
C++ for Lazy
Programmers

Quick, Easy, and Fun C++ for Beginners
—
Will Briggs

C++ for Lazy
Programmers

Quick, Easy, and Fun C++ for
Beginners

Will Briggs

C++ for Lazy Programmers: Quick, Easy, and Fun C++ for Beginners

ISBN-13 (pbk): 978-1-4842-5186-7			 ISBN-13 (electronic): 978-1-4842-5187-4
https://doi.org/10.1007/978-1-4842-5187-4

Copyright © 2019 by Will Briggs

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Raw Pixel (www.rawpixel.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484251867. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Will Briggs
Lynchburg, VA, USA

https://doi.org/10.1007/978-1-4842-5187-4

To my favorite C++ programmer and the love of my life;

To the little one who first inspired her to study at home so
she wouldn’t go mommy-crazy;

And to the boy who’s already programming.

v

About the Author��xvii

About the Technical Reviewer���xix

Acknowledgments���xxi

Introduction���xxiii

Table of Contents

Chapter 1: Getting Started��� 1

A simple program��� 1

Spacing��� 4

Creating an SSDL project��� 6

…in Visual Studio��� 6

…with g++�� 17

How not to be miserable�� 19

Shapes and the functions that draw them��� 21

Antibugging�� 30

consts and colors��� 31

Text�� 35

sout, escape sequences, and fonts�� 35

SSDL_RenderText, SSDL_RenderTextCentered�� 39

Chapter 2: Images and Sound��� 43

Images and changing window characteristics�� 43

Antibugging�� 49

Multiple images together��� 51

Adding transparency with GIMP��� 52

Sound��� 57

Antibugging�� 60

vi

Chapter 3: Numbers��� 61

Variables�� 61

Constants��� 63

When to use constants, not literal values��� 64

Math operators��� 65

Integer division��� 65

Assignment (=) operators��� 66

A diving board example�� 67

The no-worries list for math operators��� 70

Built-in functions and casting�� 71

Antibugging�� 76

Chapter 4: Mouse, and if�� 79

Mouse functions�� 79

Antibugging�� 82

if��� 83

Coercion and if conditions (int’s dirty little secret)��� 86

Combining conditions with &&, ||, and !��� 86

Antibugging�� 87

Boolean values and variables�� 90

A hidden object game�� 92

Chapter 5: Loops, Input, and char�� 101

Keyboard input��� 101

Antibugging�� 103

while and do-while�� 105

Loops with SSDL�� 107

break and continue��� 108

Antibugging�� 109

for loops��� 112

Increment operators��� 113

An example: averaging numbers�� 114

Antibugging�� 116

Table of Contents

vii

chars and cctype�� 118

switch�� 123

Antibugging�� 124

Chapter 6: Algorithms and the Development Process��� 127

Adventures in robotic cooking��� 127

Writing a program, from start to finish�� 131

Requirements: What do we want to do?��� 131

Algorithm: How do we do it?�� 132

Walkthrough: Will it do it?��� 134

Coding: putting it all into C++ (plus: commenting the lazy way)�� 134

Chapter 7: Functions��� 141

Functions that return values�� 141

Functions that return nothing�� 148

Global variables��� 152

Antibugging�� 153

How to write a function in four easy steps (and call it in one)��� 156

Why have functions, anyway?�� 160

Chapter 8: Functions (Continued)�� 171

Random numbers��� 171

Making a random number generator�� 171

Using the built-in random number generator��� 174

Antibugging�� 177

Boolean functions�� 179

& parameters��� 180

Antibugging�� 185

Identifier scope�� 186

A final note on algorithms�� 189

Table of Contents

viii

Chapter 9: Using the Debugger�� 191

A flawed program�� 191

Breakpoints and watched variables��� 196

Visual Studio��� 196

ddd��� 198

gdb��� 199

Fixing the stripes��� 199

Going into functions��� 199

Visual Studio��� 199

ddd��� 201

gdb��� 202

Fixing the stars�� 202

Wrap-up��� 203

Antibugging�� 203

Bottom-up testing�� 204

More on antibugging�� 205

Chapter 10: Arrays and enum�� 207

Arrays��� 207

Arrays’ dirty little secret: using memory addresses��� 210

Antibugging�� 211

Arrays as function parameters��� 212

Array parameters that change, or don’t�� 213

Array parameters and reusability��� 213

Antibugging�� 214

Enumeration types��� 215

enum class��� 217

Antibugging�� 218

Multidimensional arrays�� 219

Displaying the board��� 220

Arrays of more than two dimensions��� 223

Antibugging�� 224

Table of Contents

ix

Chapter 11: Animation with structs and Sprites��� 227

structs�� 227

Cool struct tricks�� 231

Making a movie with struct and while��� 232

Sprites�� 239

Antibugging�� 244

Chapter 12: Making an Arcade Game: Input, Collisions, and Putting
It All Together�� 245

Determining input states��� 245

Mouse��� 245

Keyboard�� 246

Antibugging�� 248

Events�� 248

Cooldowns and lifetimes�� 251

Collisions�� 254

The big game��� 255

Antibugging�� 269

Chapter 13: Standard I/O and File Operations��� 273

Standard I/O programs��� 273

Compiling in Microsoft Visual Studio�� 274

Compiling with g++��� 278

File I/O (optional)�� 280

cin and cout as files��� 280

Using file names��� 287

Table of Contents

x

Chapter 14: Character Arrays and Dynamic Memory��� 293

Character arrays�� 293

Antibugging�� 296

Dynamic allocation of arrays��� 299

Antibugging�� 302

Using the * notation��� 303

Antibugging�� 307

Chapter 15: Classes��� 309

Writing classes��� 309

Constructors��� 312

Antibugging�� 316

const objects, const member functions…��� 318

Antibugging�� 319

…and const parameters�� 319

Multiple constructors��� 320

Copy constructors��� 320

Default constructors��� 321

Conversion constructors��� 322

Summary�� 323

Antibugging�� 323

Default parameters for code reuse�� 324

Date program (so far)��� 325

Chapter 16: Classes (Continued)��� 329

inline functions for efficiency��� 329

Access functions�� 331

Separate compilation and include files�� 332

What happens in separate compilation�� 333

Writing your .h file�� 334

Backing up a multi-file project��� 337

Antibugging�� 337

Table of Contents

xi

Multiple-file projects in Microsoft Visual Studio�� 339

Multiple-file projects in g++�� 340

Command line: more typing, less thinking��� 340

Makefiles: more thinking, less typing��� 340

Antibugging�� 344

Final Date program�� 344

static members (optional)�� 350

Chapter 17: Operators��� 353

The basic string class�� 353

Destructors�� 355

Binary and unary operators��� 356

Assignment operators and *this�� 358

Antibugging�� 360

Arithmetic operators�� 361

[ ] and ( )��� 364

>> and <<: operators that aren’t class members��� 365

++ and --��� 368

Explicit call to constructor��� 369

Final String program�� 370

#include <string>�� 376

Chapter 18: Exceptions, Move Constructors, Recursion, and O Notation�������������� 377

Exceptions�� 377

Move constructors and move = (optional)��� 382

Recursion (optional; used in the next section) �� 384

Antibugging�� 388

Algorithm analysis and O notation (optional)��� 389

Chapter 19: Inheritance��� 393

The basics of inheritance��� 393

Constructors and destructors�� 398

Inheritance as a concept�� 400

Table of Contents

xii

Classes for card games��� 401

An inheritance hierarchy�� 404

private inheritance��� 408

Hiding an inherited member function��� 410

A game of Montana�� 411

Chapter 20: Templates��� 423

Function templates�� 423

Antibugging�� 425

The Vector class��� 426

Efficiency (optional)��� 431

Making Vector a template�� 432

Antibugging�� 436

Unusual class templates�� 437

#include <vector>��� 439

Chapter 21: Virtual Functions and Multiple Inheritance�� 441

Virtual functions��� 441

Behind the scenes�� 446

Pure virtual functions and abstract base classes��� 447

Why virtual functions often mean using pointers��� 447

Virtual destructors�� 452

Inheritance and move ctor/move = (optional)�� 454

Antibugging�� 455

Multiple inheritance��� 457

Antibugging�� 459

Chapter 22: Linked Lists�� 463

What lists are and why have them��� 463

List<T>::List ()��� 467

void List<T>::push_front (const T& newElement);�� 468

void List<T>::pop_front()��� 469

List<T>::~List()�� 472

Table of Contents

xiii

->: a bit of syntactic sugar��� 472

More friendly syntax: pointers as conditions��� 472

The linked list template��� 473

Antibugging�� 477

#include <list>�� 478

Chapter 23: The Standard Template Library�� 479

Iterators��� 479

…with vector, too��� 483

const and reverse iterators�� 484

Antibugging�� 485

Getting really lazy: ranges and auto��� 486

initializer_lists (optional)�� 487

algorithm (optional)�� 489

The erase-remove idiom�� 490

Antibugging�� 490

Chapter 24: Building Bigger Projects�� 493

Namespaces�� 493

Conditional compilation��� 494

Libraries��� 495

g++�� 496

Microsoft Visual Studio��� 498

Chapter 25: History�� 509

Simula 67��� 509

Smalltalk�� 509

What “object-oriented” is�� 510

C��� 511

C++�� 511

Standards��� 512

Table of Contents

xiv

Chapter 26: Esoterica (Recommended)��� 513

sstream: using strings like cin/cout��� 513

iomanip: formatted output��� 516

Command-line arguments��� 522

Debugging with command-line arguments in Visual Studio�� 525

Debugging with command-line arguments in Unix�� 525

static_cast et al��� 527

Defaulted constructors and =�� 528

constexpr and static_assert: moving work to compile time�� 529

User-defined literals: automatic conversion between systems of measurement���������������������� 533

Lambda functions for one-time use��� 536

Lambda captures�� 537

Structured bindings and tuples: returning multiple values at once��� 542

Smart pointers��� 546

unique_ptr�� 546

shared_ptr�� 552

Antibugging�� 553

Bit twiddling: &, |, ~, and�� 553

Antibugging�� 559

Chapter 27: Esoterica (Not So Recommended)�� 561

protected sections, protected inheritance��� 561

Template specialization��� 565

friends, and why you shouldn’t have any��� 566

User-defined conversions�� 571

Chapter 28: C��� 573

Compiling C�� 574

I/O�� 575

printf��� 575

scanf, and the address-of (&) operator��� 575

fprintf and fscanf; fopen and fclose��� 578

sprintf and sscanf; fputs and fgets��� 580

Table of Contents

xv

Summary�� 583

Antibugging�� 584

Parameter passing with *�� 584

Antibugging�� 588

Dynamic memory��� 588

Chapter 29: Moving On with SDL��� 591

Writing code��� 593

Compiling��� 597

Further resources�� 598

Appendix A: SDL/SSDL Setup Issues��� 599

Unix�� 599

g++�� 599

SDL��� 599

SSDL�� 600

�Making your own Makefiles��� 600

�Antibugging�� 600

�MinGW�� 601

g++�� 601

�SDL and SSDL�� 601

�Making your own Makefiles��� 601

�Antibugging�� 601

�Microsoft Visual Studio�� 602

�SDL/SSDL��� 602

�Making your own project files��� 602

�Antibugging�� 603

Sound��� 604

Appendix B: Operators��� 605

Associativity��� 605

Precedence�� 605

Overloading�� 606

Table of Contents

xvi

Appendix C: ASCII Codes��� 607

Appendix D: Fundamental Types�� 609

Appendix E: Escape Sequences��� 611

Appendix F: Basic C Standard Library��� 613

cmath��� 613

cctype�� 614

cstdlib�� 615

Appendix G: Common Debugger Commands��� 617

Microsoft Visual Studio�� 617

gdb/ddd�� 618

Appendix H: SSDL Reference��� 619

Updating the screen��� 619

Added types��� 619

Clearing the screen�� 620

Colors��� 620

Drawing�� 620

Images��� 621

Mouse, keyboard, and events�� 622

Music��� 623

Quit messages��� 624

Sounds��� 625

Sprites�� 626

Text�� 628

Time and synchronization�� 629

Window�� 630

References��� 631

Index�� 633

Table of Contents

xvii

About the Author

Will Briggs, PhD, is a professor of computer science at the University of Lynchburg

in Virginia. He has over 20 years of experience teaching C++, 12 of them using earlier

drafts of this textbook, and more than that teaching other languages including C, LISP,

Pascal, PHP, PROLOG, and Python. His primary focus is teaching of late while also doing

research in artificial intelligence.

xix

About the Technical Reviewer

Michael Thomas has worked in software development for over 20 years as an individual

contributor, team lead, program manager, and vice president of engineering. He has over

10 years of experience working with mobile devices. His current focus is in the medical

sector using mobile devices to accelerate information transfer between patients and

health-care providers.

xxi

Acknowledgments

Special thanks to

•	 Dr. Kim McCabe, for advice on publishing

•	 Dr. Zakaria Kurdi, for advice on publishing

•	 Apress

•	 Microsoft

•	 The makers of GIMP (the GNU Image Manipulation Program)

•	 Pixabay.com and contributors, especially David Mark/12019

(Chapter 2, beach), Free-Photos (Chapter 2, pug), Andi Caswell/

andicaz (Chapter 6, scones), joakant (Chapter 11, tropical fish),

Gerhard Janson/Janson_G (Ch12, ufo), 13smok (Chapter 12, alien

sign), Prawny (Chapter 12, splat), Elliekha (Chapter 12, haunted

house), pencil parker (Chapter 12, candy), and Robert Davis/

rescueram3 (Chapter 12, pumpkin photos)

•	 Wikimedia Commons

•	 OpenClipArt.org and contributors, especially Firkin (Chapter 2,

flamingo)

•	 Flickr, especially Speedy McZoom (Chapter 12, jack-o-lantern art)

•	 FreeSounds.org and contributors, especially Razor5 (Chapter 2,

techno music), robbo799 (Chapter 2, church bells), alqutis

(Chapter 12, hovercar), Berviceps (Chapter 12, splat), mistersherlock

(Chapter 12, Hallowe’en graveyard), matypresidente (Chapter 12,

water drop), Osiruswaltz (Chapter 12, bump), mrose6 (Chapter 12,

echoed scream), and robcro6010 (Chapter 12, circus theme)

xxii

•	 Chad Savage of Sinister Fonts for Werewolf Moon (Chapter 12)

•	 Lazy Foo’ Productions

•	 StackOverflow.com

•	 Einar Egilsson of cardgames.io for images of card games, Nicu

Buculei (http://nicubunu.ro/cards) for card images, and “Nanami

Kamimura” for Montana image

Acknowledgments

http://nicubunu.ro/cards

xxiii

Introduction

Surely there’s no shortage of C++ intro texts. Why write yet another?

I’m glad you asked.

Ever since moving from Pascal to C++ (back when dinosaurs roamed the Earth), I’ve

been underwhelmed by available resources. I wanted something quirky and fun to read,

with sufficient coverage and fun examples, like the old Oh! Pascal! text by Cooper and

Clancy.

It’s about time we had this again. Even a perfectly accurate text with broad coverage

gives you nothing if you fall asleep when you read it. Well, nothing but a sore neck.

But the other reason, of course, is to promote laziness.

We all want our projects to be done more quickly, with less wailing and gnashing of

teeth. Sometimes, it’s said, you have to put your nose to the grindstone. Maybe, but I like

my nose too well for that. I’d rather do things the easy way.

But the easy way isn’t procrastinating and dragging my feet: it’s to find something

I love doing and do it so well that it feels relatively effortless. It’s producing something

robust enough that when it does break down, it tells me exactly what the problem is, so

I don’t have to spend a week pleading with it to explain itself. It’s writing code that I can

use again and again, adapting it to a new use in hours instead of days.

You’ll benefit from this book if you’re a beginning programmer or one who hasn’t yet

learned C++ or its descendants like Java or C#; if you already know a C++-like language,

you can go a little faster.

Here’s what you can expect:

•	 A pleasant reading experience.

•	 Adequate coverage.

•	 Games, that is, use of the SDL graphics library, which makes it easy

to get graphics programs working quickly and easily. It isn’t fair

that Python and Visual Basic should get all the eye candy.1 The SDL

1�”Eye candy”: things that look good on the screen. See The New Hacker’s Dictionary, available at
time of writing at www.catb.org/jargon/.

http://www.catb.org/jargon/

xxiv

library is used through Chapter 12. After that we’ll use more standard

(but less visually interesting) I/O, so we can also get practice with the

more common console programs.

•	 …and an easy introduction to SDL’s graphical magic, using the SSDL

library (see below).

•	 Sufficient examples, and they won’t all be about actuarial tables or how

to organize an address book. (See “pleasant reading experience” earlier.)

•	 Antibugging sections throughout the text to point out common or

difficult-to-trace errors – and how to prevent them.

•	 Compatibility with g++ and Microsoft Visual Studio.

•	 Compliance with C++17, the latest standard, and the nice goodies it

provides.

•	 For g++ programmers, instructions on using g++, the ddd/gdb

debugger system, and Makefiles; for Visual Studio, use of the

debugger and project files.

•	 An appreciation of laziness.

•	 A cool title. Maybe I could have tried to write a “For Dummies” book,

but after seeing Bioinformatics for Dummies I’m not sure I have what

it takes.

�Why SDL?
It’s surely more enjoyable to make programs with graphics and WIMP2-style interaction

than to merely type things in and print them out. There’s a variety of graphical libraries

out there. SDL, or Simple DirectMedia Layer, is popular, relatively easy to learn, portable

between platforms, and fast enough for real-world work, as evidenced by its use in actual

released games (Figure 1).

2�WIMP: window, mouse, icon, pointer. What we’re all used to.

Introduction

xxv

�Why SSDL?
…but although SDL is relatively simple, it’s not simple enough to start with on day 1

of programming with C++. SSDL (Simple SDL) saves you from needing to know things

we don’t get to until Chapter 143 before doing basic things like displaying images

(Chapter 2) or even printing a greeting (Chapter 1). It also hides the initialization and

cleanup code that’s pretty much the same every time you write a program, and makes

error handling less cumbersome.

You may want to keep using SSDL as is after you’re done with this book, but if you

decide to go on with SDL, you’ll find you know a lot of it already, with almost nothing to

unlearn: most SSDL function names are names from SDL with another “S” stuck on the

front. We’ll go into greater depth on moving forward with SDL in Chapter 29.

3�Pointers.

Figure 1.  A game of Freeciv, which uses the SDL library.

Introduction

xxvi

�Software You Will Need
Your compiler, plus various free SDL libraries (SDL2, SDL2_Image, SDL2_TTF, and

SDL2_Mixer), my free SSDL library, and (for Chapter 2, and whenever you need it) a

deluxe graphics editing package. I use GIMP, which is free, and at time of writing is

available from www.gimp.org.

SSDL is available at www.apress.com/9781484251867, as is my sample code.

In Unix, you may choose to install the GNU Free Fonts library, or msttcorefonts,

Microsoft Core Fonts for the Web. Look for ttf-mscore-fonts and fonts-freefont-

ttf (Debian and Ubuntu systems) and gnu-free-fonts-common and msttcore-fonts-

<something or other> (Red Hat and Fedora), remembering that systems differ,

standards change, and Unix is hard. But if you’re using Unix, you knew that. I use

Microsoft Core Fonts for the Web in the example programs.

Programming with sound may not be practical over remote connections, because

of the difficulty of streaming sound. If using Unix emulation, you might check the

emulator’s sound capabilities – say, by playing a video.

�If this is for a course…
C++ for Lazy Programmers covers through pointers, operator overloading, virtual

functions, templates, exceptions, STL – everything you might reasonably expect in two

semesters of C++.

The SSDL library does take a small amount of time, but the focus is firmly on writing

good C++ programs, with SSDL there just to make the programs more enjoyable. How

many labs or projects do you have in which it’s hard to stop working because it’s so much

fun? It may not happen with all these problems, but I do see it happen.

SDL also gives a gentle introduction to event-driven programming.

In the first 12 chapters, there is emphasis on algorithm development and

programming style, including early introduction of constants.

After Chapter 12, the examples are in standard I/O, though SDL is still an option for a

few exercises and is used in Chapter 21 and (briefly) Chapter 26.

Introduction

http://www.gimp.org/
http://www.apress.com/9781484251867

xxvii

A normal two-semester sequence should cover approximately

•	 Semester 1: The first 12 chapters, using SDL; Chapter 13, introducing

standard I/O. With some exceptions (& parameters, stream I/O),

this looks a lot like C, and includes variables, expressions, functions,

control structures, arrays, and stream I/O.

•	 Semester 2: Chapters 14–22, using standard I/O, covering pointers,

character arrays, classes, operator overloading, templates,

exceptions, virtual functions, multiple inheritance (briefly), and a

taste of the Standard Template Library using vectors and linked lists.

Subsequent chapters cover material that wouldn’t easily fit in two semesters,

including more of the Standard Template Library, history of C++, C programming, and a

few more esoteric topics.

�Online Help
Here are some sites to go to for more information, with URLs correct at time of writing.

SDL: www.libsdl.org; click “Wiki.” You’ll find a reference for SDL functions.

SDL’s helper libraries SDL_Image, SDL_Mixer, and SDL_TTF: www.libsdl.org/

projects/SDL_image/, www.libsdl.org/projects/SDL_mixer/, and www.libsdl.org/

projects/SDL_ttf/. In each case, click Documentation. You’ll find references for their

functions. If the web sites have changed, doing a web search for the name of the library

(SDL_image, for example) should get you there.

�Legal Stuff
Visual Basic, Visual Studio, Windows, Windows Vista, Excel, and Microsoft are

trademarks of the Microsoft Corporation. All other trademarks referenced herein are

property of their respective owners.

This book and its author are neither affiliated with nor authorized, sponsored, or

approved by Microsoft Corporation.

Screenshots of Microsoft products are used with permission from Microsoft.

Introduction

http://www.libsdl.org/
http://www.libsdl.org/projects/SDL_image/
http://www.libsdl.org/projects/SDL_image/
http://www.libsdl.org/projects/SDL_mixer/
http://www.libsdl.org/projects/SDL_ttf/
http://www.libsdl.org/projects/SDL_ttf/

1
© Will Briggs 2019
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_1

CHAPTER 1

Getting Started
Most programs in the first half of this book use the SDL and SSDL libraries,1 on the

theory that watching colorful shapes move across the screen and shoot each other is

more interesting than printing text. Don’t worry; when you’re done, you’ll be able to

write programs both with and without this library – and if I have anything to say about it,

you’ll have had fun doing it. Let’s see how it goes.

�A simple program
It’s wise to start small. Fewer things can go wrong.

So we’ll start small here with a simple program that writes “Hello, world!” on the

screen. We’ll take it line by line to see what’s in it. (In the next section, we’ll compile and

run it.)

Example 1-1.  “Hello, world!” is a classic program to start off a new language

with. (I think it’s a law somewhere.)

//Hello, world! program, for _C++ for Lazy Programmers_

// Your name goes here

// Then the date2

1�SDL provides graphics, sound, and friendly interaction including mouse input. SSDL, standing
for Simple SDL, is a “wrapper” library that wraps SDL’s functions in easier-to-use versions. Both
libraries are described in more detail in the Introduction. Don’t worry; I don’t read introductions
either.

2�From here on, I’ll be putting the title of the text, rather than name and date, because that’s more
useful for textbook examples. Ordinarily name of programmer and date are better for keeping
track of what was done and who to track down if it doesn’t work.

2

//It prints "Hello, world!" on the screen.

// Quite an accomplishment, huh?

#include "SSDL.h"

int main (int argc, char** argv)

{

 sout << "Hello, world! (Press any key to quit.)\n";

 SSDL_WaitKey (); //Wait for user to hit any key

 return 0;

}

The first set of lines are comments. Comments look like this – //Something on a

line after two slashes – and are there just for you or for someone who later tries to

understand your program. It’s best to be kind to yourself and your maintainers – help

them easily know what the program’s doing, without having to search and figure it out.

Next we have an include file. Some language features are built into the C++ compiler

itself, like the comment markers // and #include. Other things are in libraries; they’ll

only be loaded if needed. In this case, we need to know how to print things on the screen

using the SSDL library, so we load the include file SSDL.h.

Next we have the main program. main () is special: it’s what that tells the compiler,

“This is what we’re doing in the program; start here.” The int at the start and the weird

sequence int argc, char** argv we’ll get in Chapter 26 under “Command-line

arguments.” Same for the return 0; at the end. For now, we always put these things in. If

not, the C++ gods will punish us with incomprehensible error messages.

In this case, main () only does two things.

First, it prints "Hello, world" using the sout object, pronounced “S-out.”

Second, it calls SSDL_WaitKey (), which waits for you to hit a key before ending the

program. Otherwise the program closes before you have a chance to see its message.

We return 0 because main () has to return something, largely for historical reasons.

In practice we almost never care what main returns.

The curly braces {} tell main () where to start taking action and where to end: whatever

you want the computer to do when it runs the program goes between the curly braces.

Chapter 1 Getting Started

3

The compiler is very picky about what you type. Leave off a ; and the program won’t

compile. Change capitalization on something and C++ won’t recognize it.

If you’re curious what this program would have looked like without SSDL, see

Chapter 29. It’s not for the fainthearted beginner, but later it should make perfect sense.

Extra  “Hello, world!” is often the first program a beginner writes in a new
language. Although it was originally a simple example in C – the language C++ is
descended from; more on that in Chapter 25 – the practice of writing this as the
first program has spread. Here’s “Hello, world!” in BASIC:

10 PRINT "Hello, world!"

Not bad, huh?

This is what it looks like in APL. APL (A Programming Language) has been
described as a “write-only” language because it’s said you can’t read the
programs you wrote yourself. APL requires symbols such as □, ∇, and ρ.

□←'Hello, world!'

Although those look easier than C++’s version, C++’s is neither the longest nor the
toughest. I’ll spare you the long ones to save trees (an example for the language
Redcode took 158 lines, which may be why you’ve never heard of Redcode), but
here’s one of the tough ones, from a purposefully difficult language sometimes
called BF.

++++++++++++++++[>++++>++++++>+++++++>+++>++<<<<<-]>
++++++++.>+++++.+++++++..+++.>>----.>.<<+++++++.<.>
-----.<---.--------.>>>+.

More “Hello, world!” examples, at time of writing, can be found at http://
helloworldcollection.de/.

Chapter 1 Getting Started

http://helloworldcollection.de/
http://helloworldcollection.de/

4

�Spacing
One thing the compiler doesn’t care about is spacing. As long as you don’t put a space

inside a word, you can put it wherever you like. You can break lines or not as you choose;

it won’t care, as long as you don’t break a //comment or a "quotation".

Example 1-2.  A blatant instance of evil and rude3 in programming

//Hello, world! program, for _C++ for Lazy Programmers_

//It prints "Hello, world!" on the screen.

//Quite an accomplishment, huh?

// -- from _C++ for Lazy Programmers_

 #include "SSDL.h"

 int main (int argc, char** argv) {

 sout <<

"Hello, world! (Press any key to quit.)\n";

 SSDL_WaitKey (); //Wait for user to hit any key

return 0;

 }

The compiler won’t care about spacing – but the poor soul that has to understand

your 500-page program will! Example 1-2’s spacing would be a cruel thing to do to the

people who later maintain your code.

Readability is a Good Thing.4 The programmer struggling to figure what you

meant may very well be you a few days after writing it. Most of the expense in software

development is programmer time; you won’t want to waste yours trying to decipher your

own code. Make it clear.

3�“Evil and rude” is a technical term meaning, essentially, “maliciously awful.” See
The New Hacker’s Dictionary, currently online at www.catb.org/jargon, for other terms in
programmers’ slang.

4�Good Thing: hacker slang for something that’s completely wonderful and everybody knows it
(or should).

Chapter 1 Getting Started

http://www.catb.org/jargon

5

Tip  Make your code clear as you write it, not later. Readable code helps with
development, not just future maintenance.

To help with clarity, I have things in Example 1-1, like initial comments, #include,

and main (), separated by blank lines. It’s sort of like writing paragraphs in an English

paper: each section is its own “paragraph.” Blank lines increase readability.

I also break lines in sensible places and indent in a way that makes the program

easy to read. The default indentation is the left margin. But if something is contained

in something else – as the sout statement is contained in the main program – it gets

indented one tab, or a few spaces.

This is like outline format for a paper, or like the layout of a table of contents

(Figure 1-1). What’s contained in something else is indented slightly. What’s in

Example 1-2 breaks the rule because #include "SSDL.h" isn’t part of the comment

above it, so it shouldn’t be indented relative to it. int main (int argc, char** argv)

isn’t part of #include "SSDL.h", so it shouldn’t be indented either.

By contrast, the sout statement in Example 1-1 is contained in main, so it gets

indented a little.

You’ll have plenty of examples of clear indenting as you read on.

int main (int argc,
char** argv)

{
sout << "Hello, world!\n";

SSDL_WaitKey ();

return 0;
}

Figure 1-1.  Like an English paper outline, a C++ program is indented, with
subparts indented relative to what they’re parts of

Chapter 1 Getting Started

6

Golden Rule of Spacing 

When something is part of what comes previously,

 it should be indented (like this).

When it’s independent, it maintains the same indentation level.

�Creating an SSDL project
�…in Visual Studio
The easiest way to start is to

	 1.	 Make a copy of a working project folder. The source code has one

named basicSSDLProject. It knows where to find SDL and SSDL

in the source code, so keep your copy in the same location.

	 2.	 Rename it appropriately (hello, perhaps?).

	 3.	 Open its solution (.sln) file.5

If you want to make it from scratch, see instructions in source code.

Extra T he first time you start up Visual Studio, it may ask you what default
environment you’ll want. Your answer is C++.

It may now take significant time setting up your profile. Don’t worry; it’s a one-time
thing: you won’t have to wait for it again.

If you make a mistake, you can fix it once you’re in: select Tools ➤ Import and
Export Settings ➤ Reset all settings.

5�If you get a dialog box asking if you want to “Retarget Projects,” just accept the defaults and press
OK. This happens if your machine and my machine have slightly different versions of a Windows
library.

Chapter 1 Getting Started

7

�Compiling your program

Your program doesn’t do anything yet, so you’ll want to give it some content. For now,

you might type in the Hello, world! program from Example 1-1.

Maybe you’ll make some typos.

If so, the editor may warn you by putting a squiggly red line under what it objects to.

Wave your mouse pointer over the offending portion and it’ll give a hint as to what went

wrong (though that hint may not always be clear).

Figure 1-2.  An SSDL project. Click the triangle arrows next to SSDL Project on
the right and then Source Files and then double-click main.cpp to see the main
program’s (incomplete) contents

Chapter 1 Getting Started

8

Helpful as this is, though, you can’t be certain the editor is correct. You won’t know

for sure if there are errors till you try to compile and run.

To compile your program, go to Build ➤ Build Solution. To run it, go to Debug ➤

Start without debugging.

Alternately, click the green arrow or triangle near the top of the window (see

Figure 1-2 or Figure 1-3 again).

If your program doesn’t compile, it will give you a list of errors. Sometimes it’s clear

what the messages mean, sometimes not. Here’s a typical set, using “...” to make them

briefer. In this case, I forgot a ; and misspelled SSDL_WaitKey:

c:\...\main.cpp(13): error C2146: syntax error: missing ';' before

identifier 'SDL_WaitKey'

c:\...\main.cpp(13): error C3861: 'SDL_WaitKey': identifier not found

Figure 1-3.  Visual Studio highlights – and correctly identifies – an error

Chapter 1 Getting Started

9

As time goes by, you’ll understand more of what obscure error messages mean. For

now, compare the program you typed to Example 1-1, and repair any differences, until

you get this successful result. (The program actually prints white on black, unlike what's

shown in Figure 1-4 and some subsequent examples. Books, big black squares of ink, not

a good mix.)

When it runs, hit any key to end it. (We often use the Escape key, since SSDL’s set up

to recognize Escape as a signal to quit, but any key will do for SSDL_WaitKey.)

Figure 1-4.  Hello, world! running

Chapter 1 Getting Started

10

Extra I n Visual Studio, if you try to run an uncompiled program, you may see this
dialog box:

 

If so, click “Do not show this dialog again” as shown, and click “Yes.” This means
that it will always try to recompile before running if needed.

If there are errors, you’ll likely see this box:

Click “Do not show this dialog again,” and say no. (Otherwise when you make
changes, it will go back to previous versions to find one that works, rather than
your latest copy. Confusing!)

If you do want to see the dialog boxes again – say, if you hit “Yes” when you meant
“No” – you can fix it through the menus: Tools ➤ Options ➤ Projects and Solutions
➤ Build and Run, and reset the “On Run…” blanks to what you want.

Chapter 1 Getting Started

11

�The files you created

Look through your folder now. (Access it through Windows Explorer or by opening its

folder in Windows, whichever you like.) You should see something like Figure 1-5.

(The layout may be different.)

Figure 1-5.  Files in your project folder

Chapter 1 Getting Started

12

Extra I f the files you see are named SSDL_Project rather than SSDL_Project-
dot-something, I VERY STRONGLY RECOMMEND that you change this so you can
see the “file extensions” after the dot. It’s not essential, but it’s often helpful to see
what kind of file you’re working with!

To do that, in the View tab of a folder, select Options ➤ Change folder and search
options (Windows 8 or earlier: Organize Menu ➤ Folder and Search Options).

Chapter 1 Getting Started

13

You should get a box that says Folder Options.

Select the View tab of the Folder Options box. Once there, uncheck Hide extensions
for known file types; and select Show hidden files, folders, or drives. (The latter
enables you to erase some things later that are bulky, don’t need to be stored, and
are not otherwise visible.)

Important files in your folder include

•	 hello.sln, the “solution” file: The main file that knows where the

other files are.

•	 hello.vcxproj, the “project” file: It knows that the program is stored

in main.cpp and a few other things. You can’t compile without it.

Chapter 1 Getting Started

14

•	 main.cpp, your program.

•	 The Debug (or, sometimes, x64) folder, which contains your

executable.

Tip  You can erase the Debug, .vs, and x64 folders, and .sdf or .ncb files if any.
Visual Studio will re-create them as needed. This is important if space is crucial,
for example, if you plan to send the folder by email.

If you can’t see the .vs folder, then Show hidden files, etc., as shown in the
preceding image.

�Reopening your project

If your computer is set up properly, you can double-click hello.sln to start Visual

Studio and reopen what you were working on. (Double-clicking on other things might

not open all the files you need.) You can also open the compiler and drag hello.sln

into the main window, ignoring the text that’s already there. Or you can go through the

menus: File ➤ Open ➤ Project/Solution.

Tip R eopen the .sln file, not the .vcxproj or .cpp files.

�Antibugging

In the “Antibugging” sections, we’ll consider things that can go wrong and how to repair

or prevent them.

Chapter 1 Getting Started

15

Here are some of the common or difficult problems you’ll find using Microsoft Visual

Studio (or other compilers, for that matter):

•	 Visual Studio asks you to log in with a Microsoft account and
you’re in a rush. Notice the line “Not now, maybe later.”

•	 It can’t open an include file or a .lib file. In the error messages, it

may say something like

fatal error C1083: Cannot open include file: 'SSDL.h': No such

file or directory

or

1>LINK : fatal error LNK1104: cannot open file 'sdl2_ttf.lib'

The most likely explanation at this point is that your project

folder isn’t in the right place in the source code repository.

Make sure it’s in the same place as the basicSSDLProject

folder. If you know what you’re doing and chose a different

setup, be sure the Additional Include Directories and

Additional Library Directories contain valid paths to SDL’s and

SSDL’s include and library folders.

•	 It’s happy to accept your edits, but doesn’t offer you an option
to compile; or if it does, the edits don’t seem to have any effect.
The problem is likely that you didn’t open the .sln file, but instead

Chapter 1 Getting Started

16

opened main.cpp (or some other file). Visual Studio needs its .sln

file. Close the file you’re working on (saving it someplace so you can

use those edits!) and reopen by double-clicking the .sln file.

•	 You type something in that it should recognize, but the editor
doesn’t color it the way you’d expect, or puts a squiggly red line
under it. Usually it will recognize return and void, and color them

to show it knows they’re keywords. You may have a typo. Or the editor

may be confused. Recompile to be sure.

•	 It says the .exe file cannot be opened for writing. You’re probably

still running the program; it can’t overwrite the program because it’s

in use. Kill the program and try again.

•	 It gives some other error message and won’t finish building. Often,

trying again is enough to make it work.

•	 It’s taking forever to finish running the program. You can

be patient or kill it through Windows Task Manager. If it keeps

happening, it’s a good bet there’s a problem with your program. (Or is

it waiting for you to give it a response?)

•	 You read a complaint about Windows SDK:

C:\...\Microsoft.Cpp.WindowsSDK.targets(46,5): error

MSB8036: The Windows SDK version <some number or other>

was not found. <More details.>

or else it just fails before attempting to compile.

Solution: right-click the project (not the solution or main.cpp),

select Retarget Projects, and agree to what it says.

Extra  Zip Files

You may want to email someone your project; or you may want to store it
compactly.

The usual way is to right-click the folder and select Add to Zip (or Add to <folder
name>.zip); or right-click the folder, select Send to… ➤ Compressed Folder.
Then you can attach it to an email, if that’s your plan.

Chapter 1 Getting Started

17

However you do it, be sure you first erase (if they exist) Debug, .vs, any .ncb
or .sdf files, to save space. Especially Debug: if you don’t, some mail programs
won’t send the attachment.

�…with g++
g++6 has much to recommend it: free, open source, and when someone says “Real

programmers use Unix,” you don’t have to duck your head. But it doesn’t have its

own environment or editor. On Unix, you might use vi/vim (I’m not that “real,” but

maybe you are), emacs,7 or some other editor. If you’re doing this through a windowing

environment, you’ll likely find getting started relatively painless. If not, you can find

instructions online. Good luck!

Tip  Unix and Windows disagree on how to end a line. If you move a file designed
on one system to the other and read it, you may see everything apparently jammed
on one line, or sporting a ^M at the end of each line.

If it’s a Windows file displayed in Unix, you can just ignore the funny symbols. If it’s
a Unix file and you’re in Windows, try Notepad++ or Microsoft’s WordPad. For a
program to convert to your preferred format, see “Cool command-line tricks” below.

I’ll leave the details of the editor and how to get around the operating system to

other sources8 and go straight to compiling. The easiest way is to make a copy of the

basicSSDLProject folder found in the book’s source code repository to use as your new

project (try cp -R) and follow the instructions in README.txt.

6�If g++ isn’t installed or isn’t working, see Appendix A: Setting up SDL and SSDL – problems.
7�For a quick start with emacs, you might try A Guided Tour of Emacs currently at www.gnu.org/
software/emacs/tour/. For an even quicker start, go to “Basic editing commands” and skip over
the first table.

8�I recommend UNIX Tutorial for Beginners currently at www.ee.surrey.ac.uk/Teaching/Unix/.
Up through Tutorial 4 should be fine for now. Or search for your own.

Chapter 1 Getting Started

http://www.gnu.org/software/emacs/tour/
http://www.gnu.org/software/emacs/tour/
http://www.ee.surrey.ac.uk/Teaching/Unix/

18

�The files you created

In your new folder, type ls or dir at the prompt. You’ll see some files, possibly a.out

main.cpp main.cpp~ main.o #and a bunch of other stuff

a.out is the executable program. main.cpp is the code you wrote to make it. main.

cpp~ is a backup file your editor may make of your .cpp file. main.o is an “object” file g++

may build on the way to creating your program. If you see it – you may not – it’s perfectly

safe to delete it: rm main.o

To delete all the things listed here that you don’t need, type make clean.

�Cool command-line tricks

•	 Repeating a command. Often at the command prompt, you can

hit up arrow to repeat the last command, or several times to repeat

an earlier command. If that doesn’t work, ! followed by the first few

letters of the command may repeat the last instance of it.

•	 Converting code from the Windows world into Unix and back.
If you care to, you can find an online converter, or (if it’s installed)

use this command:

dos2unix < windowsfile.txt > unixfile

To go the other way, use unix2dos.

Extra  tar Files

Want to stuff that directory into a single file for mailing or storage? After erasing
any bulky files you don’t want (make clean), go up a directory (cd ..) and
tar it:

tar -czvf project1.tar.gz project1 #for a directory named
project1

You should now have a file project1.tar.gz, suitable for sending as an
attachment by your favorite mailer.

To unstuff it, put it wherever you want to put it (ensuring there isn’t already a
project1 directory there, to prevent overwrite) and say

Chapter 1 Getting Started

19

tar -xzvf project1.tar.gz

Unix installations vary; you may have to change the command slightly – but that
works as is on many machines.

�Antibugging

•	 You run the program, and it never stops. It might be waiting for

some input (like hitting a key to continue), or it might have gone

into la-la land forever. You can kill it with Ctrl-C (hold Ctrl down

and hit C).

•	 It stops with the message Segmentation fault: core dumped.

This means, more or less, “Something bad happened.” For now,

just remove the core file (rm core) and look in the program for the

problem.

�How not to be miserable
These are problems you may encounter no matter what compiler you’re using:

•	 You get about a zillion errors. This doesn’t mean you did a zillion

things wrong. Sometimes one error confuses the compiler so much it

thinks everything that came later is wrong. For this reason, it’s wise to

fix the first error first. It may eliminate a hundred subsequent error

messages.

•	 The line the error’s on looks fine. Maybe the problem is on the

previous line. The compiler couldn’t tell what was wrong until the

next line, so it reported the error later than you’d have expected. This

often happens with missing ;’s.

•	 You get warnings, but the program’s still ready to run. Should
you? There are errors, and there are warnings. The compiler can still

generate the program if it only gave warning, but an error prevents

compilation. You can ignore warnings, but they’re often good hints as

to something that really does need fixing.

Chapter 1 Getting Started

20

•	 Every program you write! it seems, starts out full of errors. You
wonder if you’re stupid. If so, well, so are the rest of us. I might be

able to get a Hello, world! program working the first time. Anything

longer, forget it.

And here’s the big one:

•	 You made a mistake and the program, which had been doing
mostly OK, now won't work at all. Whenever you make a significant

change (significant meaning “enough you’re scared you might not be

able to undo it”)…

•	 Windows: Go to the folder that has your project in it (.sln file,

.vcxproj, .cpp, all of it); copy it; paste it (skipping any file it won’t

let you copy – it’ll be something you don’t care about anyway),

thus creating a backup.

•	 Unix: Copy your .cpp file by saying something like cp main.

cpp main.cpp.copy1. You could also copy the entire directory

with cp -R.

A trail of backup copies is absolutely essential for big projects.

I urge you to go ahead and get into practice now. If not…you’ve

worked 6 months on your project. You did something that made

it crash, or refuse to compile, or give the wrong output; worse

yet, you did it yesterday and you’ve done several updates since.

Wouldn’t it be nice to go back to yesterday’s code and get the

almost working version, rather than recreating 6 months of work?

Backup copies are what every programmer, lazy or not, needs.

Golden Rule of Not Pulling Your Hair Out

Make backup copies as you edit your program. Lots of them.

Chapter 1 Getting Started

21

EXERCISES

	1.	 Using your compiler, type in the Hello, world! program, and get it working.

	2.	 Write another program to print the lyrics of a song on the screen.

	3.	T ake the Hello, world! program and deliberately introduce errors: take out

semicolons or curly braces; break a quote in the middle; try several different

things. What kind of error messages do you get? Some will likely make sense

(as in, “missing ';' before '}'”); others may not. The number of errors

really doesn’t tell you how many mistakes there are.

	4.	 Clean up your folder (i.e., remove those extra, bulky files) and compress it.

�Shapes and the functions that draw them
Let’s have a look again at that blank window you created the first time you ran an

SSDL program.

Figure 1-6.  Dimensions of the basic SSDL window

Chapter 1 Getting Started

22

Locations of shapes we put into this window are in (X, Y) coordinates (see Figure 1-6).

The upper left corner is (0, 0); the lower right is (639, 479) – so the Y coordinates go down

the page, not up. There are 640 locations going across (0 through 639 inclusive) and 480

going down. Each (X, Y) location is called a “pixel” (picture element).

This section shows some things you can do.

Example 1-3.  Program to draw a dot at the center of the screen

// Draw a dot at the center of the screen

// -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main (int argc, char** argv)

{

 //draws a dot at the center position (320, 240)

 SSDL_RenderDrawPoint (320, 240);

 SSDL_WaitKey ();

 return 0;

}

Example 1-3 draws a dot at location (320, 240). (It won’t be as big as in Figure 1-7, but

I wanted it to show up, so I enhanced it.)

Chapter 1 Getting Started

23

Functions for other basic shapes are listed in Table 1-1. int means integer, that is,

whole number. The function descriptions of form void <function-name> (<bunch of

stuff>); are called “prototypes”: precise descriptions of how to call the function – its

name and what kind of values it expects between the ()s.

Figure 1-7.  Drawing a dot at the center of the screen

Chapter 1 Getting Started

24

The notation is worth paying attention to. SSDL_RenderDrawPoint takes two integers

for its two arguments x and y. SSDL_RenderDrawLine takes four: x1, y1, x2, y2, and so on.

Table 1-1.  Common SSDL drawing functions

void SSDL_RenderDrawPoint (int x, int y); draws a dot at (x, y)

void SSDL_RenderDrawLine (int x1, int y1,

 int x2, int y2);

draws a line from (x1, y1) to (x2, y2)

void SSDL_RenderDrawCircle (int x, int y,

 int radius) ;

draws a circle with this radius,

centered at (x, y)

void SSDL_RenderFillCircle (int x, int y,

 int radius) ;

draws a filled circle with this radius,

centered at (x, y)

void SSDL_RenderDrawRect (int x1, int y1,

 int w, int h);

draws a box with (x1, y1) as its top left

corner and with width w and height h

void SSDL_RenderFillRect (int x1, int y1,

 int w, int h);

draws a filled box with (x1, y1) as its top

left corner, with width w and height h

Figure 1-8.  On the left, a program with SSDL_RenderDrawCircle (100, 100, 100);
on the right, a program with SSDL_RenderDrawCircle (0, 0, 100);. The one on
the right illustrates “clipping”: SDL simply not showing things that are outside the
viewing area

Chapter 1 Getting Started

25

This line of code, for example, makes a circle near the top left (see Figure 1-8, left

image): SSDL_RenderDrawCircle (100, 100, 100);

And this one gives you one centered on the top left (Figure 1-8, right), so you can only

see a quarter of it: SSDL_RenderDrawCircle (0, 0, 100);. Not showing what would be

outside the viewing area is called “clipping.”

To make an interesting design, you’ll need to plan ahead. We’ll have a section on

planning ahead more generally soon, but for now, you might make a storyboard, like

movie producers or comic makers, for whatever design you want to make.

You may want graph paper as in Figure 1-9. (See also the source code.)

I decided to make a bug face: big eyes, big head, antennas. So I drew what I

wanted (Figure 1-10).

Figure 1-9.  A graph of the viewing area for designing what you want to display

Chapter 1 Getting Started

26

I can now eyeball the locations. The center of the left eye is around (320, 250), and

its radius is roughly 45; the big circle’s center is around (430, 250), and its radius is about

150; and so on.

My program is in Example 1-4. I made several mistakes initially as I wrote it –

confusing diameter with radius; reading the graph lines wrong. You will too. If you don’t,

well, that’s true resume fodder.

Example 1-4.  A bug’s head

//Bug's head example

// -- from _C++ for Lazy Programmers_

//Program to draw a cartoonish bug's head on the screen

Figure 1-10.  Drawing for the bug head program

Chapter 1 Getting Started

27

#include "SSDL.h"

int main (int argc, char** argv)

{

 SSDL_RenderDrawCircle (430, 250, 200); //draw the bug's head

 SSDL_RenderDrawCircle (320, 250, 45); //the left eye

 SSDL_RenderDrawCircle (470, 270, 45); //the right eye

 SSDL_RenderDrawLine (360, 140, 280, 40);//left antenna

 SSDL_RenderDrawLine (280, 40, 210, 90);

 SSDL_RenderDrawLine (520, 140, 560, 40);//right antenna

 SSDL_RenderDrawLine (560, 40, 620, 80);

 SSDL_RenderDrawLine (290, 350, 372, 410);//the smile

 SSDL_RenderDrawLine (372, 410, 490, 400);

 SSDL_WaitKey (); //Wait for user to hit a key

 return 0;

}

The resulting output is shown here.

Chapter 1 Getting Started

28

Notice how I rigorously documented in comments the purpose of everything I’m

doing. Suppose I hadn’t put those comments in:

//Program to draw a cartoonish bug's

// head on the screen

// -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main (int argc, char** argv)

{

 SSDL_RenderDrawCircle (430, 250, 200);

 SSDL_RenderDrawCircle (320, 250, 45);

 SSDL_RenderDrawCircle (470, 270, 45);

 SSDL_RenderDrawLine (360, 140, 280, 40);

 SSDL_RenderDrawLine (280, 40, 210, 90);

 SSDL_RenderDrawLine (520, 140, 560, 40);

 SSDL_RenderDrawLine (560, 40, 620, 80);

 SSDL_RenderDrawLine (290, 350, 372, 410);

 SSDL_RenderDrawLine (372, 410, 490, 400);

 SSDL_WaitKey ();

 return 0;

}

What a nightmare! You come back in a few months to reuse or upgrade this program,

see the code, and think, what the heck was I doing? Which line does what?

Then you try to run it, and…your system administrator has upgraded compilers or

libraries, and the program no longer works. (It’s a well-known fact that software rots; at

least, something makes your programs stop working over time.) You have a nonworking

program, and it will take detective work to identify what the parts are.

Chapter 1 Getting Started

29

Better to comment, so you can understand, maintain, and update your program as

needed. In Example 1-5 I decide to add pupils to the eyes. It’s easy to figure where they

go, given the commenting.

Example 1-5.  A bug’s head, with pupils in the eyes

//Bug's head example

// -- from _C++ for Lazy Programmers_

//Program to draw a cartoonish bug's head on the screen

//Uncomment the "pupil" lines to see the pupils too

#include "SSDL.h"

int main (int argc, char** argv)

{

 SSDL_RenderDrawCircle (430, 250, 200); //draw the bug's head

 SSDL_RenderDrawCircle (320, 250, 45); //the left eye

 SSDL_RenderFillCircle (300, 250, 5); // ... and its pupil

 SSDL_RenderDrawCircle (470, 270, 45); //the right eye

 SSDL_RenderFillCircle (450, 270, 5); // ... and its pupil

 ...

}

Chapter 1 Getting Started

30

�Antibugging
•	 You call an SSDL function, but it has no effect. At this point the

most likely guess is that it’s drawing things outside the viewing area,

so you can’t see them. The best way to determine what’s wrong is to

examine the arguments you gave and be sure they’re reasonable.

•	 (For Visual Studio) You can’t remember exactly how to call a
function, and you don’t want to look it up. That’s no bug, but it is a

reality, and it shows admirable laziness, so let’s roll with it. You can

sometimes get a hint as you type

or, when you open the parentheses, it may give you a description

of the function or what it expects

Chapter 1 Getting Started

31

…and sometimes it won’t show up. Or it puts the red squiggly lines

on things that are perfectly OK. You can try retyping the line or

compiling the code – one of those will usually do it.

EXERCISES

	1.	 Design something of your own, and write a program to show it on

the screen.

	2.	D raw a cube as seen not quite straight on, like the one shown here.

�consts and colors
Naturally we’ll want to color our shapes too.

Colors on computers come in three parts: red, green, and blue. In our library they

range from 0 (lowest) to 255 (highest). So black is 0, 0, 0; white is 255, 255, 255; red is 255,

0, 0 (red at max, the others at zero). Other combinations make other colors. You can use

Chapter 1 Getting Started

32

a web site like www.colorpicker.com to find the red, green, blue components of a color

you want.

You can use a few colors built into SSDL (BLACK, WHITE, RED, GREEN, or BLUE) or

create your own color thus:

const SSDL_Color MAHOGANY = SSDL_CreateColor (192, 64, 0);

Here, SSDL_Color MAHOGANY says we’re creating a color and naming it MAHOGANY.

SSDL_CreateColor (192, 64, 0) gives it the numbers we want.

Colors don’t change, so we’ll use C++’s const keyword to emphasize this and

prevent them from changing by mistake. Constants are written in ALL CAPS to make it

obvious to the reader of the program that they don’t change. (You get used to it, and it’s

unmistakable.)

To use the color in the next thing drawn or printed, do this:

SSDL_SetRenderDrawColor (RED); //Draw things in RED, from now

 // till the next call to this function

To clear the screen, either do this:

SSDL_RenderClear (BLACK); //erase the screen and make it BLACK

or this:

SSDL_SetRenderEraseColor (DARK_GREY);

SSDL_RenderClear ();

Example 1-6 uses built-in and new colors to draw boxes on the screen.

Example 1-6.  Use of colors to paint some rectangles

//Displays boxes of colors

// -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main (int argc, char** argv)

{

Chapter 1 Getting Started

http://www.colorpicker.com

33

 SSDL_SetWindowTitle ("Four squares in different colors");

 //We'll use 3 built-in colors, and 3 new ones

 const SSDL_Color PUCE = SSDL_CreateColor (127, 90, 88);

 const SSDL_Color MAHOGANY = SSDL_CreateColor (192, 64, 0);

 const SSDL_Color DARK_GREY = SSDL_CreateColor (100, 100, 100);

 //Make a dark grey background

 SSDL_SetRenderEraseColor (DARK_GREY);

 SSDL_RenderClear ();

 //We'll have two boxes across, and two down

 //The top row. These colors are already defined in SSDL.h.

 SSDL_SetRenderDrawColor (RED);

 SSDL_RenderFillRect (0, 0, 100, 100);

 SSDL_SetRenderDrawColor (GREEN);

 SSDL_RenderFillRect (100, 0, 100, 100);

 //The next row, using new colors

 SSDL_SetRenderDrawColor (PUCE);

 SSDL_RenderFillRect (0, 100, 100, 100);

 SSDL_SetRenderDrawColor (MAHOGANY);

 SSDL_RenderFillRect (100, 100, 100, 100);

 //Program's end.

 //Have to set the color back to white here,

 // or we'll get mahogany text!

 SSDL_SetRenderDrawColor (WHITE);

 sout << "Hit any key to end.\n";

 SSDL_WaitKey();

 return 0;

}

And here are functions relevant to colors and clearing the screen. Some of these

prototypes don’t precisely match the descriptions in the appendices: the descriptions

are simplified, but close enough.

Chapter 1 Getting Started

34

SSDL_Color SSDL_CreateColor

 (int r, int g, int b);9

create and return a color. Max values for

(r)ed, (g)reen, and (b)lue are 255

void SSDL_SetRenderDrawColor

 (SSDL_Color c);10

set subsequent drawing, including text, to

use color c

void SSDL_SetRenderEraseColor

 (SSDL_Color c);

set erasing (including clearing of the screen)

to use color c

SSDL_Color SSDL_GetRenderDrawColor (); return current drawing color. For example:

const SSDL_Color FOREGROUND =

SSDL_GetRenderDrawColor();

SSDL_Color SSDL_GetRenderEraseColor (); return current erasing color

void SSDL_RenderClear (); clear the screen to current erasing color

void SSDL_RenderClear (SSDL_Color c); clear screen to color c

Some functions (the ones returning void) don’t calculate a value for you; they just

do something (like drawing a shape, clearing the screen, or setting a color). Others, like

SSDL_CreateColor (), have the job of calculating an answer. This one finds a color, so its

“return type” is not void, but SSDL_Color.

We will cover functions and return types further in Chapter 7.

9�You can also give an optional fourth argument, “alpha,” that can make the color transparent:

SSDL_Color SSDL_CreateColor (int r, int g, int b, int alpha);

Alpha ranges from 0 (completely transparent) to 255 (completely opaque). For example,
const SSDL_Color GHOSTLY_GREY =SSDL_CreateColor (100, 100, 100, 128);

gives us a color that is about halfway transparent.
We won’t use this, since we rarely want transparent geometric shapes, and the PNG format we’ll

use for images allows transparency without any special handling. But it’s there if you want to
experiment.
10�Some of these functions have their descriptions simplified to be understandable based on what

we’ve covered so far. The correct versions are in Appendix H – but simplified is fine for now.

Chapter 1 Getting Started

35

EXERCISES

	1.	A dd color to a program you wrote to draw figures on the screen or to another

program from this book.

	2.	 Make a scene for your favorite holiday: an orange scary face for Halloween, a

green Christmas tree, or get wild with Holi, the Festival of Colors.

	3.	 Make the screen flash a variety of colors by alternating calls to SSDL_

RenderClear with calls to SSDL_WaitKey.

	4.	 Write the names of several colors, each written in that color (“RED” written in

red, etc.).

�Text
�sout, escape sequences, and fonts
You can print multiple things with the SSDL library’s sout – not just text but also

numbers.

sout << "The number pi is " << 3.14159 << ".\n";

sout << "...and the number e is "

 << 2.71828

 << ".\n";

How you space the lines in your program doesn’t change what’s printed; the line

ends when you reach the \n character, the “end of line” character. The only reason for

spacing the lines of code one way rather than another is for clarity’s sake. (The preceding

version looks fine to me.)

But the spacing inside the quotes does matter. Note the space I put after the word

“is”: if you don’t put it, your first line of output will look like this:

The number pi is3.14159.

Chapter 1 Getting Started

36

There are other escape sequences, a.k.a. “escape codes”: special characters that

start with \:

•	 \t, the tab character, which takes you to the next tab stop. The tab

stops are arranged at 0, 8 spaces, 16 spaces, and so on. (Since most

of our fonts are variable-width, we can’t expect 8 I’s or 8 M’s to be the

same width as 8 spaces; it will be approximate.)

•	 \", the “ character. If we just put " in your text, like so– "Quoth the

raven, "Nevermore"" – C++ would be confused by the extra "’s. So

we write it like this instead:

"Quoth the raven, \"Nevermore.\""

•	 \\, the \ character. (Because a single \ character has C++ trying to

figure out what escape sequence you’re starting.)

For all available escape sequences, see Appendix E.

You may also decide where on the screen you want the text to appear. Here’s how to

set the cursor at X position 100, Y position 50:

SSDL_SetCursor (100, 50);

And you can change the font and font size. Font files must be in TTF (TrueType

Font) format; C++ expects them to be in the same folder as your project.

const SSDL_Font FONT = SSDL_OpenFont ("myFont.ttf", 18); //my font; 18 point

SSDL_SetFont (FONT);

If you want to use a font that comes with the system, one in the standard fonts folder,

you can use this call instead:

const SSDL_Font FONT = SSDL_OpenSystemFont ("verdana.ttf", 18);

 //Verdana font; 18 point

SSDL_SetFont (FONT);

You can see available fonts from Microsoft Windows/Microsoft Core Fonts for the

Web by looking in Microsoft Word or (at time of writing) at https://en.wikipedia.org/

wiki/Core_fonts_for_the_Web. The filenames aren’t always obvious, for example, what

shows up as “Bookman Old Style” in Microsoft Word is actually four files: bookos.ttf,

bookosb.ttf, bookosbi.ttf, and bookosi.ttf – corresponding to normal, bold, bold

italic, and italic.

Chapter 1 Getting Started

https://en.wikipedia.org/wiki/Core_fonts_for_the_Web
https://en.wikipedia.org/wiki/Core_fonts_for_the_Web

37

In Unix, you can likely get a list of installed fonts with this command: fc-list.

They’ll probably be in /usr/share/fonts or a subfolder thereof.

The SDL2_ttf library is happy to make a font you give it italic, bold, whatever, but

it can’t compete with human artists. Where possible, use the enhanced version that

comes in the font, as with Timer_New_Roman_Bold.ttf or timesbd.ttf for Times New

Roman Bold.11

Example 1-7 illustrates use of these features.

Example 1-7.  Using escape sequences, cursor, and fonts to print a poem

//Prints an excerpt from Sir Walter Scott's _The Lady of the Lake_

// -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main (int argc, char** argv)

{

 //Window setup

 SSDL_SetWindowTitle ("Hit any key to end");

 �//Always tell user what's expected...

 //We'll be using the classic Times New Roman font...

 // so load it, and tell SSDL to use it

 const SSDL_Font FONT = SSDL_OpenSystemFont ("times", 18);

 SSDL_SetFont (FONT);

 SSDL_SetCursor (0, 50); �//Skip down the page 50

//pixels to start

 //And now, the poem (or part of it)

 sout << "from The Lady of the Lake\n";

11�If you can’t, there’s a function TTF_SetFontStyle, which can generate the new style (though it
may look a little ragged), and which is called thus:
TTF_SetFontStyle (myFont, TTF_STYLE_BOLD); //bold
or
TTF_SetFontStyle (myFont, TTF_STYLE_BOLD | TTF_STYLE_ITALIC); //bold italic

The available styles are TTF_STYLE_BOLD, TTF_STYLE_ITALIC, TTF_STYLE_UNDERLINE,
TTF_STYLE_STRIKETHROUGH, and the default, TTF_STYLE_NORMAL.

Chapter 1 Getting Started

38

 sout << "\tby Sir Walter Scott\n\n";

� //Here, tab over for author's name, then

 // double space at the end of the line

 sout << "\"Tis merry, 'tis merry, in Fairy-land,\n";

 sout << "\tWhen fairy birds are singing,\n";

 sout << "When the court cloth ride by their monarch's side,\n";

 sout << "\tWith bit and bridle ringing...\"\n";

 //End when user hits a key

 SSDL_WaitKey ();

 return 0;

}

Chapter 1 Getting Started

39

void SSDL_SetCursor (int x, int y); position the cursor at x, y for the next use of

sout or ssin

SSDL_Font SSDL_OpenFont

 �(const char* filename, int

point);

creates a font from filename for a TrueType

font, and point

SSDL_Font SSDL_OpenSystemFont

 �(const char* filename, int

point);

same, but loads from the system fonts folder

void SSDL_SetFont (const SSDL_Font& f); use f as the font for text

�SSDL_RenderText, SSDL_RenderTextCentered
We can combine the setting of the cursor and font and the printing into one statement

(and center text as well) with the following two function calls. This is convenient when

the goal is not just to dump a bunch of text but to precisely determine its appearance and

location. If you don’t specify the font, it will use whatever font you were already using.

const SSDL_Font fontForYear = SSDL_OpenSystemFont ("verdana.ttf", 14);

SSDL_RenderText ("When did King Sejong publish the Korean alphabet?", 0, 0);

 //didn't specify font; use old one here

SSDL_RenderText (1446, 500, 0, fontForYear); //...use new font here

 �//Year was 1446. Print at

location 500, 0.

If you say SSDL_RenderTextCentered, the location you give will be the center of the

text, not its left side.

void SSDL_RenderText

 (T thing, int x, int y,

 SSDL_Font font = currentFont);

print thing (which may be any printable

type) at position x, y, using font if specified,

otherwise using current font

void SSDL_RenderTextCentered

 (T thing, int x, int y,

 SSDL_Font font = currentFont);

print thing, as above, centered on x, y

Chapter 1 Getting Started

40

The end-of-line character will take you to the next line if it’s in the text you’re

printing – still centered if it’s SSDL_RenderTextCentered; still indented to the position

you specified if not – but the tab character is not supported.

Example 1-8 shows these features in use (see the lines in bold).

Example 1-8.  An adaptation of Example 1-6 to include labels

//Displays boxes of colors, labeled

// -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main (int argc, char** argv)

{

 SSDL_SetWindowTitle ("Two colored squares, with labels");

 //We'll use 3 built-in colors, and 3 new ones, counting

 const SSDL_Color PUCE = SSDL_CreateColor(127, 90, 88);

 const SSDL_Color MAHOGANY = SSDL_CreateColor(192, 64, 0);

 const SSDL_Color DARK_GREY = SSDL_CreateColor(100, 100, 100);

 //Make a dark grey background -- another way to do it

 SSDL_RenderClear (DARK_GREY);

 //We'll have two boxes across

 //First box:

 SSDL_SetRenderDrawColor (RED);

 SSDL_RenderFillRect (0, 0, 100, 100);

 SSDL_SetRenderDrawColor (WHITE);

 SSDL_RenderTextCentered ("RED", 50, 50); //dead center of

 // red square

 //Second box:

 SSDL_SetRenderDrawColor (GREEN);

 SSDL_RenderFillRect (100, 0, 100, 100);

 SSDL_SetRenderDrawColor (WHITE);

 SSDL_RenderTextCentered ("GREEN", 150, 50); //dead center of

 // green square

Chapter 1 Getting Started

41

 //Report number of colors, thus demonstrating non-centered text

 SSDL_RenderText ("Number of colors: ", 0, 100);

 SSDL_RenderText (2, 150, 100); //We showed 2 colors,

 // so we print "2"

 //Note sout still has its cursor up at the top:

 // SSDL_RenderText* doesn't use or alter the cursor

 //Therefore "Hit any key to end" still shows at top of screen

 sout << "Hit any key to end.\n";

 SSDL_WaitKey();

 return 0;

}

The image here shows the output. Two things to note:

•	 sout doesn’t notice where things were printed with SSDL_RenderText

and SSDL_RenderTextCentered; they do not affect the cursor. So sout

still starts at the top of the page.

•	 SSDL_RenderTextCentered only centers things left to right; it doesn’t

pay attention to y values. To make the labels truly centered in the box,

we’d have to calculate the Y position or just guess. The default font is

14 point; half of 14 is 7, so we could subtract that from the true center

of the box in the Y direction, 50, and pass 50-7 for the y argument into

SSDL_RenderTextCentered. If we care.

Chapter 1 Getting Started

42

EXERCISES

	1.	P ut some appropriate text into the program you wrote in the previous section

(or one of the earlier examples). For example, you could give the bug’s head

something to say.

	2.	P rint a long poem or text, page by page, using SSDL_WaitKey. Use an

appropriate font and size.

	3.	 Make up some statistics – isn’t that how it’s usually done? – and use the \t

character to line up a table, like so,

Character Coolness

========= ===============

Greta Garbo 83%

Humphrey Bogart 87%

Marilyn Monroe 98%

me, if I were 99%

 in the movies

	4.	D raw a stop sign: an octagon with STOP written in the middle.

	5.	D raw a yield sign: an inverted triangle with YIELD in the middle.

Chapter 1 Getting Started

43
© Will Briggs 2019
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_2

CHAPTER 2

Images and Sound
Enough of these line drawings: let’s have something pretty.

�Images and changing window characteristics
Let’s start by displaying an image, using the code in Example 2-1.

Example 2-1.  Displaying an image

//Program to show an image on the screen

// -- from _C++ for Lazy Programmers_

//Simple version

#include "SSDL.h"

int main (int argc, char **argv)

{

 //Show image

 const SSDL_Image BEACH = SSDL_LoadImage ("beach.jpg");

 SSDL_RenderImage(BEACH, 0, 0);

 SSDL_WaitKey();

 return 0;

}

This program loads an image called beach.jpg and shows it at location 0, 0 on

the screen.

That’s it.

44

C++ will look for the picture in the same folder as a.out (g++) or as the .vcxproj

file (Visual Studio). If we have more than one image, the folder may get messy. Let’s put

those images in a subfolder named media and load an image thus:

const SSDL_Image BEACH = SSDL_LoadImage ("media/beach.jpg");

…where media/ means “inside the folder named media.”1

You can at present load an image in GIF (“jiff”), JPG (“J-peg”), BMP (“bitmap”), or

PNG (“ping”) formats or in LBM, PCX, PNM, SVG, TGA (“targa”), TIFF, WEBP, XCF, XPM,

or XV formats.

If you have another format, try loading it in GIMP or some other graphics editor and

saving/exporting as JPG or PNG. I recommend PNG because it supports transparency.

1�Yes, experienced Windows users, that’s really a / not a \. This will work in Windows and Unix,
and portability between operating systems is a Good Thing. (You can also use the escape
sequence \\. But / is nicer.)

Figure 2-1.  Displaying an image

Chapter 2 Images and Sound

45

You may be wondering as you see the result in Figure 2-1: can we scale the image?

Yes: SSDL_RenderImage(BEACH, 0, 0, 640, 480); would make it a 640x480 image.

But stretching it might make the image fuzzy, so let’s resize the window to fit the image

instead.

First, we’ll find out how big it is. If you load it in GIMP, the top bar will tell you:

Unix users can say exiv2 beach.jpg. If exiv2 isn’t installed, talk nice to your system

administrator.

Windows users can right-click the file in its folder and select Properties and then the

Details tab. You’ll see the Width and Height listed as shown in Figure 2-2.

Figure 2-2.  Properties for an image in Microsoft Windows

Chapter 2 Images and Sound

46

However we get the info, we’ll tell the program to make the window this same size,

giving it parameters of width and height in that order:

SSDL_SetWindowSize (400, 300);

 //make a 400x300 window

Since we’re trying to make things cooler, let’s also add a label to the window itself:

SSDL_SetWindowTitle ("My trip to the beach ");

This puts My trip to the beach on the top bar of the display window. The code is

in Example 2-2; the result is in Figure 2-3.

Example 2-2.  Displaying an image, resized and titled

//Program to show an image on the screen

// -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main(int argc, char **argv)

{

 //Set window parameters

 SSDL_SetWindowSize (400, 300); //make a 400x300 window

 SSDL_SetWindowTitle ("My trip to the beach");

 //Show image

 const SSDL_Image BEACH = SSDL_LoadImage("media/beach.jpg");

 SSDL_RenderImage(BEACH, 0, 0);

 SSDL_WaitKey();

 return 0;

}

Chapter 2 Images and Sound

47

In Table 2-1 are prototypes for our new functions related to images and window

properties.

Figure 2-3.  A titled window resized to show an image with no extra space

Chapter 2 Images and Sound

48

The last two functions return integers, just as SSDL_CreateColor returns an

SSDL_Color, so we can use them wherever it makes sense to put an integer. Adding this

line to our program

//Make a label in the middle, centered

SSDL_RenderTextCentered ("BALI? BORA BORA? BEAUTIFUL, WHEREVER!",

 SSDL_GetWindowWidth() / 2,

 SSDL_GetWindowHeight() / 2);

gives us the result in Figure 2-4.

Table 2-1.  Some SSDL image and window functions

SSDL_Image SSDL_LoadImage (char*

filename);

load the image named filename, and provide

an SSDL_image

void SSDL_RenderImage

 �(SSDL_image img, int x, int y);

show the image img at position x, y,

using img’s width and height

void SSDL_RenderImage

 �(SSDL_image img, int x, int y,

 int width, int height);

show the image img at position x, y,

specifying width and height

void SSDL_SetWindowSize

 (int width, int height);

resize the window

void SSDL_SetWindowTitle (char*

title);

give the window a title

int SSDL_GetWindowHeight (); return window height

int SSDL_GetWindowWidth (); return window width

Chapter 2 Images and Sound

49

�Antibugging
The usual problem in this chapter, whether it’s a crash or something not being visible, is

•	 An image didn’t load, or

•	 A font didn’t load

Here are possible culprits:

•	 Folder location. Files should be in the same folder as your a.out or

.vcxproj file or in a subfolder as specified, like media/.

•	 Spelling errors. If you’re like me, you will get names misspelled.

When debugging the preceding program I misspelled beach.jpg as

myImage.jpg. Go figure.

•	 (Microsoft Windows) You can’t tell what kind of file it is. You can’t

see the file extension, so you can’t tell if it’s .jpg, .png, or something

very different that SDL can’t use (see Figure 2-5).

Figure 2-4.  Centered text using SSDL_GetWindowWidth, SSDL_GetWindowHeight

Chapter 2 Images and Sound

50

Solution: un-hide extensions for known file types (see Chapter 1,

“The files you created”).

•	 The file is corrupted or has features your image loader can’t
handle. One trick is to load up the file in a graphics editor. If it loads,

save it in a different format or with different export options, and try

the new file.

•	 It’s loading, but is being pasted off screen. Try putting it at position

0, 0 and see if it becomes visible.

•	 It’s none of those things. What can you do?

If a new feature (say, images) is giving trouble, I can make, or copy

from source code, a program that only does that one feature and

make sure it works.

Figure 2-5.  An unidentified file type in Microsoft Windows

Chapter 2 Images and Sound

51

When it does, I add something else that makes it more like the

final version I want. Once that works, I add another change, and

another, each time making a backup of the last working program,

so that if I mess up the new version I can go back to what I just had.2

For me, this trail of backups is essential to getting new features

working.

�Multiple images together
Pasting multiple images is easy with the SDL library – you just put them on the screen in

order from back to front, and you’re there. And if they’re partly transparent, all the better.

You can find images with transparency like the one in Figure 2-6 by doing an Internet

image search, requiring the file type to be PNG. Paste it after the BEACH background,

and it should show up, with the background showing through the transparent parts.

The result is in Figure 2-7.

//Load images

const SSDL_Image BEACH = SSDL_LoadImage("media/beach.jpg");

const SSDL_Image FLAMINGO = SSDL_LoadImage("media/flamingo.png");

//Paste in the background image, and the flamingo

SSDL_RenderImage(BEACH, 0, 0);

SSDL_RenderImage(FLAMINGO, 0, 175);

2�Remember the Golden Rule of Not Pulling Your Hair Out from Chapter 1: keep lots of backup
copies as you make changes.

Figure 2-6.  A PNG with transparency

Chapter 2 Images and Sound

52

�Adding transparency with GIMP
My flamingo image came with no background. You may have your heart set on

something in a photo, like the adorable puppy in Figure 2-8 – but you just want the

puppy, not the background. Here’s the easiest way I know to make the background

transparent and keep the pup.

Figure 2-7.  A partly transparent image pasted onto a background

Figure 2-8.  A JPG image

Chapter 2 Images and Sound

53

Be warned: unless you’re a true artiste, the resulting image may look ragged around

the edges.

Load your image in a deluxe graphics editor. I use GIMP in my examples, but if you

prefer another program, go for it.

Next, tell GIMP you want to allow transparency. Under the Layer menu, select

Transparency ➤ Add Alpha Channel. What’s an alpha channel? Alpha is how

transparent a pixel is. Adding the channel means transparency is possible. Figure 2-9

shows how this might look.

Figure 2-9.  Adding transparency in GIMP

Now we’ll remove the background, leaving a transparent area instead. You’ll need

what GIMP calls the “Fuzzy Select Tool” (see Figure 2-10), which selects an area of

similar color (in this case, the colors in the floor). The tool looks like a fairy godmother’s

wand. Don’t ask me how I know that.

Chapter 2 Images and Sound

54

Click the wand on parts of the background, and hit delete. In GIMP, you should see

a checkerboard pattern, which means you’re seeing through the image to whatever’s

behind. You can also clean up with Rectangle Select, other Selects, or the Eraser, and,

if you like, Crop to Selection, Scale Image, whatever. Figure 2-11 shows how it might look.

Figure 2-10.  The Fuzzy Select Tool

Chapter 2 Images and Sound

55

When you’re done admiring your handiwork, save – no, export3 – into PNG format

(which, unlike JPG, supports transparency), and use the result in your program, as I do

in Example 2-3.

3�Graphics editors don’t let you save in useful formats; saving is for their own format. You have to
export instead.

Figure 2-11.  An image with transparent background. I also cropped it

Chapter 2 Images and Sound

56

Example 2-3.  Multiple images, with transparency. Output is in Figure 2-12

//Program that pastes two images onto a background

// -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main (int argc, char **argv)

{

 //Set window parameters

 SSDL_SetWindowSize(400, 300); //make a 400x300 window

 SSDL_SetWindowTitle("Pup dog and flamingo at the beach");

 //Load images

 const SSDL_Image BEACH =SSDL_LoadImage("media/beach.jpg");

 const SSDL_Image FLAMINGO=SSDL_LoadImage("media/flamingo.png");

 const SSDL_Image PUPPY =SSDL_LoadImage("media/pupdog.png");

 //Paste in the background image, and the flamingo

 SSDL_RenderImage(BEACH, 0, 0);

 SSDL_RenderImage(FLAMINGO, 0, 175);

 //I'll increase flamingo's size

 // from 81x100

 // to 81x120 -- make it taller

 // and move it a little (175->155)

 // just for grins

 SSDL_RenderImage(PUPPY, 320, 225, 50, 75);

 //puppy goes on bottom right

 //She's bigger than I want, so I

 // make her 50x75. It's better to

 // resize when making the image, but

 // this works too

 SSDL_WaitKey ();

 return 0;

}

Chapter 2 Images and Sound

57

EXERCISES

	1.	M ake a slide show of all the fabulous locations visited by pup dog and flamingo

(or by your own dog or your yard gnome). If you want to have the slides

progress automatically, as opposed to waiting for the user to hit a key, you can

use SSDL_Delay. When the program hits an SSDL_Delay, it stops for the

given amount of time before continuing:

SSDL_Delay (3000); //waits 3000 milliseconds, or 3 seconds

�Sound
Sound is also easy in SSDL. I know what you’re thinking: “I’ll be the judge of that.”

But you’ll agree, unless your sound decides not to load and the program crashes.

Figure 2-12.  Two transparent images pasted onto a background

Chapter 2 Images and Sound

58

There are two kinds of sounds: those that play continuously in the background and

annoy the user to death, called “music,” and those that occur with particular events such

as collisions, called “sounds.” Bottom line: background sound is music; sound effects are

sounds.

We can only have one music running at a time, but multiple sounds are fine. The

main things you can do with either type are load it, play it, pause or resume it, and halt

it. The format we’ll usually be using is WAV, but music can also be in MP3. (If you have a

sound file in another format and SSDL can’t handle it, look for an online converter.)

The most common functions are here; a more complete listing is in Appendix H.

When you see a parameter with a default value given, like repeats in SSDL_PlaySound

(SSDL_Sound s, int repeats=0), this means that if you leave out that argument, it uses

the default:

SSDL_PlaySound (mySound, 2); //repeat sound twice after you play it

SSDL_PlaySound (mySound); //repeat sound 0 times after playing it --

 // that's the default

SSDL_Music SSDL_LoadMUS

 (char* filename) ;

load music from filename

void SSDL_PlayMusic

 (SSDL_Music m,

 int numTimesToPlay=-1);

play music for specified number of times;

-1 means repeat forever

void SSDL_PauseMusic () ; pause music

void SSDL_ResumeMusic() ; unpause music

int SSDL_VolumeMusic

 (int volume=-1);

set the volume, which should be 0 to MIX_MAX_

VOLUME (which is 128), and return the new volume.

If volume is -1, it only returns the volume

void SSDL_HaltMusic () ; halt music

SSDL_Sound SSDL_LoadWAV

 (char* file);

load sound from file. Despite the name, it can be in

WAV format or other supported formats. See online

documentation on SDL2_mixer for details

void SSDL_PlaySound

 (SSDL_Sound sound,

 int repeats=0);

play this sound, plus specified number of repeats.

If repeat is -1, it repeats forever

(continued)

Chapter 2 Images and Sound

59

void SSDL_PauseSound

 (SSDL_Sound snd) ;

pause sound

void SSDL_ResumeSound

 (SSDL_Sound snd);

unpause sound

int SSDL_VolumeSound

 (SSDL_Sound snd,

 int volume=MIX_MAX_VOLUME);

set volume of sound, from 0 to MIX_MAX_VOLUME,

which is 128; return the volume. If volume argument is

-1, it only returns the volume

void SSDL_HaltSound

 (SSDL_Sound snd);

halt sound

You can often find sounds online: do a web search for “free WAV” or some such.

Copy what you need into your media folder.

Example 2-4 shows a simple program that plays music and hits a gong when you hit

a key.

Example 2-4.  A simple music and sound program

//Program to play sounds

// -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main(int argc, char** argv)

{

 //Initial window setup

 SSDL_SetWindowTitle("Simple sound example");

 //Load our media

 SSDL_Music music=SSDL_LoadMUS("Media/457729__razor5__boss-battle-2-0.wav");

 SSDL_Sound bell = SSDL_LoadWAV("Media/321530__robbo799__church-bell.wav");

 //Start the music

 SSDL_VolumeMusic(int(MIX_MAX_VOLUME*0.50));

 //play music at 50% volume,

 // because...that was LOUD.

Chapter 2 Images and Sound

60

 SSDL_PlayMusic (music, SSDL_FOREVER);

 //...looping continuously

 //SSDL_FOREVER means -1

 sout << "Hit a key to hear the bell.\n";

 SSDL_WaitKey();

 SSDL_PlaySound(bell);

 sout << "Hit another key to end.\n";

 SSDL_WaitKey();

 return 0;

}

�Antibugging
Almost anything that goes wrong with a sound will make the program crash.

Prime suspects are having the filename wrong, or in the wrong folder, and using a

nonsupported file type.

EXERCISES

	1.	M ake your own music video; complete with lyrics, images, and sound; and play

it. You’ll need to time the delay between slides; see Exercise 1 in the previous

section.

	2.	P layf a song, adding a gong or some other annoying sound to every (say) fourth

beat.

Chapter 2 Images and Sound

61
© Will Briggs 2019
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_3

CHAPTER 3

Numbers
Numbers are what makes the computer’s world go ‘round, so let’s examine ways to get

the computer to handle those numbers for us.

�Variables
Variables might seem like the letters we use in algebra – y=mx+b, that sort of thing – but

in C++, they’re just places to store numbers (among other things). Example 3-1 shows

what it looks like when we create variables.

Example 3-1.  Variable declarations for my American Idol obsession

int main (int argc, char** argv)

{

 int seasonsOfAmericanIdol = 17;

 //after a while you lose track

 float hoursIveWatchedAmericanIdol = 424.5F;

 //missed half an episode, dang it

 double howMuchIShdCareAboutAmericanIdol = 1.0E-21;

 //1x10 to the -21 power

 double howMuchIDoCareAboutAmericanIdol = 0.000000000000001;1

 //So why'd I watch it if I don't care?

 ...

}

This gives us an integer variable; a float variable, which can take decimal places;

and two double variables, which can take twice as many decimal places. (How many

depends on the machine you’re on.)

1�I’m lining up the =’s, you’ll notice. Neatness makes for easier reading.

62

The trailing F on 324.5F means that it’s a float, not a double, value. (If you don’t

specify, it’s a double.) If you get these confused, you may get a warning from the

compiler. To prevent that warning, I use double generally and forget the F.

1.0E-21 is how C++ writes 1.0x1021.

You can think of the main function as containing locations with these names, each of

which can store a value of the appropriate type (see Figure 3-1).

We gave these variables values as soon as we made them, on the same line. We

didn’t have to, but it’s good practice. It’s disappointing when you find that the number

of dollars in your bank account is –68 million or so, because you didn’t tell the computer

what value to initialize it with, and it just happened to start with a very inappropriate

number in that space.

Golden Rule of Variables

Initialize them.

It’s also good to make descriptive names like those in Figure 3-1. It’s frustrating to

search through code trying to find out what "z" or "x" means. But you know exactly what

seasonsOfAmericanIdol means.

13

0.000000000000000000001

0.000000000000001

int main (int argc, char** argv)

seasonsOfAmericanIdol

hoursIveWatchedAmericanIdol

howMuchIShouldCareAboutAmericanIdol

howMuchIDoCareAboutAmericanIdol

...

324.5

Figure 3-1.  Variables storing values in main

Chapter 3 Numbers

63

Variable names start with letters (possibly preceded with _’s), but after that they can

have numerals in them. Capitalization matters: temp and Temp are different variables.

Extra  Variable and constant names should be descriptive and shouldn't be the
same as any of the built-in keywords in C++ (const, int, enum, etc.).

By convention, C++ constants are written in ALL CAPS to SCREAM at the
programmer that this is a CONSTANT, not a variable, value. To separate words
jammed together, use _: MAX_LENGTH, for example.

How do you think it got its name?

Conventions for variable names are flexible. I tend to use “camel case” variables:
when you jam words together to make a variable, capitalize all but the first:
firstEntry, minXValue. I reserve initial capitals for created types like
SSDL_Image. Initial _’s are for the compiler’s own identifiers. There are other
conventions; whatever convention you use, it’s best to be clear as possible.

�Constants
We’ve already made constants with SSDL types:

const SSDL_Color MAHOGANY = SSDL_CreateColor (192, 64, 0);

const SSDL_Font FONT = SSDL_OpenSystemFont ("times", 18);

As you might expect, you can also do this with built-in types:

const double PI = 3.14159265359;

Chapter 3 Numbers

64

It’s a good idea for anything that must not change. (PI does come to mind.)

There’s also an easy-on-the-fingers option for integer types:

//Location and dimensions for a box we might draw

enum {BOX_LEFT=100, BOX_TOP=50, BOX_WIDTH=200, BOX_HEIGHT=100};

This gives us four constant values and is easier than writing

const int BOX_LEFT =100;

const int BOX_TOP = 50;

const int BOX_WIDTH =200;

const int BOX_HEIGHT=100;

For more uses of enum, see Chapter 10.2

Tip  enums are a quick, easy way to declare constant values (as long as they’re
whole numbers).

�When to use constants, not literal values
When should you use a constant symbol like BOX_LEFT, and when should you use a

literal value, like 100? The answer is almost always: use the constant rather than the bare

literal value. There are two reasons.

One is clarity, as shown previously. You’re going back through your program,

and you see (let’s say) a reference to 7. Seven what? Days in the week? The number of

deadly sins? The age you were when you wrote your very first program? You’ll have to

do detective work to figure it out, especially if there’s more than one 7 in your program.

Detective work is not for the lazy. Better to document it with a clear name.

The other reason is that you may find that the number you were using was wrong.

For example, there are by convention seven deadly sins, but using bare numeric

literals like 7 is a pretty deadly sin in programmer terms. So maybe that enum {NUMBER_

OF_DEADLY_SINS = 7}; needs to be updated to 8. If you used this enum, you’ve got one

line to change. If you put 7 all through your program, you’ll have to go through figuring

which 7’s to change and which ones to leave alone. Too much work.

2�There are maybe too many ways to declare constant values in C++: const, enum, constexpr,
inline constexpr, static const...but we’ll get to that later.

Chapter 3 Numbers

65

The bottom line is clarity. We won’t go back to the bug-face program in Chapter 1

and replace the numbers with consts, because it would make the program harder to

follow: each value is unique, and naming it doesn’t make it clearer. (We have comments

to show what it means anyway.) But the bug-face program is the exception. Generally,

values should be named.

Golden Rule of Constants

Any time it’s not blindingly obvious what a numeric literal value is for, define it as a
constant symbol, in ALL CAPS, and use that name whenever you refer to it.

�Math operators
Whether you’re using the float and double types or the int type, these are the

arithmetic operators you can do in C++ (Table 3-1).

Table 3-1.  The arithmetic operators

Operator Meaning

+ addition

- subtraction, negation

* multiplication

/ division

 % modulus

They’re used as you might expect: 2.6+0.4 or alpha/beta or -2*(5+3).

�Integer division
Back before you learned fractions, when you only used whole numbers, the result was

always a whole number: 5 divided by 2 was 2, with a remainder of 1. It’s the same for

C++’s integer division: 5/2 gives you not 2.5 (that’s a floating-point value), but another

integer, 2.

Chapter 3 Numbers

66

This can be confusing. 1/2 sure looks like it should be 0.5, but since 1 and 2 are

integers, 1/2 has to be an integer too: 0.

In keeping with the way we divide integers, C++ also provides %, the modulus

operator, which means “divide and take the remainder.” 5%2 gives us 1, the remainder

after dividing 5 by 2. % only works with ints. We’ll see more of % in Chapter 8, in the

section on random numbers.

�Assignment (=) operators
We’ve been using = already:

const SSDL_Color MAHOGANY = SSDL_CreateColor (192, 64, 0);

int seasonsOfAmericanIdol = 13;

Constants can’t be changed past that first line or they wouldn’t be constant, but

variables can vary whenever you like:

x = 5; y = 10;

x = 10; //I changed my mind: put a 10 in X, replacing the 5

seasonsOfAmericanIdol = seasonsOfAmericanIdol + 1; //Another year! Yay!

The latter means take whatever number is in that seasonsOfAmericanIdol memory

location; add 1 to it; put the resulting value back into that same place.

It can also be written this way:

seasonsOfAmericanIdol += 1;

They mean the same thing: add 1 to seasonsOfAmericanIdol.3

It works for other arithmetic operators: -=, *=, /=, and %= are all defined the same way.

3�If you want to add 1, rather than some other number, there’s a special “increment” operator just
for that:
++seasonsOfAmericanIdol;

We’ll see that again in Chapter 5, along with “decrement” (--).

Chapter 3 Numbers

67

�A diving board example
Now let’s put this into practice with a program that uses math for sport (Example 3-2).

Someone’s going off the diving board. We’ll make second-by-second images of the

character as it plunges toward the water.

Example 3-2.  A program to show a diver’s path, using enums and math operators

//Program to draw the path of a diver

// -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main(int argc, char** argv)

{

 SSDL_SetWindowTitle("Sploosh! Hit a key to end");

 //Stuff about the board

 enum {BOARD_WIDTH = 60, BOARD_THICKNESS = 8, BOARD_INIT_Y =20};

 SSDL_RenderDrawRect(0, BOARD_INIT_Y,

 BOARD_WIDTH, BOARD_THICKNESS);

 //...the water

 enum { SKY_HEIGHT = 440 };

 SSDL_SetRenderDrawColor(BLUE);

 SSDL_RenderFillRect(0, SKY_HEIGHT,

 SSDL_GetWindowWidth(),

 SSDL_GetWindowHeight() - SKY_HEIGHT);

 //height is

 // window height - sky height

 //...the diver

 enum {WIDTH = 10, HEIGHT = 10};//Dimensions of the "diver"

 enum {DISTANCE_TO_TRAVEL = 20};//How far to go right each time

 enum {FACTOR_TO_INCREASE = 2};//Increase Y this much each time

 enum { INIT_X = 50, INIT_Y = 10 };

 int x = INIT_X; //Move diver to end of board

 int y = INIT_Y; //and just on top of it

Chapter 3 Numbers

68

 const SSDL_Color DIVER_COLOR = SSDL_CreateColor(200, 150, 90);

 SSDL_SetRenderDrawColor(DIVER_COLOR);

 //Now draw several images, going down as if falling, and right

 //Remember x+=DISTANCE_TO_TRAVEL means x=x+DISTANCE_TO_TRAVEL

 // ...and so on

 SSDL_RenderFillRect(x, y, WIDTH, HEIGHT);

 x += DISTANCE_TO_TRAVEL; //go right the same amount each time,

 y *= FACTOR_TO_INCREASE; // down by an ever-increasing amount

 //Same thing repeated several times

 SSDL_RenderFillRect(x, y, WIDTH, HEIGHT);

 x += DISTANCE_TO_TRAVEL; y *= FACTOR_TO_INCREASE;

 SSDL_RenderFillRect(x, y, WIDTH, HEIGHT);

 x += DISTANCE_TO_TRAVEL; y *= FACTOR_TO_INCREASE;

 SSDL_RenderFillRect(x, y, WIDTH, HEIGHT);

 x += DISTANCE_TO_TRAVEL; y *= FACTOR_TO_INCREASE;

 SSDL_RenderFillRect(x, y, WIDTH, HEIGHT);

 x += DISTANCE_TO_TRAVEL; y *= FACTOR_TO_INCREASE;

 SSDL_RenderFillRect(x, y, WIDTH, HEIGHT);

 x += DISTANCE_TO_TRAVEL; y *= FACTOR_TO_INCREASE;

 //end program

 SSDL_WaitKey();

 return 0;

}

Things to notice:

•	 I initialize all variables, as always.

•	 No bare numeric literals in any calculation or variable initialization:

it’s CONSTANTS all the way.

•	 I’m repeating the same pair of lines six times – seriously? Is that lazy?

We’ll have a better way in Chapter 5.

Chapter 3 Numbers

69

Figure 3-2 is the result.

That worked, and in some small sense evokes the terror I feel when I go off the

high dive.

Figure 3-2.  A program that shows the path of a diver into the water

Chapter 3 Numbers

70

�The no-worries list for math operators
Let me now give a sort of “no worries” list: things C++ will handle naturally enough you

won’t need to memorize anything for them.

•	 Precedence. Consider a math expression, 2*5+3. In C++, as in

algebra class, we’d do the multiplying before the adding: this means

(2*5)+3 = 13, not 2*(5+3) = 16. Similarly, in 8/2-1, we divide before

subtracting. In general, do it the way that makes sense to you, and it’ll

be right. If not, use parenthesis to force it to go your way: 8/(2-1).

•	 Associativity. In 27/3/3, which division comes first? Is it done like

27/(3/3) or (27/3)/3? Arithmetic operations are performed left to

right. Assignment is done right to left: x=5+2 requires you to evaluate

the 5+2 before doing anything to the x.

Precise details of precedence and associativity are in Appendix B.

•	 Coercion. If you want to cram a variable of one type into another,

C++ will do it:

double Nothing = 0; //Nothing becomes 0.0, not 0

int Something = 2.7; //ints can't have decimal places, so

 // C++ throws away the .7;

 // Something becomes 2. No rounding, alas

Also, if you mix integers and floating-point numbers in a calculation,

your result will be the version with the most information, that is,

floating point. 10/2.0, for example, gives you 5.0.

EXERCISES

	1.	A ccumulate this sum for as far as you’re willing to take it: 1/2 + 1/4 + 1/8

+ 1/16 +…, using +=. Do you think if you did it forever you would reach

a particular number? Or would it just keep getting bigger? The ancient

philosopher Zeno of Elea would have an opinion on that (https://

en.wikipedia.org/wiki/Zeno%27s_paradoxes, at time of writing). But

he’d be wrong.

Chapter 3 Numbers

https://en.wikipedia.org/wiki/Zeno's_paradoxes
https://en.wikipedia.org/wiki/Zeno's_paradoxes

71

“You can’t get there from here.” —Zeno. Sort of.

	2.	M ake a program to have a box move across the screen in 0.1-second jumps –

like the diver moves, but showing each successive position 0.1 seconds later

(use SSDL_Delay), clearing the screen at every jump, so it looks like it’s really

moving. Or make the delay shorter for a better illusion of motion.

�Built-in functions and casting
Now I want to make a geometric figure – a 5-pointed star – but unlike in Chapter 1, I

don’t want to draw it on graph paper; I want the computer to figure it out for me.

If I think of it as inscribed in a circle…I probably know the center, so what I need

calculated is the points at the edges. Each point is 1/5 of the way further around the

circle than the previous, so if a circle is 360 degrees, the angle between them is 360/5

degrees. If you use radians rather than degrees – like C++ – that’s 2π/5 or 2/5 π radians

between the points.

SDL uses x, y coordinates, so we’ll need a way to get that from the angle. We can do

that using the picture in Figure 3-3. Since sine of the angle θ is the y distance divided by

radius (if math isn’t your thing, trust me), the y distance = RADIUS * sin (θ). Similarly the

x distance is RADIUS * cos (θ).

Chapter 3 Numbers

72

The sin and cos functions, like most C++ math functions, have their prototypes in an

include file called cmath,4 added to our program thus:

#include <cmath>

#include "SSDL.h"

System include files (those that come with the compiler) have <>’s not ""’s and come

before library include files.

This program is meant to draw a line from center to edge, turn 1/5 of the way around

the circle and do it again, and keep going for a total of five lines.

Example 3-3.  A star using sin and cos functions

//Program to make a 5-point star in center of screen

// -- from _C++ for Lazy Programmers_

#include <cmath>

#include "SSDL.h"

Figure 3-3.  Sine and cosine as related to x and y

4�Include files inherited from C++’s ancestor C, under current conventions, start with a “c”: cmath
and cstdlib, for example.

Chapter 3 Numbers

73

int main(int argc, char** argv)

{

 const double PI = 3.14159;

 //Starting out with some generally useful numbers...

 //Can't initialize enums with functions or

 // calculations -- so must use const here

 const int CENTER_X=SSDL_GetWindowWidth() /2; //center of screen

 const int CENTER_Y=SSDL_GetWindowHeight()/2;

 enum { RADIUS = 200 };

 enum { NUMBER_OF_POINTS = 5 };

 //angle information...

 double angle = 0; //angle starts at 0

 const double ANGLE_INCREMENT = (2 / NUMBER_OF_POINTS) * PI;

 //increases by whole circle/5 each time

 //...now we make the successive lines

 int x, y; //endpt of line (other endpt is center)

 x = CENTER_X + int(RADIUS * cos(angle)); //calc endpoint

 y = CENTER_Y + int(RADIUS * sin(angle));

 SSDL_RenderDrawLine(CENTER_X, CENTER_Y, x, y); //draw line

 angle += ANGLE_INCREMENT; //go on to next

 x = CENTER_X + int(RADIUS * cos(angle)); //calc endpoint

 y = CENTER_Y + int(RADIUS * sin(angle));

 SSDL_RenderDrawLine(CENTER_X, CENTER_Y, x, y); //draw line

 angle += ANGLE_INCREMENT; //go on to next

 x = CENTER_X + int(RADIUS * cos(angle)); //calc endpoint

 y = CENTER_Y + int(RADIUS * sin(angle));

 SSDL_RenderDrawLine(CENTER_X, CENTER_Y, x, y); //draw line

 angle += ANGLE_INCREMENT; //go on to next

 x = CENTER_X + int(RADIUS * cos(angle)); //calc endpoint

 y = CENTER_Y + int(RADIUS * sin(angle));

 SSDL_RenderDrawLine(CENTER_X, CENTER_Y, x, y); //draw line

 angle += ANGLE_INCREMENT; //go on to next

Chapter 3 Numbers

74

 x = CENTER_X + int(RADIUS * cos(angle)); //calc endpoint

 y = CENTER_Y + int(RADIUS * sin(angle));

 SSDL_RenderDrawLine(CENTER_X, CENTER_Y, x, y); //draw line

 angle += ANGLE_INCREMENT; //go on to next

 //end program

 SSDL_WaitKey();

 return 0;

}

Figure 3-4 shows the result. What is going on here?

This will be a breeze to debug once we’ve covered the debugger in Chapter 9, but for

now, we’ll just have to channel Sherlock Holmes. That line never changes, which means

angle never changes, which must mean ANGLE_INCREMENT is 0. Why would it be 0?

Figure 3-4.  A 5-pointed star – at least, it was supposed to be

Chapter 3 Numbers

75

Because operators deal with the types we give them, look at that calculation:

(2/NUMBER_OF_POINTS)*PI. The first thing to do is divide 2 by NUMBER_OF_POINTS,

or 5. Since both are integers, we do integer division: 5 goes into 2 zero times (with

a remainder of 2, for what it’s worth), so 2/5 gives us zero. Zero times PI is zero. So

ANGLE_INCREMENT is zero.

We needed floating-point division.

One way is to force 2 and 5 to be float or double. You can do this by saying

double (whatEverYouWantToBeDouble)

This is called casting.

This won’t work

double (2/NUMBER_OF_POINTS)

because that divides 2 by 5, gets 0, and converts the 0 to 0.0. It’s still doing integer

division.

Any of the following will work. As long as one of the arguments is double or float,

you’ll get a result with decimal places.

double (2)/NUMBER_OF_POINTS

2/double (NUMBER_OF_POINTS)

2.0 / NUMBER_OF_POINTS

So changing the beginning of main to what you see in Example 3-4 repairs the

problem.

Example 3-4.  A new beginning to main to make Example 3-3 work

int main(int argc, char** argv)

{

 ...

 //angle information...

 double angle = 0; //angle starts at 0

 const double ANGLE_INCREMENT=(2/double(NUMBER_OF_POINTS))*PI;

 //increases by whole circle/5 each time

 ...

Chapter 3 Numbers

76

Figure 3-5 shows the result.

It’s not vertical, it seems. Exercise 1 is about turning it straight.

Other commonly useful mathematical functions include asin and acos (reverse sine

and cosine), pow (raising a number to a power), abs (absolute value), and sqrt (square

root). See Appendix F for more.

�Antibugging
•	 You call a value-returning function, but it has no effect. Here’s an

example with a function we saw earlier:

SSDL_GetScreenWidth();

SSDL_RenderTextCentered (320, 240, "Blastoff!");

Figure 3-5.  A 5-pointed star

Chapter 3 Numbers

77

Sure, you called SSDL_GetWindowWidth()…but you never did

anything with the result! C++ is happy to let you waste time

by calling functions and not using what they give you. (It’s

sort of a “let the programmer shoot self in the foot, and laugh”

language.) If you want to use the value, refer to it wherever you

wanted that value

SSDL_RenderTextCentered(SSDL_GetScreenWidth ()/2,

 SSDL_GetScreenHeight()/2,

 "Blastoff!");

or put it in a variable or constant for later use

const int SCREEN_WIDTH = SSDL_GetScreenWidth ();

const int SCREEN_HEIGHT = SSDL_GetScreenHeight();

SSDL_RenderTextCentered (SCREEN_WIDTH/2, SCREEN_HEIGHT/2,

 "Blastoff!");

•	 You divided two integers to get a floating-point number between
zero and one, but you got zero. See Example 3-3 in this section. One

of those operands of the / symbol should be cast to float or double.

•	 You get a warning about conversion between types. You can ignore

it, but to make it go away, cast the offending item to what you wanted.

Then the compiler will know it was intentional.

EXERCISES

	1.	A djust the star in Example 3-4 so that the star’s top point is straight up.

	2.	H ere’s how to get system time in seconds:

#include <ctime>

...

int timeInSeconds = int5 (time (nullptr));

5�We cast to int to avoid that conversion warning mentioned in the preceding “Antibugging.”
The time function returns a time_t (whatever that is); we’ll force it to be an int.

Chapter 3 Numbers

78

Use % and / operators to find the current time in hours, minutes, and seconds.

The hours may be off due to what time zone you’re in; you can adjust

appropriately.

	3.	 (Harder) Make a clock face: a circle with numbers 1–12 in appropriate places.

	4.	 …and, having done 2 and 3, make a clock face that shows the current time.

Chapter 3 Numbers

79
© Will Briggs 2019
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_4

CHAPTER 4

Mouse, and if
In this chapter we’ll get mouse input, and the art of making decisions, computer style.

�Mouse functions
Example 4-1 shows a program to detect where you clicked the mouse and report the

result. Amazing, huh? Thus, we introduce three mouse functions: SSDL_GetMouseX,

SSDL_GetMouseY, and SSDL_WaitMouse.

Example 4-1.  A program to capture and show a mouse click. Excitement!

//Program to get a mouse click, and report its location

// -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main(int argc, char** argv)

{

 sout << "Click the mouse and we'll see where you clicked.\n";

 //Get the mouse click

 SSDL_WaitMouse(); //wait for click...

 int xLocation = SSDL_GetMouseX(),

 yLocation = SSDL_GetMouseY(); //and get its X, Y location

 //Print the mouse click

 sout << "The X position of your click was " << xLocation << "\n";

 sout << "The Y position of your click was " << yLocation << "\n";

 //End the program

 sout << "\n\nHit a key to end the program.\n";

80

 SSDL_WaitKey();

 return 0;

}

At this point

int xLocation = SSDL_GetMouseX(),

 yLocation = SSDL_GetMouseY(); //and get its X, Y location

your program allocates space to store two integers, xLocation and yLocation, and puts a

value in each.

And at this point the program prints them (Figure 4-1).

//Print the mouse click

sout << "The X position of your click was " << xLocation << "\n";

sout << "The Y position of your click was " << yLocation << "\n";

Figure 4-1.  Reporting a mouse click

In Table 4-1 are the prototypes for the new mouse functions.

Table 4-1.  Basic mouse functions in SSDL

int SSDL_GetMouseX (); returns the X position of the mouse pointer

int SSDL_GetMouseY (); returns the Y position of the mouse pointer

void SSDL_WaitMouse (); waits for any mouse button to be clicked

Chapter 4 Mouse, and if

81

Extra  Where should you declare variables?

Putting them here

int main (int argc, char** argv)
{

 int xLocation; // X and Y location

 int yLocation; // of mouse

 sout << "Click the mouse and we'll see where you clicked.\n";

 //Get the mouse click

 SSDL_WaitMouse (); //wait for it...

 xLocation = SSDL_GetMouseX (); // and get its X and Y

 yLocation = SSDL_GetMouseY (); // location

 ...

instead of here

int main (int argc, char** argv)
{

 sout << "Click the mouse and we'll see where you clicked.\n";

 //Get the mouse click

 SSDL_WaitMouse (); //wait for it...

 int xLocation = SSDL_GetMouseX (); // and get its X and Y

 int yLocation = SSDL_GetMouseY (); // location

 ...

is an old-fashioned way of doing things, from when C++ was still just plain C. Some
prefer it, because the variables are always easy to find: they’re at the top! I don’t,
because

•	 I start looking for them where they’re set or used, not at the top.

•	 I prefer to initialize them to useful values when possible (and in this
case, that couldn’t happen until after the SSDL_WaitMouse call).

•	 As this example shows, it leads to a need for more commenting.

The old way’s not wrong, but “declare as late as possible” seems lazier.

Chapter 4 Mouse, and if

82

�Antibugging

•	 The numbers reported for the mouse click don’t have anything to
do with where you actually clicked. And your code looks like this:

int xLocation = SSDL_GetMouseX (),

 yLocation = SSDL_GetMouseY (); //Get the X, Y location

SSDL_WaitMouse (); //wait for click...

Thing is, SSDL_GetMouseX/SSDL_GetMouseY don’t get a mouse click location;

they just get a location. So here’s what happens:

1. Program gets the mouse X, Y location

2. You move the mouse where you want it while the program waits

3. You click

So it gets the location before you move the mouse where it should go.

No wonder it’s wrong! Rearrange it thus:

1. You move the mouse where you want it while the program waits

2. You click

3. Program gets the mouse X, Y location

That looks like this in code:

SSDL_WaitMouse (); //wait for click...

int xLocation = SSDL_GetMouseX (),

 yLocation = SSDL_GetMouseY (); //Get the X, Y location

EXERCISES

	1.	 Write a program that lets you click twice to draw a line between your two

mouse clicks.

	2.	 Write a program that lets you click once to set the center of a circle, then again

for a point on the edge of that circle; then it draws the circle.

Chapter 4 Mouse, and if

83

�if
So, how can I determine if the mouse is in a particular area of the screen?

enum {HALF_SCREEN_WIDTH = 320};

if (xLocation < HALF_SCREEN_WIDTH)

 sout << It's on the left side of the screen.\n";

else

 sout << "It's on the right side of the screen.\n";

If xLocation is less than HALF_SCREEN_WIDTH, the program will tell us it’s on the left,

else on the right.

The else part is optional. You can have the program report if xLocation is on the left,

and say nothing if it’s on the right:

if (xLocation < HALF_SCREEN_WIDTH)

 sout << "It's on the left side of the screen.\n";

Note T he general form of the if statement is 

if (<condition>) <action 1> [else <action 2>] 

where things in <pointy brackets> are blanks you’d fill in with something else, and
anything in [square brackets] can be omitted. This is called “Backus-Naur form,”
and it’s the conventional way to describe programming language structures. 

The if statement does exactly what it looks like: if condition is true, it does
action 1, else it does action 2.

Naturally the if statement’s condition must be something that can be true or false.

It’s often one of the true or false expressions in Table 4-2.

Chapter 4 Mouse, and if

84

You can also have the if part or the else part contain multiple actions:

if (xLocation < HALF_SCREEN_WIDTH)

{

 int howFarLeft = HALF_SCREEN_WIDTH - xLocation;

 sout << "It's this far left of the middle of the screen: "

 << howFarLeft << "\n.";

}

else

{

 int howFarRight = xLocation - HALF_SCREEN_WIDTH;

 sout << "It's this far right of the middle of the screen: "

 << howFarRight << "\n.";

}

The curly braces ({}) cause the compiler to bundle the actions within together and

consider them one thing (the if action or the else action). If you declare a variable

inside the {}’s – why not? – the variable only has definition within those {}’s; outside

them, if you refer to it, the compiler will tell you it’s never heard of it: “howFarLeft not

declared in this scope,” or some such.

Note the indenting. Things contained in the if, whether in {}’s or not, are part of the

if statement and are therefore indented relative to it – just as what’s contained in main’s

{}’s is indented relative to it. Not doing this drives other programmers crazy:

Table 4-2.  Using comparison operators in C++

Condition Meaning

X<Y X is less than Y

X<=Y X is less than or equal to Y

X>Y X is greater than Y

X>=Y X is greater than or equal to Y

X==Y X is equal to Y. (X=Y, using a single =, means “store the value of Y in X.”)

X!=Y X is not equal to Y

Chapter 4 Mouse, and if

85

if (xLocation < HALF_SCREEN_WIDTH)

{

int howFarLeft = HALF_SCREEN_WIDTH - xLocation;

sout << "It's this far left of the middle of the screen:";

sout << howFarLeft << ".\n";

}

Fortunately, your programmer-friendly editor will indent code for you: hit Enter

at the end of a line, and it’ll take you where the next line should start. Unless (say) you

forgot a semicolon and it got confused.

Extra T here are different styles of layout for if. Here’s a good way to string
together if statements to handle exclusive options:

if (x < 0) sign = -1; //it's positive

else if (x > 0) sign = +1; //it's negative

else sign = 0; //it's 0

Here’s a common variation for if statements using {}’s:

if (xLocation < HALF_SCREEN_WIDTH) {

 //"Egyptian" brackets, so called

 // because they look like where

 // the Egyptian's hands are in

 // Figure 4-2

 // I'd guess the Bangles' song

 // "Walk Like an Egyptian" gave

 // us this bit of silliness,

 // but who knows

 int howFarLeft = HALF_SCREEN_WIDTH - xLocation;

 sout << "It's this far left of the middle of the screen: ";

 sout << howFarLeft << ".\n";

}

Chapter 4 Mouse, and if

86

The writer saved a line by putting the first { on the line with the condition. But it’s
harder to scan the left margin now and ensure that all the {}’s are matched.
I won’t say it’s wrong, but I think you’ll make fewer errors if you put each { and }
on a line by itself.

Figure 4-2.  Where “Egyptian brackets” got the name

�Coercion and if conditions (int’s dirty little secret)
You probably won’t mean to use something other than a true or false condition inside

the ()’s of an if statement…but what if you did?

int x;

...

if (x) ...;

As it happens, C++ considers 0 to mean false and all other integers to mean true. So if

x is 0, the if statement fails; otherwise, it executes.

If you meant to do that and it’s clear, OK. But sometimes it sneaks up on us, as we see

in the following “Antibugging” section.

�Combining conditions with &&, ||, and !
There’s something else we can do with conditions: combine them. Consider these

expressions:

•	 X>0 && X<10. The "&&" is read as “and.” This means X is more than 0

and less than 10.

•	 X<=0 || X>=10. The “||” is read as “or.” This means X is either 0 or

less, or it’s 10 or more.

Chapter 4 Mouse, and if

87

•	 ! (X<0). The “!” is read as “not.” This means it isn’t true that X is less

than 0. (You need the ()’s. If you type ! X < 0, C++’s precedence

rules make it interpret this as (! X) < 0. Go figure.)

The odd look of these operators (why “&&” rather than “&” or “and”?) is a historical

artifact. You get used to it.1

So, to adapt the earlier example, here’s a way of seeing if the mouse click stored in

xLocation and yLocation is in the upper left of the screen:

if (xLocation < HALF_SCREEN_WIDTH && yLocation < HALF_SCREEN_HEIGHT)

 sout << "That's in the upper left quadrant.";

�Antibugging

•	 The condition always fails or always succeeds, though you’re sure
it shouldn’t. Like this:

//Cinderella must leave the dance at midnight.

 //Does she have time?

int minutesLeftTillMidnight = 32400; �//3 p.m. --

//plenty of time!

if (minutesLeftTillMidnight = 0) //Warn her if time's up

 sout << "It's midnight! Cinderella, get home now!\n";

 //Print time left

sout << "You have " << minutesLeftTillMidnight

 << " minutes left.\n";

This reports she has 0 minutes left – which is wrong! – and if she

did, shouldn’t it have warned her to go home?

The problem is the condition. minutesLeftTillMidnight = 0, as

we know, means store 0 in minutesLeftTillMidnight. So we alter

the variable when we shouldn’t.

1�We also have single & and single | as operators (see Chapter 26) – but that’s another matter.

Chapter 4 Mouse, and if

88

But we’re not done yet! Now the if statement must decide

whether the condition is true. No problem: 0 is false, and we

just got a zero value between the parentheses, so the if doesn’t

fire and Cinderella, despite losing all her time, doesn’t get her

warning.

We meant minutesLeftTillMidnight == 0. This is the double-

equals error. It has its own name because everybody does it.

Solution: try not to, and don’t hit yourself when you do. The

compiler may warn you. It’s a Good Thing to notice compiler

warnings.

•	 It does the action in the if, even if the condition is false. The

problem may be that you put a ; after the condition.

if (2+2==5);

 �sout << "Orwell was right: the Party even controls math!\n";

; signals that the statement you’re working on is over. C++

interprets the preceding code as: if 2+2==5, do nothing (since

nothing is what comes next, before the ;). After that, print that

Orwell was right.

Solution: remove the first ;.

•	 It does the later actions in the if, even if the condition is false.

if (2+2==5)

 �sout << "Orwell was right: the Party even controls math!\n";

 sout << "2+2==5 if I say it does!\n";

This code will print

2+2==5 if I say it does!

Chapter 4 Mouse, and if

89

Since there are no {}’s, C++ doesn’t bundle those two sout

statements together as the things to do if the condition succeeds;

it interprets the statement as: if the condition succeeds, print that

Orwell was right. Then, whatever happens, print 2+2==5. Solution:

if (2+2==5)

{

 �sout << "Orwell was right: the Party even controls math!\n";

 sout << "2+2==5 if I say it does!\n";

}

The last two problems were exacerbated by correct indenting, which made it look like

everything was OK. The editor can help prevent that:

Tip  When using a programmer-friendly editor, if you find yourself correcting the
editor’s indenting, it may have found a punctuation error. You can trace the weird
indenting back to the problem.

•	 You can’t figure which if an else goes with.

if (TodayIsSaturday)

 if (IAmAtWork)

 sout << "I need a life.\n";

 else

 sout << "Life is good.\n";

What do we do if today isn’t Saturday? Print “Life is good.”?

Which if does the else go with? Indenting doesn’t matter to the

compiler. The compiler needs a clear rule, and here it is: the else

always goes with the most recent if. In this case, “Life is good.” is

printed if TodayIsSaturday is true but IAmAtWork is false. If today

isn’t Saturday, the code prints nothing.

This ambiguity is called the dangling else problem, and most

languages solve it just as C++ does here.

Chapter 4 Mouse, and if

90

•	 It’s still giving incorrect results, and it looks like this:

if (x > y && z) //If x is bigger than both y and z...

That reasoning works in human language, but C++ needs what’s

on each side of the && to be a true or false condition you want

evaluated. The statement will compile, but C++ will understand it

to mean “if x > y is true, and z is also true, that is, if z is nonzero,”

which is not what I meant.

This fixes my problem:

if (x > y && x > z) �//If x is bigger than y AND

//x is bigger than z

EXERCISES

	1.	 Write code to report whether the square root of some X is greater than 1.

	2.	 Given two integers, report what order they’re in (correct order, reverse order, or

equal).

	3.	 Given a numeric score for a grade, 0–100, print whether it’s an A, B, C, D, or F.

	4.	 Write an if statement that will print whether a mouse click is in the upper left

quarter of the screen, the upper right, the lower left, or the lower right.

	5.	 Write code that will print “Out of range!” if X is less than 0 or greater than 8 –

and will force it to be in range (by changing X to 0 if it’s too small and to 8 if it’s

too big).

�Boolean values and variables
If we can use true or false values in our if statements, can we also store them for later

reuse? Sure. Here’s one:

bool isRaining = true; //bool means "It's got to be true or false;

 //nothing else allowed"

Chapter 4 Mouse, and if

91

and here is how you might use it:

if (isRaining) sout << "I need an umbrella.\n";

Tip I usually start bool variable names with is, so it’s obvious the value should
be true or false.

The possible values for a Boolean variable are – wait for it – true and false.

You can also calculate these values in expressions, as you can with int or double or

float variables:

bool isTooHotForGolf = (temperature > 85);

but if you prefer to use an if, that also works:

bool isTooHotForGolf;

if (temperature > 85) isTooHotForGolf = true; else isTooHotForGolf = false;

Why would you want Booleans? For convenience and clarity. Suppose you want to

find out if it’s a good day for golf, but you’re really finicky. You can say

if (windSpeed < 10 &&

 (cloudCover > 50 && (temperature > 75 && temperature < 85) ||

 (cloudCover < 50 && (temperature > 60 && temperature < 75)))

 //Aaaigh! What does this mean?

or you can initialize some bool variables and say

if (isCalm && ((isCloudy && isWarm) || (isSunny && isCool)))

 //Cloudy & warm or sunny & cool -- as long as it's calm

I think I’ve proved my point.

Chapter 4 Mouse, and if

92

Extra  George Boole (1815–1864) is the founder of modern symbolic logic, that
is, using symbols as variables that can be true or false. 

Prior to Boole, there certainly was an understanding of
logic, but people were unsure that you could express logical
expressions without reference to the meaning and not run the
risk of error. (Many might have a hard time trusting that, say,
“p and q implies p,” but wouldn’t have any problem with “If it’s
raining and cold, it’s raining.”) Even Boole was cautious: in the
introduction to his book The Mathematical Analysis of Logic,
he anticipated arguments that what he was doing was a really
bad idea, but suggested it might not be totally useless. He was
right: it was a resounding success, and the computer in front of you as you program
is evidence of it.

EXERCISES

	1.	 Wait for a mouse click, and set a Boolean variable to true if the X is greater than

the Y. Report whether it was by printing a message on the screen.

	2.	 Get two mouse clicks, and set Boolean variables for whether the second is to

the right of the first and whether it’s below the first. Then report the second’s

relation to the first as north, northeast, east, southeast, or whatever’s correct.

�A hidden object game
Somewhere in a field of rocks is a fossilized ammonite (Figure 4-3). We’ll

make a game to train budding paleontologists: click on the screen, and if you

get the fossil, you win.

Chapter 4 Mouse, and if

93

What we need is a sort of imaginary “bounding” box around it: if I click in the box, I

win; elsewhere, I lose. It’s too hard to guess the coordinates of the box. Maybe I can draw

a box on the image, (Example 4-2) and if it looks wrong, adjust. My wrong guess is in

Figure 4-4.

Example 4-2.  Drawing a box on the screen to find the bounding box we want for

part of the image

//Program to draw a box around a fossil, to find its coordinates

// -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main (int argc, char** argv)

{

 //Resize window to fit the background image.

 SSDL_SetWindowSize (500, 375); //image is 500x375

 SSDL_SetWindowTitle("A box to enclose the fossil -- hit a key to end");

Figure 4-3.  An image to search. The fossil’s in there somewhere…

Chapter 4 Mouse, and if

94

 //Load up the world to find fossil in

 const SSDL_Image BACKGROUND = SSDL_LoadImage("media/ammonitePuzzle.jpg");

 SSDL_RenderImage (BACKGROUND, 0, 0);

 //Draw a box where we think he is. Is it right?

 SSDL_SetRenderDrawColor (WHITE); //a *white* box, for visibility

 //arguments below mean: left x, top y, width, height

 SSDL_RenderDrawRect (375, 175, 80, 50); //my guess

 //End program

 SSDL_WaitKey ();

 return 0;

}

Figure 4-4.  Looks like the bounding box for the ammonite needs some changes.
(I adjusted the lines’ thickness to make it easier to see)

Chapter 4 Mouse, and if

95

After some playing around I get a new bounding box, the one that results in Figure 4-5:

SSDL_RenderDrawRect (335, 180, 45, 35); //corrected numbers

Figure 4-5.  The bounding box is correct

So now we’ll have a program (Example 4-3) that detects whether a mouse click is

inside that box. It uses a couple of Boolean variables; and it flashes the bounding box in

red and white if you lose.

Example 4-3.  My fossil hunt game: trying to find an object with a mouse.

Figure 4-6 shows possible output

//Program to find a fossil in a field of stones

// -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main (int argc, char** argv)

{

 //Set up window

Chapter 4 Mouse, and if

96

 enum {PICTURE_WIDTH=500, PICTURE_HEIGHT=375}; //size of the picture

 enum {WINDOW_WIDTH =500, WINDOW_HEIGHT =430}; //size of program window

 //(has extra room

 // for messages)

 SSDL_SetWindowTitle ("My fossil hunt: a hidden-object game");

 SSDL_SetWindowSize (WINDOW_WIDTH, WINDOW_HEIGHT);

 //Load up the world to find the fossil in

 const SSDL_Image BACKGROUND=SSDL_LoadImage("media/ammonitePuzzle.jpg");

 SSDL_RenderImage (BACKGROUND, 0, 0);

 //Print instructions to the user.

 SSDL_SetCursor (0, PICTURE_HEIGHT);

 sout << "Where's the ammonite? Click it to win.\n";

 //Get that mouse click.

 SSDL_WaitMouse ();

 //Redraw what's on screen

 SSDL_RenderClear ();

 SSDL_RenderImage (BACKGROUND, 0, 0);

 //See where we clicked, and report if the fossil was found

 //I got these numbers by running the searchBox program

 enum {BOX_LEFT = 335, BOX_TOP = 180, BOX_WIDTH=45, BOX_HEIGHT=35 };

 int x= SSDL_GetMouseX(), y = SSDL_GetMouseY();

 //Is X between left side of box and right? Is Y also within bounds?

 bool isXInRange = (BOX_LEFT < x && x < BOX_LEFT+BOX_WIDTH);

 bool isYInRange = (BOX_TOP < y && y < BOX_TOP +BOX_HEIGHT);

 if (isXInRange && isYInRange)

 sout << "You found the ammonite! Here's your Ph.D.\n";

 else

 {

 sout << "You lose.\n";

Chapter 4 Mouse, and if

97

 //Now we'll flash where the fossil was

 SSDL_RenderImage (BACKGROUND, 0, 0);2

 SSDL_SetRenderDrawColor (RED);

 SSDL_RenderDrawRect (BOX_LEFT, BOX_TOP, BOX_WIDTH, BOX_HEIGHT);

 SSDL_Delay (250); //250 msec, or 1/4 sec

 SSDL_RenderImage (BACKGROUND, 0, 0);

 SSDL_SetRenderDrawColor (WHITE);

 SSDL_RenderDrawRect (BOX_LEFT, BOX_TOP, BOX_WIDTH, BOX_HEIGHT);

 SSDL_Delay (250); //250 msec, or 1/4 sec

 SSDL_RenderImage (BACKGROUND, 0, 0);

 SSDL_SetRenderDrawColor (RED);

 SSDL_RenderDrawRect (BOX_LEFT, BOX_TOP, BOX_WIDTH, BOX_HEIGHT);

 SSDL_Delay (250); //250 msec, or 1/4 sec

 SSDL_RenderImage (BACKGROUND, 0, 0);

 SSDL_SetRenderDrawColor (WHITE);

 SSDL_RenderDrawRect (BOX_LEFT, BOX_TOP, BOX_WIDTH, BOX_HEIGHT);

 SSDL_Delay (250); //250 msec, or 1/4 sec

 }

 //End program

 sout << "Hit a key to end.";

 SSDL_WaitKey ();

 return 0;

}

2�Do I really have to post the background each time? Any time SSDL updates the screen – by a
call to SSDL_Delay, SSDL_WaitKey, SSDL_WaitMouse, or otherwise – it may then lose what it
updated so it won’t show up on the next update. Or it may not. I’m reposting the background to
be sure.

Chapter 4 Mouse, and if

98

EXERCISES

	1.	 Write a program that displays a box, waits for a mouse click, and tells you

whether you clicked within the box.

To make it more fun, put up a roughly square image of something interesting.

I like Spam. Special thanks to the creative people who made “Find the Spam”

(www.smalltime.com/findthespam/) for this surreal game.

	2.	 Make a hidden object game: the user must click on the objects you provide

(have two or more) in order to win. You can require the user to do it in order.

A click on something that isn’t one of the objects, or the correct object in order,

ends the game in a loss.

You may consider each object to be a square area on the screen.

Figure 4-6.  The completed fossil hunt game

Chapter 4 Mouse, and if

http://www.smalltime.com/findthespam/

99

	3.	 Write a program that draws a bubble wherever you clicked. Always the same

size bubble…but it won’t let you put one partly on the screen. If you click

too close to an edge, it moves the bubble away from the edge enough that it

does not cross the edge. You might also add a sound effect when you create a

bubble.

Chapter 4 Mouse, and if

101
© Will Briggs 2019
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_5

CHAPTER 5

Loops, Input, and char
In this chapter we’ll look at repeated actions, input, and things to do with the

character type.

�Keyboard input
Consider this code:

int ageInYears;

sout << "How old are you? "; ssin >> ageInYears;

This prints the query about age, then waits for keyboard input. If the user enters a

number, that number is stored in ageInYears. (Anything else is likely to give ageInYears

a 0 value.) ssin1 waits for you to hit Enter before it processes input, so backspacing is

allowed.

ssin uses the same font and cursor as sout; they are both part of SSDL.

You may note how the << arrows go: with sout, they go from the value to the output;

with ssin, they go from the input to the variable.

This is as good a time as any to introduce a new basic type: char, or character.

Examples of chars include ‘A’ and ‘a’ (which are distinct), ‘?’, ‘1’, ‘ ’ (the space character),

and ‘\n’. Here is some code that uses a char variable:

char answer;

sout << "Are you sure (Y/N)? "; ssin >> answer;

if (answer == 'y')

 sout << "Are you *really* sure?\n";

1�I could have called it sin and waited for the puns to start, but sin already means something in
C++: the sine function. “S-in” might be a good way to pronounce it.

102

You can also chain things you’re reading in with >>:

ssin >> firstThingReadIn

 >> secondThingReadIn;

Whether reading chars or numbers of whatever, ssin skips whitespace (spaces, tabs,

and returns); so you can type what you want with spaces between, and it can handle it.

Example 5-1 shows a sample program that finds ways to insult you no matter what

your response. Figure 5-1 shows a sample session.

Figure 5-1.  Insulting the world, one person at a time

Example 5-1.  A program using ssin

//Program to insult the user based on input

// -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main (int argc, char** argv)

{

 int ageInYears = 0;

 sout << "Let's see if you can handle the truth.\n";

 sout << "How old are you? "; ssin >> ageInYears;

 bool isOlder = (ageInYears >= 20);

 //Seriously? Well, 20 *is* old if you're a computer program

 if (isOlder) sout << "The truth is you are OLD.\n";

 else sout << "You're not old enough. Sorry, kid.\n";

 sout << "Hit any key to end.\n";

Chapter 5 Loops, Input, and char

103

 SSDL_WaitKey ();

 return 0;

}

�Antibugging

•	 You get a string of error messages like this2:

main.cpp: In function 'int main(int, char**)':

main.cpp:11:39: error: no match for 'operator<<' (operand

types are 'std::istream' {aka 'std::basic_istream<char>'}

and 'int')

 sout << "How old are you? "; ssin << ageInYears;

                                  ~~~~~^~~~~~~~~~~~~

main.cpp:11:39: note: candidate: 'operator<<(int, int)' 

<built-in>

main.cpp:11:39: note:   no known conversion for argument 

1 from 'std::istream' {aka 'std::basic_istream<char>'} to 

'int'

In file included from /usr/include/c++/8/string:52,

                 �from /usr/include/c++/8/bits/locale_

classes.h:40,

                 �from /usr/include/c++/8/bits/ios_

base.h:41,

                 from /usr/include/c++/8/ios:42,

                 from /usr/include/c++/8/istream:38,

                 from /usr/include/c++/8/sstream:38,

                 �from ../../external/SSDL/include/SSDL_

display.h:26,

                 �from ../../external/SSDL/include/

SSDL.h:27,

                 from main.cpp:4:

2�This is from the g++ compiler. Visual Studio gave me three lines and clearly identified << as the 
problem. Nice!

Chapter 5  Loops, Input, and char



104

/usr/include/c++/8/bits/basic_string.h:6323:5: note: 

candidate: 'template<class _CharT, class _Traits, 

class _Alloc> std::basic_ostream<_CharT, _Traits>& 

std::operator<<(std::basic_ostream<_CharT, _Traits>&, const 

std::__cxx11::basic_string<_CharT, _Traits, _Alloc>&)'

     operator<<(basic_ostream<_CharT, _Traits>& __os,

     ^~~~~~~~

and then literally pages more. Good luck decoding that.

It all came from one error: the >>’s went the wrong way on an ssin 

statement. It should have been ssin << ageInYears. Compilers 

sometimes get confused.

You may get another flood of errors if you try to ssin >> "\n", or 

something else that isn’t a variable.

EXERCISES

	1.	 Write a program for converting degrees Fahrenheit to degrees Centigrade, using 

the formula C = (F-32)*(5/9). Make it interactive, that is, ask the user for the 

temperature to convert.

	2.	 Write a program that identifies what generation you’re in (Gen Z, millennial, 

etc.), based on the age or year of birth the user inputs. You get to pick the ranges.

	3.	T he Body Mass Index (BMI) tells you if you’re heavy, thin, or in the middle. (It’s 

imprecise, but if nothing else, maybe I could convince my grandmother I won’t 

starve if I don’t take seconds.)

Officially, these are the ranges:

underweight less than 18.5

normal weight 18.5–25

overweight 25–30

obese 30+

Chapter 5  Loops, Input, and char



105

So: write a program to calculate the user’s BMI. The formula is

BMI = weight in kg / (height in meters)2

If you’re in a country that uses English units, you’ll also need this information:  

1 kg = 2.2 pounds; 1 meter = 39.37 inches.

	4.	H ave the user enter two single-digit numbers and return their sum. But 

here’s the twist: the numbers entered are in base 16. In base 16, we use ‘A’ 

to represent 10, ‘B’ for 11, ‘C’ for 12, and so on to ‘F’ for 15. You can give the 

result in base 10.

	5.	 Write a program that asks the user for two times (such as 1:06 or 12:19) and 

prints the difference neatly (11:03, for example, or 0:40, but not 13:0 or -12:70).

	6.	 Instead of asking the user for the two times, in the previous example, measure 

the two times that the user hits the return key, getting the current system time 

like so:

long long int myTime = time (nullptr);

This gives you time in seconds since midnight, January 1, 1970 (on systems I know). 

You’ll need to #include <ctime>.

�while and do-while
The program can do something if a condition is true...or it can do something while a 

condition is true.

Here’s a loop to determine how many times you can divide a number by 10 before 

you get 1. (This will be the same as the number of digits in the number if you print it.)

int digits = 0;

while (number > 1)    //while we haven't reached 1

{

    number /= 10;     //divide it by 10

    digits += 1;      //that's one more digit!

}

Chapter 5  Loops, Input, and char



106

In Backus-Naur form (BNF), the while statement is

while (<condition>) <action>

As long as the condition is true, the while loop will execute the action. When it stops 

being true, the loop ends, and the program moves on to whatever comes after.

There’s a variation on while, exactly the same except that it checks the condition 

after doing the action: do-while. Its BNF form is

do <action> while (<condition>)

and an example is

do

{

      sout << "Ready to rumble (Y/N)? "; ssin >> answer;

}

while (answer != 'n' && answer != 'y');

      // while answer isn't yes or no, ask again and again

if (answer == 'y')

      ...//rumble!

That wouldn’t work as a while statement

while (answer != 'n') ...

because you don’t know what answer is until you’ve asked at least once.

The bottom line is that do-while does the action at least once (before testing the 

condition), whereas while might quit before taking any action at all. We usually use 

while, but sometimes do-while is the very thing we need. Thus, we have the Golden 

Rule of Loops.

Golden Rule of Loops (Version 1) 

If you want the loop to execute at least once, use do-while. 

If it makes any sense for it to execute zero times, use while.

Chapter 5  Loops, Input, and char



107

�Loops with SSDL
There’s something I didn’t tell you about SSDL. It doesn’t update the screen every time 

you draw or print. To save update time, it puts this off till it has a reason to wait on the 

user: an ssin statement, or an SSDL_WaitKey or SSDL_WaitMouse. The following loop, 

which is intended to show you "Move mouse to right half of screen to end." until 

you move the mouse to the right, will never update the screen:

while (SSDL_GetMouseX() < WHERE_IT_IS)

{

    SSDL_RenderClear ();

    SSDL_SetCursor (0, 0);

    sout << "Move mouse to right half of screen to end.";

}

SSDL also doesn’t check for things that make it quit the program – hitting Escape or 

clicking the X to kill the window – until it’s waiting on you. So the preceding code won’t 

let you quit the program either.

The fix is the same for both problems: call the function SSDL_IsQuitMessage. It 

updates the screen, checks for input messages (mouse clicks, keystrokes), and returns 

whether there’s been a command to quit.

while (! SSDL_IsQuitMessage () && SSDL_GetMouseX() < WHERE_IT_IS)

{

    SSDL_RenderClear ();

    SSDL_SetCursor (0, 0);

    sout << "Move mouse to right half of screen to end.";

}

Here’s the ready-to-rumble do-while loop from earlier, adapted to allow the user to 

quit easily:

do

{

      sout << "Ready to rumble (Y/N)? "; ssin >> answer;

}

while (!SSDL_IsQuitMessage () && answer != 'n' && answer != 'y');

Chapter 5  Loops, Input, and char



108

Extra  We could ask the user to type 1 for yes and 2 for no if we wanted to 
expose ourselves as user-hostile throwbacks to the 1970s and never get hired 
again. (What does 2 have to do with “no”?) It’s much easier on the user to 
remember that “n” means no. 

If there are more options to choose than yes and no – say, your program 
manipulates files, Opening, Saving, and Renaming – it’s still user-friendly to give 
options with letters (O, S, and R) rather than numbers. 

How to make your programs easy to interact with is the subject of one sub-field of 
computer science: human-computer interaction.

�break and continue
break means leave the loop immediately. Here’s a version of the preceding while loop, 

now using break. You decide which way’s clearer.

while (SSDL_GetMouseX() < WHERE_IT_IS)

{

    if (! isQuitMessage ()) break;

    SSDL_RenderClear ();

    SSDL_SetCursor (0, 0);

    sout << "Move mouse to right half of screen to end.";

}

continue means skip the rest of this iteration of the loop and go back to the top. I 

rarely use it.

Some programming-style mavens are horrified by break and continue. They think 

you should be able to look at the loop’s continuation condition and see immediately 

under what circumstance the loop can end – essentially, that these keywords reduce 

clarity. I think they’re right that clarity is crucial, but I’m not sure break is the problem. 

Certainly if your loop was 50 lines long, it would be tedious to examine it for breaks. But I 

think the solution is not to have loops 50 lines long. Simple is good.

Chapter 5  Loops, Input, and char



109

�Antibugging

•	 The program won’t end, and you can’t even kill the program. 

You’re probably stuck in a loop, but what do you do to restart? If 

Ctrl-C doesn’t work, try these:

•	 Visual Studio: Debug ➤ Stop Debugging, or hit the reddish 

square for stop near the top of the window.

•	 MinGW: Kill it with Task Manager.

•	 Unix: If you don’t even have a command prompt, hit Ctrl-Z in the 

command window to get it.

There are two commands that can help us. ps lists active 

processes:

PID TTY          TIME CMD

14972 pts/0    00:00:00 bash

15046 pts/0    00:00:00 bash

15047 pts/0    00:00:01 a.out

15054 pts/0    00:00:00 ps

kill -9 <process-id> means something like “I tried, but I 

can’t find a nice way to end this process, so just kill it.”

a.out is what we’re trying to kill, but if we ran it with a script 

like runx, we’ll want that gone too. It’s probably the most 

recent shell command, some command with “sh” in its name. 

(Get the wrong one and you may kill your terminal. Oops.) 

This command will kill it and its dependent process a.out.

kill -9 15046

•	 The loop repeats forever, and you can’t quit. The problem is it isn’t 

checking for quit messages. Make your loop condition look like this:

while (! SSDL_IsQuitMessage () &&

             ...whatever else you want to check...  )

Chapter 5  Loops, Input, and char



110

or, if it’s a do-while,

do

{

      ...

}

while (! isQuitMessage () && ...);

The loop repeats forever until you hit quit; or it does something 

forever that you wanted done a few times.

Consider under what condition you will break the loop. It must be 

that it’s never met:

int rectanglesDrawn = 0;

while (!SSDL_IsQuitMessage () &&

             rectanglesDrawn < MAX_RECTANGLES)

{

      SSDL_RenderDrawRect (...);

}

The loop never incremented rectanglesDrawn...so no matter 

how many you draw, the loop doesn’t end. This line should do it:

      ...

      rectanglesDrawn += 1;

}

•	 The loop repeats forever, or won’t repeat when it should. It’s easy 

to get confused when the loop has a combination of conditions:

do

{

      if (isQuitMessage ()) break;

      sout << "Answer Y or N: "; ssin >> answer;

}

while (answer != 'n' || answer != 'y');

Chapter 5  Loops, Input, and char



111

This may look right, but it actually says: keep looping while the 

answer is not yes or not no. Well it’s always either not yes or 

not no! Suppose it’s yes: then “not no” is true, so it keeps going. 

Suppose it’s no: then “not yes” is true, so it keeps going. So it loops 

forever.

The solution is to keep going while it’s not yes, and it’s also not 

no – while it’s a nonsensical answer like '7' or 'X'.

do

{

      if (isQuitMessage ()) break;

      sout << "Answer Y or N: "; ssin >> answer;

}

while (answer != 'n' && answer != 'y');

EXERCISES

	1.	 Make your own music player: put buttons marked “Music on” and “Music off” 

near the bottom of the screen, and turn sound on or off appropriately when the 

user clicks on the boxes.

	2.	 Write a program that draws a bubble wherever you click. The bubble’s size 

should depend on how long since the last mouse click. Use the Internet to read 

up on the function SDL_GetTicks().

	3.	U pdate Exercise 1 from the end of the previous chapter – the hidden object 

game – so the user can click on the hidden objects in any order.

	4.	 (Harder; requires geometry) Consider the perimeter of a triangle which is 

centered on a point and whose endpoints are “R” away from that center.

Now consider if it were a square, or a pentagon, or something with N sides 

(Figure 5-2). What will the perimeter look like when N is large?

Chapter 5  Loops, Input, and char



112

Write a program that finds, given some R, the perimeter of a regular N-sided polygon, where N 

is large. Divide that perimeter by 2R. How much does it look like the value you know for π?

�for loops
A for loop is a loop that counts through a range. Here’s a simple one:

for (int count=0; count < 10; count += 1)

    sout << ' ';         //print these numbers, separated by spaces

and here’s its output:

0 1 2 3 4 5 6 7 8 9

In Backus-Naur form, a for loop is

for (<initialization>; <continuing-condition>; <increment>)

<action>

Let’s look at that piece by piece.

The initialization section – int count=0 – is done before the loop starts. As you can 

see, you can declare variables in it. The variables are only visible inside the loop.3

As long as the continuing condition is true, the loop continues.

At the end of each time through the loop, each “iteration,” C++ does the increment 

part. This could be anything, but it usually increments an index variable (i.e., the 

variable we’re using to count with).

3�Some compilers aren’t up to speed on this, and let the variables stay defined after the loop. 
Solution: declare the variable before the loop. Better yet, upgrade your compiler.

…
R

R R R

Figure 5-2.  Polygons for Exercise 4

Chapter 5  Loops, Input, and char



113

The order that the computer does the sections is

	 1.	 do <initialization section>

	 2.	 is <continuing-condition> true? If not, leave the loop

	 3.	 do <action>

	 4.	 do <increment-section>

	 5.	 go back to step 2

�Increment operators
We often find we need to add 1 to a variable (or subtract 1). C++ provides operators for 

this. Here are two examples:

++y; //adds 1 to y. This is called "increment."

--x; //subtracts 1 from x. This is called "decrement."

Most computers have a built-in instruction to add 1 and another to subtract 1 – so 

we’re telling the compiler to use them. It’s efficient.

We often do this in for loops, like so:

for (int count=0; count < 10; ++count)

      sout << count << '';

We can also use decrement operators:

for (int count=10; count > 0; --count) //A countdown, 10 to 1...

      sout << count << '';

sout << "Liftoff!\n";

You can increment by other amounts, though it’s unusual:

for (int count=2; count <= 8; count += 2) //2 4 6 8...

      sout << count << '';

sout << "Who do we appreciate?\n";

There’s another type of increment, called “post-increment,” and a corresponding 

post-decrement. It looks like this: count++, not ++count. You won’t notice the difference 

unless you put the expression on the right side of an = or as an argument to a function.

Chapter 5  Loops, Input, and char



114

Pre-increment: Y = ++X means X = X+1; Y = X. That is, add 1 to X, then use the 

value of X (copy it to Y).

Post-increment: Y = X++ means Y = X; X = X+1. That is, use the value of X (copy it 

to Y), then add 1 to X.

�An example: averaging numbers
Suppose you want to average a list of ten numbers, taken from the user. I know: how 

exciting. But we can’t play games all the time; people will start thinking programming is 

too much fun and pay us less. Here’s my plan:

tell the user what we're doing

total = 0             //so far, nothing in the total...

for ten times

      get a number from the user

      add that to the total

average = total/10.0  //floating-point division, for a floating-point answer

                      //�better not use int division -- remember what happened

                      //  �in Example 3-3 (drawing a star), when our division

                      //  answers kept showing up as zeroes...

print average

Example 5-2 puts it into code.

Example 5-2.  A program to average numbers, using a for loop

//Program to average numbers

//            -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main (int argc, char** argv)

{

    enum {MAX_NUMBERS = 10};

Chapter 5  Loops, Input, and char



115

    sout << "Enter " << MAX_NUMBERS

         << " numbers to get an average.\n";

    double total = 0.0;

    //Get the numbers

    for (int i = 0; i < MAX_NUMBERS; ++i)

    {

        double number;

        sout << "Enter the next number:  ";

        ssin >> number;

        total += number;

    }

    //Print the average

    double average = total / MAX_NUMBERS;

    sout << "The average is " << average << ".\n";

    sout << "Hit any key to end.\n";

    SSDL_WaitKey ();

    return 0;

}

The keywords break and continue work in for loops just as they do in while  

and do-while loops:

int howMany = 0; //how many numbers did we add to total?

for (int i = 0; i < MAX_NUMBERS; ++i)

{

      int number;

      sout << "Enter a number: "; ssin >> number;

      if (number == NUMBER_THAT_SHOULD_BE_SKIPPED)

            continue;      //go back to start of loop

      if (number == NUMBER_THAT_MEANS_WE_SHOULD_END)

            break;          //leave loop NOW

Chapter 5  Loops, Input, and char



116

      total += number;

      ++howMany;

}

...and are as frowned on by purists, on the grounds of clarity.

So we now have three kinds of loops. You know how to decide between while and 

do-while – the Golden Rule of Loops, earlier in this chapter. What about for loops?

By convention and by reason, we use for loops when we’re counting through a 

range – when we know what we’re counting from and to. Thus, we have the final Golden 

Rule of Loops.

Golden Rule of Loops (Final Version) 

If you know in advance how many times you’ll do it, use for. Otherwise: 

If you want the loop to execute at least once, use do-while. 

If it makes any sense for it to execute zero times, use while.

�Antibugging

•	 Later actions are done once, not many times. A common problem. 

Example:

//Code to print several powers of 2

int product = 1;

sout << "Here are several successive powers of 2: ";

for (int i = 0; i <10; ++i)

      sout << product << '';

      product *= 2;

I forgot the {}’s. I assumed the code would do this:

for i goes from 0 through 9

      print product

      multiply product by 2

Chapter 5  Loops, Input, and char



117

but it actually does this:

for i goes from 0 through 9

      print product

multiply product by 2

Solution: let your editor indent for you as you go, thus catching the 

error.

•	 No action gets repeated.

for (int i = 0; i < N; ++i);      //�This loop prints  

only one *

      sout << '*';

There’s an extra ; at the end of the first line.

•	 Your loop goes one step too far.

for (int i = 0; i <=4; ++i) ...

The last time through, ++i makes i equal 4. But if you wanted four 

entries, you just got 5: 0, 1, 2, 3, 4. Solution: use < for the condition. 

To be sure you have the right range, do a walkthrough. Or always 

use the form

for (int i = 0; i < howManyTimes; ++i) ...

Tip  For loops almost always start at 0 and use <, not <=, for the continuation 
condition: i < howManyTimes, not i <= howManyTimes.

EXERCISES

	1.	A dapt Example 3-3/Example 3-4 (drawing a star) so that it asks the user for the 

radius, center, and number of points – and uses a loop rather than repeating 

code to draw the lines.

	2.	 Write a program which asks the user for an integer and a power to raise it to, 

and prints the result.

Chapter 5  Loops, Input, and char



118

	3.	 Write a program like the average program in Example 5-2, but let it provide not 

average, but maximum.

	4.	P rint the first 20 square integers: 1, 4, 9, 16, and so on.

	5.	D raw a graph of some function (sine is a good one). Add X and Y axes and 

appropriate labels.

	6.	 Write a program to ask the user for N times (times as in 2:30), summing to get 

total hours and minutes.

	7.	 Write a program which has the user guess a number (that number can be a 

constant in the program) and keeps taking guesses until the user runs out 

of turns – you decide how many – or gets it right. Then it reports success or 

failure. You’ll need a Boolean variable isSuccess.

�chars and cctype
Example 5-3 compares two input characters.

Example 5-3.  A program to compare characters

//Program to tell if two letters are in alphabetical order

//            -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main(int argc, char** argv)

{

    char char1, char2;

    sout << "Give me a letter: "; ssin >> char1;

    sout << "Give me another: ";  ssin >> char2;

    if (char1 < char2)

        sout << "You gave me two characters in order.\n";

    else if (char1 > char2)

        sout << "They are in reverse order.\n";

Chapter 5  Loops, Input, and char



119

    else

        sout << "They are identical.\n";

    SSDL_WaitKey();

    return 0;

}

It mostly works. It’s a little strange that ‘a’ comes after ‘Z.’ But that’s how the 

computer thinks of it: lowercase letters, a–z, come after the uppercase range. The precise 

ordering of the characters was decided in 1967 and is maintained by the American 

National Standards Institute (ANSI). A complete listing of this American Standard Code 

for Information Interchange (ASCII) codes is in Appendix C.

I’d rather my comparison ignore capitalization. Here’s one way: convert it to 

uppercase.

char myChar           = 'b';

char upperCaseVersion = myChar - 'a' + 'A';

It looks weird, but...to get the lowercase version of 'b', we do this: subtract 'a' first. 

This gives us a difference of 1, of course. We then add this 1 to 'A', which gives us 'B'. 

This will work for any lowercase letter.

What if we aren’t sure it’s lowercase? We can use an if statement to be sure.

if (myChar >= 'a' && myChar <= 'z') //it's lower case -- fix it

    upperCaseVersion = myChar - 'a' + 'A';

else                                //it's not -- leave it alone

    upperCaseVersion = myChar;

This is so useful we’ll want to do it again and again. Fortunately, the makers of C and 

C++ agree. They’ve given us a suite of functions for handling capitalization and a few 

other qualities of characters; these are found in the include file cctype. Table 5-1 shows a 

few; for more such functions, see Appendix F.

Chapter 5  Loops, Input, and char



120

These functions existed in the C, the language C++ grew out of. This explains 

something that looks odd: we’re dealing with characters, but the type is not char but int! 

Well, characters are integers, in a way, so this is tolerable, if not absolutely clear.

The other odd thing about these functions is similar: islower and isupper return 

int. Shouldn’t they return true or false? Yes, but since C++ interprets 0 as false and 

other integers all as true, int will serve, as in this code snippet:

if (isupper (myChar))

    sout << "You have an upper-case letter.\n";

Example 5-4 uses toupper to compare characters without regard to case.

Example 5-4.  Example 5-3, using true alphabetical order rather than simple 

ASCII order

//Program to tell if two letters are in alphabetical order,

// regardless of upper or lower case

//            -- from _C++ for Lazy Programmers_

#include <cctype>

#include "SSDL.h"

int main(int argc, char** argv)

{

      char char1, char2;

      sout << "Give me a letter: "; ssin >> char1;

      sout << "Give me another: ";  ssin >> char2;

Table 5-1.  Some useful functions regarding capitalization

int islower (int ch); return whether ch is lowercase. (Non-letter characters are not 

lowercase)

int isupper (int ch); return whether ch is uppercase. (Non-letter characters are not 

uppercase)

int tolower (int ch); return the lowercase version of ch. If ch is not a letter, it returns ch

int toupper (int ch); return the uppercase version of ch. If ch is not a letter, it returns ch

Chapter 5  Loops, Input, and char



121

      if      (toupper(char1) < toupper(char2))

            sout << "You gave me two characters in order.\n";

      else if (toupper(char1) > toupper(char2))

            sout << "They are in reverse order.\n";

      else

            sout << "They are identical.\n";

      SSDL_WaitKey();

      return 0;

}

Here’s a piece of code that doesn’t quite work:

sout  << "The upper-case version of '" << char1

      << "' is ' << toupper (char1) << ".'\n";

If we run this, the output will be something like

The upper-case version of 'a' is '65.'

The problem is that toupper returns not char but int – so sout prints that int. Here’s 

the fix: casting.

sout  << "The upper-case version of '" << char1

      << "' is '" << char (toupper (char1)) << ".'\n";

Extra S o far we’ve seen these types: 

int double float bool char 

Some can have modifiers. For example, a long double has more decimal places 
than a regular double; how many is compiler-dependent. int can be preceded 
by the keywords signed, unsigned, short, long, or long long (I guess the 
word “humongous” was taken), as in unsigned long int. As you can imagine, 
short and long refer to how big the number can be. int may be omitted: 
unsigned short x; or long y. If not specified, an int is signed. 

Chapter 5  Loops, Input, and char



122

Suffixes on the literal values – as in “5.0F” or “42U” – are there to tell the compiler 
“this is a (f)loat, not a double”; “this is (u)nsigned”; and so on. Suffixes can 
be lowercase. 

If a char is not specified as signed or unsigned, it is up to the compiler to decide 
which it is. It shouldn’t matter. chars are always the same size, allowing for 28 = 
256 possibilities, which is more than enough for the conventional character set. 

wchar_t (“wide character”) is a larger character type, used when 256 characters 
aren’t enough, that is, for international characters. 

If you want to know just how big an int, long int, and so on can be, you can 
find out using #include <climits>, which defines constants for maximum and 
minimum values for the various types. You can get the size of one of these in bytes 
with sizeof: sizeof (int) or sizeof (myInt), where myInt is an int. 

If you store values that are too big, they’ll wrap around: instead of a too large 
positive number, you’ll get a negative number. This is almost never a problem. If it 
is, use a long int or a long long int. 

For a complete list of basic types, see Appendix D.

EXERCISES

	1.	 Write a program to help you determine whether the creature you just saw 

was a fairy, a troll, a dwarf, and elf, or some other magical creature, assuming 

you carried your laptop into the Enchanted Forest. You pick the distinguishing 

features of each type of creature. A session might start something like this:

Welcome to the Enchanted Forest.

This creature you have seen:

Does it have wings (Y/N)? Y

...

The user should be able to type either ‘y’ or ‘Y’ and either ‘n’ or ‘N’ to answer.  

(If the user types something that doesn’t make sense, you can assume that 

means “no.”)

Chapter 5  Loops, Input, and char



123

�switch
Consider this if statement, which prints whether a letter is as vowel, semivowel, or 

consonant.

//Print classification of letters as vowel, semivowel, consonant

if      (toupper (letter) == 'A') sout << "vowel";

else if (toupper (letter) == 'E') sout << "vowel";

else if (toupper (letter) == 'I') sout << "vowel";

else if (toupper (letter) == 'O') sout << "vowel";

else if (toupper (letter) == 'U') sout << "vowel";

else if (toupper (letter) == 'Y') sout << "semivowel";

else if (toupper (letter) == 'W') sout << "semivowel";

else                              sout << "consonant";

It will work, but there’s a shorter way.

In BNF, a switch statement is

switch (<expression>)

{

case <value>: <action>*

…

[default: <action>*]

}

The * means “as many copies as you want, maybe zero.”

What this does: the expression in the parentheses is evaluated. (It has to be 

something you can count by – integers or characters. No floats, no doubles.) If it matches 

a particular value, the computer goes to that case <value> and executes whatever actions 

come after that. If you specify a default action, that’s what happens if the expression 

doesn’t match anything.

So here’s that same piece of code, using a switch statement:

//Print classification of letters as vowel, semivowel, consonant

switch (toupper (letter))

{

Chapter 5  Loops, Input, and char



124

      case 'A':

      case 'E':

      case 'I':

      case 'O':

      case 'U':   sout << "vowel";

                  break;

      case 'Y':

      case 'W':   sout << "semivowel";

                  break;

      default:    sout << "consonant";

}

If letter matches ‘A’ (for example), it does whatever actions it finds after case ‘A’. 

In this example, the next action it finds is sout << "vowel";. It keeps going till it finds 

break, which, just as before, means “leave this structure” – so at that point it leaves the 

switch statement. (Nobody will gripe at you for using break in this way; switch needs it.)

I usually include a default in a switch statement to handle unexpected values that 

might arise from errors.

�Antibugging

•	 switch does what you wanted to do for that value...then it does 
the options that follow as well. This is the most common error 

with switch: forgetting the break. Solution: go back and put breaks 

between the different options you wanted (in the preceding code, 

vowel, semivowel, and consonant).

•	 The compiler complains something about case labels and 
variables. This code has that problem:

switch (myChar)

{

case 'P':

      int turns = MAXTURNS;

      playGame (turns);

      break;

...

}

Chapter 5  Loops, Input, and char



125

It doesn’t like initializing a variable as part of a switch. No 

problem: we’ll just put {}’s around the area that needs the 

variable:

switch (myChar)

{

case 'P':

      {

            int turns = MAXTURNS;

            playGame (turns);

            break;

      }

...

}

EXERCISES

	1.	 Write and test a function that, given a number, prints the associated ordinal: 

that is, for 1, print 1st, for 2, print 2nd, for 3, print 3rd, and for everything else, 

print the number plus “th.”

	2.	 Menus are a time-honored (old-fashioned) way of getting user input. Make 

a menu offering to draw for the user a circle, or a line, or maybe some other 

shape, then draw the selected shape.

Chapter 5  Loops, Input, and char



127
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_6

CHAPTER 6

Algorithms and the 
Development Process
Let’s step back from the details of C++ and think about something in the big picture: 

specifically, the need for thinking about the big picture. In the rest of life, doesn’t 

planning help? You wouldn’t build a house or cook a meal without a plan. (Heating soup 

in the microwave doesn’t count.)

In programming, the plan is called an algorithm: a sequence of steps, to be executed 

in order, that leads to a goal.

�Adventures in robotic cooking
Imagine if we can get our computer to make biscuits: the fluffy kind – like scones, but not 

sweet (Figure 6-1). A computer can follow instructions, but they must be clear.

Figure 6-1.  (Left) Biscuits improperly made are often of use to the construction 
industry. At least you'll think so once you try to eat them. (Right) What I'm hoping 
to make instead



128

I get out a bowl, and…what goes in biscuits, anyway? You got me. Flour should help. 

Don’t they put eggs in biscuits? and milk? Tell the robot to dump some flour in a bowl, 

put in a couple of eggs and a glug of milk, mix it up hard as it can, roll them, and put 

them in the oven.

They’ll come out hard as bricks, of course. Our robo-chef put eggs in – my 

grandmother would laugh at that – and mixed them way too much. I should have made a 

solid plan first.

Tip  Write the algorithm before the program, even for simple tasks.

Exactly what should I have told it to do? Here’s one way:

1 cup/250 mL all-purpose flour

1/2 tsp/3 mL salt

1/8 cup/30 mL cold shortening

1/3 cup/80 mL milk

Heat oven to 450° F/ 230° C

Mix dry ingredients

Mix in shortening just till it's distributed

Mix in milk

Form into balls

Bake in the oven

Oven heated? Check. The robot can mix the dry ingredients. Let it take a cup of flour, 

and mix in the salt and baking soda. The cup will overflow as the robot mixes them. Why 

didn’t it put the flour into a bowl? I didn’t tell it to.

Next, it will mix in the shortening, then the milk. Of course, we’ll get a wet mess. 

Then it will form the mess into balls – how many? I didn’t say. Is two OK? Then it puts 

the seeping mess in the oven, at which point it falls through the rack onto the bottom…I 

didn’t tell it to use a tray either. And I never told it to take the biscuits out! Got a fire 

extinguisher handy?

The steps weren’t specific enough. For example, I told it to mix, but didn’t tell it 

that one of the steps in that is to put things into a bowl. We need more detail. Stepwise 

refinement is how to solve that problem: write down what needs doing, then break that 

step into sub-steps, then break those into sub-steps, until the steps are simple enough a 

computer can handle them.

Chapter 6  Algorithms and the Development Process



129

Tip R efine your algorithm till it’s obvious how each line converts to C++.

Let’s try again:

1 cup/250 mL all-purpose flour

1/2 tsp/3 mL salt

1/8 cup/30 mL cold shortening

1/3 cup/80 mL milk

Heat oven to 450° F/ 230° C

Mix dry ingredients:

      Put dry ingredients into a large bowl

      Mix them

Mix in shortening just till it's distributed

      Cut shortening into small bits (half-centimeter sized)

      Put shortening into the large bowl

      Mix just till it's distributed

Mix in milk

      Put milk into the large bowl

      Mix till it's distributed

Form into balls

      Get a cookie sheet

      While there is dough left

       Put flour on your hands so the dough won't stick

         Take out dough the size of a baby's fist

         Put it on the cookie sheet, not touching any others

Bake in the oven

      Put the cookie sheet in the oven

      Wait till the biscuits are golden brown on top

      Take the cookie sheet and biscuits out

Good. Now we’re done. It’s a tediously detailed algorithm, but if we’re going to get 

a computer to understand, we have to break it down till it’s obvious – to a computer! – 

what the steps mean.

Chapter 6  Algorithms and the Development Process



130

Is it time-consuming to write all that detail? Not as time-consuming as puzzling out 

this type of detail while writing code, getting it wrong, debugging, and starting again 

and again. Experts agree: time spent planning ahead reduces programming time spent 

overall. For that reason, lazy programmers use this rule:

Golden Rule of Algorithms

Always write them.

Extra L ady Ada Lovelace (1815–1852) and Charles Babbage (1791–1871) –  
see Figure 6-2) – are credited with being the world’s first computer scientists. Too 
bad computers hadn’t been invented yet.

Figure 6-2.  Charles Babbage; Lady Ada Lovelace

Babbage certainly tried. He got the British government to fund his Difference Engine, 
which was meant to be a mechanical calculator, and then his Analytical Engine, 
designed as a mechanical computer. (In those days, government funding of research 
was nearly unheard of. Maybe that’s why it was called “the Age of Invention.”)  
Machine parts weren’t of sufficient refinement at the time, and the project failed.

Chapter 6  Algorithms and the Development Process



131

Lovelace, daughter of the poet Lord Byron, took an interest in Babbage’s machine 
and understood the nature of the programs it ran or, rather, would have run if it had 
existed. “The Analytical Engine has no pretensions to originate anything,” she said. 
“It can do whatever we know how to order it to perform.”  This is sometimes used 
as an objection to the concept of artificial intelligence.

�Writing a program, from start to finish
Let’s apply this planning ahead thing to a real, if small, programming task.

Here are the steps we might go through to create the program: 

•	 Identify requirements.

•	 Write the algorithm.

•	 …and do a walkthrough; if there are errors, go back to a previous step.

•	 Convert the algorithm to valid C++ code.

•	 Compile it.

•	 Test it; if there are errors, go back to a previous step.

�Requirements: What do we want to do?
I want to make a series of concentric circles, such that each circle is half the area 

of the one outside it, as in Figure 6-3. We’ll keep going till they start to blur (maybe 

when the radius is around 1 pixel).

Chapter 6  Algorithms and the Development Process



132

Ready to start coding? Not yet. First we’ll make a plan, as discussed in the previous 

section.

�Algorithm: How do we do it?
So what should happen at runtime?

draw the first circle

draw the second

keep going until the circle's too small to see -- radius 1, I'd suppose

(Too obvious? I find that programming goes much more easily when I state the 

obvious, write it down, and try to refine it.)

Figure 6-3.  A program that makes concentric circles, each half the area of the next 
bigger one

Chapter 6  Algorithms and the Development Process



133

Tip S tate the obvious, especially when just starting.

Not specific enough yet. We don’t know how to draw the circles because we don’t 

know the radii.

We can pick the outermost circle’s radius arbitrarily; I’ll say it’s 200.

The second…I want the area to be half that of the first. Remember the formula for the 

area of a circle: π radius2. To get a halved area, we’ll need next circle’s area = first circle’s 

area / 2. This works out to be that the next radius is the first radius / 2 .

Here’s the amended algorithm.

draw the first circle, with radius 200...

No – I didn’t say where! Try again:

draw the first circle at center of screen, with radius 200 

draw the second circle at center of screen, with radius 200/√2 

draw the third circle at center of screen, with radius 200 / √2 /√2... 

Too complicated.

We could use variables. We’ll start the value for radius at 200 and change it every time:

start radius at 200

draw a circle at center of screen, with this radius

divide radius by √2 to get a circle with half the area as before

keep going until the circle's too small to see -- radius 1, I'd suppose 

That “keep going” sounds like we need a loop. We don’t know how many times we’ll 

do it, but it’s least once, so by the Golden Rule of Loops, it’s a do-while.

start radius at 200

do

draw a circle at center of screen, with this radius

divide radius by √2 

while radius > 1  (quit when circle's too small to see)  

Chapter 6  Algorithms and the Development Process



134

This is specific enough. Do you need to go to this trouble every time you write a 

program? Pretty much. As time goes by and your skills improve, you can specify less 

detail. But I still write out the steps for anything I’m not certain of.

�Walkthrough: Will it do it?
Will it work? Another thing I do is trace through the code, seeing what it does, and 

confirm that it does what I want.

First, radius is set to 200. The area is π 2002. We draw a circle with that radius.

Next, radius is set to what it was divided by 2 . The area is π (200/ 2 )2 = π 2002/2, 

which is half the first area; that’s what I wanted. We draw the new circle.

Next, radius is set to what it became divided by 2 . The area is π (200/ 2 2/ )2 = π 

2002/4, which is 1/4 the first area. Good. We draw the new circle.

Seems OK.

As programs get more complex, it’ll be even more useful to do walkthroughs to verify 

the algorithms. Why spend time getting a program to compile, if we aren’t even sure it 

does what we want? I’m too lazy for that.

�Coding: putting it all into C++ (plus: commenting  
the lazy way)
To create the program I start the usual way: I tell the reader exactly what I’m doing at the 

top of the file. Then I put the algorithm right into main, as comments.

//Program to draw 5 concentric circles

// Each circle is twice the area of the one inside it

//            -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main (int argc, char** argv)
{

      //start radius at 200

      //do

      //            draw a circle at center of screen, with this radius

      //            divide radius by sqrt (2)

      //while radius > 1 (quit when circle's too small to see)

}

Chapter 6  Algorithms and the Development Process



135

The cops didn’t arrest me for putting the algorithm right there into the editor, so I 

guess I’ll keep going.

Tip I nclude the algorithm in the program, after //’s, and you’ve already written 
most of your comments.

The editor can help turn text into comments quickly. (This is also useful for making 
troublesome bits of code stop generating errors: put ‘em in comments till you’re 
ready to deal with them.)

In emacs, highlight the region, then select C++ ➤ Comment out region to 
comment it; hit tab to indent. If you’re in a nongraphical version of emacs, highlight 
the region by hitting Ctrl-space at one end of the region, then move the cursor to 
the other end. Ctrl-c Ctrl-c will comment it, and tab will indent.

(Note that final cool emacs tip too: highlight a region and hit tab, and emacs 
indents the region all at once.)

In Visual Studio, clicking the Comment out button will turn the highlighted code into 
comments. (It looks like parallel horizontal lines and is highlighted at the top right 
of Figure 6-4.)

Figure 6-4.  The Visual Studio window, with the Comment out button highlighted 
(top right)

Chapter 6  Algorithms and the Development Process



136

Figure 6-5 shows the commenting.

Now you can hit tab to indent the region.

Sometimes, if an editor does the commenting for you, it will use a style of 
commenting we haven’t covered yet: bracketing the comments in /* and */.  
That works too.

May as well code the easy parts first: the declaration of radius and the loop.

int main (int argc, char** argv)
{

    double radius = 200.0;      // start radius at 200

    do

    {

        �//draw a circle at center of screen, with this radius 

//divide radius by √2

    }

    while (radius > 1.0);       //quit when circle's too small to see

    return 0;

}

Figure 6-5.  The code, commented out

Chapter 6  Algorithms and the Development Process



137

Now put the middle steps in code, keeping the algorithm as comments:

int main (int argc, char** argv)
{

    double radius = 200.0;      // start radius at 200

    do

    {

        //draw a circle at center of screen, with this radius

        SSDL_RenderDrawCircle (CENTER_X/2, CENTER_Y/2, int (radius));

        radius /= sqrt (2);      //divide radius by √2

    }

    while (radius > 1);          //quit when circle's too small to see

    return 0;

}

Looks like we need the center point:

int main (int argc, char** argv)
{

    const int CENTER_X = SSDL_GetWindowWidth();

    const int CENTER_Y = SSDL_GetWindowHeight();

    double radius = 200.0;      // start radius at 200

    do

    {

        //draw a circle at center of screen, with this radius

        SSDL_RenderDrawCircle (CENTER_X/2, CENTER_Y/2, int (radius));

        radius /= sqrt (2);      //divide radius by √2

    }

    while (radius > 1);          //quit when circle's too small to see

    return 0;

}

Chapter 6  Algorithms and the Development Process



138

Put some friendliness at the program’s start, and our usual wrap-up, and we have our 

program complete and already commented (Example 6-1).

Example 6-1.  A program to draw concentric circles, each half the area of the one 

outside it

//Program to draw concentric circles

// Each circle is half the area of the one outside it

//            -- from _C++ for Lazy Programmers_

#include <cmath>   //for sqrt

#include "SSDL.h"

int main (int argc, char** argv)
{

    SSDL_SetWindowTitle ("Hit any key to exit.");

    const int CENTER_X = SSDL_GetWindowWidth();

    const int CENTER_Y = SSDL_GetWindowHeight();

    double radius = 200.0;      // start radius at 200

    do

    {

        //draw a circle at center of screen, with this radius

        SSDL_RenderDrawCircle (CENTER_X/2, CENTER_Y/2, int (radius));

        radius /= sqrt (2);      //divide radius by √2

    }

    while (radius > 1);          //quit when circle's too small to see

    SSDL_WaitKey();

    return 0;

}

Note how the program is broken by blank lines into the major steps from the 

algorithm. This isn’t a requirement, but it’s not a bad idea.

Chapter 6  Algorithms and the Development Process



139

EXERCISES

	1.	 Write an algorithm to find the average of three numbers.

	2.	 Write the corresponding program for Exercise 1.

	3.	 Write an algorithm, then a program, to draw a filled circle, by drawing many 

circles with radii ranging from 0 to some radius R. It doesn’t have to look 

completely filled.

	4.	 Write the algorithm for a program to draw the Australian flag, the New Zealand 

flag, the Ethiopian flag, a Scandinavian flag, or some other flag using shapes 

you can draw with SSDL. Concentrate on what makes a coherent subtask, or a 

repeated subtask.

Chapter 6  Algorithms and the Development Process



141
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_7

CHAPTER 7

Functions
In this chapter, we get the number one way to not get lost in pages of code till your eyes 

go blurry: functions.

�Functions that return values
Consider how things are done in a candy factory. It has machines to make things we 

want. Each machine has things it needs piped in, and the thing it produces piped out. 

Want a candy bar? Activate the machine, give it its inputs, and it’ll provide the result (see 

Figure 7-1).

CandyBar makeCandyBar (grams cocoa, grams sugar, mL milk)
{
    CandyBar result;  

    //do whatever you do to make a candy bar

    return result;
}

Figure 7-1.  Structure of a “makeCandyBar” machine

We have “machines” too (called “functions”): SSDL_CreateColor; SSDL_WaitKey; 

sin and cos. SSDL_CreateColor, for example (Figure 7-2), takes in three ints and returns 

an SSDL_Color.



142

BNF for a function is

<return type> <name> (<parameters, separated by commas>) //“header”
{

<thing to do -- variable declaration, action, whatever>*
}

where a <parameter> is a <type> plus a <name>: int red, for example.

The top line is the function header; the rest is the function body. We often copy 

the top line and put a ; at the end, for a precise description of how we interact with the 

function (its inputs and its outputs):

SSDL_Color SSDL_CreateColor (int red, int green, int blue);

This is a prototype, and was seen in previous chapters where library functions were 

described. It’s useful not just for programmers learning but for the compiler (read on).

Now to make our own function. Here’s the prototype (top line) for something to 

average 3 ints. (In this parameter list, I omit the names of the parameters; you can do 

that in the prototype as long as it’s doesn’t hurt clarity.) The body is in Figure 7-3.

int average (int, int, int);     //function prototype

SSDL_Color SSDL_CreateColor (int red, int green, int blue)
{
    SSDL_Color result;  

    //do whatever you do to make an SSDL_Color

    return result; //stop function and provide result
}

Figure 7-2.  Structure of the SSDL_CreateColor function

Chapter 7  Functions



143

We made the function, so let’s use it. To use it means store its value in a variable, 

print it, send it to another function (see the upcoming example)…do something with the 

result; else there was no point in calling it.

int myAverage = average (1, 2, 12); //A "function call"

OK, that works. Instead of int literals, we could give it variables:

int i = 1, j = 2, k = 12;

int myAverage = average (i, j, k);

…or constants, or expressions – anything with appropriate values:

int otherAverage = average (DAYS_PER_WEEK, 14/2, sqrt(144));

What we can’t do is declare the variable between the parentheses like so:

int i = 1, j = 2, k = 12;

int myAverage = average (int a, int b, int c); //NO -- won't compile!

C++ reads something of form <function name> (<parameter list, separated by 

commas>); and thinks: I know what that is – it’s a prototype! It may then get confused 

(like here) as to why you’re setting an int equal to a function prototype. It may just say, 

OK, I see the prototype, and go on. But one thing’s for sure: it won't call the function.

int average (int a, int b, int c)//function header
{                                //start function body
    int result;  

    result = (a+b+c)/3;

    return result; //stop function and provide result
}                                //end function body

Figure 7-3.  The int average (int, int, int) function

Chapter 7  Functions



144

Tip  When calling a function, keep type information out of the ()’s. Type 
information is for prototypes.

Extra S ome purists prefer only one return statement per function – not

if (condition) 
    return this; 
else 
    return that;

but

if (condition) 
    result = this; 
else     
    result = that;

return result;

This relates to easily tracing through the function and verifying correctness. As we 
go through examples in the coming chapters, you can see what you think.

Here’s a function to make a grayscale equivalent of a given color, described as red, 

green, and blue components. It’ll do this by averaging the red, green, and blue and 

applying the average to each component to create and return an SSDL_Color. First, the 

prototype

SSDL_Color greyscale (int r, int g, int b);

       //Gets a greyscale color for a given r, g, b

and now the function body

SSDL_Color greyscale (int r, int g, int b)

      //Gets a greyscale color for a given r, g, b

{

      int rgbAverage = average (r, g, b);

Chapter 7  Functions



145

      SSDL_Color result

            = SSDL_CreateColor (rgbAverage, rgbAverage, rgbAverage);

      return result;

}

I used the function average from earlier. This is a Good Thing. Code reuse is how 

avoid doing the same work again and again, making fresh mistakes each time.

Golden Rule of Code Reuse 

If you already wrote code to do something, don’t write it again. Put it in a function 
and call that function.

Example 7-1 shows a program that makes use of what we’ve done (output is in 

Figure 7-4). Note that the structure of the program got a little more complicated. 

Before it was

//initial comments

#include "SSDL.h"

constants if any

main

but now it’s

//initial comments

#include "SSDL.h"

constants if any

function prototypes1

main

function bodies

The compiler reads the prototypes before it gets to any code that might have 

a function call and thus can ensure that the calls are correct (spelled right, right 

parameters, right use of return value).

1�We could put function bodies up here too…but people like main as the first function so it’s easy to 
see quickly what the program is mainly about.

Chapter 7  Functions



146

Example 7-1.  A program to make and use grayscale colors

//Program to change some colors to greyscale

//            -- from _C++ for Lazy Programmers

#include "SSDL.h"

//Prototypes go here

int average(int, int, int);

//Averages 3 ints

SSDL_Color greyscale(int r, int g, int b);

//Gets a greyscale color for a given r, g, b

int main (int argc, char** argv)

{

    sout    << "Some colors you know turned to black-and-white. "

            << "Hit any key to end.\n";

                    //By now the compiler knows that greyscale

                    // takes 3 ints and returns an SSDL_Color, but doesn't

                    //know how to do the greyscale...

    SSDL_SetRenderDrawColor (greyscale (255, 255, 255));

    sout << "WHITE\n";

    SSDL_SetRenderDrawColor (greyscale (255,   0,   0));

    sout << "RED\n";

    SSDL_SetRenderDrawColor (greyscale (  0, 255,   0));

    sout << "GREEN\n";

    SSDL_SetRenderDrawColor (greyscale (  0,   0, 255));

    sout << "BLUE\n";

    SSDL_SetRenderDrawColor (greyscale (181, 125,  41));

    sout << "MARIGOLD\n";

    SSDL_SetRenderDrawColor (greyscale ( 50, 205,  50));

    sout << "LIME GREEN\n";

    SSDL_WaitKey ();

    return 0;

}

Chapter 7  Functions



147

//Function bodies come after main, by convention

int average(int a, int b, int c)

//Averages 3 ints

{

    return (a + b + c) / 3;

}

SSDL_Color greyscale(int r, int g, int b)

//Gets a greyscale color for a given r, g, b

{

    int rgbAverage = average(r, g, b);

    SSDL_Color result

        = SSDL_CreateColor(rgbAverage, rgbAverage, rgbAverage);

    return result;

}

                    //...and now the compiler has all the information

                    // it needs about greyscale (and anything else)

Figure 7-4.  Several bright colors, converted to monochrome by SSDL_Color 
greyscale (int r, int g, int b);

Chapter 7  Functions



148

EXERCISES

	1.	 Write and test a function to get the screen’s aspect ratio, that is, width divided 

by height.

	2.	 Write an algorithm for, then write and test, the distance formula, 

x x y y2 1 2 1
2 2-( ) + -( )

�Functions that return nothing
Some functions don’t return a value but do something else – draw a picture, or print text, 

perhaps.

Consider a function to draw not a rectangle or circle, like we already have, but a 

cross. With no points for originality, we’ll name it drawCross.

What inputs will it need, so it can get started? It’ll need to know where to draw the 

cross, so that’s an x and a y. It’ll also need to know size, the distance from center to ends. 

This will work for the prototype:

void drawCross (int x, int y, int distanceToEnds);

The return type is void, meaning “I don’t return anything.” The meanings of the 

parameter names are blindingly obvious, which is a Good Thing.

Example 7-2 shows a sample program to use the drawCross function. Output is in 

Figure 7-5.

Figure 7-5.  Output from Example 7-2

Chapter 7  Functions



149

Example 7-2.  A program that uses a function to draw a cross. The order of 

arguments sent in determines the order received: crossX is sent to x, crossY to Y, 

and size to distToEnds

//Program to draw a cross on the screen

//            -- from _C++ for Lazy Programmers_

#include "SSDL.h"

void drawCross  (int x, int y, int distToEnds);

int main(int argc, char** argv)

{

    int crossX = 40, crossY = 25, size = 20;

    drawCross (crossX, crossY, size); //draw a cross

    SSDL_WaitKey();

    return 0;

}

void drawCross (int x, int y, int distToEnds)

//draw a cross centered at x, y, with a distance to ends as given

{

   SSDL_RenderDrawLine (x-distToEnds, y, x+distToEnds, y);//draw horizontal

   SSDL_RenderDrawLine (x, y-distToEnds, x, y+distToEnds);//draw vertical

}

When using functions, I find it helpful to draw diagrams of what functions are active 

and what parameters and variables they have.

First, C++ creates an instance of the main function (Figure 7-6).

Chapter 7  Functions



150

When main gets to this line

drawCross (crossX, crossY, size);

C++ creates a copy of drawCross, with its parameters (and any other variables it has), 

and copies the values in (Figure 7-7). This is why it doesn’t matter whether main’s 

arguments passed in and drawCross’s parameters have the same names. Each function 

uses its own set of names.

40

25

20

40

25

20

int main (int argc, char** argv) void drawCross (int x, int y, 
       int distanceToEnds)

crossX

crossY

size

x

y

distanceToEnds

Figure 7-7.  main, calling drawCross and copying in values

40

25

20

int main (int argc, char** argv)

crossX

crossY

size

Figure 7-6.  main, in Example 7-2

When our call to drawCross is finished, it’s erased and we’re back in main (Figure 7-8).

Chapter 7  Functions



151

We can reuse drawCross as often as we like, just as we can SSDL_RenderDrawPoint, 

SSDL_RenderDrawCircle, and so on.

Example 7-3.  Calling function drawCross multiple times. Output is in Figure 7-9.

int main(int argc, char** argv)

{

    drawCross( 40, 40, 20); //draw three crosses

    drawCross( 80, 30, 15);

    drawCross(110, 50, 40);

    SSDL_WaitKey();

    return 0;

}

40

25

20

40

25

20

int main (int argc, char** argv) void drawCross (int x, int y, 
       int distanceToEnds)

crossX

crossY

size

x

y

distanceToEnds

Figure 7-8.  Leaving drawCross and returning to main

Figure 7-9.  Output from Example 7-3

Chapter 7  Functions



152

�Global variables
Some find this workaround: instead of passing in parameters, they’ll make their variables 

global (meaning “not inside anybody’s {}’s), rather than local (inside main’s {}’s, or 

drawCross’s, or someone’s).

//Program to draw a cross on the screen

//            -- from _C++ for Lazy Programmers_

#include "SSDL.h"

//GLOBAL VARIABLES: THE EIGHTH DEADLY SIN

int       x = 40, y = 40;

int       distanceToEnds = 20;

//Prototypes

void drawCross  ();

int main (int argc, char** argv)

{

    //draw three crosses

    drawCross();

    x =  80; y = 30; distanceToEnds = 15; drawCross();

    x = 110; y = 50; distanceToEnds = 40; drawCross();

    SSDL_WaitKey();

    return 0;

}

void drawCross ()

//draw a cross centered at x, y, with distance to ends, all global

{

    SSDL_RenderDrawLine (x-distanceToEnds, y, x+distanceToEnds, y);

    SSDL_RenderDrawLine (x, y-distanceToEnds, x, y+distanceToEnds);

}

Easy, huh?

Chapter 7  Functions



153

Not really. There are three drawbacks.

	 1.	 It's hard to read and write. drawCross will draw a cross, but 

where? You have to look inside the body to find out: it draws it 

at (x, y). What are x and y? Look at the top; they’re (40, 40). Then 

look back in main to see how they’ve changed. And hope there’s 

not some other function that also uses x and y for something 

else and changed their values. To be certain, you’ll have to look 

through all the code. Try that with a 500-page program. Aaaigh!

	 2.	 It's the devil to debug. Looking all over the program to find what 

screwed up a variable is hard work. We try to break programs into 

relatively independent parts (functions), with parameter lists to 

specify clearly how those parts interact. This reduces the scope of 

where to look for an error. It also helps with group projects: different 

programmers can work on different functions, with minimal 

interference with each other’s work. This is called modularity.

	 3.	 Programmers who have to maintain your code will hate you. Not 

as if you snubbed them, but as if you egged their cars and insulted 

their mothers. They don’t want to inherit the debugging disaster.

	 4.	 For some offenses, I hear, Santa won't bring you any presents. 
For worse ones, he actually takes your presents. This is one of the 

latter kind.

Golden Rule of Global Variables

Just say no.

�Antibugging
•	 It's not calling the function. You may have put type information in, 

so the compiler thinks it’s a prototype. Take the type info out.

•	 You call a value-returning function, but it has no effect. See 

Chapter 3, “Built-in functions,” Antibugging section – same problem, 

same solution.

Chapter 7  Functions



154

•	 You get an error, something like “no local function definitions 
allowed.” If something’s missing a closing }, the compiler may think 

you’re still in one function when you start another. Be sure the {}’s are 

balanced. A good reason to avoid Egyptian brackets (see Chapter 4).

To prevent this, when starting a function body, put both {}’s in place 

at the same time. If you do, the function will probably compile, 

even if it doesn’t do anything yet. Such an empty function is called 

a “stub.” It’s common to have them in unfinished programs.

•	 It skips the latter part of the function, as here:

int value (char letter) //score letters in a word game.

                        //Q, K are best

{

   return 1;            //default score is 1

   if (toupper (letter) == 'Q' || toupper (letter) == 'K')

       return 5;

}

This always returns 1. The reason is that first return didn’t just 

establish a return value, but also stopped the function: it won’t go 

on to run the if.

Solution: recognize return as the last thing a function does.

•	 No matter what parameters you give, the function always does the 
same thing. Be sure they aren’t being reset inside the function (see 

the next section, “How to write a function in four easy steps”).

•	 You repeat a function by having it call itself. That’s not an error, but 

it’s not the best practice. Suppose you want to play a game multiple 

times:

void playGame ()

{

      ...

      //now let's play again:

      playGame ();

}

Chapter 7  Functions



155

Thinking from the perspective of the diagrams in the previous 

section…when you call a function, C++ creates a copy, which 

it keeps until the function is done. What happens when you’re 

on your umpteenth game here? You get umpteen copies of the 

function (see Figure 7-10), and each one requires memory. If 

“umpteen” becomes very large, it’ll crash the program.

...local variables ...

...local variables ...

...local variables ...

...local variables ...

...local variables ...

void playGame () void playGame () void playGame ()

...

void playGame () void playGame ()

Figure 7-10.  Multiple “recursive” (self-calling) copies of a function

Better solution: use a loop.

EXERCISES

	1.	 Write an algorithm for, then write and test, a function to draw a triangle at some 

location specified by parameters.

	2.	 Write an algorithm for, then write, a program to display the flag of Greece. 

You’ll at least want these two functions: drawCanton (the upper left) and 

drawStripes.

	3.	 Write an algorithm for a function to draw the Australian flag (as in the last 

exercise in Chapter 6). Then, using functions appropriately, write that program. 

You’ll want a function drawStar to draw any of the stars you see on the flag, 

which means it should be able to handle either 5- or 7-pointed stars. You won’t 

fill in the stars, but just do a rough outline (see Figure 7-11), unless you can 

think of a trick.

Wikipedia is a good source for flag specifications.

Chapter 7  Functions



156

�How to write a function in four easy steps (and call 
it in one)
I recommend using these steps for every function you write till you’re certain you have 

functions nailed:

	 1.	 Put this after main, using your own function name and comment.

<return type> greaterNumber ()//Returns the greater of two numbers

{

    <return type> result;

    return result;

}

	 2.	 What kind of value does it return? Whatever it is, use that for the 

return type.

double greaterNumber ()      //Returns the greater of two numbers

{

    double result;

    return result;

}

Figure 7-11.  The Australian flag, simplified for Exercise 3

Chapter 7  Functions



157

If the function doesn’t return anything, skip all the return stuff 

and make its type void:

void drawCross ()

{

}

	 3.	 What information will the function need to get started?

Say you’re the greaterNumber function and I’m main. I say to 

you: give me the greater number! You say, I can’t – I need more 

information! Well, what information do you need?

You need the numbers. They go in the ()’s. You need to specify 

their types (int, double, char, etc.).

double greaterNumber (double num1, double num2)

                                //Returns greater of 2 numbers

{

    double result;

    return result;

}

	 4.	 How does the function do its work?

	 a.	 Put the algorithm inside the function as comments.  

Skipping this step is a bad idea unless you really know what  

you’re doing.

double greaterNumber (double number1, double number2)

                      //Returns the greater of two numbers

{

    double result;

    //let result be the bigger of number1, number2

    return result;

}

Chapter 7  Functions



158

	 b.	 Write valid C++ to do the task.

double greaterNumber (double number1, double number2)

                      //Returns the greater of two numbers

{

    double result;

    //let result be the bigger of number1, number2

    if (number1 > number2)

        result = number1;

    else

        result = number2;

    return result;

}

	 5.	 How do I use the function?

	 a.	 Copy the top line, put it above main, and end with a semicolon  

(see below).

	 b.	 Call the function, and (if it isn’t void) store the result or use it.

double greaterNumber (double number1, double number2);

                      //Returns the greater of two numbers

int main (int argc, char** argv)

{

    ...

    bigNum = greaterNumber (20, 30);

Let me now give some notes on what can go wrong.

In Step 3, where do the values for the parameters come from? They’re provided by 

main when we call the function, as in Examples 7-1, 7-2, and 7-3. Since they’re sent in 

from main, we would not do this:

double greaterNumber (double number1, double number2)

                       //Returns the greater of two numbers

{

    double result;

Chapter 7  Functions



159

    sout << "Enter two numbers: ";

    ssin >> number1;  //WRONG. It erases the numbers main gave us!

    ssin >> number2;

    ...

    return result;

}

or this:

double greaterNumber (double number1, double number2)

                      //Returns the greater of two numbers

{

    double result;

    number1 = 12;      //WRONG. It erases the numbers main gave us!

    number2 = 25;

    ...

    return result;

}

Another thing we won’t need: printing. We almost never have a function to print 

something (unless it’s named “print”). We return the value and let main decide what 

to do with it. (Think if, in the program for drawing a star in Example 3-3, sin and cos 

printed “The result of this function is...” every time you called them, covering up your 

star with text.)

double greaterNumber (double number1, double number2)

                      //Returns the greater of two numbers

{

    double result;

    ...

    sout << "The bigger number is " << result;

                    //WRONG. We're supposed to *return*, not *print*

    return result;

}

Chapter 7  Functions



160

EXERCISES

	1.	 Write an algorithm for, then write and test, the pow function. (pow (a, b) 

returns ab.) To make it easier, assume only integer values for the exponent: you 

can calculate pow (3, 2), but not pow (3, 2.1).

	2.	 Write an algorithm for, then write and test, a function that, given a positive 

integer, returns the sum of all numbers up to that integer. For example, given a 

5, it should return 1+2+3+4+5 = 15.

	3.	 Write an algorithm for, then write and test, a function log which, given a 

positive integer number and an integer base, returns logbase (number). logbase 

(number) is defined as how many times you can divide number by base before 

getting to 1. For example, 8/2 gives 4, and 4/2 gives 2, and 2/2 gives 1; that’s 3 

divisions; so log2 8 is 3. We won’t worry about fractional parts: log2 15 is also 3, 

because (using integer division) 15/2 is 7, 7/2 is 3, and 3/2 is 1.

�Why have functions, anyway?
Till now we’ve started with the function and then made use of it. Let’s look now at writing 

a larger program and deducing what functions we need – the more usual approach.

Consider how we might write a program to show a comic, frame by frame. To make 

the drawing easy, we’ll use stick figures that talk but don’t move. We’ll have four frames, 

showing one at a time.

We start our algorithm:

write the dialog for the left character

draw the line from the left character's head to the dialog

draw the left character's head

draw the left character's body

draw the left character's left arm

draw the left character's right arm

draw the left character's left leg

draw the left character's right leg

write the dialog for the right character

write the line from the right character's head to the dialog

...

Chapter 7  Functions



161

Argh! That’s a lot of writing. This isn’t C++ for Programmers Who Want Carpal 

Tunnel Syndrome! And when we start coding, we’ll find that extra typing is the least of 

our worries. Twice as much code means five times as many opportunities for error. (This 

may not be mathematically sound, but based on experience, it’s conservative.)

As covered in the previous chapter, you write your algorithm, do a walkthrough, write 

the program, and run it. Then you find an error – say, the dialog’s in the wrong place – 

and fix it. In one of the frames. The other frames, you forget to fix. More errors.

Better to follow the Golden Rule of Code Reuse from earlier: put that dialog-drawing 

code in a function and call as needed.

We’ll therefore bundle the algorithm (and, later, the code) into functions to enable 

code reuse.2 Here’s what main might look like:

main program:

      give the window a title

      draw frame 1; wait for user to hit a key

      draw frame 2; wait for user to hit a key

      draw frame 3; wait for user to hit a key

      draw frame 4; wait for user to hit a key

Did I cheat? I didn’t actually say how to do anything. Well, that’s not quite true: I 

said how to do everything! Just not in detail. That’s no sin as long as I give that detail in 

another function – perhaps one named draw frame:

draw frame:

      clear the screen

      draw left character and its dialog

      draw right character and its dialog

Again, I put off most of the work! (What do you expect, from a lazy programmer?) 

But it’s fine: draw frame is a coherent task. As long as draw character and draw dialog 

work, we’ll be OK.

2�Taking a chunk of information and labeling it for reuse is abstraction: an essential way of keeping 
yourself sane in large programming projects.

Chapter 7  Functions



162

draw character:

      draw head as a circle

      draw body, a line

      draw arms, two lines

      draw legs, two lines

draw dialog

      draw line

      draw the text

The process we went through – starting with the main program, writing its subtasks, 

then writing subtasks of subtasks, and so on, until we get down to specifics we know 

how to write in C++ (drawing lines, circles, and text) – is called top-down design, and 

it’s how we write programs. (Purists who want to point out other software engineering 

techniques here are right, but you gotta start somewhere.)

We still need detail, but I’ll leave that for now, because I want to talk about how we 

decide what pieces of code should be made into functions.

For one thing, I should make code into a function if the code is repeatable. draw 

character is likely to be repeated. Making it into a function means it can be repeated (as 

we see in the main program).

The preceding examples (draw character, etc.) are also coherent tasks – like 

functions we’ve already seen, such as sqrt, sin, SSDL_RenderText, and so on. Why not a 

function SSDL_RenderPrintSin, to “find the sine of an angle and print it on the screen”? 

It takes longer to describe, and that’s a tipoff it’ll be less generally useful. (How often do 

you want to print sines?) Better to break it into functions each of which does one thing.

Another criterion is that a function should be short enough to understand. If it’s too 

big to see on the screen, it’s too big to follow what it’s doing as you write and debug it. 

Once it’s more than a screenful, break it into subtasks.

Chapter 7  Functions



163

Golden Rule of Functions  Make code into a function if it is repeatable, forms 
a coherent task, or is part of another function that’s getting to be more than a 
screenful long.

Extra P sychologists have3 measured the mind’s ability to be aware of multiple 
things at once and determined that one can think of approximately seven items at 
a time. For example, read these digits, then look away from the page and see if you 
can repeat them.

5 7 16 19 28 29 32

Now try doing it with this sequence of numbers. Having a little trouble?

5 7 16 19 28 29 32 3 8 12 26 32 14 19 7 50 2 19 18 33 25 11 36 41 1

The point is that you can’t keep arbitrarily long sets of data in your mind at one 
time. A version of the main program spanning hundreds of pages – or even one – 
is too long to understand.

We have the algorithm. Since it has functions, let’s decide on each new function’s 

parameters with the help of the third question from “How to write a function”: what does 

each function need to get started? draw Frame draws a frame; it’ll need the dialog. There 

are two parts to that: the left character’s dialog and the right character’s. Since the stick 

figures don’t move, that should be all.

main:

      give the window a title

      draw frame 1 (left char's dialog, right char's dialog);

      wait for user to hit a key

      draw frame 2 (left char's dialog, right char's dialog);

      wait for user to hit a key

3�George A. Miller. “The Magical Number Seven, Plus or Minus Two.” The Psychological Review, 
1956, vol. 63, pp. 81–97. The application of this to things that aren’t sequences of digits – like 
I’m doing right now – has been condemned as urban legend material, on the grounds that the 
precise number of items one can keep in mind varies by type of cognitive task (www.knosof.
co.uk/cbook/misart.pdf, at time of writing). True enough – but even if it does vary, there is a 
limit.

Chapter 7  Functions

http://www.knosof.co.uk/cbook/misart.pdf
http://www.knosof.co.uk/cbook/misart.pdf


164

      draw frame 3 (left char's dialog, right char's dialog);

      wait for user to hit a key

      draw frame 4 (left char's dialog, right char's dialog);

      wait for user to hit a key

draw dialog requires the dialog (duh), so we’ll pass that in. It’ll also need to know 

where to put it (left character’s area, or the right’s).

draw character is always the same except for position, so that’s all it needs.

Here, therefore, is the final algorithm. There’s a lot of code reuse; good. The graph 

paper representation I used to help me draw is in Figure 7-12.

draw frame (left char's dialog, right char's dialog):

      draw character (left x, left y);

      draw dialog    (left x, left y, left char's dialog)

      draw character (right x, right y);

      draw dialog    (right x, right y, right char's dialog)

draw character (x, y)

      draw head as a circle

      draw body, a line

      draw arms, two lines

      draw legs, two lines

draw dialog (x, y, dialog)

      draw line

      draw the text

Chapter 7  Functions



165

The program is in Example 7-4. It turned out that wait for user to hit a key 

was more than a bare call to SSDL_WaitKey(): for user-friendliness I wanted a prompt, 

and I wanted it nicely placed. The task is repeated and tedious to write, so following the 

Golden Rule of Code Reuse, it gets its own function. Output is in Figure 7-13.

Example 7-4.  A program to do a 4-panel cartoon

//Program to display a 4-panel comic strip with stick figures.

//            -- from _C++ for Lazy Programmers_

#include "SSDL.h"

//function prototypes

void drawFrame    (const char* leftDialog, const char* rightDialog);4

void drawCharacter(int x, int y);

void drawDialog   (int x, int y, const char* dialog);

void hitEnterToContinue (); //wait for user to hit Enter

Figure 7-12.  Graph paper to plot out a cartoon frame

4�We’ve seen parameters of type const char* in SSDL function prototypes related to text (e.g., 
void SSDL_SetWindowTitle (const char* text)). We’ll get to the true meaning of const 
char* in Chapter 14. For now, just think of it as meaning “text.”

Chapter 7  Functions



166

int main (int argc, char** argv)

{

    //Set up:  window title and font

    SSDL_SetWindowTitle ("My own 4-panel comic");

    const SSDL_Font COMIC_FONT = SSDL_OpenSystemFont("comic.ttf",18);

    SSDL_SetFont (COMIC_FONT);

    //Now the four frames

    drawFrame  ("Somebody said something really nasty\nto me "

                "on Internet.\nSo I put him in his place.",5

                "Maybe it's not a him.\nMaybe it's a her.  "

                "You never know.");

    hitEnterToContinue();

    drawFrame  ("OK, her.  Whatever.  She kept saying\nall this "

                "stuff about how superior\nshe was.  I found "

                "a spelling error and\ntold her she can't even "

                "spell so she\nshould just shut up.",

                "If it's a her.  It *might* be a him.\nThe point "

                "is we just don't know.");

    hitEnterToContinue();

    drawFrame  ("The *point* is, he went on a rant about\nhow you "

                "can spell things like \"b4\"\nand so on in l33t, "

                "and I told him l33t\nis for lusers -- with a u, "

                "you know.\nThen he told me I misspelled \"loser.\"",

                "If it's a him.  It could be both.\nSometimes "

                "married people\nshare accounts.");

    hitEnterToContinue();

    drawFrame  ("You're making me crazy!",

                "Can I have the URL for that forum?\nI'm not "

5�It’s called “string literal concatenation”: if you jam "quoted" "things" together with only 
whitespace between, C++ will interpret them as one "quoted thing". This helps us break lines 
neatly wherever we like. Nice!

This has no effect on how lines break when printed; for that, we use \n.

Chapter 7  Functions



167

                "done yet.");

    hitEnterToContinue ();

    return 0;

}

void drawFrame (const char* leftDialog, const char* rightDialog)

//draw a cartoon's frame, given dialog for each of two characters

{

    const int LEFT_X  =   0, LEFT_Y  = 20;

    const int RIGHT_X = 320, RIGHT_Y = 40;

    //right character is drawn a little lower

    //it doesn't look so much like a mirror image

    SSDL_RenderClear ();      //clear background to black

    drawCharacter    (LEFT_X,  LEFT_Y);

    drawDialog       (LEFT_X,  LEFT_Y,  leftDialog);

    drawCharacter    (RIGHT_X, RIGHT_Y);

    drawDialog       (RIGHT_X, RIGHT_Y, rightDialog);

}

void drawCharacter (int x, int y)

//draw a stick-figure character, with its dialog at the top.

// The upper-left corner of it all is x, y.

{

    enum {HEAD_RADIUS = 45};

    SSDL_RenderDrawCircle (x+140, y+195, HEAD_RADIUS);  //draw head

    SSDL_RenderDrawLine   (x+142, y+240, x+140, y+340); //draw body,

                                                  //slightly angled

    SSDL_RenderDrawLine   (x+142, y+260, x+115, y+340); //draw arms

    SSDL_RenderDrawLine   (x+142, y+260, x+165, y+342);

    SSDL_RenderDrawLine   (x+140, y+340, x+100, y+420); //draw legs

    SSDL_RenderDrawLine   (x+140, y+340, x+157, y+420);

}

Chapter 7  Functions



168

void drawDialog (int x, int y, const char* dialog)

//Draw the dialog for a character, with a line connecting

// it to the character.  x, y is the upper-left corner of

// the whole set (dialog plus character)

{

    //line linking character to dialog

    SSDL_RenderDrawLine (x+90, y+100, x+112, y+130);

    //dialog itself

    SSDL_RenderText (dialog, x+20, y);

}

void hitEnterToContinue()

{

      //How far up to put the "Hit a key" message

      const int BOTTOM_LINE_HEIGHT = 25;

      //More succinct than "Hit any key to continue but not

      // Escape because that ends the program"

      SSDL_RenderTextCentered("Hit Enter to continue",

            SSDL_GetWindowWidth() / 2,

            SSDL_GetWindowHeight() - BOTTOM_LINE_HEIGHT);

      SSDL_WaitKey();

}

Chapter 7  Functions



169

EXERCISES

	1.	 Write your own multi-panel cartoon: first the algorithm (you’ll need it fer sure!), 

then the functions.

	2.	O n the Japanese holiday of Tanabata, people celebrate by writing wishes on 

vertical strips of paper (tanzaku) and tying them to bamboo. Write a program to 

make several tanzaku on the screen, writing text vertically as in Figure 7-14.

Figure 7-13.  Frame 1 of the 4-panel cartoon program. The other frames are 
similar except way funnier

Chapter 7  Functions



170

Figure 7-14.  Tanzaku for Exercise 2

Chapter 7  Functions



171
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_8

CHAPTER 8

Functions (Continued)
More things about functions: random number functions, Boolean functions, parameters 

that change, and the scope (visibility) of variables.

�Random numbers
Anyone who considers arithmetical methods of producing random num-
bers is, of course, in a state of sin.

—John von Neumann, inventor of FORTRAN (Goldstine, 1972)

Random numbers aren’t just useful for games. They’re useful for simulations – 

predicting the average behavior of some system – and for scientific computing. You can 

tell people that why you’re studying them. It isn’t for games. Honest.

But computers are orderly machines. They can’t really make random numbers, as 

von Neumann knew. I suppose you could drop one and see how it lands, but then how 

will you play solitaire on it?

�Making a random number generator
So what we’ll do is make a sequence of numbers that look random to a human observer – 

but they’ll actually be perfectly predictable, if you know how the computer is doing it.

In Example 8-1, the % operator, called “modulus,” means “divide and take the 

remainder.” So 36%10, for example, gives us 6, because if you divide 36 by 10, the 

remainder is 6.

Remember from Chapter 3 that A += B means A = A+B; *= and %= are defined 

similarly.



172

Example 8-1.  A random number generator

int rand () //Return a pseudo-random integer

{

      static unsigned int seed = 76;

      static const unsigned int INCREMENT = 51138;

      static const unsigned int MULTIPLIER= 21503;

      static const unsigned int MODULUS   = 32767;

      seed += INCREMENT;

      seed *= MULTIPLIER;

      seed %= MODULUS;

      return seed;

}

The static keyword here means that these variables will be created once, the first 

time the function is called, and will remain there as long as the program is running. 

Ordinarily variables local to a function are re-created each time the function is called. 

But we want seed remembered time to time, so we can get a different answer for each 

call, based on what happened previously. We’ll also make the consts static, so they 

won’t have to be reinitialized each time we call the function.

Suppose seed starts at, oh, 76. Add that INCREMENT; multiply it by MULTIPLIER; then 

divide by MODULUS and take the remainder. What’s the new value? You can’t do that in 

your head?

Neither can anyone else. If you call this again and again, you’ll get a sequence of 

large numbers that you can’t predict without doing the math. It looks random; it isn’t: 

21306 20152 10309 31100…

Usually we don’t want such big numbers though. No problem: we can easily get 

them down to a manageable range. Here are some examples:

int numberLessThanTen = rand()% 10;

This gives us a number in the range 0 through 9 – since the maximum remainder 

after you divide by 10 is 9.

int oneThroughTen = rand()%10 + 1;

Now we have 1 through 10: 7 3 10 1 6…

Chapter 8  Functions (Continued)



173

That’s how it’s done.

There’s one other thing we need. Do we always want to start with the same number, 

76? If we do, we’ll get an apparently random sequence of numbers…but it will always be 

the same sequence! If we’re making a card game, say, those cards we pick will always be 

in the same order.

You may have seen a game that asks for a seed. If one of the options is “Select game” 

and you can give it a number, what you’re doing is initializing the seed for the random 

number generator. Example 8-2 amends the code to support this.

Example 8-2.  A complete random number generator

unsigned long int seed;          //Current random number seed

void srand (unsigned int what)  //Start the random number generator

{

    seed = what;

}

int rand ()                 //Return a pseudo-random integer

{

    static const unsigned int INCREMENT = 51138;

    static const unsigned int MULTIPLIER= 21503;

    static const unsigned int MODULUS   = 32767;

    seed += INCREMENT;

    seed *= MULTIPLIER;

    seed %= MODULUS;

    return seed;

}

You call srand (s for “seed”? for “start”? Either works for me) to start your sequence. 

Subsequent calls to rand get the next number in the sequence, and the next, and so on.

Now, this has a serious drawback: the variable seed is declared outside any function. 

That means any function in the entire program can mess it up. We avoid using global 

variables whenever we can – but in this unusual case, there’s no other good way to do it: 

srand and rand both need access.

I’m on the naughty list now for sure. Sorry, Santa.

Chapter 8  Functions (Continued)



174

�Using the built-in random number generator
Good news: other programmers besides you have wanted to use pseudo-random 

numbers! So the functions shown in Example 8-2 come with your compiler. Here’s how 

to use them:

#include <cstdlib>  //for srand, rand

int main (int argc, char** argv)

{

      srand (someNumber); //start random number generator

      ...

cstdlib stands for “C standard library.” cstdlib gives us rand, srand, and other 

functions.

Of course, I’m not too happy with that someNumber thing. Where does it come from? 

We can always make the user select the game by typing in a seed. It’ll work, but it’s more 

work on the user.

Better: get the number from the computer. But how can we be sure it gives us a 

different one each time?

Consult the clock.

Every time you restart the program, it’s a different time. If we can give srand a 

number based on the time, we’ll get a different sequence each time.

Here’s how.

#include<cstdlib>    //for srand, rand

#include<ctime>      //for time

int main (int argc, char** argv)

{

      srand ((unsigned int) time (nullptr));

      ...

ctime contains a function time that returns the number of seconds since midnight 

January 1, 1970, Greenwich Mean Time. We don’t care about the starting point, but we 

do care that the answer will be different each second – so we’ll get different games.

It returns the time as a time_t, which is some kind of int. srand wants unsigned 

int; we convert it so the compiler won’t give us a warning.

Don’t worry what nullptr means; we’ll get to that later.

Chapter 8  Functions (Continued)



175

Golden Rule of srand

Call it once, thus: srand (time (nullptr));

If you call it multiple times, you’ll reset the “random” number sequence multiple 

times -- and the first several “random” numbers you get (until the second changes) will 

be identical. Call it once; that’s all you need.

Now, as an example, let’s try a program that rolls a couple of dice, as in a craps game, 

and tells how you did. On the first try, if you get 2, 3, or 12, you lose. 7 or 11 wins. Any 

other number is your “point” for more betting.

Algorithm:

main:

      start things up with srand

      roll 2 dice

      print what you rolled

      print what happens to your bet

      wait for user to hit a key

How do we roll a die? A reasonable question.

roll die:

      pick a random number 1 to 6.

How do I do that? As earlier: divide by the range and take the remainder, then add 1.

roll die:

      return rand () % 6 + 1

The program is in Example 8-3; output is in Figure 8-1.

Example 8-3.  A program to do a craps roll, illustrating srand and rand

//One step in a game of craps

//          -- from _C++ for Lazy Programmers_

#include <ctime>          //for time function

#include <cstdlib>        //for srand, rand

#include "SSDL.h"

Chapter 8  Functions (Continued)



176

enum { SIDES_PER_DIE = 6 };

int rollDie ();          //roll a 6-sided die

int main (int argc, char** argv)

{

    srand ((unsigned int) (time (nullptr)));

                              //This starts the random # generator

                              //It gets called once per program

    SSDL_SetWindowTitle ("Craps roll");

    sout << "Ready to roll?  Hit a key to continue.\n";

    SSDL_WaitKey ();

    int roll1 = rollDie (), roll2 = rollDie ();

    sout << "You rolled a " << roll1 << " and a " << roll2;

    switch (roll1 + roll2)

    {

    case  2:

    case  3:

    case 12: sout << " -- craps.  You lose the pass line bet.\n";

        break;

    case  7:

    case 11: sout << " -- natural.  You win the pass line bet.\n";

        break;

    default: sout <<", so " << roll1 + roll2 << " is your point.\n";

    }

    sout << "Hit a key to end.\n";

    SSDL_WaitKey();

    return 0;

}

int rollDie () { return rand() % SIDES_PER_DIE + 1; }

Chapter 8  Functions (Continued)



177

�Antibugging
When you’re debugging a program, you may want to get the same sequence of pseudo-
random numbers every time: if something goes wrong, you want it to go wrong the 

same way each time so you can fix it. If so, replace srand (time (nullptr)) with srand 

(someInteger) until it’s debugged.

Now, something that can go wrong:

•	 You get the same random number over and over. Here’s a common 

cause early on: you keep calling srand (time (nullptr)). Or maybe 

you didn’t call it at all. The fix: call srand once, at the start of the 

program.

EXERCISES

	1.	O n paper, write what you think a sequence of 20 coin flips might be. Then write 

a program that flips coins and tells the user what the results are. Output might 

look like this:

How many coins do you want to flip? 20

Here are the results: HTTHTHHHTTHHTTTTTHHT

That's 9 heads and 11 tails.

Did the sequence look the way you expected?

	2.	H ow many times do you need to roll a 6-sided die before you roll a 6? Write an 

algorithm for, then write and test, a program to roll until it does, and report the 

number of times it needed.

Now do it a thousand times, and report the average.

Figure 8-1.  Output of the craps program, Example 8-3

Chapter 8  Functions (Continued)



178

	3.	P lay against the computer, or against another player, with a dreidel, until 

someone is out of gelt. You can find the rules on Wikipedia or elsewhere.

	4.	 Welcome to The Price Is Right, and come on down! Our task this time is to find 

the correct answer to the classic “Monty Hall” problem.

You have a choice between doors 1, 2, or 3. Behind one is a Porsche and clear 

title to a South Pacific island; behind the other two are week-old pizza, a goat, 

and box mac and cheese. Hard as it is to pass up mac and cheese, you have 

your heart set on the Porsche and the island.

You pick a door. The host then opens one of the other doors, one with no prize 

behind it. (If you picked wrong, he opens the only other door without a prize. 

If you picked right, he selects a prize-less door at random.) He offers you the 

chance to switch.

Should you?

Write a program that will simulate the entire process, and do it a large number 

of times. (What’s a reasonable large number? You decide.) Be sure to do 

each part, all the way down to identifying the door the player switches to and 

comparing that to the door with the prize behind it. (Simplifying the problem 

may be valid, but simplifications can trip you up. Also, it’s interesting to find a 

way to identify the door switched to.)

What percentage of the time do you win if you switch? If it’s 50% or close, it 

must not matter.

So, did it matter?

Chapter 8  Functions (Continued)



179

Extra T he Monty Hall problem is a classic probability problem popularized at 
one point by Marilyn vos Savant, the high-IQ author of the “Ask Marilyn” column 
in Parade Magazine. She gave the correct answer…then wrote more columns 
as people kept writing in. A grade-school class tried running the scenario several 
times (without a computer, presumably) to find the answer. Several mathematics 
professors, giving their names and affiliations, wrote to ask her to recant, with such 
comments as “You blew it!” and “You are the goat!” How embarrassing – for them.

�Boolean functions
We’ve had functions to return true or false values before: isupper, for example, in 

Chapter 5. Here’s how I’d write it (Example 8-4).

Example 8-4.  My own isupper, a Boolean function

bool isupper (char ch) //returns whether ch is an upper-case letter

{

    bool result;

    if (ch >= 'A' && ch <= 'Z')

        result = true;

    else

        result = false;

    return result;

}

So if ch is in the uppercase range, it returns true, otherwise false. On the other 

hand, in Example 8-5’s version… if ch is in uppercase range, it returns true, otherwise 

false. They do exactly the same thing.

Example 8-5.  My own isupper, a cooler version (I think)

bool isupper (char ch) //returns whether ch is an upper-case letter

{

    return ch >= 'A' && ch <= 'Z';

}

Chapter 8  Functions (Continued)



180

Which do you prefer? I like the short one. Pick the one you find clearest. Different 

strokes for different folks.

EXERCISES

	1.	 Write a function inRange which, given a number and a lower and upper bound, 

tells if the number is between the bounds. As is usually the case, it won’t print 

anything, but will return its answer. main can do the printing.

	2.	 Write an algorithm, then code, for a function which puts boxes on the screen for 

“YES” and “NO” and another that waits for a mouse click and returns true if the 

YES box was clicked, false if NO was clicked, and continues to wait if the click 

is outside both boxes. Then make a program that demonstrates these functions’ 

use.

	3.	U sing the previous exercise, design and write a program to determine whether 

the creature you just saw was a fairy, troll, dwarf, elf, or some other magical 

creature, as in Exercise 1 in the “chars and cctype” section of Chapter 5. You 

pick the distinguishing features of each type of creature.

�& parameters
What if you want your function to provide more than one value? To alter a variable you 

have? You can only return one thing from a function.1

In the analogy of the candy-making machine, you can only spit out one product. 

That being the case, we need a different kind of machine: one that takes in a confection 

and changes it (bakes it, frosts it, whatever).

The function I want is one that can swap values: swap (x, y) should make x be what 

y was, and y be what x was. Here’s my first attempt:

void swap (int arg1, int arg2)

{

    arg1 = arg2; arg2 = arg1;

}

1�Until Chapter 20.

Chapter 8  Functions (Continued)



181

Trace this through. Here are the states of these variables as we go through this 

process. Assume the values are initially 5 and 10 (Figure 8-2).

Initially...

5arg1

10arg2

temp ?

After first =...

5arg1

10arg2

temp 5

After next =...

10arg1

10arg2

temp 5

Final version

10arg1

5arg2

temp 5

Figure 8-3.  swap: second attempt

5arg1

10arg2

Initially...

10arg1

10arg2

After first =...

10arg1

10arg2

Final result

Figure 8-2.  What happens with swap: first attempt

A variable is like a box that contains a value, but only one. If you wanted to swap 

what was in your hands, how would you do it? You’d find a place to put one of the 

objects – a temporary holding area. If the computer’s going to swap, it’ll need a third 

place too: a temporary variable. This should work (see Figure 8-3.)

void swap (int arg1, int arg2)

{

    int temp = arg1; arg1 = arg2; arg2 = temp;

}

Chapter 8  Functions (Continued)



182

Now let’s see what happens when we call it.

int main (int argc, char** argv)

{

    int x=5, y=10;

    swap (x, y);

    ...

}

We begin with main (Figure 8-4).

int main (int argc, char** argv)

x 5

10y

Figure 8-4.  main before calling swap

void swap (int arg1, int arg2)

5arg1

10arg2

?temp

int main (int argc, char** argv)

5x

10y

Figure 8-5.  swap begins

Then we call swap. The compiler creates an instance of the swap function – the 

variables it contains, and anything else it needs to know, copying arguments from main 

into the parameters (Figure 8-5).

We go through the same process as before, successfully swapping arg1 and arg2 

(Figure 8-6).

Chapter 8  Functions (Continued)



183

Now we’re done with swap, so it can go away (Figure 8-7).

void swap (int arg1, int arg2)

10arg1

5arg2

5temp

int main (int argc, char** argv)

5x

10y

Figure 8-6.  swap completes

void swap (int arg1, int arg2)

5arg1

10arg2

?temp

int main (int argc, char** argv)

5x

10y

Figure 8-7.  swap goes away

I suppose that was fun and all, but…weren’t we supposed to be changing x and y in 

main?

Instead, we altered swap’s local variables arg1 and arg2. When swap went away, so 

did they.

The solution is to put & after the type in the parameter. This makes arg1 and arg2 not 

copies of what’s passed in, but temporary aliases: arg1 is x, as long as we’re in the call to 

swap. A for ampersand, A for alias.

void swap (int& arg1, int& arg2)

{

    int temp = arg1; arg1 = arg2; arg2 = temp;

}

Calling the function (Figure 8-8)…

Chapter 8  Functions (Continued)



184

Since arg1 is x and arg2 is y, what we do to arg1 and arg2, we really do to x and y. So 

x and y really get changed (Figure 8-9).

void swap (int arg1, int arg2)

arg1

arg2

?temp

int main (int argc, char** argv)

5x

10y

Figure 8-8.  Calling swap, with & parameters

void swap (int arg1, int arg2)

arg1

arg2

?temp

int main (int argc, char** argv)

10x

5y

Figure 8-9.  swap actually swaps now!

The function is finished and goes away (Figure 8-10), with x and y swapped.

void swap (int arg1, int arg2)

arg1

arg2

?temp

int main (int argc, char** argv)

10x

5y

Figure 8-10.  swap complete (and correct)

Chapter 8  Functions (Continued)



185

So when should you get a value from a function with &, and when do you use a 

return statement? For now, if you have exactly one value to return, use return. If you 

have multiple values, you need a parameter list with &’s.

Golden Rule of Function Parameters and return (Version 1)

If the function provides no information to the calling function, its return type is 
void.

If it provides one piece of information, its return type is the type of that piece.

If it provides multiple pieces, its return type is void, and those pieces are provided 
through the parameter list using &.

�Antibugging
•	 The function seems to change its parameters; but when you leave 

the function, they're unchanged. This came from forgetting the &. 

A common, and maddening, mistake.

EXERCISES

	1.	 Write the algorithm for, and write, a function to generate a random location 

on the screen and provide it to the function that calls it. Then use it to fill the 

window with stars (dots) at random locations. Run it a few times to make sure 

you don’t always get the same pattern.

	2.	 Write a function to make a color darker. Here’s how: cut the red, the green, and 

the blue each in half. This means you’ll have to do it to the red, green, and blue 

int values, not to the SSDL_Color provided by SSDL_CreateColor. Then 

use this function to make a sequence of dots of progressively darker value. Ask 

the user the initial values.

Chapter 8  Functions (Continued)



186

	3.	 Write a function to solve the quadratic formula. The solutions are 

b b ac a+ -( )2 4 2/  and - + -( )b b ac a2 4 2/  (the − sign before the 

b is the difference). This amounts to either 2 solutions, or 1 solution (if both 

solutions are the same), or 0 solutions (if the thing we take the square root of, 

b2 − 4ac, is negative). So provide the main program with the solutions and a 

parameter saying how many solutions there are. (If there are 0, the contents of 

the solutions won’t matter.)

�Identifier scope
The scope of an identifier (i.e., a variable name, a function name, or some other defined 

name) is the area in which it has meaning.

Consider the swap example. In the diagrams, we saw x and y as inside main (since 

they were); we saw arg1, arg2, and temp as inside swap (since they were). Variables 

inside functions can’t be seen – or interfered with – by other functions. That means 

outside code can’t mess them up. That’s modularity: keeping separate things separate, 

mostly for security.

To look further at scope, consider Example 8-6.

Example 8-6.  A program to draw some angles

//Program which takes you through successive angles

//            in 30-degree increments

//            -- from _C++ for Lazy Programmers_

#include <cmath> //for sin, cos

#include "SSDL.h"

enum { LINE_LENGTH = 200};

enum { CENTER_X = 320, CENTER_Y = 240 };

const float PI = 3.14159F;

Chapter 8  Functions (Continued)



187

double degrees2Radians (double angle); //conversion

void   drawAngle       (double angle); //draw 2 lines,

                                       //given angle between

int main (int argc, char** argv)

{

    SSDL_SetWindowTitle ("See some angles.  "

                         "Hit a key to go between frames.");

    double currentAngle = 0.0;

    while (! SSDL_IsQuitMessage () && currentAngle < 360.0)

    {

        static const double ANGLE_INCREMENT = 30.0;2

        SSDL_RenderClear();        //clear screen

        SSDL_SetCursor (0, 0);     //draw angle

        sout << "Angle:  " << currentAngle << "\n";

        drawAngle (currentAngle);

        SSDL_WaitKey ();           //wait for user

        currentAngle += ANGLE_INCREMENT;

                                  //go on to next angle

    }

    return 0;

}

//converts degrees to radians -- since 180 degrees = PI radians

double degrees2Radians (double angle) {      return angle * PI / 180; }

void drawAngle (double angle)

{

    //length of base of a right triangle is hypotenuse * cos(angle)

    //length of vertical is hypotenuse * sin (angle)

2�If I’m going to put this const inside the loop, which I do for clarity, I can make it static so that, 
like the consts in Example 8-1, it stays till the program ends. More efficient than recreating and 
reinitializing in each iteration of the loop.

Chapter 8  Functions (Continued)



188

    //sin and cos expect radians, so we must convert

    int base     = int (LINE_LENGTH*cos(degrees2Radians (angle)));

    int vertical = int (LINE_LENGTH*sin(degrees2Radians (angle)));

    //draw horizontal line...

    SSDL_RenderDrawLine (CENTER_X, CENTER_Y,

                         CENTER_X+LINE_LENGTH, CENTER_Y);

    //then we'll add the base to the center X, to get the ending X

    //and  we'll add the vertical to center Y, to get the ending Y

    //draw line elevated by given angle

    SSDL_RenderDrawLine (CENTER_X, CENTER_Y,

                         CENTER_X+base, CENTER_Y-vertical);

    //Why -vertical, not +vertical?  Because positive y is down

}

As Figure 8-11 illustrates, definitions can go into the pairs of curly braces, but they 

can’t come out. (Sort of like a duck blind: if you’re in the blind, you can see things 

outside, but they can’t see you.) Everybody can see LINE_LENGTH, CENTER_X, CENTER_Y, 

and PI, since they’re outside everything, and definitions can always go in; so drawAngle 

can use CENTER_X and so on, and degrees2Radians can use PI. Nobody can see base 

and vertical except their owner drawAngle, because they can’t leave the {}’s in which 

they’re declared. Similarly, nobody can see currentAngle except main, and ANGLE_

INCREMENT can only be seen inside the while’s {}’s.

Chapter 8  Functions (Continued)



189

So how do functions share information? Through parameter lists and return 

statements.

Golden Rule of Identifier Scope

Identifiers can’t be seen outside of the {}’s where they were declared.

�A final note on algorithms
Through our exercises, we’ve continued to write algorithms for whatever we do, as 

suggested in Chapter 6. I won’t keep putting the reminder in, but I’ll make a blanket 

statement now: it’s best to get into the habit. It feels lazy to skip the step, but it’s more 

work overall, so the lazy thing is: solve the problem of how to do it in the algorithm-

writing step. Then coding it can be relatively easy.

enum { LINE_LENGTH = 200};
enum { CENTER_X = 320, CENTER_Y = 240 };
const float PI =  3.14159F;

int main (int argc, char** argv)

0.0currentAngle

30.0ANGLE_INCREMENT

void drawAngle (float angle)

angle ?

base ?

vertical ?

float degrees2Radians (float angle)

angle ?

Figure 8-11.  Identifier scope. Definitions outside {}’s can be seen inside them; 
definitions inside can’t be seen outside. Attempts to reference them get something 
like “identifier not found” or “not declared”

Chapter 8  Functions (Continued)



191
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_9

CHAPTER 9

Using the Debugger
The debugger lets you step through the program, line by line or function by function, 

seeing the values of variables so you can tell what goes wrong. Good idea, right?

I think so.

�A flawed program�
To cover useful debugger commands, let’s use the debugger to repair the flawed program 

in Example 9-1. It’s intended to draw a US flag: a sort of a groovy, hand-made looking 

version with hollow stars as in the picture. (To do a better job, we’d use an image from 

a file – but for now I want to use, and debug, a star-writing function.) The design is 

illustrated in Figure 9-1.

Example 9-1.  A buggy program to draw the US flag. Output is in Figure 9-2

//Program to draw Old Glory on the screen

//      -- from _C++ for Lazy Programmers_

#include <cmath> //for sin, cos

#include "SSDL.h"

const double PI = 3.14159;

//Dimensions1

const int HOIST                     = 400; //My pick for flag width

                                           //Called "A" in Figure 9-1

const int FLY                       = int (HOIST * 1.9);    //B

const int UNION_HOIST               = int (HOIST * 0.5385); //C

1�Dimensions courtesy of the US government, from 4 USC § 1, available at uscode.house.gov.

http://uscode.house.gov


192

const int UNION_FLY                 = int (HOIST * 0.76);   //D

const int UNION_VERTICAL_MARGIN     = int (HOIST * 0.054);  //E and F

const int UNION_HORIZONTAL_MARGIN   = int (HOIST * 0.063);  //G and H

const int STAR_DIAMETER             = int (HOIST * 0.0616); //K

const int STRIPE_WIDTH              = HOIST/13;             //L

//Colors2

const SSDL_Color RED_FOR_US_FLAG    = SSDL_CreateColor (179, 25, 66);

const SSDL_Color BLUE_FOR_US_FLAG   = SSDL_CreateColor ( 10, 49, 97);

void drawStripes    ();             //the white and red stripes

void drawUnion      ();             //the blue square

void drawStar       (int x, int y); //draw a star centered at x, y

//draw a row of howMany stars, starting with the x, y position,

// using UNION_HORIZONTAL_MARGIN to go to the right as you draw

void drawRowOfStars (int howMany, int x, int y);

2�Colors from the US State Department: eca.state.gov/files/bureau/state_department_u.s._
flag_style_guide.pdf.

Figure 9-1.  Designing the US flag

Chapter 9  Using the Debugger

http://eca.state.gov/files/bureau/state_department_u.s._flag_style_guide.pdf
http://eca.state.gov/files/bureau/state_department_u.s._flag_style_guide.pdf


193

int main (int argc, char** argv)

{

    SSDL_SetWindowTitle ("Old Glory");

    SSDL_SetWindowSize  (FLY, HOIST);

    drawStripes ();

    drawUnion   (); //draw the union (blue square)

    SSDL_WaitKey();

    return 0;

}

void drawStripes ()

{

    SSDL_SetRenderDrawColor (RED_FOR_US_FLAG);

    SSDL_RenderFillRect (0, 0, FLY, HOIST); //first, a big red square

    //Starting with stripe 1, draw every other stripe WHITE

    SSDL_SetRenderDrawColor (WHITE);

    for (int stripe = 1; stripe < 13; stripe += 2)

        SSDL_RenderFillRect (0, stripe*STRIPE_WIDTH,

                             FLY, STRIPE_WIDTH);

}

//draw a row of howMany stars, starting with the x, y position,

// using UNION_HORIZONTAL_MARGIN to go to the right as you draw

void drawRowOfStars (int howMany, int x, int y)

{

    for (int i = 0; i < howMany; ++i)

    {

        drawStar (x, y); x += 2*UNION_HORIZONTAL_MARGIN;

    }

}

void drawUnion ()

{

    SSDL_SetRenderDrawColor (BLUE_FOR_US_FLAG);

    SSDL_RenderFillRect (0, 0, UNION_FLY, UNION_HOIST);

Chapter 9  Using the Debugger



194

    //draw the blue box

    SSDL_SetRenderDrawColor (WHITE);

    int y = 1;  //What's the y position of the current row of stars?

    for (int i = 0; i < 4; ++i) //Need 4 pairs of 6- and 7-star rows

    {

        drawRowOfStars (6, UNION_HORIZONTAL_MARGIN, y*UNION_VERTICAL_MARGIN);

        ++y;

        //The 2nd row is staggered right slightly

        drawRowOfStars (5,

                2*UNION_HORIZONTAL_MARGIN,

                y*UNION_VERTICAL_MARGIN);

        ++y;

    }

    //...and one final 6-star row

    drawRowOfStars (6, UNION_HORIZONTAL_MARGIN,

                    y*UNION_VERTICAL_MARGIN);

}

void drawStar (int centerX, int centerY)

{

    const int RADIUS = STAR_DIAMETER/2;

    enum { POINTS_ON_STAR = 5 };

    int x1, y1, x2, y2;

    double angle = PI/2;    //90 degrees: straight up vertically

                            //90 degrees is PI/2 radians

    x1 = int (RADIUS * cos (angle));  //Find x, y point at this angle

    y1 = int (RADIUS * sin (angle));  // relative to center

    for (int i = 0; i < POINTS_ON_STAR; ++i)

    {

        angle += (2 * PI / 360) / POINTS_ON_STAR;

                                        //go to next point on star

Chapter 9  Using the Debugger



195

        x2 = int (RADIUS * cos (angle));//Calculate its x,y point

        y2 = int (RADIUS * sin (angle));// relative to center

        SSDL_RenderDrawLine (centerX+x1, centerY+y1,

                             centerX+x2, centerY+y2);

        x1 = x2;                        //Remember the new point

        y1 = y2;                        //  for the next line

    }

}

Figure 9-2.  A buggy US flag

That could have gone better. The stars are almost invisible dots. Even the stripes are 

off: note how the blue union square doesn’t line up with that middle red stripe; and the 

bottom red stripe is too big.

What debugger will you use? If you’re using Microsoft Visual Studio, it’s built in.  

For Unix I recommend ddd, a friendly, graphical interface to the gdb debugger. MinGW 

does not support ddd at this point, so I recommend gdb itself: text-based but standard 

and readily available.

As you go through upcoming sections…it’s easiest to remember things if you do them 

yourself, so I strongly recommend you load this program from the book’s sample code 

and follow along, doing the same things as in the book.

Chapter 9  Using the Debugger



196

�Breakpoints and watched variables
Let’s start by examining dimensions to see why the stripes don’t line up. What 

dimensions? STRIPE_WIDTH seems relevant! So does UNION_HOIST, which is the height of 

the blue square, and HOIST, the height of the whole thing.

Being globally defined, they’re set by the time the program starts. We can stop on the 

first line and inspect them.

�Visual Studio
Be sure you compiled in Debug mode, not Release mode. You should see Debug, not 

Release, in the line of symbols and drop-down boxes under the menu bar (see Figure 9-3). 

If not, you’ll know when the debugger commands don’t work.

Click the off-white bar left of main; a sort of red stop sign appears, as in Figure 9-3. 

(OK, it’s a red dot. But “stop sign” is easier to remember.)

Figure 9-3.  Setting a breakpoint in Microsoft Visual Studio

Start the program.

Visual Studio didn’t like where my breakpoint was, so it moved it down a line. No 

problem. The yellow arrow means “This line is next.” It’s about to start main. So it’s 

already done the initial constant declarations. Let’s see what it made.

Chapter 9  Using the Debugger



197

On the lower left corner of the Visual Studio Window, you probably see something 

like in Figure 9-4: a window with tabs for Autos, Locals, and so on. (If you don’t, try 

Window ➤ Reset Window Layout on the menu bar.)

Figure 9-4.  Starting a debugger session in Microsoft Visual Studio

Autos are things Visual Studio thinks you might want to see. It’s wrong this time: I’m 

not worried about argv and argc.

Locals are local variables; we don’t have any.

Watch 1 is a place where we can watch the values of variables. Click that tab. You can 

now click under “Name” and give the name of something you want to see. Try STRIPE_

WIDTH, then UNION_HOIST and HOIST.

These are the numbers we need (trust me). Click on the breakpoint to delete it and 

proceed to the section “Fixing the stripes.”

Chapter 9  Using the Debugger



198

�ddd
To debug the program a.out, with ddd in Unix, go to its folder and type ./dddx. If there is 

no dddx, copy it from the basicSSDLProject folder you’ve been using.

Highlight main. (If you don’t see any code, check the “Antibugging” section.) On the 

top row of controls, find the stop sign icon labeled “Break”; click that. A stop sign appears 

on the line, meaning, the program will stop here when it runs. You should see something 

like Figure 9-5.

In the bottom window with the (gdb) prompt, the command break main should 

appear. ddd is a training wheels interface, always telling you what gdb command you just 

chose. This way you learn gdb as you go.

Figure 9-5.  The ddd interface to the gdb debugger

To run, click Run on the menu on the right, or type run at the (gdb) prompt. print 

STRIPE_WIDTH and so on at the prompt to get the values of STRIPE_WIDTH, HOIST, and 

UNION_HOIST.

Clicking on the breakpoint may delete it. If not, delete <breakpoint number>. See 

the gdb window for the breakpoint number. To quit, type quit.

Chapter 9  Using the Debugger



199

�gdb
Go to the program’s folder and type ./gdbx (Unix) or bash gdbw (MinGW). If there is no 

such file, copy it in from the basicSSDLProject folder you’ve been using.

To make the program stop on that first line, I type break main (Unix) or break SDL_

main (MinGW). When I run the program, it’ll break there and I can examine the values.

To start the program, type run. To see the values, type print: print STRIPE_WIDTH; 

print HOIST; print UNION_HOIST.

To end gdb, type quit.

�Fixing the stripes
Now we have the numbers; let’s make some sense of them.

A stripe should be 1/13 of the FLY. 400/13, by my calculator, is 30.76 something; 

STRIPE_WIDTH, being an int, is only 30. So that’s right. There should be 7 stripes 

covered by that UNION_HOIST: the stripes cover 7∗30 = 210 pixels, but the UNION_HOIST is 

HOIST∗7/13 = 215.

The problem is that we’re doing integer division and losing decimal places.

I’ll make the fix of making the FLY not 400, but something divisible by 13.  

STRIPE_WIDTH was 30 here; 13∗30 = 390. Let’s see what amending this will do. Change 

the initialization of HOIST:

const int HOIST                     = 390;  //My pick for flag width

and run again. The stripe problem is fixed!

�Going into functions
The star problem requires further digging. So restore your breakpoint at main and start 

the debugger again.

�Visual Studio
Looking at the Debug menu: you can Step Over (execute) a line (selecting Step Over, or 

hitting F10; Function-F10 on some keyboards). As you do, the yellow arrow goes down a 

line, executing the line as it goes.

Chapter 9  Using the Debugger



200

When you’re down to drawUnion, you want to Step Into (F11/Function F-11) that 

function.

Using F10 and F11, go into drawRowOfStars, then drawStar, until you get to the  

for loop, as in Figure 9-6. The Call Stack, lower right, shows what function you’re in (its 

top line) and how you got there (lines beneath).

If you don’t see the Locals window, click the Locals tab.

Figure 9-6.  The Locals window in Microsoft Visual Studio

Nothing looks obviously wrong. Let’s go on to SSDL_RenderDrawLine. Wasn’t angle 

supposed to change more than that? In the Watch 1 window, type or paste  

(2 * PI/360)/POINTS_ON_STAR: the debugger will calculate it for you.

Chapter 9  Using the Debugger



201

�ddd
In the “DDD” menu on the right, Next takes you to the next line, and Step steps into a 

function. The arrow on the left shows what line you’re about to execute. Use Next to go to 

drawUnion. When there, Step into that function.

Using Next and Step, go into drawRowOfStars, then drawStar, until you get to the  

for loop.

At this point it makes sense to find out what the variables are. Under the Data menu, 

select Display Local Variables. You may need to make the Data area visible: View ➤ View 

Data Window. Figure 9-7 shows the result.

Figure 9-7.  Displaying local variables in ddd

Nothing looks obviously wrong. Let’s go on to SSDL_RenderDrawLine. Wasn’t angle 

supposed to change more than that? print (2 * PI/360)/POINTS_ON_STAR at the gdb 

prompt and see what you get.

Chapter 9  Using the Debugger



202

�gdb
To go further in the program, you can type next (or n) to go to the next line, and step (or s) 

to step into a function. (Enter repeats the last command.) As you progress, it will print the 

current line so you know where you are. Use these commands to go into drawUnion, then 

through drawStar, until you get to the for loop.

You may want to put a breakpoint in case you need to come back to this line. break 

will put one on the current line. break drawStar will break at the start of the function. 

Just for grins, try that now, and type run. Then continue, or cont, or c, to get back to the 

breakpoint.

delete <number of breakpoint> deletes the breakpoint; delete deletes them all.

To print local variables, enter info locals.

Nothing looks obviously wrong. Let’s go on to SSDL_RenderDrawLine. Wasn’t angle 

supposed to change more than that? print (2 * PI/360)/POINTS_ON_STAR and see 

what you get.

�Fixing the stars
(2 * PI/360)/POINTS_ON_STAR was supposed to take us to the next point on the star. 

Isn’t a fifth of a circle bigger than 0.00349? It should be a circle divided by 5. That’s 

360°/5, or, in radians, 2π/5, but that’s not what the formula says. Looks like I mangled 

degrees together with radians. There’s our problem, so here’s our fix.

angle += (2 * PI)/POINTS_ON_STAR;      //go to next point on star

When we recompile and run, we get a flag with the stars drawn as pentagons. At least 

they have five sides!

The program tells the computer to go five steps around the circle, each time drawing 

a line covering 1/5 of that distance. Isn’t that what a pentagon, not a star, does?

To draw a star, don’t go 1/5 of the way around the circle. Go 2/5 of the way. Let’s try 

that:

angle += 2*(2 * PI)/POINTS_ON_STAR; //go to next point on star,

                                    //   2/5 way around circle

Now the stars are there, but upside down. I think of 90 degrees as straight up, but 

with SDL we have increasing Y going down the screen. Is that the problem? I’ll try 

starting at -90 degrees and see what happens.

Chapter 9  Using the Debugger



203

float angle = -PI/2;            //-90 degrees -- straight up vertically

The result is in Figure 9-8. Much better.

Figure 9-8.  The flag with actual stars

�Wrap-up
For a summary of common debugger commands, see Appendix G.

�Antibugging
•	 (ddd/gdb) There’s no file. Maybe you forgot to make it! Or you made 

it for Unix but are debugging it with MinGW, or the reverse.

•	 It just sits there, giving no prompt. It may be waiting for input. Click 

on the program’s window and give it what it needs.

•	 You’re looking at some file you didn’t write. It’s the compiler’s code, 

or a library’s.

Visual Studio: Step out (Shift-F11) of the function(s) you’re in to 

get back to your own code. Or set a breakpoint in your code and 

Continue (F5).

ddd/gdb: up will take you up to the calling function; do this enough 

and you’ll see what part of your code you were in. Then set a 

breakpoint where you like and continue.

Chapter 9  Using the Debugger



204

Extra T he GNU (“guh-NOO”) Free Software Foundation (www.gnu.org) was 
formed in 1984 to provide free software for the Unix operating system. It’s since 
expanded its mission, and people may use GNU Public License as a licensing 
agreement when they want to freely share their work. 

This is how we get not only ddd and gdb but also g++, GIMP, and other cool stuff. 

GNU often applies funny names to things, and GNU itself is no exception. GNU is an 
acronym: it stands for “GNU’s Not Unix.”

�Bottom-up testing
We looked at top-down design in Chapter 7: start with main, then write the functions it 

calls, then the functions they call, until done.

Bottom-up testing is a natural corollary. It’s sometimes too hard to test the whole 

program at once. Suppose you’re doing economic forecasting with a program of many 

functions: correlations, compound interest, predicted GDP, and a lot of hand-waving 

(Figure 9-9).

main

Top-
down 

design 
...

getBorrowing

setTaxRates

getSpendinggetRevenues

predictIncomes

crossFingerswildGuess

setInterestRate

unemploymentconsumerPriceIndexpayoffs

GDP
...

bottom-up
testing

Figure 9-9.  A complicated mess to debug. main calls three functions, getRevenues, 
getBorrowing, and getSpending, and they call lots of others

Chapter 9  Using the Debugger

http://www.gnu.org


205

You run the program, and it tells you

The nation will be bankrupt in -2 years.

That can’t be right. But which function has a problem? main? consumerPriceIndex? 

wildGuess? You can’t get that information from a bare “-2”!

You need to know that you can trust every function. So you take the ones at the 

bottom (wildGuess and crossFingers), the ones that don’t call the others but are called, 

and test them until you’re confident.

Then you test the ones that call them.

And the ones that call them…all the way up to main.

�More on antibugging
Here are more hints on getting working programs:

•	 Make plenty of backups. If it’s a large or difficult project, a trail of 

them, so you can backtrack if something screws up.

•	 Keep functions modular (no global variables).

•	 Display the information you need. In the preceding example, 

the answer “-2” for the years until an event was clearly wrong, but 

otherwise wasn’t informative.

•	 The biggest problem in testing often is you just don’t know what 

values are in your variables. Here are two common fixes:

•	 Use the debugger.

•	 Use lots of print statements. If a variable has a value, then just 

while debugging, print it. Clearly labeled: not

sout << growthRate;

//so 0.9 gets printed. What does it mean?

but

sout << "growthRate is " << growthRate << ".\n";

Chapter 9  Using the Debugger



206

That’s longer, but it’s better than struggling to remember what the 

numbers you see, mean. Working blindly to fix an error you can’t 

identify is too much work. Better to see the problem so you can fix it.

•	 Don’t let it get your gumption. In Zen and the Art of Motorcycle 

Maintenance, author Robert Persig warns of things that suck out your 

“gumption,” your ability to solve or even focus on problems with your 

bike. Or your English essay. Or whatever.

In programming, too, you can lose gumption. You just found a bug 

you thought you’d resolved, and the program’s useless till you fix 

it, so now you’re too frustrated to do anything but mope. I’ve been 

there, recently.

I once spent two working days tracking down what turned out to 

be misplaced parentheses. That’s it? Tiny parentheses? They are 

tiny, but they were a big problem, because I couldn’t go on till they 

were fixed.

I just said “Whew!” and went on to the next issue.

If you can suspend self-evaluation when there’s an error and get 

back to the problem, you’re on your way.

•	 If you make stupid errors…See “gumption”. Stupid errors are the 

best kind, because they’re easy to fix. The hard ones are the subtle 

ones. Everyone makes stupid errors.

•	 If you’re just no good at this...Everyone feels that way in the 

beginning. I did. You wouldn’t expect to be fluent in a new language 

after a few weeks of study, and C++ is way cooler than any mere 

spoken language.

•	 Do it quick. If you want to do something right, you probably have 

to do it wrong first. So go ahead and do it wrong. It’s quicker to fix a 

broken program than stare at a screen till enlightenment strikes.

EXERCISES

No exercises yet – just be sure and use your debugger of choice in subsequent chapters!

Chapter 9  Using the Debugger



207
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_10

CHAPTER 10

Arrays and enum
In this chapter, sequences (arrays) of values, enumeration types, weather data, and 

board games are discussed.

�Arrays
“If you don’t like the weather in these parts,” the old-timer said with a twinkle in his eye, 

“wait a few minutes.”

Let’s find out if he’s right: we’ll take 10 temperatures at 1-minute intervals and see 

the variation. I’ll start like this:

double temp1; sout << "Enter a temperature: "; sin >> temp1;

double temp2; sout << "Enter a temperature: "; sin >> temp2;

double temp3; sout << "Enter a temperature: "; sin >> temp3;

That’s getting old fast. Maybe there’s a better way to store 10 numbers. Here it is:

enum {MAX_NUMBERS = 10};

double temperatures[MAX_NUMBERS]; //an array of 10 doubles

The BNF syntax for an array is <base type> <name of array> [<array size>]; where 

<base type> is what you want an array of and <array size> is how many you want. Array 

size should be const int or enum.

Now we have an array of temperatures, starting with the 0th and ending with the 

9th. If we started with 1, we’d go through 10…but C++ starts counting at 0.

To use one of the array’s elements, just say which

temperatures[3] = 33.6;

sout << temperatures[3];



208

Since temperatures is an array of double, you can use temperatures[3] anywhere 

you can use a double – since that’s exactly what it is.

Note that here the number in the []’s is not the array size – that’s in the declaration 

only! – but which element you want. This “index” should be some countable type like 

int or enum. We commonly use variables of type int:

//Get the numbers

for (int i = 0; i < MAX_NUMBERS; ++i)

{

      sout << "Enter a temperature: ");

      ssin >> temperatures[i];

}

For loops are a natural way to process arrays because they can easily go through 

each element. This loop starts at 0 and keeps going as long as i is less than 10 (MAX_

NUMBERS), so we’ll be seeing temperatures[0], temperatures[1], and so on up through 

temperatures[9] – all 10.

This isn’t how we’re used to counting, but you get used to it: an array of N elements 

starts with the 0th and ends with the N-1th. Maybe you’ll soon be starting your to-do lists 

with 0.

Example 10-1 is a complete program for reading in and spitting back out 

temperatures.

Example 10-1.  Reading/writing a list of numbers using an array

//Program to read in and print back out numbers

//              -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main (int argc, char** argv)

{

    enum {MAX_NUMBERS = 10};

    sout << "Enter " << MAX_NUMBERS

         << " temperatures to make your report.\n\n";

    double temperatures [MAX_NUMBERS];

Chapter 10  Arrays and enum



209

    //Get the numbers

    for (int i = 0; i < MAX_NUMBERS; ++i)

    {

        sout << "Enter the next temperature: ";

        ssin >> temperatures[i];

    }

    //Print the numbers

    sout << "You entered ";

    for (int i = 0; i < MAX_NUMBERS; ++i)

        sout << temperatures[i] << ' ';

    sout << "\nHit any key to end.\n";

    SSDL_WaitKey ();

    return 0;

}

We usually initialize our variables. Here’s how to do that with an array:

//where MAX_NUMS = 4...

double Numbers[MAX_NUMS] = {0.1, 2.2, 0.5, 0.75};1

                                        //uses an "initializer list"

Unfortunately, the bracketed list only works at initialization time: we can’t later set 

Numbers to a bracketed set of values. We’ll have to do it one element at a time, possibly 

using a for loop.

I needn’t put MAX_NUMS in the []’s because C++ can count the initialization list and 

figure out the size:

double temperatures[] = {32.6, 32.6, 32.7, 32.7, 32.7,

                         32.7, 32.7, 32.7, 32.7, 32.7};

    //I think the old guy was messing with us

1�Omit the = if you like: double Numbers[] {0.1, 2.2, 0.5, 0.75};.

Chapter 10  Arrays and enum



210

If you give too few values, it fills in the rest with 0’s2:

double temperatures[MAX_NUMS] = {};//If it's really 0's,

                                   //  I hope we're using Fahrenheit

�Arrays’ dirty little secret: using memory addresses
Arrays aren’t stored in memory the same way other variables are.

An array variable is actually an address: the address of a chunk of memory that 

contains the elements. When you declare an array, this makes the computer do these 

things: allocate the array variable (left in Figure 10-1); allocate a chunk of memory to 

store the elements (right in Figure 10-1); and put the address of the 0th element, that is, 

the start of that chunk, in your new array variable.3

This scheme is why C++ starts with array index 0. To calculate the address of the ith 

element, it adds i*sizeof(int), that is, i times the size of a int, whatever that is, to the 

location of the address. If you started at 1, it would have to add (i-1)*sizeof(int). C++, 

and even moreso its ancestor C, prefers to do things as efficiently as possible even if it 

sacrifices a little clarity in the process.

So, in Figure 10-1, where is the array size stored? How can I check if I need it later?

2�“Zero initialization.” If the members of your array are of a type that has 0 (or 0.0!), they’ll be set to 
that.

3�In this illustration, I write the addresses in “hexadecimal,” that is, base 16, which is conventional. 
The reason it goes up by 4 each row is that I’m assuming int takes up 4 memory locations, that is, 
4 “bytes.” None of this matters here, but I don’t want the C++ gods to laugh at my diagram.

0x1080F900int A[5] 2 //A[1]0x1080F904

9 //A[3]...

1 //A[0]0x1080F900

8 //A[4]

5 //A[2]0x1080F908

Figure 10-1.  How arrays are stored in memory

Chapter 10  Arrays and enum



211

I can’t. C++ uses array size when it allocates the memory, but after that, if you want 

that number – say, to be sure you’re not going too far in the array – you have to keep track 

of it yourself. If you declare an array of five elements and try to access the 5th element 

(which, since C++ uses 0-based counting, doesn’t exist), it lets you. This means you are 

reading a chunk of memory that’s being used for something else.

It’s even worse if you write to that chunk of memory, as in A[5] = 0. If you do, you 

may overwrite data that makes up some other variable.

�Antibugging
•	 Your loop goes one element too far in the array. I’d bet the less than 

operator is to blame. Change

for (int i = 0; i <= N; ++i)

to

for (int i = 0; i < N; ++i)

•	 A variable’s value changes, but you didn’t tell it to. You may have 

used an index too big for an array and thereby overwritten a different 

variable.

•	 Your program crashes (stops running). In Unix, you get 

Segmentation fault: core dumped. In other venues, you may get 

a window that says “<your program> has stopped working,” or (in 

Visual Studio) “Exception thrown.”

A likely cause at this point is…using an index too big for the array.

EXERCISES

In the following, be sure to use the debugger if something goes wrong:

	1.	 Write a program that gets from the user all seven daily high temperatures and 

daily lows for the week and tells the user which day had the lowest low and the 

highest high.

	2.	M ake the same program, but don’t ask the user: initialize the array using {}’s.

Chapter 10  Arrays and enum



212

	3.	 Given an array of chars (use {}’s to initialize), report if the characters are in 

alphabetical order.

	4.	R ead in a list of integers, and print them out in reverse.

�Arrays as function parameters
When we want to pass a variable to a function, we essentially lift the declaration (without 

the semicolon) and use that to define the parameter: that is, we’d declare x with int x;, 

so if we want to send x into function f, we write void f(int x);.

We do the same with arrays.

void f (int myArray[ARRAY_SIZE]);

Example 10-2 shows a function to find the smallest temperature in our array.

Example 10-2.  lowestTemp, taking an array and returning its smallest element

double lowestTemp(double temperatures[MAX_NUMBERS])

//returns lowest entry in temperatures

{

    double result = temperatures[0];

    for (int i = 0; i < MAX_NUMBERS; ++i)

        if (temperatures[i] < result)

            result = temperatures[i];

    return result;

}

It’s called thus:

sout << "The lowest temp was " << lowestTemp (temperatures);

It isn’t possible, based on what we know so far, to make a function return an array. 

For now we’ll just pass them in as parameters.

Chapter 10  Arrays and enum



213

�Array parameters that change, or don’t
I don’t have to use the & with an array, even if I want to change the array’s contents. 

Here’s why.

Remember that an array variable isn’t really all the different elements; it’s the 

address of the 0th. If you don’t use &, you can’t alter it – and that’s no problem: we don’t 

want to alter the address, we only want to alter the contents – and they weren’t the thing 

passed in! Alter them to your heart’s content – your alterations will be there when the 

function returns.

You might say, “Doesn’t that violate security? What if the called function alters them, 

and they shouldn’t have been altered?” Good point. Here’s the fix:

double lowestTemp (const double temperatures[ARRAY_SIZE])

//returns lowest entry in temperatures

{

      ...

Declaring the parameter as const ensures that lowestTemp can’t change it. A good 

habit to get into.

�Array parameters and reusability
Another important implication of how arrays are stored is that since C++ doesn’t care 

how big your array is, when you pass it to a function, it totally ignores the size given 

between the []’s. Put it in or leave it out; C++ doesn’t care. This means the same function 

can be used for any array of the same base type, regardless of size.

Here’s a version of lowestTemp that doesn’t restrict you to a particular size.

double lowestTemp (const double temperatures[], int arraySize)

//returns lowest entry in temperatures

{

      bool result = temperatures[0];

      for (int i = 0; i < arraySize; ++i)

          ...

}

Chapter 10  Arrays and enum



214

Now let’s be even more flexible. As Chapter 7 suggests, it’s good to make your 

functions general, versatile, and thus reusable. There’s no reason the function we just 

called lowestTemp would work only with temperatures. Think of it more generally, and 

you can use it again in another program. Code reuse, yay.

Example 10-3.  minimum, a function that can be used for any double array, any size

double minimum(const double elements[], int arraySize)

//returns lowest entry in elements

{

    double result = elements[0];

    for (int i = 0; i < arraySize; ++i)

        if (elements[i] < result)

            result = elements[i];

    return result;

}

�Antibugging
•	 The compiler complains about “invalid conversion from int to 

int*” or “int to int[]” on a function call. It’s saying it expected an 

array but got a single value. But didn’t we give it an array? In this 

example

minimum (temperatures[NUMTEMPS], NUMTEMPS);

…I didn’t. I gave it the NUMTEMPSth temperature, whatever that is.

This problem is a confusion over two uses of []’s: when declaring, 

what goes between the []’s is array size. At all other times, it’s 

which element we want to access.

Since the array’s name is temperatures, not 

temperatures[NUMTEMPS], I’ll pass that in:  

minimum (temperatures, NUMTEMPS);.

Chapter 10  Arrays and enum



215

Golden Rule of [ ]

What goes between the []’s in an array reference is which element you want. 
(Except at the time of declaration. Then it’s the array size.)

EXERCISES

In these exercises, remember to use your favorite debugger if something goes wrong:

	1.	 Write a maximum function to correspond to minimum in Example 10-3, and use 

these to find the range in a given array of temperatures – thus answering the 

question the chapter started with, of how quickly the weather is changing. If the 

range is more than half a degree, print “You’re right; the weather really does 

change quickly here!”

	2.	 For a month of temperatures, report the highest high, the lowest low, and the 

day with the biggest gap between.

	3.	 Write a program that will graph the high and low temperatures for a given 

month (you’ll want to initialize the array using {}’s; it’ll be too much work to type 

them each time), displaying X and Y axes for day and temperature and putting 

dots to mark the data points. You’ll definitely want to write the algorithm first for 

this one.

�Enumeration types
In preparation for using playing cards, or colored pieces in a board game, or months of 

the year…let’s look over enum again. There are two things about them we haven’t made 

use of yet:

	 1.	 They can create new types.

	 2.	 The symbols you put between the {}’s are ordered by default.

In BNF, an enum declaration is enum [<typename>] {<list of values>};. It’s just that till 

now we’ve always omitted the typename.

Chapter 10  Arrays and enum



216

If you don’t specify, the values start at 0 and increase by 1 each time: for example,

enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES}; //Playing card suit

is equivalent to

const int CLUBS    = 0;

const int DIAMONDS = 1;

const int HEARTS   = 2;

const int SPADES   = 3;

but is way easier to write, and also creates a new type Suit so you can declare variables 

of that type:

Suit firstCardSuit = HEARTS, secondCardSuit = SPADES;

What is firstCardSuit, really? It’s really a Suit! But, yes, it is very much like an int. 

Why not just make it an int? Clarity: when you declare an int, it’s not clear if you really 

meant it as a suit for cards. If you declare it as a Suit, it’s obvious.

With the naming convention used in this book, new types we create are capitalized 

(like Suit, but unlike int: types built into the standard are lowercase).

We can also declare

enum Rank {ACE=1, JACK=11, QUEEN, KING}; //Playing card rank

We didn’t specify a value for QUEEN, so it keeps counting from JACK: QUEEN is 12,  

KING is 13.

enum values are meant more as labels than numbers, so though you can assign to enum 

variables (=) and compare them (==, <, <=, etc.), you can’t easily do math with them: you 

can’t use ++, --, +=, -=, *=, /=, or %=. You can’t print them with sout or read them with 

ssin. You can’t assign ints into them (myRank = 8 won’t compile). So what good are they?

Sometimes you don’t need to do those things.

If you must do math, there’s a workaround. Need to give myRank a value of 8? Use 

casting:

myRank = Rank (8);

Need to go on to the next? Casting again:

myRank = Rank (myRank+1);

Chapter 10  Arrays and enum



217

What if you want to print it? There’s no way the compiler would know how we want a 

Suit printed, so we’ll tell it (Example 10-4).

Example 10-4.  A function for printing playing card suit

void print(Suit suit) //prints a Suit

{

      switch (suit)

      {

      case CLUBS   : sout << 'C';      break;

      case DIAMONDS: sout << 'D';      break;

      case HEARTS  : sout << 'H';      break;

      case SPADES  : sout << 'S';      break;

      default      : sout << '?';      break;

      }

}

I find not having to declare long lists of consts such a plus I have no reservations 

about using enums. Though I do wish you could use ++ with them.

�enum class
There’s a more modern way (C++11 and later) to do enum. Say enum class Suit instead 

of enum Suit, and for security’s sake, the compiler won’t let you refer to the values 

without Suit:: preceding; or go from Suit to int without casting. So

for (int s = CLUBS; s <= SPADES; ++s) //for all possible cards, do...

    for (int r = ACE; r <= KING; ++r) ...

must be written as

for (int s = int (Suit::HEARTS); s <= int (Suit::SPADES); ++s)

    for (int r = int (Rank::ACE); r <= int (Rank::KING); ++r)...

This is way more typing, but prevents accidental, weird uses of the values (int 

daysLeftTillVacation=QUEEN – huh?) and name conflicts (say, if you had two enum 

types, each having a member named RED). You decide if it’s worth it.

Chapter 10  Arrays and enum



218

�Antibugging
C++ doesn’t care one whit if your variable of some enum type goes beyond the values you 

listed:

r = Rank (-5000);

The solution is to, well, not do that.

EXERCISES

	1.	D eclare an enumeration type for chess pieces: king, queen, bishop, knight, 

rook, and pawn.

	2.	D eclare an enumeration type for the planets in the Solar System. Earth is the 

third planet, so adjust your numbering so that EARTH is 3, and all other planets 

are also correctly numbered.

	3.	 Write a function printRank which, given a Rank, prints it appropriately – as 

A, 2, 3, 4, 5, 6, 7 8, 9, 10, J, Q, or K. This and the next 

exercise will be useful in Chapter 19’s card game examples.

	4.	 Write a function readRank which returns the Rank it reads in using the same 

format as in Exercise 3. Yes, it’s an issue that some input is numbers and some 

is letters – so what type variable will you need to handle both?

	5.	 Write a function to play music of these styles: SPOOKY, CARNIVAL, and ALIEN (or 

whatever styles you like). Pass in an enum parameter to tell it which style.

Write another that picks which style to use, based on what box the user clicks.

…and another which draws boxes for the user to click.

Put ’em together to make a music player.

Chapter 10  Arrays and enum



219

�Multidimensional arrays
Not all arrays are simple lists. You can have an array in two or more dimensions.

Here’s an array for a Tic-Tac-Toe (noughts and crosses) board: a 3x3 grid. Each 

square can contain an X, an O, or nothing.

enum {MAX_CLMS = 3, MAX_ROWS = 3};

enum class Square { EMPTY, X, O };

Square board[MAX_ROWS][MAX_CLMS];

To set the square in row 1, column 2, to X, we say

board[1][2] = Square::X;

and to check the rowth, clmth square, we say something like

if (board[row][clm] == Square::X) ...

Figure 10-2 shows how C++ arranges the array in memory. First, we have the 0th row, 

with all its columns, from 0 to the last column; then the 1st row; then the 2nd.

Square board[MAX_ROWS][MAX_CLMS];
Square::EMPTY //board[0][0]

Square::EMPTY //board[0][1]

Square::EMPTY //board[0][2]

Square::EMPTY //board[1][0]

Square::EMPTY //board[1][1]

Square::EMPTY //board[1][2]

Figure 10-2.  How 2D arrays are arranged in memory. (I omit the actual addresses 
this time to emphasize that we don't have to know them.)

Each row has MAX_CLMS squares, so to get to board[1][2], C++ calculates that  

it’s 1*MAX_CLMS+2 = 5 squares down. Counting 5 down from the initial element in  

Figure 10-2 takes us to board[1][2], which is what we wanted.

Chapter 10  Arrays and enum



220

�Displaying the board
What are the two basic steps of drawing a board?

draw the board itself (the grid)

draw the X's and O's on the board

Drawing the grid is just making some lines, and is simple enough I won’t spend time 

on it here. We can break down drawing the X’s and O’s piecemeal as we’re used to doing.

for every row

      draw the row

How do we draw the row? Let’s refine that.

for every row

      for every clm

            draw the square

And how do draw the squares? Last refinement:

for every row

      for every clm

            if board[row][clm] contains X draw an X

            else if it has an O draw an O

Example 10-5 is the resulting program. Output is in Figure 10-3.

Example 10-5.  Initializing and displaying a Tic-Tac-Toe (noughts and crosses) 

board

//Program to do a few things with a Tic-Tac-Toe board

//              -- from _C++ for Lazy Programmers_

#include "SSDL.h"

//Dimensions of board and text notes

enum { MAX_ROWS     =   3, MAX_CLMS    =   3 };

enum { ROW_WIDTH    = 100, CLM_WIDTH   = 100 };

enum { BOARD_HEIGHT = 300, BOARD_WIDTH = 300 };

                 //enough room for 3x3 grid, given these widths

enum { TEXT_LINE_HEIGHT = 20 };

Chapter 10  Arrays and enum



221

//A Square is a place in the TicTacToe board

//No enum class: I got tired of typing "Square::"

enum Square { EMPTY, X, O };

//Displaying the board

void display(const Square board[MAX_ROWS][MAX_CLMS]);

int main(int argc, char** argv)

{

    //Shrink the display to fit our board

    // allowing room for 2 lines of text at the bottom;

    // set title

    SSDL_SetWindowSize     (BOARD_WIDTH,

                            BOARD_HEIGHT + TEXT_LINE_HEIGHT * 2);

    SSDL_SetWindowTitle("Hit any key to end.");

    //Colors

    SSDL_RenderClear       (SSDL_CreateColor(30, 30, 30)); //charcoal

    SSDL_SetRenderDrawColor(SSDL_CreateColor(245, 245, 220)); //beige

    //The board, initialized to give X 3 in a row

      Square board[MAX_ROWS][MAX_CLMS] =

        { {EMPTY, EMPTY,     X},

          {EMPTY,     X, EMPTY},

          {    X,     O,     O} };

    display (board);           //display it

    //Be sure the user knows what he's seeing is the right result

    SSDL_RenderText("You should see 3 X's diagonally, ",

                    0, MAX_ROWS * ROW_WIDTH);

    SSDL_RenderText("and two O's in the bottom row.",

                    0, MAX_ROWS * ROW_WIDTH + TEXT_LINE_HEIGHT);

    SSDL_WaitKey();

    return 0;

}

Chapter 10  Arrays and enum



222

void display(const Square board[MAX_ROWS][MAX_CLMS])

{

    //Make 'em static: loaded once, and local to the only function

    // that needs 'em. What's not to like?

    static const SSDL_Image X_IMAGE = SSDL_LoadImage("media/X.png");

    static const SSDL_Image O_IMAGE = SSDL_LoadImage("media/O.png");

    //draw the X's and O's

    for (int row = 0; row < MAX_ROWS; ++row)

        for (int clm = 0; clm < MAX_CLMS; ++clm)

            switch (board[row][clm])

            {

            �case Square::X: SSDL_RenderImage(X_IMAGE, clm*CLM_WIDTH, 

row*ROW_WIDTH);

                break;

            �case Square::O: SSDL_RenderImage(O_IMAGE,clm*CLM_WIDTH, 

row*ROW_WIDTH);

            }

    //draw the lines for the board:  first vertical, then horizontal

    //doing this last stops X and O bitmaps from covering the lines

    enum { LINE_THICKNESS = 5 };

    SSDL_RenderFillRect(CLM_WIDTH     - LINE_THICKNESS / 2, 0,

                        LINE_THICKNESS, BOARD_HEIGHT);

    SSDL_RenderFillRect(CLM_WIDTH * 2 - LINE_THICKNESS / 2, 0,

                        LINE_THICKNESS, BOARD_HEIGHT);

    SSDL_RenderFillRect(0, ROW_WIDTH  - LINE_THICKNESS / 2,

                        BOARD_WIDTH, LINE_THICKNESS);

    SSDL_RenderFillRect(0, ROW_WIDTH*2- LINE_THICKNESS / 2,

                        BOARD_WIDTH, LINE_THICKNESS);

}

To write the parameter list for display, we copy the definition of ticTacToeBoard 

between the ()’s.

But unlike with 1D arrays, you can’t leave out the numbers between the []’s willy-nilly. 

As we saw in Figure 10-2, MAX_CLMS is used by C++ to determine memory locations of the 

elements. You could leave out the first dimension, but that doesn’t make it clearer, so I don’t.

Chapter 10  Arrays and enum



223

Figure 10-3.  A Tic-Tac-Toe board

Note E xample 10-5 doesn’t just show the appropriate output; it prints what the 
output should be. Is this overkill? 

I don’t think so. It’s a lot easier to see what the outcome should be on the screen 
than to search the code for it. In Chapter 18 we’ll see even lazier ways of testing.

�Arrays of more than two dimensions
In the previous example, our array was 2D. Can we have 3D arrays? 4D? You can have as 

many dimensions as you’re likely to want.

To initialize a 3D array with an initializer list, use another set of nested {}’s.

Chapter 10  Arrays and enum



224

But the only uses I’ve found for 3D arrays are the 1971 text-based “Star Trek” game 

(going between “quadrants” fighting Klingon ships) and 3D Tic-Tac-Toe. I’ve never found 

a use for 4D arrays. If you find one, don’t tell me. There are things I don’t want to know.

�Antibugging
•	 Things in your 2D array are going into the wrong places. That 

could result from using row when you mean clm or clm when you 

mean row.

The best prevention is to be consistent in what you call rows and 

columns: don’t use row, clm sometimes, x, y sometimes, and i, j 

sometimes. Always use row, clm. You can also use row1, clm1, or 

rowStart, clmStart, but always something with row or clm in the 

name.

EXERCISES

In these and subsequent exercises, remember to use the debugger if something goes wrong:

 

	1.	M ake a checkerboard: eight rows, eight columns, alternating light and dark 

squares.

	2.	P ut the pieces on the checkerboard for the initial game configuration: 

alternating squares, as shown.

	3.	 For the checkerboard, make a function which counts the checkers of a given 

color and returns the count.

Chapter 10  Arrays and enum



225

	4.	 …and now a function which determines which side has more pieces. If neither 

has more, it can return EMPTY.

	5.	 Write a function which takes a checkerboard, the location of a piece, and a 

direction LEFT or RIGHT (use enum), and returns whether that piece can move 

in that direction. A piece can move one square diagonally forward to an empty 

square or two squares diagonally forward, jumping an opponent’s piece, to an 

empty square.

	6.	 (Harder) In the game Memory, you have (say) eight pairs of cards, each pair 

showing an identical image. They’re dealt face down in a 4x4 grid; the player 

picks two and turns them face up, and if they’re identical, those two cards are 

taken away. You win by finding all matching pairs in relatively few turns.

Make a program to play the game. (Definitely write the algorithm first.) Let the 

user click a pair of cards; show the cards by replacing the “card back” image 

with the “card front” images; wait for the user to see the card fronts (use 

SSDL_Delay); and then, if there’s a match, replace the images with nothing and 

increment the player’s score; else replace them again with the “card back” image. 

Play different sounds depending on whether there was a match. Repeat till all 

cards are matched or the player has exceeded some maximum number of turns.

You will need code for recognizing mouse clicks in a box area.

	7.	 (Harder) Write a complete Tic-Tac-Toe game. For the computer moves, you could 

just pick a random location for the next move. Or you could go for something 

tougher, and make the computer figure out what a good move would be.

	8.	 (Hard) Play Connect Four. In this game, you have an initially empty grid, and 

players alternate putting tokens into the top row. A token automatically falls 

far as it can: it can’t go past the bottom row and can’t go into a square that’s 

occupied. The winner is the one who gets four in a row in any direction.

Chapter 10  Arrays and enum



227
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_11

CHAPTER 11

Animation with structs 
and Sprites
Time to make some movies. We’ll need a few more features.

�structs
A struct is a way of bundling information.

struct <name>

{

      <variable declaration>*
};

For example, here’s a type we’ve needed for a while: a geometric point. It has two 

parts, x and y.

struct Point2D

{

      int x_, y_;

};

(The trailing _’s are a convention meaning “member of something else.” We’ll see 

why that’s worth bothering with in Chapter 16.)

This version’s even better: we’ll build default values right into the struct. 0 is a good 

default.

struct Point2D

{

      int x_=0, y_=0;

};



228

Now we can declare points using our new type:

Point2D myCircleLoc; //location for a circle that moves. Its x_

                     // and y_ members are both 0 since we made

                     // that their default

You can initialize a struct the same way you would an array: with an initializer list.

Point2D myCircleLoc = {0, 5}; //start at position x_=0,y_=5.

                              //omit the = if you want

Point2D otherLoc    = {3};    //overriding x_ to be 3; y_ becomes 0

To get at the parts of a Point2D, use “ . ”:

myCircleLoc.x_ += AMOUNT_TO_MOVE_X;

myCircleLoc.y_ += AMOUNT_TO_MOVE_Y;

SSDL_RenderDrawCircle (myCircleLocation.x_, myCircleLocation.y_,

                       RADIUS);

That should do it.

Why have structs?

•	 Clarity. It’s easier to think of a point as, well, a point than as an  

X and a Y.

•	 Shorter parameter lists. Your function to detect whether a mouse 

click is within a box need no longer have 6 parameters, as in

bool containsClick (int x, int y,

                    int xLeft, int xRight,

                    int yTop,  int yBottom);

but 3, as in

bool containsClick (Point2D p,

                    Point2D upperLeft, Point2D lowerRight);

•	 Arrays of structs. Suppose you want multiple objects in your 

universe (seems likely!). Each has an X, Y location. How can you 

make an array of these? Bundle X and Y into a Point2D, and have an 

array of that:

Chapter 11  Animation with structs and Sprites



229

Point2D myObjects[MAX_OBJECTS];

To initialize them, you can use the {} initializer lists:

Point2D myObjects[MAX_OBJECTS] = {};

                    //go with defaults: every point is {0, 0}

or

Point2D myObjects[MAX_OBJECTS] = {{1, 5}, {2, 3}}

                    //each point specified

Example 11-1 uses this new type. Output is in Figure 11-1.

Example 11-1.  Staircase program, illustrating struct Point2D

/Program to draw a staircase

//              -- from _C++ for Lazy Programmers_

#include "SSDL.h"

struct Point2D  //A struct to hold a 2-D point

{

    int x_, y_;

};

int main (int argc, char** argv)

{

    //Setup

    enum {WINDOW_WIDTH=400, WINDOW_HEIGHT=200};

    SSDL_SetWindowSize  (WINDOW_WIDTH, WINDOW_HEIGHT);

    SSDL_SetWindowTitle ("Stairway example:  Hit a key to end");

    enum {MAX_POINTS        = 25};

    enum {STAIR_STEP_LENGTH = 15};

    Point2D myPoints [MAX_POINTS];

    int x = 0;                          //Start at lower left corner

    int y = WINDOW_HEIGHT-1;            // of screen

    for (int i = 0; i < MAX_POINTS; ++i) //Fill an array with points

    {

Chapter 11  Animation with structs and Sprites



230

        myPoints[i].x_ = x;

        myPoints[i].y_ = y;

        //On iteration 0, go up (change Y)

        //On iteration 1, go right

        // then up, then right, then up...

        if (i%2 == 0)                  //If i is even...

            y -= STAIR_STEP_LENGTH;

        else

            x += STAIR_STEP_LENGTH;

    }

    for (int i = 0; i < MAX_POINTS-1; ++i) //Display the staircase

        //The last iteration draws a line from point

        // i to point i+1... which is why we stop a

        // little short.  We don't want to refer to

        // the (nonexistent) point # MAX_POINTS.

        SSDL_RenderDrawLine (   myPoints[i  ].x_, myPoints[i  ].y_,

                                myPoints[i+1].x_, myPoints[i+1].y_);

    SSDL_WaitKey();

    return 0;

}

Figure 11-1.  Staircase program

Chapter 11  Animation with structs and Sprites



231

�Cool struct tricks
The initializer list is more versatile with structs than with arrays.

myPoint = {5,5};      //can use the {} initializer with =,

                      // any time, unlike with arrays

doSomethingWithPoint ({10,10}); //or pass it in as a parameter

struct Box

{

    Point2D upperLeft_, Point2D lowerRight_;

};

bool containsClick (Point2D where, Box boundingBox);

...

containsClick(mousePoint, {{5,5},{10,10}});

                 //Box expected as 2nd argument? Here's one!

                 //A Box is 2 Point2D's, so this works.

EXERCISES

	1.	W rite and test the containsClick function given previously (the one taking a 

Point2D and a Box).

	2.	M ake an array of Point2D's, and set the value of each with this function:

Point2D pickRandomPoint (int range)

{

   Point2D where;

   where.x_ =

     rand()%range + rand()%range + rand()%range;

   where.y_ =

     rand()%range + rand()%range + rand()%range;

   return where;

}

Graph them, and notice: are they evenly distributed? This shows something 

about what happens when you sum random numbers.

Chapter 11  Animation with structs and Sprites



232

�Making a movie with struct and while
Think how movies are made. You see one still frame after another, but they come so 

quickly they look like one continuous, moving image.

We’ll do the same thing. A real movie has a specific speed – frames per second – so 

the rate of movement is always the same. We’ll tell C++ to keep a constant frame rate too.

Here’s a rough version:

SSDL_SetFramesPerSecond (70); //Can change this,

                              //  or leave at the default of 60

while (SSDL_IsNextFrame ())

{

      SSDL_DefaultEventHandler ();

      SSDL_RenderClear ();       //first, erase previous frame

      //display things (draw shapes and images, print text, etc.)

      //update variables if needed

      //get input, if relevant...

}

SSDL_IsNextFrame waits for enough time to pass to get to the next frame in our 

movie. It also refreshes the screen. It will do 60 frames per second unless we change that 

with SSDL_SetFramesPerSecond. If the user tried to quit by killing the window or hitting 

Escape, SSDL_IsNextFrame returns false and the loop ends.

But something’s going to have to check for those quit messages. Before, we used 

SSDL_WaitKey, SSDL_WaitMouse, and SSDL_Delay, each of which checked for certain 

events: keystrokes or mouse clicks for the first two and quit messages in all cases. Since 

we aren’t using them now, something else must check for quit messages.

That something is SSDL_DefaultEventHandler. Here it is:

void SSDL_DefaultEventHandler ()

{

    SDL_Event event;

    while (SSDL_PollEvent (event))

        switch (event.type)

Chapter 11  Animation with structs and Sprites



233

        {

        case SDL_QUIT:    //clicked the X on the window? Let's quit

            SSDL_DeclareQuit(); break;

        case SDL_KEYDOWN: //User hit Escape? Let's quit

            if (SSDL_IsKeyPressed (SDLK_ESCAPE)) SSDL_DeclareQuit();

        }

}

An SDL_Event is a struct that stores information on any kind of event SDL 

recognizes. SSDL_PollEvent gets the next available event, if any, failing if there is none; 

but if one is found, it stores the information in event, and the switch statement decides 

how to process it.

Let’s use it in a program (Example 11-2) to make a ball move back and forth across 

the screen – whoo-hoo! Output is in Figure 11-2.

Example 11-2.  A ball moving back and forth across the screen

//Program to make a circle move back and forth across the screen

//              -- for _C++ for Lazy Programmers_

#include "SSDL.h"

enum {RADIUS = 20};     //Ball radius & speed

enum {SPEED  =  5};     // ...move 5 pixels for every frame

enum class Direction { LEFT=-1, RIGHT=1 };

//Why -1 for left?  Because left means going in the minus direction.

//See where we update ball.x_ in the main loop for how this can work

struct Point2D

{

    int x_=0, y_=0;

};

struct Ball             //A ball is an X, Y location,

{                       //and a direction, left or right

    Point2D   location_;

    Direction direction_;

};

Chapter 11  Animation with structs and Sprites



234

int main (int argc, char** argv)

{

    SSDL_SetWindowTitle ("Back-and-forth ball example.  "

                         "Hit Esc to exit.");

    //initialize ball position; size; rate and direction of movement

    Ball ball;

    ball.location_.x_ = SSDL_GetWindowWidth ()/2;

    ball.location_.y_ = SSDL_GetWindowHeight()/2;

    ball.direction_   = Direction::RIGHT;

    enum { FRAMES_PER_SECOND = 70 };

    SSDL_SetFramesPerSecond(FRAMES_PER_SECOND);

    while (SSDL_IsNextFrame ())

    {

        SSDL_DefaultEventHandler ();

        //*** DISPLAY THINGS ***
        SSDL_RenderClear ();    //first, erase previous frame

        //then draw the ball

        SSDL_RenderDrawCircle (ball.location_.x_, ball.location_.y_,

                               RADIUS);

        //update variables

        //update ball's x position based on speed

        // and current direction

        ball.location_.x_ += int(ball.direction_)*SPEED;

        //if ball moves off screen, reverse its direction

        if      (ball.location_.x_ >= SSDL_GetWindowWidth())

            ball.direction_ = Direction::LEFT;

        else if (ball.location_.x_ <                      0)

            ball.direction_ = Direction::RIGHT;

    }

    return 0;

}

Chapter 11  Animation with structs and Sprites



235

What if we want more than one object moving? We can have an array of Balls and 

use for loops to initialize them, display them, and so on.

main’s getting a little long, so in keeping with the “no more than one screenful of code 

per function” principle I’ll put several tasks in their own functions. Example 11-3’s output 

is in Figure 11-3.

Example 11-3.  An example with multiple moving balls

//Program to make circles move back and forth across the screen

//              -- for _C++ for Lazy Programmers_

#include "SSDL.h"

enum {RADIUS = 20};     //Ball radius & speed

enum {SPEED  =  5};     // ...move 5 pixels for every frame

enum class Direction { LEFT=-1, RIGHT=1 };

//Why -1 for left?  Because left means going in the minus direction.

//See where we update ball.x_ in the main loop for how this can work

struct Point2D

{

    int x_=0, y_=0;

};

Figure 11-2.  A ball moving back and forth across the screen

Chapter 11  Animation with structs and Sprites



236

struct Ball             //A ball is an X, Y location,

{                       //and a direction, left or right

    Point2D   location_;

    Direction direction_;

};

//Ball functions

void initializeBalls (      Ball balls[], int howMany);

void drawBalls       (const Ball balls[], int howMany);

void moveBalls       (      Ball balls[], int howMany);

void bounceBalls     (      Ball balls[], int howMany);

int main (int argc, char** argv)

{

    SSDL_SetWindowTitle ("Back-and-forth balls example.  "

                         "Hit Esc to exit.");

    //initialize balls' position, size,

    //  and rate and direction of movement

    enum {MAX_BALLS = 3};

    Ball balls [MAX_BALLS];

    initializeBalls (balls, MAX_BALLS);

    enum {FRAMES_PER_SECOND = 70};

    SSDL_SetFramesPerSecond(FRAMES_PER_SECOND);

    while (SSDL_IsNextFrame ())

    {

        SSDL_DefaultEventHandler ();

        //*** DISPLAY THINGS ***
        SSDL_RenderClear ();    //first, erase previous frame

        drawBalls (balls, MAX_BALLS);

        //*** UPDATE  THINGS ***
        moveBalls (balls, MAX_BALLS);

        bounceBalls(balls, MAX_BALLS); //if ball moves offscreen,

                                       // reverse its direction

    }

Chapter 11  Animation with structs and Sprites



237

    return 0;

}

//Ball functions

void initializeBalls (Ball balls[], int howMany)

{

    for (int i = 0; i < howMany; ++i)

    {

        balls[i].location_.x_ = i * SSDL_GetWindowWidth ()/3;

        balls[i].location_.y_ = i * SSDL_GetWindowHeight()/3

                                  + SSDL_GetWindowHeight()/6;

        balls[i].direction_   = Direction::RIGHT;

    }

}

void drawBalls  (const Ball balls[], int howMany)

{

    for (int i = 0; i < howMany; ++i)

        SSDL_RenderDrawCircle (balls[i].location_.x_,

                               balls[i].location_.y_, RADIUS);

}

void moveBalls  (Ball balls[], int howMany)

//update balls' x position based on speed

// and current direction

{

    for (int i = 0; i < howMany; ++i)

        balls[i].location_.x_ += int (balls[i].direction_)*SPEED;

}

void bounceBalls(Ball balls[], int howMany)

{

    //if any ball moves off screen, reverse its direction

    for (int i = 0; i < howMany; ++i)

        if      (balls[i].location_.x_ >= SSDL_GetWindowWidth())

            balls[i].direction_ = Direction::LEFT;

Chapter 11  Animation with structs and Sprites



238

        else if (balls[i].location_.x_ <  0)

            balls[i].direction_ = Direction::RIGHT;

}

Figure 11-3.  An example with multiple moving balls

EXERCISES

	1.	M ake the balls capable of moving in other directions. A ball is no longer just an 

X, Y location and a direction; it's an X, Y location and an X, Y velocity. Each time 

you go through the main loop, you'll update the location based on the velocity:

for (int i = 0; i < MAX_BALLS; ++i)

{

   balls[i].location_.x_ +=

                balls[i].velocity_.x_;

   balls[i].location_.y_ +=

                balls[i].velocity_.y_;

}

The velocity's X component is always reversed when it hits a left or right wall – 

same for the velocity's Y if it hits the floor or ceiling. It's OK to use Point2D for 

velocity_, or you can create a new struct for it.

Add sound effects whenever a ball hits a wall.

Chapter 11  Animation with structs and Sprites



239

	2.	N ow let's add gravity. Velocity doesn't just change each time you hit a wall; it 

changes in each iteration of the loop, like so:

for (int i = 0; i < MAX_BALLS; ++i)

     balls[i].velocity_.y_-= GRAVITY;

                 //adjust velocity for gravity

Now the balls should move more realistically.

	3.	N ow add friction. Whenever a ball hits a wall, its velocity is not exactly reversed; 

instead, it's reversed, but it's a little smaller than it was. This will make the balls 

slower after each collision.

�Sprites
Enough circles – let’s move images.

We already have images, but they just sit there. Sprites are mobile images: they can 

move, rotate, flip, and other things. Here are the basics.

You create a sprite much as you do an image:

SSDL_Sprite mySprite = SSDL_LoadImage ("filename.png");

You can now set its location with SSDL_SetSpriteLocation and its size with  

SSDL_SetSpriteSize.

Here I use sprites to put a fish in the middle of the screen – maybe I’m going to make 

a video aquarium – and print some information about it using other sprite functions. The 

sprite-related code is highlighted. Output is in Figure 11-4.

Example 11-4.  Program to draw a fish, using a sprite

//Program to place a fish sprite on the screen

//              -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main (int argc, char** argv)

{

    //Set up window characteristics

    enum { WINDOW_WIDTH = 600, WINDOW_HEIGHT = 300 };

Chapter 11  Animation with structs and Sprites



240

    SSDL_SetWindowSize(WINDOW_WIDTH, WINDOW_HEIGHT);

    SSDL_SetWindowTitle ("Sprite example 1.  Hit Esc to exit.");

    //initialize colors

    const SSDL_Color AQUAMARINE(100, 255, 150); //the water

    //initialize the sprite's image and location

    SSDL_Sprite fishSprite = SSDL_LoadImage("media/zitronen.png");

    SSDL_SetSpriteLocation (fishSprite, WINDOW_WIDTH/2, WINDOW_HEIGHT/2);

    //*** Main loop ***
    while (SSDL_IsNextFrame ())

    {

        //Look for quit messages

        SSDL_DefaultEventHandler ();

        //Clear the screen for a new frame in our "movie"

        SSDL_RenderClear (AQUAMARINE);

        //Draw crosshairs in the center

        SSDL_SetRenderDrawColor (BLACK);

        SSDL_RenderDrawLine (0,              WINDOW_HEIGHT/2,

                             WINDOW_WIDTH,   WINDOW_HEIGHT/2);

        SSDL_RenderDrawLine (WINDOW_WIDTH/2, 0,

                             WINDOW_WIDTH/2, WINDOW_HEIGHT);

        //and print the statistics on the fish

        SSDL_SetCursor (0, 0);  //reset cursor each time or

        // the messages will run off the screen!

        sout << "Sprite info\n";

        sout << "X:\t"

             << SSDL_GetSpriteX     (fishSprite) << '\n';

        sout << "Y:\t"

             << SSDL_GetSpriteY     (fishSprite) << '\n';

        sout << "Width:\t"

             << SSDL_GetSpriteWidth (fishSprite) << '\n';

        sout << "Height:\t"

             << SSDL_GetSpriteHeight(fishSprite) << '\n'\b;

Chapter 11  Animation with structs and Sprites



241

        //Show that fish

        SSDL_RenderSprite (fishSprite);

    }

    return 0;

}

The fish is too big for the screen. According to the program, its width is 225 and its 

height is 197. We can use SSDL_SetSpriteSize to resize,1 giving us a result like  

Figure 11-5:

enum {FISH_WIDTH = 170, FISH_HEIGHT = 150};

SSDL_SetSpriteSize     (fishSprite, FISH_WIDTH, FISH_HEIGHT);

1�It’s more efficient to set this in your graphics editor, but I want to show how to resize in SSDL if 
need be.

Figure 11-4.  A sprite and some of its current specs

Chapter 11  Animation with structs and Sprites



242

Now I want it centered. The x, y location I gave it is in the center…but that’s the upper 

left corner of the image.

Here is the call to offset the sprite so it’s centered on the point we gave as its location.

SSDL_SetSpriteOffset (FISH_SPRITE, FISH_WIDTH/2, FISH_HEIGHT/2);

If it still looks off-center, I can play with the numbers to get a different offset.

I won’t repeat the entire program, but Example 11-5 shows the lines that changed to 

resize and center the sprite. The result is in Figure 11-6.

Example 11-5.  Code to resize and center a sprite

int main (int argc, char** argv)

{

    ...

    //Init size and offset. Image is offset so fish looks centered.

    enum {FISH_WIDTH = 170, FISH_HEIGHT = 150};

    SSDL_SetSpriteSize     (fishSprite, FISH_WIDTH, FISH_HEIGHT);

Figure 11-5.  A sprite, resized

Chapter 11  Animation with structs and Sprites



243

    //This offset looks right on the screen, so I'll use it:

    SSDL_SetSpriteOffset   (fishSprite,

                            FISH_WIDTH/2, int(FISH_HEIGHT*0.45));

    ...

    return 0;

}

You can do other things with sprites: rotate, flip horizontally or vertically, or use only 

part of your original image. (Table 11-1 has more.) You can also do anything to them you 

can do with an image – for example, SSDL_RenderImage (mySprite). This will ignore the 

sprite’s other characteristics (position, size, etc.) and only use the image aspects.

And now that you have this, you can (almost) make your own arcade games.

Figure 11-6.  A sprite, resized and centered

Chapter 11  Animation with structs and Sprites



244

�Antibugging

•	 The sprite doesn’t show up. Here are likely reasons:

•	 The image didn’t load: you’re looking in the wrong folder, made a 

typo in the file name, or are using a bad or incompatible image.

•	 It showed up, but it’s off screen. What numbers do you get from 

SSDL_GetSpriteX and SSDL_GetSpriteY? Be sure they’re in range.

EXERCISES

	1.	M ake a video aquarium: a background, and fish that move back and forth (facing 

whatever direction they go, so you'll need SSDL_SpriteFlipHorizontal).

	2.	D o Exercise 2 or 3 from the previous section (bouncing balls), but instead of 

drawing circles, use an image of a basketball. Let the basketballs spin as they go.

Table 11-1.  Common sprite commands. For a complete list, see Appendix H

SSDL_Sprite mySprite =  

        SSDL_LoadImage ("image.png");

this is how to create one

void SSDL_SetSpriteLocation 

        (SSDL_Sprite& s, int x, int y);

set sprite’s location on screen

void SSDL_SetSpriteSize 

        (SSDL_Sprite& s, int w, int h);

…and its size

void SSDL_SetSpriteOffset 

        (SSDL_Sprite& s, int x, int y);

…its offset

void SSDL_SetSpriteRotation 

        (SSDL_Sprite& s, double angle);

…its angle of rotation

void SSDL_RenderSprite  

        (SSDL_Sprite s);

draw sprite at its current location

int  SSDL_GetSpriteX    

        (SSDL_Sprite s);

return sprite’s x position on screen

int  SSDL_GetSpriteY    

        (SSDL_Sprite s);

…and its y

Chapter 11  Animation with structs and Sprites



245
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_12

CHAPTER 12

Making an Arcade 
Game: Input, Collisions, 
and Putting It All Together
In this chapter we’ll make our own 2D arcade games, putting together what we’ve got so 

far for a time-wasting experience to make others goof off so we can shine. Or something 

like that. The new things we need are better mouse and keyboard interaction, and 

collisions of objects.

�Determining input states
�Mouse
We already can wait on a mouse click and get its coordinates…but arcade games wait for 

no man.

Suppose we want our weapon to fire continuously if a mouse button is down. We 

need a way to detect that the button is depressed, without stopping to wait. This’ll do it:

int SSDL_GetMouseClick (); return 0 if no button is depressed; SDL_BUTTON_LMASK  

(left button depressed), SDL_BUTTON_MMASK (middle),  

or SDL_BUTTON_RMASK (right)



246

As in

if (SSDL_GetMouseClick () != 0)//mouse was clicked

{

      x = SSDL_GetMouseX(); y = SSDL_GetMouseY();

      //do whatever you wanted to do if mouse was clicked

}

Before getting to an example, let’s see how to check the state of the keyboard.

�Keyboard
ssin waits for you to hit Enter. That won’t work for arcade games: we want to know 

whether a key is pressed as soon as it’s hit. The function SSDL_IsKeyPressed tells if a 

given key is down – any key, including the ones not associated with letters, like Shift and 

Control.

bool SSDL_IsKeyPressed (SDL_Keycode key); Returns whether key is currently pressed

Though many key values this function accepts match what you’d expect (‘0’ for the 

0 key, ‘a’ for the A key – but not ‘A’ for the A key), it’s not always obvious, so it’s best to 

go with their official names. At time of writing a complete list is at wiki.libsdl.org/SDL_

Keycode; a few are listed in Table 12-1. Example 12-1 shows how you might use them.

Table 12-1.  Selected key codes for SDL

SDLK_1

SDLK_2

...

SDLK_a

SDLK_b

...

SDLK_F1

SDLK_F2

...

SDLK_ESCAPE

SDLK_BACKSPACE

SDLK_RETURN

SDLK_SPACE

SDLK_LEFT

SDLK_RIGHT

SDLK_UP

SDLK_DOWN

SDLK_LSHIFT

SDLK_RSHIFT

SDLK_LCTRL

SDLK_RCTRL

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



247

Example 12-1.  A program to detect control keys, shift, caps lock, space bar,  

and F1

//Program to identify some keys, and mouse buttons, being pressed

//      -- from _C++ for Lazy Programmers_

#include "SSDL.h"

int main (int argc, char** argv)

{

    while (SSDL_IsNextFrame ())

    {

        SSDL_DefaultEventHandler ();

        //Display

        SSDL_RenderClear ();    //Clear the screen

        SSDL_SetCursor (0, 0);  //And start printing at the top

        sout << "What key are you pressing? ";

        sout << "Control, Shift, Caps lock, space, F1? \nIt's ";

        if (SSDL_IsKeyPressed (SDLK_LCTRL))   sout << "Left ctrl ";

        if (SSDL_IsKeyPressed (SDLK_RCTRL))   sout << "Right ctrl ";

        if (SSDL_IsKeyPressed (SDLK_LSHIFT))  sout << "Left shift ";

        if (SSDL_IsKeyPressed (SDLK_RSHIFT))  sout << "Right shift ";

        if (SSDL_IsKeyPressed (SDLK_CAPSLOCK))sout << "Caps lock ";

        if (SSDL_IsKeyPressed (SDLK_SPACE))   sout << "Space bar ";

        if (SSDL_IsKeyPressed (SDLK_F1))      sout << "F1 ";

        sout << "\n";

        if (SSDL_GetMouseClick () == SDL_BUTTON_LMASK)

            sout << "Left mouse button down\n";

        if (SSDL_GetMouseClick () == SDL_BUTTON_RMASK)

            sout << "Right mouse button down\n";

    }

    return 0;

}

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



248

�Antibugging
•	 You’re hitting a function key, but nothing happens. On some 

keyboards you have to hold down the Fn key as well.

•	 You’re hitting multiple keys at once but only some show up; or 

you’re hitting a key and it won’t register mouse buttons.  
Keyboard “ghosting” is losing keypresses because the keyboard can 

only handle so many at once. It may also lose mouse clicks. At time 

of writing, if you care, you can test your keyboard and mouse at 

https://keyboardtester.co/.

You’re probably safe using Control, Shift, and Alt with other  

keys – that’s expected.

�Events
Sometimes we don’t care if a mouse button is up or down at the moment, but just that 

it has been clicked. Maybe you get one shot from your BFG per mouse click. Or maybe 

you’re using the mouse to click a control or turn sound on or off, as in the program 

shown by Figure 12-1:

while (SSDL_IsNextFrame ())

{

    myEventHandler ();                         //handle events

    if (SSDL_GetMouseClick ()) toggleSound (); //not gonna work

    ...

}

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together

https://keyboardtester.co/


249

Thing is, computers are fast. Suppose your mouse click takes a tenth of a second.  

At 60 frames per second, sound will turn on and off six times before you release the 

button, and it’s only good luck if it ends up the way you wanted.

What we need is an event: a message that comes from the operating system telling 

the program, something happened you may care about. In this case, a mouse click.

We already handle quit events and keystroke events in SSDL_DefaultEventHandler:

void myEventHandler ()

{

    SDL_Event event;

    while (SSDL_PollEvent (event))

        switch (event.type)

        {

        case SDL_QUIT:    SSDL_DeclareQuit();

            break;

        case SDL_KEYDOWN: if (SSDL_IsKeyPressed (SDLK_ESCAPE))

                               SSDL_DeclareQuit();

            break;

        }

}

Figure 12-1.  A program that uses mouse clicks to toggle sound

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



250

You can find out about the various supported events on the SDL Wiki site, but at this 

point we only want SDL_MOUSEBUTTONDOWN. With it we can make our own event handler 

and use it to determine if the music should be toggled (Example 12-2).

Example 12-2.  Making your own event handler

void myEventHandler (bool& mouseClicked)

{

    SDL_Event event;

    mouseClicked = false;   //We'll soon know if mouse was clicked

    while (SSDL_PollEvent (event))

        switch (event.type)

        {

        case SDL_QUIT:            SSDL_DeclareQuit();

            break;

        case SDL_KEYDOWN:         if (SSDL_IsKeyPressed (SDLK_ESCAPE))

                                      SSDL_DeclareQuit();

            break;

        case SDL_MOUSEBUTTONDOWN: mouseClicked = true; //It was!

            break;

        }

}

//and the following in main:

    while (SSDL_IsNextFrame ())

    {

        bool mouseWasClicked;

        myEventHandler (mouseWasClicked);

        if (mouseWasClicked) toggleSound ();

        ....

This way of thinking – event-driven – is at the core of programming such important 

operating systems as Windows, iOS, and Android.

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



251

�Cooldowns and lifetimes
Suppose we want an effect to linger a moment after something happens. Maybe there’s a 

visual effect that should be there for a second (its “lifetime”) after a mouse click creates 

it; then it vanishes. Or maybe the BFG has to wait a while before you can fire again, 

however madly you click – a “cooldown” period.

We’ll have an integer framesLeftTillItsOver which, when the mouse is clicked, 

gets set to the number of frames you want to delay.

This sort of reasoning won’t do:

while SSDL_IsNextFrame ()

    handle events

    SSDL_RenderClear ()

    draw things

    if framesLeftTillItsOver == 0 && mouseWasClicked

        draw the visual effect

When you draw the effect, SSDL_RenderClear erases it on the very next iteration!

We must distinguish changing the state of the visual effect (from on to off) from 

drawing it; they’re separate actions. This will work:

while SSDL_IsNextFrame ()

    handle events

    SSDL_RenderClear ()

    draw things including, if it's on, the visual effect

      (consider it to be on if framesLeftTillItsOver > 0)

    if effect is on (that is, framesLeftTillItsOver > 0)

        -- framesLeftTillItsOver; //1 frame closer to disappearance

    else if mouseWasClicked

        framesLeftTillItsOver = HOWEVER MANY FRAMES WE WANT IT TO LAST

Tip  As a good rule of thumb, inside that main animation loop have three separate 
sections: handling events, drawing things, and updating variables. The order 
doesn't matter, as they'll all get done eventually; what does matter is that you don't 
do drawing in the update section or check events in the draw section and so on.

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



252

In Example 12-3, when you click the mouse, the program puts a splatter image 

wherever you click. One second later it drops the image and lets you click again.

Example 12-3.  Using a visual effect with specified duration: splatter on the screen

//Program that makes a splat wherever you click

//      -- from _C++ for Lazy Programmers_

#include "SSDL.h"

void myEventHandler (bool& mouseClicked);

int main (int argc, char** argv)

{

    SSDL_SetWindowTitle ("Click the mouse to see and hear a splat; "

                         "hit Esc to end.");

    const SSDL_Sound SPLAT_SOUND =

        SSDL_LoadWAV ("media/445117__breviceps__cartoon-splat.wav");

    //Set up sprite with image and a size, and offset its reference

    // point so it'll be centered on our mouse clicks

    SSDL_Sprite splatSprite = SSDL_LoadImage("media/splat.png");

    enum { SPLAT_WIDTH=50, SPLAT_HEIGHT=50 };

    SSDL_SetSpriteSize  (splatSprite, SPLAT_WIDTH,   SPLAT_HEIGHT);

    SSDL_SetSpriteOffset(splatSprite, SPLAT_WIDTH/2, SPLAT_HEIGHT/2);

    while (SSDL_IsNextFrame ())

    {

        static int framesLeftTillSplatDisappears = 0;

        enum { SPLAT_LIFETIME = 60 };        //It lasts one second

        //Handle events

        bool isMouseClick;

        myEventHandler (isMouseClick);

         //Display things

        SSDL_RenderClear();

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



253

        if (framesLeftTillSplatDisappears > 0)

            SSDL_RenderSprite(splatSprite);

        //Update things: process clicks and framesLeft

        if (framesLeftTillSplatDisappears > 0) //if splat is active

            --framesLeftTillSplatDisappears;   // keep counting down

        else if (isMouseClick)      //if not, and we have a click...

        {

                                    //Reset that waiting time

            framesLeftTillSplatDisappears = SPLAT_LIFETIME;

                                    //Play splat sound

            SSDL_PlaySound (SPLAT_SOUND);

            SSDL_SetSpriteLocation  //move splat sprite to

                (splatSprite,       // location of mouse click

                 SSDL_GetMouseX(), SSDL_GetMouseY());

        }

    }

    return 0;

}

void myEventHandler (bool& mouseClicked)

{

      //exactly the same as in Example 12-2

}

EXERCISES

	1.	 Adapt the program in Example 12-3 to allow multiple splatters to exist at once: 

you can fire every second, but each splatter lasts 5 seconds.

	2.	 A particle fountain is a set of particles continually generated, going in various 

directions. This is how flames can be generated in computer games, and 

rainstorms. You can also make a bubble fountain or a sparkler.

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



254

Let each particle start at the same location; draw the particle with SSDL_

RenderDrawPoint; give it an initial random velocity; and if you want it to look 

more flame-like, use gravity, but in reverse: flame particles tend to fly upward 

rather than downward over time. Finally, when a particle has existed for some 

number of frames, reset it to its starting point and let it go again.

�Collisions
There’s one more thing we need before making our own games: collisions.

Collisions are easy with SSDL sprites.

int SSDL_SpriteHasIntersection

   (const SSDL_Sprite& a, const SSDL_Sprite& b);

return whether sprites a and b overlap

As in

if (SSDL_SpriteHasIntersection (robotSprite, playerSprite)

      playerDead = true;

Collisions are easy with sprites, but not always accurate. Since your sprite probably 

has a big chunk of itself transparent, you may find that SDL thinks two sprites are 

colliding even if the visible parts aren’t touching. No reasonable person would consider 

the candy and the Hallowe’en basket in Figure 12-2 (a) to be in collision – but SSDL 

would.

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



255

There’s a cheap, easy fix in Example 12-4. We find the distance between two points 

(which will probably be the centers of the sprites) and consider a collision to have 

happened if that distance is less than the sum of the radii aSize and bSize we give to our 

objects – that is, if bounding circles intersect.

Use whichever method fits your sprites best.

Example 12-4.  A simple collision function, based on circles

bool inCollision (Point2D A, Point2D B, int aSize, int bSize)

{

      float aToBDistance = distance (A.x_, A.y_, B.x_, B.y_);

      return (aToBDistance < aSize + bSize);

}

�The big game
The rest of this chapter is about creating the arcade games: first mine, then yours.

I have in Examples 12-5 through 12-9 a game for catching Hallowe’en candy in 

the basket. If you catch enough, you win; miss too many and you die. It has sounds, a 

background, silly graphics, keyboard interaction (uses arrow keys), and to show use of the 

mouse, I allow the user to toggle a heads-up display showing stats on misses and catches. 

(a) (b)

Figure 12-2.  Collisions between sprites, as evaluated by SSDL_SpriteHasIntersection  
(a) and by the circle-based method of Example 12-4 (b)

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



256

To illustrate specifying the lifetime of an effect, a floating “Yum!” message appears for a 

moment when you catch candy. Output is in Figure 12-3.

Example 12-5.  Falling candy program, part 1 of 5

//Program to catch falling Hallowe'en candy

//      -- from _C++ for Lazy Programmers_

#include <cmath> //for sqrt

#include "SSDL.h"

//dimensions of screen and screen locations

enum {SCREEN_WIDTH=675, SCREEN_HEIGHT=522}; //dimensions of bkgd

enum {CANDY_START_HEIGHT = 15};  //where candy falls from

enum {MARGIN             = 25};  //As close to the left/right edges

                                 // of the screen as moving objects

                                 // are allowed to get

enum {BOTTOM_LINE        = 480}; //Where last line of text is printed

                                 //on instruction & splash screens

//dimensions of important objects

enum { CANDY_WIDTH  = 60, CANDY_HEIGHT  = 20 };

enum { BASKET_WIDTH = 70, BASKET_HEIGHT = 90 };

//how many candies you can catch or miss before winning/losing

enum {MAX_CAUGHT         = 10,  MAX_MISSED= 10};

                                 //If you change this, change

                                 // printInstructions too

                                 // because it specifies this

//fonts for splash screens and catch/miss statistics

enum {SMALL_FONT_SIZE  = 12,

      MEDIUM_FONT_SIZE = 24,

      LARGE_FONT_SIZE  = 36};

const SSDL_Font SMALL_FONT

    �= SSDL_OpenFont ("media/Sinister-Fonts_Werewolf-Moon/Werewolf Moon.ttf",

                 SMALL_FONT_SIZE);

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



257

const SSDL_Font MEDIUM_FONT

    �= SSDL_OpenFont ("media/Sinister-Fonts_Werewolf-Moon/Werewolf Moon.ttf",

                 MEDIUM_FONT_SIZE);

const SSDL_Font LARGE_FONT

    �= SSDL_OpenFont ("media/Sinister-Fonts_Werewolf-Moon/Werewolf Moon.ttf",

                 LARGE_FONT_SIZE);

//how far our victory/defeat messages are from left side of screen

enum { FINAL_SCREEN_MESSAGE_OFFSET_X = 40 };

//background

const SSDL_Image BKGD_IMAGE

    = SSDL_LoadImage("media/haunted-house.jpg");

//sounds and music

const SSDL_Music BKGD_MUSIC

    �= SSDL_LoadMUS("media/159509__mistersherlock__halloween-graveyd-short.mp3");

const SSDL_Sound THUNK_SOUND

    = SSDL_LoadWAV("media/457741__osiruswaltz__wall-bump-1.wav");

const SSDL_Sound DROP_SOUND

    = SSDL_LoadWAV("media/388284__matypresidente__water-drop-short.wav");

//structs

struct Point2D { int x_=0, y_=0; };

using Vector2D = Point2D;1

struct Object

{

    Point2D     loc_;

    int         rotation_      = 0;

1�using newTypeName = existingType; makes newTypeName an alias for the existingType. Use it 
for clarity as needed.

The old style of this, which you may see sometimes, is typedef existingType newTypeName;.

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



258

    Vector2D    velocity_;

    int         rotationSpeed_ = 0;

    SSDL_Sprite sprite_;

};

//major functions called by the main program

bool playGame            ();

//startup/ending screens to communicate with user

void printInstructions   ();

void displayVictoryScreen();

void displayDefeatScreen ();

int main (int argc, char** argv)

{

    //set up window and font

    SSDL_SetWindowTitle ("Catch the falling candy");

    SSDL_SetWindowSize  (SCREEN_WIDTH, SCREEN_HEIGHT);

    //prepare music

    SSDL_VolumeMusic (int (MIX_MAX_VOLUME * 0.1));

    SSDL_PlayMusic   (BKGD_MUSIC);

    //initial splash screen

    printInstructions ();

    //The game itself

    bool isVictory = playGame ();

    //final screen:  victory or defeat

    SSDL_RenderClear (BLACK);

    SSDL_HaltMusic   ();

    if (isVictory) displayVictoryScreen ();

    else           displayDefeatScreen  ();

    SSDL_RenderTextCentered("Click mouse to end",

                            SCREEN_WIDTH/2, BOTTOM_LINE, SMALL_FONT);

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



259

    SSDL_WaitMouse();              �//because if we wait for a key, we're likely

                                   �// to have left or right arrow depressed

                                   �// when we reach this line... and we never

                                   �// get to read the final message

    return 0;

}

//// Startup/ending screens to communicate with user ////

void printInstructions ()

{

    enum { LINE_HEIGHT = 40 };

    SSDL_SetRenderDrawColor (WHITE);

    SSDL_RenderTextCentered ("Catch 10 treats in ",

              SCREEN_WIDTH/2,              0, MEDIUM_FONT);

    SSDL_RenderTextCentered("your basket to win",

              SCREEN_WIDTH/2, LINE_HEIGHT   , MEDIUM_FONT);

    SSDL_RenderTextCentered ("Miss 10 treats and",

              SCREEN_WIDTH/2, LINE_HEIGHT*3 , MEDIUM_FONT);

    SSDL_RenderTextCentered("the next treat is YOU",

              SCREEN_WIDTH/2, LINE_HEIGHT*4 , MEDIUM_FONT);

    SSDL_RenderTextCentered ("Use arrow keys to move",

              SCREEN_WIDTH/2, LINE_HEIGHT*6 , MEDIUM_FONT);

    SSDL_RenderTextCentered("left and right",

              SCREEN_WIDTH/2, LINE_HEIGHT*7 , MEDIUM_FONT);

    SSDL_RenderTextCentered ("Click mouse to",

              SCREEN_WIDTH/2, LINE_HEIGHT*9 , MEDIUM_FONT);

    SSDL_RenderTextCentered("toggle stats display",

              SCREEN_WIDTH/2, LINE_HEIGHT*10, MEDIUM_FONT);

    SSDL_RenderTextCentered ("Hit any key to continue",

              SCREEN_WIDTH/2, BOTTOM_LINE,    SMALL_FONT);

    SSDL_WaitKey      ();

}

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



260

void displayVictoryScreen ()

{

    //sound and picture

    static const SSDL_Sound VICTORY_SOUND

        = SSDL_LoadWAV("media/342153__robcro6010__circus-theme-short.wav");

    SSDL_PlaySound(VICTORY_SOUND);

    static const SSDL_Image GOOD_PUMPKIN

        = SSDL_LoadImage("media/goodPumpkin.png");

    SSDL_RenderImage(GOOD_PUMPKIN, SCREEN_WIDTH / 4, 0);

    //victory message

    SSDL_SetRenderDrawColor(WHITE);

    SSDL_RenderText ("Hooah!"  ,

                     FINAL_SCREEN_MESSAGE_OFFSET_X, SCREEN_HEIGHT/4,

                     LARGE_FONT);

    enum { LINE_DISTANCE_Y = 96 }; //an arbitrarily chosen number...

    SSDL_RenderText ("You won!",

                     FINAL_SCREEN_MESSAGE_OFFSET_X,

                     SCREEN_HEIGHT/4+LINE_DISTANCE_Y,

                     LARGE_FONT);

}

void displayDefeatScreen ()

{

    //sound and picture

    static const SSDL_Sound DEFEAT_SOUND

        = SSDL_LoadWAV("media/326813__mrose6__echoed-screams-short.wav");

    SSDL_PlaySound(DEFEAT_SOUND);

    static const SSDL_Image SAD_PUMPKIN

        = SSDL_LoadImage("media/sadPumpkin.png");

    SSDL_RenderImage(SAD_PUMPKIN, SCREEN_WIDTH / 4, 0);

    //defeat message

    SSDL_SetRenderDrawColor (WHITE);

    SSDL_RenderText ("Oh, no!", FINAL_SCREEN_MESSAGE_OFFSET_X,

                     SCREEN_HEIGHT/4, LARGE_FONT);

}

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



261

So far we have the general outline of the program. I put a lot of information into the 

Object struct: position, velocity, sprite information, and rotation. Some isn’t always 

needed – only candy rotates, for example – but having only one type of Object keeps 

things simpler.

Example 12-6.  Falling candy program, part 2 of 5

///////////////////// Initializing /////////////////////////

void resetCandyPosition(Object& candy);

void initializeObjects (Object& basket, Object& candy, Object& yumMessage)

{

    //load those images

    SSDL_SetSpriteImage(candy.sprite_,

                        SSDL_LoadImage("media/candy.png"));

    SSDL_SetSpriteImage(basket.sprite_,

                        SSDL_LoadImage("media/jack-o-lantern.png"));

    SSDL_SetSpriteImage(yumMessage.sprite_,

                        SSDL_LoadImage("media/yum.png"));

    //two images are the wrong size; we resize them.

    SSDL_SetSpriteSize (candy.sprite_,   CANDY_WIDTH,  CANDY_HEIGHT);

    SSDL_SetSpriteSize (basket.sprite_, BASKET_WIDTH, BASKET_HEIGHT);

    //move 'em so they're centered on the coords we set for them

    SSDL_SetSpriteOffset(candy.sprite_,

                         CANDY_WIDTH/2,  CANDY_HEIGHT/2);

    SSDL_SetSpriteOffset(basket.sprite_,

                         BASKET_WIDTH/2, BASKET_HEIGHT/2);

    //put the objects in their starting positions

    basket.loc_.x_ = SCREEN_WIDTH / 2;

    basket.loc_.y_ = SCREEN_HEIGHT - BASKET_HEIGHT/2;

    SSDL_SetSpriteLocation(basket.sprite_,

                           basket.loc_.x_, basket.loc_.y_);

    resetCandyPosition(candy);

    //We don't care about yumMessage position till we make one

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



262

    //And set velocities

    //basket's can't be specified till we check inputs

    enum { CANDY_SPEED = 11 };            �//11 pixels per frame, straight down

    candy.velocity_.y_ = CANDY_SPEED;     //11 per frame straight down

                                          //Increase speeds for faster game

    yumMessage.velocity_ = { 1, -1 };     //Up and to the right

    //And rotational speeds

    candy.rotationSpeed_ = 1;             //Candy spins slightly

}

/////////////////////////// Drawing /////////////////////////////

//Display all 3 objects (2 if yumMessage is currently not visible)

void renderObjects (Object basket, Object candy, Object yumMessage,

                    bool showYumMessage)

{

    SSDL_RenderSprite (basket.sprite_);

    SSDL_RenderSprite ( candy.sprite_); 

    if (showYumMessage) SSDL_RenderSprite (yumMessage.sprite_);

}

void renderStats(int Caught, int Missed)

{

    //Stats boxes, for reporting how many candies caught and missed

    SSDL_SetRenderDrawColor(BLACK);

    enum { BOX_WIDTH = 90, BOX_HEIGHT = 25 };

    SSDL_RenderFillRect(0, 0,                        //Left box

        BOX_WIDTH, BOX_HEIGHT);

    SSDL_RenderFillRect(SCREEN_WIDTH - BOX_WIDTH, 0, //Right box

        SCREEN_WIDTH - 1, BOX_HEIGHT);

    //Statistics themselves

    SSDL_SetRenderDrawColor(WHITE);

    SSDL_SetFont(SMALL_FONT);

    SSDL_SetCursor(0, 0);                            //Left box

    sout << "Caught: " << Caught;

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



263

    SSDL_SetCursor(SCREEN_WIDTH - BOX_WIDTH, 0);     //Right box

    sout << "Missed: " << Missed;

}

resetCandyPosition starts the candy at the top of the screen, with a random X 

location. It’s called in initializeObjects and again in handleCatchingCandy and 

handleMissingCandy.

renderStats prints how many pieces you’ve caught or missed, on two black boxes 

used to make those stats easier to read.

Example 12-7.  Falling candy program, part 3 of 5

//////////////// Moving objects in the world ///////////////////

void resetCandyPosition (Object& candy)  //When it's time to drop

                                         // another candy...

{

    //Put it at a random X location

    candy.loc_.x_ = MARGIN + rand() % (SCREEN_WIDTH - MARGIN);

    candy.loc_.y_ = CANDY_START_HEIGHT;    //at the top of the screen

    SSDL_SetSpriteLocation(candy.sprite_, candy.loc_.x_, candy.loc_.y_);

}

void moveObject(Object& object)

{

    object.loc_.x_ += object.velocity_.x_; //Every frame, move object

    object.loc_.y_ += object.velocity_.y_; //  as specified

    SSDL_SetSpriteLocation(object.sprite_, object.loc_.x_, object.loc_.y_);

                                           //...and spin as specified

    object.rotation_ += object.rotationSpeed_;

    object.rotation_ %= 360;               //angle shouldn't go over 360

    SSDL_SetSpriteRotation(object.sprite_, object.rotation_);

}

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



264

void moveBasket(Object& basket, int basketSpeed)

{

    //Let user move basket with left and right arrows

    if (SSDL_IsKeyPressed (SDLK_LEFT )) basket.loc_.x_ -= basketSpeed;

    if (SSDL_IsKeyPressed (SDLK_RIGHT)) basket.loc_.x_ += basketSpeed;

    //..but don't let the user touch the sides of the screen

    if (basket.loc_.x_ < MARGIN)

        basket.loc_.x_ = MARGIN;

    if (basket.loc_.x_ > SCREEN_WIDTH - MARGIN)

        basket.loc_.x_ = SCREEN_WIDTH - MARGIN;

    //Tell the sprite about our changes on X

    SSDL_SetSpriteLocation(basket.sprite_,

                           basket.loc_.x_, basket.loc_.y_);

}

moveObject is called on both the candy and the Yum! message, as they both move 

on their own. The player controls the basket, so that needs its own moveBasket function. 

moveBasket checks the state of the left and right arrows with SSDL_IsKeyPressed and 

moves the basket accordingly, ensuring with MARGIN that it doesn’t go off screen.

Example 12-8.  Falling candy program, part 4 of 5

////////What happens when a candy is caught or missed ////////

//Some math functions we need a lot...

int sqr(int num) { return num * num; }

double distance(Point2D a, Point2D b)

{

    return sqrt(sqr(b.x_ - a.x_) + sqr(b.y_ - a.y_));

}

//Circular collision detection, better for round-ish objects

bool inCollision(Point2D a, Point2D b, int aSize, int bSize)

{

    return (distance(a, b) < aSize/2 + bSize/2);

}

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



265

//Detect and handle collisions between basket and candy,

// and update numberCaught

bool handleCatchingCandy (Object basket, Object& candy, Object& yumMessage,

                          int& numberCaught)

{

    if (inCollision (basket.loc_, candy.loc_, CANDY_WIDTH, BASKET_WIDTH))

    {

        SSDL_PlaySound (THUNK_SOUND);

        ++numberCaught;

        resetCandyPosition (candy);

        yumMessage.loc_.x_    = basket.loc_.x_;

        yumMessage.loc_.y_    = basket.loc_.y_;

        return true;

    }

    else return false;

}

//Detect and handle when candy goes off bottom of screen,

// and update numberMissed

void handleMissingCandy (Object& candy, int& numberMissed)

{

                                 //you missed it: it went off screen

    if (candy.loc_.y_ >= SCREEN_HEIGHT)

    {

        SSDL_PlaySound (DROP_SOUND);

        ++numberMissed;

        resetCandyPosition (candy);

    }

}

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



266

If the basket and candy collide, handleCatchingCandy resets the candy to the top of 

the screen; positions the Yum! message wherever the basket is; and returns true so main 

will know to start the countdown framesLeftTillYumDisappears, keeping the Yum! 

visible for a second.

If the candy falls to the bottom of the screen – if it’s missed – handleMissingCandy 

resets the candy to top of the screen. Either way, the statistics are appropriately updated.

Example 12-9.  Falling candy program, part 5 of 5

///////////////////// Events /////////////////////

void myEventHandler(bool& mouseClicked)

{

    SSDL_Event event;

    while (SSDL_PollEvent(event))

        switch (event.type)

        {

        case SDL_QUIT:            SSDL_DeclareQuit(); break;

        case SDL_KEYDOWN:         if (SSDL_IsKeyPressed(SDLK_ESCAPE))

                                      SSDL_DeclareQuit();

                                  break;

        case SDL_MOUSEBUTTONDOWN: mouseClicked = true;

        }

}

///// ** The game itself ** ////

bool playGame ()

{

    bool isVictory          = false;      //Did we win?  Not yet

    bool isDefeat           = false;      //Did we lose? Not yet

    bool letsDisplayStats   = true;       //Do we show stats on screen?

                                          //  Yes, for now

    int numberCaught = 0,                 //So far no candies

        numberMissed = 0;                 //  caught or missed

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



267

     //Initialize sprites

    Object basket, candy, yumMessage;

    initializeObjects (basket, candy, yumMessage);

    //Main game loop

    while (SSDL_IsNextFrame () && ! isVictory && ! isDefeat)

    {

        enum {FRAMES_FOR_YUM_MESSAGE = 60};

        static int framesLeftTillYumDisappears = 0;

        //Handle input events

        bool mouseClick = false; myEventHandler (mouseClick);

        if (mouseClick) letsDisplayStats = !letsDisplayStats;

        //Display the scene

        SSDL_RenderImage(BKGD_IMAGE, 0, 0);

        renderObjects (basket, candy, yumMessage,

                       framesLeftTillYumDisappears>0);

        if (letsDisplayStats) renderStats (numberCaught, numberMissed);

        //Updates:

        //Move objects in the scene

        enum { BASKET_SPEED = 7 };    //7 pixels per frame, left or right

        moveBasket(basket, BASKET_SPEED);

        moveObject(candy); moveObject(yumMessage);

                                              //Did you catch a candy?

        if (handleCatchingCandy(basket, candy, yumMessage, numberCaught))

            framesLeftTillYumDisappears = FRAMES_FOR_YUM_MESSAGE;

        if (numberCaught >= MAX_CAUGHT)

            isVictory = true;

        else                                  //...or did it go off screen?

        {

            handleMissingCandy (candy, numberMissed);

            if (numberMissed >= MAX_MISSED)

                isDefeat = true; //You just lost!

        }

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



268

        //Update yum message

        if (framesLeftTillYumDisappears > 0)  //if yumMessage is active

            --framesLeftTillYumDisappears;    //  keep counting down

    }

    return isVictory;

}

The main loop stops when we get victory or defeat. It’s divided into the events 

section, the display section, and the update-things section. In the events section, this 

statement

if (mouseClick) letsDisplayStats = ! letsDisplayStats;

toggles whether the stats are displayed on the screen, if you get a mouse click. 

Handling the Yum! message is distributed appropriately: it’s displayed just like the 

other objects, but its lifetime is continually counted down in the Updates section.

Figure 12-3.  The Hallowe'en candy game in action

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



269

�Antibugging
•	 You’ve got a feature that’s supposed to display for a while but 

never shows up. Something like the splat from earlier in this chapter. 

Maybe your code looks like this:

while (SSDL_IsNextFrame ())

{

   ...

   if (mouseClick)

   {

       framesLeftTillSplatDisappears = SPLAT_LIFETIME;

       while (framesLeftTillSplatDisappears > 0)

       {

          //display the splat

          --framesLeftTillSplatDisappears;

       }

    }

    ...

}

It displayed, all right – again and again, till 

framesLeftTillSplatDisappears was 0 – all in 1/60 of a second! 

It displayed so quickly you never got to see it.

The problem is adapting to this new event-driven way of thinking. 

We don’t want the program to do all the displaying of the splat 

and then go on to the next 1/60 of a second; we want it to set up 

the display, then let the frames pass while other things happen 

(including the user getting to see the splat).

A good rule of thumb is avoid looping an action that’s supposed 
to take time, inside the main animation loop. Just set it up, and 

let the main loop update it with successive frames.

Another good rule is the Tip from designing the splat program, 

keep parts of the main loop separate: handle events (say), then 

display, then do updates.

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



270

So a way to fix this program is

while (SSDL_IsNextFrame ())

{

   //Events section

   ...

   if (mouseClick)

       framesLeftTillSplatDisappears = SPLAT_LIFETIME;

   ...

   //Display section

   //  display the splat

   ...

    //Update section

    --framesLeftTillSplatDisappears;

    ...

}

•	 You can’t get a new feature to work. Try a program that does work 

(a sample program from the text or the Internet, or something you 

did earlier, or even a program with empty main) and make gradual 

changes until it’s the new program.

•	 You just added a new feature, and now nothing works. Here are a 

few suggestions:

•	 As in Chapter 1: keep a trail of backups, copies of your entire 

folder, as you make changes, so if something goes wrong and 

the sprites won’t show, you can go back to an earlier version. It’s 

more fun than pulling your hair out.

•	 Cut out all the code from a function that’s misbehaving. Then 

put half of it back. If the bad behavior returns, only put a quarter 

of it back; if not, add more code back in. Keep going till you’ve 

figured out what line is the problem.

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



271

•	 Test to destruction. If I absolutely can’t figure what’s wrong, 

I’ll make a copy of the folder (maybe named “ttd”), make a 

backup copy of that, then remove code, especially code I think 

is irrelevant to the error. Is the error still there? If so, repeat, still 

making backups, until the program’s so short there’s nothing left 

but the error. If not, we may have found the problem! Still too 

complicated? Go to the previous backup, the one with the error, 

and only take out part of what removed the error. Whatever you 

do, you’re homing in on the code that’s the problem.

Sometimes I have gotten down to two to three lines of code 

and determined the problem is a compiler bug. It happens. 

(Then I write the program a different way.) If it turns out to be 

something stupid, I’m happy to be done rather than hating 

myself for making a dumb mistake.

•	 Identify differences between versions. Maybe one has a feature 

you want, but a bug you don’t. A precise report of differences can 

help you narrow down what you’re interested in. In Unix, diff 

file1 file2 lists the lines that differ. In Windows, WinDiff is a 

wonderful program from Microsoft (you may already have it) that 

does the same. Both work for individual files or entire folders.

•	 Talk about the problem to someone who can really listen: 
a duck. Maybe if you explain your problem to an expert, it’ll 

become clear. Sure, but what if there’s no expert handy? Talk to 

a rubber duck instead – seriously. Explain the problem in detail. 

As you do, you may find your solution. Rubber ducky debugging 

is a thing, and at present even has its own web site (https://

rubberduckdebugging.com/).

For more tips, review the “Antibugging” section at the end of Chapter 9.

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together

https://rubberduckdebugging.com/
https://rubberduckdebugging.com/


272

EXERCISES

In these and subsequent exercises, plan in advance, and use the debugger if anything goes 

wrong.

	1.	 Make those balls bounce, as in Chapter 11…and have your mouse control a 

little player on the screen. Avoid the bouncing balls.

	2.	 Make a space game: a UFO flies overhead, dropping missiles while you shoot 

back. You'll need an array of missiles.

	3.	 Make a version of a fairgrounds duck shoot game. To make it interesting, you 

could have slow missiles (going straight from your crosshairs to the duck, but 

taking a second to get there).

	4.	 Make a gun that can rotate, put it in the middle of the screen, and shoot bad 

guys coming from random directions.

	5.	 Make your own game, either a copy of an existing arcade game or your own 

idea.

Chapter 12  Making an Arcade Game: Input, Collisions, and Putting It All Together



273
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_13

CHAPTER 13

Standard I/O and File 
Operations
We’ve had too much fun. It’s time to get serious.

Or, maybe, it’s time to learn how to program when you aren't using a graphics and 

game library. One reason is, you usually aren’t. Another is that even if you were, you 

might want to access files (for loading a game level, say), and in C++ we handle files 

much as we do usual user interaction.

�Standard I/O programs
Example 13-1 is a program that uses standard I/O. It may look familiar.

Example 13-1.  “Hello, world!” using C++ standard I/O

//Hello, world! program, for _C++ for Lazy Programmers_

//      -- from _C++ for Lazy Programmers_

//It prints "Hello, world!" on the screen.

//  Quite an accomplishment, huh?

#include <iostream>

using namespace std;

int main ( )

{

    cout << "Hello, world!" << endl;

    return 0;

}



274

Here are the changes from SSDL’s Hello, World!, starting at the bottom and working 

backward:

•	 It’s time to come clean: ssin and sout are cheap knockoffs of the 

built-in cin (pronounced “C-in”) and cout (“C-out”) that come with 

the compiler. cin and cout don’t work with the SDL window, so we 

needed a substitute. cin and cout are like ssin and sout, but (a) you 

can’t set the cursor – you can only go down the screen, and (b) you 

can’t set the font.

•	 We needed main to have arguments (int argc, char** argv) for 

compatibility with SDL; now they can be omitted.

•	 using namespace std;: cout is part of the “standard” namespace, 

and you have to tell the compiler to use it, or it’ll complain it doesn’t 

know what cout is.

•	 Instead of "SSDL.h", we load <iostream>, which like <cmath> and 

<cstdlib> comes with the compiler. It defines cin, cout, endl (works 

like '\n'), and other things.

�Compiling in Microsoft Visual Studio
It’s easiest to make a copy of the basicStandardProject in the repository’s newWork 

folder and use that. But I’ll describe how to make a standard project on your own 

anyway.

In Visual Studio 2017 and earlier, say File ➤ New ➤ Project. You should see 

something like Figure 13-1. On the left, go to Visual C++ or Visual C++ ➤ Other and 

select Empty Project.

Chapter 13  Standard I/O and File Operations



275

In 2019, Create New Project, and select Empty Project from the list it shows.

Name and locate it what you like; click OK or Create.

The project really is empty (Figure 13-2), and we need main. Right-click Source Files 

and Add a New Item. Make it a C++ file (.cpp) of an appropriate name (Figure 13-3); I 

like main.cpp.

Figure 13-1.  Making an Empty Project in Microsoft Visual Studio 2017

Chapter 13  Standard I/O and File Operations



276

Figure 13-2.  Add New Item

Figure 13-3.  Add New Item, cont’d

Chapter 13  Standard I/O and File Operations



277

In 2017 and earlier, ensure SubSystem is set to Console in Project Properties 

(Figure 13-4). We’ll consider why in a moment.

Now you’re ready to type your program – but not quite ready to run it. Read on.

�Antibugging

Here are some new issues you may find moving to standard I/O with Microsoft Visual 

Studio. The program closes before you have a chance to see anything. Solutions:

•	 Under Tools ➤ Options ➤ Debugging, uncheck Automatically close 
the console when debugging stops. This will apply to all console 

projects in this compiler till you change it.

Figure 13-4.  Setting the SubSystem to Console

Chapter 13  Standard I/O and File Operations



278

Programs created with my basicStandardProject are console 

programs. If you make your own Empty project, you can make it  

a console project thus: Project ➤ Properties; set Configuration 

Properties ➤ Linker ➤ System ➤ SubSystem to Console (Figure 13-4). 

If this stops working, Visual Studio may still be running previous 

copies of that or other programs. It seems it automatically closes all 

but the first regardless. Kill all other console windows and start a 

new one; or try restarting Visual Studio.

Or, add this line just before the return:

system ("pause"); //Make program wait for user

•	 You find there are pch.h and pch.cpp in your project. What? You 

must have created a Windows Console Application. You can ignore 

those files.

•	 The compiler can't find a precompiled header. Precompiled 

headers are a way to reduce compile time when you have very long 

header files. I don’t think we need them at this point. To disable, go 

to Project ➤ Properties, then set C/C++ ➤ Precompiled Headers 

➤ Precompiled Header to – wait for it – Not Using Precompiled 

Headers. Or make a new Empty Project.

•	 _WinMain@16 can't be found. I think you created a Windows 

Desktop Application project, not an Empty Project, by clicking the 

wrong thing in the boxes shown in Figure 13-1. Re-create the project, 

making sure it’s an Empty Project.

�Compiling with g++
g++ -g main.cpp -o myProgram

That’s it. The -g means “support debugging with gdb or ddd”; the -o means “name 

my executable myProgram.” You can leave off the -o option and the executable will be 

a.out or a.exe.

Chapter 13  Standard I/O and File Operations



279

Or if you want, you can copy the basicStandardProject from the repository’s 

newWork folder, and type make; we’ll be doing that in Chapter 16 anyway. It names its 

executable a.out.

To run the program, enter ./myProgram (Unix) or myProgram (MinGW).

To debug, use ddd myProgram &1 (Unix) or gdb myProgram (Unix and MinGW). 

In MinGW, we used to break SDL_main; since there now is no SDL_main, break main 

instead.

Extra  Why do we put ./ before the program name in Unix?

When you type a command, Unix looks through its list of directories, called the 
PATH, for the command you typed. If your current directory (known in Unix as ., 
a single period) isn’t in the PATH, it won’t find it, so if you type a.out to run your 
program, it won’t find it.

I don’t like that, so let’s put . (“dot”) in the PATH.

Suppose it’s the first directory it checks. Then if a bad guy can get a malicious 
program into your directory and name it a common command like ls, he can 
get you to do awful things: you type ls, and it deletes the operating system or 
something:

cp myEvilProgram innocentUsersFolder
mv innocentUsersFolder/myEvilProgram innocentUsersFolder/ls

#now we wait for the innocent user to type ls

OK, so we’ll make it the last directory checked. Now, if you type ls, Unix will look 
in /bin (or wherever), find the right ls, and run it.

But if the bad guy guesses what typos people make and names his evil program 
sl, and your fingers miss…he’s got you.

I don’t know how likely that last scenario is, but it’s a reason to leave . out of the 
path if you’re concerned.

1�The & means “give me a command prompt again immediately; don’t wait for ddd to finish.” 
Optional but a good practice.

Chapter 13  Standard I/O and File Operations



280

�Antibugging

•	 The debugger says no debugging symbols are found. In ddd, it also 

gives a blank window. Compile again with the -g option or use my 

Makefile.

EXERCISES

	1.	 Write a program which prints all 99 verses of “99 bottles of beer on the wall.” 

In case you missed this cultural treasure, it goes like this:

99 bottles of beer on the wall

99 bottles of beer;

Take one down, pass it around,

98 bottles of beer on the wall!

The last verse is the one in which the last bottle is taken down.

Make sure your program prints neatly and handles the special case of 1 bottle 

of beer (not “1 bottles of beer”).

�File I/O (optional)
�cin and cout as files
In a sense, we’ve been using files already – at least, two things that C++ considers to be 

files: cin and cout.

cin is an input file. It just happens to be an input file that gets its information from 

the keyboard as you type. cout is an output file: the output file that is your computer 

screen. A stretch of the definitions? Perhaps – but in this section I use cin and cout as 

actual files.

�Getting the command prompt in Windows

To do this we’ll need a command prompt. There’s many ways to get it in Windows, 

depending on the version. Some are [Windows Key]-R, type cmd; Start Menu, type cmd; 

and Task Manager, File ➤ Run new task, type cmd.

Now you need to send it to the correct folder.

Chapter 13  Standard I/O and File Operations



281

The lazy way: go to your program’s folder in Windows, click the folder icon in the title 

bar, and copy the path it shows (Figure 13-5).

Is the drive you see in the prompt of the cmd window the same as in the address you 

just copied? If not, enter the new drive, probably C:. Either way, type cd, a space, and 

paste (Ctrl-V) the address. Hit Enter. Figure 13-6 shows the commands.

Figure 13-5.  Getting the path of your folder

Figure 13-6.  Changing to your project's directory in cmd

Chapter 13  Standard I/O and File Operations



282

Visual Studio puts your executable, <your project>.exe, in a folder, probably 

Debug. Copy it to the same folder as your .vcxproj and it’ll be able to find whatever 

files you put there.

�Redirecting I/O at the command prompt

To make your program get input from in.txt, not the keyboard, type

myProgram < in.txt //The < goes from file to program; makes sense

To make it also send its output to out.txt, not the screen, type

myProgram < in.txt > out.txt

Try sending the Hello program’s output to a file and see what you get.

�while (cin)

I’ve heard the letters that appear most frequently in English text are, starting with the 

super-frequent E, ETAOINSHRDLU. Let’s see if that’s true by giving the program some 

huge text, maybe off gutenberg.org, and counting the frequencies.

make an array of frequencies for letters, all initially zero

while there are characters left

    �read in a character //we won't prompt the user; it's all coming from a 

file

    if it's an 'A' or an 'a' add 1 to frequency for 'A'

    else if it's a 'B' or a 'b' add 1 to frequency for 'B'

    else ...

print all those frequencies

I know how to create arrays, add 1 to ints, and read in characters. But how do I know 

there are characters left?

while (cin) ... will do it. If you put cin someplace you’d expect a bool, it’s 

evaluated to something like “if nothing has gone wrong with cin.” The usual thing 

that goes wrong with cin is hitting the end of the input file. Example 13-2 shows the 

completed program.

Chapter 13  Standard I/O and File Operations



283

Example13-2.  Counting frequencies of letters in a text file

//Program to get the frequencies of letters

//      -- from _C++ for Lazy Programmers_

#include <iostream>

using namespace std;

int main ()

{

    //make an array of frequencies for letters, all initially zero

    enum { LETTERS_IN_ALPHABET = 26 };

    int frequenciesOfLetters[LETTERS_IN_ALPHABET] = {}; //all zeroes

    //read in the letters

    while (cin)              //while there are letters left

    {

        char ch; cin >> ch;  //read one in

        ch = toupper(ch);    //capitalize it

        if (cin)             //Still no problems with cin, right?

            if (isalpha(ch)) //  and this is an alphabetic letter?

                ++frequenciesOfLetters[ch - 'A'];

                             //A's go in slot 0, B's in slot 1...

    }

    //print all those frequencies

    cout << "Frequencies are:\n";

    cout << "Letter\tFrequency\n";

    for (char ch = 'A'; ch <= 'Z'; ++ch) //for each letter A to Z...

        cout << ch << '\t' << frequenciesOfLetters[ch - 'A'] << '\n';

    return 0;

}

Try this with etaoinShrdlu < in.txt > out.txt and you’ll get an out.txt file like

Frequencies are:

Letter Frequency

Chapter 13  Standard I/O and File Operations



284

A      11

B      3

C      3

D      6

E      20

...

If the letters are coming from a file, while (cin) fails when we reach the end of 

file. But actual keyboard input has no end of file. You can simulate it by hitting Ctrl-Z 

and Enter (Windows), or Ctrl-D (Unix). It must be the first character on the line, or it 

may not work.

�Reading in characters, including whitespace

New task: read in a file, every character, and capitalize everything.

This looks like it should work, but doesn’t:

while (cin)               //for each char in file

{

    char ch;  cin >> ch;  //read in char

    ch = toupper (ch);    //capitalize

    if (cin) cout << ch;  //cin still OK? Then print

}

With this input

Twinkle, twinkle, little bat!

How I wonder what you're at!

we get this output

TWINKLE,TWINKLE,LITTLEBAT!HOWIWONDERWHATYOU'REAT!

cin >> skips whitespace. Fine for user interaction and the ETAOIN SHRDLU 

program, but here we need whitespace.

Solution: ch = cin.get();. cin.get() returns the next character, even if it’s space, 

tab (\t), or end of line (\n).

Chapter 13  Standard I/O and File Operations



285

Example 13-3 reads in a file and produces an ALL CAPS version.

Example 13-3.  Capitalizing a file, character by character.

//Program to produce an ALL CAPS version of a file

//      -- from _C++ for Lazy Programmers_

#include <iostream>

#include <cctype>             //for toupper

using namespace std;

int main ()

{

    while (cin)               //for each char in file

    {

        char ch = cin.get();    //read in char

        ch = toupper (ch);    //capitalize

        if (cin) cout << ch;  //cin still OK? Then print

    }

    return 0;

}

�Antibugging

•	 You told it to stop at the end of file, but it goes too far.

/////////// get an average -- buggy version //////////////

double total = 0.0;     //initialize total and howMany

int  howMany = 0;

while (cin)              //while there are numbers in file

{

    int num; cin >> num; //read one in

    total += num;        //keep running total

    ++howMany;

}

Chapter 13  Standard I/O and File Operations



286

Your input file is

1

2

and your average is…1.6667. Huh?

Trace it with the debugger. It reads in 1, adds it, increments 

howMany. Reads in 2, adds it, increments howMany again. Test for 

end of file with while (cin); it keeps going.

But aren’t we at the end of the file? Maybe not: there may be 

another \n or space or something.

So the program keeps going. It reads in the next number, and there 

isn’t one, so it leaves num as 2, adds it again (!), increments again. 

An error is born.

It couldn’t know there wasn’t going to be another number till it tried 

to read it. So the solution is to test the input file after every attempt 
to read, to ensure it didn't run out of input while reading:

int num; cin >> num; //read one in

if (cin)             //still no problems with cin, right?

{

    total += num;    //keep running total

    ++howMany;

}

See the source code for a complete (and correct) version of this program.

EXERCISES

In all these exercises, use standard I/O:

	1.	R ead in a sequence of numbers and print it in reverse order. You don’t know 

how many, but you do know it’s no more than, say, 100. (This way you can 

declare an array that’s big enough.)

	2.	 Count the characters in a file.

	3.	 …not including whitespace or punctuation.

Chapter 13  Standard I/O and File Operations



287

�Using file names
It’s too much work to redirect I/O all the time. Maybe I have multiple input files – they 

can’t all be cin. Or maybe I just want the program to remember the file name and not 

expect me to type it at the command prompt.

Say I have a game with angry robots wandering around trying to collide with my 

player. The player starts on the left side of the screen, and it’s my job to get it to the right 

without any collisions.

It might make the game more interesting if I placed the robots in specific locations, 

designing each level successively tougher than the last. We’ll start level 1 with three 

robots, so that’s three locations.

If I got this from cin (way too annoying, but we’ll change that in a minute), some of 

the code might look like Example 13-4.

Example 13-4.  Code to read in several points from cin

//A (partial) game with killer robots

//  meant to demonstrate use of file I/O

//This loads 3 points and prints a report

//      -- from _C++ for Lazy Programmers_

#include <iostream>

using namespace std;

struct Point2D { int x_=0, y_=0; };

int main ()

{

                    //an array of robot positions

    enum { MAX_ROBOTS = 3 };

    Point2D robots[MAX_ROBOTS];

    int whichRobot = 0;

    //while there's input and array's not full...

    while (cin && whichRobot < MAX_ROBOTS)

    {

        int x, y;

        cin >> x >> y;           //read in an x, y pair

Chapter 13  Standard I/O and File Operations



288

        if (cin)                 //if we got valid input (not at eof)

        {                        //store what we read

            robots[whichRobot] = {x, y};

            ++whichRobot;        //and remember there's 1 more robot

        }

    }

    for (int i = 0; i < MAX_ROBOTS; ++i)

        cout        << robots[i].x_ << ' '

                    << robots[i].y_ << endl;

    return 0;

}

Now let’s make the program go get the file without me using >. Here’s what I must do 

to use a named input file:

	 1.	 #include <fstream>, which has definitions I need.

	 2.	 ifstream inFile;. This declares my input file. ofstream is for 

output files.

	 3.	 inFile.open ("level1.txt");. Opening a file associates it with a 

filename and ensures the file is there.

	 4.	 Verify the file opened without error. If it’s an input file, the error 

may be that the file doesn’t exist or isn’t in the folder you thought 

it was. If it’s an output file, you may have a disk problem or a read-

only file. Here’s how to verify:

if (! inFile) // handle error

	 5.	 Change cin to inFile wherever you want to use the new file. If it’s 

an output file, change cout to outFile.

	 6.	 When done, close the file: inFile.close ();. This tells the 

operating system to forget the association between inFile and 

“input.txt” and thereby lets other programs that might need 

it, use it again. To be sure, when your program ends, all files 

it referenced will be closed – but it’s wise to get in the habit of 

putting away your toys, I mean files, when you’re done with them. 

Your mother would be proud.

Chapter 13  Standard I/O and File Operations



289

Example 13-5 is the updated version of the program.

Example 13-5.  Program that reads an input file and prints to an output file.

//A (partial) game with killer robots

//  meant to demonstrate use of file I/O

//This loads 3 points and prints a report

//      -- from _C++ for Lazy Programmers_

#include <iostream>

#include <fstream>  //1. include <fstream>

using namespace std;

struct Point2D { int x_=0, y_=0; };

int main ()

{

                    //an array of robot positions

    enum { MAX_ROBOTS = 3 };

    Point2D robots[MAX_ROBOTS];

                    //2. Declare file variables.

                    //3. Open the files.

                    //Here's two ways to do both; either's fine

    ifstream inFile; inFile.open("level1.txt");

    ofstream outFile ("saveGame1.txt");

                    //4. Verify the files opened without error

    if (!inFile)

    {

        cout << "Can't open level1.txt!\n"; return 1;

                    // 1 is a conventional return value for error

    }

    if (! outFile)

    {

        cout << "Can't create file saveGame1.txt!"; return 1;

    }

                   //5. Change cin to inFile, cout to outFile

Chapter 13  Standard I/O and File Operations



290

    int whichRobot = 0;

    //while there's input and array's not full...

    while (inFile && whichRobot < MAX_ROBOTS)

    {

        int x, y;

        inFile >> x >> y;       //read in an x, y pair

        if (inFile)             //if we got valid input (not at eof)

        {                       //store what we read

            robots[whichRobot] = {x, y};

            ++whichRobot;       //and remember there's 1 more robot

        }

    }

    for (int i = 0; i < MAX_ROBOTS; ++i)

        outFile     << robots[i].x_ << ' '

                    << robots[i].y_ << endl;

                   //6. When done, close the files

    inFile.close(); outFile.close();

                   //can still use cout for other things

    cout << "Just saved saveGame1.txt.\n";

    return 0;

}

That worked: it saved saveGame1.txt in the same folder as the .vcxproj file (Visual 

Studio) or executable (otherwise).

The program erases whatever contents saveGame1.txt has when the program starts 

and replaces it with new contents.

You can have multiple input and output files in your programs. You can also pass 

files into functions:

void readFile (ifstream& in,  double numbers[], int& howManyWeGot);

void writeFile(ofstream& out, double numbers[], int  howMany);

Chapter 13  Standard I/O and File Operations



291

EXERCISES

	1.	 Write a program to determine if two files are identical.

	2.	 Write and test functions to read from, and print to, a file of Point2D’s.

	3.	R oll 2 dice 100 times, and store the resulting sums in a file…

	4.	 …then load that file and print a histogram: a bar showing how many times 

you got 2, another showing how many times 3, and so on. Do this in SSDL (use 

basicSSDLProject; go ahead and use file variables; just don’t expect cin 

and cout to work); or print X’s across the screen showing how many times 

each value showed up (Figure 13-7).

	5.	 Is the Earth getting warmer?

There’s a file temperature.txt2 in the sample code for this chapter, which 

contains, for given years, year and estimated average global temperature. 

(The temperature given is degrees Centigrade relative to estimated average 

temperature for 1910–2000).

So what can we learn from it?

The degrees increase per year, which is

m
N xy x y

N x x
=

å -å å

å - å( )2 2

2�Source: www.ncdc.noaa.gov/cag/global/time-series.

2 : X
3 : XXXXXXX
4 : XXXXXXXX
...

Figure 13-7.  A histogram printed with X’s

Chapter 13  Standard I/O and File Operations

http://www.ncdc.noaa.gov/cag/global/time-series


292

x is year and y is temperature. Σ x, read as “the sum of x,” means “the sum 

of all the x’s.” m is the slope of the line y = mx+b that most closely matches 

the data.

How closely the yearly temperatures actually match this line. This is

R
N xy x y

N x x N y y
=

å -å å

å - å( )é
ë

ù
û å - å( )é
ë

ù
û

2 2 2 2

If R is –1 or 1, then the correlation is strong. If R is near 0, it’s very weak. 

Negative R means that the temperature is decreasing with time (but we’d know 

this already from m).

Write a program that reads the file and provides the user with degrees increase 

per year and R. What functions will you need? Test them enough to be sure you 

trust them before giving your answer.

Of course, correlation does not prove causality. For example, people who 

drink coffee ski more (let’s say). Does this mean coffee causes skiing? Maybe 

it’s that ski lodges give free coffee. Or maybe people who like to have fun are 

more likely to ski and drink coffee. For causality, we need a bit more (human) 

thinking.

	6.	 Make your own cryptogram: a letter scheme, as in, A means R, B means D, 

and so on. Then encode a message using your encryption scheme. Also write a 

decryption program and verify everything works.

Chapter 13  Standard I/O and File Operations



293
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_14

CHAPTER 14

Character Arrays and  
Dynamic Memory
Character arrays – a.k.a. “character strings,” or text – are important for many tasks.  

This chapter shows how to handle them, and how to create those or other arrays when 

you don’t know the size in advance.

�Character arrays
We’ve been using char arrays from the beginning. Our "Hello, world!" quote from 

Chapters 1 and 13 is a character array, with contents as shown in Figure 14-1.

Figure 14-1.  The contents of the “Hello, world!” character array literal

'\0', the “null character,” is a marker to tell C++ this is where our character string 

ends. cout stops printing not when it reaches the end of allocated space – it doesn’t 

know or care how much space was allocated – but when it reaches '\0'.

Let’s see what we can do with char arrays besides printing.

Here are two ways to initialize a character array.

char A[] = {'d','o','g','\0'}; //they both mean the same thing

char A[] = "dog";              //but this one's easier to read,

                               //  don't you think?



294

You can also read a word into a character array from cin or an input file. We’ll 

need to be sure the array we declare has enough room for what’s typed in. We do this by 

allocating way more characters than we’re likely to need.

const int  MAX_STRING_SIZE = 250;

char  name[MAX_STRING_SIZE];

cout << "What's your name? "; cin >> name;

That code reads in one word. If you want to read the entire line (maybe you want to 

let the user enter both first and last names?), you’ll want cin.getline (name,  

MAX_STRING_SIZE);.

We can pass the array into a function. In Example 14-1 we have a function that 

prints a question and gets a valid yes or no answer. We don’t plan to change the array, so 

we pass it as const.

Example 14-1.  A function that takes a char array as a parameter

bool getYorNAnswer (const char question[])

{

      char answer;

      do

      {

            cout << question;

            cin  >> answer;

            answer = toupper (answer);

      }

      while (answer != 'Y' && answer != 'N');

      return answer == 'Y';

}

Let’s now find how long a character array is – not the allocated memory, but the part 

being used, up until the null character.

where = 0

while the whereth char isn't the null character (not at end of string)

  add 1 to where

Example 14-2 gives a complete version.

Chapter 14  Character Arrays and Dynamic Memory 



295

Example 14-2.  The myStrlen function

unsigned int myStrlen (const char str[])

                                 //"strlen" is the conventional

                                 //   name for this function

{

    int where = 0;

    while (str[where] != '\0')   //count the chars

        ++where;

    return where;                //length is final "where"

}

This and other functions are already provided in include file cstring. Table 14-1 lists 

the most commonly used.

Table 14-1.  Some cstring functions, simplified for clarity

unsigned int

     strlen (const char myArray[]);

return length of character string in myArray  

(how many characters till the null character)

void strcpy (char destination[],

             const char source[]);

copy contents of source into destination

void strcat (char destination[],

             const char source[]);

copy contents of source to the end of 

destination. If you call strcat on arguments 

containing "Mr." and "Goodbar", the resulting 

destination will be "Mr.Goodbar"

int strcmp (const char a[],

            const char b[]);

return 1 if a comes after b in alphabetical order, as 

in strcmp ("beta", "alpha"); -1 if a comes 

before b, as in strcmp ("alpha", "beta");  

0 if they are identical

Chapter 14  Character Arrays and Dynamic Memory 



296

Note M icrosoft Visual Studio may give a warning when it sees strcpy or 
strcat and others: 

warning C4996: 'strcpy': This function or variable may 
be unsafe. Consider using strcpy_s instead. To disable 
deprecation, use _CRT_SECURE_NO_WARNINGS. See online help for 
details. 

strcpy_s and strcat_s are versions of strcpy and strcat which try to 
stop you from writing past the bounds of the array. Sounds wise, but this never 
caught on generally. I don't use them because I want code to be portable between 
compilers. Or maybe I just like living on the edge. 

You can suppress the warning if you want: put this line at the top of any file that 
references strcpy and so on: 

#pragma warning (disable:4996)  
                         //disable warning about strcpy, etc.

�Antibugging

•	 In the debugger, you see your char array looking reasonable, but 
toward the end it’s full of random characters. That’s OK: whatever’s 

past the '\0' isn’t printed or used anyway. You can ignore it.

•	 You see reasonable characters in your char array being printed, 
then followed by extra garbage. The string is missing its final '\0'. 

Solution: insert the '\0' at the end.

•	 It acts like it’s gotten some of your input, before you had a chance 
to type it. (If using file I/O, it skips part of the file.) Here’s an example:

do

{

    cout << "Enter a line and I'll tell you how long it is.\n";

    cout << "Enter: "; cin.getline (line, MAX_LINE_LENGTH);

    cout << "That's " << strlen (line) << " characters.\n";

Chapter 14  Character Arrays and Dynamic Memory 



297

    letsRepeat = getYOrNAnswer ("Continue (Y/N)? ");

}

while (letsRepeat);

First time through, you’re good. Every time after that, when you 

say you want to do it again, it says your line length is 0 and asks if 

you want to continue.

Think of cin as providing a sequence of characters headed from 

keyboard to program, as in Figure 14-2.

In (a), you’ve entered your first line, TO BE. cin.getline takes all 

that, up through the ‘\n’.

In (b), you’ve entered your response to the “Continue (Y/N)?”  

question.

In (c), getYOrNAnswer has done its input: cin>>answer. answer 

becomes 'y', and getYOrNAnswer is done.

We’re ready to start the loop again and get more input…but look 

what was left in the cin buffer:1 a string for cin.getline to read. 

It’s an empty string, but it’s still a string, because it ends with '\0'. 

So cin.getline won’t wait for you to type; it goes right on and 

reads that empty string…and we’re back in getYOrNAnswer being 

asked if we want to continue.

1�Buffer: temporary storage, especially for I/O.

'\n''E''T' 'O' '  ' 'B' ... ...(a)

'\0''E''y' '\n' '  ' 'B' 'y'...(b)

'\0''E''O' '  ' 'B' 'y'...(c) '\n'

Figure 14-2.  The cin buffer, with whatever the user typed as its contents

Chapter 14  Character Arrays and Dynamic Memory 



298

We need to dump that '\0' before cin.getline can be fooled. 

Here are two ways:

•	 cin.getline again, just to get rid of the '\0'.

•	 cin.ignore (MAX_LINE_LENGTH, '\n');. This ignores all chars, 

up through MAX_LINE_LENGTH or the first \n, whichever comes first.

I think let’s put it in getYOrNAnswer: it’s the function that asked the 

question that gave us trouble, so it should clean up after itself.

bool getYOrNAnswer (const char question[])

{

    ...

    �cin.ignore �(MAX_LINE_LENGTH, '\n');  

                   //dump rest of this line

    return answer == 'Y';

}

EXERCISES

	1.	 Write and test myStrcpy, your own version of the strcpy function described 

in Table 14-1. (There is an answer later in this chapter.) To ensure it really is 

putting the '\0' at the end, let the destination array be filled with all X's (say) 

before you do the copy.

	2.	 Write and test your version of strcat.

	3.	 …and strcmp.

	4.	A sk the user his/her name, and repeat it back. If the first letter is lowercase, 

capitalize it.

	5.	 (Uses file I/O) Determine the average length of lines in a given file.

	6.	 (Uses file I/O) Write a program which finds and prints words in common 

between two given files. Assume each word appears at most once in a file.

Chapter 14  Character Arrays and Dynamic Memory 



299

�Dynamic allocation of arrays
Sometimes you don’t know till the program runs how big an array should be. But this 

won’t work:

int size;

//calculate size somehow

int A[size];//compiler will complain: size must be literal or const or enum

Here’s what to do instead.

First, declare the array without allocating memory for its elements:

int* A;

A is not an int but an address of (“pointer to”) ints, same as when we declared it 

with []’s, only without storage for those ints yet.

Next, give it the memory it needs:

A = new int [size];

This asks part of C++, the “heap manager,” to give us a chunk of that many ints. 

There’s a whole heap o’ memory available just for this, and the heap manager can 

give you chunks of it whenever you need. This is called “dynamic allocation” because 

it happens while the program is running. The way we’ve been doing it so far, with 

allocation at compile time, is “static allocation.” (Memory allocated in these ways is 

called “dynamic” or “static.”)

We use the array just as we would before. When done, we tell the heap manager it 

can have it back, thus:

delete [] myArray;

[] is a reminder to the heap manager that what you’re throwing back is an array. 

If you forget the [], alas, the compiler won’t tell you you screwed up – you have to 

remember yourself.

In summation: to “dynamically allocate” an array of any <type>:

	 1.	 <type>* myArray = new <type> [size];.

	 2.	 Use the array as you normally would.

	 3.	 delete [] myArray; when you’re done.

Chapter 14  Character Arrays and Dynamic Memory 



300

It’s easy to forget to delete []. Does it matter? Sure: if you keep allocating memory 

and never handing it back – if you keep doing a "memory leak" – the memory eventually 

runs out and the program crashes. Later we’ll have a way of making deleting easier to 

remember.

Extra I n 1992 Edmund Durfee, an artificial intelligence researcher, gave an 
invited talk to the National Conference on Artificial Intelligence (AAAI-92): “What 
Your Computer Needs to Know, You Learned in Kindergarten” – referencing 
the popular book All I Really Need to Know I Learned in Kindergarten by Robert 
Fulghum. Here's what Durfee said your computer needs from your early childhood 
education:

•	 Share everything.

•	 Play fair.

•	 Don’t hit people.

•	 Put things back where you found them.

•	 Clean up your own mess.

•	 Don’t take things that aren’t yours.

•	 Say you’re sorry when you hurt someone.

•	 Flush.

•	 When you go out into the world, watch for traffic, hold hands, and 
stick together.

•	 Eventually, everything dies.

Many of these are useful in operating systems. Maybe you have a program 
that hogs memory and CPU time, so that if you want to interact with a different 
program, you can't. (Share everything.)  Or maybe it can only run if it takes up the 
whole screen. (Play fair.)

In the case of memory, we need with "Put things back where you found them."  
Just like with crayons and toys, it'll be easier to find what we need if we always 
put it back.

Chapter 14  Character Arrays and Dynamic Memory 



301

Example 14-3 shows how to use dynamic allocation.

Example 14-3.  A program that dynamically allocates, uses, and deletes an array 

of ints

//Program to generate a random passcode of digits

//            -- from _C++ for Lazy Programmers_

#include <iostream>

#include <cstdlib> //for srand, rand

#include <ctime>   //for time

using namespace std;

int main ()

{

    srand ((unsigned int) time(nullptr));//start random # generator

    int codeLength;                      //get code length

    cout<< "I'll make your secret passcode. How long should it be? ";

    cin >> codeLength;

    int* passcode = new int[codeLength]; //allocate array

    for (int i = 0; i <codeLength; ++i)  //generate passcode

        passcode[i] = rand () % 10;      // each entry is a digit

    cout << "Here it is:\n";             //print passcode

    for (int i = 0; i < codeLength; ++i)

        cout << passcode[i];

    cout << '\n';

    cout << "But I guess it's not secret any more!\n";

    delete [] passcode;                  //deallocate array

    return 0;

}

Chapter 14  Character Arrays and Dynamic Memory 



302

�Antibugging
The most common problem with dynamic memory is a program crash. What might 

cause it?

•	 Forgetting to initialize. If you haven’t initialized myArray, its address 

points to some random location. It will almost certainly crash. Which 

is better than getting wrong output and not knowing it.

Two ways to prevent this:

int* A = new myArray[size];  

                        //initialize as soon as you declare

or

int* A = nullptr;  

             //we'll initialize to something sensible later

By convention, nullptr means “pointing nowhere, so don’t even 

think about looking at any elements.”

In older programs it’s not nullptr but NULL.

•	 Forgetting to delete. Do this long enough and the program will run 

out of memory and crash.

•	 Forgetting to use the [] in delete []. This causes “undefined 

behavior,” which means it might crash, behave perfectly, or start 

World War III. I wouldn’t risk it.

Other problems:

•	 Incorrectly declaring multiple pointers on one line. It’s strange, 

but int* myArray1, myArray2; doesn't create two arrays. It creates 

an int array myArray1 and another (single) int myArray2. Why so 

confusing? This is something left over from the C standard. Solution:

int* myArray1;

int* myArray2;

•	 Using dynamic memory when you don't have to. This isn’t an error, 

but it leads to errors. Dynamic memory has more that can go wrong: 

you must remember to allocate with new [] and deallocate with 

Chapter 14  Character Arrays and Dynamic Memory 



303

delete []. If you don’t gain anything (say, if you know at compile 

time how big your array is), save yourself some work: allocate things 

the old way.

EXERCISES

	1.	A sk the user his/her name. You'll need a buffer long enough to store any 

reasonable name. Then store it in an array that's exactly long enough.

	2.	A sk the user how many stars to draw; generate an array of random stars; draw 

them. Use functions as needed.

	3.	 (Uses file I/O) Write a program which first counts the lines in a file (see Exercise 

5 in the previous section), dynamically allocates an array to store those lines, 

and reads them all in. Hint: you can open the file, count the lines, close it, then 

open again.

	4.	 (Harder) Dynamically allocate a game board, like a chessboard but of variable 

size. I can't just allocate a 2D array, so we'll have to make do with a 1D array. 

Decide on its size and how to access the rowth, clmth location.

	5.	 (Uses SSDL. Hard) Write your own bitmap: a dynamically allocated array, each 

of which contains the color of a pixel in the image. As in the previous exercise, 

we'll need to use a 1D array.

Provide a render function: given the bitmap, a starting location on the screen, 

and the bitmap's width and height, display the bitmap at that location. To draw 

a pixel use SSDL_SetRenderDrawColor and SSDL_RenderDrawPoint.

Would it be a good idea for bitmap to be a struct, containing the array plus 

width and height?

�Using the * notation
We already use * to declare dynamically allocated arrays:

double* myArray = new double[sizeOfArray];

Chapter 14  Character Arrays and Dynamic Memory 



304

We can also use it to refer to individual elements. *A means A[0], because *A means 

“what A points to,” and A points to the 0th element.

*(A+1) means A[1]. The compiler is smart enough to know that A+1 means the 

address of the next element. (Adding something to a pointer like this is called “pointer 

arithmetic.”)

A[1] is easier to read than *(A+1) – so why do this new notation? One reason is to get 

you ready for what we’ll be doing later with *.

Another is this interesting new way to traverse an array. Consider the myStrcpy 

function from Exercise 1 in the first section of this chapter.

void myStrcpy (char destination [], const char source[])

{

    int i = 0;

    while (source[i] != '\0')

    {

        destination[i] = source[i];

        ++i;

    }

    destination[i] = '\0'; //put that null character at the end

}

Here’s a version that doesn’t use []’s.

void myStrcpy (char* destination, const char* source)

{

    int i = 0;

    while (*(source + i) != '\0')

    {

        *(destination + i) = *(source+i);

        ++i;

    }

    *(destination+i) = '\0'; //put null character at the end

}

Not clearly better, but it will work. Next we eliminate the use of i, and just update 

source and destination directly:

Chapter 14  Character Arrays and Dynamic Memory 



305

void myStrcpy (char* destination, const char* source)

{

    while (*source != '\0')

    {

        *destination = *source;

        ++source; ++destination;

    }

    *destination = '\0'; //put null character at the end

}

Will it work? Yes. Now we’re adding 1 to source each time we go through the loop – 

so each time, it points to its next element. (Same for destination.) When source reaches 

the null character, the loop stops.

Remember that when testing conditions, 0 means false and everything else means 

true (Chapter 4). So while (*source != '\0') can be written as

while (*source) //if *source is nonzero -- "true" -- we continue

We can therefore write the function as

void myStrcpy (char* destination, const char* source)

{

    while (*source)

    {

        *destination = *source;

        ++source; ++destination;

    }

    *destination = '\0'; //put null character at the end

}

This is where I really should stop. It’s readable when you get used to it, and it’s short. 

But this is too much fun to quit now.

Recall the post-increment operator (as in X++) from Chapter 5. Y=X++; really means 

Y=X; X=X+1;. Get the value, then increment.

We can use it here for both destination and source – because we use their values to 

do assignment, then increment.

Chapter 14  Character Arrays and Dynamic Memory 



306

void myStrcpy (char* destination, const char* source)

{

    while (*source)

        *destination++ = *source++;

    *destination = '\0'; //put null character at the end

}

Also recall that the value of X=Y is whatever value was assigned – which in the case of 

*destination++ = *source++ is simply *source. We want to continue as long as this is 

nonzero.

void myStrcpy (char* destination, const char* source)

{

    while (*destination++ = *source++); *destination = '\0';

}

This borders on evil and rude. I wouldn’t want to write my code like this, but it does 

show the flexibility we get by using *.

Note  * is called the “dereference” operator – since it takes a reference (address) 
of a thing and gives you the thing itself. 

& is its opposite: the “reference” operator. It takes an object and gives you the 
address: 

int  x; 

int* addressOfX = &x; 

I don’t often use it in C++; it’s more useful in C, which lacks our reference 
parameters. Which uses the symbol & as well. Which makes life more confusing. 
Ah, well. If * can mean dereference (*addressOfX) and multiply (x*y), I’d 
suppose & can mean more than one thing too.

Chapter 14  Character Arrays and Dynamic Memory 



307

�Antibugging

•	 The compiler gripes that you're initializing a char* with a string 
constant, as in char* str = "some string";.

Say char str[] = "some string"; instead.

EXERCISES

In all these exercises, use * notation – no []’s:

	1.	 Write strcmp.

	2.	 …and do the same for our other basic character array functions.

	3.	 Write and test a function contains which tells if one character string contains 

another. For example,

contains ("'Twas brilling, and the slithy toves"

          " did gyre and gimble in the wabe",

          "slithy")

would return true.

	4.	 (Harder) Write a function myStrtok which, like the strtok in cstring, gets 

the next word ("token") in a character array. It might be called thus:

char myString[] = "Mary Mary\nQuite contrary";

const char* nextWord = myStrtok (myString, " \t\n\r");
                      //I use space, tab, return, and

                      //the less-used carriage return \r

                      //as "delimiters": separators

                      //between words

while (nextWord)

{

    cout << "Token:\t" << nextWord << '\n';

    nextWord = myStrtok (nullptr, " \t\n\r");

}

Expected output:

Token:    Mary

Token:    Mary

Chapter 14  Character Arrays and Dynamic Memory 



308

Token:    Quite

Token:    contrary

When you call it the first time for a given string, it should return a pointer to the 

first word. (If there isn’t one, it returns nullptr.) Then, every time you pass in 

nullptr, it gives you the next word in the string you used earlier – returning 

nullptr when it runs out.

You’ll want the contains function from the previous exercise. You'll also need 

a static local variable.

Just as with the compiler’s strtok, you get to mangle the input string as 

you like. The usual way is to put '\0', overwriting a whitespace character, 

wherever you want the currently returned token to end.

Chapter 14  Character Arrays and Dynamic Memory 



309
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_15

CHAPTER 15

Classes
Till now what we’ve covered has been essentially C with a few tweaks, notably cin and 

cout. Now it’s time to add the thing that puts the + in C++: classes.

�Writing classes
Here’s a class type to store a calendar date.

class Date

{

      int days_;

      int months_;

      int years_;

};

...

Date arrival;//Variables of a class type are called "objects"

             //Using the term makes you sound smart at job interviews

We could have done that with a struct. As with structs, we can declare variables of 

this type, pass them as parameters, get at the parts with “ . ”, and so on – it looks much the 

same. But we’re about to get new ways to reuse code and avoid errors.

The first way: I don’t want day_, month_, and year_ available to just any part of the 

program; they might get messed up. I’ll have certain functions are allowed to access 

them, called member functions.

The object metaphor: private data, and member functions to access it. Consider 

objects in the physical world. An object – say, a rubber ball – has characteristics: maybe it’s 

red, bouncy, has a certain mass and composition. You can’t just set those characteristics 

to whatever you want when you want – can you set the color field on a real ball to be blue? 

Tell it to be light as a feather? Instead, the object itself affords ways you can interact with it.  



310

You can’t set the color field, but you can paint it. You can’t change its mass directly, but 

you can do things that would alter the mass, like chopping it or burning it. You can’t set its 

position to 90 kilometers straight up, but you can throw it and see how far it goes.

We’ll make our classes the same way: with characteristics, and methods we decide 

are appropriate for interacting with those characteristics.

This is meant as a natural way of thinking about variables of class types: objects. 

(Thus the term “object-oriented.”)

So what’s something appropriate to do with a Date? For one thing, you can print it 

(Example 15-1).

Example 15-1.  The Date class: a simple version

class Date

{

public:

      void print (ostream&);1

private:

      int days_;

      int months_;

      int years_;

};

...

Date arrival;

...

arrival.print (cout);

The public section is for things the outside world (such as main) can access: that 

is, main can tell a Date to print itself. The private section is for parts that only Date can 

access directly. (If you don’t specify, it’s all private – but it’s good practice to specify.)2

1�It’s ostream&, not ostream, because the designers of iostream disabled copying of ostreams, 
presumably on the grounds that it makes no sense. If you forget, the compiler will remind you.

2�And that’s the only difference between a struct and a class: if you don’t specify (which 
we always do, for classes), class members are private and struct members are public. But 
programmers usually use struct for small, simple groupings without member functions and 
with everything public. That’s because structs existed in C before classes were invented, and 
that’s how C uses them.

Chapter 15  Classes



311

BNF for a class is roughly

class <name>

{

public:

  <function prototypes, variables, and types;

  usually prototypes, almost never variables>

private:

  <function prototypes, variables, types; usually variables>

};

Look at the print call in Example 15-1. Why aren’t we telling arrival about day, 

month, and year? It already knows – it contains them! It doesn’t know whether we want 

to print to cout or a file, so we do have to tell it that.

I didn’t say how to print yet. Here’s how.

void Date::print (std::ostream& out)

{

      out << days_ << '-' << months_ << '-' << years_;

}

The “Date::” tells the compiler, “This isn’t just any function named print – it’s the 

one belonging to Date.”

When you call it

arrival.print (cout);

…whose days_ will it print? arrival’s.

If you’re using a truly programmer-friendly editor (I definitely include Microsoft 

Visual Studio’s), you’ll notice when you type in appointment: the editor lists available 

member functions (see Figure 15-1) – so far, just print, but we’ll soon have more. You 

can click one and it’ll paste it in for you. Add the opening paren and it’ll remind you what 

kind of arguments it expects.

Same for Date::. It’ll list available members.

If it doesn’t, don’t worry: sometimes the editor gets confused.

Chapter 15  Classes



312

�Constructors
We already know it’s wise to initialize variables. In classes, we have a special type of function 

called a constructor (“ctor,” in a common abbreviation) which does this (see Example 15-2).

Example 15-2.  The Date class and a program to use it

//A program to print an appointment time, and demo the Date class

// ...doesn't do that much (yet)

//  -- from _C++ for Lazy Programmers_

#include <iostream>

using namespace std;

class Date

{

public:

    Date (int theDays, int theMonths, int theYears); //ctor

    void print (std::ostream& out);

Figure 15-1.  Microsoft Visual Studio IntelliSense prompting with function 
prototype information

Chapter 15  Classes



313

private:

    int days_;

    int months_;

    int years_;

};

Date::Date (int theDays, int theMonths, int theYears) :

    days_ (theDays), months_ (theMonths), years_ (theYears)

    //theDays is the parameter passed into the Date constructor

    //  function.  days_ is the member that it will initialize.

{

}

void Date::print (std::ostream& out)

{

    out << days_ << '-' << months_ << '-' << years_;

}

int main ()

{

    Date appointment (31,1,2595);3

    cout << "I'll see in you in the future, on ";

    appointment.print (cout);

    cout << " . . . pencil me in!\n";

    return 0;

}

The constructor’s name is always same as its class. When you declare a variable of 

class Date, it calls this function to initialize member variables. (There is no return type; 

essentially a constructor “returns” the object itself.)

The second line of the function – days_ (theDays), months_ (theMonths), 

years_ (theYears)  – tells it to initialize days_ to be equal to theDays and so on. By the 

time we reach the {}’s, there’s nothing left to do, so the {}’s are empty this time.

3�You can also use {} notation: Date appointment = {2595,1,31};. It calls the same ctor.

Chapter 15  Classes



314

You could instead initialize in the body of the function, using =:

Date::Date (int theDays, int theMonths, int theYears)

{

    days_ = theDays; months_ = theMonths; years_ = theYears;

}

but the member initialization syntax with the ()’s is more common, is less error-prone 

(see the Antibugging section), and is necessary in some situations, so it’s lazier to get in 

the habit now.

To visualize how member functions interact with data members, consider this 

diagram of what happens in Example 15-2. main’s first action is to allocate space for 

appointment and call its constructor (Figure 15-2), passing in arguments. I draw the 

constructor outside main, because it is a separate function…but it’s part of appointment, 

so I’ll unify it and the data members with the dashed line.

int main (int argc, char** argv)

?days_

?months_

?years_

appointment

Date::Date (int theDays ...)

31theDays

1theMonths

2595theYears

Figure 15-2.  Calling the Date constructor

The constructor copies theDays into days_, theMonths into months_, and theYears 

into years_ (Figure 15-3).

Chapter 15  Classes



315

When done, the constructor goes away (Figure 15-4).

int main (int argc, char** argv)

31days_

1months_

2595years_

appointment

Date::Date (int theDays ...)

31theDays

1theMonths

2595theYears

Figure 15-3.  The Date constructor initializes appointment's data members

int main (int argc, char** argv)

31days_

1months_

2595years_

appointment

Date::Date (int theDays ...)

31theDays

1theMonths

2595theYears

Figure 15-4.  The Date constructor is finished

This shows the different roles of (for example) member days_ and constructor 

parameter theDays: days_ is persistent, and remembers the day component of your 

appointment; theDays is a parameter Date::Date uses to channel information from 

main into days_, and goes away when Date::Date is done.

After this, main continues, printing "I'll be getting up at ", then enters 

appointment’s print function, which knows all about days_, months_, and years_ 

(Figure 15-5).

Chapter 15  Classes



316

Golden Rule of Member Function Parameters  Don’t pass in the object’s data 
members. The function already knows them.

�Antibugging

•	 The constructor is called, but data members never get initialized. 
If we use this constructor

Date::Date (int theDays, int theMonths, int theYears)

{

     theDays      = days_;

     theMonths    = months_;

     theYears     = years_;

}

we’ll get bizarre output, maybe

I'll see in you in the future, on -858993460--858993460--

858993460 . . . pencil me in!

I have days_ and theDays swapped, so I’m copying from the data 

member I wanted initialized (which apparently had -858993460 in 

it – with uninitialized variables, you never know) to the parameter 

that had the value I wanted (Figure 15-6).

int main (int argc, char** argv)

31days_

1months_

2595years_

appointment

void print (ostream& out);

out

cout

Figure 15-5.  Calling appointment's print function

Chapter 15  Classes



317

This can’t happen if you use the initialization method with ()’s 

before the {. It will report an error if you try to initialize the wrong 

thing.

Date::Date (int theDays, int theMonths, int theYears) :

    days_ (theDays), months_ (theMonths), years_ (theYears)...

EXERCISES

	1.	 Write a Time class for remembering when to get up in the morning, when 

to nap, and so on. Include relevant data members, a print function, and an 

appropriate constructor.

	2.	 Write and test a function Time currentTime(). It will call time (just as 

we do when initializing the random number generator), getting the number of 

seconds since January 1, 1970. We only care about the number of seconds 

since midnight. Convert that to seconds, minutes, and hours, and return the 

current Time. It is not a member of Time.

	3.	A ugment the Date program with a function Date currentDate () which 

calls time, as in the previous problem, and gets the current Date. The function 

is not a member of Date. Is my earlier assumption that time starts at January 

1, 1970, correct on your machine?

int main (int argc, char** argv)

?days_

?months_

?years_

appointment

Date::Date (int theDays ...)

31theDays

1theMonths

2595theYears

Figure 15-6.  A constructor that has it all backward

Chapter 15  Classes



318

	4.	 (Harder) Add a function Date::totalDays () which returns the number of 

days in the date since December 31, 1 BC. You'll need to handle leap years.  

A solution is in the book’s sample code.

	5.	 (Harder) Add a function Date::normalize () which corrects if the Date 

has one or more fields out of range: for example, Date tooFar (32, 12, 

1999); would make tooFar be the date 1-1-2000. It should be called by the 

ctor. A solution is in the book’s sample code.

Is there an easier way to write normalize and totalDays?

�const objects, const member functions…
Consider this code.

const Date PEARL_HARBOR_DAY (7, 12, 1941);

cout << "A date which will shall live in infamy is ";

PEARL_HARBOR_DAY.print (cout);

cout << ".\n";

It’s reasonable to consider PEARL_HARBOR_DAY a constant, since it can never change. 

(Unless you have a working time machine.) However, if we make it const the code will 

no longer compile. Why not?

C++ distinguishes member functions that can alter the object from those that can’t. 

This is a way of preventing errors. If print is the sort of thing that can alter a Date, we 

shouldn’t allow it to be called on a constant Date.

Since print is safe for const objects, we’ll tell C++ thus:

class Date

{

      ...

      void print (std::ostream&) const;

      ...

};

Chapter 15  Classes



319

void Date::print (std::ostream& out) const

{

      out << days_ << '-' << months_ << '-' << years_;

}

The word const after the ()’s tells the compiler: this function is OK for constant 

objects. It also tells the compiler, when compiling print, to generate an error if any 

changes are made to data members.

It’s sometimes tempting, if you get a lot of errors, to strip out the word const from 

your program entirely. It isn’t a good idea. This feature does protect us from genuine 

errors.

�Antibugging

•	 You get errors about converting something from const. Often this 

means you forgot a const at the end of a member function prototype 

(and the top line of its function body too).

•	 It says your member function body doesn't match the prototype, 
but they sure look the same. Check that they’re both const or 

neither is.

�…and const parameters
Suppose we want to pass a Date to a function fancyDisplay, which prints the time in 

some cute way.

void fancyDisplay (Date myDate, ostream& out)

{

      cout << "*************\n";

      cout << "* "; myDate.print (out); cout << " *\n";

      cout << "*************\n";

}

I didn’t use & for myDate, so myDate itself isn’t passed in, but a copy.

Chapter 15  Classes



320

In a way, this is fine, because we don’t want to alter myDate. But copying costs more 

than it did for a mere int – three times more, as it has three ints. As we create bigger 

classes, we may find it slows down our programs.

Here’s a partial fix:

void fancyDisplay (Date& myDate, ostream& out);

This isn’t perfect, because now we allow fancyDisplay to alter myDate! One more 

thing is needed.

void fancyDisplay (const Date& myDate, ostream& out);

Now fancyDisplay won’t take the time to copy myDate, and can’t alter it.

Golden Rule of Objects as Function Parameters  If you want to change an 
object passed in as a parameter, pass it as TheClass& object. 

If you don’t, pass it as const TheClass& object.

�Multiple constructors
There’s no need to limit ourselves to one constructor. We may want other ways to create 

Dates:

Date d (21, 12, 2000);         //using our old ctor...

Date e (d);                    //e is now exactly the same as d

Date f;                        //now one with no arguments

Date dateArray [MAX_DATES];    //still no arguments

Date g (22000);                //22,000 days -- nearly a lifetime

Let’s take them one by one.

�Copy constructors
Date’s copy constructor is the one that has as its sole argument another Date. We call it 

this because it makes a copy (duh).

Chapter 15  Classes



321

Date::Date (const Date& other) :                  //"copy" ctor

    days_(other.days_), months_(other.months_), years_(other.years_)

{

}

This declaration uses it

Date e (d);

as does this:

Date e = d; //Looks like =, but it's really calling the copy ctor

The = form is called “syntactic sugar”: something not really necessary that makes 

code more readable.

There’s something else special about the copy constructor. If ever C++ needs to make 

a copy of a Date, it will call it implicitly, that is, without you telling it to. Two examples:

void doSomethingWithDate (Date willBeCopied);

                           //I'd rarely do this, but if I did...

Date currentDate (); //No &, so it returns a copy

What if you don’t write a copy constructor? C++ will make its best guess of how to 

copy, and that guess is sometimes dangerously wrong. A good rule: always specify the 

copy constructor.

�Default constructors

Date::Date () :                             //"default" ctor

      days_ (1), months_ (1), years_ (1)    //default is Jan 1, 1 AD

{

}

...

Date f;

Date dateArray[MAX_DATES];

Chapter 15  Classes



322

If you don’t know how to initialize your Date, you tell it nothing, and it uses its 

default constructor: the one that takes no arguments. We also do this with arrays. So we 

always write the default constructor.

Tip  When declaring an array of a class type, C++ uses the default constructor.4

�Conversion constructors
This constructor call Date g (22000); needs Date to convert these way too many days 

to a more conventional day, month, year arrangement. I’ll use function normalize from 

Exercise 5 earlier: if we give it 22,000 days, it’ll convert that to 26 days, 3 months, and 61 

years.

Date::Date (int totalDays) :            //conversion ctor from int

      days_ (totalDays), months_ (1), years_ (1)

{

      normalize ();

}

The normalize function, called by this and any ctor that needs it, should go in the 

private section. Date functions will call it when needed, so nobody else has to.5

A constructor with exactly one argument (not a Date) is called a conversion 
constructor, because it converts from some other type (like int) to the class we’re 

writing.

You can also call it like this: Date g = 22000;.

Like with the copy constructor, if ever C++ needs a Date but you gave it an int, it 

will call this implicitly. Suppose you call void fancyDisplay (const Date& myDate, 

ostream& out); but pass in an int: fancyDisplay (22000, cout);. C++ will convert 

22000 to a Date and fancyDisplay that Date. Nice!

4�Unless you use {}’s, as in Date myDates[] = {{31,1,2595},{1,2,2595}};. But that’s a lot of work.
5�Functions in the private section are called “utility” functions since they perform tasks useful to 
the other, public functions. We don’t really need the term, but using it makes me sound smart so 
of course I use it.

Chapter 15  Classes



323

�Summary
It is the responsibility of each constructor to make sure the data members are in 

some acceptable state. Unfortunately, C++’s basic types let you declare them without 

initialization. But we can construct our classes so C++ initializes all data members.

Because of the issues mentioned earlier, I recommend this guideline:

Golden Rule of Constructors A lways specify default and copy constructors.

�Antibugging

•	 You declared an object, using the default constructor, but it 
doesn't recognize it.

Date z ();

z.print (); //Error message says z is a Date() (?)

            //or at least isn't of a class type

Using the ()’s made the compiler think you were declaring a 

prototype for a function z that returns Date. I mean, how could it 

tell that’s not what was meant?

The solution is to ditch the parens: Date z;.

•	 “Illegal copy constructor” or “invalid constructor” with this copy 

constructor prototype: Date (Date other);.

Suppose the compiler let you call this function. Since there’s no &, 

the first thing it would do is make a copy of other. How? By calling 

the copy constructor. Which means it has to make a copy of other. 

Which means it calls the copy constructor. And so on till you’re 

out of memory.

This is accidental recursion, that is, a function calling itself when 

you didn’t intend it to. Good thing the compiler (Visual Studio or 

g++) catches the problem. Solution: use a const & parameter.

Chapter 15  Classes



324

�Default parameters for code reuse
We can save more work by telling C++ that if we don’t give arguments to some of our 

functions, it should appropriately fill them in.

For example, I’m tired of specifying the cout in myDate.print (cout);. Isn’t it 

usually cout? But I don’t want to hard-code cout into the function, because I may later 

want to print to a file.

So I change the prototype:

void print (ostream& out = cout) const;

Now I can just say myDate.print();, and the compiler will think, “He didn’t say, so 

he must want cout.”

I have a constructor that takes three ints, one that takes one, and one that takes 

nothing. If I use defaults, I can combine these into one function:

class Date

{

public:

      Date (int theDays=1, int theMonths=1, int theYears=1);

            //Defaults go in the prototype

      ...

};

...

Date::Date (int theDays, int theMonths, int theYears) :

      days_ (theDays), months_ (theMonths), years_ (theYears)

{

      normalize ();

}

Now I can call it with zero to three arguments:

Date Jan1_1AD;

Date convertedFromDays   (22000);

const Date CINCO_DE_MAYO (5, 5);

Date doomsday            (21, 12, 2012); //Well, that didn't happen

Chapter 15  Classes



325

I can do all the things I did with constructors I had before, but only have to write one 

constructor; and I got a new one free, that takes day and month.

This works for non-member functions too:

void printRatio (int divisor, int dividend, int base=10);

If some parameters have defaults and some don’t, those with defaults go last. The 

compiler doesn’t want to be confused about which arguments you intend to omit.

�Date program (so far)
Here’s what we have (Example 15-3). fancyDisplay now has a default parameter for 

cout.

I also added an enumeration type Month and prototypes for isLeapYear and two 

other functions. They relate to dates, but they’re not members of Date.

I can make Month a member…but to refer to (say) JUNE I must write Date::JUNE, 

which is clunky.

It doesn’t make sense for isLeapYear to be a member of Date. It doesn’t need access 

to Date’s data members days_, months_, and years_. But especially, it’s not something 

you do to a Date, but something you do to a year, which is an int. It belongs with Date, 

but it’s not an aspect of Date, so I don’t make it a member.

Example 15-3.  Another program using the Date class

//A program to print an appointment time, and demonstrate the Date class

// ...doesn't do that much (yet)

//  -- from _C++ for Lazy Programmers_

#include <iostream>

using namespace std;

enum Month {JANUARY=1, FEBRUARY, MARCH, APRIL, MAY, JUNE,

            JULY, AUGUST, SEPTEMBER, OCTOBER, DECEMBER};

bool isLeapYear   (int year);

int  daysPerYear  (int year);

int  daysPerMonth (int month, int year);

Chapter 15  Classes



326

                              //We have to specify year in case month

                              //  is FEBRUARY and it's a leap year

class Date

{

public:

    Date (int theDays=1, int theMonths=1, int theYears=1);

                              //Because of default parameters,

                              //  this serves as ctor taking 3 ints;

                              //  a new one taking days and months;

                              //  the conversion from int ctor;

                              //  and the default ctor

    Date (const Date&);       //copy ctor

    void print (std::ostream& out = std::cout) const;

    int totalDays   () const; //total days since Dec 31, 1 B.C.

    operator int () const { return totalDays (); }

private:

    int days_;

    int months_;

    int years_;

    void normalize  ();

};

Date::Date (int theDays, int theMonths, int theYears) :

    days_ (theDays), months_ (theMonths), years_ (theYears)

{

    normalize ();

}

Date::Date (const Date& other) :

    days_ (other.days_), months_ (other.months_),

    years_ (other.years_)

{

}

Chapter 15  Classes



327

void Date::print (std::ostream& out) const

{

    out << days_ << '-' << months_ << '-' << years_;

}

//Date::totalDays and Date::normalize from earlier exercises

//  as well as isLeapYear, daysPerYear, and daysPerMonth

//  are omitted here, but they're in the book's sample code

void fancyDisplay (const Date& myDate, ostream& out = std::cout)

{

    cout << "*************\n";

    cout << "* "; myDate.print (); cout << " *\n";

    cout << "*************\n";

}

int main ()

{

    enum {MAX_DATES = 10};

    Date d (21, 12, 2000);          //using our old ctor...

    Date e = d;                     //e is now exactly the same as d

    Date f;                         //now one with no arguments

    Date dateArray [MAX_DATES];     //still no arguments

    Date g (22000);                 //22,000 days, nearly a lifetime

    cout << "This should print 26-3-61 with lots of *'s:\n";

    fancyDisplay (22000);           //tests conversion-from-int ctor

    return 0;

}

EXERCISES

	1.	 Update the Time class to use what you learned in the rest of this chapter.

Chapter 15  Classes



329
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_16

CHAPTER 16

Classes (Continued)
More things to make your classes work, and work well.

�inline functions for efficiency
Consider the diagrams of what happens in function calls from Chapters 8 and 15. They 

show what the computer does. It creates a new copy of the function, an “activation 

record,” containing everything the instance of the function needs, especially local 

variables. It copies parameters into a part of memory the function can access. It stores 

what it needs to know about the function it was in (the state of the registers in the CPU – 

if you don't know what that is, don't worry about it). Finally, it transfers control to the 

new function.

When done, it reverses the process: throws away the copy of the function with its 

variables and restores the state of the old function.

That's a lot of work on the compiler if you do it often. So what are we supposed to do? 

Stop using functions?

The solution is inline functions. An inline function is written as a function, behaves 

as a function as far as the programmer's concerned, and seems to compile as a function, 

but the compiler does something sneaky: it replaces the function call with a piece of 

code to do the same thing. Here's one way to make a function inline: just precede it with 

inline.

inline

void Date::print (std::ostream& out) const

{

      out << days_ << '-' << months_ << '-' << years_;

}



330

When you write this

d.print (cout);

the compiler treats it as though you'd said

cout << d.days_ << '-' << d.months_ << '-' << d.years_;

      //but there's no problem with these members being private

thus saving the overhead of the function call.

If a function is big enough, the time overhead isn't significant compared to time 

spent in the function itself. But inline introduces a new overhead: multiple copies 

of a big function expanded inline would take up a lot of memory. Here's how to know 

whether you should make a function inline.

Golden Rule of inline

A function should be inline if it

•	 Fits on a single line

•	 Contains no loops (for, while, or do-while)

inline is actually a suggestion to the compiler, not a command. The compiler 

will overrule you if it thinks the function shouldn't be inline. Fine by me: in this case, 

compiler knows best.

Here's a quick, easy way to make member functions inline: put the whole thing inside 

the class definition.

class Date

{

    ...

      void print (ostream& out) const

           //inline, because it's inside the class definition

      {

            out << days_ << '-' << months_ << '-' << years_;

      }

      ...

};

Chapter 16  Classes (Continued)



331

�Access functions
Sometimes we want the rest of the world to be able to see our data members, but not 

alter them. It's like with a clock: you have to set it through appropriate controls (member 

functions), but you can see the time whenever you like.

This is how it's done:

class Date

{

public:

      ...

      //Access functions

      int days      () const { return days_;   }

      int months    () const { return months_; }

      int years     () const { return years_;  }

};

The way to call them is the same as with print: use a .:

cout << "It's been " << myDate.days ()

     << " days since I had fry bread!\n";

It's a good idea to use access functions when not changing data members, even 

inside member functions. Suppose I decide to dump days_, months_, and years_ and 

have just one data member totalDays_, from which member functions can calculate 

days, months, and years, as needed. A function referring to days_ will have to be 

rewritten! but not if it refers instead to days(), which will still exist.

And this is why we use underbars after data member names: days_ and so on. It's 

why I used the funny names theDays, theMonths, and so on as parameters to the first 

ctor I wrote. If I did this:

class Date

{

public:

    Date(int days, int months, int years) :

        days(days),months(months),years(years)

    {

    }

Chapter 16  Classes (Continued)



332

    int days() const { return days; }

    ....

private:

    int days, months, years;

};

I'd have so many things named days I'd never sort them out!1 Nor would the compiler. 

The names need to be distinct.

�Separate compilation and include files
By now our programs are long enough we should break them into multiple files. Here are 

good general rules for how:

•	 Let every class have its own file.

•	 Let every set of clearly related functions share a file. For example, if 

you were writing the trigonometric functions sine, cosine, tangent, 

and so on, you could put them together.

•	 Let main have its own file, possibly shared with functions called by 

main that would not be useful to other programs. If you're writing 

a program for poker, say, functions related to bidding might go in 

the file with main (since only poker does poker-style bidding), but 

functions related to shuffling and dealing a deck would go elsewhere 

(since many games involve decks).

In terms of getting it all to work, though, there's a problem. This new file will need to 

know certain things (such as the class definition!) – and so will main. This information 

needs to be shared.

Fortunately, we already know how to do this: include files.

1�Or I could have a data member days and an access function getDays (); some use that 
convention. But I find myDate.getDays() harder to read than myDate.days().

Chapter 16  Classes (Continued)



333

�What happens in separate compilation
Suppose you create these files: myclass.h (“h” as in “header”), containing the class 

definition; myclass.cpp, containing the member functions; and main.cpp, containing 

the main program. (I give the .h and .cpp files the same name as the class, in lowercase. 

Conventions vary; be consistent.) You include it like so:

#include "myclass.h" //<-- Use "" not <>; and let the file end in .h

Here are the stages the compiler goes through to build a program.

First, it compiles the C++ source files you created (Figure 16-1). When it encounters 

an #include directive, it stops reading the source file, reads the .h file you included, then 

goes back to the source file.

The compiler produces for each source file an “object” file in machine language.

iostream

//iostream 

...

myProgram.obj or .o

010011011110011
...

myClass.obj or .o

101110110010010

...

compiler

compiler

myprogram.cpp

//main.cpp

#include 
<iostream>
#include 
"myclass.h"

myclass.cpp

//myclass.cpp

#include 
<iostream>
#include 
"myclass.h"

myclass.h

//myclass.h

...

Figure 16-1.  The compile stage of building a program

Chapter 16  Classes (Continued)



334

If there are no errors, the compiler is ready to link (Figure 16-2). The object files 

know how to do what they do, but they don't know where to find function references, 

either from each other or from system libraries. The link stage “links” these files together 

by resolving the references and produces an executable file. The executable will end in 

.exe if you're using Visual Studio; Unix and MinGW are flexible.

myprogram.obj or .o

010011011110011
...

myclass.obj or .o

101011011010011 
...

myprogram.exe,
myprogram, or a.out

111010110001100
...linker

System libraries

00110010001001
...

Figure 16-2.  The link stage in building a program

Seeing this process enables us to understand precisely what should and shouldn't go 

into an include file.

�Writing your .h file
Here's what should be in an include file (so far):

•	 Types, including class definitions and enumeration types

•	 Function prototypes and inline functions

Here's what shouldn't:

•	 Functions

•	 const or variable declarations

Here's why. If you put a function (or a declaration) in an include file, it will be 

included into different .cpp files. When you compile those files, you therefore get 

multiple copies of the same function. If this happens, when you call the function, the 

Chapter 16  Classes (Continued)



335

compiler won't know which copy to use, and it's not smart enough to realize they're 

identical. You'll get an error saying it has duplicate definitions.

�Including a .h file only once

Suppose that time.h (from earlier exercises; it defines class Time) is needed for a new 

class Stopwatch (Example 16-1).

Example 16-1.  stopwatch.h.

//stopwatch.h: defines class Stopwatch

//  -- from _C++ for Lazy Programmers_

#include "time.h"

class Stopwatch

{

private:

    Time start_, stop_;

};

We'll need to #include "time.h" so the compiler can declare start_ and stop_.

Then we get to main.cpp:

//Program that uses Stopwatches and Times

//            -- from _C++ for Lazy Programmers_

#include "time.h"

#include "stopwatch.h"

int main (int argc, char** argv)

{

      Time duration;

      Stopwatch myStopwatch;

      ...

}

Chapter 16  Classes (Continued)



336

When compiling main.cpp:

First, the compiler includes time.h, which defines class Time.

Then it includes stopwatch.h. First thing that does is #include "time.h", which 

defines class Time. Again. The compiler complains: duplicate definition for class Time!

The solution is to tell the compiler to only read a .h file if it hasn't already been read. 

There's a commonly used trick: we define something in the .h file; then put something 

around the whole file saying, only read this if that you've never heard of it (Example 16-2).

Example 16-2.  time.h

//Time.h: defines class Time

//  -- from _C++ for Lazy Programmers_

#ifndef TIME_H //"If not defined TIME_H..."

#define TIME_H

class Time

{

    ...

};

#endif //TIME_H

The first time through, it's never heard of TIME_H, so it reads the .h file. This defines 

class Time, and also TIME_H.

Next time, it's heard of TIME_H, so it skips to the #endif. Class Time doesn't get 

redefined. Mission accomplished.

�Avoid using namespace std; in include files

using namespace std; shouldn't be in your include file. What if someone includes your 

file, but didn't want the std namespace? Wanted to define his/her own version of some 

std function? So that you won't need the using declaration, preface things from the C++ 

standard library – notably cin and cout – with std::, as in std::cin >> x;.

Chapter 16  Classes (Continued)



337

�Constants in include files

So what about constant declarations? They're declarations, so they mustn't go in .h files.

If the constant is an integer or character, there's no problem: use enum.

enum { DAYS_PER_WEEK = 7};

If not, you can put a reference to the constant in the .h file, but put the constant itself 

into a .cpp file. We might have this reference in a .h file

extern const char GREETING [];

and have the constant itself declared in the appropriate source file:

const char GREETING[] = "Welcome to NerdFest 1.0!\n";

The extern keyword before a declaration tells the compiler, “This variable will be 

declared elsewhere – you'll find out where at link time.”

�Backing up a multi-file project
In Unix, to back up the directory myproject, enter this command:

cp -R myproject myprojectBackup1

In Windows, copy and paste the entire folder, ignoring anything that won't copy.

�Antibugging
Circular includes make a strange error. Let's alter time.h so it needs Stopwatch.

#include "stopwatch.h"

class Time

{

    void doSomethingWithStopwatch (const Stopwatch&);

};

Let's say main.cpp includes stopwatch.h. This should define STOPWATCH_H, then 

include time.h. The first thing it does is include stopwatch.h again.

Chapter 16  Classes (Continued)



338

Since you already defined STOPWATCH_H, it won't go into that file again. It returns to 

time.h, finds the reference to Stopwatch, and generates an error, because we never got 

to a definition of Stopwatch!

An include file can include another – but they can't include each other.

Some fixes:

You can rethink whether that function should be in Time at all. Should Time really 

depend on Stopwatch? Shouldn't it be the other way around? (That's is the best answer 

for this code.)

If that doesn't work…you can refer to Stopwatch in Time without knowing what it is, 

as long as the code doesn't need details. Tell time.h only that Stopwatch is a class:

class Stopwatch;

class Time

{

          void doSomethingWithStopwatch (const Stopwatch&);

};

Problem solved.

Next problem: what if you have lots of files and can't remember where you put one of 

your functions?

•	 Visual Studio. Right-click the function name. “Go to Declaration” 

will take you to the prototype; “Go to Definition” will take you to the 

function itself if it's available.

•	 Unix. Though there are packages to help with this (ggtags for emacs 

is one), there's no guarantee they're on your system. This command 

is a quick-and-dirty2 way to find the function and all references to it: 

grep functionIWant ∗.

•	 MinGW. I use Windows Grep – look for it online – to search for the 

function name.

2�Easy not elegant.

Chapter 16  Classes (Continued)



339

�Multiple-file projects in Microsoft Visual Studio
Adding new files. Go to the Project menu and select Add New Item.

Building the project. Build ➤ Build recompiles any files that have changed since the 

last build and links the project. Rebuild recompiles them all.

Or just run it; it will Build, then run, as before.

Extra N ow that you've got multiple source files, you may want an easier way to 
clean up the extra files Visual Studio creates.

In the folder with your project, use Notepad or some other editor to create a file 
clean.txt. Here's what should be in it:

REM Erase folders you don't want -- here's my picks
for /r . %%d in (Debug,.vs) do @if exist "%%d" rd /s/q "%%d"

REM Erase other files -- here's my picks.
REM /s means "in subfolders too"
del /s *.ncb      REM used by earlier versions (before 2010)
del /s *.sdf      REM used by earlier versions (2010-2015)

Save your text file and change its name from clean.txt to clean.bat. (Can't 
see the .txt? Uncheck Hide extensions for known file types – see coverage of 
this in Chapter 1.) Click Yes on the warning dialog box in Figure 16-3. 

Figure 16-3.  Microsoft Windows' warning about changing a file extension

Chapter 16  Classes (Continued)



340

…and get your new clean.bat file.

You can double-click this “batch” file – that is, a file of commands – whenever you 
want to erase the extra files. Be warned: del erases things permanently.

�Multiple-file projects in g++
�Command line: more typing, less thinking
You can build the program with this command:

g++ -g -o myprogram myprogram.cpp myclass.cpp

You can separate the compile and link stages:

g++ -g -c myprogram.cpp            //-c means "compile only -- don't link

g++ -g -c myclass.cpp

g++ -g -o myprogram myprogram.o myclass.o        //now link

�Makefiles: more thinking, less typing
Makefiles keep track of what files in your project have changed. When you make, it'll only 

rebuild the parts it needs to. This cuts compile time. It's also nicer to type make than g++ 

-g -o myprogram file1.cpp file2.cpp....

Makefiles are far from easy, but they're essential for big projects, or those using lots 

of libraries, as we had earlier.

�A simple version

Example 16-3.  A simple Makefile

#This is a basic Makefile, producing one program from 2 source files

myprogram:  myclass.o main.o

            g++ -g -o myprogram myclass.o main.o

main.o:     main.cpp myclass.h

            g++ -g -c main.cpp

Chapter 16  Classes (Continued)



341

myclass.o:  myclass.cpp myclass.h

            g++ -g -c myclass.cpp

clean:

            rm -f myprogram

            rm -f ∗.o

The first line in Example 16-3 is a comment, because it starts with a #.

I'll take things out of order for simplicity. The line

main.o:            main.cpp myclass.h

says that to compile the .o (object) file for main, you need main.cpp and myclass.h. If 

either changes, make will rebuild main.o. (make detects changes based on modification 

times of the files.)

The next line, g++ -g -c main.cpp, is the command to compile it. If it fails, make 

stops so you can correct errors.

The lines for myclass.o are understood the same way.

Back to the top:

myprogram:  myclass.o main.o myclass.h

            g++ -g -o myprogram myclass.o main.o

This establishes that myprogram depends on myclass.o, main.o, and myclass.h, and 

tells how to create it. Since it's the first thing in the Makefile, this is what the computer 

tries to build when you type make.

clean is a convenient thing: if you say make clean, it'll erase myprogram and all .o 

files. The -f option is so it won't report an error if there aren't any, because that's not a 

problem.

�A better version

The preceding Makefile was too much work: we had to specify each .cpp file and which 

.h files it depends on. We'll now create a Makefile (Example 16-4) that should work on 

most projects you'll encounter in the rest of this text and elsewhere.

Chapter 16  Classes (Continued)



342

Example 16-4.  A Makefile for any project of .cpp source files – first attempt

# Makefile for a program with multiple .cpp files

PROG        = myprogram              #What program am I building?

SRCS        = $(wildcard *.cpp)      #What .cpp files do I have?
OBJS        = ${SRCS:.cpp=.o}        #What .o   files do I build?

$(PROG):      $(OBJS)                # Build the program

              g++ -o $@ -g $^

%.o:          %.cpp                  # Make the .o files

              g++ -g -o $@ -c $<

clean:                               # Clean up files

              rm -f $(PROG)

              rm -f ∗.o

First we define some variables. After that, we see that our program depends on the 

object files (as before). Note that variables take $() around them.

$@ means “what is left of the : above?” and $^ means “what's everything to the right?”

The section producing .o files makes one for each .cpp file. $< means “what's the 

first thing to the right?”

(If you want to know everything about how to use these weird-looking constructions, 

well, the Internet is yours. If you just want to find something that works…the Internet is 

still yours. That's how I do it: look up tutorials, and see what solves my problem.)

To see how these variables get translated into actual commands, type make – it'll print 

the commands as it executes them.

The Makefile still has one big thing wrong (besides looking like it's written in 

Egyptian hieroglyphics). It doesn't refer to any .h files. If you change a .h file, make won't 

know to recompile on that basis – and it should.

So we add a magical incantation to the end of the Makefile:

%.dep:       %.cpp                   # Make the .dep files

             g++ -MM -MT "$∗.o $@" $< > $@

ifneq ($(MAKECMDGOALS),clean)         # If not cleaning up...

-include $(DEPS)                      #  bring in the .dep files

endif

Chapter 16  Classes (Continued)



343

The first section says: for every .cpp file we have, we need a .dep file, which will 

contain information on dependencies. The g++ -MM line generates it. The main.dep file 

might look like main.o main.dep: main.cpp myclass.h meaning “Remake main.o 

and main.dep whenever main.cpp or myclass.h changes.” The -MT "$∗.o $@" option 

specifies what's left of the :.

The reason we put main.dep there is so if anything changes in either main.cpp or 

myclass.h (say, we add another #include), main.dep gets updated too.

include $(DEPS) says include these rules into the Makefile. The initial - says don't 

report if there's an error, like the file not existing, as will happen the first time you run 

make after a clean. And the ifneq... thing says don't bother about .dep files if you're 

just about to clean them up anyway.

Yes, it's complicated, but them's the breaks.

Example 16-5 is our result. It should work unaltered for new projects unless you 

change the name of the executable.

Example 16-5.  A complete Makefile. Copy into any folder you have a project in, 

and run by typing make

# Makefile for a program with multiple .cpp files

PROG         = myprogram              #What program am I building?

SRCS         = $(wildcard *.cpp)      #What .cpp files do I have?
OBJS         = ${SRCS:.cpp=.o}        #What .o   files do I build?

DEPS         = $(OBJS:.o=.dep)        #What .dep files do I make?

##########################################################

all: $(PROG)

$(PROG):    $(OBJS)                  # Build the program

            g++ -o $@ -g $^

clean:                               # Clean up files

            rm -f $(PROG)

            rm -f *.o
            rm -f *.dep

Chapter 16  Classes (Continued)



344

%.o:        %.cpp                    # Make the .o files

            g++ -g -o $@ -c $<

%.dep:      %.cpp                    # Make the .dep files

            g++ -MM -MT "$*.o $@" $< > $@

ifneq ($(MAKECMDGOALS),clean)         # If not cleaning up...

-include $(DEPS)                      #  bring in the .dep files

endif

�Antibugging
•	 Makefile:16: ** Missing separator. Stop.

No joke: this is because on the specified line, you indented with 

spaces instead of tabs. Solution: snort, roll your eyes, whatever, 

and use tabs.

�Final Date program
Examples 16-6 through 16-8 show the finished program for Date. main is a driver to test 

the class.

Example 16-6.  date.h

//class Date

//       -- from _C++ for Lazy Programmers_

#ifndef DATE_H

#define DATE_H

#include <iostream>

enum Month { JANUARY=1, FEBRUARY, MARCH, APRIL, MAY, JUNE,

             JULY, AUGUST, SEPTEMBER, OCTOBER, DECEMBER};

bool isLeapYear   (int year);

int  daysPerYear  (int year);

int  daysPerMonth (int month, int year);//Have to specify year,

                                        //in case month is FEBRUARY

                                        // and we're in a leap year

Chapter 16  Classes (Continued)



345

class Date

{

public:

    Date(int theDays=1, int theMonths=1, int theYears=1) :

       days_(theDays), months_(theMonths), years_(theYears)

    {

        normalize();

    }

    //Because of its default parameters, this 3-param

    // ctor also serves as a conversion ctor

    // (when you give it one long int)

    // and the default ctor (when you give it nothing)

    //Default is chosen so that the default day

    // is Jan 1, 1 A.D.

    Date(const Date& otherDate) : //copy ctor

           days_(otherDate.days_),

           months_(otherDate.months_),

           years_(otherDate.years_)

    {

    }

    //Access functions

    int days        () const { return days_;   }

    int months      () const { return months_; }

    int years       () const { return years_;  }

    int totalDays() const; //convert to total days since Dec 31, 1 BC

    void print (std::ostream& out = std::cout) const

    {

        out << days_ << '-' << months_ << '-' << years_;

    }

Chapter 16  Classes (Continued)



346

private:

    int days_;

    int months_;

    int years_;

    void normalize  ();

};

#endif //DATE_H

Example 16-7.  date.cpp, abbreviated for brevity. Function bodies are in the 

book's source code

//class Date -- functions

//  -- from _C++ for Lazy Programmers_

#include "date.h"

bool isLeapYear (int year)

{

      ...

}

int daysPerYear (int year)

{

    ...

}

int daysPerMonth (int month, int year)

{

    ...

}

void Date::normalize ()

{

      ...

}

Chapter 16  Classes (Continued)



347

int Date::totalDays () const

{

      ...

}

Example 16-8.  A driver program for class Date

//A "driver" program to test the Date class

//  -- from _C++ for Lazy Programmers_

#include <iostream>

#include "date.h"

using namespace std;

int main ()

{

    Date t (5,11,1955); //Test the 3-int ctor

    //... and print

    cout << "This should print 5-11-1995:\t";

    t.print (cout);

    cout << endl;

    //Test access functions

    if (t.days () != 5 || t.months () != 11 || t.years () != 1955)

    {

        cout << "Date t should have been 5-11-1955, but was ";

        t.print ();

        cout << endl;

    }

    Date u = t;         //...the copy ctor

    if (u.days () != 5 || u.months () != 11 || u.years () != 1955)

    {

        cout << "Date u should have been 5-11-1955, but was ";

        u.print ();

        cout << endl;

    }

Chapter 16  Classes (Continued)



348

    const Date DEFAULT; //...and the default ctor

                        //I do consts to test const functions

    if (DEFAULT.days () != 1 || DEFAULT.months () != 1 ||

        DEFAULT.years () != 1)

    {

        cout << "Date v should have been 1-1-1, but was ";

        DEFAULT.print ();

        cout << endl;

    }

    //...and total days

    enum {DAYS_FOR_JAN1_5AD = 1462}; //I found this number myself

                                     //  with a calculator

    Date Jan1_5AD(1, 1, 5);

    if (Jan1_5AD.totalDays() != DAYS_FOR_JAN1_5AD)

        cout << "Date Jan1_5AD should have had 1462 days, but had "

             << DAYS_FOR_JAN1_5AD << endl;

    //Test normalization

    const Date JAN1_2000 (32, 12, 1999);

    if (JAN1_2000.days () != 1 || JAN1_2000.months() != 1 ||

        JAN1_2000.years() != 2000)

    {

        cout << "Date JAN1_2000 should have been 1-1-2000, but was ";

        JAN1_2000.print ();

        cout << endl;

    }

    cout << "If no errors were reported, "

         << " it looks like class Date works!\n";

    return 0;

}

Chapter 16  Classes (Continued)



349

The output is

This should print 5-11-1995:      5-11-1955

If no errors were reported, looks like class Date works!

See how I try to make the driver user-friendly: it gives as little output as possible if 

everything works. Less output to wade through when testing.

EXERCISES

In these exercises, use separate compilation; provide your classes with appropriate 

constructors, using default arguments where helpful, and access functions; use inline 

functions where possible.

If it turns out that nothing goes in the .cpp file (could happen), you don't need to write one.

	1.	U pdate the Time class to use what was covered in this chapter.

Add a constant Time MIDNIGHT, and make it available to main.cpp using 

extern.

	2.	 Add Time functions sum and difference, which return the sum/difference of 

this Time with another Time. Its return value is also a Time.

	3.	 What do you want engraved on your tombstone? Make a Tombstone class, 

which contains a birthdate, a death date, a name, and an epitaph. In addition 

to a member function print, give it a lifespan function, which returns the 

duration of the person's life as a Date.

	4.	 Make a class Track, which contains title, artist, and duration (a Time) of a 

piece of music.

Now make a class Album, which contains a title and an array of Tracks. Include, 

among the other functions you know you'll need, a function duration() which is 

the sum of all the Track's durations.

Chapter 16  Classes (Continued)



350

�static members (optional)
Example 16-9 implements a class Car for a used car lot.

Example 16-9.  A Car class, showing static members and a member that is a type

//Class Car, and a program to use it

//  -- from _C++ for Lazy Programmers_

#ifndef CAR_H

#define CAR_H

#include <iostream>

class Car

{

public:

    enum { MAX_NAME_SIZE = 50 };

    Car();

    Car(const Car &);

    Car(int theYear, const char* theMake, const char∗ theModel);

    void print(std::ostream&) const;

    const char* make () const { return make_;   }

    const char* model() const { return model_;  }

    int         year () const { return year_;   }

    static int  numCars()     { return numCars_;}

    void        buy    ()     { ++numCars_;     }

    void        sell   ()     { --numCars_;     }

private:

    char make_[MAX_NAME_SIZE], model_[MAX_NAME_SIZE];

    int  year_;

    static int numCars_;

};

#endif //CAR_H

Chapter 16  Classes (Continued)



351

I want to keep track of how many cars exist on my lot, so I have the data member 

numCars_. The word static here means “belonging to the entire class.” Earlier it meant 

“local variable that persists even when you leave the {}'s it was declared in.” C++ loves to 

recycle keywords.

I also want to let the external world see how many Cars there are, so I have a member 

function numCars(). It makes sense for numCars() to be static since it applies to the 

entire class. buy and sell could be static, but we may have other things to do with 

a particular Car in buying and selling it, so it seems clearer to leave them as ordinary 

member functions.

static functions can't be const. The compiler will remind you.

It would be nice if we could initialize numCars right there in the class definition…

but we can't. We'll need to do it outside. It can't go in the .h file, because it's a variable 

initialization, and that's code. I put it in car.cpp (Example 16-10).

main shows us how to call static member functions (Example 16-11).

Example 16-10.  A Car class – the .cpp file

//Class Car

//  -- from _C++ for Lazy Programmers_

#include <cstring>

#include "car.h"

int Car::numCars_ = 0;              //initialize the number of Cars to 0

Example 16-11.  A program to use the Car class

//A program that uses the Car class

//  -- from _C++ for Lazy Programmers_

#include "car.h"

using namespace std;

int main ()

{

    Car banzai (2020, "Ford",   "GT40");

    Car mudbug (1987, "Jeep",   "Wrangler");

    Car sport  (2000, "Toyota", "Corolla");

Chapter 16  Classes (Continued)



352

    cout << "Looks like we have "

         << Car::numCars () << " cars in stock!" << endl;

    return 0;

}

EXERCISES

	1.	 Add a static data member, and an access function, to Tombstone (from the last 

set of exercises) for the number of Tombstones created.

	2.	 Add a static data member, and an access function, to Date to keep track of the 

latest Date the program has yet seen.

Chapter 16  Classes (Continued)



353
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_17

CHAPTER 17

Operators
You may have seen this error:

char string1[] = "Hello", string2[] = "Hello";

if (string1 == string2) ...

This condition fails because == for arrays compares memory addresses, not contents, 

and the addresses differ.

This also causes problems:

string2=string1;

It copies not string2’s contents, but its address, to string1. string1’s contents are 

lost. This is wasteful and also error-prone:

string2[1] = 'a';      //string1 becomes "Hallo", though it

                       //wasn't even mentioned here!

So let’s make our own string class, forcing the operators to do what we want, and 

never worry about this again.

Appendix B lists operators C++ lets us overload. Short version: almost any, but you 

can’t make up your own.

�The basic string class
class String

{

public:

      String (const char* other=""); //conversion from char* ctor;

                                     //  default ctor

      String (const String &other);



354

private:

      char* contents_;

};

I want my String class to handle strings of any length, so I’ll use dynamic memory, 

as in Chapter 14.

Here are two reasonable ways to set the default:

•	 As nullptr. nullptr is by convention nothing, so this makes sense.

If I do this, I’ll need every function to check for nullptr before 

accessing contents_. Too much work.

•	 As a character array of length 1 containing only '\0', that is, as "" 

(the empty string). I’ll use this.

I’ll now write the constructors.1

String::String2 (const char* other = "")//Conversion from char* ctor,

                                        //  and default ctor

{

    contents_ = new char[strlen(other) + 1];

              //The +1 is room for final '\0'

    strcpy(contents_, other);

}

String::String (const String &other)

{

    contents_ = new char[strlen(other.contents_) + 1];

    strcpy(contents_, other.contents_);

}

1�If I don’t, C++ will, like so:
String::String () { contents_ = nullptr; };
String::String (const String& other) { contents_ = other.contents_; }
So we’ll end up using nullptr, which I’d decided against, and we’ll share memory between 

Strings so altering one alters the other. A perfect justification for the Golden Rule of Constructors.
2�When discussing a member function, I’ll usually start it with String:: to clarify that it’s a 
member. We omit String:: when inside the class definition.

Chapter 17  Operators



355

That’s too much redundant code. Maybe I could get one constructor to farm out its 

work to another? Sure. This “delegated constructor” lets the other do all the work. Code 

reuse, less typing, yay.

String (const String &other) : String (other.c_str())     {}

Now I’ll make some new functions. These go inside the class definition:

const char* c_str() const { return contents_;              }

int         size () const { return (int) strlen (c_str()); }

                      //Inefficient! Is there a better way?

�Destructors
When using dynamically allocated arrays, we need delete [] to throw back memory 

when we’re done. But contents_ is a private member of String, so main can’t do it. Nor 

should it: it’s String’s job. It needs a function to be called we’re done with the String.

Enter the destructor (or, per common abbreviation, “dtor”).

String::~String () { if (contents_) delete [] contents_; }

    //Why "if (contents_)?" Paranoia. Deleting nullptr gives a crash.

This function, named "~" plus the class name, is called automatically whenever the 

String goes away (e.g., when the String is declared inside a function and the function ends).

This is

•	 Less work: write it once and you’re done.

•	 Automatic, so you won’t forget.

Memory management just got a lot easier, as long as you remember the Golden Rule.

Golden Rule of Destructors

If you’re using dynamic memory in a class, always write the destructor.

Chapter 17  Operators



356

I’ll add another Golden Rule. You can violate it, but it does reduce errors.

Golden Rule of Dynamic Memory

If possible, don’t use it. If you must, try to hide it inside a class and clean up 
with a destructor.

Destructors could be used for other things at the end of a variable’s lifetime…but I 

never do.

�Binary and unary operators
bool String::operator== (const String& other) const

{

    return strcmp (c_str(), other.c_str()) == 0;

}

Using the == operator looks like this:

if (stringA == stringB)...

When the computer gets to stringA == stringB, it goes into the function 

String::operator==.3 There are two Strings used. The one on the left, stringA, is “this” 

one: the one that owns this operator< function. The one on the right, stringB, is the 

“other” one, the one passed in as a parameter.

When you refer to a member like other.c_str(), that’s the c_str() that belongs to 

other. If you don’t say who it belongs to, it belongs to “this” one – the one on the left.

This function will work for any class you write – just change the class name:

bool String::operator!= (const String& other) const

{

    return ! (*this == other);

}

3�This whole operator business is syntactic sugar. You could call these functions the ugly way:  
if (stringA.operator==(stringB))...

Chapter 17  Operators



357

These operators are binary: they need two Strings to work. A unary operator has 

only one argument, like the - (“unary minus”) in (-myInt)+2 or the ! in if (! isReady). 

As an example unary operator, I’ll write ! for the String class. ! myString will mean 

myString is empty.

bool String::operator! () const { return ! size(); }

With a unary operator, we don’t have to wonder which String we’re using. It’s the 

only one we have: “this” one.

Golden Rule of Operators

If an operator has one argument, “this” object – the one whose members we can 
refer to without specifying whose they are – is the only object mentioned in the call 
of the operator.

If an operator has two arguments, “this” object is the one on the left of the operator 
in the call. The one passed as a parameter is the one on the right.

Operators don’t have three arguments.4

EXERCISES

	1.	 Make a Point2D class. You should be able to create points (specifying the 

coordinates, or defaulting to (0,0)), print them, and compare them. We won’t 

provide < and so on for now (what does it mean, if point1 < point2?), but 

we can compare them with == and !=.

	2.	 Make a Fraction class. You should be able to create fractions (specifying 

numerator and denominator, or defaulting to 0/1)), print them, and compare 

them with all available comparison operators.

4�There’s an exception: the ?: operator. Here is an example of its use:  
cout << (x>=0 ? "positive" : "negative");

This means that if (x>=0) cout << "positive"; else cout << "negative";
I don’t use it much. C++ won’t let you overload it anyway.

Chapter 17  Operators



358

�Assignment operators and * this
How can we assign one String to another?

operator= (other)

    delete the old memory

    allocate the new memory, enough to hold other's contents

    copy the contents over

There’s one more thing = always does: it returns something. We usually just call it like 

A=B; but this is also legal:

A=B=C;

Since = is processed right to left, this means

A=(B=C);

which really means that when doing B=C, assign the value of C to B, return the value you 

get, and send it across the = to A. So B=C must return whatever B becomes.

operator= (other)

    delete the old memory

    allocate the new memory, enough to hold other's contents, and

    copy the contents over

    return "this"

or

const String& String::operator=  (const String& other)5

{

    if (contents_) delete[] contents_;           //delete old memory

    contents_ = new char[strlen(other.c_str()) + 1]; //get new memory

              //The +1 is room for final '\0'

    strcpy(contents_, other.c_str());            //copy contents over

    return *this;

}

5�See Exercise 3 for an interesting tweak on this algorithm.

Chapter 17  Operators



359

this is defined whenever you’re in a member function, as the memory address of 

“this” object. Since this is a pointer to the object, *this is the object itself. (We rarely 

use this without the *, though we can.) We wanted = to return what “this” object has 

become; now it does.

*this is always the thing to return from =. Since operators for +=, -=, and so on also 

return the newly altered object, they also return *this.

I think I’ll rewrite the conversion ctor and operator= to extract the code they have in 

common and put it in a new function copy. Code reuse.

String::String (const char* other="") { copy(other); }

const String& String::operator= (const String& other)

{

    if (contents_) delete[] contents_; copy(other.c_str());

    return *this;

}

void String::copy(const char* str)

{

    contents_ = new char[strlen(str) + 1]; //get new memory

                                 //The +1 is room for final '\0'

    strcpy(contents_, str);                //copy contents over

}

The other thing that most needs comment is =’s return type.

Suppose it were written thus:

String String::operator= (const String& other);

Since there’s no &, it will call the copy constructor to make a copy of what it’s 

returning. This takes time since it has to copy the array character by character. We can 

save time if we return not a copy but the thing (*this) itself.

String& String::operator= (const String& other);

But I don’t want anything altering what’s returned, so I add const.

const String& String::operator= (const String& other);

Chapter 17  Operators



360

No security breach; no extra copy being made. Golden Rule time.

Golden Rule of Assignment Operators

Every assignment operator (=, +=, -=, etc.) should return *this.

…as a constant reference (e.g., const String&).

And here’s another rule.

Golden Rule of =

Always specify =.

The reason is same as for copy constructors: if you don't, the compiler will do it for 

you, and it may do it in a stupid way. For String it will define it to copy the memory 

address. We were trying to get away from that.

�Antibugging
A common mistake: putting TheClassName:: in front of the wrong thing.

String::const String& operator=... //const is a member of String ?!

The error messages may be confusing or clear depending on the compiler. Either 

way the solution is to stick TheClassName:: on the left end of the function name. const 

String& is the return type; String::operator= is the function name.

EXERCISES

	1.	A dd = to the Point2D class from the previous exercises.

	2.	A dd = to the Fraction class.

	3.	 What happens in String::operator= if you say this: myStr = myStr;?  

Fix = to avoid the problem. My answer is in Example 17-2.

Chapter 17  Operators



361

�Arithmetic operators
Now we’ll do an “arithmetic” looking operator: +. I think it’s reasonable to define + to 

mean concatenation. If word=="cat" and addon=="fish", then word+addon should be 

"catfish".

We’ll write += and +. Programmers using String may want either, and have reason to 

be annoyed if they have to guess which we provided.

operator+= (other String)

      remember the old contents

      allocate new contents, big enough that we can add other.contents

      copy the old contents into the new

      append other contents

      delete the old contents

      return *this

Order matters. If we delete the old contents before we use them, we’ll lose what’s 

in them.

const String& String::operator+= (const String& other)

{

    char* oldContents = contents_;

    contents_ = new char [size() + other.size() + 1];

            //1 extra space at the end for the null char

    strcpy (contents_, oldContents);  //copy old into new

    strcat (contents_, other.c_str());//append other contents

    delete [] oldContents;

    return *this;

}

Good enough. Now I can do operator+ inline in the class definition. Shall I have it 

return const String& too?

Chapter 17  Operators



362

const String& operator+ (const String& other) const

                                   //There's something wrong here...

{

    String result = *this; result += other; return result;

}

Let’s see what happens when we call it.

Suppose, in main, we say copied = word+addon. First, we call operator+. It makes its 

result (Figure 17-1).

Then it returns its result and goes away (Figure 17-2). But result, being +’s local 

variable, is destructed when + completes, so what main gets no longer exists by the time it 

gets it. Using it would be a Bad Idea.

int main ()

copied contents_

""

word contents_

"cat"
addon contents_

"fish"

const String& operator + (...)

result contents_

"catfish"

Figure 17-1.  operator+ (flawed version) at work

Chapter 17  Operators



363

The solution is to return a copy. It will persist till it’s no longer needed.

String String::operator+ (const String& other) const //That's better

{

    String result = *this; result += other; return result;

}

Golden Rule of Returning  const &

Local variables should not be returned with const &.

Things that will persist after the function returns, including *this and data 
members, may be. If they’re of class types, they should be.

Why make + call +=, rather than the reverse? + makes two copies: local variable 

result and the copy made when we return. += has no locals and returns const &, so it’s 

pretty efficient. If we made it call +, it would have to do extra copying.

+ should always be written as it is here, no matter if we’re adding strings, numbers, or 

heffalumps (whatever they are). It can be copied into program after program.

int main ()

copied contents_

word contents_

"cat"
addon contents_

"fish"

const String& operator + (...)

result contents_

"catfish"

returns result

Figure 17-2.  operator+ (flawed version) returns its value

Chapter 17  Operators



364

EXERCISES

	1.	A dd +, +=, -, and -= to Point2D. Also add *, *=, /, and /=. It may not 

make sense to refer to point1/point2, but it would make sense to refer to 

point1/2 – you’d divide both coordinates by 2 to get a new Point2D. So the 

“other” argument of *, *=, /, and /= would be int.

	2.	A dd +, -, *, /, and +=, -=, *=, and /= to Fraction.

�[] and ()
Now we’ll support the use of []’s to access individual characters.

char  String::operator[] (int index) const { return contents_[i]; }

We’re only half done, because though we can say

char ch = myString[0];

if we say

myString[0] = 'a';

the compiler will complain “l-value required.”

This means (very roughly – I’m keeping it simple) that the thing left of the = (L for 

left) is not the sort of thing that can be left of =: it’s not modifiable. If you want to alter 

myString, you need not a copy of the element but the element itself:

char& String::operator[] (int index)       { return contents_[i]; }

Won’t the compiler get confused, having two functions identical but for return type? 

But they’re not identical: one is const. So C++ will apply the const one to things that 

can’t change and the non-const to things that can.

const String S ("Hello");

cout << S[0] << endl;      //OK; uses the const version of []

String T("Goodbye");

T[0] = 'Z';                //Also OK; uses the non-const version, which

                           //  returns something that can be changed

Chapter 17  Operators



365

Golden Rule of [ ]

If you define [], you need two versions:

<type>  operator[] (int index) const { ... }
<type>& operator[] (int index)       { ... }

The code between the {}’s will almost certainly be identical.

You can also add () operators. We might want to say mystring (2, 5) to get the 

substring containing characters 2 through 5. This is its prototype; see Example 17-2 for 

implementation.

String String::operator () (int start, int finish) const;

You can have () operators with different numbers of arguments. I don’t use them 

because to me something like mystring (2, 5) isn’t clear, but it’s there if you want it.

EXERCISES

	1.	A dd [] (const and non-const versions) to Point2D. point1[0] is the  

x coordinate, and point1[1] is the y coordinate.

	2.	 …or to Fraction. myFraction[0] is the numerator and myFraction[1] is 

the denominator.

�>> and <<: operators that aren’t class members
I also want to print Strings using >> and << with cin and cout or other files.

We can’t write these operators as members. Remember that the thing on the left of 

an operator is always “this” object. But in cout << myString, the left operand is cout. If 

we wrote operator<< as a member of String, cout would have to be a String.

Chapter 17  Operators



366

The fix is to make the operator a non-member:

                            //this goes OUTSIDE the class definition

ostream& operator<< (ostream& out, const String& foo);6

{

      ...

      return out;

}

I have it return ostream& because of when I chain <<’s together (as in cout << X 

<< Y). The order of operations is (cout << X) << Y; that is, cout << X does its work, 

then returns its “value” of cout, so the next << has cout as its left operand and can be 

used to print.

This is my first attempt.

inline                                               //in string.h

std::ostream& operator<< (std::ostream& out, const String& foo)

{

      out << foo.contents_; return out;

}

This won’t compile. foo.contents_ is private.

We could return contents_ via an access function, but this is a more versatile 

solution:

class String

{

public:

   ...

   void print (std::ostream& out) const { out << c_str(); }

   ...

};

6�In the programming language LISP and elsewhere, foo is used to name a variable when it’s 
obvious what foo is. If two such “placeholder” names are needed, it’s often foo and bar. It’s a 
good bet this is from the military acronym “FUBAR,” meaning roughly “Fouled Up Beyond All 
Recognition.”

Some programmers consider foo and bar to be 3vil because they aren’t descriptive, but I think 
I’d rather read foo than theString or rightHandSide.

Chapter 17  Operators



367

inline

std::ostream& operator<< (std::ostream& out, const String& foo)

{

    foo.print(out); return out;

}

We just fixed the privacy violation in a way that will work for any class we ever write – 

a Good Thing. Let’s handle cin >> similarly:

void String::read (std::istream& in);

inline

std::istream& operator>> (std::istream& in, String& foo) //no const!

{

    foo.read (in); return in;

}

String::read is trickier than String::print. Here’s my first try.

void String::read (istream& in) { in >> contents_; }

Problem is, we don’t know if contents_ has enough space to store what’s typed in.

Solution:

class String

{

public:

    enum {BIGGEST_READABLE_STRING_PLUS_ONE   = 256};

                      //biggest string we can read, incl '\0'

    ...

};

void String::read  (std::istream& in)

{

    static char buffer [BIG_NUMBER_PLUS_ONE];

    in >> buffer;

    *this = buffer;

}

Chapter 17  Operators



368

It’s a hack – an inelegant solution – but it’ll do well enough. If you’re worried 

someone may enter more than 256 characters, make buffer bigger.

You could write other operator functions as non-members: pass in the object we 

were calling *this as the first parameter:

const String& operator=  (      string& left, const string& right);

bool          operator== (const string& left, const string& right);

We usually don’t, because these functions clearly belong to String, and need access 

to private data members.

EXERCISES

In both exercises, if you’re trying to read an int and the user types a char, your istream 

in gets caught in an error state and can’t read further. You can fix it with in.clear ():

	1.	A dd ostream << and istream >> operators for the Point2D class.

	2.	 …or the Fraction class.

�++ and --
It wouldn’t make much sense to say myString++, so I’ll shift to the Fraction example 

from exercises.

myFraction++ should add 1 to myFraction. Recall there are two versions of ++: 

++myFraction, meaning add 1 and return what you get, and myFraction++, meaning add 

1 and return what you had before adding.

This is the pre-increment version:

const Fraction& Fraction::operator++ ()  //used for ++myFraction

{

      *this += 1;           //add 1 to this Fraction

                            //(Surely Fraction can convert from int?)

      return *this;

}

Chapter 17  Operators



369

How can we distinguish the post-increment version? Not by name, or number of 

arguments…so C++ has a hack just for this:

Fraction Fraction::operator++ (int junk) //used for myFraction++

{

      Fraction result = *this;

      ++(*this);           //code reuse again

      return result;

}

The int argument here really is junk: it’s just a placeholder, meant to distinguish this 

++ operator from the other.

EXERCISES

	1.	A dd both versions of ++ and -- to Point2D, and test. myPoint++ would add 1 

to the x_ component.

	2.	A dd both versions of ++ and -- to Fraction, and test.

�Explicit call to constructor
This works fine:

String A;

A =  "moo"; //conversion ctor creates a

            //String containing "moo", passes to =

A += "moo"; //conversion ctor creates another, passes to +=

            //now A == "moomoo"

Here’s something that wouldn't work.

A = "moo" + "moo";

When C++ does the +, it has no idea you want the + that belongs to String, since 

neither operand is a String! So it’ll use the + that goes with character arrays, adding 

memory addresses and setting A to something strange.

Chapter 17  Operators



370

This works:

A = String("moo") + "moo";

The call to String here is an “explicit call to constructor.” It creates a temporary 

String variable, never named; then C++ applies the operator+ call to it. When it’s done 

with the unnamed String, it deletes it.

Here it is with Point2D:

myPoints[0] = Point2D (2, 5);

myPoints[1] = Point2D (3, 7);

...

EXERCISES

	1.	 Write a program that declares five Point2Ds and prints them, without naming 

them as variables, by using explicit call to constructor.

	2.	 Write a program that declares five Fractions and multiplies them, without 

naming them as variables, by using explicit call to constructor.

�Final String program
Examples 17-1 and 17-2 show the complete String class; Example 17-3 tests it.

Example 17-1.  string.h

//String class

//      -- from _C++ for Lazy Programmers_

#ifndef STRING_H

#define STRING_H

#include <cstring> //uses cstring functions all over

class String

{

public:

    enum {BIGGEST_READABLE_STRING_PLUS_ONE   = 256};

                      //biggest string we can read, incl '\0'

Chapter 17  Operators



371

    String (const char* other="") { copy(other);             }

    String (const String &other) : String (other.c_str())   {}

                      //a "delegated" ctor

    ~String()         { if (contents_) delete [] contents_;  }

    //access function

    const char* c_str() const    { return contents_;         }

    //other functions, not operators

    int       size () const { return (int) strlen (c_str()); }

                      //Inefficient! Is there a better way?

    bool operator! () const { return ! size();               }

    //comparison operators

    bool operator< (const String& other) const

    {

        return strcmp (c_str(), other.c_str()) <  0;

    }

    bool operator> (const String& other) const

    {

        return strcmp (c_str(), other.c_str()) >  0;

    }

    bool operator<= (const String& other) const

    {

        return strcmp (c_str(), other.c_str()) <= 0;

    }

    bool operator>= (const String& other) const

    {

        return strcmp (c_str(), other.c_str()) >= 0;

    }

    bool operator== (const String& other) const

    {

        return strcmp (c_str(), other.c_str()) == 0;

    }

Chapter 17  Operators



372

    bool operator!= (const String& other) const

    {

        return ! (*this == other);

    }

    //assignment and concatenation

    const String& operator=  (const String& other);

    const String& operator+= (const String& other);

    String        operator+  (const String& other) const

    {

        String result = *this; result += other; return result;

    }

    //[] and substring

    char  operator[] (int index) const { return contents_[index]; }

    char& operator[] (int index)       { return contents_[index]; }

    String operator () (int start, int finish) const;

    //I/O functions

    void read  (std::istream& in );

    void print (std::ostream& out) const{ out << c_str();         }

private:

    char* contents_;

    void copy(const char* str);

};

inline

std::istream& operator>> (std::istream& in, String& foo)

{

    foo.read (in); return in;

}

Chapter 17  Operators



373

inline

std::ostream& operator<< (std::ostream& out, const String& foo)

{

    foo.print(out); return out;

}

#endif //STRING_H

Example 17-2.  string.cpp

//class String, for char arrays

//      -- from _C++ for Lazy Programmers_

#include <cstring>

#include <iostream>

#include "string.h"

using namespace std;

const String& String::operator=  (const String& other)

{

    if (this == &other) return *this; //never assign *this to itself

    if (contents_) delete[] contents_; copy(other.c_str());

    return *this;

}

void String::copy(const char* str)

{

    contents_ = new char[strlen(str) + 1]; //get new memory

                                 //The +1 is room for final '\0'

    strcpy(contents_, str);                //copy contents over

}

const String& String::operator+= (const String& other)

{

    char* oldContents = contents_;

    contents_ = new char [size() + other.size() + 1];

            //1 extra space at the end for the null char

Chapter 17  Operators



374

    strcpy (contents_, oldContents);  //copy old into new

    strcat (contents_, other.c_str());//append other contents

    delete [] oldContents;

    return *this;

}

String String::operator () (int start, int finish) const

{

    //This constructs the substring

    String result = *this;

    strcpy (result.contents_, contents_+start);

                //contents_+start is the char array that is

                //  "start" characters after contents_ begins

    result.contents_[finish-start+1] = '\0';

                //the number of chars in this sequence

                //  is the difference plus 1

    return result;

}

void String::read  (std::istream& in)

{

    static char buffer [BIGGEST_READABLE_STRING_PLUS_ONE];

    in >> buffer;

    *this = buffer;

}

The driver in Example 17-3 uses the function void assert (bool condition) which 

verifies condition is true – and if not, crashes the program. Good: if something’s wrong, 

we’ll know it.

Example 17-3.  A driver for String

//Driver program to test the String class

//      -- from _C++ for Lazy Programmers_

Chapter 17  Operators



375

#include <iostream>

#include <cassert>  //for assert, a function which crashes

                    //  if the condition you give is false

                    //used for debugging

#include "string.h"

using namespace std;

int main ()

{

                   //using consts to ensure const functions are right

    const String EMPTY;

    const String ABC ("abc");

    //Testing default ctor, conversion ctor from char*, ==, !=, !

    assert (EMPTY == ""); assert (! EMPTY); assert (! (EMPTY != ""));

    assert (ABC != "");                     assert (! (ABC == ""));

    //Testing c_str, size ...

    assert (strcmp (ABC.c_str(), "abc") == 0);

    assert (ABC.size() == 3);

    //Test >, >=, <, <=, !=,

    //We're doing lots of automatic calls  to conversion ctor

    //  from const char*, so that's tested too

    assert (ABC <  "abd");  assert (! (ABC >= "abd"));

    assert (ABC <= "abd");  assert (! (ABC >  "abd"));

    assert (ABC >  "abb");  assert (! (ABC <= "abb"));

    assert (ABC >= "abb");  assert (! (ABC <  "abb"));

    assert (ABC <= ABC);    assert (ABC >= ABC);

    //Test []

    String xyz = "xyz";

    assert (xyz[1] == 'y'); xyz[1] = 'Y';

    assert (xyz[1] == 'Y'); xyz[1] = 'y';

    assert (ABC[1] == 'b'); //const version

Chapter 17  Operators



376

    //Test =, ()

    xyz = "xyz and more";

    assert(xyz(4, 6) == "and");

    //Testing copy ctor  ...

    assert (ABC == String(ABC));

    //Testing + (and thereby +=); =; also c_str

    String ABCDEF = ABC+"def";

    assert (ABCDEF == "abcdef");

    assert (strcmp (ABCDEF.c_str(), "abcdef") == 0);

    //Testing << and >>

    String input;

    cout << "Enter a string:\t"; cin >> input;

    cout << "You entered:\t" << input << endl;

    cout << "If no errors were reported, "

         << "class String seems to be working!\n";

    return 0;

}

EXERCISES

	1.	 Using assert and explicit call to constructor, test your Point2D class.

	2.	 …or your Fraction class.

�#include <string>
So here’s what I’ve been hiding: C++ already has a string class, and you now know how to 

use it. You’ll need #include <string>. The type is string, not String.

Chapter 17  Operators



377
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_18

CHAPTER 18

Exceptions, Move 
Constructors, Recursion, 
and O Notation
One needful thing – a better way of handling error conditions – and a few very-nice-

to-haves: more efficient copying (“move” functions), functions that call themselves 

(recursion), and a way to figure how time-efficient your functions are.

�Exceptions
How should a program handle runtime errors? Some options:

•	 The ostrich algorithm. Simply hope the problem will never occur: 

your integers never exceed INT_MAX, your calls to strcpy never 

overrun the char array, and so on. We do it a lot, and it works! Shall 

we try it in software for a nuclear reactor? For verifying who gets 

access to your bank account? Oops.

•	 Crash. Avoid suggesting this one at the nuclear plant, too.

•	 Print an error message. Fine for your laptop; not so good for a 

microwave oven or smartwatch.

•	 Return an error code. Make your function return int, and if the 

return value is something that means “error” (-1 is conventional), 

something must have gone wrong. It’s a lot of work, though, always 

checking the return value.



378

Different situations call for different resolutions. So we need an easy way to separate 

error detection, which wouldn’t change, from error resolution, which would.

To illustrate the “exception” mechanism that does this, let’s have an example. 

The stack is a data structure commonly used in computer science. (You’ve already 

encountered the Call Stack.) It’s like a stack of cafeteria trays. All you can do with a stack 

without upsetting the cafeteria people is put a tray on top (“push” the tray), take one off 

the top (“pop” it), look at the top one, and notice whether the stack’s empty. That, and 

(since this is C++) construct and possibly destruct it.

I’ll be lazy (of course!) and avoid dynamic memory.

Here are problems we might encounter:

•	 We might try to push an item onto a stack that’s already full 

(“overflow”).

•	 We might try to look at the top item, or pop an item, from a stack 

that’s empty (“underflow”).

Member functions should only notice the errors, like top here:

class Stack                     //A stack of strings

{

public:

    class UnderflowException    {};    //An "exception class"

    ...

    const std::string& top () const

    {

        if (empty()) throw UnderflowException ();

        else return contents_[howMany_-1]; //the top element

    }

    ...

};

If all goes well top returns the last item in the Stack, the howMany-1th. But if the 

Stack’s empty, top creates an object of type UnderflowException using explicit call to 

constructor. Then it throws (reports) it.

(BNF version: throw <some variable or value>.)

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



379

If nobody knows how to handle the error, the program crashes, as it should. We’ve 

seen unhandled exceptions already, when we were trying to load an image with a 

misspelled filename, say, and SDL threw an exception. That may be all we need, for this 

or for overflows. Example 18-1 is the complete Stack class.

Example 18-1.  A Stack class

//Stack class, with a limited stack size

//      -- from _C++ for Lazy Programmers_

#ifndef STACK_H

#define STACK_H

#include <string>

class Stack

{

public:

    class UnderflowException    {}; //Exceptions

    class OverflowException     {};

    enum {MAX_ITEMS = 5};

    Stack()                   { howMany_ = 0;  }

    Stack(const Stack& other)                   = delete;1

    const Stack& operator= (const Stack& other) = delete;

    const std::string& top () const

    {

        if (empty()) throw UnderflowException ();

        else return contents_[howMany_-1];

    }

1�This says, “I’m not going to write this function, and neither is the compiler.” Copying a stack 
seems insecure to me, and I definitely don’t see a reason. So I save some effort.

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



380

    void push (const std::string& what)

    {

        if (full ()) throw OverflowException  ();

        else contents_[howMany_++] = what;

    }

    std::string pop   ()

    {

        std::string result = top(); --howMany_; return result;

    }

    bool empty () const { return howMany_ == 0;         }

    bool full  () const { return howMany_ >= MAX_ITEMS; }

    //Why not just see if they're equal?  howMany_ *can't* be

    //  bigger than MAX_ITEMS, can it?

    //  Not if I did everything perfectly, but...

    //  better to program defensively if you aren't perfect

private:

    std::string contents_ [MAX_ITEMS];

    int         howMany_;  //how many items are in the stack?

};

#endif //STACK_H

But if we want, we can make a function in the call stack know how to catch and 

handle what was thrown.

Think of the exception as a hot potato. The if statement throws it. If the 

function it’s in knows how to catch it, fine. If not, it relays the hot potato, I mean, the 

UnderflowException, to whatever function called it, then the one that called that one, 

and so on. Each time, the function stops what it’s doing and returns immediately, 

delaying only enough to throw away its local variables, destructing as necessary. This 

continues until we return to a function that can catch the error, or we exit the program 

with an error.

Let’s say main is the function that we decided should handle the error. I’ll equip main 

with a try-catch block (in Example 18-2). The try part contains what I want to do. The 

catch parts contain error-handling code for if something goes wrong.

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



381

Example 18-2.  Code to catch an UnderflowException

int main ()

{

    Stack S;

    try

    {

        ...

        cout << S.top ();

        ....

    }

    catch (const Stack::UnderflowException&)

    {

        cout << "Error in main: there was a stack underflow.\n";

        cout << "Saving everything and quitting...\n";

        ... code that handles any cleanup we need to do ...

        cout << "Quitting now.\n";

        return;

    }

    //maybe a catch for Stack::OverflowException too

    return 0;

}

The structure of a try-catch block is

try { <do stuff> }

catch (<parameter>) { <error handling code> }

[and possibly more catches]*

So what is an UnderflowException? It’s just what you see: an object of type 

UnderflowException, with no data members and no member functions. Is this stupid? 

Not at all. throwing it tells main that an underflow occurred. What else would it want to 

know? I can’t think of anything. If for some reason you do want your exception class to 

contain data members, functions, what have you, fine; throw and catch will work the 

same way. But I never do.

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



382

If you’re in an exception’s catch block and want to throw it again, say throw without 

any arguments.

Should you use exceptions?

Yes! They’re ideal for letting the error handling be done wherever it should be, with 

minimal extra coding. I use them regularly. (I’ll admit I rarely catch them. Maybe that’s 

because I’m more into writing libraries than software for those nuclear plants.)

EXERCISES

	1.	A dapt the String class from the previous chapter to throw an exception if 

the indices passed to the [] operators, or the substring operator (), is out of 

range. Test to be sure it works.

	2.	A dd and test a Fraction member function to convert to double; throw an 

exception if the denominator is 0.

�Move constructors and move = (optional)
String is doing more work than it should, and that may slow us down. (OK, I've never 

noticed, but the C++ community is persnickety about efficiency.) Consider this code.

compoundString = str1+str2;

There is a temporary copy made in operator+, repeated below. It’s when we return 

the result, passing a copy of that local variable. This calls the copy ctor, which contains 

a call to strcpy. The bigger the string, the longer strcpy takes.

String String::operator+  (const String& other) const

{

    String result = *this; result += other; return result;

}

Modern C++ has a mechanism whereby something can give up its memory to 

something else that needs it, avoiding the need for copying. Here it is, in Example 18-3.

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



383

Example 18-3.  A move constructor for String

String (String&& other)        //The "move" constructor

{

    contents_ = other.contents_; //2 statements; no loops,

    other.contents_ = nullptr;   //  no strcpy. Cheap!

}

The && means “apply this function if the parameter is something that can give up its 

value and that’s OK.”  That’s surely true of result! So we take the contents from result 

(temporarily called other in the move constructor). We give it nullptr so when it hits its 

destructor, it won’t delete[] the contents_ it gave us.

The other extra work comes after we leave +, when the temporary copy it provides 

is copied by operator=, which also does a strcpy. We can save time if we just move that 

copy’s contents into compoundString. Example 18-4 provides a new = operator with no 

strpcying.

Example 18-4.  A move assignment operator for String

const String& String::operator= (String&& other) //move =

{

    if (this == &other) return *this; //never assign *this to itself

    if (contents_) delete[] contents_;

    contents_       = other.contents_; //no loops! no strcpy!

    other.contents_ = nullptr;

    return *this;

}

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



384

Because we have more options now, I want to supersede the old Golden Rules of 

Constructors, and of =, with this:

Golden Rule of Constructors and =

Either have one of the following:

•	 No ctors and no = specified (old-style structs, essentially)

•	 Default ctor, copy ctor, and = specified

•	 Default, copy, =, plus move ctor and move =

EXERCISES

	1.	A dapt Exercise 5 from Chapter 15, with its Tracks and Albums, to use 

dynamic memory. Then write a move constructor and move = for Album. 

Test with the debugger to be sure you're really using move functions when 

you should.

�Recursion (optional; used in the next section) 
Sometimes it’s easiest to define something in terms of itself.

For example, consider the “factorial” function. 5! (read as “5 factorial”) is 

5*4*3*2*1 = 120. 0! and 1! are both 1; in general, n! is n*(n-1)*(n-2)...*2*1. (n-1)! is 

(n-1)*(n-2)*...*2*1; so n! = n*(n-1)!. The result gets big fast as you increase n.

This is an algorithm, then, for calculating n!.

if n is 0, return 1

else return n * (n-1)!

This reveals two general principles needed to ensure recursion – a function calling 

itself – will terminate:

•	 There must be an ending condition. Otherwise, recursion never 

ends (until the computer runs out of memory).

•	 There must be progress toward that ending condition, for the same 

reason.

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



385

Example 18-5.  A simple recursive function

int factorial (int n) //maybe give it unsigned --

                      // and return unsigned long long?

{

      if (n == 0) return 1;

      else return n * factorial (n-1);

}

The reason recursion works is C++ creates a new copy (“activation record”) for 

each invocation. Suppose your main program calls Example 18-5’s factorial with an 

argument of 3.

int main ()

n 3

int factorial (int n)

 

n isn’t 0, so we have to call factorial (n-1).

int main ()

n 3

int factorial (int n)

n 2

int factorial (int n)

 

And again, and again, till we get a version of factorial that has n=0 and so doesn’t 

recurse further. It will return 1 to the factorial(1) call.

int main ()

n 3

int factorial (int n)

n 0

int factorial (int n)

n 1

int factorial (int n)

n 2

int factorial (int n)

returns 1
 

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



386

factorial(1), then, returns 1*factorial(0), which is also 1:

int main ()

n 3

int factorial (int n)

n 1

int factorial (int n)

n 2

int factorial (int n)

returns 1

 

factorial(2) returns 2*factorial(1), which is 2:

int main ()

n 3

int factorial (int n)

n 2

int factorial (int n)

returns 2
 

Finally, factorial(3) returns 3 times factorial(2), that is, 6.

int main ()

n 3

int factorial (int n)

returns 6
 

If you Debug in Microsoft Visual Studio a program with a recursive function, you 

can see copies of the function on the Call Stack (Figure 18-1). Click one to see its local 

variables.

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



387

In ddd or gdb, where shows you the call stack. up and down take you between copies of 

whatever functions are on it – when you print a variable, it’ll use the context of the copy 

you’re looking at.

Because a recursive function has multiple copies, there’s more work for the compiler 

using recursion than with our usual method of looping an action, that is, iteration. But 

it’s sometimes easier to write functions recursively than with iteration.

Golden Rule of Recursion

Every recursive function must have, so it will terminate,

•	 A base case, in which there is no further recursive call

•	 Progress toward that base case in every recursive call

Figure 18-1.  The Call Stack in Visual Studio

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



388

�Antibugging
•	 Your program churns a while, then crashes saying “segmentation 

fault” or “stack overflow.”

Either you forgot the ending condition or you weren’t making 

progress toward it. Using the debugger should help you figure 

which.

EXERCISES

	1.	T he Fibonacci number sequence goes like this:

Fibonacci (1) = 1

Fibonacci (2) = 1

Fibonacci (n) = Fibonacci (n-1) + Fibonacci (n-2) if n > 2.

Use recursion to write the Fibonacci function and a program to test it.

	2.	 Write and test a function void indent (const char* what, int 

howMuch) which prints the character string what after indenting howMuch 

spaces. If howMuch is 0, it just prints the string. If not, it prints a space and 

calls itself with howMuch-1 spaces.

	3.	 Write and test a recursive version of the pow function. pow (a, b) returns ab.

	4.	 Write and test a recursive function log which, given a positive integer number 

and an integer base, returns logbase (number). logbase (number) is defined as how 

many times you can divide number by base before getting to 1. For example, 

8/2 gives 4, 4/2 gives 2, and 2/2 gives 1; that's 3 divisions; so log2 8 is 3. We 

won't worry about fractional parts: log2 15 is also 3, because (using integer 

division) 15/2 is 7, 7/2 is 3, and 3/2 is 1.

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



389

�Algorithm analysis and O notation (optional)
Suppose we want to sort a list of names. I know! Let’s generate all possible orderings of 

names, and stop when we get one that’s perfectly ordered! Computers are fast, right?

while we haven't found an ordered sequence

   generate a new permutation of the elements

That’s not much detail, but I already predict a problem. Suppose there are 4 

elements. There’s 4 possibilities for the first element. That leaves 3 possibilities for 

the next, which leaves 2 possibilities for the next, and 1 for the last: there are 4*3*2*1 

possibilities: 4! So for N elements, we’ll have N! orderings to consider. With N=100 that’s 

10158. Computers are fast, but they aren’t that fast.

Sometimes the algorithm is obviously a bad idea. Sometimes you don’t realize how 

bad it is till you run it – unless you use O notation, so you can know what program not to 

bring to management and not what to spend your time writing.

Consider this code:

for (int i = 0; i < N; ++i)

    sum += array[i];

The initialization gets done once; the comparison, array reference, assignment, and 

increment are each done N times. We could say there are 1+4N things being executed.

What about some other snippet with a loop? Maybe it’s a little different and we get, 

oh, 5+3N. Which one’s faster, or are they the same? Hm.

We have a way of rating algorithms that greatly simplifies how we describe the time 

requirements and so helps us compare and evaluate them. It’s called O notation. Here 

are the simplifying rules for O notation:

•	 If one addend is clearly smaller than another when the data set is 

large, discard the smaller one. So if we have 1+3N, we discard the 1 

and get 3N.

•	 Discard constant multipliers. 3N becomes N.

The result is written as O(N). The preceding for loop is O(N), or “is of order N.”

The simplification is justified. What we care about is what happens when the data 

set is large (small data sets are always easy). When N is large, 3N+1 is approximately 3N: 

the difference in 3,000,001 and 3,000,000 is negligible. We also don’t care about constant 

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



390

multipliers. Whether N doubles from 3000 to 6000 or 3N doubles from 9000 to 18,000 – 

it’s still doubling, and we want to know how increasing N degrades performance. This 

tells us.

A few examples. Consider this algorithm:

read in N                  1

read in M                  1

read in P                  1

add them                   1

divide by 3                1

print the average          1

Each line is 1 action. Add ‘em up and we have 6. We can discard constant multipliers; 

6=6*1, so O(6)=O(1). This algorithm is of order 1: it’ll take the same amount of time 

regardless of what values you give it.

Here’s another:

for each element in an array     N x

      if this element is negative       (1

            change it to positive             + 1)

The last line is 1 action. The if statement that contains it is 1 more; O(2)=O(1). 

Because it’s in a for loop, it will be done N times, where N is the length of the array. So 

this algorithm is O(N).

Here’s another.

do

      for each successive pair of elements in an array

            if they are in the wrong order

                  swap them

while our last iteration of the do-while loop had a swap in it

This algorithm is a way to sort an array. Here’s how it works. Consider an array of 

Sesame Street characters.

Kermit Grover Bert Oscar Piggy Elmo

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



391

The first iteration of the preceding do-while loop does swaps, as needed, for each 

successive pair. Kermit should be swapped with Grover

Grover Kermit Bert Oscar Piggy Elmo

and Bert

Grover Bert Kermit Oscar Piggy Elmo

We keep moving through the array till we get to the end, swapping any wrongly 

ordered pairs.

Grover Bert Kermit Oscar Elmo Piggy

It’s still not in order, but we made progress. Here’s what we get after another pass 

through the array:

Bert Grover Kermit Elmo Oscar Piggy

Another:

Bert Grover Elmo Kermit Oscar Piggy

And another:

Bert Elmo Grover Kermit Oscar Piggy

This algorithm is called “bubble sort” because elements gradually “bubble” their way 

to correct positions. (And “bogo-sort” by people say it’s 3vil because it’s too slow. I don’t 

know what they’d call the permutation method I had earlier, but it wouldn’t be nice.)

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



392

How long will this algorithm take, in O notation? “If they are in the wrong order 

swap them” is O(1). We go through the entire array, making N-1 comparisons; so a 

pass through the array is O(N-1)=O(N). How many passes do we make? If we’ve got a 

very disordered array – say, if Piggy’s in slot 0 and Bert is in the last slot – we’ll need N-1 

passes, since each pass moves an element at most 1 slot. O(N(N-1))=O(N2-N)=O(N2).

O(N2) is called “quadratic time”; O(N) is predictably called “linear time.” O(1) is 

“constant time.” We try to avoid O(2N), “exponential time.”

EXERCISES

	1.	 What is the time in O notation for the function in Example 10-3, which returns 

the smallest number in an array?

	2.	 …for a function to determine if a word is a palindrome?

	3.	 …for a function to print all the elements in an NxN grid?

	4.	 Write a function intersection which, given two arrays, finds all those 

elements in common and puts them in a new array. What is the time 

requirement, in O notation?

	5.	 Write bubble sort and verify that it works.

	6.	 Write a program that finds all primes up to some limit using the Sieve of 

Eratosthenes: You go thru and eliminate all numbers divisible by 2, then by 3, 

then by 4, and so on.

What is the time requirement, in O notation?

	7.	 What is the time required for Exercises 2, 3, and 4 from the previous section?

Chapter 18  Exceptions, Move Constructors, Recursion, and O Notation



393
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_19

CHAPTER 19

Inheritance
The purpose of this chapter is to enable us to reuse code between similar classes.

�The basics of inheritance
There’s an unwritten rule that in a C++ intro text you must have an example using 

employee records, so here’s mine (Example 19-1). It makes sense. I personally can’t 

think of anything more exciting than employee records.

Example 19-1.  Class Employee

//Class Employee

//      -- from _C++ for Lazy Programmers_

#ifndef EMPLOYEE_H

#define EMPLOYEE_H

#include <iostream>

#include <string>

#include "date.h"

class Employee

{

public:

    Employee () {}

    Employee (const Employee&) = delete;

    Employee (const std::string& theFirstName,

              const std::string& theLastName,

              const Date& theDateHired, int theSalary);



394

    const Employee& operator= (const Employee&) = delete;

    void print(std::ostream&) const;

    //access functions

    const std::string& firstName () const { return firstName_;   }

    const std::string& lastName  () const { return lastName_;    }

    const Date&        dateHired () const { return dateHired_;   }

    int   salary                 () const { return salary_;      }

    bool  isOnPayroll            () const { return isOnPayroll_; }

    int badPerformanceReviews    () const

    {

        return badPerformanceReviews_;

    }

    void  quit                   ()       { isOnPayroll_ = false;}

    void  start                  ()       { isOnPayroll_ = true; }

    void  meetWithBoss           () { ++badPerformanceReviews_;  }

private:

    std::string firstName_, lastName_;1

    Date dateHired_;

    int  salary_;

    bool isOnPayroll_;

    int  badPerformanceReviews_;

};

inline

std::ostream& operator<< (std::ostream& out, const Employee& foo)

{

    foo.print (out); return out;

}

#endif //EMPLOYEE_H

1�std::string has a dtor. When does it get called? If you don’t write a dtor for a class, C++ 
generates a default, which calls dtors of any members that have them. So Employee’s default dtor 
destructs the two strings. You don’t need to plan for this – it’s automatic.

Chapter 19  Inheritance



395

Since I’m using the Date class, I’ll need to copy date.h and date.cpp from the earlier 

chapter into my new project’s folder. g++ users are done at that point; Visual Studio users 

right-click the project and say Add, Existing Item, and so on (Figure 19-1).

Not all employees are the same. If what I read – especially in Scott Adams’s Dilbert – 

is accurate, a manager is like any other employee, having a name and a salary, but 

with extra characteristics: the power to hire and fire, low IQ, and an obsession with 

tormenting employees.

Figure 19-1.  Adding existing items in Visual Studio

Chapter 19  Inheritance



396

It would be redundant to write a whole new class for Manager, repeating those parts 

also in Employee such as firstName, lastName, and salary. So instead we’ll make Manager 

a subclass (or derived class, or child class) of Employee, as shown in Example 19-2.  

This is inheritance.

Example 19-2.  Class Manager

//Class Manager

//      -- from _C++ for Lazy Programmers_

#ifndef MANAGER_H

#define MANAGER_H

#include "employee.h"

using Meeting = std::string;

class Manager: public Employee

{

public:

    Manager ();

    Manager (const Manager&) = delete;

    Manager (const std::string& theFirstName,

             const std::string& theLastName,

             const Date&   theDateHired,

             int           theSalary);

    ~Manager () { delete [] schedule_; }

    const Manager& operator= (const Manager&) = delete;

    void hire (Employee& foo) const { foo.start (); }

    void fire (Employee& foo) const { foo.quit  (); }

    void laugh()              const

    {

        std::cout << firstName() << " says: hee-hee!\n";

    }

    void torment (Employee&) const;

Chapter 19  Inheritance



397

private:

    Meeting*    schedule_;

    int         howManyMeetingsOnSchedule_;

    void        copy (const Manager& other);

};

#endif //MANAGER_H

class Manager: public Employee means Manager is a subclass of Employee, and 

everything an Employee has a Manager has too (Figure 19-2). Don’t worry about the word 

public yet.

class Employee
{
public:

Employee () {}
Employee (const Employee&);

void print
(std::ostream&) const;

...

private:
std::string firstName_,

lastName_;
Date dateHired_;
...

};

class Manager: public Employee
{
public:

Manager ();
Manager (const Manager&);
Manager (const std::string&

theFirstName...);
~Manager ();

...

private:
...

};

Employee's private members 
are inherited too; use
Employee's functions to get at 
them.

Figure 19-2.  How inheritance works. Everything that’s in Employee is also in 
Manager – but if it’s private, it won’t be visible

Chapter 19  Inheritance



398

So this code is legal:

Manager  alfred ("Alfred E.", "Neumann", Date (10, 1,1952),

                 OBSCENELY_LARGE_SALARY);

//firstName, salary are inherited from Employee

cout << alfred.firstName() << " makes " << alfred.salary ()

     << " per month!\n";

We don’t rewrite those functions – we just use them. Anything you can do with an 

Employee, you can do with a Manager – because a Manager is an Employee.

�Constructors and destructors
We’ll surely want to call Employee’s constructor when we write Manager’s. No problem: 

we’ll use the same syntax we use to initialize data members.

Manager::Manager (const string& theFirstName,

                  const string& theLastName,

                  const Date& theDateHired,

                  int theSalary) :

      Employee (theFirstName, theLastName, theDateHired, theSalary),

      schedule_ (nullptr), howManyMeetingsOnSchedule_ (0)

{

}

The constructor does things in this order:

•	 The constructors after the “:” are called, parent class constructor first 

(even if you put it later).

•	 Whatever’s between the {}’s gets done (in this case, nothing).

If you don’t say what parent constructor to call, it will call the default.

When a Manager goes out of scope, its destructor is called first, then its parent’s. 

(And then its grandparent’s, if any, and so on.) You won’t need to think about this – it’s 

automatic.

Chapter 19  Inheritance



399

EXERCISES

For these exercises, be sure that

•	 Data members are private (of course).

•	 Just for now, there are no access functions. This is to ensure that the subclass 

only accesses its own data, not its parent’s. For example, to print, the subclass 

should call its parent’s print function, then print its own data members.

	1.	A n eyeglasses prescription (Figure 19-3) lists: sphere or power, additional 
correction for bifocals, and stuff for astigmatism (cylinder, axis). The two 

eyes are called “OD” and “OS” not “left” and “right,” because what’s cooler 

than calling your eyeballs weird Latin abbreviations?

Write and test a class to contain, and neatly print, this information.

Write and test a subclass for contact lenses to contain and print that plus 

a little more: back curvature and diameter, numbers to ensure the lens 

comfortably fits the eyeball.

	2.	A  child in special education may have an “IEP,” an Individual Education 

Plan, to spell out what special needs exist and how the school will address 

them. Write and test a class for a student record (name, whatever else looks 

relevant) and a subclass for the record of a student with an IEP. You can let 

the IEP be a single string.

OD OS
Sphere -3.00 -2.00

Additional 2.50 2.50

Cylinder +0.25 +0.50

Axis 150° 70°

Figure 19-3.  An eyeglasses prescription

Chapter 19  Inheritance



400

�Inheritance as a concept
Subclasses are part of how we think outside the computer, too. In biology, animal is a 

subclass of organism, mammal is a subclass of animal, human is a subclass of mammal, 

and ubergeek is a subclass of human (Figure 19-4). In each case, the subclass has every 

characteristic of the superclass (or parent class, or base class), plus extra characteristics. 

An animal is an organism that can move; an ubergeek is a human who programs so well 

the gods themselves are impressed.

You aren’t a subclass of human, because you aren’t a class. You’re an instance of 

human. (Apologies to my extraterrestrial readers.)

This is as good a point as any to mention a distinction commonly used in object-

oriented thinking, between is-a and has-a.

An Ubergeek is-a Human (and a Mammal, etc.). An Ubergeek has-a computer. So 

when God created the Ubergeek, His code must have looked something like this:

class Ubergeek: public Human //an Ubergeek is-a human

{

      ...

private:

      Computer myComputer_;  //an Ubergeek has-a computer

};

class Organism

class Human

class Reptileclass Mammal

is-a

is-a

is-a

is-a

is-a

is-a

lass Plant

class Ubergeek

lass Animalc c

Figure 19-4.  A class hierarchy. An Ubergeek is a Human, which is a Mammal, 
and so on

Chapter 19  Inheritance



401

So the things an Ubergeek has go in the private section. The thing that an Ubergeek is 

goes on that first line.

Extra  Your local philosophy professor will probably want to shoot me for saying 
this, but object-oriented programming is so very…Platonic.

Plato considered classes (“ideals”) to be what was ultimately real, and the particular 
instances – the objects or variables in our vocabulary – to be imperfect examples of 
that ultimate reality. So Human is the real thing; you and I are just instances.

In radical materialism – as far from Plato as you can get – classes aren’t real; only 
material objects are. Of course, since radical materialism isn’t a material object, 
that might be a problem, but lazy philosophy, unlike lazy programming, is beyond 
the scope of this book.

Aristotle considered things themselves to be real, and the classes to be their inherent 
natures. You’re real, and Human is what you really are. He splits the difference.

However it works out in reality, C++ is Platonic: the class comes first. (You have to 
have the class definition before you can create a variable of that type.)

�Classes for card games
People like to play cards on the computer, so let’s make classes to help us build a variety 

of card games. Code reuse.

Figure 19-5.  Plato and Aristotle, the first two ever to have an argument about 
object-oriented programming. Sort of

Chapter 19  Inheritance



402

I’ll provide in Example 19-3 class Card and give it things any class should have: 

default and copy constructors, operator=, access functions, and I/O. I also soup up the 

Rank and Suit enums from Chapter 10.

Example 19-3.  The Card class (card.h). card.cpp is in the book’s source code

//Card class

//  -- from C++ for Lazy Programmers

#ifndef CARD_H

#define CARD_H

#include <iostream>

//Rank and Suit: integral parts of Card

//I make these global so that I don't have to forget

// "Card::" over and over when I use them.

enum Rank {ACE=1, JACK=11, QUEEN, KING};

enum Suit {HEARTS, DIAMONDS, CLUBS, SPADES};

enum Color{BLACK, RED};

inline

Color toColor(Suit s)

{

    if (s == HEARTS || s == DIAMONDS) return RED; else return BLACK;

}

std::ostream& operator<< (std::ostream& out, Rank r);

std::ostream& operator<< (std::ostream& out, Suit s);

std::istream& operator>> (std::istream& in, Rank& r);

std::istream& operator>> (std::istream& in, Suit& s);

class BadRankException {};  //used if a Rank is out of range

class BadSuitException {};  //used if a Suit is out of range

//...and class Card.

Chapter 19  Inheritance



403

class Card

{

public:

    Card (Rank r = Rank(0), Suit s = Suit(0)) :

        rank_ (r), suit_ (s)

    {

    }

    Card (const Card& other) { *this = other; }

    const Card& operator= (const Card& other)

    {

         rank_ = other.rank(); suit_ = other.suit (); return *this;

    }

    bool operator== (const Card& other) const

    {

        return rank() == other.rank () && suit() == other.suit();

    }

    bool operator!= (const Card& other) const

    {

        return !(*this==other);

    }

    Suit  suit () const { return suit_;            }

    Rank  rank () const { return rank_;            }

    Color color() const { return toColor (suit()); }

    void print (std::ostream &out) const { out << rank() << suit(); }

    void read  (std::istream &in );

private:

    Suit suit_;

    Rank rank_;

};

inline std::ostream& operator<< (std::ostream& out, const Card& foo)

{

    foo.print (out); return out;

}

Chapter 19  Inheritance



404

inline std::istream& operator>> (std::istream& in,        Card& foo)

{

    foo.read  (in);  return in;

}

#endif //CARD_H

�An inheritance hierarchy
A few games we might create:

FreeCell (Figure 19-6). At upper left are cells, each of which can store a single card; 

the upper right is foundations, each of which takes an Ace, then a 2, and so on, in the 

same suit; at the bottom are piles, randomly dealt. You can take a card from a pile or add 

a card to a pile if it’s down in alternating color. For example, you can move a black 10 

onto that jack of diamonds if you have one free.

Klondike (Figure 19-7). Like FreeCell, it has foundations (top right); it also has a 

deck, a waste pile, and piles of its own type at the bottom.

Figure 19-6.  FreeCell

Chapter 19  Inheritance



405

Hearts, Spades, and other multiplayer games with a deck and hands.

Common groupings include

•	 Deck: You can shuffle it and deal off the top.

•	 Waste (discard pile): You can put a card on top or take one off.

•	 Cell: Like Waste, you can add to a cell or take from the top – but there 

can only be one card.

•	 Foundation: All one suit, starting with Ace and going up.

•	 Hand: You can add to it and take out any card you want.

•	 FreeCell pile: Add a card, down in alternating color; take a card off.

•	 Klondike pile: More complicated; left as an exercise.

These all have two things in common: contents and a size. Do any have more  

in common?

I’d say that a Cell is-a Waste pile, because the way you interact with it is the same: 

add a card, take one off the top. It just has a restriction on size.

Figure 19-7.  Klondike solitaire

Chapter 19  Inheritance



406

Beyond that I’d say no. You can’t say Foundation is a special case of Deck, or that a 

Klondike pile is a special case of a Waste pile. (Some of this may be a matter of opinion.) 

But they all have this in common: they’re all groups of cards. So we can have a CardGroup 

class and inherit from it. (A Hand is a CardGroup with nothing added, so we’ll make Hand 

an alias for CardGroup: using Hand = CardGroup;).

So I propose the inheritance hierarchy in Figure 19-8, based on CardGroup  

(Example 19-4).

= Hand

class Waste

class CardGroup

...

is-a is-ais-a is-a

class Deck class Foundation

is-a

class FreeCellPile

class Cell

Figure 19-8.  A hierarchy of classes for groups of cards

Example 19-4.  cardgroup.h

//CardGroup class (for playing cards)

//  -- from C++ for Lazy Programmers

#ifndef CARDGROUP_H

#define CARDGROUP_H

#include <iostream>

#include "card.h"

class OutOfRange  {};         //Exception classes

class IllegalMove {};

class CardGroup

{

public:

    enum {MAX_SIZE = 208};    //if anybody wants to play a game

                              //  w/ more than 4 decks, change this.

Chapter 19  Inheritance



407

    CardGroup ()                      { howMany_ = 0;              }

    CardGroup (const CardGroup& other){ *this    = other;          }

    CardGroup (const Card& other)

    {

        howMany_ = 0; addCard (other);

    }

    const CardGroup& operator= (const CardGroup&);

    bool operator== (const CardGroup& other) const;

    bool operator!= (const CardGroup& other) const

    {

        return !(*this == other);

    }

    Card& operator[] (unsigned int index);

    Card  operator[] (unsigned int index) const;

    Card remove         (unsigned int index);

    Card top            () const { return (*this)[size()-1];  }

    Card removeTop      ()       { return remove (size()-1);  }

    unsigned int size   () const { return howMany_;           }

    bool         isEmpty() const { return size() == 0;        }

    bool         isFull () const { return size() >= MAX_SIZE; }

    //addCard does NOT check that it's legal to add a card.

    //We need this for creating CardGroups during the deal.

    void addCard (const Card&);

    //makes sure the addition of the card is legal, then adds it

    void addCardLegally (const Card& other)

    {

        if (isFull ()) throw IllegalMove();

        addCard (other);

    }

    void print (std::ostream&) const;

Chapter 19  Inheritance



408

private:

    unsigned int howMany_;

    Card contents_ [MAX_SIZE];

};

inline

std::ostream& operator<< (std::ostream& out, const CardGroup& foo)

{

    foo.print(out); return out;

}

using Hand = CardGroup;

#endif //CARDGROUP_H

�private inheritance
Consider the Waste class. We shouldn’t allow random access of Waste through the [] 

operators; you can only look at the top card of a Waste pile.

To restrict access, we change the type of inheritance:

class Waste: private CardGroup

{

...

This makes the CardGroup’s public members go in Waste’s private section (Figure 19-9).

Chapter 19  Inheritance



409

operator[] is now private – good – but there are public members of CardGroup that 

we want Waste to make available to the outside: isEmpty and print, for example. Since 

they’re private, we make new public functions with the same names, that simply call the 

parent’s functions, as in Example 19-5.

Example 19-5.  Class Waste, in waste.h, using private inheritance

//Waste class

//      -- from _C++ for Lazy Programmers_

#ifndef WASTE_H

#define WASTE_H

#include "cardgroup.h"

class Waste: private CardGroup

{

public:

    Waste () {}

    Waste (const Waste&     other) : CardGroup (other) {}

    Waste (const CardGroup& other) : CardGroup (other) {}

    const Waste & operator= (const Waste& other) = delete;

class Parent

{
public:

private:

};

class Child: 
private Parent

{
public:

private:

};

class Child: 
public Parent

{
public:

private:

};

class Parent

{
public:

private:

};

(a) (b)

Figure 19-9.  Public (a) and private (b) inheritance. Use private if there’s any 
inherited public member that must be kept private in the child class

Chapter 19  Inheritance



410

    bool operator==         (const Waste& other) const

    {

        return CardGroup::operator== (other);

    }

    bool isEmpty        () const { return CardGroup::isEmpty ();  }

    bool isFull         () const { return CardGroup::isFull  ();  }

    unsigned int size   () const { return CardGroup::size ();     }

    Card top            () const { return CardGroup::top();       }

    Card removeTop      ()       { return CardGroup::removeTop(); }

    void addCardLegally (const Card& foo)

    {

        CardGroup::addCardLegally (foo);

    }

    void print (std::ostream& out) const{ CardGroup::print (out); }

};

inline

std::ostream& operator<< (std::ostream& out, const Waste& foo)

{

    foo.print (out); return out;

}

#endif //WASTE_H

�Hiding an inherited member function
Waste has from CardGroup a member function isFull, true if the Waste has MAX_SIZE 

cards. Its child class Cell has a different version. If you call isFull on a Cell, which will 

it use?

Cell::isFull hides the inherited version. To use Waste’s version, you must specify: 

myCell.Waste::isFull (). We wouldn’t do anything so grotty outside the class, but we 

might inside a member function like Cell::addcardLegally in Example 19-6.

Chapter 19  Inheritance



411

Example 19-6.  cell.h

//Cell class

//  -- from C++ for Lazy Programmers

#ifndef CELL_H

#define CELL_H

#include "waste.h"

class Cell: public Waste

{

public:

    Cell ()                                      {}

    Cell(const Cell& other) : Waste (other)      {}

    const Cell& operator= (const Cell& other) = delete;

    //public inheritance, so all public members of Waste are here...

    bool isFull    () const {return ! isEmpty (); }

    void addCardLegally (const Card& card)

    {

        if (isFull ()) throw IllegalMove (); //Cell must be empty

        else Waste::addCardLegally (card);

    }

};

#endif //CELL_H

�A game of Montana
Montana solitaire uses Cell and Deck, so it should be a good test of our hierarchy.

The rules: deal out all cards in a 4x13 grid of cells, remove the aces, and get a mess 

like in Figure 19-10.

Chapter 19  Inheritance



412

Your goal is to get 4 rows lined up from 2 to King, each with one suit.

The only valid move is to put a card into an empty cell. The card you put must follow 

whatever’s on its left, in the same suit; for example, you can only follow 2♥ with 3♥. If it’s 

in the leftmost column, you have to put a 2. A space following a King is unusable.

When you get stuck, redeal all the cards that aren’t in sequences starting with 2 on 

the left, in suit. You get 4 deals.

A working program (with Deck removed – that’s an exercise) is in the code 

accompanying the text; Examples 19-7 through 19-9 show the highlights.

Example 19-7.  montana_main.cpp: a game of Montana

//A game of Montana solitaire

//  -- from C++ for Lazy Programmers

#include <cstdio>       //for srand, rand

#include <ctime>        //for time

#include "io.h"         //for bool getAnswerYorN (const char[]);

#include "montana.h"

int main ()

{

    srand ((unsigned int) time (nullptr)); //start rand# generator

    Montana montanaGame;

Figure 19-10.  A game of Montana

Chapter 19  Inheritance



413

    do

        montanaGame.play ();

    while (getYorNAnswer ("Play again (Y/N)? "));

    return 0;

}

Example 19-8.  montana.h

//class Montana, for a game of Montana solitaire

//  -- from _C++ for Lazy Programmers_

#include "gridLoc.h"

#include "cell.h"

#include "deck.h"

#ifndef MONTANA_H

#define MONTANA_H

class Montana

{

public:

    enum { ROWS = 4, CLMS  = 13};

    enum { NUM_EMPTY_CELLS =  4}; //How many empty cells in grid? 4

    enum { MAX_TURNS       =  4}; //How many turns allowed? 4

    class OutOfRange {};          //Exception class for card locations

    Montana                  ()               {};

    Montana                  (const Montana&) = delete;

    const Montana& operator= (const Montana&) = delete;

    void play ();

private:

        //displaying

    void display            () const;

Chapter 19  Inheritance



414

        //dealing and redealing

    void deal               (Deck& deck, Waste& waste);

    void cleanup            (Deck& deck, Waste& waste);

    void resetGrid          (); // make it empty

        //playing a turn

    void makeLegalMove      (bool& letsQuitOrEndTurn);

    void makeMove           (const GridLoc& oldLoc,

                             const GridLoc& newLoc);

    bool detectVictory      () const;

    void congratulationsOrCondolences(bool isVictory) const;

        //working with empty cells

    //store in emptyCells_ the location of each empty cell

    void identifyEmptyCells ();

    //which of the empty cells has this row and clm? A B C or D?

    char whichEmptyCell      (int row, int clm) const;

    //Is this a valid cell index? It must be 0-3.

    bool inRange(unsigned int emptyCellIndex) const

    {

        return (emptyCellIndex < NUM_EMPTY_CELLS);

    }

        //placing cards

    Cell&        cellAt(const GridLoc& loc)

    {

        if (inRange(loc)) return grid_[loc.row_][loc.clm_];

        else throw OutOfRange();

    }

    const Cell& cellAt(const GridLoc& loc) const

    {

        if (inRange(loc)) return grid_[loc.row_][loc.clm_];

        else throw OutOfRange();

    }

Chapter 19  Inheritance



415

    //Is this location within the grid?

    bool inRange(const GridLoc& loc) const

    {

        return (0 <= loc.row_ && loc.row_ < ROWS &&

                0 <= loc.clm_ && loc.clm_ < CLMS);

    }

    //Can Card c follow other card?

    bool canFollow(const Card& c, const Card& other) const

    {

        return c.suit() == other.suit() &&

            c.rank() == other.rank() + 1;

    }

    //Can card c go at this location?

    bool canGoHere(const Card& c, const GridLoc& loc) const;

    //Is the cell at row, clm ordered at its location? That is,

    //    could we put it here if it weren't already?

    bool cellIsCorrect(int row, int clm) const

    {

        return ! grid_[row][clm].isEmpty () &&

               canGoHere(grid_[row][clm].top(), GridLoc(row, clm));

    }

    //data members

    Cell    grid_       [ROWS][CLMS];       //where the cards are

    GridLoc emptyCells_ [NUM_EMPTY_CELLS];  //where the empty cells are

};

#endif //MONTANA_H

Montana::play creates a new Deck and Waste every time it’s called. You can see in it 

how they are used. Montana::makeMove shows how Cell can be used (cellAt returns the 

Cell at a given location).

Montana::makeLegalMove uses a try-catch block in case the input goes wonky.

Chapter 19  Inheritance



416

Example 19-9.  Part of montana.cpp (the rest is in the book’s source code)

//class Montana, for a game of Montana solitaire

//  -- from C++ for Lazy Programmers

#include <iostream>

#include "deck.h"

#include "io.h"       //for bool getAnswerYorN (const char[]);

#include "montana.h"

using namespace std;

    //Playing the game

...

void Montana::play ()

{

    Deck  deck;

    Waste waste;

    bool  isVictory = false;

    resetGrid(); //prepare for deal by ensuring grid is empty

    for (int turn = 1; turn <= MAX_TURNS && ! isVictory; ++turn)

    {

        cout << "********************* New turn! "

                "**********************\n";

        //To test detectVictory func, uncomment setupForVictory,

        //comment out deal, and see if isVictory becomes true

        //setupForVictory(grid_, deck, waste);

        deck.shuffle ();             //Shuffle deck

        deal (deck, waste);          //fill grid with cards

                                     //  and remove aces

        identifyEmptyCells ();       //remember where the aces were

                                     //  in a list of 4 emptyCells_

Chapter 19  Inheritance



417

        bool letsQuitOrEndTurn = false;

        isVictory = detectVictory(); //already won? Unlikely, but...

        while (! isVictory && ! letsQuitOrEndTurn)

        {

            display();

            makeLegalMove (letsQuitOrEndTurn); //play a turn

            isVictory=detectVictory();         //did we win?

        }

        cleanup (deck, waste);        //collect cards for redeal

        //If user won, we go on and leave loop

        //If we're out of turns, we go on and leave loop

        //Otherwise give user a chance to quit

        if (!isVictory && turn < MAX_TURNS)

            if (getYorNAnswer("Quit game (Y/N)?"))

                break;

    }

    congratulationsOrCondolences (isVictory);

}

void Montana::makeMove  (const GridLoc& oldLoc,

                         const GridLoc& newLoc)

{

    cellAt(newLoc).addCardLegally (cellAt(oldLoc).removeTop ());

}

void Montana::makeLegalMove (bool& letsQuitOrEndTurn)

{

    bool isValidMove = false;

    do

    {

        cout << "Move (e.g. A 1 5 to fill cell A with "

             << "the card at row 1, clm 5; q to quit/end turn)? ";

Chapter 19  Inheritance



418

        //Which empty space will we fill -- or are we quitting?

        char letter; cin >> letter;

        if (toupper(letter) == 'Q') letsQuitOrEndTurn = true;

        else

        {

            int emptyCellIndex = toupper(letter) - 'A';

            try

            {

                //Which cell are we moving from?

                GridLoc from;  cin >> from;

                //Which cell are we moving to?

                GridLoc to = emptyCells_[emptyCellIndex];

                //If the empty cell exists, and is really empty...

                if (inRange(emptyCellIndex) && cellAt(to).isEmpty())

                    //if card to move exists, and move is legal...

                    if (!cellAt(from).isEmpty() &&

                        canGoHere(cellAt(from).top(), to))

                    {

                        isValidMove = true;

                        makeMove(from, to);

                        emptyCells_[emptyCellIndex] = from;

                    }

            }

            catch (const BadInput&) {}

                //reading GridLoc went bad -- just try again

        }

    } while (! isValidMove && ! letsQuitOrEndTurn);

}

Chapter 19  Inheritance



419

EXERCISES

	1.	 Write a subclass of class Date from earlier, adding a function printInText. It 

will print the Date not in numeric format (e.g., 12/12/2012), but in your favorite 

ASCII-using language: doce de diciembre de 2012 (Spanish); December 

12, 2012 (English); whatever you like. What kind of inheritance will you use?

	2.	 Write a subclass of string called UnixFilename that doesn’t allow spaces – 

it immediately replaces them with _’s. And it won’t let you interfere by changing 

the string’s individual letters:

UnixFilename myFileName ("my file name");

                         //becomes "my.file.name"

myFileName[2] = ' ';     //forbidden

What kind of inheritance will you use?

	3.	 Write a Reserve class. It’s a group of cards; the only legal move is to take a 

card off the top. What should it inherit from?

The next four exercises will be especially useful for the FreeCell game exercise in Chapter 21.

	4.	 Write the shuffle algorithm for the Deck class. What is its time requirement in O 

notation? Can you get it down to O(N)?

	5.	 …and write the Deck class.

	6.	 Write a Foundation class. A Foundation, remember, starts with ACE and 

goes up in suit, or it may be empty. Throw an exception if a call attempts to add 

an unsuitable card.

	7.	 Write the FreeCellPile class. Throw exceptions as appropriate.

	8.	 Write the KlondikePile class. A Klondike pile is like a FreeCell pile in that 

you can only add something going down by alternating color, but it’s different in 

that you can add a sequence of such cards as long as the top card of the pile 

Chapter 19  Inheritance



420

matches that criterion. For example, if the top of a Klondike pile is a black king, 

you can put a sequence on it if that sequence starts with a red queen. You can 

also remove a sequence of cards from a Klondike pile, as long as it’s down in 

alternating color.

So apparently you need to add and remove sequences. What class is a 

sequence? What class should your add-sequence and remove-sequence 

functions belong to?

Also, a Klondike pile has 0 or more cards at the bottom, face down. You can’t 

move any sequence including a face-down card. If you remove all face-up 

cards, you can then expose the (face-down) top card.

Throw exceptions as appropriate.

The best way to be sure you understand the rules is to play the game,  

but I would never encourage anyone to find yet another way of wasting  

time at work.

	9.	 (Involved, but not hard) Write a game of Go Fish (look online for rules).

Figure 19-11.  Pyramid solitaire

Chapter 19  Inheritance



421

	10.	 (Hard) Write the Pyramid class for Pyramid solitaire (see Figure 19-11; look 

online for rules).

	11.	 Design a simple calculator class, that can have two numbers and can do the 

four basic functions +, -, *, and /.

Now write an engineer calculator class that does all those things, but also 

does some other fancy things (say, square root and exponentiation). What kind 

of inheritance will you use?

Chapter 19  Inheritance



423
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_20

CHAPTER 20

Templates
Would I write a function or class that takes ints, and another just like it except it takes 

strings, and another just like it except it takes Ubergeeks? That doesn’t sound lazy! This 

chapter enables us to write it once, using templates.

�Function templates
Recall this function for swapping ints, from Chapter 8:

void swap (int& arg1, int& arg2)

{

      int temp = arg2; arg2 = arg1; arg1 = temp;

}

That’s fine for int, but what if I want doubles? strings? Heffalumps? I don’t want to 

write new versions for every type I encounter! Here’s the fix.

template <typename T>

void swap (T& arg1, T& arg2)

{

      T temp = arg2; arg2 = arg1; arg1 = temp;

}

This is a function template: not a function in itself, but instructions on how to make 

a function once it knows what type we want.

The template <typename T> tells the compiler that this will be a template and that 

the thing that we expect to change is the type we’re calling T. T is a sort of blank, to be 

filled in with a type when we decide what we want.

Example 20-1 shows how to use it.



424

Example 20-1.  Using the swap function template

//Utterly useless program that uses a function template

//      -- from _C++ for Lazy Programmers_

template <typename T>

void swap(T& arg1, T& arg2)

{

      T temp = arg2; arg2 = arg1; arg1 = temp;

}

int main ()

{

    int    I = 10  , J = 20  ;

    double M =  0.5, N =  1.5;

    swap (I, J);

    swap (M, N);

    //swap (I, N); //No: can't figure what T should be

    return 0;

}

The compiler doesn’t create any swap function until it gets to the line swap (I, J);. 

Then it notes that I and J are both ints, so it substitutes int for T in the template and 

creates a swap function that takes two ints.

On the next line, it generates a swap for double.

I put the function template above main. If the compiler can’t see it before it’s used, 

it won’t know how to create the function – it won’t have read the instructions yet. So 

the function template goes at the beginning of the program or in a .h file in place of the 

prototype.

In summation, to convert a function into a function template

	 1.	 Put template <typename T> or such in front.

	 2.	 Change the type you were using to T or const T&. If it’s in a place 

where a class type would use a copy constructor – a return type or 

parameter without an & – const T& will prevent needless copying.

	 3.	 Put the new function template where you had its prototype.

Chapter 20  Templates



425

�Antibugging
•	 Linking, the compiler says it can’t find the function, but you can 

see it later in the program or in another .cpp file. See Step 3.

Other possible mistakes:

•	 Converting int to T/const T& when you shouldn’t. I have this code 

for searching an int array:

bool contains (int array[], int howMany, int item)

{

    for (int i = 0; i < howMany; ++i)

        if (array[i] == item)

            return true;

    return false;

}

and convert it to

template <typename T>

bool contains (T array[], const T& howMany, const T& item)

{

    for (int i = 0; i < howMany; ++i)

        if (array[i] == item)

            return true;

    return false;

}

If it’s an array of strings, it doesn’t make sense for howMany to be 

const string&! It should remain an int.

•	 Using an operator that doesn’t work correctly for type T. Suppose 

I try to compare two T’s with != or use = – but T is an array. != and = 

don’t work right with arrays.

Chapter 20  Templates



426

template <typename T>

void copy (T& thing1, const T& thing2)

{

    if (thing1 != thing2) thing1 = thing2;

    ...

}

Or maybe I use the function template with a type that doesn’t even 

have != or =. The template won’t compile.

The usual fix is to use templates only with things that make sense. 

Classes you wrote (correctly) should be fine, because you wrote = 

and other relevant ops.

EXERCISES

	1.	 Write and use a function template that will print an item of any type you give, 

surrounded by *’s.

	2.	 Write and use a function template prompt which prints “?” before getting input 

with cin, then returns what it read as an & parameter. It should be able to read 

in any type cin can handle.

	3.	 Write function template sqr to square a value of any numeric type.

�The Vector class
Arrays are trouble. You can give an array an index of -2000 and it’ll happily give you 

something dumb. If you declared an array to hold 50 elements but decide you want 51, 

too bad.

We can fix that by making a better-behaved array-like class called Vector  

(see Examples 20-2 and 20-3).

Chapter 20  Templates



427

Example 20-2.  vector.h, for a vector of ints

//Vector class:  a variable-length array of ints

//  -- from _C++ for Lazy Programmers_

#ifndef VECTOR_H

#define VECTOR_H

class Vector

{

public:

    class OutOfRange {};    //exception, for [] operators

    Vector ()   { contents_ = new int[0]; howMany_ = 0; }

    Vector (const Vector& other) { copy (other);        }

    ~Vector ()  { delete [] contents_;                  }

    const Vector& operator= (const Vector& other)

    {

        if (contents_) delete [] contents_; copy (other);

        return *this;

    }

    bool operator== (const Vector& other) const;

    bool operator!= (const Vector& other) const

    {

        return !((*this) == other);

    }

    unsigned int size () const { return howMany_;      }

    int  operator[] (unsigned int index) const;

    int& operator[] (unsigned int index);

    void push_back  (int newElement); //add newElement at the back

    void print (std::ostream&) const;

Chapter 20  Templates



428

private:

    int* contents_;

    unsigned int howMany_;

    void copy (const Vector& other);

};

inline

std::ostream& operator<< (std::ostream& out, const Vector& foo)

{

    foo.print(out); return out;

}

#endif //VECTOR_H

It’s a lot like String, only of course I can’t use strcpy and so on.

Example 20-3.  vector.cpp

//Vector class:  a variable-length array of ints

//      -- from _C++ for Lazy Programmers_

#include <iostream>

#include "vector.h"

bool Vector::operator==(const Vector& other) const

{

    bool noDifferences = true;

    //quit if you find a difference or run out of elements

    for (unsigned int i = 0; i < size() && noDifferences; ++i)

        if ((*this)[i] != other[i]) noDifferences = false;

    return noDifferences;

}

int  Vector::operator[] (unsigned int index) const

{

    if (index >= size ()) throw OutOfRange ();

    else return contents_[index];

}

Chapter 20  Templates



429

int& Vector::operator[] (unsigned int index)

{

    if (index >= size()) throw OutOfRange();

    else return contents_[index];

}

//add newElement at the back

void Vector::push_back  (int newElement)

{

    int* newContents = new int [howMany_+1];

                                         //make room for 1 more...

    for (unsigned int i = 0; i < size(); ++i)

                                         //copy old elements

                                         // into new array...

        newContents[i] = contents_[i];

    newContents[howMany_] = newElement;  //add the new element...

    ++howMany_;                          //remember we have 1 more...

    delete [] contents_;                //throw out old contents_

    contents_ = newContents;            // and keep new version

}

//print Vector with []'s around it, spaces between

void Vector::print (std::ostream& out) const

{

    out << "[  ";

    for (unsigned int i = 0; i < size(); ++i)

        out << (*this)[i] << "  ";

    out << ']';

}

Chapter 20  Templates



430

//Sort of like String::copy from Chapter 17, but w/o strcpy

void Vector::copy(const Vector& other)

{

    //set howMany to other's size; allocate that much memory

    contents_ = new int[howMany_ = other.size()];

    //then copy the elements over

    for (unsigned int i = 0; i < size(); ++i)

        contents_[i] = other[i];

}

Example 20-4 shows how you might use it.

Example 20-4.  Using Vector

//Example with a Vector of int

//      -- from _C++ for Lazy Programmers_

#include <iostream>

#include <cassert>

#include "vector.h"

using namespace std;

int main ()

{

    Vector V;

    for (int i = 1; i < 11; ++i) V.push_back (i);

    cout << "Can you count to 10?  The Count will be so proud!\n";

    cout << V << endl;

    return 0;

}

So, it’s safe (throwing an exception if we give a bad index), and we can add as many 

elements as we want.

Chapter 20  Templates



431

�Efficiency (optional)
In Chapter 22 we’ll have another container for elements, the “linked list.” So that we can 

decide which container we want for this or that task – and for practice with O notation – 

let’s consider the efficiency (time requirements) of Vector’s member functions. (If you 

skipped O notation, skip the rest of this section.)

You might take time to decide for yourself what these functions will be in O notation.

OK, you’re back. Vector::copy, which is used by operator= and the copy 

constructor, has a loop in it that iterates size () times. push_back also has such a 

loop. Others just have some if statements. Table 20-1 shows the efficiencies of some 

functions, given N as the current array size.

The bottom line: if you want to do something to the whole vector, the time required 

is O(N) – no big surprise. If you’re just doing something with one element, the time 

required is O(1) – except push_back. That takes O(N) time, because you have to copy the 

old contents_ into a new chunk of memory.

Oh, well. It’s better than not having the flexibility. And there may be ways to make it 

quicker (see Exercise 3).

EXERCISES

	1.	 What is the time required for print, in O notation?

	2.	 Write pop_back. What is its time requirement? If it’s not O(1), you’re doing too 

much work!

Table 20-1.  Time required for some Vector functions

Function Efficiency (time requirement)

size O(1)

operator[] O(1)

operator= O(N)

copy constructor O(N)

push_back O(N)

Chapter 20  Templates



432

	3.	 (Harder) Rewrite push_back so that instead of reallocating every time you add 

a new element, it allocates enough for ten new elements – and only has to do 

this every tenth time. Does it change the time cost, in O notation? Do you think 

it’s worth doing?

	4.	 Write a class Queue. It’s like a Stack except that you take items off the 

opposite end from where you add them. So you get them out in the same order 

you put them in.

By convention, you “enqueue” onto one end and “dequeue” from the other.

What is the time for enqueue, and dequeue, in O notation?

�Making Vector a template
Am I going to write a brand new class depending on whether I want a Vector of integers, 

strings, or 1960’s rock musicians? I’m a lazy programmer. There’s no way I’ll do that.

Enter the class template. A class template is essentially a set of instructions for 

making a class, just as a function template is instructions for making a function.

There’s a simple list of changes we can make to convert Vector to be one and thus 

store different types:

	 1.	 Change any Vector declaration to say what it’s a Vector of. In 

Example 20-5, Vector becomes Vector<int>. This is the only 

change we make in that file.

Example 20-5.  Example 20-4, updated to use a class template for Vector

//Example with a Vector of int

//      -- from _C++ for Lazy Programmers_

#include <iostream>

#include <cassert>

#include "vector.h"

using namespace std;

Chapter 20  Templates



433

int main ()

{

    Vector V<int>; //Step #1: Vector becomes Vector<something>

    for (int i = 1; i < 11; ++i) V.push_back (i);

    cout << "Can you count to 10?  The Count will be so proud!\n";

    cout << V << endl;

    return 0;

}

	 2.	 Put the contents of vector.cpp into vector.h; erase vector.cpp.

It’s the same as in the function templates section: until you call 

push_back, the version of push_back that works with ints doesn’t 

exist. On that line, the compiler needs to know how to create the 

function, which means it needs the body of the function template. 

So the body has to be in the .h file.

	 3.	 Put template <typename T> in front of

	 a.	 The class definition

	 b.	 Each function body that’s outside the class definition

	 4.	 Replace int with T or const T& where appropriate, as with 

function templates.

	 5.	 Replace Vector with Vector<T>

	 a.	 when it’s part of Vector::

	 b.	 any time you’re not in the class, as in

std::ostream& operator<<(std::ostream& out,

                           const Vector<T>& foo);

or

Vector<T> somethingThatReturnsVector();

If you put Vector<T> in too many places, no one will shoot you. 

But it doesn’t work for constructor names.

Let’s see what that gives us (Example 20-6).

Chapter 20  Templates



434

Example 20-6.  Changing Vector to a class template

//Vector class:  a variable-length array

//      -- from _C++ for Lazy Programmers_

#ifndef VECTOR_H

#define VECTOR_H

template <typename T>           //Step #3 (a): add template <typename T>

class Vector

{

public:

    class OutOfRange {};    //exception, for [] operators

    Vector ()   { contents_ = new T[0]; howMany_ = 0; }//#4: int -> T

    Vector (const Vector& other) { copy (other);      }

    ~Vector ()  { delete [] contents_;                }

    const Vector& operator= (const Vector& other)

    {

        if (contents_) delete [] contents_; copy (other);

        return *this;

    }

    bool operator== (const Vector& other) const;

    bool operator!= (const Vector& other) const

    {

        return !((*this) == other);

    }

    unsigned int size () const { return howMany_;     }

    const T& operator[] (unsigned int index) const;

                                             //#4: int -> const T&

          T& operator[] (unsigned int index);

    void push_back  (const T& newElement);   //#4: int -> const T&

    void print (std::ostream&) const;

Chapter 20  Templates



435

private:

    T* contents_;                      //#4: int -> T

    unsigned int howMany_;

    void copy (const Vector& other);

};

template <typename T>                  //#3b: add template <typename T>

inline                                 //#5b: Vector->Vector<T>

std::ostream& operator<< (std::ostream& out, const Vector<T>& foo)

{

    foo.print(out); return out;

}

//#2: move contents of vector.cpp into vector.h

//   (still contained in #ifndef)

template <typename T>                  //#3b: add template <typename T>

bool Vector<T>::operator==(const Vector& other) const

                                       //#5a: Vector::->Vector<T>::

{

    bool noDifferences = true;

    //quit if you find a difference or run out of elements

    for (unsigned int i = 0; i < size() && noDifferences; ++i)

        if ((*this)[i] != other[i]) noDifferences = false;

    return noDifferences;

}

...

#endif //VECTOR_H

That’s all there is to it!

Now you can use that Vector with base types of your choosing. In Example 20-7 we 

use it with strings and more.

Chapter 20  Templates



436

Example 20-7.  Using the new Vector template with strings

//Example with a Vector of string

//      -- from _C++ for Lazy Programmers_

#include <iostream>

#include <cassert>

#include <string>

#include "vector.h"

using namespace std;

int main ()

{

    //Setting up the band...

    Vector<string> FabFour;

    string names[] = { "John","Paul","George","Ringo" };

    enum { NUM_BEATLES = 4 };

    for (int i = 0; i < NUM_BEATLES; ++i)

        FabFour.push_back(names[i]);

    cout << "The Fab Four: " << FabFour << endl;

    //Trying other base types...

    Vector<int> V; for (int i = 1; i < 11; ++i) V.push_back(i);

    Vector<Vector<double>> Grid;

    return 0;

}

�Antibugging
•	 The compiler says you didn’t write some member function of your 

class template, and you know you did. Is everything moved into the 

.h file?

•	 The compiler says your class template isn’t a type. Maybe you left 

off <myBaseType> from a variable declaration. 

Chapter 20  Templates



437

•	 The compiler complains that you’re using operator >> when you 
declared a Vector of Vectors: Vector<Vector<int>> Grid;.

Old compilers have this issue. Put a space between the closing >’s: 

Vector<Vector<int> > Grid;

EXERCISES

	1.	 Convert Vector’s push_back and copy to work with Vector as a template. 

My solutions are in the book’s source code.

	2.	A dapt the Point2D class from Chapter 17’s exercises to be a class template. 

You can now have Point2D’s made from doubles, or ints, or floats, or any 

other reasonable type.

	3.	 Convert class Queue from the previous exercises to be a template.

	4.	R ewrite CardGroup from the previous chapter as a subclass of 

Vector<Card>.

	5.	 (Uses move constructors, etc.) Add a move copy constructor and move = to 

Vector. My answers are in the book’s source code.

�Unusual class templates
You can have more than one typename, as in Example 20-8.

Example 20-8.  Class template pair, which allows you to specify two types, 

simplified from C++’s version in #include <utility>

template <typename S, typename T>

struct pair

{

      pair();

      pair(const S& s, const T& t);

      pair(const pair& other);

      //operators =, ==, !=, and others

Chapter 20  Templates



438

      S first;

      T second;

};

int main ()

{

    pair<int,string> P (1, "C++ for Lazy Programmers");

    cout << "The number " << P.first << " C++ text EVER is "

         << P.second << "!\n";

    return 0;

};

You can make a template argument be a value, as in Example 20-9.

Example 20-9.  A class template that allows you to specify an integer

template <int SIZE>

class Stack        //Stack of chars with at most SIZE elements

{

public:

      ...

      bool full  () const { return howMany_ >= SIZE; }

private:

      char contents_[SIZE];

      int  howMany_;

};

int main (int argc, char** argv)

{

      Stack<30> S;

      ...

}

Chapter 20  Templates



439

EXERCISES

	1.	 Using the Queue class template from the previous section, make a subclass 

PriorityQueue, in which each item has an attached priority. When you 

enqueue a new item, it goes ahead of all those in the Queue that have lower 

priority. You’ll want pair.

	2.	 (Hard) Make a class template BigInteger which acts as an integer of 

arbitrary size. Let the template parameter be the number of bytes (unsigned 

chars) you want in your BigInteger. Support all reasonable arithmetic 

operators and stream I/O.

	3.	R ewrite Montana to add a new option: undo. To support it, you’ll need to keep 

a Vector of moves so you can undo your last move, the one before that, and 

so on until there are no more moves to undo. What information does a move 

contain? The Vector can be emptied when a new turn begins.

�#include <vector>
I’ve kept something from you again; I’ve got to stop doing that. C++ already has an 

std::vector class template in #include <vector>. It isn’t as cool as ours, because it 

lacks a built-in print function, but you can’t have everything.1

std::swap and std::pair are also built in, in #include <utility>.

1�Actually STL has good reason for not having a print function: how do you want it delimited? 
Commas? Spaces? Do you want []’s around it, <>’s, ()’s? STL’s creators could work around it, and 
they have; we’ll see how in Chapter 23.

Chapter 20  Templates



441
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_21

CHAPTER 21

Virtual Functions and 
Multiple Inheritance
Virtual functions and multiple inheritance don’t show up in most classes I write – but 

when I need them, I need them.

�Virtual functions
Polymorphism is, essentially, using the same word to mean different things. We’ve been 

doing it all along. Consider the operator +. We use it for adding ints and for adding 

doubles. And strings. These are conceptually similar, but they’re done very differently 

by the machine.

Another example might be a function start, which could apply to a car, a plane, or a 

lawn mower. In each case, the body of the function will be different (turning a key, going 

through a flight check, pulling the crank cord). But the name is the same.

Consider classes we’ll want if we’re drawing 2D shapes on a computer screen: circles, 

rectangles, squares, and chunks of text, maybe. These have a lot in common: position, 

color, and the ability to be drawn and moved. We can call those common qualities 

“shape” qualities, and have a class Shape to hold them (Figure 21-1).

Figure 21-1 sets up the class hierarchy, and Examples 21-1 and 21-2 show some 

relevant class definitions.



442

Example 21-1.  shape.h

//Shape class, for use with the SSDL library

//            -- from _C++ for Lazy Programmers_

#ifndef SHAPE_H

#define SHAPE_H

#include "SSDL.h"

struct Point2D  //Life would be easier if this were a full-fledged

{               //  class with operators +, =, etc. . . . but that

    int x_, y_; //  was left as an exercise.

};

class Shape

{

public:

    Shape(int x = 0, int y = 0, const char* text = "");

    Shape(const Shape& other)           { *this = other;        }

    virtual ~Shape() { if (description_) delete[] description_; }

    //Color

    void  setColor(const SSDL_Color& c) { color_ = c;           }

    const SSDL_Color&  color   () const { return color_;        }

class Shape

is-a is-ais-a

class Rectangle class Textclass Circle

is-a

class Square

Figure 21-1.  A hierarchy of Shapes

Chapter 21  Virtual Functions and Multiple Inheritance



443

    //Access functions

    const Point2D&  location   () const { return location_;     }

    const char*     description() const { return description_;  }

    //Drawing

    void   drawAux() const;

    void   draw   () const

    {

        SSDL_SetRenderDrawColor(color()); drawAux();

    }

    //Moving

    void moveBy(int deltaX, int deltaY)

    {

        moveTo(location_.x_ + deltaX, location_.y_ + deltaY);

    }

    void moveTo(int x, int y)

    {

        location_.x_ = x;    //Point2D::operator= would help here!

        location_.y_ = y;

    }

private:

    Point2D    location_;

    SSDL_Color color_;

    char*      description_;  //Using char* not std::string helps

                              // illustrate how this chapter affects

                              // dynamic memory

    void copy(const char*);   //Used for copying descriptions

};

#endif

Shape contains what all shapes have in common, such as (say) color_. Notice 

function draw: it uses SSDL_SetRenderDrawColor to tell SSDL to start using the 

Shape’s color, then calls drawAux, an “auxiliary” (helper) function that does 

Chapter 21  Virtual Functions and Multiple Inheritance



444

the actual drawing. drawAux will be different for Circles (where it’ll use SSDL_

RenderDrawCircle), Texts (where it’ll call SSDL_RenderText), and so on. Circle’s 

drawAux is shown in Example 21-2.

Example 21-2.  circle.h

//Circle class, for use with the SSDL library

//       -- from _C++ for Lazy Programmers_

#ifndef CIRCLE_H

#define CIRCLE_H

#include "shape.h"

class Circle: public Shape

{

 public:

    Circle () : radius_ (0)  {}

    Circle (const Circle& c) { *this = c; }

    Circle (int x, int y, int theRadius, const char* txt="") :

    Shape (x, y, txt), radius_ (theRadius)

    {

    }

    const Circle& operator= (const Circle& c)

    {

        Shape::operator=(c); radius_ = c.radius(); return *this;

    }

    int radius () const { return radius_; }

    void drawAux() const

    {

        SSDL_RenderDrawCircle (location().x_, location().y_, radius());

    }

 private:

    int radius_;

};

#endif

Chapter 21  Virtual Functions and Multiple Inheritance



445

The code won’t work: the compiler complains that Shape::drawAux, called in 

Shape::draw, was not written. It’s right. Circle’s drawAux was written, but Shape::draw 

doesn’t know anything about Circle functions.

What we need is a way to make Shape::draw call the right version of drawAux: 

Circle::drawAux for Circles, Text::drawAux for Texts, and so on.

This is the fix: virtual functions.

Example 21-3.  The Shape class, with a virtual function

class Shape

{

public:

      ...

      virtual void drawAux ();

      ...

};

In the version in Example 21-3, we tell the Shape class, “Whenever you call drawAux, 

use the child class’s version, if there is one.”

Circle needs to be told that its drawAux is overriding a virtual function, so we do that 

as well (Example 21-4).1

Example 21-4.  The Circle class, with the override specifier

class Circle: public Shape

{

      ...

      void drawAux () const override;

      ...

};

1�override was added to the standard in C++11. It isn’t required, but it’s a very good idea. It makes 
the compiler notice if you spelled the parent and child functions differently or gave slightly 
different parameter lists or const specifications.

Chapter 21  Virtual Functions and Multiple Inheritance



446

�Behind the scenes
Before, an object of a given class stored only data members (Figure 21-2). It didn’t store 

member functions in memory with the object, as it would waste space.

But now the object also contains the address of any virtual function (Figure 21-3), so 

it remembers which version to call.

myCircle

REDcolor_

name_

15radius_

(25, 36)location_

{
...

}

void Circle::drawAux()

drawAux()

"Somebody's circle"

Figure 21-3.  A Circle object, using virtual functions

myCircle

REDcolor_

name_

15radius_

(25, 36)location_

"Somebody's circle"

Figure 21-2.  A Circle object, before virtual functions

Chapter 21  Virtual Functions and Multiple Inheritance



447

We added some overhead: an extra pointer for the drawAux function in every Circle. 

But it’s small overhead – nothing to be concerned about.

�Pure virtual functions and abstract base classes
Next question: how do we write Shape::draw(), anyway?

Unless we specify what kind of Shape it is – unless it’s a Circle or other subclass – 

there’s no answer to that question. So we’ll take the easy way out: we won’t write it for 

Shape, but will instead tell the compiler, “You can’t have a Shape that’s just a Shape, and 

this function is why.” Example 21-5 shows how that’s done.

Example 21-5.  The Shape class, with a pure virtual function. This makes Shape 

an “abstract” class

class Shape

{

public:

      ...

      virtual void drawAux ()=0;

      ...

};

By adding =0, we make drawAux a pure virtual function, and Shape into an 

abstract class, meaning one you can’t use to declare variables:

Shape myShape;    //Nope, can't do this, the compiler will stop you

Circle myCircle;  //No problem: it's a shape, but it's also a Circle,

                  //   and we can drawAux Circles

�Why virtual functions often mean using pointers
Example 21-6 shows something we might want to do with Shapes: put them into a vector, 

and do something (like draw()) to every Shape in the vector.

Chapter 21  Virtual Functions and Multiple Inheritance



448

Example 21-6.  An (unsuccessful) attempt to use a sequence of Shapes

//Program to show, and move, the Olympics symbol

//It uses Circle, and a subclass of Shape called Text

//           -- from _C++ for Lazy Programmers_

#include <vector>

#include "circle.h"

#include "text.h"

int main (int argc, char** argv)

{

    SSDL_SetWindowSize (500, 300); //make smaller window

    //Create Olympics symbol

    std::vector<Shape> olympicSymbol;

    enum {RADIUS = 50};

    //consisting of five circles

    olympicSymbol.push_back (Circle ( 50,  50, RADIUS));

    olympicSymbol.push_back (Circle (150,  50, RADIUS));

    olympicSymbol.push_back (Circle (250,  50, RADIUS));

    olympicSymbol.push_back (Circle (100, 100, RADIUS));

    olympicSymbol.push_back (Circle (200, 100, RADIUS));

    //plus a label

    olympicSymbol.push_back (Text (150,150,"Games of the Olympiad"));

    //color those circles (and the label)

    SSDL_Color olympicColors[] = { BLUE,

                           SSDL_CreateColor (0, 255, 255) /*yellow*/,

                           BLACK, GREEN, RED, BLACK };

    for (unsigned int i = 0; i < olympicSymbol.size(); ++i)

        olympicSymbol[i].setColor (olympicColors [i]);

    //do a game loop

    while (SSDL_IsNextFrame ())

    {

        SSDL_DefaultEventHandler ();

        SSDL_RenderClear (WHITE);      //clear the screen

Chapter 21  Virtual Functions and Multiple Inheritance



449

        //draw all those shapes

        for (unsigned int i = 0; i < olympicSymbol.size(); ++i)

            olympicSymbol[i].draw ();

        //move all those shapes

        for (unsigned int i = 0; i < olympicSymbol.size(); ++i)

            olympicSymbol[i].moveBy (1, 1);

    }

    return 0;

}

This makes sense: create a sequence of Shapes, then draw them. But it won’t work. 

One reason is that Shape is now an abstract class; since you can’t create something that’s 

just a Shape, you certainly can’t create a vector of them.

The other reason is that olympicSymbol[0], for example, has enough room to store a 

single Shape. That means it has room for a color_, a location_, a description_, and a 

pointer to drawAux. Where will you store the radius_ for a Circle? The contents_ of the 

Text object? There isn’t room!

To fix this, we need dynamic memory. Yes, I know: lazy programmers avoid dynamic 

memory, as it’s error-prone and harder to write. But sometimes you have to have it. In 

this case, when you create a Circle using new, it’ll allocate the amount it needs.

Example 21-7 shows how it’s done. It’s a little different from how we used dynamic 

memory before: then, we wanted an array, so we used []: char* str = new char 

[someSize], and delete [] str to clean up. This time, each time we allocate a Shape, 

we allocate one Shape. So we leave out the []’s: new Circle not new Circle []; delete 

not delete [].

We’ll get more practice allocating/deallocating single elements in the next chapter.

Example 21-7.  A program that successfully uses a vector of Shapes to display and 

move a complex symbol. Output is in Figure 21-4

//Program to show, and move, the Olympics symbol

//It uses Circle, and a subclass of Shape called Text

//           -- from _C++ for Lazy Programmers_

#include <vector>

#include "circle.h"

Chapter 21  Virtual Functions and Multiple Inheritance



450

#include "text.h"

int main (int argc, char** argv)

{

    SSDL_SetWindowSize (500, 300); //make smaller window

    //Create Olympics symbol

    std::vector<Shape*> olympicSymbol;

    enum {RADIUS = 50};

    //consisting of five circles

    olympicSymbol.push_back (new Circle ( 50,  50, RADIUS));

    olympicSymbol.push_back (new Circle (150,  50, RADIUS));

    olympicSymbol.push_back (new Circle (250,  50, RADIUS));

    olympicSymbol.push_back (new Circle (100, 100, RADIUS));

    olympicSymbol.push_back (new Circle (200, 100, RADIUS));

    //plus a label

    olympicSymbol.push_back

        (new Text (150,150,"Games of the Olympiad"));

    //color those circles (and the label)

    SSDL_Color olympicColors[] = { BLUE,

                           SSDL_CreateColor (0, 255, 255) /*yellow*/,

                           BLACK, GREEN, RED, BLACK };

    for (unsigned int i = 0; i < olympicSymbol.size(); ++i)

        (*olympicSymbol[i]).setColor (olympicColors [i]);

    //do a game loop

    while (SSDL_IsNextFrame ())

    {

        SSDL_DefaultEventHandler ();

        SSDL_RenderClear (WHITE);      //clear the screen

        //draw all those shapes

        for (unsigned int i = 0; i < olympicSymbol.size(); ++i)

            (*olympicSymbol[i]).draw ();

Chapter 21  Virtual Functions and Multiple Inheritance



451

        //move all those shapes

        for (unsigned int i = 0; i < olympicSymbol.size(); ++i)

            (*olympicSymbol[i]).moveBy (1, 1);

    }

    //Done with our dynamic memory -- throw it back!

    for (unsigned int i = 0; i < olympicSymbol.size(); ++i)

        delete olympicSymbol [i];

    return 0;

}

Figure 21-4.  Output of the Olympic Symbol program in Example 21-7

In this code, we maintain a vector not of Shape but of Shape*. Then, when we use 

new to create a Circle or Text, it can get us a chunk of memory the right size for that 

subclass.

Since olympicSymbol[i] is a pointer, we say not olympicSymbol[i].draw () but 

(*olympicSymbol[i]).draw ().2

2�If all those parentheses make your pinkies tired, well, we get an easier way to write this in the 
next chapter.

Chapter 21  Virtual Functions and Multiple Inheritance



452

Finally, as always when using dynamic memory, we throw back the memory with 

delete when we’re done.

To be sure it all gets thrown back, we need the next section.

�Virtual destructors
Consider the Text object used in Example 21-7, the one that contains “Games of the 

Olympiad.” Example 21-8 shows an implementation of it.

Example 21-8.  text.h

//Text class, for use with the SSDL library

//            -- from _C++ for Lazy Programmers_

#ifndef TEXT_H

#define TEXT_H

#include "shape.h"

class Text: public Shape

{

 public:

    Text (const char* txt = "")    { copy (txt);      }

    Text (const Text& other) : Shape (other)

    {

        copy (other.contents_);

    }

    Text (int x, int y, const char* txt = "") : Shape(x, y)

    {

        copy(txt);

    }

    ~Text () override { if (contents_) delete contents_; }

    const Text& operator=(const Text& other);

    const char* contents () const { return contents_; }

Chapter 21  Virtual Functions and Multiple Inheritance



453

    void drawAux         () const override

    {

        SSDL_RenderText (contents_, location().x_, location().y_);

    }

 private:

    char* contents_;

    void copy (const char* txt);//used for copying contents

};

#endif

It uses dynamic memory to allocate its character array. Naturally when we’re done, 

we’ll need to throw it back. But the statement in main that should do this –

for (int i = 0; i < olympicSymbol.size(); ++i)

      delete olympicSymbol [i];

– doesn’t. olympicSymbol [i] is a pointer to a Shape, not a Text; so it will only delete 

things that belong to the Shape. It doesn’t know about Text’s contents_.

The solution once again is to use the version of the destructor that does know: Text’s 

version. And we do that by making Shape’s destructor virtual and Text’s an override:

virtual Shape::~Shape () { if (description_) delete[] description_; }

        Text::~Text  () override  { if (contents_) delete contents_; }

Now, when the destructor on a Shape is called, the Shape will know which version to 

call. If it’s a Text, the destructor called will be Text::~Text () – which, when finished, 

then calls the destructor for parent class Shape, as destructors do whether they’re virtual 

or not.

It’s easy to forget, when you build an inheritance hierarchy, whether you used virtual 

functions in this or that class. And there’s no way to know when you’re writing the parent 

class that no descendant will ever use dynamic memory. So if there is any possibility 

anyone will allocate a subclass dynamically – and how would you know? – you should 

make the destructor virtual.

Chapter 21  Virtual Functions and Multiple Inheritance



454

Golden Rule of Virtual Functions

(Usual version) If you’re using virtual functions in a class hierarchy, make the 
destructors virtual.

(Stronger version) Since you don’t know when you write a class what people 
writing subclasses will do…make all destructors virtual. Period.

I used char* contents_ in Text, and char* description_ in Shape, to make it 

obvious we’d need destructors. But if we’d used C++’s string class instead, the same 

thing would have happened: when you deleted a pointer to Shape that was actually a 

pointer to a Text, delete wouldn’t know that it was really a Text and wouldn’t know 

to tell string contents_ to call its destructor. So you’d still need to give Shape a virtual 

destructor:

virtual Shape::~Shape ()              { }

�Inheritance and move ctor/move = (optional)
If you write the move constructor and move = for Shape and its subclasses, you may find 

that Shape’s works fine, but when you try to use it from Circle:

Circle (Circle&& c) : Shape (c) //Nope, not working right...

{

    radius_ = c.radius();

}

…it calls Shape’s regular copy constructor instead.

When you use Circle’s move constructor, it’s because C++ thinks the thing being 

copied is an “r-value,” a thing that you can safely use up, mangle, and so on, as it’s not 

going to be used again, so we’re perfectly safe stealing its memory.

But while it’s in the constructor, we need to keep it around till we’re done, so its 

r-value-ness is taken away. So we call Shape (c) and it won’t use the move constructor.

Chapter 21  Virtual Functions and Multiple Inheritance



455

C++’s fix is to force it back to an r-value for that call:

#include <utility> //for std::move

...

Circle (Circle&& c) : Shape (std::move (c))

{

    radius_ = c.radius();

}

It works the same with move =:

const Circle& operator= (Circle&&       c)

{

    Shape::operator=(std::move(c)); radius_ = c.radius();

    return *this;

}

For more examples of move semantics (that’s what they call use of move constructors 

and move =), please see the shapes project in the book’s source code.

�Antibugging
•	 The compiler says your subclass’s override function doesn’t match 

any in the base class. You may have left off a const on the function 

header, or spelled the function name differently, or given it a slightly 

different parameter list.

•	 The compiler says your subclass is abstract, but it doesn't contain 
pure virtual functions. For example,

Circle myCircle;

might complain that Circle is abstract – but you didn’t put any 

virtual functions in it at all!

Chapter 21  Virtual Functions and Multiple Inheritance



456

You may have forgotten to override the parent’s pure virtual 

functions. This makes the subclass abstract too.

Or you may have forgotten to make the corresponding child class 

function an override, and its header didn’t perfectly match the 

parent’s (see the previous entry in this “Antibugging” section). 

Solution: add override.

EXERCISES

	1.	I n this simple shooting game, a powerup is a target you can hit with a mouse 

click. The types of powerup – FlashyPowerup, MegaPowerup, or Wormhole – 

give different points and show different animations when you hit one (see 

Figure 21-5).

Figure 21-5.  The Powerup exercise, showing the “wormhole” animation

Chapter 21  Virtual Functions and Multiple Inheritance



457

In this chapter’s section of the sample code, you’ll find a partially written 

program for shooting powerups. It uses the Shape hierarchy. To get it 

working, you’ll need to alter main.cpp to use pointers and add virtual and 

override in the right places in the Powerup class hierarchy.  

I recommend making Powerup abstract, for the same reason as with Shape.

	2.	I n the CardGroup class hierarchy from Chapter 19, add functions 

isLegalToAdd and isLegalToRemove to every subclass that might need 

them. (For example, Cell::isLegalToAdd returns true only if the cell is 

empty and Cell::isLegalToRemove only if it’s not.)

Let CardGroup’s addCardLegally call isLegalToAdd, using virtual 

functions so it calls the appropriate subclass version. No other class should 

have its own addCardLegally.

Test to be sure the right functions are actually called. You may want some 

try-catch blocks.

	3.	 (Bigger project) Expanding on Exercise 2, write a nongraphical FreeCell game. 

You should have an array or vector of CardGroup (CardGroup*, actually) 

including FreeCellPiles, Cells, and Foundations. Let the user specify 

which CardGroup to move a card from or to (“F1” for foundation 1, “P2” for 

pile 2, say). The CardGroup chosen knows, based on what subclass it is, 

which version of isLegalToAdd or isLegalToRemove to use:

CardGroup* from = askUserToPickCardGroup();
if (from->isLegalToRemove())

                  //can we take card from top?

    ...

�Multiple inheritance
Consider the two classes in Example 21-9, made for a 3D graphics program.

Chapter 21  Virtual Functions and Multiple Inheritance



458

Example 21-9.  Classes Object and Model

class Object

{

public:

   Object ();

   Object (const Object&);

     ...

private:

   double velocity;

   double acceleration;

   Point3D position;

};

class Model

{

public:

   Model ();

   Model (const Model&);

   void load (const char* filename);

   void display () const;

     ...

private:

   vector<Triangle> Contents;

};

Class Object has position, velocity, and acceleration. It’s for working with the laws of 

motion.

Class Model is something with a physical appearance. It’s composed of triangles, 

which probably fit together to make an apparently solid object.

Can you have Objects that aren’t Models? Sure. You might have a model in some 

other format, not using triangles – a sphere, maybe.

Can you have Models that aren’t Objects? Sure. You could be using CAD/CAM to 

design products for manufacturing.

So a Model isn’t an Object and an Object isn’t a Model…but it makes sense to have 

something be both. I’ll call that something ModelObject (Figure 21-6).

Chapter 21  Virtual Functions and Multiple Inheritance



459

Since ModelObject is a Model and an Object, it inherits the characteristics of both: it 

will have position, velocity, and acceleration like an Object, and the vector of Triangles, 

plus the load and display functions, from Model.

We can use public or private inheritance. public makes sense.

Example 21-10.  Class ModelObject: an illustration of multiple inheritance

class ModelObject: public Model, public Object

{

public:

      ModelObject () {}

      ModelObject (const ModelObject& other)

            : Model (other), Object (other)

      {

      }

      ...

};

To call the parent constructors, use the “:” just as you do with ordinary inheritance; 

but this time, call both parent constructors (or use their defaults).

This isn’t often needed, but when it is, it’s convenient.

�Antibugging
Suppose we make a role-playing game. In it we have class Player, with a name_ and 

a number of hitPoints_. It also has a member function takeAttack (int howMuch) 

which reduces the hit points by a given amount.

We make two subclasses, Fighter and Magician. A Fighter has a member attack, 

which takes a Player and reduces its hit points. A Magician has a member bespell, 

which does a magic attack.

class Objectclass Model

class ModelObject

is-a is-a

Figure 21-6.  Inheriting ModelObject from Model and Object

Chapter 21  Virtual Functions and Multiple Inheritance



460

But some games let you make hybrid classes for your characters. We’ll make 

FighterMagician a subclass of both Fighter and Magician. Now we have a class that 

can both attack and bespell. Cool.

But here’s a problem. Fighter has members hitPoints_ and name_ (inherited 

from Player). Magician also has hitPoints_ and name_ (inherited from Player). So 

FighterMagician has two copies of hitPoints_ and two copies of name_!

This is called the “diamond problem,” for some reason. Maybe Figure 21-7 will give 

us a clue?

We can’t reason our way out of this one; C++ will have to help us. And it does: it lets 

us make Fighter and Magician “virtual” base classes, essentially saying, “Don’t do that 

extra-copies-of-common-grandparent-members thing.”

class Fighter:  virtual public Player ...

class Magician: virtual public Player ...

One more issue: since Fighter and Magician may call different Player constructors, 

which would lead to ambiguity, FighterMagician has to explicitly state what Player 

constructor it wants called, like so:

FighterMagician (const char* name) : Fighter ([some args]),

                                     Magician ([some args]),

                                     Player (name)

{

}

class Player

is-a is-a

class Magicianclass Fighter

class FighterMagician

is-a is-a

Figure 21-7.  The diamond problem in multiple inheritance

Chapter 21  Virtual Functions and Multiple Inheritance



461

If we don’t specify, the compiler will use the default.

EXERCISES

	1.	 Write the classes from the preceding “Antibugging” section – Player, 

Fighter, Magician, and FighterMagician.

Since you’re not making a real game, to keep it simple, attack and 

bespell can both just pick random numbers to take from the opponent’s 

hit points. It doesn’t matter if the FighterMagician uses attack or 

bespell – just pick one in main for its method of fighting.

Now let a Fighter (say) go up against a FighterMagician, and see who 

wins the match.

	2.	U sing the Shape class, make a class Composite which is both a Shape (so 

it has a location, virtual drawAux, etc.) and a vector of Shape* (so it 

can be made of circles, texts, whatever). Be sure that your Composite can be 

created, moved, and displayed and is properly destructed.

One tricky bit is that a Composite has two kinds of locations: the one 

inherited from Shape and the locations of all its subcomponents. Make your 

move functions update all locations.

	3.	I f you did Exercise 1 in the section on virtual functions, you can extend it with 

a PowerupSet class, which is both a Shape and a vector of Powerup*. Be 

sure your PowerupSet can be created, drawn, and animated and is properly 

destructed. The functions in main.cpp that take vector<Powerup> (or some 

such) should be altered to take PowerupSet.

PowerupSet has two kinds of locations: the one inherited from Shape and 

the locations of its subcomponents. Make your move functions update all 

locations.

Chapter 21  Virtual Functions and Multiple Inheritance



463
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_22

CHAPTER 22

Linked Lists
One problem with the Vector class is the time it takes to add an element: O(N), where N 

is the number of elements already in the Vector.

So here’s another scheme for maintaining a sequence that will be quicker to update.

�What lists are and why have them
All around the city a group of superheroes is waiting. They have a scheme for notifying 

each other if their powers are needed: each has the phone number of another, who has 

the number of another, until the last one on the list, who has none. (See Figure 22-1.)

"Wunderkind"

next #: none

"Amazing Girl" 

next #: 555-0145first #: 555-0169

"Somewhat 
Competent Boy"

next #: 555-0126

555-0169

555-0126

555-0145

Figure 22-1.  Our city, with three superheroes in a linked list. Amazing Girl is first, 
at 555-0169; Somewhat Competent Boy is at 555-0145; Wunderkind is at 555-0126



464

"Wunderkind"

next #: none

"Amazing Girl" 

next #: 555-0145

first #: 555-0169

"Bug Spray Man"

next #: 555-0169

"Somewhat 
Competent Boy"

next #: 555-0126

555-0193 555-0169

555-0126

555-0145

Figure 22-2.  The same linked list, after we add Bug Spray Man

In the computer, we don’t use phone numbers, but memory addresses. This data 

structure holds the information each person has:

struct Superhero

{

      std::string name_;      //The Superhero's name

      Superhero*  next_;      //The address of the next Superhero

};

Remember, Superhero* means pointer to Superhero – where to find a Superhero 

in the computer’s memory, just as Shape* meant where to find a Shape in Chapter 21. 

Wunderkind comes last and has “none” as her next phone number, so we’ll set her next_ 

field to nullptr, C++’s special pointer that means “nothing.” 

Suppose we want to add another hero to the list. It’s quick and easy: give him the 

number of the current first in the list. He’ll put it into his next_ field. Then remember his 

contact information as the new first number (see Figure 22-2).

Chapter 22  Linked Lists



465

Table 22-1.  Time required for some Vector and List functions

Function Efficiency (Vector) Efficiency (List)

operator[] O(1) O(N)

operator= O(N) O(N)

copy constructor O(N) O(N)

push_back O(N) not written

push_front not written O(1)

More formally, the algorithm is

create a new Superhero struct

put the name of the new person into the Superhero

put the pointer to the start of the list into the Superhero, as "next"

let the new start of the list be the address of the new Superhero

There’s no loop here, and no recursion, so the time requirement is O(1). A big 

improvement over Vector’s O(N)!

But suppose we want to look at the ith element (whatever i may be) – that is, use 

operator[]. How can we do this? With Vector, it was just contents_[index] – no loop, 

no repetition, and therefore O(1). Here, we have to go sequentially:

current position = start;

for j = 0; j< index; ++j

      current position = the address of the next Superhero;

      if we go off the end of the list, throw an exception;

return the name in the current position;

This does have a loop – and its time requirement is O(index). On average, that’ll be 

O(N/2), or O(N).

Table 22-1 shows how you’ll know which is better for a given task, Vector or List. If 

you do a lot of lookup (operator[]), Vector is quicker. If you do a lot of adding (push_

back or push_front), List is quicker.

Chapter 22  Linked Lists



466

I often use Vector, because I find that I look into a sequence more often than I 

build it. If the sequence is small, it won’t matter much. If it’s huge, you should pay more 

attention to picking the best one.

Let’s move now to writing the List. We’ll drop the superhero analogy and make List 

a template (Example 22-1).

Example 22-1.  The List class, first version

//class List:  a linked list class

//      from _C++ for Lazy Programmers_

#ifndef LIST_H

#define LIST_H

template <typename T>

class List

{

public:

    List ();

    List (const List <T>& other);

    ~List();

    const List <T>& operator= (const List <T>& other);

    bool operator== (const List <T>& other) const;

    int  size () const;

    bool empty() const;

    void push_front(const T& newElement);   //add newElement at front

    void pop_front ();                      //take one off the front

    const T& front () const;                //look at front element

    void print(std::ostream&) const;

private:

Chapter 22  Linked Lists



467

    struct Entry1

    {

        T      data_;

        Entry* next_;

    };

    Entry* start_;        //Points to first element in list

};

It’s like Vector, except

•	 We use push_front not push_back.

•	 The data members are different.

•	 I left out operator[]. It’s so inefficient that after years of grousing 

that I don’t care if it’s inefficient just let me use it! I’ve bowed to the 

community and left it out. We’ll get a more appropriate way to access 

the members in the next chapter anyway.

Let’s write some of those functions now, starting with the default constructor.

�List<T>::List ()
It makes sense to have the default List be empty. How do we specify that a list is empty? 

By convention, this is true when the pointer start_ is nullptr. You could say that it 

points to nothing – because there’s nothing in the list.

template <typename T>

class List

{

public:

      List () { start_ = nullptr; }

      ...

};

1�One struct/class inside another? No problem: we’ve had classes inside classes before. But the 
struct’s data members are public (by default). Is this a security risk? Not at all. They’re still in 
List’s private section..

Chapter 22  Linked Lists



468

�void List<T>::push_front  
    (const T& newElement);
When we begin push_front, we have the List as it was, containing start_; and a 

newElement. We need newElement added to the front, as shown in Figure 22-3.

Here’s how to make that happen:

create an Entry

put the newElement into its data field

put the old version of start into its next field

put the address of the new Entry into start

Seems straightforward enough. Here it is in code.

template <typename T>

void List<T>::push_front (const T& newElement)

{

    Entry* newEntry   = new Entry; //create an Entry

    (*newEntry).data_ = newElement;//put newElement in its data field

    (*newEntry).next_ = start_;    //put old version of start

                                   //  in its next field

    start_            = newEntry;  //put address of new Entry

                                   //  into start

}

newElement "Bug Spray Man"

"Bug Spray Man"

rest of list...

the list (*this)

start_

newElement "Bug Spray Man"

rest of list...

the list (*this)

start_

Before push_front... ...and after

Figure 22-3.  Before, and after, adding a new element to a List

Chapter 22  Linked Lists



469

Let’s take that line by line.

The first line, Entry* newEntry = new Entry;, uses dynamic memory to create the 

new Entry. Just as in Chapter 21 with new Shapes, we’re only allocating one Entry at a 

time, not an array of them, so we don’t need []’s.

In the second line, newEntry is the address of the new Entry, so *newEntry is that 

Entry itself. (*newEntry).name_ therefore is its name_ field. The third line is similar.

The fourth line stores the address of newEntry in the start_ field of the List, so we’ll 

remember where to find it. Our new Entry now directs us to the rest of the List. If the 

List had elements, good; we’ll see them. If the List was empty, then that pointer to the 

rest of the list is nullptr. Also good: we’ll know that’s the end.

�void List<T>::pop_front()
…a function to take off the first element. Here’s my first attempt. (For brevity I just show 

the code, but of course I’d write the algorithm first.)

template <typename T>

void List<T>::pop_front()

{

      if (empty()) throw Underflow();

      delete start_;              //delete the item

      start_ = (*start_).next_;   //let start_go on to the next

}

(Remember that, as in Chapter 21, we use delete not delete [] – because we used 

new without the []’s, allocating not an array but a single Entry.)

So let’s say we’re taking Bug Spray Man off that list. Figure 22-4 shows what we 

start with.

"Bug Spray Man"

rest of list...

the list (*this)

start_

Figure 22-4.  Getting ready to pop_front

Chapter 22  Linked Lists



470

I’ll trace through the steps. Is it empty? No problem there. Now we delete what 

start_ points to, and get Figure 22-5.

Then we access (*start_).next_. But what start_ pointed to has been deleted and 

no longer exists. The address of the rest of the list is gone. Crash!

Maybe we could do this in a different order: delete things only after we’re sure we’re 

done with them.

template <typename T>

void List<T>::pop_front()

{

    if (empty()) throw Underflow();

    Entry* temp = start_;      //store location of thing to delete

    start_ = (*start_).next_;  //let start_ = next thing after start_

    delete temp;               //delete the item

}

Now let’s see how it goes.

We check for the empty condition; no problem.

We set temp equal to start_ (Figure 22-6).

"Bug Spray Man"

rest of list...

the list (*this)

start_

Figure 22-5.  We deleted the element in pop_front. Nope, that’s not right….

temp

"Bug Spray Man"

rest of list...

myList

start_

Figure 22-6.  Starting pop_front (again)

Chapter 22  Linked Lists



471

We move start_ to point to the rest of the list (Figure 22-7)...

…and we delete the Entry we no longer need (Figure 22-8).

When doing lists, I’m always drawing these boxes and arrows: without them, I’m 

bound to lose pointers, follow bad ones, and so on. So I get this Golden Rule.

Golden Rule of Pointers

When changing or deleting pointers, draw diagrams of what you’re doing.

temp

"Bug Spray Man"

rest of list...

myList

start_

Figure 22-7.  Setting start_ to where it should go….

temp

"Bug Spray Man"

rest of list...

myList

start_

Figure 22-8.  pop_front now works correctly

Chapter 22  Linked Lists



472

�List<T>::~List()
Eventually we have to throw all those Entrys back.

I could write a while loop to delete them, making a diagram to make sure I don’t lose 

any pointers, but…I’m a lazy programmer. Do I already have something to throw back 

Entrys safely? Sure: pop_front.

template <typename T>

List<T>::~List () { while (!empty()) pop_front(); }

Done.

�->: a bit of syntactic sugar
Writing (*newEntry).next_ is wearing out my pinkies from using the shift key. 

Fortunately, C++ provides another way of writing exactly the same thing, easier to type, 

and a little easier to read:

newEntry->next_; //means (*currentPointer).next_;

So here’s our new version of push_front.

template <typename T>

void List<T>::push_front (const T& newElement)

{

    Entry* newEntry = new Entry; //create an Entry

    newEntry->data_ = newElement;//put newElement in its data field

    newEntry->next_ = start_;    //put old version of start in

                                 //  its next field

    start_          = newEntry;  //put address of new Entry

                                 //  into start

}

�More friendly syntax: pointers as conditions
We often need code like this

if (next_ != nullptr)...

Chapter 22  Linked Lists



473

or

while (next_ != nullptr) ...

Consider how conditions for if statements (and for loops, while loops, and do-

whiles) work. The expression between the ()’s is evaluated. If it evaluates to 0, that 

means false; anything else is true.

Well, nullptr is kind of like 0 – at least, it means “nothing.” Nothing, false, 0, 

whatever. So you can write

if (next_ != nullptr)...

as

if (next_)...

“If next_ isn’t nothing; if there is a next thing…” is what this condition is saying. Use it 

if you find it convenient.

�The linked list template
Example 22-2 contains completed versions of the preceding functions, plus a few others. 

Some are left as exercises.

Note how operator= is implemented. To set one list equal to another, you must 

throw away the old memory with delete; let start_ be nullptr, meaning that the list is 

now empty; then copy the other List’s Entrys into this List.

Since we want to throw away the old memory…weren’t we doing that already, in 

the destructor? Yes: so we make a function eraseAllElements that can be called by 

operator= and the destructor, for code reuse.

createEmptyList is another utility function for code reuse.

Example 22-2.  list.h, containing the List class

//class List:  a linked list class

//    from _C++ for Lazy Programmers_

#ifndef LIST_H

#define LIST_H

Chapter 22  Linked Lists



474

template <typename T>

class List

{

 public:

    class Underflow  {};                  //Exception

    List ()                                 { createEmptyList();  }

    List (const List <T>& other) : List ()  { copy(other);        }

    ~List()                                 { eraseAllElements(); }

    const List <T>& operator= (const List <T>& other)

    {

        eraseAllElements (); createEmptyList(); copy(other);

        return *this;

    }

    bool operator== (const List <T>& other) const; //left as exercise

    int  size         () const;              //left as exercise

    bool empty        () const { return size() == 0; }

    void push_front(const T& newElement);   //add newElement at front

    void pop_front ();                      //take one off the front

    const T& front () const;                //left as exercise

    void print     (std::ostream&) const;   //left as exercise

 private:

    struct Entry

    {

        T      data_;

        Entry* next_;

    };

    Entry* start_;                          //Points to first element

    void copy(const List <T>& other);       //copies other's entries

                                            //  into this List

    void eraseAllElements ();               //empties the list

Chapter 22  Linked Lists



475

    void createEmptyList  ()

    {

        start_ = nullptr;                   //the list is...nothing

    }

};

template <typename T>

inline

std::ostream& operator<< (std::ostream& out, const List <T>& foo)

{

    foo.print(out); return out;

}

template <typename T>

void List<T>::eraseAllElements () { while (!empty()) pop_front(); }

template <typename T>

void List<T>::push_front (const T& newElement)

{

    Entry* newEntry = new Entry; //create an entry

    newEntry->data_ = newElement;//set its data_ field to newElement

    newEntry->next_ = start_;    //set its next_ field to start_

    start_          = newEntry;  //make start_ point to new entry

}

template <typename T>

void List<T>::pop_front()

{

    if (empty()) throw Underflow();

    Entry* temp = start_;   //store location of thing to delete

    start_ = start_->next_; //let start_ = next thing after start_

    delete temp;            //delete the item

}

template <typename T>

Chapter 22  Linked Lists



476

void List<T>::copy(const List <T>& other)

{

    Entry* lastEntry = nullptr;   //last thing we added to this list,

                                  //  as we go thru other list

    Entry* otherP = other.start_; //where are we in the other list?

    //while not done with other list...

    //   copy its next item into this list

    while (otherP)

    {

        //Make a new entry with current element from other;

        // put it at end of our list (so far)

        Entry* newEntry = new Entry;

        newEntry->data_ = otherP->data_;

        newEntry->next_ = nullptr;

        //If list is empty, make it start_ with this new entry

        //If not, make its previous Entry recognize new entry

        //  as what comes next

        if (empty()) start_           = newEntry;

        else         lastEntry->next_ = newEntry;

        lastEntry = newEntry;  //Keep pointer for lastEntry updated

        otherP = otherP->next_;//Go on to next item in other list

    }

}

#endif //LIST_H

Chapter 22  Linked Lists



477

�Antibugging
When pointers go wrong, they really go wrong. You’ll probably get a program crash.

Here are the worst and most common pointer-related errors:

•	 Crash, from following a nullptr – for example, saying *myPointer 

when myPointer is nullptr. The best preventative: before you refer to 

what a pointer points to (by putting the * in front or -> after), always 

check:

if (myPointer != nullptr) ...

When pointers are involved, paranoia is a Good Thing.

•	 Crash, from using a pointer that has not been initialized. Solution: 

always initialize every pointer. If you don’t know what to initialize it 

to, use nullptr. Then if (myPointer != nullptr)... will prevent 

the error (see previous paragraph).

•	 Crash, from following a pointer that points to something that's 
been deleted. Tracing what the code does with diagrams, as I 

did in previous sections, is the best prevention I know. Once you 

have a few functions that you trust, you can be lazy, as I was with 

eraseAllEntries: let a trusted function like pop_front do the scary 

work.

•	 The program gets stuck in a loop.

Entry* p = start_;

while (p)

{

   ...

}

The problem here is I forgot to make the while loop go on to the 

next entry:

p = p->next_;

I am less likely to forget if I put it in the form of a for loop:

for (Entry* p = start_; p != nullptr; p = p->next)...

Chapter 22  Linked Lists



478

EXERCISES

	1.	 Write List::front () const. (This and the rest of these exercises except 

the last have answers in the next chapter’s sample code.)

	2.	 Write List::size () const. Can you make it work in O(1) time?

	3.	 Write List’s member function operator==. Use the -> operator where 

appropriate.

	4.	 Clean up the code a bit by giving Entry a constructor taking the data field 

and, optionally, the next field. This should help prevent the error of forgetting to 

initialize.

	5.	 Write List::print (std::ostream&) const.

	6.	 (Requires move ctors, move =) Give List a move constructor and move =.

	7.	 (Harder) Add a data member Entry::prev_, so that you can traverse the 

list backward; and List::rStart_, so you’ll know where to start. Also add 

List member functions push_back, pop_back, back, and List::print_

backwards.

�#include <list>
Yes, the linked list class is also built in. It lacks print. It lacks operator[]. On the other 

hand, it does have push_back – see Exercise 6 – and lots of other functions you can look 

up on your own.

So here’s a problem: if you can’t use [], how can you get to the elements of a list? It’s 

pretty useless if you can’t! Well, there is a way: it’s called “iterators,” and it’s covered in 

the next chapter.

Chapter 22  Linked Lists



479
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_23

CHAPTER 23

The Standard Template 
Library
Should every programmer make his/her own vector class, list class, and so on? Oh, of 

course not. So some time back the Standard Template Library (STL) was developed and 

put into the standard. In STL you’ll find containers like list and vector; strings, as we 

already use them; and commonly needed functions like swap, find, and copy.

You’ll also find an annoying emphasis on efficiency. I say “annoying” because STL 

promotes efficiency by disabling things you may want to do that are inefficient. For 

instance, if you want to use operator[] with a list you can forget it: it takes too long 

(O(N) time). If you want that, the makers of STL reasoned, you can use a vector. They’re 

right. But I still get to be annoyed.

We’ve got to get at the elements of a list somehow. How? Let’s deal with that now.

�Iterators
operator[] for list doesn’t exist. Entry* is private. What can we do?

STL’s list class provides iterators: things that say where we are in the list, and can 

traverse it. Example 23-1 shows what you can do with them.

Example 23-1.  Using iterators

//doSomethingTo each element of myList, from beginning to end

for (list<T>::iterator i = myList.begin(); i != myList.end(); ++i)

      doSomethingTo (*i);



480

The iterator type is a member of list<T> like our Entry struct, only publicly 

available. As shown, it often starts at begin (), that is, the start of the list, and keeps 

going till it reaches the end () (Figure 23-1).

end() refers not to the last element, but to one past the last element. We use it to see 

if we’re going too far, and we test this using != rather than <. (Whether one iterator is less 

than another is not defined – but whether they’re equal is.)

++i and i++ work as expected: they take you to the next element.

To get not the iterator but the thing it’s referring to, put the * in front, as in  

Example 23-1.

That’s all there is to it!

Is your reaction something like “But what is an iterator?”?

Formally, it’s just as described: it’s a thing that refers to an element in the list, and 

when you say ++, it goes to the next element.

Informally…it’s not exactly a pointer, but it does point to something. You can use * 

with it, and ->, just as you would with a pointer. But ++ means go to the next element in 

the list, not the next memory address, as it would with a pointer. Think of it as a souped 

up pointer if you like – or a finger you can put on an entry, and can move to the next 

when you like – but what it really is is a class, something like in Example 23-2.

"Desmond" "Madeliene" "Pascal" (caboose)

end ()begin ()

i

Figure 23-1.  A list, with its begin() and end() access functions, and an iterator i 
denoting the second element. end() is one step past the last element

Chapter 23  The Standard Template Library



481

Example 23-2.  An iterator class for List

template <typename T>

class List

{

public:

    class BadPointer{};                    //Another exception class

    ...

private:

    ...

    Entry* start_;                         //Points to first element

    Entry* end_;                           //...and the caboose

public:

    class iterator                         //An iterator for List

    {

    public:

        iterator(const iterator& other)  : where_(other.where_) {}

        iterator(Entry* where = nullptr) : where_(where)        {}

        const iterator& operator= (const iterator& other)

        {

            where_ = other.where_;

        }

        bool operator== (const iterator& other) const

        {

            return where_ == other.where_;

        }

        bool operator!= (const iterator& other) const

        {

            return !((*this) == other);

        }

Chapter 23  The Standard Template Library



482

        const iterator& operator++()    //pre-increment, as in ++i

        {

            if (where_->next_ == nullptr) throw BadPointer();

            else where_ = where_->next_;

            return *this;

        }

        iterator operator++ (int)       //post-increment, as in i++

        {

            iterator result = *this; ++(*this); return result;

        }

        T& operator* ()

        {

            if (where_->next_ == nullptr) throw BadPointer();

            return where_->data_;

        }

        T* operator->()//Yes, this really is how you do it. It works!

        {

            if (where_->next_ == nullptr) throw BadPointer();

            return &(where_->data_);

        }

    private:

        Entry* where_;

    };

    iterator       begin() { return iterator(start_); }

    iterator       end  () { return iterator(end_  ); }

};

And now we can get to the List’s contents without taking it apart.

Chapter 23  The Standard Template Library



483

�…with vector, too
lists need iterators. But STL provides them for vector and other containers, and STL 

mavens recommend using them. Why?

•	 Easy rewriting of code. Consider these two versions of code with a 

vector:

for (int i = 0; i < v.size(); ++i)

      doSomething(v[i]);

and

for (vector<T>::iterator i = v.begin(); i != v.end(); ++i)

      doSomething(*i);

I write this and later think, no, I see now vector isn’t the way to 

go; list is better.

If I used the first version, I’ve got major changes on both lines. If I 

used the second, all I have to do is change vector to list.

•	 Some member functions of vector already require iterators. 

insert, for instance.

•	 Generic programming. Suppose there’s something you may want to 

do with a container – any container.

... find(digits.begin(), digits.end(), 7); //Is a 7 in there?

Since the version for list must have iterators, the version for 

vector has iterators too. That way you can learn one way to call 

the function and it’ll work regardless of your choice of container. 

The section on algorithm later in this chapter introduces a few of 

many such functions STL provides.

But if you do use int index for vectors as before, the sky won’t fall.

Chapter 23  The Standard Template Library



484

�const and reverse iterators
Often using an iterator gives an unexpected type conflict. Consider this code:

class EmptyList {};                  //Exception

template <typename T>

double findAverageLength(const List<T>& myList)

{

      if (myList.empty()) throw EmptyList();

      double sum = 0;

      for (List<string>::iterator i = myList.begin();

           i != myList.end();

           ++i)

            sum += i->size();

      return sum / myList.size();

}

The compiler gives an error message that boils down to: vec is const, but you’re 

using an iterator with it, and that’s a type conflict.

This is how STL prevents you from using an iterator with a const container and 

doing something that alters the container. The solution:

template <typename T>

double findAverageLength(const List<T>& myList)

{

      if (myList.empty()) throw EmptyList();

      double sum = 0;

      for (List<string>::const_iterator i = myList.begin();

           i != myList.end();

           ++i)

            sum += i->size();

      return sum / myList.size();

}

Chapter 23  The Standard Template Library



485

That’s all it takes.

If you prefer you can go through the container backward (note the rbegin and rend – 

the same as begin and end, only in reverse):

for (list<T>::reverse_iterator i=myList.rbegin();

      i !=myList.rend();

      --i)

    doSomethingTo (*i); //myList must be non-const

…or do backward and const:

for (List<string>::const_reverse_iterator i = myList.begin();

     i != myList.end();

     ++i)

    sum += i->size();

To know which to use:

•	 To go through the container, use an iterator.

•	 If the container is const, use const_iterator.

•	 If you’re going backward, stick reverse_ in there somewhere.

To get comfortable with iterators, I recommend doing Exercises 3 and 4.

�Antibugging
•	 You get an error message too long to read:

conversion from 'std::__cxx11::list<std::pair<std::__cxx11::basic_

string<char>, std::__cxx11::basic_string<char> > >::const_

iterator' {aka 'std::_List_const_iterator<std::pair<std::__

cxx11::basic_string<char>, std::__cxx11::basic_string<char> > >'}  

to non-scalar type 'std::__cxx11::list<std::pair<std::__

cxx11::basic_string<char>, int> >::const_iterator' {aka 'std::_

List_const_iterator<std::pair<std::__cxx11::basic_string<char>, 

int> >'} requested

Chapter 23  The Standard Template Library



486

Rip out things that don’t look important. This get us

conversion from list<pair<string, string >>::const_iterator to 

list<pair<string, int>>::const_iterator requested

My mistake is now obvious: I forgot what I wanted a pair of. Way 

easier to read.

•	 You get pages of error messages, reporting errors in system 
libraries. Look for your own filename(s) in the messages and focus 

on those.

EXERCISES

	1.	 Using iterators in a for loop, write a function reverse which returns a reversed 

copy of a List you give it.

	2.	N ow write it so that instead of passing a List, you pass in two iterators, its 

begin () and its end ().

	3.	A dd a const_iterator class to List.

You’ll need new const versions of begin and end, to return const_

iterator instead of iterator.

	4.	I n the last chapter, there was an exercise for equipping a List to be traversed 

backward. Using that, incorporate reverse_iterator and const_reverse_

iterator into the List class.

	5.	 Using iterators in for loops, write functions to convert back and forth between 

STL lists and vectors.

�Getting really lazy: ranges and auto
This works for traversing a container:

for (vector<string>::const_iterator i = myVector.begin();

     i != myVector.end();

     ++i)                       //A lot of typing...

     cout << *i << ' ';

Chapter 23  The Standard Template Library



487

This works too:

vector<string> myVector; ...

for (const string& i : myVector) //a "range-based" for loop

    cout << i << ' ';   // <-- no *: i is an element, not an iterator

And this works for arrays:

int myArray[] = { 0, 1, 2, 3 };

for (int  i : myArray)  cout << i << ' ';

Great, but I’m even lazier now. Let the compiler figure out the element type.

for (auto i : myArray)  cout << i << ' ';

                     //Overkill? I *did* know it was an int...

for (auto i : myVector) cout << i << ' ';

You can use auto for any variable declaration where the compiler can figure out the 

type – that is, where the variable is being initialized. We do have to give it some help: it 

won’t apply &’s unless we tell it.

for (auto& i : myArray) i *= 2; //without & it won't change the array

That also applies if we want the & to prevent needless copying:

for (const auto& i : myVector) cout << i << ' ';

I use auto when type names are so long I think my fingers will fall off 

(vector<vector<int>>::const_reverse_iterator – aigh!). I think it is overkill for int.

�initializer_lists (optional)
One thing I was sorry to give up, going from arrays to more sophisticated containers, was 

the bracketed initializer list, as in int array [] = {0, 1, 2, 3};. Initializing element 

by element is more trouble.

Chapter 23  The Standard Template Library



488

But we can use {} lists with our own classes too (and of course it’s built-in for STL). 

This code illustrates doing this with Vector.

#include <initializer_list> //for std::initializer_list

template <typename T>

class Vector

{

public:

    Vector (const std::initializer_list<T>& other);

    ...

};

template <typename T>

Vector<T>::Vector(const std::initializer_list<T>&  other) : Vector ()

{

    for (auto i = other.begin(); i != other.end(); ++i)

        push_back(*i);

}

std::initializer_list has iterators built in, so this’ll work. Then again, since it has 

iterators built in, so will this simpler version:

template <typename T>

Vector<T>::Vector(const std::initializer_list<T>&  other) : Vector ()

{

    for (auto i : other) push_back(i);

}

EXERCISES

	1.	 Since std::initializer_list has begin() and end(), but not 

rbegin() and rend(), if you want to use it to initialize a List, List will 

need push_back. Create List::push_back if you haven’t already, and give 

List a constructor that takes an initializer_list.

Chapter 23  The Standard Template Library



489

�algorithm (optional)
Many things you’ll want to do with containers are in the include file <algorithm>. Here’s 

how to find an element in a container named digits. It can be list, vector, whatever.

auto i = find(digits.begin(), digits.end(), 7);

if (i != digits.end()) cout << "Found a 7!\n";

find searches the range from digits.begin () up until digits.end (). It returns 

an iterator referencing the first element equal to 7. If there is no such element, it returns 

digits.end().

Here’s how to copy the contents of one container to another. They can be different 

types of container.

copy(digits.begin(), digits.end(), back_inserter(newContainer));

Or maybe just copy the ones that match some criterion? We can pass in a function:

bool isEven (int i) { return i % 2 == 0; }

...

copy_if(digits.begin(), digits.end(), back_inserter(evens), isEven);

Most of these functions should work for any container type. sort(digits.begin(), 

digits.end()); does what you think it does. (Operator < for its elements will need  

to be defined.) But if you want to sort a list, you’ll have to use its member function: 

myList.sort ();. Go figure.

STL containers don’t overload the << or >> operators for I/O. Understandable, since 

we all may want different ways to print or read in containers, but it’s still a pain. STL 

provides another way to print, weirdly named:

copy(evens.begin(), evens.end(), ostream_iterator<int>(cout, " "));

int is what we have a list of; cout is where it’s going, and " " is what to print after 

each element. " " is likely better than (say) ", " which will give us a comma after the 

last element, too. You’ll need to #include <iterator>.

There are more; an Internet search will get you what you need. cplusplus.com and 

cppreference.com are good places to start.

Chapter 23  The Standard Template Library



490

�The erase-remove idiom
How about removing things we don’t want from the container – say, take out all the 

evens? This look promising. I assume digits is 1 2 3 4 5 6 7 8 9.

remove_if (digits.begin(), digits.end(), isEven);

digits is now 1 3 5 7 9 6 8 9. Huh?

We have to read the fine print. Wherever you look it up online, you’ll find that 

remove doesn’t actually remove anything: it moves unwanted elements to the end of 

the sequence and returns an iterator to where the new end should be. So why’s it called 

remove? Beats me.

The hack is to use another function to chop it off at the new end. erase(iter1, 

iter2); erases everything from iterator iter1 up to iter2, so we can use that to do 

the erasing:

erase (remove_if (digits.begin(), digits.end(), isEven),

       digits.end());

I’m sorry to expose you to that evilness, but now that you have the hack you can use 

it as needed.

�Antibugging
•	 You add or remove elements while in a for loop and get a crash. 

When you do anything to change the contents of your container, 

bets are off regarding iterators already in the container. Consider 

this code:

for (auto i = digits.begin(); i != digits.end(); ++i)

    if (isEven(*i))

        digits.erase (i);    //erase element referenced by i

                             //(different "erase")

The problem is that after you erase whatever’s at i, i points to a 

nonexistent element. The loop increments i and gets to another 

nonexistent element at who-knows-where, and your program 

fails. (It might work.)

Chapter 23  The Standard Template Library



491

erase returns an iterator referencing the next element after the 

deleted one, so you can do this, even if it’s ugly:

for (auto i = digits.begin(); i != digits.end(); )

                                               //no ++ here!

   if (isEven(*i))

      i = digits.erase (i);     //erases *i and moves i

                                //  to next location

   else

     ++i;

Or you can use the erase-remove hack, I mean idiom:

digits.erase (remove_if (digits.begin(), digits.end(),

                         isEven),

              digits.end());   //Isn't it lovely?

Tip I f a function alters the structure of the container (like erase), it may invalidate 
the iterators. Declare iterators again as needed, or find a function that does what 
you want in one call so you won’t care.

EXERCISES

	1.	I n the string “SoxEr776asdCsdfR1234qqE..T12Ci-98jOapqwe0DweE” there is 

a secret code. Use an <algorithm> function to extract only the capital letters 

and read the code.

	2.	 (Uses file I/O) First, make a file of strings. Then make two copies of it. In one, 

alter the order and the capitalization of some of the strings. In the other, replace 

some of the strings.

Now write a program that can read two files into vectors or lists and, using 

STL functions, tell if the files are different, ignoring order and capitalization. 

Use an STL function not covered in this chapter (so you’ll need an Internet 

search) that change a string to all caps or all lowercase. To find what’s in one 

sequence but not the other, consider this algorithm:

Chapter 23  The Standard Template Library



492

for each element in sequence 1 (using iterators)

   use the "find" function to see if it's also in sequence 2

	3.	D o the preceding problem, but instead of using find and a loop, use set_

difference (also not covered in this chapter). And erase.

Chapter 23  The Standard Template Library



493
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_24

CHAPTER 24

Building Bigger Projects
One day you may want to build a bigger project. This chapter introduces some useful 

tools: namespaces, conditional compilation, and the construction of libraries.

�Namespaces
Suppose I write a library for geographical information, to be used for maps, making 

voting districts, whatever. I make some classes: maps, vectors (XY pairs used for 

graphics), regions, and more.

Then I notice that I can’t compile because map and vector already mean something 

in C++. OK. Call ‘em GeoLib_map, GeoLib_vector, and so on, like with SDL and SSDL 

functions.

And I’m using a third-party library, which happens to define region as something 

else…this is getting tedious. Is there a shortcut?

Sure. Make a namespace GeoLib and put everything you want the world to see in it, 

as in Figure 24-1.

//geolib_map.h

#ifndef GEOLIBMAP_H
#define GEOLIBMAP_H

namespace GeoLib
{

class map {...};
}

#endif //GEOLIBMAP_H

//geolib_map.cpp

namespace GeoLib
{

map::map ()
{

...
}

...
}

//geolib_vector.h

#ifndef GEOLIBVECTOR_H
#define GEOLIBVECTOR_H

namespace GeoLib
{

class vector {...};
}

#endif //GEOLIBVECTOR_H

Figure 24-1.  A namespace can contain code from different files



494

Programmers can now type GeoLib::map or std::map, and the compiler will know 

which they mean.

If they get tired of typing GeoLib:: over and over, they can use using:

using GeoLib::region;

               //you can omit the GeoLib:: in GeoLib::region

using namespace GeoLib;

               //now *all* GeoLib members can have GeoLib:: omitted

using namespace std;

               //now all std:: members can have std:: omitted too

               //If the compiler gripes, you can still use GeoLib::

               // or std:: to clarify which you want

To illustrate construction of namespaces, Examples 24-2 and 24-3 show the creation 

of a namespace Cards; Example 24-5 uses it.

It’s a matter of debate whether using namespace <whatever>; is 3vil. It’s more 

typing, but you can easily resolve name conflicts by adding <whatever>::. I say use it as 

you like in the privacy of your own .cpp files, but don’t mess up others’ by putting it in 

.h’s they may include.

�Conditional compilation
Now I’m using my GeoLib code, and I’m finding my calculations are wrong, wrong, 

wrong. It’s hard to tell which functions are screwing up. I want to generate a report of 

those calculations so I can check them:

map::area(region) thinks area of block group 6709 is 672.4

dist to center is 356.2

map::area(region) thinks area of block group 6904 is 312.5

dist to center is 379.7

...

I don’t want this printed all the time – just when debugging.

So I create a #define in a .h file that every other file includes (Example 24-1).

Chapter 24  Building Bigger Projects



495

Example 24-1.  A .h file containing #define DEBUG, for conditional compilation

//debugSetup.h

#ifndef DEBUGSETUP_H

#define DEBUGSETUP_H

#define DEBUG             //Yes, that's the whole thing

#endif //DEBUGSETUP_H

I use it wherever I have debugging information to print

#ifdef DEBUG

    cout << " map::area(region) thinks area of block group "

         << bg->id() << " is " << bg->area() << endl;

    cout << "dist to center is "

         << distance (region.loc(), bg->loc()) << endl;

#endif

and comment or uncomment the #define DEBUG depending on whether I want to  

see this.

�Libraries
Libraries come in two flavors, static and shared. A static library’s code is brought right 

into the executable at link time; the shared library is in another file, loaded at runtime. 

So the static library is said to be quicker to run (I’ve never noticed a difference) and you 

don’t have to worry where your shared library got moved to as it’s always right there in 

the executable. But shared saves space, as many programs can use the same code, and is 

more easily updated.

I lean toward shared. It’s common for Unix and seems to help with portability 

between compiler versions. But both are fine.

I’ll try it both ways here, for both compilers. For my example I’ll use the card games 

code from Chapter 19, with generally useful classes (Card, Deck, etc.) going into the 

library. The Montana game will use that library.

You might create some other library as you go. See Exercises at the chapter’s end, or 

choose your own.

Chapter 24  Building Bigger Projects



496

�g++
�Static libraries

To create a static library, compile the object files as usual

g++ -g -c deck.cpp

...

then link with

ar rcs libcards.a deck.o card.o cardgroup.o

                             #ar for "archive"; rcs is needed flags

�Shared libraries

The shared library needs object files “relocatable” in memory, so compile them like this:

g++ -g -fPIC -c deck.cpp #PIC: "position independent code." All righty then

In Unix, shared libraries end in .so, so link like this:

g++ -shared -o libcards.so  deck.o card.o cardgroup.o

Windows uses the extension .dll, so for MinGW, type this:

g++ -shared -o libcards.dll deck.o card.o cardgroup.o

�Linking

g++ needs to know where to find the includes files, where to find the library files, and 

what libraries to use.

We tell it by flags:

•	 -I<name of directory> to find include files;

•	 -L<name of directory> to find library files;

Chapter 24  Building Bigger Projects



497

•	 -l<library> to say what libraries we want linked in. Library names 

have an initial lib, and the extension .a, .so, or .dll, stripped off,  

as here:

g++ -o a.out -g montana.o io.o montana_main.o \1

    -I../cardLibg++ -L../cardLibg++ -lcards

                               #uses libcards.<something>

You can have as many copies as you want of any flag.

�Running

If you used a static library, you can just run the program now (./a.out).

If it’s dynamic, the system needs to know where to find it. Solutions:

•	 Bribe the system administrator to put the .dll or .so file in the 

system path. This makes sense if multiple programs use it and your 

program’s important enough.

•	 Copy the .dll or .so to the folder with the executable. Good for a 

single project; not so good if you have lots of folders and therefore 

lots of copies.

•	 Set the environment variables so the system can find it. This is what 

I did with SSDL, and you can see it in the scripts in the folders (runx, 

runw, gdbx, etc.) The command is like this:

export LD_LIBRARY_PATH=../cardLibg++ #Unix

PATH="../cardLibg++:$PATH"           #Windows

1�\ means “continue on the next line.”

Chapter 24  Building Bigger Projects



498

�Makefiles

These long commands get tedious to type repeatedly, so they’re bundled into Makefiles 

in the chapter’s source code: one type for building the library, one for building a 

program that uses the library, and in the latter’s folder, scripts to point the system to the 

library’s path.

Edit the first Makefile to pick the kind of library to create, then edit all of them for 

paths, executable names, whatever you like.

�Microsoft Visual Studio
�Static libraries – The easy option

To build a static library in Visual Studio 2017, select File ➤ New ➤ Project, then Visual 

C++ ➤ Windows Desktop ➤ Static Library. In 2019 click Create New Project and scroll 

through a list.

When it creates the project, it expects you to use “precompiled headers.”2 You can

•	 Support this by putting a line at the start of each source file: either

#include <stdafx.h>

or

#include "pch.h"

depending on which the new project provides you with. It must come before 

any other includes or your code won’t compile.

If you don’t want to have to do all that, you can fix it in one step:

•	 Eliminate precompiled headers thus: under Project ➤ Properties, 

for All Configurations/All Platforms (top row), set Configuration 

Properties ➤ C/C++ ➤ Precompiled Headers ➤ Precompiled Header 

to Not Using Precompiled Headers. You can ignore the files the 

compiler gave you with the project.

2�Microsoft Visual Studio and g++ both have this method of helping with compile times. The idea 
is that instead of recompiling a .h file anew for each source file you include it in, you can reduce 
compile time by compiling it once. I haven’t felt the need, but with STL, header files do seem to 
keep growing, so…

Chapter 24  Building Bigger Projects



499

Figure 24-2.  Telling a project where to find library include files, in Visual Studio

Projects that use your library need to know where to find its include files. Under 

Project Properties for All Configurations/All Platforms, set Configuration Properties ➤ 

C/C++ ➤ General ➤ Additional Include Directories appropriately (see Figure 24-2).

Chapter 24  Building Bigger Projects



500

Add your library’s path to Configuration Properties ➤ Linker ➤ General ➤  

Additional Library Directories (Figure 24-3). Its location will differ between 

configurations and platforms; it’ll probably contain Debug or Release if you’re doing 

x86/Win32, or x64/Debug or x64/Release if not. I suggest starting with Debug and x86.

Now you must tell it what the library is. Under Project Properties, All Configurations/

All Platforms, add the name of the library under Configuration Properties ➤ Linker ➤ 

Input ➤ Additional Dependencies (Figure 24-4). It’ll be <your library project>.lib.

Figure 24-3.  Telling the project where to find your library, in Visual Studio

Chapter 24  Building Bigger Projects



501

�Dynamic Link Libraries (DLLs) – the not so easy way

To make your own DLL, go back through the previous section, but for project type select 

Dynamic Link Library instead of Static Library.

Now that that’s built…

When directing new programs to use your library, when you tell Project Properties 

about the library (Figure 24-4), it’ll still be <your project>.lib. I thought we were 

creating a DLL? Yes, but we’re really creating two things: the .dll, which contains the 

runtime code, and a .lib file that tells the program at compile time, “you’ll get to import 

these things from a DLL later.”

This is where it gets weird. When the compiler sees a prototype, it needs to know 

if it’s going to be compiling and exporting it (because it’s compiling the library) or 

importing it from a DLL (because it’s compiling a program that uses the library). 

The way to say this is to prepend to the prototype either __declspec(dllexport) or 

__declspec(dllimport). __declspec means “I’m about to tell you something about this 

function” and dllexport/dllimport, well, that’s obvious.

Figure 24-4.  Adding a library dependency in Visual Studio

Chapter 24  Building Bigger Projects



502

So are we supposed to write two versions of each prototype, one for import and one 

for export?

This common hack means we won’t have to:

	 1.	 Write a .h file like in Example 24-2.

Example 24-2.  A .h file to help with DLL projects

//Header to make DLL functions import or export

//  -- from C++ for Lazy Programmers

#ifndef CARDSSETUP_H

#define CARDSSETUP_H

# ifdef IM_COMPILING_MY_CARD_LIBRARY_RIGHT_NOW

#  define DECLSPEC __declspec(dllexport)

# else

#  define DECLSPEC __declspec(dllimport)

# endif //IM_COMPILING_MY_CARD_LIBRARY_RIGHT_NOW

#endif //CARDSSETUP_H

Now DECLSPEC means “this is to be exported” or “this is to be 

imported”…depending on whether we’re compiling the library or 

using it. Just right.

	 2.	 In each .cpp file in the library, write this #define:

#define IM_COMPILING_MY_CARD_LIBRARY_RIGHT_NOW

That’s how it’ll know what DECLSPEC should be.

This must be done before any .h files related to your project 

(so they can use it) and after #include <stdafx.h>/#include 

"pch.h", if we’re using that (because that always comes first).

	 3.	 Put DECLSPEC before everything being exported from the .cpp 

files.

	 4.	 …and before the corresponding prototypes in the .h files, too. 

They have to match.

Chapter 24  Building Bigger Projects



503

Files will look something like Examples 24-3 and 24-4. Example 24-5 shows how to 

use Cards members in a montana.h; in montana.cpp, I just said using namespace Cards; 

and made no other changes.

Example 24-3.  Parts of card.h, set up to make a DLL, and forming a namespace

//Card class

//  -- from C++ for Lazy Programmers

#ifndef CARD_H

#define CARD_H

#include <iostream>

#include "cardsSetup.h"

namespace Cards

{

    enum Rank { ACE = 1, JACK = 11, QUEEN, KING };

    enum Suit { HEARTS, DIAMONDS, CLUBS, SPADES };

    DECLSPEC std::ostream& operator<< (std::ostream& out, Rank  r);

    DECLSPEC std::ostream& operator<< (std::ostream& out, Suit  s);

    DECLSPEC std::istream& operator>> (std::istream& in,  Rank& r);

    DECLSPEC std::istream& operator>> (std::istream& in,  Suit& s);

    class Card

    {

    public:

        Card(Rank r = Rank(0), Suit s = Suit(0)) :

            rank_(r), suit_(s)

        {

        }

        Card(const Card& other) { *this = other; }

        DECLSPEC void read(std::istream &in);

    private:

        Suit suit_;

        Rank rank_;

    };

Chapter 24  Building Bigger Projects



504

    inline

    std::ostream& operator<< (std::ostream& out, const Card& foo)

    {

        foo.print(out); return out;

    }

    inline

    std::istream& operator>> (std::istream& in, Card& foo)

    {

        foo.read(in);  return in;

    }

}

#endif //CARD_H

Example 24-4.  Part of card.cpp, set up to make a DLL, and forming a 

namespace

//Card class

//  -- from C++ for Lazy Programmers

#include "stdafx.h" //or maybe its #include "pch.h"

#include <iostream>

#define IM_COMPILING_MY_LIBRARY_RIGHT_NOW

                   //see setup.h. Must come before card

                   // related includes, after stdafx/pch.h if any

#include "card.h"

using namespace std;

namespace Cards

{

    DECLSPEC void Card::read(std::istream &in)

    {

        try { in >> rank_ >> suit_; }

        catch (BadRankException&)

                            //if reading rank_ threw an exception

        {

Chapter 24  Building Bigger Projects



505

            in >> suit_;    // consume the suit as well

            throw;          // and continue throwing the exception

        }

    }

    DECLSPEC istream& operator>> (istream& in, Suit& s)

    {

        ...

    }

    ...

}

Example 24-5.  Part of montana.h, showing use of namespace Cards

//class Montana, for a game of Montana solitaire

//  -- from _C++ for Lazy Programmers_

#include "gridLoc.h"

#include "cell.h"

#include "deck.h"

#ifndef MONTANA_H

#define MONTANA_H

class Montana

{

public:

    enum { ROWS = 4, CLMS  = 13};

    Montana   () {};

    void play ();

private:

    //dealing and redealing

    void deal               (Cards::Deck& deck, Cards::Waste& waste);

    void cleanup            (Cards::Deck& deck, Cards::Waste& waste);

     ...

Chapter 24  Building Bigger Projects



506

    //data members

    Cards::Cell grid_       [ROWS][CLMS];     //where cards are

    GridLoc     emptyCells_ [NUM_EMPTY_CELLS];//where empty cells are

};

#endif //MONTANA_H

If that goes well, there’s one more thing to set in the program that uses your library: it 

needs to find the DLL at runtime.

The easiest way is to copy the DLL into the project folder. Or put it in the system 

PATH (which may require Administrator access).

If that’s not what you want, go to Project Properties (Figure 24-5), and set 

Configuration Properties ➤ Debugging ➤ Environment. It needs an update to the PATH 

variable, without forgetting the old PATH…if the location of the DLL is ..\cardLibDLL\

Debug, you can give it PATH=..\cardLibDLL\Debug\;%PATH%.

Example 24-5.  Setting the PATH in Visual Studio

Chapter 24  Building Bigger Projects



507

�Antibugging

•	 You make changes to Project Properties, but they have no effect. 
It’s easy to overlook the top line of the Project Properties window 

(Figure 24-5). Sometimes you correct one configuration, but you’re 

using another. I prefer to edit All Configurations, All Platforms, 

wherever possible.

•	 The compiler complains that common things like cout don’t 
exist. Put #include <stdafx.h> or #include "pch.h" before other 

includes or stop using precompiled headers; see the beginning of  

this section.

•	 At runtime, the program can’t find the DLL. But you set the PATH 

variable, as earlier.

If it’s not a typo in the PATH, maybe you erased the .user file. 

This is what contains the environment information. Recreating it 

should solve the problem.

•	 At runtime, the program can’t start; the error message isn’t clear. 
Maybe your program’s Platform (Win32 or x86 v. x64) doesn’t match 

the DLL’s.

EXERCISES

	1.	P ut PriorityQueue, List, Time, Fraction, or some other class you did in 

previous exercises, into its own library, and link it to something that uses it.

	2.	 Make a library named shapes (in a namespace shapes), using the Shape 

hierarchy from Chapter 21, extending it as you like; and link it into a program 

that uses the Shapes. You’ll need to adapt the Makefile or .vcxproj in 

basicSSDLProject to help with SDL/SSDL includes and library files.

Chapter 24  Building Bigger Projects



509
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_25

CHAPTER 25

History
C++ is descended from Simula 67, credited as the first object-oriented language, and C, 

which is basically what this book covered before classes. Just for the fun of it, let’s look 

them over – and also Smalltalk, also credited as the first object-oriented language. Maybe 

you’ll write another first object-oriented language someday.

�Simula 67
Designed for simulations, Simula 67 contained classes, inheritance, and virtual 

functions. It didn’t get much use. The best guess is that it didn’t get much use because 

it didn’t get much use: that is, it was not widely propagated, so there was no snowball 

effect, no virtuous cycle of compilers, people wanting programmers who knew it, people 

learning it, and so on. But it (largely) had the ideas that distinguish C++ from C.

�Smalltalk
So did Smalltalk. Smalltalk was the first popular language of this type. Though C++ got its 

ideas on high-level organization from Simula 67, it’s only fair to grant Smalltalk – which 

also inherits from Simula – a place here.

In the 1970s, Alan Kay, a newly graduated PhD from the University of Utah, could 

foresee that before long computers wouldn’t be only for universities, government 

agencies, and major companies: even your dear old grandma might well have one. Your 

dear old grandma probably wouldn’t be willing to program it in FORTRAN, though, 

unless she’s a professional programmer. Like my kids’ grandma.

So Smalltalk was developed: a language with an easier way of thinking and better 

organization than other languages of the day. Smalltalk came with its own environment 

(like Visual Basic and Python, if you know either of these languages), and a lot of 

overhead for the computer in terms of graphics, and this, plus to a lesser extent its 



510

sometimes quirky syntax,1 limited the language’s appeal. Looks like grandma won’t  

be programming in Smalltalk, either, even if she is a professional programmer.  

(The opposing view can be explored at www.smalltalk.org.)

(On the other hand, Smalltalk did popularize the object-oriented paradigm, and 

inspired Steve Jobs with its graphical user interface to say: let’s have that on our Apple 

computers.2 And thereby windowing systems spread.)

The way to make this user-friendly programming environment, Kay and his 

colleagues thought, was to use familiar metaphors: objects and classes, thus making an 

“object-oriented” programming language.

It may not have taken over the world, but it’s taken over your desktop: menus, 

windows, and so on are object-oriented concepts – structures with their own internal 

states, reacting to messages sent (such as mouse clicks and keystrokes) in ways 

determined by what classes of things they are.

�What “object-oriented” is
As Smalltalk (and the rest of the world) would define it, “object-oriented” means that a 

language has3

•	 Encapsulation, that is, private sections.

•	 Inheritance.

•	 Polymorphism: Virtual functions, operator overloading, and function 

overloading.

•	 Dynamic binding: This is what we do with the new command to 

allocate memory. A truly object-oriented language uses dynamic 

binding for all variables. This is less efficient, so C++ only does it 

when necessary.

C++ has these but doesn’t require that you use them. In Smalltalk, everything is an 

object. Most languages are hybrids like C++.

1�Consider a simple for loop in Smalltalk: 1 to: 10 do: <some action>. This sends to the 
number 1 a message saying “do <some action> until iterations reaches 10.” Send a message to 1? 
I like it. But it’s, well, counterintuitive.

2�Steve Jobs, Triumph of the Nerds, Part III.
3�Some would add “open recursion.” I wouldn’t, and C++ doesn’t need it.

Chapter 25  History

http://www.smalltalk.org


511

�C
Meanwhile, back at the ranch (specifically, at AT&T Bell Labs), someone had adapted 

a much more bare-bones language called BCPL (Basic Combined Programming 

Language) into also bare-bones languages imaginatively named B, and then C. (If 

progress had continued in the same direction, the one after would presumably have 

been P.) C was a tough-guy language, in which people not only suffered a steep “learning 

curve” (i.e., it was relatively tough to learn), but ended up saying phrases like “learning 

curve.” And wrote things like while (*a++=*b++); and thought it was cool.

But C was certainly efficient – efficient enough that you could write operating 

systems in it. The Unix operating system predates C, but came to be written in C. C didn’t 

have to be pretty as long as it was that effective.

It’s apparently not true that C was an April Fool’s joke designed to see just how 

crabbed and difficult a language could be and have people not catch on. But you 

may start to wonder if you drop by www.ioccc.org, the web site of the International 

Obfuscated C Code Contest, where programmers compete to have the most confusing 

and reader-hostile code. I particularly liked the one in which the program was shaped to 

look like Dr. Seuss’s The Cat in the Hat.

�C++
The ideas in Simula 67 found a receptive audience with my hero Bjarne Stroustrup, who 

had the idea to make a hybrid language between C and Simula, getting the efficiency 

of C and the organization of Simula. He had good reason. He’d written a simulator for a 

distributed software system in Simula, and liked its ease of organization and ability to 

detect type errors – better than the error checking of Pascal, he thought, which was too 

limiting. However, compiling and running the program showed a lot of inefficiency, so 

he converted to BCPL – admiring the increased speed, but missing the features he’d left 

behind.4

And so C with Classes, and later C++, came to be.

4�Stroustrup, Bjarne. 1993. “A History of C++: 1979–1991,” Section 2 (C with Classes).

Chapter 25  History

http://www.ioccc.org


512

C++ has been a resounding success. There is some dispute as to which of its modern 

competitors are descendants and which are merely amazingly similar (like its sibling 

Objective C, which appeared about the same time). But if we consider merely “languages 

which look like C (even down to the level of using == for compare, say), have objects, and 

came later,” we have to include Java, JavaScript, PHP, Python, C#, and Ruby.

�Standards
C++ came out in the mid-1980s with much of what you’ve seen here. As time went by, 

the community added exceptions, templates, the Standard Template Library, and other 

features.

For a decade in this century, programmers used the International Standards 

Organization’s C++98 standard or the similar C++03 from 2003 (ish). But there was an 

interest in resolving perceived problems, including inefficient creation and destruction 

of classes (that’s why we now have move constructors) and a lack of pointer safety. 

C++11 – initially called C++0x because they didn’t know what year it would come 

out – began the process of resolving these issues, with C++14 and C++17 giving further 

changes.

Some of C++’s big new features relative to 10 years before include move constructors, 

lambda functions, enum class, auto variables, range-based for loops (for (auto thing :  

sequence)), smart pointers, constexpr, and structured bindings (auto [a, b] = 

<something that's two values>).

Stats vary, but I’m seeing C++ as the third most popular programming language, after 

Java and C. When you chose this language, you chose well.

Chapter 25  History



513
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_26

CHAPTER 26

Esoterica (Recommended)
These are all extras, but fun and useful ones. To provide a little practice and familiarity, 

some build on others, so I suggest taking them in order.

�sstream: using strings like cin/cout
To me this is one of the most useful new features: for file I/O, for sending print output to 

graphical displays, and for nontrivial user input.

Suppose you want to print details of a game to your heads-up display, centered at 

the top.

Points: 32000  /  Time left: 30.2  /  Mood: Annoyed

You could calculate the width of each label and each value (good luck doing that 

with a variable-width font) and from those calculate the location to print each item…if 

you do, turn in your lazy programmer badge right now.

Or you could do a lot of conversions and string concatenations and send that to 

SSDL_RenderTextCentered, as in the following. Once more, turn in that badge.

string finalString = string ("Points: ")

          + int2String (points) //How *do* you convert int to string?

          + "/ Time left: "     // Something tells me it's not easy

          + double2String(time) // and double is going to be worse.

          + " / Mood: " + mood;

SSDL_RenderTextCentered(finalString, SSDL_GetWindowWidth()/2, 10);

                                //10 pixels down

If we send variables of other types, like Point2D, we’ll need more conversion-to-

string functions. That’s a lot of work.



514

Enter the stringstream. It’s like cin, cout, and a string all rolled into one. You can 

write to it then extract the string produced; or put a string in and read from it.

To construct a string using <<, do the following:

	 1.	 #include <sstream>.

	 2.	 Declare a stringstream.

	 3.	 Print to the stringstream using <<.

	 4.	 Access the string you’ve constructed using the str () member 

function.

If you want to use it again, you can reset its contents to "", as in myStringStream.

str("").1

Example 26-1 uses stringstream to send text to SSDL_RenderTextCentered. Output 

is in Figure 26-1.

Example 26-1.  A rudimentary heads-up display (HUD) using stringstream

//Program that uses stringstream to center

//   multiple things on one line

//      -- from _C++ for Lazy Programmers_

#include <sstream>                        //Step #1: #include <sstream>

#include "SSDL.h"

using namespace std;

int main(int argc, char** argv)

{

    int points = 3200;                  //Some arbitrary data to test

    double time = 30.2;                 // printing to HUD

    char mood[] = "Annoyed";

    stringstream out;                     //#2: Declare a stringstream

    out << "Points: " << points << "   /   Time left: "

1�stringstream also as a clear function, but be not deceived: it clears error flags, not the contents.

Chapter 26  Esoterica (Recommended)



515

                                        //#3: Print to stringstream

        << time << "   /   Mood: " << mood;

    string result = out.str();            //#4: Access with str()

    SSDL_RenderTextCentered(result.c_str(),

                            SSDL_GetWindowWidth()/2, 10);

    SSDL_WaitKey();         //Wait for user to hit a key

    return 0;

}

You can also use stringstream as a source of input: set the string using str, and 

then extract from it using >>:

dataLine.str ("Flourine  0.52 0.63");

dataLine >> elementName >> firstReading >> secondReading;

Using stringstream for input involves these steps:

	 1.	 #include <sstream>.

	 2.	 Declare a stringstream.

	 3.	 Initialize the stringstream with the str () member function.

	 4.	 Read from the stringstream using >>.

If there’s a possibility you ran out of input, you can call clear(), as in dataLine.

clear(), to clear error flags before reuse. Table 26-1 summarizes the stringstream 

functions you're likely to use the most.

Figure 26-1.  Output of the stringstream program

Chapter 26  Esoterica (Recommended)



516

EXERCISES

	1.	S uppose we have a set of files: file1.txt, file2.txt…file100.txt. 

Use stringstream to construct the filename for the xth file.

	2.	 Write and test a function template that takes in a variable, prints it to a string, 

and returns the string.

	3.	I nitialize a character array with text containing words and numbers, then read 

its parts appropriately into variables using stringstream.

	4.	 (Uses file I/O) Read in a file of numbers, ignoring everything after a comment 

marker #. Here’s how: read in a line; discard anything after any # you find; then 

read in all numbers from what’s left and push them into a vector.

�iomanip: formatted output
Suppose you want to print tables in columns. '\t' is clunky – your best option is the 

manipulator setw, which is found in the iomanip include file.

cout << setw(10) << Thing1 << Thing2 << "\n";

Table 26-1.  Commonly used stringstream functions, simplified

stringstream& operator<< (stringstream&,

           const SomeType& thingToPrint);

print to the stringstream’s contents

stringstream& operator>> (stringstream&,

                  SomeType& thingToRead);

read from the stringstream’s contents

string stringstream::str () const; return the stringstream’s contents

void   stringstream::str (const string&); set the stringstream’s contents

void   stringstream::clear (); clear any error flags you might have set 

while reading from or writing to stringstream

Chapter 26  Esoterica (Recommended)



517

This prints Thing1 right-justified in 10 spaces. (Thing2 is unaffected.) If Thing1 is too 

big, well, it goes over. If you want it left-justified, do this:

cout << left;

cout << setw(10) << Thing1 << Thing2 << "\n";

left is a message we’re sending to cout saying left justification is now on. Set it back 

to default with cout << right;.

This will help with printing floating-point numbers neatly:

cout << setprecision (2);

Like left, setprecision continues to have effect until you change it to another 

value. The default is 6.

Example 26-2 uses these manipulators to neatly print statistics on two familiar 

planets.

Example 26-2.  Program to neatly print a table of astronomical data using 

iomanip

//Program to print temp, pressure for Venus and Earth

//      -- from _C++ for Lazy Programmers_

#include <iostream>

#include <iomanip>  //for setw and setprecision

using namespace std;

int main ()

{

    //constants related to spacing on the page

    const int      PLANET_SPACE =    10;

    const int        TEMP_SPACE =    15;

    const int    PRESSURE_SPACE =    15;

    //planetary temperature and pressure

    const double     VENUS_TEMP =   464;

    const double VENUS_PRESSURE = 92000;

    const double     EARTH_TEMP =    15;

    const double EARTH_PRESSURE =  1000;

Chapter 26  Esoterica (Recommended)



518

    //Right-justify, and use 1 (fixed) decimal point precision

    cout << right << fixed << setprecision (1);

    //Print the headers

    cout    << setw (PLANET_SPACE)  << " "

            << setw (TEMP_SPACE  )  << "Average"

            << setw (PRESSURE_SPACE)<< "Surface"    << endl;

    cout    << setw (PLANET_SPACE)  << " "

            << setw (TEMP_SPACE  )  << "temperature"

            << setw (PRESSURE_SPACE)<< "pressure"   << endl;

    cout    << setw (PLANET_SPACE)  << "Planet"

            << setw (TEMP_SPACE  )  << "(degrees C)"

            << setw (PRESSURE_SPACE)<< "millibars" << endl;

    cout    << endl;

    //Print the data

    cout    << setw (PLANET_SPACE)  << "Venus"

            << setw (TEMP_SPACE  )  << VENUS_TEMP

            << setw (PRESSURE_SPACE)<< VENUS_PRESSURE << endl;

    cout    << setw (PLANET_SPACE)  << "Earth"

            << setw (TEMP_SPACE  )  << EARTH_TEMP

            << setw (PRESSURE_SPACE)<< EARTH_PRESSURE << endl;

    cout    << "\n...I think I'll just stay home.\n\n";

    return 0;

}

Here’s the output:

                  Average        Surface

              temperature       pressure

    Planet    (degrees C)      millibars

     Venus          464.0        92000.0

     Earth           15.0         1000.0

...I think I'll just stay home.

Chapter 26  Esoterica (Recommended)



519

Other iostream manipulators are in Table 26-2. To use those manipulators that take 

arguments, like setw and setprecision, you’ll need to #include <iomanip>. More 

detail on how to use these follows the table, but you will rarely need them; setw and 

setprecision usually do all I need.

Table 26-2.  Partial list of iostream manipulators. Defaults are in bold

Manipulator Meaning Persistence

columns and justification

left/right/

internal

when filling with the fill character after setw, add your padding 

on the left/right/inside the value (see explanation in this section)

until changed

setfill     

(char fillchar)

when filling after setw, use character fillchar. Default is ‘ ’ until changed

setw (int 

width)

print the next thing using width characters, filling in with the 

fill character. If the next thing requires more room, give it what 

it needs. Default width is 0

next thing 

printed only

flushing output

flush go ahead and print anything in the print buffer (see explanation 

in this section)

immediate

unitbuf/

nounitbuf

sent print buffer to output immediately/not immediately after 

a << operation (see explanation in this section)

until changed

numeric representation

defaultfloat uses default format for floating-point numbers (see explanation 

in this section)

until changed

fixed used fixed format for floating points: exactly as many digits right of 

the decimal point as setprecision specified, and no exponent

until changed

hex/oct/dec read and print integral values in hexadecimal/octal/decimal until changed

scientific use scientific format for floating point: exactly one digit left 

of the decimal point; exactly as many digits to the right as 

setprecision specified; and an exponent part, such as e+003

until changed

setbase    

(int base)

set base to 8, 10, or 16 until changed

(continued)

Chapter 26  Esoterica (Recommended)



520

Table 26-2.  (continued)

Manipulator Meaning Persistence

setprecision 

(int p)

set precision of floating-point printing to p. Default is 6 until changed

showbase/

noshowbase

print integral values with/without a preceding h if they’re in 

hexadecimal format

until changed

showpoint/

noshowpoint

show/don’t show decimal point when printing floating points until changed

showpos/

noshowpos

print positive numbers with/without initial “+” until changed

uppercase/

nouppercase

print the e in scientific notation and x in hexadecimal base, in 

uppercase/lowercase

until changed

set/reset flags

setiosflags       

(int flags)

set formatting flags. This function duplicates, by setting those 

flags, the effects of other manipulators in this table2

until changed

resetiosflags     

(int flags)

unset (clear) formatting flags until changed

whitespace in input

skipws/noskipws always skip/don’t skip whitespace in upcoming input, 

stopping at first non-whitespace character

until changed

ws skip whitespace in upcoming input, stopping at the first non-

whitespace character. Not needed if skipws is already on

immediate

Other

boolalpha/

noboolalpha

print/read bool values as “true” or “false”/as 1 or 0 until changed

endl print end-of-line ('\n') character and flush immediate

ends print null ('\0') character immediate

2�Search for fmtflags on www.cplusplus.com for a complete list of formatting flags.

Chapter 26  Esoterica (Recommended)

http://www.cplusplus.com


521

left, right, internal. left and right say, put fill characters so as to left- or 

right-justify the value printed. With internal, if the value printed is a number with a 

preceding + or - sign, the sign is printed on the left, the number on the right, and fill 

characters are added between. If the value printed is anything else, internal justification 

works like right justification.

showpoint. If you’re using fixed format for floating point – or default – and it’s 

showing nothing right of the decimal place, it won’t show the decimal place either, 

unless you cout << showpoint. For example, by default, 350.0 shows up as 350, but if 

you cout << showpoint, it’ll have a . at the end, as in 350.

scientific format has one digit left of the decimal point, exactly as many digits 

to the right as specified by setprecision, and an exponent: for example, 6.023e+023, 

which means 6.023×1023, or 3.14159e+000, which means 3.14159×100, or 3.14159, or π.

fixed format has no exponent and, like scientific, as many digits right of the decimal 

point as was specified by setprecision.

defaultfloat considers precision to be the maximum number of digits in the 

number, right or left of the decimal point – a maximum that may be overridden for large 

numbers. (If precision is 4, the number 12345.2 will be printed as 12345 – overriding 

the maximum of 4 so you can read the number.) It may omit trailing 0’s; 6.1500 may be 

printed as 6.15, even if the precision is more than 3.

(Best not to think too much about defaultfloat; it’s for when you really don’t care.)

flush, unitbuf. When you print something, it may not immediately appear on the 

screen. cout << flush makes whatever’s waiting to be printed, show up now. cout << 

unitbuf says to do that every time something is printed.

When you print an endl, the line gets flushed anyway, so this usually isn’t worth 

bothering with.

EXERCISES

	1.	 Use setw and anything else you might need to print a form that someone 

might fill out – possibly an application (taking in name, address, etc.), possibly 

something more interesting. You decide.

	2.	P rint an 8x8 grid, like a chessboard.

	3.	P rint a table showing the number of times you fell down per year, starting at age 

2 and ending at your current age. I hope it’s dropped somewhat. Make it neat.

Chapter 26  Esoterica (Recommended)



522

	4.	P rint a table of the cost of various items at your surf shop: surfboard, surfboard 

bag, huaraches, whatever. The .’s in the dollar amounts should line up.

	5.	P rint a table of the weights of the preceding items.

	6.	 Using scientific notation, print the probability, in any given year, of these 

events: there is a major political scandal; life spontaneously forms on Mars; a 

comet hits the Yucatan Peninsula and makes us go the way of the dinosaurs; 

something more interesting than programming in C++ happens (the lowest 

probability, of course). Use scientific notation. Make the numbers up – that’s 

what everyone else does.

�Command-line arguments
The example and exercises in this section, like most programs using command-line 

arguments, require file I/O (see Chapter 13).

Especially in the Unix world, it’s sometimes necessary to give arguments to the 

program. Unix and MinGW users know this well: you’ve typed variants of cd myFolder, 

g++ -o a.out myprogram.cpp, and gdb a.out.

Suppose you want a program to check text files for differences. The command might 

look like: ./mydiff file1.txt file2.txt

You’ll need to change the first line of  main: int main (int argc, char* argv[])

argc (“argument count”) is the number of arguments, and argv (“argument vector,” 

but it’s an array, not a vector) is an array of character arrays, each containing one 

argument, starting with the program name.

So if your command is ./mydiff file1.txt file2.txt, argc will be 3, and argv will 

contain the values shown in Figure 26-2.

Example 26-3 shows code for the program.

argv[0] "difference"

argv[1] "file1.txt"

argv[2] "file2.txt"

Figure 26-2.  Possible command-line arguments

Chapter 26  Esoterica (Recommended)



523

First, it ensures we have a reasonable number of arguments. If something goes wrong, 

it’s conventional to tell the user what was expected. argv[0] is always the program name. 

(We don’t hard-code it as “ ./mydiff,” in case we change the program name later.)

cerr is like cout, but it can’t be redirected with >, so it’s useful for error messages. 

But cout’s OK too.

Example 26-3.  diff.cpp: a program using command-line arguments

//Program to find the difference between two files

//  -- from _C++ for Lazy Programmers_

#include <iostream>

#include <fstream>

#include <cstdlib> //for EXIT_FAILURE, EXIT_SUCCESS

#include <string>

using namespace std;

int main (int argc, char** argv)

{

    //Did we get right # of arguments? If not, complain and quit

    if (argc != 3) //3 args: 1 program name, plus 2 files

    {              //On failure, tell user what user should've entered:

        cerr << "Usage: " << argv[0] << " <file 1> <file 2>\n";

        return EXIT_FAILURE;

    }

    //Load in the 2 files

    ifstream file1(argv[1]), file2(argv[2]); //open files

    if (! file1) //On failure, say which file wouldn't load

    {

       cerr << "Error loading " << argv[1] << endl;

        return EXIT_FAILURE;

    }

    if (!file2) //On failure, say which file wouldn't load

    {

        cerr << "Error loading " << argv[2] << endl;

        return EXIT_FAILURE;

    }

Chapter 26  Esoterica (Recommended)



524

    string line1, line2;

    while (file1 && file2)      //While BOTH files are not finished

    {

        getline(file1, line1); if (!file1) break; //read lines

        getline(file2, line2); if (!file2) break;

        if (line1 != line2)    // if lines differ print them

        {

            cout << "<: " << line1 << endl; //< means "first file"

            cout << ">: " << line2 << endl; //> means "second file"

                                            //this is conventional

        }

    }

    //If either file has more lines than the other, print remainder

    while (file1)

    {

        getline(file1, line1);

        if (file1) cout << "<: " << line1 << endl;

    }

    while (file2)

    {

        getline(file2, line2);

        if (file2) cout << ">: " << line2 << endl;

    }

    return EXIT_SUCCESS;

}

To run this, type ./mydiff file1 file2. Visual Studio users will likely find the 

executable in Debug/ or Release/.

Chapter 26  Esoterica (Recommended)



525

�Debugging with command-line arguments in Visual 
Studio
If you just hit Debug in the Visual Studio environment, it runs as if it has no arguments, 

which it doesn’t. To fix this, go into Project Menu ➤ Properties ➤ Configuration 

Properties ➤ Debugging, and add your arguments to Command Arguments (Figure 26-3).

The command-line arguments are stored in the .user file. If you delete it, you’ll have 

to add them again.

�Debugging with command-line arguments in Unix
Whether in ddd or gdb, at the prompt, type

set args file1.txt file2.txt

and you’re there.

Figure 26-3.  Setting Command Arguments in Microsoft Visual Studio

Chapter 26  Esoterica (Recommended)



526

EXERCISES

	1.	 Write a program grep, a simplified version of the Unix utility. It should repeat all 

lines from standard input that have a given word. So if you have a file input.

txt with lines

alpha

beta

alphabet

then the command grep alpha < input.txt should print this on the screen:

alpha

alphabet

	2.	T o the previous exercise, add an option -n which, if present, directs grep to 

print the line number of each line of output. (Flags starting with - are common 

for Unix commands.) Given the preceding input, the command grep -n 

alpha < input.txt should print on the screen:

1: alpha

3: alphabet

	3.	 Write a program getcolumns which, given input with numbers in columns, 

prints to standard output a version with only those columns. For example, if you 

call getcolumns 0 3 and get input like this

1900    -0.06    -0.05    -0.05    -0.08    -0.07    -0.07

1901    -0.07    -0.21    -0.14    -0.06    -0.2     -0.13

...

the output should show only columns 0 and 3:

1900    -0.05

1901    -0.14

...

I recommend using stringstream. iomanip wouldn’t hurt either.

Chapter 26  Esoterica (Recommended)



527

�static_cast et al
Short version: wherever you once said newtype (value), say static_cast<newtype> 

(value):

double dbl = double (intVal);

becomes

double dbl = static_cast<double> (intVal);

and

((ChildClass*) (parentClassPtr))->childClassFunction ();

becomes

(static_cast<ChildClass*> (parentClassPtr))->childClassFunction ();

Why? So that when you try to say

int* intArray = static_cast<int*> (myFloatArray); //huh?!

the compiler won’t let you. Pointer safety.

I don’t recommend the other casting operators C++ offers, and wouldn’t blame you 

if you went on to the next section.

Still here? OK. Here are the other types:

•	 const_cast<type>. This enables you to add or take away constness:

((const_cast<const MyClass*> (someVar ))->print (cout);

                                      //adds constness

((const_cast<     MyClass*> (someConst))->alterMeInSomeWay();

                                      //takes it away

…but you can’t safely apply it to something that was originally 

declared const. You can apply it to something that was passed in 

as a const parameter.

I avoid this. If it’s non-const, what can I do with a const that 

I can’t do with a non-const? Not much. If it’s const, I really 

shouldn’t break that security.

Chapter 26  Esoterica (Recommended)



528

•	 dynamic_cast<type>. This lets you cast things around an inheritance 

hierarchy if there are virtuals involved. I’ve never used it.

•	 reinterpret_cast<type>. This isn’t quite “anything goes” – it doesn’t 

affect constness, and it can’t cast things it can’t figure out – but it can 

do weird things like the casting myFloatArray to the int* above. I’ve 

never used it either.

But maybe I have used the last one without knowing, back when all we had was the 

older, simpler cast <type>(). When you do that, C++ tries these types of cast in order:

•	 const_cast

•	 static_cast

•	 static_cast then const_cast

•	 reinterpret_cast

•	 reinterpret_cast then const_cast

looking for one that will work. If it fails, you can’t do the cast.

In my view we use static_cast, not the old-style cast, primarily so it doesn’t make 

its way to reinterpret_cast without us knowing.

�Defaulted constructors and =
Earlier in the book, I avoided using the defaults for constructors and operator=, on 

the grounds that sometimes C++’s guess is wildly wrong: specifically, it copies array 

addresses rather than their contents.

But sometimes it’s exactly right. We can save a little time with the Card class from 

Chapter 19:

class Card

{

public:

    Card            ();

    Card            (const Card& other) = default;

    Card& operator= (const Card& other) = default;

    ...

Chapter 26  Esoterica (Recommended)



529

private:

    Rank rank_; Suit suit_;

};

If we’re going to take C++’s defaults, we’d better know what they do! It’s something 

like this:

•	 In the default (no argument) constructor, default-construct all the 

parts. Card () {} would do that anyway, so I can just leave it.

•	 In a copy ctor, copy parent classes and members with whatever you 

got (copy ctor for classes, = for basic types).

•	 In =, call = on all parts.

The use of = explains why it won’t work right for arrays – but is fine for many other 

things.

�constexpr and static_assert: moving work 
to compile time
If I can shove some of the work over to compile time, runtime will be faster. That 

wouldn’t be the worst thing in the world.

constexpr, despite its name, really means “do this at compile time,” though as such it 

tends to make things constant. Here’s one use:

constexpr int THE_WITCHING_HOUR=3; //could've done this with enum

constexpr double PI = 3.14159;     //but not this

And another: constexpr functions. Example 26-4 has several.

Example 26-4.  Class Card, using defaulted ctors and constexpr

//Card class

//  -- from C++ for Lazy Programmers

#ifndef CARD_H

#define CARD_H

#include <iostream>

Chapter 26  Esoterica (Recommended)



530

//Rank and Suit: integral parts of Card

//I make these global so that I don't have to forget

// "Card::" over and over when I use them.

enum Rank {ACE=1, JACK=11, QUEEN, KING};

enum Suit {HEARTS, DIAMONDS, CLUBS, SPADES};

enum Color{BLACK, RED};

std::ostream& operator<< (std::ostream& out, Rank r);

std::ostream& operator<< (std::ostream& out, Suit s);

std::istream& operator>> (std::istream& in, Rank& r);

std::istream& operator>> (std::istream& in, Suit& s);

class BadRankException {};  //used if a Rank is out of range

class BadSuitException {};  //used if a Suit is out of range

inline

constexpr Color toColor(Suit s)

{

    if (s == HEARTS || s == DIAMONDS) return RED; else return BLACK;

}

//...and class Card.

class Card

{

public:

    constexpr Card(Rank r=Rank(0), Suit s=Suit(0))

        : rank_(r), suit_(s)

    {

    }

    constexpr Card            (const Card& other) = default;

    constexpr Card& operator= (const Card& other) = default;

    constexpr bool operator== (const Card& other) const

    {

        return rank() == other.rank () && suit() == other.suit();

    }

Chapter 26  Esoterica (Recommended)



531

    constexpr bool operator!= (const Card& other) const

    {

        return !(*this == other);

    }

    constexpr Suit  suit () const { return suit_; }

    constexpr Rank  rank () const { return rank_; }

    constexpr Color color() const

    {

        return toColor(suit());

    }

    void print (std::ostream &out) const { out << rank() << suit(); }

    void read  (std::istream &in );

private:

    Suit suit_;

    Rank rank_;

};

inline std::ostream& operator<< (std::ostream& out, const Card& foo)

{

    foo.print (out); return out;

}

inline std::istream& operator>> (std::istream& in,        Card& foo)

{

    foo.read  (in);  return in;

}

inline

constexpr Card JOKER(Rank(-1), Suit(-1));

                             //works in later implementations of C++17

#endif //CARD_H

I won’t go into fine detail, but you can make a function (member or not) constexpr if 

it’s simple and relies on other parts that can be constexpr.

Chapter 26  Esoterica (Recommended)



532

One thing I like here is the declaration of JOKER above. With inline constexpr I can 

put constants in my .h files without also having to initialize them in a .cpp somewhere: 

I’m done in one line.

Note A t time of writing, compilers aren’t quite ready to call inline 
constexpr’s part of their implementation, but you can set a flag and they’ll take 
it. This flag is also needed in some sections later in this chapter.

g++: add the -std=c++17 flag to the g++ command.

Visual Studio: set Project Properties ➤ C/C++ ➤ Language ➤ C++ Language 
Standard to /std:c++17.

…or use the Makefile or .vcxproj file that comes with source code for this 
section.

Now let’s see test our Card functions – but let’s do it at compile time, with this code:

    //Test some Card functions...

    constexpr Card ACE_OF_SPADES        (ACE, SPADES  );

    constexpr Card COPY_OF_ACE_OF_SPADES(ACE_OF_SPADES);

    static_assert (ACE_OF_SPADES ==COPY_OF_ACE_OF_SPADES,

                   "Copy ctor or == failed");

    static_assert (COPY_OF_ACE_OF_SPADES.rank() == ACE &&

                   COPY_OF_ACE_OF_SPADES.suit() == SPADES,

                   "Copy ctor or access functions failed");

    static_assert (toColor(SPADES) == BLACK,

                   "toColor failed");

    static_assert (COPY_OF_ACE_OF_SPADES.color() == BLACK,

                   "Card::color failed");

    static_assert (JOKER.rank() == Rank(-1) &&

                  JOKER.suit() == Suit(-1),

           "JOKER access functions or initializations failed");

Chapter 26  Esoterica (Recommended)



533

static_assert (condition, message) takes a condition it can verify at compile 

time, plus a message of what its failure might mean, and lets you know of problems at 

compile time rather than runtime. In Visual Studio it’ll tell you while editing, which is 

even nicer.

�User-defined literals: automatic conversion 
between systems of measurement
On September 23, 1999, the US space probe Mars Climate Orbiter was lost near Mars. 

Apparently the part of the program that dealt with achieving orbit had some calculations 

in metric and some in English measurements. The program crashed and NASA never got 

anything from its $327M spaceship. Oops.

I totally relate. Every time I write a program with trig functions, I use degrees and 

C++ uses radians.

NASA didn’t write their software in C++17 because it didn’t exist yet, but if they had, 

they could have had the computer convert automatically as needed between systems. 

Here’s how:

	 1.	 Write an operator to convert from your unit to some unit you want 

the calculations done in – I’ll convert miles to meters:

long double operator"" _mi  (long double mi)

{

    return mi * 1609.344; //1 mi = 1609.344 meters

}

You do need the leading _.

	 2.	 Call it thus: 10_mi. C++ treats this as passing 10 to the "" _mi 

operator.

In BNF, the operator looks like this (though you can add qualifiers to it like 

constexpr):

<return-type> operator "" _<operator name> (<parameter list>)

{

     <body>

}

Chapter 26  Esoterica (Recommended)



534

Using it is like this: <value>_<operator name>, no spaces.

Example 26-5 uses this with constexpr – why not? – for a few simple calculations.

Example 26-5.  A program using user-defined literals

//Program to use user-defined literals

//      -- from _C++ for Lazy Programmers_

#include <iostream>

#include <cmath>

using namespace std;

constexpr double PI = 3.14159;

//"Literal" operators

constexpr

long double operator"" _deg (long double degrees)

{

    return degrees * PI/180;

}

constexpr

long double operator"" _deg (unsigned long long degrees)

{

    return degrees * PI/180;

}

constexpr

long double operator"" _m   (long double  m) { return m;            }

                                                  //1 m = 1 m (duh)

constexpr

long double operator"" _mi  (long double mi) { return mi * 1609.344;}

                                                  //1 mi = 1609.344 m

int main ()

{

    cout << "The speed of light is 186,000 miles per second.\n";

    cout << "In metric, that's ";

Chapter 26  Esoterica (Recommended)



535

    cout <<     186'000.0_mi3   << " meters per second --\n"

         << "   should be about " << 300'000'000.0_m  << ".\n";

    cout << "Oh, and sin (30 deg) is about 0.5: "

         << sin(30_deg) << endl;

    return 0;

}

Output:

The speed of light is 186,000 miles per second.

In metric, that's 2.99338e+008 meters per second --

   should be about 3e+008.

Oh, and sin (30 deg) is about 0.5: 0.5

Two peculiarities regarding parameters:

•	 The parameter list must be one of the sets in Table 26-3. Mostly I use 

long double.

•	 It won’t do implicit casting between types (though it’s flexible about 

modifiers like unsigned or long). If you give it 186000_mi, it will 

fail, because it expected double not int. Either add .0 or write an 

operator that expects an integer type.

3�You can use these “digit separators” to make numbers easier to read. I’ll grant that apostrophe 
looks weird here, but comma was busy with other things.

Table 26-3.  Possible parameter lists for user-defined literal operators

unsigned long long long double

const char*

Char const char*,     std::size_t

wchar_t const wchar_t*,  std::size_t

char16_t const char16_t*, std::size_t

char32_t const char32_t*, std::size_t

Chapter 26  Esoterica (Recommended)



536

EXERCISES

Using user-defined literals, made constexpr if possible:

	1.	M ars’s air pressure is about 6.1 millibars and Earth’s is about 14.7 pounds 

per square inch. Venus’s is about 9.3 MPa. Look up these units online for 

conversions, and calculate how many times more pressure Venus has than 

Earth, and Earth than Mars.

	2.	 Using weights the user provides for 3 objects in pounds, kg, and stone, figure 

which is heaviest.

�Lambda functions for one-time use
STL’s function sort can take a third argument, a comparison function that returns true 

if the first argument is less than the second. Suppose we want to sort cities by name, and 

by population:

bool lessThanByName (const City& a, const City& b)

{

    return a.name()            < b.name();

}

bool lessThanByPop     (const City& a, const City& b)

{

    return a.population() < b.population();

}

...

sort (cities.begin(), cities.end(), lessThanByName);

sort (cities.begin(), cities.end(), lessThanByPop);

If a test is only going to be used once, maybe I’m too lazy to create a complete 

function for it. I can do this instead:

sort(cities.begin(), cities.end(),

     [](const City& a, const City& b)

     {

         return a.name() < b.name();

     });

Chapter 26  Esoterica (Recommended)



537

This is called a “lambda” function, a term borrowed from the mathematics by way of 

the LISP programming language. The [] is a way of saying “the function name goes here, 

except I’m not bothering with a name this time.”

�Lambda captures
It gets weirder. Suppose I want to instead order my Citys by their distance from a 

particular location. I can’t pass in that location as a third argument – sort expects a 

two-argument comparison function! But I can tell the lambda, “Bring this variable in 

from outside”:

const City DELHI ("Delhi", 25'703'000, { 28_deg, 77_deg });

sort(cities.begin(), cities.end(),

     [&DELHI](const City& foo, const City& bar)

     {

         return distance(DELHI, foo) < distance(DELHI, bar);

     });

I put an & with it to say, send in by reference – don’t make a copy. You can’t put  

const & at this point, but since DELHI is const, it won’t alter it.

I can leave the & out if the lambda needs to see but not alter a value, and copying 

isn’t costly:

//Find out if some bad letter is in my city's name

auto findBadLetter =

    find_if(name.begin(), name.end(),

            [badLetter](char ch) { return ch == badLetter; });

Table 26-4 shows what things we can put between the []’s. Usually we don’t need 

anything. But we can list specific variables, with or without &. We can also say, with 

= or &, “let everything in.” “Everything” here means variables that aren’t global (ack!) 

and aren’t static.4 Globals and static locals can be referred to anyway, without being 

listed in the []’s.

4�The correct term is “automatic variables.”

Chapter 26  Esoterica (Recommended)



538

(I think it’s better to specify exactly what can go into the function – avoid bare & and =.)

Example 26-6 is the city-sorting program.

Example 26-6.  A program to sort cities, using lambdas. Parts are omitted for 

brevity but are in the source code

//Program that uses lambda functions to order cities

//  by different criteria

//      -- from _C++ for Lazy Programmers_

#include <iostream>

#include <cmath>  //for sin, cos, asin, sqrt

#include <vector>

#include <string>

#include <cassert>

#include <algorithm>

using namespace std;

    //constexprs

constexpr double PI = 3.14159;

    //...including user-defined literal operators

constexpr

Table 26-4.  Lambda captures. These go between the []’s of a lambda function, 

to allow access to non-static local variables that are not the lambda function’s 

parameters. They can be combined: arg1, &arg2, this

arg1 [, arg2...] use arg by value in the lambda function

&arg [, arg2...] use arg by reference (changing it in the lambda function changes it outside 

as well)

= use all available variables by value

& use all available variables by reference

this use members of current object. If in a non-const function, they can be modified

Chapter 26  Esoterica (Recommended)



539

long double operator"" _deg(unsigned long long deg)

{

    return deg * PI / 180;

}

constexpr

long double operator"" _mi(long double  mi)

{

    return mi * 1609.344;    //1 mi = 1609.344 m

}

    //types

struct PointLatLong

{

    long double latitude_, longitude_;

};

class City

{

public:

    City(const std::string& n, int pop, const PointLatLong& l) :

        name_ (n), population_ (pop), location_(l)

    {

    }

    City            (const City&) = default;

    City& operator= (const City&) = default;

    const std::string& name     () const { return name_;       }

    int population              () const { return population_; }

    const PointLatLong& location() const { return location_;   }

private:

    std::string  name_;

    int          population_;

    PointLatLong location_;

};

    //function prototypes

double distance(const PointLatLong&, const PointLatLong&);

Chapter 26  Esoterica (Recommended)



540

inline

double distance(const City& xCity, const City& yCity)

{

    return distance(xCity.location(), yCity.location());

}

////Functions for use without lambdas:

//bool lessThanByName(const City& a, const City& b)

//{

//  return a.name() < b.name();

//}

//bool lessThanByPop(const City& a, const City& b)

//{

//  return a.population() < b.population();

//}

int main()

{

    //Some prominent party spots

    vector<City> cities =

    {

        {"London",         10'313'000, { 51_deg,  -5_deg}},

        {"Hamburg",         1'739'000, { 53_deg,  10_deg}},

        {"Paris",          10'843'000, { 49_deg,   2_deg}},

        {"Rome",            3'718'000, { 42_deg,  12_deg}},

        {"Rio de Janiero", 12'902'000, {-22_deg, -43_deg}},

        {"Hong Kong",       7'314'000, { 20_deg, 114_deg}},

        {"Tokyo",          38'001'000, { 36_deg, 140_deg}}

    };

    //Without lambdas:

    //sort(cities.begin(), cities.end(), lessThanByName);

    //sort(cities.begin(), cities.end(), lessThanByPop);

        //Print those cities in different orderings:

    cout << "Some major cities, in alpha order :      ";

    sort(cities.begin(), cities.end(),

Chapter 26  Esoterica (Recommended)



541

         [](const City& a, const City& b)

         {

             return a.name() < b.name();

         });

    for (const auto& i : cities) cout << i.name() << " / ";

    cout << endl;

    cout << "Ordered by population:                   ";

    sort(cities.begin(), cities.end(),

         [](const City& a, const City& b)

         {

            return a.population() < b.population();

         });

    for (const auto& i : cities) cout << i.name() << " / ";

    cout << endl;

    cout << "Ordered by how far they are from Delhi:  ";

    const City DELHI("Delhi", 25'703'000, { 28_deg, 77_deg });

    sort(cities.begin(), cities.end(),

         [&DELHI](const City& a, const City& b)

         {

             return distance(DELHI, a) < distance(DELHI, b);

         });

    for (const auto& i : cities) cout << i.name() << " / ";

    cout << endl;

    cout << "Ordered by how far they are from LA:     ";

    const City LA ( "Los Angeles", 3'900'000, {34_deg, -118_deg} );

    //& will work here -- but &LA would be a little more secure

    sort(cities.begin(), cities.end(),

           [&](const City& a, const City& b)

         {

             return distance(LA, a) < distance(LA, b);

         });

    for (const auto& i : cities) cout << i.name() << " / ";

    cout << endl;

Chapter 26  Esoterica (Recommended)



542

    //And something to illustrate the use of lambda capture by value:

    //Does Los Angeles have an 'x' in it?

    char badLetter = 'x';

    assert(find_if(LA.name().begin(), LA.name().end(),

        [badLetter](char ch) { return ch == badLetter; })

        == LA.name().end());

     return 0;

}

EXERCISES

In all of these – of course – use lambda functions. I’m referencing functions I have not put in 

the text; look ‘em up on Internet as needed:

	1.	 Use the for_each function to capitalize every element of a container of 

strings.

	2.	 Use the count_if function to see how many integers in a container are 

squares of integers.

	3.	 Use all_of to verify that every string in your container contains some 

substring, to be given by the user.

	4.	S ort the preceding Citys by latitude.

�Structured bindings and tuples: returning multiple 
values at once
In Chapter 7 I may have given the impression that a function can only return one thing. 

If so…I lied.

We can already return a pair, vector, or list... but here’s an easy way to return 

multiple things without all that overhead. Example 26-7 shows how it looks.

	 1.	 #include <tuple>. A tuple is a sequence of values, possibly of 

different types; it’s what we’ll return.

Chapter 26  Esoterica (Recommended)



543

	 2.	 Let the function return auto. It’s actually returning std::tuple 

<firstType,secondType,...>, but why not let the compiler figure 

that out?

	 3.	 Return your values with return std::make_tuple (value1, 

value2, ...);.

	 4.	 Store the return value in a “structured binding”:

auto [variable1, variable2, ...] = functionCall (...);

This declares variable1 and so on and initializes them from what 

your function returned.

	 5.	 At time of writing, until some future upgrade, tell the compiler 
you really want to use the C++17 standard. See the Note in the 

constexpr section.

Example 26-7.  Using structured bindings to get multiple values through a return 

statement

//Program to calculate the quadratic formula

// (using structured bindings and tuples)

//      -- from _C++ for Lazy Programmers_

#include <iostream>

#include <cmath>    //for sqrt

#include <tuple>    //for tuple stuff    //Step #1: #include <tuple>

#include <cassert>

using namespace std;

//If auto's going to work in main, we need the

// function body *here*. Else there's no way main

// can know what type is to be returned

                                   //#2: return auto

auto quadraticFormula(double a, double b, double c)

{

    int numroots = 0;

Chapter 26  Esoterica (Recommended)



544

    double root1 = 0.0;

    double root2 = 0.0;

    double underTheRadical = b * b - 4 * a*c;

    if (underTheRadical >= 0) //If we have to sqrt a neg #,

                              // no solution. Otherwise...

    {

        root1 = (-b + sqrt(underTheRadical)) / (2 * a);

        root2 = (-b - sqrt(underTheRadical)) / (2 * a);

        if (root1 == root2) numroots = 1; else numroots = 2;

    }

                                   //#3: return a tuple

    return std::make_tuple(numroots, root1, root2);

}

int main ()

{

    //Get user input

    cout << "Enter the a, b, c from ax^2+bx+c = 0: ";

    double a, b, c;  cin >> a >> b >> c;

    //Get the results

                                   //#4: store result in auto[...]

    auto[howMany, r1, r2] = quadraticFormula(a, b, c);

    //Print the results

    switch (howMany)

    {

    case 0: cout << "No solution.\n";                     break;

    case 1: cout << "Solution is "   <<r1<<endl;          break;

    case 2: cout << "Solutions are " <<r1<<' '<<r2<<endl; break;

    default:cout << "Can't have "    <<howMany<<" solutions!\n";

    }

    return 0;

}

Chapter 26  Esoterica (Recommended)



545

This new ability, plus what we know from earlier, leads to an updated version of the 

Golden Rule on this topic in Chapter 8.

Golden Rule of Function Parameters and return (Version 2)

•	 If a function provides a value

•	 If it’s small, return it. For multiples, return a tuple.

•	 If not, pass by &.

•	 If it takes a variable in and changes it, pass by &.

•	 If it takes it in and doesn’t change it,

•	 If it’s an object, pass as const TheClass& object.

•	 Else pass by value (no &).

•	 If it’s a move constructor or move =, pass by &&.

…except arrays are passed in as parameters, with or without const depending on 
whether the contents are to change.

You can also use tuples other places, sort of like pair only with different numbers of 

elements. To get at the parts, whether to change them or use them, use std::get<>():. Put 

which element you want between the <>, and the tuple between the (): 

std::tuple<int, double, double> myTuple

  = std::make_tuple(0, 2.0, 3.0);

assert(std::get<0>(myTuple) == 0); //check the 0th value 

std::get<0>(myTuple) = 1;          //set the 0th value

Fine if it saves you time. But it’s not even half as cool as the thing with auto [...] =.

Chapter 26  Esoterica (Recommended)



546

EXERCISES

	1.	 Write a function sortedTriple that takes in a tuple of three elements, puts 

them in order, and returns the new version. Let main use auto [...] to store 

the values.

	2.	 Write a function which, given a vector, returns the maximum, the minimum, 

the average, and the standard deviation, all in a tuple. Standard deviation is 

sometimes defined as S x average x N-( )2 / .

Now write one that does the same thing for a list. Generic programming, yeah. Let 

main use auto [...] to store the values in each case.

�Smart pointers
One motivator behind recent updates in C++ was to stop pointer errors from blowing up 

our code. Good luck with that! But there are improvements.

�unique_ptr
A main workhorse is std::unique_ptr. It maintains a pointer, lets you use it, and deletes 

it automatically when it goes out of scope. Yes, you can break it, but you have to try. It’s 

usually initialized with make_unique, which takes an argument to initialize a base type 

variable you want a pointer to, or constructor arguments for an object you want created:

#include <memory>

...

std::unique_ptr<int >    p1 = std::make_unique<int>(27);

        //new int ptr, value 27

std::unique_ptr<Date> pDate = std::make_unique<Date>(1, 1, 2000);

        //Put the arguments for Date's constructor in

        //   and make_unique will take care of it

Chapter 26  Esoterica (Recommended)



547

Or it takes the size of an array you want created:

std::unique_ptr<char[]> myChars = std::make_unique<char[]>(100);

After that use it as you normally would a pointer:

*p1 = 2; cout << *p1;

myChars[5] = 'A';

pDate->print(cout);

You can get at the pointer inside with get():

strcpy (myChars.get(), "totally unique");

No need to remember cleanup; it’ll delete itself. And there’s no confusion over who 

does the delete, because unique_ptrs don’t share memory (thus the word “unique”).

You can tell it to delete immediately:

p1.reset(); //the memory is deleted, and p1 now thinks it's nullptr

and maybe reset it to something else you want:

p1.reset (new int); //takes ownership of the new int --

                    //  is responsible for deleting later

Why do any of this?

•	 Error prevention: so you don’t forget to initialize or delete, and 

so you don’t forget and use a pointer that has been deleted – it’s 

automatically set to nullptr, so you can’t.

•	 Exception safety: when you leave a function, it calls destructors on all 

local variables. Raw pointers – the kind we’ve been using – don’t have 

destructors, so their memory won’t be thrown back, but unique_

ptrs do throw theirs back in their destructors. So if you throw an 

exception, using unique_ptr prevents memory leaks.

Most pointers in my code are in classes’ private sections, so although I may not be 

exception-safe, I think they’re fairly secure otherwise. But let’s see if unique_ptr can save 

us any trouble.

I’ll start with the Olympic symbol program from Example 21-7. It contains a 

vector of not Shapes but pointers to Shape, and must, since they’re actually pointers to 

subclasses of Shape. Example 26-8 shows the new version of main.

Chapter 26  Esoterica (Recommended)



548

Example 26-8.  The Olympic symbol program from Example 21-7, now using 

unique_ptr

//Program to show, and move, the Olympics symbol

//It uses Circle, and a subclass of Shape called Text

//      -- from _C++ for Lazy Programmers_

#include <vector>

#include <memory> //for unique_ptr

#include "circle.h"

#include "text.h"

int main (int argc, char** argv)

{

    SSDL_SetWindowSize (500, 300); //make smaller window

    //Create Olympics symbol

    std::vector<std::unique_ptr<Shape>> olympicSymbol;

    enum {RADIUS = 50};

    olympicSymbol.push_back

        (std::make_unique<Circle>( 50,  50, RADIUS));

    olympicSymbol.push_back

        (std::make_unique<Circle>(150,  50, RADIUS));

    olympicSymbol.push_back

        (std::make_unique<Circle>(250,  50, RADIUS));

    olympicSymbol.push_back

        (std::make_unique<Circle>(100, 100, RADIUS));

    olympicSymbol.push_back

        (std::make_unique<Circle>(200, 100, RADIUS));

    //plus a label

    olympicSymbol.push_back

        (std::make_unique<Text>(150,150,"Games of the Olympiad"));

    //color those circles (and the label)

    SSDL_Color olympicColors = { BLUE,

                   SSDL_CreateColor (0, 255, 255) /*yellow*/,

                   BLACK, GREEN, RED, BLACK };

Chapter 26  Esoterica (Recommended)



549

    for (unsigned int i = 0; i < olympicSymbol.size(); ++i)

        olympicSymbol[i]->setColor (olympicColors [i]);

    //do a game loop

    while (SSDL_IsNextFrame ())

    {

        SSDL_DefaultEventHandler ();

        SSDL_RenderClear (WHITE);   //clear the screen

        //draw all those shapes

        for (const auto& i : olympicSymbol) i->draw ();

                                   //ranged-based for loops ftw!

        //move all those shapes

        for (const auto& i : olympicSymbol) i->moveBy (1, 1);

    }

    //No longer needed:

    //for (auto i : olympicSymbol) delete i;

    return 0;

}

I’m not exactly excited at the work I saved, but I guess it’s better than making a slew 

of errors as mentioned previously.

Let’s see what it’ll do inside a class. Shape has a char pointer description_. In real 

life I’d just use a string, but this should help us see what unique_ptr does for us when 

a class must have a pointer (as, in fact, the string class must). Examples 26-9 and 26-10 

show the new version of Shape.

Example 26-9.  The Shape class from Example 21-1, now using unique_ptr (.h file)

//Shape class, for use with the SSDL library

//      -- from _C++ for Lazy Programmers_

#ifndef SHAPE_H

#define SHAPE_H

#include <memory> //for unique_ptr

#include "SSDL.h"

Chapter 26  Esoterica (Recommended)



550

struct Point2D  //Life would be easier if this were a full-fledged class

{               //  with operators +, =, etc. . . . but that

    int x_, y_; //  was left as an exercise.

};

class Shape

{

 public:

    Shape(int x = 0, int y = 0, const char* text = "");

    Shape(const Shape& other);

    Shape(Shape&&) = default;

    virtual ~Shape() {} //No need to delete contents_ -- handled!

    const Shape& operator= (const Shape& s);

    Shape& operator= (Shape&&) = default;

    ...

    const char*     description() const { return description_.get(); }

    ...

 private:

    Point2D    location_;

    SSDL_Color color_;

    std::unique_ptr<char> description_;

    char* copy(const char*); //used for copying descriptions

                             //altered from original for clearer use

                             // with the new description_, but

                             // it's not really new stuff

};

#endif

Example 26-10.  The Shape class from Example 21-1, now using unique_ptr 

(.cpp file)

//Shape class, for use with the SSDL library

//  -- from _C++ for Lazy Programmers_

Chapter 26  Esoterica (Recommended)



551

#include "shape.h"

//ctors

Shape::Shape(int x, int y, const char* text)

    : description_(copy(text))

{

    location_.x_ = x; location_.y_ = y;

}

Shape::Shape (const Shape& s) :

    location_ (s.location()),

    color_    (s.color   ()),

    description_(copy(s.description_.get()))

{

}

//I no longer have to write the move ctor

// ...or the move = operator

//operator=

const Shape& Shape::operator= (const Shape& s)

{

    location_ = s.location();

    color_    = s.color   ();

    description_.reset (copy (s.description_.get()));

    return *this;

}

//copy, used by = and copy ctor

char* Shape::copy (const char* text)

{

    char* result = new char [strlen (text) + 1];

    strcpy (result, text);

    return result;

}

Chapter 26  Esoterica (Recommended)



552

The main advantages I find are

•	 No need to write any code in the destructor – description_ knows 

how to delete itself. I also don’t have to fool with deleting memory in 

operator= or the copy constructor.

•	 I can now use defaults for the move functions. location_ and color_ 

use their copy ctors (location_’s is the default, but that’s fine if the 

members are just ints); description_ knows how to copy itself with 

move. Not writing move constructor and move = saved me about 

eight lines of coding.

�shared_ptr
A unique_ptr owns its memory, and nobody else should alter or deallocate it.

A shared_ptr lets other shared_ptrs own the same memory. It maintains a record 

of how many shared_ptrs are using it (this is “reference counting”), and only when that 

number drops to 0 does the memory get deleted.

Here’s a possible use: I have a 3D model I can load from a file. These things tend to 

be large. If I have 20 monsters of the same type, I don’t want 20 copies of all that graphics 

data!

So I put the graphics data in one object of type GraphicsData and create an 

Instance3D object for every instance of the monster. Let them share their GraphicsData.

class GraphicsData

{

    ...

private:

    ... lots of graphics info...

};

class Instance3D

{

    ...

    Point3D location_;

    shared_ptr<GraphicsData> _modelInfo;

};

Chapter 26  Esoterica (Recommended)



553

I’d hate to have all the monsters wiped out, the model graphics info therefore erased, 

and then have to load it again when I start the next level. I’ll probably keep a copy in  

main () to preserve it.

shared_ptr’s reference counting sometimes has a problem that A refers to B refers to 

A (or a longer chain), so the number of references never drops to zero and nothing ever 

gets deleted. weak_ptr is a way of dealing with that problem, not covered further here.

�Antibugging
The main problem I find with smart pointers is forgetting the get():

strcpy(myChars, "totally unique"); //should be myChars.get()

EXERCISES

	1.	R ewrite the String class (use Chapter 18’s so it’ll have move copy and  

move =) to use unique_ptr.

�Bit twiddling: &, |, ~, and
Many libraries, SDL and its helpers, for example, require you to set some of their features 

with individual bits,5 and report features the same way. Let’s see how to work with that.

To start up the SDL_Image library, you call IMG_Init, which takes a single argument 

of type int telling it what image formats to support. How? SDL_Image.h provides flags 

(bits with assigned meaning): IMG_INIT_JPG is 1, IMG_INIT_PNG is 2, IMG_INIT_TIF is 4, 

and so on. We have to combine them into that one int, bit by bit (no pun intended).

... 0 0 0 0 0 1 0 1

... 128 64 32 16 8 4 2 1

Figure 26-4.  How an int sent to IMG_Init is laid out: reading right to left, we have 
bit 1, bit 2, bit 4, and so on. This one’s set to support jpgs and tiffs (bits 1 and 4)

5�A bit is a binary (base 2) digit, 0 or 1, the smallest possible piece of information. I don’t know how 
we got this far without that term.

Chapter 26  Esoterica (Recommended)



554

A sequence of bits (Figure 26-4) can be viewed as a number (stored in binary, usually 

printed in decimal), a character, image data…or, as in this case, just a string of bits.

We have operators – “bitwise” operators – that help us manipulate the bits:

•	 Bitwise or, as in x | y. Each bit in x | y will be 1 if it’s 1 in either x or y 

(Figure 26-5 (a)).

•	 Bitwise and, as in x & y. A bit in x & y will be 1 if it’s 1 in both x and y 

(Figure 26-5 (b)).

•	 Bitwise not, as in ~x. All the bits are flipped, or reversed  

(Figure 26-5 (c)).

•	 And we can move the bits left or right with shift operators << and >> 

(now doing double duty for stream I/O and bit manipulation). x << 2 

has all the bits in x shifted left two bits (Figure 26-5 (d)).

Now we can see how to construct the int to send to IMG_Init. flags = IMG_INIT_

JPG | IMG_INIT_TIF gives us

IMG_INIT_JPG: 000000001

IMG_INIT_TIF: 000000100

       flags: 000000101

and we pass it in it like this: IMG_Init (flags);.

To play with this more, I have an example of a super-simplified oven (Examples 26-11 

and 26-12). You can set it to bake and/or broil (that’s 1 bit each). I want finer control of 

the two burners on top, so I let the rightmost 2 bits control the right burner; the next 

2 bits left of those control the left burner. The values they can take are 00 for off, 01 for 

low, 10 for medium, and 11 for high.

I also have a “fire” condition: if both burners are on high and the oven’s set to bake 

and broil.

x: 010110011
y: 101010001

x|y: 111110011

(a)

x: 010110011
y: 101010001

x&y: 000010001

(b)

x: 010110011
~x: 101001100

(c)

x: 00000011
x<<2: 00001100

(d)

Figure 26-5.  Bitwise arithmetic

Chapter 26  Esoterica (Recommended)



555

Example 26-11.  Program that uses bit twiddling to set and use flags, part 1

//Program that controls a Super-Simple Demo Oven (SSDO) with flags

//      -- from _C++ for Lazy Programmers_

#include <iostream>

#include <cassert>

class SSDO  //A Super-Simple Demo Oven

{

public:

    enum FLAGS

    {

        RIGHT = 0b00000011,  //This is how to write in binary in C++:

        LEFT  = 0b00001100,  //  precede with 0b or 0B

        BAKE  = 0b00010000,

        BROIL = 0b00100000

        //Top two bits are unused

    };

    enum Condition

    {

        OFF = 0b00,

        LO  = 0b01,

        MD  = 0b10,

        HI  = 0b11,

    };

    enum

    {

        RIGHT_BURNER_OFFSET= 0, //starts at right end of flags

        LEFT_BURNER_OFFSET = 2, //starts 2 bits left

        FIRE = 0b00111111

    };

To turn on bake or broil, I use bitwise or, |, on a member variable flags_  

(see Figure 26-6 (a)): flags_ = flags_ | BAKE;.

Chapter 26  Esoterica (Recommended)



556

To turn it off, I need to keep all other bits unchanged but set that to 0. This’ll do it: 

get a number in which all bits are 1 except BAKE, and “and” that with flags_ (Figure 26-6 

(b)): flags_ = flags_ & ~BAKE;.

Setting a burner is tougher because it’s not just 1 bit. I still need the & and ~, but I 

need to take that Condition – OFF, LO, MD, or HI – and shift it to the right position for the 

given burner.

To set the left burner on HI, say, I clear out the left burner bits as I did with BAKE 

using ~ and & (Figure 26-7 (a)). Then I take HI, 0b11, and shift it left 2 bits with << to get 

0b1100. I use bitwise or to put them together.

I determine if the oven’s catching fire – that is, if everything’s on, and burners are on 

high – by saying (flags() & FIRE) == FIRE. If I just say flags()==FIRE it might not 

work, because I don’t know what those two unused leftmost bits are (Figure 26-7 (b)). 

Defensive programming.

Example 26-12.  Program that uses bit twiddling to set and use flags, part 2

    //We're still in class SSDO's public section...

    //ctors and =

    SSDO()            { flags_ = '\0';    }

flags_: 01000011
BAKE: 00010000

flags_ | BAKE:01010011

(a)

flags_: 01010011
~BAKE: 11101111

flags_ & BAKE: 01000011

(b)

Figure 26-6.  Turning the BAKE bit on and off in the super-simple oven

flags_: 01001011
~LEFT: 11110011

flags_&~LEFT: 01000011
HI<<2: 00001100

flags_&~LEFT | HI<<2: 01011111

(a)

flags_: 01111111
FIRE: 00111111

flags_ & FIRE: 00111111
flags_ == FIRE:  false (?!)

(flags_ & FIRE) == FIRE: true

(b)

Figure 26-7.  (a) Turning the LEFT burner on; (b) checking the FIRE condition

Chapter 26  Esoterica (Recommended)



557

    SSDO(const SSDO&)                   = delete;

    const SSDO& operator= (const SSDO&) = delete;

    //the controls

    void    setBake() { flags_ |= BAKE;   }

    void  clearBake() { flags_ &= ~BAKE;  }

    void   setBroil() { flags_ |= BROIL;  }

    void clearBroil() { flags_ &= ~BROIL; }

    void    setRightBurner(Condition c)

    {

        flags_ &= ~RIGHT;

        flags_ |=

            static_cast<unsigned char>(c << RIGHT_BURNER_OFFSET);

              //The static_cast makes it obvious I *know* I'm

              // changing between types Condition and unsigned char

    }

    void   setLeftBurner  (Condition c)

    {

        flags_ &= ~LEFT;

        flags_ |=

            static_cast<unsigned char> (c<< LEFT_BURNER_OFFSET);

    }

    void clearRightBurner()            { setRightBurner(OFF); }

    void clearLeftBurner ()            { setLeftBurner (OFF); }

    //access functions

    unsigned char flags  () const      { return flags_;       }

    bool isSelfCleaning  () const

    {

        return (flags() & BAKE) && (flags() & BROIL);

    }

    bool isFireHazard    () const  //they're all on, high!

    {

        return  (flags() & FIRE) == FIRE;

    }

Chapter 26  Esoterica (Recommended)



558

private:

    unsigned char flags_; //I only have a few bits;

                          //  don't need a whole int

};

using namespace std;

int main ()

{

    SSDO myOven;

    //Turning the oven completely on; now it's in self-cleaning mode

    myOven.setBake();

    myOven.setBroil();

    assert(myOven.isSelfCleaning());

    assert(myOven.flags() == 0b00110000);

    //Playing with the right burner, checking the result...

    myOven.setRightBurner   (SSDO::LO);

    myOven.clearRightBurner ();

    assert ((myOven.flags() & SSDO::RIGHT) == 0); //()'s needed!

    //I probably shouldn't do this...

    myOven.setRightBurner   (SSDO::HI);

    myOven.setLeftBurner    (SSDO::HI);

    if (myOven.isFireHazard())

        cout << "Cut the power and call the fire department!\n";

    return 0;

}

On the last assert, I needed the ()’s before the ==. If I didn’t have them, it would 

parse that expression as myOven.flags() & (SSDO::RIGHT == 0), which would be 

weird.

Now we should be able to set flags to send information to libraries that use them, and 

get such information back; or use them in libraries of our own.

Chapter 26  Esoterica (Recommended)



559

�Antibugging
•	 Wrong answer to a bit manipulation expression, but you don’t  

see how. Maybe you used && for &, or || for |. I certainly do that.  

Or (as earlier) maybe you need some ()’s.

EXERCISES

	1.	 Write a function to determine if a number is odd or even, by checking one  

of its bits.

	2.	 Write a function that prints a number in binary by checking its bits. You may 

want sizeof.

	3.	 Write a function that finds the log2 of an int, using >>, not /.

	4.	 Write a function to tell if a sequence of bits in a number is symmetric  

(like 11000011 but not 11010011).

Chapter 26  Esoterica (Recommended)



561
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_27

CHAPTER 27

Esoterica (Not 
So Recommended)
These features exist; they can be useful in rare circumstances; I hardly ever use them.

�protected sections, protected inheritance
Consider the class in Example 27-1. Phone has a member numCalls_ which keeps track 

of all calls made, ever, by any Phone. There’s a function to change it, but it’s private, 

because we really should only update numCalls_ when making a call ().

Example 27-1.  The Phone class

class Phone

{

public:

    void call() { /*do some stuff, and then */ incNumCalls(); }

    static int numCalls() { return numCalls_; }

private:

    void incNumCalls   () { ++numCalls_;      }

    static int numCalls_;

};

But now we’ve reached the dawn of human civilization and there are MobilePhones. 

When they make calls, they need to increment that number too. They can’t access 

Phone::incNumCalls(); it’s private. And we already decided for good reason not to make 

it public. What else can we do?



562

C++ provides another section: protected (see Example 27-2). The outside world 

can’t see it (like private) but it’s visible to child classes. Problem solved.

Example 27-2.  Phone and MobilePhone share a family secret via protected

class Phone

{

public:

    void call() { /*do some stuff, and then */ incNumCalls(); }

    static int numCalls() { return numCalls_; }

protected:

    void incNumCalls   () { ++numCalls_;      }

private:

    static int numCalls_;

};

class MobilePhone : public Phone

{

public:

    void call() { /* do stuff w cell towers, and */ incNumCalls(); }

};

protected also gives us a new type of inheritance. Let’s say when you do a mobile 

call, you need some extra security. So in MobilePhone I’ll ditch the old call and add a 

new function secureCall.

class MobilePhone : <public? private? something else?> Phone

{

public:

    void secureCall()

    {

        makeSecure ();

        /* do cell tower stuff */

        incNumCalls();

    }

    void makeSecure (); //however that's done

};

Chapter 27  Esoterica (Not So Recommended)



563

With public inheritance (Figure 27-1), things are as public in the child class as they 

were in the parent. No new restrictions on access are added.

But that lets the outside world use the insecure, inherited call function on a 

MobilePhone. Maybe private inheritance, as in Figure 27-2, would be better? Looks like it.

class MobilePhone : public Phone
{
public:

void makeSecure();
void secureCall();

protected:

private:

};

class Phone
{
public:

void call(); 
static int numCalls();

protected:
void incNumCalls();

private:
static int numCalls_;

};

Figure 27-1.  Public inheritance with a protected section

class MobilePhone : private Phone
{
public:

void makeSecure();
void secureCall();

protected:

private:

};

class Phone
{
public:

void call(); 
static int numCalls();

protected:
void incNumCalls();

private:
static int numCalls_;

};

Figure 27-2.  Private inheritance with a protected section

Chapter 27  Esoterica (Not So Recommended)



564

Now I’ll add a subclass of MobilePhone: a SatellitePhone. It does its calling 

differently:

class SatellitePhone : public MobilePhone

{

public:

    void secureCall()

    {

        makeSecure ();

        /* do satellite stuff */

        incNumCalls();

    }

    //makeSecure is inherited and public

};

Problem: SatellitePhone can’t use incNumCalls. Private inheritance put it in 

MobilePhone’s private section.

We can use protected inheritance, as in Figure 27-3. It’s just like public inheritance 

except that inherited public members become protected.

class MobilePhone : protected Phone
{
public:

void makeSecure();
void secureCall();

protected:

private:

};

class Phone
{
public:

void call(); 
static int numCalls();

protected:
void incNumCalls();

private:
static int numCalls_;

};

Figure 27-3.  Protected inheritance and a solution to SatellitePhone’s problem

Chapter 27  Esoterica (Not So Recommended)



565

Now the subclasses are secure, and all classes access incNumCalls() as needed.

Phone P;            P.call();

MobilePhone MP;    MP.secureCall();

SatellitePhone SP; SP.secureCall();

assert(Phone::numCalls() == 3); //Assertion will succeed

It doesn’t at all matter whether you use private or protected inheritance until 

you have a grandchild class. Even then it probably won’t matter. I almost never need 

protected sections or protected inheritance.

�Template specialization
You won’t often need this either, but when you do…

Suppose I have a Vector (Chapter 20’s Vector) of Superhero*. (Likely I’m doing 

something with subclasses of Superhero, as with the Shapes of Chapter 21.) Superheros 

are printable with <<, so Vector::print should work fine:

template <typename T>

void Vector<T>::print (ostream& out) const

{

      for (int i = 0; i < size(); ++i)

            out << (*this)[i] << '/';

}

I add Superheros Somewhat Competent Boy, Amazing Girl, and so on, then print 

like so:

cout << superheroes << endl;

and get this:

0x2fc7f80/0x2fc7fa0/0x2fc7fc0/0x2fc6de8/

What fun. Why’s it so strange?

It did what we told it. We gave it a Vector of pointers and told it to print them, and 

sure enough, it printed pointers, which are memory addresses.

We’ll add a new version of Vector::print so if the element type is Superhero* it will 

print the Superhero instead (Example 27-3).

Chapter 27  Esoterica (Not So Recommended)



566

Example 27-3.  A template specialization

template<>

void Vector<Superhero*>::print (ostream& out) const

{

    for (unsigned int i = 0; i < size(); ++i)

        out << *((*this)[i]) << '/';

}

The template<> at the beginning says this is a specialization of a template: we’re not 

telling C++ how to print any Vector, just Vectors of Superhero*.

Here’s our new output:Somewhat Competent Boy/Amazing Girl/Superpolite Man/

Wunderkind/

For more on template specialization, see The C++ Programming Language by Bjarne 

Stroustrup, or the Internet.

EXERCISES

	1.	 Write a function printBase3 that prints an int in base 3. Then write a 

specialization of Vector<T>::print that prints all ints in base 3.

	2.	 Write a function isOrdered that returns true if a std::pair’s first is less 

than (<) its second.

…except if first and second are const char*, in which case it uses strcmp to 

evaluate.

�friends, and why you shouldn't have any
This section’s example uses file I/O (Chapter 13).

Consider a program that uses maps. It reads in several Areas, like the ones in  

Figure 27-4, each of which has a name and bounding box (how far the Area extends 

north, south, west, and east). It then reports which Area is furthest north. Examples 27-4 

and 27-5 show source code, with some code omitted for brevity.

Chapter 27  Esoterica (Not So Recommended)



567

Example 27-4.  area.h

//Class Area

//Each Area is read in as

//  <north bound> <south bound> <west bound> <east bound> <name>

//  as in

//  8 2 1 4 Blovinia

//...and that's what an Area contains

//      -- from _C++ for Lazy Programmers_

#ifndef AREA_H

#define AREA_H

#include <string>

class Area

{

public:

    enum Direction { NORTH, SOUTH, EAST, WEST };

    enum           { DIRECTIONS = 4 };

    Area () {}

    Area (const Area& other);

8° N 4° E

2° N

1° E

Figure 27-4.  A four-Area map, with a bounding box shown on one Area

Chapter 27  Esoterica (Not So Recommended)



568

    const Area& operator= (const Area& other);

    void read  (std::istream& in );

    void print (std::ostream& out) const { out << name_; }

private:

    double boundingBox_[DIRECTIONS];

        //the northernmost, southernmost, etc., extent of our Area

        //bigger numbers are further north

        //bigger numbers are further east

    std::string name_;

};

inline

bool furtherNorthThan (const Area& a, const Area& b)

{

    return a.boundingBox_[Area::NORTH] > b.boundingBox_[Area::NORTH];

}

#endif //AREA_H

Example 27-5.  findNorthernmostArea.cpp

//Program to read in regions from a file, and tell which

//  is furthest north.

//      -- from _C++ for Lazy Programmers_

#include <iostream>

#include <fstream>

#include <vector>

#include "area.h"

using namespace std;

int main ()

{

    vector<Area> myAreas;

Chapter 27  Esoterica (Not So Recommended)



569

    ifstream infile("regions.txt");

    if (!infile)

    {

        cerr << "Can't open file regions.txt.\n"; return 1;

    }

    while (infile)                //read in Areas

    {

        Area area; infile >> area;

        if (infile) myAreas.push_back (area);

    }

    //find the northernmost Area

    int northernmostIndex = 0;

    for (unsigned int i = 1; i < myAreas.size(); ++i)

        if (furtherNorthThan (myAreas[i],myAreas[northernmostIndex]))

            northernmostIndex = i;

    //print it

    cout << "The northernmost area is "

         << myAreas [northernmostIndex]

         << endl;

    return 0;

}

I know I’ve written clear, well-commented code here (and I’m humble too), so I 

won’t explain further. But when furtherNorthThan tries to access boundingBox_, the 

compiler complains of a privacy violation. It’s right: boundingBox_ is private.

C++ friends are a fix for this. If a function is so closely associated with a class that 

it may as well be a member – but it isn’t convenient to make it one – you can give it 

access to all members, including the private ones, just as though it were. Here’s how: 

somewhere in class Area (I put it at the top so it’s always the same place), put a friend 

declaration for the function (Example 27-6).

Chapter 27  Esoterica (Not So Recommended)



570

Example 27-6.  A friend for Area

class Area

{

    friend bool furtherNorthThan (const Area& a, const Area& b);

    ...

};

Now the program should compile fine, and report that Morgravia is furthest north.

You can also make a class a friend:

class Area

{

    friend class OtherClassITrust;1

    ...

Or make some other class’s member function a friend:

class Area

{

    friend void OtherClassIPartlyTrust::functionIFullyTrust();

    ...

Is this a good idea?

According to Marshall Cline and the C++ Super-FAQ,2 yes. He argues that a friend 

function is part of the public interface just as a public member function is. It doesn’t 

violate security, but is just another part of it.

I see his point, but I can’t think of an example that can’t be done another way. In 

Example 27-4, we could replace

bool furtherNorthThan (const Area& a, const Area& b);

with

bool Area::furtherNorthThan (const Area& b) const;

That’s what we do with operators like <. Why not this too?

1�If the other class has already been declared, you can leave out the word class here.
2�At time of writing, https://isocpp.org/wiki/faq/.

Chapter 27  Esoterica (Not So Recommended)

https://isocpp.org/wiki/faq/


571

I used to make stream I/O operators >> and << friends of the classes they printed/

read; now I have them call member functions print and read. Using friend might be 

easier, but not by much.

If you want it, use it as experts suggest: for things tightly connected to the class in 

question, so they can be considered part of the class’s interface to the world. I’m betting 

it won’t be often.

�User-defined conversions
Should we add a way to implicitly cast from String to const char* as needed? Makes 

sense: many built-in functions expect a char*, and you might prefer myInFile.open 

(filename); to myInFile.open (filename.c_str()), especially around the 100th time 

you type it. So we’ll add it (Example 27-7).

Example 27-7.  String, with a user-defined cast operator

class String

{

public:

    ...

    const char* c_str    () const      { return contents_;            }

    operator const char* () const      { return c_str ();             }

        //will implicitly cast from String to const char*
    ...

};

Works fine for that call to myInFile.open. Then we try a simple string comparison:

if (str1 == "END")

    cout << "Looks like we've reached the END.\n";

It no longer compiles – gives complaints about ambiguity or too many overloads.

It’s right: there are now two ways to match the arguments of operator ==: implicitly 

convert "END" to another String, and compare with String’s == and implicitly convert 

str1 to a char* with the cast operator and use char*’s ==.

Chapter 27  Esoterica (Not So Recommended)



572

The solution is to put the word explicit in front of the function:3 

explicit operator const char* () const { return c_str (); }

Now we can cast, but we have to say we want to cast: 

myInFile.open ((const char*) filename);

It works, but did we gain anything over saying filename.c_str()?

I never seem to find a way to use this feature that is both safe and time-saving. 

Maybe you will.

EXERCISES

In each exercise, better use explicit to avoid ambiguity.

	1.	A dd a cast-to-double operator to the Point2D class from earlier exercises. The 

double version of a Point2D is the magnitude: x y2 2+ .

	2.	A dd a cast-to-double operator to the Fraction class. The double version of 

1/2, for example, is 0.5 (of course).

3�You can also put explicit in front of other functions sometimes called implicitly, like copy and 
conversion constructors, to disable implicit calls – but I never do.

Chapter 27  Esoterica (Not So Recommended)



573
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_28

CHAPTER 28

C
If you know C++, you almost know C. Experience with C gets you another brag – one 

character long, so it should fit! – on your resume. C is popular for operating systems and 

embedded systems, and there are a lot of libraries in it.

C is essentially what we covered before getting to classes, excluding

•	 SDL/SSDL

•	 cin and cout

•	 & parameters

•	 bool (use int instead)

There are no classes, exceptions, overloaded operators, templates, or namespaces. 

structs exist but don’t have member functions or public/private/protected sections  

(it’s all public).

There are smaller differences, including

•	 Casting looks like this: (int) f, not this: int (f).

•	 struct S {...}; does declare a struct named S, but to declare a 

variable of that type requires an extra word:

struct S myStruct;

cplusplus.com and cppreference.com, despite the names, are good resources on C as 

well as C++.



574

�Compiling C
In Visual Studio you can’t select “C file” as something to add to your project, but you 

can select C++ file and name yours <something>.c. The compiler will treat it as a C file. 

Compile and run as usual.

In Unix or MinGW, name your program <something>.c and compile with the gcc 

command, which works like g++ only for C files.1 The sample code has this built into its 

Makefiles.

Example 28-1 is the obligatory “Hello, world!”.

Example 28-1.  “Hello, world!” in C

/*
Hello, world! -- again!  This time in C.

            from _C++ for Lazy Programmers_

*/

#include <stdio.h>

int main ()

{

      printf ("Hello, world!\n");

      return 0;

}

Some things to note:

•	 Comments in C are /*like this*/ not //like this. (Visual Studio 

allows the // comments, but it’s non-standard.)

1�If you want both C++ and C files in the same project, that’ll work, but there are tricks required. 
You’ll need to put main in a C++ file; link using g++ not gcc; and for any C include files to be used 
in a C++ file, wrap the include thus:
extern "C"

{
#include "mycheader.h"
}
For more on this, at time of writing, see the C++Super-FAQ, https://isocpp.org/wiki/faq/

mixing-c-and-cpp.

Chapter 28  C

https://isocpp.org/wiki/faq/mixing-c-and-cpp
https://isocpp.org/wiki/faq/mixing-c-and-cpp


575

•	 Include files, belonging to the system or not, end in .h. Those 

C++ inherits from C have the initial c taken back off: stdlib.h not 

cstdlib; math.h not cmath.

•	 We print with printf; more on that in the next section.

�I/O
All these I/O functions are in stdio.h.

�printf
Instead of cout >>, C has the function printf (“print-f,” meaning “print with 

formatting”).

printf ("Ints like %d, strings like %s, and floats like %f -- oh, my!\n",

        12, "ROFL", 3.14159);                   /* %d is for "decimal" */

will print

Ints like 12, strings like ROFL, and floats like 3.141590 -- oh, my!

The % sequences are placeholders in the “format string” ("Ints like %d..."), 

showing where to put each successive argument. You can have as many arguments as 

you want. The most common % sequences are %d for decimal integer, %f for fixed floating 

point, and %s for string, that is, character array. %% means “just the % character.”

There are modifiers you can put inside them; for example, %.2f puts 2 digits right of 

the decimal point.

�scanf, and the address-of (&) operator
scanf (“scan-f”) replaces cin >>, and looks like this:

scanf ("%f %s", &myDouble, myCharArray);

& means “take the address of.” C and C++ both have this operator, but C uses it all the 

time. scanf needs to know where myDouble is so it can alter it (more on that in the next 

section). It doesn’t need the address of myCharArray because myCharArray is an address.

Chapter 28  C



576

Visual Studio gives a warning if you use scanf, or some other functions in this 

chapter, that the function is unsafe, just as it does with some cstring functions 

(see Chapter 14). Example 28-2 shows one way to disable the warning if that’s your 

preference.

Example 28-2.  printf and scanf

/*
Program to test C's major standard I/O functions

        -- from _C++ for Lazy Programmers_

*/

#include <stdio.h>

/*Disable a warning about scanf, etc., in Visual Studio */

#ifdef _MSC_VER

#pragma warning (disable:4996)

#endif

int main ()

{

    float number;           /* number we'll read in and print out  */

    int   age;              /* your age                            */

    enum {MAXSTR = 80};     /* array size                          */

    char  name [MAXSTR];    /* your name                           */

        /* A printf showing float, and use of % sign               */

    printf ("%3.2f%% of statistics are made up on the spot!\n\n",

            98.23567894);

        /* printfs using decimal, hex, and char array              */

        /* %02d means pad number to a width of 2 with leading 0's  */

    printf ("%d is 0x%x in hexadecimal.\n\n", 16, 16);

    printf ("\"%s\" is a $%d.%02d word.\n\n", "hexadecimal",

            5, 0);

Chapter 28  C



577

        /* Scanf needs & for the variables it sets */

    printf ("Enter a floating-point number:  ");

    scanf ("%f", &number);

    printf ("%g is %f in fixed notation and %e in scientific.\n",

            number, number, number);

    printf ("...in scientific with a precision of 2:  %.2e.\n\n",

            number);

        /* ...except arrays, since they're already addresses       */

    printf ("Enter your name and age:  ");

    scanf ("%s %d", name, &age);

    printf ("%s is %d years old!\n\n", name, age);

    return 0;

}

This is what the output might look like:

98.24% of statistics are made up on the spot!

16 is 0x10 in hexadecimal.

"hexadecimal" is a $5.00 word.

Enter a floating-point number: 2

2 is 2.000000 in fixed notation and 2.000000e+000 in scientific.

Here it is in scientific with a precision of 2: 2.00e+000.

Enter your name and age: Linus 7

Linus is 7 years old!

Table 28-1 gives a partial list of format codes for printf and scanf.

Chapter 28  C



578

�fprintf and fscanf; fopen and fclose
File I/O in C uses variants of printf and scanf. Consider this code:

FILE* file = fopen ("newfile.txt", "w");            /* open file */

fprintf (file, "Avogadro's number is %.4e.\n", 6.023e+023);

fclose  (file);                                     /* close it  */

To open the file for writing, we call fopen (“f-open”), give it the filename, and  

"w" meaning “write” (to an output file). The file information is stored in a pointer of  

type FILE*.

Closing the file is simply sending the file pointer to fclose, as earlier.

In between, adapt your printfs to fprintfs by adding the file as the first argument.

If you want to read instead or write, open the file with "r" for “read” and adapt scanf 

similarly:

file = fopen ("newfile.txt", "r");

fscanf (file, "%s %s %s %e", word1, word2, word3, &number);

fclose (file);

Table 28-1.  Format codes for printf and scanf

% Sequence Meaning

%d integer in decimal format

%o integer in unsigned octal

%x/%X integer in unsigned hexadecimal. Hex 1f will show up as 0x1f/0X1F

%c character

%s character array

%f fixed point floating point

%e/%E scientific notation floating point. The E will be uppercase if you say %E

%g/%G Like %f or %e, whichever gives shorter output. The E (if any) will be 

uppercase if you say %G

%p pointer

%% the % character itself

Chapter 28  C



579

If successful, fscanf and scanf return the number of arguments you gave. If the 

number is different, something went wrong. Probably you reached the end of file. Test for 

that like so:

while (1)                            /* while true */

{

    if (fscanf (file, "%d", number) != 1) break;

    ...

}

Example 28-3 illustrates the use of these functions.

Example 28-3.  fprintf, fscanf, fopen, and fclose

/*
Program to test C's major standard file I/O functions

        -- from _C++ for Lazy Programmers_

*/

#include <stdio.h>

/*Disable a warning about fopen, etc., in Visual Studio */

#ifdef _MSC_VER

#pragma warning (disable:4996)

#endif

int main ()

{

    FILE* file;             /* a file to write to or read from     */

    float number;           /* number we'll read in and print out  */

    enum { MAXSTR = 80 };   /* array size                          */

    char junk [MAXSTR];     /* a char array for reading in (and thus

                                     discarding) a word            */

        /* printing to file. The number gets 4 digits of precision */

    file = fopen ("newfile.txt", "w");

    printf  (      "Avogadro's number is %.4e.\n", 6.023e+023);

    fprintf (file, "Avogadro's number is %.4e.\n", 6.023e+023);

    fclose  (file);

Chapter 28  C



580

        /* reading from a file                                     */

    file = fopen ("newfile.txt", "r");

    fscanf (file, "%s %s %s %e", junk, junk, junk, &number);

                       /* Read in 3 words, then the number we want */

    fclose (file);

    printf ("Looks like Avogadro's number is still %.4e.\n", number);

    return 0;

}

The file will contain Avogadro's number is 6.0230e+023. and the output to the 

screen will be

Avogadro's number is 6.0230e+023.

Looks like Avogadro's number is still 6.0230e+023.

�sprintf and sscanf; fputs and fgets
A few more I/O functions

•	 sscanf (“s-scan-f”) reads from a character array. If myCharArray is 

"2.3 kg", we can say

sscanf (myCharArray, "%f %s", &myDouble, myWord);

            /* myDouble gets 2.3, myWord gets "kg" */

In C++ we’d have said

sstream myStringStream (myCharArray);

myStringStream >> myDouble >> myWord;

•	 sprintf prints to a character array:

sprintf (myCharArray, "%s %f", name, number);

In C++ we’d have said

sstream myStringStream;

myStringStream << name << number;

string myString = myStringStream.str();

Chapter 28  C



581

•	 fputs and fgets. fputs (myCharArray, file); prints the given 

char array to a file. fgets (myCharArray, max, file); gets a line 

of input from file, no more than max characters including the '\0', 

and stores it in myCharArray.

If you want to use keyboard and display instead of files, do it like so: fputs 

(myCharArray, stdin); and fgets (myCharArray, max, stdout);.

Example 28-4 illustrates the use of these functions.

Example 28-4.  A program using sprintf, sscanf, puts, and gets

/*
Program to test sprintf, sscanf, fgets, fputs

        -- from _C++ for Lazy Programmers_

*/

#include <stdio.h>

/*Disable a warning about scanf, etc., in Visual Studio */

#ifdef _MSC_VER

#pragma warning (disable:4996)

#endif

int main ()

{

    while (1)                  /* forever, or until break... */

    {

        enum {MAXLINE=256};    /* array size for line        */

        char line [MAXLINE];   /* a line of text             */

        enum {MAXSTR = 80};    /* array size for word        */

        char word [MAXSTR];    /* your word                  */

        int  number;           /* a number to read in        */

        /* get an entire line with fgets; on EOF quit        */

        printf("Enter a line with 1 word & 1 number, EOF to quit: ");

        if (! fgets  (line, MAXSTR, stdin)) break;

Chapter 28  C



582

        /* repeat line with fputs                            */

        printf("You entered:  ");

        fputs (line, stdout);

        /* Use char array as source for 2 arguments          */

        if (sscanf (line, "%s %i", word, &number) != 2)

            fputs ("That wasn't a word and a number!\n", stdout);

        else

        {

            /* Print using sprintf and puts                  */

            sprintf(line, "The name was %s and the number was %i.\n",

                    word, number);

            fputs  (line, stdout);

            /*
            If this weren't a demo of new functions, I'd have said:

              printf ("The name was %s and the number was %f.\n",

                      name, number);

            */

        }

        fputs ("\n", stdout);  /* add blank line to separate */

    }

    fputs ("\n\nBye!\n", stdout);

    return 0;

}

Sample output:

Enter a line with 1 word and 1 number, EOF to quit:

You entered:  Mila 18

The name was Mila and the number was 18.

Enter a line with 1 word and 1 number, EOF to quit:

You entered:  Catch 22

The name was Catch and the number was 22.

Enter a line with 1 word and 1 number, EOF to quit:

Bye!

Chapter 28  C



583

�Summary
In Table 28-2, if I don’t give the meaning of what’s returned by a function, it’s because 

with that one we rarely care. With fgets, fopen, and the scanf family, we do.

Table 28-2.  Common stdio functions in C

printf and variants

int printf (const char* formatString,

     ...);

print to screen arguments after formatString, 

as specified by formatString

int fprintf (FILE* file,

     const char* formatString, ...);

same as printf but prints to file

int sprintf (const char* str,

     const char* formatString, ...);

same as printf but prints to str

scanf and variants

int scanf (const char* formatString,

     ...);

read arguments after formatString as 

specified by formatString. Returns EOF if 

it reaches EOF before reading any; else # of 

arguments successfully read

int fscanf (FILE* file,

     const char* formatString, ...);

same as scanf but reads from file

int sscanf (const char* str,

     const char* formatString, ...);

same as scanf but reads from str

opening/closing files

FILE* fopen (const char* filename,

             const char* fileMode);

open, and return pointer to, file specified by 

filename. The most common fileModes are 

"r" (read), "w" (write), and "a" (append)

int fclose (FILE* file); close the file

(continued)

Chapter 28  C



584

�Antibugging
•	 scanf fails for lack of &:

scanf ("%f %s",  myDouble, myCharArray);

should have been

scanf ("%f %s", &myDouble, myCharArray);

It’s easy to forget the &’s, and the compiler may not warn you.

�Parameter passing with *
C doesn’t have & parameters, but like C++, it considers other parameters to be 

unchanged by a function call. Uh-oh.

Table 28-2.  (continued)

reading/writing strings

int fputs (const char* str,

     FILE* file);

print str to file

char* fgets (char* str, int max,

     FILE* file);

read str from file, reading at most max-1 

characters (so str’s size should be max or 

greater). Returns NULL on failure.

Chapter 28  C



585

void swap (int arg1, int arg2)2

{

    int temp = arg1; arg1 = arg2; arg2 = temp;

}

int main ()

{

    int x, y;

    ...

    swap (x, y);  /* x, y will not be changed */

    ...

}

Instead C expects the programmer to send in the address of the argument:

int main ()

{

    int x, y;

    ...

    swap (&x, &y); /* x's and y's addresses are sent, not x and y */

    ...

}

The function takes that address and uses * to refer to the thing it points to, which can 

be altered.

void swap (int* arg1, int* arg2)

{

    int temp = *arg1; *arg1 = *arg2; *arg2 = temp;

}

2�If you run across a function with its parameters defined after the initial ()’s:

int f (thing1, thing2)
int thing1;
float thing2;
{

   ...

…you’ve run across the old Kernighan and Ritchie (K&R) standard. May it accept its honored place 
in history and stop showing up in people’s code.

Chapter 28  C



586

It works! But it’s clunky, and it introduces a maddeningly common error: forgetting 

the *’s.

Example 28-5 uses it (and doesn’t forget the *’s).

Example 28-5.  Program using parameter passing with *’s in C

/*
Program to do statistics on some strings

        from _C++ for Lazy Programmers_

*/

#include <stdio.h>  /*for printf, scanf*/

#include <string.h> /*for strlen       */

/*Disable a warning about scanf, etc., in Visual Studio */

#ifdef _MSC_VER

#pragma warning (disable:4996)

#endif

void updateLineStats (char line[], unsigned int* length,

                      float* averageLineLength);

int main ()

{

    printf ("Type in a line and I'll reply. ");

    printf ("Type the end-of-file character to end.\n");

    while (1)   /* forever (or until a break) ... */

    {

        enum { MAXSTRING = 256 };      /* max line length    */

        char line [MAXSTRING];         /* the line           */

        int  length;                   /* its current length */

        float averageLineLength;

        /* get line of input */

        if (!fgets (line, MAXSTRING, stdin)) break;

        /*do the stats. We send addresses, not variables, using &*/

        updateLineStats (line, &length, &averageLineLength);

Chapter 28  C



587

        /* give the result  */

        printf ("Length of that line, ");

        printf ("and average so far: %d, %.2f.\n",

                length, averageLineLength);

    }

    return 0;

}

void updateLineStats (char line[], unsigned int* length,

                      float* averageLineLength)

{

    static int totalLinesLength = 0;    /*have to remember these */

    static int linesSoFar = 0;          /*  for next time        */

    *length = (unsigned int) (strlen (line));

                                        /*length is a pointer, so*/

                                        /*  *length is the length*/

    /* fgets included the final \n, but I won't count that:      */

    --(*length);

    ++linesSoFar;

    totalLinesLength += *length;

    *averageLineLength = /* and averageLineLength needs its *, too*/

        totalLinesLength / ((float) linesSoFar);

}

Output:

Type in a line and I'll reply. Type the end-of-file character to end.

alpha

Length of that line, and average so far: 5, 5.00.

bet

Length of that line, and average so far: 3, 4.00.

soup

Length of that line, and average so far: 4, 4.00.

Chapter 28  C



588

�Antibugging
•	 “<variable> differs in level of indirection” or “cannot convert from 

<type> to <type>∗” or “makes pointer from integer without cast.” 

There are many ways to complain, but the bottom line is it’s hard 

to remember to put the &’s in the function call and even harder to 

remember the *’s every! time! you use the variable passed in. I never 

found a fix. At least you know that’s a likely culprit for what goes 

wrong; and the compilers seem pretty good about warning us.

�Dynamic memory
Forget new, new [], delete, and delete []: C’s dynamic memory is simpler, if uglier:

#include <stdlib.h>                /* for malloc, free          */

...

<type>* myArray = malloc (myArraySize * sizeof (<type>));

              /* allocate a myArraySize element array of <type> */

...use the array...

free (myArray);                    /* throw it back             */

There’s no destructors to help you remember to free things – you’re on your own.

Example 28-6 adapts Example 14-3, an earlier program using dynamic memory, to C.

Example 28-6.  A C program using dynamic memory

/*
Program to generate a random passcode of digits

        -- from _C++ for Lazy Programmers_

*/

#include <stdio.h>

#include <stdlib.h> /* for srand, rand, malloc, free */

#include <time.h>   /* for time                      */

Chapter 28  C



589

/*Disable a warning about scanf, etc., in Visual Studio */

#ifdef _MSC_VER

#pragma warning (disable:4996)

#endif

int main ()

{

    srand ((unsigned int) time(NULL));/* start random # generator */

                                      /* NULL, not nullptr        */

    int codeLength;                   /* get code length          */

    printf ("I'll make your secret passcode. "

            "How long should it be? ");

    scanf ("%d", &codeLength);

                                        /* allocate array         */

    int* passcode = malloc(codeLength * sizeof(int));

    for (int i = 0; i < codeLength; ++i)/* generate passcode      */

        passcode[i] = rand () % 10;     /* each entry is a digit  */

    printf ("Here it is:\n");           /* print passcode         */

    for (int i = 0; i < codeLength; ++i)

        printf ("%d", passcode[i]);

    printf("\n");

    printf("But I guess it's not secret any more!\n");

    free (passcode);                    /* deallocate array       */

    return 0;

}

EXERCISES

Do the exercises from Chapters 13 and 14, excluding those that use SSDL, in C.

Chapter 28  C



591
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_29

CHAPTER 29

Moving On with SDL
By using SSDL you’ve gone most of the way toward becoming an SDL programmer. To 

learn new things to do with SDL, you can

•	 Dump SSDL and get a tutorial on SDL. You’ll see a lot that you 

recognize. Many SSDL functions are SDL functions with an “S” stuck 

on the front (as in, SDL_PollEvent became SSDL_PollEvent). Usually 

SDL functions need one more initial argument, often of type SDL_

Window* or SDL_Renderer*, two types you’ll learn right away. You can 

usually guess what’ll be needed (hint: functions with “Render” in the 

name probably need SDL_Renderer*). Or…

•	 Keep SSDL, but extend with more SDL features – say, joystick 

support.

Either way it’ll be useful to look behind SSDL to what it’s been hiding from you. Let’s 

start with initialization and cleanup code.

The typical SDL program has a version of main that looks like Example 29-1.

Example 29-1.  A simple SDL program

//An SDL program that doesn't do anything interesting

//      -- from _C++ for Lazy Programmers_

#include <iostream>

#include "SDL.h"

#include "SDL_image.h"

#include "SDL_mixer.h"

#include "SDL_ttf.h"



592

int main(int argc, char** argv)

{

    //initialization

    enum { DEFAULT_WIDTH = 640, DEFAULT_HEIGHT = 480 };

    if (SDL_Init(SDL_INIT_EVERYTHING) < 0) return -1;

    SDL_Window* sdlWindow

        = SDL_CreateWindow("My SDL program!",

                           SDL_WINDOWPOS_UNDEFINED,

                           SDL_WINDOWPOS_UNDEFINED,

                           DEFAULT_WIDTH, DEFAULT_HEIGHT,

                           0); //flags are 0 by default

    if (!sdlWindow) return -1; //nope, it failed

    //defaults below:

    // rendererIndex shd be -1 (pick first renderer that works best)

    // rendererFlags should be 0

    int rendererIndex = -1;

    int rendererFlags = 0;

    SDL_Renderer* sdlRenderer

        = SDL_CreateRenderer(sdlWindow, rendererIndex,

                             rendererFlags);

    if (!sdlRenderer) return -1;//nope, it failed

    SDL_ClearError();           //Initially, no errors

    static const int IMG_FLAGS  //all available types

        = IMG_INIT_PNG | IMG_INIT_JPG | IMG_INIT_TIF;

    if (!(IMG_Init(IMG_FLAGS) & IMG_FLAGS))  //start SDL_Image

        return -1;

    if (TTF_Init() == -1) return -1;         //...and SDL_TTF

                                             //...and SDL_Mixer

    int soundInitialized = (Mix_OpenAudio(88020, MIX_DEFAULT_FORMAT,

                                 MIX_DEFAULT_CHANNELS, 4096) != -1);

    if (!soundInitialized) SDL_ClearError();

Chapter 29  Moving On with SDL



593

              //if it failed, we can still do the program

              //  -- just forget error

    //STUFF YOU ACTUALLY WANT TO DO GOES HERE

    //cleanup

              //If sound system started, close it

    if (soundInitialized) {Mix_AllocateChannels(0);Mix_CloseAudio();}

    TTF_Quit();

    IMG_Quit();

    SDL_DestroyRenderer(sdlRenderer);

    SDL_DestroyWindow(sdlWindow);

    SDL_Quit();

    return 0;

}

�Writing code
In SSDL, the initialization code in Example 29-1 is done by SSDL_Display::SSDL_

Display. There are simplifications. One biggie is: we can’t throw an SSDL_Exception 

without SSDL (!), so instead we deal with failure to launch with return -1;.

See what it does: initializes SDL (this must be done first); creates the window (good!); 

creates a “renderer,” needed to draw or paste images; and initializes SDL_Image and 

SDL_TTF, needed for image and fonts. If anything goes wrong, we give up, because you 

can’t really go on without these things.

It also supports sound by initializing SDL_Mixer’s Mix_OpenAudio. In SSDL this is 

done by SSDL_SoundSystem’s constructor.

The //cleanup code shuts down the helper libraries, kills the window and renderer, 

and finally shuts down SDL. In SSDL this is done by SSDL_SoundSystem’s and SSDL_

Display’s destructors.

I obviously prefer my way, for organization, neatness, and not having to type all 

that code in every new program; but since we’re looking at the messy guts of it all, I 

guess we’ll leave it in main as game programmers often do. At least I’m not using global 

variables.

Chapter 29  Moving On with SDL



594

So can we get a program that will actually do something? Sure, but first let me talk 

about what else SSDL has been covering up:

•	 Many SSDL types represent SDL types, usually pointers.

•	 SSDL_Color is essentially an SDL_Color (duh).

•	 SSDL_Display is essentially an SDL_Renderer* and an SDL_

Window*. (If you care how the SSDL_Display gets passed into SDL 

functions that want these types, see SSDL inline functions for 

handling windows or rendering.)

•	 SSDL_Font is a TTF_Font*.

•	 SSDL_Image is an SDL_Texture*.

•	 SSDL_Music is a Mix_Music*.

•	 SSDL_Sound is a Mix_Chunk* and an int (for channel).

•	 SSDL_Sprite is an SDL_Texture* plus a lot of fields to be 

sent to SDL_RenderCopyEx in a complicated call (see SSDL_

RenderSprite).

These classes exist mostly to protect beginners from pointers, 

and everyone from having to do his/her own dynamic allocation 

and cleanup.

•	 Besides RGB, SDL_Color has an “alpha” member which also ranges 

0 to 255. 0 means completely transparent and 255 means completely 

opaque. To use it, you’ll need SDL functions with “blend” in the name.

•	 Forget ssin and sout; you’ll use TTF_RenderText_Solid (see SSDL_

Display::RenderTextLine).

•	 SDL is always using dynamic memory, but you can’t use new and delete: 

SDL and its helpers provide their own allocation and deallocation 

functions, for example, SDL_CreateTexture and SDL_DestroyTexture; 

TTF_OpenFont and TTF_CloseFont. You have to use them.

OK, so let’s do something, cheating by seeing how SSDL did it. I’ll put an image on 

the screen and wait for someone to hit a key. Hoo-ah!

Chapter 29  Moving On with SDL



595

I’ll use SSDL_LoadImage and SSDL_RenderImage for the image (searching for these 

in the SSDL code – they’ve got to be there somewhere). If you’re following along by 

searching yourself – please do! – you’ll see I leave out calls to SSDL_Display::Instance 

(that’s just there to ensure the initialization code gets called first, and we did that 

already). We won’t stretch the image, so I’ll omit references to stretchWidth and 

stretchHeight and use the image’s actual size. I rename variables as needed. With a 

little more cleanup, I get the code in Example 29-2, which goes immediately after the  

//initialization code in Example 29-1.

Example 29-2.  Displaying an image in SDL

//Draw an image, and wait for a response

SDL_Surface* sdlSurface = IMG_Load("media/pupdog.png");

if (!sdlSurface) return -1;

SDL_Texture* image = SDL_CreateTextureFromSurface

                                  (sdlRenderer, sdlSurface);

if (!image) return -1;

SDL_FreeSurface(sdlSurface);

SDL_Rect dst;                //dst is where it's going on screen

dst.x = 0; dst.y = 0;

SDL_QueryTexture(image, nullptr, nullptr, &dst.w, &dst.h);

                             //get width and height of image

SDL_RenderCopy(sdlRenderer, image, nullptr, &dst);

Waiting for a key…I find SSDL_WaitKey, then the thing that it calls, then the things it 

calls, and eventually get the monstrosity in Example 29-3. It goes right after the image-

display code in Example 29-2.

Example 29-3.  Waiting for a keystroke in SDL

    //Waiting for a key

    SDL_Event sdlEvent;

    SDL_RenderPresent(sdlRenderer);       //display everything

    bool isTimeToQuit = false;

Chapter 29  Moving On with SDL



596

    while (!isTimeToQuit)

    {

        if (SDL_WaitEvent(&sdlEvent) == 0) return -1;

                                         //handle quit messages

        if (sdlEvent.type == SDL_QUIT) isTimeToQuit = true;

        if (sdlEvent.type == SDL_KEYDOWN

            && sdlEvent.key.keysym.scancode == SDL_SCANCODE_ESCAPE)

          isTimeToQuit = true;

        if (sdlEvent.type == SDL_KEYDOWN) //Got that key? break

            break;                        // (break, not return!)

    }

Well, what do you know, it works (Figure 29-1). And it only took me 100 lines!

Figure 29-1.  The SDL program from Examples 29-1, 29-2, and 29-3. Was it 
worth it?

Chapter 29  Moving On with SDL



597

Admittedly, I wrote some awful code there: everything’s in main. But I already did my 

good coding (I hope) in building the SSDL library. If I were going to write good code, I’d 

have just said

int main (int argc, char** argv)

{

    const SSDL_Image PUPPY = SSDL_LoadImage("media/pupdog.png");

    SSDL_RenderImage(PUPPY, 0, 0);

    SSDL_WaitKey();

    return 0;

}

Game programs have been notorious for bad practices: long functions like this one, 

global variables, pointers out the wazoo. As you start programming SDL, you can show 

everyone how to do it right.

�Compiling
In Unix or MinGW: take an SSDL-capable Makefile for your platform (MinGW or Unix) 

and remove all references to SSDL.

In Microsoft Visual Studio: take an SSDL-capable project (.vcxproj, .vcxproj.

filters, and .vcxproj.user), load it, and remove all references to SSDL – that is, under 

Project ➤ Properties, Configuration Properties:

•	 C/C++ ➤ General ➤ Additional Include Directories: take out the path 

to SSDL includes.

•	 Linker ➤ General ➤ Additional Library Directories: take out the path 

to SSDL libraries.

•	 Linker ➤ Input ➤ Additional Dependencies: take out ssdl<whatever 

it is>.lib.

Then compile, and run, as you would an SSDL project.

Chapter 29  Moving On with SDL



598

�Further resources
I think the best reference is libsdl.org. Documentation on SDL_Image, and others, is 

there; you just have to find it (I do a web search for what I want and it’ll take me there). 

And it’s hard to beat Lazy Foo’ (lazyfoo.net) for tutorials.

Chapter 29  Moving On with SDL



599
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4

APPENDIX A

SDL/SSDL Setup Issues
Instructions for using SDL and SSDL with this book are in the source code: essentially, 

download the source code, make a copy of basicSSDLProject (keeping it in the same 

folder), and build and run with your compiler. You shouldn’t need to read this appendix 

unless something goes wrong, or you are curious how to go further.

�Unix
�g++
g++ should already be installed when you installed Unix! And there are different Unix 

distributions with different command sets, so I can’t give a definitive answer on installing 

g++ beyond “consult your Unix distribution.” But if apt-get exists in your world, you may 

want sudo apt-get install build-essential or sudo apt-get install g++ (and 

maybe other packages). sudo yum install <package> is another possibility.

�SDL
Installing SDL is a sysadmin’s job. I’d refer you to the SDL site, but when I went there they 

referred me to my Unix distribution site…which actually makes sense. But I’ll try to help 

anyway. Relevant packages at time of writing include libsdl2-dev, libsdl2-image-dev, 

libsdl2-mixer-dev, and libsdl2-ttf-dev (apt-get); or SDL2-devel, SDL2_image-devel 

SDL2_mixer-devel, and SDL2_ttf-devel (yum).

https://doi.org/10.1007/978-1-4842-5187-4


600

�SSDL
To get SSDL working, you must build it. Go to the book’s sample code and follow 

instructions there (look for README’s). You can leave libssdl.so where you find it; the 

Makefiles in the sample code know where it is as long as you don’t move any directories.

The code repository has scripts in it to run and debug your SSDL programs. This is 

because Unix won’t know where to find libssdl.so. That’s fine – use the scripts – but 

if you don’t want to use them, copy libssdl.so to the same directory you find SDL2 

programs (you’ll have to be sysadmin) or into the directory with your project. Then you 

can run your program thus: ./a.out; and debug it thus: gdb a.out or ddd a.out.

�Making your own Makefiles
If you want to create your own projects, look into the Unix Makefile of any of the SSDL 

projects in the sample code, and do something similar. If you want just the command-

line version, run make and see what commands it produces, likely something like so:

g++ -c `sdl2-config --cflags` -I../../external/SSDL/include main.cpp -o main.o

g++ -o a.out -g main.o `sdl2-config cflags` I../../external/SSDL/include 

  lssdl  lSDL2main -lSDL2 -lSDL2_image -lSDL2_ttf -lSDL2_mixer -L../../

external/SSDL/unix

Yowza.

�Antibugging
•	 You get a message that says the system can’t find an include file  

or library.

	 Maybe it’s not there. See earlier in this appendix for notes on 

installation. Or maybe it’s looking in the wrong place. Make sure 

your folder is in the newWork folder of the book’s source code, and it 

should be able to find SSDL. The Makefiles in the source code use 

the sdl2_config command, which knows path information; if sdl2-

config --cflags --libs can’t find things you need, you may want 

to reinstall.

Appendix A  SDL/SSDL Setup Issues



601

�MinGW
�g++
To install g++ and other needful things, at time of writing, tell the MinGW Installation 

Manager (mingw-get.exe) to install, at least, mingw32-gcc-g++-bin, mingw32-gdb-bin, 

and msys-make-bin.

�SDL and SSDL
These are in the code repository that accompanies the book. Keep your folder either 

where it was (if it’s my sample code) or in the source code’s newWork folder (if it’s yours) 

and the MinGW Makefile should know where both SDL2 and SSDL are.

The code repository has scripts to run and debug your SSDL programs. This is 

because Windows won’t know where to find the various dll files associated with SDL2. 

If you can put them in your folder or in a place that’s on Windows’s PATH, or alter the 

PATH variable so that it knows where to find them, you won’t need the scripts: you can 

run your program by typing a.out or debug it by typing gdb a.out.

�Making your own Makefiles
If you want to create your own projects, look into the MinGW Makefile of any of the 

SSDL projects in the sample code, and do something similar. If you want just the 

command-line version, run make and see what commands it produces. It will look long 

and scary.

�Antibugging
•	 You can’t compile because of missing includes or library files. 

See Chapter 1: your project folder may not be in the source code’s 

newWork folder.

•	 It can’t find SDL2’s dlls. Run with bash runw, not a.out.

•	 You get a runtime error about a dll file.

Appendix A  SDL/SSDL Setup Issues



602

This likely results from a conflict between one of the dll’s that SDL2 and its helper 

libraries use and another installed on your machine. The elegant fix is to find the 

conflicting copy, and, whichever program is using it: update it; uninstall it; remove it 

from the system path; or move it to later in the system path than SDL2. Of course, it may 

make the other program not work. Oops.

A quicker and safer, if less efficient, solution is to copy SDL2’s dll’s from wherever it 

keeps them and put them in the folder with your project. That way it’ll find them first.

�Microsoft Visual Studio
�SDL/SSDL
These libraries are in the code repository that accompanies the book. Keep your folder 

either where it was (if it’s my sample code) or in the source code’s newWork folder (if it’s 

yours), and the Visual Studio project should know where both SDL2 and SSDL are.

If you want to run them without using the compiler…it’s inefficient, but you can copy 

all SDL2’s various dll’s into the folder with the executable before running. Or, if it makes 

sense, copy them some place Windows already looks for dll’s: some place in the PATH.

�Making your own project files
There’s a lot to be done to make your own Visual Studio project file work with SDL2 

and SSDL…and here it is. Create an Empty Project, and under Project ➤ Properties, 

Configuration Properties:

Figure A-1.  A Windows dll error

Appendix A  SDL/SSDL Setup Issues



603

•	 Be sure you’re editing either All Configurations (top left) or at least 

the one you intend to use, probably Debug; and the All Platforms or 

the relevant platform (top middle), probably Win32.

•	 Under Debugging ➤ Environment, set the PATH to include wherever 

SDL2’s dll’s are stored. In the repository, that’s PATH=..\..\

external\SDL2\lib\x86;%PATH%. If they’re already installed 

somewhere in the PATH, you can omit this step. This, by the way, 

is stored in <your project>.vcxproj.user, so erasing that file will 

erase this information.

•	 C/C++ ➤ General: set Additional Include Directories to find SDL2’s 

and SSDL’s includes; I did it like this: ..\..\external\SDL2\

include;..\..\external\SSDL\include

•	 C/C++ ➤ Code Generation ➤ Runtime Library should show /MTd 

(for Debug) or /MT (for Release).

•	 Linker ➤ General: set Additional Library Directories to find the 

libraries. I did it like this: ..\..\external\SDL2\lib\x86;..\..\

external\SSDL\libvs\Win32

•	 Linker ➤ Input ➤ Additional Dependencies should include those 

libraries. Mine looks like so: ssdl_$(Configuration).lib;sdl2.

lib;SDL2main.lib;sdl2_image.lib;sdl2_ttf.lib;sdl2_mixer.

lib;%(AdditionalDependencies). The $(Configuration) means 

“put Debug here if we’re doing Debug mode, Release here for Release 

mode”.

•	 Linker ➤ System ➤ Subsystem should be Windows.

•	 …and add whatever source files you want to the project – main.cpp 

sounds good – and go.

�Antibugging
•	 You can’t compile because of missing includes or library files. 

See Chapter 1: your project folder may not be in the source code’s 

newWork folder.

Appendix A  SDL/SSDL Setup Issues



604

•	 You get a runtime error message about a dll file. Maybe you erased 

the .user file, which tells Visual Studio where to look. If not, see the 

previous “Antibugging” section under MinGW.

�Sound
If sound isn’t working at all, see one of the earlier sections in this appendix. But if the 

quality is a problem, read on.

First, the obvious. Is sound working for other programs? Pull up YouTube and play 

something. Is it all sound files, or just one? If it’s just one, there may be a problem with 

the file or its format. If you know what you’re doing, download a tester program for  

SDL_Mixer and verify you’re getting reasonable sound, thus detecting whether it’s an 

SDL or an SSDL problem.

Or it may help to change the numbers used to initialize SDL_Mixer’s Mix_OpenAudio. 

SSDL has two ways:

•	 Put this line at the top of your file that has main in it:

SSDL_SoundSystemInitialize

                  initializer(88020, MIX_DEFAULT_FORMAT,2, 4096);

then start altering the numbers (see below).

This method may change if SSDL goes into a new version.

•	 Edit those same numbers in SSDL itself. You can find them as 

defaults in the Instance member function of SSDL_SoundSystem.

The first argument, frequency, usually seems to be a multiple of 22005 Hz. Too small 

and it may cause static; too large and it may skip.

There’s a list of possible values for the second argument, format, in the SDL_Mixer 

documentation online, currently at www.libsdl.org; play with them to see which 

sounds best.

The third arguments, channels, should be 1 (mono) or 2 (stereo).

The fourth is chunksize. I see multiples of 1024 used.

Any sufficiently wrong number may cause the music not to play.

I found no benefit in changing the last two arguments, but could improve sound by 

stumbling onto the right format and having a high enough frequency.

Appendix A  SDL/SSDL Setup Issues

http://www.libsdl.org


605
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4

APPENDIX B

�Operators

�Associativity
Unary operators (as in -a) are evaluated right side first (perhaps because there is no  

left side).

Assignment operators (as in A=B) are evaluated right side first, then left.

All other operators are evaluated left to right.

�Precedence
Here are the groupings of C++ operators from highest precedence (evaluated first)  

to lowest.

::

. ->

[] ()

++ (post-increment) -- (post-decrement)

typeid

C++-style cast (<type>())

++ (pre-increment) -- (pre-decrement)

unary operators: ~ ! & * - +

new, new[]

delete, delete []

_Alignof/alignof sizeof

C-style cast (<type>)

.* ->*

(continued)

https://doi.org/10.1007/978-1-4842-5187-4


606

* / %

+ -

>> <<

< <= => >

== !=

&

^

|

&&

||

?:

assignment operators: = += -= *= /= %= ^= &= |= <<= >>=

throw

, (comma)

�Overloading
These are the operators available for overloading in C++:

    •  arithmetic: + - * / % ++ --

    •  logical: & | !

    •  bitwise: && || ~ ^

    •  << >>

    •  assignment: = += -= *= /= %= ^= &= |= <<= >>=

    •  comparison: > >= < <= == !=

    •  -> ->*

    •  [] ()

    •  new new[] delete delete[]

    •  User-defined literals ("" _<identifier>)

    •  , (comma)

Appendix B  Operators



607
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4

APPENDIX C

�ASCII Codes
dec hex dec hex dec hex dec hex

0 00 null character 32 20 space 64 40 @ 96 60 `

1 01 33 21 ! 65 41 A 97 61 a

2 02 34 22 " 66 42 B 98 62 b

3 03 35 23 # 67 43 C 99 63 c

4 04 36 24 $ 68 44 D 100 64 d

5 05 37 25 % 69 45 E 101 65 e

6 06 acknowledge 38 26 & 70 46 F 102 66 f

7 07 bell 39 27 ' 71 47 G 103 67 g

8 08 backspace 40 28 ( 72 48 H 104 68 h

9 09 horizontal tab 41 29 ) 73 49 I 105 69 i

10 0A line feed 42 2A ∗ 74 4A J 106 6A j

11 0B vertical tab 43 2B + 75 4B K 107 6B k

12 0C form feed 44 2C , 76 4C L 108 6C l

13 0D carriage return 45 2D - 77 4D M 109 6D m

14 0E 46 2E . 78 4E N 110 6E n

15 0F 47 2F / 79 4F O 111 6F o

16 10 48 30 0 80 50 P 112 70 p

17 11 49 31 1 81 51 Q 113 71 q

18 12 50 32 2 82 52 R 114 72 r

19 13 51 33 3 83 53 S 115 73 s

(continued)

https://doi.org/10.1007/978-1-4842-5187-4


608

dec hex dec hex dec hex dec hex

20 14 52 34 4 84 54 T 116 74 t

21 15 53 35 5 85 55 U 117 75 u

22 16 54 36 6 86 56 V 118 76 v

23 17 55 37 7 87 57 W 119 77 w

24 18 56 38 8 88 58 X 120 78 x

25 19 57 39 9 89 59 Y 121 79 y

26 1A 58 3A : 90 5A Z 122 7A z

27 1B escape 59 3B ; 91 5B [ 123 7B {

28 1C 60 3C < 92 5C \ 124 7C |

29 1D 61 3D = 93 5D ] 125 7D }

30 1E 62 3E > 94 5E ^ 126 7E ~

31 1F 63 3F ? 95 5F _ 127 7F delete

Appendix C  ASCII Codes



609
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4

1�char8_t isn’t supported by g++ until version 9, or current versions of Visual Studio. It’s part of the 
standard, but…I wouldn’t, yet. Use char.

APPENDIX D

�Fundamental Types
Type Example literal values

bool true, false

char 'A', '\0', '0', '\n'

unsigned char 'A', '\0', '0', '\n'

signed char 'A', '\0', '0', '\n'

char8_t1 u8'A', u8'\u7E'

char16_t u'A', u'\u3053'

char32_t U'A', U'\u3053', U'\U000096e8'

wchar_t L'A', L'\xff00', L'0', L'\n'

float 2.71828F, 6.023E23F

double 2.71828, 6.023E23

long double 2.71828L, 6.023E23L

int -42, 42

signed int -42, 42

unsigned int 42U

short int -42, 42

signed short int -42, 42

unsigned short int 42U

long int -42L, 42L

(continued)

https://doi.org/10.1007/978-1-4842-5187-4


610

Type Example literal values

signed long int -42L, 42L

unsigned long int 42UL

long long int -42LL, 42LL

signed long long int -42LL, 42LL

unsigned long long int 42ULL

void No values

Appendix D  Fundamental Types



611
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4

APPENDIX E�

Escape Sequences
Symbol Meaning

\" Quote (")

\' Single quote (')

\? Question mark (?); rarely used

\\ Backslash (\)

\<up to 3 digits> The digits form an octal (base 8) number; the escape sequence is 

the corresponding character. For example, ‘\101’ is ‘A’, ASCII 65. \0 is 

commonly used as the “null” character (see Chapter 14)

\a Alert (often a beep)

\b Backspace (rarely used)

\f Form feed (rarely used)

\n New line

\r Carriage return (rarely used)

\t Tab

\u<4 digits> The Unicode character or characters corresponding to the 4 

hexadecimal digits used; not used in this book

\u<8 digits> The Unicode character or characters corresponding to the 8 

hexadecimal digits used; not used in this book

\v Vertical tab (rarely used)

\x<digits> The 1 or more digits form a hexadecimal number, and the value is the 

corresponding character.  For example, ‘\x5A’ is ‘Z’, ASCII 90

https://doi.org/10.1007/978-1-4842-5187-4


613
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4

APPENDIX F�

Basic C Standard Library
The following are commonly used functions from standard libraries incorporated  

from C. For a complete listing, go online, possibly to www.cplusplus.com.

�cmath

Trigonometric functions

double sin  (double angle); sine

double cos  (double angle); cosine

double tan  (double angle); tangent

double asin (double angle); arcsine

double acos (double angle); arccosine

double atan (double angle); arctangent

double atan (double x, double y); arctangent (x/y)

Exponential functions

double exp   (double num); e to the num power

double log   (double num); base e log of num

double log10 (double num); base 10 log of num

double pow   (double b, double p); b to the p power (bp)

https://doi.org/10.1007/978-1-4842-5187-4
http://www.cplusplus.com


614

Other functions

double abs  (double num); absolute value

int    abs  (int num); absolute value

double sqrt (double num); square root

�cctype

Classifying functions

int isdigit (int ch); return whether ch is a digit (‘0’…‘9’)

int isalpha (int ch); return whether ch is a letter (‘A’…‘Z’ or ‘a’…‘z’)

int isalnum (int ch); return whether ch is either of the above

int islower (int ch); return whether ch is lowercase (false for non-letter 

characters)

int isupper (int ch); return whether ch is uppercase (false for non-letter 

characters)

int isspace (int ch); return whether ch is whitespace (‘ ’, ‘\f’, ‘\n’, ‘\r’, ‘\h’, or ‘\v’)

int ispunct (int ch); return whether ch is punctuation: not space, letter, or digit

Conversion functions

int tolower (int ch); return the lowercase version of ch. If ch is not a letter, 

returns ch

int toupper (int ch); return the uppercase version of ch. If ch is not a letter, 

returns ch

Appendix F  Basic C Standard Library



615

�cstdlib

double atof (char* text); return the first float or double in the text

int   atoi (char* text); return the first int in the text

void  srand (unsigned int seed); starts pseudo-random number generation, starting 

the pseudo-random sequence with seed

int   rand (); return the next pseudo-random number in a range 

0...RAND_MAX

RAND_MAX maximum number returned by rand

Appendix F  Basic C Standard Library



617
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4

APPENDIX G�

Common Debugger 
Commands
�Microsoft Visual Studio

•	 To set a breakpoint, or “stop sign,” click just past the left margin 

on the line you want. To erase it, click the red circle. You can put 

breakpoints anywhere in code.

•	 To start debugging, Start Debugging (F5) or otherwise run the 

program. Function keys require holding down “Function” or “Fn” on 

some keyboards.

•	 To stop debugging, Stop Debugging (Shift-F5) or otherwise stop the 

program.

•	 To go down one line, Step Over (F10).

•	 To go into a function, Step Into (F11).

•	 To step out of a function, Step Out (Shift-F11).

•	 To go to a particular line, right-click and choose Run To Cursor 

(Ctrl-F10)

•	 To see the value of a variable, look to the lower left, and select the 

Autos or Locals tab, or select Watch 1 and type it in.

•	 You can do calculations of a formula by typing in the formula into 

Watch1.

https://doi.org/10.1007/978-1-4842-5187-4


618

�gdb/ddd

break set breakpoint on current line

break <line number> set breakpoint on line in current file

break <function> set breakpoint for current function, e.g., break myFunc or 

break myFunction (int, int, int)

clear <function-name> clear breakpoint on function

continue keep running to the next break (if any)

delete <number> delete breakpoint #<number>

down go down the call stack (toward current line)

finish finish the current function

help help. It really does help!

info locals

print <expression>

quit

run [<arg1> <arg2>...] run the program in the debugger

set <variable> change the value of a variable

set args <argument>* set command-line arguments (argv)

step go to the next line in execution

up go up the call stack (toward main)

watch <variable> set the debugger to break if the value of variable changes

where show the current call stack

Many of these commands can be abbreviated; for example, c means continue.

Commands can often be repeated simply by hitting return (next and step have this 

property).

To quit, type quit.

Appendix G  Common Debugger Commands



619
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4

APPENDIX H�

SSDL Reference
In the following listings, if you don’t understand the explanation for an entry (say, if 

you don’t know what “Mix_Music” means), that may be something you won’t need until 

moving from SSDL to SDL.

�Updating the screen

void SSDL_RenderPresent(); render whatever is presently drawn; that is, update the screen. 

Automatically called by SSDL_Delay, SSDL_IsNextFrame, 

SSDL_WaitEvent, SSDL_WaitMouse, and SSDL_WaitKey

�Added types

struct SSDL_Color

{

      int r, g, b, a;

};

same as SDL_Color, but with constructors. Fields mean red, 

green, blue, and alpha (opacity) and range 0–255

class SSDL_Exception; an exception thrown by SSDL functions

class SSDL_Font; a wrapper for TTF_Font*

class SSDL_Image; a wrapper for SDL_Texture*, as used by the SDL_Image 

library

class SSDL_Music; a wrapper for Mix_Music*

class SSDL_Sound; a wrapper for Mix_Chunk* and associated channels

class SSDL_Sprite; an SSDL_Image with added capabilities

https://doi.org/10.1007/978-1-4842-5187-4


620

�Clearing the screen

void SSDL_RenderClear (); clear the screen to current erasing color

void SSDL_RenderClear

          (const SSDL_Color& c);

clear screen to color c

�Colors
const SSDL_Colors include BLACK, WHITE, RED, GREEN, BLUE.

SSDL_Color SSDL_CreateColor

  (int red, int green, int blue, 

  int a=255);

create and return a color. Max value for each 

parameter is 255. alpha (transparency) 

defaults to 255 (completely opaque)

void SSDL_SetRenderDrawColor

  (const SSDL_Color& c);

set drawing, including text, to use color c

void SSDL_SetRenderEraseColor

  (const SSDL_Color& c);

set erasing (backspacing, clearing of the 

screen) to use color c

SSDL_Color SSDL_GetRenderDrawColor(); return current drawing color

SSDL_Color SSDL_GetRenderEraseColor(); return current erasing color

�Drawing

void SSDL_RenderDrawPoint (int x, int y); draw a point

void SSDL_RenderDrawPoints

     (const SDL_Point* points, int count);

draw points

void SSDL_RenderDrawLine

     (int x1, int y1, int x2, int y2);

draw a line

void SSDL_RenderDrawLines

     (const SDL_Point* points, int count);

draw lines between points

Appendix H  SSDL Reference



621

void SSDL_RenderDrawRect

     (int x, int y, int w, int h);

draw a w by h rectangle with its upper 

left at (x, y)

void SSDL_RenderDrawRect

     (const SDL_Rect& rect);

draw a rectangle

void SSDL_RenderDrawRects

     (const SDL_Rect* rects, int count);

draw count rectangles

void SSDL_RenderFillRect

     (int x, int y, int w, int h);

draw a filled rectangle

void SSDL_RenderFillRect

     (const SDL_Rect& rect);

draw a filled rectangle

void SSDL_RenderFillRects

     (const SDL_Rect* rects, int count);

draw count filled rectangles

void SSDL_RenderDrawCircle

     (int x, int y, int radius);

draw a circle

void SSDL_RenderFillCircle

     (int x, int y, int radius);

draw a filled circle

�Images

SSDL_Image SSDL_LoadImage

       (const char* filename);

return an SSDL_Image loaded from filename

void SSDL_RenderImage

       (SDL_Image image,

        int x, int y,

        int stretchWidth=0,

        int stretchHeight=0);

display image positioned with its top left corner at x, y. 

If stretchWidth and stretchHeight are specified, 

it makes the image fill a rectangle with that specified 

width and height

(continued)

Appendix H  SSDL Reference



622

void SSDL_RenderImageEx

 (SDL_Image image,

  const SDL_Rect& src,

  const SDL_Rect& dst,

  double angleInDegrees = 0.0,

  SDL_RendererFlip

      flipValue =

                SDL_FLIP_NONE);

display the portion of image bounded by src rectangle 

in the image, stretched or shrunk as needed to fill 

dst rectangle on the screen. Image will be rotated by 

angleInDegrees, and flipped either not at all (SDL_

FLIP_NONE), horizontally (SDL_FLIP_HORIZONTAL), 

vertically (SDL_FLIP_VERTICAL), or both (SDL_FLIP_

HORIZONTAL | SDL_FLIP_VERTICAL). Called by 

SSDL_RenderSprite

int SSDL_GetImageWidth

             (SDL_Image image);

return image’s width

int SSDL_GetImageHeight

             (SDL_Image image);

return image’s height

�Mouse, keyboard, and events

int SSDL_GetMouseX(); provide current X of mouse

int SSDL_GetMouseY(); provide current Y of mouse

int SSDL_GetMouseClick (); return whether mouse is clicked, and if so, which 

button: SDL_BUTTON_LEFT, SDL_BUTTON_MIDDLE, 

SDL_BUTTON_RIGHT, and some others (see SDL 

documentation online)

bool SSDL_IsKeyPressed

  (SDL_Keycode whichKey);

return whether a given key is currently pressed.  

Keys are SDL_Keycodes, not chars; see Chapter 12 

or SDL documentation online

int SSDL_PollEvent

  (SDL_Event& event);

return true if there is an event in the event queue, 

and put its information into event. Called again, it 

goes on to next event

Appendix H  SSDL Reference



623

void SSDL_WaitEvent

  (Uint321 eventType,

   SDL_Event& event);

refresh the screen and wait for an event of the given 

eventType (or a quit event)

int  SSDL_WaitMouse (); refresh the screen and wait for mouse click; returns 

which button

SDL_Keycode SSDL_WaitKey (); refresh the screen and wait for a key hit. Return 

value is the key hit but is usually ignored

void SSDL_DefaultEventHandler (); read all events on queue, and process the quit 

events

�Music
In the following table, each function parameter or return type shown as SSDL_Music may 

actually be of type Mix_Music* – but you can ignore that and pass in SSDL_Music.

If a function doesn’t have music as an argument, it works on what’s currently playing.

void SSDL_FadeInMusic

    (SSDL_Music m,

     int loops, int ms);

fade in music over ms milliseconds, and play for 

specified number of times.  

-1 means repeat forever

void SSDL_FadeInMusicPos

    (SSDL_Music m,

     int loops, int ms,

     double pos);

…do the same, starting at position pos. What 

pos means depends on file type

Mix_Fading SSDL_FadingMusic(); return whether music is fading in or out. Return 

values are MIX_NO_FADING, MIX_FADING_OUT, 

MIX_FADING_IN

void SSDL_FadeOutMusic (int ms); start music fading out over ms milliseconds

1�A Uint32 is an int of a particular size. It’s used here for consistency with SDL. You can ignore 
that and just think of it as int.

(continued)

Appendix H  SSDL Reference



624

Mix_MusicType SSDL_GetMusicType

       (const SSDL_Music music);

return file type of music. See SDL_Mixer 

documentation online for details

void SSDL_HaltMusic  (); halt music

SSDL_Music SSDL_LoadMUS

        (const char* filename);

load music from filename

void SSDL_PauseMusic (); pause music

bool SSDL_PausedMusic () return whether music is paused

void SSDL_PlayMusic

   (SSDL_Music m, int loops=-1);

play music for specified number of times.  

-1 means repeat forever

bool SSDL_PlayingMusic () return whether music is playing

void SSDL_ResumeMusic(); unpause music

void SSDL_RewindMusic(); rewind music; works on some file types

void SSDL_SetMusicPosition

              (double position);

start music at given position. How (and whether!) 

it works depends on file type

int  SSDL_VolumeMusic

                (int volume=-1);

set the volume, which should be 0 to MIX_MAX_

VOLUME (128), and return the new volume. If 

volume is -1, it only returns the volume

�Quit messages

void SSDL_DeclareQuit (); post a quit message. Rarely used, as SSDL handles this 

itself. This tells SSDL_WaitEvent, SSDL_WaitKey,  

SSDL_WaitMouse, and SSDL_IsNextFrame not to wait

bool SSDL_IsQuit (); check whether a quit message has been posted

void SSDL_

ToggleEscapeIsQuit();

turn on/off whether hitting the Escape key constitutes a quit 

message. Default is on

Appendix H  SSDL Reference



625

�Sounds
In the following table, each function parameter or return type shown as SSDL_Sound may 

actually be of type int (representing a sound channel) – but you can ignore that and pass 

in SSDL_Sound.

int  SSDL_ExpireSound

      (SSDL_Sound snd, int ms);

cause the sound to halt after ms milliseconds

int  SSDL_ExpireAllSounds

        (int ms);

cause all sounds to halt after ms milliseconds

void SSDL_FadeInSound

        (SSDL_Sound& sound,

         int repeats, int ms);

fade in sound over ms milliseconds, repeating 

the specified number of times. If repeats is -1, it 

repeats forever

void SSDL_FadeInSoundTimed

        (SSDL_Sound& sound,

         int repeats, int ms,

         int duration);

same as above, but play for at most duration 

milliseconds

int  SSDL_FadeOutSound

       (SSDL_Sound snd, int ms);

fade out sound over ms milliseconds

int  SSDL_FadeOutAllSounds

       (int ms);

fade out all sounds over ms milliseconds

Mix_Fading SSDL_FadingChannel

       (SSDL_Sound);

determine if the sound is fading. Return values 

may be MIX_NO_FADING, MIX_FADING_OUT, or 

MIX_FADING_IN

void SSDL_HaltSound (SSDL_Sound); halt sound

void SSDL_HaltAllSounds () halt all sounds

SSDL_Sound SSDL_LoadWAV

       (const char* file);

load sound from file. Despite the name, some 

formats other than WAV are supported. See  

SDL_mixer documentation online

void SSDL_PauseSound

      (SSDL_Sound);

pause sound

(continued)

Appendix H  SSDL Reference



626

void SSDL_PauseAllSounds () pause all sounds

void SSDL_PlaySound

      (SSDL_Sound sound,

       int repeats=0);

play sound one time plus specified number of 

repeats. -1 means repeats forever

void SSDL_PlaySoundTimed

      (SSDL_Sound sound,

       int repeats,

       int duration);

same as above, but plays at most duration 

milliseconds

void SSDL_ResumeSound (SSDL_Sound); resume sound if paused

void SSDL_ResumeAllSounds (); resume all paused sounds

bool SSDL_SoundPlaying(SSDL_Sound) return whether the sound is playing

bool SSDL_SoundPaused (SSDL_Sound) …or paused

int  SSDL_VolumeSound

     (SSDL_Sound snd,

     int volume=MIX_MAX_VOLUME);

set volume of sound, from 0 to MIX_MAX_VOLUME, 

which is 128; return the volume. If volume 

argument is -1, it only returns the volume

int  SSDL_VolumeAllSounds

   (int volume=MIX_MAX_VOLUME);

…or do the same for all sounds

�Sprites

Miscellaneous

void SSDL_RenderSprite

         (const SSDL_Sprite& s);

draw sprite at its current location

void SSDL_SpriteFlipHorizontal

         (      SSDL_Sprite& s);

flip sprite horizontally

void SSDL_SpriteFlipVertical

             (SSDL_Sprite& s);

…vertically

bool SSDL_SpriteHasIntersection

      (const SSDL_Sprite& a,

       const SSDL_Sprite& b);

return whether sprites a and b intersect

Appendix H  SSDL Reference



627

Get

int SSDL_GetSpriteX      (const SSDL_Sprite&); return sprite’s x position on 

screen

int SSDL_GetSpriteY      (const SSDL_Sprite&); …and y

int SSDL_GetSpriteWidth  (const SSDL_Sprite&); return sprite’s width as it will 

appear on screen

int SSDL_GetSpriteHeight (const SSDL_Sprite&); …and height

int SSDL_GetSpriteOffsetX(const SSDL_Sprite&); return x part of sprite’s offset 

(see Chapter 11)

int SSDL_GetSpriteOffsetY(const SSDL_Sprite&); …and its y component

int SSDL_GetSpriteClipX  (const SSDL_Sprite&); return x component of the 

starting point of the sprite in its 

image file

int SSDL_GetSpriteClipY  (const SSDL_Sprite&); …and its y component

int SSDL_GetSpriteClipWidth

          (const SSDL_Sprite&);

…and its width

int SSDL_GetSpriteClipHeight

          (const SSDL_Sprite&);

…and its height

bool SSDL_GetSpriteFlipHorizontal

     (const SSDL_Sprite&);

return whether sprite is flipped 

(mirrored) horizontally

bool SSDL_GetSpriteFlipVertical

     (const SSDL_Sprite&);

…and vertically

double SSDL_GetSpriteRotation

     (const SSDL_Sprite&);

return sprite’s rotation in 

degrees; default is 0

Appendix H  SSDL Reference



628

Set

void SSDL_SetSpriteLocation

          (SSDL_Sprite& s, int x, int y);

set sprite’s location on screen

void SSDL_SetSpriteSize

           (SSDL_Sprite& s, int w, int h);

…and its size

void SSDL_SetSpriteOffset

                 (SSDL_Sprite& s, int x, int y);

…and its offset

void SSDL_SetSpriteClipLocation

           (SSDL_Sprite& s, int w, int h);

…and where it starts in its image file

void SSDL_SetSpriteClipSize

           (SSDL_Sprite& s, int width, int ht);

…and the size of the part of the image 

file it uses (default is all)

void SSDL_SetSpriteRotation

              (SSDL_Sprite& s, double angle);

…and angle of rotation

�Text
In the following table, each function parameter or return type shown as SSDL_Font may 

actually be of type TTF_Font* – but you can ignore that and pass in SSDL_Font.

sout << thing; print thing on the screen. thing must be 

printable

ssin >> thing; read variable thing from the keyboard. 

thing must be readable

void SSDL_SetCursor (int x, int y); position the cursor at x, y for the next use of 

sout or ssin

SSDL_Font SSDL_GetCurrentFont(); return current font

SSDL_Font SSDL_OpenFont

     (const char* filename, int point);

create a TrueType font from filename, and 

point

Appendix H  SSDL Reference



629

SSDL_Font SSDL_OpenSystemFont

     (const char* filename, int point);

same, but loads from the system fonts folder

void SSDL_SetFont (const SSDL_Font& f); use f as the font for sout, ssin, and Render 

functions except where specified (see the 

following functions that render text)

void SSDL_RenderText

     (const T& thing, int x, int y,

      const SSDL_Font& font =

                         currentFont);

print thing (which may be any printable 

type) at position x, y, using font if specified, 

otherwise using current font, which may be 

changed with SSDL_SetFont

void SSDL_RenderTextCentered

     (const T& thing, int x, int y,

       const SSDL_Font& font =

                             currentFont);

print thing, as above, centered on x, y

�Time and synchronization
See also “Mouse, keyboard, and events.”

void SSDL_Delay

     (Uint32 milliseconds);

refresh the screen and wait this many 

milliseconds

void SSDL_SetFramesPerSecond

     (Uint32 FPS);

set the number of frames per second  

SSDL_IsNextFrame will wait. Default is 60

bool SSDL_IsNextFrame (); refresh the screen and wait for the duration  

of the current frame (since the last time  

SSDL_IsNextFrame was called) to pass

Appendix H  SSDL Reference



630

�Window
void SSDL_GetWindowPosition

               (int& x, int& y);

get window’s x, y position

void SSDL_GetWindowSize

             (int& width, int& height);

…and size

const char* SSDL_GetWindowTitle (); …and title

int  SSDL_GetWindowWidth (); …and width

int  SSDL_GetWindowHeight(); …and height

void SSDL_MaximizeWindow (); expand window to maximum size

void SSDL_MinimizeWindow (); minimize window to icon size

void SSDL_RestoreWindow  (); restore window that was made full 

screen, or minimized, to normal size

void SSDL_SetWindowPosition

                          (int x,int y);

put window at x, y on computer screen

void SSDL_SetWindowSize (int w, int h); set window’s width and height

void SSDL_SetWindowTitle(const char* t); set window’s title

Appendix H  SSDL Reference



631
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4

�References

Briggs, Will. 2019. C++ for Lazy Programmers. Self-referential citation.

cplusplus.com. 2019.

cppreference.com. 2019.

Cline, Marshall, Bjarne Stroustrup, et al. 2019. C++ Super-FAQ. https://isocpp.

org/wiki/faq.

Durfee, Edmund H. “What Your Computer Really Needs to Know, You Learned 

in Kindergarten.” In Proceedings of the Tenth National Conference on Artificial 

Intelligence, pages 858-864, July 1992.

Goldstine, Herman H. 1972. The Computer from Pascal to von Neumann. Princeton 

Univ. Press, Princeton, NJ.

The International Obfuscated C Code Contest. 1984-2016. https://www.ioccc.org/.

PBS. 1996. Triumph of the Nerds, Part III. Transcript is available at http://www.pbs.

org/nerds/part3.html.

Persig, Robert. 1974. Zen and the Art of Motorcycle Maintenance. Morrow Quill, 

pp. 278-280.

Simple Direct Media Layer (SDL). 2019. https://www.libsdl.org/ and  

https://wiki.libsdl.org/.

Stonebank, Michael. 2001. UNIX Tutorial for Beginners. http://www.ee.surrey.

ac.uk/Teaching/Unix/

Stroustrup, Bjarne. 2013. The C++ Programming Language. Addison-Wesley.

Stroustrup, Bjarne. 1993. “A History of C++: 1979-1991.” Proceedings of the Second 

ACM History of Programming Languages conference (HOPL-2). Also at http://www.

stroustrup.com/hopl2.pdf.

Sung, Phil, and the Free Software Foundation. 2007. A Guided Tour of Emacs. 

https://www.gnu.org/software/emacs/tour/.

https://doi.org/10.1007/978-1-4842-5187-4
https://isocpp.org/wiki/faq
https://isocpp.org/wiki/faq
https://www.ioccc.org/
http://www.pbs.org/nerds/part3.html
http://www.pbs.org/nerds/part3.html
https://www.libsdl.org/
https://wiki.libsdl.org/
http://www.ee.surrey.ac.uk/Teaching/Unix/
http://www.ee.surrey.ac.uk/Teaching/Unix/
http://www.stroustrup.com/hopl2.pdf
http://www.stroustrup.com/hopl2.pdf
https://www.gnu.org/software/emacs/tour/


632

United States Department of State, Office of the Under Secretary for Public Diplomacy 

and Public Affairs. 2012; accessed 2019. Identity and Marking Standards. https://eca.

state.gov/files/bureau/state_department_u.s._flag_style_guide.pdf.

United States House of Representatives. Accessed 2019. United States Code, 

TITLE 4—FLAG AND SEAL, SEAT OF GOVERNMENT, AND THE STATES.  

http://uscode.house.gov/view.xhtml?path=/prelim@title4/chapter1& 

edition=prelim.

REFERENCES

https://eca.state.gov/files/bureau/state_department_u.s._flag_style_guide.pdf
https://eca.state.gov/files/bureau/state_department_u.s._flag_style_guide.pdf
http://uscode.house.gov/view.xhtml?path=/prelim@title4/chapter1&edition=prelim
http://uscode.house.gov/view.xhtml?path=/prelim@title4/chapter1&edition=prelim


633
© Will Briggs 2019 
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4

Index

Symbols
--, 113

overloading, 368
!, 87
., 228

in Unix PATH, 279
", 36
()

overloading, 365
[]

Golden Rule of, 215
overloading, 364

{}, 2, 84
/, 65

in file pathnames, 44
// (comments), 2
%, 65, 66
+, 65

overloading, 361
++, 113

overloading, 368
+=, 66
-, 65
!=, 84

overloading, 356
=, 66

defaulted, 528
Golden Rule of, 360
Golden Rule of Constructors  

and =, 384

move =, 383
overloading, 358

==, 84
error (see double-equals error)
overloading, 356

->, 472
>, 84
>=, 84
>>

bitwise shift, 554
overloading, 365
template error, 437

|
bitwise or, 554, 555

||, 86
~

bitwise not, 554
in destructor name, 355
at end of filename, 18

∗
dereference operator, 303, 306
function parameters in C, 584
notation for arrays, 303

0
as false, 86

A
abstract classes, see classes, abstract
abstraction, 161
access functions, 331

https://doi.org/10.1007/978-1-4842-5187-4


634

activation record, 329, 385
.a files, 496
algorithms, 127, 132

analysis of, 389
Golden Rule of, 130
STL include file, 489

&
address operator, 575
bitwise and, 554
function parameters, 180
function parameters in C, 585
reference operator, 306
on Unix commands, 279

&&, 86, 382
and (logical operator), see &&
a.out, 18
ar, 496
argc, argv, 522
arguments, 150, 182
arrays, 207

as function parameters, 212
initializer lists, 209
multidimensional, 219
∗ notation (see ∗, notation  

for arrays)
ASCII codes, 119, 607
assignment operators, 66
associativity, 70
auto, 487, 543

auto [...], 543

B
Babbage, Charles, 130
backups, 20, 337
Backus-Naur form, 83
base 2, 553
base class, 396, See also superclass

batch files, 340
BCPL, 511
begin

member function, 479
binary, 553
biscuit example, 127
bit, 553
bitwise operators, 554
blank lines, 5
[]

Golden Rule of, 365
Boolean, 90
Boole, George, 92
bottom-up testing, 204
bounding box, 93
bracketed initializer list

initializer_list, 487
break, 108

with switch, 124
bubble sort, 390

C
C, 511, 573
c++17 flag, 532, 543
C++98, etc., 03, see standards for C++
C4996

warning in Visual Studio, 576
camel case, 63
card games example, 401
case, in switch, 123
casting, 75

in C, 573
to enum, 216
operators, 527
user-defined ops, 571

catch, 380
cctype, 119, 614

INDEX



635

char, 101
and capitalization, 119
null character, 293

character arrays, 293
initialization, static, 293
as parameters, 294

child class, 396, See also subclass
cin, 274

getline, 294
getline, missing input error, 296
get member function, 284

cin.ignore, 298
classes, 309

abstract, 447
member functions, 309

clear
istream, 368

climits, 122
clipping, 25
close file function, 288
cmath, 72, 613
cmd

in Windows, 280
code reuse, 145

Golden Rule of, 145, 161, 165
coercion, 70
collisions (in games), 254
color, 31
command line

arguments, 522
repeat command, 18

comments, 2, 28, 134
in C, 574
commenting out code, 135

compile time, 333
conditional compilation, 494
const, 31

in include files, 337

member functions, 318
objects, 318

const &
function parameters, 320
Golden Rule of Returning const &, 363

constants, see const
when to use, 65

constant time, 392
constexpr, 529
const_iterator, 484
const_reverse_iterator, 484
constructors, 312

conversion, 322
copy, 320, 321
copy, implicitly called, 321
default, 322
defaulted, 528
explicit calls to, 370
Golden Rule of, 323
Golden Rule of Constructors and =, 384
and inheritance, 398
move ctor, 382

containers, 479
continue, 108
conversion between types

warning, 77
cooldown period, 251
copy function, 489
copy_if, 489
correlation, 215
cout, 274
crash, 211, 302
cstdlib, 174
ctime, 77, 174
ctor, see constructors
Ctrl-C, 109, 135
Ctrl-D, 284
Ctrl-space, 135

Index



636

Ctrl-Z, 109, 284
curly braces, see {}
cursor, 36

D
dangling else, 89
ddd, 198

common commands, 618
debugger, 191

breakpoints, 196
variable values, 196

decimal places
with floating-point to int  

conversion, 70
iomanip, 517

declspec, 501
decrement operators, 113
default, in switch, 123
default parameters, see functions, default 

parameters
delete, 302

delete [], 299, 302
without [], 449

deleted functions, 379
.dep files, 343
dereference operator, see ∗, as dereference 

operator
derived class, 396, See also subclass
destructors, 355

Golden Rule of, 355
and inheritance, 398

diamond problem
in multiple inheritance, 460

diff (Unix), 271
dllexport, 501
dll files, 496, 497, 501, 506, 507
dllimport, 501

double, 61
double-equals error, 88
do-while, 106

when to use, 116
driver program, 344
dtor, see destructors
dynamic allocation

arrays, 299
single elements, 469

dynamic binding, 510
dynamic memory, 299

Golden Rule of, 356

E
efficiency, 431
emacs, 17

commenting, 135
tab region, 135

employee records example, 393
encapsulation, 510
end

member function, 479, 480
enum, 215

as constant, 64
enum class, 217
erase, 490
erase-remove idiom, 490
errors, compile-time, 19
escape codes, see escape sequence
escape sequence, 36
event-driven programming, 248, 269
event handler

SSDL_DefaultEventHandler, 232
events, 249
evil and rude, 4, 306
exceptions, 377
EXIT_FAILURE, 523

INDEX



637

exiv2, 45
explicit, 572
exponential time, 392
extern “C”, 574

F
factorial, 384
false, 91
fclose, 578, 583
fgets, 581, 584
Fibonacci example for  

recursion, 388
file extensions, Windows

un-hiding, 12, 49
file I/O, 280

end of file condition, 282, 285
with named files, 288
redirection to/from files, 282

flags, 553
command-line arguments, 526

F (literal suffix), 62, 122
float, 61
Fn key, 248
fonts, 36

style, 37
fopen, 578, 583
for loop, 112

with arrays, 208
when to use, 116

format string, 575
-fPIC, gcc/g++ option, 496
fprintf, 578, 583
fputs, 581, 584
free, 588
friend, 566
fscanf, 578, 583
fstream, 288

functions, 141
arguments, 24
body, 142
Boolean, 179
in C, 584
call, 143
default arguments, 58
default parameters, 324
four easy steps, 156
header, 142
parameters, 150
parameters of class types, 319
parameters, unnamed, 142
prototypes, 23, 142
Golden Rule of, 163
Golden Rule of Function Parameters 

and return, 185, 545
Golden Rule of Member Function 

Parameters, 316
Golden Rule of Objects as Function 

Parameters, 320
return, 142, 144
return values, use of, 76
virtual (see virtual functions)
void, 148

G
-g

g++ option, 278
g++

-c, 340
command for multiple files, 340
-g, 278
-I, 496
-l, 497
-L, 496
-MM and-MT, 343

Index



638

gdb, 199
common commands, 618
and MinGW, 199
and Unix, 199
up, down, 387
where, 387

generic programming, 483, 546
get, see cin, get member function
get (for tuples), 545
GIMP, 53

cropping, 54
Fuzzy Select Tool, 53

global variables, see variables, global
GNU, 204
Good Thing, 4
grep, 338
gumption, 206

H
hack, 368
has-a, 400
header files, see include files

precompiled, 278
Hello, world!, 1, 273

other languages, 3
.h files, 332
human-computer interaction, 108

I, J
if, 83
#ifndef, 335
ifstream, 288
-I, gcc/g++ option, 496
images, 43

alpha channel, 53
file formats in SDL, 44

JPG, 55
PNG, 44, 55
transparency, 52

implicit
conversion ctor, 322
copy ctor, 321

#include, 2
in C, 575
C++ includes in C, 574

include files, 332
circular includes, 337

increment operators, 113
post-increment, 113
pre-increment, 114

indentation, 5
index variable

of a for loop, 112
inheritance, 396, 510

as a concept, 400
hiding inherited members, 410
multiple, 457
private, 563
protected, 563
public, 563

initializer_list, 488
inline, 329

Golden Rule of, 330
integer division, 65, 75, 77
iomanip, 516

list of manipulators, 519
I/O, standard, 273
iostream, 273
is-a, 400
islower, 120
isupper, 120
iteration, 112
iterators, 479

INDEX



639

K
keyboard ghosting, 248
kill -9, 109

L
[] (lambda function), see lambda  

functions
lambda functions, 536

lambda captures, 537
Lazy Foo’, 598
LD_LIBRARY_PATH, 497
left, 517
-l, gcc/g++  

option, 496, 497
libraries, 495
lifetime, 251
linear time, 392
link time, 334
lists, linked, 463
literals, 64
local variables,  

see variables, local
long, 121

double, 121
loops

with SSDL, 107
loops

Golden Rule of, 116
Lovelace, Lady Ada, 130
ls (Unix command), 18
<, 84
<=, 84
<<

bitwise shift, 554
overloading, 365

l-value, 364

M
make, see Makefiles
Makefiles, 340, 498

make clean, 341
MinGW, for SSDL, 601
Unix, for SSDL, 600

make_tuple, 543
malloc, 588
manipulator, 516
memory (include file), 546
memory leak, 300
Mix_Chunk, 594
Mix_Music, 594
modularity, 153, 186
Montana solitaire example, 411
Monty Hall problem, 178
move function (in std), 455
mouse functions, 79
move semantics, 455
∗ (multiplication), 65
music, 58

N
namespace, 274, 493, 503
new

with [], 299
without [], 449

not (logical operator), see !
NULL, 464
nullptr, 464

O
.o, 18
Obfuscated C Code

International Contest, 511
object metaphor, 309

Index



640

object-oriented, 310, 510
objects, 310
ofstream, 288
O notation, 389
open file function, 288
" " operator, see user-defined literals
operators

arithmetic, 361
assignment, 358
binary, 357
Golden Rule of, 357
Golden Rule of Assignment  

Operators, 360
overloading, 353
overloading, available operators, 353
unary, 357

or (logical operator), see ||
ostream_iterator, 489
ostrich algorithm, 377
overflow, 378
override, 445, 455

P
pair, 437, 439
parent class, 396, See also superclass
particle fountain, 253
PATH, 497, 506
pch.h, 498, 502, 507
pixel, 22
pointers, 299

as conditions, 472
declaring multiple pointers on one 

line, 302
Golden Rule of, 471
pointer arithmetic, 304
raw pointers, 547
smart pointers, 546

polymorphism, 441, 510
portable, 296
precedence, 70
precision (iomanip), 517
precompiled headers, 498
print

STL container, using copy, 489
printf, 575, 583

% sequences, 578
private inheritance, 409
program development, 131
protected, 561
prototypes, see functions, prototypes
ps (Unix command), 109
public inheritance, 409

Q
quadratic time, 392
queues, 432

priority queue, 439
quick-and-dirty, 338

R
radians, 71
rand, 172

and %, 172
random number generation, 171
range-based for loop, 487
rbegin, 485
recursion, 384

accidental, 323
Golden Rule of, 387

reference counting, 552
reference operator, see &, reference 

operator
remove_if, 490

INDEX



641

rend, 485
requirements, 131
reverse_iterator, 484
right, 517
rm (Unix command), 18
rubber ducky debugging, 271
r-value, 383, 454

S
scanf, 575, 583
scientific notation, 62
scope, 186

Golden Rule of Identifier Scope, 189
sdl2_config, 600
SDL_Color, 594
SDL_Event, 233
SDL_GetTicks(), 111
SDL_Keycode, 246
SDL_Mixer, 604
SDL_MOUSEBUTTONDOWN event, 250
SDL programming

without SSDL, 591
SDL_Renderer, 592, 594
SDL_Texture, 594
SDL_Window, 592, 594
segmentation fault, 19, 211, 388
separate compilation, 332
setprecision, 517
setw, 516
shapes example, 441
-shared, gcc/g++ option, 496
shared_ptr, 552
short, 121
signed, 121
Simula 67, 509
sizeof, 122, 210
Smalltalk, 509

smart pointers, see pointers
.so files, 496
sort function, 489
sounds, 58
sout, 35
spacing, 4
sprintf, 580, 583
sprites, 239
srand, 173

Golden Rule of, 175
and time, 174

sscanf, 580, 583
SSDL

functions, 619
screen dimensions, 22

SSDL_Color type, 32
SSDL_DefaultEventHandler, 232
SSDL_GetMouseX, 80
SSDL_GetMouseY, 80
SSDL_GetRenderDrawColor, 34
SSDL_GetRenderEraseColor, 34
SSDL_GetSpriteClipHeight, 627
SSDL_GetSpriteClipWidth, 627
SSDL_GetSpriteClipX, 627
SSDL_GetSpriteClipY, 627
SSDL_GetSpriteFlipHorizontal, 627
SSDL_GetSpriteFlipVertical, 627
SSDL_GetSpriteHeight, 627
SSDL_GetSpriteOffsetX, 627
SSDL_GetSpriteOffsetY, 627
SSDL_GetSpriteRotation, 627
SSDL_GetSpriteWidth, 627
SSDL_GetSpriteX, 627
SSDL_GetSpriteY, 627
SSDL_GetWindowHeight, 48
SSDL_GetWindowWidth, 48
SSDL_HaltMusic, 58
SSDL_HaltSound, 59

Index



642

SSDL_Image, 43
SSDL_IsKeyPressed, 246
SSDL_IsNextFrame, 232
SSDL_IsQuitMessage, 107
SSDL_LoadImage, 43, 48
SSDL_LoadMUS, 58
SSDL_LoadWAV, 58
SSDL_MakeColor, 34
SSDL_Music type, 59
SSDL_OpenFont, 36, 39
SSDL_OpenSystemFont, 36, 39
SSDL_PauseMusic, 58
SSDL_PauseSound, 59
SSDL_PlayMusic, 58
SSDL_PlaySound, 58
SSDL_RenderClear, 34
SSDL_RenderDrawCircle, 24
SSDL_RenderDrawLine, 24
SSDL_RenderDrawPoint, 24
SSDL_RenderDrawRect, 24
SSDL_RenderFillCircle, 24
SSDL_RenderFillRect, 24
SSDL_RenderImage, 43, 48
SSDL_RenderSprite, 626
SSDL_RenderText, 39
SSDL_RenderTextCentered, 39
SSDL_ResumeMusic, 58
SSDL_ResumeSound, 59
SSDL_SetCursor, 36, 39
SSDL_SetFont, 39
SSDL_SetFramesPerSecond, 232
SSDL_SetRenderDrawColor, 34
SSDL_SetRenderEraseColor, 34
SSDL_SetSpriteClipLocation, 628
SSDL_SetSpriteClipSize, 628
SSDL_SetSpriteLocation, 239, 628
SSDL_SetSpriteOffset, 242, 628
SSDL_SetSpriteRotation, 628

SSDL_SetSpriteSize, 239, 241, 628
SSDL_SetWindowSize, 46, 48
SSDL_SetWindowTitle, 48
SSDL_Sound type, 58
SSDL_Sprite, 239
SSDL_SpriteFlipHorizontal, 626
SSDL_SpriteFlipVertical, 626
SSDL_SpriteHasIntersection, 254, 626
SSDL_VolumeMusic, 58
SSDL_VolumeSound, 59
SSDL_WaitKey (), 2
SSDL_WaitMouse, 80
ssin, 101
sstream, 514, 515
stack, 378
stack overflow, 388
standards for C++, 512
Standard Template Library, 479
static

class members, 350
local variables, 172

static allocation, 299
static_assert, 532
static memory, 299
stdafx.h, 502, 507
stdafx.h, 498
stdlib.h, 588
std namespace, 273
stepwise refinement, 128
STL, see Standard Template Library
strcat, 295

deprecation under Visual Studio, 296
strcat_s, 296
strcmp, 295
strcpy, 295

deprecation under Visual Studio, 296
strcpy_s, 296
string, 376

INDEX



643

stringstream, 514
clear contents, 514
clear error flags, 515

strlen, 295
Stroustrup, Bjarne, 511
strtok, 307
structs, 227

in C, 573
structs/classes

initializer lists, 228, 231, 487 (See also 
initializer_list)

member default values, 227
structured binding, 542
stub, 154
swap, 439
swap, 180, 423
switch, 123
syntactic sugar, 321, 356
system ("pause"), 278

T
\t, 36
tar files, 18
templates, 423

class, 432
function, 423
and separate complilation, 433
specialization, 565

text files
Unix v. Windows, 17, 18

this, 358
throw, 378
time function, 77, 174
tolower, 120
top-down design, 162
toupper, 120, 121
true, 91

try, 380
TTF_Font, 594
TTF_SetFontStyle, 37
tuples, 543
typedef, 257
typename, 423

U
Uint32, 629
U (literal suffix), 122
underflow, 378
unique_ptr, 546
Unix

editors, 17
unsigned, 121
user-defined conversions, 571
user-defined literals, 533
.user files, 507, 525
user-friendly, 108, 165
using, 257

namespace, 274
using namespace std;

in include files, 336
utility functions, 322

V
variables, 61

global, 152, 173
Golden Rule of Global  

Variables, 153
initialization, 62
local, 152
naming conventions, 63

vectors, 426
iterators, 483
O notation, 431

Index



644

virtual base classes
in multiple inheritance, 460

virtual functions, 441, 445
destructors, 452
Golden Rule of, 454
and pointers, 447
pure virtual, 447

Visual Studio
Automatically close  

console, 277
can't open include/lib file, 15
commenting, 135
debugger, 196
debugger commands, 617
Debug folder, 14
Empty Project, 274
error highlighting, 7
errors, 15
Microsoft account, 15
.ncb, .sdf files, 14
parameter help, 30
Release mode, 196
Retarget Projects, 16
.sln (solution) file, 13–15
statement completion, 30

SubSystem, 277
.vs folder, 14
.vcxproj (project) files, 13
Windows SDK error, 16
x64 folder, 14

W, X, Y
walkthrough, 134
warnings

compile-time, 19
v. errors, 19

wchar_t, 122
weak_ptr, 553
What Your Computer Needs to Know, You 

Learned in Kindergarten, 300
while, 105

when to use, 116
WinDiff, 271
WinMain@16

not found, 278

Z
zip files, 16

INDEX


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	A simple program
	Spacing

	Creating an SSDL project
	…in Visual Studio
	Compiling your program
	The files you created
	Reopening your project
	Antibugging

	…with g++
	The files you created
	Cool command-line tricks
	Antibugging

	How not to be miserable

	Shapes and the functions that draw them
	Antibugging

	consts and colors
	Text
	sout, escape sequences, and fonts
	SSDL_RenderText, SSDL_RenderTextCentered


	Chapter 2: Images and Sound
	Images and changing window characteristics
	Antibugging

	Multiple images together
	Adding transparency with GIMP
	Sound
	Antibugging


	Chapter 3: Numbers
	Variables
	Constants
	When to use constants, not literal values

	Math operators
	Integer division
	Assignment (=) operators
	A diving board example
	The no-worries list for math operators

	Built-in functions and casting
	Antibugging


	Chapter 4: Mouse, and if
	Mouse functions
	Antibugging

	if
	Coercion and if conditions (int’s dirty little secret)
	Combining conditions with &&, ||, and !
	Antibugging

	Boolean values and variables
	A hidden object game

	Chapter 5: Loops, Input, and char
	Keyboard input
	Antibugging

	while and do-while
	Loops with SSDL
	break and continue
	Antibugging

	for loops
	Increment operators
	An example: averaging numbers
	Antibugging

	chars and cctype
	switch
	Antibugging


	Chapter 6: Algorithms and the Development Process
	Adventures in robotic cooking
	Writing a program, from start to finish
	Requirements: What do we want to do?
	Algorithm: How do we do it?
	Walkthrough: Will it do it?
	Coding: putting it all into C++ (plus: commenting the lazy way)


	Chapter 7: Functions
	Functions that return values
	Functions that return nothing
	Global variables
	Antibugging

	How to write a function in four easy steps (and call it in one)
	Why have functions, anyway?

	Chapter 8: Functions (Continued)
	Random numbers
	Making a random number generator
	Using the built-in random number generator
	Antibugging

	Boolean functions
	& parameters
	Antibugging

	Identifier scope
	A final note on algorithms

	Chapter 9: Using the Debugger
	A flawed program�
	Breakpoints and watched variables
	Visual Studio
	ddd
	gdb

	Fixing the stripes
	Going into functions
	Visual Studio
	ddd
	gdb

	Fixing the stars
	Wrap-up
	Antibugging

	Bottom-up testing
	More on antibugging

	Chapter 10: Arrays and enum
	Arrays
	Arrays’ dirty little secret: using memory addresses
	Antibugging

	Arrays as function parameters
	Array parameters that change, or don’t
	Array parameters and reusability
	Antibugging

	Enumeration types
	enum class
	Antibugging

	Multidimensional arrays
	Displaying the board
	Arrays of more than two dimensions
	Antibugging


	Chapter 11: Animation with structs and Sprites
	structs
	Cool struct tricks

	Making a movie with struct and while
	Sprites
	Antibugging


	Chapter 12: Making an Arcade Game: Input, Collisions, and Putting It All Together
	Determining input states
	Mouse
	Keyboard
	Antibugging

	Events
	Cooldowns and lifetimes
	Collisions
	The big game
	Antibugging


	Chapter 13: Standard I/O and File Operations
	Standard I/O programs
	Compiling in Microsoft Visual Studio
	Antibugging

	Compiling with g++
	Antibugging


	File I/O (optional)
	cin and cout as files
	Getting the command prompt in Windows
	Redirecting I/O at the command prompt
	while (cin)
	Reading in characters, including whitespace
	Antibugging

	Using file names


	Chapter 14: Character Arrays and  Dynamic Memory
	Character arrays
	Antibugging

	Dynamic allocation of arrays
	Antibugging

	Using the * notation
	Antibugging


	Chapter 15: Classes
	Writing classes
	Constructors
	Antibugging

	const objects, const member functions…
	Antibugging

	…and const parameters
	Multiple constructors
	Copy constructors
	Default constructors
	Conversion constructors
	Summary
	Antibugging

	Default parameters for code reuse
	Date program (so far)

	Chapter 16: Classes (Continued)
	inline functions for efficiency
	Access functions
	Separate compilation and include files
	What happens in separate compilation
	Writing your .h file
	Including a .h file only once
	Avoid using namespace std; in include files
	Constants in include files

	Backing up a multi-file project
	Antibugging

	Multiple-file projects in Microsoft Visual Studio
	Multiple-file projects in g++
	Command line: more typing, less thinking
	Makefiles: more thinking, less typing
	A simple version
	A better version

	Antibugging

	Final Date program
	static members (optional)

	Chapter 17: Operators
	The basic string class
	Destructors
	Binary and unary operators
	Assignment operators and * this
	Antibugging

	Arithmetic operators
	[] and ()
	>> and <<: operators that aren’t class members
	++ and --
	Explicit call to constructor
	Final String program
	#include <string>

	Chapter 18: Exceptions, Move Constructors, Recursion, and O Notation
	Exceptions
	Move constructors and move = (optional)
	Recursion (optional; used in the next section)
	Antibugging

	Algorithm analysis and O notation (optional)

	Chapter 19: Inheritance
	The basics of inheritance
	Constructors and destructors
	Inheritance as a concept
	Classes for card games
	An inheritance hierarchy
	private inheritance
	Hiding an inherited member function
	A game of Montana


	Chapter 20: Templates
	Function templates
	Antibugging

	The Vector class
	Efficiency (optional)
	Making Vector a template
	Antibugging

	Unusual class templates
	#include <vector>

	Chapter 21: Virtual Functions and Multiple Inheritance
	Virtual functions
	Behind the scenes
	Pure virtual functions and abstract base classes
	Why virtual functions often mean using pointers
	Virtual destructors
	Inheritance and move ctor/move = (optional)
	Antibugging

	Multiple inheritance
	Antibugging


	Chapter 22: Linked Lists
	What lists are and why have them
	List<T>::List ()
	void List<T>::push_front (const T& newElement);
	void List<T>::pop_front()
	List<T>::~List()
	->: a bit of syntactic sugar
	More friendly syntax: pointers as conditions
	The linked list template
	Antibugging

	#include <list>

	Chapter 23: The Standard Template Library
	Iterators
	…with vector, too
	const and reverse iterators
	Antibugging

	Getting really lazy: ranges and auto
	initializer_lists (optional)
	algorithm (optional)
	The erase-remove idiom
	Antibugging


	Chapter 24: Building Bigger Projects
	Namespaces
	Conditional compilation
	Libraries
	g++
	Static libraries
	Shared libraries
	Linking
	Running
	Makefiles

	Microsoft Visual Studio
	Static libraries – The easy option
	Dynamic Link Libraries (DLLs) – the not so easy way
	Antibugging



	Chapter 25: History
	Simula 67
	Smalltalk
	What “object-oriented” is
	C
	C++
	Standards

	Chapter 26: Esoterica (Recommended)
	sstream: using strings like cin/cout
	iomanip: formatted output
	Command-line arguments
	Debugging with command-line arguments in Visual Studio
	Debugging with command-line arguments in Unix

	static_cast et al
	Defaulted constructors and =
	constexpr and static_assert: moving work to compile time
	User-defined literals: automatic conversion between systems of measurement
	Lambda functions for one-time use
	Lambda captures

	Structured bindings and tuples: returning multiple values at once
	Smart pointers
	unique_ptr
	shared_ptr
	Antibugging

	Bit twiddling: &, |, ~, and
	Antibugging


	Chapter 27: Esoterica (Not So Recommended)
	protected sections, protected inheritance
	Template specialization
	friends, and why you shouldn't have any
	User-defined conversions

	Chapter 28: C
	Compiling C
	I/O
	printf
	scanf, and the address-of (&) operator
	fprintf and fscanf; fopen and fclose
	sprintf and sscanf; fputs and fgets
	Summary
	Antibugging

	Parameter passing with *
	Antibugging

	Dynamic memory

	Chapter 29: Moving On with SDL
	Writing code
	Compiling
	Further resources

	Appendix A: SDL/SSDL Setup Issues
	Unix
	g++
	SDL
	SSDL
	Making your own Makefiles
	Antibugging

	MinGW
	g++
	SDL and SSDL
	Making your own Makefiles
	Antibugging

	Microsoft Visual Studio
	SDL/SSDL
	Making your own project files
	Antibugging

	Sound

	Appendix B: Operators
	Associativity
	Precedence
	Overloading

	Appendix C: ASCII Codes
	Appendix D: Fundamental Types
	Appendix E: Escape Sequences
	Appendix F: Basic C Standard Library
	cmath
	cctype
	cstdlib

	Appendix G: Common Debugger Commands
	Microsoft Visual Studio
	gdb/ddd

	Appendix H: SSDL Reference
	Updating the screen
	Added types
	Clearing the screen
	Colors
	Drawing
	Images
	Mouse, keyboard, and events
	Music
	Quit messages
	Sounds
	Sprites
	Text
	Time and synchronization
	Window

	References
	Index



