C++20
Recipes

A Problem-Solution Approach
Second Edition

J. Burton Browning
Bruce Sutherland

APress

C++20 Recipes
A Problem-Solution Approach

Second Edition

J. Burton Browning
Bruce Sutherland

Apress’

C++20 Recipes: A Problem-Solution Approach

J. Burton Browning Bruce Sutherland
Bolivia, NC, USA Carnegie, VIC, Australia
ISBN-13 (pbk): 978-1-4842-5712-8 ISBN-13 (electronic): 978-1-4842-5713-5

https://doi.org/10.1007/978-1-4842-5713-5

Copyright © 2020 by J. Burton Browning and Bruce Sutherland

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Raw Pixel (www.rawpixel.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484257128. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5713-5

This book is dedicated to Zada Browning, my love and light.

Table of Contents

About the AUtNOIS......cccisemmmssannmisnnmsssnnssssnnssssnsesssnsesssnnssssnsesssnnesssnnssssnnssssnnssssnnssssnn Xxi
About the Technical REVIEWETcccuserrsssnsmsssnsssssnsssssssssssnsssssnsssssnnsssssnssssnnssssnnssss Xxiii
Acknowledgments........ccccuuiissnmmemnmmmmmmssssssssssnnnnmmsssssssssssnnnnsesssssssssnnnnnnnsesssssssnnnnnns XXV
INtroduCtionccucismmrissnnmsssnnmsssnsnsssnnssssnnssssnnssssansessannessannessannesssnnesssnnssssnnssssnnnssnns XXVii
Chapter 1: Beginning C+4+cuuvrimmmmsssmssnmmmmmmmmmsssssssssssssmssssssssssssssssssssssssssssssssessssssns 1
Recipe 1-1. Finding @ TeXt EQITOrcccvvveniiiicsc e s sessenens 2

o0 (0]0] T 1 SOOI SRPRR 2
6310 111 (3RS 2
Recipe 1-2. Installing Clang on UDUNTU.......ccccoevrircenienrerrere e se e s sae s 4
PrODIBM ... ——————————————— 4
SOIULION <.t 4

HOW [EWOTKS ...t s s s s 4
Recipe 1-3. Installing Clang on WiNAOWS..........covrrrerereremsenseresessessesessesessessessessssessessesssssssessees 6
PrODIBIM ... s 6

310 1 6

HOW [EWOTKS ...t s s s 6
Recipe 1-4. Installing Clang on MACOS..........cccvvvrreriernrnrere s ses s s ssesessessees 8
PrODIBIM ... s 8

£ 10 1] 8

HOW [EWOTKS ... s s 8
Recipe 1-5. Building Your First C++ Program........ccccovvvnnnniennensnnssesssessssesessssesssesessesssssnens 9
(0] 1T 9

£ 10 1] 9

TABLE OF CONTENTS

Recipe 1-6. Debugging C++ Programs Using GDB in Cygwin of LiNUX......cccceeevererserieresessensennes 11
PrODIBIM ... e 11
RST8] 11 TR 11
HOW [EWOTKS ...t e 12

Recipe 1-7. Debugging Your C++ Programs on Mac0S...........cccecvverrererenserseressssensesessesessessenses 16
e £0]] T N 16
B30 11 TP 16
HOW [EWOTKS ...t e 17

Recipe 1-8. Switching C++ Compilation MOdes..........ccccvvrieriinin e 19
10 T 19
£ 10 0 OSSR 19
HOW [EWOTKS ...t s s 19

Recipe 1-9. Building with the Boost Library ..o 20
10 T 20
ST 11 0] 20
HOW [EWOTKS ... s s 20

Recipe 1-10. Install Microsoft Visual StUdI0cccvievivnininnnnrn s 22
(0]] T T 22
ST 11 0] S 22
HOW [EWOTKS ... e s nns s 22

Chapter 2: Modern C++ ...cceerrrmrmmmmmsssnssssmsmsssssssssssssssssssssssssssnsnnsssssssssssssnnnnsssssssssnns 25

Recipe 2-1. Initializing VariabIes...........cccvierernninirene e sse e sss e s s ssesessessesnes 26
PrODIBM ... ——————— 26
SOIULION <. s 26
HOW [EWOTKS ...t 26

Recipe 2-2. Initializing Objects with Initializer ListSccccvvevvinierierinnenserseresessessesessesessessenes 29
PIODIBIM ... 29
£ 10 0] 29
HOW [EWOTKS ... 29

TABLE OF CONTENTS

Recipe 2-3. Using Type DedUCLIONcccevvevieriererirsin s sse s s s e s n 32
PrODIBIM ... s 32
£S04 33
HOW [EWOTKS ...ttt 33

Recipe 2-4. Using auto with FUNCLIONSccccoe v 36
o 10] T SN 36
£ 10 10§ 37
HOW [EWOTKS ...t 37

Recipe 2-5. Working with Compile Time Constantsc.cccvivvninininnnsnnnne s 40
(0]] T 40
£ 10 0TSSR 40
HOW [EWOTKS ...t 40

Recipe 2-6. Working with Lambdas............cccviininnnsnn e 44
(0]] T 44
S0 11 70 T 44
HOW [EWOTKS ...t 44

Recipe 2-7. Working With TIME ..o 55
(0]] T 55
ST 11 0] P 55
HOW [EWOTKS ... s s nns s 55

Recipe 2-8. Understanding Ivalue and rvalue References.........cccocvvrivnsnsnennsnsnesesessenennns 60
(0]] T P 60
S0 11 0] SRS 61
HOW [EWOTKS ... s 61

Recipe 2-9. Using Managed POINEEIS.........cccvvcrnennesmnnss s se s s sens 71
L0 (0] 0] [T 1 SR 7
£ o] 111 170 PSSRSO 4l
HOW [EWOTKS ..o sn s s s nss s 4l

vii

TABLE OF CONTENTS

Chapter 3: Working with TexXtcccermmmmsmnnmmssssnnmmssssssssessssnssssssssssssessssnssesssssnsnsenss 81
Recipe 3-1. Representing Strings in Code Using Literalscccoovvvnenrnsernsennseneneserensenens 81
(0]] T N 81

£ 10 0SS 81
HOW [EWOTKS ...t 82
Recipe 3-2. Localizing USer-Facing TeXL........cccuvmirinnnnnniesnssnsse s sesse s sssse s ssesessessesnes 88
o 10] T 88

ST 11 0] P 88
HOW [EWOTKS ... e 89
Recipe 3-3. Reading Strings from @ Filecccoveirienrnrcrre e 98
(0]] T 98
S0 11 0] 98
HOW [EWOTKS ...t s 98
Recipe 3-4. Reading the Data from an XML File ..o 102
(0]] T TS 102

£ 0] 11 0] TR 103
HOW [EWOTKS ... s nns s 103
Recipe 3-5. Inserting Runtime Data into SIrings.........ccvevrenrnsnnnnnseses e 110
(0]] T ST 110

B30 0] OSSPSR 110
HOW [EWOTKSecerecesreereee e se s se s s se s s sessssessssnsssssessssssssnsnsssnsnns 110

Recipe 4-1. Using the INteger TYPES iN G+ ..ovvvcevverereeieriereresessesessessssessessesssssssessessessssessensens 115
PrODIBIM ... e 115
£S04 115
HOW [EWOTKS ...t 116

Recipe 4-2. Making Decisions with Relational Operators..........cccvevrerererserseresesserserersssessenens 121
g 10]] =T T 121
£ 10 10T 121
HOW [EWOTKS ...t e 122

viil

TABLE OF CONTENTS

Recipe 4-3. Chaining Decisions with Logical Operatorscucuevrerersrensessesesessessesessssensenaens 127
PrODIBIM ... s 127
£S04 127
HOW [EWOTKS ...t s 127

Recipe 4-4. Using Hexadecimal ValUES.........ccccceververrenerierser e reres s s e sse s s e s e esaessessenns 130
10 T 130
£S04 130
HOW [EWOTKS ...t s 130

Recipe 4-5. Bit Twiddling with Binary Operatorscccccuriennsnneniesinsnsessese s sessesessssesesaens 133
g 10] T 133
£ 10 10§ 133
HOW [EWOTKS ... s 133

Recipe 4-6. C++20 “Spaceship” or Three-Way Comparison Operatorcccvevreriernsensennens 143
(0]] T 143
30 11 0] 143
HOW [EWOTKS ...t s 143

Chapter 5: ClasSeS.....cuuueumrmssssnnnmsssssnnnmsssssnsnmssssnnnnssssssnnnssssssnnnsssssnnnnsssssnnnnsssssnnnnss 147

Recipe 5-1. DefiniNg @ ClaSS.......cucuururermnmsrnenesnserssesssesese s srsse s s sssssssssssessssesesssssnns 147
PrODIBIM ... e 147
B30 0 OSSPSR 147
HOW IEWOIKS ... e s s s s 147

Recipe 5-2. Adding Data 10 @ Class.........ccucrererrerveriernnersene e ses s sessessesessesessessessessssessesaens 149
PrODIBM ... ———————————————— 149
SOIULION .t ——————————— 149
HOW [EWOTKS ...t s 149

Recipe 5-3. Adding MEthods........ccvcereverrriererrrrrere s s s s sse e s e ssessessssessesaees 151
PrODIBM ...t —————— 151
SOIULION .ot 151
HOW [EWOTKS ... s s 152

ix

TABLE OF CONTENTS

Recipe 5-4. Using AcCeSS MOMITIErSccccvveeririiriniin s ss e s 154
PrODIBIM ... s 154
RS0 11 O 154
HOW [EWOTKS ... s 154
Recipe 5-5. Initializing Class Member Variables.........ccccvvvrerevernenseriesessessessesessssessessessssessensens 158
g 10]] =T T 158
B30 11 TR 158
HOW [EWOTKS ...t s e 158
Recipe 5-6. Cleaning Up CIASSESccucvvererrinmnsenesnsissese s ssssesses e s sessesesssssssessessesssssssesnens 164
g £0]] T TS 164
B30 1] TR 164
HOW [EWOTKS ... s s 164
Recipe 5-7. COPYINg CIASSES......ccccvieririinineresnsinsese s sss e s s st e s e s ssssss e ssessessssessesnens 168
g 10] T T 168
30 0] T 168
HOW [EWOTKS ... e 168
Recipe 5-8. Optimizing Code with Move SemantiCsc.ccocvvvninininnnsne s 180
g 10] T TS 180
30 11 0] 180
HOW [EWOTKS ... s se s s sns s 180
Recipe 5-9. Implementing Virtual FUNCHIONS ..o 186
(0]] T S 186
£ o] 11 0] TS 186
HOW [EWOTKS ... s 186

Recipe 6-1. Inheriting from @ ClaSSccccvvererrrrerierierssessesesesessessessessssessesesssssssessessessssessessens 189
PIODIBIM ... s 189
£ 10 1] 189
HOW [EWOTKS ...t 189

TABLE OF CONTENTS

Recipe 6-2. Controlling Access to Member Variables and Methods in

DENIVEA CIASSES ...cvrvvereueereresssseesesesessssesese e e ssss s se s s e se s e e s e s s e sessssasnssssessnssnsaes 192
10] T 192

£ 10 1] 192
HOW [EWOTKS ... s 192
Recipe 6-3. Hiding Methods in Derived ClasSESc.ccvrerennsnenesnsissessese s sessessessssessessens 198
10] T 198

£ 0] 11 0] 198
HOW [EWOTKS ... 198
Recipe 6-4. Using Polymorphic Base Classes........ccouuurerrrenernsesensesessenesssesessesessssessesesessesenns 201
g 10] T TS 201

£ 0] 11 0] 201
HOW [EWOTKS ... e 201
Recipe 6-5. Preventing Method OVEIridesccoucvveernenerenesssesessesessses e ses e sessesenns 205
(0]] T TS 205
30 11 0] ST 205
HOW [EWOTKS ... s 205
Recipe 6-6. Creating INterfacesccvuvrrrerereserssessesese s 208
(0]] T ST 208

RS0 0] OSSPSR 208
HOW [EWOTKS ...t s nns s 208
Recipe 6-7. Multiple INNEMHTANCE..........ccoovverreririre e 210
PrODIBIM ... e 210
SOIULION .t e e 210
HOW HEWOIKS ...t s 211
Chapter 7: The STL Containers....ccucceurrrssssnnsssssssssnssssssnsssssssssssssssssnnsssssssnnssssssnnnnss 215
Recipe 7-1. Storing a Fixed Number of ObjectS......cccvvevrecrnccrrcrre e 215
g 10] =T S 215

£ 10 10§ 215
HOW [EWOTKS ...t s 215

xi

TABLE OF CONTENTS

Recipe 7-2. Storing a Growing NUmber of ODJECESccvvevrerererrerrererrssersere e ses s ssessssessensens 218
PrODIBIM ... s 218

RS0 11 O 218
HOW [EWOTKS ... s 218
Recipe 7-3. Storing a Set of Elements That Is Constantly AIteredccocveevrererveriererensensenens 228
g 10]] =T T 228

B30 11 TR 228
HOW [EWOTKS ...t s e 228
Recipe 7-4. Storing Sorted Objects in a Container That Enables Fast Lookups.......c..ccccceeeveenne 231
g £0]] T TS 231

£ 10 10O 231
HOW [EWOTKS ... s s 232
Recipe 7-5. Storing Unsorted Elements in a Container for Very Fast Lookupsc.ccccecvieenene 242
g 10] T T 242

£ 0] 11 0] T 242
HOW [EWOTKS ... e 243
Recipe 7-6. Using C++20 Designated Initializationccccovernnnnnenrescrnscsesseses e 248
g 10] T TS 248
30 11 0] 248
HOW [EWOTKS ... s se s s sns s 248
Chapter 8: The STL Algorithmsccccvsseemmmnsssssnnmmsssssnsmsssssssnmssssssnssssssssnssssssnnnnss 251
Recipe 8-1. Using an Iterator to Define a Sequence Within a Container............cccveererenieriennens 251
PrODIBIM ... ——————— 251
SOIUTION .t 251
HOW [EWOTKS ... s s s 251
Recipe 8-2. Calling a Function on Every Element in @ Container...........ccecvvevevnverserenenseniennens 259
PrODIBIM ... s 259

£ 10 10O 259
HOW [EWOTKS ... s s s 259

xii

TABLE OF CONTENTS

Recipe 8-3. Finding the Maximum and Minimum Values in a Containercccvverevensersernens 261
PrODIBIM ...t s 261
£S04 261
HOW [EWOTKS ...t s 261

Recipe 8-4. Counting Instances of a Value in @ SEQUENCE..........ccvvererrrrerreriereressersessessssessensens 267
g 10] T N 267
£S04 267
HOW [EWOTKS ...t 268

Recipe 8-5. Finding Values in @ SEQUENCE..........cccvereirnnenie s sesse s s s e sessesnens 271
10] T T 27
£ 10 10§ 271
HOW [EWOTKS ... s 271

Recipe 8-6. Sorting Elements in @ SEQUENCE..........cccovvrrrerinnsnreness s sesnens 273
(0]] T 273
£ 0] 11 0] T 273
HOW [EWOTKS ... e 273

Recipe 8-7. Looking Up Values in @ SEL ... sss e s s ssssessesaens 275
g 10] T S 275
£ o] 11 0] S 275
HOW [EWOTKS ... e se s nas e sns e nenss 275

Chapter 9: Templates......ccccusemmmnssssnnnmmsssssnnmmssssnnmssssssnmssssssnessssssesssnssesssnnnnns 277

Recipe 9-1. Creating a Template FUNCLIONccccvierrinrniene s sseenens 277
PrODIBM ... ———————— 277
SOIULION .t 277
HOW [EWOTKS ...t s 277

Recipe 9-2. Partially Specializing a TEmplatecccevivvrrerrerienensensesiesesessessesesessessessessssessessens 282
PrODIBIM ... s 282
£S04 282
HOW [EWOTKS ...t s 282

xiii

TABLE OF CONTENTS

Recipe 9-3. Creating Class TEMPIALEScccvvvrererreriernrensereresessesesessssessesessessssessessessssessessens 289
PrODIBIM ... s 289

RS0 11 O 289
HOW [EWOTKS ... s 289
Recipe 9-4. Creating SingIETONSccvvvvverernrerrerere s s ses s s s e ssessesessessessesassessessens 292
g 10]] =T T 292

£ 10 10§ 292
HOW [EWOTKS ...t s e 292
Recipe 9-5. Calculating Values at Compile TIME.......cccccvvririennsniniesn e 295
g £0]] T TS 295

£ 10 10O 295
HOW [EWOTKS ... s s 295
Recipe 9-6. Calculating Values at Compile TIME.......cccccvvrrrinnnnnnis e 299
g 10] T T 299

£ 0] 11 0] T 299
HOW [EWOTKS ... e 299
Chapter 10: MeMOIY ..cucccurriissnnmmmssssnsnmsssssssnmsssssnnnssssssnnnsssssnnnnssssssnnnsssssnnnsessssnnnnss 301
Recipe 10-1. USing Static MEMOIY ... 301
PrODIBIM ... e 301

B30 0 OSSPSR 301
HOW IEWOIKS ...t s s s s s 301
Recipe 10-2. USing StaCK MEMOTY........cccccvcereririerierereesessese e sessesse e ssssessessessesessessessesssssssesnens 304
PrODIBM ... ——————————————— 304
SOIULION .ttt ————————— 304
HOW [EWOTKS ...ttt s 304
Recipe 10-3. USing HEap MEMOIYccvcvvererrnnerierersessssessessesessessessesssssssessesssssssessessesssssnsessens 309
PrODIBM ...t —————— 309
SOIULION .ot 309
HOW [EWOTKS ... s s 309

Xiv

TABLE OF CONTENTS

Recipe 10-4. Using Automated Shared MEmMOIYcccccvvvrerevensenseressssessessessesessessessessssessessens 313
PrODIBIM ...t s 313
£S04 313
HOW [EWOTKS ...t e 313

Recipe 10-5. Creating Single-Instance Dynamic ObJECtScccccvnevrienrincrnscnnnesen e 317
g 10]] =T T 317
£S04 317
HOW [EWOTKS ... s 317

Recipe 10-6. Creating Smart POINTEIS ... snens 322
g 10] T TS 322
£ 10 10O 322
HOW [EWOTKS ... e 322

Recipe 10-7. Debugging Memory Problems by Overloading new and delete.............cccccvennens 332
g0] T 332
£ 0] 11 10 T 332
HOW [EWOTKS ... e 332

Recipe 10-8. Calculating Performance Impacts of Code Changes..........c.ccevivrnnrinienensensennens 341
(0]] T TS 341
30 11 0] ST 341
HOW [EWOTKS ... se e s nss e sns e 341

Recipe 10-9. Understanding the Performance Impacts of Memory Choices..........c.cooeeerrienenn. 343
(0]] T TS 343
B30 0] T 344
HOW [EWOTKS ... se s s s se s s e sessssn s sesssssnssnsnsssenenses 344

Recipe 10-10. Reducing Memory Fragmentationcccueeevenesnsesnniesenssesssessssssessssesessesenns 348
PrODIBIM ... e 348
B30 0] OSSPSR 348
HOW HEWOIKS ... s s s 348

TABLE OF CONTENTS

Chapter 11: CONCUITENCY .uuuuuiseessrsssssnsssssssssssssssssnsssssssnnsssssssssnnssssssnnssssssannsssssnnnnss 365
Recipe 11-1. Using Threads to Execute Concurrent Tasks..........ccovvevererernrerenienenesesenesensenenns 365
g 10]] =T 365

£ 10 10§ 366
HOW [EWOTKS ...t s 366
Recipe 11-2. Creating thread Scope Variables............ccccucvininnsnininnnns s 373
10] T 373

£ 0] 11 0] 374
HOW [EWOTKS ... e 374
Recipe 11-3. Accessing Shared Objects Using Mutual EXCIUSIONccocveeerrecrerenereserenenenns 387
g 18]] T T 387

£ 0] 11 0] 388
HOW [EWOTKS ... e 388
Recipe 11-4. Creating Threads That Wait for Events..........cccccvvvnninniesnissssscsseses e 400
(0]] T TS 400

£ 0] 11 0] TR 400
HOW [EWOTKS ... s nns s 400
Recipe 11-5. Retrieving Results from @ Threadc.coccererrnnnnnennnesesssess e 408
(0]] T ST 408

B30 0] OSSPSR 408
HOW [EWOTKSecerecesreereee e se s se s s se s s sessssessssnsssssessssssssnsnsssnsnns 408
Recipe 11-6. Synchronizing Queued Messages Between Threads.........c.ccocvevvnvnienenenieniennens 413
PrODIBIM ... e 413

RS0 0] OSSPSR 413
HOW IEWOIKS ...t s s s s s 414
Chapter 12: Networking........ooccurrussssnnnmsssssnssmssssssssssssssnsssssssssnssssssssnsssssssnnssssssnnnnss 429
Recipe 12-1. Setting Up a Berkeley Sockets Application on macOS............cccccvvvenrcccrnicnen. 429
(0]] T 429
£S04 430
HOW [EWOTKS ... s 430

TABLE OF CONTENTS

Recipe 12-2. Setting Up a Berkeley Sockets Application in Eclipse on Ubuntu.........ccccveeviennns 434
PrODIBIM ...t s 434
£S04 434
HOW [EWOTKS ...t e 434

Recipe 12-3. Setting Up a Winsock 2 Application in Visual Studio on Windowsccceeuue.. 439
PIODIBIM ...t e 439
£S04 439
HOW [EWOTKS ... s 439

Recipe 12-4. Creating a Socket Connection Between Two Programs..........cccceeevvvienernnseniennens 445
g 10] T TS 445
£ 10 10O 446
HOW [EWOTKS ... e 446

Recipe 12-5. Creating a Networking Protocol Between Two Programs.........ccoccvvnennnieniennens 473
g0] T 473
£ 0] 11 10 T 473
HOW [EWOTKS ... e 474

Chapter 13: SCrping.....ccciuiimmmmmmnssnnmmmssssssnmmsssssnmssssssnmssssssnmessssnneesssnsseessnnnnnss 497

Recipe 13-1. Running Lua Commands in Visual Studio C++......cccoccevierernrernnesnnsenenssesensenenns 497
PrODIBIM ... e 497
B30 0 OSSPSR 497
HOW IEWOIKS ... e s s s s 498
Create and Open a Lua SCript File in CH+....occveviirinine st 500

Recipe 13-2. Creating a Lua Library Project in EClIPSE.....c.ccoovvvvrverievnninsenienesessessesesessenenaens 501
PrOBIBM ... ——————————————— 501
SOIULION .t ———————————— 502
HOW HEWOIKS ...t s s s e 502

Recipe 13-3. Creating a Lua Project in XCOUE........ccvvrrrrierenensensenessssessesessesessessessessssessessens 504
PrODIBM ... —————————— 504
SOIULION <.t 504
HOW [EWOTKS ... s s 505

Xvii

TABLE OF CONTENTS

Recipe 13-4. Using the Lua Programming LANQUAJEc.ccoeererierienneniensensen e ssessessesssessensenns 507
PIODIBIM ..ot s 507

£ 10 1] 507
HOW [EWOTKS ... 507
Recipe 13-5. Calling Lua FUNctions from C++.......ccoccvnevninninncrnesins s sessesens 519
g £0]] T 519
£S04 519
HOW [EWOTKS ...t s 519
Recipe 13-6. Calling C Functions from LUa...........cccvivininnninnsncse s s e ssssessesnens 532
(0]] T 532

£ 10 10T 532
HOW [EWOTKS ... s 532
Recipe 13-7. Creating Asynchronous Lua FUNCHIONSccorrernecnneserece e 539
g 18]] T T 539

£ 0] 11 0] 539
HOW [EWOTKS ... e 539
Chapter 14: 3D Graphics Programmingccccuuussnnsssnss 547
Recipe 14-1. An Introduction 10 GLFW ..o s 547
PrODIBIM ... e 547

B30 0 OSSPSR 547
HOW IEWOIKS ...t s s s s s 548
Recipe 14-2. Rendering @ THANGIE.........ccccvvererrereriereresessese e sessessessessssessessessesessessessesssssssesnens 551
PrODIBM ... ——————————————— 551
SOIULION .ttt ————————— 551
HOW [EWOTKS ...ttt s 551
Recipe 14-3. Creating a Textured QUAcovvevrerernierienere s s s sesse e ssesessessessessssessessens 565
PrODIBM ...t —————— 565
SOIULION .ot 565
HOW [EWOTKS ... s s 565

Xviii

TABLE OF CONTENTS

Recipe 14-4. Loading Geometry from @ Fileccccvevvirrnieniesensenenessssessesesssssssessessessssessessens 592
PrODIBIM ...t s 592
£S04 592
HOW [EWOTKS ...t e 592

Recipe 14-5. Working with C++20 MOAUIEScccvverireririnernserinesese s ses s sessesens 615
g 10]] =T T 615
£S04 615
HOW [EWOTKS ... s 616

1T - 621

Xix

About the Authors

Dr. J. Burton Browning earned his doctorate from North
Carolina State University in 1999 under the advisement of
Dr. Richard Peterson. He has conducted research in areas
including distance learning, programming, and instructional
technology. As a life-long learner and someone who has
interests in topics such as programming, photography,
robotics, car restoration, woodworking, hunting, reading,
fishing, and archery, he is never at a loss for something to

do. Dr. Browning’s previous publications include works on

cross-functional learning teams (CFLT), The Utopian School
(teacher-led school model), computer programming (several
languages), open source software, healthcare statistics and data mining, CNC plasma
cutter operation, educational technology, biography, mobile learning, online teaching,
and more. Since retiring as a college professor in 2018, Burton is traveling and working
on many automotive and other projects.

Bruce Sutherland is a video game programmer hailing from Dundee, Scotland. He
graduated with a BSc (Hons) Computer Games Technology from the University of
Abertay, Dundee, in Scotland, in 2005. After graduating, he began his first job in the
game industry at 4] Studios where he worked on Star Trek: Encounters (PS2), The Elder
Scrolls IV: Oblivion (PS3), Star Trek: Conquest (PS2, Wii), Ducati Moto (NDS), and AMF
Bowling Pinbusters! (NDS). In July 2008, he moved from Dundee to Melbourne, Australia,
where he joined Visceral Studios and was a software engineer on Dead Space (Xbox 360,
PS3, PC), The Godfather II (Xbox 360, PS3, PC), and Dead Space 3 (Xbox 360, PS3, PC).
He developed an interest in developing for Android in his spare time and writes tutorials
on his blog.

About the Technical Reviewer

Michael Thomas has worked in software development

for more than 20 years as an individual contributor, team
lead, program manager, and vice president of engineering.
Michael has more than 10 years of experience working with
mobile devices. His current focus is in the medical sector,
using mobile devices to accelerate information transfer
between patients and healthcare providers.

xxiii

Acknowledgments

The authors would like to acknowledge Steve Anglin, Matthew Moodie, and Mark
Powers of Apress and the production team for their help and support. You are all
fantastic to work with!

Introduction

The C++ programming language is undergoing continuous development and
improvement. This effort to keep C++ on the cutting edge of language features is driven
by the fact that C++ still finds an important role to play in high-performance, portable
applications. Few other languages can be used on as many platforms as C++ without
having a runtime environment dependency. This is partly thanks to the nature of C++
as a compiled programming language. C++ programs are built into application binaries
through a combination of processes that include compiling and linking.

Compiler choice is particularly important in today’s C++ landscape, thanks to
the rate at which the language is changing. Development of the C++ programming
language was started by Bjarne Stroustrup in 1979, when it was called C with Classes.
The language didn’t see formal standardization until 1998; an updated standard was
published in 2003. There was another gap of eight years until the standard was updated
again with the introduction of C++11 in 2011. This version brought a considerable
number of updates to the C++ programming language and is distinguished from “older”
C++ with the modern C++ moniker. C++ 17 and C++ 20 deprecated old features and
brought many significant changes to the language.

This book introduces you to code written for the C++14 through C++20 ISO standard
using both the Clang compiler, Microsoft Visual Studio (VS) 2019, and Xcode. Clang is an
open source compiler that started life as a closed source Apple project. Apple released
the code to the open source community in 2007, and the compiler has been adding
strengths ever since. This book explains how to install and use Clang on a computer
running OS X, Windows, or Linux (Ubuntu). The examples that accompany each chapter
have been compiled and tested using Clang 3.5 and/or Visual Studio 2019. All of the
listed applications are free, so choose which works best for your needs, or use them all to
learn more!

The book’s accompanying source code can be accessed via the Download Source
Code link located at www.apress.com/9781484257128. You can find source code for all of
the executable code listings contained in this book along with makefiles that can be used
to build running programs.

Xxvii

http://www.apress.com/9781484257128

CHAPTER 1

Beginning C++

The C++ programming language is a powerful low-level language that allows you to write
programs that are compiled into machine instructions to be executed on a computer’s
processor. This makes C++ different from newer languages such as C# and Java. These
languages are interpreted languages. This means they are not executed directly on the
processor but instead are sent to another program that is responsible for operating the
computer. Java programs are executed using the Java virtual machine (JVM), and C#
programs are executed by the Common Language Runtime (CLR).

Thanks to C++ being a language that is compiled ahead of time, it still finds wide use
in fields where absolute performance is paramount. The most obvious area where C++
is still the most predominantly used programming language is the video game industry.
C++ allows programmers to write applications that take full advantage of the underlying
system architecture. You might become familiar with phrases such as cache coherency
while pursuing a career as a C++ programmer. There aren’t many other languages that
allow you to optimize your applications to suit the individual processors that your
program is being designed to run on. This book introduces you to some of the pitfalls
that can affect the performance of your applications at different times and shows you
some techniques to tackle those issues.

Modern C++ is in a period where the language is seeing continual updates to its
features. This has not always been the case. Despite being around since the early 1980s,
the C++ programming language was only standardized in 1998. A minor update and
clarification of this standard was released in 2003 and is known as C++03. The 2003
update did not add any new features to the language; however, it did clarify some of
the existing features that had gone overlooked. One of these was an update to the
standard for the Standard Template Library (STL) vector template to specify that the
members of a vector should be stored contiguously in memory. The C++11 standard
was released in 2011 and saw a massive update to the C++ programming language. C++
gained features for generalized type deduction system outside of templates, lambda, and
closure support, a built-in concurrency library, and many more features. C++14 brought

© J. Burton Browning and Bruce Sutherland 2020
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_1

CHAPTER 1 BEGINNING C++

a smaller update to the language and generally built upon the features already supplied
by C++11. Features such as auto return type deduction from functions had been cleaned
up, lambdas had been updated with new features, and there were some new ways to
define properly typed literal values. C++ 17 introduced features such as folds and static if
statements. C++20 now offers some powerful new features such as Modules and Concepts
to name but a few of the enhancements to make the language even more powerful.

This book strives to write portable, standards-compliant C++20 code. At the time of
writing, it’s possible to use many of the new features of C++20 code on Windows, Linux,
and macOS machines so long as you use a compiler that provides all of the language
features. Since as of the time of writing all of the version 20 standards have not been
formally agreed to nor implemented in many compilers, you may need to use more
than one development tool to implement various features in your projects. To this end,
this book will use three different tools: Clang as the compiler on Windows and Ubuntu
and Xcode on macOS, with Microsoft Visual Studio 19 or higher on Windows and Mac
platforms. The rest of this chapter focuses on the software you need to write programs in
C++ before showing you how to acquire some of the more common options available for
Windows, macOS, and Linux operating systems.

Recipe 1-1. Finding a Text Editor
Problem

C++ programs are constructed from lots of different source files that must be created
and edited by one or more programmers. Source files are simply text files, which
usually come in two different types: header files and source files. Header files are used
to share information about your types and classes between different files, and source
files are generally used to contain the methods and the actual executable code that
makes up your program. With C++ version 20, programmers now have the opportunity
to use Modules instead of traditional header files for faster build times and cleaner
implementation design.

Solution

A text editor then becomes the first major piece of software you require to begin writing
C++ programs. There are many excellent choices of text editors available on different
platforms. My best two picks at the moment are the free Notepad++ for Windows and

2

CHAPTER 1 BEGINNING C++

Sublime Text 2, which despite not being free is available on all major operating systems.
Figure 1-1 shows a screenshot from Sublime Text 2. Vim and gvim are also very good
options that are available for all three operating systems. These editors provide many
powerful features and are excellent choices for someone willing to learn.

Note Don’t feel the urge to grab a text editor straight away. Some of the recipes
later in this chapter cover integrated development environments (IDEs) that include
all the software you need to write, build, and debug C++ applications. It is really

a matter of user preference and platform to determine which is best for you. Try
both using text editors and a comprehensive IDE (or two!) and see which fits your
workflow the best. You will probably end up using several ultimately.

File Edit Selection Find View Goto Tools Project Preferences Help

HelloWorld.cpp

#include <iostream>

int main()

{
std::cout << "Hello World!" << std::endl;
return 0;

O =1 o b W R

e

1

Line &, Column 1 Tab Size: 4

Figure 1-1. A screenshot from the Sublime text editor

CHAPTER 1 BEGINNING C++

Figure 1-1 shows one of the most important features of a good text editor: it should
be able to highlight the different types of keywords in your source code. You can
see in the simple Hello World program in Figure 1-1 that Sublime Text is capable of
highlighting the C++ keywords include, int, and return. It has also added different-
colored highlights to the main function name and the strings <iostream> and "Hello
World!". Once you have some experience writing code with your text editor of choice,
you will become adept at scanning your source files to zero in on the area of code you are
interested in, and syntax highlighting will be a major factor in this process.

Another feature some editors have is autocomplete or, as Microsoft calls it,
IntelliSense. This feature is language-specific and speeds development time by
autocompleting or auto-expanding options to functions and methods in the language.
For a text editor such as Sublime with C++, you could install the Clang plugin for
ClangAutoComplete for Sublime 3. Although not free, Sublime allows for continuous free
evaluation time if you do not purchase a license.

Recipe 1-2. Installing Clang on Ubuntu
Problem

You would like to build C++ programs that support the latest C++20 language features on

a computer system running Ubuntu.

Solution

The Clang compiler supports all of the latest C++20 language features, and the libstdc++
library supports all of the C++20 STL features.

How It Works

The Ubuntu operating system comes configured with package repositories that allow
you to install Clang without much difficulty. You can achieve this using the apt-get
command in a terminal window. Figure 1-2 shows the command that you should enter
to install Clang.

CHAPTER 1 BEGINNING C++

bruce@bruce-Virtual-Machine: ~
bruce@bruce-virtual-Machine:~$ sudo apt-get install clangll

Figure 1-2. An Ubuntu terminal window showing the command needed to
install Clang

To install Clang, you can enter the following command on the command line:
sudo apt-get install clang. Running this command will cause Ubuntu to query
its repositories and work out all of the dependencies needed to install Clang. You will
be prompted once this process has been completed to confirm that you wish to install
Clang and its dependencies. You can see this prompt in Figure 1-3.

bruce@bruce-Virtual-Machine: ~

bruce@bruce-virtual-Machine:~$ sudo apt-get install clang

[sudo] password for bruce:

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:
binfmt-support clang-3.5 libclang-common-3.5-dev libclang1-3.5 libffi-dev
libobjc-4.9-dev 1libobjc4 libtinfo-dev 1lvm-3.5 1llvm-3.5-dev llvm-3.5-runtime

Suggested packages:
gnustep gnustep-devel clang-3.5-doc llvm-3.5-doc

The following NEW packages will be installed:
binfmt-support clang clang-3.5 libclang-common-3.5-dev libclang1-3.5
1ibffi-dev libobjc-4.9-dev libobjc4 libtinfo-dev 1lvm-3.5 1lvm-3.5-dev
1lvm-3.5-runtime

© to upgrade, 12 to newly install, © to remove and 208 not to upgrade.

Need to get 39.5 MB of archives.

After this operation, 196 MB of additional disk space will be used.

Do you want to continue? [Y/n] I

Figure 1-3. The apt-get dependency confirmation prompt

CHAPTER 1 BEGINNING C++

At this point, you can press Enter to continue as yes is the default option. Ubuntu will
then download and install all of the software needed for you to be able to install Clang
on your computer. You can confirm that this has been successful by running the clang
command. Figure 1-4 shows what this should look like if everything was successful.

bruce@bruce-Virtual-Machine: ~

bruce@bruce-virtual-Machine:~$ clang
clang: error: no input files
bruce@bruce-virtual-Machine:~$ |}

Figure 1-4. A successful Clang installation in Ubuntu

Recipe 1-3. Installing Clang on Windows
Problem

You would like to build supported C++20-based programs on the Windows
operating system.

Solution

You can use Cygwin for Windows to install Clang and build applications.

How It Works

Cygwin provides a Unix-like command-line environment for Windows computers. This
is ideal for building programs using Clang as the Cygwin installed comes preconfigured
with package repositories that include everything you need to install and use Clang on
Windows computers.

You can get a Cygwin installer executable from the Cygwin web site at www.cygwin.com.
Be sure to download the 32-bit version of the Cygwin installer as the default packages
supplied by Cygwin currently only work with the 32-bit environment.

6

http://www.cygwin.com

CHAPTER 1 BEGINNING C++

Once you have downloaded the installer, you should run it and click through until
you are presented with the list of packages to install. At this point, you want to select the
Clang, make, and libstdc++ packages. Figure 1-5 shows the Cygwin installer with the
Clang package selected.

E

Okeep @Qur OB | View | Category

Package

E O 11,844k clang: C/C++/ObiC compiler frontend based on LLVM
nja nfa 56k clang-analyzer: C/C++/0bjC code analyzer

<
|v] Hide obsolete packages

Figure 1-5. Filtering the Clang package in the Cygwin installer

Packages can be marked for installation in the installer by clicking the Skip area on
the line for the package. Clicking Skip once moves the package version to the latest. You
should select the latest packages for Clang, make, and libstdc++. Once you have selected
all three, you can click Next to be taken to a window asking to confirm the installation of
the dependencies needed by these three packages.

Once you have successfully downloaded and installed all of the packages that
you needed to be able to run Clang, you can check that it was successful by opening a
Cygwin terminal and typing the clang command. You can see the result of this output
in Figure 1-6.

CHAPTER 1 BEGINNING C++

Bruce@Bruce-PC -~
$ clang .)
clang: error: no input files

Bruce@Bruce-PC ~
$

Figure 1-6. Successfully running Clang in a Cygwin environment on Windows

Recipe 1-4. Installing Clang on mac0S
Problem

You would like to build C++20-based programs on a computer running macOS.

Solution

Apple’s Xcode IDE comes with Clang as its default compiler. Installing Xcode from the
macOS App Store also installs Clang. Do note however that your macOS will need to
be up-to-date for Xcode to install. Make sure your computer has enough RAM before
installing the latest update!

How It Works

Install the latest version of Xcode from the App Store on your macOS computer. Once
you've installed Xcode, you can open a terminal window using Spotlight and type clang
to see that the compiler has been installed. Figure 1-7 shows how this should look.

CHAPTER 1 BEGINNING C++

| NON [Recipe1-4 — bash — 80x24

bsutherland-macbook:Recipel-4 bsutherlandmacbook$ clang
clang: error: no input files
bsutherland-macbook:Recipel-4 bsutherlandmacbooks [

Figure 1-7. Running Clang on macOS after installing Xcode

Recipe 1-5. Building Your First C++ Program
Problem

You would like to use your computer to generate executable applications from C++
source code that you write.

Solution

Generating executables from a C++ source file involves two steps: compiling and
linking. The steps undertaken in Recipe 1-2, Recipe 1-3, or Recipe 1-4 depending on
your operating system will have resulted in you having all of the software you need to
build applications from C++20 source files. You are now ready to build your first C++20
program. Create a folder to contain your project and add a text file named HelloWorld.
cpp. Enter the code from Listing 1-1 into the file and save.

Listing 1-1. Your First C++20 Program

#include <iostream>
#include <string>

int main(void)

{

using namespace std::string literals;

CHAPTER 1 BEGINNING C++

auto output = "Hello World!"s;
std::cout << output << std::endl;

return O;

The code in Listing 1-1 is a C++ program that will only compile when using a C++14-
or higher compatible compiler. Recipes 1-2 to 1-4 in this chapter contain instructions
on how you can obtain a compiler that can be used to compile many of the proposed
(as of 2019) features for C++20 code for Windows, Ubuntu, and macOS. You can build
a working application once you have created a folder and the source file containing the
code in Listing 1-1. You do this using a makefile. Create a file named makefile in the
folder alongside your HelloWorld.cpp file. The makefile should not have a file extension
which may seem a little strange to developers used to the Windows operating system;
however, this is completely normal for Unix-based operating systems such as Linux and
macOS. Enter the code from Listing 1-2 into your makefile.

Listing 1-2. The Makefile Needed to Build the Code in Listing 1-1

HelloWorld: HelloWorld.cpp
clang++ -g -std=c++1y HelloWorld.cpp -o HelloWorld

Note The white space before the clang++ command in Listing 1-2 is a tab.
You cannot replace the tab with spaces as make will fail to build. Ensure that your
recipes in a makefile always begin with tabs.

The text in Listing 1-2 consists of the instructions needed to build an application
from your HelloWorld.cpp source file. The first word on the first line is the name of the
target of the makefile. This is the name that the application executable will be given
when the building process has been completed. In this case, we will be building an
executable named HelloWorld. This is followed by the prerequisites needed to build the
program. Here you have listed HelloWorld.cpp as the only prerequisite as it is the only
source file used to build the executable.

The target and prerequisites are then followed by a list of recipes that are carried
out in order to build your application. In this small example, you have a line that
invokes the clang++ compiler to generate executable code from the HelloWorld.cpp

10

CHAPTER 1 BEGINNING C++

file. The parameter passed to clang++ using -std=c++1y asks Clang to build using the
C++14 language standard, and the -o switch specifies the name of the object output file
generated by the compilation process.

Browse to the folder you created to store the source file and makefile using a
command shell such as cmd on Windows or Terminal on Linux or macOS and type
make. This will invoke the GNU make program and will automatically read and execute
your makefile. This will output an executable file into the same folder that you can then
run from the command line. You should be able to do this now and see that the text
Hello World is output on your command line. Figure 1-8 shows what this would look like

in an Ubuntu terminal window.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe1-5

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel-55 ./HelloWorld
Hello World!
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe1-55 ||

Figure 1-8. The output generated by running HelloWorld in an Ubuntu
terminal

Recipe 1-6. Debugging C++ Programs Using GDB
in Cygwin or Linux

Problem

You are writing a C++20 program and would like to be able to debug the application from
the command line.

Solution

Both Cygwin for Windows and Linux-based operating systems like Ubuntu can install
and use the GDB command-line debugger for C++ applications.

11

CHAPTER 1 BEGINNING C++

How It Works

You can use the Cygwin installer for Windows or the package manager installed

with your favorite Linux distribution to install the GDB debugger. This will give you

a command-line C++ debugger that can be used to inspect the functionality of your
C++ programs. You can practice this using the source file, makefile, and application
generated as part of Recipe 1-5. To generate debugging information for your program,
you should update the makefile to contain the contents of Listing 1-3 and run make to
generate a debuggable executable file.

Listing 1-3. A Makefile to Generate a Debuggable Program

HelloWorld: HelloWorld.cpp
clang++ -g -std=c++1y HelloWorld.cpp -o HelloWorld

Once you have followed Recipe 1-5, updated the makefile to contain the contents
of Listing 1-3, and generated an executable, you can run GDB on your application by
browsing to the folder on your command line and typing gdb HelloWorld. The new -g
switch passed to Clang in the makefile from Listing 1-3 asks the compiler to generate
additional information in the application that helps the debugger to provide you with
accurate information about the program while it is executing in the debugger.

Note You may be presented with a notice informing you that your program is
already up-to-date if you had built previously. Simply delete the existing executable
file if this occurs.

Running GDB in HelloWorld should result in your command line running GDB and
providing output such as that shown in Figure 1-9.

12

CHAPTER 1 BEGINNING C++

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe1-5

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel-55 gdb HelloWorld
GNU gdb (Ubuntu 7.8-1ubuntu4) 7.8.0.20141001-cvs

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying”
and "show warranty" for details.

This GDB was configured as "x86_64-1linux-gnu".

Type "show configuration” for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from HelloWorld...(no debugging symbols found)...done.
(gdb)

Figure 1-9. A running instance of GDB

You now have a running debugger that you can use to inspect the running program
while it is executing. The program has not yet begun when GDB first starts. This allows
you to configure some breakpoints before you get started. To set a breakpoint, you can
use the break command or the b shorthand for the same command. Type break main
into the GDB command prompt and press Enter. This should result in GDB echoing
the command back to you along with the address of the program where the breakpoint
was set and the filename and line number it detected for the function supplied. You
can now type run into your window to execute the program and have GDB halt at your
breakpoint. The output should resemble that shown in Figure 1-10.

13

CHAPTER 1 BEGINNING C++

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe1-5

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel-55 gdb HelloWorld
GNU gdb (Ubuntu 7.8-1ubuntu4) 7.8.0.20141001-cvs

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying”
and "show warranty" for details.

This GDB was configured as "x86_64-1linux-gnu".

Type "show configuration” for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from HelloWorld...done.

(gdb) break main

Breakpoint 1 at 0x400b3f: file HelloWorld.cpp, line 8.

(gdb) run

Starting program: /home/bruce/Projects/C-Recipes/Recipel-5/HelloWorld

Breakpoint 1, main () at HelloWorld.cpp:8
8 auto output = "Hello World!"s;
(gdb) Il

Figure 1-10. The output as seen when GDB halts at the breakpoint set inmain

At this point, you have several options that allow you to continue the execution of
your program. You can see a list of the most common commands in the following:
step

The step command is used to step into a function that is to be
called at the current line.

next

The next command is used to step over the current line and stop
on the next line of the same function.

finish
The finish command is used to execute all of the code remaining

in the current function and stop on the next line in the function
that called the current function.

14

CHAPTER 1 BEGINNING C++

print <name>

The print command followed by the name of a variable can be
used to print the value of a variable in your program.

break

The break command can be used with a line number, a function
name, or a source file and line number to set a breakpoint in your
program’s source code.

continue

The continue command is used to resume code execution after it
has been halted at a breakpoint.

until

The until command can continue execution from a loop and stop
on the first line immediately after the loop execution has finished.

info

The info command can be used with either the locals command
or the stack command to show information about the current
local variables or stack state in the program.

help

You can type help followed by any command to have GDB give
you information about all of the different ways that a given
command can be used.

The GDB debugger can also be run with the command -tui. This will give you a view
of the source file you are currently debugging at the top of the window. You can see how
this looks in Figure 1-11.

15

CHAPTER 1 BEGINNING C++

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe1-5

using namespace std::string_literals;

auto output = "Hello World!"s;
std::cout << output << std::endl;

return 0;

exec No process In:

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from HelloWorld...done.

(gdb)

Figure 1-11. GDB with a source window

Recipe 1-7. Debugging Your C++ Programs
on mac0S

Problem

The macOS operating system does not provide any easy method for installing and
using GDB.

Solution

Xcode comes with the LLDB debugger than can be used on the command line in place
of GDB.

16

CHAPTER 1 BEGINNING C++

How It Works

The LLDB debugger is, in essence, very similar to the GDB debugger used in Recipe 1-6.
Changing between GDB and LLDB is simply a case of learning how to carry out the same
simple tasks in both by using the commands provided by each to carry out the same task.

You can execute LLDB on your HelloWorld executable by browsing to the directory
containing HelloWorld in Terminal and typing 11db HelloWorld. This will give you
output that resembles that of Figure 1-12.

Note You will need to compile your program using the -g switch. Take a look at
Listing 1-3 to see where this goes if you are unsure.

. @ Recipe1-5 — lidb — 80x24

bsutherland-macbook:Recipel-5 bsutherlandmacbook$ lldb HellowWorld
{11db) target create "HelloWorld"
Current executable set to 'HelloWorld' (xB86_64).

Figure 1-12. The LLDB debugger running in an macOS terminal

Once you have LLDB running as shown in Figure 1-12, you can set a breakpoint on
the first line of main by typing breakpoint set -f HelloWorld.cpp -1 8 orb main
as shorthand. You can use the run command to begin execution and have it halt at the
breakpoint that you've just set. When the program stops, you can use the next command
to step over the current line and halt on the next line. You could have used the step
command to step into a function on the current line and halt on the first line of the
function. The finish command will step out of the current function.

You can quit LLDB by typing q and pressing Enter. Restart LLDB and type
breakpoint set -f HelloWorld.cpp -1 9.Follow this with the run command, and
LLDB should print the source around the line where the application has stopped.

17

CHAPTER 1 BEGINNING C++

You can now type print output to see the value stored by the output variable. You can
also use the frame variable command to see all of the local variables in the current
stack frame.

These simple commands will allow you to use the LLDB debugger adequately
enough while working through the samples provided along with this book. The following
list can be used as a handy cheat sheet while working with LLDB:

step

The step command is used to step into a function that is to be
called at the current line.

next

The next command is used to step over the current line and stop
on the next line of the same function.

finish
The finish command is used to execute all of the code remaining

in the current function and stop on the next line in the function
that called the current function.

print <name>

The print command followed by the name of a variable can be
used to print the value of a variable in your program.

breakpoint set --name <name>
breakpoint set -file <name> --line <number>

The breakpoint command can be used with a line number,
a function name, or a source file and line number to set a
breakpoint in your program’s source code.

help

You can type help followed by any command to have GDB give
you information about all of the different ways that a given
command can be used.

18

CHAPTER 1 BEGINNING C++

Recipe 1-8. Switching C++ Compilation Modes
Problem

You would like to be able to switch between the different C++ standards before
compiling your programs.

Solution

The std switch is supplied by Clang so that you can specify the C++ standard to be used
when compiling.

How It Works

Clang builds with the C++98 standard by default. You can use the std argument with
clang++ to tell the compiler to use a standard other than the default. Listing 1-4 shows
a makefile that is configured to build a program using the C++17 standard. Clang 5 by
default supports C++17. Use 2a mode for C++ version 20.

Listing 1-4. Building with C++17

HelloWorld: HelloWorld.cpp
clang++ -std=c++17 HelloWorld.cpp -o HelloWorld

The makefile in Listing 1-4 shows how you can specify that Clang should build your
source file using C++17. This example was written using Clang 5 that uses the c++17
command to represent C++17. For C++20 (2a) experimental mode support with Clang 5,
use the option -std=c++2a.

Listing 1-5 shows how you can build a program using C++11.

Listing 1-5. Building with C++11

HelloWorld: HelloWorld.cpp
clang++ -std=c++11 HelloWorld.cpp -o HelloWorld

In Listing 1-5, you want to use the c++11 option with the std switch to build with
C++11. Finally, Listing 1-6 shows how to configure Clang to explicitly build with C++98.

19

CHAPTER 1 BEGINNING C++
Listing 1-6. Building with C++98

HelloWorld: HelloWorld.cpp
clang++ -std=c++98 HelloWorld.cpp -o HelloWorld

The makefile in Listing 1-6 can be used to explicitly build with C++98. You can
achieve the same result by leaving out the std command altogether, and Clang will build
using C++98 by default.

Note It’s not guaranteed that every compiler will use C++98 by default. Check
with your compiler’s documentation if you’re unsure which standard is the default.
You can also use Clang for many C++20 features and enable its experimental
C++20 (2a) support using the command noted in the preceding text.

Recipe 1-9. Building with the Boost Library
Problem

You would like to write a program using the Boost library.

Solution

Boost is supplied as source code that can be included with and compiled into your
application.

How It Works

Boost is a large C++ library that includes all sorts of great functionality. Coverage of the
entire library is out of the scope of this book; however, the string formatting library will
be used. You can acquire the Boost library from the Boost web site at waw.boost.org/.

You will be able to get a compressed folder from the Boost web site that contains the
latest version of the Boost library. The only folder you absolutely need to be able to include
basic Boost functionality is the boost folder itself. Download the current version of Boost,
Boost 1.71.0, and create a folder inside the project folder named boost 1 xxx_x (where x
is the version) and copy the boost folder into this location from the downloaded version.

20

http://www.boost.org/

CHAPTER 1 BEGINNING C++

Once you have a project folder set up with a downloaded copy of Boost, you can
include Boost header files into your source code. Listing 1-7 shows a program that uses
the boost: : format function.

Listing 1-7. Using boost::format

#include <iostream>
#include "boost/format.hpp"

using namespace std;

int main()

{
std::cout << "Enter your first name: " << std::endl;
std::string firstName;
std::cin >> firstName;

std::cout << "Enter your surname: " << std::endl;
std::string surname;
std::cin >> surname;

auto formattedName = str(boost::format("%1% %2%"s) % firstName %
surname);

std::cout << "You said your name is: " << formattedName << std::endl;

return 0;

The code in Listing 1-7 shows how you can include a Boost header file into a source
file and how that file’s functions can be used in your program.

Note Don’t worry about how the format function works if it’s not immediately
clear; it is covered in Chapter 3.

You must also tell the compiler where to look for the Boost header files in a makefile;
otherwise, your program will not compile. Listing 1-8 shows the contents of the makefile
that can be used to build this program.

21

CHAPTER 1 BEGINNING C++
Listing 1-8. A Makefile to Build with Boost

main: main.cpp
clang++ -g -std=c++1y -Iboost 1 55 0 main.cpp -o main

The makefile in Listing 1-8 passes the -I option to clang++. This option is used
to tell Clang that you would like to include the given folder in the search paths used
when including files using the #include directive. As you can see, I have passed the
boost_1_55_0 folder thatI created in my project folder. This folder contains the boost
folder that you can see used when including a Boost header file in Listing 1-7.

Note If you're having trouble getting this example to work and aren’t sure

of where to put the Boost header files, you can download the samples that
accompany this book by clicking the Download Source Code button located at
WwWw.apress.com/9781484257128.

Recipe 1-10. Install Microsoft Visual Studio
Problem

You would like to use MS Visual Studio 2019, which offers good support for C++ 20, on
either a Mac or PC. Visual Studio offers the abilities multiple-language support, team
projects, as well as GitHub code version control integration. Knowing how to use VS will

add to your resume.

Solution

Download Visual Studio Community Edition for free for your Mac or Windows platform.

How It Works

Microsoft offers several versions of Visual Studio for a fee; however, the Community
Edition is free. Corporate users would want a commercial version with other features,
but if you learn the free edition, a jump to a paid version would be easy.

22

http://www.apress.com/9781484257128

CHAPTER 1 BEGINNING C++

Listing 1-9. Installing Visual Studio Community Edition

1)

2)

3)

Make sure you have at least 2.3 gigs of space (up to 60 gigs depending
on features selected) on your HDD and have administrative rights.

Download the online installer for your platform from: https://
visualstudio.microsoft.com/vs/community/

Run the installer and reboot.

Listing 1-10. Test the Visual Studio Installation

1)

2)

3)

4)

Start Visual Studio and select "Start without Code" at the bottom
right". If VS offers an update, install it first.

A Solution in VS can have one or more Projects, and each project

can have one or more files. To the solution, select File, New

Project. Select Empty Project, click Next, then give the project a name
and note or change the location for your files and click Create.

Under Solution Explorer to the right, right click (PC) on Source Files
and select Add, New Item, C++ file, and give the file a new name
(keeping .cpp extension) if you wish.

Key in the following example to the source file you just created to test
VS 2019.

#include <iostream>
using namespace std;

int main()

{

string word;
cout << "Type in World " << endl;
cin >> word;

23

CHAPTER 1 BEGINNING C++

cout << "Hello " << word << "!!l" << endl;

cout << "Press any key to exit\n";
cin >> word;

return 0;

}

5) Select Build, Build Solution. Then, if no errors appear at the bottom
output window, select Debug, Start Without Debugging to run the test
program.

You will want to experiment with running programs with the debugger in the future,
but for this simple test, it is not needed. The important part of using VS is to know where
your solution/project/source files are stored. To speed the compile progress, build to a
HDD and only copy to external flash drives; else, you will experience longer than normal
build times.

24

CHAPTER 2

Modern C++

Development of the C++ programming language began in 1979 as the C with Classes
language. The name C++ was formally adopted in 1983, and development of the
language continued throughout the 1980s and 1990s without the adoption of a formal
language standard. This all changed in 1998 when the first ISO standard of the C++
programming language was adopted. There have been several updates to the standard
published since that time, one in 2003, one in 2011, and one in 2014; and skipping to the
most recent version, C++20 is, as of 2019, fast on its way to final form and adoption.

Note The standard published in 2003 was a minor update to the 1998 standard
that didn’t introduce much in the way of new features. Features of C++17 and
some of the features of C++20 however will be noted.

This book is primarily going to focus on the very latest C++ programming standard,
C++20. Whenever there is mention about the C++ programming language, you can be
assured that we are talking about the language as described by the current ISO standard.
If discussing features that were introduced in 2011, then it will be explicitly mentioned
as version C++11; and for any features that were introduced prior to 2011, I will use the
name C++98; and so on.

This chapter will look at the programming features added to the language in the
latest standard and with C++20. Many of the modern features of C++ were added in
the C++11 and C++17 standards and have been expanded with the C++20 proposed
additions. Considering this, it is important to be able to identify the differences when
working with compilers that support a standard that is not 100% endorsed yet. In
fact, that is why VS 2019 and versions are noted as all do not 100% support all C++ 20
proposed updates as of late 2019.

25
© J. Burton Browning and Bruce Sutherland 2020

J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_2

CHAPTER2 MODERN C++

Recipe 2-1. Initializing Variables
Problem

You would like to be able to initialize all variables in a standard manner.

Solution

Uniform initialization was introduced in C++11 and can be used to initialize a variable of

any type

How It Works

It's necessary to understand the deficiencies with variable initialization in C++98 to
appreciate why uniform initialization is an important language feature in C++11.
Listing 2-1 shows a program that contains a single class, MyClass.

Listing 2-1. The C++ Most Vexing Parse Problem

class MyClass

{
private:
int m_Member;
public:
MyClass() = default;
MyClass(const MyClass& rhs) = default;
};
int main()
{
MyClass objectA;
MyClass objectB(MyClass());
return 0;
}

26

CHAPTER2 MODERN C++

The code in Listing 2-1 will generate a compile error in C++ programs. The problem
exists in the definition of objectB. A C++ compiler will not see this line as defining a
variable named objectB of type MyClass calling a constructor that takes the object
constructed by calling the MyClass constructor. This is what you might expect the
compiler to see; however, what it actually sees is a function declaration. The compiler
thinks that this line is declaring a function named objectB that returns a MyClass object
and has a single, unnamed function pointer to a function that returns a MyClass object
and is passed no parameters.

Compiling the program shown in Listing 2-1 causes Clang and Visual Studio to
generate a warning. For Clang, it is as follows. VS is similar:

main.cpp:14:20: warning: parentheses were disambiguated as a function
declaration [-Wvexing-parse]
MyClass objectB(MyClass());

main.cpp:14:21: note: add a pair of parentheses to declare a variable
MyClass objectB(MyClass());

A

()

The Clang compiler has properly identified that the code entered in Listing 2-1
contains a vexing parse problem and even helpfully suggests wrapping the MyClass
constructor being passed as a parameter in another pair of parentheses to solve the
problem. C++11 has provided an alternative solution in uniform initialization. You can
see this in Listing 2-2.

Listing 2-2. Using Uniform Initialization to Solve the Vexing Parse Problem

class MyClass
{

private:
int m_Member;

public:
MyClass() = default;
MyClass(const MyClass& rhs) = default;

};

27

CHAPTER2 MODERN C++

int main()

{
MyClass objectA;
MyClass objectB{MyClass{}};
return O;

You can see in Listing 2-2 that uniform initialization replaces parentheses with
braces. This syntax change informs the compiler that you would like to use uniform
initialization to initialize your variable. Uniform initialization can be used to initialize
almost all types of variables.

Note The preceding paragraph mentions that uniform initialization can be used
to initialize almost all variables. It can have trouble when initializing aggregates or
plain old data types; however, you won’t need to worry about those for now.

The ability to prevent narrowing conversions is another benefit of using uniform
initialization. The code in Listing 2-3 will fail to compile when using uniform
initialization.

Listing 2-3. Using Uniform Initialization to Prevent Narrowing Conversions

int main()

{
int number{ 0 };
char another{ 512 };

double bigNumber{ 1.0 };
float littleNumber{ bigNumber };

return O;

The Clang compiler as well as the VS compiler will throw errors when compiling the
code in Listing 2-3 as there are two narrowing conversions present in the source. The first
occurs when trying to define a char variable with the literal value 512. A char type can store
a maximum value of 255; therefore, the value 512 would be narrowed into this data type.

28

CHAPTER2 MODERN C++

A C++11 or newer compiler will not compile this code due to this error. The initialization of
the float from a double type is also a narrowing conversion. Narrowing conversions occur
when data is transferred from one type to another wherein the destination type cannot
store all of the values represented by the source type. Precision is lost in the case of a
double being converted to a float; therefore, the compiler correctly will not build this code
as is. The code in Listing 2-4 uses a static_cast to inform the compiler that the narrowing
conversions are intentional and to compile the code.

Listing 2-4. Using a static_cast to Compile Narrowing Conversions

int main()

{

int number{ 0 };
char another{ static_cast<char>(512) };

double bigNumber{ 1.0 };
float littleNumber{ static_cast<float>(bigNumber) };

return O;

Recipe 2-2. Initializing Objects with Initializer Lists
Problem

You would like to construct objects from multiple objects of a given type.

Solution

Modern C++ provides initializer lists that can be used to supply many objects of the same
type to a constructor.

How It Works

Initializer lists in C++11 build upon uniform initialization to allow you to initialize complex
types with ease. A common example of a complex type that can be difficult to initialize
with data is a vector. Listing 2-5 shows two different calls to a standard vector constructor.

29

CHAPTER2 MODERN C++

Listing 2-5. Constructing Vector Objects

#include <iostream>
#include <vector>

using namespace std;

int main()

{

using MyVector = vector<int>;

MyVector vectorA(1);
cout << vectorA.size() <«

<< vectorA[0] << endl;

MyVector vectorB(1, 10);
cout << vectorB.size() <«

<< vectorB[0] << endl;

return 0;

The code in Listing 2-5 might not do what you expect at first glance. The vectorA
variable will be initialized with a single int containing 0. You might expect that it would
contain a single integer containing 1, but this would be incorrect. The first parameter
to a vector constructor determines how many values the initial vector will be set up
to store, and in this case, we are asking it to store a single variable. You might similarly
expect vectorB to contain two values, 1 and 10; however, what we have here is a vector
that contains one value, and that value is 10. The vectorB variable is constructed using
the same constructor as vectorA; however, it specifies a value to use to instantiate the
members of the vector rather than using the default value.

The code in Listing 2-6 uses an initializer list in conjunction with uniform
initialization to construct a vector that contains two elements with the specified values.

Listing 2-6. Using Uniform Initialization to Construct a vector

#include <iostream>
#include <vector>

using namespace std;

int main()

30

CHAPTER2 MODERN C++

using MyVector = vector<int>;

MyVector vectorA(1);
cout << vectorA.size() <«

<< vectorA[0] << endl;

MyVector vectorB(1, 10);
cout << vectorB.size() <«

<< vectorB[0] << endl;

MyVector vectorC{ 1, 10 };
cout << vectorC.size() <<

<< vectorC[o0] << endl;

return O;

The code in Listing 2-6 creates three different vector objects. You can see the output
generated by this program in Figure 2-1.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-2/Listing2-6

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-2/Listing2-65 ./main
10

110

21

bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe2-2/Listing2-65 [}

Figure 2-1. The output generated by Listing 2-6

The console output shown in Figure 2-1 shows the size of each vector and the
value stored in the first element of each vector. You can see that the first vector
contains a single element and that its value is 0. The second vector also contains a
single element; however, its value is 10. The third vector is constructed using uniform
initialization, and it contains two values, and the value of its first element is 1. The value
of the second element will be 10. This can cause a significant difference to the behavior
of your programs if you are not taking particular care to ensure that the correct type
of initialization has been used with your types. The code in Listing 2-7 shows a more
explicit use of the initializer 1list to constructa vector.

31

CHAPTER2 MODERN C++
Listing 2-7. Explicit initializer_list Usage

#include <iostream>
#include <vector>

using namespace std;

int main()

{

using MyVector = vector<int>;

MyVector vectorA(1);
cout << vectorA.size() <«

<< vectorA[0] << endl;

MyVector vectorB(1, 10);
cout << vectorB.size() <«

<< vectorB[0] << endl;

initializer list<int> initList{ 1, 10 };
MyVector vectorC(initList);

cout << vectorC.size() << " " << vectorC[0] << endl;

return 0;

The code in Listing 2-7 contains an explicit initializer list thatis used
to construct a vector. The code in Listing 2-6 implicitly created this object when
constructing a vector using uniform initialization. There’s usually little need to explicitly
create initializer lists like this; however, it’s important that you understand what the
compiler is doing when you write code using uniform initialization.

Recipe 2-3. Using Type Deduction
Problem

You would like to write portable code that doesn’t have a high maintenance cost when
changing types.

32

CHAPTER2 MODERN C++

Solution

C++ provides the auto keyword that can be used to let the compiler deduce the type for a
variable automatically.

How It Works

C++98 compilers had the ability to automatically deduce the type of a variable; however,
this functionality was only available while you were writing code that used templates
and you omitted the type specialization. Modern C++ has extended this type deduction
support to many more scenarios. The code in Listing 2-8 shows the use of the auto
keyword and the typeid method of working out the type of a variable.

Listing 2-8. Using the auto Keyword

#include <iostream>
#include <typeinfo>

using namespace std;

int main()

{

auto variable = 1;

cout << "Type of variable: " << typeid(variable).name() << endl;

return O;

The code in Listing 2-8 shows how to create a variable with automatically deduced
type in C++. The compiler will automatically work out that you wanted to create an int
variable with this code, and that’s the type that will be output by the program, sort of.
The Clang compiler will output its internal representation of an integer type which is
actually i. You can pass this output to a program named c++filt to convert this into a
normal type name. Figure 2-2 shows how this can be achieved.

33

CHAPTER2 MODERN C++

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-3/Listing2-8
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-3/Listing2-85 ./main |
c++filt -t
Type of variable: int
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-3/Listing2-8% I

Figure 2-2. Using c++filt to produce proper type output from Clang

The c++filt program has successfully converted the Clang type i into a human-readable
C++ type format. The auto keyword also works with classes. Listing 2-9 shows this.

Listing 2-9. Using auto with a class

#include <iostream>
#include <typeinfo>

using namespace std;

class MyClass

{

};

int main()

{
auto variable = MyClass();
cout << "Type of variable: " << typeid(variable).name() << endl;
return O;

}

This program will print out the name MyClass as you can see in Figure 2-3.

34

CHAPTER2 MODERN C++

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-3/Listing2-9
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-3/Listing2-95 ./main |
c++filt -t
Type of variable: MyClass
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-3/Listing2-9% I

Figure 2-3. Using auto with MyClass

Unfortunately, there are times where the auto keyword can produce less than
desirable results. You will definitely come unstuck if you try to combine the auto keyword
with uniform initialization. Listing 2-10 shows the use of the auto keyword with uniform
initialization.

Listing 2-10. Using auto with Uniform Initialization

#include <iostream>
#include <typeinfo>

using namespace std;

class MyClass

{

};

int main()

{
auto variable{ 1 };
cout << "Type of variable: " << typeid(variable).name() << endl;
auto variable2{ MyClass{} };
cout << "Type of variable: " << typeid(variable2).name() << endl;
return 0;

}

35

CHAPTER2 MODERN C++

You might expect that the code in Listing 2-10 will produce a variable of type int and
a variable of type MyClass; however, this is not the case. Figure 2-4 shows the output
generated by the program.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-3/Listing2-10

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-3/Listing2-105 ./main
c++filt -t

Type of variable: std::initializer_list<int>

Type of variable: std::initializer_list<MyClass>
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe2-3/Listing2-105 [

Figure 2-4. Output generated when using auto with uniform initialization

A quick look at Figure 2-4 shows the immediate problem encountered when using
the auto keyword along with uniform initialization. The C++ uniform initialization
feature automatically creates an initializer list variable that contains the value of
the type we want, not the type and value itself. This leads to a relatively simple piece
of advice: do not use uniform initialization when defining variables using auto. I'd
recommend not using auto even if the type you want is actually an initializer list
as the code is much easier to understand and much less error prone if you don’t mix
and match your variable initialization styles. There’s a final piece of advice to bear in
mind: use auto for local variables as much as possible. It’s impossible to declare an auto
variable and not define it; therefore, it's impossible to have an undefined local auto
variable. You can use this piece of knowledge to cut down on one potential source of
bugs in your programs.

Recipe 2-4. Using auto with Functions
Problem

You would like to create more generic functions using type deduction to increase code
maintainability.

36

CHAPTER2 MODERN C++

Solution

Modern C++ allows you to use type deduction for function parameters and for return types.

How It Works

C++ allows you to utilize type deduction when working with functions using two
methods. Types can be deduced for function parameters by creating a template function
and calling that function without explicit specializers. The return type can be deduced
for a function using the auto keyword in place of its return type. Listing 2-11 shows the
use of auto to deduce the return type for a function.

Listing 2-11. Deducing a Function’s Return Type Using auto
#include <iostream>
using namespace std;

auto AutoFunctionFromReturn(int parameter)

{
return parameter;
}
int main()
{
auto value = AutoFunctionFromReturn(1);
cout << value << endl;
return O;
}

The AutoFunctionFromReturn function’s return type in Listing 2-11 is automatically
deduced. The compiler inspects the type of the variable returned from the function and
uses that to deduce the type to be returned. This all works properly because the compiler
has everything it needs inside the function to be able to deduce the type. The parameter
variable is being returned; therefore, the compiler can use its type as the return type for
the function.

37

CHAPTER2 MODERN C++

Things get a bit more complicated when you need to build with a C++11 compiler.
Building Listing 2-11 using C++11 results in the following error:

main.cpp:5:1: error: 'auto’ return without trailing return type
auto AutoFunctionFromReturn(int parameter)

Listing 2-12 includes a function with automatic return type deduction that works in
C++11.

Listing 2-12. Return Type Deduction in C++11
#include <iostream>
using namespace std;

auto AutoFunctionFromReturn(int parameter) -> int

{
return parameter;
}
int main()
{
auto value = AutoFunctionFromReturn(1);
cout << value << endl;
return 0;
}

You might be wondering why you would bother doing this when looking at the
code in Listing 2-12. There’s little use in deducing the return type for a function when
you always specify that it will be an int and you'd be right. Return type deduction is
much more useful in functions that don’t have their parameter types declared in their
signature. Listing 2-13 shows the type deduction in action for a template function.

Listing 2-13. Deducing Return Types for C++11 Template Functions
#include <iostream>
using namespace std;

template <typename T>

38

CHAPTER2 MODERN C++

auto AutoFunctionFromParameter(T parameter) -> decltype(parameter)

{

return parameter;

}

int main()

{
auto value = AutoFunctionFromParameter(2);
cout << value << endl;
return 0;

}

Listing 2-13 shows a useful application of return type deduction. This time, the
function is specified as a template; therefore, the compiler cannot work out the return
type using the parameter type. C++11 introduced the decltype keyword to complement
the auto keyword. decltype is used to tell the compiler to use the type of a given
expression. The expression can be a variable name; however, you could also give a
function here, and decltype would deduce the type returned from the function.

At this point, the code has come full circle. The C++11 standard allowed auto to be
used on functions to deduce return type but required that the type still be specified as a
trailing return type. The trailing return type can be deduced using decltype; however,
this leads to overly verbose code. C++14 rectifies this situation by allowing auto to be
used on functions without having the trailing return type even when used with templates
asyou can see in Listing 2-14

Listing 2-14. Using auto to Deduce Return Type on a Template Function
#include <iostream>
using namespace std;

template <typename T>
auto AutoFunctionFromParameter(T parameter)

{

return parameter;

39

CHAPTER2 MODERN C++

int main()

{

auto value = AutoFunctionFromParameter(2);
cout << value << endl;

return 0;

Recipe 2-5. Working with Compile Time Constants
Problem

You would like to optimize the runtime operation of your program using compile time
constant.

Solution

C++ provides the constexpr keyword that can be used to guarantee that an expression
can be evaluated at compile time.

How It Works

The constexpr keyword can be used to create variables and functions that guarantees
that they can be evaluated at compile time. Your compiler will throw an error if you add
any code to them that prevents compile time evaluation. In fact, C++20 is expanding

the features of constexpr to allow try/catch blocks inside an is_constant_evaluated;
however, support is not consistent with various compilers yet until the standard is fully
endorsed. Listing 2-15 shows a program that uses a constexpr variable to define the size
of an array.

Listing 2-15. Using constexpr to Define the Size of an array

#include <array>
#include <cstdint>
#include <iostream>

40

CHAPTER2 MODERN C++

int main()

{
constexpr uint32_t ARRAY SIZE{ 5 };

std::array<uint32_t, ARRAY SIZE> myArray{ 1, 2, 3, 4, 5 };

for (autod& number : myArray)

{

std::cout << number << std::endl;
}
return 0;

The constexpr variable in Listing 2-15 guarantees that the value can be evaluated
at compile time. This is necessary here as the size of an array is something that must be
determined when your program is compiled. Listing 2-16 shows how you can extend this
example to include a constexpr function.

Listing 2-16. A constexpr Function

#include <array>
#include <cstdint>
#include <iostream>

constexpr uint32_t ArraySizeFunction(int parameter)

{
return parameter;
}
int main()
{
constexpr uint32_t ARRAY_SIZE{ ArraySizeFunction(5) };
std::array<uint32_t, ARRAY SIZE> myArray{ 1, 2, 3, 4, 5 };
for (auto8& number : myArray)
{
std::cout << number << std::endl;
}
return 0;
}

41

CHAPTER2 MODERN C++

You can go another step further than the code in Listing 2-16 and create a class with
a constexpr constructor. This is shown in Listing 2-17.

Listing 2-17. Creating constexpr Class Constructors

#include <array>
#include <cstdint>
#include <iostream>

class MyClass

{
private:
uint32_t m_Member;
public:
constexpr MyClass(uint32 t parameter)
: m_Member{parameter}
{
}
constexpr uint32 t GetValue() const
{
return m_Member;
}
};
int main()
{
constexpr uint32_t ARRAY_SIZE{ MyClass{ 5 }.GetValue() };
std::array<uint32_t, ARRAY SIZE> myArray{ 1, 2, 3, 4, 5 };
for (autod& number : myArray)
{
std::cout << number << std::endl;
}
return O;
}

42

CHAPTER2 MODERN C++

The code in Listing 2-17 is able to create an object and call a method in a constexpr
statement. This was possible because the constructor for MyClass was declared as a
constexpr constructor. The code shown so far for constexpr has all been compatible
with C++11 compilers. The C++17 standard has relaxed many of the restrictions that
existed in C++11, and C++20 will add functionality. C++11 constexpr statements are
not permitted to do many things that normal C++ code can. Examples of these things
are creating variables and using if statements. The code in Listing 2-18 shows a C++14
constexpr function that can be used to limit the maximum size of an array.

Listing 2-18. Using a C++14 constexpr Function

#include <array>
#include <cstdint>
#include <iostream>

constexpr uint32 t ArraySizeFunction(uint32_t parameter)

{

uint32_t value{ parameter };
if (value > 10)

{

value = 10;

}

return value;

}

int main()

{
constexpr uint32_t ARRAY SIZE{ ArraySizeFunction(15) };

std::array<uint32_t, ARRAY SIZE> myArray{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

for (autod& number : myArray)
{

std::cout << number << std::endl;

return O;

43

CHAPTER2 MODERN C++

As a final very simple example, the use of this feature does not actually return a
constant, but makes readability and future compatibility (among other things) much
cleaner. The following example will show that the constant is not actually as it seems.

Listing 2-19. Constant Not As It Seems Example

#include <iostream>

using namespace std;

int reg const()

{ return 999; }

constexpr int new_const()

{ return 999; }

int main() {
const int first = reg const();
int second = new const();
second = 1; // technically a constant should not be changeable
cout << first << " I= to " << second << endl;
return 0; }

Recipe 2-6. Working with Lambdas
Problem

You would like to write programs that utilize unnamed function objects.

Solution

C++ provides lambdas that can be used to create closures and can be passed around in
your code.

How It Works

The lambda syntax introduced in C++11 can be a little confusing at first. Listing 2-20
shows a simple example of a program that uses a lambda to print out all of the values in
an array.

44

CHAPTER2 MODERN C++

Listing 2-20. Using a Lambda to Print array Values

#include <algorithm>
#include <array>
#include <cstdint>
#include <iostream>

int main()

{
using MyArray = std::array<uint32_t, 5>;
MyArray myArray{ 1, 2, 3, 4, 5 };

std: :for_each(myArray.cbegin(),
myArray.cend(),
[](autod& number) {
std::cout << number << std::endl;

};

return 0;

This code shows how a lambda is defined in C++ source code. The syntax for a
lambda is as follows:

[10 1}

The braces represent the capture block. A lambda uses a capture block to capture
existing variables to be used in the lambda. The code in Listing 2-20 does not have a need
to capture any variables; therefore, it is empty. The parentheses represent the argument
block as they do in a normal function. The lambda in Listing 2-20 has a single parameter
that is of type auto8&. The std: : for_each algorithm applies the given function to every
element in the sequence. The function here happens to be a closure that was created
by the compiler when it encountered the lambda syntax and passed it to the for_each
function. There’s a subtle terminology difference there that you should become familiar
with. A lambda is the source code construct that defines an anonymous or unnamed
function. The compiler uses this syntax to create a closure object from the lambda.

A closure can be referenced by a variable as shown in Listing 2-21.

45

CHAPTER2 MODERN C++

Listing 2-21. Referencing a Closure in a Variable

#include <algorithm>
#include <array>
#include <cstdint>
#include <iostream>
#include <typeinfo>

int main()

{
using MyArray = std::array<uint32_t, 5>;
MyArray myArray{ 1, 2, 3, 4, 5 };

auto myClosure = [](auto&& number) {
std::cout << number << std::endl;

b5
std::cout << typeid(myClosure).name() << std::endl;
std::for_each(myArray.begin(),

myArray.end(),

myClosure);

return O;

The example in Listing 2-21 captures the lambda into an auto typed variable.
Figure 2-5 shows the output that this generates.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-6/Listing2-20

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-6/Listing2-20S ./main |
c++filt -t
main::$_0

1
2
3
4
5
b

ruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-6/Listing2-205 i

Figure 2-5. The type output by typeid when passed a closure

46

CHAPTER2 MODERN C++

Figure 2-5 shows the type of the closure stored by the myClosure variable in

Listing 2-21. The automatically generated type here isn’t particularly useful; however,

C++ does provide a method for passing around any type of object that can be called like

a function. The function template is provided in the functional header and is part of the

STL. This template takes the signature of the function that the object represents. You can

see how this code looks in Listing 2-22.

Listing 2-22. Passing a Closure into a Function

#include <algorithm>

#include <array>
#include <cstdint>
#include <functional>

#include <iostream>
#include <typeinfo>

using MyArray = std::array<uint32_t, 5>;

void PrintArray(const std::function<void(MyArray

{
MyArray myArray{ 1, 2, 3, 4, 5 };
std::for_each(myArray.begin(),
myArray.end(),
myFunction);
}
int main()
{
auto myClosure = [](auto8& number) {
std::cout << number << std::endl;
b5
std::cout << typeid(myClosure).name() << std
PrintArray(myClosure);
return 0;
}

::value_type)>& myFunction)

::endl;

47

CHAPTER2 MODERN C++

You can now create closures and pass them around your program using the function
template as shown in Listing 2-22. This allows you to add some touches to your programs
that would have been much more difficult to achieve in C++98. Listing 2-23 shows a
method to copy an array into a vector through a lambda using the capture block.

Listing 2-23. Using the Lambda Capture Feature

#include <algorithm>
#include <array>
#include <cstdint>
#include <functional>
#include <iostream>
#include <typeinfo>
#include <vector>

using MyArray = std::array<uint32_t, 5>;
using MyVector = std::vector<MyArray::value_type>;

void PrintArray(const std::function<void(MyArray::value type)>& myFunction)

{
MyArray myArray{ 1, 2, 3, 4, 5 };

std::for_each(myArray.begin(),
myArray.end(),

myFunction);
}
int main()
{

MyVector myCopy;

auto myClosure = [8myCopy](auto8& number) {
std::cout << number << std::endl;
myCopy.push_back(number);

};
std::cout << typeid(myClosure).name() << std::endl;

PrintArray(myClosure);

std::cout << std::endl << "My Copy: " << std::endl;

48

CHAPTER2 MODERN C++

std: :for_each(myCopy.cbegin(),
myCopy.cend(),
[](auto&& number){
std::cout << number << std::endl;

1

return O;

The code in Listing 2-23 contains a use of the lambda capture to store a reference to
the object myCopy in the closure. This object can then be used inside the lambda and has
each member of the array pushed onto it. The main function ends by printing all of the
values stored by myCopy to show that the closure was sharing the same vector as main,
thanks to the reference capture. The capture was specified as a reference capture using
the & operator. The vector would have been copied into the closure if this had been
omitted, and the myCopy vector in main would have remained empty.

Capturing myCopy by value rather than by reference would have led to another
problem. The type the compiler creates for the lambda would no longer be a compatible
argument with the parameter used to declare the function’s signature. Listing 2-24 shows
the lambda using capture by value to copy myCopy.

Listing 2-24. Capturing myCopy by Value

#include <algorithm>
#include <array>
#include <cstdint>
#include <functional>
#include <iostream>
#include <typeinfo>
#include <vector>

using MyArray = std::array<uint32_t, 5>;
using MyVector = std::vector<MyArray::value type>;

void PrintArray(const std::function<void(MyArray::value type)>& myFunction)

{
MyArray myArray{ 1, 2, 3, 4, 5 };

std::for_each(myArray.begin(),

49

CHAPTER2 MODERN C++

myArray.end(),
myFunction);

}

int main()
{
MyVector myCopy;
auto myClosure = [myCopy](auto8& number) {
std::cout << number << std::endl;
myCopy.push_back(number);
b
std::cout << typeid(myClosure).name() << std::endl;

PrintArray(myClosure);
std::cout << std::endl << "My Copy: "
std: :for_each(myCopy.cbegin(),
myCopy.cend(),
[](auto&& number){
std::cout << number << std::endl;

};

return 0;

<< std::endl;

The code in Listing 2-24 won’t compile, and Clang and VS compilers are unlikely to
give you meaningful or helpful error messages. Clang provides the following error output
when trying to compile this code using Cygwin on Windows.

$ make
clang++ -g -std=c++1y main.cpp -o main
main.cpp:26:13: error: no matching member function for call to 'push_back'
myCopy . push_back(number);
/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2149:27: note: in
instantiation of function template
specialization 'main()::<anonymous class>::operator()<unsigned int>'
requested here

50

CHAPTER2 MODERN C++

using Invoke = decltype(callable functor(std::declval<
Functor&>())

N
/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2158:2: note: in
instantiation of template type alias

' Invoke' requested here
using Callable
/usr/1lib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2225:30: note: in
instantiation of template type alias
' Callable' requested here
typename = Requires<_Callable<_Functor>, void>>
/usr/1ib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2226:2: note: in
instantiation of default argument for
"function<<lambda at main.cpp:24:22> >' required here
function(_Functor);

/usr/1lib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2226:2: note:
while substituting deduced template arguments

into function template 'function' [with Functor = <lambda at main.

cpp:24:22>, $1 = <no value>]

function(_Functor);

/usr/1lib/gcc/i686-pc-cygwin/4.9.2/include/c++/bits/stl_vector.h:913:7:
note: candidate function not viable: 'this'

argument has type 'const MyVector' (aka 'const vector<MyArray::value_

type>'), but method is not marked const

push_back(const value type& _ x)
/usr/1lib/gcc/i686-pc-cygwin/4.9.2/include/c++/bits/stl_vector.h:931:7:
note: candidate function not viable: 'this'

argument has type 'const MyVector' (aka 'const vector<MyArray::value_

type>'), but method is not marked const

push_back(value type8& x)

N

51

CHAPTER2 MODERN C++

main.cpp:30:5: error: no matching function for call to 'PrintArray’
PrintArray(myClosure);

main.cpp:12:6: note: candidate function not viable: no known conversion
from '<lambda at main.cpp:24:22>' to 'const

std::function<void (MyArray::value_type)>' for 1st argument
void PrintArray(const std::function<void(MyArray::value type)>& myFunction)
2 errors generated.
makefile:2: recipe for target 'main' failed
make: *** [main] Error 1

Given the verbose and confusing error messages output by Clang, you may think that
the code is very far from being in a working state; however, you might be surprised to
learn that this can be solved with a single keyword, mutable. Listing 2-25 shows the code
in a proper compiling state.

Listing 2-25. Creating amutable Closure

#include <algorithm>
#include <array>
#include <cstdint>
#include <functional>
#include <iostream>
#include <typeinfo>
#include <vector>

using MyArray = std::array<uint32_t, 5>;
using MyVector = std::vector<MyArray::value type>;

void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)

{
MyArray myArray{ 1, 2, 3, 4, 5 };

std::for_each(myArray.begin(),
myArray.end(),
myFunction);

52

CHAPTER2 MODERN C++

int main()
{
MyVector myCopy;
auto myClosure = [myCopy](auto8& number) mutable {
std::cout << number << std::endl;
myCopy . push_back(number);
};
std::cout << typeid(myClosure).name() << std::endl;

PrintArray(myClosure);

std::cout << std::endl << "My Copy: " << std::endl;
std: :for_each(myCopy.cbegin(),
myCopy.cend(),
[](auto&& number){
std::cout << number << std::endl;

};

return 0;

Listing 2-25 contains the solution to all of the error output that you can see in the
preceding code. The mutable keyword is used to tell the compiler that the lambda function
should generate a closure with non-const members that have been copied by value.

The closures created by the compiler when they encounter alambda function
are const by default. This causes the compiler to create a type for the closure that can
no longer be implicitly converted to a standard function pointer. The resulting error
messages generated by a compiler when you try to use a lambda function to generate a
closure that is not a suitable type for your code can be exceptionally confusing, so there
is no real solution here other than to properly learn how to use lambda functions and to
compile often when working to pick up when you have made a change that the compiler
cannot handle.

Listing 2-26 shows the code needed to build a working program that copied an array
into a vector using a lambda function. It is backward compatible to C++11.

53

CHAPTER2 MODERN C++

Listing 2-26. A C++11-Compatible Lambda Function

#include <algorithm>
#include <array>
#include <cstdint>
#include <functional>
#include <iostream>
#include <typeinfo>
#include <vector>

using MyArray = std::array<uint32_t, 5>;
using MyVector = std::vector<MyArray::value type>;

void PrintArray(const std::function<void(MyArray::value type)>& myFunction)

{
MyArray myArray{ 1, 2, 3, 4, 5 };

std::for_each(myArray.begin(),

myArray.end(),
myFunction);

}

int main()

{

MyVector myCopy;
auto myClosure = [8myCopy](const MyArray::value_type& number) {
std::cout << number << std::endl;
myCopy . push_back(number);
};
std::cout << typeid(myClosure).name() << std::endl;

PrintArray(myClosure);
std::cout << std::endl << "My Copy: " << std::endl;

std::for_each(myCopy.cbegin(),
myCopy.cend(),

54

CHAPTER2 MODERN C++

[](const MyVector::value_type& number){
std::cout << number << std::endl;

};

return 0;

The code in Listing 2-26 will work just fine with a C++11 compiler, but it does result
in lambda functions that are slightly less portable between different types. The lambda
function used to print the values from myCopy can now only be used with the type
defined by MyVector: :value_type, whereas the C++14 version could have been reused
with any type that could be passed as input to cout. Of course, do not try to compile this
with C++98. C++20, or C++17 at the least, would be much better with regard to compilers
available in 2020.

Recipe 2-7. Working with Time
Problem

You would like to write portable programs that are aware of the current time or their
execution time.

Solution

Modern C++ provides STL templates and classes that provide portable time handling
capabilities.

How It Works

Getting the Current Date and Time

C++ easily provides access to different real-time clocks in a given computer system. The
implementation of each clock may be different depending on the computer system that
you are running on itself; however, the general intent of each clock will remain the same.
You can use the system_clock to query the current time from a system-wide real-time
clock. This means that you can use this type of clock to get the current date and time for
a computer while your program is running. Listing 2-27 shows how this can be achieved.

55

CHAPTER2 MODERN C++

Listing 2-27. Getting the Current Date and Time (Note: If Using MS Visual
Studio, You Will Receive a Warning)

#include <ctime>
#include <chrono>
#include <iostream>

using namespace std;
using namespace chrono;

int main()

{
auto currentTimePoint = system clock::now();
auto currentTime = system clock::to_time t(currentTimePoint);
auto timeText = ctime(¤tTime);

cout << timeText << endl;

return 0;

The program in Listing 2-27 shows how to retrieve the current time from system clock.
You do this using the system clock: :now method. The object returned from now is a
time point that contains a representation of time offset from some epoch. The epoch is
areference time that the system uses to offset all other times. You will not have to worry
about the epoch by using the same clock for all of your time work. However, you will have to
be aware that a time from one computer may not be transferrable directly to another if the
systems use different epochs for their time.

The time_point structure cannot be printed out directly, and there is no method to
convert it to a string; however, the class does provide a method to convert the time_point
objectinto a time_t object. The time_t type is an old C type that can be converted to a string
representation using the ctime function. You can see the result of running this program in
Figure 2-6.

56

CHAPTER2 MODERN C++

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-7/Listing2-26

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-7/Listing2-265 ./main
Mon Apr 6 13:15:40 2015

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-7/Listing2-265 I

Figure 2-6. The current time printed to the terminal

Comparing Times

You can also use the STL time capabilities to compare one time to another. Listing 2-28
shows how you can compare a time to another.

Listing 2-28. Comparing Times

#include <ctime>
#include <chrono>
#include <iostream>
#include <thread>

using namespace std;
using namespace chrono;
using namespace literals;

int main()

{

auto startTimePoint = system_clock::now();

this thread::sleep for(5s);

auto endTimePoint = system clock::now();

57

CHAPTER2 MODERN C++

auto timeTaken = duration cast<milliseconds>(endTimePoint -
startTimePoint);

cout << "Time Taken: " << timeTaken.count() << endl;

return O;

Listing 2-28 shows that you can call the now method on a clock multiple times and
retrieve different values. The program gets a time into the startTimePoint variable and
then calls the sleep for method on the current execution thread. This call causes the
program to go to sleep for 5 seconds and call the system clock: :now method again after
it resumes. At this point, you have two time_point objects that can be used to subtract
one from the other. The duration_cast can then be used to turn the result of the
subtraction into a concrete time with a given type of duration. The valid duration types
are hours, minutes, seconds, milliseconds, microseconds, and nanoseconds. The count
method is then used on the duration object to get the actual number of milliseconds that
elapsed between calls to now.

Note The code in Listing 2-28 uses a C++14 standard user-defined literal. The
5s passed to sleep_for defines a literal of 5 seconds. There are also literals defined
for h (hours), min (minutes), s (seconds), ms (milliseconds), us (microseconds), and
ns (nanoseconds). These literals can all be applied to an integer literal to inform
the compiler that you would like to create a literal of a duration object with the
given type of time. Applying s to a character literal such as "A String"s tells the
compiler to create a literal of type std: : string. These literals are defined in the
std::1iterals namespace and are a C++14-only feature, meaning that they
cannot be used in C++11 or C++98 code.

Figure 2-7 shows the output generated when this program is run.

58

CHAPTER2 MODERN C++

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-7/Listing2-27

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-7/Listing2-275 ./main
Time Taken: 5002
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-7/Listing2-27$./main
Time Taken: 5001
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-7/Listing2-27$./main
Time Taken: 5002
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-7/Listing2-27$./main
Time Taken: 5003
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe2-7/Listing2-27$

Figure 2-7. Output from several runs of Listing 2-28

Figure 2-7 shows that the sleep_for method isn’t 100% accurate; however, it is reasonably
close to 5000 ms with each run. You can now see how you can use the now method to
compare two time_points, and it'’s not much more of a stretch to imagine that you can create
an if statement that only executes once a certain amount of time has passed.

Listing 2-29 is a final stepping-off point for using three different clocks, system,
steady, and high resolution. The first is based on the current computer clock, the second
is as well but is not changeable, and the third offers more resolution, with higher CPU
utilization. Use MS Visual Studio to see them in action.

Listing 2-29. Using Three Clock Types

#define _CRT_SECURE_NO_WARNINGS //suppress warngings on localtime
#include<chrono>//needed for time features

#include<iostream>

#include<ctime>//needed for local time

#include<iomanip>//needed for put_time

using namespace std;

int main()
{ //system clock can be changed, steady cannot, high res offers more
precision

chrono::system clock::time_point pc_clock = chrono::system_
clock::now(); // computer clock time
time t pc_clock time = chrono::system clock::to time t(pc_clock);

cout << "The time according to the computer clock is:
<< put_time(localtime(8pc_clock time), "%T %p") << endl;

59

CHAPTER2 MODERN C++

chrono: :steady clock::time point start = chrono::steady clock::now();
// when we start

chrono: :high resolution clock::time point start2 = chrono::

high resolution_clock::now(); //high res clock

chrono: :system clock::time point now = chrono::system clock::now();
// current time

time_t now c = chrono::system clock::to time t(now);

cout << "\n\nThe time now is: " << put_time(localtime(&now c),

"%F %T %b %I %p") << endl;

time_t now_p = chrono::system clock::to time t(now -

chrono: :hours(2));

cout << "The time 2 hours ago was:
"%F %T %B %A") << "\n\n";
chrono::steady clock::time point end = chrono::steady

<< put_time(localtime(&now _p),

clock::now(); // it is over

chrono::high resolution_clock::time_point end2 = chrono::

high resolution clock::now();

cout << "Computing lasted " << chrono::duration_cast
microseconds!"

<chrono: :microseconds>(end - start).count() <<
<< endl;

cout << "Computing with high resolution_clock yielded "

<< chrono: :duration cast<chrono::nanoseconds>(end2 - start2).count()

<< " nanoseconds!" << endl;
return O;

Recipe 2-8. Understanding Ivalue and rvalue
References

Problem

C++ contains a distinction between an lvalue reference and an rvalue reference. You
need to be able to understand these concepts to write optimal C++ programs.

60

CHAPTER2 MODERN C++

Solution

Modern C++ contains two different reference operators, & (Ivalue) and && (rvalue). These
work hand in hand with move semantics to reduce the time spent copying objects in
your programs.

How It Works

Move semantics are one of the headline features of the modern C++ programming
language. Their usefulness is being significantly overplayed, and programmers new to
modern C++ programming may be tempted to jump head first into the shiny new feature
and actually make their programs worse due to a lack of understanding as to when and
why to use an rvalue reference over an lvalue reference.

To put it simply, an rvalue reference should be used to move construct or move
assign objects in place of copy operations where appropriate. Move semantics should
not be used to replace passing parameters to methods by const reference. A move
operation could be faster than a copy; in the worst case, it can be slower than a copy, and
it will always be slower than passing by const reference. This recipe will show you the
difference between an lvalue reference, an rvalue reference, and the copy and move class
constructors and operators and show some performance issues related to each.

The code in Listing 2-30 shows the implementation for a simple class that uses a
static counter value to keep track of the number of objects in memory at any given time.

Listing 2-30. A Class That Counts the Number of Instances
#include <iostream>
using namespace std;

class MyClass
{

private:
static int s_Counter;

int* m Member{ &s Counter };

61

CHAPTER2 MODERN C++

public:
MyClass()
{
++(*m_Member);
}
~“MyClass()
{
--(*m_Member);
m Member = nullptr;
}
int GetValue() const
{
return *m_Member;
}
};
int MyClass::s Counter{ 0 };
int main()
{

auto objectl = MyClass();
cout << object1.GetValue() << endl;

{
auto object2 = MyClass();

cout << object2.GetValue() << endl;

}

auto object3 = MyClass();
cout << object3.GetValue() << endl;

return 0;

The s_Counter static member in Listing 2-30 counts the number of active
instances of the class that exist in memory at any given time. This is achieved by
initializing the static to 0 and pre-incrementing the value in the MyClass constructor

62

CHAPTER2 MODERN C++

through the member integer pointer. The s_Counter value is also decremented in
~MyClass to ensure that the number never grows out of control. The need for an
unconventional setup will become clear when you see the move constructor in action.
The output generated by this program is shown in Figure 2-8.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-8/Listing2-28

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-285 ./main
1
2
2
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-285 [

Figure 2-8. The s Counter variable in action

You can now extend MyClass to contain a copy constructor and determine the
impact this has on the number of objects in memory at any given time. Listing 2-31
shows a program that includes a MyClass copy constructor.

Listing 2-31. Copying MyClass
#include <iostream>
using namespace std;

class MyClass

{
private:

static int s_Counter;

int* m Member{ &s Counter };
public:

MyClass()

{

++(*m_Member);
cout << "Constructing: " << GetValue() << endl;

}
63

CHAPTER2 MODERN C++

};

~MyClass()
{

--(*m_Member);
m_Member = nullptr;

cout << "Destructing:

}

MyClass(const MyClass& rhs)
: m_Member{ rhs.m Member }

<< s_Counter << endl;

{
++(*m_Member);
cout << "Copying: " << GetValue() << endl;
}
int GetValue() const
{
return *m_Member;
}

int MyClass::s Counter{ 0 };

MyClass CopyMyClass(MyClass parameter)

{
return parameter;
}
int main()
{

64

auto object1 = MyClass();

{
auto object2 = MyClass();

}

CHAPTER2 MODERN C++

auto object3 = MyClass();

CopyMyClass(object3);

auto objects

return O;

The code in Listing 2-31 has added a copy constructor and a function to copy
object3 into object4. This has the impact of needing two copies, one to copy object3
into parameter and one to copy parameter into object4. Figure 2-9 shows that the two
copy operations have occurred and that there are also two subsequent destructors called
to destroy these objects.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-8/Listing2-29

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-295 ./main
Constructing: 1

Constructing: 2

Destructing: 1

Constructing: 2

Copying: 3

Copying: 4

Destructing: 3

Destructing: 2

Destructing: 1

Destructing: ©
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-29% I

Figure 2-9. Copy constructors in action

Move constructors can be utilized to cut down on the complexity of a copy constructor.
There will be just as many objects in flight; however, you can safely shallow-copy an object
in a move constructor, thanks to the rvalue reference type that they are passed. A rvalue
reference is a guarantee from the compiler that the object referenced by the variable was
a temporary object. This means that you are free to cannibalize the object so that you can
implement a copy operation faster than if the preexisting state was needed to be preserved.
Listing 2-32 shows how to add a move constructor to MyClass.

65

CHAPTER2 MODERN C++

Listing 2-32. Adding a Move Constructor to MyClass
#include <iostream>

using namespace std;

class MyClass

{
private:

static int s_Counter;

int* m _Member{ &s Counter };
public:

MyClass()

{

++(*m_Member);
cout << "Constructing: " << GetValue() << endl;

}

~MyClass()
{
if (m_Member)
{
--(*m_Member);
m_Member = nullptr;

cout << "Destructing: " << s_Counter << endl;

}
else
{
cout << "Destroying a moved-from instance" << endl;
}

}

MyClass(const MyClass& rhs)
: m_Member{ rhs.m Member }

66

CHAPTER 2

++(*m_Member);
cout << "Copying: " << GetValue() << endl;

}

MyClass(MyClass8& rhs)
: m_Member{ rhs.m Member }

{
cout << hex << showbase;
cout << "Moving: " << 8rhs << " to
cout << noshowbase << dec;
rhs.m_Member = nullptr;

<< this << endl;

}
int GetValue() const
{

return *m_Member;
}

};
int MyClass::s Counter{ 0 };

MyClass CopyMyClass(MyClass parameter)

{
return parameter;
}
int main()
{
auto objectl = MyClass();
{
auto object2 = MyClass();
}
auto object3 = MyClass();
auto object4 = CopyMyClass(object3);
return 0;
}

MODERN C++

67

CHAPTER2 MODERN C++

The code in Listing 2-32 adds a move constructor to MyClass. This has an immediate
impact on the running code. You can see that the move constructor is being invoked in
Figure 2-10.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-8/Listing2-30

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-305 ./main
Constructing: 1

Constructing: 2

Destructing: 1

Constructing: 2

Copying: 3

Moving: Ox7ffffcab4b2e to ox7ffffcab4ab2s

Destroying a moved-from instance

Destructing: 2

Destructing: 1

Destructing: ©
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-305 [

Figure 2-10. Using a move constructor

The compiler has realized that the state of parameter in Listing 2-32 does not need
to be maintained after the return statement has ended. This means that the code can
invoke a move constructor to create object4. This creates a scenario for a possible
optimization in your code. This example is trivial, and therefore there may be minimal
performance and memory benefits. If the class was more complicated, then you would
save the memory needed to have both objects in memory at the same time and the time
taken to copy from one object to the other. The performance benefits of this can be seen
in Listing 2-33. Note the high_resolution clock and chrono features from earlier in the
chapter are now being put to use again.

Listing 2-33. Comparing Copy Constructors with Move Constructors

#include <chrono>
#include <iostream>
#include <string>
#include <vector>

68

CHAPTER 2

using namespace std;
using namespace chrono;
using namespace literals;

class MyClass

{
private:
vector<string> m_String{
"This is a pretty long string that"
" must be copy constructed into"
" copyConstructed!"s
};
int m Value{ 1 };
public:
MyClass() = default;
MyClass(const MyClass& rhs) = default;
MyClass(MyClass&& rhs) = default;
int GetValue() const
{
return m Value;
}
}s
int main()
{

using MyVector = vector<MyClass>;
constexpr unsigned int ITERATIONS{ 1000000U };

MyVector copyConstructed(ITERATIONS);
int value{ 0 };

auto copyStartTime = high resolution_clock::now();
for (unsigned int i=0; i < ITERATIONS; ++i)

MODERN C++

69

CHAPTER2 MODERN C++

{
MyClass myClass;

copyConstructed.push _back(myClass);
value = myClass.GetValue();
}

auto copyEndTime = high resolution clock::now();
MyVector moveConstructed(ITERATIONS);

auto moveStartTime = high resolution clock::now();
for (unsigned int i=0; i < ITERATIONS; ++i)
{
MyClass myClass;
moveConstructed.push_back(move(myClass));
value = myClass.GetValue();
}

auto moveEndTime = high resolution_clock::now();
cout << value << endl;

auto copyDuration =
duration_cast<milliseconds>(copyEndTime - copyStartTime);
cout << "Copy lasted: " << copyDuration.count() << "ms" << endl;

auto moveDuration =
duration cast<milliseconds>(moveEndTime - moveStartTime);
cout << "Move lasted: " << moveDuration.count() << "ms" << endl;

return 0;

The code in Listing 2-33 makes use of the default keyword to inform the compiler
that we would like to use the default constructor, copy constructor, and move constructor
for this class. This is valid here because there is no manual memory management or
behavior needed by MyClass. We simply want to construct, copy, or move the members
m_String andm Value. Them Value variable is used to try to prevent the compiler from
over-optimizing our example and producing unexpected results. You can see that the
move constructor is faster in this instance than the copy constructor in Figure 2-11.

70

CHAPTER2 MODERN C++

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-8/Listing2-31

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-31$./main
1
Copy lasted: 429ms

Move lasted: 368ms
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-31$./main
1
Copy lasted: 438ms

Move lasted: 333ms
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-31$./main
1
Copy lasted: 471ms

Move lasted: 357ms
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe2-8/Listing2-315 [I

Figure 2-11. Showing a move constructor can be faster than a copy constructor

Recipe 2-9. Using Managed Pointers
Problem

You would like to automate the task of managing memory in your C++ programs.

Solution

Modern C++ provides the capability to automatically manage dynamically allocated
memory.

How It Works

Using unique_ptr
C++ provides three smart pointer types that can be used to automatically manage the
lifetime of dynamically allocated objects. Listing 2-34 shows the use of a unique_ptr.

71

CHAPTER 2 MODERN C++
Listing 2-34. Using unique ptr

#include <iostream>
#include <memory>

using namespace std;

class MyClass

{

private:
int m Value{ 10 };

public:
MyClass()
{

cout << "Constructing!" << endl;

}

~MyClass()
{

cout << "Destructing!" << endl;

}

int GetValue() const
{

return m_Value;

};

int main()

{

unique ptr<MyClass> uniquePointer{ make unique<MyClass>() };
cout << uniquePointer->GetValue() << endl;

return 0;

72

CHAPTER 2

MODERN C++

The code in Listing 2-34 manages to create and destroy a dynamically allocated

object without ever using new or delete. The make _unique template handles calling new,

and the unique_ptr object handles calling delete when the unique_ptr instance goes

out of scope. The make_unique template is a C++14 and higher feature. In C++20, some

of the memory library features have been deprecated and new features added.

Unique pointers are exactly as you expect; they are unique, and therefore your code

cannot have more than a single instance of a unique_ptr pointing to the same object at

the same time. It achieves this by preventing copy operations on unique_ptr instances.

Aunique_ptr can be moved however, and this allows you to pass a unique_ptr around

in your program. Listing 2-35 shows how you can use move semantics to pass a unique_

ptr around your program.

Listing 2-35. Moving a unique ptr

#include <iostream>
#include <memory>

using namespace std;

class MyClass

{
private:
string m_Name;
int m_Value;
public:

MyClass(const string& name, int value)
: m_Name{ name }
, m_Value{ value }

cout << "Constructing!" << endl;

}

~MyClass()
{

cout << "Destructing!" << endl;

73

CHAPTER2 MODERN C++

}s

const string& GetName() const

{

return m_Name;

}

int GetValue() const
{

return m Value;

using MyUniquePtr = unique_ptr<MyClass>;

auto PassUniquePtr(MyUniquePtr ptr)

{

int

cout << "In Function Name: " << ptr->GetName() << endl;

return ptr;

main()

auto uniquePointer = make_unique<MyClass>("MyClass", 10);
auto newUniquePointer = PassUniquePtr(move(uniquePointer));

if (uniquePointer)
{

cout << "First Object Name: " << uniquePointer->GetName() << endl;

}

cout << "Second Object Name:

<< newUniquePointer->GetName() << endl;

return O;

The code in Listing 2-35 moves a unique_ptr instance into a function. That instance

is then moved back out of the function into a second unique_ptr object. There’s no

reason why the same unique_ptr couldn’t have been used in main other than to show

that the original instance is not valid after it has been moved from. This is evident in

74

CHAPTER2 MODERN C++

the if call to check if the pointer is valid as this will fail when the code is executed. The
unique_ptr can be used in this manner, and the object pointed to by the instance will be
deleted once it goes out of scope without having been moved from. The output from this
program is shown in Figure 2-12.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-9/Listing2-34

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-9/Listing2-345 ./main
Constructing!

In Function Name: MyClass

Second Object Name: MyClass

Destructing!
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe2-9/Listing2-34$ I

Figure 2-12. Valid unique ptr instances moved through a function

Using shared_ptr Instances

Where a unique_ptr can give you sole ownership over a single object that you can move
around in a single pointer instance, a shared_ptr can give you shared ownership over

a single object. This works by having a shared ptr storing an internal reference count
along with the pointer to the object and only deleting the object once all of the values
have gone out of scope. Listing 2-36 shows the use of a shared ptr.

Listing 2-36. Using a shared ptr

#include <iostream>
#include <memory>

using namespace std;

class MyClass
{

private:
string m_Name;
int m_Value;

75

CHAPTER2 MODERN C++

public:
MyClass(const string& name, int value)
: m_Name{ name }
, m_Value{ value }

{

cout << "Constructing!" << endl;

}

~MyClass()
{

cout << "Destructing!” << endl;

}

const string® GetName() const

{

return m_Name;

}

int GetValue() const
{

return m Value;

}s
using MySharedPtr = shared ptr<MyClass>;

auto PassSharedPtr(MySharedPtr ptr)

{
cout << "In Function Name: " << ptr->GetName() << endl;
return ptr;

}

int main()

{

auto sharedPointer = make_shared<MyClass>("MyClass", 10);

{

auto newSharedPointer = PassSharedPtr(sharedPointer);

76

CHAPTER2 MODERN C++

if (sharedPointer)

{ cout << "First Object Name: " << sharedPointer->GetName() << endl;
}
cout << "Second Object Name: " << newSharedPointer->GetName() << endl;
}
return O;

The shared ptr in Listing 2-36 is different from the unique ptr that you have seen
before. A shared ptr can be copied through your program, and you can have multiple
pointers pointing to the same object. This is shown in Figure 2-13 where the output from
the First Object Name statement can be seen.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-9/Listing2-35

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-9/Listing2-355 ./main
Constructing!

In Function Name: MyClass

First Object Name: MyClass

Second Object Name: MyClass

Destructing!
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe2-9/Listing2-355 [

Figure 2-13. Using a shared ptr

Using a weak_ptr

Modern C++ also allows you to hold weak references to smart pointers. This allows you
to get a reference to a pointer to a shared object temporarily while you need it for as
long as the shared object exists. This tracking allows for better memory management.
Listing 2-37 shows how you can achieve this using a weak ptr.

77

CHAPTER 2 MODERN C++
Listing 2-37. Using a weak_ptr

#include <iostream>
#include <memory>

using namespace std;

class MyClass
{

private:
string m_Name;
int m Value;

public:
MyClass(const stringd name, int value)
: m_Name{ name }
, m_Value{ value }

{

cout << "Constructing!" << endl;

}

~MyClass()
{

cout << "Destructing!" << endl;

}

const string& GetName() const

{

return m_Name;

}

int GetValue() const
{

return m_Value;

};

78

CHAPTER 2

using MySharedPtr = shared ptr<MyClass>;
using MyWeakPtr = weak_ptr<MyClass>;

auto PassSharedPtr(MySharedPtr ptr)

{
cout << "In Function Name: " << ptr->GetName() << endl;
return ptr;

}

int main()

{

MyWeakPtr weakPtr;
{

auto sharedPointer = make_shared<MyClass>("MyClass", 10);

weakPtr = sharedPointer;

{

auto newSharedPointer = PassSharedPtr(sharedPointer);

if (sharedPointer)

MODERN C++

{
cout << "First Object Name: " << sharedPointer->GetName()
<< endl;
}
cout << "Second Object Name: " << newSharedPointer->GetName()
<< endl;

auto sharedFromhWeakl = weakPtr.lock();
if (sharedFromhWeak1)
{
cout << "Name From Weak1:
<< endl;

}

<< sharedFromWeak1->GetName()

79

CHAPTER2 MODERN C++

auto sharedFromhWeak2 = weakPtr.lock();
if (!sharedFromWeak2)

{

cout << "Shared Pointer Out Of Scope!" << endl;

}

return O;

You can see in Listing 2-37 that a weak_ptr can be assigned a shared_ptr; however,
you cannot access the shared object directly through the weak pointer. Instead, a
weak pointer supplies a lock method. The lock method returns a shared ptr instance
pointing to the object that you are referencing. This shared_ptr holds the object alive
for the entirety of its scope if it ends up being the last pointer pointing to the object. The
lock method always returns a shared _ptr; however, the shared ptr returned by lock
will fail an if test if the object no longer exists. You can see this at the end of the main
function where lock is called after the object has been deleted. Figure 2-14 shows that
the weak_ptr cannot get a valid shared ptr after this has occurred.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe2-9/Listing2-36

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-9/Listing2-365 ./main
Constructing!

In Function Name: MyClass

First Object Name: MyClass

Second Object Name: MyClass

Name From Weakl: MyClass

Destructing!

Shared Pointer Out Of Scope!
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe2-9/Listing2-365 l

Figure 2-14. Aweak ptr failing to lock a deleted object

80

CHAPTER 3

Working with Text

Working with text will be one of the most regular tasks a C++ programmer will have to
deal with. You are likely to need to read in user input, write out messages to the user,
or write logging functionality for other programmers to more easily debug running
programs. Unfortunately, working with text is not an easy or straightforward task. All
too often, programmers rush into the job and make fundamental errors with their text
handling which become major issues later into their projects. The worst of these is not
properly accounting for localized versions of text strings. Working with English character
sets is generally easy as all English characters and punctuation fit into the ASCII
character set. This is convenient as every character needed to represent the English
language can fit into a single 8-bit char variable. Things become problematic as soon
as you are required to support foreign languages with your programs. Every character
which you need to support will no longer fit into a single 8-bit value. C++ can handle
non-English languages in a number of ways which will be covered in this chapter.

Recipe 3-1. Representing Strings in Code Using
Literals

Problem

It is often useful to supply output text when debugging programs. To do this, C++ allows
you to embed strings directly into your code.

Solution

C++ programs have a concept known as a string table, and all string literals in your
program are included in the program’s executable.

81
© J. Burton Browning and Bruce Sutherland 2020

J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_3

CHAPTER 3 WORKING WITH TEXT

How It Works

A standard C++ string literal is easy to work with. Listing 3-1 shows code which creates a
string literal.

Listing 3-1. A String Literal

#include <iostream>
#include <string>

using namespace std;

namespace
{
const string STRING{ "This is a string"s };
}
int main()
{
cout << STRING << endl;
return 0;
}

The string literal in this example is the sentence which is included inside the quote
marks and followed by the letter s. The compiler will create a table of strings during
compilation and place them all together. You can see this string inside the exe file created
from the source in Figure 3-1 (use Visual Studio for Windows to compile it). Download
and install HxD hex editor from https://mh-nexus.de/en/hxd/ to open the exe file.

82

https://mh-nexus.de/en/hxd/

CHAPTER 3 WORKING WITH TEXT

@ File Edit Search View Analysis Extras Window ?
D@vb|edie Mas Mhe

5] main.exe]

Offset (h) 00 01 02 03 04 05 OF

00000F60 00 00 00 00 00 00 00

00000F70 00 00 00 00 00 00 00

00000F80 00 00 00 00 00 00 00

00000F30 00 00 00 00 00 00 00

00000FAO 00 00 00 00 00 00 00

00000FBO 00 00 00 00 00 00 00

00000FCO 00 00 00 00 00 00 00

00000FDO 00 00 00 00 00 00 00

00000FE0 00 00 00 00 00 00 00

00000FFO 00 00 00 00 00 00 00

00001000 63 79 67 67 63 63 SF cyggec_s-1.d11._
00001010 SF 72 65 67 69 73 SF _register_frame_
00001020 69 6E 66 6F 00 SF 65 info._ deregiste
00001030 72 SF 66 72 61 6D 67 x_frame_info.cyg
00001040 67 63 6A 2D 31 35 52 gcj-15.d1l._Jv_R
00001050 65 67 69 73 74 65 00 egisterClasses..
00001060 [68 69 73 20 69 67
00001070 00 00 00 00 DO 17 4ED...GCC: (GN
00001080 55 29 20 34 2E 38 32 U) 4.8.3 2014052
00001090 32 20 28 46 65 64 6E 2 (Fedora Cygwin
000010A0 20 34 2E 38 2E 33 34 4.8.3-6)...GCC:
00001080 20 28 47 4E 55 29 00 (GNU) 4.9.2....
000010CO 47 43 43 3A 20 28 33 GCC: (GNU) 4.8.3
000010D0 20 32 30 31 34 30 72 20140522 (Fedor
000010E0 61 20 43 79 67 77 36 a Cygwin 4.8.3-6
000010F0 29 00 00 00 47 43 34)...GCC: (GNU) 4
00001100 2E 38 2E 33 20 32 46 .8.3 20140522 (F
00001110 65 64 6F 72 61 20 38 edora Cygwin 4.8
00001120 2E 33 2D 36 29 00 4E .3-6)...GCC: (GN
00001130 55 29 20 3¢ 2E 38 32 U) 4.8.3 2014052
00001140 32 20 28 46 65 64 6E 2 (Fedora Cygwin
00001150 20 34 2E 38 2E 33 3A 4.8.3-6)...GCC:
00001160 20 28 47 4E 55 29 31 (GNU) ¢.8.3 201
00001170 34 30 35 32 32 20 79 40522 (Fedora Cy
00001180 67 77 69 6E 20 34 00 gwin 4.8.3-6)...
00001180 47 43 43 3A 20 28 33 GCC: (GNU) 4.8.3
0000110 20 32 30 31 34 30 20140522 (Fedor
00001180 61 20 43 79 67 77 a Cvawin 4.8.3-6

Offset: 1060 Block: 1060-106F Overwrite

Figure 3-1. A screenshot from HxD showing the string literal embedded into an
executable

83

CHAPTER 3 WORKING WITH TEXT

You can use string literals to initialize STL string objects. The compiler will find all
of the strings in your program and use the address from the string table to initialize
your string. You can see this in Listing 3-1 where the pointer STRING is initialized using
the string literal; in effect, this code is actually telling the compiler to add the literal to
the string table and get the address of this specific string from the table to pass it to the
string constructor.

The string literal in Listing 3-1 is a C++14-style string literal. Older-style string literals
must be used with care as they come with a few caveats. The first is that you should never
try to alter the contents of a string literal. Consider the code in Listing 3-2. Note if using
VS instead of Clang, you will receive an error.

Listing 3-2. Editing a String Literal
#include <iostream>
using namespace std;

namespace

{

const char* const STRING{ "This is a string" };
char* EDIT STRING{ "Attempt to Edit" };

}

int main()

{
cout << STRING << endl;
cout << EDIT_STRING << endl;
EDIT STRING[O] = 'a';
cout << EDIT_STRING << endl;
return 0;

}

Listing 3-2 adds a new string literal which is assigned to a non-const pointer. The
main function also has code which tries to edit the first character (position 0) in the string
to be a lower case a. This code will compile without error; however, you should receive a
warning from a C++14 or higher compiler, as it is perfectly valid to attempt to alter strings

84

CHAPTER 3 WORKING WITH TEXT

using the array operator. However, it is a runtime exception to try to alter data contained
within string literals. Trying to run this program results in the error shown in Figure 3-2.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe3-1/Listing3-2

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe3-1/Listing3-25 ./main
This is a string

Attempt to Edit

Segmentation fault (core dumped)
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe3-1/Listing3-2$ [}

Figure 3-2. Runtime error generated when attempting to alter string literals

You can catch these errors at compile time rather than runtime by following a very
simple piece of advice. Always assign old-style string literals to variables of type const
char* const. You can use the makefile from Listing 3-3 if you want to enforce this in a
very straightforward fashion.

Listing 3-3. Compiling with Warnings as Errors

main: main.cpp
clang++ -Wexrror -std=c++1ly main.cpp -o main

Compiling your program with the makefile in Listing 3-3 will ensure that the
compiler fails to build your application with non-const string literals. An example of the
output you can expect can be seen in Figure 3-3.

85

CHAPTER 3 WORKING WITH TEXT

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe3-1/Listing3-3

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe3-1/Listing3-35 make
clang++ -Werror -std=c++1y main.cpp -o main
mailn.cpp:8:24: error: ISO C++11 does not allow conversion from string literal to
‘char *' [-Werror,-Wwritable-strings]
char* EDIT_STRING{ "Attempt to Edit" };

1 error generated.

makefile:2: recipe for target 'main' failed

make: *** [main] Error 1
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe3-1/Listing3-3$ [}

Figure 3-3. Error output when compiling with -Werror and Wuwritable string
literals

The second problem caused by string literals is that they increase the size of your
program. In a digital world, reducing the download size of your programs is a key target
to help increase the number of installs of your software. Removing unnecessary string
literals is one thing you can do to reduce the size of your executable. Listing 3-4 shows
how this can be achieved using the preprocessor.

Listing 3-4. Removing Debug String Literals from Builds

#include <iostream>
#include <string>

using namespace std;
#define DEBUG_STRING LITERALS !NDEBUG

namespace

{
#if DEBUG_STRING LITERALS

using Stringliteral = string;
#endif

Stringliteral STRING{ "This is a String!"s };

86

CHAPTER 3 WORKING WITH TEXT

int main()

{
cout << STRING << endl;

return 0;

Listing 3-4 creates a preprocessor symbol DEBUG_STRING LITERALS using the NDEBUG
symbol. The NDEBUG preprocessor symbol stands for not debug, and therefore we can
use it to determine whether we would like to have debug string literals included in our
program or not. The definition of the type alias StringlLiteral is then wrapped in a
#if.#endif block which ensures that Stringliteral only exists when building debug
builds. The NDEBUG symbol is commonly used in IDEs when building release builds of
your program. As many of the samples that accompany this book are built using make,
you will have to manually define this in your makefile. An example makefile is shown in
Listing 3-5.

Listing 3-5. A Makefile That Defines NDEBUG

main: main.cpp
clang++ -D NDEBUG -02 -Werror -std=c++1ly main.cpp -o main

At that point, you will also need to wrap any code which creates or uses any variables
of the Stringliteral type. You should see a problem at this point; using this define
means that you cannot have any string literals in your program. A better solution is
shown in Listing 3-6.

Listing 3-6. Separating Debug and Non-debug String Literals

#include <iostream>
#include <string>

using namespace std;
#define DEBUG_STRING LITERALS !NDEBUG

namespace

{
#if DEBUG_STRING LITERALS

using DebugStringliteral = string;

87

CHAPTER 3 WORKING WITH TEXT
#endif

#if DEBUG_STRING LITERALS
DebugStringliteral STRING{ "This is a String!"s };
#endif

}

int main()

{

#if DEBUG STRING LITERALS
cout << STRING << endl;

#endif

return O;

Using the debug literals for diagnostic code, as in Listing 3-6, that the end user
should never see allows you to remove strings and code and in turn reduces the size of
your executable and increases execution speed. If you are using MS Visual Studio (and
some other non-listed IDEs) on Windows or a Mac, you can simply compile as a release
version instead of a debug version when you are finally ready to build a program ready
for users. This method is much easier but would not work on Linux-based IDEs (until
Visual Studio is supported on Linux).

Recipe 3-2. Localizing User-Facing Text
Problem

You never know when you might need to support a language other than your own native
tongue. Ensure that any strings the user can see come from a localized source.

Solution

Build a string manager class which returns strings from a self-created table and only ever
reference strings using IDs.

88

CHAPTER 3 WORKING WITH TEXT

How It Works

You could legitimately code your entire project by communicating with the user using
strings that you define in your source as string literals. This has a few major drawbacks.
First is that it’s difficult to switch out languages on the fly. Today;, it’s very likely that
your software will be distributed via the Internet. It’s exceptionally unlikely that your
program will not be used by people who speak a different language than yourself. On
large development teams, there is a possibility that people have a different first language.
Building the ability to localize text into your programs from the beginning will save you
many headaches further down the track. This is achieved by loading in the string data for
your program from a file. You can then include multiple different languages in your data
by writing your strings in your native tongue and having friends or a translation service
translate the strings into other languages for you.

You will need to create a class to handle the localized string content for your game.
Listing 3-7 shows the class definition for the Localization Manager.

Listing 3-7. The Localization Manager
#pragma once

#include <array>
#include <cinttypes>
#include <string>
#include <unordered map>

namespace Localization

{
using StringID = int32_t;

enum class Languages

{
EN_US,
EN_GB,
Number
b

const StringID STRING COLOR{ 0 };

89

CHAPTER 3 WORKING WITH TEXT

class Manager

{
private:
using Strings = std::unordered map<StringID, std::string>;
using StringPacks =
std::array<Strings, static_cast<size_t>(Languages: :Number)>;
StringPacks m StringPacks;
Strings* m_CurrentStringPack{ nullptr };
uint32_t m_LanguageIndex;
public:
Manager();
void Setlanguage(Languages language);
std::string GetString(StringID stringId) const;
}s

There are a number of things being done in Listing 3-7. The first aspect of the source
to pay attention to is the namespace. You'll find it easier to manage your code if you keep
different classes in namespaces that have names which make sense. For the localization
module, I've used the name Localization. This will help make it clear in your code
when you are using classes and objects from this module.

There is a type alias being created to act as an identifier for different strings. Once
again, a type alias is useful here as you may decide to change the type of your string IDs
at some point in the future. There is an enum class which determines the languages the
Localization Manager supports. The StringID STRING_COLOR is defined as being 0. This
is the only StringID in this example as it is all we need to illustrate how the Localization
Manager operates.

The Manager itself defines some private type aliases to make the code clear. There is
an alias defined to allow us to create an unordered map of StringID to std::string
pairs and another that allows the creation of an array of these string maps. There is also a
variable declared to instantiate an array of string maps as well as a pointer to the current
string map in use. The class has a constructor and two other methods, SetLanguage and
GetString. Listing 3-8 shows the source for the constructor.

90

CHAPTER 3 WORKING WITH TEXT

Listing 3-8. Localization::Manager Constructor

Manager : :Manager ()

{
static const uint32_t INDEX EN US{ static cast<uint32_t>(Languages::EN US) };
m_StringPacks[INDEX_EN US][STRING COLOR] = "COLOR"s;
static const uint32_t INDEX EN GB{ static_cast<uint32_t>(Languages::EN GB) };
m_StringPacks[INDEX_EN GB][STRING COLOR] = "COLOUR"s;
SetLanguage(Languages: :EN_US);

}

This basic constructor is initializing two string maps, one for the US English language
and one for British English. You can see the different spellings of the word color being
passed into each map. The last line of the source sets the default language to US English.
The SetlLanguage method is shown in Listing 3-9.

Listing 3-9. Localization::Manager::SetLanguage

void Manager::SetlLanguage(Languages language)
{

m_CurrentStringPack = &(m_StringPacks[static cast<uint32_t>
(language)]);

This method is straightforward. It simply sets the m_CurrentStringPack variable to
store the address of the string map for the selected language. You must static_cast the
enum-type variable as C++’s STL array will not allow you to use an index which is not a
numeric type. You can see the static_cast in action converting the language parameter
toauint32_t.

The last method in the Manager class is the GetString method which you can see in
Listing 3-10.

91

CHAPTER 3 WORKING WITH TEXT

Listing 3-10. Localization::Manager::GetString

std::string Manager::GetString(StringID stringId) const
{

stringstream resultStream;

resultStream << "!!!"s;

resultStream << stringld;

resultStream << "!!!l"s;

string result{ resultStream.str() };

auto iter = m_CurrentStringPack->find(stringId);
if (iter != m _CurrentStringPack->end())
{

result = iter-»>second;

}

return result;

The GetString method begins by building a default string to return from the
function. This will allow you to print out any missing string IDs in your program to help
with localization testing efforts. The unordered map: :find method is then used to
search for the string ID in the map. You know if the find call was successful if it returns a
valid iterator. It will return the end iterator if the search fails to find a match. The if
statement is checking to see whether the string ID was found in the map. If it was found,
the string for the given ID is stored in the result variable and passed back to the method
caller.

Note You could make the default missing string happen only for non-final builds.
This would save the execution cost of building this string on your end users’
computers. They should hopefully never see missing strings in their programs.

Listing 3-11 lists an updated main function which shows how this Manager can be
used in your code.

92

CHAPTER 3 WORKING WITH TEXT

Listing 3-11. Using the Localization::Manager class

#include <iostream>

#include "LocalizationManager.h"

using namespace std;

int main()

{

Localization::Manager localizationManager;
string color{ localizationManager.GetString(Localization::STRING COLOR) };
cout << "EN_US Localized string: " << color.c_str() << endl;

localizationManager.SetlLanguage(Localization::Languages::EN GB);
color = localizationManager.GetString(Localization::STRING COLOR);
cout << "EN_GB Localized string: " << color.c_str() << endl;

color = localizationManager.GetString(1);
cout << color.c_str() << endl;

return O;

The main function now creates an instance of the Localization: :Manager class.

You can see an example of how to retrieve a string from the manager and use it to

output using cout. The language is then switched to British English, and the string is

retrieved and printed a second time. For completeness’s sake, the last example shows

what happens when you request a string ID which does not exist. Figure 3-4 contains the

output from the program.

93

CHAPTER 3 WORKING WITH TEXT

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe3-2/Listing3-7

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe3-2/Listing3-75 ./main
EN_US Localized string: COLOR
EN_GB Localized string: COLOUR

bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe3-2/Listing3-7$ [}

Figure 3-4. The output from the Localization Manager's strings

This figure shows output as you would expect. The US English spelling of color
appears first, followed by the British English spelling, and finally the missing ID is
output with triple exclamation points at the beginning and end. This should help to have
missing string identifiers stand out in your program.

Lastly, locale may be of help to also consider for international audiences when
dealing with monetary or numeric data. For string data it is not very handy though,
especially considering that ASCII cannot represent the wide range of characters UTF-8
can. Use Visual Studio (or Clang) to try the code in Listing 3-12. This solution and what
follows in the next recipe should all be considered as various pieces you can use to make
your code better suited to an international audience.

Listing 3-12. Locale for Numeric and Monetary Data

#include <iostream>

#include <locale>

#include <iomanip>

#include <iterator>

#include <string>

using namespace std;

int main()

{
float dollar = 12345;
cout.precision(2);
cout.imbue(locale("en US.UTF-8"));
cout << "American locale: " << put_money(dollar) << endl;

94

CHAPTER 3 WORKING WITH TEXT

cout.imbue(locale("fr FR.UTF-8"));
wcout << "French locale: " << put_money(dollar) << endl;
cout.imbue(locale("de DE.UTF-8"));
wcout << "German locale: " << put_money(dollar) << endl;
//Not too exciting with alpha though!
cout.imbue(locale("ru RU.UTF-8"));
cout << "Russian locale: " << endl;
string alpha = "abcdefg";
for (char letter : alpha)

wcout << letter << endl;
cout.imbue(locale(""));//0r use default system local
wcout << "Default locale: " << put_money(dollar) << endl;
return 0;

In the previous example, an enhanced for statement was used to traverse a string
of characters (iterable list) automatically, and we used wcout for international (wide)
character support as opposed to standard (narrow) cout for only ASCII and ANSI
characters. UTF-8 character locales you might wish to consider are as follows:

Afrikaans af ZA.UTF-8
Albanian sq_AL.UTF-8
Arabic ar_SA.UTF-8
Basque eu ES.UTF-8
Belarusian be BY.UTF-8
Bosnian bs BA.UTF-8
Bulgarian bg BG.UTF-8
Catalan ca_ES.UTF-8
Croatian hr HR.UTF-8
Chinese (Simplified) zh _CN.UTF-8
Chinese (Traditional) zh TW.UTF-8
Czech cs_CZ.UTF-8

(continued)

95

CHAPTER 3 WORKING WITH TEXT

96

Danish
Dutch
English

English (US)

Estonian
Farsi
Filipino
Finnish
French
French (Ca)
Gaelic
Gallego
Georgian
German
Greek
Gujarati
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Italian
Japanese
Kannada
Khmer
Korean

Lao

da DK.UTF-8
nl NL.UTF-8
en.UTF-8

en US.UTF-8
et EE.UTF-8
fa_IR.UTF-8

il PH.UTF-8

fi_FI.UTF-8
fr_FR.UTF-8
fr_CA.UTF-8
ga.UTF-8

gl ES.UTF-8
ka GE.UTF-8
de DE.UTF-8
el GR.UTF-8
gu.UTF-8

he IL.utf8
hi_ IN.UTF-8
hu.UTF-8

is_IS.UTF-8
id_ID.UTF-8
it IT.UTF-8
ja_JP.UTF-8
kn_IN.UTF-8
km KH.UTF-8
ko KR.UTF-8
lo LA.UTF-8

(continued)

CHAPTER 3

WORKING WITH TEXT

Lithuanian
Latvian
Malayalam
Malaysian
Maori
Mongolian
Norwegian
Nynorsk
Polish

Portuguese

Portuguese (Brazil)

Romanian
Russian
Samoan
Serbian
Slovak
Slovenian
Spanish
Swedish
Tamil
Thai
Tongan
Turkish
Ukrainian

Vietnamese

1t LT.UTF-8
lat.UTF-8

ml_IN.UTF-8
ms_MY.UTF-8
mi_NZ.UTF-8
mn.UTF-8

no_NO.UTF-8
nn_NO.UTF-8
pl.UTF-8

pt_PT.UTF-8
pt BR.UTF-8
ro RO.UTF-8
ru_RU.UTF-8
mi_NZ.UTF-8
sr_CS.UTF-8
sk_SK.UTF-8
s1 SI.UTF-8
es ES.UTF-8
sv_SE.UTF-8
ta_IN.UTF-8
th TH.UTF-8

mi_NZ.UTF-8'

tr TR.UTF-8
uk_UA.UTF-8
vi_UN.UTF-8

97

CHAPTER 3 WORKING WITH TEXT

Recipe 3-3. Reading Strings from a File
Problem

Embedding user-facing text in your source code makes future text updates and
localization difficult to manage.

Solution

You can load your localized string data from a data file.

How It Works

I'm going to show you how to load string data into your program from a comma-
separated values (.csv) file. Before you can load such a file, you will need to create one.
Figure 3-5 shows the data I entered into Excel for export as a .csv file.

98

CHAPTER 3 WORKING WITH TEXT

BE S & = strings.csv - Excel ? E - O X
HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW TEAM Bruce Sutherland - E
o " === - i ing~ | B .. v Aps
[j % Calibri _]11 A = General &) Conditional Formatting :F’Inserl PN ¢
s] — - ===E- $-% [FromatasTable £ Delete - [¥]- #% -
aste | A~ &~ i r— s
- ~ Bk U - 2 EZ3E B %0 % [57 Cell Styles - (%] Format~ & ~
Clipboard 1 Font fa Alignment Number & Styles Cells Editing -
c2 i I £ || Flavour ¥
A B G D E F G H 1 J K L[]
1 0 Color Colour
2| 1 Flavor |Flauour _|
3
4
3
@
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 =
Sheet1 ® 1| :

Figure 3-5. The strings.csv file in Excel 2013

I have used Excel to create a very basic .csv file. You can see the Color and Colour

values I used in the last section as well as the US and UK spellings of flavor. Figure 3-6

shows how this file appears in a basic text editor.

99

CHAPTER 3 WORKING WITH TEXT

File Edit Search View Encoding Language Settings Macre Run Plugins Window 2
cBEHRRGBlsaB(ocingax BR|IS1[EBD VDB &Y

I strings.csv

i 0,Color,Colour
2 1,Flavor,Flavour
3

Ln:3 Col:1 Sel:0|0 Dos\Windows ANSI

Figure 3-6. The strings.csv file opened in Notepad++

Each row from the Excel document has been placed into its own line in the .csv file,
and each column has been separated by a comma. This is from where the .csv derives its
name. Now that we have a .csv file, we can load the data in the Localization: :Manager’s
constructor. Listing 3-13 contains code which can be used to load and parse the string
.csv file.

Listing 3-13. Loading Strings from a .csv

Manager : :Manager ()

{

ifstream csvStringFile{ "strings.csv"'s };

assert(csvStringFile);
if (csvStringFile)
{
while (!csvStringFile.eof())

{
string line;
getline(csvStringFile, line);

if (line.size() > 0)

{

100

CHAPTER 3 WORKING WITH TEXT

// Create a stringstream for the line
stringstream lineStream{ line };

// Use the line stream to read in the string id
string stringldText;
getline(lineStream, stringIdText, ',');

stringstream idStream{ stringIdText };
uint32_t stringld;
idStream >> stringld;

// Loop over the line and read in each string
uint32_t languageld = 0;

string stringText;

while (getline(lineStream, stringText, ',"))

{
m_StringPacks[languageId++][stringId] = stringText;

}
SetLanguage(Languages: :EN_US);

The code to read in the strings.csv file isn’t overly complicated. The first step is to
open the file for reading, and the code achieves this using an ifstream object. C++
provides the ifstream class to read data in from files and provides methods to achieve
this. The first method we use is the overloaded pointer operator. This is called when we
use assert or if to determine whether the file passed into the ifstream was valid and
was opened. This is followed by a while loop which will run until the end of the file or the
eof method returns true. This is ideal because we do not wish to stop reading data until
all of our strings are loaded.

The ifstream class provides a getline method which can be used with C-style string
arrays. It’s generally better and less error prone to use std: : string rather than raw C
strings, so in Listing 3-12, you can see a use of the std: :getline method which takes
areference to any type of stream. The first use of getline retrieves a whole line of text

101

CHAPTER 3 WORKING WITH TEXT

from the .csvfile into a std: : string object. This line contains data about a single string
starting with its ID, followed by each of the localized versions of the text.

The std: :getline method has a very useful third parameter. By default, the method
retrieves text from a file until it reaches a newline character; however, we can pass in a
different character as a third parameter, and the function will stop gathering text when
this character is encountered. Listing 3-11 makes use of this feature by passing in a
comma as the delimiter. This allows us to pull out the values from each of the cells in the
Excel document.

The getline function requires a stream object to be passed to it however the
line was read into a std: : string. You can see that this problem is solved by creating
a stringstream object and passing the line variable to the constructor. Once the
stringstream has been created, the getline method is used to retrieve the string ID using
a stringstream object.

Note C++ provides several methods to convert strings into values. These include
stoi to convert to integers and stof to convert to floats as well as others. These
are all defined in the string header file. You’ll also find a function there named
to_string which can be used to convert several different types into a string.
These aren’t always supplied by the implementation of the STL that you may be
using. The version of libstdc++ currently available in Cygwin, for example, does not
provide these functions; therefore, the code samples have not used them.

After the method has retrieved the ID, it loops over the rest of the line and reads out
the string data for each language. This relies on the Languages enum class definition
having the languages in the same order as the columns in the .csv file.

Recipe 3-4. Reading the Data from an XML File
Problem

While .csv files are a very simple format and great for some applications, they have a
major flaw; separating strings by comma means that you cannot use commas in your
string data because the loading code would interpret those as the end of the string. If this
happens, the code can crash as it tries to read in too many strings and overrun the array.

102

CHAPTER 3 WORKING WITH TEXT

Solution

Save the string file as an XML document and use a parser to load the data.

How It Works

The RapidXML library is an open source XML solution which can be used with your

C++ applications. It is supplied as a header file which can be included into any source
file you need to have XML handling capabilities. You can download the latest version

of RapidXML from the following location: http://rapidxml.sourceforge.net/. Save
the Excel document using the XML Spreadsheet 2003 file type. The code shown in this
section is capable of loading this type of XML file. Listing 3-14 shows the entire file which

contains our string data.

Listing 3-14. The XML Spreadsheet File

<?xml version="1.0"?>
<?mso-application progid="Excel.Sheet"?>
<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"

xmlns:x="urn:schemas-microsoft-com:office:excel"
xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"
xmlns:html="http://www.w3.0rg/TR/REC-html40">

<DocumentProperties xmlns="urn:schemas-microsoft-com:office:office">
<Author>Bruce Sutherland</Author>

<LastAuthor>Bruce</LastAuthor>
<Created>2014-06-13T06:29:44Z</Created>

<Version>15.00</Version>

</DocumentProperties>

<OfficeDocumentSettings xmlns="urn:schemas-microsoft-com:office:office">
<AllowPNG/>

</0fficeDocumentSettings>

<ExcelWorkbook xmlns="urn:schemas-microsoft-com:office:excel">
<WindowHeight>12450</WindowHeight>

<WindowWidth>28800</WindowWidth>

<WindowTopX>0</WindowTopX>

<WindowTopY>0</WindowTopY>

103

http://rapidxml.sourceforge.net/

CHAPTER 3 WORKING WITH TEXT

<ProtectStructure>False</ProtectStructure>
<ProtectWindows>False</ProtectWindows>
</ExcelWorkbook>
<Styles>
<Style ss:ID="Default" ss:Name="Normal">
<Alignment ss:Vertical="Bottom"/>
<Borders/>
<Font ss:FontName="Calibri" x:Family="Swiss" ss:Size="11"
ss:Color="#000000"/>
<Interior/>
<NumberFormat/>
<Protection/>
</Style>
</Styles>
<Worksheet ss:Name="strings">
<Table ss:ExpandedColumnCount="3" ss:ExpandedRowCount="2"
x:FullColumns="1"
x:FullRows="1" ss:DefaultColumnWidth="54" ss:DefaultRowHeight="14.25">
<Row>
<Cell><Data ss:Type="Number">0</Data></Cell>
<Cell><Data ss:Type="String">Color</Data></Cell>
<Cell><Data ss:Type="String">Colour</Data></Cell>
</Row>
<Row>
<Cell><Data ss:Type="Number">1</Data></Cell>
<Cell><Data ss:Type="String">Flavor</Data></Cell>
<Cell><Data ss:Type="String">Flavour</Data></Cell>
</Row>
</Table>
<WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">
<PageSetup>
<Header x:Margin="0.3"/>
<Footer x:Margin="0.3"/>
<PageMargins x:Bottom="0.75" x:Left="0.7" x:Right="0.7" x:Top="0.75"/>
</PageSetup>

104

CHAPTER 3 WORKING WITH TEXT

<Selected/>
<ProtectObjects>False</ProtectObjects>
<ProtectScenarios>False</ProtectScenarios>
</WorksheetOptions>
</Worksheet>
</Workbook>

You might be able to tell from this file listing that our parsing code is going to be
required to ignore an awful lot of data. From the document root, we will access the string
data through the Workbook node and then the Worksheet, Table, Row, Cell, and finally
Data nodes.

Note This XML data format is very verbose and a bit heavy on unnecessary data.
You would be better served by writing your own lightweight exporter using Excel’s
Visual Basic for Applications macro support, but that topic is out of the scope of
this book.

Listing 3-15 covers the code necessary to use RapidXML to load your string data.

Listing 3-15. Using RapidXML to Load the Strings

Manager: :Manager ()
{
ifstream xmlStringFile{ "strings.xml"s };
xmlStringFile.seekg(0, ios::end);
uint32_t size{ static_cast<uint32_t>(xmlStringFile.tellg()) + 1 };
char* buffer{ new char[size]{} };
xmlStringFile.seekg(0, ios::beg);
xmlStringFile.read(buffer, size);
xmlStringFile.close();

rapidxml::xml_document<> document;
document.parse<0>(buffer);

rapidxml::xml_node<>* workbook{ document.first node("Workbook") };
if (workbook != nullptr)

{

105

CHAPTER 3 WORKING WITH TEXT

rapidxml::xml node<>* worksheet{ workbook->first node("Worksheet") };
if (worksheet != nullptr)
{
rapidxml::xml _node<>* table{ worksheet->first node("Table") };
if (table != nullptr)
{
rapidxml::xml node<>* row{ table->first node("Row") };
while (row != nullptr)

{
uint32_t stringId{ UINT32_MAX };
rapidxml::xml_node<>* cell{ row->first node("Cell") };
if (cell != nullptr)
{
rapidxml::xml_node<>* data{ cell->first_
node("Data") };
if (data != nullptr)
{
stringld = static_cast<uint32_t>(atoi(data-
>value()));
}
}
if (stringId != UINT32_MAX)
{

uint32_t languageIndex{ 0 };

cell = cell->next_sibling("Cell");
while (cell != nullptr)
{
rapidxml::xml node<>* data = cell->first node("Data");
if (data != nullptr)
{
m_StringPacks[languageIndex++][stringld] =
data->value();

106

CHAPTER 3 WORKING WITH TEXT

cell = cell->next sibling("Cell");

}

row = row->next_sibling("Row");

This listing has a lot going on, so we will break it down section by section. The first
step involves using the following code to load the entire contents of the XML file into

memory:

ifstream xmlStringFile{ "strings.xml"s };

xmlStringFile.seekg(0, ios::end);

uint32_t size{ static_cast<uint32_t>(xmlStringFile.tellg()) + 1 };
char* buffer{ new char[size]{} };

xmlStringFile.seekg(0, ios::beg);

xmlStringFile.read(buffer, size);

xmlStringFile.close();

You need the entire file to be stored in a memory buffer which is null terminated, and
this is why the file is opened using ifstream, and then seekg is used to move to the end
of the stream. Once at the end, the tellg method can be used to work out how big the
file is. There is a 1 added to the value from tellg to ensure that there is enough memory
allocated to allow for a null terminating character as RapidXML requires. Dynamic
memory allocation is used to create the buffer in memory, and memset clears the entire
buffer to contain zeroes. The seekg method is used to move the file stream location to
the beginning of the file before read is used to obtain the entire contents of the file into
the allocated buffer. The last step is to close the file stream as soon as the code is finished
with the file.

These two lines are responsible for initializing the XML data structure from the
contents of the file:

rapidxml::xml_document<> document;
document.parse<0>(buffer);

107

CHAPTER 3 WORKING WITH TEXT

This code creates an XML document object which contains a parse method. The 0
passed as a template parameter can be used to set different flags on the parser, but this
example has no need for any of these. Now that the code has created a parsed representation
of the XML document, it can begin to access the nodes it contains. The next few lines retrieve
pointers to the Workbook, Worksheet, Table, and Row nodes:

rapidxml::xml _node<>* workbook{ document.first node("Workbook") };
if (workbook != nullptr)
{
rapidxml::xml node<>* worksheet{ workbook->first node("Worksheet") };
if (worksheet != nullptr)
{
rapidxml::xml _node<>* table{ worksheet->first node("Table") };
if (table != nullptr)
{
rapidxml::xml node<>* row{ table->first node("Row") };
while (row != nullptr)

{

These lines are all straightforward. There is only a single Workbook, Worksheet,
and Table in a simple Excel XML document; so we can simply ask each node for its first
child of that name. Once the code gets to the row elements, there is a while loop. This
will allow us to go over each line from the spreadsheet and load our strings into the
appropriate maps. The entire row while loop is as follows:

rapidxml::xml node<>* row{ table->first node("Row") };
while (row != nullptr)

{
uint32_t stringId{ UINT32 MAX };

rapidxml::xml _node<>* cell{ row->first node("Cell") };

if (cell != nullptr)

{
rapidxml::xml node<>* data{ cell->first node("Data") };
if (data != nullptr)
{

stringld = static_cast<uint32_t>(atoi(data->value()));

108

CHAPTER 3 WORKING WITH TEXT

}
}
if (stringId != UINT32_MAX)
{
uint32_t languageIndex{ 0 };
cell = cell->next_sibling("Cell");
while (cell != nullptr)
{
rapidxml::xml_node<>* data = cell->first node("Data");
if (data != nullptr)
{
m_StringPacks[languageIndex++][stringId] = data->value();
}
cell = cell->next_sibling("Cell");
}
}

row = row->next_sibling("Row");

}

The while loop starts by getting the stringId from the first Cell and Data nodes.

The atoi function is used to turn the C-style string into an integer that must be cast to
anunsigned int. The following if checks whether a valid string ID was obtained; if

it was, then the code enters another while loop. This loop grabs each string from the
subsequent Cell and Data nodes and places them into the correct map. It does this by
setting the language index to 0 initially and post-incrementing the index after each string
is entered. This, again, requires that the localized strings be entered into the spreadsheet
in the correct order.

That is all you need to be able to load string data in from XML files. You should be
able to come up with a better way to generate these files which doesn’t consume so
much data. You might also reach a point where having all of your text loaded consumes
too much system RAM. At that point, you should consider splitting each language into a
separate file and only loading the languages when you need them. It will be unlikely for a
user to need every translated language which you choose to support.

109

CHAPTER 3 WORKING WITH TEXT

Recipe 3-5. Inserting Runtime Data into Strings
Problem

Occasionally, you will be required to enter runtime data such as numbers or the user’s
name into your strings. While C++ supports the older C functions for formatting C-style
strings, these do not work with STL's string class.

Solution

The Boost library provides extensive library support for C++ which includes methods
and functions for formatting data held in STL strings.

How It Works

To begin, you should add a new row to your spreadsheet with the following data: 2, %1%
%2%, %2% %1%. You should place each element that comes after a comma in a new cell.
Listing 3-16 has updated the main function to utilize this new string.

Listing 3-16. Using boost: :format

#include <iostream>
#include "LocalizationManager.h"
#include "boost/format.hpp"

using namespace std;

int main()
{
Localization::Manager localizationManager;
std::string color{ localizationManager.GetString(Localization::STRING_
COLOR) };
std::cout << "EN_US Localized string:

<< color.c_str() << std::endl;

std::string flavor{ localizationManager.GetString(Localization::STRING
FLAVOR) };
std::cout << "EN_US Localized string:

<< flavor.c_str() << std::endl;

110

CHAPTER 3 WORKING WITH TEXT

localizationManager.SetlLanguage(Localization::Languages::EN_GB);
color = localizationManager.GetString(Localization::STRING COLOR);
std::cout << "EN_GB Localized string: " << color.c_str() << std::endl;

flavor = localizationManager.GetString(Localization::STRING FLAVOR);
std::cout << "EN GB Localized string: " << flavor.c_str() << std::endl;

color = localizationManager.GetString(3);
std::cout << color.c str() << std::endl;

std::cout << "Enter your first name: " << std::endl;
std::string firstName;
std::cin >> firstName;

std::cout << "Enter your surname: " << std::endl;
std::string surname;
std::cin >> surname;

localizationManager.SetLanguage(Localization: :Languages::EN_US);
std::string formattedName{ localizationManager.
GetString(Localization::STRING NAME) };

formattedName = str(boost::format(formattedName) % firstName % surname);

std::cout << "You said your name is: " << formattedName << std::endl;

localizationManager.SetlLanguage(Localization::Languages::EN GB);
formattedName = localizationManager.GetString(Localization::STRING _NAME);
formattedName = str(boost::format(formattedName) % firstName % surname);

std::cout << "You said your name is: " << formattedName << std::endl;

return 0;

You can see that the additions to main in Listing 3-16 ask the user to enter their own

name. The call to cin will stall program execution until the user has entered their first

name and then surname. Once the program has stored the user’s name, it changes the

language to EN_US and gets the string from the Localization Manager. The next line uses

the boost: : format function to replace the symbols in the string with the firstName and

surname values. Our new string contained the symbols %1% and %2%. This is used to

decide which variables are replaced into the string. The call to format is followed by a %

111

CHAPTER 3 WORKING WITH TEXT

operator and then the firstName string. Because firstName is the first parameter passed
to the % operator, it will replace the %1% in our string. Similarly, the surname will be
used to replace the %2% because it is the second parameter passed using %.

This all works because the format function is setting up an object which is returned
from the format function. This object is then passed to its % operator which stores the
value in firstName. This first call to operator % returns a reference to the Boost format
object which is passed to the second call to the operator %. The symbols in the source
string aren’t actually resolved until the format object is passed into the str function.
Boost declares the str function in the global namespace; therefore, it does not need
a namespace scope operator. The str method takes the format object and constructs
anew string with the parameters replaced into the appropriate positions. When
you entered the source strings into the spreadsheet, the EN_GB string had the names
switched. You can see the results of the code in Figure 3-7.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe3-5/Listing3-15

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe3-5/Listing3-15% ./main
EN_US Localized string: Color

EN_US Localized string: Flavor

EN_GB Localized string: Colour

EN_GB Localized string: Flavour

1113111

Enter your first name:

Bruce

Enter your surname:

Sutherland

You said your name is: Bruce Sutherland

You saild your name is: Sutherland Bruce
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe3-5/Listing3-15% [

Figure 3-7. The output from boost: : format

You can use boost: : format to replace all sorts of data into strings. Unfortunately,
Boost does not follow the same conventions as the standard C printf functions;
therefore, you will be required to use different strings to standard C programs. A full
list of the formatting options provided by Boost can be found at www.boost.org/doc/
libs/1 55 0/1ibs/format/doc/format.html.

The makefile needed to include the boost/format.hpp header in your program is
relatively straightforward. You can see it in Listing 3-17.

112

http://www.boost.org/doc/libs/1_55_0/libs/format/doc/format.html
http://www.boost.org/doc/libs/1_55_0/libs/format/doc/format.html

CHAPTER 3 WORKING WITH TEXT
Listing 3-17. Including the Boost Library

main: main.cpp LocalizationManager.cpp
clang++ -g -std=c++1y -Iboost 1 55 0 main.cpp LocalizationManager.
cpp -0 main

You can see from this makefile that we are using the 1.55 version of the Boost
library and that the file is placed in the same folder as the makefile. The convention for
including Boost headers is to name the boost folder in the include directive; therefore,
the -I switch in the clang++ command simply tells the compiler to look inside the
boost_1_55_0 folder. The boost folder sits inside this folder.

113

CHAPTER 4

Working with Numbers

Computers are designed and built to crunch numbers. The programs you write will take
advantage of the computational power of computers to provide experiences to users that
are completely dependent on your ability to understand and utilize the tools provided by
C++ to manipulate numbers. C++ provides support for different types of numbers. This
support includes whole numbers and real numbers as well as multiple different ways of
storing and representing these.

The C++ integer types will be used to store whole numbers, and the floating-point
types will be used to store real numbers with decimal points. There are different tradeoffs
and considerations to be taken into account when using each type of number in C++,
and this chapter will introduce you to different challenges and scenarios where each
type is appropriate. You'll also see an older technique named fixed point arithmetic that
can use integer types to approximate floating-point types.

Recipe 4-1. Using the Integer Types in C++
Problem

You need to represent whole numbers in your program but are unsure of the limitations
and capabilities of the different integer types.

Solution

Learning about the different integer types supported by C++ will allow you to use the
correct type for the task at hand.

115
© J. Burton Browning and Bruce Sutherland 2020

J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_4

CHAPTER 4 WORKING WITH NUMBERS

How It Works
Working with the int Type

C++ provides an exact representation of the different integer types supported by modern
processors. All of the integer types behave in exactly the same way; however, they may
contain more or less data than each other. Listing 4-1 shows how to define an integer
variable in C++.

Listing 4-1. Defining an Integer

int main()

{
int wholeNumber= 64;
return 0;

As you can see, an integer is defined using the int type in C++. The int type in C++
can be used in conjunction with standard arithmetic operators that allow you to add,
subtract, multiply, divide, and take the modulus (remainder of integer division).
Listing 4-2 uses these operators to initialize additional integer variables.

Listing 4-2. Initializing Integers Using Operators
#include <iostream>
using namespace std;

int main()
{
int wholeNumberi = 64;
cout << "wholeNumber1 equals

<< wholeNumber1 << endl;

int wholeNumber2 = (wholeNumberi + 32);

cout << "wholeNumber2 equals " << wholeNumber2 << endl;

int wholeNumber3 = (wholeNumber2 - wholeNumberi);
cout << "wholeNumber3 equals " << wholeNumber3 << endl;

116

CHAPTER 4 WORKING WITH NUMBERS

int wholeNumber4 = (wholeNumber2 * wholeNumberi);

cout << "wholeNumber4 equals " << wholeNumber4 << endl;

int wholeNumber5 = (wholeNumber4 / wholeNumberi);

cout << "wholeNumber5 equals " << wholeNumber5 << endl;

int wholeNumber6 = (wholeNumber4 % wholeNumberi);

cout << "wholeNumber6 equals " << wholeNumber6 << endl;

return 0;

The code in Listing 4-2 contains lines that use operators to initialize additional
integers. The operators can be used in a number of ways. You can see that the operators
can have either literal values such as 32 or other variables on either side. Figure 4-1
shows the output from this program.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-1/Listing4-2

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped-1/Listing4-25 ./main
wholeNumber1l equals 64

wholeNumber2 equals 96

wholeNumber3 equals 32

wholeNumber4 equals 6144

wholeNumber5 equals 96

wholeNumber6 equals 0
bruce@bruce-vVirtual-Machine:~/Projects/C-Recipes/Reciped-1/Listing4-2% I

Figure 4-1. The output from running the code in Listing 4-2

The output from Listing 4-2 is shown in Figure 4-1. The following list explains how
the values shown in the output end up in each variable:

e The variable wholeNumber1 was initialized with the value of 64, and
therefore the output is 64.

o The literal 32 is added to the value of wholeNumber1 and stored in
wholeNumber2; therefore, the output is 96.

e The next line outputs 32 as the code has subtracted wholeNumber2
from wholeNumber1. The effect of this is that we have managed to

117

CHAPTER 4 WORKING WITH NUMBERS

store the literal value from the initialization of wholeNumber2 in the
variable wholeNumbers3.

e The value of wholeNumber4 is output as 6144 which is the result of
64:96.

e The program prints the value of 96 for wholeNumbers as it is the result
of dividing 6144 by 64 or the value of wholeNumber4 divided by the
value of wholeNumber1.

e The value of wholeNumber6 is output as 32. The modulo operator
returns the remainder from a division. In this case, the remainder of
96/64 is 32; therefore, the modulo operator has returned 32.

Working with Different Types of Integers

The C++ programming language provides support for different types of integers.
Table 4-1 shows the different types of integers and their properties.

Table 4-1. The C++ Integer Types

Type Name Number of Bytes Minimum Value Maximum Value

char 1 -128 127

short 2 -32,768 32,767

int 4 -2,147,483,648 2,147,483,647

long 4 -2,147,483,648 2,147,483,647

long long 8 -9,223,372,036,854,775,808 9,223,372,036,854,775,807

Table 4-1 lists the five main types that C++ supplies to work with whole numbers. The
problem C++ presents is that these types are not always guaranteed to represent the number of
bytes as shown in Table 4-1. This is because the C++ standard leaves the decision of how many
bytes up to the platform. The situation isn’t entirely the fault of C++. Processor manufacturers
may choose to represent integers using different numbers of bytes, and therefore the compiler
writers for those platforms are free to alter the types to suit their processor by the standard.

You can however write code that guarantees the number of bytes in your integers by using the
cinttypes header. Table 4-2 shows the different integers available through cinttypes.

118

CHAPTER 4 WORKING WITH NUMBERS

Table 4-2. The cinttypes Integers

Type Name Number of Bytes Minimum Value Maximum Value

int8 t -128 127

int16_t 2 -32,768 32,767

int32_t 4 -2,147,483,648 2,147,483,647

int64 t 8 -9,223,372,036,854,775,808 9,223,372,036,854,775,807

The types supplied by cinttypes contain the number of bits that they represent.

Given that there are 8 bits in a byte, you can see the relationship by the type and the

number of bytes in Table 4-2. Listing 4-3 uses the same operators as Listing 4-2 but is
updated to use the int32_t type in place of int.

Listing 4-3. Using the int32_t Type with Operators

#include <iostream>

#include <cinttypes>

using namespace std;

int main()

{

int32_t
cout <<

int32_t
cout <«

int32_t
cout <«

int32_t
cout <<

int32_t
cout <«

whole32BitNumberi{ 64 };
"whole32BitNumberi equals

<< whole32BitNumberi << endl;

whole32BitNumber2{ whole32BitNumber1i + 32 };
"whole32BitNumber2 equals " << whole32BitNumber2 << endl;

whole32BitNumber3{ whole32BitNumber2 - whole32BitNumber1 };
"whole32BitNumber3 equals " << whole32BitNumber3 << endl;

whole32BitNumber4{ whole32BitNumber2 * whole32BitNumberi };
"whole32BitNumber4 equals " << whole32BitNumber4 << endl;

whole32BitNumber5{ whole32BitNumber4 / whole32BitNumberi };
"whole32BitNumber5 equals " << whole32BitNumber5 << endl;

119

CHAPTER 4 WORKING WITH NUMBERS

int whole32BitNumber6{ whole32BitNumber2 % whole32BitNumber1 };
cout << "whole32BitNumber6 equals " << whole32BitNumber6 << endl;

return O;
}
The output resulting from this code is similar to that of Figure 4-1 as you can see in
Figure 4-2.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-1/Listing4-3

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped-1/Listing4-35 ./main
whole32BitNumber1l equals 64

whole32BitNumber2 equals 96

whole32BitNumber3 equals 32

whole32BitNumber4 equals 6144

whole32BitNumber5 equals 96

whole32BitNumberé equals 32
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped-1/Listing4-3% I

Figure 4-2. The output when using the int32_t and code from Listing 4-3

Working with Unsigned Integers

The types shown in Tables 4-1 and 4-2 have unsigned counterparts. Using an unsigned
version of the type means that you will no longer have access to negative numbers;
however, you will have a much longer range of positive numbers represented by the
same number of bytes. You can see the C++ standard unsigned types in Table 4-3.

Table 4-3. C++’s Built-In Unsigned Types

Type Name Number of Bytes Minimum Value Maximum Value

unsigned char 1 0 255

unsigned short 2 0 65,535

unsigned int 4 0 4,294,967,295

unsigned long 4 0 4,294,967,295

unsigned long 8 0 18,446,744,073,709,551,615

long

120

CHAPTER 4 WORKING WITH NUMBERS

The unsigned types store the same range of numbers as their signed counterparts.
Both asigned char and anunsigned char can store 256 unique values. The signed
char stores values from -128 to 127, while the unsigned version stores the 256 values
from 0 to 255. The built-in unsigned types suffer from the same problem as the signed
types: they may not represent the same number of bytes on different platforms. C++’s
cinttypes header file provides unsigned types that guarantee their size. Table 4-4
documents these types.

Table 4-4. The cinttypes Header File’s Unsigned Integer Types

Type Name Number of Bytes Minimum Value Maximum Value

uint8 t 1 0 255

uint16 t 2 0 65,535

uint32_t 4 0 4,294,967,295

uint64 _t 8 0 18,446,744,073,709,551,615

Now that you have seen a standard way of representing integers at the beginning
of the chapter and a way to deal with different processors to ensure standard byte size
with cinttypes, the rest of the chapter will not implement cinttypes but will focus on a
standard way of implementing data types. Either is appropriate depending on your
needs however.

Recipe 4-2. Making Decisions with Relational
Operators

Problem

You are writing a program and must make a decision based on the result of a comparison
between two values.

Solution

C++ provides relational operators that return true or false based on the comparison
being calculated.

121

CHAPTER 4 WORKING WITH NUMBERS

How It Works

C++ provides four major relational operators. These are
e The equality operator
e The inequality operator
e The greater-than operator
¢ The less-than operator

These operators allow you to quickly compare two values and determine whether
the result is true or false. The result of a true or false comparison can be stored in the
bool type provided by C++. A bool can only represent either true or false.

The Equality Operator
Listing 4-4 shows the equality operator in use.

Listing 4-4. The C++ Equality Operator
#include <iostream>

using namespace std;

int main()

{
int equal1 = 10;
int equal2 = 10;

bool isEqual = equali == equal2;
cout << "Are the numbers equal? " << isEqual << endl;

int notEqual1l = 10;
int notEqual2 = 100;
bool isNotEqual = notEquali == notEqual2;

cout << "Are the numbers equal? " << isNotEqual << endl;

return O;

122

CHAPTER 4 WORKING WITH NUMBERS

The code in Listing 4-4 generates the output shown in Figure 4-3.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-2/Listing4-4

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped-2/Listing4-45 . /main
Are the numbers equal? 1

Are the numbers equal? @
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe4-2/Listing4-4S$ I

Figure 4-3. Output from the relational equality operator

The equality operator will set a bool variable’s value to true (represented by 1 in the
output) in the event of the values on both sides of the operator being the same. This is
the case where Listing 4-4 compares equall to equal2. The result of the operator is false
when the values on both sides are different as when the code compares notEquali to
notEqual2. For equality purposes, 0 is false and any positive integer (typically 1) is true.

The Inequality Operator

The inequality operator is used to determine when numbers are not equal. Listing 4-5
shows the inequality operator in use.

Listing 4-5. The Inequality Operator
#include <iostream>

using namespace std;

int main()

{
int equal1l = 10;
int equal2 = 10;

bool isEqual = equali != equal2;
cout << "Are the numbers not equal? " << iskEqual << endl;

123

CHAPTER 4 WORKING WITH NUMBERS

int notEqual1l = 10;

int notEqual2 = 100;

bool isNotEqual = notEquali != notEqual2;

cout << "Are the numbers not equal? " << isNotEqual << endl;

return 0;

The output generated by Listing 4-5 is shown in Figure 4-4.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-2/Listing4-5

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped4-2/Listing4-55 . /main
Are the numbers not equal? ©

Are the numbers not equal? 1
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe4-2/Listing4-5% I

Figure 4-4. The output from Listing 4-5 showing the results of the inequality
operator

You can see from Listing 4-5 and Figure 4-4 that the inequality operator will return
true when the values are not equal and false when the values are equal.

The Greater-Than Operator

The greater-than operator can tell you whether the number on the left is greater-than the
number on the right. Listing 4-6 shows this in action.

Listing 4-6. The Greater-Than Operator
#include <iostream>
using namespace std;

int main()

124

CHAPTER 4 WORKING WITH NUMBERS

{
int greaterThanl = 10;
int greaterThan2 =1;
bool isGreaterThan = greatexThani > greaterThan2;
cout << "Is the left greater than the right? " << isGreaterThan
<< endl;
int notGreaterThanl = 10 ;
int notGreaterThan2 = 100;
bool isNotGreaterThan = notGreaterThani » notGreaterThan2;
cout << "Is the left greater than the right? " << isNotGreaterThan
<< endl;
return 0;
}

The greater-than operator sets the value of a bool to be either true or false. The result
will be true when the number on the left is greater than the number on the right and
false when the number on the right is greater than that on the left. Figure 4-5 shows the
output generated by Listing 4-6.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-2/Listing4-6

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped4-2/Listing4-65 . /main
Is the left greater than the right? 1

Is the left greater than the right? ©
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe4-2/Listing4-65S I

Figure 4-5. The output generated by Listing 4-6

The Less-Than Operator

The less-than operator produces the opposite result of the greater-than operator. The
less-than operator returns true when the number on the left is less than that on the right.
Listing 4-7 shows the operator in use.

125

CHAPTER 4 WORKING WITH NUMBERS
Listing 4-7. The Less-Than Operator
#include <iostream>

using namespace std;

int main()

{

int lessThani = 1;

int lessThan2 = 10;

bool islLessThan = lessThani < lessThan2;

cout << "Is the left less than the right? " << islessThan << endl;

int notLessThan1

100;
10;

bool isNotLessThan = notLessThani < notLessThan2;

cout << "Is the left less than the right? " << isNotlLessThan << endl;

int notLessThan2

return 0;

Figure 4-6 shows the results when the code in Listing 4-7 is executed.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-2/Listing4-7

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped-2/Listing4-75 ./main
Is the left less than the right? 1

Is the left less than the right? o
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-2/Listing4-7% I

Figure 4-6. The output generated when the less-than operator is used in
Listing 4-7

126

CHAPTER 4 WORKING WITH NUMBERS

Recipe 4-3. Chaining Decisions with Logical
Operators

Problem

Sometimes your code will require that multiple conditions are satisfied in order to set a
Boolean value to true.

Solution

C++ provides logical operators that allow the chaining of relational statements.

How It Works

C++ provides two logical operators that allow the chaining of multiple relational
statements. These are

e The && (AND) operator

o The||(OR) operator

The && Operator

The && operator is used when you would like to determine that two different relational
operators are both true. Listing 4-8 shows the && operator in use.

Listing 4-8. The Logical && Operator
#include <iostream>
using namespace std;

int main()

{
bool isTrue { (10 == 10) && (12 == 12) };
cout << "True? " << isTrue << endl;

bool isFalse = isTrue && (1 == 2);

127

CHAPTER 4 WORKING WITH NUMBERS
cout << "True? " << isFalse << endl;

return 0;

The value of isTrue is set to true because both of the relational operations result in a
true value. The value of isFalse is set to false because both of the relational statements
do not result in a true value. The output of these operations can be seen in Figure 4-7.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-3/Listing4-8

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped4-3/Listing4-85 ./main
True? 1

True? O
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe4-3/Listing4-8S% I

Figure 4-7. The logical && operator output generated by Listing 4-8

The Logical || Operator

The logical || operator (logical OR) is used to determine when either or both of the
statements used are true. Listing 4-9 contains code that tests the results of the || operator.

Listing 4-9. The Logical || Operator
#include <iostream>
using namespace std;

int main()

{
bool isTrue { (1 == 1) || (0 == 1) };
cout << "True? " << isTrue << endl;

isTrue = (0 == 1) || (1 == 1);
cout << "True? " << isTrue << endl;

128

CHAPTER 4 WORKING WITH NUMBERS

isTrue = (1 == 1) || (1 == 1);
cout << "True? " << isTrue << endl;

isTrue = (0 == 1) || (1 == 0);
cout << "True? " << isTrue << endl;

return 0;

The resulting output generated by this code can be seen in Figure 4-8.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-3/Listing4-9

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped4-3/Listing4-95 ./main
True? 1

True? 1

True? 1

True? 0
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe4-3/Listing4-9% I

Figure 4-8. The output generated when using logical || operators

Listing 4-9 proves that the logical || operator will return true whenever either or both
of the relational operations are also true. When both are false, the || operator will also

return false.

Note There is a commonly used optimization named “short-circuit evaluation”
when using logical operators. Execution will end as soon as the operator is
satisfied. This means that a Il operator will not evaluate the second term when the
first is true, and the && operator will not evaluate the second term when the first is
false. Be wary of this when calling functions in the right-side statement that have
secondary effects outside of their Boolean return value—such as in the snippet “if
(x < 12) && (z = 13)” where z would never be set to equal 13 if x was not less than
12 due to short-circuit evaluation. If you need both sides evaluated regardless of
the logic, use binary logical operators instead.

129

CHAPTER 4 WORKING WITH NUMBERS

Recipe 4-4. Using Hexadecimal Values
Problem

You are working with code that contains hexadecimal values, and you need to
understand how they work.

Solution

C++ allows the use of hexadecimal values (base 16) in code, and programmers routinely
use hex values when writing out binary representation of numbers.

How It Works

Computer processors use a binary representation to store numbers in memory and

use binary instructions to test and modify these values. Due to its low-level nature, C++
provides bitwise operators that can operate on the bits in variables exactly as a processor
would. A bit of information can either be a 1 or a 0. We can construct higher numbers

by using chains of bits. A single bit can represent the digit 1 or 0. Two bits however can
represent 0, 1, 2, or 3. This can be achieved because two bits can represent four unique
signals: 00, 01, 10, and 11. The C++ int8_t data type is made up of 8 bits. The data in
Table 4-5 shows how these different bits are represented numerically.

Table 4-5. The Numerical Values of Bits in an 8-Bit Variable

128 64 32 16 8 4 2 1

1 0 0 0 1 0 0 1

A uint8_t variable that stored the value represented by Table 4-4 would contain the
number 137. Based on the preceding table, add only the values in the table that are “on”
or have a “1” under them to get 137. In fact, an 8-bit variable can store 256 individual
values. You can work out the number of values a variable can store by raising the number
2 to the power of the number of bits, that is, 28 is 256.

130

CHAPTER 4 WORKING WITH NUMBERS

Note Negative numbers are represented in signed types using the same number
of bits as unsigned types. In Table 4-5, a signed value would lose the position at
128 to become a sign bit. You can convert a positive number to a negative using
the Two’s Complement of the number. To do this, you flip all of the bits and add 1.
For a two bit number 1, you would have the binary representation 01. To get the
Two’s Complement, and therefore the negative, firstly flip the bits to 10 and then
add 1 ending with 11. In an 8-bit value, you’d follow the same process. 00000001
becomes 11111110, and adding 1 results in 11111111. No matter the number of
bits in a variable, -1 is always represented in Two’s Complement by all bits being
turned on; this is a useful fact to remember.

Writing bits out in their entirety quickly gets out of hand when dealing with 16-,
32-, and 64-bit numbers. Programmers tend to write binary representations in a
hexadecimal format instead. Hex numbers are represented by the values 0-9 and A, B,
C, D, E, and E. The values A-F represent the numbers 10-15. It takes 4 bits to represent
the 16 hexadecimal values; therefore, we can now represent the bit pattern in Table 4-5
using the hexadecimal 0x89 where the 9 represents the lower 4 bits (8+1 is 9) and the 8
represents the higher 4 bits.

Listing 4-10 shows how you can use hexadecimal literals in your code and use cout
to print them to the console.

Listing 4-10. Using Hexadecimal Literal Values
#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
uint32_t hexValue{ 0x89 };
cout << "Decimal: " << hexValue << endl;
cout << hex << "Hexadecimal: " << hexValue << endl;
cout << showbase << hex << "Hexadecimal (with base): " << hexValue << endl;
return 0;
}

131

CHAPTER 4 WORKING WITH NUMBERS

Hexadecimal literals in C++ are preceded by 0x. This lets the compiler know that
you intend for it to interpret the number in hex and not decimal. Octal base 8 values are
preceded by a 0. Figure 4-9 shows the effect of the different output flags used with cout in
Listing 4-10.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-4/Listing4-10

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped4-4/Listing4-105 ./main
Decimal: 137

Hexadecimal: 89

Hexadecimal (with base): 0x89
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Reciped-4/Listing4-105 [

Figure 4-9. Printing out hexadecimal values

The cout stream by default prints the decimal representation of integer variables.
You must pass flags to cout to alter this behavior. The hex flag informs cout that it should
print the number in hexadecimal; however, this does not automatically prepend the 0x
base. If you wish your output to have the base on your hexadecimal numbers (and you
usually will so that other users don’t read the value as decimal 89 instead of 137), you
can use the showbase flag which will make cout add the 0x to your hex values.

Listing 4-10 stores the value of 0x89 in a 32-bit integer type, but the representation
still only has an 8-bit value. The other 6 bits are implicitly 0. The proper 32-bit
representation of 137 would actually be 0x00000089.

Note While it’s acceptable to drop the Os when they are implied, however, it is
also common practice to print all eight hex values out when a 32-bit number is
intended. This is more important when representing negative numbers such as -1.
When using an int32_t, OxF would represent 16 or 0x0000000F where -1 would
be OxFFFFFFFF. Be sure you’re setting the value you really wanted when using
hexadecimal values.

132

CHAPTER 4 WORKING WITH NUMBERS

Recipe 4-5. Bit Twiddling with Binary Operators
Problem

You are developing an application where you would like to pack data into as small a
format as possible.

Solution

You can use bitwise operators to set and test individual bits on a variable.

How It Works

C++ provides the following bitwise operators:
e The & (bitwise AND) operator
e The | (bitwise OR) operator
e The ~ (exclusive OR) operator
e The << (left shift) operator
e The >> (right shift) operator

e The ~ (One’s Complement) operator

The & (Bitwise AND) Operator

The bitwise AND operator returns a value that has all of the bits that were set in both the
left and right sides of the operator. Listing 4-11 shows an example of this in action.

Listing 4-11. The & Operator
#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{

uint32_t bits{ 0x00011000 };

133

CHAPTER 4 WORKING WITH NUMBERS

cout << showbase << hex;

cout << "Result of 0x00011000 & 0x00011000: " << (bits & bits)
<< endl;
cout << "Result of 0x00011000 & 0x11100111: " << (bits & ~bits)
<< endl;
return O;

Listing 4-11 makes use of both the & and ~ operators. The first use of & will result
in the value 0x00011000 being output to the console. The second use of & is used in
conjunction with ~. The ~ operator flips all of the bits; therefore, the output from this use
of & will be 0. You can see this in Figure 4-10.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-5/Listing4-11

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped4-5/Listing4-11$./main
Result of 0x00011000 & 0x00011000: O0x11000

Result of 0x00011000 & O0x11100111: ©
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe4-5/Listing4-11$ I

Figure 4-10. The output resulting from Listing 4-11

The | (Bitwise OR) Operator

The bitwise OR operator returns a value that contains all of the set bits from the left and
right sides of the operator. This is true whether either or both of the values are set. The
only time a 0 will be placed into a bit is when both the left and right sides of the operator
do not have that position set. Listing 4-12 shows the | operator in use.

134

CHAPTER 4 WORKING WITH NUMBERS
Listing 4-12. The | Operator
#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
uint32 t leftBits{ 0x00011000 };
uint32_t rightBits{ 0x00010100 };
cout << showbase << hex;
cout << "Result of 0x00011000 | 0x00010100: " << (leftBits | rightBits)
<< endl;
cout << "Result of 0x00011000 & 0x11100111: " << (leftBits | ~leftBits)
<< endl;
return O;
}

The first use of | will result in the value 0x00011100, and the second will result in
OxFFFFFFFE You can see that this is true in Figure 4-11.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-5/Listing4-12

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped4-5/Listing4-125 ./main
Result of 0x00011000 | 0x00010100: 6x11100

Result of 0x00011000 & 0x11100111: oxffffffff
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe4-5/Listing4-12$ I

Figure 4-11. The output generated by Listing 4-12

The values stored in leftBits and rightBits share a single bit position that is set to 1.
There are two positions where one has a bit set and the other doesn’t. All three of these
bits are set in the resulting value. The second use demonstrates that all bits are set so
long as the bit position is set in one of the two places. The distinction between the two is
important when you look at the results of the next operator.

135

CHAPTER 4 WORKING WITH NUMBERS

The M (Exclusive OR) Operator

This operator will produce a single bit of difference between its output and the output of
the | operator shown in Figure 4-11. This is because the exclusive OR operator only sets
the resulting bit to true when either the left or the right bit is set, not when both are set
and not when neither is set. Unlike the logical OR, exclusive OR will return false if both
sides are true; only one side can be true with this OR. The first | operator in Listing 4-12
resulted in the value 0x00011100 being stored as the result. The A operator will result in
0x00001100 being stored when using the same values. Listing 4-13 shows the code for
this scenario.

Listing 4-13. The /A Operator
#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
uint32 t leftBits{ 0x00011000 };
uint32_t rightBits{ 0x00010100 };
cout << showbase << hex;
cout << "Result of 0x00011000 * 0x00010100: " << (leftBits ” rightBits)
<< endl;
cout << "Result of 0x00011000 * 0x11100111: " << (leftBits ~ ~leftBits)
<< endl;
return 0;
}

The evidence of the different output produced can be seen in Figure 4-12.

136

CHAPTER 4 WORKING WITH NUMBERS

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-5/Listing4-13
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped4-5/Listing4-135 ./main
Result of 06x00011000 ~ 0x00010100: 0x1100
Result of 0x00011000 ~ 0x11100111: oxffffffff
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-5/Listing4-135 I

Figure 4-12. The output generated by the " operator in Listing 4-13

The << and >> Operators

The left shift and right shift operators are handy tools that allow you to pack smaller sets
of data into larger variables. Listing 4-14 shows code that shifts a value from the lower 16
bits of a uint32_t into the upper 16 bits.

Listing 4-14. Using the << Operator
#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
const uint32 t maskBits{ 16 };
uint32_t leftShifted{ 0x00001010 << maskBits };
cout << showbase << hex;
cout << "Left shifted: " << leftShifted << endl;
return O;

}

This code results in the value 0x10100000 being stored in the variable leftShifted.
This has freed up the lower 16 bits which you can now use to store another 16-bit value.
Listing 4-15 uses the |= and & operators to do just that.

137

CHAPTER 4 WORKING WITH NUMBERS

Note Each of the bitwise operators has an assignment variant for use in
statements such as that in Listing 4-15.

Listing 4-15. Using a Mask to Pack Values into a Variable
#include <iostream>
using namespace std;

int main(int argc, char* argv[])
{
const uint32_t maskBits{ 16 };
uint32_t leftShifted{ 0x00001010 << maskBits };
cout << showbase << hex;
cout << "Left shifted: " << leftShifted << endl;

uint32 t lowerMask{ OXOOO0OFFFF };
leftShifted |= (0x11110110 & lowerMask);
cout << "Packed left shifted: " << leftShifted << endl;

return 0;

This code now sees two separate 16-bit values being packed into a single 32-bit
variable. The value packed into the lower 16 bits has all of its upper 16 bits masked out
using the & operator in conjunction with a mask value, in this case 0x0000FFFE This
ensures that the |= operator leaves the values in the upper 16 bits unchanged by virtue of
the fact that the value being OR'd in won'’t have any of those upper bits set. You can see
this is true in Figure 4-13.

138

CHAPTER 4 WORKING WITH NUMBERS

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-5/Listing4-15

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-5/Listing4-155 ./main
Left shifted: 0x10100000

Packed left shifted: 0x10100110
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe4-5/Listing4-155 I

Figure 4-13. The results of masking values into integers using bitwise operators

The final two lines of output in Figure 4-13 are the result of operations to unmask
the values from the lower and upper sections of the variable. You can see how this was
achieved in Listing 4-16.

Listing 4-16. Unmasking Packed Data

#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{

const uint32 t maskBits{ 16 };

uint32_t leftShifted{ 0x00001010 << maskBits };
cout << showbase << hex;

cout << "Left shifted: " << leftShifted << endl;

uint32 t lowerMask{ OXOO00OFFFF };
leftShifted |= (0x11110110 & lowerMask);
cout << "Packed left shifted: " << leftShifted << endl;

uint32_t lowerValue{ (leftShifted & lowerMask) };

cout << "Lower value unmasked: " << lowerValue << endl;

uint32_t upperValue{ (leftShifted >> maskBits) };
cout << "Upper value unmasked: " << upperValue << endl;

return 0;

139

CHAPTER 4 WORKING WITH NUMBERS

The & operator and the >> operator are used in Listing 4-16 to retrieve the two
distinct values from our packed variable. Unfortunately, this code has an issue that has
yet to be uncovered. Listing 4-17 provides an example of the issue.

Listing 4-17. Shifting and Narrowing Conversions
#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
const uint32_t maskBits{ 16 };
uint32_t narrowingBits{ 0x00008000 << maskBits };
return 0;

}

The code in Listing 4-17 would fail to compile. You will receive an error that a
narrowing conversion was going to take place, and your compiler will prevent you from
building your executable until the problem code is fixed. The problem here is that the
value 0x00008000 has the 16th bit set, and once it is shifted 16 bits to the right, the 32nd
bit would be set. This would cause the value to become a negative number under normal
circumstances. At this stage, you have two different options in your arsenal to deal with
the situation.

Note Some of the code samples are not using the = operator to initialize
variables, such as uint32_t maskBits = 16; instead, both ways are being
used, with initialization such as in Listing 4-17 using uniform initialization that
was introduced in C++11. Uniform initialization is the form of initialization using
the { } operator as seen in some of the examples. The major benefit of uniform
initialization is the protection from narrowing conversions described in the
preceding code, but both methods are 100% acceptable.

Listing 4-18 shows how you can use an unsigned literal to tell the compiler the value
should be unsigned.

140

CHAPTER 4 WORKING WITH NUMBERS

Listing 4-18. Using Unsigned Literals
#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{

const uint32_t maskBits{ 16 };

uint32_t leftShifted{ 0x00008080u << maskBits };
cout << showbase << hex;

cout << "Left shifted: " << leftShifted << endl;

uint32 t lowerMask{ OXOO00OFFFF };
leftShifted |= (0x11110110 & lowerMask);
cout << "Packed left shifted: " << leftShifted << endl;

uint32_t lowerValue{ (leftShifted & lowerMask) };

cout << "Lower value unmasked: " << lowerValue << endl;

uint32_t upperValue{ (leftShifted >> maskBits) };
cout << "Upper value unmasked: " << upperValue << endl;

return 0;

Adding a u to the end of a numeric literal causes the compiler to evaluate that literal as an
unsigned value. Another option would have been to use signed values instead. However, this
introduces a new consideration. When right shifting signed values, the sign bit is placed into
the new values coming in from the right. The following things can occur:

e 0x10100000 >> 16 becomes 0x00001010.
¢ 0x80800000 >> 16 becomes 0xFFFEF8080.

Listing 4-19 and Figure 4-14 show code and output that proves the negative sign bit
propagation.

141

CHAPTER 4 WORKING WITH NUMBERS
Listing 4-19. Right Shifting Negative Values

#include <iostream>
using namespace std;

int main(int argc, char* argv[])

{
const uint32 t maskBits{ 16 };
int32_t leftShifted{ 0x00008080 << maskBits };
cout << showbase << hex;
cout << "Left shifted: " << leftShifted << endl;
int32_t lowerMask{ OXO0000FFFF };
leftShifted |= (0x11110110 & lowerMask);
cout << "Packed left shifted: " << leftShifted << endl;
int32_t rightShifted{ (leftShifted »» maskBits) };
cout << "Right shifted: " << rightShifted << endl;
cout << "Unmasked right shifted: " << (rightShifted & lowerMask)
<< endl;
return 0;

}

You can see the new code needs to extract the upper masked value in the bold lines
in Listing 4-19. A shift alone is no longer suitable when using signed integers. Figure 4-14
shows the output proving this point.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe4-5/Listing4-19

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Reciped4-5/Listing4-195 ./main
Left shifted: 0x80800000

Packed left shifted: 0x80800110

Right shifted: exffffgoege

Unmasked right shifted: 0x8080
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Reciped4-5/Listing4-19% I

Figure 4-14. Output showing the sign bit propagation after a right shift

142

CHAPTER 4 WORKING WITH NUMBERS

As you can see, I've had to shift the variable to the right and mask out the upper bits
in order to retrieve the original value from the upper part of the variable. After our shift,
the value contained the decimal value -32,640 (0xFFFF8080), but the value we expected
was actually 32,896 (0x00008080). 0x00008080 was retrieved by using the & operator
(0xFFFF8080 | 0x0000FFFF = 0x00008080).

Recipe 4-6. C++20 “Spaceship” or Three-Way
Comparison Operator

Problem

You want to utilize the spaceship operator in your code to benefit from the
improvements in C++ version 20.

Solution

You can use the spaceship operator to allow the compiler to automatically generate
comparison operators instead of manually coding it.

How It Works

As 0f 2019, the C++20 implements Herb Sutter’s proposal for the “spaceship operator” or
three-way comparison operator:

o The “compare” header is needed.

o Not all features of the new version 20 C++ standard are supported by
all compilers (as of late 2019).

e You can optimize your code with this operator.

The three-way comparison operator or the “spaceship” operator is new to C++20 and
provides a way to streamline comparison operations. The header <compare> is required
for it to work as is a C++20-compliant compiler such as MS Visual Studio 19.

143

CHAPTER 4 WORKING WITH NUMBERS

The operator (<=>) is called the spaceship operator due to the fact that it looks
like an old-style ASCII spaceship from various early computer games. It is designed
to be used in a class, struct, or function instead of as a standalone operator as with
the previous comparison operators you have just seen. In fact, behind the scenes, the
compiler generates automatically all of the comparison operators you have just used, so
your code will be much more streamlined given that it fits your needs.

When implemented, you can choose various comparison options: strong ordering,
weak ordering, partial ordering, strong equality, and weak equality. The first two both
include all six relational operators (==, !=, <, >, <=, >=):

e Strong ordering - Does not allow incomparable values; implies
substitutability; equivalent values are indistinguishable; less,
equivalent, equal, and greater are member constants

e Weak ordering - Does not allow incomparable values; does not imply
substitutability; equivalent values may be indistinguishable; ess,
equivalent, and greater are member constants

o Partial ordering - Does allow incomparable values; does not imply
substitutability; less, equivalent, greater, and unordered are member
constants

e Strong equality - Only equality and inequality comparisons; there
is no > or <, and this implies substitutability; equivalent, equal,
nonequivalent, and nonequal are member constants

e Weak equality - Only equality and inequality comparisons; it does
not imply substitutability; member constants are only equivalent and
nonequivalent; and equivalent values may be distinguishable

Based on a simple evaluation of some numeric values, Listing 4-20 will use weak
ordering to demonstrate use of the spaceship operator. Use Visual Studio 19 or higher
and make sure under project properties you set the language to “std latest” and not
C++17 or lower.

144

CHAPTER 4 WORKING WITH NUMBERS

Listing 4-20. Implementation of “Spaceship” Operator

#include <iostream>
#include <compare>
using namespace std;

struct num_value {
int num;
};
constexpr weak ordering operator<=>(num value lhs, num_value rhs)

{

return lhs.num <=> rhs.num;

}
void compare them(weak ordering value)
{
if (value == 0)
cout << "equal\n";
else if (value < 0)
cout << "less\n";
else if (value > 0)
cout << "greater\n";
else
cout << "Should not see this!";
}
int main()
{
num value x{ 11 };
num value y{ 2 };
compare_them(x <=> y);
return O;
}

145

CHAPTER 5

Classes

Classes are the language feature that sets C++ apart from the C programming language.
The addition of classes to C++ allows it to be used for programs designed using the
object-oriented programming (OOP) paradigm. OOP quickly became the main software
engineering practice used worldwide to build complex applications. You can find class
support in most leading languages today, including Java, C#, and Objective-C.

Recipe 5-1. Defining a Class
Problem

Your program design calls for objects, and you need to be able to define classes in your

programs.

Solution

C++ provides the class keyword and syntax for creating class definitions.

How It Works

The class keyword is used in C++ to create class definitions. This keyword is followed
by the class name and then the body of the class. You will probably note that they seem
similar to structs; however, classes offer many more features that structs do not.

Listing 5-1 shows a class definition.

147
© J. Burton Browning and Bruce Sutherland 2020

J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_5

CHAPTER5 CLASSES

Listing 5-1. A Class Definition

class Vehicle

{
};

The Vehicle class definition in Listing 5-1 tells the compiler that it should recognize
the word Vehicle as a type. This means code can now create variables of type Vehicle.
Think of a class object as a noun (person, place, or thing). Listing 5-2 shows this in action.

Listing 5-2. Creating a Vehicle Variable

class Vehicle

{
};
int main(int argc, char* argv[])
{
Vehicle myVehicle;
return 0;
}

Creating a variable like this results in your program creating an object. In the
common terminology used when working with classes, the class definition itself is
referred to as the class. Variables of the class are referred to as objects, so you can have
multiple objects of the same class. The process of creating an object from a class is
referred to as instantiating a class. As we will see next, these “nouns” have properties

” u ” u

such as color or size, or a vehicle might have a “number of doors,” “engine size,” “number
of wheels,” and so on. Note that Visual Studio and some other compilers may generate a

warning for “unreferenced local variable” or similar.

148

CHAPTERS5 CLASSES

Recipe 5-2. Adding Data to a Class
Problem

You would like to be able to store data in your classes.

Solution

C++ allows classes to contain variables. Each object gets its own unique variable and can
store its own values.

How It Works

C++ has the concept of a member variable: a variable that exists in the class definition.
Each instantiated object from the class definition gets its own copy of the variable.
Listing 5-3 shows a class that contains a single member variable.

Listing 5-3. The Vehicle Class with a Member Variable

#include <cinttypes>

class Vehicle

{
public:

uint32_t m_NumberOfWheels;
}s

The Vehicle class contains a single uint32_t variable to store the number of wheels
the vehicle has. Listing 5-4 shows how you can set this value and print it.

Listing 5-4. Accessing Member Variables

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{

149

CHAPTER5 CLASSES

public:
uint32_t m_NumberOfWheels;
};
int main(int argc, char* argv[])
{
Vehicle myCar;
myCar.m_NumberOfWheels = 4;
cout << "Number of wheels: " << myCar.m_NumberOfWheels << endl;
return O;
}

Listing 5-4 shows that you can use the dot (.) operator to access member variables
on an object. This operator is used twice in the code: once to set the value of m_
NumberOfWheels to 4 and once to retrieve the value to print it. Listing 5-5 adds another
instance of the class to show that different objects can store different values in their

members.

Listing 5-5. Adding a Second Object

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
public:
uint32_t m_NumberOfWheels;

}s

int main(int argc, char* argv[])
{
Vehicle myCar;
myCar.m_NumberOfWheels = 4;

cout << "Number of wheels: " << myCar.m NumberOfWheels << endl;

150

CHAPTERS5 CLASSES

Vehicle myMotorcycle;
myMotorcycle.m NumberOfWheels = 2;

cout << "Number of wheels: " << myMotorcycle.m NumberOfWheels << endl;

return O;

Listing 5-5 adds a second object and names it myMotorcycle. This instance of the
class has itsm_NumberOfWheels variable set to 2. You can see the different output values
in Figure 5-1.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-2/Listing5-5

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-2/Listing5-55 ./main
Number of wheels: 4

Number of wheels: 2
bruce@bruce-vVirtual-Machine:~/Projects/C-Recipes/Recipe5-2/Listing5-5% I

Figure 5-1. The output generated by Listing 5-5

Recipe 5-3. Adding Methods
Problem

You need to be able to carry out repeatable tasks on a class.

Solution

C++ allows programmers to add functions to classes. These functions are known as
member methods and have access to class member variables.

151

CHAPTER5 CLASSES

How It Works

You can add a member method to a class simply by adding a function to that class.

Any function you add can then use the member variables that belong to the class. Listing 5-6
shows two member methods in action. Set and Get member methods are named such
that a “setter” places values into a variable that otherwise might not be accessible from the
public interface, to protect the integrity of the data or to ensure it is valid. “Getters” obtain
and return a value from the class to the public interface. You do not need to name them

as such, but for readability it helps. Note the example does not enforce any integrity of the
data. We will build on this in later examples.

Listing 5-6. Adding Member Methods to a Class
#include <cinttypes>

class Vehicle

{
public:
uint32_t m_NumberOfWheels;
void SetNumberOfWheels(uint32_t numberOfWheels)
{
m_NumberOfWheels = numberOfWheels;
}
uint32_t GetNumberOfWheels()
{
return m_NumberOfWheels;
}
};

The Vehicle class shown in Listing 5-6 contains two member methods:
SetNumberOfWheels takes a parameter that is used to set the member m_NumberOfWheels,
and GetNumberOfhheels retrieves the value of m_NumberOfWheels. Listing 5-7 uses these
methods.

152

CHAPTERS5 CLASSES

Listing 5-7. Using the Member Methods from the Vehicle Class

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{

private:

uint32_t m_NumberOfWheels;

public:

};

int

void SetNumberOfWheels(uint32 t numberOfWheels)

{
m_NumberOfWheels = numberOfWheels;

}

uint32_t GetNumberOfWheels()
{

return m_NumberOfWheels;

main(int argc, char* argv[])

Vehicle myCar;

myCar.SetNumberOfiheels(4);

cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

Vehicle myMotorcycle;
myMotorcycle. SetNumberOfiheels(2);

cout << "Number of wheels: " << myMotorcycle.GetNumberOfiheels() << endl;

return O;

153

CHAPTER5 CLASSES

The member methods are used to alter and retrieve the value of the m_NumberOfWheels
member variable in Listing 5-7. The output generated by this code is shown in Figure 5-2.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-3/Listing5-7

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-3/Listing5-75 ./main
Number of wheels: 4

Number of wheels: 2
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe5-3/Listing5-7% I

Figure 5-2. The output generated by the code in Listing 5-7

Recipe 5-4. Using Access Modifiers
Problem

Exposing all member variables to calling code can lead to several problems including
high coupling and higher maintenance costs.

Solution

Use the C++ access modifiers to utilize encapsulation and hide class implementations
from calling code.

How It Works

C++ provides access modifiers that allow you to control whether code can access internal
member variables and methods. Listing 5-8 shows how you can use the private access
modifier to restrict access to a variable and the public access specifier to provide
methods that access the member indirectly.

154

CHAPTER5 CLASSES
Listing 5-8. Using the public and private Access Modifiers
#include <cinttypes>

class Vehicle

{
private:
uint32_t m_NumberOfWheels;
public:
void SetNumberOfWheels(uint32_ t numberOfWheels)
{
m_NumberOfWheels = numberOfWheels;
}
uint32_t GetNumberOfWheels()
{
return m_NumberOfWheels;
}
};

To use an access modifier, insert the keyword into your class, followed by a colon.
Once invoked, the access modifier is applied to all member variables and methods
that follow until another access modifier is specified. In Listing 5-8, this means them_
NumberOfWheels variable is private and the SetNumberOfWheels and GetNumberOfiheels
member methods are public.

If you tried to accessm_NumberOfWheels directly in calling code, your compiler would
give you an access error. Instead, you have to access the variable through the member
methods. Listing 5-9 shows a working sample with a private member variable.

Listing 5-9. Using Access Modifiers

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{

private:

155

CHAPTER5 CLASSES

uint32_t m_NumberOfWheels;

public:
void SetNumberOfWheels(uint32_t numberOfWheels)
{
m_NumberOfhheels = numberOfhheels;
}
uint32_t GetNumberOfWheels()
{
return m_NumberOfWheels;
}
};
int main(int argc, char* argv[])
{

Vehicle myCar;
// myCax.m_NumberOfWlheels = 4; -Access error
myCar . SetNumberOfwheels(4);

cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

Vehicle myMotorcycle;
myMotorcycle.SetNumberOfiheels(2);

cout << "Number of wheels: " << myMotorcycle.GetNumberOfhheels() << endl;

return O;

You can see the error that the compiler generates by uncommenting the bold line in
Listing 5-9. Encapsulating data in this manner allows you to alter the implementation at
a later time without affecting the rest of your code. Listing 5-10 updates the code from
Listing 5-9 to use a completely different method of working out the number of wheels on

avehicle.

156

Listing 5-10. Altering the Vehicle Class Implementation

#include <vector>
#include <cinttypes>
#include <iostream>

using namespace std;

class Wheel

{
};
class Vehicle
{
private:
using Wheels = vector<Wheel>;
Wheels m_Wheels;
public:
void SetNumberOfWheels(uint32 t numberOfWheels)
{
m Wheels.clear();
for (uint32 t i = 0; i < numberOfWheels; ++i)
{
m_Wheels.push_back({});
}
}
uint32_t GetNumberOfWheels()
{
return m Wheels.size();
}
};
int main(int argc, char* argv[])
{

Vehicle myCar;
myCar.SetNumberOfiheels(4);

CHAPTERS5 CLASSES

cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

157

CHAPTER5 CLASSES

Vehicle myMotorcycle;
myMotorcycle. SetNumberOfiheels(2);

cout << "Number of wheels: " << myMotorcycle.GetNumberOfiWheels() << endl;

return O;

Comparing the Vehicle class from Listing 5-9 and that in Listing 5-10 reveals that
the implementations of SetNumberOfWheels and GetNumberOfiheels are completely
different. The class in Listing 5-10 doesn'’t store the value in a uint32_t member;
instead, it stores a vector of Wheel objects. The SetNumberOflWheels method adds a
new instance of Wheel to the vector for the number supplied as its numberOfiWheels
parameter. The GetNumberOfWheels method returns the size of the vector. The main
function in both listings is identical, as is the output generated by executing the code.

Recipe 5-5. Initializing Class Member Variables
Problem

Uninitialized variables can cause undefined program behavior.

Solution

C++ classes can initialize their member variables at instantiation and provide
constructor methods for user-supplied values.

How It Works
Uniform Initialization

Classes in C++ can use uniform initialization to provide default values to class members
when they’re instantiated. Uniform initialization allows you to use a common syntax
when initializing built-in types or objects created from your classes. C++ uses the curly
braces syntax to support this form of initialization. Listing 5-11 shows a class with a
member variable initialized in this way.

158

CHAPTER5 CLASSES
Listing 5-11. Initializing a Class Member Variable

#include <cinttypes>

class Vehicle

{
private:
uint32_t m_NumberOfWheels{};
public:
uint32 GetNumberOfWheels()
{
return m_NumberOfWheels;
}
}s

In Listing 5-11, the class’s m_NumberOfWheels member is initialized using uniform
initialization. This is achieved using the curly braces after the name. No value is supplied
to the initializer, which causes the compiler to initialize the value to 0. Listing 5-12 shows
this class used in context.

Listing 5-12. Using the Vehicle Class

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
private:
uint32_t m_NumberOfwheels{};
public:
uint32_t GetNumberOfWheels()
{
return m_NumberOfWheels;
}
};

159

CHAPTER5 CLASSES

int main(int argc, char* argv[])

{
Vehicle myCar;
cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;
Vehicle myMotorcycle;
cout << "Number of wheels: " << myMotorcycle.GetNumberOfiheels() << endl;
return O;

}

Figure 5-3 shows the output generated by this code.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-5/Listing5-12

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-5/Listing5-12% ./main
Number of wheels: ©

Number of wheels: ©
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe5-5/Listing5-12% I

Figure 5-3. The output generated by the code in Listing 5-12

Figure 5-3 shows output with a 0 for each class. This is an improvement on code that
doesn’t initialize the data, as shown in Figure 5-4.

160

CHAPTERS5 CLASSES

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-5/Listing5-12

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-5/Listing5-12% ./main
Number of wheels: 4196331

Number of wheels: 4196800
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-5/Listing5-12% I

Figure 5-4. The output generated by a program that doesn'’t initialize its member
variables

Using Constructors

Figure 5-3 represents a better situation than Figure 5-4, but neither is ideal. You'd really like
the myCar and myMotorcycle objects in Listing 5-12 to print different values. Listing 5-13
adds an explicit constructor so that you can specify the number of wheels when instantiating
classes. Default constructors are automatically created for you, but if you explicitly define
them, you get more control over what happens when you create an object as you will see.

Listing 5-13. Adding a Constructor to a Class

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{

private:
uint32_t m NumberOfWwheels{};

public:
Vehicle(uint32_t numberOfWheels)
¢ m_NumberOfWheels{ numberOfWlheels }

161

CHAPTER5 CLASSES

uint32_t GetNumberOfWheels()

{
return m_NumberOfWheels;
}
};
int main(int argc, char* argv([])
{
Vehicle myCax{ 4 };
cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;
Vehicle myMotorcycle{ 2 };
cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;
return 0;
}

Listing 5-13 adds the ability to initialize the number of wheels on a Vehicle at the
time of instantiation. It does this by adding an explicit constructor to the Vehicle class
that takes the number of wheels as a parameter. The use of an explicit constructor lets
you rely on a function call to occur at the time of object creation. This function is used to
ensure that all the member variables your class contains have been properly initialized.
Uninitialized data is a very common cause of unexpected program behavior such as
crashes.

The myCar and myMotorcycle objects are instantiated with different values for their
number of wheels. Unfortunately, adding an explicit constructor to the class means you
can no longer construct default versions of this class; you must always supply a value for
the number of wheels in Listing 5-13. Listing 5-14 overcomes this limitation by adding an
explicit default operator to the class, in case no value is given.

Listing 5-14. Default Constructors

#include <cinttypes>
#include <iostream>

using namespace std;
class Vehicle

{

162

CHAPTERS5 CLASSES

private:

uint32_t m NumberOfwheels{};

public:

};

int

Vehicle() = default;

Vehicle(uint32_t numberOfWheels)
: m_NumberOfWheels{ numberOfWheels }

{
}
uint32_t GetNumberOfWheels()
{

return m_NumberOfWheels;
}

main(int argc, char* argv[])
Vehicle myCar{ 4 };
cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

Vehicle myMotorcycle{ 2 };
cout << "Number of wheels:

<< myMotorcycle.GetNumberOfiheels() << endl;

Vehicle nolheels;
cout << "Number of wheels: " << nollheels.GetNumberOfilheels() << endl;

return 0;

The Vehicle class in Listing 5-14 contains an explicit default constructor. The

default keyword is used along with an equals operator to inform the compiler that you

want to add a default constructor to this class. Thanks to the uniform initialization of

them_NumberOfWheels variable, you can create an instance of the class noWheels that

contains 0 in the m_NumberOfWheels variable. Figure 5-5 shows the output generated by
this code.

163

CHAPTER5 CLASSES

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-5/Listing5-14

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-5/Listing5-14% ./main
Number of wheels: 4

Number of wheels: 2

Number of wheels: ©
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe5-5/Listing5-14$ [

Figure 5-5. The output generated by Listing 5-14, showing the 0 in the nolWheels
class

Recipe 5-6. Cleaning Up Classes
Problem

Some classes require their members to be cleaned up when an object is being destroyed.

Solution

C++ provides for destructors to be added to classes that allow code to be executed when a
class is being destroyed.

How It Works

You can add a special destructor method to your classes in C++ using the ~ syntax
(“tilde”). Listing 5-15 shows how to achieve this.

Listing 5-15. Adding a Destructor to a Class

#include <cinttypes>
#include <string>

using namespace std;

class Vehicle

{

private:

164

CHAPTERS5 CLASSES

string m_Name;
uint32_t m NumberOfwheels{};

public:
Vehicle() = default;

Vehicle(string name, uint32_t numberOfWheels)
: m_Name{ name }
, m_NumberOfWheels{ numberOfWheels }

{
}
~Vehicle()
{
cout << m_Name << " is being destroyed!" << endl;
}
uint32_t GetNumberOfWheels()
{
return m_NumberOfWheels;
}

};

The Vehicle class in Listing 5-15 contains a destructor. This destructor simply prints
out the name of the object being destroyed. The constructor can be initialized with the
name of an object, and the default constructor of Vehicle calls the default constructor of
the string class automatically. Listing 5-16 shows how this class can be used in practice.

Listing 5-16. Using Classes with Destructors

#include <cinttypes>
#include <iostream>
#include <string>

using namespace std;

class Vehicle

{

private:

165

CHAPTER5 CLASSES

string m_Name;
uint32_t m NumberOfwheels{};

public:

}s

int

166

Vehicle() = default;

Vehicle(string name, uint32_t numberOfWheels)
: m_Name{ name }
, m_NumberOfWheels{ numberOfWheels }

{
}
~Vehicle()
{
cout << m_Name << " is being destroyed!" << endl;
}
uint32_t GetNumberOfWheels()
{
return m_NumberOfWheels;
}

main(int argc, char* argv[])
Vehicle myCar{ "myCar", 4 };
cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

Vehicle myMotorcycle{ "myMotorcycle", 2 };
cout << "Number of wheels: " << myMotorcycle.GetNumberOfiheels() << endl;

Vehicle noWheels;
cout << "Number of wheels: " << noWheels.GetNumberOfiheels() << endl;

return O;

CHAPTERS5 CLASSES

As you can see from the main function in Listing 5-16, you don’t have to add any
special code to call a class destructor. Destructors are called automatically when objects
go out of scope. In this case, the calls to the destructors of the Vehicle objects occur after
the return. Figure 5-6 shows the output from this program to prove the destructor code is
executed.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-6/Listing5-16

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-6/Listing5-165 ./main
Number of wheels: 4
Number of wheels: 2
Number of wheels: ©
is being destroyed!
myMotorcycle is being destroyed!
myCar is being destroyed!
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-6/Listing5-16$ I

Figure 5-6. The output generated by Listing 5-16, showing that destructors have
been executed

It’s important to pay attention to the order in which these destructors are called.
The Vehicle objects are destroyed in an order that’s the reverse of that in which they
were created. This is important if you have resources that rely on being created and
destroyed in the correct order.

The compiler implicitly creates a default destructor if you don’t define your own. You
can also explicitly define a destructor using the code shown in Listing 5-17.

Listing 5-17. Explicitly Defining a Destructor
#include <cinttypes>

class Vehicle

{

private:
uint32_t m_NumberOfWheels{};

public:
Vehicle() = default;

Vehicle(uint32_t numberOfWheels)

167

CHAPTER5 CLASSES

: m_NumberOfWheels{ numberOfWheels }
{

}
~Vehicle() = default;

uint32_t GetNumberOfWheels()
{

return m_NumberOfhheels;
b5

It’s considered good practice to always be explicit with your default constructor and
destructors. Doing so removes any ambiguity from the code and lets other programmers
know that you were happy with the default behavior. The omission of this code could
lead others to believe that you overlooked its inclusion.

Recipe 5-7. Copying Classes
Problem

You would like to ensure that you're copying data from one object to another in a proper

manner.

Solution

C++ provides the copy constructor and assignment operator that you can use to add
code to your class that is executed when a copy takes place.

How It Works

You can copy objects in C++ in a number of scenarios. An object is copied when you pass
it into the constructor of another object of the same type. An object is also copied when
you assign one object to another. Passing an object into a function or method by value
also results in a copy operation taking place.

168

CHAPTERS5 CLASSES

Implicit and Default Copy Constructors and Assignment Operators

C++ classes support these operations through the copy constructor and assignment
operator. Listing 5-18 shows the default versions of these methods being invoked in the
main method.

Listing 5-18. Using the Copy Constructor and Assignment Operator

#include <cinttypes>
#include <iostream>
#include <string>

using namespace std;

class Vehicle

{

private:
string m_Name;
uint32_t m NumberOfwheels{};

public:
Vehicle() = default;

Vehicle(string name, uint32_t numberOfWheels)
: m_Name{ name }
, m_NumberOfWheels{ numberOfWheels }

{

}

~Vehicle()
{

cout << m_Name << " at " << this << " is being destroyed!" << endl;

}

uint32_t GetNumberOfWheels()
{

return m_NumberOfWheels;

b

169

CHAPTER5 CLASSES

int main(int argc, char* argv[])

{
Vehicle myCar{ "myCar", 4 };
cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;
Vehicle myMotorcycle{ "myMotorcycle", 2 };
cout << "Number of wheels: " << myMotorcycle.GetNumberOfhheels() << endl;
Vehicle myCopiedCar{ myCar };
cout << "Number of wheels: " << myCopiedCar.GetNumberOfiheels() << endl;
Vehicle mySecondCopy;
mySecondCopy = myCopiedCar;
cout << "Number of wheels: " << mySecondCopy.GetNumbexOfiheels() << endl;
return O;

}

The myCopiedCar variable is constructed using a copy constructor. This is achieved
by passing another object of the same type into myCopiedCar’s brace initializer. The
mySecondCopy variable is constructed using the default constructor. Thus, the object is
initialized with an empty name and 0 as the number of wheels. The code then assigns to
mySecondCopy using myCopiedCar. You can see the results of these operations in Figure 5-7.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-7/Listing5-18

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-7/Listing5-185 ./main
Number of wheels: 4

Number of wheels: 2

Number of wheels: 4

Number of wheels: 4

myCar at Ox7fff2fb37480 is being destroyed!

myCar at ox7fff2fb37490 is being destroyed!

myMotorcycle at ox7fff2fb374be is being destroyed!

myCar at ox7fff2fb374e0 is being destroyed!
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-7/Listing5-18% I

Figure 5-7. The output generated by Listing 5-18

As expected, you have three objects named myCar, each of which has four wheels.
You can see the distinct objects when the destructor prints the address in memory where

each object resides.

170

CHAPTERS5 CLASSES

Explicit Copy Constructors and Assignment Operators

The code in Listing 5-18 takes advantage of the implicit copy constructor and assignment
operator. The C++ compiler automatically adds these functions to your classes when

it encounters code that will use them. Listing 5-19 shows how you can create these
functions explicitly.

Listing 5-19. Explicitly Creating the Copy Constructor and Assignment Operator

#include <cinttypes>
#include <iostream>
#include <string>

using namespace std;

class Vehicle
{
private:
string m_Name;
uint32_t m NumberOfwheels{};

public:
Vehicle() = default;

Vehicle(string name, uint32_t numberOfWheels)
: m_Name{ name }
, m_NumberOfWheels{ numberOfWheels }

{
}
~Vehicle()
{
cout << m_Name << " at " << this << " is being destroyed!" << endl;
}

Vehicle(const Vehicle& other) = default;
Vehicle& operator=(const Vehicle& other) = default;

171

CHAPTER5 CLASSES

uint32_t GetNumberOfWheels()
{

return m_NumberOfWheels;

};

The signature for a copy constructor resembles that of a normal constructor. It’s a
method with no return type; however, the copy constructor takes a constant reference
to an object of the same type as a parameter. The assignment operator uses operator
overloading to overload the = arithmetic operator for the class when the right side of the
statement is another object of the same type, as in someVehicle = someOtherVehicle.
The default keyword comes in useful again to allow you to communicate with other
programmers that you're happy with the default operations.

Disallowing Copy and Assignment

Sometimes you'll create classes in which you absolutely don’t want copy constructors
and assignment operators to be used. C++ provides the delete keyword for these cases.
Listing 5-20 shows how this is implemented.

Listing 5-20. Disallowing Copy and Assignment

#include <cinttypes>
#include <iostream>
#include <string>

using namespace std;

class Vehicle
{
private:
string m_Name;
uint32_t m NumberOfwheels{};

public:
Vehicle() = default;

Vehicle(string name, uint32_t numberOfWheels)
: m_Name{ name }
, m_NumberOfWheels{ numberOfWheels }
172

CHAPTERS5 CLASSES

{
}
~Vehicle()
{
cout << m_Name << " at " << this << " is being destroyed!" << endl;
}

Vehicle(const Vehicle& other) = delete;
Vehicle8 operator=(const Vehicle& other) = delete;

uint32_t GetNumberOfWheels()
{

return m_NumberOfWheels;
}s
int main(int argc, char* argv[])
Vehicle myCar{ "myCar", 4 };
cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

Vehicle myMotorcycle{ "myMotorcycle", 2 };
cout << "Number of wheels: " << myMotorcycle.GetNumberOfiWheels() << endl;

Vehicle myCopiedCar{ myCar };
cout << "Number of wheels: " << myCopiedCar.GetNumberOfWheels() << endl;

Vehicle mySecondCopy;
mySecondCopy = myCopiedCar;

cout << "Number of wheels: " << mySecondCopy.GetNumberOfiheels() << endl;

return O;

The delete keyword is used in place of default to inform the compiler that you
don’t wish the copy and assignment operations to be available to a class. The code in the
main function will no longer compile and operate.

173

CHAPTER5 CLASSES

Custom Copy Constructors and Assignment Operators

In addition to using the default versions of these operations, it’s possible to supply your
own versions. This is done by using the same signatures for the methods in your class
definition but providing a method body in place of the default assignment.

More often than not in modern C++, the places you'll overload these operators are
limited; but it’s important to be aware of the one place where you absolutely want to do so.

The default copy and assignment operations carry out a shallow copy. They call the
assignment operator on each member of an object and assign the value from the class
passed in. There are occasions when you have a class that manually manages a resource,
such as memory, and a shallow copy ends up with a pointer in both classes pointing to
the same address in memory. If that memory is freed in the class’s destructor, you're left
in a situation where one object is pointing to memory that has been freed by another. In
this case, your program is likely to crash or exhibit other strange behaviors. Listing 5-21
shows an example in which this could occur.

Note The code in Listing 5-21 is purposefully constructed to create a situation
that would be better solved by using an STL string class. This code is simply
intended to be an easy-to-understand example of how things can go wrong.

Listing 5-21. Shallow-Copying a C-Style String Member

#include <cinttypes>
#include <cstring>
#include <iostream>

using namespace std;

class Vehicle

{

private:
char* m_Name{};
uint32_t m_NumberOfwheels{};

174

CHAPTERS5 CLASSES

public:
Vehicle() = default;

Vehicle(const char* name, uint32_t numberOfWheels)
: m_NumberOfWheels{ numberOfWheels }

{
const uint32_t length = strlen(name) + 1; // Add space for null
terminator
m_Name = new char[length]{};
strcpy(m Name, name); //note warning if using VS 2019
}
~Vehicle()
{
delete m Name;
m_Name = nullptr;
}

Vehicle(const Vehicle& other) = default;
Vehicle& operator=(const Vehicle& other) = default;

char* GetName()

{
return m_Name;
}
uint32_t GetNumberOfWheels()
{
return m_NumberOfWheels;
}
}s
int main(int argc, char* argv[])
{

Vehicle myAssignedCar;

{
Vehicle myCar{ "myCar", 4 };
cout << "Vehicle name: " << myCar.GetName() << endl;

175

CHAPTER5 CLASSES

myAssignedCar = myCar;
cout << "Vehicle name:

<< myAssignedCar.GetName() << endl;

}

cout << "Vehicle name:

<< myAssignedCar.GetName() << endl;

return 0;

The main function in Listing 5-21 creates two instances of the Vehicle class. The
second is created in a block. This block causes the myCar object to be destructed when
the block ends and the object goes out of scope. This is a problem because the last
line of the block invokes the assignment operator and does a shallow copy of the class
members. After this takes place, the myCar and myAssignedCar objects point to the same
memory address in their m_Name variables. This memory is released in the destructor for
myCar before the code tries to print the name of myAssignedCar. You can see the result of
this error in Figure 5-8.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-7/Listing5-21

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-7/Listing5-215 ./main
Vehicle name: myCar

Vehicle name: myCar

Vehicle name:

*** Error in "./main': double free or corruption (fasttop): 0x00000000021c2010 *
* &

Aborted (core dumped)
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe5-7/Listing5-21$% I

Figure 5-8. Output showing the error from shallow-copying an object before it’s
destroyed

Figure 5-8 proves that the shallow copy results in a dangerous situation for the code.
The memory pointed to by the m_Name variable in myAssignedCar is no longer valid
as soon as the myCar variable has been destroyed. Listing 5-22 solves this problem by
providing a copy constructor and an assignment operator that carry out a deep copy of
the class. It actually copies the data instead of pointing to an address.

176

CHAPTER5 CLASSES
Listing 5-22. Carrying Out a Deep Copy

#include <cinttypes>
#include <cstring>
#include <iostream>

using namespace std;

class Vehicle

{
private:

charx m_Name{};

uint32_t m_NumberOfWwheels{};
public:

Vehicle() = default;

Vehicle(const char* name, uint32_t numberOfWheels)
: m_NumberOfWheels{ numberOfWheels }

{
const uint32_t length = strlen(name) + 1; // Add space for null
terminator
m_Name = new char[length]{};
strcpy(m_Name, name); // line will generate warning with Visual
Studio
}
~Vehicle()
{
delete m Name;
m_Name = nullptr;
}
Vehicle(const Vehicle& other)
{
const uint32_t length = strlen(other.m_Name) + 1; // Add space
for null
terminator

m_Name = new char[length]{};
strcpy(m_Name, other.m_Name);
177

CHAPTER5 CLASSES

m_NumberOfWheels = other.m_NumberOfWlheels;

}
Vehicle& operator=(const Vehicle& other)
{
if (m_Name != nullptr)
{
delete m_Name;
}
const uint32_t length = strlen(other.m_Name) + 1; // Add space
for null
terminator
m_Name = new char[length]{};
strcpy(m_Name, other.m_Name);
m_NumberOfWheels = other.m_NumberOfWlheels;
return xthis;
}
char* GetName()
{
return m_Name;
}
uint32_t GetNumberOfWheels()
{
return m_NumberOfWheels;
}
};
int main(int argc, char* argv[])
{

Vehicle myAssignedCar;

{
Vehicle myCar{ "myCar", 4 };
cout << "Vehicle name: " << myCar.GetName() << endl;

178

CHAPTERS5 CLASSES

myAssignedCar = myCar;
cout << "Vehicle name: " << myAssignedCar.GetName() << endl;

}

cout << "Vehicle name: " << myAssignedCar.GetName() << endl;

return O;

This time, the code provides methods to be carried out when a copy or assignment
takes place. The copy constructor is invoked when a new object is created by copying
an old object, so you never need to worry about deleting the old data. The assignment
operator, on the other hand, can’t guarantee that the existing class didn’t already exist.
You can see the implications of this in the assignment operator when it’s responsibly
deleting the memory allocated for the existingm_Name variable. The result of these deep

copies can be seen in Figure 5-9.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe5-7/Listing5-22
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-7/Listing5-225 ./main
Vehicle name: myCar
Vehicle name: myCar

Vehicle name: myCar
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe5-7/Listing5-225 [

Figure 5-9. The result of using a deep copy

The output is now correct, thanks to the use of a deep copy. This gives the
myAssignedCar variable its own copy of the name string rather than simply having its
pointer assigned the same address as the myCar class. The proper solution to solving the
problem in this case is to use an STL string in place of the C-style string, but the example
will be valid if you ever have to write classes that may end up pointed to the same
dynamically allocated memory or stack memory in the future.

179

CHAPTER5 CLASSES

Recipe 5-8. Optimizing Code with Move Semantics
Problem

Your code is running slowly, and you think the problem is caused by copying temporary
objects.

Solution

C++ provides support for move semantics in the form of a move constructor and a move
assignment operator.

How It Works

The code shown in Listing 5-23 performs a deep copy of an object to avoid the scenario
where a different object is left pointing at an invalid memory address.

Listing 5-23. Using Deep Copy to Avoid Invalid Pointers

#include <cinttypes>
#include <cstring>
#include <iostream>

using namespace std;

class Vehicle

{
private:

char* m_Name{};

uint32_t m NumberOfwheels{};
public:

Vehicle() = default;

Vehicle(const char* name, uint32_t numberOfWheels)
: m_NumberOfWheels{ numberOfWheels }

180

CHAPTERS5 CLASSES

const uint32_t length = strlen(name) + 1; // Add space for null
terminator
m_Name = new char[length]{};

strcpy(m_Name, name); //warning generated if using Visual Studio

}
~Vehicle()
{
delete m Name;
m _Name = nullptr;
}
Vehicle(const Vehicle& other)
{
const uint32_t length = strlen(other.m_Name) + 1; // Add space
for null
terminator
m_Name = new char[length]{};
strcpy(m_Name, other.m_Name);
m_NumberOfWheels = other.m_NumberOfWlheels;
}
Vehicle& operator=(const Vehicle& other)
{
if (m_Name != nullptr)
{
delete m_Name;
}
const uint32_t length = strlen(other.m_Name) + 1; // Add space
for null
terminator
m_Name = new char[length]{};
strcpy(m_Name, other.m_Name);
m_NumberOfWheels = other.m_NumberOfWlheels;
return *this;
}

181

CHAPTER5 CLASSES

char* GetName()
{

return m_Name;

}

uint32_t GetNumberOfWheels()
{

return m_NumberOfWheels;

}s

int main(int argc, char* argv[])

{

Vehicle myAssignedCar;

{
Vehicle myCar{ "myCar", 4 };
cout << "Vehicle name: " << myCar.GetName() << endl;

myAssignedCar = myCar;
cout << "Vehicle name:

<< myAssignedCar.GetName() << endl;

}

cout << "Vehicle name:

<< myAssignedCar.GetName() << endl;

return 0;

This is the correct solution when you know that two objects may live a considerable
time but one may be destroyed before the other, which would likely result in a crash.
Sometimes, however, you know that the object you're copying from is about to
destroyed. C++ allows you to optimize such situations using move semantics.

Listing 5-24 adds a move constructor and a move assignment operator to the class and
uses the move function to invoke them.

Listing 5-24. The Move Constructor and Move Assignment Operator

#include <cinttypes>
#include <cstring>
#include <iostream>

182

CHAPTER5 CLASSES
using namespace std;

class Vehicle

{
private:

char* m_Name{};

uint32_t m NumberOfWwheels{};
public:

Vehicle() = default;

Vehicle(const char* name, uint32_t numberOfWheels)
: m_NumberOfWheels{ numberOfWheels }

{
const uint32_t length = strlen(name) + 1; // Add space for null
terminator
m_Name = new char[length]{};
strcpy(m_Name, name); //warning generated if using Visual Studio
}
~Vehicle()
{
if (m_Name != nullptr)
{
delete m Name;
m_Name = nullptr;
}
}
Vehicle(const Vehicle& other)
{
const uint32_t length = strlen(other.m Name) + 1; // Add space
for null
terminator
m_Name = new char[length]{};
strcpy(m_Name, other.m Name);
m_NumberOflWheels = other.m_NumberOfWheels;
}

183

CHAPTER5 CLASSES

Vehicle& operator=(const Vehicle& other)

{
if (m_Name != nullptr)

{

delete m_Name;

}

const uint32_t length = strlen(other.m Name) + 1; // Add space
for null
terminator

m_Name = new char[length]{};

strcpy(m_Name, other.m Name);

m_NumberOfWheels = other.m_NumberOfWheels;

return *this;

}

Vehicle(Vehicle&& other)
{

m_Name = othex.m_Name;
other.m_Name = nullptr;

m_NumberOfWheels = other.m_NumberOfWlheels;
}

Vehicle& operator=(Vehicle8& other)

{
if (m_Name != nullptr)

{

delete m_Name;

}

m_Name = othex.m_Name;
other.m_Name = nullptr;

m_NumberOfWheels = other.m_NumberOfWlheels;

return xthis;

184

};

CHAPTERS5 CLASSES

char* GetName()

{
}

return m_Name;

uint32_t GetNumberOfWheels()

{

return m_NumberOfWheels;

int main(int argc, char* argv[])

{

Vehicle myAssignedCar;

{

}

cout << "Vehicle name:

Vehicle myCar{ "myCar", 4 };
cout << "Vehicle name: " << myCar.GetName() << endl;

myAssignedCar = move(myCar);
//cout << "Vehicle name: " << myCar.GetName() << endl;
<< myAssignedCar.GetName() << endl;

cout << "Vehicle name:

<< myAssignedCar.GetName() << endl;

return O;

Move semantics work by providing class methods that take rvalue references as
parameters. These rvalue references are denoted by using the double ampersand
operator on the parameter type. You can invoke the move operations using the move
function; you can see this in action in the main function.

The move function can be used here because you know that myCar is about to be
destroyed. The move assignment operator is invoked, and the pointer address is shallow-
copied to myAssignedCar. The move assignment operator releases the memory that the
object may already have been using for m_Name. Importantly, it then copies the address
from other before setting other.m_Name to nullptr. Setting the other object’s pointer to
nullptr prevents that object from deleting the memory in its destructor. In this case, the

185

CHAPTER5 CLASSES

code is able to move the value of m_Name from other to this without having to allocate
more memory and deep-copy the values from one to the other. The end result is that
you can no longer use the value of m_Name stored by myCar—the commented-out line in
Listing 5-24’s main function would result in a crash.

Recipe 5-9. Implementing Virtual Functions
Problem

You wish to utilize an abstract base class to build other derived classes from without
using memory as a non-abstract base class would.

Solution

C++ provides support for virtual functions which cannot be instantiated but can be
overridden for subsequent child classes.

How It Works

Virtual functions are abstract classes when cannot be instantiated and are designed to
be built upon as a derived class that can be instantiated. So think of them as building
blocks that will be overridden in future derived classes. The base class is the abstract
class which cannot be used to create a new object directly. You can also use the
“virtual” keyword to similar effect with structs as well. Listing 5-25 shows a simple
implementation of a virtual base class.

Listing 5-25. Virtual Functions

#include <iostream>
using namespace std;
// Abstract base class
class Invoice
{
public:
float sub_total;
void get sub()
{

186

CHAPTERS5 CLASSES

cin >> sub_total;

}

//Virtual Function
virtual float do _math() = 0;

};
class Discount : public Invoice
{
public:
float do_math()
{ //.10% discount
return (sub_total * 1 - (sub_total * .10)); // warning of
narrowing
conversion
}
};
class No_discount : public Invoice {
public:
float do math()
{
return sub_total * 1;
}
};
int main()
{
Discount d;
No_discount n;
cout << "Enter subtotal for discount: \n";
d.get sub();
cout << "Discount amount is: " << d.do_math() << endl;
cout << "Enter subtotal for no discount: ";
n.get sub();
cout << "No Discount cost is: " <<n.do math() << endl;
return 0;
}

187

CHAPTER 6

Inheritance

C++ allows you to build complex software applications in a number of ways. One of the
most common is the object-oriented programming (OOP) paradigm. Classes in C++ are
used to provide a blueprint for objects that contain your data and the operations that can
be carried out on that data.

Inheritance takes this a step further by letting you construct complex hierarchies of
classes. In the previous chapter, we ended with virtual functions, so this chapter will add
to that discussion. As such, suffice to say the C++ language provides various different
features you can use to organize your code in a logical manner via OOP features.

Recipe 6-1. Inheriting from a Class
Problem

You're writing a program that has a natural is-a relationship between objects and would
like to reduce code duplication.

Solution

Inheriting a class from a parent class allows you to add your code to the parent and share
it between multiple derived types.

How It Works

In C++, you can inherit one class from another. The inheriting class gains all the
properties of the base class. Listing 6-1 shows an example of two classes that inherit from
a shared parent class.

189
© J. Burton Browning and Bruce Sutherland 2020

J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_6

CHAPTER 6 INHERITANCE

Listing 6-1. Class Inheritance

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
private:
uint32_t m_NumberOfWwheels{};
public:
Vehicle(uint32_t numberOfWheels)
: m_NumberOfWheels{ numberOfWheels }
{
}
uint32_t GetNumberOfWheels() const
{
return m_NumberOfWheels;
}
};
class Car : public Vehicle
{
public:
Car()
: Vehicle(4)
{
}
};

190

CHAPTER 6 INHERITANCE

class Motorcycle : public Vehicle

{
public:
Motorcycle()
: Vehicle(2)
{
}
};
int main(int argc, char* argv[])
{
Car myCar{};
cout << "A car has " << myCar.GetNumberOfWheels() << " wheels." << endl;
Motorcycle myMotorcycle;
cout << "A motorcycle has " << myMotorcycle.GetNumberOfiheels ()
<< " wheels." << endl;
return 0;
}

The Vehicle class contains a member variable to store the number of wheels the
vehicle has. This value is initialized to 0 by default or is set in the constructor. Vehicle is
followed by another class named Car. The Car class contains only a constructor that is
used to call the constructor for Vehicle. The Car constructor passes the number 4 into
the Vehicle constructor and therefore sets m_NumberOfWheels to 4.

The Motorcycle class also contains only a constructor, but it passes 2 to the Vehicle
constructor. Because both Car and Motorcycle inherit from the Vehicle class, they both
inherit its properties. They both contain a variable to hold the number of wheels, and
they will both have a method to retrieve the number of wheels. You can see this in the
main function, where GetNumberOfliheels is called on both the myCar object and the
myMotorcycle object. Figure 6-1 shows the output generated by this code.

191

CHAPTER 6 INHERITANCE

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe6-1/Listing6-1

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-1/Listing6-15 . /main
A car has 4 wheels.

A motorcycle has 2 wheels.
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-1/Listing6-1% I

Figure 6-1. Output generated by the code in Listing 6-1

The Car class and the Motorcycle class both inherit the properties of Vehicle and
both set the appropriate number of wheels in their constructor.

Recipe 6-2. Controlling Access to Member Variables
and Methods in Derived Classes

Problem

Your derived class needs to be able to access the fields in its parent.

Solution

C++ access modifiers have an effect on the way variables can be accessed in derived
classes. Using the correct access modifier is essential in properly constructing a class
hierarchy that is protected from accidental modification.

How It Works
The public Access Specifier

The public access specifier grants public access to a variable or method in a class. This
applies equally to member variables and methods. Anything can access variables or
methods (functions) if they are flagged as public. You can see this clearly in Listing 6-2.

192

CHAPTER 6 INHERITANCE
Listing 6-2. The public Access Specifier

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
public:
uint32_t m_NumberOfWwheels{};
Vehicle() = default;
};
class Car : public Vehicle
{
public:
Car()
{
m_NumberOfWheels = 4;
}
};
class Motorcycle : public Vehicle
{
public:
Motorcycle()
{
m_NumberOfhheels = 2;
}
};
int main(int argc, char* argv[])
{

Car myCar{};

cout << "A car has " << myCar.m_NumberOfWheels << " wheels." << endl;
myCar.m_NumberOfWheels = 3;
cout << "A car has " << myCar.m_NumberOfhheels << " wheels." << endl;

193

CHAPTER 6 INHERITANCE

Motorcycle myMotorcycle;
cout << "A motorcycle has
<< " wheels." << endl;
myMotorcycle.m NumberOfWheels = 3;

' << myMotorcycle.m NumberOfWheels <<

<< myMotorcycle.m_NumberOfWheels

cout << "A motorcycle has wheels."

<< endl;

return 0;

Any variables with public access can be accessed by a derived class. Both the
Car constructor and the Motorcycle constructor take advantage of this and set the
number of wheels they have appropriately. The downside is that other code can also
access the public member variables. You can see this in the main function, where the
m_NumberOfWheels is read and assigned to both the myCar object and the myMotorcycle
object. Figure 6-2 shows the output generated by this code.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe6-2/Listing6-2

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-2/Listing6-25 ./main
A car has 4 wheels.

A car has 3 wheels.

A motorcycle has 2 wheels.

A motorcycle has 3 wheels.
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe6-2/Listing6-25 I

Figure 6-2. The output generated by Listing 6-2

The private Access Specifier

Instead of making variables public, you can make them private and provide public
accessors to them. Set and Get methods might be used to enforce data integrity (e.g.,
make sure a variable is only given a positive value, a password is a certain length or
complexity, etc.), or for a Get method, it could return a private variable that otherwise
would not be accessible. Listing 6-3 shows the use of a private member variable.

194

CHAPTER 6
Listing 6-3. The private Access Specifier

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
private:
uint32_t m_NumberOfWwheels{};
public:
Vehicle(uint32_t numberOfWheels)
: m_NumberOfWheels{ numberOfWheels }
{
}
uint32_t GetNumberOfWheels() const
{
return m_NumberOfWheels;
}
};
class Car : public Vehicle
{
public:
Car()
: Vehicle(4)
{
}
};
class Motorcycle : public Vehicle
{
public:
Motorcycle()
: Vehicle(2)

INHERITANCE

195

CHAPTER 6 INHERITANCE

{
}
};
int main(int argc, char* argv[])
{
Car myCar{};
cout << "A car has " << myCar.GetNumberOfWheels() << " wheels." << endl;
Motorcycle myMotorcycle;
cout << "A motorcycle has " << myMotorcycle.GetNumberOfWheels()
<< " wheels." << endl;
return 0;
}

Listing 6-3 shows the use of the private access specifier with them NumberOfWheels
variable. The Car and Motorcycle classes can no longer access them_NumberOfWheels
variable directly; therefore, the Vehicle class provides a method to initialize the variable
through its constructor. This makes the classes a little harder to work with but adds the
benefit of not allowing any external code direct access to the member variable. You can
see this in the main function, where the code must get the number of wheels through the
GetNumberOfiheels accessor method.

The protected Access Specifier

The protected access specifier allows for a mix of public and private access specifiers.
It acts like a public specifier for classes that derive from the current class, and it acts
like a private specifier for external code, or the “public interface.” Listing 6-4 shows this
behavior.

Listing 6-4. The protected Access Specifier

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

196

CHAPTER 6
{
protected:
uint32_t m_NumberOfwheels{};
public:
Vehicle() = default;
uint32_t GetNumberOfWheels() const
{
return m_NumberOfWheels;
}
}s
class Car : public Vehicle
{
public:
Car()
{
m_NumberOfhheels = 4;
}
};
class Motorcycle : public Vehicle
{
public:
Motorcycle()
{
m_NumberOfhheels = 2;
}
};
int main(int argc, char* argv[])
{

Car myCar{};
cout << "A car has " << myCar.GetNumberOfWheels() << " wheels.'

Motorcycle myMotorcycle;

INHERITANCE

<< endl;

197

CHAPTER 6 INHERITANCE

cout << "A motorcycle has

<< " wheels." << endl;

<< myMotorcycle.GetNumberOfiheels ()
return O;

Listing 6-4 shows that both Car and Motorcycle can access the m_NumberOfWheels
variable directly from their parent class, Vehicle. Both classes set the m_NumberOfWheels
variable in their constructors. The calling code in the main function doesn’t have access
to this variable and therefore has to call the GetNumberOfiWheels method to be able to
print this value.

Recipe 6-3. Hiding Methods in Derived Classes
Problem

You have a derived class that needs behavior in a method that is different than the
behavior provided by the parent class.

Solution

C++ allows you to hide methods in parent classes by defining a method with the same
signature in the derived class.

How It Works

You can hide a method in a parent class by defining a method with exactly the same
signature in the base class. This example shows how derived classes can use explicit
method hiding to provide functionality that differs from the parent class’s. This is a key
concept to understand when you're using inheritance, because it’s the primary method
employed to differentiate hierarchies of class types.

Listing 6-5 contains a Vehicle class, a Car class, and a Motorcycle class. The Vehicle
class defines a method named GetNumberOfWheels that returns 0. The same method is
defined in the Car class and the Motorcycle class; these versions of the method return 4
and 2, respectively.

198

CHAPTER 6
Listing 6-5. Hiding Methods

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
public:
Vehicle() = default;
uint32_t GetNumberOfWheels() const
{
return O;
}
}s
class Car : public Vehicle
{
public:
Car() = default;
uint32_t GetNumberOfwheels() const
{
return 4;
}
b
class Motorcycle : public Vehicle
{
public:
Motorcycle() = default;
uint32_t GetNumberOfWwheels() const
{
return 2;
}
};

INHERITANCE

199

CHAPTER 6 INHERITANCE

int main(int argc, char* argv[])

{
Vehicle myVehicle{};
cout << "A vehicle has " << myVehicle.GetNumberOfWheels() << " wheels."
<< endl;

Car myCar{};
cout << "A car has " << myCar.GetNumberOfhheels()
' << endl;

<< " wheels.'

Motorcycle myMotorcycle;
cout << "A motorcycle has
' << endl;

<< myMotorcycle.GetNumberOfiWheels()

<< " wheels.'

return 0;

The main function in Listing 6-5 calls the three different versions of
GetNumberOflheels and returns the appropriate value for each. You can see the output
generated by this code in Figure 6-3.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe6-3/Listing6-5

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-3/Listing6-55 . /main
A car has 4 wheels.

A motorcycle has 2 wheels.
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe6-3/Listing6-5% I

Figure 6-3. The output generated by executing the code in Listing 6-5

Accessing these methods directly through objects or pointers to these class types
results in the correct output.

200

CHAPTER 6 INHERITANCE

Note Method hiding doesn’t work properly when you're using polymorphism.
Accessing a derived class through a pointer to a base class results in the method
on the base class being called. This is very rarely the behavior you want. See
Recipe 8-5 for the proper solution when using polymorphism.

Recipe 6-4. Using Polymorphic Base Classes
Problem

You would like to write generic abstract base code that works with pointers to base
classes and that still calls the proper methods in derived classes.

Solution

The virtual keyword allows you to create methods that are designed to be overridden
by derived classes.

How It Works

The virtual keyword tells the C++ compiler that you would like a class to contain a
virtual method table (v-table). A v-table contains lookups for methods that allows the
correct method to be called for a given type even if the object is being accessed through
a pointer to one of its parent classes. Listing 6-6 shows a class hierarchy that uses the
virtual keyword to specify that a method should be included in the class’s v-table.

Listing 6-6. Creating a Virtual Method
#include <cinttypes>

class Vehicle

{
public:

Vehicle() = default;

virtual uint32_t GetNumberOfWheels() const
{

201

CHAPTER 6 INHERITANCE

return 2;
}
};
class Car : public Vehicle
{
public:
Car() = default;
uint32_t GetNumberOfWheels() const override
{
return 4;
}
};
class Motorcycle : public Vehicle
{
public:
Motorcycle() = default;
};

The Car and Motorcycle classes in Listing 6-6 derive from the Vehicle class. The
GetNumberOfiWheels method in the Vehicle class is listed as a virtual method. This causes
any calls to that method through a pointer to be made through the v-table. Listing 6-7
shows a full example with a main function that accesses objects through a Vehicle pointer.

Listing 6-7. Accessing Virtual Methods Through a Base Pointer

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
public:
Vehicle() = default;

202

CHAPTER 6

virtual uint32_t GetNumberOfWheels() const

{
return 2;

}
};
class Car : public Vehicle
{
public:

Car() = default;

uint32_t GetNumberOfWheels() const override

{

return 4;

}
};
class Motorcycle : public Vehicle
{
public:

Motorcycle() = default;
};
int main(int argc, char* argv[])
{

Vehiclex pVehicle{};

Vehicle myVehicle{};
pVehicle = &myVehicle;

INHERITANCE

cout << "A vehicle has " << pVehicle->GetNumberOfiWheels() << " wheels."

<< endl;

Car myCar{};
pVehicle = &myCar;

cout << "A car has " << pVehicle->GetNumberOfiheels() << " wheels." << endl;

203

CHAPTER 6 INHERITANCE

Motorcycle myMotorcycle;

pVehicle = &myMotorcycle;

cout << "A motorcycle has " << pVehicle->GetNumberOfiheels()
' << endl;

<< " wheels.'

return 0;

The main function defines a pointer to a Vehicle object on its first line. This pointer
is then used in each of the cout statements to access the GetNumberOflheels method
for the current object. The Vehicle and Motorcycle objects have the address of the
Vehicle: :GetNumberOfiheels method in their v-tables; therefore, both return 2 for their
number of wheels.

The Car class overrides the GetNumberOflWheels method. This causes Car to replace
the address for Vehicle: : GetNumberOflheels in the lookup table with the address of
Car: :GetNumberOfWheels. As a result, when the same Vehicle pointer is assigned the
address of myCar and subsequently calls GetNumberOfWheels, it calls the method defined
in the Car class and not that defined in the Vehicle class. Figure 6-4 shows the output
generated by the code in Listing 6-7, where you can see that this is the case.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe6-4/Listing6-7

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-4/Listing6-75 . /main
A vehicle has 2 wheels.

A car has 4 wheels.

A motorcycle has 2 wheels.
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe6-4/Listing6-7$ [}

Figure 6-4. The output generated by executing the code in Listing 6-7

The override keyword is used at the end of the GetNumberOflWheels method’s
signature in the Car class. This keyword is a hint to the compiler that you expect this
method to override a virtual method in the parent class. The compiler will throw an error
if you enter the signature incorrectly or if the signature of the method you're overriding is
changed later. This feature is very useful, and I recommend that you use it (although the
override keyword itself is optional).

204

CHAPTER 6 INHERITANCE

Recipe 6-5. Preventing Method Overrides
Problem

You have a method that you don’t wish to be overridden by deriving classes.

Solution

You can use the final keyword to prevent classes from overriding a method.

How It Works

The final keyword informs the compiler that you don’t want a virtual method to be
overridden by a deriving class. Listing 6-8 shows an example of using the final keyword.

Listing 6-8. Using the final Keyword

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
public:
Vehicle() = default;
virtual uint32 t GetNumberOfWheels() const final
{
return 2;
}
};
class Car : public Vehicle
{
public:

Car() = default;

205

CHAPTER 6 INHERITANCE

};

uint32 t GetNumberOfWheels() const override

{

return 4;

class Motorcycle : public Vehicle

{

public:

};

Motorcycle() = default;

int main(int argc, char* argv[])

{

Vehiclex pVehicle{};

Vehicle myVehicle{};

pVehicle = &myVehicle;

cout << "A vehicle has " << pVehicle->GetNumberOfWheels() << " wheels."
<< endl;

Car myCar{};
pVehicle = &myCar;
cout << "A car has " << pVehicle->GetNumberOfhheels() << " wheels." << endl;

Motorcycle myMotorcycle;
pVehicle = &myMotorcycle;
cout << "A motorcycle has " << pVehicle->GetNumberOfiheels()

<< " wheels." << endl;

return 0;

The GetNumberOfWheels method in the Vehicle class uses the final keyword to

prevent derived classes from trying to override it. This causes the code in Listing 6-8 to

fail to compile, because the Car class attempts to override GetNumberOflWheels. You can

comment out this method to get the code to compile.

206

CHAPTER 6 INHERITANCE

The final keyword can also stop further overrides of a method in a longer chain.
Listing 6-9 shows how this is possible.

Listing 6-9. Preventing Overrides in an Inheritance Hierarchy
#include <cinttypes>

class Vehicle

{
public:
Vehicle() = default;
virtual uint32_t GetNumberOfWheels() const
{
return 2;
}
};
class Car : public Vehicle
{
public:
Car() = default;
uint32_t GetNumberOfWheels() const final
{
return 4;
}
};
class Ferrari : public Car
{
public:
Ferrari() = default;
uint32_t GetNumberOfWheels() const override
{
return 5;
}
};

207

CHAPTER 6 INHERITANCE

Vehicle defines a virtual method named GetNumberOfhheels that returns the value 2.
Car overrides this method to return 4 (this example ignores the fact that not all cars have
four wheels) and declares that the method is final. No other classes deriving from Car
are allowed to override the same method. This makes sense for the application if the
requirements only need support for four-wheeled cars. The compiler will throw an error
when it reaches any class that derives from Car or derives from any other class that has
Car in its hierarchy and that tries to override the GetNumberOfWheels method.

Recipe 6-6. Creating Interfaces
Problem

You have a base class method that should not define any behavior but should simply be
overridden by deriving classes.

Solution

You can create pure virtual methods in C++ that don’t define a method body.

How It Works

You can define pure virtual methods in C++ by adding = 0 to the end of the method
signature. Listing 6-10 shows an example.

Listing 6-10. Creating Pure Virtual Methods

#include <cinttypes>
#include <iostream>

using namespace std;

class Vehicle

{
public:

Vehicle() = default;

virtual uint32_t GetNumberOfWheels() const = 0;
};

208

CHAPTER 6 INHERITANCE

class Car : public Vehicle

{
public:
Car() = default;
uint32_t GetNumberOfWheels() const override
{
return 4;
}
}s
class Motorcycle : public Vehicle
{
public:
Motorcycle() = default;
uint32 t GetNumberOfWheels() const override
{
return 2;
}
};
int main(int argc, char* argv[])
{
Vehiclex pVehicle{};
Car myCar{};
pVehicle = &myCar;
cout << "A car has " << pVehicle->GetNumberOfiheels() << " wheels." << endl;
Motorcycle myMotorcycle;
pVehicle = &myMotorcycle;
cout << "A motorcycle has " << pVehicle->GetNumberOfiheels()
<< " wheels." << endl;
return 0;
}

209

CHAPTER 6 INHERITANCE

The Vehicle class defines GetNumberOflWheels as a pure virtual method. This has
the effect of ensuring that an object of type Vehicle can never be created. The compiler
doesn’t allow this because it doesn’t have a method to call for GetNumberOfWheels.

Car and Motorcycle both override this method and can be instantiated. You can see this
occur in the main function. Figure 6-5 shows that the methods return the correct values
for Car and Motorcycle.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe6-6/Listing6-10

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-6/Listing6-105 ./main
A car has 4 wheels.

A motorcycle has 2 wheels.
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe6-6/Listing6-10% I

Figure 6-5. The output generated by executing the code in Listing 6-10

A class that contains a pure virtual method is known as an interface. If a class inherits
from an interface and you wish to be able to instantiate that class, you must override
any pure virtual methods in the parent. It’s possible to derive from an interface and not
override these methods, but that derived class can then only be used as an interface to
further derived classes.

Recipe 6-7. Multiple Inheritance
Problem

You have a class that you wish to derive from more than one parent class.

Solution

C++ supports multiple inheritance.

210

CHAPTER 6 INHERITANCE

How It Works

You can derive a class from multiple parents in C++ using a comma-separated list of
parent classes. Listing 6-11 shows how this can be achieved.

Listing 6-11. Multiple Inheritance

#include <cinttypes>
#include <iostream>

using namespace std;

class Printable

{
public:
virtual void Print() = 0;
b
class Vehicle
{
public:
Vehicle() = default;
virtual uint32_t GetNumberOfWheels() const = 0;
};
class Car
¢ public Vehicle
s public Printable
{
public:

Car() = default;

uint32_t GetNumberOfWheels() const override

{

return 4;

211

CHAPTER 6 INHERITANCE

void Print() override

{

cout << "A car has " << GetNumberOfWheels() << " wheels." << endl;

};

class Motorcycle
¢ public Vehicle
s public Printable

{
public:
Motorcycle() = default;

uint32_t GetNumberOfWheels() const override

{

return 2;

}

void Print() override

{

cout << "A motorcycle has " << GetNumberOfWheels() << " wheels.” << endl;

}s

int main(int argc, char* argv[])

Printablex pPrintable{};

Car myCar{};
pPrintable = &myCar;
pPrintable->Print();

Motorcycle myMotorcycle;
pPrintable = &myMotorcycle;
pPrintable->Print();

return 0;

212

CHAPTER 6 INHERITANCE

The Car and Motorcycle classes both derive from multiple parents. These classes
are now both Vehicles and Printables. You can see the interplay between the two
parents in the overridden Print methods. These methods both call the overridden
GetNumberOfiheels method in Car and Motorcycle. The main function accesses
the overridden Print methods through a pointer to a Printable object, using
polymorphism to call the correct Print method and also the correct GetNumberOfhheels
method in Print. Figure 6-6 shows that the output from the program is correct.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe6-7/Listing6-11

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe6-7/Listing6-11$./main
A car has 4 wheels.

A motorcycle has 2 wheels.
bruce@bruce-vVirtual-Machine:~/Projects/C-Recipes/Recipe6-7/Listing6-11$ I

Figure 6-6. Output showing that multiple inheritance works with
polymorphism

213

CHAPTER 7

The STL Containers

The Standard Template Library (STL) consists of a standard set of functionality that
implementers are required to support. Creating a standard ensures that code can be
used interchangeably on different platforms and operating systems as long as the
supplied implementations conform to that standard. A large part of the standard
defines a set of containers that can be used to store data structures. This chapter looks at
different scenarios where each of the STL containers proves useful.

Note The string container was covered in Chapter 3.

Recipe 7-1. Storing a Fixed Number of Objects
Problem

You have a requirement to store a fixed number of objects in your program.

Solution

C++ provides built-in arrays that can be used for this purpose; however, the STL array
provides a more flexible interface compared to other STL containers.

How It Works

C++ has support for built-in arrays that have existed since the formation of the language.
If you have programmed in C or C++ before, these will be familiar to you. Listing 7-1
shows a standard C-style array.

215
© J. Burton Browning and Bruce Sutherland 2020

J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_7

CHAPTER 7 THE STL CONTAINERS

Listing 7-1. A C-Style Array

#include <cinttypes>
#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

const uint32_t numberOfElements{ 5 };
int32_t normalArray[numberOfElements]{ 10, 65, 3000, 2, 49 };

for (uint32_t i{ 0 }; i < numberOfElements; ++i)

{

cout << normalArray[i] << endl;
}

return 0;

This code shows the use of a C-style array in C++. The array contains five integers,
and the main function has a for loop that is used to iterate the array and print out the
values at each position. It’s also possible to use a range-based for loop to iterate a
C-style array. Listing 7-2 shows how this is done.

Listing 7-2. Using a Range-Based for Loop with a C-Style Array

#include <cinttypes>
#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

const uint32_t numberOfElements{ 5 };
int32_t normalArray[numberOfElements]{ 10, 65, 3000, 2, 49 };

for (autod& number : normalArray)

{

cout << number << endl;

return O;

216

CHAPTER 7 THE STL CONTAINERS

The main function in Listing 7-2 takes advantage of a range-based for loop to iterate
the array. This is a useful construct to use when you have no need for the value of the
index of the array.

Note The range-based for loop in Listing 7-2 uses syntax that looks like a rvalue
reference. This isn’t the case. Head to Chapter 2 if you’re not sure how this code
works or of the difference between an Ivalue and a rvalue.

C-style arrays are useful in many circumstances; however, modern C++ also
provides another version of arrays that can be used with the STL iterators and
algorithms. Listing 7-3 shows how to define an STL array.

Listing 7-3. Using an STL array

#include <array>
#include <cinttypes>
#include <iostream>

int main(int argc, char* argv[])

{
const uint32 t numberOfElements{ 5 };
std::array<int32_t, numberOftElements> stlArray{ 10, 65, 3000, 2, 49 };
for (uint32_t i = 0; i < numberOfElements; ++i)
{
std::cout << stlArray[i] << std::endl;
}
for (auto8& number : stlArray)
{
std::cout << number << std::endl;
}
return O;
}

217

CHAPTER 7 THE STL CONTAINERS

Listing 7-3 shows that an STL array is defined by passing the type stored in the
array and the number of elements it contains into the type template. Once the array
has been defined, it can be used interchangeably with a normal C-style array.

This is because the range-based for loop can iterate both types of array and because
the STL array defines an array operator overload that allows elements to be accessed
using [].

Note The major advantage of using the STL array container over C-style arrays is
that it allows access to STL iterators and algorithms.

Arrays store their objects in a contiguous block of memory. This means that the
address of each array element lies next to each other in memory. This makes them very
efficient for iteration. An array will generally result in excellent cache coherency and as
a result cause fewer stalls as the processor reads from RAM into a local cache. Arrays are
excellent choices for algorithms where performance is paramount and a fixed number of
objects is needed.

Recipe 7-2. Storing a Growing Number of Objects
Problem

Sometimes you will not know at compile time how many objects you need to store in
your array.

Solution

The STL provides the vector template that allows for dynamically growing arrays.

How It Works

The vector works in a very similar way to array. Listing 7-4 shows the definition of a
vector and two styles of for loop.

218

CHAPTER 7 THE STL CONTAINERS

Listing 7-4. Using STL vector

#include <cinttypes>
#include <iostream>
#include <vector>

using namespace std;

int main(int argc, char* argv[])

{
vector<int32 t> stlVector{ 10, 65, 3000, 2, 49 };
for (uint32 t i = 0; i < stlVector.size(); ++i)
{
std::cout << stlVector[i] << std::endl;
}
for (auto8& number : stlVector)
{
std::cout << number << endl;
}
return 0;
}

The major difference between the definitions of a vector and an array is the lack of
asize. As a vector is resizable, setting a limit on the number of elements it can contain
makes little sense. This manifests itself in the traditional for loop in the main function.
You can see that the loop end condition checks for completion by comparing the index
against the value returned from the size method. In this case, size will return 5 as the
vector contains five elements. Listing 7-5 lets you see that a vector can be resized at
runtime unlike an array.

Listing 7-5. Resizing a Vector

#include <cinttypes>
#include <iostream>
#include <vector>

219

CHAPTER 7 THE STL CONTAINERS
using namespace std;

int main(int argc, char* argv[])

{

vector<int32 t> stlVector{ 10, 65, 3000, 2, 49 };

cout << "The size is: " << stlVector.size() << endl;

stlVector.emplace back(50);

cout << "The size is: " << stlVector.size() << endl;

for (auto8& number : stlVector)
{

std::cout << number << endl;

}

return 0;

The resulting output from Listing 7-5 is shown in Figure 7-1.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe7-2/Listing7-5

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-2/Listing7-5% ./main
The size is: 5

The size is: 6

10

65

3000

2

49

50

bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe7-2/Listing7-5$ [}

Figure 7-1. The output generated by Listing 7-5 showing a growing vector

Figure 7-1 shows that the vector has grown from size 5 to size 6 after the call to
emplace_back. The range-based for loop prints out all the values stored in the vector.
You can see that emplace_back has added the value to the end of the vector.

220

CHAPTER 7 THE STL CONTAINERS

The way a vector resizes is implementation defined which means that it’s up to the
vendor creating the library you are using. All implementations operate by using a similar
method. They generally tend to allocate memory for a new array internally that includes
the current size of the vector as well as a variable number of empty slots for new values.
Listing 7-6 contains code that uses the capacity method to determine how many
elements the vector is capable of storing before it will resize.

Listing 7-6. A Resizing vector

#include <cinttypes>
#include <iostream>
#include <vector>

using namespace std;

int main(int argc, char* argv[])
{
vector<int32_t> stlVector
{
1’
)
3)
4’
5,
6)
7,
8)
9)
10,
11,
12,
13,
14,
15,
16
1

221

CHAPTER 7 THE STL CONTAINERS

cout << "The size is: " << stlVector.size() << endl;

cout << "The capacity is: " << stlVector.capacity() << endl;

stlVector.emplace back(17);

cout << "The size is: " << stlVector.size() << endl;
cout << "The capacity is: " << stlVector.capacity() << endl;

for (auto8& number : stlVector)

{

std::cout << number << std::endl;
}
return 0;

The code in Listing 7-6 creates a vector that contains 16 elements. Figure 7-2 shows
the effect adding a new element has on the capacity of the vector.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe7-2/Listing7-6

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-2/Listing7-65 ./main
The size is: 16

The capacity is: 16

The size is: 17

The capacity is: 32

1

W~ L WN

9
10
11
12
13
14
15
16
17
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe7-2/Listing7-6$ [}

Figure 7-2. Output showing the increased capacity of a vector when using
Microsoft Visual Studio 2013 STL

222

CHAPTER 7 THE STL CONTAINERS

Figure 7-2 shows that adding a value to a vector does not result in an increase in size
of one element. Microsoft has decided that their implementation of the STL will increase
the capacity of the vector by 50%. Adding a new element to a vector of size 16 adds
capacity for eight new elements when a single new element is added.

It’s also possible to add elements into a vector at places other than the end. Listing 7-7
shows how the emplace method can be used for this purpose.

Listing 7-7. Adding Elements to Arbitrary Points in a vector

#include <cinttypes>
#include <iostream>
#include <vector>

using namespace std;

int main(int argc, char* argv[])

{
vector<int32_t> stlVector
{
1,
>
3,
4,
5
};
auto iterator = stlVector.begin() + 2;
stlVector.emplace(iterator, 6);
for (auto8& number : stlVector)
{
std::cout << number << std::endl;
}
return 0;
}

223

CHAPTER 7 THE STL CONTAINERS

Listing 7-7 uses an iterator to place the value 6 into the third position of the vector.
This operation increases the capacity of the vector if necessary and shifts all elements
after the position one place to the right. Figure 7-3 shows the output from this operation.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe7-2/Listing7-7
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-2/Listing7-75 ./main

1
2
6
3
4
5
b

ruce@bruce-vVirtual-Machine:~/Projects/C-Recipes/Recipe7-2/Listing7-7$ l

Figure 7-3. The output from Listing 7-7 showing the element inserted into the
third position in the vector

It is also possible to remove elements from a vector. Listing 7-8 shows code that
removes each element of the vector using an iterator to the last element.

Listing 7-8. Removing Elements from a Vector

#include <cinttypes>
#include <iostream>
#include <vector>

using namespace std;

int main(int argc, char* argv[])
{
vector<int32_t> stlVector
{
1’
)
3:
4,
5,
6)
7,

224

CHAPTER 7 THE STL CONTAINERS

9)
10,
11,
12,
13,
14,
15,
16
}s

cout << "The size is:

<< stlVector.size() << endl;

cout << "The capacity is:

for (auto8& number : stlVector)

{
std::cout << number << ", ";

}

while (stlVector.size() > 0)

{
auto iterator = stlVector.end() - 1;
stlVector.erase(iterator);

}

cout << endl << endl << "The size is:
cout << "The capacity is: "

for (auto8& number : stlVector)
{

std::cout << number << ", ";

}

std::cout << std::endl;

return 0;

The whileloop in the main function of Listing 7-8 erases each element from the

<< stlVector.capacity() << endl << endl;

<< stlVector.size() << endl;
<< stlVector.capacity() << endl << endl;

vector one by one. This will change the size of the vector but not the capacity. Listing 7-9

adds code to reduce the capacity of the vector.

225

CHAPTER 7 THE STL CONTAINERS

Listing 7-9. Reducing the Capacity of a vector

#include <cinttypes>
#include <iostream>
#include <vector>

using namespace std;

int main(int argc, char* argv[])
{
vector<int32_t> stlVector
{
1)
)
3:
4)
5:
6,
7)
8,
9;
10,
11,
12,
13,
14,
15,
16
15
while (stlVector.size() > 0)
{
auto iterator = stlVector.end() - 1;
stlVector.erase(iterator);

if ((stlVector.size() * 2) == stlVector.capacity())

{
stlVector.shrink to fit();

226

CHAPTER 7 THE STL CONTAINERS

<< stlVector.size() << endl;
<< stlVector.capacity() << endl << endl;

cout << "The size is:

cout << "The capacity is:

}

return 0;

As the while loop removes elements, it also checks for when the size of the vector
reaches half of the capacity. When this condition is met, the shrink_to_fit method is
called. Figure 7-4 shows the effect shrink_to_fit has on the capacity of the vector.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe7-2/Listing7-9

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-2/Listing7-95 ./main
The size is: 15

The capacity is: 16
The size is: 14

The capacity is: 16
The size is: 13

The capacity is: 16
The size is: 12

The capacity is: 16
The size is: 11

The capacity is: 16
The size is: 10

The capacity is: 16
The size is: 9

The capacity is: 16
The size is: 8

The capacity is: 8
The size is: 7

The capacity is: 8
The size is: 6

The capacity is: 8
The size is: 5

The capacity is: 8
The size is: 4

The capacity is: 4
The size is: 3

The capacity is: 4
The size is: 2

The capacity is: 2
The size is: 1

The capacity is: 1
The size is: ©

The capacity is: 1
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-2/Listing7-95 [}

Figure 7-4. The effect of shrink to fit onavector's capacity

227

CHAPTER 7 THE STL CONTAINERS

Resizing a vector, either up or down, comes with a performance cost. New memory
has to be allocated, and the elements in the internal array have to be transferred from
one to another. Two things are recommended in this scenario:

¢ Work out the maximum number of elements that can be added to
the vector at runtime and use the reserve method to allocate the
requisite amount of memory required only once.

e Determine if you can avoid using a vector altogether and use an
array to create a pool of objects. This can be achieved by reusing
elements in the array using a scheme such as a least recently used
algorithm.

Recipe 7-3. Storing a Set of Elements That Is
Constantly Altered

Problem

You have a set of data where you will be constantly entering and removing elements to
and from arbitrary positions.

Solution

The STL provides two containers that offer efficient insertion and deletion from the
middle of the container. These are the 1ist and forward_list containers.

How It Works

The array and vector containers store elements in contiguous memory. This provides
for fast iteration over the set as they play into the strengths of the modern CPU
architectures. The array container cannot be added to or removed from at runtime;
elements can only be altered. The vector container can have elements added and
removed, but this requires a new memory allocation and the transfer of all elements
from the old memory block to the new memory block.

228

CHAPTER 7 THE STL CONTAINERS

The list containers on the other hand do not store elements in contiguous blocks of
memory. Instead, each element in the list is stored in an independent node that contains
a pointer to the next and last elements in the list. This allows bidirectional traversal in
the 1ist container. A forward list only stores a pointer to the next element, not the
last, and can therefore only be traversed front to back. Adding and removing elements
from a list becomes a trivial exercise in updating the pointers that reference the next and
last nodes in the list structure.

This noncontiguous storage results in a performance penalty when traversing the
list. The CPU cache cannot always preload the next element in the list; therefore, these
structures should be avoided for sets of data that are regularly traversed. Their advantage
comes from the rapid insertion and deletion of nodes. Listing 7-10 shows a list
container in use.

Listing 7-10. Usinga list

#include <cinttypes>
#include <iostream>
#include <list>

using namespace std;

int main(int argv, char* argc[])

{
list<int32_t> myList{ 1, 2, 3, 4, 5 };

myList.emplace front(6);
myList.emplace back(7);

auto forwardIter = myList.begin();
++forwardIter;

++forwardIter;
myList.emplace(forwardIter, 9);

auto reverselter = mylList.end();
--reverselter;

--reverselter;

--reverselter;
myList.emplace(reverselter, 8);

229

CHAPTER 7 THE STL CONTAINERS

for (auto8® number : mylList)

{

cout << number << endl;
}
return 0;

The list container used in the main function of Listing 7-10 allows for forward and
backward traversal from the iterators returned from begin or end. Figure 7-5 contains
the output generated by traversing the 1ist where you can see the arbitrary order of the
added elements.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe7-3/Listing7-10
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-3/Listing7-105 ./main

6
1
9
2
3
8
4
5
7
b

ruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-3/Listing7-10% [|

Figure 7-5. The output when traversing the 1ist container in Listing 7-10

Listing 7-11 shows similar code with a forward list.

Listing 7-11. Using a forward list

#include <cinttypes>
#include <forward list>
#include <iostream>

using namespace std;

230

CHAPTER 7

int main(int argv, char* argc[])

{

forward list<int32 t> myList{ 1, 2, 3, 4, 5 };
myList.emplace front(6);

auto forwardIter = myList.begin();
++forwardIter;

++forwardIter;

myList.emplace after(forwardIter, 9);

for (autod& number : mylList)

{

cout << number << endl;
}
return 0;

THE STL CONTAINERS

There are a few differences in Listing 7-11 when compared to Listing 7-10.

A forward_list does not contain the methods emplace and emplace_back. It does

contain emplace front and also emplace_after which allow you to add elements to

the beginning of the forward list or after a specific position in the forward list.

Recipe 7-4. Storing Sorted Objects in a Container
That Enables Fast Lookups

Problem

You have a large collection of objects that you would like to be ordered and frequently

have to look up to find specific information.

Solution

The STL provides the set and map containers that can automatically sort their objects

and provide very fast search characteristics.

231

CHAPTER 7 THE STL CONTAINERS

How It Works

The set and map containers are associative containers. This means that they associate
their data elements with a key. In the case of a set the key is the object or value itself,
and for a map the key is a value supplied along with an object or value.

These containers are implemented using binary search trees, and this is why they
offer automatic sorting and fast search characteristics. Binary search trees operate by
comparing keys for objects. If an object’s key is less than that of the current node, then it
is added to the left; if it is greater, it goes to the right.

Note In fact, you can provide a function to both containers that allows you to
specify the sort order for yourself.

Listing 7-12 shows the creation of a set that orders its elements from smallest to
largest.

Listing 7-12. Using a set

#include <cinttypes>
#include <iostream>
#include <set>
#include <string>

using namespace std;

class SetObject

{
private:
string m_Name;
int32_t m_Key{};
public:

SetObject(int32_t key, const string& name)
: m_Name{ name }
, m _Key{ key }

232

CHAPTER 7 THE STL CONTAINERS

SetObject(int32_t key)
: SetObject(key, "")

{
}
const string® GetName() const
{
return m_Name;
}
int32_t GetKey() const
{
return m_Key;
}
bool operator<(const SetObject® other) const
{
return m_Key < other.m_Key;
}
bool operator>(const SetObject® other) const
{
return m_Key > other.m_Key;
}
}s
int main(int argv, char* argc[])
{
set<SetObject> mySet
{
{6, "Six" },
{ 3, "Three" },
{ 4, "Four" },
{1, "One" },
{ 2, "Two" }
};

for (autod& number : mySet)

233

CHAPTER 7 THE STL CONTAINERS

{

cout << number.GetName() << endl;

}

auto iter = mySet.find(3);
if (iter !'= mySet.end())

{

cout << "Found: " << iter->GetName() << endl;
}
return 0;

The set defined in the main function of Listing 7-12 is initialized with five SetObject
instances. Each of these instances stores an integer key and a string representation of
that key. By default, a set is initialized to order the elements it contains from lowest to
highest. You can see this proven in Figure 7-6.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe7-4/Listing7-12

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-4/Listing7-125 ./main
One

Two

Three

Four

Six

Found: Three
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-4/Listing7-12$ I

Figure 7-6. The output generated by the code in Listing 7-12

The ordering of class objects was achieved using operator overloading. The SetObject
class overloads the < and > operators, and this enables the class to be used with these
operators. When adding a new element, the set will call a comparison function that
determines the order the elements should appear in the set. The default case calls for
the use of the < operator on the elements. As you can see, the SetObject class compares the
m_Key variables in the operators to determine the order in which they should be stored.

Listing 7-13 shows how you can alter the default set to order the elements from
highest to lowest.

234

CHAPTER 7 THE STL CONTAINERS

Listing 7-13. Ordering Elements in a set from Highest to Lowest

#include <cinttypes>
#include <functional>
#include <iostream>
#include <set>
#include <string>

using namespace std;

class SetObject

{
private:
string m_Name;
int32_t m_Key{};
public:

SetObject(int32_t key, const string& name)
: m_Name{ name }
, m _Key{ key }

{

}

SetObject(int32_t key)
: SetObject(key, "")

{
}
const string& GetName() const
{
return m_Name;
}
int32_t GetKey() const
{
return m_Key;
}

235

CHAPTER 7 THE STL CONTAINERS

};

bool operator<(const SetObject® other) const
{

return m_Key < other.m_Key;

}

bool operator>(const SetObject® other) const
{

return m_Key > other.m Key;

using namespace std;

int

{

236

main(int argv, char* argc[])

set<SetObject, greater<SetObject>> mySet
{

{6, "Six" },
{ 3, "Three" },
{ 4, "Four" },
{1, "One" },
{2, "Two" }
15
for (autod& number : mySet)
{
cout << number.GetName() << endl;
}

auto iter = mySet.find(3);
if (iter != mySet.end())

{

cout << "Found: " << iter->GetName() << endl;
}
return 0;

CHAPTER 7 THE STL CONTAINERS

The only difference between Listing 7-12 and Listing 7-13 is the addition of a
second template parameter to set. Listing 7-13 supplies the greater template from the
functional header. This template will create a method from a function that can call the
> operator on two SetObject instances. You can imagine that the default set had an
implied less parameter:

set<SetObject, less<SetObject>>

Figure 7-7 shows the resulting output from a set with elements ordered from highest
to lowest.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe7-4/Listing7-13

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-4/Listing7-135 ./main
Six

Four

Three

Two

One

Found: Three
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-4/Listing7-13$ I

Figure 7-7. The set ordered from highest to lowest using greater
Listing 7-14 shows how you can add elements to a set after initialization.

Listing 7-14. Adding Elements to a set

#include <cinttypes>
#include <functional>
#include <iostream>
#include <set>
#include <string>

using namespace std;

class SetObject
{

private:
string m_Name;
int32_t m_Key{};

237

CHAPTER 7 THE STL CONTAINERS

public:
SetObject(int32_t key, const string& name)
: m_Name{ name }
, m_Key{ key }
{

}

SetObject(int32_t key)
: SetObject(key, "")

{
}
const string® GetName() const
{
return m_Name;
}
int32_t GetKey() const
{
return m_Key;
}

bool operator<(const SetObject8 other) const
{

return m_Key < other.m Key;

}

bool operator>(const SetObject& other) const
{

return m_Key > other.m Key;

}
}s
int main(int argv, char* argc[])
{

set<SetObject, greater<SetObject>> mySet
{

238

CHAPTER 7 THE STL CONTAINERS

{6, "Six" },
{ 3, "Three" },
{ 4, "Four" },
{ 1, "One" },
{2, "Two" }
};
for (autod& number : mySet)
{
cout << number.GetName() << endl;
}

cout << endl;
mySet.emplace(SetObject(5, "Five"));

for (autod& number : mySet)
{

cout << number.GetName() << endl;

}

cout << endl;

auto iter = mySet.find(3);
if (iter !'= mySet.end())

{

cout << "Found: " << iter->GetName() << endl;
}
return 0;

The emplace method can be used to add new elements to a set as in Listing 7-14.
Figure 7-8 shows that the new element was inserted into the set in the correct position
given the greater ordering.

239

CHAPTER 7 THE STL CONTAINERS

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe7-4/Listing7-14

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-4/Listing7-145 ./main
Six

Four

Three

Two

One

Six
Five
Four
Three
Two
One

Found: Three
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe7-4/Listing7-14$ [

Figure 7-8. Shows a new element has been added to the set in the correct position

The map container is very similar to the set container except for the fact that the
key is stored independently of the object value. Listing 7-15 shows code to create a map
container.

Listing 7-15. Creating a map

#include <cinttypes>
#include <functional>
#include <iostream>
#include <map>
#include <string>

using namespace std;

class MapObject
{

private:
string m_Name;

public:

240

};

int

CHAPTER 7 THE STL CONTAINERS

MapObject(const stringd name)
: m_Name{ name }

{
}
const string® GetName() const
{
return m_Name;
}
main(int argv, char* argc[])

map<int32_t, MapObject, greater<int32_t>> myMap

{
pair<int32_t, MapObject>(6, MapObject("Six")),
pair<int32_t, MapObject>(3, MapObject("Three")),
pair<int32_t, MapObject>(4, MapObject("Four")),
pair<int32_t, MapObject>(1, MapObject("One")),
pair<int32_t, MapObject>(2, MapObject("Two"))

};

for (autod& number : myMap)

{
cout << number.second.GetName() << endl;

}

cout << endl;
myMap.emplace(pair<int32_t, MapObject>(5, MapObject("Five")));

for (autod& number : myMap)
{

cout << number.second.GetName() << endl;

}

cout << endl;

241

CHAPTER 7 THE STL CONTAINERS

auto iter = myMap.find(3);
if (iter != myMap.end())

{

cout << "Found: " << iter->second.GetName() << endl;
}
return 0;

Listing 7-15 achieves exactly the same result as the code in Listing 7-14 using a map
in place of a set. The MapObject class does not contain a key, nor does it contain any
overloaded operators to compare the objects instantiated using this class. That’s because
the key for a map is stored independently of the data. Elements are added to a map using
the pair template, and each pair associates a key value to an object.

The code for a map is more verbose than that for a set; however, the objects
contained can be less complex. A map is a good candidate over a set when the key is
not related to the rest of the data in the class. Objects that have a natural order and are
already comparable are good candidates for storing in a set.

The iterator to a map is also a pair. The MapObject it contains can be retrieved using
the second field on the iterator, while first stores the key value. Iterating over a map
or a set is a slow operation as the elements are not contained in contiguous memory.
The benefit of associative containers is mostly their fast lookups, while the ordering is a
secondary benefit that should only be used sparingly for performance reasons.

Recipe 7-5. Storing Unsorted Elements
in a Container for Very Fast Lookups

Problem

You have a set of data that does not need to be sorted but will be used for frequent
lookups and data retrieval.

Solution

The STL provides the unordered_set and unordered_map containers for this purpose.

242

CHAPTER 7 THE STL CONTAINERS

How It Works

The unordered_set and unordered map containers are implemented as hash maps.
A hash map provides for constant time insertion, removal, and searching of objects.
Constant time means that the operations will take the same length of time regardless of
how many elements are in the container.

As the unordered set and unordered map containers are hash maps, they rely on
a hashing function being supplied that can convert your data into a numeric value.
Listing 7-16 shows how you can create a set to store user-defined classes that can be
hashed and compared.

Listing 7-16. Using an unordered_set

#include <cinttypes>
#include <functional>
#include <iostream>
#include <string>
#include <unordered set>

using namespace std;
class SetObject;

namespace std

{
template <>
class hash<SetObject>
{
public:
template <typename... Args>
size t operator()(Argsd&... setObject) const
{
return hash<string>()((forward<Args...>(setObject...)).GetName());
}
}s
}

243

CHAPTER 7 THE STL CONTAINERS

class SetObject
{

private:
string m_Name;
size t m Hash{};

public:
SetObject(const string& name)
: m_Name{ name }
, m_Hash{ hash<SetObject>()(*this) }
{

}

const string® GetName() const

{

return m_Name;

}

const size t& GetHash() const

{

return m_Hash;

}

bool operator==(const SetObject& other) const
{

return m_Hash == other.m Hash;

};

int main(int argv, char* argc[])

unordered_set<SetObject> mySet;
mySet.emplace("Five");
mySet.emplace("Three");
mySet.emplace("Four");
mySet.emplace("One");
mySet.emplace("Two");

244

CHAPTER 7 THE STL CONTAINERS

cout << showbase << hex;

for (autod& number : mySet)
{

cout << number.GetName() << " - " << number.GetHash() << endl;

}

auto iter = mySet.find({ "Three" });
if (iter != mySet.end())

{
cout << "Found: " << iter->GetName() << " with hash: "
<< iter->GetHash() << endl;

}

return 0;

Using an unordered_set to store class objects requires some difficult to understand
code. First off, we have a partial specialization for the hash template. This allows us to
create a function that is capable of creating a hash value for the SetObject class. This is
achieved by passing a SetObject instance and calling the STL hash function for a string.
The SetObject instance is passed to the () operator using a universal reference and the
forward function to achieve perfect forwarding.

Note Templates are covered in Chapter 9; and universal references are covered
along with Ivaues, rvalues, and perfect forwarding in Chapter 2.

The SetObject class requires an overloaded == operator to function properly in an
unordered set. The code would not compile if this was missing. The m_Hash member
variable is not needed. I simply included this to show you the values hash creates and
how you can call the hash function for yourself. If the m_Hash variable did not exist, you
could compare the m_Name strings for equality. Figure 7-9 shows the resulting output
generated by this code.

245

CHAPTER 7 THE STL CONTAINERS

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe7-5/Listing7-16
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe7-5/Listing7-16S5 ./main
Two - 0xfbc12e62b0806cO9d
One - 0x4507392ecc2d4a7d
Four - Ox5a35e8b1129ec8a7
Three - 0x6431c54b8d6100a4
Five - 0xbe47095c1663fb3c
Found: Three with hash: 0x6431c54b8d6100a4
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe7-5/Listing7-165% I

Figure 7-9. The output generated by Listing 7-16

An unordered _map does not come with the difficulty of creating your own hash
function so long as you use a type for the key that the STL can already hash. Listing 7-17
shows an unordered_map that uses an integer as the key.

Listing 7-17. Using unordered map

#include <cinttypes>
#include <iostream>
#include <string>
#include <unordered map>

using namespace std;

class MapObject
{

private:
string m_Name;

public:
MapObject(const stringd name)
: m_Name{ name }

246

CHAPTER 7 THE STL CONTAINERS

const string& GetName() const

{

return m_Name;

I

int main(int argv, char* argc[])

unordered map<int32_t, MapObject> myMap;
myMap.emplace(pair<int32_t, MapObject>(5, MapObject("Five")));
myMap.emplace(pair<int32_t, MapObject>(3, MapObject("Three")));
myMap.emplace(pair<int32_t, MapObject>(4, MapObject("Four")));
myMap.emplace(pair<int32_t, MapObject>(1, MapObject("One")));
myMap.emplace(pair<int32_t, MapObject>(2, MapObject("Two")));

cout << showbase << hex;

for (autod& number : myMap)
{

cout << number.second.GetName() << endl;

}

auto iter = myMap.find(3);
if (iter != myMap.end())
{

cout << "Found: " << iter->second.GetName() << endl;

}

return 0;

Listing 7-17 shows that the unordered_map container stores key-value pairs as its
elements. The first field of the pair stores the key, while the second field of the pair
stores the value, in this case an instance of MapObject.

247

CHAPTER 7 THE STL CONTAINERS

Recipe 7-6. Using C++20 Designated Initialization
Problem

You wish to experiment with the new C++20 feature of Designated Initialization.

Solution

Visual Studio 2019 version 16.4 or higher revisions support the new C++ feature of
Designated Initialization. You will need to go into the project settings though and
select C++ Language Standard C++ Latest Working Draft and not ISO C++17 since older
versions do not support this feature.

How It Works

This feature introduces a new syntax that initializes an aggregate by specifying pairs of
public data member designators followed by two ways to initialize object properties, via
direct initialization or braces. The C++20 proposal lists items to justify this new feature:

1) To increase readability and explicitness. Data members are given

names.

2) More flexible and sustainable aggregate initialization. If a data
member is not directly initialized, it receives a default value. Items

must be initialized in order however.

3) Increased interoperability between C and C++. By being
compatible with C Designated Initialization, C++ is more
interoperable with C code.

Try out the following code, using Visual Studio 2019 16.4 or higher, to see this feature

in operation.

Listing 7-18. Designated Initialization in C++ 20

//Designated Initialization C++ 20

//Don't forget to set Visual Studio 19 to C++ Latest working draft C++ version
// 20 and not ISO 17!

#include <iostream>

248

CHAPTER 7 THE STL CONTAINERS

#include <string>
using namespace std;

struct person { string name; int age; int weight; float height; };

int main()

{
//Two ways to set values equal initializers or via brace initializers.
person bill{ .name{"Bill"}, .age = 22, .weight = 180, .height{6.2} };
// you get an error if designator order does not match declaration order
person sally{ .name= "Sally", .age = 19, .weight = 120 };
// var. height initialized to 0 since left out

//print data
cout << "Person " << bill.name << " has a height of " << bill.height << endl;
cout << "Person " << sally.name << " has a height of " << sally.height << endl;

return 0;

249

CHAPTER 8

The STL Algorithms

The STL provides a set of algorithms that can be used along with the containers that
it also supplies. These algorithms all work with iterators. An iterator is an abstraction
mechanism that allows traversal behavior on many different STL collections. This
chapter covers iterators and some of different algorithms along with their uses.

Recipe 8-1. Using an Iterator to Define a Sequence
Within a Container

Problem

You have an STL container and would like to mark a sequence within that container that
begins and ends at certain points.

Solution

The STL provides iterators that work with all containers and can be used to denote the
beginning and end of a sequence within a container. The sequence can include every
node in the container, or it can include a subset of the nodes in the container.

How It Works

Iterators are designed to work in a similar manner to pointers. Their syntax turns out to
be very similar. You can see the use of iterators in Listing 8-1.

251
© J. Burton Browning and Bruce Sutherland 2020

J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_8

CHAPTER 8 THE STL ALGORITHMS

Listing 8-1. Using an iterator with a vector

#include <cinttypes>
#include <iostream>
#include <vector>

using namespace std;

int main(int arcg, charx argv[])
{
using IntVector = vector<int32_t>;
using IntVectorIterator = IntVector::iterator;

IntVector myVector{ o, 1, 2, 3, 4 };
for (IntVectorIterator iter = myVector.begin();
iter != myVector.end(); ++iter)

{

cout << "The value is: " << xiter << endl;

}

return 0;

A vector of int type is created in the main function in Listing 8-1. A type alias is used
to make a new type of IntVector to represent this type of collection. A second alias is
used to represent the type of the iterator that is used with this collection. You can see
that the iterator type is accessed through the initial vector type. This is necessary as
the iterator must also operate on the same type of objects that the vector itself operates
with. Including the iterator type within the vector type allows you to specify the type to
operate on, in this case int32 _t, at the same time for both.

The iterator type is used to get references to the beginning and the end of the
myVector collection in the for loop. The begin and end methods of a vector return
iterators. A collection is said to be empty if the iterator denoting the beginning of
the collection is equal to the iterator denoting the end of the collection. This is the first
property that iterators share in common with pointers; they are comparable.

252

CHAPTER 8 THE STL ALGORITHMS

The iter variable in the forloop is initialized to the value returned by the
vector: :begin method. The for loop executes until the iter variable is equal to the
iterator returned by the vector: :end method. This shows that sequences of values in a
collection can be represented by two iterators, one at the beginning of a sequence and
one at the end of a sequence. An iterator provides an increment operator that allows
the iterator to be moved to the next element in the sequence. This is how the iter
variable in the for loop can be initialized to the iterator returned by begin and can be
tested against end until the sequence traversal has been completed. This also happens to
be another property that iterators share with pointers: an increment or decrement will
move the iterator to the next or last element in a sequence.

Note Not all iterators support increment and decrement operations. You'll see
some situations where that is the case in the following paragraphs.

The last operation that is important to cover with an iterator is the dereference
operator. You may be familiar with this from standard pointer operations, and this is
the last property that iterators share with pointers. You can see from Listing 8-1 that the
dereference operator is used to retrieve the value represented by the iterator. In this
example, the dereference is used to retrieve each iterator from the collection to be sent to
the console. Figure 8-1 shows that this is the case.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe8-1/Listing8-1

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe8-1/Listing8-15 ./main
The value is: 0

The value is: 1

The value is: 2

The value is: 3

The value is: 4
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe8-1/Listings-1$ [}

Figure 8-1. The output from Listing 8-1 when the myVector collection is traversed

253

CHAPTER 8 THE STL ALGORITHMS

Trying to print out the iterator without using the dereference operator would have
resulted in a compilation error as the cout: : << operator does not include support for
iterator types.

The code from Listing 8-1 is using a standard forward iterator. This type of iterator
provides non-const access to each element in the container. Listing 8-2 shows the
implication of this attribute.

Listing 8-2. Using Non-const Iterators

#include <cinttypes>
#include <iostream>
#include <vector>

using namespace std;

int main(int arcg, charx argv[])

{
using IntVector = vector<int32_t»;
using IntVectorIterator = IntVector::iterator;
IntVector myVector(5, 0);
int32_t value{ 0 };
for (IntVectorIterator iter = myVector.begin(); iter != myVector.end();
++iter)
{
*iter = valuet+;
}
for (IntVectorIterator iter = myVector.begin(); iter != myVector.end();
++iter)
{
cout << "The value is: " << xiter << endl;
}
return O;
}

254

CHAPTER 8 THE STL ALGORITHMS

If you were to compare Listing 8-2 to Listing 8-1, you would see that the initialization
of the myVector collection is handled in a different way. Listing 8-2 initializes the vector
to contain five copies of the value 0. A for loop then walks the vector and assigns
the post-incremented value variable to each position in myVector using the iterator
dereference operator. This is possible due to the non-const nature of the iterator type.
If you wish to use an iterator that you know should not have write access to its value,
then you can use a const_iterator as shown in Listing 8-3.

Listing 8-3. Using a const_iterator

#include <cinttypes>
#include <iostream>
#include <vector>

using namespace std;

int main(int arcg, charx argv[])

{

using IntVector = vector<int32_t>;
using IntVectorIterator = IntVector::iterator;
using ConstIntVectorIterator = IntVector::const_iterator;

IntVector myVector(5, 0);

int32_t value{ 0 };

for (IntVectorIterator iter = myVector.begin(); iter != myVector.end();
++iter)

xiter = value++;

}

for (ConstIntVectorIterator iter = myVector.cbegin(); iter != myVector.
cend(); ++iter)

cout << "The value is: " << xiter << endl;

}

return 0;

255

CHAPTER 8 THE STL ALGORITHMS

Listing 8-3 uses the vector: :cbegin and vector: : cend methods in the second for
loop to gain access to the elements of myVector without providing write access. Any
attempt to assign values to a const_iterator results in a compile error being thrown
when you try to build your program. The iterator and const_iterator types provided
by C++ collections are both examples of forward iterators. That means that they both
traverse the collection in the order you would suspect, from beginning to end. STL
collections also supply support for the reverse_iterator and const_reverse iterator
types. These allow you to traverse your sequence backward. Listing 8-4 shows the use of
areverse_ iterator to initialize the myVector collection from highest to lowest.

Listing 8-4. Initializing myVector Using a reverse iterator

#include <cinttypes>
#include <iostream>
#include <vector>

using namespace std;

int main(int arcg, charx argv[])

{

using IntVector = vector<int32_t>;

using IntVectorIterator = IntVector::iterator;
using ConstIntVectorIterator = IntVector::const iterator;

using ReverseIntVectorIterator = IntVector::reverse iterator;
using ConstReverseIntVectorIterator = IntVector::const reverse iterator;

IntVector myVector(5, 0);

int32 t value { 0 };

for (ReverseIntVectorIterator iter = myVector.rbegin(); iter !=
myVector.rend(); ++iter)

xiter = value++;

256

CHAPTER 8 THE STL ALGORITHMS

for (ConstIntVectorIterator iter = myVector.cbegin(); iter != myVector.
cend(); ++iter)

{

cout << "The value is: " << xiter << endl;
}
return O;

Listing 8-4 shows that the reverse_iterator should be used with the rbegin and
rend methods supplied by vector. Incrementing a reverse_iterator causes it to move
backward through the collection. Figure 8-2 shows that the myVector collection has
stored the values in reverse order.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe8-1/Listing8-4

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe8-1/Listing8-45 ./main
The value is: 4

The value is: 3

The value is: 2

The value is: 1

The value is: 0
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe8-1/Listings-4$ [}

Figure 8-2. The values from myVector in reverse order

The output in Figure 8-2 can also be achieved using the code in Listing 8-5 which
uses a const_reverse iterator to print the values.

Listing 8-5. Using a const_reverse_ iterator to Print myVector in Reverse

#include <cinttypes>
#include <iostream>
#include <vector>

using namespace std;

257

CHAPTER 8 THE STL ALGORITHMS

int

{

main(int arcg, charx argv[])

using IntVector = vector<int32_t>;

using IntVectorIterator = IntVector::iterator;
using ConstIntVectorIterator = IntVector::const_iterator;

using ReverselIntVectorIterator = IntVector::reverse iterator;
using ConstReverseIntVectorIterator = IntVector::const reverse iterator;

IntVector myVector(5, 0);

int32_t value{ 0 };

for (IntVectorIterator iter = myVector.begin(); iter != myVector.end();
++iter)

xiter = value++;

}

for (ConstReverseIntVectorIterator iter = myVector.crbegin();
iter != myVector.crend();

++iter)
{

cout << "The value is: " << xiter << endl;
}
return 0;

Listing 8-5 uses const_reverse_iterator along with the crbegin and crend

methods to walk the collection from last to first and print the values in reverse order.

Iterators will play an important part in the rest of this chapter as they are used as the

input to the algorithms supplied by the STL.

258

CHAPTER 8 THE STL ALGORITHMS

Recipe 8-2. Calling a Function on Every Element
in a Container

Problem

You have a container and would like a simple method to call a function on every element.

Solution

The STL provides the for_each function that takes a beginning iterator, an ending
iterator, and a function to call on each element between the two.

How It Works

The for_each function can be passed two iterators. These iterators define the beginning
point and the end point in the container that should be traversed. The third parameter
is a function that should be called for each element. The element itself is passed into the
function. Listing 8-6 shows a use of the for_each function.

Listing 8-6. The for_each Algorithm

#include <algorithm>
#include <cinttypes>
#include <iostream>
#include <vector>

using namespace std;

int main(int argc, charx argv[])

{
vector<int32_t> myVector
{
1)
2’
3;
4)
5
}s

259

CHAPTER 8 THE STL ALGORITHMS

for_each(myVector.begin(), myVector.end(),
[1(int32_t value)

{
cout << value << endl;
D
return O;

The code in Listing 8-6 creates a vector with five elements, the numbers 1 through 5.
The for_each function is passed the iterators returned by the begin and end methods to
define the range of values that should be passed to the function supplied in parameter 3.
Parameter 3 is an unnamed function or a lambda.

The square braces of the lambda denote a capture list. This list is used to allow the
lambda access to variables that exist in the function where it is created. In this case, we
do not capture any variables from the function. The brackets then denote the parameter
list. The lambda in Listing 8-1 takes an int32_t as a parameter as that is the type stored
in the vector. The curly braces denote the function body just as they do with standard
function bodies. Executing this code results in the output shown in Figure 8-3.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe8-2/Listing8-6
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe8-2/Listing8-65 ./main

1
2
3
4
5
b

ruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe8-2/Listing8-6% I

Figure 8-3. The output generated by the for _each and lambda in Listing 8-6

This output is generated because the for_each algorithm passes the integer from
each position in myVector into the function supplied, in this case a lambda.

260

CHAPTER 8 THE STL ALGORITHMS

Recipe 8-3. Finding the Maximum and Minimum
Values in a Container

Problem

Occasionally you will want to find the largest or smallest value in a container.

Solution

The STL provides algorithms that allow you to find both the largest and smallest values
in an STL container. These are the min_element and max_element functions.

How It Works

Finding the Minimum Value in a Container

The min_element function operates by taking an iterator to the beginning and the end
of a given sequence. It walks this sequence and finds the minimum value contained in
that sequence. Listing 8-7 shows this algorithm being used.

Listing 8-7. Using the min_element Algorithm

#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

int main(int argc, charx argv[])

{
vector<int> myVector{ 4, 10, 6, 9, 1 };
auto minimum = min_element(myVector.begin(), myVector.end());
cout << "Minimum value: " << sminimum << std::endl;
return O;
}

261

CHAPTER 8 THE STL ALGORITHMS

In this case, you can see that a vector is being used to store integer elements. The
min_element function is passed the iterator that denotes the beginning and the end
of the sequence contained by the vector. This algorithm returns an iterator to the
element that contains the smallest value. I'm using auto here to avoid having to write out
the entirety of the iterator’s type (which would be vector<int>::iterator). It is clear
that an iterator is returned when looking at the line that outputs the value. The pointer
dereference operator is required to retrieve the integer value from the iterator. You can
see the output generated by the code in Figure 8-4.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe8-3/Listing8-7

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe8-3/Listing8-75 ./main
Minimum value: 1
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe8-3/Listings-7$ [}

Figure 8-4. The output from Listing 8-7 showing the retrieved minimum value

The container in Listing 8-7 shows a trivial case where the container stores
integer values. This case is trivial as two int variables are already comparable using
the < operator. You can use min_element with your own classes by providing an
overloaded < operator in your class. You can see an example of this in Listing 8-8.

Listing 8-8. Usingmin_element in Conjunction with a class That Contains a
< Operator

#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

class MyClass
{

262

CHAPTER 8 THE STL ALGORITHMS

private:
int m_Value;

public:
MyClass(const int value)
: m_Value{ value }

{
}
int GetValue() const
{
return m Value;
}
bool operator <(const MyClass& other) const
{
return m_Value < other.m_Value;
}
};
int main(int argc, charx argv[])
{
vector<MyClass> myVector{ 4, 10, 6, 9, 1 };
auto minimum = min_element(myVector.begin(), myVector.end());
if (minimum != myVector.end())
{
cout << "Minimum value: " << (*minimum).GetValue() << std::endl;
}
return 0;
}

Listing 8-8 differs from Listing 8-7 in that it uses a vector of MyClass objects rather
than a vector of integer values. The call tomin_element however remains exactly the
same. In this case, the min_element call will walk the sequence and use the < operator
added to the MyClass class to find the lowest value. It’s also necessary to protect against
hitting the end of the sequence in this case as the end element will not point to a valid
object and therefore the dereference and call to GetValue will likely crash.

263

CHAPTER 8 THE STL ALGORITHMS

Another option to compare nonbasic types is to provide a comparison function
directly to the min_element function. This option is shown in Listing 8-9.

Listing 8-9. Using a Separate Function with min_element

#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

class MyClass

{
private:
int m_Value;
public:
MyClass(const int value)
: m_Value{ value }
{
}
int GetValue() const
{
return m Value;
}
};

bool CompareMyClasses(const MyClass& left, const MyClass& right)

{
return left.GetValue() < right.GetValue();

}

int main(int argc, charx argv[])

{
vector<MyClass> myVector{ 4, 10, 6, 9, 1 };
auto minimum = min_element(myVector.begin(), myVector.end(),
CompareMyClasses);

264

CHAPTER 8 THE STL ALGORITHMS

if (minimum != myVector.end())

{

cout << "Minimum value: " << (*minimum).GetValue() << std::endl;
}
return 0;

In Listing 8-9, we supply a pointer to a comparison function to the min_element
function. This function is used to compare the values returned from the MyClass
GetValue method. The comparison function is constructed in a very specific way and
takes two parameters, both constant references to MyClass objects. The function should
return true if the first parameter is evaluated as being less than the second. The names
left and right are chosen to help visualize the usual look of a < operator. The call to
min_element is altered to contain a third parameter, the pointer to the CompareMyClasses
function. The code shown in both Listings 8-8 and 8-9 produces output that is identical
to that shown in Figure 8-4.

Finding the Maximum Values in a Container

Where the min_element function can be used to find the smallest value in a sequence,
the max_element function can be used to find the largest. The function can be used in
exactly the same way as themin_element function as you can see in Listing 8-10.

Listing 8-10. Using max_element

#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

class MyClass
{

private:
int m Value;

265

CHAPTER 8 THE STL ALGORITHMS

public:

}s

MyClass(const int value)
: m_Value{ value }

{
}
int GetValue() const
{
return m Value;
}
bool operator <(const MyClass& other) const
{
return m_Value < other.m Value;
}

bool CompareMyClasses(const MyClass& left, const MyClass& right)

{

int

266

return left.GetValue() < right.GetValue();

main(int argc, charx argv[])

vector<int> myIntVector{ 4, 10, 6, 9, 1 };
auto intMinimum = max_element(myIntVector.begin(), myIntVector.end());
if (intMinimum != myIntVector.end())

{

cout << "Maxmimum value: " << xintMinimum << std::endl << std::endl;

}

vector<MyClass> myMyClassVector{ 4, 10, 6, 9, 1 };

auto overrideOperatorMinimum = max_element(myMyClassVector.begin(),
myMyClassVector.end());

if (overrideOperatorMinimum != myMyClassVector.end())

CHAPTER 8 THE STL ALGORITHMS

cout << "Maximum value: " << (xoverrideOperatorMinimum).GetValue()
<< std::endl << std::endl;

}

auto functionComparisonMinimum = max_element(myMyClassVector.begin(),
myMyClassVector.end(),
CompareMyClasses);

if (functionComparisonMinimum != myMyClassVector.end())

{

cout << "Maximum value: " << (*functionComparisonMinimum).GetValue()
<< std::endl << std::endl;

}

return 0;

Listing 8-10 shows that the max_element function can be used in place of themin_
element function. It's important to realize that the max_element function still uses the
< operator. It may seem that the max_element would use the > operator instead, but it’s
just as valid to use the < operator and respond to a result of false rather than true to

indicate that one value is greater than another.

Recipe 8-4. Counting Instances of a Value
in a Sequence

Problem

Sometimes you may wish to know how many instances of a specific value exist in a

sequence.

Solution

The STL provides an algorithm called count. This algorithm can search through a
sequence of values and return the number of times a supplied value is found.

267

CHAPTER 8 THE STL ALGORITHMS

How It Works

The count function takes three parameters, a beginning iterator, an ending iterator,
and a value to find. Given these three pieces of information, the algorithm will return the
number of times the value is present. Listing 8-11 shows this algorithm in use.

Listing 8-11. Using the count Algorithm

#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

int main(int argc, charx argv[])

{
vector<int> myVector{ 3, 2, 3, 7, 3, 8, 9, 3 };
auto number = count(myVector.begin(), myVector.end(), 3);
cout << "The number of 3s in myVector is: " << number << endl;
return O;
}

The code in Listing 8-11 will have the count function walk the sequence and return
the number of times the value 3 is encountered. You can see that the result of this
operation is 4 in Figure 8-5.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe8-4/Listing8-11

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe8-4/Listing8-115 ./main
The number of 3s in myVector is: 4
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe8-4/Listing8-115 [

Figure 8-5. The resulting output generated by Listing 8-11

268

CHAPTER 8 THE STL ALGORITHMS

C++ also provides some special predicate functions that can be used in conjunction

with character data and the count_if function. These include functions that can be used to

count the number of upper- or lowercase letters and whether a character is alphanumeric,

white space, or punctuation. You can see all of these in action in Listing 8-12.

Listing 8-12. Using Character Predicates with count

#include <algorithm>
#include <cctype>

#include <iostream>
#include <string>

using namespace std;

int main(int argc, charx argv[])

{

string myString{ "Bruce Sutherland!" };

auto numberOfCapitals = count if(
myString.begin(),
myString.end(),
[](autod8& character)
{

return static_cast<bool>(isupper(character));

1

cout << "The number of capitals:

<< numberOfCapitals << endl;

auto numberOfLowerCase = count_if(
myString.begin(),
myString.end(),
[](auto88& character)
{

return static_cast<bool>(islower(character));

};

cout << "The number of lower case letters:

<< numberOfLowerCase << endl;

269

CHAPTER 8 THE STL ALGORITHMS

auto numberOfAlphaNumerics = count if(
myString.begin(),
myString.end(),
[](auto88& character)
{

return static_cast<bool>(isalpha(character));

};

cout << "The number of alpha numeric characters:
" << numberOfAlphaNumerics << endl;

auto numberOfPunctuationMarks = count_if(
myString.begin(),

myString.end(),
[](auto88 character)
{
return static_cast<bool>(ispunct(character));
}s
cout << "The number of punctuation marks: " << numberOfPunctuationMarks
<< endl;

auto numberOfWhiteSpaceCharacters = count if(
myString.begin(),
myString.end(),
[](auto88& character)
{

return static_cast<bool>(isspace(character));

};

cout << "The number of white space characters:
" << numberOfWhiteSpaceCharacters << endl;

return O;

The predicates can be seen being passed to the count_if function using a lambda
in Listing 8-12. The lambda is necessary for the count_if template to be properly

satisfied that the function being supplied is a predicate that returns a bool. The count_if

function will return the number of times the supplied function returns true. You can see

the result of the different calls to count_if in Figure 8-6.

270

CHAPTER 8 THE STL ALGORITHMS

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipes8-4/Listing8-12

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe8-4/Listing8-125 ./main
The number of capitals: 2

The number of lower case letters: 13

The number of alpha numeric characters: 15

The number of punctuation marks: 1

The number of white space characters: 1
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe8-4/Listings-125 [

Figure 8-6. The results from calling the code in Listing 8-12

The string supplied in Listing 8-12 is fairly simple so it’s easy to confirm that the
character predicates are working as expected. You can cross-check the results from
Figure 8-6 to confirm this is the case.

Recipe 8-5. Finding Values in a Sequence
Problem

You may wish to find an iterator to the first element in a sequence that matches a specific
value.

Solution

The STL provides the find function to retrieve iterators to the first element in a sequence
that matches a supplied value.

How It Works

The find function can be used to retrieve an iterator to the first element that matches a
value that you supply. You can use this to walk along a sequence from beginning to end.
Listing 8-13 shows how you can use this along with a while loop to move along an entire
sequence.

271

CHAPTER 8 THE STL ALGORITHMS
Listing 8-13. Using find

#include <algorithm>
#include <iostream>
#include <string>

using namespace std;

int main(int argc, charx argv[])

{
string myString{ "Bruce Sutherland" };
auto found = find(myString.begin(), myString.end(), 'e');
while (found != myString.end())
{
cout << "Found: " << xfound << endl;
found = find(found+1, myString.end(), 'e');
}
return O;
}

The code in Listing 8-13 will print out the letter e twice as there are two of these in the
string stored in the variable myString. The first call to find returns an iterator that points to
the first instance of the character ein the string. The call inside the whileloop then starts at the
position immediately after that iterator. This causes the find function to search progressively
through the supplied set of data and eventually reach the end. The while loop will terminate
once this occurs. The code in Listing 8-13 generates the output shown in Figure 8-7.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipes8-5/Listing8-13

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe8-5/Listing8-135 ./main
Found: e
Found: e

bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe8-5/Listing8-13$ I

Figure 8-7. The output generated by executing the code shown in Listing 8-13

272

CHAPTER 8 THE STL ALGORITHMS

Recipe 8-6. Sorting Elements in a Sequence
Problem

Sometimes you will have data in a container that has become out of order, and you wish
to reorder that data.

Solution

The STL provides the sort algorithm to reorder data in a sequence.

How It Works

The sort function takes an iterator to the beginning of a sequence and an iterator to the
end of a sequence. It will automatically sort the values between the iterators into an
ascending numerical order. You can see code that demonstrates this in Listing 8-14.

Listing 8-14. Using the sort Algorithm

#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

int main(int argc, charx argv[])

{
vector<int> myVector{ 10, 6, 4, 7, 8, 3, 9 };
sort(myVector.begin(), myVector.end());
for (autodd element : myVector)
{
cout << element << ", ";
}
cout << endl;
return 0;
}

The code in Listing 8-14 will reorder the values in myVector into ascending order.
Figure 8-8 shows the output this code generates.
273

CHAPTER 8 THE STL ALGORITHMS

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe8-6/Listing8-14
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe8-6/Listing8-145 ./main
3, 4,6,7, 8,9, 10,
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe8-6/Listing8-14$ [}

Figure 8-8. The myVector elements sorted into ascending order

If you wish to sort the data into a custom order, such as descending, then you
must supply a predicate function to the sort algorithm. Listing 8-15 shows the use of a
predicate to sort a numeric vector into descending order.

Listing 8-15. Using a Predicate with sort

#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

bool IsGreater(int left, int right)

{
return left > right;
}
int main(int argc, charx argv[])
{
vector<int> myVector{ 10, 6, 4, 7, 8, 3, 9 };
sort(myVector.begin(), myVector.end(), IsGreater);
for (auto8& element : myVector)
{
cout << element << ", ";
}
return 0;
}

274

CHAPTER 8 THE STL ALGORITHMS

The data in myVector in Listing 8-15 is the same as the data stored in Listing 8-14.
The difference between the two listings is the use of the IsGreater function in Listing 8-15.
This is passed to the sort function and is used to compare the values in myVector. The
standard sort function will order values from lowest to highest as you saw in Figure 8-8.
Figure 8-9 shows that the code in Listing 8-15 will order the numbers from highest
to lowest.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipes8-6/Listing8-15

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe8-6/Listing8-155 ./main
10, 9, 8, 7, 6, 4, 3,
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe8-6/Listing8-15$ [

Figure 8-9. The output generated by Listing 8-15 with numbers ordered from
highest to lowest

Recipe 8-7. Looking Up Values in a Set
Problem

You want to look for values in an ordered set of data.

Solution

The set container stores key values and is a handy tool to have available.

How It Works

The find function will examine the set for the key you are searching for. If found, it
returns a “true” which will execute the if statement; otherwise, the else is returned,
meaning that no parts were found. This example also inserts a new record in the ordered
set after initial creation. Try the code that demonstrates this in Listing 8-16.

275

CHAPTER 8 THE STL ALGORITHMS

Listing 8-16. Using an Ordered set.XE “sorting algorithm: : :::

//Example of simple lookup of an ordered set
#include <iostream>

#include <string>

#include <set>

using namespace std;

struct Inventory

{
string Name;
int SKU;
string Description;
float Price;
};

bool operator<(const Inventory8 p1, const Inventoryd p2)

{

return pi.Name < p2.Name;

}
set<Inventory> items
{
{ "hammer", 100, "standard regular hammer", 10.00 },
{ "saw", 200, "wood saw with plastic handle", 5.99 },
{ "nails", 300, "12 size nails, 10 ct.", 2.99 },
{ "saw", 400, "metal cutting saw", 13.99 }
};
int main()
{
items.insert({ "glue", 500, "sticky", 1.99 });
if (items.find({ "glue", 0o, "", 0.0 }) != items.end())
cout << "We have your part in stock!\n";
else
cout << "We could not find that part.\n";
return 0;
}

276

CHAPTER 9

Templates

The Standard Template Library (STL) is written using a language feature provided by
C++ called templates. Templates provide a method you can use to write generic code
that can be specialized at compile time to create concrete functions and classes of
varying types. The only requirement for template code is that output can be generated
for all of the types used to specialize a template in your program. Put another way, you
might have a template that compares three ints or three characters or three floats, but
regardless it accepts three item types to compare. The rest of the chapter will further
explain this valuable topic.

Recipe 9-1. Creating a Template Function
Problem

You would like to create a function that can be passed different types of parameters and
return different types of values.

Solution

It’s possible to use method overloading to supply different versions of a function for each
type you wish to support, but this still limits you to functions with the types supplied.
A better approach is to create a template function that can be specialized to work with

any type.

How It Works

C++ includes a template compiler that can be used to turn generic function definitions
into concrete functions at compile time.

277
© J. Burton Browning and Bruce Sutherland 2020

J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_9

CHAPTER9 TEMPLATES

Creating a Template Function

Templates allow you to write code without specifying concrete types. Code usually
contains the types you wish to work with; Listing 9-1 shows a function written under
these normal circumstances.

Listing 9-1. A Non-template Function

#include <iostream>
using namespace std;

int Add(int a, int b)
{

return a + b;

int main(int argc, char* argv[])

const int numberi{ 1 };
const int number2{ 2 };
const int result{ Add(numberi, number2) };

cout << "The result of adding" << endl;
cout << numberl << endl;

cout << "to" << endl;

cout << number2 << endl;

cout << "is" << endl;
cout << result;

return 0;

The Add function in Listing 9-1 is a standard C++ function. It takes two int parameters
and returns an int value. You could supply a float version of this function by copying
the function and altering every reference to int so that it used a float instead. You could
then do the same for string and any other types you wished the function to support. The
problem with this approach is that you must duplicate the function for every type, even
though the body of the function remains the same. An alternative solution is to use a
template function. You can see a template version of Add in Listing 9-2.

278

CHAPTER9 TEMPLATES
Listing 9-2. A Template Version of Add

template <typename T>
T Add(const T& a, const T& b)
{

return a + b;

As you can see, the template version of Add no longer uses the concrete type int.
Instead, the function is defined inside a template block. The template keyword is used
to tell the compiler that the next block of code should be treated as a template. This is
followed by an angled bracket section (< >) that defines any types the template uses.
This example defines a single template type, represented by the character T. T is then
used to specify the return type and the types of both parameters being passed to the
function.

Note It’s a good idea to pass parameters to template functions as const
references. The initial implementation of Add passed int types by value, but
there’s no guarantee that a template won’t be used by a type that would create a
performance penalty when passed by value, such as a copied object.

Now that you have templatized the Add function, you can see in Listing 9-3 that the
calling code in the main function is no different than that shown in Listing 9-1.

Listing 9-3. Calling the Template Add Function
#include <iostream>
using namespace std;

template <typename T>
T Add(const T& a, const T& b)

{
return a + b;
}
int main(int argc, char* argv[])
{

279

CHAPTER9 TEMPLATES

const int numberi{ 1 };
const int number2{ 2 };
const int result{ Add(numberi, number2) };

cout << "The result of adding" << endl;
cout << numberl << endl;

cout << "to" << endl;

cout << number2 << endl;

cout << "is" << endl;

cout << result;

return 0;

Listing 9-3 contains a call to the Add function in exactly the same place as the code in
Listing 9-1. This is possible because compilers can implicitly work out the correct type to
use with a template.

Explicit vs. Implicit Template Specialization

Sometimes you want to be explicit about the types your template can use. Listing 9-4
shows an example of explicit template specialization.

Listing 9-4. Explicit and Implicit Template Specialization
#include <iostream>
using namespace std;

template <typename T>
T Add(const T& a, const T& b)

{

return a + b;

}

template <typename T>
void Print(const T& valuel, const T& value2, const T& result)

{

cout << "The result of adding" << endl;
cout << valuel << endl;

280

CHAPTER9 TEMPLATES

cout << "to" << endl;
cout << value2 << endl;

cout << "is" << endl;
cout << result;

cout << endl << endl;

}

int main(int argc, char* argv[])
{
const int numberi{ 1 };
const int number2{ 2 };
const int intResult{ Add(numberi, number2) };
Print(numberi, number2, intResult);

const float floatResult{ Add(static_cast<float>(number1),
static_cast<float>(number2)) };
Print<floaty(numberi, number2, floatResult);

return 0;

Listing 9-4 adds a template Print function that takes three templatized parameters.
This function is called twice in the main function. The first time, the template type is
deduced implicitly. This is possible because all three parameters passed to the function
are of type int; therefore, the compiler works out that you intended to call an int
version of the template. The second call to Print is explicit. This is achieved by adding
angled brackets containing the type to use (in this case float) immediately after the
function name. This is necessary due to the different types of variables being passed to
the function. Here number1 and number2 are both of type int, but floatResult is of type
float; as a result, the compiler can’t deduce the correct type to use with the template.
Visual Studio generated the following error when I tried to compile this code using

implicit specialization:

error C2782: 'void Print(const T &,const T &,const T &)' : template
parameter 'T' is ambiguous

281

CHAPTER9 TEMPLATES

Recipe 9-2. Partially Specializing a Template
Problem

You have a template function that won’t compile with a specific type.

Solution

You can create template overloads using partial template specialization.

How It Works

The body of a template function contains code that requires implicit properties from the
types you use to specialize that template. Consider the code in Listing 9-5.

Listing 9-5. A Template Function
#include <iostream>
using namespace std;

template <typename T>
T Add(const T& a, const T& b)
{

return a + b;

}

template <typename T>
void Print(const T& valuel, const T& value2, const T& result)
{

cout << "The result of adding" << endl;

cout << valuel << endl;

cout << "to" << endl;

cout << value2 << endl;

cout << "is" << endl;
cout << result;

cout << endl << endl;

282

CHAPTER9 TEMPLATES

int main(int argc, char* argv[])

{
const int numberi{ 1 };
const int number2{ 2 };
const int intResult{ Add(numberi, number2) };
Print(number1, number2, intResult);
return 0;
}

This code requires two implicit properties from the types used by the Add function
and then the Print function. The Add function requires that the type used can also be
used with the + operator. The Print function requires that the type used can be passed
to the << operator. The main function uses these functions with int variables, so both of
these conditions are met. If you were to use Add or Print with a class you created, then
chances are that the compiler wouldn’t be able to use that class with the + or << operator.

Note The “proper” solution in this case is to add overloaded + and << operators
so that the original code works as expected. This example shows how you can use
partial specialization to achieve the same result.

You can easily update Listing 9-5 to use a simple class, as shown in Listing 9-6.

Listing 9-6. Using Templates with Classes
#include <iostream>
using namespace std;

class MyClass
{

private:
int m Value{ 0 };

public:
MyClass() = default;

MyClass(int value)

283

CHAPTER9 TEMPLATES

: m Value{ value }

{
}

MyClass(int numberi, int number2)
: m_Value{ numberl + number2 }

{
}
int GetValue() const
{

return m Value;
}

};

template <typename T>
T Add(const T& a, const T& b)
{

return a + b;

}

template <typename T>
void Print(const T& valuel, const T& value2, const T& result)
{

cout << "The result of adding" << endl;

cout << valuel << endl;

cout << "to" << endl;

cout << value2 << endl;

cout << "is" << endl;
cout << result;

cout << endl << endl;

}

int main(int argc, char* argv[])

{

const MyClass numberi{ 1 };

284

CHAPTER9 TEMPLATES

const MyClass number2{ 2 };
const MyClass intResult{ Add(numberi, number2) };
Print(number1, number2, intResult);

return 0;

The code in Listing 9-6 won’t compile. Your compiler won’t be able to find suitable
operators that can be used with the MyClass type for + and <<. You can fix this problem
by using partial template specialization, as shown in Listing 9-7.

Listing 9-7. Using Partial Template Specialization
#include <iostream>
using namespace std;

class MyClass
{

private:
int m Value{ 0 };

public:
MyClass() = default;

MyClass(int value)
: m_Value{ value }

{
}

MyClass(int numberi, int number2)
: m_Value{ numberl + number2 }

{
}
int GetValue() const
{

return m Value;
}

285

CHAPTER9 TEMPLATES

};

template <typename T>
T Add(const T& a, const T& b)
{

return a + b;

}

template <>
MyClass Add(const MyClass& myClassi, const MyClass& myClass2)
{

return MyClass(myClassi.GetValue(), myClass2.GetValue());
}

template <typename T>
void Print(const T& valuel, const T& value2, const T& result)
{

cout << "The result of adding" << endl;

cout << valuel << endl;

cout << "to" << endl;

cout << value2 << endl;

cout << "is" << endl;
cout << result;

cout << endl << endl;

}

template <>
void Print(const MyClass& valuel, const MyClass& value2, const MyClass& result)
{

cout << "The result of adding" << endl;

cout << valuei.GetValue() << endl;

cout << "to" << endl;

cout << value2.GetValue() << endl;

cout << "is" << endl;

cout << result.GetValue();

cout << endl << endl;

286

CHAPTER9 TEMPLATES

int main(int argc, char* argv[])

{
const MyClass numberi{ 1 };
const MyClass number2{ 2 };
const MyClass intResult{ Add(numberi, number2) };
Print(number1, number2, intResult);
return 0;
}

The code in Listing 9-7 adds specialized versions of Add and Print. It does so by
using an empty template-type specifier and the concrete MyClass types in the function
signatures. You can see this in the Add function, where the parameters being passed are
of type MyClass and the return value is of type MyClass. The partially specialized Print
function also passes const references to MyClass variables. The template functions can
still be used with variables such as ints and floats but now also explicitly support the
MyClass type.

For the sake of completeness, Listing 9-8 shows a preferred implementation that
adds + and << operator support to MyClass.

Listing 9-8. Adding + and << Operator Support to MyClass
#include <iostream>
using namespace std;

class MyClass

{

friend ostream& operator <<(ostream& os, const MyClass& myClass);
private:

int m Value{ 0 };
public:

MyClass() = default;

MyClass(int value)
: m_Value{ value }

287

CHAPTER9 TEMPLATES

MyClass(int numberi, int number2)
: m_Value{ numberl + number2 }

{

}

MyClass operator +(const MyClass& other) const
{

return m_Value + other.m_Value;

};

ostream& operator <<(ostream& os, const MyClass& myClass)
{

os << myClass.m_Value;

return os;

}

template <typename T>
T Add(const T& a, const T& b)
{

return a + b;

}

template <typename T>
void Print(const T& valuel, const T& value2, const T& result)
{

cout << "The result of adding" << endl;

cout << valuel << endl;

cout << "to" << endl;

cout << value2 << endl;

cout << "is" << endl;
cout << result;

cout << endl << endl;

288

CHAPTER9 TEMPLATES

int main(int argc, char* argv[])

{
const MyClass numberi{ 1 };
const MyClass number2{ 2 };
const MyClass intResult{ Add(numberi, number2) };
Print(number1, number2, intResult);
return 0;
}

This code adds support for the + operator to MyClass directly. A function is also
specified for the << operator that works along with the ostream type. This works because
cout is compatible with ostream (which stands for output stream). This function signature
is added as a friend of MyClass so that the function can access internal data from MyClass.
You could also leave the GetValue accessor and not add the operator as a friend function.
A friend function can access private and protected members even though it is out of scope,
so it extends the functionality of only public and private access specifiers.

Recipe 9-3. Creating Class Templates
Problem

You would like to create a class that can store variables of different types without
duplicating all the code.

Solution

C++ allows for the creation of template classes that support abstract types.

How It Works

You can define a class as a template using the template specifier. The template
specifier takes types and values as parameters that the compiler uses to build a
specialization of the template code. Listing 9-9 shows an example that uses an abstract
type and value to construct a template class.

289

CHAPTER9 TEMPLATES

Listing 9-9. Creating a Template Class
#include <iostream>
using namespace std;

template <typename T, int numberOfElements>
class MyArray

{
private:
T m_Array[numberOfElements];
public:
MyArray()
: m_Array{}
{
}
T& operator[](const unsigned int index)
{
return m_Array[index];
}
15
int main(int argc, char* argv[])
{

const unsigned int ARRAY SIZE{ 5 };
MyArray<int, ARRAY_SIZE> myIntArray;
for (unsigned int i{ 0 }; i < ARRAY_SIZE; ++i)

{
myIntArray[i] = i,

}

for (unsigned int i{ 0 }; i < ARRAY_SIZE; ++i)
{

cout << myIntArray[i] << endl;

}

cout << endl;

290

CHAPTER9 TEMPLATES

MyArray<float, ARRAY_SIZE> myFloatArray;
for (unsigned int i{ 0 }; i < ARRAY_SIZE; ++i)

{
myFloatArray[i] = static_cast<float>(i)+0.5f;
}
for (unsigned int i{ 0 }; i < ARRAY_SIZE; ++i)
{
cout << myFloatArray[i] << endl;
}
return O;

The class MyArray creates a C-style array of type T and a number of elements. Both
of these are abstract at the time you write the class and are specified at the time you use
them in your code. You can now use the MyArray class to create an array of any size and
containing any number of elements that can be represented by an int. You can see this
in practice in the main function, where the MyArray class template is specialized to
create an array of ints and an array of floats. Figure 9-1 shows the output generated
when running this code: the two arrays contain different types of variables.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe9-3/Listing9-9

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe9-3/Listing9-95 ./main
0]

1

2

3

4

0.5

1.5

2.5

3.5

4.5
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Reciped-3/Listing9-95 [}

Figure 9-1. The output generated by running the code in Listing 9-9

291

CHAPTER9 TEMPLATES

Note The creation of an array template wrapper is a simple example that shows
the foundation of the std: :array template supplied by the STL. The STL version
supports STL iterators and algorithms and is a better choice than writing your own
implementation.

Recipe 9-4. Creating Singletons
Problem

You have a system, and you would like to create a single instance of it that you can access
from many places in your application.

Solution

You can use a template to create a Singleton base class.

How It Works

The basis of the singleton is a class template. The Singleton class template contains a
static pointer to an abstract type that can be used to represent any type of class you like.
A byproduct of using a static pointer is that the instance of the class can be accessed
from anywhere in your program. You should be careful not to abuse this, although it can
be a useful property. Listing 9-10 shows how to create and use a Singleton template.

Listing 9-10. The Singleton Template

#include <cassert>
#include <iostream>

using namespace std;

template <typename T>
class Singleton

{

private:
static T* m_Instance;

292

CHAPTER9 TEMPLATES

public:
Singleton()
{
assert(m_Instance == nullptr);
m_Instance = static_cast<T*>(this);
}
virtual ~Singleton()
{
m_Instance = nullptr;
}
static T& GetSingleton()
{
return *m_Instance;
}
static T* GetSingletonPtr()
{
return m_Instance;
}
};

template <typename T>
T* Singleton<T>::m_Instance = nullptr;

class Manager
: public Singleton < Manager >

{
public:
void Print() const
{
cout << "Singleton Manager Successfully Printing!";
}
b

293

CHAPTER9 TEMPLATES

int main(int argc, char* argv[])

{
new Manager();
Manager& manager{ Manager::GetSingleton() };
manager.Print();
delete Manager::GetSingletonPtr();
return 0;
}

The Singleton class in Listing 9-10 is a template class that contains a private static
pointer to the abstract type T. The Singleton constructor assigns a cast of this to the
m_Instance variable. It’s possible to use a static_cast in this manner because you know
that the type of the object will be the type supplied to the template. The class’s virtual
destructor is responsible for settingm Instance back to nullptr; there are also reference
and pointer accessors to the instance.

Listing 9-10 then uses this template to create a Singleton-capable Manager class. It
does so by creating a class that inherits from Singleton and passes its own type into the
Singleton template parameter.

Note Passing the type of a class into a template from which the class derives is
known as the curiously recursive template pattern.

The main function creates a Manager using the new keyword. The Manager isn’t stored
as a reference or pointer to the class. Although you could do this, it’s better to simply
use the accessor to the Singleton from this point. You do so by using the static function
syntax with the name of the derived class. The main function creates a reference to the
Manager instance by calling the Manager : :GetSingleton function.

The Singleton instance is deleted by calling delete on the value returned by
Manager: :GetSingletonPtr. This causes ~“Singleton to be called, which clears the
address stored in m_Instance and releases the memory used to store the instance.

Note This Singleton class is based on the implementation originally written by
Scott Bilas in Game Programming Gems (Charles River Media, 2000).

294

CHAPTER9 TEMPLATES

Recipe 9-5. Calculating Values at Compile Time
Problem

You need to calculate complex values and would like to avoid computing them at runtime.

Solution

Template metaprogramming takes advantage of the C++ template compiler to calculate
values at compile time and save runtime performance for users.

How It Works

Template metaprogramming can be a complex topic to understand. This complexity
comes from the scope of the C++ template compiler’s capabilities. In addition to letting
you carry out generic programming by abstracting types from functions and classes, the
template compiler can also compute values.

Hashing data is a common method of comparing two sets of data for equality.
It works by creating a hash of the data at the time of creation and comparing the
hash to the runtime version of the data. You can use this method to detect changes
in executables of data files when your program is being executed. The SDBM hash
is a simple-to-implement hashing function; Listing 9-11 shows a normal function
implementation of the SDBM hash algorithm.

Listing 9-11. The SDBM Hash Algorithm

#include <iostream>
#include <string>

using namespace std;

unsigned int SDBMHash(const std::stringd key)
{

unsigned int result{ o };

for (unsigned int character : key)

{

result = character + (result << 6) + (result << 16) - result;

295

CHAPTER9 TEMPLATES

}

return result;

}
int main(int argc, char* argv[])
{
std::string data{ "Bruce Sutherland" };
unsigned int sdbmHash{ SDBMHash(data) };
cout << "The hash of " << data << " is " << sdbmHash;
return O;
}

The SDBMHash function in Listing 9-11 works by iterating over the supplied data
and calculating a result by manipulating each byte from the data setinto a result
variable. This functional version of SDBMHash is useful for creating a hash of data loaded
at runtime, but here the data being supplied was known at compile time. You can
optimize the execution speed of your program by replacing this function with a template
metaprogram. Listing 9-12 does just that.

Listing 9-12. Replacing SDBMHash with a Template Metaprogram

#include <iostream>
using namespace std;

template <int stringlength>

struct SDBMCalculator

{
constexpr static unsigned int Calculate(const char* const stringToHash,
unsigned int& value)

{
unsigned int character{
SDBMCalculator<stringlength - 1>::Calculate(stringToHash, value)
};
value = character + (value << 6) + (value << 16) - value;
return stringToHash[stringlength - 1];
}

296

CHAPTER9 TEMPLATES

constexpr static unsigned int CalculateValue(const char* const
stringToHash)
{
unsigned int value{};
unsigned int character{ SDBMCalculator<stringlLength>::Calculate
(stringToHash, value) };
value = character + (value << 6) + (value << 16) - value;
return value;

}
}s
template<>
struct SDBMCalculator < 1 >
{
constexpr static unsigned int Calculate(const char* const stringToHash,
unsigned int& value)
{
return stringToHash[0];
}
b5

constexpr unsigned int sdbmHash{ SDBMCalculator<16>::CalculateValue("Bruce
Sutherland") };

int main(int argc, char* argv[])

{

cout << "The hash of Bruce Sutherland is " << sdbmHash << endl;

return O;

You can immediately see that the code in Listing 9-12 looks much more complicated
than that in Listing 9-11. The syntax required to write template metaprograms isn’t the
nicest to read. The main function is now a single line of code. The hash value is stored
in a constant, and no call is made to any of the template functions. You can test this
by placing a breakpoint in the template functions and running a release build of your
program.

297

CHAPTER9 TEMPLATES

The template metaprogram in Listing 9-12 works by using recursion. The length of
the data to be hashed is supplied to the template parameter and can be seen when the
sdbmHash variable is initialized. Here, 16 is passed to the template, which is the length
of the string “Bruce Sutherland” The template compiler recognizes that it has been
supplied with data that it can evaluate at compile time, and therefore it automatically
calls the Calculate metaprogram function in the CalculateValue function. This
recursion occurs until the terminator is hit. The terminator is the partially specialized
version of Calculate that is written to be called once the length of the data to be
hashed is 1. When the terminator is reached, the recursive calls begin to unwind, and
the compiler eventually stores the result of the template metaprogram in the sdbmHash
variable. You can see the template metaprogram in action using a debug build. The
compiler won’t optimize out the template metaprogram in a debug build, which allows
you to test your code and step through it to see the results. Figure 9-2 shows the output
from running the code in Listing 9-12.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe9-5/Listing9-12

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe9-5/Listing9-125 ./main
The hash of Bruce Sutherland is 2561640807
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe9-5/Listings-125 i

Figure 9-2. The output generated by the code in Listing 9-12, showing the SDBM
hash of the string “Bruce Sutherland”

298

CHAPTER9 TEMPLATES

Recipe 9-6. Calculating Values at Compile Time
Problem

You would like to extend your knowledge of templates to include the new C++20 feature
of Concepts.

Solution

MS Visual Studio version 19.3 and above support the new C++20 feature of Concepts.
Concepts extend the capability of templates.

How It Works

Templates, as you have seen, enforce constraints which specify arguments a template
requires, as part of the behavior to which templates are designed to select overloaded
functions and so on. As such, C++20 has a new feature, Concepts, which are named sets
of requirements. Each concept is a predicate or assertion which is evaluated at compile
time and is used as a constraint on the interface of a template that it meets a condition.

Try the next example using MS Visual Studio 16.3.4 (a minimum of this version) and
make sure you have changed the language standard to C++20/Preview working standard.
The program checks to see if something is “hashable” or able to be broken down and
stored in an array. If not, it provides the appropriate message. The fact that it is hashable
or not is the constraint.

An important note on building this application: Visual Studio 16.3.4 will give
IntelliSense syntax errors on your IDE. This is due to the very new nature of Concepts
being just integrated with Visual Studio. As such IntelliSense is not aware of the function,
yet it does work and will compile fine. Build and Compile to make the executable
Windows application and run it from a command prompt. Do not build the application
via Debug: Start Without Debugging. Use Build and Compile to make the executable.
After running the program from the command prompt, uncomment // foo(foobar{});
// not hashable and recompile. You will note that the error states that “associated
constraints are not satisfied” from the concept you just wrote!

299

CHAPTER9 TEMPLATES

Listing 9-13. Example of Concepts C++ 20 Feature

//Simple example of concepts
#include <iostream>

#include <string>

#include <cstddef>

#include <concepts>

using namespace std;

template<typename T>
concept Hashable = requires(T a)

{

{ hash<T>{}(a) }->convertible to<size t»;

};
struct foobar {};/// this one will not hash!

template<Hashable T>
void foo(T);
int main() {

foo("abc 123 this is easy!"s); // this is hashable
//uncomment the following and it will error since this
//object is not hashable as the string of chars was.
// foo(foobar{}); // not hashable
return O;

};

300

CHAPTER 10

Memory

Memory is a fundamentally important resource in modern computers. All the data

that your program operates on will at some point or another be stored into RAM to

be retrieved by the processor at a later time when required to complete part of your
algorithms.

Because of this, it’s vitally important for a C++ programmer to understand how
and when your program uses different types of memory. This chapter introduces three
different memory spaces, how they can be utilized, and the potential performance
impacts that each may cause on your programs.

Recipe 10-1. Using Static Memory
Problem

You have an object that you would like to be able to access anywhere in your code.

Solution

Static memory can be thought of as global variables. These variables and their values can
be accessed by any part of your program at any time, or put another way, they do not go
out of scope for the duration of the program.

How It Works

The compiler you use automatically adds memory in static memory space for any
globals you create. The address of static variables can usually be found in the address
space of your executable and as such can be accessed by any part of your program at any
time. Listing 10-1 shows an example of an unsigned integer global variable.

301
© J. Burton Browning and Bruce Sutherland 2020

J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_10

CHAPTER 10 MEMORY

Listing 10-1. AnUnsigned Integer Global Variable
#include <iostream>

using namespace std;

unsigned int counter = 0;

void IncreaseCounter()

counter += 10;

cout << "counter is " << counter << endl;
int main()

counter += 5;

cout << "counter is " << counter << endl;

IncreaseCounter();

return 0;

The variable counter in Listing 10-1 is declared with global scope. The result is that
the variable can be accessed globally in your program. You can see this in effect in the
main function and in the IncreaseCounter function. Both of these functions increase the
value of the same global counter variable. The result shown in Figure 10-1 confirms that
this is the case.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe10-1/Listing10-1

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel0-1/Listing10-15 ./main
counter is 5

counter is 15
bruce@bruce-vVirtual-Machine:~/Projects/C-Recipes/Recipel0-1/Listing10-1$ I

Figure 10-1. Output showing the result of changing a global variable

302

CHAPTER 10 MEMORY

Global variables may be useful under certain circumstances but can cause many
problems in other situations. Recipe 9-4 showed the use of a static class member variable
to create a Singleton object. A static member is also a type of global variable and as such
is accessible from anywhere in your program. A general problem with static variables is
their order of creation. The C++ standard doesn’t guarantee that static variables will be
initialized in a given order. This can cause programs that use many dependent globals to
run into problems and crashes as a result of an unexpected initialization order. Global
variables also cause many problems in multithreaded programming because multiple
threads can access the static address space at the same time with unexpected results. It’s
generally recommended that you keep the usage of global variables to a minimum. It is
also important to note that local variables with the same name will have precedence and
mask globals with the same name as Listing 10-1B will show.

Listing 10-1B. Masking a Global Variable

#include <iostream>
using namespace std;
unsigned int counter = 0;

void IncreaseCounter()

counter += 10;

cout << "Global counter is " << counter << endl;
int main()

counter += 5;

cout << "counter is " << counter << endl;

IncreaseCounter();

int counter = 999;

cout << "Local counter is " << counter << endl;

IncreaseCounter();

cout << "Local counter is " << counter << endl;

return 0;

303

CHAPTER 10 MEMORY

Recipe 10-2. Using Stack Memory
Problem

You require memory for temporary variables for doing work within functions.

Solution

A C++ program can use a growing and shrinking stack to provide temporary space for
local variables.

How It Works

Because all variables in a C++ program are required to be backed by memory, temporary
space is created on the fly for variables defined within functions. This is achieved using a
stack. When a function is called, the compiler adds machine code that allocates enough
stack space to store all the variables needed by a function.
The stack is manipulated using two registers (on x86-based CPUs) called esp and
ebp. esp is the stack pointer, and ebp is the base pointer. The base pointer is used to store
the address of the previous stack frame. This allows the current function to return to the
correct stack when its execution is over. The esp register is used to store the current top of
the stack; this allows the ebp to be updated if the current function calls another function.
The process of creating enough space on the program stack for local variables is
shown in Listing 10-2.

Listing 10-2. x86 Assembly Showing the Creation of a 20 Byte Stack Frame

push ebp
mov ebp, esp
sub esp 20

The three lines of x86 Assembly language in Listing 10-2 show the basics of stack
frame creation in x86. First, the push instruction is used to move the current base pointer
onto the stack. The push instruction moves esp down far enough to store the value of ebp
and then moves that value onto the stack. The current value of esp is then moved into
ebp, moving the base pointer up to the beginning of the current stack frame. The last
instruction subtracts the size of the stack frame from esp. It should be clear from this that
a stack in an x86-based computer grows down toward 0.

304

CHAPTER 10 MEMORY

A program then accesses each of the variables in the stack using an offset from the
base pointer. You can see these three lines in the disassembly from Visual Studio shown

in Figure 10-2.

void Function()

{

012D35E0 push
012D35B1 mov
012D3583 sub
b12D3sB9 push
012D35BA push
012D35BB push
012D35BC 1lea
012D35C2 mov
012D35C7 mov
012D35CC rep stos
int a{ 0 };
012D35CE mov
cout << a;
012D35D5 mov
012D35D7 mov
012D35DA push
012D35DB mov
012D35E1 call
012D35E7 cmp
012D35ES call

}

ebp

ebp,esp

esp, 0CCh

ebx

esi

edi

edi, [ebp-0CCh]
ecx, 33h

eax, 0CCCCCCCCh
dword ptr es:|[edi]

dword ptr [a],0

esi,esp

eax,dword ptr [a]

eax

ecx,dword ptr ds: [12E00AOh]
dword ptr ds:[12E00FCh]
esi,esp

__RTC_CheckEsp (012D1334h)

Figure 10-2. Disassembly from an x86 program, showing the creation of a stack frame

Listing 10-3 shows the code from which the disassembly in Figure 10-2 is taken.

Listing 10-3. Simple Program Used to View the Disassembly

#include <iostream>
using namespace std;

void Function()

{

int a = 0;

cout << a;

305

CHAPTER 10 MEMORY

int main()

{
Function();
return 0;

}

All the local variables that you create are allocated on the stack. Class variables’
constructors are called at the point they’re created, and their destructors are called when
the stack is being destroyed. Listing 10-4 shows a simple program that consists of a class
with a constructor and a destructor.

Listing 10-4. Class Variables on the Stack
#include <iostream>
using namespace std;

class MyClass

{
public:
MyClass()
{
cout << "Constructor called!" << endl;
}
~MyClass()
{
cout << "Destructor called!" << endl;
}
};
int main()
{
MyClass myClass;
cout << "Function body!" << endl;
return 0;
}

306

CHAPTER 10 MEMORY

The constructor of the variable myClass in Listing 10-4 is called at the point of
initialization. The rest of the function body is executed, and the class destructor is called
when the variable goes out of scope. The myClass variable goes out of scope after the
return statement. This happens because the local variables in the function may be
needed to calculate the value returned from the function. You can see the output from
Listing 10-4 in Figure 10-3.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe10-2/Listing10-4

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel0-2/Listing10-45 ./main
Constructor called!

Function body!

Destructor called!
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe10-2/Listing10-4$ i

Figure 10-3. The output from running the code in Listing 10-4

The code in Listing 10-4 shows the creation and destruction of class variables in a
function. It’s also possible to control the creation of stack frames in C++. You do so by
using curly braces to create a new scope within an existing scope. Listing 10-5 creates
several different scopes, each with their own local variables.

Listing 10-5. Creating Multiple Scopes
#include <iostream>
using namespace std;

class MyClass
{

private:
static int m_Count;
int m Instance{ -1 };

307

CHAPTER 10 MEMORY

public:
MyClass()
: m_Instance{m Count++}
{
cout << "Constructor called on " << m_Instance << endl;
}
~MyClass()
{
cout << "Destructor called on " << m_Instance << endl;
}
};

int MyClass::m_Count{ 0 };

int main(int argc, char* argv[])

{
MyClass myClassi;
{
MyClass myClass2;
{
MyClass myClass3;
}
}
return 0;
}

The code in Listing 10-5 shows the use of curly braces to create multiple stack frames
within a single function. The class MyClass contains a static variable m_Count that is
used to track the different instances. This variable is post-incremented every time a
new instance is created, and the pre-incremented value is stored inm_Instance. The
destructor is called on local variables each time a scope is closed. The results are shown
in Figure 10-4.

308

CHAPTER 10 MEMORY

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe10-2/Listing10-5

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel0-2/Listing10-55 ./main
Constructor called on ©

Constructor called on 1

Constructor called on 2

Destructor called on 2

Destructor called on 1

Destructor called on @
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel0-2/Listing10-5% I

Figure 10-4. Output showing the destruction order of objects with multiple scopes

Recipe 10-3. Using Heap Memory
Problem

You need to create a large pool of memory that outlives a single local scope.

Solution

C++ provides the new and delete operators that allow you to manage large pools of
dynamically allocated memory..

How It Works

Dynamically allocated memory is important to many long-running programs. It’s
essential for programs that allow users to generate their own content or load resources
from files. It's usually very difficult if not impossible to provide enough memory for
programs such as web browsers that are used to stream videos or social media content
without the use of dynamically allocated memory, because you're unable to determine
your memory requirements at the time of creating your program.

You can allocate dynamic memory in an address space commonly called the
heap using the C++ new and delete operators. The new operator returns a pointer to
dynamically allocated memory that is large enough to store the type of variable being
created. Listing 10-6 shows how the new and delete operators are used.

309

CHAPTER 10 MEMORY

Listing 10-6. Using new and delete
#include <iostream>
using namespace std;

int main(int argc, char* argv[])
{

int* pInt{ new int };

*pInt = 100;

cout << hex << "The address at pInt is
cout << dec << "The value at pInt is "

<< pInt << endl;
<< *pInt << endl;

delete pInt;
pInt = nullptr;

return 0;

This code uses the new operator to allocate enough memory to store a single int
variable. A pointer is returned from new and stored in the variable pInt. The memory
returned is uninitialized, and it’s generally a good idea to initialize this memory at the
point of creation. You can see this in main, where the pointer dereference operator is
used to initialize the memory pointed to by pInt to 100.

Once you have allocated memory from the heap, it’s your responsibility to ensure
that it’s returned correctly to the operating system. Failing to do so results in a memory
leak. Memory leaks can cause problems for users and often result in poor computer
performance, memory fragmentation, and, in severe cases, computer crashes due to
insufficient memory.

You return heap memory to the operating system using the delete operator. This
operator tells the system that you no longer need all the memory that was returned from
the initial call to new. Your program should no longer attempt to use the memory returned
by new after the call to delete has been made. Doing so causes undefined behavior that
more often than not results in a program crash. Crashes caused by access to freed memory
are usually very difficult to find, because they manifest themselves in places that you can’t
link to the offending code in any way. You can ensure that your program doesn’t access
deleted memory by setting any pointers to the memory to nullptr.

The output from Listing 10-6 is shown in Figure 10-5.

310

CHAPTER 10 MEMORY

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe10-3/Listing10-6

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel0-3/Listing10-65 ./main
The address at pInt is 0x14d5010

The value at pInt is 100
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel10-3/Listing10-65 I

Figure 10-5. The output showing the address of and value stored in dynamically
allocated memory from Listing 10-6

The new and delete operators in Listing 10-6 are used to allocate single objects.
There are also new and delete array operators for allocating multiples of the same object.
Listing 10-7 shows the array new and delete operators in action.

Listing 10-7. The Array new and delete Operators
#include <iostream>
using namespace std;

class MyClass

{
private:
int m_Number{ o };
public:
MyClass() = default;
~MyClass()
{
cout << "Destroying " << m Number << endl;
}
void operator=(const int value)
{
m_Number = value;
}
};

311

CHAPTER 10 MEMORY

int main(int argc, char* argv[])

{
const unsigned int NUM_ELEMENTS{ 5 };
MyClass* pObjects{ new MyClass[NUM_ELEMENTS] };
pObjects[0] = 100;
pObjects[1] = 45;
pObjects[2] = 31;
pObjects[3] = 90;
pObjects[4] = 58;
delete[] pObjects;
pObjects = nullptr;
return 0;
}

The code in Listing 10-7 creates an array of objects. The MyClass class consists of an
overloaded assignment operator to initialize the created objects and a destructor that
shows the destruction order of the elements in the array. Using the standard delete
operator on an array of objects can cause various problems for your program, because
the standard delete operator only calls the class destructor on the first element of the
array. If your class had allocated its own memory, then each of the subsequent objects
in the array would leak their memory. Using the delete array operator ensures that each
of the destructors in your array is called. You can see that each of the destructors for the
elements in the array is called in Figure 10-6.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe10-3/Listing10-7

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel0-3/Listing10-75 ./main
Destroying 58

Destroying 90

Destroying 31

Destroying 45

Destroying 100
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe10-3/Listing10-75 i

Figure 10-6. The output showing that each of the destructors has been called
when using the array delete operator

312

CHAPTER 10 MEMORY

Recipe 10-4. Using Automated Shared Memory
Problem

You have an object that can be shared by multiple systems with different lifespans.

Solution

C++ provides the shared_ptr template that can automatically delete memory when it’s
no longer needed.

How It Works

Dynamically allocated memory in C++ must be deleted by a programmer. This means
you're responsible for ensuring that your program behaves as a user expects at all times.
C++ provides the shared ptr template, which tracks how many places in your program
are sharing access to the same memory and can delete that memory when it’s no longer
needed. Listing 10-8 shows how you can create a shared pointer.

Listing 10-8. Creating a Shared Pointer

#include <iostream>
#include <memory>

using namespace std;

class MyClass
{

private:
int m_Number{ o };

public:
MyClass(int value)
: m_Number{ value }

313

CHAPTER 10 MEMORY

~MyClass()
{
cout << "Destroying " << m_Number << endl;
}
void operator=(const int value)
{
m_Number = value;
}
int GetNumber() const
{
return m_Number;
}

1
using SharedMyClass = shared ptr< MyClass »>;

int main(int argc, char* argv[])

{
SharedMyClass sharedMyClass{ new MyClass(10) };

return 0;

This code contains a class, MyClass, that has a private integer member variable.
There is also a type alias used to represent a shared ptr to a MyClass object. This type
alias is used to make writing your code easier and more maintainable in the long term.
The shared_ptr template itself takes a parameter to the type of object that you would
like to share around your program. In this case, you want to share dynamic objects of
type MyClass.

An instance of SharedMyClass is created on the first line of the main function. This
instance is initialized with a dynamically allocated MyClass object. The MyClass object
itself is initialized with the value 10. The only other code in the body of main is the return
statement. Despite this, Figure 10-7 shows that the destructor of MyClass has been called
on the object stored in sharedMyClass.

314

CHAPTER 10 MEMORY

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe10-4/Listing10-8

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel@0-4/Listing10-85 ./main
Destroying 10
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe10-4/Listing10-85 [

Figure 10-7. Output showing that the MyClass destructor has been called in
Listing 10-8

The shared ptr template automatically calls delete on the memory it wraps
once the last instance of that shared_ptr goes out of scope. In this case, there is only a
single shared ptr in the main function; therefore, the MyClass object is deleted, and its
destructor is called after the function return statement is executed.

Listing 10-9 shows how you can use a shared_ptr to transfer ownership of shared
memory from one function to another and still maintain this automated cleanup code.

Listing 10-9. Transferring Dynamic Memory Between Functions

#include <iostream>
#include <memory>

using namespace std;

class MyClass
{

private:
int m_Number{ o };

public:
MyClass(int value)
: m_Number{ value }

315

CHAPTER 10 MEMORY

~MyClass()
{
cout << "Destroying " << m_Number << endl;
}
void operator=(const int value)
{
m_Number = value;
}
int GetNumber() const
{
return m_Number;
}

1
using SharedMyClass = shared ptr< MyClass »>;

void ChangeSharedValue(SharedMyClass sharedMyClass)

{
if (sharedMyClass != nullptr)
{
*sharedMyClass = 100;
}
}
int main(int argc, char* argv[])
{
SharedMyClass sharedMyClass{ new MyClass(10) };
ChangeSharedValue(sharedMyClass);
return 0;
}

Listing 10-9 creates a SharedMyClass instance pointing to a MyClass object initialized
with the value 10. The sharedMyClass instance is then passed by value into the
ChangeSharedValue function. Passing a shared _ptr by value makes a copy of the pointer.

316

CHAPTER 10 MEMORY

You now have two instances of the SharedMyClass template, both pointing to the same
MyClass instance. The destructor for MyClass isn’t called until both of the shared ptr
instances have gone out of scope. Figure 10-8 shows that the initial value of the MyClass
instance was changed and that the destructor was only called a single time.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe10-4/Listing10-9

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel0-4/Listing10-95 ./main
Destroying 100
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe10-4/Listing10-95 [

Figure 10-8. Output showing that the shared object’s stored value was changed
and destroyed a single time

Recipe 10-5. Creating Single-Instance Dynamic
Objects

Problem

You have an object that you would like to pass around, but you only wish to have a single
instance of that object.

Solution

C++ provides the unique_ptr template, which allows a pointer instance to be transferred
but not shared.

How It Works

unique_ptr is a template that can be used to store a pointer to dynamically allocated
memory. It differs from shared_ptr in that there can only be a single reference to the
dynamic memory at a time. Listing 10-10 shows how to create a unique_ptr.

317

CHAPTER 10 MEMORY

Listing 10-10. Creating a unique_ptr

#include <iostream>
#include <memory>

using namespace std;

class MyClass

{
private:
int m_Number{ o };
public:
MyClass(int value)
: m_Number{ value }
{
}
~MyClass()
{
cout << "Destroying " << m_Number << endl;
}
void operator=(const int value)
{
m_Number = value;
}
int GetNumber() const
{
return m_Number;
}
};

using UniqueMyClass = unique_ptr< MyClass >;

void CreateUniqueObject()

{
UniqueMyClass uniqueMyClass{ make unique<MyClass>(10) };

318

CHAPTER 10 MEMORY

int main(int argc, char* argv[])

{ cout << "Begin Main!" << endl;
CreateUniqueObject();
cout << "Back in Main!" << endl;
return 0;

}

The unique_ptr in Listing 10-10 is created inside a function to demonstrate that the
instance of the dynamically created object is destroyed when the unique_ptr goes out of
scope. You can see this reflected in the output in Figure 10-9.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe10-5/Listing10-10
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel0-5/Listing10-10S5 ./main

Begin Main!

Destroying 10

Back in Main!
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe10-5/Listing10-10S5 l

Figure 10-9. Output showing the destruction of a dynamically allocated object
stored in a unique_ptr

Listing 10-10 showed that a unique_ptr can be used to automatically delete
dynamically allocated memory when it’s no longer needed. It didn’t show that a unique_
ptr can be used to transfer ownership of a single object between different scopes. This is
shown in Listing 10-11.

Listing 10-11. Transferring Dynamically Allocated Memory Between unique
ptr Instances

#include <iostream>
#include <memory>

using namespace std;

319

CHAPTER 10 MEMORY

class MyClass

{
private:
int m_Number{ o };
public:
MyClass(int value)
: m_Number{ value }
{
}
~MyClass()
{
cout << "Destroying " << m_Number << endl;
}
void operator=(const int value)
{
m_Number = value;
}
int GetNumber() const
{
return m_Number;
}
};

using UniqueMyClass = unique_ptr< MyClass »>;

void CreateUniqueObject(UniqueMyClass& referenceToUniquePtr)

{
UniqueMyClass uniqueMyClass{ make unique<MyClass>(10) };

cout << hex << showbase;

cout << "Address in uniqueMyClass " << uniqueMyClass.get() << endl;

referenceToUniquePtr.swap(uniqueMyClass);

cout << "Address in uniqueMyClass " << uniqueMyClass.get() << endl;

320

CHAPTER 10 MEMORY

}
int main(int argc, char* argv[])
{
cout << "Begin Main!" << endl;
UniqueMyClass uniqueMyClass;
CreateUniqueObject(uniqueMyClass);
cout << "Address in main's uniqueMyClass " << uniqueMyClass.get() << endl;
cout << dec << noshowbase << "Back in Main!" << endl;
return 0;
}

The code in Listing 10-11 creates an instance of MyClass in the CreateUniqueObject
function. That function also takes a reference to another unique_ptr<MyClass> that
is used to transfer the dynamically allocated object out of the function. The transfer is
achieved using the swap function supplied by the unique_ptr template. The MyClass
destructor is called at the end of the main function when all the UniqueMyClass instances
have gone out of scope. You can see the transfer of memory and the destruction order of
the MyClass instance in Figure 10-10.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe10-5/Listing10-11
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel10-5/Listing10-11S$./main

Begin Main!

Address in uniqueMyClass 0x12bbo10

Address in uniqueMyClass ©

Address in main's uniqueMyClass 0x12bbo10

Back in Main!

Destroying 10
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipel0-5/Listing10-11$% l

Figure 10-10. The output showing the transfer of a unique ptr and the
destruction of its dynamically allocated memory

321

CHAPTER 10 MEMORY

Recipe 10-6. Creating Smart Pointers
Problem

You would like to use automated pointer management on systems that don’t support
shared ptr andunique ptr.

Solution

You can use member variables in a class to track how many references to the data are
currently in use.

How It Works

The unique_ptr and shared ptr templates were added to the STL in C++11. Some
programs are written without access to C++11 or without access to the STL. In this
situation, you can write your own smart pointer implementation. To begin, you need
to create an object that can be used to reference-count. Reference counting works by
increasing an integer every time you make a copy of the object you would like to count.
Listing 10-12 shows the code for a reference-counting class.

Listing 10-12. The Code for a Reference-Counting Class

class ReferenceCount

{
private:

int m _Count{ 0 };
public:

void Increment()

{

++m_Count;

}

int Decrement()

{

return --m_Count;

322

CHAPTER 10 MEMORY

int GetCount() const
{

return m_Count;

I

The ReferenceCount class is pretty basic. It simply consists of a member variable to
keep track of a count and methods to increase and decrease that count. The GetCount
method is there to provide access to the count, to allow for printing during debugging.

The ReferenceCount class is then used in a template class called SmartPointer. This
class provides a template parameter you can use to specialize the template with the type
of object you want to be automatically tracked. The class has a member variable that is
a pointer to the object being tracked and another pointer to a ReferenceCount object.
The ReferenceCount object is accessed through a pointer so that it can be shared among
multiple SmartPointer objects that are all accessing the same dynamically allocated
object. You can see the code for SmartPointer in Listing 10-13.

Listing 10-13. The SmartPointer Class

template <typename T>
class SmartPointer

{

private:
Tx m_Object{ nullptr };
ReferenceCount* m ReferenceCount{ nullptr };

public:
SmartPointer()

{

}

SmartPointer(T* object)
: m_Object{ object }
, m_ReferenceCount{ new ReferenceCount }

m_ReferenceCount->Increment();

323

CHAPTER 10 MEMORY

cout << "Created smart pointer! Reference count is
<< m_ReferenceCount->GetCount() << endl;

}
virtual ~SmartPointer()
{
if (m_ReferenceCount)
{
int decrementedCount = m_ReferenceCount->Decrement();
cout << "Destroyed smart pointer! Reference count is "
<< decrementedCount << endl;
if (decrementedCount == 0)
{
delete m _ReferenceCount;
delete m_Object;
}
m_ReferenceCount = nullptr;
m _Object = nullptr;
}
}

SmartPointer(const SmartPointer<T>& other)
: m_Object{ other.m Object }
, m_ReferenceCount{ other.m ReferenceCount }

{
m_ReferenceCount->Increment();
cout << "Copied smart pointer! Reference count is "
<< m_ReferenceCount->GetCount() << endl;
}

SmartPointer<T>& operator=(const SmartPointer<T>& other)

{
if (this != &other)

{

if (m_ReferenceCount 8& m_ReferenceCount->Decrement() == 0)

{

delete m ReferenceCount;

324

s

CHAPTER 10

delete m_Object;
}

m_Object = other.m Object;
m_ReferenceCount = other.m_ReferenceCount;
m_ReferenceCount->Increment();

}

cout << "Assigning smart pointer! Reference count is
<< m_ReferenceCount->GetCount() << endl;

return *this;

}

SmartPointer(SmartPointer<T>&& other)
: m_Object{ other.m Object }
, m_ReferenceCount{ other.m ReferenceCount }

other.m Object = nullptr;
other.m ReferenceCount = nullptr;

}

SmartPointer<T>& operator=(SmartPointer<T>8& other)

{
if (this != 8&other)

{
m_Object = other.m Object;
m_ReferenceCount = other.m ReferenceCount;
other.m _Object = nullptr;
other.m ReferenceCount = nullptr;
}
}
T& operatorx()
{
return *m_Object;
}

MEMORY

325

CHAPTER 10 MEMORY

You can see the member variables that are used to store the dynamically allocated
object and the ReferenceCount object in the SmartPointer class in Listing 10-13. The
m_Object pointer is a pointer to an abstract templatized type; this allows the use of any
type to be tracked by the SmartPointer template.

The first public methods in SmartPointer are the constructors. A new SmartPointer
can be created either as a null pointer or pointing to an already-existing object. A null
SmartPointer has bothm Object and m ReferenceCount set to nullptr. The other
constructor takes a pointer to T that causes a SmartPointer to be initialized. In this case,
anew ReferenceCount object is created to track the use of the object being passed to
the constructor. The side effect of this is that a new SmartPointer can only be created
when initialized with an object pointer; a null SmartPointer can only be assigned from
another SmartPointer object.

The SmartPointer destructor checks whether a ReferenceCount object is being held
by the class (remember that it could be nullptr in a null SmartPointer). If a pointer to
aReferenceCount object is held, its count is decremented. If the count has reached 0,
then you know this SmartPointer is the last to be referencing this dynamically allocated
object. In this case, you're free to delete both the ReferenceCount object and the object
being held by the SmartPointer.

The next method in the SmartPointer is the copy constructor. This method simply
copies them Object and m ReferenceCount pointers from the parameter passed to the
method into the object being copy-constructed. It then makes sure the reference count is
incremented. The call to Increment is essential because you now have two SmartPointer
objects that are referencing the same dynamically allocated object. Missing the call to
Increment here would cause delete to be called in the destructor of the first of these
SmartPointers to go out of scope.

The assignment operator has a slightly different job than the copy constructor. In the
copy constructor, you're free to assume that the existing object is new and therefore not
already pointing to an existing object or ReferenceCount instance. This isn’t true in the
assignment operator; therefore, it’s necessary to account for this occurrence. You can
see that the assignment operator first checks to ensure that the operator isn’t assigning
an object to itself; in this case, there would be no work to be done. If a new object is
being assigned, then there is a check to see whether the ReferenceCount pointer is valid.
Ifitis, then Decrement is called; and in the case where this returns 0, the existingm _
ReferenceCount and m_Object pointers are deleted. Them Object and m_ReferenceCount
pointers are always copied from the parameter to the assignment operator method into the
variables of this, and Increment is called on the new ReferenceCount object.

326

CHAPTER 10 MEMORY

Next in the class are a move constructor and move assignment operator. These are
present to conform with the C++ rule of five. This is a programming guideline that
suggests that in any case where you overload the copy constructor or assignment
operator, you should overload all five of the destructor, copy constructor, assignment
operator, move constructor, and move assignment operator. Move operations are
destructive in nature, so no calls to Increment or Decrement are made. These are
unnecessary because the m_Object and m_ReferenceCount pointers are set to nullptr
on the parameter in both cases, meaning delete will never be called in their destructors.
Supporting the move constructor and move assignment operator provides a more efficient
method to pass SmartPointer objects into and out of functions.

The final method provides access to the data stored by the SmartPointer object. This
could result in crashes if this method is called on null SmartPointer objects. You should
take care to only try to dereference valid SmartPointer instances.

Note Listing 10-14 contains debug code to allow the printing of object state for
the purposes of illustration. This code can be removed from a working solution.

Listing 10-14 shows a complete working example of the SmartPointer class in use.

Listing 10-14. Using SmartPointer
#include <iostream>
using namespace std;

class ReferenceCount

{
private:

int m _Count{ 0 };
public:

void Increment()

{

++m_Count;

}

int Decrement()

{

327

CHAPTER 10 MEMORY

return --m_Count;

}
int GetCount() const
{

return m_Count;
}

};

template <typename T>
class SmartPointer

{

private:
Tx m_Object{ nullptr };
ReferenceCount* m ReferenceCount{ nullptr };

public:
SmartPointer()

{

}

SmartPointer(T* object)
: m_Object{ object }
, m_ReferenceCount{ new ReferenceCount }

{
m_ReferenceCount->Increment();
cout << "Created smart pointer! Reference count is "
<< m_ReferenceCount->GetCount() << endl;

}

virtual ~SmartPointer()

{

if (m_ReferenceCount)

{
int decrementedCount = m_ReferenceCount->Decrement();
cout << "Destroyed smart pointer! Reference count is
<< decrementedCount << endl;

328

}

CHAPTER 10 MEMORY

if (decrementedCount <= 0)
{
delete m_ReferenceCount;
delete m_Object;
}
m_ReferenceCount = nullptr;
m_Object = nullptr;

SmartPointer(const SmartPointer<T>& other)

}

: m_Object{ other.m Object }
, m_ReferenceCount{ other.m ReferenceCount }

m_ReferenceCount->Increment();

cout << "Copied smart pointer! Reference count is
<< m_ReferenceCount->GetCount() << endl;

SmartPointer<T>& operator=(const SmartPointer<T>& other)

{

if (this != &other)
{

if (m_ReferenceCount && m ReferenceCount->Decrement() == 0)

{

delete m _ReferenceCount;
delete m Object;

}

m_Object = other.m_Object;
m_ReferenceCount = other.m ReferenceCount;
m_ReferenceCount->Increment();

}

cout << "Assigning smart pointer! Reference count is
<< m_ReferenceCount->GetCount() << endl;

329

CHAPTER 10 MEMORY

return *this;
}
SmartPointer(SmartPointer<T>&& other)
: m_Object{ other.m Object }
, m_ReferenceCount{ other.m ReferenceCount }

other.m Object = nullptr;
other.m ReferenceCount = nullptr;

}
SmartPointer<T>& operator=(SmartPointer<T>8& other)

{
if (this != 8&other)

{
m_Object = other.m _Object;
m_ReferenceCount = other.m ReferenceCount;
other.m Object = nullptr;
other.m_ReferenceCount = nullptr;
}
}
T& operatorx()
{
return *m_Object;
}
};
struct MyStruct
{
public:
int m Value{ 0 };
~MyStruct()
{
cout << "Destroying MyStruct object!"™ << endl;
}
};

330

CHAPTER 10 MEMORY

using SmartMyStructPointer = SmartPointer< MyStruct >;

SmartMyStructPointer PassValue(SmartMyStructPointer smartPointer)
{

SmartMyStructPointer returnValue;

returnValue = smartPointer;

return returnValue;

}

int main(int argc, char* argv[])

{
SmartMyStructPointer smartPointer{ new MyStruct };
(*smartPointer).m Value = 10;
SmartMyStructPointer secondSmartPointer = PassValue(smartPointer);
return 0;

}

Listing 10-14 shows a MyStruct instance being passed between the main and
PassValue functions using the SmartPointer template. A type alias is created to
ensure that the type of the SmartPointer for MyStruct is valid and easily maintainable
throughout. The code uses the constructor, copy constructor, and assignment operators
from the SmartPointer template. The MyStruct object is automatically deleted only
when the last of the SmartPointer instances has gone out of scope at the end of the main
function.

Figure 10-11 shows the output generated when running the code in Listing 10-14.

331

CHAPTER 10 MEMORY

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe10-6/Listing10-14
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel0-6/Listing10-14S5 ./main

Created smart pointer! Reference count is 1
Copied smart pointer! Reference count is 2
Assigning smart pointer! Reference count is
Destroyed smart pointer! Reference count is
Destroyed smart pointer! Reference count is
Destroyed smart pointer! Reference count is
Destroying MyStruct object!
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipe10-6/Listing10-14$ |

D= NW

Figure 10-11. A working example of SmartPointer in action

Recipe 10-7. Debugging Memory Problems by
Overloading new and delete

Problem

You have some memory issues in your program and would like to add diagnostic code to
the allocations and deallocations in the program.

Solution

C++ allows the replacement of the new and delete operators with custom written versions.

How It Works

The C++ new and delete operators boil down to being function calls. The signature for
the global new function is

void* operator new(size t size);
The signature for the global delete function is

void delete(voidx ptr);

332

CHAPTER 10 MEMORY

The new function takes the number of bytes to be allocated as a parameter, and
the delete function takes a pointer to a memory address that has been returned from
new. These functions can be replaced to provide added debugging information to your
program. Listing 10-15 shows an example of adding a header to your memory allocations
to help with program debugging.

Listing 10-15. Adding a Header to Memory Allocations

#include <cstdlib>
#include <iostream>

using namespace std;

struct MemoryHeader

{

const charx m_Filename{ nullptr };
int m_Line{ -1 };

};

void* operator new(size t size, const charx filename, int line) noexcept

{

void* pMemory{ malloc(size + sizeof(MemoryHeader)) };

MemoryHeader* pMemoryHeader{ reinterpret cast<MemoryHeaderx>(pMemory) };
pMemoryHeader->m Filename = filename;
pMemoryHeader->m Line = line;

return static_cast<void*>(static_cast<charx>(pMemory)+sizeof(MemoryHeader));

}

void operator delete(voidx pMemory) noexcept

{
char* pMemoryHeaderStart{ reinterpret cast<char*>(pMemory)-
sizeof(MemoryHeader) };
MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>
(pMemoryHeaderStart) };

333

CHAPTER 10 MEMORY

cout << "Deleting memory allocated from:
<< pMemoryHeader->m_Line << endl;

<< pMemoryHeader->m_Filename <<

free(pMemoryHeader);

}
#define new new(_FILE , LINE)

class MyClass

{
private:
int m Value{ 1 };
};
int main(int argc, char* argv[])
{
int* pInt{ new int };
xpInt = 1;
delete pInt;
MyClass* pClass{ new MyClass };
delete pClass;
return 0;
}

This code replaces the new and delete functions with custom versions. The custom
version of new doesn’t conform to the standard signature, so a macro was used to replace
the standard version. This was done to allow the compiler to tell the custom new function
the filename and line number where new is called. This allows you to track down
individual allocations to their exact place in the program source code. This can be a very
useful debugging tool when you're dealing with memory problems.

The custom new function adds the size of the MemoryHeader structure to the number
of bytes being requested by the program. It then sets the m_Filename pointer in the
MemoryHeader struct to the filename parameter supplied to new. The m_Line member
is similarly set to the 1ine parameter passed in. The address returned from new is the
address of the beginning of the user area of memory, not including the MemoryHeader
structure; this allows your debugging information to be added and addressed at the
memory subsystem level and be completely transparent to the rest of your program.

334

CHAPTER 10 MEMORY

The delete function shows a basic use for this debugging information. It simply
prints out the line where the memory chunk being freed was allocated. It gets the
address of the memory header by subtracting the size of the header from the address the
function was passed.

The new macro is used to give a simple method for passingthe FILE and
__LINE__ macros to the overloaded new function. These macros are known as built-in
macros and are supplied by most modern C++ compilers. These macros are replaced by
a pointer to the filename and the line number where they're used. Adding them to the
new macro results in the filename and line number for every call to new in your program
being passed to the custom new allocator.

The malloc and free functions used in the new and delete functions are the C-style
memory allocation functions. These are used to prevent conflicts with the many different
types of C++ allocation functions. The functions shown in Listing 10-15 are suitable
for allocating single objects. It’s also possible to replace the C++ array new and delete
functions. It’s essential to replace these functions when you're trying to track down
problems such as memory leaks. Listing 10-16 shows these functions in action.

Listing 10-16. Replacing the Array new and delete Operators

#include <cstdlib>
#include <iostream>

using namespace std;

struct MemoryHeader

{

const charx m Filename{ nullptr };
int m_Line{ -1 };

}s

void* operator new(size t size, const charx filename, int line) noexcept

{

voidx pMemory{ malloc(size + sizeof(MemoryHeader)) };

MemoryHeader* pMemoryHeader{ reinterpret cast<MemoryHeaderx>(pMemory) };
pMemoryHeader->m_Filename = filename;
pMemoryHeader->m_Line = line;

335

CHAPTER 10 MEMORY

}

return static_cast<void*>(static_cast<char*>(pMemory)+sizeof(MemoryHeader));

voidx operator new[](size t size, const charx filename, int line) noexcept

{

}

void* pMemory{ malloc(size + sizeof(MemoryHeader)) };

MemoryHeader* pMemoryHeader{ reinterpret cast<MemoryHeaderx>(pMemory) };
pMemoryHeader->m Filename = filename;
pMemoryHeader->m Line = line;

return static_cast<voidx>(static_cast<char*>(pMemory)+sizeof(MemoryHeader));

void operator delete(void* pMemory) noexcept

{

}

char* pMemoryHeaderStart{ reinterpret_ cast<char*>(pMemory)-sizeof
(MemoryHeader) };

MemoryHeader* pMemoryHeader{ reinterpret cast<MemoryHeader*>
(pMemoryHeaderStart) };

cout << "Deleting memory allocated from:

<< pMemoryHeader->m_Filename << << pMemoryHeader->m_Line << endl;

free(pMemoryHeader);

void operator delete[](void* pMemory) noexcept

{

336

char* pMemoryHeaderStart{ reinterpret_cast<char*y(pMemory)-sizeof
(MemoryHeader) };

MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader+>(pMemoryHea
derStart) };
cout << "Deleting memory allocated from:

<< pMemoryHeader-»>m_Filename << ":" << pMemoryHeader->m_Line << endl;

free(pMemoryHeader);

CHAPTER 10 MEMORY
#tdefine new new(_FILE , LINE)

class MyClass

{
private:
int m Value{ 1 };
};
int main(int argc, char* argv([])
{
int* pInt{ new int };
*pInt = 1;
delete pInt;
MyClassx pClass{ new MyClass };
delete pClass;
const unsigned int NUM_ELEMENTS{ 5 };
int* pArray{ new int[NUM_ELEMENTS] };
delete[] pArray;
return O;
}

The array new and delete operators’ signatures differ from the standard new and
delete operators only by having the [] operator present in their signatures, as you can
see in Listing 10-16. Figure 10-12 shows the output generated by this code.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe10-7/Listing10-16
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel®-7/Listing10-165 ./main

Deleting memory allocated from: main.cpp:66
Deleting memory allocated from: main.cpp:70
Deleting memory allocated from: main.cpp:74
bruce@bruce-vVirtual-Machine:~/Projects/C-Recipes/Recipel10-7/Listing10-16$ l

Figure 10-12. Output showing the use of the replaced new and delete operators

337

CHAPTER 10 MEMORY

The new and delete functions you have seen so far in this recipe have been global
replacements for the new and delete operators. It’s also possible to replace new and
delete for specific classes. You can add these functions directly to a class definition,
and those functions will be used when creating and destroying dynamic instances of
that type of object. Listing 10-17 shows code that replaces the global new, new[], delete,
and delete[] operators and also adds new and delete operators to the MyClass class
definition.

Listing 10-17. Adding new and delete Operators to MyClass

#include <cstdlib>
#include <iostream>

using namespace std;

struct MemoryHeader

{

const charx m Filename{ nullptr };
int m_Line{ -1 };

}s

void* operator new(size t size, const charx filename, int line) noexcept

{

voidx pMemory{ malloc(size + sizeof(MemoryHeader)) };

MemoryHeader* pMemoryHeader{ reinterpret cast<MemoryHeaderx>(pMemory) };
pMemoryHeader->m_Filename = filename;
pMemoryHeader->m_Line = line;

return static_cast<void*>(static_cast<char*>(pMemory)+sizeof(MemoryHeader));

}

voidx operator new[](size t size, const char* filename, int line) noexcept

{

void* pMemory{ malloc(size + sizeof(MemoryHeader)) };

MemoryHeader* pMemoryHeader{ reinterpret cast<MemoryHeaderx>(pMemory) };
pMemoryHeader->m Filename = filename;
pMemoryHeader->m Line = line;

338

CHAPTER 10 MEMORY

return static_cast<void+>(static_cast<char*>(pMemory)+sizeof(MemoryHeader));

}

void operator delete(void* pMemory) noexcept

{
char* pMemoryHeaderStart{ reinterpret cast<char*>(pMemory)-
sizeof(MemoryHeader) };
MemoryHeader* pMemoryHeader{ reinterpret cast<MemoryHeader*>
(pMemoryHeaderStart) };
cout << "Deleting memory allocated from: "

<< pMemoryHeader->m_Filename << ":" << pMemoryHeader->m_Line << endl;

free(pMemoryHeader);

}

void operator delete[](void* pMemory) noexcept

{
char* pMemoryHeaderStart{ reinterpret_cast<char*>(pMemory)-sizeof
(MemoryHeader) };
MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>
(pMemoryHeaderStart) };
cout << "Deleting memory allocated from: "

<< pMemoryHeader->m_Filename << ":" << pMemoryHeader->m Line << endl;

free(pMemoryHeader) ;

}

class MyClass

{

private:

int m Value{ 1 };

339

CHAPTER 10 MEMORY

public:
void* operator new(size_t size, const char* filename, int line) noexcept
{
cout << "Allocating memory for MyClass!" << endl;
return malloc(size);

}

void operator delete(void* pMemory) noexcept

{
cout << "Freeing memory for MyClass!"™ << endl;
free(pMemory);

}

}s
#define new new(FILE , LINE)

int main(int argc, char* argv[])

{
intx pInt{ new int };
*pInt = 1;
delete pInt;

MyClass* pClass{ new MyClass };
delete pClass;

const unsigned int NUM_ELEMENTS{ 5 };
MyClass* pArray{ new MyClass[NUM ELEMENTS] };
delete[] pArray;

return O;

The new and delete operators in the MyClass definition are called in the main
function when creating a single instance of MyClass. You can see that this is the case in
the output shown in Figure 10-13.

340

CHAPTER 10 MEMORY

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe10-7/Listing10-17
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel10-7/Listing10-17S5 ./main

Deleting memory allocated from: main.cpp:81

Allocating memory for MyClass!

Freeing memory for MyClass!

Deleting memory allocated from: main.cpp:89
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe10-7/Listing10-17$ [

Figure 10-13. Output showing the use of member new and delete operators inMyClass

Recipe 10-8. Calculating Performance Impacts
of Code Changes

Problem

You would like to determine whether changes you're making to code are faster or slower
than the existing code. Once your code is about ready for initial alpha testing, this might
be a good way to ensure final optimization.

Solution

C++ provides access to a computer system’s high-performance timers to carry out high-
precision timing.

How It Works

The C++ programming language provides access to a high-resolution timer that allows
you to make timing measurements around different parts of your code. This lets you
record the time taken for your functions or algorithms and compare these across
different versions to work out which are the most efficient and performant.

Listing 10-18 shows code that is used to time three different numbers of iterations
around a loop.

341

CHAPTER 10 MEMORY
Listing 10-18. Using chrono: :high resolution_timer

#include <chrono>
#include <iostream>

using namespace std;

void RunTest(unsigned int numberIterations)

{
auto start = chrono::high resolution_clock::now();
for (unsigned int i{ 0 }; i < numberIterations; ++i)
{
unsigned int squared{ ixi*I };
}
auto end = chrono::high resolution_clock::now();
auto difference = end - start;
cout << "Time taken: "
<< chrono: :duration_cast<chrono: :microseconds>(difference).count()
<< " microseconds!" << endl;
}
int main(int argc, char* argv[])
{
RunTest(20000000);
RunTest(100000000);
RunTest(1000000000);
return O;
}

This listing shows that the chrono namespace in the STL provides a struct named
high resolution_clock with a static function called now. This function returns an object
that is of type time_point from the chrono::system clock struct. Listing 10-18 uses
the auto keyword to deduce this type for the start and end variables in the RunTest
function. Both start and end are initialized using the high_resolution_timer: :now
function, start before the for loop and end after the for loop. The value of start is
subtracted from the value of end to give the duration of time elapsed while the function

342

CHAPTER 10 MEMORY

was executing the loop. The chrono: :duration_cast template is then used to convert
the time_point difference variable into a representation that can be expressed in a
human-readable form, in this case microseconds.

The RunTest function is called three different times from the main function. Each call
has a different number of loop iterations to be run, to show that the timing code can be
used to tell which of the runs is the least time-efficient. Figure 10-14 shows the output
generated when running the program on an Intel Core i7-3770.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe10-8/Listing10-18
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel0-8/Listing10-18S5 ./main

Time taken: 21084 microseconds!

Time taken: 240873 microseconds!

Time taken: 2574822 microseconds!
bruce@bruce-vVirtual-Machine:~/Projects/C-Recipes/Recipel10-8/Listing10-18$ l

Figure 10-14. Output showing that each subsequent call to RunTest in Listing 10-18
takes longer to execute

duration_cast can be used to convert system times into nanoseconds, milliseconds,
seconds, minutes, and hours, as well as microseconds. Microsecond precision is what
you're looking for when optimizing many computer programming algorithms. The
timing techniques used in this recipe will prove useful when comparing the impacts of
memory storage types on program efficiency.

Recipe 10-9. Understanding the Performance
Impacts of Memory Choices

Problem

You have a program that is performing poorly, but you aren’t sure why.

343

CHAPTER 10 MEMORY

Solution

There is no silver bullet to solve performance problems in modern computer programs.
However, a lack of understanding of how memory works on a modern computer can lead
to poorly performing programs. Understanding the impacts of cache misses on program
performance will help you write better-performing programs.

How It Works

The speed of modern processors has accelerated at a much faster rate than memory
access latencies. This had led to a situation where processing performance can be
severely hampered by poor memory access patterns in your programs. Understanding
how to structure your C++ programs to take effective use of processor cache memory is
essential to writing the most performant programs possible.

Reading and writing data from main memory can take several hundred cycles on
modern computer systems. Processors implement caches to help alleviate this problem.
A modern CPU cache works by reading large chunks of data simultaneously from main
memory into much faster cache memory. These chunks are known as cache lines. An
L1 cache line on an Intel Core i7-3770 processor is 32 KB in size. The processor reads an
entire 32 KB chunk into the L1 cache in a single go. If the data you're reading or writing
isn’t present in the cache, the result is a cache miss, and the processor must retrieve the
data from L2 cache, L3 cache, or system RAM. Cache misses can be very expensive, and
seemingly innocuous mistakes or choices in your code can have massive performance
implications. Listing 10-19 contains one loop to initialize some arrays and three different
loops that have different memory access patterns.

Listing 10-19. Exploring the Performance Impacts of Memory Access Patterns

#include <chrono>
#include <iostream>

using namespace std;

const int NUM_ROWS{ 10000 };

const int NUM_COLUMNS{ 1000 };

int elements[NUM ROWS][NUM COLUMNS];
int* pElements[NUM ROWS][NUM COLUMNS];

344

CHAPTER 10

int main(int argc, char* argv[])

{

for (int i{ 0 }; i < NUM ROWS; ++i)

{
for (int j{ 0 }; j < NUM_COLUMNS; ++j)
{
elements[i][]j] = i*]j;
pElements[i][j] = new int{ elements[i][]] };
}
}

auto start = chrono::high resolution_clock::now();

for (int i{ 0 }; i < NUM ROWS; ++i)

{
for (int j{ 0 }; j < NUM_COLUMNS; ++j)
{
const int result{ elements[j][i] };
}
}

auto end = chrono::high resolution_clock::now();
auto difference = end - start;

cout << "Time taken for j then i:

MEMORY

<< chrono: :duration_cast<chrono: :microseconds>(difference).count()

<< " microseconds!" << endl;

start = chrono::high resolution clock::now();

for (int i{ 0 }; i < NUM_ROWS; ++i)

{
for (int j{ 0 }; j < NUM_COLUMNS; ++j)
{
const int result{ elements[i][j] };
}
}

345

CHAPTER 10 MEMORY

end = chrono::high resolution clock::now();
difference = end - start;

cout << "Time taken for i then j:
<< chrono::duration_cast<chrono: :microseconds>(difference).count()
<< " microseconds!" << endl;

start = chrono::high resolution clock::now();

for (int i{ 0 }; i < NUM ROWS; ++i)

{
for (int j{ 0 }; j < NUM_COLUMNS; ++j)
{
const int result{ *(pElements[i][j]) };
}
}

end = chrono::high resolution clock::now();
difference = end - start;

cout << "Time taken for pointers with i then j:
<< chrono: :duration cast<chrono: :microseconds>(difference).count()

<< " microseconds!" << endl;

return 0;

The first loop in Listing 10-19 is used to set up two arrays. The first array stores
integer values directly, and the second array stores pointers to integers. Each of the
arrays contains 10,000 x 1,000 unique elements.

It’s important to understand how multidimensional arrays are laid out in memory,
to understand why this test creates the results it does with respect to cache miss

performance problems. A 3 x 2 array can be thought of as laid out as shown in Table 10-1.

Table 10-1. The Layout of a 3 x 2 Array

Column 1 Column 2 Column 3
Row 1 1 2 3
Row 2 4 5 6

346

CHAPTER 10 MEMORY

But computer memory isn’t two-dimensional in this manner. The elements of the
array are laid out linearly in memory in the order of the numbers shown in Table 10-1.
Given a 4 byte integer size, that means the value in Row 2 Column 1 can be found 12
bytes after the value in Row 1 Column 1. Extend the row size to 10,000, and you can see
that there is no possibility for the element at the beginning of a following row residing in
the same cache line as the previous row.

This fact allows the performance implications of cache misses to be tested with a
simple loop. You can see this in the second loop in Listing 10-18, where the incremented
j value is used to walk along the columns rather than the rows. The third loop walks
along the array in the correct order. That is, it walks along the rows in linear order in
memory. The fourth loop walks along the pElement array in linear order but has to
dereference a pointer to reach the values stored in the array. The results show you the
impacts of cache-unaware programming in the first loop, the ideal situation in the
second, and the result of unnecessary memory indirection in the third. Figure 10-15
shows these results.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe10-9/Listing10-19
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel10-9/Listing10-195 ./main

Time taken for j then i: 29957 microseconds!

Time taken for i then j: 21307 microseconds!

Time taken for pointers with i then j: 40526 microseconds!
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel10-9/Listing10-19% l

Figure 10-15. The results from the loops in Listing 10-19

You can see that the processor in my computer has a tenfold increase in the length of
time taken to complete a simple loop when walking an array out of order. Such problems
can cause stutters and delays in programs that can leave users and customers feeling
a sense of frustration with your software. The case with pointer dereferences is also
around twice as slow as the case where the integers can be accessed directly. You should
consider the implications of this before using dynamic memory liberally.

347

CHAPTER 10 MEMORY

Recipe 10-10. Reducing Memory Fragmentation
Problem

You have a program that requires you to create a lot of small memory allocations over a
long period of time, which introduces memory fragmentation problems..

Solution

You can create a small block allocator that can be used to pack small allocations into
larger pages.

How It Works

The first step in bundling small allocations together is to create a class that contains a
larger page of memory. This recipe shows you a straightforward way to wrap a 32 KB
memory page in a class and manage allocations from this pool. The memory is tracked
using an array of Boolean values that knows whether a given memory block is free or is
in use. New pages of memory are added when all current pages are full.

The downside to this approach is that all allocations have a minimum size of 32
bytes. Any request for memory that is smaller than 32 bytes is allocated an entire block
from a currently active memory page. Pages are also freed when they’re completely
empty, to ensure that the program doesn’t grow to a high watermark and never releases
unneeded memory. Listing 10-20 shows the class definition for Page. Later in the
chapter, you will find a complete working model, but for now let’s look at the parts.

Listing 10-20. The Page Class Definition

class Page

{

private:
char m_Memory[1024 * 32];
bool m Free[1024];
Pagex m_pNextPage;

348

CHAPTER 10 MEMORY

public:
Page();
~Page();

void* Alloc();
bool Free(voidx pMem);

bool IsEmpty() const;
b

The Page class definition contains two arrays. There is a char array that serves
memory allocation requests. This pool is an array of bytes and in this case is 32 KB in
size. There are 1,024 individual blocks in the pool, each 32 bytes in size. The 1,024 blocks
are mirrored in the Boolean array m_Free. This array is used to track whether a given
block is already allocated or is free for allocation. The m_pNextPage pointer stores the
address of the next page. The next page is used to allocate a block if the current page is
entirely in use.

The class consists of five methods: a constructor, a destructor, an Alloc method,

a Free method, and the IsEmpty method to determine if the page is no longer in use.
Listing 10-21 shows the function bodies for the Page class’s constructor and destructor.

Listing 10-21. The Page Constructor and Destructor

Page()
: m_pNextPage{ nullptr }

{
memset(m Free, 1, 1024);
}
~Page()
{
if (m_pNextPage)
{
delete m_pNextPage;
m_pNextPage = nullptr;
}
}

349

CHAPTER 10 MEMORY

The Page constructor is responsible for initializing the m_pNextPage pointer to
nullptr and for setting all the elements in the m_Free array to true. The destructor for
Page is responsible for deleting the object pointer tom_pNextPage if it has been allocated.

Listing 10-22 shows the code for the Page: :Alloc method.

Listing 10-22. The Page: :Alloc Method

void* Alloc()

{
voidx pMem{ nullptr };
for (unsigned int i = 0; i < 1024; ++i)
{
if (m_Free[i] == true)
{
m Free[i] = false;
pMem = &m Memory[i * 32];
break;
}
}
if (pMem == nullptr)
{
if (m_pNextPage == nullptr)
{
m_pNextPage = new Page();
}
pMem = m_pNextPage->Alloc();
}
return pMem;
}

The Alloc method is responsible for finding the first unused memory block in the
page-linked list. The first step is to loop over the m_Free array and check each block to
see whether it’s currently in use. If a free block is found, the pMem return value is set to the
address of the free block. The Boolean for that block is set to false to indicate that the
block is now in use. If a free block is found, the loop is broken.

350

CHAPTER 10 MEMORY

In the event that a free block isn’t found, the memory must be allocated from another

memory page. If another page has already been created, the pointer m_pNextPage already

holds its address. If not, a new page is created. The Alloc method is then called on

m_pNextPage. At this point, the Al1loc method is recursive. It’s called repeatedly until a

memory page is found that contains a free memory block to return up the stack to the calling

code. The memory returned from a page must also be returned to that page when it’s no

longer needed. The Free method in Listing 10-23 is responsible for carrying out this task.

Listing 10-23. The Page: :Free Method

bool Free(void* pMem)

{

bool freed{ false };

bool inPage{ pMem >= m_Memory && pMem <= 8m_Memory[(NUM_PAGES * BLOCK
SIZE) - 1] };
if (inPage)

{
unsigned int index{
(reinterpret cast<unsigned int>(pMem)-reinterpret cast
<unsigned int>(m_Memory))
/ BLOCK_SIZE };
m Free[index] = true;
freed = true;
}
else if (m_pNextPage)
{
freed = m_pNextPage->Free(pMem);
if (freed && m_pNextPage->IsEmpty())
{
Pagex old = m_pNextPage;
m_pNextPage = old->m_pNextPage;
old->m_pNextPage = nullptr;
delete m_pNextPage;
}
}

return freed;

351

CHAPTER 10 MEMORY

The Page: : Free method begins by checking whether the memory address being
released is contained within the current page. It does so by comparing the address
against the address of the beginning of the memory page and the address of the last
block in the page. If the memory being freed is greater than or equal to the page address
and less than or equal to the last block in the page, then the memory was allocated from
this page. In this case, the m_Free Boolean for this block can be set back to true. The
memory itself doesn’t need to be cleared, because new gives no guarantees of the values
contained in the memory it returns—that is the responsibility of the caller.

If the memory was not found in the current Page, then the Free method checks whether
the Page has a pointer to another Page object. If it does, then the Free method is called on
that Page. The Free method is recursive in nature in the same way as the Alloc method. If
the call to Free onm_pNextPage returned a true value, the Page is checked to see if it's now
empty. Ifitis, then the Page can be released. Because Page is using a simple linked list to track
pages, you must make sure you don’t orphan the tails of the list. You need to ensure that the
m_pNextPage pointer of the current page is set to point to them_pNextPage pointer of the Page
being released. The IsEmpty method is called in the Free method; the body of this method is
shown in Listing 10-24.

Listing 10-24. The Page: :IsEmpty Method

bool Iskmpty() const

{
bool isEmpty{ true };
for (unsigned int i = 0; i < NUM_PAGES; ++i)
{
if (m_Free[i] == false)
{
isEmpty = false;
break;
}
}
return isEmpty;
}

352

CHAPTER 10 MEMORY

The IsEmpty method checks the free list to determine whether the page is currently
in use. If any of the blocks in the Page aren'’t free, than the Page isn’t empty. The linked
list of pages is accessed through another class called SmallBlockAllocator. This
simplifies the management of the pages for the calling code. Listing 10-25 shows the
SmallBlockAllocator class.

Listing 10-25. The SmallBlockAllocator Class

class SmallBlockAllocator
{
public:
static const unsigned int BLOCK SIZE{ 32 };

private:
static const unsigned int NUM_ BLOCKS { 1024 };
static const unsigned int PAGE_SIZE{ NUM_ BLOCKS * BLOCK SIZE };

class Page

{

private:
char m_Memory[PAGE SIZE];
bool m_Free[NUM_ BLOCKS];
Pagex m_pNextPage;

public:
Page()
: m_pNextPage{ nullptr }
{
memset(m Free, 1, NUM_ BLOCKS);
}
~Page()
{
if (m_pNextPage)
{
delete m_pNextPage;
m_pNextPage = nullptr;
}
}

353

CHAPTER 10 MEMORY

voidx Alloc()

{
voidx pMem{ nullptr };
for (unsigned int i = 0; i < NUM_ BLOCKS; ++i)
{
if (m_Free[i] == true)
{
m Free[i] = false;
pMem = 8m Memory[i * BLOCK SIZE];
break;
}
}
if (pMem == nullptr)
{
if (m_pNextPage == nullptr)
{
m_pNextPage = new Page();
}
pMem = m_pNextPage->Alloc();
}
return pMem;
}
bool Free(void* pMem)
{

bool freed{ false };

bool inPage{ pMem >= m_Memory &&
pMem <= 8m_Memory[(NUM_ BLOCKS * BLOCK SIZE) - 1] };
if (inPage)
{
unsigned int index{
(reinterpret cast<unsigned int>(pMem)-
reinterpret cast<unsigned int>(m Memory)) / BLOCK SIZE };

354

CHAPTER 10 MEMORY

m Free[index] = true;
freed = true;

}
else if (m_pNextPage)
{
freed = m_pNextPage->Free(pMem);
if (freed && m_pNextPage->IsEmpty())
{
Pagex old = m_pNextPage;
m_pNextPage = old->m_pNextPage;
old->m_pNextPage = nullptr;
delete m_pNextPage;
}
}
return freed;
}
bool IsEmpty() const
{
bool iskEmpty{ true };
for (unsigned int i = 0; i < NUM _BLOCKS; ++i)
{
if (m_Free[i] == false)
{
iskmpty = false;
break;
}
}
return isEmpty;
}

};

Page m_FirstPage;

355

CHAPTER 10 MEMORY

public:
SmallBlockAllocator() = default;

void* Alloc()

{
return m_FirstPage.Alloc();
}
bool Free(void* pMem)
{
return m_FirstPage.Free(pMem);
}

};

The Page class can be seen as an internal class to SmallBlockAllocator in Listing 10-25.
This helps ensure that only the SmallBlockAllocator itself can be used as an interface to the
Page objects. Smal1lBlockAllocator begins by creating static constants to control the size of
the blocks and number of blocks each Page contains. The only public methods exposed from
SmallBlockAllocator are an Alloc method and a Free method. These simply wrap calls
to Page: :Alloc and Page: : Free and are called on the memberm_FirstPage. This means
the SmallBlockAllocator class always has at least one page of memory allocated for small
allocations, and this page will be resident in your program for as long as Smal1BlockAllocator
is active.

Listing 10-26 shows the overloaded new and delete operators that are needed to
route small allocations to SmallBlockAllocator.

Listing 10-26. Routing Small Allocations to SmallBlockAllocator
static SmallBlockAllocator sba;

void* operator new(unsigned int numBytes)

{
void* pMem{ nullptr };

if (numBytes <= SmallBlockAllocator::BLOCK SIZE)

{
pMem = sba.Alloc();

}

else

356

CHAPTER 10 MEMORY

{
pMem = malloc(numBytes);
}
return pMem;
}
void* operator new[](unsigned int numBytes)
{
voidx pMem{ nullptr };
if (numBytes <= SmallBlockAllocator::BLOCK SIZE)
{
pMem = sba.Alloc();
}
else
{
pMem = malloc(numBytes);
}
return pMem;
}
void operator delete(void* pMemory)
{
if (!sba.Free(pMemory))
{
free(pMemory);
}
}
void operator delete[](void* pMemory)
{
if (!sba.Free(pMemory))
{
free(pMemory);
}
}

357

CHAPTER 10 MEMORY

The new and new[] operators in Listing 10-26 check the number of bytes being
allocated against the supported block size of the SmallBlockAllocator class. If the size
of memory being requested is smaller or equal to the block size of the SBA, the Alloc
method is called on the static sba object. Ifit is larger, then malloc is used. The two
delete functions both call Free on sba. If Free returns false, then the memory being
released wasn’t present in any of the small block pages and is released using the free
function.

That covers all the code needed to implement a simple small block allocator. Listing 10-27
shows the entire listing for a working example program that uses this class.

Listing 10-27. A Complete Working Model Small Block Allocator Example

#include <cstdlib>
#include <iostream>

using namespace std;

class SmallBlockAllocator

{
public:
static const unsigned int BLOCK SIZE{ 32 };

private:
static const unsigned int NUM_BLOCKS{ 1024 };
static const unsigned int PAGE_SIZE{ NUM_BLOCKS * BLOCK_SIZE };

class Page

{

private:
char m_Memory[PAGE_SIZE];
bool m Free[NUM BLOCKS];
Pagex m_pNextPage;

public:
Page()
: m_pNextPage{ nullptr }

memset(m Free, 1, NUM BLOCKS);

358

CHAPTER 10

~Page()

{

}

if (m_pNextPage)

{
delete m_pNextPage;
m_pNextPage = nullptr;

void* Alloc()

{

}

voidx pMem{ nullptr };

for (unsigned int i{ 0 }; i < NUM_BLOCKS; ++i)
{

if (m_Free[i] == true)

{
m Free[i] = false;
pMem = 8m Memory[i * BLOCK SIZE];
break;
}
}
if (pMem == nullptr)
{
if (m_pNextPage == nullptr)
{
m_pNextPage = new Page();
}
pMem = m_pNextPage->Alloc();
}

return pMem;

bool Free(void* pMem)

{

MEMORY

359

CHAPTER 10 MEMORY
bool freed{ false };

bool inPage{ pMem >= m_Memory &&
pMem <= 8m_Memory[(NUM_BLOCKS * BLOCK SIZE) - 1] };
if (inPage)

{
unsigned int index{
(reinterpret_cast<unsigned int>(pMem)-
reinterpret cast<unsigned int>(m Memory)) / BLOCK SIZE };
m_Free[index] = true;
freed = true;
}
else if (m_pNextPage)
{
freed = m_pNextPage->Free(pMem);
if (freed && m_pNextPage->IsEmpty())
{
Page* old = m_pNextPage;
m_pNextPage = old->m_pNextPage;
old->m_pNextPage = nullptr;
delete m_pNextPage;
}
}
return freed;
}
bool IskEmpty() const
{

bool isEmpty{ true };

for (unsigned int i{ 0 }; i < NUM_BLOCKS; ++i)
{
if (m_Free[i] == false)
{
isEmpty = false;
break;

360

CHAPTER 10 MEMORY

}

return isEmpty;

}s
Page m_FirstPage;

public:
SmallBlockAllocator() = default;

voidx Alloc()

{
return m_FirstPage.Alloc();
}
bool Free(voidx pMem)
{
return m_FirstPage.Free(pMem);
}

b5
static SmallBlockAllocator sba;

void* operator new(size t numBytes, const std::nothrow t& tag) noexcept

{
voidx pMem{ nullptr };

if (numBytes <= SmallBlockAllocator::BLOCK SIZE)

{
pMem = sba.Alloc();
}
else
{
pMem = malloc(numBytes);
}

361

CHAPTER 10 MEMORY

return pMem;

}

void* operator new[](size t numBytes, const std::nothrow t& tag) noexcept

{
voidx pMem{ nullptr };

if (numBytes <= SmallBlockAllocator::BLOCK SIZE)

{
pMem = sba.Alloc();
}
else
{
pMem = malloc(numBytes);
}
return pMem;
}
void operator delete(void* pMemory)
{
if (!sba.Free(pMemory))
{
free(pMemory);
}
}
void operator delete[](void* pMemory)
{
if (!sba.Free(pMemory))
{
free(pMemory);
}
}

362

int main(int argc, char* argv[])

{

const unsigned int NUM_ALLOCS{ 2148 };
int* pInts[NUM_ALLOCS];

for (unsigned int i{ 0 }; i < NUM_ALLOCS; ++i)
{
pInts[i] = new int;
*pInts[i] = i;
}
for (unsigned int i{ 0 }; i < NUM_ALLOCS; ++i)

{
delete pInts[i];

pInts[i] = nullptr;
}

return 0;

CHAPTER 10 MEMORY

363

CHAPTER 11

Concurrency

Clock rate refers to the frequency the clock generator of a microprocessor can generate
pulses. As of 2020, the main barrier to increasing the clock rate is cooling the chip since
higher speeds generate more heat. Shrinking the chip size will increase speed and reduce
heat, but nanotechnology must advance more before radical speed increases are realized.

But, back to our definition of frequency, these “pulses” or “clock cycles per second”
are used to synchronize the operations of its components, which is a measure of
processor speed. CPU performance improvements over time have been maintained
by innovative CPU design and multiple processors being included on a single chip.
Advanced programming capabilities are available to the programmer who can utilize
concurrent programming or multithreaded programming.

Multithreaded programming requires attention to detail, but at this point you are
ready for that. Many pitfalls await concurrent programs, including data that gets out of
sync and therefore is wrong as well as deadlocks once your tasks require the use of locks to
manage access. The recipes in this chapter introduce you to some practical applications of
the STL features supplied by C++ to help you write multithreaded programs.

Recipe 11-1. Using Threads to Execute
Concurrent Tasks

Problem

You're writing a program that is performing poorly, and you'd like to speed up execution
by using multiple processors in a system.

365
© J. Burton Browning and Bruce Sutherland 2020

J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_11

CHAPTER 11 CONCURRENCY

Solution

C++ provides the thread type, which can be used to create a native operating system
thread. Program threads can be run on more than a single processor and therefore allow
you to write programs that can use multiple CPUs and CPU cores.

How It Works
Detecting the Number of Logical CPU Cores

The C++ thread library provides a feature set that lets programs use all the cores and
CPUs available in a given computer system. The first important function supplied
by the C++ threading capabilities that you should be aware of allows you to query
the number of execution units the computer contains. Listing 11-1 shows the C++
thread: :hardware concurrency method.

Listing 11-1. The thread: :hardware concurrency Method

#include <iostream>
#include <thread>

using namespace std;

int main()

{

const unsigned int numberOfProcessors{ thread::hardware concurrency() };

cout << "This system can run " << numberOfProcessors << " concurrent

tasks" << endl;

return O;

This code uses the thread: :hardware concurrency method to query the number
of simultaneous threads that can be run on the computer executing the program.
Figure 11-1 shows the output generated by this program on my desktop computer.

366

CHAPTER 11 CONCURRENCY

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe11-1/Listing11-1

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipell-1/Listing11-15 ./main
This system can run 8 concurrent tasks
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe11-1/Listing11-15 i

Figure 11-1. The result of calling thread: : hardware concurrency on an Intel
Corei7-3770

Running the same code on a Surface Pro 2 with an Intel Core i5-4200U processor
results in a value of 4 being returned, as opposed to the 8 returned by the Core i7-3770.
You can see the results given by the Surface Pro 2 in Figure 11-2.

This system can run 4 concurrent tasks

Figure 11-2. The result of running Listing 11-1 on a Surface Pro 2

Running too many threads on a computer that has too few logical cores can cause
the computer to become unresponsive, so it's important to keep this in mind when
you're creating programs. This may explain why a certain processor minimum is listed in
an application’s minimum specifications.

367

CHAPTER 11 CONCURRENCY

Creating Threads

Once you know the system you’re running on might benefit from the use of concurrent
execution, you can use the C++ thread class to create tasks to be run on multiple
processor cores. The thread class is a portable, built-in type that allows you to write
multithreaded code for any operating system.

Note The thread class is a recent addition to the C++ programming language.
It was added in the C++11 language spec, so you may need to check the
documentation for the STL library you’re using to ensure that it supports this feature.

The thread constructor is simple to use and takes a function to execute on another
CPU core. Listing 11-2 shows a simple thread that outputs to the console.

Listing 11-2. Creating a thread

#include <iostream>
#include <thread>

using namespace std;

void ThreadTask()

{
for (unsigned int i{ 0 }; i < 20; ++i)
{
cout << "Output from thread" << endl;
}
}
int main()
{

const unsigned int numberOfProcessors{ thread::hardware concurrency() };

cout << "This system can run " << numberOfProcessors << " concurrent

tasks" << endl;

368

CHAPTER 11 CONCURRENCY

if (numberOfProcessors > 1)

{
thread myThread{ ThreadTask };
cout << "Output from main" << endl;
myThread. join();
}
else
{
cout << "CPU does not have multiple cores." << endl;
}

return O;

Listing 11-2 determines whether to create a thread based on the number of logical

cores on the computer executing the program.

Note Most operating systems allow you to run more threads than there are
processors, but you might find that doing so slows your program due to the
overhead of managing multiple threads.

If the CPU has more than one logical core, the program creates a thread object called
myThread. The myThread variable is initialized with a pointer to a function. This function
will be executed in the thread context and, more likely than not, on a different CPU
thread than the main function.

The ThreadTask function consists of a for loop that simply outputs to the console
multiple times. The main function also outputs to the console. The intent is to show that
both functions are running concurrently. You can see that this is true in Figure 11-3,
where the output from main occurs in the middle of the output from ThreadTask.

369

CHAPTER 11 CONCURRENCY

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe11-1/Listing11-2

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel1-1/Listing11-25 ./main
This system can run 8 concurrent tasks
Output from main

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread

Output from thread
bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipell-1/Listing11-2$ I

Figure 11-3. The output showing that both main and ThreadTask, from
Listing 11-2, are running concurrently

Cleaning Up After Threads

The main function in Listing 11-2 immediately calls the join method on the thread.

The join method is used to tell the current thread to wait for the additional thread to
end execution before continuing. This is important because C++ programs are required
to destroy their own threads to prevent leaks from occurring. Calling the destructor on a
thread object doesn’t destroy the currently executing thread context. Listing 11-3 shows
code that has been modified to not call join on myThread

Listing 11-3. Forgetting to Call join on a thread

#include <iostream>
#include <thread>

using namespace std;

370

CHAPTER 11 CONCURRENCY

void ThreadTask()
{
for (unsigned int i{ 0 }; i < 20; ++i)

{

cout << "Output from thread" << endl;

}

int main(int argc, char* argv[])

{

const unsigned int numberOfProcessors{ thread::hardware concurrency() };

cout << "This system can run " << numberOfProcessors << " concurrent

tasks" << endl;

if (numberOfProcessors > 1)

{
thread myThread{ ThreadTask };

cout << "Output from main" << endl;

}

else

{

cout << "CPU does not have multiple cores." << endl;

}

return 0;

This code causes the myThread object to go out of scope before the ThreadTask
function has completed execution. This can cause a thread leak in your program that may
eventually cause the program or the operating system to become unstable. A program
running on the Linux command line will fail with the error shown in Figure 11-4.

371

CHAPTER 11 CONCURRENCY

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe11-1/Listing11-3

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipell-1/Listing11-35 ./main
This system can run 8 concurrent tasks

Output from main

terminate called without an active exception

Aborted (core dumped)
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipel1l-1/Listing11-3$% I

Figure 11-4. The Linux error when a thread destructor is called before completion

As you can see, this warning isn’t particularly descriptive, and there’s no guarantee
that you'll get any warning when using other operating systems and libraries. It’s
therefore important to be aware of your threads’ lifetimes and ensure that you're dealing
with them appropriately.

One approach is to use the join method to make the program wait for threads to
finish before closing them down. C++ also provides a second option: the detach method.
Listing 11-4 shows the detach method in use.

Listing 11-4. Using the detach Method

#include <iostream>
#include <thread>

using namespace std;

void ThreadTask()

{
for (unsigned int i = 0; i < 20; ++i)
{
cout << "Output from thread" << endl;
}
}
int main(int argc, char* argv[])
{

const unsigned int numberOfProcessors{ thread::hardware concurrency() };

372

CHAPTER 11 CONCURRENCY

cout << "This system can run " << numberOfProcessors << " concurrent

tasks" << endl;

if (numberOfProcessors > 1)

{
thread myThread{ ThreadTask };
cout << "Output from main" << endl;
myThread.detach();
}
else
{
cout << "CPU does not have multiple cores." << endl;
}
return 0;

Listing 11-4 shows that the detach method can be used in place of join. The join
method causes the program to wait for a running thread to complete before continuing,
but the detach method doesn’t. The detach method allows you to create threads that
outlive the execution of your program. These may be useful for system tasks that need
to track time over long periods; however, I'm skeptical about whether many day-to-day
programs will find a use for this method. There’s also a risk that your program will leak
threads that have been detached and have no way to get those tasks back. Once an
execution context in a thread has been detached, you can never reattach it.

Recipe 11-2. Creating thread Scope Variables
Problem

You have classes of objects that use static data in their implementations, and you'd like
to use them with threads.

373

CHAPTER 11 CONCURRENCY

Solution

C++ provides the thread local specifier to allow the computer to create an instance of
the static data on a per-thread basis.

How It Works

Before I cover how to use thread local, let’s step through a scenario where this problem
can occur so you can clearly see the issue and the problem the solution itself can cause.
Listing 11-5 contains a class that uses a static vector of objects to prevent many calls to
new and delete.

Listing 11-5. Creating a Class That Uses Static Data to Track State

#include <cstdlib>
#include <iostream>
#include <stack>
#include <thread>
#include <vector>

using namespace std;

class MyManagedObject
{

private:
static const unsigned int MAX OBJECTS{ 4 };

using MyManagedObjectCollection = vector < MyManagedObject > ;
static MyManagedObjectCollection s ManagedObjects;

static stack<unsigned int> s Freelist;
unsigned int m Value{ OXFFFFFFFF };

public:
MyManagedObject() = default;
MyManagedObject(unsigned int value)
: m_Value{ value }

374

CHAPTER 11

void* operator new(size t numBytes)

CONCURRENCY

{
voidx objectMemory{};
if (s_ManagedObjects.capacity() < MAX OBJECTS)
{
s_ManagedObjects.reserve(MAX OBJECTS);
}
if (numBytes == sizeof(MyManagedObject) &&
s_ManagedObjects.size() < s_ManagedObjects.capacity())
{
unsigned int index{ OXFFFFFFFF };
if (s_Freelist.size() > 0)
{
index = s Freelist.top();
s _Freelist.pop();
}
if (index == OXFFFFFFFF)
{
s_ManagedObjects.push back({});
index = s ManagedObjects.size() - 1;
}
objectMemory = s ManagedObjects.data() + index;
}
else
{
objectMemory = malloc(numBytes);
}
return objectMemory;
}
void operator delete(void* pMem)
{

const intptr t index{

(static_cast<MyManagedObject*>(pMem) - s ManagedObjects.data()) /

375

CHAPTER 11 CONCURRENCY

static_cast<intptr t>(sizeof(MyManagedObject)) };
if (0 <= index && index < static_cast<intptr_t>(s_ManagedObjects.

size()))
{
s _Freelist.emplace(static_cast<unsigned int>(index));
}
else
{
free(pMem);
}

};

MyManagedObject: :MyManagedObjectCollection MyManagedObject::s ManagedObjects{};
stack<unsigned int> MyManagedObject::s FreelList{};

int main(int argc, char* argv[])

{

cout << hex << showbase;

MyManagedObject* pObject1{ new MyManagedObject(1) };

cout << "pObject1: " << pObject1 << endl;

MyManagedObject* pObject2{ new MyManagedObject(2) };

cout << "pObject2: " << pObject2 << endl;

delete pObjecti;
pObject1 = nullptr;

MyManagedObject* pObject3{ new MyManagedObject(3) };

cout << "pObject3: " << pObject3 << endl;

pObjectl = new MyManagedObject(4);

cout << "pObject1: " << pObject1 << endl;

delete pObject2;
pObject2 = nullptr;

376

CHAPTER 11 CONCURRENCY

delete pObjects;
pObject3 = nullptr;

delete pObjecti;
pObjectl = nullptr;

return 0;

The code in Listing 11-5 overloads the new and delete methods on the
MyManagedObject class. These overloads are used to return newly created objects
from an initial pool of preallocated memory. Doing this would allow you to restrict the
number of a given type of object to a prearranged limit but still let you use the familiar
new and delete syntax.

Note The code in Listing 11-5 doesn’t actually enforce the limit; it simply falls
back to dynamic allocation when the limit has been reached.

The managed class works by using a constant to determine the number of
preallocated objects that should exist. This number is used to initialize a vector on
the first allocation. Each subsequent allocation is fulfilled from this vector until it’s
exhausted. A free list of indices is maintained. If an object from the pool is released, its
index is added to the top of the free stack. Objects on the free list are then reissued in the
order that they were added to this stack. Figure 11-5 shows that pObject3 ends up with
the same address that was used by pObject1 before it was deleted.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe11-2/Listing11-5

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipel1-2/Listing11-55 ./main
pObject1: oxi1f4b2co

pObject2: ox1f4b2c4

pObject3: oxi1f4b2co

pObject1: ox1f4b2cs
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipel1l-2/Listing11-5% I

Figure 11-5. Output showing the correct operation of the MyManagedObject pool

377

CHAPTER 11 CONCURRENCY

The operation of this managed pool uses a static vector and a static stackto
maintain the pool across all M\yManagedObject instances. This causes problems when
coupled with threads, because you can’t be sure that different threads won'’t try to
access these objects at the same time.

Listing 11-6 updates the code from Listing 11-5 to use a thread to also create
MyManagedObject instances.

Listing 11-6. Using a thread to Create MyManagedObject Instances

#include <cstdlib>
#include <iostream>
#include <stack>
#include <thread>
#include <vector>

using namespace std;

class MyManagedObject
{

private:
static const unsigned int MAX_OBJECTS{ 8 };

using MyManagedObjectCollection = vector < MyManagedObject >;
static MyManagedObjectCollection s ManagedObjects;

static stack<unsigned int> s_Freelist;
unsigned int m Value{ OXFFFFFFFF };

public:
MyManagedObject() = default;
MyManagedObject(unsigned int value)
: m_Value{ value }

voidx operator new(size t numBytes)

{

void* objectMemory{};

378

CHAPTER 11 CONCURRENCY

if (s_ManagedObjects.capacity() < MAX OBJECTS)

{
s_ManagedObjects.reserve(MAX OBJECTS);

}

if (numBytes == sizeof(MyManagedObject) 8&
s_ManagedObjects.size() < s_ManagedObjects.capacity())

{
unsigned int index{ OXFFFFFFFF };
if (s_Freelist.size() > 0)
{
index = s Freelist.top();
s _Freelist.pop();
}
if (index == OXFFFFFFFF)
{
s_ManagedObjects.push back({});
index = s ManagedObjects.size() - 1;
}
objectMemory = s ManagedObjects.data() + index;
}
else
{
objectMemory = malloc(numBytes);
}
return objectMemory;
}
void operator delete(void* pMem)
{

const intptr t index{
(static_cast<MyManagedObject*>(pMem)-s ManagedObjects.data()) /
static_cast< intptr t >(sizeof(MyManagedObject)) };

379

CHAPTER 11 CONCURRENCY

if (0 <= index &3 index < static_cast< intptr t >(s_ManagedObjects.

size()))
{
s _FreelList.emplace(static_cast<unsigned int>(index));
}
else
{
free(pMem);
}

};

MyManagedObject: :MyManagedObjectCollection MyManagedObject::s ManagedObjects{};
stack<unsigned int> MyManagedObject::s Freelist{};

void ThreadTask()

{
MyManagedObject* pObject4{ new MyManagedObject(5) };

cout << "pObject4: " << pObject4 << endl;

MyManagedObject* pObject5{ new MyManagedObject(6) };

cout << "pObject5: " << pObject5 << endl;

delete pObject4;
pObject4 = nullptr;
MyManagedObject* pObject6{ new MyManagedObject(7) };

cout << "pObject6: " << pObject6 << endl;

pObject4 = new MyManagedObject(8);

cout << "pObject4: " << pObject4 << endl;

delete pObjects;
pObject5 = nullptr;

delete pObjecté6;
pObject6 = nullptr;

380

int

CHAPTER 11

delete pObject4;
pObject4 = nullptr;

main(int argc, char* argv[])

cout << hex << showbase;
thread myThread{ ThreadTask };

MyManagedObject* pObject1{ new MyManagedObject(1) };

cout << "pObject1: " << pObject1l << endl;

MyManagedObject* pObject2{ new MyManagedObject(2) };

cout << "pObject2: " << pObject2 << endl;

delete pObjecti1;
pObject1 = nullptr;
MyManagedObject* pObject3{ new MyManagedObject(3) };

cout << "pObject3: " << pObject3 << endl;

pObjectl = new MyManagedObject(4);

cout << "pObject1: " << pObject1 << endl;

delete pObject2;
pObject2 = nullptr;

delete pObjects;
pObject3 = nullptr;

delete pObjecti;
pObject1 = nullptr;

myThread.join();

return O;

CONCURRENCY

381

CHAPTER 11 CONCURRENCY

The code in Listing 11-6 uses a thread to allocate objects from the pool concurrently
with the main function. This means the static pool can be accessed simultaneously
from two locations, and your program can run into problems. Two common issues are
unexpected program crashes and data races.

A datarace is a more subtle problem and results in unexpected memory corruption.
Figure 11-6 illustrates the problem.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe11-2/Listing11-6

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipell-2/Listing11-65 ./main
pObjectl: 0x1d65550

pObject2: 0x1d65558

pObject3: 0x1d65550

pObjectl: 0x1d6555¢

pObject4: 0x1d65554

pObject5: 0x1d65550

pObject6: 0x1d65550

pObject4: 0x1d65550
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe11-2/Listing11-65 [

Figure 11-6. The problem caused by running into data races between threads

The problem presented by allocating objects from the same pool may be subtle
and difficult to spot at first. If you look closely, you see that pObject6 and pObject3
are pointing to the same memory address. These pointers are created and initialized
on different threads, and at no point do you expect them to point at the same memory
address, even with object reuse in your pools. This again is a difficulty in working with
threads. The associated problems are very time-sensitive, and their manifestations can be
altered by the conditions of the computer at the time of execution. Other programs may
create threads that cause your own to be delayed slightly, so that a problem in your thread
logic can manifest itself in many different ways despite having the same root cause.

C++ provides a solution to this problem: the thread local keyword. The thread
local keyword works by telling the compiler that the static objects you're creating
should be unique for every thread you create that uses these objects. The side effect
is that you don’t have a single shared instance of the static object across all classes.
This is a significant departure from the normal usage of static, where there is a

382

CHAPTER 11 CONCURRENCY

single shared object for all instances of the type. Listing 11-7 shows the memory pool
functions and the associated static variables updated to use thread local.

Listing 11-7. Using thread local

#include <cstdlib>
#include <iostream>
#include <stack>
#include <thread>
#include <vector>

using namespace std;

class MyManagedObject

{

private:
static thread_local const unsigned int MAX_OBJECTS;
using MyManagedObjectCollection = vector < MyManagedObject »>;
static thread_local MyManagedObjectCollection s_ManagedObjects;
static thread_local stack<unsigned int> s_Freelist;
unsigned int m Value{ OXFFFFFFFF };

public:

MyManagedObject() = default;
MyManagedObject(unsigned int value)
: m_Value{ value }

{
}

void* operator new(size t numBytes)

{

void* objectMemory{};

if (s_ManagedObjects.capacity() < MAX OBJECTS)

{
s_ManagedObjects.reserve(MAX OBJECTS);

383

CHAPTER 11 CONCURRENCY

if (numBytes == sizeof(MyManagedObject) &&
s_ManagedObjects.size() < s_ManagedObjects.capacity())

{
unsigned int index{ OXFFFFFFFF };
if (s_Freelist.size() > 0)
{
index = s Freelist.top();
s _Freelist.pop();
}
if (index == OXFFFFFFFF)
{
s_ManagedObjects.push back({});
index = s ManagedObjects.size() - 1;
}
objectMemory = s ManagedObjects.data() + index;
}
else
{
objectMemory = malloc(numBytes);
}
return objectMemory;
}
void operator delete(void* pMem)
{

const intptr t index{
(static_cast<MyManagedObject*>(pMem)-s ManagedObjects.data()) /
static_cast<intptr t>(sizeof(MyManagedObject)) };

if (0 <= index && index < static_cast< intptr t >(s_ManagedObjects.

size()))
{

s _FreelList.emplace(static_cast<unsigned int>(index));

}

else

384

I

CHAPTER 11 CONCURRENCY

free(pMem);

thread_local const unsigned int MyManagedObject::MAX_OBJECTS{ 8 };
thread_local MyManagedObject::MyManagedObjectCollection MyManagedObject::
s_ManagedObjects{};

thread_local stack<unsigned inty> MyManagedObject::s_FreeList{};

void ThreadTask()

{

MyManagedObject* pObject4{ new MyManagedObject(5) };

cout << "pObject4: " << pObject4 << endl;

MyManagedObject* pObject5{ new MyManagedObject(6) };

cout << "pObject5: " << pObject5 << endl;

delete pObject4;
pObject4 = nullptr;
MyManagedObject* pObject6{ new MyManagedObject(7) };

cout << "pObject6: " << pObjecté6 << endl;

pObject4 = new MyManagedObject(8);

cout << "pObject4: " << pObject4 << endl;

delete pObjects;
pObject5 = nullptr;

delete pObjecté6;
pObject6 = nullptr;

delete pObject4;
pObject4 = nullptr;

385

CHAPTER 11 CONCURRENCY

int main(int argc, char* argv[])

{ cout << hex << showbase;
thread myThread{ ThreadTask };
MyManagedObject* pObjecti{ new MyManagedObject(1) };
cout << "pObject1: " << pObject1 << endl;
MyManagedObject* pObject2{ new MyManagedObject(2) };
cout << "pObject2: " << pObject2 << endl;
delete pObjecti;
pObject1l = nullptr;
MyManagedObject* pObject3{ new MyManagedObject(3) };
cout << "pObject3: " << pObject3 << endl;
pObjectl = new MyManagedObject(4);
cout << "pObject1: " << pObject1l << endl;
delete pObject2;
pObject2 = nullptr;
delete pObject3;
pObject3 = nullptr;
delete pObjecti;
pObject1 = nullptr;
myThread.join();
return 0;
}

Listing 11-7 shows that you can specify static variables as having thread local
storage by adding the thread local identifier to their declarations and definitions.
The impact of this change is that the main function and the ThreadTask function have
separate s_ManagedObjects, s _FreelList, and MAX _OBJECT variables in their own execution

386

CHAPTER 11 CONCURRENCY

context. Now that there are two copies of each, you have twice the number of potential
objects, because the pools have been duplicated. This may or may not be a problem for
your program, but you should be careful when using thread local and consider any
unintended consequences. Figure 11-7 shows the result of running the code in Listing 11-7.

bruce@bruce-Virtual-Machine: ~/Projects/C-Recipes/Recipe11-2/Listing11-7

bruce@bruce-virtual-Machine:~/Projects/C-Recipes/Recipell-2/Listing11-75 ./main
pObjectl: 0x23195cO

pObject2: 0x23195c4

pObject3: 0x23195c0

pObjectl: 0x23195c8

pObject4: 0x7f6388000bd0o

pObject5: 0x7f6388000bd4

pObject6: 0x7f6388000bdo

pObject4: 0x7f6388000bds8
bruce@bruce-Virtual-Machine:~/Projects/C-Recipes/Recipe11-2/Listing11-7$ i

Figure 11-7. Output when using thread local

You can see the problems when using threads. The first line of output is split
between the two threads, but it should be very apparent that the two threads are being
assigned values from completely separate places in memory. This proves that the
compiler has made sure the static variables are unique for each thread in the program.
You could take this further by adding even more threads to the program and seeing that
they’re allocating objects from different places in memory and that at no point can two
pointers on different threads be pointing to the same memory address.

Recipe 11-3. Accessing Shared Objects Using
Mutual Exclusion

Problem

You have an object that you would like to be able to access on more than one thread at
atime.

387

CHAPTER 11 CONCURRENCY

Solution

C++ provides mutex objects that allow you to provide mutually exclusive access to
sections of code.

How It Works

A mutex can be used to synchronize threads. This is achieved by the mutex class and
the methods it provides to acquire and release the mutex. A thread can be sure that no
other thread is currently accessing a shared resource by waiting until it can acquire the
mutex before continuing execution. The program in Listing 11-8 contains a data race:
a situation in which two threads can access a shared resource at the same time which
causes unstable and unexpected program behavior.

Listing 11-8. A Program Containing a Data Race

#include <cstdlib>
#include <iostream>
#include <stack>
#include <thread>
#include <vector>

using namespace std;

class MyManagedObject
{

private:
static const unsigned int MAX OBJECTS{ 8 };

using MyManagedObjectCollection = vector < MyManagedObject >;
static MyManagedObjectCollection s ManagedObjects;

static stack<unsigned int> s_Freelist;
unsigned int m_Value{ OXFFFFFFFF };

public:
MyManagedObject() = default;
MyManagedObject(unsigned int value)

388

{
}

tm

CHAPTER 11 CONCURRENCY

Value{ value }

voidx operator new(size t numBytes)

{

void
if (
{

}
if (

}

else

{
}

retu

* objectMemory{};

s_ManagedObjects.capacity() < MAX_OBJECTS)

s_ManagedObjects.reserve(MAX OBJECTS);

numBytes == sizeof(MyManagedObject) &&
s_ManagedObjects.size() < s_ManagedObjects.capacity())

unsigned int index{ OXFFFFFFFF };
if (s_Freelist.size() > 0)

{
index = s Freelist.top();
s_Freelist.pop();
}
if (index == OXFFFFFFFF)
{
s_ManagedObjects.push back({});
index = s _ManagedObjects.size() - 1;
}
objectMemory = s ManagedObjects.data() + index;
objectMemory = malloc(numBytes);

rn objectMemory;

389

CHAPTER 11 CONCURRENCY

void operator delete(void* pMem)
{
const intptr t index{
(static_cast<MyManagedObject*>(pMem)-s ManagedObjects.data()) /
static_cast<intptr_t>(sizeof(MyManagedObject)) };
if (0 <= index &3 index < static_cast< intptr_t >(s_ManagedObjects.
size()))
{

s_FreelList.emplace(static_cast<unsigned int>(index));

}

else

{
free(pMem);

}s

MyManagedObject: :MyManagedObjectCollection MyManagedObject::s ManagedObjects{};
stack<unsigned int> MyManagedObject::s Freelist{};

void ThreadTask()

{
MyManagedObject* pObject4{ new MyManagedObject(5) };

cout << "pObject4: " << pObject4 << endl;

MyManagedObject* pObject5{ new MyManagedObject(6) };

cout << "pObject5: " << pObject5 << endl;

delete pObject4;
pObject4 = nullptr;
MyManagedObject* pObject6{ new MyManagedObject(7) };

cout << "pObject6: " << pObject6 << endl;

pObject4 = new MyManagedObject(8);

cout << "pObject4: " << pObject4 << endl;

390

int

CHAPTER 11

delete pObjects;
pObject5 = nullptr;

delete pObjecté6;
pObject6 = nullptr;

delete pObject4;
pObject4 = nullptr;

main(int argc, char* argv[])

cout << hex << showbase;
thread myThread{ ThreadTask };

MyManagedObject* pObject1{ new MyManagedObject(1) };

cout << "pObject1: " << pObject1l << endl;

MyManagedObject* pObject2{ new MyManagedObject(2) };

cout << "pObject2: " << pObject2 << endl;

delete pObjecti;
pObject1 = nullptr;

MyManagedObject* pObject3{ new MyManagedObject(3) };

cout << "pObject3: " << pObject3 << endl;

pObjectl = new MyManagedObject(4);

cout << "pObject1: " << pObject1l << endl;

delete pObject2;
pObject2 = nullptr;

delete pObjects;
pObject3 = nullptr;

delete pObjecti;
pObject1 = nullptr;

CONCURRENCY

391

CHAPTER 11 CONCURRENCY
myThread.join();

return 0;

This program can’t prevent the code in ThreadTask and the main function from
accessing the s_ManagedObjects and s_Freelist pools in the MyManagedObject class.
Access to these objects can be protected by a mutex, as you can see in Listing 11-9.

Listing 11-9. Adding a Mutex to Protect Access to Shared Objects

#include <cstdlib>
#include <iostream>
#include <mutex>
#include <stack>
#include <thread>
#include <vector>

using namespace std;

class MyManagedObject
{

private:
static const unsigned int MAX OBJECTS{ 8 };

using MyManagedObjectCollection = vector < MyManagedObject >;
static MyManagedObjectCollection s_ManagedObjects;

static stack<unsigned int> s_Freelist;
static mutex s_Mutex;
unsigned int m_Value{ OXFFFFFFFF };

public:
MyManagedObject() = default;
MyManagedObject(unsigned int value)
: m_Value{ value }

392

CHAPTER 11 CONCURRENCY

void* operator new(size t numBytes)

{

void* objectMemory{};
s_Mutex.lock();

if (s_ManagedObjects.capacity() < MAX OBJECTS)

{
s_ManagedObjects.reserve(MAX OBJECTS);

}

if (numBytes == sizeof(MyManagedObject) &&
s_ManagedObjects.size() < s_ManagedObjects.capacity())

{
unsigned int index{ OXFFFFFFFF };
if (s_Freelist.size() > 0)
{
index = s Freelist.top();
s _FreelList.pop();
}
if (index == OXFFFFFFFF)
{
s_ManagedObjects.push back({});
index = s _ManagedObjects.size() - 1;
}
objectMemory = s ManagedObjects.data() + index;
}
else
{
objectMemory = malloc(numBytes);
}

s_Mutex.unlock();

return objectMemory;

CHAPTER 11 CONCURRENCY

void operator delete(void* pMem)

{
s_Mutex.lock();

const intptr t index{
(static_cast<MyManagedObject*>(pMem)-s ManagedObjects.data()) /
static_cast<intptr_t>(sizeof(MyManagedObject)) };

if (0 <= index &3 index < static_cast< intptr_t >(s_ManagedObjects.

size()))
{

s_Freelist.emplace(static_cast<unsigned int>(index));

}

else

{
free(pMem);

}

s_Mutex.unlock();

};

MyManagedObject: :MyManagedObjectCollection MyManagedObject::s ManagedObjects{};
stack<unsigned int> MyManagedObject::s FreelList{};
mutex MyManagedObject::s_Mutex;

void ThreadTask()

{
MyManagedObject* pObject4{ new MyManagedObject(5) };

cout << "pObject4: " << pObject4 << endl;

MyManagedObject* pObject5{ new MyManagedObject(6) };

cout << "pObject5: " << pObject5 << endl;

delete pObject4;
pObject4 = nullptr;
MyManagedObject* pObject6{ new MyManagedObject(7) };

cout << "pObject6:
394

<< pObject6 << endl;

int

CHAPTER 11

pObject4 = new MyManagedObject(8);

cout << "pObject4: " << pObject4 << endl;

delete pObjects;
pObject5 = nullptr;

delete pObject6;
pObject6 = nullptr;

delete pObject4;
pObject4 = nullptr;

main(int argc, char* argv[])

cout << hex << showbase;
thread myThread{ ThreadTask };

MyManagedObject* pObject1{ new MyManagedObject(1) };

cout << "pObject1: " << pObject1l << endl;

MyManagedObject* pObject2{ new MyManagedObject(2) };

cout << "pObject2: " << pObject2 << endl;

delete pObjecti;
pObject1 = nullptr;

MyManagedObject* pObject3{ new MyManagedObject(3) };

cout << "pObject3: " << pObject3 << endl;

pObjectl = new MyManagedObject(4);

cout << "pObject1l: " << pObject1l << endl;

delete pObject2;
pObject2 = nullptr;

delete pObjects3;
pObject3 = nullptr;

CONCURRENCY

395

CHAPTER 11 CONCURRENCY

delete pObjecti1;
pObjectl = nullptr;

myThread.join();

return O;

This code uses a mutex to ensure that the new and delete functions in the
MyManagedObject class are only executing on a single thread at any given time. This
ensures that the object pool being maintained for this class is always in a valid state and
that the same addresses aren’t being given to different threads. The code requires that
the lock be held for the entire execution of the functions it’s protecting. C++ provides a
helper class named lock_guard that automatically locks a mutex on construction and
frees the mutex on destruction. Listing 11-10 shows a lock_guard in use.

Listing 11-10. Using a lock guard

#include <cstdlib>
#include <iostream>
#include <mutex>
#include <stack>
#include <thread>
#include <vector>

using namespace std;

class MyManagedObject
{

private:
static const unsigned int MAX OBJECTS{ 8 };

using MyManagedObjectCollection = vector < MyManagedObject >;
static MyManagedObjectCollection s ManagedObjects;

static stack<unsigned int> s_Freelist;
static mutex s_Mutex;

unsigned int m_Value{ OXFFFFFFFF };

396

CHAPTER 11 CONCURRENCY

public:
MyManagedObject() = default;
MyManagedObject(unsigned int value)
: m_Value{ value }

{
}

voidx operator new(size t numBytes)

{

lock_guard<mutexs> lock{ s_Mutex };
voidx objectMemory{};

if (s_ManagedObjects.capacity() < MAX OBJECTS)

{
s_ManagedObjects.reserve(MAX OBJECTS);

}

if (numBytes == sizeof(MyManagedObject) 8&
s_ManagedObjects.size() < s_ManagedObjects.capacity())

{
unsigned int index{ OXFFFFFFFF };
if (s_Freelist.size() > 0)
{
index = s Freelist.top();
s_FreelList.pop();
}
if (index == OXFFFFFFFF)
{
s_ManagedObjects.push back({});
index = s _ManagedObjects.size() - 1;
}
objectMemory = s ManagedObjects.data() + index;
}
else
{

397

CHAPTER 11 CONCURRENCY

objectMemory = malloc(numBytes);

}

return objectMemory;

}

void operator delete(void* pMem)

{

lock_guard<mutex> lock{ s_Mutex };

const intptr t index{
(static_cast<MyManagedObject*>(pMem)-s ManagedObjects.data()) /
static_cast<intptr t>(sizeof(MyManagedObject)) };
if (0 <= index && index < static_cast<intptr_t>(s_ManagedObjects.
size()))
{

s _FreelList.emplace(static_cast<unsigned int>(index));

}

else

{
free(pMem);

};

MyManagedObject: :MyManagedObjectCollection MyManagedObject::s ManagedObjects{};
stack<unsigned int> MyManagedObject::s Freelist{};
mutex MyManagedObject::s Mutex;

void ThreadTask()

{
MyManagedObject* pObject4{ new MyManagedObject(5) };

cout << "pObject4: " << pObject4 << endl;

MyManagedObject* pObject5{ new MyManagedObject(6) };

cout << "pObject5: " << pObject5 << endl;

398

int

CHAPTER 11 CONCURRENCY

delete pObject4;
pObject4 = nullptr;
MyManagedObject* pObject6{ new MyManagedObject(7) };

cout << "pObject6: " << pObject6 << endl;

pObject4 = new MyManagedObject(8);

cout << "pObject4: " << pObject4 << endl;

delete pObjects;
pObject5 = nullptr;

delete pObjecté6;
pObject6 = nullptr;

delete pObject4;
pObject4 = nullptr;

main(int argc, charx argv[])

cout << hex << showbase;
thread myThread{ ThreadTask };

MyManagedObject* pObject1{ new MyManagedObject(1) };

cout << "pObject1l: " << pObject1l << endl;

MyManagedObject* pObject2{ new MyManagedObject(2) };

cout << "pObject2: " << pObject2 << endl;

delete pObjecti;
pObject1 = nullptr;

MyManagedObject* pObject3{ new MyManagedObject(3) };

cout << "pObject3: " << pObject3 <« endl;

pObjectl = new MyManagedObject(4);

cout << "pObject1: " << pObject1 << endl;

399

CHAPTER 11 CONCURRENCY

delete pObject2;
pObject2 = nullptr;

delete pObjects;
pObject3 = nullptr;

delete pObjecti;
pObjectl = nullptr;

myThread.join();

return 0;

Using a lock_guard means you don’t have to worry about calling unlock on the
mutex for yourself. It also conforms to the Resource Allocation Is Initialization (RAII)
pattern that many C++ developers try to follow.

Recipe 11-4. Creating Threads That Wait for Events
Problem

You would like to create a thread that waits for another event in your program.

Solution

C++ provides the condition variable class that can be used to signal that an event
has occurred to a waiting thread.

How It Works

A condition variable is another C++ construct that wraps a complex behavior into a
simple object interface. It's common in multithreaded programming to create threads
that you would like to have wait for some