If you’d rather use jQuery, the syntax looks like this:

$('button').on('click', function() {
 $('body').toggleClass('change');
});

jQuery uses a $() function to select elements. This function accepts a CSS selector

string as an argument, and returns a list of elements that match. When we call a

method on this list of elements, it’s applied to each item in the list. Here, it’s the

onmethod. It works similarly to addEventListener, and also accepts two arguments.

The first is the event to listen for and the second is the function to invoke.

Within our event handler function, we’ve used the library’s toggleClass method

to add the change class to the body element. As with the plain JavaScript example,

this is what triggers our transition.

6 http://www.w3.org/TR/selectors-api2/
7 The classList property is also known as DOMTokenList. It’s defined in the Document Object

Model specification. [http://www.w3.org/TR/dom/] Internet Explorer 9 lacks support for classList,

however. If you still need to support IE9, use the className property, or a polyfill.

CSS Master194

http://www.w3.org/TR/selectors-api2/
http://www.w3.org/TR/dom/
http://www.w3.org/TR/dom/

Lacking confidence with JavaScript?

If any of that went over your head, don’t worry. Web Platform Docs explains these

concepts in its guide to programming basics,8 or pick up Darren Jones’ JavaScript:

Novice to Ninja.9 Using jQuery? Try the jQuery Learning Center.10

Now let’s look at our CSS. It’s only a few lines long:

body {
 background: #fcf;
 transition: 5s;
}

.change {
 background: #0cf;
}

Here we’ve defined a starting background color for our body element, and a transition.

We’ve also defined a .change class, which has a different value for background.

When our event handler runs, it will add the change class to our body element. This

will trigger a transition from the original background color to the one defined in

the .change declaration block, as shown in Figure 5.3.

If you want a transition to work in both directions—for example, when the class is

both added and removed—you should add it to whichever declaration block is your

start state. We’ve done that here by including the transition property in the body

declaration block. If we moved the transition to the change class, our transition

would only work when change was added to our body element, but not when it

was removed.

8 https://docs.webplatform.org/wiki/concepts/programming/programming_basics
9 https://www.sitepoint.com/premium/books/javascript-novice-to-ninja
10 http://learn.jquery.com/

195Transitions and Animation

https://docs.webplatform.org/wiki/concepts/programming/programming_basics
https://www.sitepoint.com/premium/books/javascript-novice-to-ninja
https://www.sitepoint.com/premium/books/javascript-novice-to-ninja
http://learn.jquery.com/

Figure 5.3. Creating a transition triggered by JavaScript

In the examples mentioned, we’ve used the transition shorthand property. It’s a

condensed way of specifying four “longhand” properties, which are listed in

Table 5.2.

Table 5.2. CSS transition properties

Initial valueDescriptionProperty

0s (no transition)How long the transition should lasttransition-duration

all (all animatable

properties)

Which property to transitiontransition-property

easeHow to calculate the values between

the start and end values

transition-timing-function

0s (no delay)How long the browser should wait

between changing the property and

starting the transition

transition-delay

Each longhand property has an initial value. It’s a default value that the browser

will use unless the property is explicitly set. For example, the initial value of

CSS Master196

transition-property is all (all properties), and the initial value of transition-

timing-function is ease. When we set a transition duration—whether using the

transition or transition-duration property—those values for transition-

property and transition-timing-function are implied. This is why we can get

away with setting the transition property and nothing else.

Using the transition Property
As we’ve already seen in the previous examples, time units are one acceptable value

for the transition property. The CSS Values and Units Module Level 3 specifica-

tion11 defines two kinds of time units for use with transitions and animations: s for

seconds, and ms for milliseconds. We can also collapse values for transition-

timing-function, transition-delay, and transition-property into this shorthand

transition property:

body {
 background: red;
 transition: background 500ms linear 1s;
}

Here we’ve told the browser to transition the background property. The duration

will last 500 milliseconds (which we could also write as .5s). It will use the linear

timing function (discussed later in this chapter), and the start of the transition will

be delayed by 1 second. It’s a compact version of the following CSS:

body {
 background: red;
 transition–property: background;
 transition–duration: 500ms;
 transition–timing–function: linear;
 transition–delay: 1s;
}

Order matters somewhat when using the transition shorthand property. The first

value that can be interpreted as a time will become the transition duration no matter

where it sits in the value string. The second time value will determine the transition

delay. In other words, we could reorder the values in our transition property like

so:

11 http://www.w3.org/TR/css3-values/

197Transitions and Animation

http://www.w3.org/TR/css3-values/
http://www.w3.org/TR/css3-values/

body {
 background: red;
 transition: 500ms 1s background linear;
}

Using the transition property is the most concise way to define a transition;

however, there may be cases in which you want to define a global transition effect

(for example, transition: 500ms ease) in one part of your CSS, and limit it to

specific CSS properties (for example, transition-property: color) in another.

This is where the longhand properties are useful.

Transition Durations and Delays
The transition-duration property sets the duration of the transition, or how long

it will take to complete. The transition-delay property determines how much

time should lapse before the transition begins. Both properties accept time units as

a value. These can be seconds or milliseconds; 1s, 2.5s, and 200ms are all valid

values.

Both transition-duration and transition-delay have an initial value of 0s, or

zero seconds. For transition-duration, this means there will be no gradual

transition between the start and end states. For transition-delay, this means the

transition will occur immediately.

With transition-duration, you must use values greater than zero, such as .5s or

2500ms. Negative values will be treated like a value of 0s, and the transition will

fail to execute, as illustrated in Figure 5.4.

CSS Master198

Figure 5.4. The effect of a negative transition delay

Negative values are valid for transition-delay, though. Positive transition-delay

values shift the start of the animation by the specified amount of time. Negative

values, however, offset the beginning of the transition, as seen in Figure 5.4. Using

transition-duration: 2s; transition-delay: -1s will cause the transition to

jump one second into the play cycle before continuing. Using a negative transition-

delay value can create a snappier transition experience by shortening its perceived

duration.

Timing Functions
We can also shape transition effects using the transition-timing-function

property. Timing functions are formulae of sorts that determine how the in-between

values of a transition are calculated. Which timing function you use will depend

on what kind of transition effect you’d like to achieve: a stepped transition or a

smooth gradual one.

199Transitions and Animation

Stepped Transitions
With stepped transitions, the play cycle is divided into intervals of equal value and

duration. We can set how many intervals a transition should have using the steps

timing function.

Let’s revisit our background color example from earlier in this chapter. Instead of

using the default ease timing function, we’ll instead use the steps function to create

a five-step transition. Our revised CSS looks like this:

body {
 background: #f0f;
 transition: 5s steps(5);
}

.change {
 background: #0cf;
}

Rather than a smooth, gradual shift between colors, this transition will cycle through

five distinct color states.

There are also two keywords we can use to create stepped animations: step-start

and step-end. These are equivalent to steps(1, start) and steps(1, end). With

these keywords (or their step function equivalents), the transition will have exactly

one interval between the start value and end value.

Smooth Transitions
Smooth transitions use the cubic-bezier function to interpolate values. Understand-

ing how this function works involves a bit of math, along with some handwaving

and magic. Read Pomax’ “A Primer on Bézier Curves”12 if you’re interested in the

intimate details. What follows is a simplified explanation.

The cubic Bézier function is based on the cubic Bézier curve. In general, a Bézier

curve consists of a start point and an end point, and one or more control points that

affect the shape of the curve. A cubic Bézier curve always has two of these control

points, which can be seen in Figure 5.5. Curves are drawn from the start point to

the end point, towards the control points.

12 http://pomax.github.io/bezierinfo/#explanation

CSS Master200

http://pomax.github.io/bezierinfo/#explanation

Figure 5.5. A cubic Bézier curve, where the filled circles are the control points

The arguments passed to the cubic-bezier function represent the coordinates of

those control points: x1, y1, x2, y2. But there's a constraint on these points: X val-

ues—the first and third parameters—must fall between 0 and 1. Y values (the second

and fourth parameters) can exceed this range in either direction. In other words,

cubic-bezier(0, 1.02, 1, 0) and cubic-bezier(0, 1.08, .98, -0.58) are

valid values, but cubic-bezier(2, 1.02, -1, 0) is not.13

Graphs are the best way to illustrate how cubic-bezier works. The X-axis is a

function of the transition’s duration, and can be seen in Figure 5.6. The Y-axis is a

function of value of the property that’s being transitioned. The outputs for these

functions determine the values of the property at a particular point in the transition.

Changes in the graph match the changes in speed over the course of a transition.

13 Lea Verou's cubic-bezier.com [http://cubic-bezier.com/] is a great tool for experimenting with the

cubic-bezier function.

201Transitions and Animation

http://cubic-bezier.com/

Figure 5.6. A graph of cubic-bezier(0.42, 0, 1, 1)

In most cases, it’s easier to use a timing function keyword. We mentioned step-

start and step-end in the previous section, but there are five more keywords, each

of which is an alias for cubic-bezier values. They’re listed in Table 5.3.

Table 5.3. Timing function keywords and their function equivalents

EffectEquivalent functionKeyword

Begins slowly, accelerates quickly, then slows

towards the end of the transition

cubic-bezier(0.25, 0.1,

0.25, 1)

ease

Begins quickly, then accelerates slowly but

steadily until the end of the transition

cubic-bezier(0.42, 0, 1,

1)

ease-in

Accelerates quickly but slows towards the end

of the transition

cubic-bezier(0, 0, 0.58,

1)

ease-out

Begins slowly, accelerates quickly, then

decelerates towards the end of the transition

cubic-bezier(0.42, 0,

0.58, 1)

ease-in-out

Speed remains consistent over the course of

the animation

cubic-bezier(0, 0, 1, 1)linear

CSS Master202

Transitioning Multiple Properties
It’s possible to transition multiple properties of a single element using a transition

list. Let’s look at an example:

div {
 background: #E91E63;
 height: 200px;
 width: 200px;
 margin: 10px 0;
 position: relative;
 left: 0;
 top: 3em;
 transition: left 4s cubic-bezier(0.175, 0.885, 0.32, 1.275),
 background 2s 500ms;
}

.transthem {
 left: 30%;
 background: #00BCD4;
}

Here, we’ve defined transitions for the left and background properties. The differ-

ence is that each item is separated by a comma. The left transition will last four

seconds and use a cubic-bezier timing function. The background transition will

only last two seconds, but it will begin after a half-second (500ms) delay.

Occasionally, you may need to detect when a transition ends in order to take another

action. For example, if you transition the opacity: 1 to opacity: 0, it’s a good

idea to add a hidden attribute to the element for improved assistive technology

support. This is where the transitionend event comes in handy.14

When a transition completes, the browser fires a transitionend event on the affected

element—one for each property.15We can listen for these events using addEventL-

istener:

14 In older versions of Chrome (< 26) and Safari (< 6), this event is prefixed webkitTransitionEnd.

In older versions of Opera, it is oTransitionEnd (10.5) or otransitionend (12). Other browsers

and versions use no prefix.
15 There is no correspondingtransitionstart event; nor does HTML define anontransitionend
event attribute.

203Transitions and Animation

var element, transitionEndHandler;
transitionEndHandler = function(evt) {
 // Do something.
}
element = document.getElementById('el');
element.addEventListener('transitionend', transitionEndHandler);

Are you using jQuery? The function definition stays the same, but the last two lines

can be combined:

$('#el').on('transitionend', transitionEndHandler);

Let’s put this knowledge to use. In this example, we’ll hide unselected form options

when the user picks one. Our (simplified) HTML follows:

05-animations/transitions/transition-end.html (excerpt)

<h1>Please select your favorite color of the ones shown below.</h1>
<form>

 <input type="radio" name="favecolor" id="red"><label
➥ for="red">Red</label>

 <input type="radio" name="favecolor" id="yellow"><label
➥ for="yellow">Yellow</label>

 <input type="radio" name="favecolor" id="blue"><label
➥ for="blue">Blue</label>

 <div id="thanks" hidden>Thank you for selecting your
➥ favorite color.</div>
 <button type="reset">Reset</button>
</form>

And here’s our (also simplified) CSS:

CSS Master204

li {
 transition: 500ms;
}

.fade {
 opacity: 0;
}

/* For browsers that don't support the hidden attribute */
[hidden] {
 display: none;
}

Add some styles for color and font size, and we end up with the example in Fig-

ure 5.7.

Figure 5.7. Our transition demo form

Now let’s tie it together with JavaScript. First, let’s define an action that adds the

fade class—in this case, a change event handler:

205Transitions and Animation

05-animations/transitions/transition-end.html (excerpt)

var form, changeHandler;
changeHandler = function() {
 // Select unchecked radio buttons. Returns a NodeList.
 var notfave = document.querySelectorAll('input:not(:checked)');

 // Treat the NodeList like an array
 Array.prototype.map.call(notfave, function(nf) {
 // Find the parent node, and add a 'fade' class
 nf.parentNode.classList.add('fade');
 });
};
form.addEventListener('change', changeHandler);

When the user selects a color, our form element will receive a change event. That

in turn triggers the changeHandler method, which adds a fade class to the parent

element of each radio button. This is what triggers our transition.

Using the map Method

Array.prototype.map.call is a way of using the mapmethod of the JavaScript

array object for array-like items. The Mozilla Developer Network coversArray.pro-

totype.map16 in depth.

The jQuery equivalent follows:

var changeHandler = function() {
 // Select unchecked radio buttons. Returns a NodeList.
 $('input').not(':checked').parent().addClass('fade');
};
$('form').on('change', changeHandler);

Now let’s take a look at our transitionend handler. It’s slightly different from the

other examples in this chapter:

16 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

CSS Master206

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

var transitionendHandler = function(eventObject) {
 eventObject.target.setAttribute('hidden', '');
 document.getElementById('thanks').removeAttribute('hidden');
};
document.addEventListener('transitionend', transitionendHandler);

Our transitionendHandler accepts a single event object argument. Here we’ve

named it eventObject, but you could name it evt, foo—just about anything. This

event object is passed automatically, according to behavior defined by the Document

Object Model, Level 2 specification. In order to reference this event object within

our handler, we need to define it as a parameter for our function.

Every event object includes a target property. This is a reference to the element

that received the event. In this case it’s a list item, and we’re adding a hidden attrib-

ute to each (eventObject.target.setAttribute('hidden', '')). The last line of

our event handler removes the hide class from our “Thank you” message, as seen

in Figure 5.8.

Figure 5.8. Our form after the user has chosen an option and the transitionend event fires

The jQuery equivalent follows:

207Transitions and Animation

var transitionendHandler = function(eventObject) {
 $(eventObject.target).attr('hidden', '');
 $('#thanks').removeAttr('hidden');
};

$(document).on('transitionend', transitionendHandler);

Here we’re using jQuery’s methods to add a hidden attribute to each list item, and

to remove it from #thanks.

Multiple Transitions and transitionend Events
Compound transitions—that is, a transition of multiple properties—trigger multiple

transitionend events. A transition such as transition: left 4s cubic-linear,

background 2s 500ms; will trigger two transitionend events: one for the left

property and another for background. To determine which transition triggered the

event, you can check the propertyName property of the event object:

var transitionendHandler = function(eventObject) {
 if(eventObject.propertyName === 'opacity'){
 // Do something based on this value.
 }
};

Occasionally, a transition will fail to complete. This can typically happen when

the property is overridden while it’s in progress—perhaps a user action removes

the class name. In those situations, the transitionend event won’t fire.

Because of this risk, avoid using the transitionend event to trigger anything

“mission critical,” such as a form submission.

CSS Animation
Think of CSS animation as the more sophisticated sister to CSS transitions. Anima-

tions differ from transforms in a few key ways:

■ Animations do not degrade gracefully. If there’s no support from the browser,

the user is out of luck. The alternative is to use JavaScript.

■ Animations can repeat, and repeat infinitely. Transitions are always finite.

CSS Master208

■ Animations use keyframes, which offer the ability to create more complex effects.

■ Animations can be paused in the middle of the play cycle.

The latest versions of all major browsers support CSS animation, proxy browsers

excepted. Versions of Safari prior to 9, versions of Chrome prior to 43, and UC

Browser versions up to and including 9 require a -webkit- prefix. See Table 5.4 for

more information.

Table 5.4. Browser support for CSS animation (Source: CanIUse.com17)

UC BrowserAndroidSafariOperaInternet
Explorer

FirefoxChrome

9+ (requires

-webkit-

prefix)

2.1 (versions

 4.3 require

-webkit-

prefix, 4.3

has partial

support)

4+ (versions

 9.0 require

-webkit-

prefix)

12.1+

(versions

15 require

-webkit-

prefix)

10+5+ (versions

 15 require

-moz-

prefix)

4+ (versions

 43 require

-webkit-

prefix)

Firefox versions 15 and earlier require a -moz- prefix; later versions do not. Internet

Explorer 10+ also supports animations without a prefix. Earlier versions of IE do

not support animations at all.

We can check for CSS animations support in a few ways. The first is by testing for

the presence of CSSKeyframeRule as a method of the window object:

var hasAnimations = 'CSSKeyframeRule' in window;

If the browser supports the @supports rule and CSS.supports() API (discussed in

Chapter 6), we can use that instead:

17 http://caniuse.com/#feat=css-animation

209Transitions and Animation

http://caniuse.com/#feat=css-animation

var hasAnimations = CSS.supports('animation-duration','2s');18

The other option is to use the Modernizr JavaScript library19 and its Modern-

izr.cssanimations property.

Creating Your First Animation
We first have to define an animation using an @keyframes rule. The @keyframes

rule has two purposes:

■ sets the name of our animation
■ groups our keyframe rules

Let’s create an animation named pulse:

@keyframes pulse {

}

Our keyframes will be defined within this block. In animation, a keyframe is a point

at which the action changes. With CSS animations specifically, keyframe rules are

used to set property values at particular points in the animation cycle. Values that

fall between the values in a keyframe rule are interpolated.

At the minimum we require two keyframes: a from keyframe, which is the starting

state for our animation and a to frame, which is its end state. Within each individual

keyframe block, we can define which properties to animate:

css/chapter5/animsimple.css (excerpt)

@keyframes pulse {
 from {
 transform: scale(0.5);
 opacity: .8;
 }

 to {

18 In older versions of WebKit/Blink-based browsers, this needs to be CSS.supports('-webkit-
animation-duration','2s');
19 http://modernizr.com/

CSS Master210

http://modernizr.com/

 transform: scale(1);
 opacity: 1;
 }
}

This code will scale our object from half its size to its full size, and change the

opacity from 80% to 100%.20

The keyframes rule only defines an animation, though. Nothing is actually made

to move. For that, we need to apply it. Let's also define a pulse class that we can

use to apply this animation to any element:

.pulse {
 animation: pulse 500ms;
}

Here we’ve used the animation shorthand property to set the animation name and

duration. In order for an animation to play, we need the name of an @keyframes

rule (in this case, pulse) and a duration. Other properties are optional.

The order of properties for animation is similar to that of transition. The first

value that can be parsed becomes the value of animation-duration. The second

value becomes the value for animation-delay. Words that aren’t CSS-wide keywords

or animation property keyword values are assumed to be @keyframe rule set names.

As with transition, animation also accepts an animation list. The animation list

is a comma-separated list of values. We could, for example, split our pulse animation

into two rules: pulse and fade:

@keyframes pulse {
 from {
 transform: scale(0.5);
 }
 to {
 transform: scale(1);
 }
}

20 Use @-webkit-keyfames to support older versions of Chrome (< 43) and Safari (< 9). Use @-moz-

keyframes if you need to support older versions of Firefox (< 16).

211Transitions and Animation

@keyframes fade {
 from {
 opacity: .5;
 }
 to {
 opacity: 1;
 }
}

Then we could combine them as part of a single animation:

.pulse-and-fade {
 animation: pulse 500ms, fade 500ms;
}

Animation Properties
Though the animation property is shorter, sometimes longhand properties are

clearer. Longhand animation properties are listed in Table 5.5.

CSS Master212

Table 5.5. Animation properties

Initial valueDescriptionPropertya

0s (executes

immediately)

How long to wait before executing the

animation

animation-delay

0s (no animation

occurs)

How long the cycle of an animation

should last

animation-duration

noneThe name of a @keyframes ruleanimation-name

easeHow to calculate the values between the

start and end states

animation-timing-function

1How many times to repeat the animationanimation-iteration-count

normal (no

reverse)

Whether or not the animation should

ever play in reverse

animation-direction

runningWhether the animation is running or

paused

animation-play-state

noneSpecifies what property values are

applied when the animation isn’t

running

animation-fill-mode

a To date, these properties must be prefixed for WebKit/Blink-based browsers (that is, -webkit-anim-

ation-name and -webkit-animation-duration).

The animation-delay and animation-duration properties function like trans-

ition-delay and transition-duration. Both accept time units as a value, either

in seconds (s) or milliseconds (ms) units. Negative time values are valid for anima-

tion-delay, but not animation-duration.

Let’s rewrite our .pulse rule set using longhand properties. Doing so gives us the

following:

.pulse {
 animation-name: pulse;
 animation-duration: 500ms;
}

The animation-name property is fairly straightforward. Its value can be either none,

or the name of the @keyframes rule. Animation names have few restrictions. CSS

keywords such as initial, inherit, default, and none are forbidden. Most punc-

tuation characters won’t work, while letters, underscores, digits, and emoji (and

213Transitions and Animation

other Unicode) characters usually will. For clarity and maintainability, it’s a good

idea to give your animations descriptive names, and avoid using CSS properties as

names.

To Loop or Not to Loop: The
animation-iteration-count Property
If you’re following along with your own code, you’ll notice that this animation only

happens once. We want our animation to repeat. For that, we’ll need the animation-

iteration-count property.

The animation-iteration-count property accepts most numeric values. Whole

numbers and decimal numbers are valid values. With decimal numbers, however,

the animation will stop part-way through the last animation cycle, ending in the

to state. Negative animation-iteration-count values are treated the same as 1.

To make an animation run indefinitely, use the infinite keyword. The animation

will play an infinite number of times. Of course, infinite really means until the

document is unloaded, the browser window closes, the animation styles are removed,

or the device shuts down. Let’s make our animation infinite:

.pulse {
 animation-name: pulse;
 animation-duration: 500ms;
 animation-iteration-count: infinite;
}

Or, using the animation shorthand property:

CSS Master214

.pulse {
 animation: pulse 500ms infinite;
}

Playing Animations: the
animation-direction Property
There’s still a problem with our animation, however. It doesn’t so much pulse as

repeat our scaling-up animation. What we want is for this element to scale up and

down. Enter the animation-direction property.

The animation-direction property accepts one of four values:

normal: the initial value, playing the animation as specified

reverse: flips the from and to states and plays the animation in

reverse

alternate: plays even-numbered animation cycles in reverse

alternate-reverse: plays odd-numbered animation cycles in reverse

To continue with our current example, reverse would scale down our object by a

factor of 0.5. Using alternate would scale our object up for the odd-numbered

cycles, down for the even-numbered. Conversely, using alternate-reverse would

scale our object down for the odd-numbered cycles and up for the even ones. Since

this is the effect we want, we’ll set our animation-direction property to alternate-

reverse:

.pulse {
 animation-name: pulse;
 animation-duration: 500ms;
 animation-iteration-count: infinite;
 animation-direction: alternate-reverse;
}

Or, using the shorthand property:

215Transitions and Animation

.pulse {
 animation: pulse 500ms infinite alternate-reverse;
}

Using Percentage Keyframes
Our previous example was a simple pulse animation. We can create more complex

animation sequences using percentage keyframes. Rather than using from and to,

percentage keyframes indicate specific points of change over the course of the an-

imation. Below is an example using an animation named wiggle:

css/chapter5/animspctkeyframes.css (excerpt)

@keyframes wiggle {
 25% {
 transform: scale(.5) skewX(-5deg) rotate(-5deg);
 }
 50% {
 transform: skewY(5deg) rotate(5deg);
 }
 75% {
 transform: skewX(-5deg) rotate(-5deg) scale(1.5);
 }
 100% {
 transform: scale(1.5);
 }
}

We’ve used increments of 25% here, but these keyframes could be 5%, 10%, or

33.2%. As the animation plays, the browser will interpolate the values between

each state. As with our previous example, we can assign it to a selector:

/* Our animation will play once */
.wiggle {
 animation-name: wiggle;
 animation-duration: 500ms;
}

Or using the animation shorthand property:

CSS Master216

.wiggle {
 animation: wiggle 500ms;
}

There’s just one problem here. When our animation ends, it goes back to the original,

pre-animated state. To prevent this, we use the animation-fill-mode property.

The animation-fill-mode Property
Animations have no effect on properties before they begin or after they stop playing.

But as you’ve seen with the wiggle example, once an animation ends, it reverts to

its pre-animation state. With animation-fill-mode, we can fill in those states before

the animation starts and ends.

The animation-fill-mode property accepts one of four values:

none: the animation has no effect when it is not executing

forwards: when the animation ends, the property values of the end state will

still apply

backwards: property values for the first keyframe will be applied during the

animation delay period

both: effects for both forwards and backwards apply

Since we want our animated element to remain in its final, scaled-up state, we’re

going to use animation-fill-mode: forwards (animation-fill-mode: bothwould

also work).

The effect of animation-fill-mode: backwards is most apparent when the anima-

tion-delay property is set to a 500ms or higher. When animation-fill-mode is set

to backwards, the property values of the first keyframe are applied, but the animation

is not executed until the delay elapses.

Pausing Animations
As has been mentioned, animations can be paused. Transitions can be reversed

mid-way, or stopped altogether by toggling a class name. Animations, on the other

217Transitions and Animation

hand, can be paused part-way through the play cycle using animation-play-state.

It has two defined values: running and paused, and its initial value is running.

Let’s look at a simple example of using animation-play-state to play or pause an

animation.21 First, our CSS:

.wobble {
 animation: wobble 3s ease-in infinite forwards alternate;
 animation-play-state: paused;
}

.running {
 animation-play-state: running;
}

Here we have two declaration blocks: wobble, which defines a wobbling animation,

and running, which sets a play state. As part of our animation declaration, we’ve

set an animation-play-state value of paused. To run our animation, we’ll add the

running class to our element. Let’s assume that our markup includes a Run animation

button with an id of trigger:

var trigger = document.querySelector('#trigger');
var moveIt = document.querySelector('.wobble');

trigger.addEventListener('click', function() {
 moveIt.classList.toggle('running');
});

Using jQuery, this would be:

$('#trigger').on('click', function(){
 $('.wobble').toggleClass('running');
});

Adding .running to our element overrides the animation-play-state value set in

.wobble, and causes the animation to play.

21 Some browsers support adding theanimation-play-state value to theanimation declaration,

but not Safari and Internet Explorer.

CSS Master218

Detecting When Animations Start, End, or Repeat
Like transitions, animations fire an event when they end: animationend. Unlike

transitions, animations also fire animationstart and animationiteration events

when they begin or repeat. As with transitions, you might use these events to trigger

another action on the page. Perhaps you’d use animationstart to contextually reveal

a Stop Animation button, or animationend to reveal a Replay button.

We can listen for these events with JavaScript. Below, we’re listening for the anim-

ationend event:

var animate = document.getElementById('#animate');

animate.addEventListener('animationend', function(eventObject) {
 // Do something
});

The code is slightly different if you’re using jQuery:

$('#animate').on('animationend', function(eventObject) {
 // Do something
});

Vendor Prefixing

In Chrome < 43 and Safari < 9, these events still require a vendor prefix. They’re

also camel-cased: webkitAnimationStart, webkitAnimationEnd, and web-

kitAnimationIteration.

Here, too, the event handler function receives an event object as its sole argument.

In order to determine which animation ended, we can query the animationName

property of the event object.

A Note About Accessibility
Transitions and animations can enhance the user experience by making interactions

smooth rather than jumpy, otherwise bringing delight to the interface; however,

they still have accessibility risks. Large spinning animations, for example, can cause

219Transitions and Animation

dizziness or nausea for people with vestibular disorders, such as vertigo22. Flashing

animations can trigger seizures in some people with photosensitive epilepsy23. Use

them sparingly, and strongly consider giving users the ability to turn them off.

A Note About Performance
Some properties create better-performing transitions and animations than others.

If an animation updates a property that triggers a reflow or repaint, its performance

may be poor on low-powered devices such as phones and tablets.

Properties that trigger a reflow are ones that affect layout. These include the following

animatable properties:

■ border-width (and border-*-width properties)
■ border (and border-* properties)
■ bottom

■ font-size

■ font-weight

■ height

■ left

■ line-height

■ margin (and margin-* properties)
■ min-height

■ min-width

■ max-height

■ max-width

■ padding (and padding-* properties)
■ right

■ top

■ vertical-align

■ width

22 "Infinite Canvas 6: Vestibular Disorders and Accessible Animation"

[https://www.youtube.com/watch?v=QhnIZh0xwk0]is a great introduction to the subject of vestibular

disorders and animation.
23 WCAG 2.0 provides guidelines [http://www.w3.org/WAI/WCAG20/quickref/Overview.php#seizure

] for avoiding flashes and animations that are known to trigger seizures.

CSS Master220

https://www.youtube.com/watch?v=QhnIZh0xwk0
http://www.w3.org/WAI/WCAG20/quickref/Overview.php#seizure

When these properties are animated, the browser must recalculate the size and po-

sition of the affected—and often neighboring—elements. Use Chapter 6 where you

can. Transitioning or animating a translation transform [that is, transform:

translate(100px,200px)] can replace top, left, right, and bottom properties. In

some cases, height and width animations can be replaced with a scale transform-

ation.

Sometimes, triggering a reflow (or layout update) is unavoidable. In those cases,

minimize the number of elements affected and use tricks (such as negative delays)

to shorten the perceived animation duration.

Properties that trigger a repaint are typically those that cause a color change. These

include:

■ background

■ background-image

■ background-position

■ background-repeat

■ background-size
■ border-radius

■ border-style

■ box-shadow

■ color

■ outline

■ outline-color

■ outline-style

■ outline-width

Changes to these properties are less expensive to calculate than those that affect

layout, but they do still have a cost. Changes to box-shadow and border-radius are

especially expensive to calculate, especially for low-powered devices. Use caution

when animating these properties.

Conclusion
In this chapter, we’ve looked at how to add motion to web pages using CSS trans-

itions and animations, and why you might like to do so. We’ve also touched on

221Transitions and Animation

performance and accessibility concerns, and explained the finer points of the cubic-

bezier function.

As you use transitions and animations, consider how you are using them. They’re

best used to focus the user’s attention or clarify an action. But they can also be used

to add whimsy and delight.

CSS Master222

Chapter6
CSS Transforms
Transforms allow us to create effects and interactions that are otherwise impossible.

When combined with transitions and animations, we can create elements and inter-

faces that rotate, dance, and zoom. Three-dimensional transforms, in particular,

make it possible to mimic physical objects.

Take, the humble postcard received from a friend, for example. Its front face contains

a photo of the destination from which your friend sent the card (Figure 6.1). When

you flip it over, you see expanded information about the photo and your friend’s

journey (by the way, he wishes you were there).

Figure 6.1. Greetings from Hollywood1

A postcard isn’t a web interface, obviously, but it is a metaphor for the kind of in-

terfaces that we can create. Perhaps you want to build a weather widget that functions

similarly to a postcard. The front of our widget contains a current weather summary,

which can be seen in Figure 6.2. Flipping it over―triggered by a tap or swipe―might

show an expanded weather forecast, or reveal a settings panel as seen in Figure 6.3.

1 Photo by the author.

CSS Master224

Figure 6.2. An example weather widget

Figure 6.3. Our widget’s settings panel

Card-style interfaces are a great example of what we can build with transforms. In

this chapter, we’ll do a deep dive into the details of how they work, but first: the

current state of transforms.

225CSS Transforms

The Current State of Transforms
Transforms are defined by the CSS Transforms specification.2 At one point, two-

dimensional and three-dimensional transforms were defined by two separate spe-

cifications. As you move through the chapter, you’ll notice a bit of redundancy in

function names.

Because the specifications for 2D and 3D transforms were drafted separately, the

landscape of browser support is a little complicated. The latest versions of most

browsers support both. Safari ≤ 8, Blackberry, and UC Browser still require the

-webkit- vendor prefix. Most other browsers support transforms without a vendor

prefix. That’s the good news.

The bad news is that not all browsers completely support all features. Internet Ex-

plorer 10 and 11 offer support for 3D transforms, but their lack of support for the

transform-style property means that 3D transforms can’t be nested. This is not

true of Microsoft Edge, the recently released browser for Windows 10, which supports

all transforms-related properties. Table 6.1 and Table 6.2 show the state of browser

support for 2D and 3D transforms.

Table 6.1. Current browser support for 2D transforms

UC BrowserAndroidSafariOperaInternet
Explorer

FirefoxChrome

9+ (require

-webkit-

prefix)

2.1 (versions

 4.4.4

require

-webkit-

prefix)

3.1+

(versions 8

require

-webkit-

prefix)

11.5+

(versions

11.5 require

-o- prefix,

while

versions

15-22

require

-webkit-

prefix)

9+ (versions

< 10 require

-ms-

prefix)

3.5+

(versions

15 require

-moz-

prefix)

4+ (versions

 35 require

-webkit-

prefix)

2 http://dev.w3.org/csswg/css-transforms/

CSS Master226

http://dev.w3.org/csswg/css-transforms/

Table 6.2. Current browser support for 3D transforms

UC BrowserAndroidSafariOperaInternet
Explorer

FirefoxChrome

9+ (requires

-webkit-

prefix)

2.1 (versions

 4.4.4

require

-webkit-

prefix)

3.2+

(versions 8

require

-webkit-

prefix)

15+

(versions

15-22

require

-moz-

prefix)

10+ (no

support for

transform-

style: pre

serve-3d

)

10+

(versions

10-15

require

-moz-

prefix)

12 (versions

12-35

require

-webkit-

prefix)

Of course, some web users aren’t using up-to-date browsers. If you need to support

ancient browsers (Firefox ≤ 10, Chrome ≤ 11, Safari 3, Opera ≤ 14, and Android

≤ 2.3), ensure that your content still looks good and works well without transforms.

How Transforms Affect Layout
Before we go too much further, there are a few details you should know about how

the transform property affects layout. When you apply the transform property to

an element and its value is other than none, three things happen.

■ The element becomes a containing block for child elements.
■ It establishes a new stacking context for the element and its children.
■ It imposes a local coordinate system within the element’s bounding box.

Let’s look at these concepts individually.

transform Creates a Containing Block
When an element is positioned—that is, when the value of the position property

is something other static—it is drawn relative to a containing block. A containing

block is the closest positioned ancestor or, failing that, the root element (such as

html or svg) of a document.

In Figure 6.4, the child rectangle has a position value of absolute. Its right and

bottom properties are both set to 0. Its parent element has a position value of rel-

ative. Because the parent in this case is positioned, it becomes a containing block

227CSS Transforms

for the child. If the parent rectangle was not positioned, this child element would

instead be drawn at the bottom right of the browser window.

Figure 6.4. A child element with position: absolute inside a container with position: relative

Transforms work similarly. Setting the value of transform to something other than

none turns the transformed element into a containing block. Positioned children of

a transformed element are positioned relative to that element, as seen in Figure 6.5.

Figure 6.5. A child element with position: absolute nested within an element with transform: skewX(-15deg)

Note that in Figure 6.5, the parent element is not positioned. The transform property

is what’s creating this containing block.

transform Creates a New Stacking Context
Transforms also create a new stacking context for the element to which it’s applied.

As you may recall from Chapter 4, elements within a stacking context are painted

from back to front as follows:

CSS Master228

1. Child-stacking contexts with a negative stack level (for example, positioned z-

index: -1)

2. Nonpositioned elements

3. Child-stacking contexts with a stack level of 0 (for example, positioned and z-

index: 0; or z-index: auto;)

4. Child-stacking contexts with positive stack levels (for example, z-index: 1) sit

at the top of the stack

Setting the value of transform to something other than none puts the element’s

stack level at 0, and will cause a transformed element to be stacked in front of

nonpositioned elements. The z-index values of each child element will be relative

to the parent. Let’s update our example from Chapter 4 to see how this works:

<div style="position:relative;">
 <div id="a">
 <p>div#a</p>
 </div>

 <div id="b" style="transform: scale(2) translate(25%, 15%);">
 <p>div#b</p>
 </div>

 <div id="c" style="position:relative; z-index: 1">
 <p>div#c</p>
 </div>
 <div id="d" style="position:absolute; z-index: -1">
 <p>div#d</p>
 </div>
</div>

In this case (see Figure 6.6), div#d sits at the bottom of the stack, and div#a sits

above it. But div#b comes next because the transform property forces its z-index

value to be 0 instead of auto. With z-index: 1, div#c sits at the top of the stack.

229CSS Transforms

Figure 6.6. A stacking context with positioned and unpositioned elements with varying z-index values

Three-dimensional transforms add additional complexity. An element shifted along

the Z-axis may render on a different plane than its container. Elements may also

intersect with other elements across layers. Still, the basic rules of the stacking order

apply.

Transformed elements may also overlap other elements on the page, and prevent

them from receiving mouse, touch, or pointer events. One option for fixing this is

to change the position and z-index values of the transformed or overlapped ele-

ment.

In browsers that support it, you can also use the pointer-events CSS property with

a value of none. Apply it to the transformed element that’s overlapping content.

The pointer-events property lets us control whether an element receives pointer

events (for example, click or mousedown) events. The latest versions of all major

browsers support the pointer-events property for use with HTML. Use z-index

as a fall back for older browsers.3 It originated with the Scalable Vector Graphics

specification,4 but recent versions of CSS have defined its behavior for more general

markup use.

3 The pointer-events CSS property is distinct from the PointerEvents DOM event object.
4 http://www.w3.org/TR/SVG11/interact.html#PointerEventsProperty

CSS Master230

http://www.w3.org/TR/SVG11/interact.html#PointerEventsProperty
http://www.w3.org/TR/SVG11/interact.html#PointerEventsProperty

Transforms are applied after elements have been sized and positioned. Unlike floated

elements, transformed elements have no effect on content flow.5 Floating an element

removes it from the normal flow, and causes other elements to wrap around it. For

transformed elements, this is not the case.

Transforms don’t affect CSS layout, although transformed child elements may

overflow the parent element’s bounding box. Because transforms are applied after

the layout has been calculated, they do not affect the HTMLElement.offsetLeft or

HTMLElement.offsetTop DOM properties. Using these properties to detect the

rendered position of an element will give you inaccurate results.

Transforms do, however, affect client rectangle values and visual rendering of ele-

ments. To determine the rendered left and top positions of an element, use the

HTMLElement.getClientRects() or HTMLElement.getBoundingClientRect()DOM

methods (for example, document.getElementById('#targetEl').getClien-

tRects()).

Because they don’t force the browser to calculate page layout, transforms typically

perform better than properties such as left and height when animated.

transform Creates a Local Coordinate System
You may recall from geometry class that the Cartesian coordinate system is a way

of specifying points in a plane. You may also recall that a plane is a flat two-dimen-

sional surface that extends infinitely along the horizontal and vertical axes. These

axes are also known as the X-axis and Y-axis.

Point values along the X-axis increase as you move from left to right, and decrease

from right to left. Y-axis point values increase as you move up, and decrease as you

move down. The X and Y axes are perpendicular to each other. Where they cross

is known as the origin, and the coordinates of its location are always (0,0) Figure 6.7

illustrates this.

5 Document flow is described by the Visual formatting model [http://www.w3.org/TR/CSS21/visuren.html]

section of the CSS2.1 specification. Updates to this model are partly described by CSS Display Module

Level 3. [http://dev.w3.org/csswg/css-display/]

231CSS Transforms

http://www.w3.org/TR/CSS21/visuren.html
http://dev.w3.org/csswg/css-display/
http://dev.w3.org/csswg/css-display/

Figure 6.7. A two-dimensional coordinate system

In a three-dimensional coordinate system, there’s also a Z-axis. This axis is perpen-

dicular to both the X and Y axes, as well as the screen (see Figure 6.8). The point

at which the Z-axis crosses the X and Y axes is also known as the origin. Its coordin-

ates are (0,0,0).

CSS Master232

Figure 6.8. A three-dimensional coordinate system

A rendered HTML document is, essentially, a coordinate system. The top-left corner

is the origin, with coordinates of (0,0) or (0,0,0). Values increase along the X-axis

as you move right. Values increase along the Y-axis as you move down the screen

or page. Z-axis values increase as elements move towards the viewer and decrease

as they move away from the viewer.

Setting the value of transform to a value besides none adds a local coordinate

system to the selected elements. The origin—point (0,0) or (0,0,0)—in this local

coordinate system sits at the center of the element’s bounding box. We can change

the position of the origin, however, by using the transform-origin property. Points

within the element’s bounding box are then transformed relative to this local origin.

The transform-origin Property
The transform-origin property accepts up to three values: one for each of the X,

Y, and Z positions. For example, transform-origin: 300px 300px for a 2D trans-

formation, or transform-origin: 0 0 200px for a 3D transformation.

233CSS Transforms

If one value is specified, the second value is assumed to be center, and the third

value is assumed to be 0px.

Both the X and Y coordinates may be percentages, lengths, or positioning keywords.

Positioning keywords are left, center, right, top, and bottom. The Z position,

however, must be a length. In other words, transform-origin: left bottom 200px

works, but transform-origin: left bottom 20% does not.

The position of the transform origin is relative to the element being transformed. It

moves the (0,0) point of the local coordinate system to a new location within the

element’s bounding box. This, of course, modifies the transformation, sometimes

radically. Figure 6.9 shows a transform-origin point of 50% 50% and one at 0px

0px.

Figure 6.9. Rectangles with transform-origin values of 50% 50% (left) and 0 0 (right)

Now that you know a little more about how transforms affect layout, let’s dig into

the transform functions. This is how we make the magic. Transforms let us rotate,

flip, skew, and scale elements. When combined with animations and transitions,

we can create sophisticated motion graphic effects.

CSS Master234

Transforms can be grouped into two categories: 2D and 3D. Each group contains

functions for rotating, skewing, scaling, and translating. 2D functions are concerned

with transformations of points along the X and Y axes. 3D functions add the third

dimension of depth and affect points along the Z-axis.

2D Transform Functions
Two-dimensional transform functions enjoy the widest browser support. They’re

supported without vendor prefixes in Internet Explorer 10+, Firefox 15+, Chrome

35+, and Opera 23+.

Safari ≤ 8, UC Browser, and Android 4 (or earlier) require a -webkit- prefix for all

transforms. So do older versions of Chrome (4 to 35) and Opera (15 to 23). Firefox

versions 10 through 14 and older require a -moz- prefix. Support in Internet Explorer

9 is available with an -ms- prefix, while IE8 does not support transforms.

As we’ve mentioned, 2D transforms affect points in the X and Y dimensions. There

are four primary functions: rotate, scale, skew, and translate. There are also

functions that let us transform an element in one dimension: scaleX and scaleY;

skewX and skewY; and translateX and translateY.

rotate()
A rotation transform spins an element around its origin by the angle specified around

the point specified. Using rotate() tilts an element clockwise (positive angle values)

or counter-clockwise (negative angle values). Its effect is much like a windmill or

pinwheel, as seen in Figure 6.10.

235CSS Transforms

Figure 6.10. The purple box has been rotated 55 degrees from its start position, shown by the dotted line

The rotate() function accepts values in angle units. Angle units are defined by

the CSS Values and Units Module Level 3.6 These may be deg (degrees), rad (radi-

ans), grad (gradians), or turn units. One complete rotation is equal to 360deg,

6.28rad, 400grad, or 1turn.

Rotation values that exceed one rotation (say, 540deg or 1.5turn) are rendered ac-

cording to their remaindered value, unless animated or transitioned. In other words,

540deg is rendered the same as 180deg (540 degrees minus 360 degrees) and 1.5turn

is rendered the same as .5turn (1.5 - 1). However, a transition or animation from

0deg to 540deg or 1turn to 1.5turn will rotate the element one-and-a-half times.

2D Scaling Functions: scale, scaleX, and scaleY
With the scaling functions, we can increase or decrease the rendered size of an

element in the X-dimension (scaleX), Y-dimension (scaleY), or both (scale).

Scaling is illustrated in Figure 6.11, where the border illustrates the original

boundaries of the box, and the + marks its center point.

6 http://dev.w3.org/csswg/css-values-3/#angles

CSS Master236

http://dev.w3.org/csswg/css-values-3/#angles

Figure 6.11. A box (left) is scaled by a factor of 2 (right)

Each scale function accepts a multiplier or factor as its argument. This multiplier

can be just about any positive or negative number. Percentage values, however,

aren’t supported. Positive multipliers greater than 1 will increase the size of an

element. For example, scale(1.5) will increase the size of the element in the X

and Y directions 1.5 times. Positive multipliers between 0 and 1 will reduce the

size of an element.

Values less than 0 still cause an element to scale up or down in size; however, using

a negative scaling value causes a reflection (flip) transform. In Figure 6.12, the right

figure has been scaled in both dimensions by a factor of -2 (scale(-2)), flipping it

horizontally and vertically.

237CSS Transforms

Figure 6.12. An element at its original size (left) and with transform: scale(-2) applied

Multipliers of Zero

Using scale(0) will cause the element to disappear, because multiplying a

number by zero results in a product of zero.

Using scale(1) creates an identity transformation, which means it’s drawn to the

screen as if no scaling transformation was applied. Using scale(-1) will not change

the drawn size of an element, but the negative value will cause the element to be

reflected.

It’s possible to scale the X and Y dimensions separately using the scale function.

Just pass it two arguments: scale(1.5, 2). The first argument scales the X-dimen-

sion; the second scales the Y-dimension. We could, for example, reflect an object

along the X-axis alone using scale(-1, 1). Passing a single argument scales both

dimensions by the same factor.

2D Translation Functions: translateX, translateY,
and translate
Translating an element offsets its painted position from its layout position by the

specified distance. As with other transforms, translating an element doesn’t change

CSS Master238

its offsetLeft or offsetTop positions. It does, however, affect where it’s visually

positioned on screen.

Each 2D translation function—translateX, translateY, and translate—accepts

lengths or percentages for arguments. Length units include pixels (px), em, rem, and

viewport units (vw and vh).

The translateX function changes the relative horizontal rendering position of an

element. If an element is positioned zero pixels from the left, transform: trans-

itionX(50px) would shift its rendering 50 pixels to the right of its original position.

Similarly, translateY changes the vertical rendering position of an element. A

transform of transform: transitionY(50px) offsets the element vertically by 50

pixels.

With translate(), we can shift an element vertically and horizontally using a

single function. It accepts up to two arguments: the X translation value, and the Y

translation value. Figure 6.13 shows the effect of an element with a transform value

of translate(120%, -50px), where the left green square is the original position,

and the right green square is translated 120% horizontally and -50px vertically from

its containing element (the dashed border).

Figure 6.13. The effect of having an element with a transform value of translate(120%, -50px)

Passing a single argument to translate is the equivalent of using translateX; the

Y translation value will be set to 0. Using translate() is the more concise option.

239CSS Transforms

Applying translate(100px, 200px) is the equivalent of translateX(100px)

translateY(200px).

Positive translation values move an element rightward (for translateX) or downward

(for translateY). Negative values move an element to the left (translateX) or up

(translateY).

Translations are particularly great for moving items left, right, up, or down. Updating

the value of the left, right, top, and bottom properties forces the browser to recal-

culate layout information for the entire document. But transforms are calculated

after the layout has been calculated. They affect where the elements appear on

screen, but not their actual dimensions. Yes, it’s weird to think about document

layout and rendering as separate concepts, but in terms of browsers, they are.7

skew, skewX, and skewY
Skew transformations shift the angles and distances between points while keeping

them in the same plane. Skew transformations are also known as shear transforma-

tions, and they distort the shapes of elements as seen in Figure 6.14, where the

dashed line represents the original bounding box.

Figure 6.14. A rectangle is skewed 45 degrees along its X-dimension

7 Google’s Optimizing Performance [https://developers.google.com/web/fundamentals/performance/]

discusses some of the differences between layout or rendering, and painting or drawing.

CSS Master240

https://developers.google.com/web/fundamentals/performance/

The skew functions―skew, skewX, and skewY—accept most angle units as arguments.

Degrees, gradians, and radians are valid angle units for the skew functions, while

turn units, perhaps obviously, are not.

The skewX function shears an element in the X or horizontal direction (see Fig-

ure 6.15). It accepts a single parameter, which again must be an angle unit. Positive

values shift the element to the left, and negative values shift it towards the right.

Figure 6.15. The left image is not transformed, while the right image reveals the effect of transform: skewX(30deg)

Similarly, skewY shears an element in the Y or vertical direction, where Figure 6.16

shows the effect of transform: skewY(30deg). Points to the right of the origin are

shifted downward with positive values. Negative values shift these points upward.

241CSS Transforms

Figure 6.16. Again, the left image remains untransformed, and the right image is skewed vertically by 30 degrees

This brings us to the skew function. The skew function requires one argument, but

accepts up to two. The first argument skews an element in the X direction, and the

second skews it in the Y direction. If only one argument is provided, the second

value is assumed to be zero, making it the equivalent of skewing in the X direction

alone. In other words, skew(45deg) renders the same as skewX(45deg).

Current Transform Matrix
So far, we’ve discussed transform functions separately, but they can also be com-

bined. Want to scale and rotate an object? No problem, use a transform list, for ex-

ample:

.rotatescale {
 transform: rotate(45deg) scale(2);
}

This produces the results you see in Figure 6.17.

CSS Master242

Figure 6.17. The original element (left) and after a combined rotation and scaling transformation is applied (right)

Now, the order of transform functions matters quite a bit. This is a point that’s better

shown than talked about, so let’s look at an example to illustrate. This CSS skews

and rotates an element:

.transformEl {
 transform: skew(10deg, 15deg) rotate(45deg);
}

It gives us the result you see in Figure 6.18.

243CSS Transforms

Figure 6.18. An element after a transformation of skew(10deg, 15deg) rotate(45deg)

But what if you want to rotate an element first and then skew it? The CSS looks like

this:

.transformEl {
 transform: rotate(45deg) skew(10deg, 15deg);
}

But the effect, shown in Figure 6.19, is quite different.

CSS Master244

Figure 6.19. An element after it has been rotated and then skewed

Each of these transforms has a different current transform matrix created by the

order of its transform functions. To fully understand why this is, we’ll need to learn

a little bit of matrix multiplication. This will also help us understand the matrix

and matrix3d functions.

Matrix Multiplication and the Matrix
Functions
A matrix is an array of numbers or expressions arranged in a rectangle of rows and

columns. All transforms can be expressed using a 4×4 matrix as seen in Figure 6.20.

245CSS Transforms

Figure 6.20. The 4×4 matrix for 3D transforms

This matrix corresponds to the matrix3d function, which accepts 16 arguments,

one for each value of the 4×4 matrix. Two-dimensional transforms can also be ex-

pressed using a 3×3 matrix, seen in Figure 6.21.

Figure 6.21. A 3×3 matrix used for 2D transforms

This 3×3 matrix corresponds to the matrix transform function. The matrix()

function accepts six parameters, one each for values a through f.

Each transform function can be described using a matrix and the matrix or matrix3d

functions. Figure 6.22 shows the 4×4 matrix for the scale3d function, where sx, sy,

and sz are the scaling factors of the X, Y, and Z dimensions respectively.

CSS Master246

Figure 6.22. The 4×4 scaling transform matrix

When we combine transforms—such as transform: scale(2) translate(30px,

50px)—the browser multiplies the matrices for each function to create a new matrix.

This new matrix is what’s applied to the element.

But here’s the thing about matrix multiplication: it isn’t commutative. With simple

values, the product of 3×2 is the same as 2×3. With matrices, however, the product

of A×B is not necessarily the same as the product of B×A. Let’s look at Figure 6.23

as an example. We’ll calculate the matrix product of transform: scale(2)

translate(30px, 50px).

Figure 6.23. The product of the matrices for scale(2) and translate(30px, 50px)

Our element has been scaled by a factor of two, and then translated 60 pixels hori-

zontally and 100 pixels vertically. We can also express this product using the matrix

function: transform: matrix(2, 0, 0, 2, 60, 100). Now let’s switch the order

247CSS Transforms

of these transforms; that is, transform: translate(30px, 50px) scale(2). The

results are shown in Figure 6.24.

Figure 6.24. The product of the matrices for translate(30px, 50px) and scale(2)

Notice that our object is still scaled by a factor of two, but here it’s translated by 30

pixels horizontally and 50 pixels vertically instead. Expressed using the matrix

function, this is transform: matrix(2, 0, 0, 2, 30, 50).

It’s also worth noting that inherited transforms function similarly to transform lists.

Each child transform is multiplied by any transform applied to its parent. For ex-

ample:

<div style="transform: skewX(25deg)">
 <p style="transform: rotate(-15deg)"></p>
</div>

is rendered the same as:

<div>
 <p style="transform: skewX(25deg) rotate(-15deg)"></p>
</div>

The current transform matrix of the p element will be the same in both cases. Though

we’ve focused on 2D transforms so far, the above also applies to 3D transforms. The

third dimension adds the illusion of depth. It also brings some additional complexity

in the form of new functions and properties.

3D Transform Functions
There are nine functions for creating 3D transforms. Each of these functions modifies

the Z-coordinates of an element and/or its children. Remember, Z-coordinates are

CSS Master248

points along the plane that sit perpendicular to the viewer. With the exception of

rotateZ(), these functions create and change the illusion of depth on screen.

rotateX() and rotateY()
The rotateX() and rotateY() functions rotate an element around the X and Y axes

respectively. Using rotateX() creates a somersault effect, causing an object to flip

top-over- tail around a horizontal axis. With rotateY(), the effect is more like that

of a spinning top, rotating around a vertical axis.

Like rotate(), both rotateX() and rotateY() accept an angle measurement as an

argument. This angle can be expressed in degrees (deg), radians (rad), gradians

(grad), or turn units. As mentioned earlier in the chapter, rotateZ() works the

same way as rotate(). It’s a relic from when 2D and 3D transforms were defined

in separate specifications.

Positive angle values for rotateX() cause an element to tilt backwards, as shown

in Figure 6.25.

Figure 6.25. An element with transform: rotate(45deg) applied

Negative angle values for rotateX() do the opposite, causing the element to tilt

forward as is shown in Figure 6.26.

249CSS Transforms

Figure 6.26. An element with a negative rotation (transform: rotate(-45deg)) applied

Negative angles for rotateY() cause the element to tilt counter-clockwise. In Fig-

ure 6.27, the element has has a rotation of -55 degrees around the Y-axis.

Figure 6.27. An element with transform: rotateY(-55deg) applied

Positive values tilt it clockwise, as shown in Figure 6.28.

Figure 6.28. An element with transform: rotateY(55deg) applied

The containing element in Figure 6.26, Figure 6.27, and Figure 6.28 has a perspect-

ive value of 200px. We’ll discuss the perspective property later in this chapter.

CSS Master250

For now, it’s enough to know that this property adds a sense of depth and exaggerates

the effect of the three-dimensional rotation. Compare Figure 6.29 to Figure 6.28.

Both have been rotated along the Y-axis by 55°, but in Figure 6.29, the parent con-

tainer has a perspective value of none. Our object looks more squished than rotated.

Use perspective on a container element when creating a 3D transform.

Figure 6.29. An element with transform: rotateY(55deg), nested within a container with perspective:none

Beware Infinitesimal Thickness

There’s another facet to be aware of when working with 3D rotations. Rotating an

element by ±90° or ±270° can sometimes cause it to disappear from the screen.

Each element on a page has an infinitesimal thickness. By rotating it a quarter or

three-quarters of a turn, we’re looking at its infinitesimally thin side. It’s kind of

like looking at the edge of a sheet of paper that’s perpendicular to your face. Ad-

justing the perspective and perspective-origin values of a parent element

can prevent this behavior in some cases, but not all of them.

Rotating around Multiple Axes with rotate3d()
Sometimes, we want to rotate an object around more than one axis. Perhaps you

want to rotate an element counter-clockwise and tilt it by 45° as in Figure 6.30. This

is what rotate3d() does.

251CSS Transforms

Figure 6.30. Rotating around both the X and Y axes by 45°

The rotate3d() function accepts four arguments. The first three make up an X, Y,

Z direction vector, and each of these arguments should be a number. The fourth

argument for rotate3d() should be an angle. The transformed object will be rotated

by the angle around the direction vector defined by the first three arguments.

What those first three numbers actually are matters less than the ratio between them.

For example, transform: rotate3d(100,5,0,15deg); and transform: ro-

tate3d(20,1,0,15deg); have equivalent 3D matrices and produce the same effect.

That said, because of how the rotate3d matrix is calculated,8 something like

transform: rotate3d(1, 500, 0, 15deg); won’t produce a significantly different

effect than transform: rotate3d(1, 1, 0, 15deg);.

Just about any non-zero value for any of the first three parameters will create a tilt

along that axis. Zero values will prevent a tilt. As you may have guessed, rota-

teX(45deg) is the equivalent of rotate3d(1, 0, 0, 45deg) and rotateY(25deg)

could also be written as rotate3d(0, 1, 0, 25deg).

If the first three arguments are 0 (such as transform: rotate3d(0, 0, 0, 45deg)),

the element won’t be transformed. Using negative numbers for the X, Y, or Z vector

8 http://dev.w3.org/csswg/css-transforms-1/#Rotate3dDefined

CSS Master252

http://dev.w3.org/csswg/css-transforms-1/#Rotate3dDefined

arguments is valid; it will just negate the value of the angle. In other words, ro-

tate3d(-1, 0, 0, 45deg) is equivalent to rotate3d(1, 0, 0, -45deg).

Using rotate3d() rotates an element by the given angle along multiple axes at once.

If you want to rotate an element by different angles around multiple axes, you should

use rotateX(), rotateY(), and rotate() or rotateZ() separately.

perspective() Function
The perspective() function controls the foreshortening of an object when one end

is tilted towards the viewer. Foreshortening is a specific way of drawing perspective;

that is, simulating three dimensions when you only have two dimensions. With

foreshortening, the end of objects that are tilted towards the viewer appear larger,

and the end furthest from the viewer appears smaller. It mimics the distortion that

occurs when you view an object up close versus viewing it at a distance.

The more technical definition, pulled from the transforms specification,9 says that

perspective() “creates a perspective projection matrix.” The definition continues:

This matrix scales points in X and Y based on their Z value, scaling

points with positive Z values away from the origin, and those with

negative Z values towards the origin. Points on the Z=0 plane are

unchanged.

In practice, this means that perspective() will have a visible effect only when

some of an object’s points have a non-zero Z-coordinate. Use it with another 3D

function in a transform list (for example, transform: perspective(400px) rota-

teX(45deg)), or apply it to the child of a transformed parent.

The perspective() function accepts a single argument. This argument must be a

length greater than zero. Negative values are invalid, and the transform will not be

applied. Lower values create a more exaggerated foreshortening effect, as you can

see in Figure 6.31. In this image, the value of our transform is perspective(10px)

rotate3d(1,1,1,-45deg).

9 http://dev.w3.org/csswg/css-transforms/#funcdef-perspective

253CSS Transforms

http://dev.w3.org/csswg/css-transforms/#funcdef-perspective

Figure 6.31. An element with a transform value of perspective(10px) rotate3d(1,1,1,-45deg)

Higher values create a moderate amount of foreshortening. Figure 6.32 illustrates

the impact of a higher perspective value. Its transform property value is perspect-

ive(500px) rotate3d(1,1,1,-45deg).

CSS Master254

Figure 6.32. An element with a transform value of perspective(500px) rotate3d(1,1,1,-45deg)

Order really matters when working with the perspective() function. A good rule

of thumb is to list it first, as we’ve done in the examples here. You can list it else-

where in the transform list (for example, rotate3d(1,0,1,-45deg) perspect-

ive(100px)), but the resulting current transform matrix doesn’t create much of an

effect.

There’s also a point of diminishing returns with the perspective() function (and

with the perspective property, for that matter). Increasing the argument’s value

beyond a certain threshold will create little difference in how the element and its

children are painted to the screen.

The perspective() Function vs. the perspective Property

A word of caution: the transforms specification defines both a perspective()

function and a perspective property. Though both are used to calculate the

perspective matrix, they differ in how they’re used. The perspective property

affects—and must be applied to—the containing element. It sets an imaginary

distance between the viewer and the stage. The perspective() function, on the

other hand, can be applied to elements as part of a transform list.

255CSS Transforms

Translating Depth with translateZ() and
translate3d()
Earlier in this chapter, we discussed how to translate an element horizontally or

vertically using translateX() and translateY(). We can also, however, translate

along the Z-axis. There are two functions that allow us to do this: translateZ()

and translate3d(). When combined with transitions, these functions make it

possible to create interesting zoom effects.10

The translateZ() function accepts a single length parameter as its argument. Length

units are the only valid units for this function; percentages won’t work. The

translateZ() function shifts the object towards or away from the user by the spe-

cified number of pixels. Negative values shift the element or group away from the

user, in effect shrinking it, as can be seen in Figure 6.33.

10 The 2011 Beer Camp [http://2011.beercamp.com/] site has one of the more memorable examples of

this technique.

CSS Master256

http://2011.beercamp.com/

Figure 6.33. The effect of transform: translateZ(-150px)

Positive values shift the element towards the user where it appears larger. Sometimes

the effect is to fill the entire viewport, appearing to engulf the user as in Figure 6.34.

257CSS Transforms

Figure 6.34. The effect of transform: translateZ(150px)

If the value of translateZ() is large enough, the element will be disappear from

view. It’s actually moved behind the viewer in this imagined 3D space. Similarly,

if the value of translateZ() is small enough, say translateZ(-40000px), the ele-

ment will disappear from view because it is now “too far” from the user and too

small to draw on screen.

translate3d() is just a more concise way of translating in two or three directions

at once. It accepts three arguments: one each for the X, Y, and Z directions. Trans-

lation values for the X and Y direction arguments may be lengths or percentages;

however, its Z-direction argument (the third argument) must be a length value. Keep

in mind that translateX(50%) translateY(10%) translateZ(100px) is the equi-

valent of translate3d(50%, 10%, 100px). Use translate3d when you want to

translate more than one dimension, but want more concise code.

Scaling the Z-dimension: scaleZ() and scale3d()
We can also scale an object’s Z-dimension using the scaleZ() and scale3d()

functions. The scaleZ() function transforms points along the Z-axis alone, while

scale3d() lets us scale all three dimensions at once. Scaling the Z-dimension

CSS Master258

changes the depth of an object, but in some combinations can also be used to create

zoom effects. Experiment with them and see.

The scaleZ() function accepts a number as its argument. As with scaleX() and

scaleY(), positive values greater than 1 increase the size of the element’s Z-dimen-

sion. Values between 0 and 1 decrease its size. Negative values between 0 and -1

decrease the element’s size along the Z-dimension, while values less than -1 increase

it. Because these values are negative, however, the element and its children will be

inverted. In Figure 6.35, the left die shows an element group with transform:

scaleZ(0.5) applied. The box on the right has a transformation of scaleZ(-0.5)

applied. Notice that positions of the six-dot face and single-dot face have been

swapped in the example with a negative scale.

Figure 6.35. Element groups with transform: scaleZ(0.5) and transform: scaleZ(-0.5) styles

The scale3d() function accepts three arguments, and all three arguments are re-

quired in order for this function to work. The first argument scales the X dimension.

The second argument scales its Y dimension, and the third argument scales the Z

dimension. As with translate3d(), the scale3d() function is just a more concise

way to write transforms that scale in multiple dimensions. Rather than using

scaleX(1.2) scaleY(5) scaleZ(2), for example, you could use scale3d(1.2,

5, 2).

Transform functions are only part of what you need to create 3D transforms. You’ll

also require a few more CSS properties. These properties manage how objects are

drawn in a simulated three-dimensional space. Using them will make your 3D

transforms more realistic.

259CSS Transforms

Creating Depth with the perspective
Property
In order to make a 3D-transformed object look like it’s actually sitting in a three-

dimensional space, we must use the perspective property. The perspective

property adjusts the distance between the drawing plane and the viewer. We’re still

talking about a screen and the projection of three-dimensional coordinates into a

two-dimensional space. But adding perspective to a containing element causes its

children to have the appearance of sitting in a 3D space. Yes, you must apply per-

spective to a containing element.

As with transform, perspective creates both a new containing block and a new

stacking context when the value is something other than none. Along with the

perspective-origin property, perspective is used to calculate the perspective

matrix. We’ll cover perspective-origin in the next section.11

Aside from the none keyword, perspective also accepts a length as its value. Values

must be positive (for example, 200px or 10em), and percentages will fail to work, as

will negative values such as -20px.

Smaller values for perspective increase the visual size of the element, as seen in

Figure 6.36, which has a perspective value of 500px. Items that are higher on the

Z-axis appear larger than those farther away.

11 Use a -webkit- prefix for perspective and perspective-origin to support users of Safari

≤ 8 and UC Browser (-webkit-perspective and -webkit-perspective-origin).

CSS Master260

Figure 6.36. A group of transformed elements nested within a container with perspective: 500px

Larger values, on the other hand, make elements appear smaller. The container

element in Figure 6.37 has a perspective value of 2000px. This is similar to how

your eye perceives objects of varying distances.

261CSS Transforms

Figure 6.37. A group of transformed elements nested within a container with perspective: 2000px

Modifying the Point of View with
perspective-origin
If you’ve studied how to draw in perspective, the perspective-origin property

will feel like old hat. To draw in perspective, you first make a point on your page

or canvas. This point is known as the vanishing point. It’s the point in your drawing

at which items will theoretically disappear from view.

Next, draw a shape of your choosing. We’re going to keep this example simple, and

use a rectangle.

Step three is to draw a series of lines towards the vanishing point, as shown in

Figure 6.38. These lines, also known as convergence lines, serve as guides for

drawing shapes that are sized appropriately given their perceived distance from the

viewer.

CSS Master262

Figure 6.38. An example of drawing in perspective, with the red dot as our vanishing point

As you can see in Figure 6.39, the rectangles that appear closer to the viewer are

larger. Those that appear further away are smaller.

263CSS Transforms

Figure 6.39. In this example, boxes appear smaller and further away as they get closer to the vanishing point

This is essentially how the perspective-origin property works. It sets the coordin-

ates of the vanishing point for the stage. Negative Y values give the impression that

the viewer is looking down at the stage, while positive ones imply looking up from

below it. Negative X values mimic the effect of looking from the right of the stage.

Positive X values mimic looking from its left. Figure 6.40 shows a containing element

with a perspective-origin of -50% -50%.

CSS Master264

Figure 6.40. A containing element with perspective-origin: -50% -50%

As with transform-origin, the initial value of perspective-origin is 50% 50%—the

center point of the containing element. Values for perspective–origin may be

lengths or percentages.

Positioning keywords—left, right, top, bottom, and center—are also valid. The

center keyword is the same as 50% 50%. Both bottom and right compute to positions

of 100% along the vertical and horizontal positions respectively. The top and left

keywords compute to vertical and horizontal positions of 0%. In all cases, perspect-

ive-origin is an offset from the top-left corner of the container.

Preserving Three Dimensions with
transform-style
As you work with 3D transforms, you may stumble across a scenario in which your

transforms fail to work—or they work, but only for one element. This is caused by

grouping property values.12 Some combinations of CSS properties and values require

the browser to flatten the representation of child elements before the property is

applied. These include opacity when the value is less than 1 and overflow when

the value is something other than visible.

12 http://dev.w3.org/csswg/css-transforms-1/#grouping-property-values

265CSS Transforms

http://dev.w3.org/csswg/css-transforms-1/#grouping-property-values

Here’s the counterintuitive part: transform and perspective also trigger this flat-

tening when their value is something other than none. In effect, this means that

child elements stack according to their source order if they have the same Z-index

value, regardless of the transform applied. Consider the following source:

<div class="wrapper">
 <figure>a</figure>
 <figure>f</figure>
</div>

And the following CSS:

.wrapper {
 perspective: 2000px;
 perspective-origin: 50% -200px;
}
.wrapper figure {
 position: absolute;
 top: 0;
 width: 200px;
 height: 200px;
}
.wrapper figure:first-child {
 transform: rotateY(60deg) translateZ(191px);
 background: #3f51b5;
}
.wrapper figure:nth-child(2) {
 transform: rotateY(120deg) translateZ(191px);
 background: #8bc34a;
}

In this example, since we’ve applied perspective: 1000px to .wrapper, our figure

elements will be flattened. Since both elements also have the same calculated z-

index, .wrapper figure:nth-child(2) will be the topmost element in the stack,

as witnessed in Figure 6.41. Note that .wrapper figure:first-child is still visible.

It’s just not the topmost element. Here the computed value of transform-style

will be flat.

CSS Master266

Figure 6.41. Elements with a transform-style value of flat

To work around this, we set the value of transform-style to preserve-3d. Let’s

update our CSS:

.wrapper {
 perspective: 2000px;
 perspective-origin: 50% -200px;
 transform-style: preserve-3d;
}
.wrapper figure {
 position: absolute;
 top: 0;
 width: 200px;

267CSS Transforms

 height: 200px;
}
.wrapper figure:first-child {
 transform: rotateY(60deg) translateZ(191px);
 background: #3f51b5;
}
.wrapper figure:nth-child(2) {
 transform: rotateY(120deg) translateZ(191px);
 background: #8bc34a;
}

Now .wrapper figure:first-child becomes the topmost element, as our rotateY

functions suggest it should be in Figure 6.42.

CSS Master268

Figure 6.42. Elements with a transform-style value of preserve-3d

In the vast majority of cases, you should use transform-style: preserve-3d. Use

transform-style: flat only when you want to collapse child elements into the

same layer as their parent.13

13 The WebKit team’s demo Transform Style

[http://www.webkit.org/blog-files/3d-transforms/transform-style.html] shows the effect oftransform-

style: flat. It’s an old demo, and created for WebKit browsers, so you’ll need to use Safari, Chrome,

or Opera 15+ to view it.

269CSS Transforms

http://www.webkit.org/blog-files/3d-transforms/transform-style.html

Showing Both Faces with the
backface-visibility Property
By default, the back face of an element is a mirror image of its front face. With

stacked or overlapping elements, the reverse side is always visible to the viewer,

regardless of which side sits at the top of the stack.

Sometimes, however, we don’t want this back side to be visible. Let’s return to the

card metaphor mentioned in the introduction to this chapter. This time we’ll use a

playing card, seen in Figure 6.43. With any card, we only want one side to be visible

to the user at a time. To manage the visibility of an object’s back side, we can use

the backface-visibility property.

Figure 6.43. With cards, we only want to see one side at a time

The initial value of backface-visibility is visible. Rear faces will always be

shown. But if we want to hide a visible back face, we can use backface-visibility:

hidden instead.

Let’s create our playing card. First our HTML:

CSS Master270

06-transforms/backface-visibility-card.html (excerpt)

<div class="card">
 <div class="side front">
 <div class="suit">♣</div>
 </div>
 <div class="side back"></div>
</div>

In this markup, we’ve set up front and back sides for a card container. Here’s our

card CSS:14

css/chapter6/backface-vis.css (excerpt)

.card {
 border: 1px solid #ccc;
 height: 300px;
 position: relative;
 transition: transform 1s linear;
 transform-style: preserve-3d;
 width: 240px;
}

The important part to notice here is transform-style: preserve-3d. Again, we’ll

need this property to prevent the flattening that occurs by default when we use the

transform property. Now let’s set up the CSS for the front and back sides of our

cards:

css/chapter6/backface-vis.css (excerpt)

/* Applies to both child div elements */
.side {
 height: inherit;
 left: 0;
 position: absolute;
 top: 0;
 width: inherit;
}

.front {

14 For broadest browser compatibility, make sure that you include prefixed versions of transition

and transform-style.

271CSS Transforms

 transform: rotateY(180deg);
}

.back {
 background: rgba(204, 204, 204, 0.8);
}

.suit {
 line-height: 1;
 text-align: center;
 font-size: 300px;
}

Both sides are absolutely positioned, so they’ll stack according to their source order.

We’ve also flipped the .front sides around the Y-axis by 180°. When it’s all put

together, your card should look a bit like the image in Figure 6.44.

Figure 6.44. A see-through card with backface-visibility: visible (its intial value)

CSS Master272

Both sides of the card are visible at the same time. Let’s revise our CSS slightly.

We’ll add backface-visibility: hidden to our .side rule set:

.side {
 backface-visibility: hidden;
 height: inherit;
 left: 0;
 position: absolute;
 top: 0;
 width: inherit;
}

Now, div.front is hidden. If you see a gray box and no club symbol, it’s working

as expected.

The utility of backface-visibility: hidden becomes a little clearer when we flip

div.card. Let’s add a .flipped class to our CSS:

.flipped {
 transform: rotateY(180deg);
}

Now when we flip our card over (in Figure 6.45), we see div.front, and only

div.front.

273CSS Transforms

Figure 6.45. Flipping our card

Figure 6.46 shows two cards before being flipped. The card on the left has a back-

face-visibility value of hidden, while the one on the right has a value of visible.

CSS Master274

Figure 6.46. Two cards prior to flipping

And in Figure 6.47, we can see these same cards after the flipped class is added;

that is, <div class="card flipped">.

Figure 6.47. The same cards after being rotated 180 degrees

275CSS Transforms

Conclusion
Whew! That was a lot to take in. I hope after reading this chapter, you've learned

how to:

■ effect page layout and stacking order with transforms
■ calculate the current transform matrix
■ apply 2D transform functions that rotate, translate, and skew objects
■ use 3D transforms to create the illusion of depth and dimension

In our next chapter, we’ll look at conditional CSS, including @supports, newer

@media features, and related JavaScript APIs.

CSS Master276

Chapter7
Applying CSS Conditionally
As its name suggests, conditional CSS refers to CSS rules that are applied when a

condition is met. Conditional CSS consists of conditional grouping rules, and the

rule sets nested within. A condition in this context may be a CSS property and value

combination, as with the @supports rule. A condition may test for a browser window

condition such as width, as with the @media rule. Or a condition may be a device

feature such as hover state or pointer input, also as with @media. We'll discuss all

this in the chapter.

Both @media and @supports are described by the CSS Conditional Rules Module,

Level 3 specification.1 The @media rule—which you probably know as media

queries—is fully defined by the Media Queries specification.2

Of the two kinds of grouping rules, @media enjoys the broadest support. Every major

browser supports the feature queries defined in the Level 3 version of the Media

Queries specification.3 Most currently used browsers also support its related

JavaScript API, matchMedia(). Support for Level 4 feature queries, however, is less

1 http://dev.w3.org/csswg/css-conditional-3/
2 http://dev.w3.org/csswg/mediaqueries-4/
3 http://www.w3.org/TR/css3-mediaqueries/

http://dev.w3.org/csswg/css-conditional-3/
http://dev.w3.org/csswg/css-conditional-3/
http://dev.w3.org/csswg/mediaqueries-4/
http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/css3-mediaqueries/

widespread. Browser support for @supports (and the CSS.supports JavaScript API)

is a little patchier, but it's still supported widely enough to be discussed here.

Media Queries and @media
The @media rule and its basic syntax was originally defined by the CSS 2.1 specific-

ation.4 Building on the ten media types defined by HTML4,5 the intent of @media

was to enable developers to serve different styles to different media types and

devices. Using the @media rule, or media HTML attribute, we could specify distinct

styles for print or screen.

The Media Queries Level 3 specification6 extended the @media rule, adding support

for media features in addition to media types. Media features include conditions

such as window width, screen orientation, and resolution. If you've ever practiced

responsive web design, you're probably familiar with these feature tests and tech-

niques.

Most of the media types defined by HTML4 are deprecated in Media Queries Level

4 specification,7 the latest version of the specification. Four media types are defined

in the Level 4 specification: all, screen, print, and speech. Of those, only the

first three have widespread browser support.

Media Queries Level 4 does, however, add a few more features to query, such as

pointer and light-level. Again, most of these are yet to be supported by browsers.

We'll briefly discuss some of these in the examples that follow.

Succession Planning

There's a good chance these remaining media types will also become deprecated

in favor of feature tests in a future media queries specification.

Media queries enjoy a wide range of support, as shown in Table 7.1. Internet Explorer

9, however, does not support matchMedia, the DOM scripting interface for testing

4 http://www.w3.org/TR/CSS21/media.html#media-sheets
5 http://www.w3.org/TR/html4/types.html#h-6.13
6 http://dev.w3.org/csswg/css3-mediaqueries/
7 http://dev.w3.org/csswg/mediaqueries-4/

CSS Master278

http://www.w3.org/TR/CSS21/media.html#media-sheets
http://www.w3.org/TR/CSS21/media.html#media-sheets
http://www.w3.org/TR/html4/types.html#h-6.13
http://dev.w3.org/csswg/css3-mediaqueries/
http://dev.w3.org/csswg/mediaqueries-4/
http://dev.w3.org/csswg/mediaqueries-4/

media query conditions. That interface is defined by the CSSOM-View Module,8

covered in the "Using media queries with JavaScript" section later.

Table 7.1. Support for @media (Source CanIUse.com9)

OperaSafariChromeFirefoxInternet Explorer

10.1+3.1+c4+b3.5+9+a

a No support for matchMedia API.
b Versions 4-29 support the non-standardmin/max-device-pixel-ratio rather thanmin/max-

resolution.
c Supports the non-standardmin/max-device-pixel-ratio rather thanmin/max-resolution.

Media Query Syntax: The Basics
Media query syntax seems simple on the surface, but sometimes it's a bit counterin-

tuitive. In its simplest form, a media query consists of a media type, used alone or

in combination with a media condition, such as width or orientation. Media types,

as we discussed earlier, may be one or more of all, screen, print, and speech.10

A simple, type-based media query for screens looks like this:

@media screen {
 /* Styles go here */
}

CSS style rules are nested within this @media rule set. Any styles contained within

will only be applied when the document is displayed on a screen (as opposed to

being printed).

@media screen {
 body {
 font-size: 20px;
 }
}

In this example, the base text size for this document will be 20px when it's viewed

on a desktop, laptop, tablet, mobile phone, or television.

8 http://dev.w3.org/csswg/cssom-view/
9 http://caniuse.com/#search=media%20queries
10 @media, with no media type specified, is equivalent to @media all.

279Applying CSS Conditionally

http://dev.w3.org/csswg/cssom-view/
http://caniuse.com/#search=media%20queries

We can also create a list of media queries to which our styles will apply by separating

each query with a comma. Commas in the media query list function similarly to an

OR operator. If the browser or device meets any condition in the list, the styles will

be applied. For example, we could limit styles to screen or print using the following:

@media screen, print {
 body {
 font-size: 16px;
 }
}

The real power of media queries, however, comes when you add a media feature

query. Media feature queries interrogate the capabilities of the device or conditions

of the viewport. A media feature query consists of a property and a value, separated

by a colon. The entire query must be wrapped in parentheses. Here's an example:

@media (width: 30em) {
 nav li {
 display: block;
 }
}

What we're doing is applying a new style to nav li only when the width of the

viewport is equal to 30em;. Since em units are relative, using them for width makes

the most sense on screens. Let's use the and keyword to make a more specific media

query:s

@media screen and (width: 30em) {
 nav li {
 display: block;
 }
}

These styles will be applied only when the output device is a screen and its width

is 30em. Notice here that the media type is not enclosed by parentheses, unlike our

media feature (width: 30em).

The query above has a small problem, however. If the viewport is wider than 30em

or narrower than 30em—and not exactly 30em—these styles won't be applied. What

we need instead is a range.

CSS Master280

Range Media Feature Queries and min- and max-
Prefixes
A more flexible media query tests for a minimum or maximum viewport width. We

can apply styles when the viewport is at least this wide, or more than that wide.

Luckily for us, the Media Queries Level 3 specification defined the min- and max-

prefixes for this purpose. These prefixes establish the lower or upper boundaries

of a feature range (see Table 7.2).

Let's update our previous code:

@media (max-width: 30em) {
 nav li {
 display: block;
 }
}

In this example, nav li would have a display: property value of block from a

viewport width of 0, up to and including a maximum viewport width of 30em.

We can also define a media query range using min- and max-, along with the and

keyword. For example, if we wanted to switch from display: block to display:

flex between 30em and 100em, we might do the following:

@media (min-width: 30em) and (max-width: 100em) {
 nav li {
 display: flex;
 }
}

If both conditions are true—that is, the viewport width is at least 30em, but not

greater than 100em—our styles will apply.

Now, there are other ways to express a range, and here's where the story of media

queries becomes more complicated. The latest version of the specification defines

a range media feature type. This range type includes properties such as width and

height, and allows for comparison operators such as > and <=. We could, for ex-

ample, rewrite the query like so:

281Applying CSS Conditionally

@media (width >= 30em) and (width <= 100em) {
 nav li {
 display: block;
 }
}

That's a little clearer than @media (min-width: 30em) and (max-width: 100em).

This more compact syntax, however, is yet to make its way to most browsers―in

fact, it may not. So stick with min- and max- for now.

CSS Master282

Table 7.2. Range media feature types that can be used with the min- and
max- prefixes.

Value typeDescriptionProperty

ratio (such as 1024/768 or

16:9)

The ratio of width to heightaspect-ratio

ratio (such as 1024/768 or

16:9)

The ratio of the

device-width to

device-height

device-aspect-ratioa

integerNumber of bits per color

component of the device; 0

color

when the device is not a color

device

integerMinimum number of colors

available on the device

color-index

lengthHeight of the viewport or page

box

height

lengthHeight of the screen, or page

sheet size in the case of printed

media

device-heightb

integerNumber of bits per pixel in a

monochrome frame buffer

monochrome

resolution (dpi, dpcm, and

dppx) unitsd
Describes the pixel density of a

device

resolutionc

lengthWidth of the viewport or page

box

width

lengthWidth of the screen, or page

sheet size in the case of printed

media

device-width

a This is deprecated in the Media Queries Level 4 specification. Though widely supported by browsers,

these properties are subject to removal. Avoid using them in new stylesheets, and consider updating

them in old ones.
b Deprecated in the Media Queries Level 4 specification. Though widely supported by browsers, these

properties are subject to removal. Avoid using them in new stylesheets, and consider updating them in

old ones.
c Safari ≤ 9, Android ≤ 4.3, UC Browser ≤ 9, and BlackBerry Browser ≤ 10 use the non-standard, vendor-

prefixed -webkit-device-pixel-ratio instead of resolution

283Applying CSS Conditionally

d Internet Explorer ≤ 11 only supports dpi units. Microsoft Edge only supports dpi and dppx units.

Not all media feature properties support ranges with min- and max-. Table 7.2 lists

those that do, along with the type of value permitted for each. There is a second

type of media feature, however: the discrete type.

Discrete Media Feature Queries
Discrete media features are properties that accept one of a set, or a predefined list

of values. In some cases, the set of values is a Boolean: either true or false.

Discrete media features are properties for which a quantity makes little sense. Here's

an example using the orientation property. The example adjusts the proportional

height of a logo when in portrait mode:

@media screen and (orientation: portrait) {
 #logo {
 height: 10vh;
 width: auto;
 }
}

(Remember to Use Parentheses)

Here's your gentle reminder that feature queries such as (orientation:por-

trait) need to be wrapped in parentheses.

The orientation feature is an example of a discrete media feature. It has two sup-

ported values, portrait and landscape. With discrete media features, minimum

and maximum values don't make much sense for these properties, as you can see

in Table 7.3.

CSS Master284

Table 7.3. Discrete media feature types, descriptions, and legitimate values
for each

Acceptable valuesDescriptionProperty

Boolean (test using (grid))Whether the device is grid (such

as a teletype terminal or phone

grid

with a single fixed font) or

bitmap.

none | on-demand | hoverAbility of the primary input

mechanism to have a hover state

as determined by the user agent

hover

none | on-demand | hoverAbility of any connected input

mechanism to have a hover state

as determined by the user agent

any-hover

none | invertedWhether the colors have been

inverted by the user agent or

operating system

inverted-colors

dim | normal | washedQueries the ambient light level

of the environment around the

device

light-level

none | scroll |

optional-paged | paged

Describes the behavior of the

device or browser when content

overflows the initial containing

overflow-block

block or viewport along the

block-axis

none | scrollDescribes the behavior of the

device or browser when content

overflow-inline

overflows the initial containing

block or viewport in the

inline-axis

portrait | landscapeDescribes behavior for whatever

is larger out of width or height.

orientation

When the width is greater than

height, the orientation is

landscape. When the inverse

is true, the orientation is

portrait

285Applying CSS Conditionally

Acceptable valuesDescriptionProperty

none | coarse | finePresence and accuracy of the

primary pointing device as

determined by the user agent

pointer

none | coarse | finePresence and accuracy of any

pointing device available to the

user

any-pointer

interlace | progressiveWhich scanning process is used

by the output display

scan

none | initial-only |

enabled

Whether scripting languages are

supported for the current

document

scripting

none | slow | normalWhether the content can be

modified after output (think

paper versus screens)

update-frequency

One discrete feature query that we can use now is hover (along with any-hover).

As you may have guessed by the name, the hover media feature query allows us to

set different styles based on whether the primary input mechanism supports the

:hover state. The any-hover feature works much the same way, but applies to any

input mechanism, not just the primary one. Since this is a discrete feature type, this

property has just three possible values:

■ none: device has no hover state

■ on-demand: device sometimes has a hover state; for example, after a long press

(most browsers and devices)

■ hover: device has a hover state

Consider the case of radio buttons and checkbox form controls on touch screens.

Touch screens typically have an on-demand hover state, but may lack one com-

pletely. Adult-sized fingers are also fatter than the pointers of most mouse or

trackpad inputs. For those devices, we might want to add more padding around the

label, making it easier to tap:

CSS Master286

@media screen and (hover: on-demand) {
 input[type=checkbox] + label {
 padding: .5em;
 }
}

The other media feature that's making its way into browsers is the pointer media

feature (and any-pointer). With pointer, we can query the presence and accuracy

of a pointing device for the primary input mechanism. The any-pointer property,

of course, tests the presence and accuracy of any pointer available as an input

mechanism. Both properties accept one of the following values:

■ none: device's primary input mechanism is not a pointing device

■ coarse: the primary input mechanism is a pointing device with limited accuracy

■ fine: device's primary input mechanism includes an accurate pointing device

Devices with pointing inputs include stylus-based screens or pads, touch screens,

mice, and trackpads. Of those, touch screens are generally less accurate. Stylus in-

puts, on the other hand, are very accurate; but like touch screens, they lack a hover

state. With that in mind, we might update our hover query from earlier so that we

only add padding when the pointer is coarse:

@media screen and (hover: none) and (pointer: coarse) {
 input[type=checkbox] + label {
 padding: .5em;
 }
}

So far, the latest versions of Chrome and Opera support the hover and pointer

media feature queries. Microsoft Edge does as well. Expect support to become more

common as new browser versions are released.

Nesting @media Rules
It's also possible to nest @media rules. Although they're syntactically valid, browser

support is a different matter. Fortunately, the latest versions of most browsers handle

nested queries just fine, with Internet Explorer 11 being the exception.

287Applying CSS Conditionally

Why might nesting media queries be useful? Here's one example:

@media screen {
 @media (min-width: 20em) {
 img {
 display: block;
 width: 100%;
 height: auto;
 }
 }

 @media (min-width: 40em) {
 img {
 display: inline-block;
 max-width: 300px;
 }
 }
}

In this example, we've grouped all our screen styles together, with subgroupings

for particular window widths. Here's another example, using hover: on-demand:

@media (hover: on-demand) {
 @media (pointer: coarse) {
 input[type=checkbox] ~ label {
 padding: .5em;
 }
 }
 @media (pointer: fine) {
 input[type=checkbox] ~ label {
 padding: .1em;
 }
 }
}

Within this block are two feature queries for pointer. When (pointer: coarse)

is true, we'll add a half-em of padding. When (pointer: fine), is true, we'll use

less padding.

Working around Legacy Browser Support with only
As mentioned in the beginning of this chapter, @media has been around for a while;

however, the syntax and grammar of @media has changed significantly from its ori-

CSS Master288

ginal implementation. As the Media Queries, Level 4 specification explains, the

original error-handling behavior:

[W]ould consume the characters of a media query up to the first

non-alphanumeric character, and interpret that as a media type, ig-

noring the rest. For example, the media query screen and (color)

would be truncated to just screen.

To avoid this, we can use the only keyword to hide media queries from browsers

that support the older syntax. The only keyword must precede a media query, and

affects the entire query:

@media only screen and (min-resolution: 1.5dppx) {
 /* Styles go here */
}

The only keyword tells the browser that these styles should be applied only when

the following condition is met. The good news is that the older error-handling be-

havior is mostly an edge-case among browsers in use today. For most current

browsers and current web users, using the only keyword is unnecessary. I've in-

cluded it here for completeness.

Negating Media Queries
We can also negate a media query using the not keyword. The not keyword must

come at the beginning of the query, before any media types or features. For example,

to hide styles from print media, we might use the following:

@media not print {
 body {
 background: url('paisley.png');
 }
}

If we wanted to specify low-resolution icons for lower-resolution devices instead,

we might use this snippet:

289Applying CSS Conditionally

@media not print and (min-resolution: 1.5dppx) {
 .external {
 background: url('arrow-lowres.png');
 }
}

Notice here that not comes before and negates the entire media query. You can't

insert not after an and clause. Arguments such as @media not print and not

(min-resolution: 2dppx) or @media screen and not (min-resolution: 2dppx)

violate the rules of media query grammar; however, you can use not at the beginning

of each query in a media query list:

@media not (hover: hover), not (pointer: coarse) {
 /* Styles go here */
}

Styles within this grouping rule would be applied when the device is without a

hover state or when the pointing device has low accuracy.

Other Ways to Use Media Queries
Thus far, we've talked about @media blocks within stylesheets, but this isn't the only

way to use media types and queries. We can also use them with @import, or the

media attribute.

Since CSS2.1 became widely supported, we've been able to use media types with

@import rules. For example, to import a stylesheet typography.css when the document

is viewed on screen or printed to a page, we could use the following CSS:

@import url(typography.css) screen, print;

We can also, however, add a media feature query to an @import rule. In the following

example, we're serving the hi-res-icons.css stylesheet only when the device has

a minimum resolution of 1.5dppx or 96dpi:

CSS Master290

@import url(hi-res-icons.css) (min-resolution: 1.5dppx), (min-
➥resolution: 96dpi);

Use @import with Caution

@import has its drawbacks. For browsers and servers using HTTP/1.1, it adds an

additional HTTP request and blocks other assets from downloading. Use with

care.

We can also use media queries with the media attribute. In fact, this may be one of

the instances where media queries are most powerful. The media attribute, as you

may already know, can be used with a few HTML elements: style, link, video,

and the source element. But we can also set the value of the media attribute to a

media query. The example that follows will only apply linked styles if the device

width is 480 pixels wide or less:

<link rel="stylesheet" href="styles.css" type="text/css" media="
➥screen and (max-width: 480px)">

The Stylesheet Will Still Be Downloaded

In every browser tested, the stylesheet will be requested and downloaded, even

though the media query doesn't apply; however, linked assets within that stylesheet

(for example, background images defined with url()) won't be.

Media Queries in the Linked Stylesheet Take Precedence

If your linked stylesheets also contain media queries, these will take precedence

over the value of the media attribute.

It's also possible to use media queries with the media attribute of the style element:

<style type="text/css" media="screen and (max-width: 480px)">
 ⋮
</style>

As with linked stylesheets, media queries between <style> and </style> will still

apply.

291Applying CSS Conditionally

Finally, we can use the media attribute with the source element to serve different

files for different window widths and device resolutions. What follows is an example

using the source element and media attribute with the picture element:

<picture>
 <source srcset="image-wide.jpg" media="(min-width: 1024px)">
 <source srcset="image-med.jpg" media="(min-width: 680px)">
 <img src="image-narrow.jpg" alt="Adequate description of the
➥ image contents.">
</picture>

picture Element Has Patchy Support

The picture element is yet to be supported in every browser. As of publication,

only Firefox and Chrome versions 38+ and Opera versions 25+ support it. To add

support for other browsers, use Scott Jehl's Picturefill.11

Content-driven Media Queries
A current common practice when using media queries is to set min-width and max-

width breakpoints based on popular device sizes. A breakpoint, for those unfamil-

iar, is the width or height that triggers a media query and its resulting layout changes.

Raise your hand if you've ever written CSS that resembles this:

@media screen and (max-width: 320px) {
 ⋮
}

@media screen (min-width: 320px) and (max-width: 480px) {
 ⋮
}

@media screen (min-width: 481px) and (max-width: 768px) {
 ⋮
}

11 https://github.com/scottjehl/picturefill

CSS Master292

https://github.com/scottjehl/picturefill

@media screen (min-width: 769px) {
 ⋮
}

These are acceptable breakpoints—they work, and work for a large number of users.

But mobile device screen widths are more varied than this. Rather than focus on

iPhones, iPads, and laptops, consider a content-centric approach.

Don't Use device-width with Media Queries

Avoid using device-width (including min/max) altogether for media queries.

High DPI devices in particular may have a device width that does not match its

actual pixel capability. For instance, the iPhone 6 has a device width of 375 pixels,

but its width in renderable pixels is twice that amount.

A content-centric approach to media queries sets breakpoints based on the point at

which the layout starts to show its weaknesses. One strategy is to start small, which

is also known as a mobile-first approach. As Bryan Reiger puts it,12 “the absence of

support for @media queries is in fact the first media query.” You can do a lot to

create a flexible, responsive layout before you need to add media queries. Then as

you increase the window width, you can add styles that take advantage of the addi-

tional real estate. For example, how wide is the browser window when lines of text

become too long to read? That can be the point at which your layout switches from

a single-column layout (Figure 7.1) to a two-column layout (Figure 7.2).

12 http://www.slideshare.net/bryanrieger/rethinking-the-mobile-web-by-yiibu

293Applying CSS Conditionally

http://www.slideshare.net/bryanrieger/rethinking-the-mobile-web-by-yiibu

Figure 7.1. A document viewed in a mobile browser width

CSS Master294

Figure 7.2. A document viewed in a wider laptop-sized browser

There are two advantages to this approach. First: your site will still work on older

mobile browsers without support for media queries. This is less of a concern as web

users adopt more capable browsers and devices. The second reason is more import-

ant: this approach prepares your site for a wider range of screen widths and resolu-

tions.

Using Media Queries with JavaScript
We can also interact with media queries using a JavaScript API, better known as

matchMedia(). If you lack any JavaScript know-how, you may get a little lost in this

section. We'll keep the examples short, though, so that they're easier to understand.

The API for media queries is actually defined by a different specification, the CSSOM

View Module.13 It's not CSS, strictly speaking, but since it's closely related to @media,

we'll cover it.

13 http://dev.w3.org/csswg/cssom-view/

295Applying CSS Conditionally

http://dev.w3.org/csswg/cssom-view/
http://dev.w3.org/csswg/cssom-view/

The matchMedia() method is a property of the window object. That means we can

refer to it using window.matchMedia() or just matchMedia(). The former is clearer,

since it indicates that this is a native JavaScript method, but the latter saves a few

keystrokes. I'm a lazy typist, so I'll use matchMedia() in the examples that follow.

With matchMedia(), we can test whether a particular media condition is met. It

accepts a single argument, and that argument must be a valid media query.

Why might we use a media query with JavaScript, rather than CSS? Perhaps you'd

like to display a set of images in a grid on larger screens, but trigger a slide show

on small screens. Maybe you want to swap the src value of a video element based

on the screen size or resolution. These are cases for using matchMedia().

Here's a simple example of matchMedia in action. This code checks whether the

viewport width is greater than or equal to 45em:

var isWideScreen = matchMedia("(min-width: 45em)");
console.log(isWideScreen.matches); // Logs true or false to console

Using matchMedia() creates a MediaQueryList object. Here, that object is stored in

the isWideScreen variable. Every MediaQueryList object contains two properties:

■ media: returns the media query argument that was passed to matchMedia()

■ matches: returns true if the condition is met and false otherwise

Since we want to know whether it's true that the browser window is at least 45em

wide, we need to examine the matches property.

There are a few cases when MediaQueryList.matches might return false:

■ the condition isn't met at the time matchMedia() is invoked
■ the syntax of the media query is invalid
■ the feature query is without browser support

Otherwise, its value will be true.

Here's another example of using matchMedia. We'll update the source of a video

element based on the size of the current viewport and resolution:

CSS Master296

if(matchMedia("(max-width: 480px) and (max-resolution: 1dppx)") {
 document.querySelector('video').src = 'smallvideo.mp4';
}

If the condition doesn't match—or the browser doesn't support the resolution

feature query—the value for src won't be updated.

Error Checking with not all
Typically, the value of the media property will be the media query we've tested.

But maybe you forgot to include the parentheses around your feature query (a syntax

error). Or perhaps the query uses a pointer feature query, but the browser is yet to

support it. In both of those cases, the browser will return a not all value. This is

media query-speak for “this does not apply to any media condition.”

In cases where the media query is a list—that is, when it contains multiple condi-

tions—the value of matchMedia().media will also contain multiple values. Should

part of that query list be invalid or unsupported, its value will be not all. Here's

an example:

var mq = matchMedia("(hover: none), (max-width: 25em)");

In browsers lacking support for the hover: none media feature query, the value of

mq.media will be not all, (max-width: 25em). In browsers that do support it, the

value of mq.mediawill be (hover: none), (max-width: 25em). Let's look at another

example:

var mq = matchMedia("min-resolution: 1.5dppx, (max-width: 25em)");

In this example, the value of mq.media will also be not all, (max-width: 25em).

In this case, however, it's because our first feature query uses the wrong syntax.

Remember that media feature queries need to be enclosed in parentheses. The argu-

ment should be matchMedia("(min-resolution: 1.5dppx), (max-width: 25em)");

instead.

Listening for Media Changes
The conditions of our media may not be static. The condition can change when the

user resizes the browser, or enters and exits landscape mode. The good news is that

297Applying CSS Conditionally

we can respond to changes in our document's environment with the addListener()

method. The addListener() method accepts a function as its argument. This

function is also known as a callback function.

Let's add a class name when our document enters landscape orientation. The first

step is to create a MediaQueryList object using matchMedia and a media query:

var isLandscape = matchMedia("(orientation: landscape)");

Step two is to define our callback function. Our MediaQueryList object will be

passed to this callback function at its sole argument:

var toggleClass = function (mq) {
 if (mq.matches) {
 document.body.classList.add('widescreen');
 } else {
 document.body.classList.remove('widescreen');
 }
}

Media query events are not very smart. They're fired anytime the value of Medi-

aQueryList.matches changes, regardless of whether the condition is true. This

means we'll need to examine the value of MediaQueryList.matches or MediaQueryL-

ist.media for our MediaQueryList object. In this case, if the value of mq.matches

is true, we'll add a class name to our body element. Otherwise, we'll remove it.

Finally, let's add this event listener to our MediaQueryList object with addListener:

isLandscape.addListener(toggleClass);

To remove a listener, use removeListener as shown:

isLandscape.removeListener(toggleClass);

In early versions of the CSSOM View specification, addListener and removeListen-

er were supposed to be separate mechanisms, removed from the DOM event queue.

This has changed in Level 4. Eventually, we'll be able to use the standard addEvent-

Listener and removeEventListener DOM methods to listen for a change event.

Our examples from before could then be rewritten like so:

CSS Master298

isLandscape.addEventListener('change', toggleClass); // Add listener
isLandscape.removeEventListener('change', toggleClass); // Remove
➥ listener

Most browsers are yet to implement this change, and still support addListener/re-

moveListener exclusively. Chrome and Opera are the exceptions. In those browsers,

addListener/removeListener are aliases of addEventListener/ removeEventListen-

er. Use addListener and removeListener until other browsers support the newer

specification.

Conditional Rules with @supports
Let's move into a more experimental feature of conditional CSS: @supports. The

@supports rule lets you add CSS rules based on whether the browser supports a

particular property and value. "And value" is key. Some CSS properties and values

have been redefined or expanded between CSS2.1 and CSS Level 3. Using @supports

lets us test for those changes. Like @media, @supports consists of two parts: the CSS

at-rule, and a DOM-based API for use with JavaScript. Unfortunately, @supports

enjoys less support than @media, as evident in Table 7.4.

Table 7.4. Support for @supports (Source CanIUse.com14)

UC BrowserAndroidOperaSafariChromeFirefoxInternet
Explorer

No4.4+12.1+b9+28+23+Noa

a Microsoft Edge supports @supports.
b Version 12.1 uses the older window.supports CSS method. Versions 15+ use CSS.supports.

Why might we use @supports? Here's a scenario: as originally specified,15 display

allowed four possible values—block, inline, list-item, and none. Later the CSS

Flexible Box Layout Module Level 116 (better known as flexbox) and CSS Display

Module Level 317 specifications added flex and inline-flex as new values for

14 http://caniuse.com/#feat=css-featurequeries
15 http://www.w3.org/TR/CSS1/#display
16 http://dev.w3.org/csswg/css-flexbox/
17 http://dev.w3.org/csswg/css-text-decor-3/

299Applying CSS Conditionally

http://caniuse.com/#feat=css-featurequeries
http://www.w3.org/TR/CSS1/#display
http://dev.w3.org/csswg/css-flexbox/
http://dev.w3.org/csswg/css-flexbox/
http://dev.w3.org/csswg/css-text-decor-3/
http://dev.w3.org/csswg/css-text-decor-3/

display. With @supports, we can define CSS rules that will be applied only when

the browser supports display: flex;

@supports (display: flex) {
 nav ul {
 display: flex;
 }
}

To define a condition, wrap the property and value you'd like to test in a set of

parentheses as shown. Both portions are required; a condition such as @supports

(hyphens) will not work as a test.

To combine conditions, use the and keyword. For example, if you wanted to apply

styles when both the text-decoration-color and text-decoration-style are

supported, you could use the following:

@supports (text-decoration-color: #c09) and (text-decoration-style:
➥ double) {
 .title {
 font-style: normal;
 text-decoration: underline double #f60;
 }
}

The @supports syntax also allows disjunctions using the or keyword. Disjunctions

are especially useful for testing vendor-prefixed property support. Let's revisit our

display: flex example. Some recent versions of WebKit-based browsers such as

Safari 8 require a vendor prefix for flexbox support. We can augment our @supports

condition to take that into account:

@supports (display: flex) or (display: -webkit-flex) {
 nav ul {
 display: -webkit-flex;
 display: flex;

 }
}

Finally, we can also define a collection of styles if a condition isn't supported by

using the not keyword:

CSS Master300

@supports not (display: flex) {
 nav {
 display: table;
 }
 nav ul {
 display: table-row;
 }
 nav li {
 display: table-cell;
 }
}

The not keyword can only be used to negate one condition at a time. In other words,

@supports not (text-decoration-color: #c09) and (text-decoration-style:

double) will fail to work. But you can combine two tests into a single condition.

Use an outer set of parentheses; for example, @supports not ((text-decoration-

color: #c09) and (text-decoration-style: double)).

CSS.supports DOM API
Along with the @supports rule comes a scriptable API: CSS.supports(). Think of

it as a CSS-only version of Modernizr. It's perfect for when you only need to test

CSS feature support. CSS.supports() always returns a Boolean true or false value

depending on whether the browser supports that property and value combination.

Because CSS.supports() has evolved since it was originally proposed, there are

two syntax variations. The first and most widely supported is CSS.supports(_prop-

erty_, _value_). For example:

CSS.supports('text-decoration', 'underline wavy #e91e63');

With this syntax, both the property and value must be enclosed in quotes. Arguments

must be separated by a comma. The newer syntax is the parenthetical syntax, which

accepts an @supports condition as its argument. Similarly to matchMedia, the con-

dition must be wrapped in parentheses:

CSS.supports('(text-decoration: underline wavy #e91e63)')

This parenthetical syntax is far more robust than the original. With it, we can test

multiple conditions using conjunctions (and keyword) or disjunctions (or keyword).

301Applying CSS Conditionally

It also supports negation (not keyword). For example, we can test whether a browser

supports display: -webkit-flex or display: flex using the following:

CSS.supports('(display: -webkit-flex) or (display: flex)');

If you forget to include the parentheses when using this syntax, CSS.supports()

will return false.

Browser support for CSS.supports() mirrors that of @supports, with one caveat:

Opera 12 uses the older window.supportsCSS() method. If you need to support

Opera 12, but want to avoid managing different methods, add the following to your

JavaScript code:

if(!window.CSS && typeof window.supportsCSS === "function"){
 CSS = {};
 CSS.supports = function(property, value) {
 return supportsCSS(property, value)
 }
}

There is a drawback to this code, however. The window.supportsCSS() method

only accepts arguments in property, value form. It can't be used with the newer

parenthetical syntax. Attempting to do so will trigger an error.

Understanding the Cascade for @supports and
@media
As a general guide, it's smart to place your at-rules blocks later in your code. Using

@supports or @media doesn't increase the specificity or importance of a rule. Normal

cascade rules apply, meaning that any styles defined after an @supports or @media

block will override rules within the block. Consider the following CSS:

@supports (text-decoration: underline wavy #c09) {
 .title {
 font-style: normal;
 text-decoration: underline wavy #c09;
 }
}

CSS Master302

.title {
 font-style: italic;
}

Here, adding the title class to an element will both italicize and underline it. The

subsequent font–style: italic; line overrides the font-style: normal; line.

That's not what we want here, however. Instead, we need to flip the order of our

rule sets as shown so that font-style: normal takes precedence over font-style:

italic;:

.title {
 font-style: italic;
}

@supports (text-decoration: underline wavy #c09) {
 .title {
 font-style: normal;
 text-decoration: underline wavy #c09;
 }
}

Not every user will have a browser that supports these features, so be wary of defin-

ing mission-critical styles within @supports or @media rules. Instead, use these

features progressively. Define your base styles—the styles that every one of your

targeted browsers can handle. Then use @supports or @media to override and sup-

plement those styles in browsers that can handle newer features.

Conclusion
Now that this chapter is complete, you should know how to use:

■ @media to create flexible layouts for a range of devices and inputs

■ window.matchMedia() and the addListener/removeListener methods to call

JavaScript based on a media query

■ @supports and the CSS.supports() to progressively enhance documents

Both @media and @support are powerful and flexible ways to progressively enhance

your CSS. In the next chapter, we'll look at using CSS with SVG.

303Applying CSS Conditionally

Chapter8
Using CSS with SVG
So far we've talked about using CSS with HTML, but we can also use CSS with SVG,

or Scalable Vector Graphics. With CSS, we can change the appearance of SVG based

on user interaction. We can use the same SVG document in multiple places, showing

or hiding portions of it based on the width of the viewport.

Before we go any further, however, let's talk about what SVG is and why you should

use it.

Vector Images versus Raster Images
Most of the images currently used on the Web are raster images, also known as

bitmap images. Raster images are made up of pixels on a fixed grid, with a set

number of pixels per inch. JPEG, WebP, GIF, and PNG are all examples of raster

image formats.

Raster images are resolution dependent. For example, a 96dpi PNG image will look

great on a device with a 96dpi display resolution. When viewed on a 144dpi display,

however, a 96dpi image will appear fuzzy or pixelated. Similarly, raster images

have fixed dimensions and look best at their original size. Scaling a 150 x 150 pixel

image up to 300 x 300 pixels, for example, will distort it.

Vector images, on the other hand, use primitive shapes and mathematical expres-

sions. Rather than pixels on a grid, vector image formats describe the shapes that

make up an image and their placement relative to the document's coordinate system.

As a result, vector images are resolution independent, and retain their quality re-

gardless of display resolution or display dimensions.

Resolution independence is the biggest advantage of SVG. As well as SVG images

scaling up or down with no loss of quality, the same image will look great on both

high and low DPI (dots-per-inch) devices. That said, SVG is poorly suited to the

amount of color data required for photographs. It's best for drawings and shapes.

Use it in place of PNG or GIF images for logos, charts, or icons, or as an alternative

to custom icon fonts.

Another advantage of SVG is that it was designed to be used with other web lan-

guages. We can create, modify, and manipulate them with JavaScript. Or, as we'll

see in this chapter, we can style and animate them using CSS.

Associating CSS with SVG Documents
Using CSS with SVG is a lot like using it with HTML. We can apply CSS using the

style attribute of an SVG element; group CSS within a document using the style

element; or link to an external stylesheet. The pros and cons of each method are

the same as when using CSS with HTML.

Using the style Attribute
Here is a simple SVG document where the code creates a black circle, as shown in

Figure 8.1s:

CSS Master306

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0
➥ 200 200" enable-background="new 0 0 200 200">
 <circle cx="101.3" cy="96.8" r="79.6"/>
</svg>

Figure 8.1. A circle in SVG

Let's give our circle a pink fill using CSS and the style attribute, the result of which

can be seen in Figure 8.2:

307Using CSS with SVG

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0
➥ 200 200" enable-background="new 0 0 200 200">
 <circle cx="101.3" cy="96.8" r="79.6" style="fill: #ff99ff" />
</svg>

Figure 8.2. Using the style attribute to add a fill color

There's one difference between using CSS with HTML and using it with SVG:

property names. CSS properties that are available to HTML are generally unavailable

to SVG, and vice versa. We'll come back to this point later in the chapter.

Using the style attribute isn't the best way to use CSS, of course. Doing so limits

the reusability of those styles. Instead we should use embedded or linked CSS.

Embedding CSS in SVG Documents
A better approach to using CSS with SVG is to embed it using the style element

as shown:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0
➥ 200 200" enable-background="new 0 0 200 200">
 <style type="text/css">
 <![CDATA[
 circle {
 fill: #0c0;
 }

CSS Master308

]]>
 </style>
 <circle cx="101.3" cy="96.8" r="79.6" />
</svg>

Notice here that we've wrapped our CSS in <![CDATA[and]]> tags (CDATA is short

for character data). This tells the SVG parser that this is not SVG content and

shouldn't be treated as such. SVG is a form of XML, and XML has stricter parsing

requirements for escaping characters. Using these tags ensures that we avoid intro-

ducing character escaping errors into our SVG.

Embedding CSS in an SVG document lets us reuse those styles for multiple elements

within the same document, but it prevents that CSS from being shared across mul-

tiple documents. That's probably acceptable for logos and icons; however, if you're

creating a library of chart styles, consider an external CSS file instead.

Linking from SVG to an External CSS File
As with HTML, linking to an external CSS file makes it possible to share styles

across several SVG documents. To link an external CSS file, add <? xml-stylesheet

?> to the beginning of your SVG file:

<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet href="style.css" type="text/css"?>
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0
➥ 200 200" enable-background="new 0 0 200 200">
 <circle cx="101.3" cy="96.8" r="79.6" />
</svg>

Or you can use the XHTML link element. Just add the namespace attribute xmlns=ht-

tp://www.w3.org/1999/xhtml to your tag:

<defs>
 <link href="style.css" type="text/css" rel="stylesheet"
➥ xmlns="http://www.w3.org/1999/xhtml"/>
</defs>

The link element is not an SVG element. It belongs to HTML and XHTML. Under

the rules of XML, though, we can borrow elements and their behavior from other

309Using CSS with SVG

XML dialects such as XHTML. To do this, however, we have to add the xmlns

namespace attribute to the link tag.

Unfortunately, linking to external CSS will fail to work if you use the img element.

Same if you inline your SVG document in HTML. In those cases, you'll need to

either:

1. utilize the style element within your SVG document

2. link your CSS from the HTML document; for example:

<head>
 ⋮
 <link href="svg.css" type="text/css" rel="stylesheet" />
</head>

3. use the object element to embed your SVG file. Using object offers the additional

advantage of making the SVG's document tree available to your HTML document's

DOM (for example, document.querySelector('object').contentDocument).1

When using inline SVG within an HTML document, those SVG elements become

part of the HTML document tree. While it is still possible to embed CSS within that

inline document, you may wish to group the CSS for that SVG document with the

CSS of its parent document.

It's also possible to use CSS with SVG documents that were generated by drawing

software such as Inkscape or Illustrator. These can be edited using a standard text

editor. In most cases, doing so will not affect your ability to modify the image with

that drawing application; however, the application may change your markup when

you resave the document.

Differences between SVG and HTML
While SVG and HTML are both markup languages, there are two significant differ-

ences between them that affect how they work with CSS: SVG does not adhere to

the CSS box model, and SVG elements cannot be positioned.

1 Craig Buckler's piece “How to Add Scalable Vector Graphics to Your Web Page”

[http://www.sitepoint.com/add-svg-to-web-page/] discusses these methods in detail.

CSS Master310

http://www.sitepoint.com/add-svg-to-web-page/

SVG Does Not Adhere to the CSS Box Model
Unlike HTML, SVG shapes are not limited to rectangles and boxes. Most box-model-

related properties are inapplicable to SVG elements. You can't, for instance, change

the padding or margin of an SVG element. Nor can you use the box-sizing, box-

shadow, outline, or border-* properties.

You can, however, use CSS to set or change a range of SVG properties. The full list

is outlined in the SVG specification.2 We'll discuss a few of them in this chapter,

within the context of specific techniques.

SVG Elements Cannot be Positioned
Although it's possible to set the X and Y coordinates of an SVG element, SVG does

not have the same model of positioning as HTML. Avoid setting the value of the

CSS position property as it will have no effect. Related to this, SVG also lacks the

idea of a z-index and stacking contexts.3 SVG elements are stacked according to

their source order. Those that fall later in the document sit towards the top of the

stack. If you want to reorder SVG elements, you'll need to move them around in the

source or with JavaScript.

In fact, most CSS 2.1 properties do not apply to SVG documents. Exceptions include

animations and transforms, font-*, display, overflow, visibility, and a few text-

related properties. Instead, you'll have to use SVG-specific styling properties with

SVG documents.4

Styling an SVG Element
Here's a simple example of how to style SVG elements using CSS. First our SVG

document. It's a stand-alone file:

<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet href="s.css" type="text/css" ?>
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink=

2 http://www.w3.org/TR/SVG/styling.html#SVGStylingProperties
3 The SVG 2 specification [http://www.w3.org/TR/SVG2/render.html#ZIndexProperty] does define be-

havior for z-index and stacking contexts in SVG documents, but this has yet to make its way into

browsers.
4 http://www.w3.org/TR/SVG/styling.html#SVGStylingProperties

311Using CSS with SVG

http://www.w3.org/TR/SVG/styling.html#SVGStylingProperties
http://www.w3.org/TR/SVG/styling.html#SVGStylingProperties
http://www.w3.org/TR/SVG/styling.html#SVGStylingProperties
http://www.w3.org/TR/SVG2/render.html#ZIndexProperty

➥"http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 497
➥ 184" enable-background="new 0 0 497 184" xml:space="preserve">
 <polygon id="star" points="77,23.7 98.2,66.6 145.5,66.5 111.2,
➥106.9,119.3,154 77,131.8 34.7,154 42.8,106.9 8.5,67.5 55.8,
➥66.6 "/>
 <circle id="circle" cx="245" cy="88.9" r="67.5"/>
</svg>

This markup creates the image shown in Figure 8.3.

Figure 8.3. A star and a circle in SVG

As has been mentioned, we cannot use most CSS properties with SVG documents.

But we can change aspects such as an element's color, so let's make our star yellow:

#star {
 fill: rgb(255,185,0);
}

You'll often see the fill attribute used with SVG tags (for example, <circle

fill="#336699" cx="3" cy="10" r="100">), but it's also a styling property that

can be used with CSS.

We can also adjust an element's stroke, which is the outline of an SVG shape. It

exists, even if no stroke properties are set. Let's give our circle a 5px dark-blue

dashed border. We'll also make its fill the color of cornflower blue:

circle {
 fill: cornflowerblue;
 stroke: darkblue;
 stroke-width: 10;

CSS Master312

 stroke-dasharray: 10, 15;
 stroke-linecap: round;
}

Together this gives us the result in Figure 8.4.

Figure 8.4. Using CSS to style SVG elements

Most SVG attributes are unavailable to CSS; however, text, font, stroke, clipping,

filter, gradient, color, and painting properties are available. In other words, it's not

possible to change the x or y attributes of an element using CSS (you'd need to use

JavaScript), but you can modify appearance-related properties.5

Creating SVG Sprites
Image spriting is a technique for reducing the number of HTTP requests by combin-

ing several smaller images—typically bitmap icons—into a single file, as shown in

Figure 8.5. Reducing the number of network requests typically boosts website per-

formance. Rather than requesting multiple image files, the browser only needs to

request one. Displaying a specific icon becomes a matter of shifting the background

position of this bitmap file.6

5 Just a reminder that the complete list is available in the Styling

[http://www.w3.org/TR/SVG/styling.html#SVGStylingProperties] section of the SVG specification.
6 If you're unfamiliar with CSS sprites, CSS-Tricks has an excellent primer, "CSS Sprites: What They

Are, Why They’re Cool, and How To Use Them." [https://css-tricks.com/css-sprites/]

313Using CSS with SVG

http://www.w3.org/TR/SVG/styling.html#SVGStylingProperties
https://css-tricks.com/css-sprites/
https://css-tricks.com/css-sprites/

Figure 8.5. Multiple icons merged into a single image: Glyphicons from Twitter's Bootstrap 2.3.1

SVG sprites work similarly. Instead of downloading multiple SVG images, the

browser downloads a single file. Using SVG also means that you're not limited to

monochromatic icons as you are with icon fonts. SVG icons are also easier to

maintain, in my opinion, but be aware that file sizes are usually larger than icon

fonts.

Avoid Using Sprites with SPDY or HTTP/2

If you are serving assets using the SPDY or HTTP/2 protocols, don't use sprites.

As explained in Chapter 2, browsers that support SPDY or HTTP/2 can download

multiple assets in parallel; there's no waiting for one request to complete before

another begins. With SPDY or HTTP/2, the benefit of reducing the number of re-

quests is outweighed by the cost of sending more bytes than the document needs.

SVG sprites take advantage of document fragment identifiers and the :target

pseudo-class. They're supported in every major browser that supports SVG except

for Safari 7, and UCBrowser ≤ 9.9; however, support for using SVG fragments as

background images is currently limited to Firefox and Internet Explorer.7

In this document, we have three icons, a star, a hexagon, and a triangle:

<?xml version="1.0" encoding="utf-8"?>
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink=
➥"http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 50 50"
➥ style="enable-background:new 0 0 50 50;" xml:space="preserve">

7 Craig Buckler describes this technique in his SitePoint article, “How to Use SVG Image Sprites.”

[http://www.sitepoint.com/use-svg-image-sprites/]

CSS Master314

http://www.sitepoint.com/use-svg-image-sprites/

 <style type="text/css">
 .st0{fill:#FF0000;}
 .st1{fill:#92029E;}
 .st2{fill:#007EFC;}
 :not(:target) {
 display: none;
 }
 </style>
 <polygon id="star" class="st0" points="24.4,1.7 31.9,16.8 48.5,
➥19.2 36.5,30.9 39.3,47.4 24.4,39.6 9.6,47.4 12.4,30.9 0.4,19.2
➥ 17,16.8 "/>
 <polygon id="hexagon" class="st1" points="48.9,31.4 31.6,49.2
➥ 7.6,43.1 0.8,19.2 18.1,1.4 42.2,7.5 "/>
 <polygon id="triangle" class="st2" points="0.8,1.5 42.1,25.3 0.8
➥,49.2 "/>
</svg>

Each element has an id or fragment identifier. We've also embedded our CSS in

this SVG document, and used the :not() pseudo-class in combination with the

:target pseudo-class. You'll recall in Chapter 2 that :target applies styles to a

document fragment as indicated by the document's URL. Here, it's used to hide

portions of our SVG document that do not match the target.

Now we can link this SVG from our HTML or CSS. For example, to use our star

icon as a background image, we might use the following:

.star-bg {
 background: url(../../images/svg-icons.svg#star);
 background-size: 20px 20px;
}

And we'll end up with a result such as that seen in Figure 8.6.

315Using CSS with SVG

Figure 8.6. Using an SVG document fragment as a background image

Again, using fragments in background images only works in Firefox and Internet

Explorer. In WebKit and Blink-based browsers, we're limited to using foreground

images:8

<object type="image/svg+xml" data="../images/svg-icons.svg#triangle"
➥></object>

This is not the only SVG icon technique. It is, however, the one that takes the most

advantage of CSS, which is why we're discussing it here. For other icon and spriting

methods that rely more on the native features of SVG, read “SVG symbol a Good

Choice for Icons”9 from CSS-Tricks and Peter Gasston's “Better SVG Sprites with

Fragment Identifiers”10.

8 We're using object here for the broadest browser compatibility. Current versions of Safari display

buggy behavior when using fragments with the img element.
9 https://css-tricks.com/svg-symbol-good-choice-icons/
10 http://www.broken-links.com/2012/08/14/better-svg-sprites-with-fragment-identifiers/

CSS Master316

https://css-tricks.com/svg-symbol-good-choice-icons/
https://css-tricks.com/svg-symbol-good-choice-icons/
http://www.broken-links.com/2012/08/14/better-svg-sprites-with-fragment-identifiers/
http://www.broken-links.com/2012/08/14/better-svg-sprites-with-fragment-identifiers/

Animating and Transitioning SVG CSS
Properties
Using CSS with SVG becomes more interesting when we add transitions and anim-

ations to the mix. The process is just like animating HTML elements with CSS, but

with SVG-specific properties. Let's create a pulsing star effect using the following

SVG document:

08-svg/twinkling-star.html (excerpt)

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" x="0px"
➥ y="0px" viewBox="0 0 497 184" xml:space="preserve">
 <defs>
 <link href="twinkle.css" type="text/css" rel="stylesheet"
➥ xmlns="http://www.w3.org/1999/xhtml"/>
 </defs>
 <polygon class="star" points="77,23.7 98.2,66.6 145.5,66.5 111.2
➥,106.9 119.3,154 77,131.8 34.7,154 42.8,106.9 8.5,67.5
➥ 55.8,66.6 "/>
 <polygon class="star twinkle" points="77,23.7 98.2,66.6 145.5,
➥66.5 111.2,106.9 119.3,154 77,131.8 34.7,154 42.8,106.9
➥ 8.5,67.5 55.8,66.6 "/>
</svg>

Our document contains two star-shaped polygon elements, each with a class name

of star. To create the pulsing effect, we'll animate the first one. Here's our CSS:

css/chapter8/svg.css (excerpt)

@keyframes twinkle {
 from {
 fill-opacity: .4;
 }
 to {
 fill-opacity: 0;
 transform: scale(2);
 }
}
.star {
 fill: rgb(255,195,0);
 transform-origin: 50% 50%;
 -moz-transform-origin: 76px 97.15px;

317Using CSS with SVG

}

.twinkle {
 animation: twinkle 1.5s infinite forwards ease-in;
}

Here we've just usedthe SVG-specific property fill-opacity. As with CSS, if the

value of an SVG styling property can be interpolated, it can also be animated or

transitioned. You can see two different points of the animation in Figure 8.7.

Figure 8.7. Our pulsing star at two different points in the animation

Let's look at another example. This time we'll create a drawing effect by transitioning

the stroke-dasharray property. Here's our SVG document:

08-svg/svg-wipe-in.html (excerpt)

<svg version="1.1" xmlns="http://www.w3.org/2000/svg"
➥xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
 viewBox="0 0 200 200" enable-background="new 0 0 200 200">
 <circle fill="transparent" stroke-width="16" cx="101.3"
➥ cy="96.8" r="79.6"/>
</svg>

We introduced stroke-dasharray without explaining what it does. The stroke-

dasharray property accepts a comma-separated list of length or percentage values

to create a dashed pattern. Odd-numbered values determine the dash length. Even-

CSS Master318

numbered values determine the gap length. A stroke-dasharray value of 5, 10

means that the stroke will be five pixels long with a gap of 10 pixels between each

dash. A value of 5, 5, 10 alternates five and 10 pixel dash lengths with five pixel

gaps in between.

We can use stroke-dasharray to create a drawing effect by starting with a 0 dash

length and a large gap, and ending with a large dash length and a dash gap of 0.

Then we just transition between the two. Here's what our CSS looks like:

css/chapter8/svg.css (excerpt)

circle {
 transition: stroke-dasharray 1s ease-in;
 fill: transparent;
 stroke-dasharray: 0, 500;
}
.animate {
 stroke-dasharray: 500, 0;
}

At the beginning of the transition, our stroke is invisible because the dash length

is 0 and our gap is 500. But when we add the animate class to our circle, we shift

the dash length to 500, and eliminate the gap. The effect is a bit like drawing a circle

with a pair of compasses, as seen in Figure 8.8. Why 500? It's the smallest value

that worked to create this particular effect.

319Using CSS with SVG

Figure 8.8. Our stroke-dasharray transition near its end

Unfortunately, there's a limit to how much we can animate using CSS. For instance,

we're unable to use CSS to animate the shape of a path to make a star into a hexagon.

For that, we'd need to use a JavaScript animation library , such as Bonsai.js11, or

Synchronized Multimedia Integration Language (SMIL).12 Unfortunately, SMIL

lacks any support in Internet Explorer and is deprecated in Chrome 45+.

Using SVG with Media Queries
With HTML documents, we might show, hide, or rearrange parts of the page based

on the conditions of the viewport. If the browser window is 480 pixels wide, for

example, we might shift our navigation from a horizontal one to a vertical collapsible

list. We can do a similar job with media queries and SVG documents. Consider a

logo, such as that of the fictitious Hexagon Web Design & Development in Figure 8.9.

11 https://github.com/uxebu/bonsai
12 http://www.w3.org/TR/SMIL/

CSS Master320

https://github.com/uxebu/bonsai
http://www.w3.org/TR/SMIL/

Figure 8.9. A logo and word mark for the fictitious Hexagon Web Design & Development

Without media queries, this SVG logo would simply stretch or shrink to fit the

viewport or its container. But with media queries, we can do more clever tasks.

Let's distinguish between the HTML document viewport and the SVG document

viewport. When SVG is inline, the HTML viewport and the SVG viewport are one

and the same. The SVG document behaves more or less like another HTML element;

however, when an SVG document is linked—as with the object or img ele-

ments—we're dealing with the SVG document viewport. Media queries work in

both cases, but when the SVG document is linked, its viewport is independent of

its HTML document. In that case, the size of the browser window does not determine

the size of the SVG viewport. Instead, the viewport is determined by the dimensions

of the object or img element. Take the (abridged) SVG document that follows as

an example:13

images/svgmq.svg (excerpt)

<svg version="1.1" id="HexagonLogo" xmlns="http://www.w3.org/2000/
➥svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
➥ viewBox="0 0 555 174" xml:space="preserve">
 <defs>
 <style type="text/css">
 /* CSS goes here */
 </style>
 </defs>
 <g id="hex">

13 A full demonstration of this technique, including the complete source of this SVG document, is

available in the code archive.

321Using CSS with SVG

 <polygon id="hexagonbg" points="55.2,162 10,86.5 55.2,11
➥ 145.5,11 190.7,86.5 145.5,162 "/>
 <path id="letterH" fill="#FFFFFF" d="M58,35.5h33v35.2h18.
➥4V35.5 h33.2v103.4h-33.2v-38.3H91v38.3H58V35.5z M77.5,126.5V87.
➥3h45.6v39.2h4V47.9h-4v35.6H77.5V47.9h-4v78.6H77.5z"/>
 </g>

 <g id="word-mark">
 <g id="hexagon-word">
 ...
 </g>
 <g id="web-design-and-dev">
 ...
 </g>
 </g>
</svg>

In smaller viewports, let's show just the H in a hexagon symbol:

@media (max-width: 20em) {
 [id=word-mark] {
 display: none;
 }
}

CSS Must Be Embedded in SVG for IE

This technique only works in Internet Explorer if the CSS is embedded within

the SVG file. It will fail to work with an externally linked stylesheet.

Now, whenever our SVG's container is less than or equal to 20em, only the symbol

portion of our logo will be visible, as indicated in Figure 8.10. To trigger this view

from the HTML document, set the width of the SVG container:

CSS Master322

<object data="hexlogo.svg" type="image/svg+xml"
➥ style="width: 20em;"></object>

Figure 8.10. Showing/hiding elements based on the SVG viewport size

As you may have noticed from looking at Figure 8.10, our SVG image retains its

intrinsic dimensions even though part of it has been hidden. This, unfortunately,

is a limitation of SVG. To fix it, we need to change the viewBox attribute of the SVG

document, but only when the viewport is below a certain size. This is a great use-

case for matchMedia.14

The viewBox attribute, as its name suggests, determines the viewable area of an SVG

element. By adjusting it, we can determine which part of an SVG image fills the

viewport.

What follows is an example using matchMedia and a media query to update the

viewBox attribute. Because this JavaScript is embedded within SVG, we must wrap

it between <![CDATA[and]]> escape tags:

<defs>
 <script type="text/javascript">
 <![CDATA[

14 We discussed matchMedia in Chapter 7

323Using CSS with SVG

 var svg, originalViewBox, max20em, mq, updateViewBox;

 svg = document.querySelector('svg');

 /* Store the original value in a variable */
 originalViewBox = svg.getAttribute('viewBox');

 /* Define our media query and media query object */
 mq = matchMedia("(max-width: 20em)");

 /* Define the handler */
 updateViewBox = function(){
 if (mq.matches) {
 /* Change the viewBox dimensions to show the hexagon */
 svg.setAttribute('viewBox', "0 0 200 174");
 } else {
 svg.setAttribute('viewBox', originalViewBox);
 }
 }

 /* Fire on document load */
 // WebKit/Blink browsers
 svg.onload = updateViewBox;

 // Firefox & IE
 svg.addEventListener('SVGLoad', updateViewBox, true);
 /* Fire if the media condition changes */
 mq.addListener(updateViewBox);
]]>
</script>
</defs>

More on Interactive SVG Documents

For a fuller primer on creating interactive SVG documents, read the “Dynamic

SVG and JavaScript”15 chapter of An SVG Primer for Today's Browsers from the

W3C.

Now, whenever the SVG container is 20em or less, the value of viewBox will be "0

0 200 174". When it exceeds 20em, viewBox will be restored to its initial value as

represented in Figure 8.11.

15 http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html#JavaScript

CSS Master324

http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html#JavaScript
http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html#JavaScript

Figure 8.11. An SVG logo with media queries when the object container is 20em (top) wide and 40em wide

Since this technique uses the the onload event attribute / SVGLoad event, it's a good

idea to embed our CSS in the SVG file. When CSS is external, the SVG load event

may fire before its associated CSS finishes loading. As we discussed in Chapter 7,

Internet Explorer 9 is without support for matchMedia. You can still use CSS media

queries to show or hide portions of an SVG image, but you may need to serve addi-

tional CSS to IE9 for consistent rendering.

Using Media Queries with background-size
SVG documents and media queries are not limited to foreground images. We can

also resize the SVG viewport using the CSS background-size property. The latest

major browsers support this technique, but older browser versions do not. Be careful

when using this technique in production.16

We'll start with this SVG document:

16 Internet Explorer <= 10 lacks support for this technique, as do some older versions of Firefox.

325Using CSS with SVG

<?xml version="1.0" encoding="utf-8"?>
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg"
➥ xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
➥ viewBox="-20 -20 250 250" xml:space="preserve">
 <defs>
 <style type="text/css">
 <![CDATA[
 circle {
 stroke: #000;
 stroke-width: 30;
 fill: #009688;
 }
 @media (width: 100px) {
 circle {
 fill: #673ab7;
 }
 }
 @media (width: 300px) {
 circle {
 fill: #ffc107;
 }
 }
]]>
 </style>
 </defs>
 <circle cx="100" cy="100" r="100" />
 <circle cx="100" cy="100" r="50" />
</svg>

This is a simple case. Our circle elements will get a new fill color at specific

viewport widths. When the viewport is 20 pixels wide, the fill will be yellow. When

it's 300 pixels wide, it will be purple.

To make this work, we have to use our SVG image as a background image and set

the selector's background-size property. In this case, we'll use our image as a

background for the body element and for li elements. Figure 8.12 shows the results:

body, li {
 background: url(../images/circles.svg);
}

 body {
 background-color: #9c27b0;

CSS Master326

 background-size: 300px auto;
}
li {
 background-size: 20px auto;
 background-repeat: no-repeat;
 background-position: left 3px;
 padding-left: 25px;
}

Figure 8.12. Manipulating the SVG viewport with the CSS background-size property

Conclusion
Using SVG with CSS gives us more possibilities for flexible and adaptive documents.

Upon completing this chapter, you should now know how to:

■ use CSS to style SVG elements

■ animate SVG properties

■ employ CSS media queries and the matchMedia API to show and hide portions

of an SVG document

■ utilize the :target pseudo-class with SVG to create a spriting system

327Using CSS with SVG

Chapter9
Preprocessors
Authoring CSS can be tedious. There’s a set of repeated colors and fonts to manage

and remember. We need to keep track of vendor prefixes. And sometimes we want

to do tasks, such as nesting or grouping rules, that are beyond the native capabilities

of CSS.

This is where preprocessors come in handy. Preprocessors add syntax capabilities

and features that CSS lacks: mixins make it a breeze to manage vendor prefixes;

built-in functions save us from unit and color conversions; and the ability to extend

a selector lets us consolidate style rules.

As the name suggests, preprocessors take a special syntax and compile it to CSS.

They are tools for writing CSS, although some tools also handle minification and

concatenation.

In this chapter, we’ll look at two of the leading CSS preprocessor tools: Less1 and

Sass.2 These are not the only preprocessors in existence, but they are by far the most

1 http://lesscss.org/
2 http://sass-lang.com/

http://lesscss.org/
http://sass-lang.com/

popular. While not a comprehensive look at either tool, it will be enough to get you

started.

Which preprocessor to choose depends on which syntax, tools, environment, and

workflow you prefer. Aside from installation and compilation, the basic features of

Less and Sass are similar enough that we’ll discuss them in parallel. For a more

detailed exploration of Less and Sass, consult the documentation for each.

Installing Less
Less is available as:

■ a Node.js-based tool, installable from its package manager npm
■ a tool for Rhino3, Mozilla’s Java-based JavaScript engine
■ a browser-based tool
■ part of GUI-based tools such as Koala4, Harp5, and CodeKit6

■ a client-side JavaScript application

Instructions for how to use the first three are covered on the Less website.7 We’ll

focus on the Node.js-based tool. I trust you’ve installed Node and NPM after reading

Chapter 2. Installing Less works the same way as installing other NPM-distributed

packages:

npm install -g less

Linux and OS X users may need to use sudo. If the command line scares you, using

a GUI-based tool is perfectly fine. You can safely skip ahead to the Ruleset Nesting

section.

Using Less from the Command Line
To use the command line version of Less, run lessc in a terminal window:

3 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
4 http://koala-app.com
5 http://harpjs.com/
6 https://incident57.com/codekit/
7 http://lesscss.org/

CSS Master330

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
http://koala-app.com
http://harpjs.com/
https://incident57.com/codekit/
http://lesscss.org/

lessc /path/to/lessstylesheet.less

You’ll need to run lessc every time you wish to compile your Less files to CSS.

One way around this limitation is to use an application such as Koala, Harp, or

CodeKit, instead of the Node.js version. These applications will “watch” your Less

files or directories for changes, rewriting CSS files with every save. If you’re building

a Grunt or Gulp workflow, you can also use the grunt-less or gulp-less plugins

to run the lessc command whenever you save a file.

Running lessc will print CSS to the terminal window by default; however, you can

redirect that output to a file:

lessc /path/to/lessstylesheet.less > /path/to/output.css

If you wish to minify your CSS output, use the -x flag:

lessc -x /path/to/lessstylesheet.less > /path/to/output.css

When using the command line tool, Less files don’t require a .less extension. You

could use .css or .lcss instead; however, third-party applications and client-side Less

require it. For the broadest compatibility, use .less.

Installing Sass
Sass was originally written as a Ruby gem. In recent years, though, it’s been ported

to a C/C++ library known as LibSass. As a result, Sass tools are also available for

Python, Node.js, and other platforms.

If the command line makes you skittish, there are several open-source and paid

applications that include Sass support. These include the aforementioned Koala,

Harp, and CodeKit. Another option is Scout.8

We’ll focus on the Ruby-based version of Sass in this chapter, as it’s the definitive

implementation of Sass. You’ll need to install Ruby if you’re yet to do so; however,

setting up a server or knowing anything about programming with Ruby is not re-

quired in order use Sass. To install Sass, use the following command:

8 http://mhs.github.io/scout-app/

331Preprocessors

http://mhs.github.io/scout-app/

gem install sass

OS X and Linux users may need to use sudo.

Using Sass from the Command Line
As with Less, you can use Sass from the command line to compile your files to CSS.

Sass files should be saved with an .scss extension:

sass sassfile.scss output.css

Sass Syntaxes

Sass has two syntaxes: original Sass syntax and SCSS (or Sassy CSS). Original

Sass syntax uses indentation rather than curly braces to delineate rule sets. SCSS

is more like a superset of plain CSS, and uses curly braces. We’ll be focusing on

SCSS. Files that employ original Sass syntax should use a .sass extension.

Sass also supports basic minification. Just add --style=compressed to your sass

command:

sass sassfile.scss output.css --style=compressed

With the --watch flag, Sass can also update CSS output after every saved change:

sass --watch sassfile.scss:output.css

Additionally, Sass can watch and output entire directories of files:

sass --watch /path/to/scss/:/path/to/css/

Each Sass file in a watched directory will be compiled to a corresponding CSS one.

Now that we’ve looked at how to install and use Less and Sass, let’s dig into the

common features of both.

CSS Master332

Ruleset Nesting
Ruleset nesting can improve the organizing of your CSS by grouping related styles.

It also saves some keystrokes.

Consider the following CSS rulesets:

article {
 margin: 2em auto;
}
article p {
 margin: 0 0 1em;
 font-family: 'Droid Serif','Liberation Serif',serif;
}

In both Less and Sass, we can rewrite this to take advantage of nesting:

article {
 margin: 2em auto;

 p {
 margin: 0 0 1em;
 font-family: 'Droid Serif','Liberation Serif',serif;
 }
}

This gives us a descendant selector, and the output will match the standard CSS

above.

Sass and Less also allow you to reference the parent selector from within a nested

ruleset. This is especially useful when dealing with child selectors (>), pseudo-ele-

ments, and pseudo-classes. To incorporate a parent selector, use an ampersand (&).

Take a look at the following example:

p {
 font-family: 'Droid Serif','Liberation Serif',serif;

 .error & {
 font: bold 11px / 1.5 sans-serif;
 }
}

333Preprocessors

a {
 text-decoration: none;
 border-bottom: 2px solid #000;

 &:link{
 border-bottom-color: #fc0;
 }
 &:hover {
 border-bottom-color: #f30;
 }
}

Compiling the preceding code results in the following output from both Less and

Sass:

p {
 font-family: 'Droid Serif', 'Liberation Serif', serif;
}

.error p {
 font: bold 11px / 1.5 sans-serif;
}

a {
 text-decoration: none;
 border-bottom: 2px solid #000;
}

a:link {
 border-bottom-color: #fc0;
}

a:hover {
 border-bottom-color: #f30;
}

It’s also possible to nest a ruleset inside a nested ruleset. Take a look at the example

below:

nav {
 > ul {
 height: 1em;
 overflow: hidden;

CSS Master334

 position: relative;

 &::after {
 content: ' ';
 display: block;
 clear: both;
 }
 }
}

Here we’ve nested styles for ::after inside a declaration block for ul, which itself

is nested inside a nav declaration block. When compiled, we end up with the fol-

lowing CSS:

nav > ul {
 height: 1em;
 overflow: hidden;
 position: relative;
}
nav > ul::after {
 content: ' ';
 display: block;
 clear: both;
}

Let’s look at a slightly more complex example of nesting:

article {
 color: #222;
 margin: 1em auto;
 width: 80%;

 &.news {
 h1 {
 color: #369;
 font-size: 2em;

 [lang]{
 font-style: italic;
 }

335Preprocessors

 }
 }
}

This isn’t too egregious, right? Our [lang] selector is only four levels deep, but let's

look at our compiled CSS output:

article {
 color: #222;
 margin: 1em auto;
 width: 80%;
}
article.news h1 {
 color: #369;
 font-size: 2em;
}
article.news h1 [lang] {
 font-style: italic;
}

Now we have a couple of high-specificity selectors: article.news h1 and art-

icle.news h1[lang]. As discussed in Chapter 2, high-specificity selectors increase

the size of your CSS files. They use more characters than necessary, and require

even higher high-specificity selectors to override them.

Neither Less nor Sass has a hard limit on how deeply rulesets can be nested. But a

smaller amount of nesting results in lower specificity and CSS that’s easier to

maintain. If you’ve nested more than three levels, there’s a good chance you need

to refactor your code.

@import and Partials
The CSS @import rule allows developers to add rules from one stylesheet to another

stylesheet document. Unfortunately, @import often has a negative impact on website

load times. As Steve Souders explains in his blog,9 using @import from within a

linked stylesheet will cause the browser to download each file sequentially, increas-

9 http://www.stevesouders.com/blog/2009/04/09/dont-use-import/

CSS Master336

http://www.stevesouders.com/blog/2009/04/09/dont-use-import/

ing total page load time. More generally, the greater amount of HTTP requests you

have, the more time it takes a page to download all of your assets.10

For this reason, the current best practice is to avoid using @import in CSS files;

however, in Less and Sass, @import is a fantastic way to organize and manage your

CSS.

Less and Sass support what are known as partials or partial source files. These files

are smaller chunks of CSS, often organized by functionality. You might, for example,

have separate partials for forms, tables, and typography styles.

We can include the contents of a partial in our CSS output using the @import com-

mand. This way we can split our CSS across multiple files for development, but

still generate a single file for production.

Let’s look at a super simple example using Less. We’ll create a file named errors.less

that contains styles for error and warning messages:

.error {
 border-radius: 3px;
 border: 1px solid #000;
 font-size: .9rem;
 margin: 10px 0;
 padding: 10px;
}

.critical {
 background: rgb(255,232,232);
 border-color: red;
 color: red;
}

.warning {
 background: rgb(255,255,204);
 border-color: rgb(255,153,0);
 color: rgb(255,153,0);
}

Now in our main .less file―we’ll name it styles.less―we can import the styles of

errors.less:

10 This is not accurate for sites served over SPDY or HTTP/2.

337Preprocessors

body {
 background: #FFFDFB;
 color: #222;
 font: 100 16px / 1.5 sans-serif;
}
@import "errors";

Notice that @import "errors"; comes at the end of our CSS file. With standard

CSS, @import statements must be listed at the beginning of the stylesheet. With

preprocessors, it can appear at any position.

We can also omit the file extension when we import a file this way. Including it

won’t cause problems, but it’s unnecessary.

Let’s compile our Less files to CSS. Running lessc styles.less > styles.css

creates this output:

body {
 font: 100 24px / 1.5 sans-serif;
}
.error {
 border: 1px solid #000;
 border-radius: 3px;
 font-size: .9rem;
 padding: 10px;
 margin: 10px 0;
}
.critical {
 background: #ffe8e8;
 border-color: red;
 color: red;
}
.warning {
 background: #ffffcc;
 color: #ff9900;
 border-color: #ff9900;
}

Sass works similarly, but in the case of Sass partials, filenames:

■ should begin with an underscore character

■ must use an .scss extension instead of a .less extension.

CSS Master338

Variables
Another feature of preprocessors are variables. Variables allow us to store a

value―say, a font size or color―in one place and reuse it in another. Later, if we

change that value globally, we only need to update a single line.

Variables are an oft-requested feature for CSS. For a few years, it looked like they

would become a reality with the CSS variables specification.11 Unfortunately,

Firefox is the only browser that supports standard CSS variables currently. Chrome

and Opera paused development (although recently restarted it), while Internet Ex-

plorer is still weighing it up. Preprocessors give us this capability now.

Variables are one area where the syntax of Less and Sass differ. Less variables must

begin with an @ symbol:

@brand-color: #0e79c4;

For Sass, prefix variable names with a dollar sign (the $ character):

$brand-color: #0e79c4;

In both cases, variables are defined much like CSS property values, using a colon

rather than an equals sign. We can then use them as values in our rule sets:

h1 {
 color: @brand-color; // or $brand-color if using Sass.
}

Variables are especially useful for managing colors and font styles. For example,

you might store a project’s color values in a variables.less or _vars.scss partial:

$brand-color-a: #ff3b00; // Tomato red
$brand-color-b: #f8f8ff; // Cool white
$img-border: #708090 // Cool gray

Then we can use @import to pull these values into our CSS.

11 http://dev.w3.org/csswg/css-variables/

339Preprocessors

http://dev.w3.org/csswg/css-variables/

Variable Interpolation
Less and Sass have a feature called variable interpolation. Variable interpolation

lets you use variable values in ways other than as property values. Think of inter-

polation as a template system for building selector and value strings. Wrap the

variable name in a special syntax: #{} for Sass and @{} for Less; the tool replaces

them with the variable’s values during compilation.

You may, for example, want to define part of a selector name using a variable. Here’s

an example using Sass:

$prefix: sports;

To build the selector name, you’d use the following syntax (again, for Sass). Notice

here that we’re using the entire variable name, including the $ prefix inside the

curly braces:

.#{$prefix}-section {
 background-color: #0000ca;
}

And here’s the same example using Less. With Less, we only need the variable

name:

@prefix: sports;

.@{prefix}-section {
 background-color: #0000ca;
}

When compiled, both examples create this output:

.sports-section {
 background-color: #0000ca;
}

You can use interpolation for all your variables, not just for selector names. In fact,

you’ll find it absolutely necessary when your CSS syntax is ambiguous for the

compiler. Let’s look at another example of code ambiguity that affects the Sass

compiler. Consider this SCSS:

CSS Master340

$base-font-size: 16px;
$base-line-height: 1.5;

body {
 font: 100 $base-font-size / $base-line-height sans-serif;

}

You might expect this to compile to the following CSS:

body {
 font: 100 16px / 1.5 sans-serif;
}

Less handles this as you.d expect. With SCSS, though, what you end up with is

this:

body {
 font: 100 10.66667px sans-serif;
}

Sass permits mathematical expressions as property values. In this case, the / char-

acter is treated like a division operator instead of valid CSS syntax. To get around

this, we use interpolation:

body {
 font: 100 #{$base-font-size} / #{$base-line-height} sans-serif;
}

Now the previous SCSS when compiled gives us the output we expect:

body {
 font: 100 16px / 1.5 sans-serif;
}

Both Less and Sass have more advanced variable capabilities than what we’ve

covered here. Consult each tool’s documentation for more.

341Preprocessors

Mixins
Another advantage of using preprocessors is the ability to create reusable snippets

of code in the form of mixins. Mixins are great for managing vendor prefixes, or

reusing particular styles in multiple places. The syntax differs quite a bit between

Less and Sass, but the concept is largely the same.

Mixins in Less
With Less, mixins look a lot like CSS selectors. In fact, they’re mostly the same. For

example, you can create a class that adds display: inline-block to an element:

.dib {
 display: inline-block;
}

You could add the following class to your markup: <p class="dib">. But if you’d

rather keep your markup simple and highly semantic, you might instead turn this

.dib class into a mixin:

.dib {
 display: inline-block;
}

p {
 .dib;
 font-size: 16px;
}

When compiled, Less will include both our .dib class and display: inline-block

as part of our p rule set:

.dib {
 display: inline-block;
}

p {

CSS Master342

 display: inline-block;
 font-size: 16 px;
}

It’s also possible to create a mixin rule set without it being included in the output.

To do so, add parentheses to the selector. In this example, .dib would become

.dib() instead.

Mixins can also accept parameters, making them perfect for managing vendor pre-

fixes. Let’s look at an example using the CSS3 transition property. First, we’ll

define our mixin:

.transition(@props) {
 -webkit-transition: @props;
 transition: @props;
}

Now we can use it within our rule sets:

.fade {
 .transition(opacity 100ms linear);
}

.open {
 .transition(height 500ms linear);
}

When compiled, Less replaces the value of @props with the argument passed, and

outputs the prefixed CSS we’ve prescribed:

.fade {
 -webkit-transition: opacity 100ms linear;
 -moz-transition: opacity 100ms linear;
 transition: opacity 100ms linear;
}

.open {
 -webkit-transition: height 500ms linear;

343Preprocessors

 -moz-transition: height 500ms linear;
 transition: height 500ms linear;
}

The advantage of using a mixin here is twofold: it saves us some typing, and it’s

easier to maintain. We can just remove the prefixed properties once they’re no longer

necessary.

Mixins in Sass
Sass mixins use a syntax that’s slightly more complicated that the Less equivalent.

The advantage is that it’s clear at a glance what is and isn’t a mixin. Sass mixins

also differ from Less in that they’re never included in the compiled CSS output.

Our transition mixin would look like this in Sass:

@mixin transition($props) {
 -webkit-transition: $props;
 -moz-transition: $props;
 transition: $props;
}

Add mixins to your SCSS using the @include directive:

.fade {
 @include transition(opacity 100ms linear);
}

.open {
 @include transition(height 500ms linear);
}

The compiled output looks like this CSS:

.fade {
 -webkit-transition: opacity 100ms linear;
 -moz-transition: opacity 100ms linear;
 transition: opacity 100ms linear;
}

.open {
 -webkit-transition: height 500ms linear;

CSS Master344

 -moz-transition: height 500ms linear;
 transition: height 500ms linear;
}

Sass mixins don’t have to accept parameters, however. Let’s use our .dib example

from the previous section:

@mixin .dib {
 display: inline-block;
}

p {
 @include dib;
 font-size: 16px;
}

This produces the following output:

p {
 display: inline-block;
}

Again, Sass never includes the mixin in the compiled CSS. If you did wish to include

it, use the @extend directive instead. It’s discussed in the next section.

Extending Selectors
Finally, let’s talk about extending CSS selectors. The syntax of Less and Sass diverge

here as well, but the concept is very similar. Extending is a way to combine multiple

selectors in a single rule set.

Extending in Less
To extend a selector in Less, use the Less-only :extend pseudo-class, which doesn’t

exist in CSS. The :extend pseudo-class requires one argument: the selector of the

rule set you wish to merge with the current rule set. You must use :extend within

a rule set, and it must be prefixed with a parent selector ampersand (&). Here’s a

simple example:

345Preprocessors

.message {
 border: 1px solid #000;
 font: 11px / 1.5 sans-serif;
}

.error {
 &:extend(.message);
 background: #ffd1d1;
 border-color: #f00;
}

.warning {
 &:extend(.message);
 background: #ffc;
 border-color: #fc0;
}

Here we’ve decided to extend the .message class styles to .error and .warning.

After compiling, we get the following CSS output:

.message,

.error,

.warning {
 border: 1px solid #000;
 font: 11px / 1.5 sans-serif;
}
.error {
 background: #ffd1d1;
 border-color: #f00;
}
.warning {
 background: #ffc;
 border-color: #fc0;
}

Unlike a mixin, extending a class means that the extended selector will be combined

with the extendee into a comma-separated group. Here .message, .error, and

.warning share a rule set. Mixins, on the other hand, copy declarations across rule

sets.

With Less, we’re not just limited to extending class names. We can extend ID select-

ors such as #display, child selectors such as nav > ul, and even pseudo-class se-

lectors such as nth-child().

CSS Master346

Extending in Sass
Conceptually, extending in Sass is the same as extending in Less. Extending in Sass

also combines selectors into a single rule set. Syntactically, however, there are a

couple of differences.

To extend a class with Sass, use the @extend directive followed by the selector you

wish to extend. Let’s rewrite our example from the previous section to use Sass

syntax:

.message {
 border: 1px solid #000;
 font: 11px / 1.5 sans-serif;
}

.error {
 @extend .message;
 background: #ffd1d1;
 border-color: #f00;
}

.warning {
 @extend .message;
 background: #ffc;
 border-color: #fc0;
}

This creates the following CSS output:

.message, .error, .warning {
 border: 1px solid #000;
 font: 11px / 1.5 sans-serif; }

.error {
 background: #ffd1d1;
 border-color: #f00; }

347Preprocessors

.warning {
 background: #ffc;
 border-color: #fc0; }

Here, too, our extended and extendee selectors are grouped together in a single rule

set. Sass also supports extending ID selectors. To date, however, there’s no support

for extending more complex selectors such as #sidebar > h3 or p span.

We can also extend pseudo-classes, although Sass’s handling is a little bit counter-

intuitive. Consider the following Sass code:

tr:nth-child(even) {
 background: #eee;
}

th {
 @extend tr;
 border: 1px solid #000;
 font: 11px / 1.5 sans-serif;
}

You might expect the CSS output to look like this example with selectors combined

in one line:

tr:nth-child(even),
th {
 background: #eee;
}

What follows is the actual output:

tr:nth-child(even), th:nth-child(even) {
 background: #eee;
}

When extending a selector that consists of a class or element and a pseudo-class,

Sass will also add the pseudo-class to the extended selector’s parent.

CSS Master348

Conclusion
Less and Sass are powerful tools for writing and organizing CSS; however, be

mindful that it’s easy to add bloat to your CSS by overusing nesting and mixins.

Examine your CSS output files periodically and refactor your Sass or Less input, if

necessary. A good question to ask yourself is: “Would I have written this CSS without

a preprocessor?” This is also where the code quality tools we discussed in Chapter 2

can come in handy.

349Preprocessors

Chapter10
Conclusion
In this book, we’ve covered some of the finer points and broad strokes of CSS. In

some ways, we’ve only scratched the surface. There’s quite a bit of CSS to cover,

especially on the leading edge. With the CSS Working Group’s switch to modularized

specifications and shorter browser release cycles, new CSS features are created and

implemented quite quickly these days. Attempting to keep up and stay ahead of

the curve can leave your head spinning. Indeed, there are a few specifications and

features that we’ve barely mentioned in this book.

So what’s on the horizon? Document layout is one area of CSS in which there’s been

a lot of activity. Both the Multi-column and Flexible Box modules have largely

stabilized. They’re ready to use in projects targeting newer browsers, though older

ones still require fallbacks. Soon, however, we’ll be able to use the Grid Layout

Module.1

1 http://www.w3.org/TR/css3-grid-layout/

http://www.w3.org/TR/css3-grid-layout/
http://www.w3.org/TR/css3-grid-layout/

Grid Layout
With grid layout, we’ll be able to create document layouts such as the one in Fig-

ure 10.1 without rows of div elements.

Figure 10.1. Grid layout enables complex page layouts

It uses the following markup:

<div class="grid">
 <div class="alpha">alpha</div>
 <div class="beta">beta</div>
 <div class="gamma">gamma</div>
 <div class="delta">delta</div>
 <div class="epsilon">epsilon</div>
</div>

There’s one wrapping div element with a class name of grid, and five child elements.

Compare that to the markup we’d need to use today:

<div class="grid-row">
 <div class="alpha">alpha</div>
 <div class="beta">beta</div>

CSS Master352

</div>
<div class="grid-row">
 <div class="grid-row-span-2">
 <div class="gamma">gamma</div>
 <div class="delta">delta</div>
 </div>
 <div class="epsilon">epsilon</div>
</div>

Grid syntax takes some fiddling and practice to understand. First, we trigger a grid

layout with display: grid. Next, we define our column, row, and gutter (the space

between columns and rows) widths. This is all done on the grid container element:

.grid {
 display: grid;
 grid-template-columns: 210px 20px 1fr 20px;
➥ /* column size, gutter size, column, gutter, column */
 grid-template-rows: auto 20px auto 20px auto 20px;
➥ /* row size, gutter size, row, gutter, row */
}

Limited Browser Support

Browser support for grid layout is very much in flux. The examples here work in

Chrome and Microsoft Edge with vendor prefixes. However, the latest version of

the specification includes properties and units that may make this syntax obsolete.

Then we can define the column and/or row spans for each child element of the grid:

.alpha {
 grid-column: 1 / 2;
}
.beta {
 grid-column: 3 / 6;
}
.gamma {
 grid-column: 1 / 4;
 grid-row: 3 / 5;
}
.delta {
 grid-column: 1 / 4;
 grid-row: 7 / 10;

353Conclusion

}

.epsilon {
 grid-column: 5 / 6;
 grid-row: 3 / 10;
}

Each grid-column value is a shorthand for the grid-column-start and grid-

column-end properties. Each grid-row value is a shorthand for grid-row-start

and grid-row-end. They indicate which rows or columns a grid item element should

span. For example, grid-column: 3 / 6 indicates to “start this element’s span at

column three of the grid, and end it at column six.”

Grid layouts, when used with the fr unit, are designed to be flexible and responsive.

With media queries, we can also change the layout of the grid—or drop it entirely—at

different breakpoints. Here, for example, we could change display: grid to dis-

play: block for narrower viewports.

Think of grid layout as complementary to flexbox. Flexbox lets us arrange items

either horizontally (flex-direction: row) or vertically (flex-direction: column).

With grid layouts, however, a single element can stretch horizontally across columns

and vertically across rows―flexbox is one-dimensional, while grid layout is two-

dimensional. As a result, grid layout is the better choice for entire documents, but

flexbox is better for document components such as media objects and search forms.

To learn more about grid layout, see Rachel Andrews’ Grid by Example site.2

Internet Explorer 10 and 11 and Microsoft Edge have experimental support for an

older vesrion of the grid layout spec; properties require a vendor prefix. Chrome

and Opera also support grid layout; it is unprefixed, but disabled by default. Webkit

has support, but prefixed. Yandex browser,3 which uses Chromium/Blink as its

base, does enable grid layout by default. With Yandex browser, grid layout properties

can skip the prefix.

2 http://gridbyexample.com/
3 https://browser.yandex.com/

CSS Master354

http://gridbyexample.com/
https://browser.yandex.com/

CSS Shapes
Grid layout isn't the only layout-related specification that's coming soon to browsers.

CSS Shapes4 will enable developers to flow content into and around complex, non-

rectangular shapes.

Let's look at a simple example using a floated element and some accompanying

text. First, our markup.

<div shape="shape"></div>
<p class="content">Integer venenatis, nisi sed congue ...</p>

And we'll use the following CSS:

.content {
 width: 600px;
}
.shape {
 background: purple;
 shape-outside: polygon(0 0, 100% 40%, 100% 100%, 80% 100%);
 clip-path: polygon(0 0, 100% 40%, 100% 100%, 80% 100%);
 float: left;
 width: 300px;
 height: 300px;
 margin: 20px;
}

The shape-outside property determines how other elements in the document will

flow around .shape. In order to make elements to actually flow, we've added float:

left, as shown in Figure 10.2.

4 http://www.w3.org/TR/css-shapes/

355Conclusion

http://www.w3.org/TR/css-shapes/

Figure 10.2. Using shape-outside without a clip-path

However, the background color of .shape doesn't follow the edges of the polygon

created with shape-outside. For that, we need to set a clip-path value equal to

that of shape-outside. That gives us the layout shown in Figure 10.3.

Figure 10.3. An example of the kinds of layouts made possible with CSS Shapes

Support for CSS Shapes is currently limited to Webkit and Blink-based browsers.

Chrome 37+ and Opera 24+ support CSS Shapes without a vendor prefix. Safari

7.1+ also supports CSS Shapes, but with a -webkit- prefix. Microsoft and Mozilla

are still considering whether to implement shapes in their browsers.

CSS Master356

Perhaps surprisingly, the clip-path property is not defined by the CSS Shapes

specification. Instead, it's outlined in CSS Masking Module Level 15. Chrome 24+,

Safari 7+ and Opera 15+ support the property with a -webkit- vendor prefix. Firefox

also supports clip-path with a `-moz- prefix, but doesn't support CSS shapes.

Despite its relative lack of browser support, it's safe to use CSS Shapes in projects.

Just ensure that you also use a fallback for browsers that lack support.

Scroll Snap Points
As the web platform grows, it has also gained features that mimic native applications.

One such feature is the CSS Scroll Snap Points Module.6 Scroll snap points let de-

velopers define the distance an interface should scroll in one instance. You might

use it to build slide shows (as in Figure 10.4) or paged interfaces―features that

currently require JavaScript and expensive DOM operations.

Figure 10.4. Scroll Snap Points make for great touch-based slide shows

Here’s an example using markup and CSS adapted from David Storey’s piece “Setting

native-like scrolling offsets in CSS with Scrolling Snap Points”7:

5 ttp://www.w3.org/TR/css-masking/
6 http://drafts.csswg.org/css-snappoints/
7 http://generatedcontent.org/post/66817675443/setting-native-like-scrolling-offsets-in-css-with

357Conclusion

ttp://www.w3.org/TR/css-masking/
http://drafts.csswg.org/css-snappoints/
http://generatedcontent.org/post/66817675443/setting-native-like-scrolling-offsets-in-css-with
http://generatedcontent.org/post/66817675443/setting-native-like-scrolling-offsets-in-css-with

<div class="slideshow">

</div>

Now for our CSS:

* {
 box-sizing: border-box;
}
html, body {
 padding: 0;
 margin: 0;
}
.slideshow {
 overflow: auto;
 overflow-y: hidden;
 height: 100vh;
 width: 100vw;
 white-space: nowrap;

 /* Internet Explorer 10 and 11 support */
 -ms-scroll-snap-type: mandatory;
 -ms-scroll-snap-points-x: snapInterval(0%, 100%);

 /* Webkit browsers */
 -webkit-scroll-snap-type: mandatory;
 -webkit-scroll-snap-points-x: repeat(100%);

 /* Standardized syntax */
 scroll-snap-type: mandatory;
 snap-points-x: repeat(100%);
}

img {
 width: 100%;

CSS Master358

 height: 100%;
 display: inline-block;
}

Internet Explorer 11 supports an older version of the specification, which uses the

snapInterval function. The latest version of the specification uses repeat, but with

a slightly different syntax. In both cases, the argument passed determines the distance

the scrolling element should move when scrolled.

As a specification, Scroll Snap Points is still in flux. Chromium and the browsers

that build on its code base are working to add support; however, we can―and

should―start experimenting with implementations now.

Partial support for Scroll Snap Points is available in Internet Explorer 10+ and Mi-

crosoft Edge (with the -ms- vendor prefix). Firefox 39+ supports Scroll Snap Points,

but it must be enabled; properties do not require a prefix. From the about:config

menu, search for layout.css.vertical-text.enabled and toggle its value to true.

Scroll Snap Points will also be available in Safari 9 (with a -webkit- prefix), a beta

version of which is available now. The final version of Safari 9 may or may not be

released by the time this book is published.

Blend Modes and CSS Filters
Visual effects is another area of CSS with some interesting activity. Aside from

transforms, there are two specifications to keep an eye on: Compositing and

Blending Level 18 and Filter Effects Module Level 1.9

Blend modes make it possible to blend background colors and images using effects

commonly found in graphics software such as Photoshop. Defined modes include

multiply, screen, overlay, and color-dodge. We can use these blend modes to

combine layered elements and backgrounds, as shown in Figure 10.5.

8 https://drafts.fxtf.org/compositing-1/
9 http://www.w3.org/TR/filter-effects/

359Conclusion

https://drafts.fxtf.org/compositing-1/
https://drafts.fxtf.org/compositing-1/
http://www.w3.org/TR/filter-effects/

Figure 10.5. The original background image (left) is modified (right) using background-blend-mode: multiply

Here we’ve used the background-blend-mode property to give the background

photograph a purplish tint. For background-blend-mode to work, you’ll have to set

one or more background images or a background image and a background color. To

create the background effect in Figure 10.5, you’d use the following CSS:

.blend {
 background: orchid url(images/snail.jpg);
 background-blend-mode: multiply;
}

Current versions of Chrome, Firefox, Safari, and Opera support the background-

blend-mode as well as the mix-blend-mode property. Safari, however, lacks support

for the hue, saturation, luminosity, and color filters.

Blend modes affect how the layers within a stacking context may be visually com-

bined. CSS Filters, on the other hand, alter the rendering of layers without combining

them. With CSS Filters, we can blur objects, change them from color to grayscale

or sepia tone, modify their hue, or invert their colors. Each CSS filter is a function,

and we can use them alone or in a filter list, as shown in Figure 10.6.

CSS Master360

Figure 10.6. The effect of filter: blur(10px) grayscale(1)

If we wanted to blur an image and make it grayscale as in Figure 10.6, we can use

the following CSS:

img {
 filter: blur(10px) grayscale(1);
}

Full support for filters are available without a prefix in Firefox 35+. Firefox versions

3.6-34 only support the url() function for filters. Chrome 18+, Opera 15+, and Safari

6+ also support filters with a -webkit- prefix. Microsoft Edge supports filters, but

is without support for the url() function. Filter effects can also be animated, unlike

blend modes.

Keeping track of all of this can be overwhelming. Just when you think you’re up to

date on everything, you find a new spec that you didn’t know existed, or an existing

spec changes in a significant way. Because specifications and implementations are

often in flux, keeping up with changes to CSS can be quite tough, but it is possible.

How to Follow Changes and Additions to
CSS
The World Wide Web Consortium manages a list of current specifications and their

status.10 If you don’t mind getting in the weeds, the CSS Working Group mailing

list is a great—though overwhelming—way to track discussions and contribute to

the development of CSS specifications. The CSS Working Group also has a Twitter

10 http://www.w3.org/Style/CSS/

361Conclusion

http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/
https://twitter.com/csswg

account11 if you'd just like to keep up with developments, rather than wade through

the entire list.

There are also several resources for tracking browser support for CSS features. Can

I Use12 is perhaps the leader in this space. It tracks support for a range of CSS,

HTML, SVG, and JavaScript features in every major browser across several versions.

Some browser vendors also provide their own feature-tracking dashboards. Chrome

Status13 and Platform Status14 are great ways to keep up with what CSS features

are supported in Chrome and Microsoft Edge. Most browser vendors also contribute

support data to the robust documentation of the Mozilla Developer Network.15

For general CSS tricks, tips, and techniques, CSS-Tricks16 is an excellent resource.

Codrops also has a top-notch CSS Reference17 that details selectors, properties, and

at-rules.

Of course, SitePoint, too, has a treasure trove of CSS-related material. SitePoint.com’s

HTML and CSS channel has how-to’s for getting the most out of Sass and Less, in-

cluding a Sass Reference.18 You’ll also find introductory articles to CSS frameworks

such as Pure, Foundation, and Bootstrap. If you need help, you can always ask a

question in the SitePoint Forums.19

My hope is that you’ve come away with a better understanding of a range of CSS

topics, including selectors, preprocessors, and project architecture. This, in addition

to newer areas of CSS such as media queries, animation, and transforms. These

topics will help you on your journey to mastering CSS.

11 https://twitter.com/csswg
12 http://caniuse.com/
13 https://www.chromestatus.com/features
14 http://dev.modern.ie/platform/status/
15 https://developer.mozilla.org/
16 https://css-tricks.com
17 http://tympanus.net/codrops/css_reference/
18 http://www.sitepoint.com/sass-reference/
19 http://community.sitepoint.com/c/html-css

CSS Master362

https://twitter.com/csswg
http://caniuse.com/
http://caniuse.com/
https://www.chromestatus.com/features
https://www.chromestatus.com/features
http://dev.modern.ie/platform/status/
https://developer.mozilla.org/
https://css-tricks.com
http://tympanus.net/codrops/css_reference/
http://www.sitepoint.com/sass-reference/
http://community.sitepoint.com/c/html-css

	CSS Master
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Want to take your learning further?

	Selectors
	Combinators
	The Descendant Combinator
	The Child Combinator
	The Adjacent Sibling Combinator
	The General Sibling Combinator

	Attribute Selectors
	Matching Attribute Presence
	Matching Hyphenated Attribute Values
	Matching Attribute Values by Substring

	Pseudo-classes versus Pseudo-elements
	Pseudo-elements
	::before and ::after
	Creating Typographic Effects with ::first-letter
	Browser Bugs When Using ::first-letter

	Creating Typographic Effects with ::first-line
	User Interface Fun with ::selection

	Pseudo-classes
	Highlighting Page Fragments with :target
	Negating Selectors with :not()
	Selecting Elements by Their Index
	:first-child and :last-child
	:nth-child() and :nth-last-child()
	:only-child
	:empty

	Selecting Elements of a Particular Type by their Index
	Using :first-of-type, :last-of-type, and :only-type
	Using :nth-of-type and :nth-last-of-type

	Styling Form Fields Based on Input
	:enabled and :disabled
	:required and :optional
	:checked
	:in-range and :out-of-range
	:valid and :invalid

	Selectors and Specificity
	Conclusion

	CSS Architecture and Organization
	CSS File Organization
	How many files?

	Managing Styles for Legacy Browsers
	Using Conditional Comments (IE9 and Earlier)
	Using CSS Parsing to Our Advantage

	Golden Guidelines for Writing Clean CSS
	Avoid Global Selectors
	Avoid Overly Specific Selectors
	Don’t Chain Classes
	Avoid Using id Selectors

	Use Semantic Class Names
	Avoid Tying CSS Closely to Markup

	Block-Element-Modifier (BEM)
	Atomic CSS
	The Case Against Atomic CSS
	BEM versus Atomic CSS

	Conclusion

	Debugging and Optimization
	Browser-based Developer Tools
	Using the Styles Panel
	Identifying Cascade and Inheritance Problems
	Spotting Invalid Properties and Values

	Multi-device Tools
	Chrome and Opera
	Firefox
	Microsft Edge and Internet Explorer 11
	Safari 9+

	Debugging for UI Responsiveness
	What is a reflow?
	Timeline Tools
	Identifying Lines to Remove

	Minification
	Installing CSSO
	Minification with CSSO

	Code-quality Tools
	CSS Lint
	Installation
	Basic Usage

	analyze-css
	Installation
	Basic Usage

	UnCSS
	Installation
	Using UnCSS from the Command Line

	Consider a Task Runner

	Conclusion

	Complex Layouts
	Managing the CSS Box Model
	Choosing a Box Model with box-sizing

	Managing Layers with position and z-index
	Using CSS Multicolumn Layout
	Defining Column Number and Width Using columns
	Spacing Columns with column-gap and column-rule
	Images Within Columns
	Making Elements Span Columns
	Managing Column Breaks
	Optimizing the User Interface

	Creating Flexible Layouts with Flexbox
	Creating Simple Grids with flex-wrap
	Creating Flexible Components with flex
	Letting Source Order Diverge from Layout: the order Property
	Vertical Centering with Flexbox

	Conclusion

	Transitions and Animation
	CSS Transitions
	Creating Your First Transition
	Using the transition Property
	Transition Durations and Delays
	Timing Functions
	Stepped Transitions
	Smooth Transitions

	Transitioning Multiple Properties
	Multiple Transitions and transitionend Events

	CSS Animation
	Creating Your First Animation
	Animation Properties
	To Loop or Not to Loop: The animation-iteration-count Property

	Playing Animations: the animation-direction Property
	Using Percentage Keyframes
	The animation-fill-mode Property
	Pausing Animations
	Detecting When Animations Start, End, or Repeat

	A Note About Accessibility
	A Note About Performance
	Conclusion

	CSS Transforms
	The Current State of Transforms
	How Transforms Affect Layout
	transform Creates a Containing Block
	transform Creates a New Stacking Context
	transform Creates a Local Coordinate System
	The transform-origin Property

	2D Transform Functions
	rotate()
	2D Scaling Functions: scale, scaleX, and scaleY
	2D Translation Functions: translateX, translateY, and translate
	skew, skewX, and skewY

	Current Transform Matrix
	Matrix Multiplication and the Matrix Functions
	3D Transform Functions
	rotateX() and rotateY()
	Rotating around Multiple Axes with rotate3d()
	perspective() Function
	Translating Depth with translateZ() and translate3d()
	Scaling the Z-dimension: scaleZ() and scale3d()

	Creating Depth with the perspective Property
	Modifying the Point of View with perspective-origin
	Preserving Three Dimensions with transform-style
	Showing Both Faces with the backface-visibility Property
	Conclusion

	Applying CSS Conditionally
	Media Queries and @media
	Media Query Syntax: The Basics
	Range Media Feature Queries and min- and max- Prefixes
	Discrete Media Feature Queries
	Nesting @media Rules
	Working around Legacy Browser Support with only
	Negating Media Queries
	Other Ways to Use Media Queries
	Content-driven Media Queries
	Using Media Queries with JavaScript
	Error Checking with not all

	Listening for Media Changes

	Conditional Rules with @supports
	CSS.supports DOM API
	Understanding the Cascade for @supports and @media

	Conclusion

	Using CSS with SVG
	Vector Images versus Raster Images
	Associating CSS with SVG Documents
	Using the style Attribute
	Embedding CSS in SVG Documents
	Linking from SVG to an External CSS File

	Differences between SVG and HTML
	SVG Does Not Adhere to the CSS Box Model
	SVG Elements Cannot be Positioned

	Styling an SVG Element
	Creating SVG Sprites
	Animating and Transitioning SVG CSS Properties
	Using SVG with Media Queries
	Using Media Queries with background-size

	Conclusion

	Preprocessors
	Installing Less
	Using Less from the Command Line
	Installing Sass
	Using Sass from the Command Line
	Ruleset Nesting
	@import and Partials
	Variables
	Variable Interpolation

	Mixins
	Mixins in Less
	Mixins in Sass
	Extending Selectors
	Extending in Less
	Extending in Sass

	Conclusion

	Conclusion
	Grid Layout
	CSS Shapes
	Scroll Snap Points
	Blend Modes and CSS Filters
	How to Follow Changes and Additions to CSS

