(SS Framework
Alternatives

Explore Five Lightweight Alternatives
to Bootstrap and Foundation with
Project Examples

Aravind Shenoy
Anirudh Prabhu

ApPress’

http://www.allitebooks.org

CSS Framework
Alternatives

Explore Five Lightweight
Alternatives to Bootstrap and
Foundation with Project
Examples

Aravind Shenoy
Anirudh Prabhu

Apress’

vww . allitebooks.con

http://www.allitebooks.org

CSS Framework Alternatives

Aravind Shenoy Anirudh Prabhu
Mumbai, Maharashtra, India Mumbai, India
ISBN-13 (pbk): 978-1-4842-3398-6 ISBN-13 (electronic): 978-1-4842-3399-3

https://doi.org/10.1007/978-1-4842-3399-3
Library of Congress Control Number: 2018936183
Copyright © 2018 by Aravind Shenoy and Anirudh Prabhu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan

Development Editor: James Markham

Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484233986.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-3399-3
http://www.allitebooks.org

I dedicate this book to my uncle, R.N. Kamath,
and my sister, Aruna; without them, I am incomplete.

—Aravind Shenoy

I dedicate this to my mother and father for their
endless support and words of encouragement.
I also dedicate this to my many friends who have
supported me throughout the process. I will always
appreciate all they have done.

—Anirudh Prabhu

vww . allitebooks.con

http://www.allitebooks.org

Table of Contents

About the AULNOLS......ccouremeiirrennsssrrsnnssrssnnsssrrsnsssrssnnssssssnnssssssnnnsssnnnns ix
About the Technical REVIEWETccorrrrrreemmmnssssssmmssssnsnnssssssssnssssnnnnnnnnns Xi
Acknowledgments.......cccermssssssssnnnnsmmsssssssssssnnsssssssssssssnssnnsssssssssnnnnnns Xiii

Chapter 1: Choosing Lightweight Frameworks for Intuitive

Web DeSigncccurrrrrmssssssssssnnmmmsssssssssssssssssssssssssssssssnsssssssssnns 1

What Are FrameWOrKS?........cvveernsmnesessssesesessessssssessssesssssssssssssssssssssssesssnssssnsssnnes 2
Components 0f @ CSS FrameWOrKccoueernnernensnesenese s sessessssenens 3
Advantages of Using @ CSS FrameworK........c.ccocevrrrierennsnsenienssensessesesessessensens 4
Various Popular FramMEWOIKScccucvverieeniniensinssesessessss e sessessse e sessssssessessenns 5
BOOTSIIAD. ..ccueirerecire s e e 5
0T 0= o] 6
MALEHALIZEcveeeereer e 7
SKEIBTON ...t nn e 8
1 LT o o O 9
UIKIT.....cvceceeeceseeesesese st 10
Material DeSign Liteccccvveverierirree e rrre e s s 1
SUSY ettt e E e ern 11
Cho0SiNg @ FrameWOTrKcccoererererererenerrssesesese s sesss e s sesessssesessesenes 12
ConCEPt OF GHidS....c.evicercrererr s 13
SUMMANY.... ettt e e p e e 14
v

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 2: Building a Landing Page with Skeletonc.ccccnrrssannnnns 15
Installing SKEIEtON ... e 15
Skeleton’s Grid SYSTEM ... 19
An Overview of Skeleton’s AHMDULES........c.ccvreererenercse e 24
Building a Landing Web Page with Skeleton..........ccccovrvenecrnsennnesenesessnsennns 25

Step 1: Defining the Content Areaccccvveernreseniessnsessssesess s sessnnes 25
Step 2: Completing the <body> Tag Content..........cccoovevnienriesrinsenenesennnne, 28
Step 3: Defining the Freelance Portal............ccocovenrnscnnenenese s 29
Step 4: Completing the SECtions ..o 32
Step 5: Designing @ Sign-up FOrM.......cccovvvnnnennnsrs e 37
Step 6: Creating @ FOOLErc.cccrvrerererernserese s 38
SUMMANY....ceitieerrestre s e e se e p e e 39

Chapter 3: Building a Product Page with Milligramccccvvinnnnnns 41
Installing Milligram ... 41
Overview of the Milligram Framework...........ccuvevrinrinnnnennnnse s sesessesenns 44
Grid System in Milligram............ccocvievnnnininn s 46
Building a Product Page with Milligram...........ccooeevveennnenenencrnsenessesese e 48

Step 1: Defining the Header............ccovevrcenecerescrreseee e 48
Step 2: Defining the Navigationccvceveeressnsesreses e 51
Step 3: Defining the Banner Areac.cocoveeeresernnesesesesssesesesesse e 53
Step 4: Designing the Content Area..........ccocoeeeererernneresenesssesessesesesesessesenns 60
Step 5: Creating the Pricing Area..........coocoverresrnsenesese e 63
Step 6: Creating the FOOTEr ... 65
RS0 111 T o S 68
Vi

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 4: Introducing UIKitccccmrnnnnmmmnmmsssnnnmmsssssssmsssssssssssssnnnnes 69
INSTAllNG UIKIL ... e enea 69
Grids, Cards, Flex, and Widthccccooerrervnre s ses e raenaenns 71
ANIMALIONS ... e nre s 89
Scrollspy With ANIMALIONSccveeevnerresere s 96
ACCOTTIONS ... 100
JCONS e s 104
SUMMAIY .. ueiteirererereesere s reesessersessess e e ssessess e e ssesaesaessesessesaesaessssesaesaessssensessens 106

Chapter 5: Material Design Lite Explained..........cccennsmmnnessssnnnnsssssnns 107
INSTAIING MDL ... s 108
MIDL LAYOULcveeeeereerrsesessese e s e ssese s sr s ssssese s sesssssssssessssesessssnnsssensnns 109
Building an Intuitive Web Page USing MDLccocvvrernnennnesesssessssesessesensens 121

Step 1: Creating the <head> Section..........cccevervvrnnsnnes s 121
Step 2: Creating a Fixed Header with @ Drawer...........ccccooeeervvernneneresernnne 122
Step 3: Creating the About Section...........cccoverervrrnnesnnesers e 126
Step 4: Inserting an Image with Contentccoovcvnievniennnscnnscsesesenene 133
Step 5: Developing the Content for the Moments Tabccccvvvvvnccnnenne, 136
Step 6: Designing the Footer SECtioncccuevvcvnneneniesesssesssesesesesennes 143
SUMMANY ...ttt r e r e e npn e ans 151

Chapter 6: Susy Explained.........cccummmmmmmmmmmmmmmmmmssssssssmmssmssssssssssnns 153
Creating a 4x3 Responsive Grid Layoul...........ccvcvrerererserserienssessessesesessensensens 154
311111117 OSSO 167

1T - 169

vii

vww . allitebooks.con

http://www.allitebooks.org

About the Authors

Aravind Shenoy A marketing expert by
profession, Aravind’s core interests are
technical writing, content writing, content
development, web design, and business
analysis. He was born and raised in Mumbai
and still resides there. A music buff, he

loves listening to rock n’ roll and rap. Oasis,
R.E.M., The Doors, Dire Straits, Coldplay,
Jimi Hendrix, and Michael Jackson rule his

playlists.
He firmly believes in this motto: “We are here for a good time, not a
long time. Be happy perennially.”

Anirudh Prabhu A UI developer with more
than seven years of experience, Anirudh
specializes in HTML, CSS, JavaScript, jQuery,
Sass, LESS, Twitter, and Bootstrap. He also has
experience with CoffeeScript and Angular]S.

Anirudh has worked as a technical
reviewer for Apress and Packt and has been
involved in building training material about
HTML, CSS, and jQuery for Twenty19, which is
a portal for students and interns.

ix

vww . allitebooks.con

http://www.allitebooks.org

About the Technical Reviewer

Ferit Topcu is a software developer who has
spent the last few years working and exploring
the Web and JavaScript. He’s been in web
development for more than five years and has
worked in different areas including research
topics, social media analytics, and the Internet
of Things. He recently joined one of Europe’s
biggest e-commerce companies, Zalando.

At Zalando, he is developing web applications
to improve its whole retail process.

Ferit has a master’s degree in computer engineering from TU Berlin
and is a father of two. His free time is spent with family and friends and
contributing to open source projects.

vww . allitebooks.con

http://www.allitebooks.org

Acknowledgments

As I stride through this journey of life, I want to take this opportunity to
thank every person who has stood by me, especially those who believed
in me when others said “Don’t encourage him.” Well, life is like that, and
indeed life is beautiful. It couldn’t have been better. Thanks to everyone
who provided the right support when I needed it the most.

—Aravind Shenoy

xiii

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1

Choosing Lightweight
Frameworks for
Intuitive Web Design

When it comes to web design, Bootstrap, Foundation, and Materialize are
probably the first frameworks that come to a designer’s mind, given their
massive range of components and attributes. However, when talking about
light web projects, you do not usually need a comprehensive framework
like Bootstrap or Foundation (again, depending on the complexity of your
project). Usually, to build a small web site, lightweight frameworks can do
the job effectively and cut down the bulk, or noise, associated with massive
frameworks. For example, if your web site merely needs something like a
grid or some popular components commonly found in most frameworks,
then you should consider a lightweight framework.

Moreover, developing web sites and web applications from scratch is
quite a tedious process as it involves writing a sizeable amount of code.
Maintaining that code while the web site evolves adds to the complexity.
Coding from scratch (as we like to call it) is quite an endeavor, and a
framework can help you write a few lines of code and incorporate reusable
sets of commonly used code that you can maintain quite easily. Clean
coding and upkeep are tasks easily achieved using a framework.

© Aravind Shenoy and Anirudh Prabhu 2018 1
A. Shenoy and A. Prabhu, CSS Framework Alternatives,
https://doi.org/10.1007/978-1-4842-3399-3_1

CHAPTER 1 CHOOSING LIGHTWEIGHT FRAMEWORKS FOR INTUITIVE WEB DESIGN

Therefore, to simplify your web designing tasks, using a Cascading
Style Sheets (CSS) framework is a good option. As mentioned earlier, there
are plenty of frameworks on the Web other than Bootstrap, Foundation,
and Materialize. These light frameworks are quite streamlined and
remarkable, given their resourcefulness. The adage “Good things come in
small packages” is applicable here.

In this chapter, we explain what frameworks are and introduce the
popular Bootstrap, Foundation, and Materialize. Then we will review five
lightweight frameworks: Skeleton, Milligram, Ulkit, Material Design Lite,
and Susy. These frameworks will be used throughout the book to build
interactive and immersive web pages. In doing so, you'll form a strong

basis to select the one that best suits your development needs.

What Are Frameworks?

A framework is a premeditated set of concepts, modules, and standardized
criteria that make the task of developing web sites and web applications
easier. It provides generic functionality with already written modules and
tailored components created in a standard manner. In short, it is a reusable
software environment that allows web designers and developers to easily
build their projects and solutions with minimal coding and without
worrying about the low-level details. This reduces development time and
provides easy upkeep and alterations whenever necessary.

Usually, there are two kinds of frameworks.

o Front-end frameworks (CSS and JavaScript frameworks)
e Back-end or server-side programming frameworks

While back-end frameworks are used by web developers and
programmers to build applications on the server-side, front-end
frameworks are used by web designers and developers for implementing
the Cascading Style Sheets language.

CHAPTER1 CHOOSING LIGHTWEIGHT FRAMEWORKS FOR INTUITIVE WEB DESIGN

In this book, you will get a glimpse into front-end frameworks, which
basically are pre-prepared packages containing the structure of files and
folders of Hypertext Markup Language (HTML) and CSS documents (some
with JavaScript functions), which help designers and developers build
interactive and immersive web sites.

Frameworks allow you to use a common standardized structure that
cuts out much of the groundwork of writing code from scratch and helps
you reuse components, modules, and libraries, freeing you up to focus on
core tasks at a high level.

Components of a CSS Framework

The following are the basic components of a CSS framework:

e Grids (structures that help organize the content and
design the layout)

o Typography elements

o Cross-browser compatibility

o Helper classes for positioning elements
o Utility classes

o Navigational elements

e Source code written in preprocessors such as Sass
and LESS

e Media elements (badges, tooltips, comments,
and so on)

CHAPTER 1 CHOOSING LIGHTWEIGHT FRAMEWORKS FOR INTUITIVE WEB DESIGN

Advantages of Using a CSS Framework

Though some people have advocated not using CSS frameworks, mainly
because of issues such as bloated structure, ingrained HTML markup,
and a common aesthetic across framework-based web sites, using a CSS
framework has several benefits. You should try using a CSS framework for
the following reasons:

e Clean and consistent coding

o Cross-browser compatibility

e Grid-based design

o The ability to incorporate healthy coding practices
o Easy-to-build prototypes

o Easy maintenance and upkeep

o Allows reuse and clean homogenous code structure
o Easy expandability and modifications

e Solid documentation

e Common ground for building immersive web sites
e Accessibility

A budding developer can find it difficult to build web sites just based
on pure HTML, CSS, and JavaScript. In addition, grid-based layouts help
budding designers to position, structure, and design the layout quite easily.
You do not have to reinvent the wheel, meaning you can get some hands-
on experience without the intricacies and dilemmas that you will come
across when you code from scratch. Good and clean coding practices are
imperative when you grow as a web designer, and frameworks are all about
awesome cohesiveness and consistent coding that will hold you in good
stead in times to come.

CHAPTER1 CHOOSING LIGHTWEIGHT FRAMEWORKS FOR INTUITIVE WEB DESIGN

Various Popular Frameworks

In this section, you will look at the most popular frameworks used

by web designers across the globe. The most popular frameworks for
designing web sites are Bootstrap, Foundation, and Materialize. Which
one a developer chooses depends on the needs and requirements of a
web site and its design. However, just because a framework is popular
doesn’t mean it fits the bill when it comes to designing your projects.
You need to consider several issues when it comes to selecting a
framework; we’ll talk more about that later. Let’s now take a look at the
various superlative frameworks that are in vogue today.

Bootstrap

Bootstrap is the most popular mobile-first framework in web design; it’s
used extensively by developers across the globe (Figure 1-1). You can find
more information on the official web site at http://getbootstrap.com/.

Bootstrap Documentation Examples Themes Expo Blog

Bootstrap is the most popular HTML, CSS, and JS

framework in the world for building responsive, mobile-

first projects on the web.

Figure 1-1. Bootstrap

http://getbootstrap.com/

CHAPTER 1 CHOOSING LIGHTWEIGHT FRAMEWORKS FOR INTUITIVE WEB DESIGN

Bootstrap adopts a mobile-first paradigm by which you can build
responsive web sites. It comes with components, modules, JavaScript
functions, and media queries that help developers build immersive
web sites with ease.

Foundation

Foundation was the earliest responsive framework and is as massive and
advanced as Bootstrap for building web products and services (Figure 1-2).
Foundation comes with cool features such as Flex Grid and Motion Ul The
latest version, Foundation 6, is quicker, is lighter in size compared to its
earlier versions, and is a solid front-end framework for designing beautiful
web sites, e-mails, and apps that look good on any device. You can find more
information on the official web site at http://foundation.zurb.com/.

Foundation for Sites 6

Get from Prototype to Production

Download Foundation 6 /3

* 25 4k GitHub stars
@ U oundabon

_— -

Figure 1-2. Foundation

http://foundation.zurb.com/

CHAPTER 1 CHOOSING LIGHTWEIGHT FRAMEWORKS FOR INTUITIVE WEB DESIGN

Materialize

Materialize is a modern front-end framework based on Google’s Material
Design philosophy that helps developers build and design immersive web
sites (Figure 1-3). You can find more information on the official web site at
http://materializecss.com/.

11 Materialize

A modern responsive front-end framework based on Material Design

=] GET STARTED

beta e

Figure 1-3. Materialize

Materialize has a superlative, creative user interface (UI) component
library that incorporates cross-browser compatibility and device-agnostic
capabilities for developing attractive and consistent web sites.

http://materializecss.com/

CHAPTER 1 CHOOSING LIGHTWEIGHT FRAMEWORKS FOR INTUITIVE WEB DESIGN

Skeleton

As mentioned earlier, sometimes you don’t need a large framework,
especially if you are embarking on a small project. Skeleton is a simple,
responsive boilerplate and is extremely lightweight with 400 lines of code
and with a mobile-based philosophy (Figure 1-4). You can find more
information on the official web site at http://getskeleton.com/.

A dead simple, responsive
boilerplate.

DOWHNLOAD

= @ = 0 o

Light as a feather at ~400 Styles designed tobe a Quick to start with zero
lines & built with mobile in starting point. not a Ul compiling or installing
mind. framework. necessary.

Figure 1-4. Skeleton

http://getskeleton.com/

CHAPTER1 CHOOSING LIGHTWEIGHT FRAMEWORKS FOR INTUITIVE WEB DESIGN

Milligram

Milligram is a minimalistic framework with just enough styles for small
and interactive web sites (Figure 1-5). Its zipped file size is only 2KB. It
comes with a mobile-first philosophy and supports the modern browser
versions of Chrome, Firefox, Safari, IE, and Opera. Its cutting-edge features
include the FlexBox grid system, and it is a simple, top-notch framework
from a usability point of view. You can find more information on the
official web site at http://milligram.io/.

O Milligram Docs Support

Milligram

A minimalist CSS framework

Currently v1.3.0

GETTING STARTED

Figure 1-5. Milligram

http://milligram.io/

CHAPTER 1 CHOOSING LIGHTWEIGHT FRAMEWORKS FOR INTUITIVE WEB DESIGN

Ulkit

Ulkit is a light and modular front-end framework for developing faster and
powerful web interfaces (Figure 1-6). It has a massive collection of HTML,
CSS, and JavaScript components and modules that can be extended with
themes. It is flexible because it can be customized to give a unique feel to
your web sites. You can find more information on the official web site at
https://getuikit.com/v2/.

uikit

A lightweight and modular front-end framework
for developing fast and powerful web interfaces

Download Ulkit

GitHub GetStarted Version 2.274

% 9443 Stargazers P 1668BForks W @getuikit C Community

Figure 1-6. Ulkit

10

vww . allitebooks.con

https://getuikit.com/v2/
http://www.allitebooks.org

CHAPTER1 CHOOSING LIGHTWEIGHT FRAMEWORKS FOR INTUITIVE WEB DESIGN

Material Design Lite

Google released its own front-end framework called Material Design Lite
(MDL) that is based on its Material Design philosophy (Figure 1-7). MDL is a
lightweight framework with few dependencies and is focused on simple web
sites such as blogs and landing pages. It allows you to customize styles and
web sites designed using MDL degrade gracefully in legacy browsers. You
can find more information on the official web site at https://getmdl.io/.

Figure 1-7. Material Design Lite

Susy

In today’s era of agile development and constant changes, the layout
designs are crucial and cannot be restricted to a single framework,
especially if your web site is intricate design-wise. With Susy (Figure 1-8),
the settings are not set in stone, meaning you can use its integrated
Sass-based libraries to create immersive layouts with potent structural
designs. Susy is not a typical framework but more of a UT utility as it
simplifies and streamlines the task of designing intricate grid layouts.
You can find more information on the official web site at http://susy.
oddbird.net/.

11

https://getmdl.io/
http://susy.oddbird.net/
http://susy.oddbird.net/

CHAPTER 1 CHOOSING LIGHTWEIGHT FRAMEWORKS FOR INTUITIVE WEB DESIGN

Susy
(S>"" = stion % Tul a v

V

Power tools for the web

Version 2.2.T: EChanges E

YOUR MARKUP, YOUR DESIGN, YOUR OPINIONS | OUR MATH.

Figure 1-8. Susy

Choosing a Framework

As you can see, we have covered many popular frameworks. Choosing
the right framework is quite important and depends on the needs and
requirement of your projects. Some frameworks are bloated, meaning
they have too many built-in styles, which might not be required for a small
project.

The following are some of the factors that you should consider when
choosing a framework:

e An existing web project may already be using a
particular framework that cannot be used with your
desired framework.

e Some projects may not need the clutter associated with
heavyweight frameworks for performance-related issues.

e You might need different preprocessor support such
as for LESS or Sass, which is not integrated with your

desired framework.

e Web sites built with a particular framework may look
similar if not customized to give them an authentic look
and feel.

12

CHAPTER1 CHOOSING LIGHTWEIGHT FRAMEWORKS FOR INTUITIVE WEB DESIGN

There are several other factors such as the ease of use, speed of
configuration, usability, features, widgets, components, long-term support,
and reliability that you need to consider when choosing a framework. In
summary, you need to choose your framework based on the requirements
and needs of the project; especially when choosing lightweight front-end
kits for small projects, given the bloat and bulk associated with massive
frameworks.

Concept of Grids

A grid system allows you to structure and stack content horizontally and
vertically in an easy manner. It is easily adaptable for any web site or web
application and has a lot of advantages. It is usually responsive, meaning
it adjusts itself based on the browser or device width. So, it displays the
content appropriately in a mobile device, a laptop, a tablet, or a desktop
depending on the size of the device. Plus, you have media queries, which
help you define the grid layout based on the device width.

Grids are usually 12-column containers in many frameworks but can
be customized using methods specific to the framework. You can have
flexible layouts wherein you can divide the page into several regions and
place content using the markup.

Another concept catching on in CSS designs is the FlexBox. The
difference between a grid and FlexBox layout is that grid layouts are two-
dimensional, while a FlexBox is usually one-dimensional wherein you can
lay out content in a row or a column.

The choice of using a grid layout or a FlexBox depends on how you
want to structure your content. With a FlexBox you space out the content
and build a structure using that content. Suppose you have certain items; it
is up to you to decide how much space each item should take. Grid layouts,
on the other hand, are content-agnostic. In grid layouts, you create a layout
and place the content into rows and columns.

13

CHAPTER 1 CHOOSING LIGHTWEIGHT FRAMEWORKS FOR INTUITIVE WEB DESIGN

In most modern frameworks, both the grid and the FlexBox are
supported. While the usability of the grid layout is awesome, a FlexBox can
help you place things more aesthetically.

For a detailed explanation of the grid concept, you can refer the
Mozilla developer network web site, specifically the following web page,
for in-depth information: https://developer.mozilla.org/en-US/docs/
Web/CSS/CSS_Grid_Layout.

Summary

In this chapter, we gave you an overview of some popular CSS frameworks.
We also covered the benefits of using a CSS framework. CSS frameworks
are comprised of components, modules, libraries, navigational elements,
typography, media queries, tailor-made widgets, and grid layouts that
make web design a breeze. We also gave you an overview of grid and
FlexBox layouts.

We will now dedicate a chapter for each of the frameworks mentioned
in the introduction of the chapter, starting with Skeleton. With each
chapter, we use a progressive approach, meaning the next framework is
more extensive and a framework’s resourcefulness increases as you move
through the book.

14

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout

CHAPTER 2

Building a Landing
Page with Skeleton

Skeleton is an intuitive framework for lightweight projects. It is extremely
lightweight with a handful of HTML elements and was developed with

a mobile-first philosophy. In this chapter, you will learn how to install
Skeleton. You will also learn about its grid system and attributes; Finally,

we will build a landing web page with Skeleton.

Installing Skeleton

To get started, go to the Skeleton web site at http://getskeleton.com/.
You will see the Download button, which is highlighted in a red box in
Figure 2-1.

© Aravind Shenoy and Anirudh Prabhu 2018 15
A. Shenoy and A. Prabhu, CSS Framework Alternatives,
https://doi.org/10.1007/978-1-4842-3399-3_2

http://getskeleton.com/

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

A dead simple, responsive boilerplate.

DOWMNLOAD

p et mOm
Light as a feather at ~400 lines & Styles designed to be a starting Quick to start with zero compiling
built with mobile in mind. paint, not a Ul framework. or installing necessary.

Figure 2-1. Skeleton download page

Click Download to download the Skeleton . zip file. After unzipping
the file, you will see the file structure shown in Figure 2-2.

Organize = Include in library « Share with Bum MNew folder

Zr Favorites Mame Date mcd‘n‘lcd Type Size
Bl Desitop € index
8 Downloads & css

Chrome HTML Do... 3KB
File folder

L Recent Places)i images File folder
Bl Desktop
4 Libraries
L * Documents
J\ Music
&= Pictures
B videos
o@ Homegroup
A Administrator
18 Computer
€ Network
B3 Control Panel
& Recycle Bin

Figure 2-2. Content of the Skeleton framework

The css folder is where you save your CSS files. By default, the css
folder contains the Normalize and Skeleton style sheets.

16

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

Normalize.css is a small CSS file that provides better cross-browser
consistency in the default styling of HTML elements. It makes browsers
render all elements more consistently and in line with modern standards.
It precisely targets only the styles that need normalizing. You can find more
information about Normalize on the official web site at https://necolas.
github.io/normalize.css/.

You can also see the images folder where you can store your images.
By default, the images folder contains the favicon image for Skeleton.

The index.html file is your default web page. When you edit the page
in Notepad++ or any editor, you will see the code displayed in Listing 2-1.

Listing 2-1. Basic Skeleton Example

<!DOCTYPE html>
<html lang="en">
<head>

<!-- Basic Page Needs --------—-—————--———mmmm o >
<meta charset="utf-8">
<title>Your page title here :)</title>

<meta name="description" content="">

<meta name="author" content="">

<!-- Mobile Specific Metas -------——=-—————————mmmmmmomu - >
<meta name="viewport" content="width=device-width,
initial-scale=1">

<I-FONT - >
<link href="//fonts.googleapis.com/css?family=
Raleway:400,300,600" rel="stylesheet" type="text/css">

<I-6ss - - >
<link rel="stylesheet" href="css/normalize.css">
<link rel="stylesheet" href="css/skeleton.css">

17

https://necolas.github.io/normalize.css/
https://necolas.github.io/normalize.css/

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

<!-Favicon -—-——-————————————
<link rel="icon" type="image/png" href="images/favicon.png">

</head>
<body>

<!-- Primary Page Layout ------—-—---———-————mmmm
<div class="container">
<div class="row">
<div class="one-half column" style="margin-top: 25%">
<h4>Basic Page</h4>
<p>This index.html page is a placeholder with the
CSS, font and favicon. It's just waiting for you
to add some content! If you need some help hit up
the Skeleton
documentation.</p>
</div>
</div>
</div>

<!-- End Document ---———————————————m e
</body>
</html>

Now click the index.html file to display the web page, as shown in
Figure 2-3.

18

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

Basic Page

Thes index_html page is a placeholder with the CSS, font and favicen.
It's just waiting for you to add some content! If you need some help hit
up the Skeleton documentation.

Figure 2-3. Skeleton basic example in a browser

Skeleton’s Grid System

Like most other frameworks, Skeleton has its own grid system. It is
essentially a 12-column grid with a maximum width of 960px. It is a
responsive grid that adjusts itself depending on the browser/device size.

Take a look at the code snippet in Listing 2-2 to understand how the
grid system works.

Listing 2-2. Skeleton Grid System Demonstrated

<body>
<div class="container">
<!-- columns should be the immediate child of a .row -->
<div class="row">
<div style="text-align:center; border: 1px
solid black;" class="one column">One</div>
<div style="text-align:center; border:
1px solid black;" class="eleven
columns">Eleven</div>
</div>

19

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

<!-- just use a number and class 'column' or 'columns' -->
<div class="row">
<div style="text-align:center; border: 1px solid
black;" class="two columns">Two</div>
<div style="text-align:center; border: 1px solid
black;" class="ten columns">Ten</div>
</div>

<div class="row">
<div style="text-align:center; border: 1px solid
black;" class="three columns">Three</div>
<div style="text-align:center; border: 1px solid
black;" class="nine columns">Nine</div>
</div>

<div class="row">
<div style="text-align:center; border: 1px solid
black;" class="four columns">Four</div>
<div style="text-align:center; border: 1px solid
black;" class="eight columns">Ten</div>
</div>

20

<div class="row">
<div style="text-align:center; border: 1px
black;" class="five columns">Five</div>
<div style="text-align:center; border: 1px
black;" class="seven columns">Seven</div>
</div>

solid

solid

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

<div class="row">
<div style="text-align:center; border: 1px
black;" class="six columns">Six</div>
<div style="text-align:center; border: 1px
black;" class="six columns">Six</div>
</div>

<div class="row">
<div style="text-align:center; border: 1px
black;" class="seven columns">Seven</div>
<div style="text-align:center; border: 1px
black;" class="five columns">Five</div>
</div>

<div class="row">
<div style="text-align:center; border: 1px
black;" class="eight columns">Eight</div>
<div style="text-align:center; border: 1px
black;" class="four columns">Four</div>
</div>

<div class="row">
<div style="text-align:center; border: 1px
black;" class="nine columns">Nine</div>
<div style="text-align:center; border: 1px
black;" class="three columns">Three</div>
</div>

solid

solid

solid

solid

solid

solid

solid

solid

21

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

<div class="row">
<div style="text-align:center; border: 1px solid
black;" class="ten columns">Ten</div>
<div style="text-align:center; border: 1px solid
black;" class="two columns">Two</div>
</div>

<div class="row">
<div style="text-align:center; border: 1px solid
black;" class="eleven columns">Eleven</div>
<div style="text-align:center; border: 1px solid
black;" class="one columns">One</div>
</div>

</div
</div>
<!-- End Document --------——-———mmmmmm o >
</body>

In Listing 2-2, you define a <body> element within which you define a
<div> with the container class. Inside that, you define the <div> with the
row class. Within that <div>, you define two <div>s, one with a column
width of one column and other with a column width of eleven columns.

Remember that the <div> with the column classes should be the
immediate child of the <div> with the row class. To define one column,
you use the one column class. Similarly, to define eleven columns, you use
the eleven columns class. For two columns, the class is two columns.

22

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

Note that you use an inline CSS style of <style="text-align:center;
border: 1px solid black;"> with each column to align the text in the
center and dedicate a black border of 1px for each column. You use the

 element for spacing between each row.

Basically, the code in Listing 2-2 defines different rows with a <div>
class and defines columns of different widths. Figure 2-4 shows the output
of the code on execution.

| Eleven

| Two | | Ten

| Three | l Nine

] Four | I Ten

| Five I | Seven

| Six | Six

| Seven | | Five

| Eight l | Four

| Nine | | Three

|
|
|
|
|
|
|
|
l
|
| Eleven |

Figure 2-4. Skeleton grid system demonstrated

Asyou can see in Figure 2-4, the first row has two columns defined
with widths of one and eleven columns, respectively. The second row has
two columns with widths of two and ten columns, respectively. Similarly,
you define eleven rows each with two columns of varying widths.

Now you have an idea how the grid system works in Skeleton.

23

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

An Overview of Skeleton’s Attributes

Let’s take a look at some attributes of the Skeleton framework.

o Skeleton’s typography base is Raleway, a Google-based
typography. The font size defaults to HTML' font sizes,
and the typography retains properties such as anchors,
strong, emphasis, and underline similar to HTML’s
basic typography.

o Buttons in Skeleton can be created using the button-
primary class, which is easily distinguishable. You can
also opt for standard buttons if you don’t want enhanced
buttons. For that, instead of button-primary, you just
have to use the button class. You can also define a
button using the <button> element or use an anchor tag,
<a>, with the button or button-primary class.

e Unordered lists in Skeleton can be created using the
 class. If you want to use a numbered list, you can
use the class.

e Code styling can be set by using the <code> class. For
several blocks of code, you can use the <code> element
within a <pre> element.

o Tables in Skeleton are similar to HTML tables where
you use the <thead> and <tbody> elements. Similar to
HTML, you use <tr> to define the table rows, <td> for
the table data, and <th> for the table heading; you wrap
everything within the main <table> element.

o Skeleton uses mobile-first queries, which target the
minimum width. Styles outside of a query apply to all
devices. This is done to prevent small devices such as
phones and tablets from parsing loads of unused CSS.

24

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

o Skeleton uses the following media query sizes based on
the device size:

Mobile: 400px

— Phablet: 550px

Tablet: 750px

Desktop: 1000px

Desktop HD: 1200px

Skeleton also comes with many helper classes that can be used to limit
the elements within a container, float the element to the left or right, and
clear the floats on both sides.

Building a Landing Web Page with Skeleton

In this section, you will create a landing page for a freelance portal called
RemoteDesk. The landing page shows the various things you can do on
the freelance portal. You will design a web page that shows several aspects
of the freelance portal along with company information and other basic
features.

We will divide the process of building the web page into six Steps. After
these six Steps, you will have a complete landing page.

Step 1: Defining the Content Area

You will define the <html> tags and then move on to include the necessary
links for Skeleton and Normalize (included by default in Skeleton) and

the custom style sheet in the <head> tags (more about that in the code
explanation). Then you will define the <body> section after the <head>
tags and within the <html> tags. Inside the <body> tags, you will define

the <div> class with the necessary rows and columns with the required

25

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

content. Essentially, each content area will be encapsulated in an element

with the row class. Depending on the content, you will divide the area into

sections using elements with the columns class in that section’s parent row.
Let’s look at Listing 2-3.

Listing 2-3. Defining the Content Area

<html>
<head>
<!-- Step1: Include the necessary style and heading-->
<meta name="viewport" content="width=device-width,
initial-scale=1.0,maximum-scale=1.0"/>
<link href="https://fonts.googleapis.com/
css?family=Source+Sans+Pro" rel="stylesheet">
<link href="css/normalize.css" rel="stylesheet"
type="text/css"/>
<link href="css/skeleton.css" rel="stylesheet"
type="text/css"/>
<link href="css/style.css" rel="stylesheet"
type="text/css"/>
<title>Best Freelance management app</title>
<!-- end of Step 1-->
</head>
<body class="container">
<!-- Navigation area -->
<div class="row">
<div class="two columns logo">RemoteDesk.com</div>
<div class="eight columns"> </div>
<div class="two columns">
Sign
up
</div>

26

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

</div>
<!-- Navigation area ends -->
</body>
</html>

As you can see in Listing 2-3, you define the viewport size inside the
head section. A viewport controls the way a web page is displayed on a
mobile device. If you do not use a viewport, a mobile device will render
the page in a typical desktop screen width. Setting a viewport helps you
exercise control over a page’s width and scaling on varied devices.

You can find more about viewports at https://developers.google.
com/speed/docs/insights/ConfigureViewport.

Then, by default in Skeleton, you set the links for Normalize and
Skeleton. Remember that if the path to your files is different, you need to
specify so. For now, they should be in the root folder, so the default path
is good to go. Then you define the path for the custom style sheet called
as style.css, which you will place in the css folder. You define a <body>
tag and assign the container class to it. The container is the main centered
wrapper. You define a <div> element and assign a row class to it.

Inside that <div> element, you define three <div>s. The first <div>
contains the content RemoteDesk.com and spans two columns.

The next <div> spans eight columns, and you assign the value
between the <div> tags. Essentially, creates a nonbreaking space.
It is used in programming and web design to create a space in a line that
cannot be broken with word wrap. Using it will help create multiple spaces
that are visible on a web page and not only in the source code.

(We are using this because there are no offset classes in Skeleton
compared to other frameworks like Bootstrap and Foundation.)

The third <div> spans two columns and contains the Sign Up button,
which we create using the button-primary class.

Figure 2-5 shows the output of the code.

27

https://developers.google.com/speed/docs/insights/ConfigureViewport
https://developers.google.com/speed/docs/insights/ConfigureViewport

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

RemoteDesk.com m

Figure 2-5. The output of the content area

Step 2: Completing the <body> Tag Content

Now, you will create the rest of the content within the <body> tags.

You will start with inserting an image, as shown in Listing 2-4. (Refer
to the entire code in the code bundle to see the positioning of the various
elements; we have included code in steps in the code bundle so that you
can have a better understanding of each step. Finally, index.html contains
the entire code for the landing page.)

Listing 2-4. Inserting the Header Image

<div class="row masthead"></div>

You have just used the row class and assigned a class called masthead
to it. The image is defined in the code in the style sheet called Style.css.
The image referred to, masthead. png, is located in the images folder where
you will keep all the images.

In style.css, you define the code, as shown in Listing 2-5.

Listing 2-5. Inserting Header Image

.masthead{
background: url("../images/masthead.png") no-repeat center;
height: 462px;
background-size: cover;

Remember that the code shown in Listing 2-5 is the code in the custom
CSS style sheet called style.css.

28

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

You assign a height of 462px and center the image. You also assign the
value cover to the background-size property; this scales the background
image to be as large as possible so that the background area is fully covered
by the image.

Now on executing the index.html page, you will get the output shown
in Figure 2-6.

RemoteDesk.com m

é,u -J*:5 Work efficiently from anywhere

One stop solution for managing clients, money and time

By

Figure 2-6. Output of the header image

Step 3: Defining the Freelance Portal

Next, you will create a later section of the page where you define the
features of the freelance portal. To create this section, let’s look at the code
snippet shown in Listing 2-6.

Listing 2-6. Defining the Content Area for the “Rewarding” Section

<div class="row rewardingContent">
<div class="six columns">
<h3>Plenty of rewarding projects</h3>

29

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

<p>RemoteDesk is a great place to find more
clients, and to run and grow your own freelance
business.</p>

Freedom to work on ideal
projects. On RemoteDesk, you run
your own business and choose your own
clients and projects. Just complete your
profile and we’1l highlight ideal jobs.
Also search projects, and respond to client
invitations.</1i>
Wide variety and high pay.
 Clients are now posting jobs in
hundreds of skill categories, paying top
price for great work.
More and more success.
 The greater the success you have
on projects, the more likely you are to get
hired by clients that use Upwork.</1li>

</div>
<div class="six columns">
<img src="images/medal.png"
class="rewardingImg"/>
</div>
</div>

In Listing 2-6, you create another <div> with the row class. You also
assign a rewardingContent custom class to it. Then, you divide the section
of the page into two rows each spanning six columns in width.

The first <div> within the <div> with the row class is assigned a width of
six columns using the six columns class. You assign a heading inside it.

30

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

You create a list using the tags and define the list items using the <1i>
tags. Then, you create the second <div> spanning six columns where you
insert an image using the tag. You also add a custom rewardingImg
class to it.

Next, you can see what to do with the custom classes,
rewardingContent and rewardingImg, in the style.css style sheet, as
shown in Listing 2-7.

Listing 2-7. Defining Styles Related to the “Rewarding” Section

.rewardingContent {
margin-top:10px;

}

.rewardingImg {
width: 75%;
margin: 0 auto;
display: block;

In this code, you add a margin to the rewardingContent class to set
the whitespace around the border. You use the display: block for the
rewardingImg so that it occupies the space of the parent element. (You
need to use the display: block property because Skeleton does not have
any utility classes for responsive images.) You also define a width for the
image and center it usingmargin: 0 auto.

Figure 2-7 shows the later section of the page as created in Step 3.

31

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

Plenty of rewarding projects

RemoteDesk is a great place to find more clients, and to run and grow

your own freelance business.

o Freedom to work on ideal projects. On RemoteDesk, you run your
own business and choose your own clients and projects. Just complete
your profile and we'll highlight ideal jobs. Also search projects, and
respond to client invitations.

@ Wide variety and high pay. Clients are now posting jobs in hundreds
of skill categories, paying top price for great work.

e More and more success. The greater the success you have on

projects, the more likely you are to get hired by clients that use Upwork.

Figure 2-7. Output of the “rewarding” section

Step 4: Completing the Sections

Next, you will create the remaining three sections using the code in
Listing 2-8.

Listing 2-8. Adding Content to the Remaining Sections

<div class="row hiredContent">
<div class="six columns">
<img src="images/hire-resources-icon.png"
class="hiringImg"/>
</div>
<div class="six columns">
<h3>Get hired quickly</h3>
<p>RemoteDesk makes it easy to connect with
clients and begin doing great work.</p>

Streamlined hiring.
RemoteDesk's sophisticated algorithms highlight
projects you're a great fit for.

32

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

Top Rated and Rising Talent
programs. Enjoy higher visibility
with the added status of prestigious
programs.</1i>
Do substantial work with top
clients. RemoteDesk pricing
encourages freelancers to use Upwork for
repeat relationships with their clients.</1i>

</div>
</div>
<!-- Hired content end -->
<!-- work efficiency start-->
<div class="row workEfficiency">
<div class="six columns">
<h3>Work efficiently, effectively.</h3>
<p>With Upwork, you have the freedom and
flexibility to control when, where, and how you
work. Each project includes an online workspace
shared by you and your client, allowing you
to:</p>

Send and receive files.
 Deliver digital assets in a secure
environment.</1i>
Share feedback in real time.
 Use Upwork Messages to communicate
via text, chat, or video.</1li>

33

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

34

Use our mobile app. Many
features can be accessed on your mobile phone
when on the go.</1i>

</div>
<div class="six columns">
<img src="images/Messaging.png"
class="messagingImg"/>
</div>
</div>
<!-- Work efficiency end-->
<!-- Get paid section start -->
<div class="row getPaid">
<div class="six columns"><img src="images/paid.png"
class="paidImg"/></div>
<div class="six columns">
<h3>Get paid on time</h3>
<p>All projects include Upwork Payment
Protection — helping ensure that you get paid
for all work successfully completed through the
freelancing website.</p>

All invoices and payments happen
through RemoteDesk. Count on a
simple and streamlined process.
Hourly and fixed-price
projects. For hourly work, submit
timesheets through RemoteDesk. For
fixed-price jobs, set milestones and funds
are released via Upwork escrow features.

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

Multiple payment options.
 Choose a payment method that works
best for you, from direct deposit or PayPal
to wire transfer and more.</1i>

</div>
</div>

As shown in Listing 2-8, you create three rows using three <div>s with
the row class. In the first <div> containing the row class, you create two
<div>s each spanning six columns. In the first child <div>, you insert an
image using the tag, and in the second child <div>, you create a
heading followed by creating a list using the and <11i> tags. In short,
you create the next three content blocks using a similar technique as you
did in Step 3.

Similarly, you create a similar structure for the remaining two <div>s
with the row class by inserting two child <div>s, each spanning six
columns. You also insert an image and create an unordered list similar to
the previous <div>s.

Then, you define the CSS styles for the custom CSS code in the style.css
style sheet just like you did in Step 3. Listing 2-9 shows the CSS style
sheet code.

Listing 2-9. Adding Styles for the Remaining Sections

.rewardingContent, .hiredContent, .workEfficiency, .getPaid{
margin-top:10px;
}
.rewardingImg, .hiringImg, .messagingImg,.paidImg {
width: 75%;
margin: O auto;
display: block;

35

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

Figure 2-8 shows the output of the code in Step 4.

Work efficiently, effectively.

With Upwork, you have the freedom and fiexbifizy to control when,
where, ang how you work Each project mcludes an online workspace
chared by you and your client. allowing youto:

* Send and receive Siles. Deliver cigital assets in 2 secure environment.
* Share feedback in real time. Uze Upwork Meszages to communicate
via text, chat, or videe.
* Use our mobile app. Many Seatures con be acceszed on your mobile
phone whenonthe go.

Get hired quickly

RemaoteDesk makes it cazy 10 connect with clientz and begin doing preet
WO

e Streamlined hiring, RemoteSezk's sophisticsted slgorithms highfght
projects you're a greatfitfor

* TopRated and Rising Talont programa. Erjoy higher vsledity wnth
the added statuz of prestigious program:.

* Do substantial work with top clients. RemeteDesk pricing
encourages freclancers 10 use Upwork for repest relationzhips with ther
clients.

Get paid on time

All prejects include Upwerk Paymens Protection — helping ensure that
you pet paid for all work succeszfully completed through the freelancing
wekbzite.

* All mvoices and payments happen through RemcteDesk. Countens
simple and streamined process.

s Hourly and foed prce projects. For houry work, submit timesheets.
through RemoteDesk, For Sxed-price jobz, set miestones and fundz sre

released via Upweork escrow Seatures.

* Mutiple payment opticna. Choose 8 peyment methad that werks
best for you, from direct deposit or PayPal 1 wire tranzier and mere.

Figure 2-8. Output of the content of the remaining sections

36

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

Step 5: Designing a Sign-up Form

In this Step, you will create a small sign-up form. Listing 2-10 shows the
code for the form.

Listing 2-10. Sign-up Form

<h3 class="row">Ready to get hired?</h3>

<div class="row quickSignup">
<div class="five columns"><input type="text"
name="fullName" class="fullName u-full-width"
id="fullName" placeholder="Enter your full
name"/></div>
<div class="five columns"><input type="text"
name="emailId" class="emailld u-full-width"
id="emailld" placeholder="Enter your email"/></div>
<div class="two columns"><a class="button button-
primary" href="#">Sign up</div>

</div>

In Listing 2-10, you create a <div> and assign the row class to it. You
then add three <div>s with the columns class within the <div> with the
row class. You then add inputs in the first two <div>s for the full name
and e-mail. Here you use a utility class provided by Skeleton; for example,
u-full-width is used so that the fields occupy the full width of the container.
You then place a Sign Up button in the last <div>.

Figure 2-9 shows the output of the form.

Ready to get hired?

Figure 2-9. Output of the sign-up form

37

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

Step 6: Creating a Footer

Finally, you will create the footer. Listing 2-11 shows the code for the footer

section.

Listing 2-11. Footer

<div class="row footer">

<div class="four columns">
<h4>Company Info</h4>
About us
Customer Stories
Press
Career
RemoteDesk Blog
Terms of service
Privacy Policy

</div>

<div class="four columns">
<h4>Additional Services</h4>
Enterprise Solutions
Enterprise Summit
Business resources

</div>
<div class="four columns">
<h4>Browse</h4>

Freelancers by skills
Freelancers by region
Find Jobs
Hiring Resources
</div>
</div>

38

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

In Listing 2-11, you create a <div> tag and assign a row class to it.
Within that <div>, you create three child <div>s, each spanning four
columns using the four columns class.

The first child <div> contains anchor links, <a>, for the company
information. The second child <div> contains anchor links for the
additional services, whereas the third child <div> contains anchor links for
the Browse section.

Figure 2-10 shows the footer section of the web page.

Company Info Additional Services Browse

Figure 2-10. Output of the footer section

You have just designed a landing page for the RemoteDesk freelance
portal using Skeleton!

Summary

Skeleton is a simple framework that beginners can adopt quickly. It has a
clean and concise code base.
However, Skeleton does have its drawbacks.

o [Itlacks several CSS features that other frameworks
provide. Because of this, the development time while
using Skeleton is higher compared to its counterparts.

e The maximum width supported by the 12-column fluid
grid is 960px.

39

CHAPTER 2 BUILDING A LANDING PAGE WITH SKELETON

e Another drawback is the lack of community support.
The last update to this framework was done three years
ago. Moreover, a lot of pull requests and issues are still
open, meaning all the discrepancies have yet to be fixed
along with substantial updates.

Therefore, when it comes to massive, immersive web sites, Skeleton
falls short. Nevertheless, it is a handy utility suitable for web projects,
meant mainly for smaller screens. In the next chapter, you will design a
product page with Milligram, another intuitive lightweight framework.

40

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3

Building a Product
Page with Milligram

Milligram is a lightweight framework for designing interactive web sites.
This intuitive framework has a minimal set of styles, is apt for building
web pages with high performance, and adopts the paradigm of clean and
consistent coding. Its zipped file size is only 2KB, making it extremely
lightweight for creating small web sites. In this chapter, you will learn
how to install Milligram and about its grid feature. Then you will build a
product page with the framework.

Installing Milligram

There are different ways you can install Milligram. In this section, you will
learn how to install Milligram by downloading the Milligram files.

Go to the Milligram web site at http://milligram.io/ and click the
Download Milligram button, as highlighted in Figure 3-1. The zip file will
be downloaded.

© Aravind Shenoy and Anirudh Prabhu 2018 41
A. Shenoy and A. Prabhu, CSS Framework Alternatives,
https://doi.org/10.1007/978-1-4842-3399-3_3

http://milligram.io/

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

O Miligram Docs Support

Getting Started

There are some ways to get started. First, see all download options available below, then choose the most
suitable option for your need. Now you should add the main file of the Milligram and the CSS Reset in the
header of your project. Just that!

DOWNLOAD MILLIGRAM

Figure 3-1. Milligram download page

Figure 3-2 shows the file structure.

L. .github 26-01-2017 02:02 File folder

L dist 26-01-2017 02:02 File folder

| examples 26-01-2017 02:02 File folder

A sre 26-01-20170202 Filefolder

. test 26-01-2017 02:02 File folder

M| .appveyor.yml 26-01-2017 02:02 YML File 1KB
|;J .editorconfig 26-01-2017 02:02 EDITORCONFIG File 1KB
L:] .eslintrc 26-01-2017 02:02 ESLINTRC File 1KB
M| .gitignore 26-01-2017 02:02 GITIGNORE File 1KB
L:J .sasslintrc 26-01-2017 02:02 SASSLINTRC File 2KB
[] travisyml 26-01-201702:02 YMLFile 1KB
backstop.conf 26-01-2017 02:02 JScript Script File 3KB
L:J bower.json 26-01-2017 02:02 JSON File 1KB
|] changelog.md 26-01-201702:02 MDFile 1KB
|:,| composer.json 26-01-2017 02:02 JSON File 1KB
|__,| license 26-01-2017 02:02 File 2KB
package 26-01-201702:02 JScript Script File 1KB
|_] packagejson 26-01-2017 02:02 JSON File 3KB
|__.‘,| readme.md 26-01-2017 02:02 MD File 3KB
|_,| yarndock 26-01-2017 02:02 LOCK File 175 KB

Figure 3-2. Content of the Milligram framework

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

The CSS files (both the usual ones as well as the minified versions) are
present in the dist folder. Figure 3-3 shows the file structure.

milligram/

F—— examples/

| L— index.html

— dist/

| — milligram.css

| L— milligram.min.css
F—— license

L — readme.md

Figure 3-3. File structure of Milligram framework (source: Milligram)

You can also download the Milligram files or install it using Bower,
NPM, or Yarn.

For installation through Bower, NPM, and Yarn, you need to use the
following commands from the command-line prompt:

$ bower install milligram
$ npm install milligram
$ yarn add milligram

Once you download Milligram, add the tags for the files in the head
section of your HTML code.

There is a preferred way of using Milligram that we will be showing in
this chapter, which is to use a content delivery network (CDN). A CDN is
basically a system of distributed networks delivering web pages and other

43

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

web content according to the geographic location of the users, the source
of the web pages, and the location of the CDN server. There are many
benefits of using CDN.

e Decreases the server load
o Enables fast content delivery
o Ensures high availability

o Facilitates high network backbone capacity for
concurrency

o Offers better control of asset delivery

You can add the CDN code for Milligram using the following lines of code:

<link href="https://fonts.googleapis.com/css?family=Roboto"
rel="stylesheet">

<link href="https://cdnjs.cloudflare.com/ajax/1libs/milligram/
1.3.0/milligram.min.css" rel="stylesheet" type="text/css"/>

The first line of code is the CDN link for the Google Roboto font. The
second line of code is for the Milligram CSS minified file.

Overview of the Milligram Framework

In this section, you will get an overview of the various attributes of Milligram
before you learn how to build a product page with the framework.

o Milligram adheres to CSS3’s rem units ideology for
its typography wherein a single font size is defined
for the root element and then all the other rem units
are a percentage of that root, thereby providing
easy maintainability and cleaner code. By the way,
Milligram uses the Roboto font family as the default
font for its typography.

44

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

Block quotes in Milligram are quoted between the
<blockquote> tags. A code element is defined between
the <code> tags. If you are in need of a block, wrap the
<code> element in the <pre> tags.

The clearfix utility is used with the clearfix class,
whereas a float is defined by the float-1left and float-
right classes depending on whether you want to float
to the left and right, respectively.

Similar to HTML, lists in Milligram are defined within
the , , and <d1> tags for ordered, unordered,
and description lists, respectively. Each list item is
wrapped between the <1i> tags similar to HTML.

Buttons are defined by the button class with an anchor,
<a>, tag. Alternatively, you can use the <button>
element for defining the button. The default button

is solid, whereas a bordered-only button without any
solid color to it would need the button-outline class.
For a clear button without borders or solid color, you
can use the button-clear class.

Tables in Milligram are similar to HTML tables where
you use the <thead> and <tbody> elements. Similar to
HTML, you use <tr> to define the table rows, <td> for
the table data, and <th> for the table heading, and then
you wrap everything within the main <table> element.

Milligram, just like Skeleton, uses mobile-first queries
that target the minimum width. Styles outside of a
query apply to all devices. This is done to prevent small
devices such as mobiles and tablets from parsing loads

45

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

of unused CSS. Milligram uses the following media
query sizes based on the device size:

e Larger than mobile device/screen: 40rem (640px)
e Larger than tablet device/screen: 80rem (1280px)

o Larger than desktop device/screen: 120rem (1920px)

Grid System in Milligram

Grids in Milligram use the CSS Flexible Box Layout module standard

wherein the grid is fluid, shrinking based on the browser at smaller sizes. The

entire grid system is responsive with a maximum width of 112rem (1120px).
See Listing 3-1 to understand the grid system in Milligram.

Listing 3-1. Grid System in Milligram

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title> Grid system</title>
<meta name="description" content="">
<meta name="author" content="">
<meta name="viewport" content="width=device-width,
initial-scale=1">

<link href="https://cdnjs.cloudflare.com/ajax/libs/milligram/
1.3.0/milligram.min.css" rel="stylesheet" type="text/css">
<link href="https://fonts.googleapis.com/css?family=Roboto"
rel="stylesheet">

</head>

46

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

<div class="container">
<div class="row">
<div style="text-align:center; border: 1px solid black;"
class="column">0One</div>
<div style="text-align:center; border: 1px solid black;"
class="column">Two</div>
<div style="text-align:center; border: 1px solid black;"
class="column">Three</div>
<div style="text-align:center; border: 1px solid black;"
class="column">Four</div>
</div>

<div class="row">
<div style="text-align:center; border: 1px solid black;"
class="column">0One</div>
<div style="text-align:center; border: 1px solid black;"
class="column column-50 column-offset-25">Two</div>
</div>
</div>
</html>

In the code, you use the CDN links for the Google fonts and the
Milligram minified CSS file. You also define the viewport.

Just like Skeleton, the entire code is wrapped in a <div> element
with a container class. All columns are defined within a row just like in
many grid-based frameworks. However, Milligram is different from other
frameworks in that you can add any number of columns within a row. You
are not restricted to 12 columns like with many popular frameworks.

In Listing 3-1, initially you define a row within the <div> with the
container class. Then, you define four columns within that row using the
column class. You use inline styles for assigning a border and aligning the
text to the center for each column.

47

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

Then you define another row and a column using a column class. Then
you define another column within that row and use the column-50 class
along with the column-offset-25 class. What the column-50 class does
is assign a column width of 50 percent to the column, which will allocate
50 percent of the column content within the parent row. The column-
offset-25 class moves the column to the right by 25 percent column space
for that parent row.

Figure 3-4 shows the output of the code.

One | Two [Three

One | [Two

Figure 3-4. Implementation of grid system of Milligram

In Figure 3-4, you can see four columns, named One, Two, Three, and
Four, in the first row. The second row has a column named One and a
column named Two, which is offset by 25 percent and occupies 50 percent
of the row width.

Building a Product Page with Milligram

Now that you have a brief idea about Milligram, you will learn how

to create a product page with Milligram. The Product page contains
information about a Virtual Private Network (VPN) along with its features
and pricing.

Step 1: Defining the Header

Let’s look at the code in Listing 3-2 to start the first step of building the
secure VPN product page.

48

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

Listing 3-2. Defining the Header

<!DOCTYPE html>
<html>
<head>
<title>Secure VPN</title>
<!--include milligram via cdn-->
<meta name="viewport" content="width=device-width,
initial-scale=1">
<link href="https://cdnjs.cloudflare.com/ajax/libs/
milligram/1.3.0/milligram.min.css" rel="stylesheet"
type="text/css">
<link href="https://fonts.googleapis.com/
css?family=Roboto" rel="stylesheet">
<link href="css/style.css" rel="stylesheet"
type="text/css">
</head>
<body class="container">
<div class="row contactArea">
<!--Div with width of 50% and offset from left
50%-->
<div class="column column-50 column-offset-50">
<div class="contactColumn">Your IP:
115.166.129.152</div>
<div class="contactColumn">Your Location:

Unknown</div>
<div class="contactColumn">Your Status:
UNPROTECTED</div>
</div>
</div>
</body>

</html>

49

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

In Listing 3-2, you define the viewport and add the CDN links for
the fonts and the Milligram CSS minified file. Then you introduce a link
for the style.css custom CSS file. After defining the links in the <head>
tag, you create a <body> element with the container class in it. Then you
define a <div> with the row class. You assign another custom class called
contactArea to it, which you will use to define the custom CSS code.

Next, you define a <div> with a column of 50 percent width within
the parent row and offset it by 50 percent within that row by using the
column-50 and column-offset-50 classes. Within that <div>, you create
three <div>s wherein you define the content that comprises the IP address,
location, and status.

Then, you define the custom CSS code using the contactArea and
contactColumn classes in the custom style.css file.

Listing 3-3 depicts the code in the style.css custom CSS file using the
contactArea and contactColumn classes for the corresponding <div>s.

Listing 3-3. Defining CSS for the Header

.contactArea{
background: #666;
color: #fff;
text-align: right

}

.contactColumn{
font-size: 12px;
display: inline-block;
margin-right: 10px;

}

In Listing 3-3, you define the background as gray and the color of the
words as white for the contactArea class. You align the text to the right.

For the <div> that is defined by the contactArea class, you define the
font size as 12px and use a margin. You use the display: inline-block

50

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

property, which essentially creates a grid of boxes that fills the browser
width and wraps it. Here, it helps the content blocks of the header to retain
their block-level characteristics and helps them appear next to each other
without using a float attribute.

Figure 3-5 shows the output of the code.

Your IP 115166 129.152 Your Location: Unknown Your Status: UNPROTECTED

Figure 3-5. Output of the header area

In Figure 3-5, you can see the elements floated to the right with the IP
address and the rest of the content.

Step 2: Defining the Navigation

Let’s now look at the code in Listing 3-4 to proceed with step 2.

Listing 3-4. Defining the Navigation

<div class="navigation row">
<div class="column column-25 logo">

</div>

<div class="column column-50 column-offset-25">
<a>Home
<a>Pricing
<a>Support
<a>Login

</div>

</div>

51

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

In Listing 3-4, you create a <div> and assign a row class to it. You also
assign a custom navigation class to it, wherein you will define the custom
CSS code in the style.css style sheet.

You then create a <div> within the <div> with the row class and assign a
column width of 25 percent to it by using the column-25 class. You also add
alogo custom class to it. You then insert an image for that <div> using the
 element. The path to the images is set to the images folder, with the
logo.png as the image name. Within the same row, you create another <div>
and assign a column width of 50 percent to it using the column-50 class for
that parent row, and you offset that column by 25 percent to the right.

You define the content in anchor link, <a>, tags.

Listing 3-5 shows the custom CSS code linked to the code in Listing 3-4.

Listing 3-5. Defining the CSS for the Navigation

.logo {
text-align: left;

}

.logo img {
width: 25%;
margin: 10px O;

}

.navigation{
background: #ffc400;
text-align: right;
padding: 10px 0;
font-weight: bold;

}

.navigation a{
color: #000;
padding: 5px;
border: 2px solid #000;

52

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

As you can see in Listing 3-5, you define an image width of 25 percent
and set a margin for it. In the navigation class, you define dark orange as
the background color and align the text to the right. You set the padding
and define the bold font weight for it. To the anchor links containing the
Home, Pricing, Support, and Login links, you assign the black color and
a black border with a padding of 5px. Figure 3-6 shows the output of the
code.

In Figure 3-6, you can see the orange background and the links in the
anchor tags (i.e., Home, Pricing, Support, and Login) to the right of the
screen. You can also see the logo on the left of the screen.

Your P 115.166.126.152 Your Location: Unknown Your Status: UNPROTECTED

‘=:’ [Home|[pricing] support | Login

Figure 3-6. Output of the navigation

Step 3: Defining the Banner Area

Let’s look at the code in Listing 3-6 to see the next step in the coding
process for the secure VPN product page.

Listing 3-6. HTML for the Banner Area

<section class="mastHead row">
<div class="column column-60">
<h2>Secure your data. Protect your privacy</h2>
<h4>Protect your IP address and surf the web
anonymously</h4>
</div>
</section>

53

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

In Listing 3-6, you define the <section> tags and assign the row class as
well as the custom mastHead class to it. Inside that row, you define a <div>
with a column of 60 percent width for the row for the <section> tag.

Listing 3-7 shows the corresponding code for the mastHead class in the
custom style.css style sheet.

Listing 3-7. CSS for the Banner Area

.mastHead {
height: 450px;
overflow: hidden;
background: #ffc400;
color: #000;
}
.mastHead h1,.mastHead h2,.mastHead h3,.mastHead h4,.mastHead
h5, .mastHead h6{
color: #000

What you have done is set the height of the <section> with the
mastHead class to 450px and set the background to dark orange, the same
color as in step 2. Then, you define black color to the content in that
section. You also set the color of all the headings in that section to black
with the mastHead class.

Now you will split the sprite image shown in Figure 3-7 into three parts
for the App Store, Google Play, and Windows Phone Store. The rest of the
image for the Mac App Store and Windows PC will not be displayed on the

page.

54

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

Download on the

App Store

Download on the

Google Play

Download on the
Windows Phone Store

Download on the

Mac App Store

Download for the

Windows PC

Figure 3-7. Sprite image for store icons

You define the code for the unordered list in Listing 3-8 within
which you assign a column width of 60 percent, after the headings.

Listing 3-8. Adding Store Information to the Banner Area

<section class="mastHead row">
<div class="column column-60">

<h2>Secure your data. Protect your privacy</h2>

<h4>Protect your IP address and surf the web

anonymously</h4>

<ul class="srote-badges">
<a class="store-ios" title="Available
on the App Store"></1i>

55

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

<a class="store-android" title="Get it
on Google Play"></1i>
<a class="store-winphone"
title="Download from Windows Phone
Store"></1i>

</div>
</section>

As you can see from the code in Listing 3-8, you define the unordered
list and assign the custom srote-badges class to it. You define the list in
the anchor tags and assign the store-ios, store-android, and store-
winphone custom classes to it.

The corresponding custom CSS code in the style.css style sheet for
the unordered list will look like Listing 3-9.

Listing 3-9. Adding the CSS for Store Icons

ul.srote-badges{
list-style: none;

}

ul.srote-badges 1i a, .srote-badges a {
display: inline-block;
background: url(../images/store-badges-70x245.png)
no-repeat 0 0 #fff;
width: 245px;
height: 70px;
border-radius: 4px;

}

.srote-badges a.store-ios {
background-position: 0 0;

56

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

.srote-badges a.store-android {
background-position: 0 -70px;

}

.srote-badges a.store-winphone {
background-position: 0 -140px;

In Listing 3-9, you set 1ist-style as none to remove the bullets.
Further, you set the background as the sprite image by assigning the link
to that image. Then, you define the width and height for it. You also assign
aborder-radius setting of 4px to the image. Next, you split the image
into the first three parts and set the background position to 0 for the first
part, -70px for the next part, and -140px for the third. The rest of the image
cannot be seen.

Next you define an Android phone image, as shown in Figure 3-8, to
the right using another <div> within the same section class.

57

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

2 michael@vpninto...

Premium VPN : 322 days left
@ Location

=4 Ad Blocker

8 DataSaving

&, Available Platforms

Figure 3-8. Application image for the banner area

You assign a column width of 40 percent for the parent <section> tag
and add the mastHeadImage class to it. Listing 3-10 shows the code within
the entire <section> tags after incorporating everything from the sprite
images into this Android image.

58

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

Listing 3-10. Adding the Application Image to the Banner Area

<section class="mastHead row">
<div class="column column-60">
<h2>Secure your data. Protect your privacy</h2>
<h4>Protect your IP address and surf the web
anonymously</h4>
<ul class="srote-badges">
<a class="store-ios" title="Available
on the App Store"></1i>
<a class="store-android" title="Cet it
on Google Play">
<a class="store-winphone"
title="Download from Windows Phone
Store"></1i>

</div>
<div class="column column-40 mastHeadImage"></div>
</section>

Listing 3-11 shows the corresponding custom CSS code for the <div>
element with the last mastHeadImage class.

Listing 3-11. Adding the CSS for the Application Image in the
Banner Area

.mastHeadImage{
background: url("../images/android-devicel.png") no-repeat;
background-size: cover;
background-position: 0 15px;

59

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

In Listing 3-11, you refer to the background and assign the image link.
Then you set background-size to cover and set background-position as
15px.

Figure 3-9 shows the output of the entire code so far.

Your IP-115166.129.152 Your Location: Uninown Your Stetus: UNPROTECTED

o | Home || Pricing | Support || Login |

Secure your data. Protect your privacy

Protect your IP address and surf the web anonymously

2 Download on the

¢ App Store

\“ E‘oogle Play

e Download on the
Windows Phone Store

Premium VPN : 322 days left

@ Location United States

Figure 3-9. Code output so far

Step 4: Designing the Content Area

Moving Forward, you will design the content area.
Listing 3-12 shows how to proceed with building the “benefits” section.

Listing 3-12. HTML for the Content Area

<section class="info">
<div class="row">
<h3 class="column">BENEFITS OF USING VPN IN
TOUCH</h3>
</div>

60

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

<div class="row">
<div class="column column-50">
<h4>Unblock Websites</h4>
<p>Bypass internet restriction and access
to any websites: Unblock Facebook, Unblock
Youtube.</p>
</div>
<div class="column column-50">
<h4>Secure Your Data</h4>
<p>Encrypt your private data before sending
it from your computer, smartphone or tablet
over the internet.</p>
</div>
</div>
<div class="row">
<div class="column column-50">
<h4>Bypass content restrictions</h4>
<p>Watch Netflix and BBC iPlayer, no matter
where you are. Use Skype, Viber and all
Voip services without restrictions.</p>
</div>
<div class="column column-50">
<h4>Protect Your Privacy</h4>
<p>Hide your IP address, protect your
online identity while browsing and surf the
web anonymously.</p>
</div>
</div>

61

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

<div class="row">
<div class="column column-50">
<h4>Wifi Hotspot Security</h4>
<p>Prevent sniffers and hackers from
stealing your private data while using
public hotspots.</p>
</div>
<div class="column column-50">
<h4>Data Saving and Ad Blocker on Mobile</h4>
<p>Save more bandwidth on your mobile 3G/4G
data plan. Clear your mobile screen of
obtrusive ads with Ad Blocking mode.</p>
</div>
</div>
</section>

In Listing 3-12, you use a <section> tag and enclose a <div> with a
row class. Within that parent row, you use the <h3> heading to define the
content for the level 3 heading.

After that <div>, you create a <div> with the row class. You create two
<div>s each with a column width of 50 percent of the parent <div> using
the column-50 class. You define a level 4 <h4> and a paragraph element,
<p>, with their respective content within each child <div>.

Repeat the process three more times, wherein you create two <div>s
within a parent <div> with a row class. Similarly, define <h4> and <p>
under each child <div> with their respective content.

Figure 3-10 shows the output of the code.

62

CHAPTER 3

BENEFITS OF USING VPN IN TOUCH
Unblock Websites

Bypass internet restriction and access 1o any websites: Unblock
Facebook, Unblock Youtube.

Bypass content restrictions

Watch Netflix and BBC iPlayer, no matter where you are. Use Skype, Viber

and all Voip services without restrictions
Wifi Hotspot Security

Prevent sniffers and hackers from stealing your private data while using
public hotspots

BUILDING A PRODUCT PAGE WITH MILLIGRAM

Secure Your Data

Encrypt your private data before sending it from your computer,
smartphone or tablet over the internet

Protect Your Privacy

Hide your IP address, protect your online identity while browsing and surf
the web anonymously

Data Saving and Ad Blocker on Mobile

Save more bandwidth on your mobile 3G/4G data plan. Clear your mobile
screen of obtrusive ads with Ad Blocking mode.

Figure 3-10. Output of the content area

Step 5: Creating the Pricing Area

Next, you will create a pricing table wherein you will list the subscription

price for the monthly, half-yearly, and yearly timeline.
Let’s look at the code in Listing 3-13.

Listing 3-13. HTML for the Pricing Area

<section class="pricingInfo">
<div class="row">

<h3 class="column">Pricing Overview</h3>

</div>
<div class="row">

<div class="column">

<table>
<tbody>
<tr>

<td>pricing</td>
<td>1 Month</td>

<td>6 Months</td>

<td>1 Year</td»

</tr>

63

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

<tr>
<td>Price</td>
<td>$9.98/month</td>

<td>$2.99/month</td>
<td>$2.49/month</td>
</tr>
<tr>
<td>Save</td>
<td>0%</td>
<td>50%</td>
<td>75%</td>
</tr>
</tbody>
</table>
</div>
</div>
</section>

In Listing 3-13, you define the <section> tags within which you define
the tables. Initially, you define a <div> with a row class where you use a
heading of <h3> with the column class to define the content, i.e., Pricing
Overview.

Then, you create a <div> with the row class after the preceding
<div> and assign another <div> with the column class within it. Moving
forward, you define the table headings and the table rows with the list of
items in the table, which is quite similar to the way you create tables in
HTML. Place the content within the <section> tags.

Figure 3-11 shows the output of the code.

64

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

Pricing Overview
pricing 1 Month 6 Months 1 Year
Price $9.98/montt $2.99/month $2.49/month

Save 0% 50% 75%

Figure 3-11. Output of the pricing area

Step 6: Creating the Footer

Finally, you will create a footer for your product page.
Let’s look at the code in Listing 3-14 to understand how you design the
footer of the web page.

Listing 3-14. HTML for the Footer

<footer>
<div class="row">

<div class="column column-25 logo">

<p>© Copyright 2017</p>
<p>All rights reserved</p>

</div>

<div class="column column-25">
<h6>LEARN MORE</h6>
<a>Pricing

<a>How To Setup

<a>Servers

<a>Blog

<a>FAQ

</div>

<div class="column column-25">
<h6>LEGAL</h6>
Terms & Conditions

65

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

Privacy Policy

Refund Policy

</div>
</div>
</footer>

In Listing 3-14, you define the footer content within the <footer> tags.
Inside the <footer> tags, you initially define a <div> with the row class.
Then, you create three child <div>s each with a column with a width of 25
percent of the parent row so that each child <div> takes a quarter of the
parent row space.

In the first child <div>, you assign a logo class to it. You then insert the
logo image with the tag. Then you enter the copyright information
with the <p> tags.

For this first child <div>, you define the custom CSS code in the
style.css file, as shown in Listing 3-15

Listing 3-15. CSS for the Footer

footer{
color: #fff;
background: #666;
padding: 10px O;

}

footer .logo img,footer .logo p{
margin-left: 10px;
display: block;

}

footer .logo p{
margin-bottom: 0;

66

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

footer a{
color: #fff;

}

footer h6{
font-weight: bold;
border-bottom: 1px solid #fff;

As you can see in Listing 3-15, you define the color, padding, and
background for the <footer>. You define the left margin space and
display: block; property for the footer and the image with the logo.
Then, you assign the color to the anchors in the footer followed by defining
the bold font and solid border for the footer and <h6> heading.

Back in Listing 3-14, you define the second child <div> and define the
<h6> heading with the content, along with the links, which you define in
the anchor tags.

The third child <div> contains the conditions and policy links defined
between the <h6> and anchor <a> tags.

That sums up the code.

Figure 3-12 shows the snapshot of the footer part of the code.

- e Pricing Terms & Conditions

. _ How To Setup Privacy Policy
€ Copyright 2017 Servers Refund Policy

All rights reserved Blog

FAQ

Figure 3-12. Output of the footer area

67

CHAPTER 3 BUILDING A PRODUCT PAGE WITH MILLIGRAM

Summary

In this chapter, you designed a page for a secure VPN product. Milligram
is an awesome utility for lightweight projects. However, there are some
constraints such as the maximum device size of 1120px and a lack of utility
classes, which are required for massive immersive projects. Nevertheless,
Milligram is an intuitive framework that doesn’t come with the bulk of
huge frameworks and is especially helpful when you want to build simple
mobile web pages.

In the next chapter, you will look at another engaging framework, Ulkit,
which is quite useful for lightweight web projects.

68

CHAPTER 4

Introducing Ulkit

Ulkit, compared to Skeleton and Milligram, is quite expansive and comes
with plenty of features that are handy for building interactive sites.

It comes with bountiful HTML, CSS, and JavaScript components and

can be easily customized to give a different feel to your web sites. Being
lightweight and modular, its default styles help you build powerful
interfaces adhering to the semantic protocols for web design.

It also comes with custom themes that can be downloaded from the
Customizer section of the web site. A plethora of options help you get
immersive web pages up and running in no time that work on all the
modern browsers. In this chapter, we will shed light on the installation
and grid concept before moving on to various features such as animations,
icons, and accordions to help you get to grips with the flexibility that
Ulkit offers.

Installing Ulkit

Go to the official web site at https://getuikit.com/. The Download
button is on the upper-right side of the screen, as shown in Figure 4-1.

© Aravind Shenoy and Anirudh Prabhu 2018 69
A. Shenoy and A. Prabhu, CSS Framework Alternatives,
https://doi.org/10.1007/978-1-4842-3399-3_4

https://getuikit.com/

CHAPTER 4 INTRODUCING UIKIT

) Ulkit

&2

Thanks for giving Ulkit a try.

Figure 4-1. Ulkit download page

After clicking Download, the zipped file gets downloaded. After
unzipping the folder, the folder tree structure looks like Figure 4-2.

8- css

5 “ | uikit-rtl.css

- = uikit-rtl.min.css
= uikit.css

.... = | uikit.min.css

..... ~| uikit-icons.js

- | uikit-icons.min.js
..... - uikit,js

= uikit.min,js

Figure 4-2. Content of Ulkit framework

You can also install UlIkit with prebuilt JavaScript, CSS, and Less
source files with NPM, or you can clone the repo to get all the source files
including build scripts.

To clone the repo, you need to use the following command:

git clone git://github.com/uikit/uikit.git

70

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 INTRODUCING UIKIT

Another easy way to include the compiled files of all UIkit versions is to
use the CDN files on the Cloudflare content delivery network. You include
all the necessary files in your markup as shown in Listing 4-1.

Listing 4-1. Including Ulkit in Your Web Page

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/
libs/uikit/3.0.0-beta.28/css/uikit.min.css" />

<script src="https://cdnjs.cloudflare.com/ajax/libs/
jquery/3.2.1/jquery.min.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/
uikit/3.0.0-beta.28/js/uikit.min.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/1libs/
uikit/3.0.0-beta.28/js/uikit-icons.min.js"></script>

Grids, Cards, Flex, and Width

Ulkit has a flexible grid system. Ulkit’s grid items are all stacked by default.

To add a grid, you need to add the uk-grid attribute to the <div> element.

Usually, we use the card component to demonstrate the grid functionality;

the card element contains the card, the card body, and an optional card title.
Listing 4-2 depicts the code for the normal card component.

Listing 4-2. Card Component of Ulkit

<html>

<head>

<!-- UIkit CSS -->

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/
libs/uikit/3.0.0-beta.28/css/uikit.min.css" />

71

CHAPTER 4 INTRODUCING UIKIT

<!-- jQuery is required -->
<script src="https://cdnjs.cloudflare.com/ajax/1libs/
jquery/3.2.1/jquery.min.js"></script>

<!-- UIkit JS -->
<script src="https://cdnjs.cloudflare.com/ajax/1libs/
uikit/3.0.0-beta.28/js/uikit.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/1libs/
uikit/3.0.0-beta.28/js/uikit-icons.min.js"></script>
</head>
<body style="padding:10px 10px 10px 10px;">
<div class="uk-card uk-card-default uk-card-body uk-width-1-2">
<h3 class="uk-card-title">Cloud Computing</h3>
<p>Cloud Computing is a computing infrastructure and
software model for enabling access to shared pools of
configurabel resources such as computer networks, servers, and
storage including services which can be rapidly provisioned with
minimal management effort over the internet or intranet</p>
</div>
</body>
</html>

In this code, you include the links for the Ulkit framework in the <head>
section. You include the jQuery code, the Ulkit JavaScript code, and the
Ulkit icon files in the links. Then, you create a <body> tag and assign a
padding of 10px all over. Next, you create a <div> and assign the uk-card,
uk-card-default, and uk-card-body classes in addition to assigning a
width of half for the parent container using the uk-width-1-2 class. The uk-
card class defines the card, while the uk-card-default class is the default
styling for the card. The uk-card-body class defines the body for the card.

Then, you use the <h3> element to define a third-level heading for the
card title and add a uk-card-title class to it. Next, you define random
content within the <p> tags.

72

CHAPTER 4 INTRODUCING UIKIT

Figure 4-3 shows the output of the code.

Cloud Computing

Cloud Computing is a computing infrastructure and software model for enabling
access to shared pools of configurabel resources such as computer networks,
servers, and storage including services which can be rapidly provisioned with
minimal managment effort over the internet or intranet

Figure 4-3. Output of card component of Ulkit

You can have cards of different colors. Let’s look at an example of how
you assign different colors to the cards in Ulkit; see Listing 4-3.

Listing 4-3. Adding Colors to the Card Component of UIkit

<div class="uk-child-width-1-3 uk-grid-small" uk-grid>
<div>
<div class="uk-card uk-card-default uk-card-body">
<h3 class="uk-card-title">Default</h3>
<p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua.</p>
</div>
</div>
<div>
<div class="uk-card uk-card-primary uk-card-body">
<h3 class="uk-card-title">Primary color</h3>
<p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua.</p>
</div>
</div>
<div>

73

CHAPTER 4 INTRODUCING UIKIT

<div class="uk-card uk-card-secondary uk-card-body">
<h3 class="uk-card-title">Secondary</h3>
<p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua.</p>

</div>

</div>
</div>

In the code sample in Listing 4-3, you create a parent <div> and assign
a uk-grid attribute to it. By default, all items in the grid will be stacked. So,
you assign a width class to the items to align it next to each other. In this
example, to assign an equal width to all items within the parent <div>, you
have to add a common uk-child-width-1-3 class to it. What this class
does is assign a width of one-third of the parent container to all the items
in the grid. You also add a uk-grid-small class to it. This applies a small
gutter. Usually, the grid component comes with a default gutter, but this
uk-grid-small class applies a small gutter instead. Then, you create three
child <div>s and assign the uk-card and uk-card-default and uk-card-
body classes to create a normal card.

For the second item, you use a uk-card-primary class instead of
the default class. For the third item, you use a uk-card-secondary class
instead of the default class. You also assign the same title to all three items
using the uk-card-title class within the <h3> tag for all three items.

Figure 4-4 shows the output of the code.

Default Primary color

Figure 4-4. Output of colored card components of Ulkit

74

CHAPTER 4 INTRODUCING UIKIT

Instead of the default styling, you can use a hover class so that you can
create a hover effect on the card.

The only thing you need to do is add a uk-card-hover class to each
child <div> for each of the items. The line will look as shown in Listing 4-4
where you use the uk-card-hover class for the <div> element with the
default card color.

Listing 4-4. Adding Hover Effect to the Card Components

<div class="uk-card uk-card-default uk-card-hover uk-card-
body">

Similarly, you add the uk-card-hover class to the primary and
secondary colored <div> items. On hovering, you can see the hover effect,
which is quite handy in anchors and other aspects in web design.

You can use different size modifiers that will increase the padding in
the card. Listing 4-5 contains the code that depicts how to use smaller and

larger padding.
Listing 4-5. Using Size Modifiers with Card Components

<div class="uk-child-width-1-3@m uk-grid-small" uk-grid>
<div>
<div class="uk-card uk-card-default uk-card-small uk-
card-hover uk-card-body">
<h3 class="uk-card-title">Default</h3>
<p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua.</p>
</div>
</div>
<div>

75

CHAPTER 4 INTRODUCING UIKIT

<div class="uk-card uk-card-primary uk-card-large
uk-card-hover uk-card-body">
<h3 class="uk-card-title">Primary color</h3>
<p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua.</p>
</div>
</div>
<div>

</div>
</div>

Here you define two cards with the same content, but you use uk-
card-small for the child <div> for the default card and use the uk-card-
large class for the child <div> with the primary color.

The rest of the code is the same for both child <div>s.

Figure 4-5 shows the output of the code.

Default

Lorem ipsum dolor sit amet, consectetur adipisicing elit, Prlmary color
sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua.

Figure 4-5. Output of using size modifier with card component

The width class is used in conjunction with the card component to
split content into responsive columns. Now let’s understand the width
class better using some examples; see Listing 4-6.

76

CHAPTER 4 INTRODUCING UIKIT

Listing 4-6. Using Width Classes Along with Card Component

<div class="uk-text-center" uk-grid>
<div class="uk-width-1-3">
<div class="uk-card uk-card-primary uk-card-default
uk-card-body">0One Third</div>
</div>
<div class="uk-width-1-3">
<div class="uk-card uk-card-primary uk-card-default
uk-card-body">One Third</div>
</div>
<div class="uk-width-1-3">
<div class="uk-card uk-card-primary uk-card-default
uk-card-body">0One Third</div>
</div>
</div>

<div class="uk-text-center" uk-grid>
<div class="uk-width-1-2">
<div class="uk-card uk-card-default uk-card-
body">Half</div>
</div>
<div class="uk-width-1-2">
<div class="uk-card uk-card-default uk-card-
body">Half</div>
</div>
</div>
<div class="uk-text-center" uk-grid>
<div class="uk-width-1-4">
<div class="uk-card uk-card-default uk-card-secondary
uk-card-body" >0One-fourth</div>
</div>

77

CHAPTER 4 INTRODUCING UIKIT

<div class="uk-width-3-4">
<div class="uk-card uk-card-default uk-card-secondary
uk-card-body">Three-fourth</div>
</div>
</div>

In the preceding code sample, you create a parent <div> under which
you center the text for all the items by using a uk-text-center class in the
parent <div>. Then, you add a uk-grid attribute for the parent <div>.

For each child <div>, you use a width of one-third for each item in the
parent container (i.e., the parent <div>). You define the code for the card
in a <div> within the <div> for each item containing the width class.

Similarly, you create another parent <div>. Here you use the same
coding strategy, but you use two child items. You assign a width of half for
each item for that parent <div>. Also in the previous parent <div>, you
use a primary color for all the items. Here you use the default color for the
cards.

You move on to create another parent <div> with the uk-grid attribute
like in the previous parent <div>s. Here you create two <div>s, but you
assign a secondary color to the cards, and you assign a width of

one-quarter to the first item and three-quarters to the second item using
the uk-width-1-4 and uk-width-3-4 classes.
Figure 4-6 shows the output of the code.

Figure 4-6. Output of the code so far

78

CHAPTER 4 INTRODUCING UIKIT

Instead of assigning a width to each item, if the items are of the same
size, then you can use the uk-child-width-* class to it where * stands
for the dimensions of each items. For example, uk-child-width-1-4 will
apply a width of one-quarter of the parent container to all the items.

Let’s look at this with a code sample; see Listing 4-7.

Listing 4-7. Using the uk-child-width-* Class to Adjust the Width of
the Inner Components

<div class="uk-child-width-1-4 uk-grid-small uk-text-center"
uk-grid>
<div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">Cloud</div>
</div>
<div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">Cloud</div>
</div>
<div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">Cloud</div>
</div>
<div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">Cloud</div>
</div>
<div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">Cloud</div>
</div>
</div>

79

CHAPTER 4 INTRODUCING UIKIT

In the code, you use a common uk-child-width-1-4 in all items in
the parent <div>. Then you define the child <div>s with the card element
code.

Figure 4-7 shows the output of the code.

Figure 4-7. Using the uk-child-width-* class to adjust the width of the
inner components

Asyou can see in Figure 4-7, the width classes with fractions will break in
to a new row if they exceed their container’s width. However, to evenly split
them in the same row, you can use the expand class as shown in Listing 4-8.

Listing 4-8. Implementing uk-child-width-expand for Evenly Sizing
the Inner Elements

<div class="uk-child-width-expand uk-grid-small uk-text-center"
uk-grid>
<div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">Cloud</div>
</div>
<div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">Cloud</div>
</div>
<div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">Cloud</div>
</div>

80

CHAPTER 4 INTRODUCING UIKIT

<div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">Cloud</div>

</div>

<div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">Cloud</div>

</div>

</div>

Asyou can see, you can use uk-child-width-expand to evenly split all
the items in the same row without going to the next row. Figure 4-8 shows
the output of the code.

Figure 4-8. Evenly sizing the inner elements

You can also define a custom width for some items in the code and
use them in conjunction with the uk-child-width classes. Let’s look at the
code in Listing 4-9 to see an example.

Listing 4-9. Defining Custom Width for Inner Element

<div class="uk-child-width-expand uk-grid-small uk-text-center"
uk-grid>
<div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body"> Spread</div>
</div>
<div class="uk-width-2-3">
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">Custom </div>
</div>

81

CHAPTER 4 INTRODUCING UIKIT

<div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">Spread</div>
</div>
<div>
<div class="uk-card uk-card-default uk-card-primary
uk-card-body">Spread</div>
</div>
</div>
In Listing 4-9, you use uk-child-width-expand as the common class
to the parent <div>. However, in the second child <div>, you use a custom
width of uk-width-2-3 and let the other child <div>s remain the same.
What happens is that the second item will encompass a width of two-thirds
the parent container, while the other items will be evenly split in the
same row.
Figure 4-9 shows the output of the code.

Figure 4-9. Defining custom width for inner elements

You can use the FlexBox component in Ulkit. It helps you build
interactive grid layouts. Let’s look at an example to understand it better;
Listing 4-10 shows an example of how FlexBox can be used.

Listing 4-10. Using FlexBox with Ulkit

<div class="uk-flex">
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">First</div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body uk-margin-left">Second</div>

82

CHAPTER 4 INTRODUCING UIKIT

<div class="uk-card uk-card-default uk-card-primary uk-
card-body uk-margin-left">Third</div>
</div>

In the code, you use the uk-flex class with the parent <div>. Then,
you define three items in the child <div>s and use a uk-margin-left for
the second and third items to create space between the items. By default,
all items will be aligned to the left along with the content and height, as

shown in Figure 4-10.
IIIHHIII

Figure 4-10. Using FlexBox with Ulkit

You can align the flex items to the right and center and even add equal
space between the items using the uk-flex-right, uk-flex-center, and
uk-flex-around classes.

Listing 4-11 shows the code where all the items are centered.

Listing 4-11. Aligning Flex Item

<div class="uk-flex uk-flex-center"»
<div class="uk-card uk-card-default uk-card-primary
uk-card-body">First</div>
<div class="uk-card uk-card-default uk-card-primary
uk-card-body uk-margin-left">Second</div>
<div class="uk-card uk-card-default uk-card-primary
uk-card-body uk-margin-left">Third</div>

</div>

83

CHAPTER 4 INTRODUCING UIKIT

Figure 4-11 shows the output of the code.

Figure 4-11. Aligning flex items

You can use responsive classes with the flex items where @s added to
the flex classes will affect device widths of 640px or higher, @m affects device
widths of 960px or higher, @1 affects device widths of 1200px or higher, and
@x1 affects device widths of 1600px or higher. See Listing 4-12.

Listing 4-12. Using Responsive Classes with Flex Items

<div class="uk-flex uk-flex-left@m uk-flex-center@l">
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">FIRST</div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body uk-margin-left">SECOND</div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body uk-margin-left">THIRD</div>

</div>

In the code in Listing 4-12, you define uk-flex-1left@m and uk-flex-
center@] to the parent <div>s.

Then you define the child <div>s just like in the previous examples. On
the large screen, the flex items will be centered, whereas the items will be
aligned to the left on a small screen.

The vertical alignment of items is possible in Flexbox. Let’s look at an
example in Listing 4-13. You can also define the item order as shown in the
same example.

84

CHAPTER 4 INTRODUCING UIKIT
Listing 4-13. Vertically Aligning the Flex Items

<div class="uk-flex uk-flex-column uk-text-center uk-
width-1-3">
<div class="uk-card uk-card-default uk-card-primary uk-card-body
uk-flex-last@m uk-flex-first@l uk-margin-top">Cloud 1</div>
<div class="uk-card uk-card-default uk-card-primary uk-card-
body uk-margin-top">Cloud 2</div>
<div class="uk-card uk-card-default uk-card-primary uk-card-body
uk-flex-first@m uk-flex-last@l uk-margin-top">Cloud 3</div>
</div>

As you can see, you can use uk-flex-column in the parent <div>. So,
the output will be as shown in Figure 4-12.

Cloud 1

Cloud 3

Figure 4-12. Vertically aligning the flex items

85

CHAPTER 4 INTRODUCING UIKIT

However, in the same code in Listing 4-13, you define responsive
classes in the first and third items. You use uk-flex-last@m and uk-flex-
first@] for the first item. You use uk-flex-first@m uk-flex-last@l for
the third item. Therefore, while the preceding output was for the large
screen, on small and medium screens, the first item, Cloud 1, will be the
last item, whereas the third item, Cloud 3, will be the first item, as shown in
Figure 4-13.

Cloud 3

Cloud 1

Figure 4-13. Vertically aligning the flex item

Finally, coming back to grids, you can also use nested grids in Ulkit.
Let’s look at the code in Listing 4-14 to understand it better.

Listing 4-14. Using Nested Grids in Ulkit

<div class="uk-child-width-1-2 uk-text-center" uk-grid>
<div>
<div class="uk-card uk-card-default uk-card-primary uk-
card-body">FIrst 1-1</div>
</div>

86

CHAPTER 4 INTRODUCING UIKIT

<div>
<div class="uk-child-width-1-2 uk-text-center" uk-grid>
<div>
<div class="uk-card uk-card-primary uk-card-
body">Nested 2-1 </div>
</div>
<div>
<div class="uk-card uk-card-primary uk-card-
body">Nested 2-2</div>
</div>
</div>
</div>
</div>

Here, you create a parent <div> and assign a child width of half to it.
Then, you create two child <div>s. You define a normal card in the first
child <div>. However, in the second child <div>, you assign a width of half
for each subchild <div>.

Figure 4-14 shows the output of the code.

Figure 4-14. Using nested grid in Ulkit

You can match the height of all the <div>s irrespective of the content of
all the items. Listing 4-15 shows the code for this.

87

CHAPTER 4 INTRODUCING UIKIT

Listing 4-15. Matching the Heights of the Elements

<div class="uk-grid-match uk-child-width-expand@s uk-text-
center" uk-grid>
<div>
<div class="uk-card uk-card-primary uk-card-body">Lorem
ipsum dolor sit amet, consectetur adipisicing elit</div>
</div>
<div>
<div class="uk-card uk-card-primary uk-card-body">Lorem
ipsum dolor sit amet, consectetur adipisicing elitlorem
ipsum dolor sit amet, consectetur adipisicing elit</div>
</div>
<div>
<div class="uk-card uk-card-primary uk-card-body">Lorem
ipsum dolor sit amet, consectetur adipisicing elitlLorem
ipsum dolor sit amet, consectetur adipisicing elitlLorem
ipsum dolor sit amet, consectetur adipisicing elitlorem
ipsum dolor sit amet, consectetur adipisicing elit</
div>
</div>
</div>

Asyou can see, you use the uk-grid-match class in the parent <div>.

Then, you create three items just as in the previous examples.
Figure 4-15 shows the output of the code.

Figure 4-15. Output of the code so far

88

CHAPTER 4 INTRODUCING UIKIT

Animations

Ulkit has a plethora of animations that impart a certain degree of
immersive behavior to your web sites. Let’s look at the example in
Listing 4-16 to understand the behavior of animations in a web page.

Listing 4-16. Adding Animation

<div class="uk-child-width-1-4 uk-grid-match" uk-grid>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body
uk-animation-fade">
<p class="uk-text-center">Fade</p>
</div>
</div>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body
uk-animation-scale-up">
<p class="uk-text-center">Scale Up</p>
</div>
</div>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body
uk-animation-scale-down">
<p class="uk-text-center">Scale Down</p>
</div>
</div>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body
uk-animation-shake">
<p class="uk-text-center">Shake</p>
</div>

89

CHAPTER 4 INTRODUCING UIKIT

</div>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body uk-
animation-slide-left">
<p class="uk-text-center">Left</p>
</div>
</div>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body uk-
animation-slide-top">
<p class="uk-text-center">Top</p>
</div>
</div>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body uk-
animation-slide-bottom">
<p class="uk-text-center">Bottom</p>
</div>
</div>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body uk-
animation-slide-right">
<p class="uk-text-center">Right</p>
</div>
</div>
</div>

In Listing 4-16, you create the parent <div> to which you assign the
uk-child-width-1-4 class. This aligns the items in a row with each item
taking one-quarter of the space of the parent container. You assign the
uk-grid attribute as in the previous examples. Then, you proceed to create
eight child <div>s. To each child <div>, you assign the uk-animation-toggle

90

CHAPTER 4 INTRODUCING UIKIT

class due to which there will be a hover effect that will trigger the animation.
Then, you create a card in a sub <div> inside those child <div>s.

Since there are eight items, you assign these eight animation classes to
each child <div>:

o uk-animation-fade class for the first child <div>
This creates a fade effect for the item.

e uk-animation-scale-up class for the second child
<div>

This creates a fade effect wherein the item scales up.
e uk-animation-scale-down for the third child <div>

This creates a fade effect where the item scales down.
o uk-animation-shake for the fourth child <div>

This creates a shake effect wherein the item seems
to vibrate.

e uk-animation-slide-left for the fifth <div>
The item slides from the left.

o uk-animation-slide-top for the sixth <div>
The item slides from the top.

o uk-animation-slide-bottom for the seventh <div>
The item slides from the bottom.

o uk-animation-slide-right for the eight <div>
This item slides from the right.

Figure 4-16 shows the output of the code.

91

CHAPTER 4 INTRODUCING UIKIT

Figure 4-16. Adding animation

When you hover over the items, you can see the animation effect as
defined in the code. For example, when you hover over the first item, it will
fade. On hovering over the fifth item, the item will slide from the left.

You can also define the space or distance of the animation. All you need to
do is add the appropriate top, right, bottom, or left animation class.

For example, uk-animation-slide-left-small will create a left sliding
effect from a shorter distance, whereas uk-animation-slide-left-medium
will create a left sliding effect from a longer distance. The distance is
already predefined by a fixed pixel value.

Let’s look at the code example in Listing 4-17 to understand it better.

Listing 4-17. Adding Animations with Space and Distance

<div class=" uk-child-width-1-4 uk-grid-match" uk-grid>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body uk-
animation-slide-left-small">
<p class="uk-text-center">Left Small</p>
</div>
</div>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body uk-
animation-slide-top-small">
<p class="uk-text-center">Top Small</p>
</div>
</div>

92

CHAPTER 4 INTRODUCING UIKIT

<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body uk-
animation-slide-bottom-small">
<p class="uk-text-center">Bottom Small</p>
</div>
</div>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body uk-
animation-slide-right-small">
<p class="uk-text-center">Right Small</p>
</div>
</div>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body uk-
animation-slide-left-medium">
<p class="uk-text-center">Left Medium</p>
</div>
</div>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body uk-
animation-slide-top-medium">
<p class="uk-text-center">Top Medium</p>
</div>
</div>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body uk-
animation-slide-bottom-medium">
<p class="uk-text-center">Bottom Medium</p>
</div>
</div>

93

CHAPTER 4 INTRODUCING UIKIT

<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body uk-
animation-slide-right-medium">
<p class="uk-text-center">Right Medium</p>
</div>
</div>
</div>

In Listing 4-17, you follow the same code as in Listing 4-16, the only
difference being the addition of the distance to the animation class. You
define the classes as uk-animation-slide-left-small, uk-animation-
slide-top-small, uk-animation-slide-bottom-small, and uk-
animation-slide-right-small to create the sliding animation effect from
the left, top, bottom, and right for a shorter distance. Similarly, you use the
uk-animation-slide-left-medium, uk-animation-slide-top-medium,
uk-animation-slide-bottom-medium, and uk-animation-slide-right-
medium classes to define a medium distance for the sliding effect animation
from the left, top, bottom, and right.

Figure 4-17 shows the output of the code.

Figure 4-17. Adding animations with space and distance

When you hover over the items, they will display the behavior as
defined and explained in the code. For example, when you hover over
the sixth item, the item will slide in from the top from a larger distance
compared to the second item, which slides from the top in a shorter
distance.

94

CHAPTER 4 INTRODUCING UIKIT

If you observe the animations so far, all of them are incoming; however, to
make them outgoing, you can use the reverse function. All you need to do is
add a uk-animation-reverse class to the element, as shown in Listing 4-18.

Listing 4-18. Adding Reverse Animation

<div class="uk-child-width-1-2 uk-grid-match" uk-grid>
<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body uk-
animation-fade uk-animation-reverse">
<p class="uk-text-center">Fade</p>
</div>
</div>

<div class="uk-animation-toggle">
<div class="uk-card uk-card-primary uk-card-body uk-
animation-slide-right uk-animation-reverse">
<p class="uk-text-center">Right</p>
</div>
</div>
</div>

In Listing 4-18, you create two card items inside the parent <div> that
span half of the parent grid. For the first child <div>, you define the fade
animation class followed by the uk-animation-reverse class. For the
second child <div>, you define the animation sliding effect from the right.
However, you also define the uk-animation-reverse class to it similar to
the first child <div>.

Figure 4-18 shows the output of the code.

— ~

Figure 4-18. Adding reverse animation

95

CHAPTER 4 INTRODUCING UIKIT

When you click the first item, it will fade in the reverse way (i.e., outgoing).
Similarly, when you click the second item, it will slide from left to the right
(i.e., in the reverse direction) and fade away.

Scrollspy with Animations

Scrollspy helps you trigger events when you scroll your page. It can be used
with the animation class extensively to create an awesome effect for your
web pages.

Let’s understand it by means of a coding example, as shown in
Listing 4-19. (Inside the <p> tags, there is a load of content. For the entire
content, refer to the code bundle.)

Listing 4-19. Adding Scrollspy

<body style="padding:10px 10px 10px 10px;">
<p>
Lorem ipsum(loads of text)
</p>
<p>
Lorem ipsum(loads of text)
</p>
<div class="uk-child-width-1-2@m uk-grid-match" uk-grid>
<div>
<div class="uk-card uk-card-primary uk-card-body" uk-
scrollspy="cls: uk-animation-slide-left; repeat: true">
<h3 class="uk-card-title">Cloud</h3>
<p>Cloud Computing is the new revolution</p>
</div>
</div>
<div>

96

CHAPTER 4 INTRODUCING UIKIT

<div class="uk-card uk-card-primary uk-card-body"
uk-scrollspy="cls: uk-animation-slide-right; repeat:
true">
<h3 class="uk-card-title">Cloud</h3>
<p>Cloud Computing is the new revolution</p>
</div>
</div>
</div>
</body>

In Listing 4-19, you define two paragraph elements and fill them
with loads of text. Then you define a <div> class, and to this parent <div>
you assign a uk-child-width-1-2@m class to define the width of the two
child <div> elements within the grid defined by the uk-grid-match and
uk-grid classes. Then you create two child <div>s; you create basically
two card items, and you assign the uk-scrollspy="cls: uk-animation-
slide-left; repeat: true" attribute to the first child <div> and uk-
scrollspy="cls: uk-animation-slide-right; repeat: true" tothe
second child <div>. This will make the cards slide from the left and right,
respectively, when you scroll down to that section of the page. You use the
repeat: true property to repeat the effects when you scroll to that section
of the page.

The output of the code will display two paragraphs of content. When
you scroll down the page, the cards will slide from the left and right
automatically. Figure 4-19 displays the two cards, which slide in from the
left and right, respectively, when you scroll to that section.

97

CHAPTER 4 INTRODUCING UIKIT

orci consectetur interdum. Munc id lacus neque. Maecenas porttitor ligula sed lectus faclisis, non awctor mawis eleifend. Vivamus blandit a nibh jaculs aculis. Vivamus faucibus tindidunt
enim id wulputate. Denec quis posuere erat. sit amet ullamoonper lacus, Aenean neque odio, bibenduem non dictum commodo, viverra sed risus. Proin hendrerit ord at pellentesque
lobartis. Mauris egestas dolor ante, a posuere mauris soelerisque quis. Curabstur nunc arcw. cursus nec diam nec. porttitor lacinia sem. Pellentesque iaculis. ligula ut pulvinar consectetur,
ante nibh aliquam lectus, ut facilisis dui magna ut urna.Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed lectus risus, laculis et odio vel, consequat porttitor tortor, Pellentesque
magna est, tincidunt vel porta quis, sagittis vel lectus. Mauris sed lobantis velit, id scelerisque enim. Phasellus et turpis eu orci consectetur interdum, Munc id lacus neque. Maecenas
porttitor igula sed lectus facilisis, non auctor mauris eleffend. Vivamus blandit a nish faculis faculis. Vivamus faudbus tincidunt enim id vulputate. Donec quis posuere erat, sit amet
ullamecorper lacus. Asnean neque odio, bitendum non dictum commode, viverra sed risus, Proin hendrerit orci at pellentesque lobortis. Mauris egestas dolor ante, a posuere mauris
scelerisque quis, Curabitur nunc arcy, cursus nec diam nec, porttitor kcinia sem, Pellentesque faculis, liguls ut pulvinar consectetur, ante nibh aliquam lectus, ut facilisis dui magna ut uma.

Cloud Cloud

Clowd Computing is the new revalution Cloud Computing is the niw revolution

Figure 4-19. Adding Scrollspy

If you want to create items with the same animation effect, you do
not have to define the Scrollspy animation separately for each item. You
can club them together by using the target property to the class in the
scrollspy attribute. Listing 4-20 shows an example of this.

Listing 4-20. Adding Scrollspy

<p>..

Lorem Ipsum...(loads of text)...
</p>

<p>

Lorem ipsum (loads of text)...
</p>

<div class="uk-child-width-1-3@m" uk-grid uk-scrollspy="cls:
uk-animation-slide-top; target: > div > .uk-card; delay: 500;
repeat: true">
<div>
<div class="uk-card uk-card-primary uk-card-body">
<h3 class="uk-card-title">Top Animation</h3>
<p>Animation effect: Slides from the Top</p>
</div>
</div>

98

CHAPTER 4 INTRODUCING UIKIT

<div>
<div class="uk-card uk-card-primary uk-card-body">
<h3 class="uk-card-title">Top Animation</h3>
<p>Animation effect: Slides from the Top</p>
</div>
</div>
<div>
<div class="uk-card uk-card-primary uk-card-body">
<h3 class="uk-card-title">Top Animation</h3>
<p>Animation effect: Slides from the Top</p>
</div>
</div>
</div>

In Listing 4-20, you define the grid and assign the uk-child-width-1-
3@m class to it to assign a width of one-third of the parent container width.
Then, you apply the following scroll spy property to the parent <div>:

uk-scrollspy="cls: uk-animation-slide-top; target: > div > .uk-
card; delay: 500; repeat: true"

This defines the animation for all the child items when you scroll down
to that section. Here, you use cls: uk-animation-slide-top to create an
animation effect wherein the element slides from the top. Then, you follow
itup with target: > div > .uk-card; in the same line, which will target
the card defined by the <div> with the uk-card class. Thereon, you create
a delay of 500ms and use the repeat attribute here too. Next, you go on to
create three card items.

The output of the code will show text, and on scrolling down below the
text, the three card items will slide in from the top, as shown in Figure 4-20.

99

CHAPTER 4 INTRODUCING UIKIT

orel consectetur interdum. Nunc id lacus neque. Maecenas porttitor ligula sed lectus fadlisis, non auctor mawis eleifend. Vivamus blandit a nith laculis laculls, Vivamus Taudibus tincidunt
enim id wlputate. Donec quis posuere erak, sit amet ullamcorper lacus. Aenean neque odio, bibendum non dictum commodo, viverra sed risus. Proin hendrerit ord at pellentesque
lobortis. Mauris egestas dolor ante, a posuere mauris scelerisque quis. Curabitur nunc arcw, cursus nec diam nec, porttitor lacinia sem, Pellentesque iaculis, ligula ut pulvinar consectetur,
ante nibh aliquam lectus, ut facilisis dui magna ut umaLorem ipsum dolor sit smet, consectetur adipiscing elit. Sed lectus risus, iaculis et odio vel, consequat porttitor tortor. Pellentesque
magna est, tincidunt vel porta quis, sagittis vel lectus. Mauris sed lobortis velit, id seelarisque enim, Phasellus et Lurpis eu erei consectetur interdum, Nunc id lscus neque, Maetenas
porutites ligula sed lectus faclisis, non 2uctor maws eleifend. Vivamus blandi a nish iaculis aculis. Vivamus faudbus tincidunt enim id vulputate. Donec quis posuere erat, Sit amet
ullamenrper lacus. Aenean negue odio, bibendurn non dictum commade, viverra sed risus. Proin hendrarit erei at pellantesque lobortis. Mauris egestas delor ante, a posuere mauris
scelerisgue quis. Curabitur nune ascu, eursus nec dlam nec, pariitor lacinia sem. Pellentesque faculis, liguls ut pulvinar corsectetur, ante nibh aliquam lectus, ut facilisis dui magna ut umna.

Top Animation Top Animation Top Animaticn

Animation effect from the Top. Animation effect: Slides from the Top Animation effect: Shides from the Top

Figure 4-20. Adding Scrollspy

Accordions

An accordion helps to stack items, which, when clicked, will display
information. It helps reduce the overload of information on a web page.
Listing 4-21 shows an example of an accordion in UIkit.

Listing 4-21. Adding an Accordion

<ul uk-accordion>
<li class="uk-open">
<h3 class="uk-accordion-title"> Cloud</h3>
<div class="uk-accordion-content">
<p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nam fermentum justo urna. Nam
blandit diam ac erat congue, ullamcorper vulputate
odio tempus. Quisque maximus dolor sit amet nisi
lacinia euismod. Pellentesque laoreet, tortor
malesuada volutpat luctus, augue diam venenatis
risus</p>
</div>
</1i>

<h3 class="uk-accordion-title"> Cloud</h3>
<div class="uk-accordion-content">

100

CHAPTER 4 INTRODUCING UIKIT

<p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nam fermentum justo urna. Nam
blandit diam ac erat congue, ullamcorper vulputate
odio tempus. Quisque maximus dolor sit amet nisi
lacinia euismod. Pellentesque laoreet, tortor
malesuada volutpat luctus, augue diam venenatis
risus</p>
</div>
</1i>

<h3 class="uk-accordion-title"> Cloud</h3>
<div class="uk-accordion-content">
<p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nam fermentum justo urna. Nam
blandit diam ac erat congue, ullamcorper vulputate
odio tempus. Quisque maximus dolor sit amet nisi
lacinia euismod. Pellentesque laoreet, tortor
malesuada volutpat luctus, augue diam venenatis
risus</p>
</div>
</1i>

In Listing 4-21, you create a list using the tag. You need to assign
the uk-accordion class to it. This will create the accordion. Then, you
create three list items using the <11i> tags.

You assign the uk-open class to the first list item so that it is open by
default. Inside the first item, you define the heading of the accordion using
the uk-accordion-title class with the <h3> tag. Then, you create a <div>
and assign the uk-accordion-content class to it. You define the content
within that <div> using the paragraph <p> tags; similarly, to the other two
list items, you define the content and heading of the accordion. However,

101

CHAPTER 4 INTRODUCING UIKIT

remember not to use the uk-open class for these two list items as the uk-
open class is to be used only for that accordion that displays content by
default.

Figure 4-21 shows the output of the code.

Cloud -
Larem ipsurn dolor sit amet, consectetur adipiscing elit. Nam fermen tum justo urna. Mam blandit diam ac erat congue, wlamcarper vuiputate odis tempus. Quisque maximus dolor sit
amet nisi lacinia euismed. Pellentesque laoreer, tortor malesuada volutpat luctus, augue diam venenatis risus

Cloud +
Cloud +

Figure 4-21. Adding an accordion

If you want all the accordions to show the content without the other
collapsing, then use themultiple: true property with the uk-accordion
attribute. Listing 4-22 shows an example of multiple accordions that are
open and shows content without collapsing.

Listing 4-22. Adding Multiple Accordions

<ul uk-accordion="multiple: true">
<1i class="uk-open">
<h3 class="uk-accordion-title"> Cloud</h3>
<div class="uk-accordion-content">
<p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nam fermentum justo urna. Nam
blandit diam ac erat congue, ullamcorper vulputate
odio tempus. Quisque maximus dolor sit amet nisi
lacinia euismod. Pellentesque laoreet, tortor
malesuada volutpat luctus, augue diam venenatis
risus</p>
</div>
</1i>

<h3 class="uk-accordion-title"> Cloud</h3>
<div class="uk-accordion-content">

102

CHAPTER 4 INTRODUCING UIKIT

<p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nam fermentum justo urna. Nam
blandit diam ac erat congue, ullamcorper vulputate
odio tempus. Quisque maximus dolor sit amet nisi
lacinia euismod. Pellentesque laoreet, tortor
malesuada volutpat luctus, augue diam venenatis
risus</p>
</div>
</1i>

<h3 class="uk-accordion-title"> Cloud</h3>
<div class="uk-accordion-content">
<p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nam fermentum justo urna. Nam
blandit diam ac erat congue, ullamcorper vulputate
odio tempus. Quisque maximus dolor sit amet nisi
lacinia euismod. Pellentesque laoreet, tortor
malesuada volutpat luctus, augue diam venenatis
risus</p>
</div>
</1i>

The example is the same as that of the previous accordion example;
except here, you use the uk-accordion="multiple: true" property with
the main tag

The output of the code will show the first accordion open and the
remaining closed. However, when you click the other two accordions, it
will show the content without any of the accordions collapsing, as shown
in Figure 4-22.

103

CHAPTER 4 INTRODUCING UIKIT

Cloud -

Lavem ipsurn dolar sit amet, cansectetur adipisting elit. Nam fermenturn justo uma. Mam Blandit diam ac erat congue, ullsmeorper vulputate odio tempus. Quisque maximus dalor sit
armet nisi lacinia euismod. Pelentesque lacrest, tortor malesusda volutpat luctus, augue diam venenatis risus

Cloud -

Lorem ipsum daler sit amet. cansectetur adipisding elit. Nam fermentum justs uma. Mam Blandit diam ac erat congue, ullamearper vulgatate odio tempus. Quisque maximus doler sit
amet nisi lacinia evismod. Pellentesque lacrest, tortor malesuada volutpat luctus, sugue diam venenatis risus

Cloud -

Lorem ipsurn dolor sit amet. consectetur adipisdng elit. Nam fermentum justo uma. Mam blandit diam ac erat congue, ullamoanper vulputate odio tempus. Quisque masimus dolor sit
amet nisi lacinia euismad. Pellantesque lacrest, tortar malesusda volutpat luctus, sugue diam venenatis risus

Figure 4-22. Adding multiple accordions

Icons

Finally, let’s talk about icons in Ulkit. If you remember the <head> section
of the code examples, you use the following line of code:

<script src="https://cdnjs.cloudflare.com/ajax/libs/
uikit/3.0.0-beta.28/js/uikit-icons.min.js"></script>

This line is for the Scalable Vector Graphic icons, which are baked-in to
Ulkit. The best part of SVG icons is that they can be colored and styled with
CSS to give an aesthetic look.

Listing 4-23 shows an example of a few icons used in Ulkit.

Listing 4-23. Implementing Icons

<a href="" class="uk-margin-small-right" uk-icon="icon:
home">
<a href="" class="uk-margin-small-right" uk-icon="icon:
trash">

<a href="" class="uk-margin-small-right" uk-icon="icon:
users">

<a href="" class="uk-icon-button uk-margin-small-right"

uk-icon="icon: twitter">

104

CHAPTER 4 INTRODUCING UIKIT

<a href="" class="uk-icon-button uk-margin-small-right"
uk-icon="icon: facebook">
<a href="" class="uk-icon-button" uk-icon="icon: google-

plus">

In Listing 4-23, you initially create the Home, Trash, Users, and Phone
icons. For this, you use the <a> anchor tags with the href attribute. Then,
you create the first icon (i.e., home) by using the property uk-icon="icon:
home". As you can see, you assign the icon: home value to the uk-icon
property. Similarly, you assign the trash value for the uk-icon for the trash
using the uk-icon="icon: trash" property. You go on to create icons for
users and the phone. You also use the uk-margin-small-right class for
the spacing between the icons.

For social media button icons, you use the additional class uk-
icon-button with the <a> tags. For the first social media icon button
(i.e., Twitter), you use the uk-icon-button class followed by the uk-
icon="icon: twitter" property. Asyou can see, the icon: twitter value
is assigned to the uk-1icon attribute. Similarly, you create the Facebook and
Google Plus icons.

Figure 4-23 shows the output of the code.

o W K [

L f G+

Figure 4-23. Implementing icons

105

CHAPTER 4 INTRODUCING UIKIT

Summary

As you learned in this chapter, Ulkit is an expansive but light framework
compared to heavyweights such as Bootstrap and Foundation. In the
next chapter, you will learn about Material Design Lite, which is another
amazing and intuitive framework.

106

CHAPTER 5

Material Design Lite
Explained

Material Design Lite is an intuitive and lightweight framework compared
to Bootstrap, Materialize, and Foundation. It adheres to the Material
Design language launched by Google. MDL has ingrained Ul Components
that are easy to use and implement. It provides the styling and animations
that help in constructing aesthetic and responsive web sites. It takes

into consideration several aspects such as browser portability and
responsiveness, all within a compact footprint.

Material Design, created by Google, is a design philosophy that is
inspired by real materials and helps create sleek and interactive web
sites. It follows Google’s device-agnostic paradigm and stresses the
need for web sites to look the same irrespective of the platform. In
other words, it creates a uniformity across all devices, whether it’s a
tablet or a phone or a laptop. This is a distinct concept that helps create
a consistent and unified experience that gives a real-world look and is
aesthetically pleasing.

MDL is a unique framework with ample Ul components, based on
the Material Design philosophy. Though it may not possess a wide array
of components compared to frameworks such as Bootstrap, it is quite
resourceful and competent in its own way and provides a plethora of
combinations and features to build responsive web sites. The name “Lite”

© Aravind Shenoy and Anirudh Prabhu 2018 107
A. Shenoy and A. Prabhu, CSS Framework Alternatives,
https://doi.org/10.1007/978-1-4842-3399-3_5

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

in this framework means it caters to the web designer’s need to build
immersive web sites in a lightweight manner, without the bulk or clutter
associated with massive frameworks.

Installing MDL

MDL can be downloaded in several ways. One of the easiest ways is to go
to https://getmdl.io/started/index.html#download. You will see a
Download MDL button, as shown in Figure 5-1.

HOSTED DOWNLOAD BUILD BOWER NPM

Download the minified CSS and Javascript now (27kB gzipped):

DOWNLOAD MDL V1.3.0

Figure 5-1. Download link for MDL

Click the button to download a zipped file containing the various CSS
and JavaScript files. Figure 5-2 shows the tree structure of the unzipped

components.

-3 mdl

: bower.json
LICENSE
material.css
material.js
material.min.css

_ material.min.css.map

----- material.minjs

: material.min.js.map
package.json

Figure 5-2. Structure of files in MDL

108

https://getmdl.io/started/index.html#download

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

The preferred way of including MDL in your document is to use the
CDN links for the icons, CSS, and JavaScript files, as shown here:

<link rel="stylesheet" href="https://fonts.googleapis.com/
icon?family=Material+Icons">

<link rel="stylesheet" href="https://code.getmdl.io/1.3.0/
material.indigo-pink.min.css">

<script defer src="https://code.getmdl.io/1.3.0/material.min.js">
</script>

Just include the three lines of the preceding code in your HTML page
and you are good to go. We already defined the advantages of using CDN
links in the previous chapters, and the creators of MDL also recommend
using the CDN links.

Alternatively, you can download and build MDL from the GitHub
portal or by using Node or Bower.

In this chapter, we will stick to showing the preferred way (in other
words, using CDN-hosted files in your markup file) to demonstrate various
examples.

MDL Layout

In this section, you will look at some of the layout components of MDL so
you can understand the MDL grid and other important attributes such as
the footer and the tabs.

Initially, you will look at the header and drawer concepts in MDL by
way of some simple examples.

Listing 5-1 shows a fixed header and a normal drawer in MDL.

109

CHAPTER 5

MATERIAL DESIGN LITE EXPLAINED

Listing 5-1. Fixed Header with Normal Drawer in MDL

<html>
<head>
<link rel
icon?fami
<link rel
material.

<script defer src="https://code.getmdl.io/1.3.0/material.min.

</script>
</head>
<body>
<div cla
header"

110

="stylesheet" href="https://fonts.googleapis.com/
ly=Material+Icons">

="stylesheet" href="https://code.getmdl.io/1.3.0/
indigo-pink.min.css">

js">

ss = "mdl-layout mdl-js-layout mdl-layout--fixed-
>
<header class = "mdl-layout _header">
<div class = "mdl-layout header-row">
<!-- Title -->
SUPERMAI
L007
<!-- Add spacer, to align navigation to the
right -->
<div class = "mdl-layout-spacer"></div>
<!-- Navigation -->
<nav class = "mdl-navigation">
<a class = "mdl-navigation link" href
style = "color:white">INBOX
<a class = "mdl-navigation__ link" href
style = "color:white">SPAM
<a class = "mdl-navigation_link" href
style = "color:white">TRASH
</nav>
</div>
</header>

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

<div class = "mdl-layout drawer">
SUPERMAIL007
<nav class = "mdl-navigation">
<a class = "mdl-navigation__ link"
href = "">INBOX
<a class = "mdl-navigation_ link"
href = "">SPAM
<a class = "mdl-navigation__ link"
href = "">TRASH
</nav>
</div>

<main class = "mdl-layout_ content">
<div class = "page-content">Come Undone</div>
</main>
</div>

</body>
</html>

In Listing 5-1, you can see the code for the fixed header and a normal
drawer. Let’s look at each line of code to understand how it works.

In the head section, you include all the CDN files for the MDL
framework. Then, you create a body tag in which you will define the
functional markup for the fixed header example.

Then, you code a <div> and assign the md1-layout, md1l-js-layout,
and md1-layout--fixed-header classes to it. The md1-1layout class
identifies the container as an MDL component and is part of the outer
container element. The md1-js-1layout class adds MDL behavior to the
layout and is part of the outer container element. The md1-1layout--fixed-
header class makes the header always visible, even on small screens.

111

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

Then, you define the HTML <header> tag wherein you assign the
mdl-layout header class to it. The assigned class identifies the container as
an MDL component. Within the <header> tag, you code a <div> and assign
themdl-layout__header-row class to it. The md1-layout__header-row
class identifies the container as an MDL header row and is mandatory on
a header content container. Inside the <div>, you create a tag and
assign the md1-layout-title class to it that identifies the layout title text and
that is needed on the layout title container. You use SUPERMAILOO7 as the title
content for the header. You then code another <div> to which you assign the
mdl-layout-spacer class, which results in filling the remaining space and is
usually used to align the elements to the right.

Then, you create the navigation element with the <nav> tag and assign
the mdl-navigation class to it, which identifies the container as an MDL
navigation group. You create three anchor links using the <a> tag and
assign the md1l-navigation link class that identifies the anchor as an
MDL navigation link. You then use the words INBOX, SPAM, and TRASH as
the content for the anchor tags. You complete this header section with a
closing <header> tag.

Continuing, you create a <div> element and assign the md1-layout
drawer class to it, which identifies the container as an MDL drawer. Then,
you create a element within that <div> and assign the md1-layout-
title class to it, which identifies the title text to the container. You use the
content SUPERMAIL0O07, which is the same as the content for the header
title in the <header> section. Then, you create the navigation element with
the <nav> tag and assign the md1-navigation class to it, which identifies
the container as an MDL navigation group. You create three anchor links
using the <a> tag and assign the md1-navigation_ link class to it, which
identifies the anchor as an MDL navigation link. You then use the words
INBOX, SPAM, and TRASH as the content for the anchor tags.

112

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

Next, you create a <main> tag to define the layout’s primary content
and assign the md1-layout content class to it. The md1-layout content
class is mandatory for defining the container as the MDL layout content.

You then use the closing tags.
Figure 5-3 shows the code output.

Lime Ungone

Figure 5-3. Output of the fixed header and a normal drawer

As you can see, you have created a fixed header that is visible on

smaller screens too.
In addition, when you click the navicon (i.e., the menu icon), the

drawer slides out, as shown in Figure 5-4.

SUPERMAILOOT

Figure 5-4. Drawer slides showing the content

113

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

For a fixed drawer, all you need to do is to introduce the md1-1layout-
-fixed-drawer class to the first <div> within which the whole functional
markup is defined. The <div> line of code looks like this:

<div class = "mdl-layout mdl-js-layout mdl-layout--fixed-drawer
mdl-layout--fixed-header">

Figure 5-5 shows the output of the code.

SUPERMAILOOT SUPERMAILOOT

COME UNDONE

Figure 5-5. Fixed drawer

Suppose you want a scrollable header that scrolls with the content.
In such a scenario, you can remove the md1-layout--fixed-header class
from the first parent <div>. In the <header> tag, you need to introduce the
mdl-layout header—scroll class. The rest of the code is the same, except
that you need to put comprehensive content within the layout content
<main> tag. The output will be similar, but when you scroll, the header will
not be fixed but will scroll with the content. Kindly refer to the code bundle
for the entire code and output.

In Listing 5-2, you will look at the code for a fixed header with
scrollable tabs.

Listing 5-2. Fixed Header with Scrollable Tabs

<div class = "mdl-layout mdl-js-layout mdl-layout--fixed-
header">
<header class = "mdl-layout _header">
<!-- Top row, always visible -->

114

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

<div class = "mdl-layout_ _header-row">
<I-- Title -->
SUPERMAILOO7

</div>

<!-- Tabs -->
<div class = "mdl-layout tab-bar mdl-js-ripple-
effect">

<a href = "#scroll-tab-1" class = "mdl-layout _
tab is-active">INBOX
<a href = "#scroll-tab-2" class = "mdl-layout _

tab">SPAM
<a href = "#scroll-tab-3" class = "mdl-layout _
tab">TRASH
</div>
</header>

<div class = "mdl-layout_ drawer">
SUPERMAILOO7

<nav class = "mdl-navigation">

<a class = "mdl-navigation_ link"
href = "">INBOX
<a class = "mdl-navigation__ link"
href = "">SPAM
<a class = "mdl-navigation__ link"
href = "">TRASH
</nav>
</div>

115

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

<main class = "mdl-layout content">
<section class = "mdl-layout tab-panel is-active"
id = "scroll-tab-1">
<div class = "page-content"> Lorem ipsum dolor
sit amet... (content) </div>
</section>
<section class = "mdl-layout tab-panel" id =
"scroll-tab-2">
<div class = "page-content"> Lorem ipsum dolor
sit amet, ...(content)</div>
</section>
<section class = "mdl-layout tab-panel” id =
"scroll-tab-3">

<div class = "page-content"> Lorem ipsum dolor
sit amet....(content) </div>
</section>
</main>

</divy

In Listing 5-2, you define the parent <div> and assign the md1-1layout,
mdl-js-layout, and mdl-1layout--fixed-header classes to it. You then
create a <header> tag to which you assign the md1-layout__header class.
Then, you create another <div> within the <header> tags to which you
assign themdl-layout__header-row class. You proceed to code a
tag to which you assign the md1-1layout-title class. You define the title
content as SUPERMAIL007.

Next, you create the tabs. You create a <div> element to which you
assign themdl-layout tab-bar and mdl-js-ripple-effect classes. The
mdl-layout tab-bar class identifies the container as an MDL tab bar,
whereas the md1l-js-ripple-effect class is used for the immersive ripple
effect. You then create three anchor links to which you assign the #scroll-
tab-1, #scroll-tab-2, and #scroll-tab-3 href attributes, respectively.

116

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

You also assign the md1-layout _tab classes to each anchor link. In the
first anchor link, you assign the is-active class because it should be active
by default. Use the <header> closing tag to wrap up this section of the code.

You then proceed to create a drawer similar to the example in Listing 5-1.

Next, you define the layout content within the <main> tags and assign
themdl-layout__content class to the <main> tag. You then create the first
<section> tag and assign the md1-layout_tab-panel class to it. Only for
this <section> tag, you introduce the is-active class. Then you assign an
ID whose value is the href attribute to the first anchor tag created in the
<header> tag (i.e., scroll-tab-1). Next, you create a <div> and assign the
page content class to it and define the content.

Similarly, you create two more sections similarly, the only difference
being the ID assigned to them. You assign scroll-tab-2 and scroll-
tab-3 as the value of the ID for the second and third sections, respectively.

Moving forward, you complete the code with the necessary closing tags.

Figure 5-6 shows the output of the code.

SUPERMAILDOT

INBOX

Lorem ipsum Color s ame, consecieiur adpiscing et aocee el U(mmnmur Veniam, quis nestrug exercilaion Iamoo 1a0rs sl ul alguip ex ea
commado consequat. Duis aute inure dolor in neps fla panatwr, £: proident. sunt est

Ik Lot ipsie dolor il amel, consetebar asigiscing el sed doen usmed lemper intidicunt o ||madme Ut enin ad minin veriam, quis nosinad execitation ullamngo BBCes nisi o Aiquip ex e2

ComMOO conseduat. Dus aule irure dolor in Ha panater. prowagne, sunt ost
Taborurm Leoem i dolor 88 amel, ¢onseiehur Adisiscig obl, 364 00 eiusmmod emper wektisunt u ||Madmme§ £nien B Minien vaniam, quis hosins si
COMMODO COnNSeGuIR. Duls ule irure dolor In #3 panater. & prowdent, sunt a8t
Iaborum Lenem it dolor S8 amet, consectetur adigiscing eit, 360 0o esmod Lenrwnmmnmlmudmmeqnaalqg Ut enien ad minien venaam, quis nosing '
commoco consequal. Duls aute ure dolor in ! 83 pargie, Excepleur s proident, sunt L

Figure 5-6. Output of scrollable tabs

(We have used random content of Lorem Ipsum..in the code to
illustrate this example, for the entire code with the massive content, refer
to the code bundle for this chapter.)

Next, you will learn about the grid system in MDL. The grid system in
MDL is quite easy and helps lay out the content for multiple devices based
on different screen sizes. By default, a grid in MDL has 12 columns for the

desktop screen, 8 for tablets, and 4 for phone sizes, and cells are laid out
sequentially in a row.

117

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

As written on the MDL web site, there are two exceptions in MDL grid
system.

o Ifacell doesn’tfitin the row in one of the screen sizes,
it flows into the following line.

e Ifacell has aspecified column size equal to or larger
than the number of columns for the current screen size,
it takes up the entirety of its row.

Listing 5-3 shows the code sample for a grid layout.

Listing 5-3. Grid Layout

<div class="mdl-grid">
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--1-col">Cloud</div>
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--1-col">Cloud</div>
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--1-col">Cloud</div>
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--1-col">Cloud</div>
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--1-col">Cloud</div>
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--1-col">Cloud</div>
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--1-col">Cloud</div>
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--1-col">Cloud</div>
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--1-col">Cloud</div>

118

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--1-col">Cloud</div>
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--1-col">Cloud</div>
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--1-col">Cloud</div>
</div>
<div class="mdl-grid">
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--4-col">Cloud</div>
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--4-col">Cloud</div>
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--4-col">Cloud</div>
</div>
<div class="mdl-grid">
<div style="text-align:center; border: 1px solid black;"
class="md1l-cell mdl-cell--6-col mdl-cell--8-col-tablet">6 (8
tablet)</div>
<div style="text-align:center; border: 1px solid black;"
class="md1l-cell mdl-cell--4-col mdl-cell--6-col-tablet">4 (6
tablet)</div>
<div style="text-align:center; border: 1px solid black;"
class="mdl-cell mdl-cell--2-col mdl-cell--4-col-phone">2 (4
phone)</div>
</div>

Listing 5-3 uses the following classes:

o mdl-grid: Identifies the <div> as an MDL grid
component

e mdl-cell: Identifies the <div> as an MDL cell

119

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

e mdl-cell--1-col: Sets the column size for the cell to 1
cell of the 12 cells on a desktop screen

e mdl-cell--4-col: Sets the column size for the cell to 4
cells of the 12 cells on a desktop screen

e mdl-cell--8-col-tablet: Sets the column size for the
cell to 8 cells on a tablet screen

o mdl-cell--6-col-tablet: Sets the column size for the
cell to 6 cells on a tablet screen

o mdl-cell--4-col-phone: Sets the column size for the
cell to 4 cells on a phone screen

If you see the code, you have used the md1-grid class for the first
parent <div>. You move on to create 12 child <div>s for 12 cells, and you
use inline CSS styles for the borders of each cell. You assign md1-cell and
md1l-cell--1-col to each cell in the code, defining a total of 12 cells.

Next, you create another parent <div>, and similar to the first <div>,
you assign the md1-grid class to it. Then, you create three child <div> cells
and assign mdl-cell and md1-cell--4-col classes for it.

In the next parent <div>, you create a grid with three cells and define
screen sizes for each child <div> cell by customizing the size of each cell
on the default desktop, tablet, and phone.

Figure 5-7 shows the output of the code.

[Ccows | [cewa | [cwwa | [cwmwa | [cwoed | [cow | [cwes | [cowa | [oo | [cew | [oew | [_cews |

L Cioud] [Cioud [Cioad]

[6 [3 tatlety][1[G tablet) 110 2 {4 phone) |

Figure 5-7. Grid system sample in MDL

Now that you have gained insight into some of the components of
MDL, let’s look at an example: how to build a web page with MDL.

120

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

Building an Intuitive Web Page Using MDL

In this section, you will take a look at the process of building a web page
for Anirudh Prabhu, co-author of this book. It is a simple example. We will
divide it into several steps and then apply the finishing touches to create
an aesthetic page.

Step 1: Creating the <head> Section

Listing 5-4 shows step 1, wherein you create the <head> section of the web
page and include all the JavaScript and CSS files.

Listing 5-4. <head> Section with All the JavaScript and CSS Files

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Website Using Material Design Lite</title>
<meta name="viewport" content="width=device-width,
initial-scale=1">
<link rel="stylesheet prefetch' href="https://fonts.
googleapis.com/css?family=Roboto:400,100,500,300italic,
500italic,700italic,900,300">
<link rel="stylesheet" href="https://code.getmdl.
io/1.3.0/material.brown-orange.min.css" />
<link rel="stylesheet prefetch' href="https://fonts.
googleapis.com/icon?family=Material+Icons'>
<link rel="stylesheet" href="style.css">
</head>
<body>

121

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

<script src="https://storage.googleapis.com/code.getmdl.
io/1.0.6/material.min.js'></script>

<script src="http://cdnjs.cloudflare.com/ajax/1libs/
jquery/2.1.3/jquery.min.js"'></script>

</body>

</html>

In Listing 5-4, you include the viewport attribute and the MDL files.
You also add a custom style sheet, i.e., style.css.

Step 2: Creating a Fixed Header with a Drawer

In this section, you will add a code snippet between the <body> tags
wherein you will define a fixed header and the header tile along with the
drawer. See Listing 5-5.

Listing 5-5. Defining a Fixed Header and the Header Tile Along
with the Drawer

<div class="mdl-layout mdl-js-layout mdl-layout--fixed-header
mdl-layout--fixed-tabs">
<header class="mdl-layout header">
<div class="mdl-layout header-row">
<!-- Title -->
Anirudh Prabhu
</div>
<!-- Tabs -->
<div class="mdl-layout tab-bar mdl-js-ripple-effect">
<a href="#fixed-tab-1" class="mdl-layout tab is-
active">About
Moments
</div>
</header>

122

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

<div class="mdl-layout drawer">
Anirudh Prabhu
<div class="avatar">
<img src="https://s3-us-west-2.amazonaws.com/s.cdpn.
i0/234228/cat.jpg" alt="Kaptain Kitty" class="avatar-img">
</div>
<!-- /.avatar -->

<div class="drawer-text">
Lorem ipsum dolor sit amet, consectetur adipisicing elit.
Aspernatur officiis animi, soluta ab deserunt dolore
fugit voluptatem laboriosam, magni. Eligendi quia quasi
qui cupiditate optio fugit vel, suscipit harum illum.
</div>
<!-- /.drawer-text -->
</div>
<!-- /.mdl-layout drawer -->

In Listing 5-5, initially, you define the <div> element to which you assign
the mdl-layout, md1-js-layout, md1l-layout--fixed-header, and mdl-
layout--fixed-tabs classes. Then, you define the <header> tag to which
you assign the md1-layout__header class. Within the <header> tags, you
create another <div> to which you assign the md1-layout__header-row
class, followed by creating a element where you define the layout title
using the md1-layout-title class. Close the <div> tag and code another
<div> for the fixed tabs to which you assign the md1-1layout__tab-bar and
mdl-js-ripple-effect classes. Once you define the name of the tabs and
close the concluding </header> tag, you define the code for the drawer.

You code a <div> and assign the md1-layout__drawer class to it. You
create the layout title for the drawer and then code another <div> to which
you assign a custom avatar class. Then you introduce an image with the
help of the tags. Next you code another <div>, and you define the
content for the drawer text.

123

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

Next, you define the custom CSS styles in the style.css file, as shown
Listing 5-6.

Listing 5-6. Defining the Custom CSS styles

.mdl-layout drawer-button,
.md1l-layout drawer-button i {
color: white;

}

@media (max-width: 900px) {
.mdl-layout drawer-button {
width: 100%;

margin: 0;
background-color: transparent;
}
}
img {

max-width: 100%;

height: auto;

display: block;
}

.avatar {
height: 200px;
width: 200px;
margin: O auto 2em;

}

.avatar-img {
height: 200px;
width: 200px;
margin: 0 auto;
border-radius: 50%;

}

124

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

.drawer-text {
padding: 1em;
text-align: center;

}

In Listing 5-6, you define the color of the drawer button as white and
define the background color for it. Then, you define the style for the image,
i.e., the maximum width along with the height and display attributes. You
define the styles for the avatar class and for the avatar-img classes, in
other words, for the height, width, and margin (and the border radius for
the image). Finally, you use custom styles to center the drawer text.

Figure 5-8 shows the output of the code.

Anirudh Prabhu

Figure 5-8. Output of a header and drawer

If you click the navicon to display the sliding drawer, you can see the
drawer image and content, as shown in Figure 5-9.

Anirudh Prabhu

Lorem ipsum golor s amet.
‘consectetur acipiskcing eit.
Aspematur oficls anim, solula
ab desarunt dolore Tugit
weluptatem Eaboriasam, magni
Ebgendi quia quas! qui cupediate
OpIE DA Vel SUSCips nanim
Hurn.

Figure 5-9. Sliding drawer content

125

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

Step 3: Creating the About Section

You will now define the content for the About section, as shown in Listing 5-7.

Listing 5-7. About Section Code
<main class="mdl-layout content">

<div class="mdl-layout tab-panel is-active" id="fixed-
tab-1">
<div class="page-content">
<!-- Your content goes here -->
<!-- Hero section -->
<div class="hero-section">

<div class="hero-text mdl-typography--text-center">

<h1 class="mdl-typography--display-2">I'm Anirudh
Prabhu</h1>

<p class="mdl-typography--display-1">
I'm a passionate mobile photographer

</p>

<a class="mdl-button mdl-js-button mdl-button--fab
mdl-js-ripple-effect mdl-button--accent kitty-
hero text-button" href="#intro">
<i class="material-icons">keyboard arrow down</i>

</div>
<!-- /.hero-text -->

</div>
<!l-- /.hero-section -->

126

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

<!I-- INTRO -->
<div id="intro" class="mdl-grid intro-section">
<div class="about-kitty mdl-cell mdl-cell--12-col">
<p class="mdl-typography--headline">
Welcome to my web page! I wish to display my
mobile photography thru this web page.
</p>
</div>
<!-- /.about-kitty -->

<div class="about-kitty mdl-cell mdl-cell--12-col">
<p>
Various mobiles and gadgets with which i have
performed photography.
</p>
</div>
<!-- /.about-kitty -->

<div class="about-kitty mdl-cell mdl-cell--5-col mdl-
cell--1-col-tablet mdl-cell--hide-phone">
<div class="circle-container">
<div class="circle"></div>
<div class="circle"></div>
<div class="circle"></div>
</div>
<!-- /.circle-container -->

</div>
<!-- /.about-kitty -->
<div class="about-kitty mdl-cell mdl-cell--7-col mdl-
cell--6-col-tablet mdl-cell--4-col-phone">
<div class="topics-container">
<div class="topic">Xiaomi MI3</div>

127

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

<div class="topic">OnePlus 2</div>
<div class="topic">Sony DSC QX100</div>
</div>
<!-- /.topics-container -->
</div>
</div>
<!--/.mdl-grid -->

<!--/.mdl-grid -->

</div>
<!-- /.page-content -->

</main>
<!-- /.mdl-layout_ content -->

In Listing 5-7, you code a <main> tag to which you assign the
mdl-layout__content class. You create a <div> and assign the
mdl-layout__tab-panel and is-active classes to it. You also assign an
ID of fixed-tab-1 to it, which is the href attribute for the anchor tag for
the About section content. Within this, you code another <div> to define
the page content. You create another section within and assign the custom
class hero-section to it. Within this, you create another <div> to which
you assign the custom hero-text class along with the md1-typography-
-text-center class. This centers the text. You then define the content
using different typography classes such as md1-typography--display-2
and md1-typography--display-1, which decides the font weight of the
content.

Next, you create a button, a circular one also called the fab button,
by defining the md1-button, md1-js-button, md1l-button—fab, mdl-js-
ripple-effect, and md1l-button—accent classes to define the look of the
button. You used a drop-down MDL arrow and embed it in the button.

128

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

After the hero section, you define a new parent <div> and assign the
grid functionality to it. You then define the content for this introduction
section. You define the mdl-cell mdl-cell--12-col class to it so that the
content occupies 12 columns on a desktop. After you jot down the content,
you then create three circles by usingmdl-cell, md1-cell--5-col, mdl-cell-
-1-col-tablet, and md1l-cell--hide-phone. This defines the cells based
on the screen size such as tablets and phone, especially md1-cell--hide-
phone, which hides the content on a small phone. Next, you create the
topic container section wherein you define the content that will eventually
be placed next to the circles.

Now you create custom styles for the section, as shown in Listing 5-8.

Listing 5-8. Custom Styles

.hero-section {
height: 100vh;
/* IE11 doesn't like min-height */
width: 100%;
margin: O;
padding: 0;
background-color: rgba(121,85,72, 0.6);
background-image: -webkit-linear-gradient(rgba(121,85,72,
0.3), rgba(121,85,72, 0.3)), url(https://pacdn.500px.
0rg/2185509/e9a80e8a5bb01d46da6830d55a34c6c61146d27d/
cover_2048.jpg?2);
background-image: linear-gradient(rgba(121,85,72, 0.3),
rgba(121,85,72, 0.3)), url(https://pacdn.500px.org/2185509/
e9a80e8a5bb01d46da6830d55a34c6c61146d27d/cover 2048.7jpg?2);
background-position: center center;
background-repeat: no-repeat;
background-size: cover;
position: relative;

129

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

display: -webkit-box;

display: -ms-flexbox;

display: flex;

-webkit-box-orient: vertical;

-webkit-box-direction: normal;
-ms-flex-direction: column;

flex-direction: column;
margin: auto;

}

.hero-text {
color: white;
margin: auto;

}

@media screen and (max-width: 580px) {
.hero-text p {
white-space: pre-line;
}
}

.kitty-hero_text-button, .mdl-button--fab.kitty-hero text-
button {
position: absolute;
bottom: -28px;
left: 50%;
-webkit-transform: translateX(-50%);
transform: translateX(-50%);

}
/* ABOUT KITTY INTRO + CARDS */

.intro-section,
.cards-section {

130

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

max-width: 960px;

}
/* ABOUT KITTY INTRO */

.intro-section, .mdl-grid.intro-section {
padding: 5em 2em 5em;

}

.about-kitty p {
max-width: 640px;
margin: auto;

}

.circle-container {
width: 100%;
min-height: 100px;
padding: 2em 0;
display: -webkit-box;
display: -ms-flexbox;
display: flex;
-webkit-box-orient: vertical;
-webkit-box-direction: normal;
-ms-flex-direction: column;
flex-direction: column;
-webkit-box-align: end;
-ms-flex-align: end;
align-items: flex-end;

}

.circle-container .circle {
height: 16px;
width: 16px;
background-color: #c51162;

131

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

border-radius: 50%;
margin: 0 3px 9px;

}

.topics-container {
padding: 2em 0;

}

.topics-container .topic {
font-size: 20px;
margin: 0 2px 5px;

}

@media screen and (max-width: 480px) {
.topics-container .topic {
margin-bottom: 0.5em;
}

}
.embedded-img {

max-width: 150px;
max-height: 150px;
margin: 0.5em;
border-radius: 50%;

In the custom style sheet, you are essentially defining the background
image, height, width, color, and flex characteristics for the hero section.
You thereon define the text for the content with the custom hero-text
class. You then define the maximum width of the intro-section followed
by assigning the margin and padding for the paragraphs as well as for the
element defined with the about-kitty class (which incidentally defines
the circles and their respective topics). Next, you define the styles for the
circle container and the subsequent circles. Moving forward, you define

132

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

the styles for the topic container and topics along with the media query.
Finally, you define the maximum width and height along with the border
radius for the embedded image.

Figure 5-10 shows the output of the code.

I'ma passidﬁate w{_l_e photographer

Welcome to my web page! | wish to display my mobile
photography thru this web page.

Vanous modiies and gaogels witn .

® Xiaomi MI3
® OnePlus 2
® Sony DSC QX100

Figure 5-10. Output of the About section

Step 4: Inserting an Image with Content

Now you will develop both the About and Moments tabs, as shown in
Listing 5-9.

Listing 5-9. Code for About and Moments Tabs

<!-- Testimonial -->
<div class="mdl-grid mdl-grid--no-spacing fullwidth-
panel">

<div class="mdl-cell mdl-cell--12-col mdl-typography--
text-center quote-panel”>
<blockquote>

133

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

<p>
Taking an image, freezing a moment, reveals how
rich reality truly is.

</p>

<footer>
— <cite>Anonymous</cite>

</footer>

</blockquote>

</div>

<!-- /.mdl-cell -->
</div>
<!--/.mdl-grid -->

</div>

<!-- /.page-content -->
</div>
<!-- /.tab1 -->

In Listing 5-9, you code a <div> and assign the md1-grid, md1-grid-
-no-spacing, and fullwidth-panel classes. While the md1-grid--no-
spacing class modifies the grid cells to have no margin between them, the
fullwidth-panel class creates a panel that has a size of the entire grid.
Within that <div>, you create another <div> and allocate a space of 12
columns using the md1-cell--12-col class. You assign the typography
class to the content and center the text. You also use the quote-panel
styling for the content using the quote-panel class.

You then create a quote using the HTML <blockquote> tags.

Moving forward, you assign custom styles for the panel and insert a
background image in the custom CSS style sheet, i.e., style.css, as shown
in Listing 5-10.

134

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

Listing 5-10. Assigning Custom Styles
/* FULLWIDTH BACKGROUND SECTION */

.fullwidth-panel {
color: white;
background-color: rgba(156, 39, 176, 0.6);

}

.fullwidth-panel p {
max-width: 640px;
margin: auto;

}

.quote-panel {
background-image: -webkit-linear-gradient(rgba(63, 81, 181,
0.5), rgba(63, 81, 181, 0.5)), url('https://udemy-images.
udemy.com/course/750x422/394968 538b_7.jpg');
background-image: linear-gradient(rgba(63, 81, 181, 0.5),
rgba(63, 81, 181, 0.5)), url('https://udemy-images.udemy.com/
course/750x422/394968_538b_7.jpg"');
background-position: center 5%;
background-repeat: no-repeat;
background-size: cover;
padding: 4em 2em 2em;
display: -webkit-box;
display: -ms-flexbox;
display: flex;
-ms-flex-line-pack: start;
align-content: flex-start;

}

@media screen and (min-width: 800px) {
.quote-panel {
background-position: center 0;

135

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

padding: 6em 2em;
}
}

@media screen and (min-width: 1200px) {
.quote-panel {
background-position: center 8%;
padding: 10em 2em 8em;

}
}

In Listing 5-10, you assign the white color and define the background
color to the section containing the fullwidth-panel class. You also define the
maximum width and set an auto margin to it. Then, for the section pertaining
to the quote-panel class, you insert a background image and define its
position and size along with the padding. Using media queries, you assign the
background position and padding for both the 800px and 1200px screen sizes.

Figure 5-11 shows the output of the code.

“ Takig an irage, froezing & morent, reveais how rich realty trufy k.

— Anonymous

Figure 5-11. Image with text

Step 5: Developing the Content for the Moments
Tab

Next, you will create the content for the second fixed tab, called Moments,
which is next to the About fixed tab, as shown in Listing 5-11.

136

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

Listing 5-11. Code for Second Set of Fixed Tabs

<div class="mdl-layout tab-panel" id="fixed-tab-2">
<div class="page-content">
<!-- Your content goes here -->

<!-- CARDS -->
<div class="mdl-grid cards-section">
<div class="mdl-cell mdl-cell--6-col mdl-cell--12-
col-tablet mdl-card mdl-shadow--2dp home-bringing-
card">
<div class="mdl-card title">
<h2 class="mdl-card__title-text">Roses
everywhere</h2>
</div>
<div class="mdl-card supporting-text">
Roses everywhere in flower market
</div>
</div>
<!-- /.mdl-card -->
<div class="mdl-cell mdl-cell--4-col mdl-cell--4-col-
tablet mdl-cell--4-col-phone mdl-card mdl-shadow--
2dp play-card">
<div class="mdl-card__title">
<h2 class="mdl-card__title-text">Random flower</h2>
</div>
<div class="mdl-card__supporting-text">
Random flower
</div>
</div>

<div class="mdl-cell mdl-cell--6-col mdl-cell--8-col-
tablet mdl-cell--4-col-phone mdl-card mdl-shadow--
2dp litter-card">

137

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

<div class="mdl-card title">
<h2 class="mdl-card _title-text">Lilac</h2>
</div>
<div class="mdl-card supporting-text">
Lilacs are a beloved, fragrant shrub that produce
clusters of light-purple flowers.
</div>
</div>
<!--/.mdl-card -->
<div class="mdl-cell mdl-cell--6-col mdl-cell--8-col-
tablet mdl-cell--4-col-phone mdl-card mdl-shadow--
2dp diet-card">
<div class="mdl-card title">
<h2 class="mdl-card title-text">Beautiful sunset
at aguada beach</h2>
</div>
<div class="mdl-card supporting-text">
Beautiful sunset at aguada beach in Goa
</div>
</div>
<!--/.mdl-card -->
<!--/.mdl-card -->
</div>
<!--/.mdl-grid -->

</div>
<!-- /.page-content -->
</div>

In Listing 5-11, you define the content for the second fixed tab, called
Moments.

138

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

Initially, you code a <div> and assign the grid class to it. You then jot
down the code for four cards. For the first card, you use the md1-card class
and assign the space of 6 columns for the desktop and 12 columns for the
tablet size using the md1-cell, md1-cell--6-col, and mdl-cell--12-col-
tablet classes. Then, you define a shadow for aesthetics using the md1-
shadow--2dp class.

Next, you code a <div> and assign a title for the card using the md1-
card _title class. Thereon, you define the title text using the md1-card
title-text class. Next, you assign the supporting content to the title using
themdl-card_supporting-text class.

Similarly, you create three more cards using different names for the
content.

After you create the cards, you define custom styles in the custom
style.css sheet, as shown in Listing 5-12.

Listing 5-12. Defining Custom Styles in the Custom style.css Sheet
/* CARDS SECTION */

.cards-section {
padding: S5em 0;
}

.mdl-card title {
min-height: 300px;
}
.mdl-card title > .mdl-card title-text {

color: white;

}

139

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

.home-bringing-card .mdl-card_title {
background: -webkit-linear-gradient(rgba(o, 0, 0, 0.1), rgba
(o, 0, 0, 0.8)), url('https://drscdn.500px.org/photo/210599845/
q%3D80_h%3D300/v2?webp=truedsig=9418683780d7d009224f477342bf4c34
740920b5b75576cb8793ff52e7229b1a") center / cover;
background: linear-gradient(rgba(o, o, 0, 0.1), rgba(o, O,
0, 0.8)), url('https://drscdn.500px.org/photo/210599845/
q%3D80_h%3D300/v2?webp=truelsig=9418683780d7d009224f477342bf4
€34740920b5b75576cb8793ff52e7229b1a"') center / cover;

}

.play-card .mdl-card title {
background: url('https://drscdn.500px.org/photo/225478901/
q%3D80_h%3D450/v2?webp=truedsig=ddd21866e9502c5f56aef387adf4c
€0553513de4582ed30a5bc57ba817f43b06"') center / cover;

}

.image-card {
background: url('https://s3-us-west-2.amazonaws.com/s.cdpn.
io/234228/image-card.jpg') center / cover;

}

.image-card > .mdl-card__actions {
height: 52px;
padding: 16px;
background: rgba(o, 0, 0, 0.6);
}
.image-card_title {
color: #fff;
font-size: 14px;
font-weight: 500;

}

140

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

.litter-card .mdl-card title {
background: -webkit-linear-gradient(rgba(o, 0, 0, 0.1),
rgba(o, 0, 0, 0.8)), url('https://drscdn.500px.org/
photo/187345183/q%3D80_h%3D450/v2?webp=true&sig=883a5a5734775
d4b4084bd4f5fe7cd7ac9728bfob6fc5d4ee91a522444023e6e") center
/ cover;
background: linear-gradient(rgba(o, 0, 0, 0.1), rgha(0, O,
0, 0.8)), url('https://drscdn.500px.org/photo/187345183/
q%3D80_h%3D450/v2?webp=truedsig=883a5a5734775d4b4084bd4f5fe7c
d7ac9728bfob6fc5d4ee91a522444023e6e') center / cover;

}

.diet-card .mdl-card title {
background: -webkit-linear-gradient(rgba(o, 0, 0, 0.1), rgha(o,
0, 0, 0.8)), url('https://drscdn.500px.org/photo/109883725/
q%3D80_h%3D450/v2?webp=truedsig=29611a8077b1b73ce190f28e138ed714
7973317e15ba8c9ed418a41797683df8") center / cover;
background: linear-gradient(rgba(o, 0, 0, 0.1), rgha(o, O,
0, 0.8)), url('https://drscdn.500px.org/photo/109883725/
q%3D80_h%3D450/v2?webp=truedsig=29611a8077b1b73ce190f28e138ed
7147973317e15ba8c9ed418a4f797683df8") center / cover;

}

.card-small {
min-height: auto;

}

.card-small > .mdl-card title {
color: rgba(o, 0, 0, 0.87);
height: auto;
min-height: auto;

}

141

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

.card-small .mdl-card title-text {
font-size: 16px;

}
.card-small .mdl-card title-text:before {

content: "";

display: inline-block;
margin-right: 0.5em;
width: 18px;

height: 18px;
background-color: #c51162;
border-radius: 50%;

In Listing 5-12, you assign the padding for the section containing the
cards-section class. You then define the minimum height and the white
color for the card title section. Thereon, you define the custom styles and
insert a background image for each of the four cards.

Moving on, you define the minimum height of the card for smaller
screens in addition to defining the color, height, and minimum height for
the smaller screen-sized cards and the section containing the card title.

You also define the font size, margins, height, background color, and
border radius for the styling of the cards on smaller screens, as well as the
title text.

Figure 5-12 shows the output of the code.

142

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

= Anirudh Prabhu

MOMENTS

Roses evenynhene in ower marke Rangom figwer

Beautiful sunset at aguada beach

Litacs are a betoved, ragrant shub that groduce clusters of ighi- Beaulifl sunset at aguada beach In Goa

purple fenvers

Figure 5-12. Moments tab content

Step 6: Designing the Footer Section

Finally, you will design a form and the footer section, as shown in Listing 5-13.

Listing 5-13. Form and the Footer Section

<!-- Contact -->
<div class="mdl-grid mdl-grid--no-spacing">
<!--/.contact-intro -->

<div class="mdl-cell mdl-cell--6-col mdl-cell--8-col-
tablet mdl-cell--4-col-phone contact-panel form-panel
mdl-color--brown-50">

143

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

<form action="#">
<div class="mdl-textfield mdl-js-textfield mdl-
textfield--floating-label™>
<input class="mdl-textfield input" type="text"
id="name">
<label class="mdl-textfield label" for="name">Your
name</label>
</div>
<div class="mdl-textfield mdl-js-textfield mdl-
textfield--floating-label">
<input class="mdl-textfield input" type="email"
id="email">
<label class="mdl-textfield label" for="email">
Your email</label>
</div>
<div class="button-container clearfix">
<button class="mdl-button mdl-js-button mdl-button-
-raised mdl-js-ripple-effect mdl-button--accent
subscribe-button">
Join my fans
</button>
</div>
<!--/.button-container -->
</form>
</div>
<!--/.contact-panel -->

<div class="mdl-cell mdl-cell--6-col mdl-cell--8-col-
tablet mdl-cell--4-col-phone contact-panel address-panel
mdl-typography--text-center mdl-color--brown-100">

144

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

<p class="mdl-typography--title-color-contrast mdl-
typography--text-nowrap mdl-typography--font-thin">
<i class="material-icons">email</i> info@amp.com
</p>

<p class="mdl-typography--title-color-contrast mdl-
typography--text-nowrap mdl-typography--font-thin">
<a class="mdl-button mdl-js-button mdl-button--raised
mdl-js-ripple-effect" href="twitter.com">twitter
<a class="mdl-button mdl-js-button mdl-button--
raised mdl-js-ripple-effect" href="plus.google.
com">Google+
<a class="mdl-button mdl-js-button mdl-button--raised
mdl-js-ripple-effect" href="facebook.com">Facebook
</p>
</div>
<!-- /.contact-panel -->

</div>
<!-- /.mdl-grid -->

<!-- FOOTER -->
<footer class="mdl-mini-footer mdl-color--brown-200">
<div class="mdl-mini-footer__left-section">
<ul class="mdl-mini-footer link-list">
Help</1i>
Privacy & Terms

</div>
<!-- /.mdl-mini-footer left-section -->
</footer>

145

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

In Listing 5-13, you code a <div> and assign the grid class along with
the no spacing class. You then define the space occupied by the grid
columns on a tablet, phone, and desktop screen sizes. You assign custom
classes to it so that you can use custom styles in the style.css sheet.

You also assign the brown shade to this section using the md1-color--
brown-50 class.

Moving forward, you define the form within the <form> tags. Inside
the <form> tags, you create a <div> and assign md1l-textfield, mdl-js-
textfield, and mdl-textfield--floating-1label to design the text
fields and use the MDL behavior for those fields. You create the Name
and Email fields by adding the md1-textfield input to the input tag
and md1l-textfield label to the <label> tags apart from defining the
type of the text fields.

You then create a button. First, you create a container for the button
by using the button-container class. Then, you define another <div>
element within that <div> and assign the md1-button, md1-js-button,
mdl-button-raised, md1-js-ripple-effect, and mdl-button-accent
classes. This creates the button, assigns the md1 behavior, and creates the
required effects and color to the button.

Then, you create a form. Once you are done with the form, you create
the contact panel section to the right side of the form. You define another
<div> and assign the column space for the cells depending on the screen
size. You then define the typography, color contrast, and font using the
mdl-typography--title-color-contrast, mdl-typography--text-
nowrap, and mdl-typography--font-thin classes. Thereon, you define
the e-mail icon using the material-icons class to the enclosed <i> tags.
Then, you create another paragraph tags and create three anchor tags and
define the button classes for the Twitter, Google+, and Facebook buttons
using the md1-button, md1-js-button, mdl-button-raised, and mdl-js-
ripple-effect classes.

146

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

Finally, you define the footer by using the <footer> tags to which you
assign the md1-mini-footer and md1l-color--brown-200 classes for the
footer type due to which it will inherit the footer type and brown color.
Within this section, you define the position of the footer using the md1-
mini-footer left-section, which will align it to the left. You then define
the link list using the and <11i> tags.

Moving on, you define the custom styles for the preceding code, as
shown in Listing 5-14.

Listing 5-14. Custom Styles for Listing 5-13

.contact-intro {
color: rgba(255, 255, 255, 0.87);
}

.contact-panel {
padding: 6em 4em;
display: -webkit-box;
display: -ms-flexbox;
display: flex;
-webkit-box-orient: vertical;
-webkit-box-direction: normal;
-ms-flex-direction: column;
flex-direction: column;
margin: auto;

}

.md1l-textfield {
display: block;
width: 100%;
padding: 20px O;

}

147

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

@media screen and (min-width: 8o0px) {
.subscribe-button {
float: right;
}
}

.address-panel {

background-color: #dbdef1;

color: rgbha(255, 255, 255, 0.87);
}

.address-panel .material-icons {
position: relative;
top: 0.2em;
display: inline-block;
height: 30px;
width: 30px;
line-height: 30px;
background-color: #ff4081;
padding: 0.5em;
border-radius: 50%;

}

.mdl-mini-footer,
.mdl-mini-footer .mdl-logo,
.mdl-mini-footer--link-list a,
.mdl-mini-footer link-list a {
color: rgba(o, 0, 0, 0.54);

}
ul {

list-style-type: none;
}

148

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

/* UTILITIES */

.clearfix:after {
content: "";
display: table;
clear: both;

}

.float-right {
float: right;
}

.float-left {
float: left;

}

In Listing 5-14, you define the color for the contact and assign the
padding and display properties for the contact-panel section. You
also define the display type, width, and padding for the text fields in
the form. You shift the submit button of the form to the right of the
form section. For the same button, you use the clearfix and float
properties to automatically clear the child elements without using any
additional markup. You move on to define the background color of the
panel along with the panel color. You also define the position, height,
inline block display, padding, and border radius for the material icons.
You set the color to the logo and link list of the footer. You remove
the listing bullets from the list using the 1ist-style-type: none;
property.

Figure 5-13 shows how the final page will look.

149

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

= anirudh FPrabhu

I'ma passionéte e photographer

Welcome to my web page! | wish to display my maobile
photography thru this web page.
Various mobided and gadgats with which | have periormed photogeaphy.

® Xiaomi MI3

® OnePlus 2
® Sony DSC QX100

= Takieg s image, roezing 8 momen, reveals how sich reality tndp bs.
— Anonymous

Figure 5-13. Complete web page with the footer section

150

CHAPTER 5 MATERIAL DESIGN LITE EXPLAINED

Summary

In this chapter, you learned about the subtle nuances of the intuitive MDL
framework. It is a lightweight framework and can help you design an
interactive web site with ease. It is quite resourceful and is a vital cog in

the wheel for small projects compared to heavyweight frameworks because
it helps you build remarkable, immersive web pages. In the next chapter,
you will look at the last light framework/utility covered in this book,

called Susy.

151

CHAPTER 6

Susy Explained

So far, you have seen quite a few frameworks that can be used to make
interactive web sites. We, as web designers, know that a grid layout is
essential to position the elements effectively. Most frameworks, including
the ones covered in this book, have a concept of a grid system.

Even though with Flex Grid and the CSS Grid module radically
changing the dynamics of grid layouts, creating a layout can be quite a
juggling act. Enter Susy- a lightweight utility for creating fast, responsive,
and customizable grids that also helps keep the content and styling
separate.

With Sass gaining ground in the world of web design, we have decided
to give you an overview of this Sass-based framework that is used solely for
building awesome grid layouts.

To understand Susy, you need to have at least a basic knowledge of
Sass, but it’s quite easy to learn Susy once you are through with that. The
benefit of Susy (or any Sass-inspired framework) is that you can choose
only the attributes you need, eliminating the need to include other

properties.

© Aravind Shenoy and Anirudh Prabhu 2018 153
A. Shenoy and A. Prabhu, CSS Framework Alternatives,
https://doi.org/10.1007/978-1-4842-3399-3_6

CHAPTER6 SUSY EXPLAINED

It abstracts away the time-consuming nature of building complex grid
layouts and allows you to focus on more important things in your core web
design projects. It also allows you to fine-tune your grid layouts quickly
instead of spending a lot of time on coding grids.

You will now learn how to create a 4x3 grid layout using Susy.

Creating a 4x3 Responsive Grid Layout

There are many ways to install Susy, but for this example, we will be using
Node Package Manager (NPM) and a task runner called Grunt to get
going.

We will walk you through each phase in this example. Follow these
steps:

1. Create a project directory.

2. Execute the npm init command inside the created
directory. This initializes a node project inside
the directory and creates the necessary files and
directories for executing the project. Refer to
Figure 6-1.

154

CHAPTER 6 SUSY EXPLAINED

@ Terminal Shell Edit View Window Help

0@

Last login: Sat Nov 25 11:82:42 on console

|Anirudhs-Mac-2:~ anirudhprabhu$ cd Documents/

[Anirudhs-Mac-2:Documents anirudhprabhu$ ls

Build Susytrain materialize susytraining
[Anirudhs-Mac-2:Documents anirudhprabhu$ cd Susytrain/
|Anirudhs-Mac-2:Susytrain anirudhprabhu$ npm init

This utility will walk you through creating a package.json file.

It only covers the most common items, and tries to guess sensible defoults.

See “npm help json’ for definitive documentation on these fields
and exactly what they do.

Use “npm instoll <pkg>" afterwards to instoll o package and
save it as a dependency in the package.json file.

Press *C at any time to quit.
package name: (susytrain)
[version: (1.0.0)
description:

lentry point: (index.js)

[test command:

lgit repository:

[keywords:

lauthor:

[license: (ISC)

About to write to /Users/anirudhprabhu/Documents/Susytrain/package.json:

{
"name”: “susytrain®,
"version": "1.0.0",
*description®: ",
main: “index.js",
"seripts": {
"test": "echo \"Error: no test specified\" && exit 1"
)
"author": ",
"license": “ISC*

[Is this ok? (yes)
Anirudhs-Mac-2:Susytrain anirudhprabhus J

Figure 6-1. Creating a project using npm init

155

CHAPTER6 SUSY EXPLAINED

3. [Install Susy through NPM using the following
command:

npm install susy

However, if you are using a Linux or a Mac, you
need to use sudo to perform the installation. Since
in this example we are using a Mac, we will use the

following command:
sudo npm install susy

Figure 6-2 shows the terminal where we have entered this command.

& Terminal Shell Edit View Window Help

[] [¥) Susytrain — -bash — 27068

® O
lAni in and sudo nps install susy
[Password:
erested 3 lockfile as package-leck.jsen. You should cosmit this file.
yiraingl.2.@ No description
2in31.8.8 No repository field.

+ suEyEl.0.1
added 1 package in 2.163c

Figure 6-2. Installation of Susy

4. You will install a task runner (a build automation
utility) called Grunt. Grunt is quite useful when
you need to perform repetitive tasks such as
minification, compilation, unit testing, and linting,
to name a few. It simplifies the tasks to a great extent
and is quite a nice toolkit in your arsenal for real-
time web design projects.

For the steps to install Grunt, refer to the following
web site: https://gruntjs.com/installing-grunt.

npm install -save-dev grunt

156

https://gruntjs.com/installing-grunt

CHAPTER6 SUSY EXPLAINED

5. [Install the Sass plug-in for Grunt. This can be done
with the following command:

npm install grunt-contrib-sass --save-dev

However, if you are using a Mac or Linux-based
system, you need to add sudo before the preceding

command, as shown in Figure 6-3.

@ Terminal Shell Edit View Window Help

0 e | Susytrain — -bash — 270=60
Anirudhs-Mac-2: in ani suda npa install grunt-contrib-sass --save-dev

nnnnnnnn
a: unt-contrib-sasefl. Q @ reguires o peor of gruntds=2.4.0 but none it imezalled. You suet inetall peer dependoncies yoursolf,
susytraingl.8.@ No description
BUBYT m.ns: .8 Ne rmci ory flold.

+ QrUNT-gontrib-3o3sil. .0
added 15 packages in 3.118s

Figure 6-3. Installation of Sass plug-in for Grunt

6. Create Gruntfile. js in the root directory of the
project. This file needs to contain all the Grunt task
runner information, as shown in Listing 6-1.

Listing 6-1. Configuration for Grunt Task Runner
module.exports = function(grunt) {

// Project configuration.
grunt.initConfig({
sass: {
dist: {
options: {
style: 'expanded',
require: 'susy'
}s
files: {
‘css/style.css': 'scss/style.scss’

157

CHAPTER6 SUSY EXPLAINED

}
};

// Load the plugin that provides the "sass" task.
grunt.loadNpmTasks('grunt-contrib-sass");

// Default task(s).
grunt.registerTask('default’, ['sass']);

};

Figure 6-4 shows the configuration in a text editor.

@ SublimeText File Edit Selection Find View Goto Teols Project Window Help
eCe

ROLDERS Gruntfile.

¥ (@ susytraining 1 T o

» B .sass-cache

v @ css
/* style.css
[style.css.mag]
» [node_modules
| scss
/* style.scss
/+ Gruntfile.js
<> index.htm }
/+ package-lock.[SEEE };?
/+ package.json

grunt. Loadipn

ks('grunt-contrib-sass');

grunt.registerTask('default’, ['sass']);

};|

Figure 6-4. Configuration for the Grunt Task Runner

The grunt.initConfig section contains the Grunt
configuration necessary for the project. Next, you
load the Sass plug-in for Grunt needed for the
project from https://github.com/gruntjs/grunt-
contrib-sass.

158

https://github.com/gruntjs/grunt-contrib-sass
https://github.com/gruntjs/grunt-contrib-sass

CHAPTER6 SUSY EXPLAINED

You can follow the installation procedures for
installing the Sass plug-in at the previously
mentioned web site. After loading the plug-ins, you
can define tasks that need to be automated. Refer to
the same web site to see the detailed procedure.

7. Create your Sass file in the sass directory. For
this project, you will create a 4x3 grid layout used
typically for displaying a photo gallery. Listing 6-2
shows the HTML code for the grid.

Listing 6-2. Creating a 4x3 Grid

<!DOCTYPE html>
<html>
<head>
<title>Susy example</title>
<meta name="viewport" content="width=device-width, initial-
scale=1">
<link rel="stylesheet" type="text/css" href="css/style.css">
</head>
<body>
<div class="container clearfix"»
<section>
<ul class="blocks">
<li class="block _item"></1i>
<li class="block__item"></1i>
<li class="block__item"></1i>
<li class="block _item"></1i>
<li class="block__item"></1i>
<li class="block__item"></1i>
<li class="block _item"></1i>
<1i class="block__item"></1i>
<li class="block_ _item">

159

CHAPTER6 SUSY EXPLAINED

<1i class="block__item"></1i>
<li class="block _item"></1li>
<li class="block__item"></1i>

</section>

</div>
</body>
</html>

160

As you can see, we have created a list of 12 blocks
and defined the style sheet for the code.

Define the Sass code in the file style.scss in the scss
folder. The code for this file is shown in Listing 6-3.
You begin by importing Susy into your Sass file

by using the @import component of Sass. This is
followed by defining the Susy configuration, which
is specified in susy(). This configuration will
contain values for a number of columns, gutters,
maximum widths of the container, and so on.

You then define colors and breakpoints for media
queries using Sass variables. Moving forward, you
define styles for the classes container and block item.
You use the mixins container(), gutter(), and
gallery() that are available in the Susy framework.
The container () mixin sets the container position
to center along with the maximum width specified
within the configuration. Similarly, gutter() sets
the gutter space.

The gallery() mixin is used to create the desired
block layout. This mixin accepts the desired number
of columns as a parameter.

CHAPTER 6
Listing 6-3. Defining the Styles
@import "susy";

$susy: (
columns: 12,
gutters: 1/4,
container: 71.25rem,
global-box-sizing: border-box,

)5

// Colours

$color-primary: #38a1d6;
$color-secondary: #1674do;
$color-tertiary: #fcee21;
$color-grey: #alacbs;
$color-grey-light: #dce8ef;
$color-grey-dark: #333;

// Breakpoints

$mobile-landscape: 30rem; // 480px
$tablet: 40rem; // 640px
$tablet-wide: 48rem; // 768px
$desktop: 64rem; // 1024px
$widescreen: 71.25rem; // 1140px

*{
box-sizing: border-box;

}

%clearfix {
&:after {
content: "";

SUSY EXPLAINED

161

CHAPTER6 SUSY EXPLAINED

display: table;
clear: both;

}
}

body {
padding: O .625rem;

}

.container {
@include container();

}

section {
@extend %clearfix;
margin-bottom: gutter();

}
.block {

margin: O;

@extend %clearfix;
}

.block_item {
background-color: $color-tertiary;
height: 8rem;
margin-bottom: gutter();
list-style: none;

&:nth-last-child(-n+2) {
margin-bottom: 0;

}

@media (min-width: $tablet) {
@include gallery(4);

162

CHAPTER 6

&:nth-last-child(-n+3) {
margin-bottom: 0;
}
}

@media (min-width: $desktop) {
@include gallery(3);

&:nth-last-child(-n+4) {
margin-bottom: 0;
}
}
}

9. Run the Grunt file from the terminal in the root
directory using the following command:

Grunt

10. Thestyle.scss file compiles to style.css. Now
when you click the HMTL file, you will see the
output shown in Figure 6-5.

Figure 6-5. Output of 4x3 grid

SUSY EXPLAINED

163

CHAPTER6 SUSY EXPLAINED

If you resize the browser, then you will see that the grid behaves in a
responsive way as defined in the code.

Also, if you check the style.css file created by compiling the style.
scss Sass file, you can see the code shown in Listing 6-4.

Listing 6-4. Style.css
* A

box-sizing: border-box;

}

section:after, .block:after {
content: "";
display: table;
clear: both;

}

body {
padding: 0 .625rem;

}

.container {
max-width: 71.25rem;
margin-left: auto;
margin-right: auto;

}

.container:after {
content: " ";
display: block;
clear: both;

}

section {
margin-bottom: 1.6949152542%;
}

164

CHAPTER6 SUSY EXPLAINED

.block {
margin: 0;

}

.block item {

background-color: #fcee21;

height: 8rem;

margin-bottom: 1.6949152542%;

list-style: none;

}
.block item:nth-last-child(-n+2) {

margin-bottom: 0;

}
@media (min-width: 40rem) {

.block _item {
width: 32.2033898305%;
float: left;

}

.block item:nth-child(3n + 1) {
margin-left: 0;
margin-right: -100%;
clear: both;
margin-left: 0;

}

.block item:nth-child(3n + 2) {
margin-left: 33.8983050847%;
margin-right: -100%;
clear: none;

}

.block__item:nth-child(3n + 3) {
margin-left: 67.7966101695%;
margin-right: -100%;

165

CHAPTER6 SUSY EXPLAINED

clear: none;

}

.block _item:nth-last-child(-n+3) {
margin-bottom: 0;

}

}
@media (min-width: 64rem) {

.block item {
width: 23.7288135593%;
float: left;

}

.block _item:nth-child(4n + 1) {
margin-left: 0;
margin-right: -100%;
clear: both;
margin-left: o;

}

.block _item:nth-child(4n + 2) {
margin-left: 25.4237288136%;
margin-right: -100%;
clear: none;

}

.block item:nth-child(4n + 3) {
margin-left: 50.8474576271%;
margin-right: -100%;
clear: none;

}

.block _item:nth-child(4n + 4) {
margin-left: 76.2711864407%;
margin-right: -100%;
clear: none;

166

CHAPTER6 SUSY EXPLAINED

}
.block _item:nth-last-child(-n+4) {

margin-bottom: 0;
}
}

/*# sourceMappingURL=style.css.map */

This is how the mixins and variables created in Sass were compiled to
CSS code, helping you keep the content and styling separate.

Summary

In this chapter, you got an overview of Susy. With Susy, you can develop
interactive and advanced grid layouts for your web designing projects.
The learning curve of grids is steep, and the more you delve deep, you
will realize that there is much more to learn. In a way, more is less (pun
intended).

In this book we covered five frameworks that you can use instead of
Bootstrap, Foundation, and Materialize. We stressed how these lightweight
frameworks provide enough capability to design immersive web sites.
However, this book was just an introduction to these frameworks. You
are just on the shore of the island; the sea of knowledge is far beyond.

In addition to these frameworks, there are several other user interface

kits and web design toolkits that can make your web designing projects

a breeze. Ideally, this book has helped you gain insight into the inner
workings of these streamlined frameworks and whetted your appetite to go
for more.

Keep learning!

167

Index

A B

Bootstrap, 5-6

C,DE

Content delivery network
(CDN), 43-44

CSS Flexible Box Layout
module, 46

F

FlexBox, 13

Flex Grid, 6

Foundation, 6

Frameworks
advantages, 4
back-end, 2
bootstrap, 5-6
components, 3
factors, 12-13
Foundation, 6
front-end, 2-3
grid system, 13-14
Materialize, 7
MDL, 8
milligram, 10-11

© Aravind Shenoy and Anirudh Prabhu 2018

skeleton, 9
Susy, 11-12

types, 2
Ulkit, 8

G

Google’s Material Design, 7
Grid system
concept, 13-14
Milligram, 46-48
Skeleton, 19-23

H I,J, K L
Hypertext Markup Language
(HTML), 3

M,N,O, P Q

Mac App Store, 54

Masthead, 28

Material Design Lite (MDL), 8
About and Moments tabs

content, creating, 136-143

image, 133-136
About section, 126-133
footer section, 143-150

A. Shenoy and A. Prabhu, CSS Framework Alternatives,

https://doi.org/10.1007/978-1-4842-3399-3

169

https://doi.org/10.1007/978-1-4842-3399-3

INDEX

Material Design Lite (MDL) (cont.)
header and drawer, 122-125

CSS files, 16-17
download page, 16

installation, 108-109
layout components
<head> section, 121-122

fixed header, 109-114
grid, 118-120
scrollable tabs, 114-117

Materialize, 7

Milligram, 10-11
attributes, 44-46
grid system, 46-48
installation, 41-44
product page

banner area, 53-58, 60
content area, 60-62
defining header, 48-51
defining navigation, 51-53
footer creation, 65-67
pricing area, 63-64

Motion Ul, 6

R

RemoteDesk, 25

S, T

Skeleton, 9
attributes, 24-25
grid system, 19-23
installation

170

content of, 16

example, 17-19
index.html file, 17
landing web page
<body> tags, 28-29
completing
sections, 32-36
content area, 25-27

footer creation, 38-39

freelance
portal, 29-31
RemoteDesk, 25
sign-up form, 37
Susy, 11-12
Grunt task
runner, 157-160
installation, 156-157
NPM, 154-155
styles, 161-167

U

Ulkit, 8

accordions, 100-104

animations
adding, 89-94
reverse, 95
scrollspy, 96-100

cards
colors, 73-74
component, 71-73
hover effect, 75

size modifiers, 75-76
width classes, 77-78
FlexBox, 82-83
flex items, 83-86
grids, 71, 86-88
icons, 104-105
installation, 69-71
width, 79-82

INDEX

\'

Virtual private network (VPN), 48

W XY,Z
Windows PC, 54
Windows Phone Store, 54

171

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Choosing Lightweight Frameworks for Intuitive Web Design
	What Are Frameworks?
	Components of a CSS Framework
	Advantages of Using a CSS Framework
	Various Popular Frameworks
	Bootstrap
	Foundation
	Materialize
	Skeleton
	Milligram
	UIkit
	Material Design Lite
	Susy
	Choosing a Framework
	Concept of Grids
	Summary

	Chapter 2: Building a Landing Page with Skeleton
	Installing Skeleton
	Skeleton’s Grid System
	An Overview of Skeleton’s Attributes
	Building a Landing Web Page with Skeleton
	Step 1: Defining the Content Area
	Step 2: Completing the <body> Tag Content
	Step 3: Defining the Freelance Portal
	Step 4: Completing the Sections
	Step 5: Designing a Sign-up Form
	Step 6: Creating a Footer

	Summary

	Chapter 3: Building a Product Page with Milligram
	Installing Milligram
	Overview of the Milligram Framework
	Grid System in Milligram
	Building a Product Page with Milligram
	Step 1: Defining the Header
	Step 2: Defining the Navigation
	Step 3: Defining the Banner Area
	Step 4: Designing the Content Area
	Step 5: Creating the Pricing Area
	Step 6: Creating the Footer

	Summary

	Chapter 4: Introducing UIkit
	Installing UIkit
	Grids, Cards, Flex, and Width
	Animations
	Scrollspy with Animations
	Accordions
	Icons
	Summary

	Chapter 5: Material Design Lite Explained
	Installing MDL
	MDL Layout
	Building an Intuitive Web Page Using MDL
	Step 1: Creating the <head> Section
	Step 2: Creating a Fixed Header with a Drawer
	Step 3: Creating the About Section
	Step 4: Inserting an Image with Content
	Step 5: Developing the Content for the Moments Tab
	Step 6: Designing the Footer Section

	Summary

	Chapter 6: Susy Explained
	Creating a 4×3 Responsive Grid Layout
	Summary

	Index

