
C++20
Recipes

A Problem-Solution Approach
—
Second Edition
—
J. Burton Browning
Bruce Sutherland

C++20 Recipes
A Problem-Solution Approach

Second Edition

J. Burton Browning
Bruce Sutherland

C++20 Recipes: A Problem-Solution Approach

ISBN-13 (pbk): 978-1-4842-5712-8 ISBN-13 (electronic): 978-1-4842-5713-5
https://doi.org/10.1007/978-1-4842-5713-5

Copyright © 2020 by J. Burton Browning and Bruce Sutherland

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Raw Pixel (www.rawpixel.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484257128. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

J. Burton Browning
Bolivia, NC, USA

Bruce Sutherland
Carnegie, VIC, Australia

https://doi.org/10.1007/978-1-4842-5713-5

This book is dedicated to Zada Browning, my love and light.

v

About the Authors ���xxi

About the Technical Reviewer ��xxiii

Acknowledgments ���xxv

Introduction ���xxvii

Table of Contents

Chapter 1: Beginning C++ �� 1

Recipe 1-1. Finding a Text Editor .. 2

Problem ... 2

Solution ... 2

Recipe 1-2. Installing Clang on Ubuntu ... 4

Problem ... 4

Solution ... 4

How It Works ... 4

Recipe 1-3. Installing Clang on Windows .. 6

Problem ... 6

Solution ... 6

How It Works ... 6

Recipe 1-4. Installing Clang on macOS ... 8

Problem ... 8

Solution ... 8

How It Works ... 8

Recipe 1-5. Building Your First C++ Program ... 9

Problem ... 9

Solution ... 9

vi

Recipe 1-6. Debugging C++ Programs Using GDB in Cygwin or Linux 11

Problem ... 11

Solution ... 11

How It Works ... 12

Recipe 1-7. Debugging Your C++ Programs on macOS .. 16

Problem ... 16

Solution ... 16

How It Works ... 17

Recipe 1-8. Switching C++ Compilation Modes ... 19

Problem ... 19

Solution ... 19

How It Works ... 19

Recipe 1-9. Building with the Boost Library ... 20

Problem ... 20

Solution ... 20

How It Works ... 20

Recipe 1-10. Install Microsoft Visual Studio ... 22

Problem ... 22

Solution ... 22

How It Works ... 22

 Chapter 2: Modern C++ ��� 25

Recipe 2-1. Initializing Variables ... 26

Problem ... 26

Solution ... 26

How It Works ... 26

Recipe 2-2. Initializing Objects with Initializer Lists ... 29

Problem ... 29

Solution ... 29

How It Works ... 29

Table of ConTenTs

vii

Recipe 2-3. Using Type Deduction .. 32

Problem ... 32

Solution ... 33

How It Works ... 33

Recipe 2-4. Using auto with Functions ... 36

Problem ... 36

Solution ... 37

How It Works ... 37

Recipe 2-5. Working with Compile Time Constants .. 40

Problem ... 40

Solution ... 40

How It Works ... 40

Recipe 2-6. Working with Lambdas .. 44

Problem ... 44

Solution ... 44

How It Works ... 44

Recipe 2-7. Working with Time ... 55

Problem ... 55

Solution ... 55

How It Works ... 55

Recipe 2-8. Understanding lvalue and rvalue References .. 60

Problem ... 60

Solution ... 61

How It Works ... 61

Recipe 2-9. Using Managed Pointers .. 71

Problem ... 71

Solution ... 71

How It Works ... 71

Table of ConTenTs

viii

Chapter 3: Working with Text ��� 81

Recipe 3-1. Representing Strings in Code Using Literals ... 81

Problem ... 81

Solution ... 81

How It Works ... 82

Recipe 3-2. Localizing User-Facing Text ... 88

Problem ... 88

Solution ... 88

How It Works ... 89

Recipe 3-3. Reading Strings from a File ... 98

Problem ... 98

Solution ... 98

How It Works ... 98

Recipe 3-4. Reading the Data from an XML File ... 102

Problem ... 102

Solution ... 103

How It Works ... 103

Recipe 3-5. Inserting Runtime Data into Strings... 110

Problem ... 110

Solution ... 110

How It Works ... 110

Chapter 4: Working with Numbers ��� 115

Recipe 4-1. Using the Integer Types in C++ ... 115

Problem ... 115

Solution ... 115

How It Works ... 116

Recipe 4-2. Making Decisions with Relational Operators ... 121

Problem ... 121

Solution ... 121

How It Works ... 122

Table of ConTenTs

ix

Recipe 4-3. Chaining Decisions with Logical Operators ... 127

Problem ... 127

Solution ... 127

How It Works ... 127

Recipe 4-4. Using Hexadecimal Values ... 130

Problem ... 130

Solution ... 130

How It Works ... 130

Recipe 4-5. Bit Twiddling with Binary Operators .. 133

Problem ... 133

Solution ... 133

How It Works ... 133

Recipe 4-6. C++20 “Spaceship” or Three-Way Comparison Operator 143

Problem ... 143

Solution ... 143

How It Works ... 143

Chapter 5: Classes �� 147

Recipe 5-1. Defining a Class ... 147

Problem ... 147

Solution ... 147

How It Works ... 147

Recipe 5-2. Adding Data to a Class ... 149

Problem ... 149

Solution ... 149

How It Works ... 149

Recipe 5-3. Adding Methods ... 151

Problem ... 151

Solution ... 151

How It Works ... 152

Table of ConTenTs

x

Recipe 5-4. Using Access Modifiers ... 154

Problem ... 154

Solution ... 154

How It Works ... 154

Recipe 5-5. Initializing Class Member Variables ... 158

Problem ... 158

Solution ... 158

How It Works ... 158

Recipe 5-6. Cleaning Up Classes .. 164

Problem ... 164

Solution ... 164

How It Works ... 164

Recipe 5-7. Copying Classes ... 168

Problem ... 168

Solution ... 168

How It Works ... 168

Recipe 5-8. Optimizing Code with Move Semantics ... 180

Problem ... 180

Solution ... 180

How It Works ... 180

Recipe 5-9. Implementing Virtual Functions ... 186

Problem ... 186

Solution ... 186

How It Works ... 186

Chapter 6: Inheritance �� 189

Recipe 6-1. Inheriting from a Class .. 189

Problem ... 189

Solution ... 189

How It Works ... 189

Table of ConTenTs

xi

Recipe 6-2. Controlling Access to Member Variables and Methods in
Derived Classes .. 192

Problem ... 192

Solution ... 192

How It Works ... 192

Recipe 6-3. Hiding Methods in Derived Classes ... 198

Problem ... 198

Solution ... 198

How It Works ... 198

Recipe 6-4. Using Polymorphic Base Classes ... 201

Problem ... 201

Solution ... 201

How It Works ... 201

Recipe 6-5. Preventing Method Overrides .. 205

Problem ... 205

Solution ... 205

How It Works ... 205

Recipe 6-6. Creating Interfaces .. 208

Problem ... 208

Solution ... 208

How It Works ... 208

Recipe 6-7. Multiple Inheritance ... 210

Problem ... 210

Solution ... 210

How It Works ... 211

Chapter 7: The STL Containers�� 215

Recipe 7-1. Storing a Fixed Number of Objects .. 215

Problem ... 215

Solution ... 215

How It Works ... 215

Table of ConTenTs

xii

Recipe 7-2. Storing a Growing Number of Objects ... 218

Problem ... 218

Solution ... 218

How It Works ... 218

Recipe 7-3. Storing a Set of Elements That Is Constantly Altered .. 228

Problem ... 228

Solution ... 228

How It Works ... 228

Recipe 7-4. Storing Sorted Objects in a Container That Enables Fast Lookups 231

Problem ... 231

Solution ... 231

How It Works ... 232

Recipe 7-5. Storing Unsorted Elements in a Container for Very Fast Lookups 242

Problem ... 242

Solution ... 242

How It Works ... 243

Recipe 7-6. Using C++20 Designated Initialization .. 248

Problem ... 248

Solution ... 248

How It Works ... 248

Chapter 8: The STL Algorithms ��� 251

Recipe 8-1. Using an Iterator to Define a Sequence Within a Container 251

Problem ... 251

Solution ... 251

How It Works ... 251

Recipe 8-2. Calling a Function on Every Element in a Container .. 259

Problem ... 259

Solution ... 259

How It Works ... 259

Table of ConTenTs

xiii

Recipe 8-3. Finding the Maximum and Minimum Values in a Container 261

Problem ... 261

Solution ... 261

How It Works ... 261

Recipe 8-4. Counting Instances of a Value in a Sequence .. 267

Problem ... 267

Solution ... 267

How It Works ... 268

Recipe 8-5. Finding Values in a Sequence .. 271

Problem ... 271

Solution ... 271

How It Works ... 271

Recipe 8-6. Sorting Elements in a Sequence .. 273

Problem ... 273

Solution ... 273

How It Works ... 273

Recipe 8-7. Looking Up Values in a Set .. 275

Problem ... 275

Solution ... 275

How It Works ... 275

Chapter 9: Templates �� 277

Recipe 9-1. Creating a Template Function .. 277

Problem ... 277

Solution ... 277

How It Works ... 277

Recipe 9-2. Partially Specializing a Template ... 282

Problem ... 282

Solution ... 282

How It Works ... 282

Table of ConTenTs

xiv

Recipe 9-3. Creating Class Templates .. 289

Problem ... 289

Solution ... 289

How It Works ... 289

Recipe 9-4. Creating Singletons ... 292

Problem ... 292

Solution ... 292

How It Works ... 292

Recipe 9-5. Calculating Values at Compile Time ... 295

Problem ... 295

Solution ... 295

How It Works ... 295

Recipe 9-6. Calculating Values at Compile Time ... 299

Problem ... 299

Solution ... 299

How It Works ... 299

Chapter 10: Memory ��� 301

Recipe 10-1. Using Static Memory ... 301

Problem ... 301

Solution ... 301

How It Works ... 301

Recipe 10-2. Using Stack Memory.. 304

Problem ... 304

Solution ... 304

How It Works ... 304

Recipe 10-3. Using Heap Memory .. 309

Problem ... 309

Solution ... 309

How It Works ... 309

Table of ConTenTs

xv

Recipe 10-4. Using Automated Shared Memory ... 313

Problem ... 313

Solution ... 313

How It Works ... 313

Recipe 10-5. Creating Single-Instance Dynamic Objects ... 317

Problem ... 317

Solution ... 317

How It Works ... 317

Recipe 10-6. Creating Smart Pointers .. 322

Problem ... 322

Solution ... 322

How It Works ... 322

Recipe 10-7. Debugging Memory Problems by Overloading new and delete 332

Problem ... 332

Solution ... 332

How It Works ... 332

Recipe 10-8. Calculating Performance Impacts of Code Changes .. 341

Problem ... 341

Solution ... 341

How It Works ... 341

Recipe 10-9. Understanding the Performance Impacts of Memory Choices 343

Problem ... 343

Solution ... 344

How It Works ... 344

Recipe 10-10. Reducing Memory Fragmentation ... 348

Problem ... 348

Solution ... 348

How It Works ... 348

Table of ConTenTs

xvi

Chapter 11: Concurrency �� 365

Recipe 11-1. Using Threads to Execute Concurrent Tasks .. 365

Problem ... 365

Solution ... 366

How It Works ... 366

Recipe 11-2. Creating thread Scope Variables.. 373

Problem ... 373

Solution ... 374

How It Works ... 374

Recipe 11-3. Accessing Shared Objects Using Mutual Exclusion ... 387

Problem ... 387

Solution ... 388

How It Works ... 388

Recipe 11-4. Creating Threads That Wait for Events ... 400

Problem ... 400

Solution ... 400

How It Works ... 400

Recipe 11-5. Retrieving Results from a Thread .. 408

Problem ... 408

Solution ... 408

How It Works ... 408

Recipe 11-6. Synchronizing Queued Messages Between Threads ... 413

Problem ... 413

Solution ... 413

How It Works ... 414

Chapter 12: Networking �� 429

Recipe 12-1. Setting Up a Berkeley Sockets Application on macOS... 429

Problem ... 429

Solution ... 430

How It Works ... 430

Table of ConTenTs

xvii

Recipe 12-2. Setting Up a Berkeley Sockets Application in Eclipse on Ubuntu 434

Problem ... 434

Solution ... 434

How It Works ... 434

Recipe 12-3. Setting Up a Winsock 2 Application in Visual Studio on Windows 439

Problem ... 439

Solution ... 439

How It Works ... 439

Recipe 12-4. Creating a Socket Connection Between Two Programs 445

Problem ... 445

Solution ... 446

How It Works ... 446

Recipe 12-5. Creating a Networking Protocol Between Two Programs 473

Problem ... 473

Solution ... 473

How It Works ... 474

Chapter 13: Scripting�� 497

Recipe 13-1. Running Lua Commands in Visual Studio C++ ... 497

Problem ... 497

Solution ... 497

How It Works ... 498

Create and Open a Lua Script File in C++ ... 500

Recipe 13-2. Creating a Lua Library Project in Eclipse ... 501

Problem ... 501

Solution ... 502

How It Works ... 502

Recipe 13-3. Creating a Lua Project in Xcode ... 504

Problem ... 504

Solution ... 504

How It Works ... 505

Table of ConTenTs

xviii

Recipe 13-4. Using the Lua Programming Language ... 507

Problem ... 507

Solution ... 507

How It Works ... 507

Recipe 13-5. Calling Lua Functions from C++ .. 519

Problem ... 519

Solution ... 519

How It Works ... 519

Recipe 13-6. Calling C Functions from Lua ... 532

Problem ... 532

Solution ... 532

How It Works ... 532

Recipe 13-7. Creating Asynchronous Lua Functions .. 539

Problem ... 539

Solution ... 539

How It Works ... 539

Chapter 14: 3D Graphics Programming �� 547

Recipe 14-1. An Introduction to GLFW .. 547

Problem ... 547

Solution ... 547

How It Works ... 548

Recipe 14-2. Rendering a Triangle .. 551

Problem ... 551

Solution ... 551

How It Works ... 551

Recipe 14-3. Creating a Textured Quad .. 565

Problem ... 565

Solution ... 565

How It Works ... 565

Table of ConTenTs

xix

Recipe 14-4. Loading Geometry from a File ... 592

Problem ... 592

Solution ... 592

How It Works ... 592

Recipe 14-5. Working with C++20 Modules ... 615

Problem ... 615

Solution ... 615

How It Works ... 616

Index ��� 621

Table of ConTenTs

xxi

About the Authors

Dr. J. Burton Browning earned his doctorate from North

Carolina State University in 1999 under the advisement of

Dr. Richard Peterson. He has conducted research in areas

including distance learning, programming, and instructional

technology. As a life-long learner and someone who has

interests in topics such as programming, photography,

robotics, car restoration, woodworking, hunting, reading,

fishing, and archery, he is never at a loss for something to

do. Dr. Browning’s previous publications include works on

cross-functional learning teams (CFLT), The Utopian School

(teacher-led school model), computer programming (several

languages), open source software, healthcare statistics and data mining, CNC plasma

cutter operation, educational technology, biography, mobile learning, online teaching,

and more. Since retiring as a college professor in 2018, Burton is traveling and working

on many automotive and other projects.

Bruce Sutherland is a video game programmer hailing from Dundee, Scotland. He

graduated with a BSc (Hons) Computer Games Technology from the University of

Abertay, Dundee, in Scotland, in 2005. After graduating, he began his first job in the

game industry at 4J Studios where he worked on Star Trek: Encounters (PS2), The Elder

Scrolls IV: Oblivion (PS3), Star Trek: Conquest (PS2, Wii), Ducati Moto (NDS), and AMF

Bowling Pinbusters! (NDS). In July 2008, he moved from Dundee to Melbourne, Australia,

where he joined Visceral Studios and was a software engineer on Dead Space (Xbox 360,

PS3, PC), The Godfather II (Xbox 360, PS3, PC), and Dead Space 3 (Xbox 360, PS3, PC).

He developed an interest in developing for Android in his spare time and writes tutorials

on his blog.

xxiii

About the Technical Reviewer

Michael Thomas has worked in software development

for more than 20 years as an individual contributor, team

lead, program manager, and vice president of engineering.

Michael has more than 10 years of experience working with

mobile devices. His current focus is in the medical sector,

using mobile devices to accelerate information transfer

between patients and healthcare providers.

xxv

Acknowledgments

The authors would like to acknowledge Steve Anglin, Matthew Moodie, and Mark

Powers of Apress and the production team for their help and support. You are all

fantastic to work with!

xxvii

Introduction

The C++ programming language is undergoing continuous development and

improvement. This effort to keep C++ on the cutting edge of language features is driven

by the fact that C++ still finds an important role to play in high-performance, portable

applications. Few other languages can be used on as many platforms as C++ without

having a runtime environment dependency. This is partly thanks to the nature of C++

as a compiled programming language. C++ programs are built into application binaries

through a combination of processes that include compiling and linking.

Compiler choice is particularly important in today’s C++ landscape, thanks to

the rate at which the language is changing. Development of the C++ programming

language was started by Bjarne Stroustrup in 1979, when it was called C with Classes.

The language didn’t see formal standardization until 1998; an updated standard was

published in 2003. There was another gap of eight years until the standard was updated

again with the introduction of C++11 in 2011. This version brought a considerable

number of updates to the C++ programming language and is distinguished from “older”

C++ with the modern C++ moniker. C++ 17 and C++ 20 deprecated old features and

brought many significant changes to the language.

This book introduces you to code written for the C++14 through C++20 ISO standard

using both the Clang compiler, Microsoft Visual Studio (VS) 2019, and Xcode. Clang is an

open source compiler that started life as a closed source Apple project. Apple released

the code to the open source community in 2007, and the compiler has been adding

strengths ever since. This book explains how to install and use Clang on a computer

running OS X, Windows, or Linux (Ubuntu). The examples that accompany each chapter

have been compiled and tested using Clang 3.5 and/or Visual Studio 2019. All of the

listed applications are free, so choose which works best for your needs, or use them all to

learn more!

The book’s accompanying source code can be accessed via the Download Source
Code link located at www.apress.com/9781484257128. You can find source code for all of

the executable code listings contained in this book along with makefiles that can be used

to build running programs.

http://www.apress.com/9781484257128

1
© J. Burton Browning and Bruce Sutherland 2020
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_1

CHAPTER 1

Beginning C++
The C++ programming language is a powerful low-level language that allows you to write

programs that are compiled into machine instructions to be executed on a computer’s

processor. This makes C++ different from newer languages such as C# and Java. These

languages are interpreted languages. This means they are not executed directly on the

processor but instead are sent to another program that is responsible for operating the

computer. Java programs are executed using the Java virtual machine (JVM), and C#

programs are executed by the Common Language Runtime (CLR).

Thanks to C++ being a language that is compiled ahead of time, it still finds wide use

in fields where absolute performance is paramount. The most obvious area where C++

is still the most predominantly used programming language is the video game industry.

C++ allows programmers to write applications that take full advantage of the underlying

system architecture. You might become familiar with phrases such as cache coherency

while pursuing a career as a C++ programmer. There aren’t many other languages that

allow you to optimize your applications to suit the individual processors that your

program is being designed to run on. This book introduces you to some of the pitfalls

that can affect the performance of your applications at different times and shows you

some techniques to tackle those issues.

Modern C++ is in a period where the language is seeing continual updates to its

features. This has not always been the case. Despite being around since the early 1980s,

the C++ programming language was only standardized in 1998. A minor update and

clarification of this standard was released in 2003 and is known as C++03. The 2003

update did not add any new features to the language; however, it did clarify some of

the existing features that had gone overlooked. One of these was an update to the

standard for the Standard Template Library (STL) vector template to specify that the

members of a vector should be stored contiguously in memory. The C++11 standard

was released in 2011 and saw a massive update to the C++ programming language. C++

gained features for generalized type deduction system outside of templates, lambda, and

closure support, a built-in concurrency library, and many more features. C++14 brought

2

a smaller update to the language and generally built upon the features already supplied

by C++11. Features such as auto return type deduction from functions had been cleaned

up, lambdas had been updated with new features, and there were some new ways to

define properly typed literal values. C++ 17 introduced features such as folds and static if

statements. C++20 now offers some powerful new features such as Modules and Concepts

to name but a few of the enhancements to make the language even more powerful.

This book strives to write portable, standards-compliant C++20 code. At the time of

writing, it’s possible to use many of the new features of C++20 code on Windows, Linux,

and macOS machines so long as you use a compiler that provides all of the language

features. Since as of the time of writing all of the version 20 standards have not been

formally agreed to nor implemented in many compilers, you may need to use more

than one development tool to implement various features in your projects. To this end,

this book will use three different tools: Clang as the compiler on Windows and Ubuntu

and Xcode on macOS, with Microsoft Visual Studio 19 or higher on Windows and Mac

platforms. The rest of this chapter focuses on the software you need to write programs in

C++ before showing you how to acquire some of the more common options available for

Windows, macOS, and Linux operating systems.

 Recipe 1-1. Finding a Text Editor
 Problem
C++ programs are constructed from lots of different source files that must be created

and edited by one or more programmers. Source files are simply text files, which

usually come in two different types: header files and source files. Header files are used

to share information about your types and classes between different files, and source

files are generally used to contain the methods and the actual executable code that

makes up your program. With C++ version 20, programmers now have the opportunity

to use Modules instead of traditional header files for faster build times and cleaner

implementation design.

 Solution
A text editor then becomes the first major piece of software you require to begin writing

C++ programs. There are many excellent choices of text editors available on different

platforms. My best two picks at the moment are the free Notepad++ for Windows and

Chapter 1 Beginning C++

3

Sublime Text 2, which despite not being free is available on all major operating systems.

Figure 1-1 shows a screenshot from Sublime Text 2. Vim and gvim are also very good

options that are available for all three operating systems. These editors provide many

powerful features and are excellent choices for someone willing to learn.

Note Don’t feel the urge to grab a text editor straight away. Some of the recipes
later in this chapter cover integrated development environments (iDes) that include
all the software you need to write, build, and debug C++ applications. it is really
a matter of user preference and platform to determine which is best for you. try
both using text editors and a comprehensive iDe (or two!) and see which fits your
workflow the best. You will probably end up using several ultimately.

Figure 1-1. A screenshot from the Sublime text editor

Chapter 1 Beginning C++

4

Figure 1-1 shows one of the most important features of a good text editor: it should

be able to highlight the different types of keywords in your source code. You can

see in the simple Hello World program in Figure 1-1 that Sublime Text is capable of

highlighting the C++ keywords include, int, and return. It has also added different-

colored highlights to the main function name and the strings <iostream> and "Hello

World!". Once you have some experience writing code with your text editor of choice,

you will become adept at scanning your source files to zero in on the area of code you are

interested in, and syntax highlighting will be a major factor in this process.

Another feature some editors have is autocomplete or, as Microsoft calls it,

IntelliSense. This feature is language-specific and speeds development time by

autocompleting or auto-expanding options to functions and methods in the language.

For a text editor such as Sublime with C++, you could install the Clang plugin for

ClangAutoComplete for Sublime 3. Although not free, Sublime allows for continuous free

evaluation time if you do not purchase a license.

 Recipe 1-2. Installing Clang on Ubuntu
 Problem
You would like to build C++ programs that support the latest C++20 language features on

a computer system running Ubuntu.

 Solution
The Clang compiler supports all of the latest C++20 language features, and the libstdc++

library supports all of the C++20 STL features.

 How It Works
The Ubuntu operating system comes configured with package repositories that allow

you to install Clang without much difficulty. You can achieve this using the apt-get

command in a terminal window. Figure 1-2 shows the command that you should enter

to install Clang.

Chapter 1 Beginning C++

5

To install Clang, you can enter the following command on the command line:

sudo apt-get install clang. Running this command will cause Ubuntu to query

its repositories and work out all of the dependencies needed to install Clang. You will

be prompted once this process has been completed to confirm that you wish to install

Clang and its dependencies. You can see this prompt in Figure 1-3.

Figure 1-2. An Ubuntu terminal window showing the command needed to
install Clang

Figure 1-3. The apt-get dependency confirmation prompt

Chapter 1 Beginning C++

6

At this point, you can press Enter to continue as yes is the default option. Ubuntu will

then download and install all of the software needed for you to be able to install Clang

on your computer. You can confirm that this has been successful by running the clang

command. Figure 1-4 shows what this should look like if everything was successful.

 Recipe 1-3. Installing Clang on Windows
 Problem
You would like to build supported C++20-based programs on the Windows

operating system.

 Solution
You can use Cygwin for Windows to install Clang and build applications.

 How It Works
Cygwin provides a Unix-like command-line environment for Windows computers. This

is ideal for building programs using Clang as the Cygwin installed comes preconfigured

with package repositories that include everything you need to install and use Clang on

Windows computers.

You can get a Cygwin installer executable from the Cygwin web site at www.cygwin.com.

Be sure to download the 32-bit version of the Cygwin installer as the default packages

supplied by Cygwin currently only work with the 32-bit environment.

Figure 1-4. A successful Clang installation in Ubuntu

Chapter 1 Beginning C++

http://www.cygwin.com

7

Once you have downloaded the installer, you should run it and click through until

you are presented with the list of packages to install. At this point, you want to select the

Clang, make, and libstdc++ packages. Figure 1-5 shows the Cygwin installer with the

Clang package selected.

Packages can be marked for installation in the installer by clicking the Skip area on

the line for the package. Clicking Skip once moves the package version to the latest. You

should select the latest packages for Clang, make, and libstdc++. Once you have selected

all three, you can click Next to be taken to a window asking to confirm the installation of

the dependencies needed by these three packages.

Once you have successfully downloaded and installed all of the packages that

you needed to be able to run Clang, you can check that it was successful by opening a

Cygwin terminal and typing the clang command. You can see the result of this output

in Figure 1-6.

Figure 1-5. Filtering the Clang package in the Cygwin installer

Chapter 1 Beginning C++

8

 Recipe 1-4. Installing Clang on macOS
 Problem
You would like to build C++20-based programs on a computer running macOS.

 Solution
Apple’s Xcode IDE comes with Clang as its default compiler. Installing Xcode from the

macOS App Store also installs Clang. Do note however that your macOS will need to

be up-to-date for Xcode to install. Make sure your computer has enough RAM before

installing the latest update!

 How It Works
Install the latest version of Xcode from the App Store on your macOS computer. Once

you’ve installed Xcode, you can open a terminal window using Spotlight and type clang

to see that the compiler has been installed. Figure 1-7 shows how this should look.

Figure 1-6. Successfully running Clang in a Cygwin environment on Windows

Chapter 1 Beginning C++

9

 Recipe 1-5. Building Your First C++ Program
 Problem
You would like to use your computer to generate executable applications from C++

source code that you write.

 Solution
Generating executables from a C++ source file involves two steps: compiling and

linking. The steps undertaken in Recipe 1-2, Recipe 1-3, or Recipe 1-4 depending on

your operating system will have resulted in you having all of the software you need to

build applications from C++20 source files. You are now ready to build your first C++20

program. Create a folder to contain your project and add a text file named HelloWorld.

cpp. Enter the code from Listing 1-1 into the file and save.

Listing 1-1. Your First C++20 Program

#include <iostream>

#include <string>

int main(void)

{

 using namespace std::string_literals;

Figure 1-7. Running Clang on macOS after installing Xcode

Chapter 1 Beginning C++

10

 auto output = "Hello World!"s;

 std::cout << output << std::endl;

 return 0;

}

The code in Listing 1-1 is a C++ program that will only compile when using a C++14-

or higher compatible compiler. Recipes 1-2 to 1-4 in this chapter contain instructions

on how you can obtain a compiler that can be used to compile many of the proposed

(as of 2019) features for C++20 code for Windows, Ubuntu, and macOS. You can build

a working application once you have created a folder and the source file containing the

code in Listing 1-1. You do this using a makefile. Create a file named makefile in the

folder alongside your HelloWorld.cpp file. The makefile should not have a file extension

which may seem a little strange to developers used to the Windows operating system;

however, this is completely normal for Unix-based operating systems such as Linux and

macOS. Enter the code from Listing 1-2 into your makefile.

Listing 1-2. The Makefile Needed to Build the Code in Listing 1-1

HelloWorld: HelloWorld.cpp

 clang++ -g -std=c++1y HelloWorld.cpp -o HelloWorld

Note the white space before the clang++ command in Listing 1-2 is a tab.
You cannot replace the tab with spaces as make will fail to build. ensure that your
recipes in a makefile always begin with tabs.

The text in Listing 1-2 consists of the instructions needed to build an application

from your HelloWorld.cpp source file. The first word on the first line is the name of the

target of the makefile. This is the name that the application executable will be given

when the building process has been completed. In this case, we will be building an

executable named HelloWorld. This is followed by the prerequisites needed to build the

program. Here you have listed HelloWorld.cpp as the only prerequisite as it is the only

source file used to build the executable.

The target and prerequisites are then followed by a list of recipes that are carried

out in order to build your application. In this small example, you have a line that

invokes the clang++ compiler to generate executable code from the HelloWorld.cpp

Chapter 1 Beginning C++

11

file. The parameter passed to clang++ using –std=c++1y asks Clang to build using the

C++14 language standard, and the –o switch specifies the name of the object output file

generated by the compilation process.

Browse to the folder you created to store the source file and makefile using a

command shell such as cmd on Windows or Terminal on Linux or macOS and type

make. This will invoke the GNU make program and will automatically read and execute

your makefile. This will output an executable file into the same folder that you can then

run from the command line. You should be able to do this now and see that the text

Hello World is output on your command line. Figure 1-8 shows what this would look like

in an Ubuntu terminal window.

 Recipe 1-6. Debugging C++ Programs Using GDB
in Cygwin or Linux
 Problem
You are writing a C++20 program and would like to be able to debug the application from

the command line.

 Solution
Both Cygwin for Windows and Linux-based operating systems like Ubuntu can install

and use the GDB command-line debugger for C++ applications.

Figure 1-8. The output generated by running HelloWorld in an Ubuntu
terminal

Chapter 1 Beginning C++

12

 How It Works
You can use the Cygwin installer for Windows or the package manager installed

with your favorite Linux distribution to install the GDB debugger. This will give you

a command-line C++ debugger that can be used to inspect the functionality of your

C++ programs. You can practice this using the source file, makefile, and application

generated as part of Recipe 1-5. To generate debugging information for your program,

you should update the makefile to contain the contents of Listing 1-3 and run make to

generate a debuggable executable file.

Listing 1-3. A Makefile to Generate a Debuggable Program

HelloWorld: HelloWorld.cpp

 clang++ -g -std=c++1y HelloWorld.cpp -o HelloWorld

Once you have followed Recipe 1-5, updated the makefile to contain the contents

of Listing 1-3, and generated an executable, you can run GDB on your application by

browsing to the folder on your command line and typing gdb HelloWorld. The new –g

switch passed to Clang in the makefile from Listing 1-3 asks the compiler to generate

additional information in the application that helps the debugger to provide you with

accurate information about the program while it is executing in the debugger.

Note You may be presented with a notice informing you that your program is
already up-to-date if you had built previously. Simply delete the existing executable
file if this occurs.

Running GDB in HelloWorld should result in your command line running GDB and

providing output such as that shown in Figure 1-9.

Chapter 1 Beginning C++

13

You now have a running debugger that you can use to inspect the running program

while it is executing. The program has not yet begun when GDB first starts. This allows

you to configure some breakpoints before you get started. To set a breakpoint, you can

use the break command or the b shorthand for the same command. Type break main

into the GDB command prompt and press Enter. This should result in GDB echoing

the command back to you along with the address of the program where the breakpoint

was set and the filename and line number it detected for the function supplied. You

can now type run into your window to execute the program and have GDB halt at your

breakpoint. The output should resemble that shown in Figure 1-10.

Figure 1-9. A running instance of GDB

Chapter 1 Beginning C++

14

At this point, you have several options that allow you to continue the execution of

your program. You can see a list of the most common commands in the following:

step

The step command is used to step into a function that is to be

called at the current line.

next

The next command is used to step over the current line and stop

on the next line of the same function.

finish

The finish command is used to execute all of the code remaining

in the current function and stop on the next line in the function

that called the current function.

Figure 1-10. The output as seen when GDB halts at the breakpoint set in main

Chapter 1 Beginning C++

15

print <name>

The print command followed by the name of a variable can be

used to print the value of a variable in your program.

break

The break command can be used with a line number, a function

name, or a source file and line number to set a breakpoint in your

program’s source code.

continue

The continue command is used to resume code execution after it

has been halted at a breakpoint.

until

The until command can continue execution from a loop and stop

on the first line immediately after the loop execution has finished.

info

The info command can be used with either the locals command

or the stack command to show information about the current

local variables or stack state in the program.

help

You can type help followed by any command to have GDB give

you information about all of the different ways that a given

command can be used.

The GDB debugger can also be run with the command –tui. This will give you a view

of the source file you are currently debugging at the top of the window. You can see how

this looks in Figure 1-11.

Chapter 1 Beginning C++

16

 Recipe 1-7. Debugging Your C++ Programs
on macOS
 Problem
The macOS operating system does not provide any easy method for installing and

using GDB.

 Solution
Xcode comes with the LLDB debugger than can be used on the command line in place

of GDB.

Figure 1-11. GDB with a source window

Chapter 1 Beginning C++

17

 How It Works
The LLDB debugger is, in essence, very similar to the GDB debugger used in Recipe 1-6.

Changing between GDB and LLDB is simply a case of learning how to carry out the same

simple tasks in both by using the commands provided by each to carry out the same task.

You can execute LLDB on your HelloWorld executable by browsing to the directory

containing HelloWorld in Terminal and typing lldb HelloWorld. This will give you

output that resembles that of Figure 1-12.

Note You will need to compile your program using the –g switch. take a look at
Listing 1-3 to see where this goes if you are unsure.

Once you have LLDB running as shown in Figure 1-12, you can set a breakpoint on

the first line of main by typing breakpoint set –f HelloWorld.cpp –l 8 or b main

as shorthand. You can use the run command to begin execution and have it halt at the

breakpoint that you’ve just set. When the program stops, you can use the next command

to step over the current line and halt on the next line. You could have used the step

command to step into a function on the current line and halt on the first line of the

function. The finish command will step out of the current function.

You can quit LLDB by typing q and pressing Enter. Restart LLDB and type

breakpoint set –f HelloWorld.cpp –l 9. Follow this with the run command, and

LLDB should print the source around the line where the application has stopped.

Figure 1-12. The LLDB debugger running in an macOS terminal

Chapter 1 Beginning C++

18

You can now type print output to see the value stored by the output variable. You can

also use the frame variable command to see all of the local variables in the current

stack frame.

These simple commands will allow you to use the LLDB debugger adequately

enough while working through the samples provided along with this book. The following

list can be used as a handy cheat sheet while working with LLDB:

step

The step command is used to step into a function that is to be

called at the current line.

next

The next command is used to step over the current line and stop

on the next line of the same function.

finish

The finish command is used to execute all of the code remaining

in the current function and stop on the next line in the function

that called the current function.

print <name>

The print command followed by the name of a variable can be

used to print the value of a variable in your program.

breakpoint set –-name <name>

breakpoint set –file <name> --line <number>

The breakpoint command can be used with a line number,

a function name, or a source file and line number to set a

breakpoint in your program’s source code.

help

You can type help followed by any command to have GDB give

you information about all of the different ways that a given

command can be used.

Chapter 1 Beginning C++

19

 Recipe 1-8. Switching C++ Compilation Modes
 Problem
You would like to be able to switch between the different C++ standards before

compiling your programs.

 Solution
The std switch is supplied by Clang so that you can specify the C++ standard to be used

when compiling.

 How It Works
Clang builds with the C++98 standard by default. You can use the std argument with

clang++ to tell the compiler to use a standard other than the default. Listing 1-4 shows

a makefile that is configured to build a program using the C++17 standard. Clang 5 by

default supports C++17. Use 2a mode for C++ version 20.

Listing 1-4. Building with C++17

HelloWorld: HelloWorld.cpp

 clang++ -std=c++17 HelloWorld.cpp -o HelloWorld

The makefile in Listing 1-4 shows how you can specify that Clang should build your

source file using C++17. This example was written using Clang 5 that uses the c++17

command to represent C++17. For C++20 (2a) experimental mode support with Clang 5,

use the option -std=c++2a.

Listing 1-5 shows how you can build a program using C++11.

Listing 1-5. Building with C++11

HelloWorld: HelloWorld.cpp

 clang++ -std=c++11 HelloWorld.cpp -o HelloWorld

In Listing 1-5, you want to use the c++11 option with the std switch to build with

C++11. Finally, Listing 1-6 shows how to configure Clang to explicitly build with C++98.

Chapter 1 Beginning C++

20

Listing 1-6. Building with C++98

HelloWorld: HelloWorld.cpp

 clang++ -std=c++98 HelloWorld.cpp -o HelloWorld

The makefile in Listing 1-6 can be used to explicitly build with C++98. You can

achieve the same result by leaving out the std command altogether, and Clang will build

using C++98 by default.

Note it’s not guaranteed that every compiler will use C++98 by default. Check
with your compiler’s documentation if you’re unsure which standard is the default.
You can also use Clang for many C++20 features and enable its experimental
C++20 (2a) support using the command noted in the preceding text.

 Recipe 1-9. Building with the Boost Library
 Problem
You would like to write a program using the Boost library.

 Solution
Boost is supplied as source code that can be included with and compiled into your

application.

 How It Works
Boost is a large C++ library that includes all sorts of great functionality. Coverage of the

entire library is out of the scope of this book; however, the string formatting library will

be used. You can acquire the Boost library from the Boost web site at www.boost.org/.

You will be able to get a compressed folder from the Boost web site that contains the

latest version of the Boost library. The only folder you absolutely need to be able to include

basic Boost functionality is the boost folder itself. Download the current version of Boost,

Boost 1.71.0, and create a folder inside the project folder named boost_1_xxx_x (where x

is the version) and copy the boost folder into this location from the downloaded version.

Chapter 1 Beginning C++

http://www.boost.org/

21

Once you have a project folder set up with a downloaded copy of Boost, you can

include Boost header files into your source code. Listing 1-7 shows a program that uses

the boost::format function.

Listing 1-7. Using boost::format

#include <iostream>

#include "boost/format.hpp"

using namespace std;

int main()

{

 std::cout << "Enter your first name: " << std::endl;

 std::string firstName;

 std::cin >> firstName;

 std::cout << "Enter your surname: " << std::endl;

 std::string surname;

 std::cin >> surname;

 auto formattedName = str(boost::format("%1% %2%"s) % firstName %

surname);

 std::cout << "You said your name is: " << formattedName << std::endl;

 return 0;

}

The code in Listing 1-7 shows how you can include a Boost header file into a source

file and how that file’s functions can be used in your program.

Note Don’t worry about how the format function works if it’s not immediately
clear; it is covered in Chapter 3.

You must also tell the compiler where to look for the Boost header files in a makefile;

otherwise, your program will not compile. Listing 1-8 shows the contents of the makefile

that can be used to build this program.

Chapter 1 Beginning C++

22

Listing 1-8. A Makefile to Build with Boost

main: main.cpp

 clang++ -g -std=c++1y -Iboost_1_55_0 main.cpp -o main

The makefile in Listing 1-8 passes the –I option to clang++. This option is used

to tell Clang that you would like to include the given folder in the search paths used

when including files using the #include directive. As you can see, I have passed the

boost_1_55_0 folder that I created in my project folder. This folder contains the boost

folder that you can see used when including a Boost header file in Listing 1-7.

Note if you’re having trouble getting this example to work and aren’t sure
of where to put the Boost header files, you can download the samples that
accompany this book by clicking the Download Source Code button located at
www.apress.com/9781484257128.

 Recipe 1-10. Install Microsoft Visual Studio
 Problem
You would like to use MS Visual Studio 2019, which offers good support for C++ 20, on

either a Mac or PC. Visual Studio offers the abilities multiple-language support, team

projects, as well as GitHub code version control integration. Knowing how to use VS will

add to your resume.

 Solution
Download Visual Studio Community Edition for free for your Mac or Windows platform.

 How It Works
Microsoft offers several versions of Visual Studio for a fee; however, the Community

Edition is free. Corporate users would want a commercial version with other features,

but if you learn the free edition, a jump to a paid version would be easy.

Chapter 1 Beginning C++

http://www.apress.com/9781484257128

23

Listing 1-9. Installing Visual Studio Community Edition

1) Make sure you have at least 2.3 gigs of space (up to 60 gigs depending

on features selected) on your HDD and have administrative rights.

2) Download the online installer for your platform from: https://

visualstudio.microsoft.com/vs/community/

3) Run the installer and reboot.

Listing 1-10. Test the Visual Studio Installation

1) Start Visual Studio and select "Start without Code" at the bottom

right". If VS offers an update, install it first.

2) A Solution in VS can have one or more Projects, and each project

can have one or more files. To the solution, select File, New

Project. Select Empty Project, click Next, then give the project a name

and note or change the location for your files and click Create.

3) Under Solution Explorer to the right, right click (PC) on Source Files

and select Add, New Item, C++ file, and give the file a new name

(keeping .cpp extension) if you wish.

4) Key in the following example to the source file you just created to test

VS 2019.

#include <iostream>

using namespace std;

int main()

{

 string word;

 cout << "Type in World " << endl;

 cin >> word;

Chapter 1 Beginning C++

24

 cout << "Hello " << word << "!!!" << endl;

 cout << "Press any key to exit\n";

 cin >> word;

 return 0;

}

5) Select Build, Build Solution. Then, if no errors appear at the bottom

output window, select Debug, Start Without Debugging to run the test

program.

You will want to experiment with running programs with the debugger in the future,

but for this simple test, it is not needed. The important part of using VS is to know where

your solution/project/source files are stored. To speed the compile progress, build to a

HDD and only copy to external flash drives; else, you will experience longer than normal

build times.

Chapter 1 Beginning C++

25
© J. Burton Browning and Bruce Sutherland 2020
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_2

CHAPTER 2

Modern C++
Development of the C++ programming language began in 1979 as the C with Classes

language. The name C++ was formally adopted in 1983, and development of the

language continued throughout the 1980s and 1990s without the adoption of a formal

language standard. This all changed in 1998 when the first ISO standard of the C++

programming language was adopted. There have been several updates to the standard

published since that time, one in 2003, one in 2011, and one in 2014; and skipping to the

most recent version, C++20 is, as of 2019, fast on its way to final form and adoption.

Note The standard published in 2003 was a minor update to the 1998 standard
that didn’t introduce much in the way of new features. Features of C++17 and
some of the features of C++20 however will be noted.

This book is primarily going to focus on the very latest C++ programming standard,

C++20. Whenever there is mention about the C++ programming language, you can be

assured that we are talking about the language as described by the current ISO standard.

If discussing features that were introduced in 2011, then it will be explicitly mentioned

as version C++11; and for any features that were introduced prior to 2011, I will use the

name C++98; and so on.

This chapter will look at the programming features added to the language in the

latest standard and with C++20. Many of the modern features of C++ were added in

the C++11 and C++17 standards and have been expanded with the C++20 proposed

additions. Considering this, it is important to be able to identify the differences when

working with compilers that support a standard that is not 100% endorsed yet. In

fact, that is why VS 2019 and versions are noted as all do not 100% support all C++ 20

proposed updates as of late 2019.

26

 Recipe 2-1. Initializing Variables
 Problem
You would like to be able to initialize all variables in a standard manner.

 Solution
Uniform initialization was introduced in C++11 and can be used to initialize a variable of

any type.

 How It Works
It’s necessary to understand the deficiencies with variable initialization in C++98 to

appreciate why uniform initialization is an important language feature in C++11.

Listing 2-1 shows a program that contains a single class, MyClass.

Listing 2-1. The C++ Most Vexing Parse Problem

class MyClass

{

private:

 int m_Member;

public:

 MyClass() = default;

 MyClass(const MyClass& rhs) = default;

};

int main()

{

 MyClass objectA;

 MyClass objectB(MyClass());

 return 0;

}

ChapTer 2 Modern C++

27

The code in Listing 2-1 will generate a compile error in C++ programs. The problem

exists in the definition of objectB. A C++ compiler will not see this line as defining a

variable named objectB of type MyClass calling a constructor that takes the object

constructed by calling the MyClass constructor. This is what you might expect the

compiler to see; however, what it actually sees is a function declaration. The compiler

thinks that this line is declaring a function named objectB that returns a MyClass object

and has a single, unnamed function pointer to a function that returns a MyClass object

and is passed no parameters.

Compiling the program shown in Listing 2-1 causes Clang and Visual Studio to

generate a warning. For Clang, it is as follows. VS is similar:

main.cpp:14:20: warning: parentheses were disambiguated as a function

 declaration [-Wvexing-parse]

 MyClass objectB(MyClass());

 ^~~~~~~~~~~

main.cpp:14:21: note: add a pair of parentheses to declare a variable

 MyClass objectB(MyClass());

 ^

 ()

The Clang compiler has properly identified that the code entered in Listing 2-1

contains a vexing parse problem and even helpfully suggests wrapping the MyClass

constructor being passed as a parameter in another pair of parentheses to solve the

problem. C++11 has provided an alternative solution in uniform initialization. You can

see this in Listing 2-2.

Listing 2-2. Using Uniform Initialization to Solve the Vexing Parse Problem

class MyClass

{

private:

 int m_Member;

public:

 MyClass() = default;

 MyClass(const MyClass& rhs) = default;

};

ChapTer 2 Modern C++

28

int main()

{

 MyClass objectA;

 MyClass objectB{MyClass{}};

 return 0;

}

You can see in Listing 2-2 that uniform initialization replaces parentheses with

braces. This syntax change informs the compiler that you would like to use uniform

initialization to initialize your variable. Uniform initialization can be used to initialize

almost all types of variables.

Note The preceding paragraph mentions that uniform initialization can be used
to initialize almost all variables. It can have trouble when initializing aggregates or
plain old data types; however, you won’t need to worry about those for now.

The ability to prevent narrowing conversions is another benefit of using uniform

initialization. The code in Listing 2-3 will fail to compile when using uniform

initialization.

Listing 2-3. Using Uniform Initialization to Prevent Narrowing Conversions

int main()

{

 int number{ 0 };

 char another{ 512 };

 double bigNumber{ 1.0 };

 float littleNumber{ bigNumber };

 return 0;

}

The Clang compiler as well as the VS compiler will throw errors when compiling the

code in Listing 2-3 as there are two narrowing conversions present in the source. The first

occurs when trying to define a char variable with the literal value 512. A char type can store

a maximum value of 255; therefore, the value 512 would be narrowed into this data type.

ChapTer 2 Modern C++

29

A C++11 or newer compiler will not compile this code due to this error. The initialization of

the float from a double type is also a narrowing conversion. Narrowing conversions occur

when data is transferred from one type to another wherein the destination type cannot

store all of the values represented by the source type. Precision is lost in the case of a

double being converted to a float; therefore, the compiler correctly will not build this code

as is. The code in Listing 2-4 uses a static_cast to inform the compiler that the narrowing

conversions are intentional and to compile the code.

Listing 2-4. Using a static_cast to Compile Narrowing Conversions

int main()

{

 int number{ 0 };

 char another{ static_cast<char>(512) };

 double bigNumber{ 1.0 };

 float littleNumber{ static_cast<float>(bigNumber) };

 return 0;

}

 Recipe 2-2. Initializing Objects with Initializer Lists
 Problem
You would like to construct objects from multiple objects of a given type.

 Solution
Modern C++ provides initializer lists that can be used to supply many objects of the same

type to a constructor.

 How It Works
Initializer lists in C++11 build upon uniform initialization to allow you to initialize complex

types with ease. A common example of a complex type that can be difficult to initialize

with data is a vector. Listing 2-5 shows two different calls to a standard vector constructor.

ChapTer 2 Modern C++

30

Listing 2-5. Constructing Vector Objects

#include <iostream>

#include <vector>

using namespace std;

int main()

{

 using MyVector = vector<int>;

 MyVector vectorA(1);

 cout << vectorA.size() << " " << vectorA[0] << endl;

 MyVector vectorB(1, 10);

 cout << vectorB.size() << " " << vectorB[0] << endl;

 return 0;

}

The code in Listing 2-5 might not do what you expect at first glance. The vectorA

variable will be initialized with a single int containing 0. You might expect that it would

contain a single integer containing 1, but this would be incorrect. The first parameter

to a vector constructor determines how many values the initial vector will be set up

to store, and in this case, we are asking it to store a single variable. You might similarly

expect vectorB to contain two values, 1 and 10; however, what we have here is a vector

that contains one value, and that value is 10. The vectorB variable is constructed using

the same constructor as vectorA; however, it specifies a value to use to instantiate the

members of the vector rather than using the default value.

The code in Listing 2-6 uses an initializer list in conjunction with uniform

initialization to construct a vector that contains two elements with the specified values.

Listing 2-6. Using Uniform Initialization to Construct a vector

#include <iostream>

#include <vector>

using namespace std;

int main()

ChapTer 2 Modern C++

31

{

 using MyVector = vector<int>;

 MyVector vectorA(1);

 cout << vectorA.size() << " " << vectorA[0] << endl;

 MyVector vectorB(1, 10);

 cout << vectorB.size() << " " << vectorB[0] << endl;

 MyVector vectorC{ 1, 10 };

 cout << vectorC.size() << " " << vectorC[0] << endl;

 return 0;

}

The code in Listing 2-6 creates three different vector objects. You can see the output

generated by this program in Figure 2-1.

Figure 2-1. The output generated by Listing 2-6

The console output shown in Figure 2-1 shows the size of each vector and the

value stored in the first element of each vector. You can see that the first vector

contains a single element and that its value is 0. The second vector also contains a

single element; however, its value is 10. The third vector is constructed using uniform

initialization, and it contains two values, and the value of its first element is 1. The value

of the second element will be 10. This can cause a significant difference to the behavior

of your programs if you are not taking particular care to ensure that the correct type

of initialization has been used with your types. The code in Listing 2-7 shows a more

explicit use of the initializer_list to construct a vector.

ChapTer 2 Modern C++

32

Listing 2-7. Explicit initializer_list Usage

#include <iostream>

#include <vector>

using namespace std;

int main()

{

 using MyVector = vector<int>;

 MyVector vectorA(1);

 cout << vectorA.size() << " " << vectorA[0] << endl;

 MyVector vectorB(1, 10);

 cout << vectorB.size() << " " << vectorB[0] << endl;

 initializer_list<int> initList{ 1, 10 };

 MyVector vectorC(initList);

 cout << vectorC.size() << " " << vectorC[0] << endl;

 return 0;

}

The code in Listing 2-7 contains an explicit initializer_list that is used

to construct a vector. The code in Listing 2-6 implicitly created this object when

constructing a vector using uniform initialization. There’s usually little need to explicitly

create initializer lists like this; however, it’s important that you understand what the

compiler is doing when you write code using uniform initialization.

 Recipe 2-3. Using Type Deduction
 Problem
You would like to write portable code that doesn’t have a high maintenance cost when

changing types.

ChapTer 2 Modern C++

33

 Solution
C++ provides the auto keyword that can be used to let the compiler deduce the type for a

variable automatically.

 How It Works
C++98 compilers had the ability to automatically deduce the type of a variable; however,

this functionality was only available while you were writing code that used templates

and you omitted the type specialization. Modern C++ has extended this type deduction

support to many more scenarios. The code in Listing 2-8 shows the use of the auto

keyword and the typeid method of working out the type of a variable.

Listing 2-8. Using the auto Keyword

#include <iostream>

#include <typeinfo>

using namespace std;

int main()

{

 auto variable = 1;

 cout << "Type of variable: " << typeid(variable).name() << endl;

 return 0;

}

The code in Listing 2-8 shows how to create a variable with automatically deduced

type in C++. The compiler will automatically work out that you wanted to create an int

variable with this code, and that’s the type that will be output by the program, sort of.

The Clang compiler will output its internal representation of an integer type which is

actually i. You can pass this output to a program named c++filt to convert this into a

normal type name. Figure 2-2 shows how this can be achieved.

ChapTer 2 Modern C++

34

The c++filt program has successfully converted the Clang type i into a human- readable

C++ type format. The auto keyword also works with classes. Listing 2-9 shows this.

Listing 2-9. Using auto with a class

#include <iostream>

#include <typeinfo>

using namespace std;

class MyClass

{

};

int main()

{

 auto variable = MyClass();

 cout << "Type of variable: " << typeid(variable).name() << endl;

 return 0;

}

This program will print out the name MyClass as you can see in Figure 2-3.

Figure 2-2. Using c++filt to produce proper type output from Clang

ChapTer 2 Modern C++

35

Unfortunately, there are times where the auto keyword can produce less than

desirable results. You will definitely come unstuck if you try to combine the auto keyword

with uniform initialization. Listing 2-10 shows the use of the auto keyword with uniform

initialization.

Listing 2-10. Using auto with Uniform Initialization

#include <iostream>

#include <typeinfo>

using namespace std;

class MyClass

{

};

int main()

{

 auto variable{ 1 };

 cout << "Type of variable: " << typeid(variable).name() << endl;

 auto variable2{ MyClass{} };

 cout << "Type of variable: " << typeid(variable2).name() << endl;

 return 0;

}

Figure 2-3. Using auto with MyClass

ChapTer 2 Modern C++

36

You might expect that the code in Listing 2-10 will produce a variable of type int and

a variable of type MyClass; however, this is not the case. Figure 2-4 shows the output

generated by the program.

Figure 2-4. Output generated when using auto with uniform initialization

A quick look at Figure 2-4 shows the immediate problem encountered when using

the auto keyword along with uniform initialization. The C++ uniform initialization

feature automatically creates an initializer_list variable that contains the value of

the type we want, not the type and value itself. This leads to a relatively simple piece

of advice: do not use uniform initialization when defining variables using auto. I’d

recommend not using auto even if the type you want is actually an initializer_list

as the code is much easier to understand and much less error prone if you don’t mix

and match your variable initialization styles. There’s a final piece of advice to bear in

mind: use auto for local variables as much as possible. It’s impossible to declare an auto

variable and not define it; therefore, it’s impossible to have an undefined local auto

variable. You can use this piece of knowledge to cut down on one potential source of

bugs in your programs.

 Recipe 2-4. Using auto with Functions
 Problem
You would like to create more generic functions using type deduction to increase code

maintainability.

ChapTer 2 Modern C++

37

 Solution
Modern C++ allows you to use type deduction for function parameters and for return types.

 How It Works
C++ allows you to utilize type deduction when working with functions using two

methods. Types can be deduced for function parameters by creating a template function

and calling that function without explicit specializers. The return type can be deduced

for a function using the auto keyword in place of its return type. Listing 2-11 shows the

use of auto to deduce the return type for a function.

Listing 2-11. Deducing a Function’s Return Type Using auto

#include <iostream>

using namespace std;

auto AutoFunctionFromReturn(int parameter)

{

 return parameter;

}

int main()

{

 auto value = AutoFunctionFromReturn(1);

 cout << value << endl;

 return 0;

}

The AutoFunctionFromReturn function’s return type in Listing 2-11 is automatically

deduced. The compiler inspects the type of the variable returned from the function and

uses that to deduce the type to be returned. This all works properly because the compiler

has everything it needs inside the function to be able to deduce the type. The parameter

variable is being returned; therefore, the compiler can use its type as the return type for

the function.

ChapTer 2 Modern C++

38

Things get a bit more complicated when you need to build with a C++11 compiler.

Building Listing 2-11 using C++11 results in the following error:

main.cpp:5:1: error: 'auto' return without trailing return type

auto AutoFunctionFromReturn(int parameter)

Listing 2-12 includes a function with automatic return type deduction that works in

C++11.

Listing 2-12. Return Type Deduction in C++11

#include <iostream>

using namespace std;

auto AutoFunctionFromReturn(int parameter) -> int

{

 return parameter;

}

int main()

{

 auto value = AutoFunctionFromReturn(1);

 cout << value << endl;

 return 0;

}

You might be wondering why you would bother doing this when looking at the

code in Listing 2-12. There’s little use in deducing the return type for a function when

you always specify that it will be an int and you’d be right. Return type deduction is

much more useful in functions that don’t have their parameter types declared in their

signature. Listing 2-13 shows the type deduction in action for a template function.

Listing 2-13. Deducing Return Types for C++11 Template Functions

#include <iostream>

using namespace std;

template <typename T>

ChapTer 2 Modern C++

39

auto AutoFunctionFromParameter(T parameter) -> decltype(parameter)

{

 return parameter;

}

int main()

{

 auto value = AutoFunctionFromParameter(2);

 cout << value << endl;

 return 0;

}

Listing 2-13 shows a useful application of return type deduction. This time, the

function is specified as a template; therefore, the compiler cannot work out the return

type using the parameter type. C++11 introduced the decltype keyword to complement

the auto keyword. decltype is used to tell the compiler to use the type of a given

expression. The expression can be a variable name; however, you could also give a

function here, and decltype would deduce the type returned from the function.

At this point, the code has come full circle. The C++11 standard allowed auto to be

used on functions to deduce return type but required that the type still be specified as a

trailing return type. The trailing return type can be deduced using decltype; however,

this leads to overly verbose code. C++14 rectifies this situation by allowing auto to be

used on functions without having the trailing return type even when used with templates

as you can see in Listing 2-14.

Listing 2-14. Using auto to Deduce Return Type on a Template Function

#include <iostream>

using namespace std;

template <typename T>

auto AutoFunctionFromParameter(T parameter)

{

 return parameter;

}

ChapTer 2 Modern C++

40

int main()

{

 auto value = AutoFunctionFromParameter(2);

 cout << value << endl;

 return 0;

}

 Recipe 2-5. Working with Compile Time Constants
 Problem
You would like to optimize the runtime operation of your program using compile time

constant.

 Solution
C++ provides the constexpr keyword that can be used to guarantee that an expression

can be evaluated at compile time.

 How It Works
The constexpr keyword can be used to create variables and functions that guarantees

that they can be evaluated at compile time. Your compiler will throw an error if you add

any code to them that prevents compile time evaluation. In fact, C++20 is expanding

the features of constexpr to allow try/catch blocks inside an is_constant_evaluated;

however, support is not consistent with various compilers yet until the standard is fully

endorsed. Listing 2-15 shows a program that uses a constexpr variable to define the size

of an array.

Listing 2-15. Using constexpr to Define the Size of an array

#include <array>

#include <cstdint>

#include <iostream>

ChapTer 2 Modern C++

41

int main()

{

 constexpr uint32_t ARRAY_SIZE{ 5 };

 std::array<uint32_t, ARRAY_SIZE> myArray{ 1, 2, 3, 4, 5 };

 for (auto&& number : myArray)

 {

 std::cout << number << std::endl;

 }

 return 0;

}

The constexpr variable in Listing 2-15 guarantees that the value can be evaluated

at compile time. This is necessary here as the size of an array is something that must be

determined when your program is compiled. Listing 2-16 shows how you can extend this

example to include a constexpr function.

Listing 2-16. A constexpr Function

#include <array>

#include <cstdint>

#include <iostream>

constexpr uint32_t ArraySizeFunction(int parameter)

{

 return parameter;

}

int main()

{

 constexpr uint32_t ARRAY_SIZE{ ArraySizeFunction(5) };

 std::array<uint32_t, ARRAY_SIZE> myArray{ 1, 2, 3, 4, 5 };

 for (auto&& number : myArray)

 {

 std::cout << number << std::endl;

 }

 return 0;

}

ChapTer 2 Modern C++

42

You can go another step further than the code in Listing 2-16 and create a class with

a constexpr constructor. This is shown in Listing 2-17.

Listing 2-17. Creating constexpr Class Constructors

#include <array>

#include <cstdint>

#include <iostream>

class MyClass

{

private:

 uint32_t m_Member;

public:

 constexpr MyClass(uint32_t parameter)

 : m_Member{parameter}

 {

 }

 constexpr uint32_t GetValue() const

 {

 return m_Member;

 }

};

int main()

{

 constexpr uint32_t ARRAY_SIZE{ MyClass{ 5 }.GetValue() };

 std::array<uint32_t, ARRAY_SIZE> myArray{ 1, 2, 3, 4, 5 };

 for (auto&& number : myArray)

 {

 std::cout << number << std::endl;

 }

 return 0;

}

ChapTer 2 Modern C++

43

The code in Listing 2-17 is able to create an object and call a method in a constexpr

statement. This was possible because the constructor for MyClass was declared as a

constexpr constructor. The code shown so far for constexpr has all been compatible

with C++11 compilers. The C++17 standard has relaxed many of the restrictions that

existed in C++11, and C++20 will add functionality. C++11 constexpr statements are

not permitted to do many things that normal C++ code can. Examples of these things

are creating variables and using if statements. The code in Listing 2-18 shows a C++14

constexpr function that can be used to limit the maximum size of an array.

Listing 2-18. Using a C++14 constexpr Function

#include <array>

#include <cstdint>

#include <iostream>

constexpr uint32_t ArraySizeFunction(uint32_t parameter)

{

 uint32_t value{ parameter };

 if (value > 10)

 {

 value = 10;

 }

 return value;

}

int main()

{

 constexpr uint32_t ARRAY_SIZE{ ArraySizeFunction(15) };

 std::array<uint32_t, ARRAY_SIZE> myArray{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 for (auto&& number : myArray)

 {

 std::cout << number << std::endl;

 }

 return 0;

}

ChapTer 2 Modern C++

44

As a final very simple example, the use of this feature does not actually return a

constant, but makes readability and future compatibility (among other things) much

cleaner. The following example will show that the constant is not actually as it seems.

Listing 2-19. Constant Not As It Seems Example

#include <iostream>

using namespace std;

int reg_const()

{ return 999; }

constexpr int new_const()

{ return 999; }

int main() {

 const int first = reg_const();

 int second = new_const();

 second = 1; // technically a constant should not be changeable

 cout << first << " != to " << second << endl;

 return 0; }

 Recipe 2-6. Working with Lambdas
 Problem
You would like to write programs that utilize unnamed function objects.

 Solution
C++ provides lambdas that can be used to create closures and can be passed around in

your code.

 How It Works
The lambda syntax introduced in C++11 can be a little confusing at first. Listing 2-20

shows a simple example of a program that uses a lambda to print out all of the values in

an array.

ChapTer 2 Modern C++

45

Listing 2-20. Using a Lambda to Print array Values

#include <algorithm>

#include <array>

#include <cstdint>

#include <iostream>

int main()

{

 using MyArray = std::array<uint32_t, 5>;

 MyArray myArray{ 1, 2, 3, 4, 5 };

 std::for_each(myArray.cbegin(),

 myArray.cend(),

 [](auto&& number) {

 std::cout << number << std::endl;

 });

 return 0;

}

This code shows how a lambda is defined in C++ source code. The syntax for a

lambda is as follows:

[] () {};

The braces represent the capture block. A lambda uses a capture block to capture

existing variables to be used in the lambda. The code in Listing 2-20 does not have a need

to capture any variables; therefore, it is empty. The parentheses represent the argument

block as they do in a normal function. The lambda in Listing 2-20 has a single parameter

that is of type auto&&. The std::for_each algorithm applies the given function to every

element in the sequence. The function here happens to be a closure that was created

by the compiler when it encountered the lambda syntax and passed it to the for_each

function. There’s a subtle terminology difference there that you should become familiar

with. A lambda is the source code construct that defines an anonymous or unnamed

function. The compiler uses this syntax to create a closure object from the lambda.

A closure can be referenced by a variable as shown in Listing 2-21.

ChapTer 2 Modern C++

46

Listing 2-21. Referencing a Closure in a Variable

#include <algorithm>

#include <array>

#include <cstdint>

#include <iostream>

#include <typeinfo>

int main()

{

 using MyArray = std::array<uint32_t, 5>;

 MyArray myArray{ 1, 2, 3, 4, 5 };

 auto myClosure = [](auto&& number) {

 std::cout << number << std::endl;

 };

 std::cout << typeid(myClosure).name() << std::endl;

 std::for_each(myArray.begin(),

 myArray.end(),

 myClosure);

 return 0;

}

The example in Listing 2-21 captures the lambda into an auto typed variable.

Figure 2-5 shows the output that this generates.

Figure 2-5. The type output by typeid when passed a closure

ChapTer 2 Modern C++

47

Figure 2-5 shows the type of the closure stored by the myClosure variable in

Listing 2-21. The automatically generated type here isn’t particularly useful; however,

C++ does provide a method for passing around any type of object that can be called like

a function. The function template is provided in the functional header and is part of the

STL. This template takes the signature of the function that the object represents. You can

see how this code looks in Listing 2-22.

Listing 2-22. Passing a Closure into a Function

#include <algorithm>

#include <array>

#include <cstdint>

#include <functional>

#include <iostream>

#include <typeinfo>

using MyArray = std::array<uint32_t, 5>;

void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)

{

 MyArray myArray{ 1, 2, 3, 4, 5 };

 std::for_each(myArray.begin(),

 myArray.end(),

 myFunction);

}

int main()

{

 auto myClosure = [](auto&& number) {

 std::cout << number << std::endl;

 };

 std::cout << typeid(myClosure).name() << std::endl;

 PrintArray(myClosure);

 return 0;

}

ChapTer 2 Modern C++

48

You can now create closures and pass them around your program using the function

template as shown in Listing 2-22. This allows you to add some touches to your programs

that would have been much more difficult to achieve in C++98. Listing 2-23 shows a

method to copy an array into a vector through a lambda using the capture block.

Listing 2-23. Using the Lambda Capture Feature

#include <algorithm>

#include <array>

#include <cstdint>

#include <functional>

#include <iostream>

#include <typeinfo>

#include <vector>

using MyArray = std::array<uint32_t, 5>;

using MyVector = std::vector<MyArray::value_type>;

void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)

{

 MyArray myArray{ 1, 2, 3, 4, 5 };

 std::for_each(myArray.begin(),

 myArray.end(),

 myFunction);

}

int main()

{

 MyVector myCopy;

 auto myClosure = [&myCopy](auto&& number) {

 std::cout << number << std::endl;

 myCopy.push_back(number);

 };

 std::cout << typeid(myClosure).name() << std::endl;

 PrintArray(myClosure);

 std::cout << std::endl << "My Copy: " << std::endl;

ChapTer 2 Modern C++

49

 std::for_each(myCopy.cbegin(),

 myCopy.cend(),

 [](auto&& number){

 std::cout << number << std::endl;

 });

 return 0;

}

The code in Listing 2-23 contains a use of the lambda capture to store a reference to

the object myCopy in the closure. This object can then be used inside the lambda and has

each member of the array pushed onto it. The main function ends by printing all of the

values stored by myCopy to show that the closure was sharing the same vector as main,

thanks to the reference capture. The capture was specified as a reference capture using

the & operator. The vector would have been copied into the closure if this had been

omitted, and the myCopy vector in main would have remained empty.

Capturing myCopy by value rather than by reference would have led to another

problem. The type the compiler creates for the lambda would no longer be a compatible

argument with the parameter used to declare the function’s signature. Listing 2-24 shows

the lambda using capture by value to copy myCopy.

Listing 2-24. Capturing myCopy by Value

#include <algorithm>

#include <array>

#include <cstdint>

#include <functional>

#include <iostream>

#include <typeinfo>

#include <vector>

using MyArray = std::array<uint32_t, 5>;

using MyVector = std::vector<MyArray::value_type>;

void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)

{

 MyArray myArray{ 1, 2, 3, 4, 5 };

 std::for_each(myArray.begin(),

ChapTer 2 Modern C++

50

 myArray.end(),

 myFunction);

}

int main()

{

 MyVector myCopy;

 auto myClosure = [myCopy](auto&& number) {

 std::cout << number << std::endl;

 myCopy.push_back(number);

 };

 std::cout << typeid(myClosure).name() << std::endl;

 PrintArray(myClosure);

 std::cout << std::endl << "My Copy: " << std::endl;

 std::for_each(myCopy.cbegin(),

 myCopy.cend(),

 [](auto&& number){

 std::cout << number << std::endl;

 });

 return 0;

}

The code in Listing 2-24 won’t compile, and Clang and VS compilers are unlikely to

give you meaningful or helpful error messages. Clang provides the following error output

when trying to compile this code using Cygwin on Windows.

$ make

clang++ -g -std=c++1y main.cpp -o main

main.cpp:26:13: error: no matching member function for call to 'push_back'

 myCopy.push_back(number);

            ~~~~~~~^~~~~~~~~

/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2149:27: note: in 

instantiation of function template

       specialization 'main()::<anonymous class>::operator()<unsigned int>' 

requested here

ChapTer 2  Modern C++



51

         using _Invoke = decltype(__callable_functor(std::declval<_

Functor&>())

                                 ^

/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2158:2: note: in 

instantiation of template type alias

      '_Invoke' requested here

        using _Callable

        ^

/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2225:30: note: in 

instantiation of template type alias

      '_Callable' requested here

               typename = _Requires<_Callable<_Functor>, void>>

                                    ^

/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2226:2: note: in 

instantiation of default argument for

      'function<<lambda at main.cpp:24:22> >' required here

        function(_Functor);

        ^~~~~~~~

/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/functional:2226:2: note: 

while substituting deduced template arguments

       into function template 'function' [with _Functor = <lambda at main.

cpp:24:22>, $1 = <no value>]

        function(_Functor);

        ^

/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/bits/stl_vector.h:913:7: 

note: candidate function not viable: 'this'

       argument has type 'const MyVector' (aka 'const vector<MyArray::value_

type>'), but method is not marked const

      push_back(const value_type& __x)

      ^

/usr/lib/gcc/i686-pc-cygwin/4.9.2/include/c++/bits/stl_vector.h:931:7: 

note: candidate function not viable: 'this'

       argument has type 'const MyVector' (aka 'const vector<MyArray::value_

type>'), but method is not marked const

      push_back(value_type&& __x)

      ^

ChapTer 2  Modern C++



52

main.cpp:30:5: error: no matching function for call to 'PrintArray'

    PrintArray(myClosure);

    ^~~~~~~~~~

main.cpp:12:6: note: candidate function not viable: no known conversion 

from '<lambda at main.cpp:24:22>' to 'const

      std::function<void (MyArray::value_type)>' for 1st argument

void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)

     ^

2 errors generated.

makefile:2: recipe for target 'main' failed

make: *** [main] Error 1

Given the verbose and confusing error messages output by Clang, you may think that 

the code is very far from being in a working state; however, you might be surprised to 

learn that this can be solved with a single keyword, mutable. Listing 2-25 shows the code 

in a proper compiling state.

Listing 2-25. Creating a mutable Closure

#include <algorithm>

#include <array>

#include <cstdint>

#include <functional>

#include <iostream>

#include <typeinfo>

#include <vector>

using MyArray = std::array<uint32_t, 5>;

using MyVector = std::vector<MyArray::value_type>;

void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)

{

    MyArray myArray{ 1, 2, 3, 4, 5 };

    std::for_each(myArray.begin(),

        myArray.end(),

        myFunction);

}

ChapTer 2  Modern C++



53

int main()

{

    MyVector myCopy;

    auto myClosure = [myCopy](auto&& number) mutable {

            std::cout << number << std::endl;

            myCopy.push_back(number);

        };

    std::cout << typeid(myClosure).name() << std::endl;

    PrintArray(myClosure);

    std::cout << std::endl << "My Copy: " << std::endl;

    std::for_each(myCopy.cbegin(),

        myCopy.cend(),

        [](auto&& number){

            std::cout << number << std::endl;

        });

    return 0;

}

Listing 2-25 contains the solution to all of the error output that you can see in the 

preceding code. The mutable keyword is used to tell the compiler that the lambda function 

should generate a closure with non-const members that have been copied by value.

The closures created by the compiler when they encounter a lambda function 

are const by default. This causes the compiler to create a type for the closure that can 

no longer be implicitly converted to a standard function pointer. The resulting error 

messages generated by a compiler when you try to use a lambda function to generate a 

closure that is not a suitable type for your code can be exceptionally confusing, so there 

is no real solution here other than to properly learn how to use lambda functions and to 

compile often when working to pick up when you have made a change that the compiler 

cannot handle.

Listing 2-26 shows the code needed to build a working program that copied an array 

into a vector using a lambda function. It is backward compatible to C++11.

ChapTer 2  Modern C++



54

Listing 2-26. A C++11-Compatible Lambda Function

#include <algorithm>

#include <array>

#include <cstdint>

#include <functional>

#include <iostream>

#include <typeinfo>

#include <vector>

using MyArray = std::array<uint32_t, 5>;

using MyVector = std::vector<MyArray::value_type>;

void PrintArray(const std::function<void(MyArray::value_type)>& myFunction)

{

    MyArray myArray{ 1, 2, 3, 4, 5 };

    std::for_each(myArray.begin(),

        myArray.end(),

        myFunction);

}

int main()

{

    MyVector myCopy;

    auto myClosure = [&myCopy](const MyArray::value_type& number) {

            std::cout << number << std::endl;

            myCopy.push_back(number);

        };

    std::cout << typeid(myClosure).name() << std::endl;

    PrintArray(myClosure);

    std::cout << std::endl << "My Copy: " << std::endl;

    std::for_each(myCopy.cbegin(),

        myCopy.cend(),

ChapTer 2  Modern C++



55

        [](const MyVector::value_type& number){

            std::cout << number << std::endl;

        });

    return 0;

}

The code in Listing 2-26 will work just fine with a C++11 compiler, but it does result 

in lambda functions that are slightly less portable between different types. The lambda 

function used to print the values from myCopy can now only be used with the type 

defined by MyVector::value_type, whereas the C++14 version could have been reused 

with any type that could be passed as input to cout. Of course, do not try to compile this 

with C++98. C++20, or C++17 at the least, would be much better with regard to compilers 

available in 2020.

 Recipe 2-7. Working with Time
 Problem
You would like to write portable programs that are aware of the current time or their 

execution time.

 Solution
Modern C++ provides STL templates and classes that provide portable time handling 

capabilities.

 How It Works

 Getting the Current Date and Time
C++ easily provides access to different real-time clocks in a given computer system. The 

implementation of each clock may be different depending on the computer system that 

you are running on itself; however, the general intent of each clock will remain the same. 

You can use the system_clock to query the current time from a system-wide real-time 

clock. This means that you can use this type of clock to get the current date and time for 

a computer while your program is running. Listing 2-27 shows how this can be achieved.

ChapTer 2  Modern C++



56

Listing 2-27. Getting the Current Date and Time (Note: If Using MS Visual 

Studio, You Will Receive a Warning)

#include <ctime>

#include <chrono>

#include <iostream>

using namespace std;

using namespace chrono;

int main()

{

    auto currentTimePoint = system_clock::now();

    auto currentTime = system_clock::to_time_t( currentTimePoint );

    auto timeText = ctime( &currentTime );

    cout << timeText << endl;

    return 0;

}

The program in Listing 2-27 shows how to retrieve the current time from system_clock. 

You do this using the system_clock::now method. The object returned from now is a 

time_point that contains a representation of time offset from some epoch. The epoch is 

a reference time that the system uses to offset all other times. You will not have to worry 

about the epoch by using the same clock for all of your time work. However, you will have to 

be aware that a time from one computer may not be transferrable directly to another if the 

systems use different epochs for their time.

The time_point structure cannot be printed out directly, and there is no method to 

convert it to a string; however, the class does provide a method to convert the time_point 

object into a time_t object. The time_t type is an old C type that can be converted to a string 

representation using the ctime function. You can see the result of running this program in 

Figure 2-6.

ChapTer 2  Modern C++



57

 Comparing Times

You can also use the STL time capabilities to compare one time to another. Listing 2-28 

shows how you can compare a time to another.

Listing 2-28. Comparing Times

#include <ctime>

#include <chrono>

#include <iostream>

#include <thread>

using namespace std;

using namespace chrono;

using namespace literals;

int main()

{

    auto startTimePoint = system_clock::now();

    this_thread::sleep_for(5s);

    auto endTimePoint = system_clock::now();

Figure 2-6. The current time printed to the terminal

ChapTer 2  Modern C++



58

     auto timeTaken = duration_cast<milliseconds>(endTimePoint - 

startTimePoint);

    cout << "Time Taken: " << timeTaken.count() << endl;

    return 0;

}

Listing 2-28 shows that you can call the now method on a clock multiple times and 

retrieve different values. The program gets a time into the startTimePoint variable and 

then calls the sleep_for method on the current execution thread. This call causes the 

program to go to sleep for 5 seconds and call the system_clock::now method again after 

it resumes. At this point, you have two time_point objects that can be used to subtract 

one from the other. The duration_cast can then be used to turn the result of the 

subtraction into a concrete time with a given type of duration. The valid duration types 

are hours, minutes, seconds, milliseconds, microseconds, and nanoseconds. The count 

method is then used on the duration object to get the actual number of milliseconds that 

elapsed between calls to now.

Note The code in Listing 2-28 uses a C++14 standard user-defined literal. The 
5s passed to sleep_for defines a literal of 5 seconds. There are also literals defined 
for h (hours), min (minutes), s (seconds), ms (milliseconds), us (microseconds), and 
ns (nanoseconds). These literals can all be applied to an integer literal to inform 
the compiler that you would like to create a literal of a duration object with the 
given type of time. applying s to a character literal such as "A String"s tells the 
compiler to create a literal of type std::string. These literals are defined in the 
std::literals namespace and are a C++14-only feature, meaning that they 
cannot be used in C++11 or C++98 code.

Figure 2-7 shows the output generated when this program is run.

ChapTer 2  Modern C++



59

Figure 2-7 shows that the sleep_for method isn’t 100% accurate; however, it is reasonably 

close to 5000 ms with each run. You can now see how you can use the now method to 

compare two time_points, and it’s not much more of a stretch to imagine that you can create 

an if statement that only executes once a certain amount of time has passed.

Listing 2-29 is a final stepping-off point for using three different clocks, system, 

steady, and high resolution. The first is based on the current computer clock, the second 

is as well but is not changeable, and the third offers more resolution, with higher CPU 

utilization. Use MS Visual Studio to see them in action.

Listing 2-29. Using Three Clock Types

#define _CRT_SECURE_NO_WARNINGS //suppress warngings on localtime

#include<chrono>//needed for time features

#include<iostream>

#include<ctime>//needed for local_time

#include<iomanip>//needed for put_time

using namespace std;

int main()

{      //system clock can be changed, steady cannot, high res offers more 

precision

       chrono::system_clock::time_point pc_clock = chrono::system_

clock::now(); // computer clock time

      time_t pc_clock_time = chrono::system_clock::to_time_t(pc_clock);

       cout << "The time according to the computer clock is: "  

<< put_time(localtime(&pc_clock_time), "%T %p") << endl;

Figure 2-7. Output from several runs of Listing 2-28

ChapTer 2  Modern C++



60

       chrono::steady_clock::time_point start = chrono::steady_clock::now(); 

// when we start

       chrono::high_resolution_clock::time_point start2 = chrono:: 

high_resolution_clock::now(); //high res clock

       chrono::system_clock::time_point now = chrono::system_clock::now(); 

// current time

      time_t now_c = chrono::system_clock::to_time_t(now);

       cout << "\n\nThe time now is:  " << put_time(localtime(&now_c),  

"%F %T %b %I %p") << endl;

       time_t now_p = chrono::system_clock::to_time_t(now - 

chrono::hours(2));

       cout << "The time 2 hours ago was: " << put_time(localtime(&now_p), 

"%F %T %B  %A") << "\n\n";

       chrono::steady_clock::time_point end = chrono::steady_

clock::now();  // it is over

       chrono::high_resolution_clock::time_point end2 = chrono:: 

high_resolution_clock::now();

       cout << "Computing lasted " << chrono::duration_cast 

<chrono::microseconds>(end - start).count() << " microseconds!"  

<< endl;

       cout << "Computing with high_resolution_clock yielded "  

<< chrono::duration_cast<chrono::nanoseconds>(end2 - start2).count()  

<< " nanoseconds!" << endl;

      return 0;

}

 Recipe 2-8. Understanding lvalue and rvalue 
References
 Problem
C++ contains a distinction between an lvalue reference and an rvalue reference. You 

need to be able to understand these concepts to write optimal C++ programs.

ChapTer 2  Modern C++



61

 Solution
Modern C++ contains two different reference operators, & (lvalue) and && (rvalue). These 

work hand in hand with move semantics to reduce the time spent copying objects in 

your programs.

 How It Works
Move semantics are one of the headline features of the modern C++ programming 

language. Their usefulness is being significantly overplayed, and programmers new to 

modern C++ programming may be tempted to jump head first into the shiny new feature 

and actually make their programs worse due to a lack of understanding as to when and 

why to use an rvalue reference over an lvalue reference.

To put it simply, an rvalue reference should be used to move construct or move 

assign objects in place of copy operations where appropriate. Move semantics should 

not be used to replace passing parameters to methods by const reference. A move 

operation could be faster than a copy; in the worst case, it can be slower than a copy, and 

it will always be slower than passing by const reference. This recipe will show you the 

difference between an lvalue reference, an rvalue reference, and the copy and move class 

constructors and operators and show some performance issues related to each.

The code in Listing 2-30 shows the implementation for a simple class that uses a 

static counter value to keep track of the number of objects in memory at any given time.

Listing 2-30. A Class That Counts the Number of Instances

#include <iostream>

using namespace std;

class MyClass

{

private:

    static int s_Counter;

    int* m_Member{ &s_Counter };

ChapTer 2  Modern C++



62

public:

    MyClass()

    {

        ++(*m_Member);

    }

    ~MyClass()

    {

        --(*m_Member);

        m_Member = nullptr;

    }

    int GetValue() const

    {

        return *m_Member;

    }

};

int MyClass::s_Counter{ 0 };

int main()

{

    auto object1 = MyClass();

    cout << object1.GetValue() << endl;

    {

        auto object2 = MyClass();

        cout << object2.GetValue() << endl;

    }

    auto object3 = MyClass();

    cout << object3.GetValue() << endl;

    return 0;

}

The s_Counter static member in Listing 2-30 counts the number of active 

instances of the class that exist in memory at any given time. This is achieved by 

initializing the static to 0 and pre-incrementing the value in the MyClass constructor 

ChapTer 2  Modern C++



63

through the member integer pointer. The s_Counter value is also decremented in 

~MyClass to ensure that the number never grows out of control. The need for an 

unconventional setup will become clear when you see the move constructor in action. 

The output generated by this program is shown in Figure 2-8.

Figure 2-8. The s_Counter variable in action

You can now extend MyClass to contain a copy constructor and determine the 

impact this has on the number of objects in memory at any given time. Listing 2-31 

shows a program that includes a MyClass copy constructor.

Listing 2-31. Copying MyClass

#include <iostream>

using namespace std;

class MyClass

{

private:

    static int s_Counter;

    int* m_Member{ &s_Counter };

public:

    MyClass()

    {

      ++(*m_Member);

      cout << "Constructing: " << GetValue() << endl;

    }

ChapTer 2  Modern C++



64

    ~MyClass()

    {

      --(*m_Member);

      m_Member = nullptr;

      cout << "Destructing: " << s_Counter << endl;

    }

    MyClass(const MyClass& rhs)

        : m_Member{ rhs.m_Member }

    {

        ++(*m_Member);

        cout << "Copying: " << GetValue() << endl;

    }

    int GetValue() const

    {

        return *m_Member;

    }

};

int MyClass::s_Counter{ 0 };

MyClass CopyMyClass(MyClass parameter)

{

    return parameter;

}

int main()

{

    auto object1 = MyClass();

    {

      auto object2 = MyClass();

    }

ChapTer 2  Modern C++



65

    auto object3 = MyClass();

    auto object4 = CopyMyClass(object3);

    return 0;

}

The code in Listing 2-31 has added a copy constructor and a function to copy 

object3 into object4. This has the impact of needing two copies, one to copy object3 

into parameter and one to copy parameter into object4. Figure 2-9 shows that the two 

copy operations have occurred and that there are also two subsequent destructors called 

to destroy these objects.

Figure 2-9. Copy constructors in action

Move constructors can be utilized to cut down on the complexity of a copy constructor. 

There will be just as many objects in flight; however, you can safely shallow- copy an object 

in a move constructor, thanks to the rvalue reference type that they are passed. A rvalue 

reference is a guarantee from the compiler that the object referenced by the variable was 

a temporary object. This means that you are free to cannibalize the object so that you can 

implement a copy operation faster than if the preexisting state was needed to be preserved. 

Listing 2-32 shows how to add a move constructor to MyClass.

ChapTer 2  Modern C++



66

Listing 2-32. Adding a Move Constructor to MyClass

#include <iostream>

using namespace std;

class MyClass

{

private:

    static int s_Counter;

    int* m_Member{ &s_Counter };

public:

    MyClass()

    {

      ++(*m_Member);

      cout << "Constructing: " << GetValue() << endl;

    }

    ~MyClass()

    {

      if (m_Member)

      {

            --(*m_Member);

          m_Member = nullptr;

          cout << "Destructing: " << s_Counter << endl;

      }

        else

      {

          cout << "Destroying a moved-from instance" << endl;

      }

    }

    MyClass(const MyClass& rhs)

        : m_Member{ rhs.m_Member }

ChapTer 2  Modern C++



67

    {

        ++(*m_Member);

        cout << "Copying: " << GetValue() << endl;

    }

    MyClass(MyClass&& rhs)

      : m_Member{ rhs.m_Member }

    {

      cout << hex << showbase;

      cout << "Moving: " << &rhs << " to " << this << endl;

      cout << noshowbase << dec;

      rhs.m_Member = nullptr;

    }

    int GetValue() const

    {

        return *m_Member;

    }

};

int MyClass::s_Counter{ 0 };

MyClass CopyMyClass(MyClass parameter)

{

    return parameter;

}

int main()

{

    auto object1 = MyClass();

    {

      auto object2 = MyClass();

    }

    auto object3 = MyClass();

    auto object4 = CopyMyClass(object3);

    return 0;

}

ChapTer 2  Modern C++



68

The code in Listing 2-32 adds a move constructor to MyClass. This has an immediate 

impact on the running code. You can see that the move constructor is being invoked in 

Figure 2-10.

Figure 2-10. Using a move constructor

The compiler has realized that the state of parameter in Listing 2-32 does not need 

to be maintained after the return statement has ended. This means that the code can 

invoke a move constructor to create object4. This creates a scenario for a possible 

optimization in your code. This example is trivial, and therefore there may be minimal 

performance and memory benefits. If the class was more complicated, then you would 

save the memory needed to have both objects in memory at the same time and the time 

taken to copy from one object to the other. The performance benefits of this can be seen 

in Listing 2-33. Note the high_resolution clock and chrono features from earlier in the 

chapter are now being put to use again.

Listing 2-33. Comparing Copy Constructors with Move Constructors

#include <chrono>

#include <iostream>

#include <string>

#include <vector>

ChapTer 2  Modern C++



69

using namespace std;

using namespace chrono;

using namespace literals;

class MyClass

{

private:

    vector<string> m_String{

        "This is a pretty long string that"

        " must be copy constructed into"

        " copyConstructed!"s

    };

    int m_Value{ 1 };

public:

    MyClass() = default;

    MyClass(const MyClass& rhs) = default;

    MyClass(MyClass&& rhs) = default;

    int GetValue() const

    {

        return m_Value;

    }

};

int main()

{

    using MyVector = vector<MyClass>;

    constexpr unsigned int ITERATIONS{ 1000000U };

    MyVector copyConstructed(ITERATIONS);

    int value{ 0 };

    auto copyStartTime = high_resolution_clock::now();

    for (unsigned int i=0; i < ITERATIONS; ++i)

ChapTer 2  Modern C++



70

    {

      MyClass myClass;

        copyConstructed.push_back(myClass);

      value = myClass.GetValue();

    }

    auto copyEndTime = high_resolution_clock::now();

    MyVector moveConstructed(ITERATIONS);

    auto moveStartTime = high_resolution_clock::now();

    for (unsigned int i=0; i < ITERATIONS; ++i)

    {

      MyClass myClass;

        moveConstructed.push_back(move(myClass));

      value = myClass.GetValue();

    }

    auto moveEndTime = high_resolution_clock::now();

    cout << value << endl;

    auto copyDuration =

      duration_cast<milliseconds>(copyEndTime - copyStartTime);

    cout << "Copy lasted: " << copyDuration.count() << "ms" << endl;

    auto moveDuration =

      duration_cast<milliseconds>(moveEndTime - moveStartTime);

    cout << "Move lasted: " << moveDuration.count() << "ms" << endl;

    return 0;

}

The code in Listing 2-33 makes use of the default keyword to inform the compiler 

that we would like to use the default constructor, copy constructor, and move constructor 

for this class. This is valid here because there is no manual memory management or 

behavior needed by MyClass. We simply want to construct, copy, or move the members 

m_String and m_Value. The m_Value variable is used to try to prevent the compiler from 

over-optimizing our example and producing unexpected results. You can see that the 

move constructor is faster in this instance than the copy constructor in Figure 2-11.

ChapTer 2  Modern C++



71

 Recipe 2-9. Using Managed Pointers
 Problem
You would like to automate the task of managing memory in your C++ programs.

 Solution
Modern C++ provides the capability to automatically manage dynamically allocated 

memory.

 How It Works

 Using unique_ptr
C++ provides three smart pointer types that can be used to automatically manage the 

lifetime of dynamically allocated objects. Listing 2-34 shows the use of a unique_ptr.

Figure 2-11. Showing a move constructor can be faster than a copy constructor

ChapTer 2  Modern C++



72

Listing 2-34. Using unique_ptr

#include <iostream>

#include <memory>

using namespace std;

class MyClass

{

private:

    int m_Value{ 10 };

public:

    MyClass()

    {

        cout << "Constructing!" << endl;

    }

    ~MyClass()

    {

        cout << "Destructing!" << endl;

    }

    int GetValue() const

    {

        return m_Value;

    }

};

int main()

{

    unique_ptr<MyClass> uniquePointer{ make_unique<MyClass>() };

    cout << uniquePointer->GetValue() << endl;

    return 0;

}

ChapTer 2  Modern C++



73

The code in Listing 2-34 manages to create and destroy a dynamically allocated 

object without ever using new or delete. The make_unique template handles calling new, 

and the unique_ptr object handles calling delete when the unique_ptr instance goes 

out of scope. The make_unique template is a C++14 and higher feature. In C++20, some 

of the memory library features have been deprecated and new features added.

Unique pointers are exactly as you expect; they are unique, and therefore your code 

cannot have more than a single instance of a unique_ptr pointing to the same object at 

the same time. It achieves this by preventing copy operations on unique_ptr instances.  

A unique_ptr can be moved however, and this allows you to pass a unique_ptr around 

in your program. Listing 2-35 shows how you can use move semantics to pass a unique_

ptr around your program.

Listing 2-35. Moving a unique_ptr

#include <iostream>

#include <memory>

using namespace std;

class MyClass

{

private:

    string m_Name;

    int m_Value;

public:

    MyClass(const string& name, int value)

        : m_Name{ name }

        , m_Value{ value }

    {

      cout << "Constructing!" << endl;

    }

    ~MyClass()

    {

        cout << "Destructing!" << endl;

    }

ChapTer 2  Modern C++



74

    const string& GetName() const

    {

      return m_Name;

    }

    int GetValue() const

    {

        return m_Value;

    }

};

using MyUniquePtr = unique_ptr<MyClass>;

auto PassUniquePtr(MyUniquePtr ptr)

{

    cout << "In Function Name: " << ptr->GetName() << endl;

    return ptr;

}

int main()

{

    auto uniquePointer = make_unique<MyClass>("MyClass", 10);

    auto newUniquePointer = PassUniquePtr(move(uniquePointer));

    if (uniquePointer)

    {

        cout << "First Object Name: " << uniquePointer->GetName() << endl;

    }

    cout << "Second Object Name: " << newUniquePointer->GetName() << endl;

    return 0;

}

The code in Listing 2-35 moves a unique_ptr instance into a function. That instance 

is then moved back out of the function into a second unique_ptr object. There’s no 

reason why the same unique_ptr couldn’t have been used in main other than to show 

that the original instance is not valid after it has been moved from. This is evident in 

ChapTer 2  Modern C++



75

the if call to check if the pointer is valid as this will fail when the code is executed. The 

unique_ptr can be used in this manner, and the object pointed to by the instance will be 

deleted once it goes out of scope without having been moved from. The output from this 

program is shown in Figure 2-12.

Figure 2-12. Valid unique_ptr instances moved through a function

 Using shared_ptr Instances

Where a unique_ptr can give you sole ownership over a single object that you can move 

around in a single pointer instance, a shared_ptr can give you shared ownership over 

a single object. This works by having a shared_ptr storing an internal reference count 

along with the pointer to the object and only deleting the object once all of the values 

have gone out of scope. Listing 2-36 shows the use of a shared_ptr.

Listing 2-36. Using a shared_ptr

#include <iostream>

#include <memory>

using namespace std;

class MyClass

{

private:

    string m_Name;

    int m_Value;

ChapTer 2  Modern C++



76

public:

    MyClass(const string& name, int value)

        : m_Name{ name }

        , m_Value{ value }

    {

      cout << "Constructing!" << endl;

    }

    ~MyClass()

    {

        cout << "Destructing!" << endl;

    }

    const string& GetName() const

    {

      return m_Name;

    }

    int GetValue() const

    {

        return m_Value;

    }

};

using MySharedPtr = shared_ptr<MyClass>;

auto PassSharedPtr(MySharedPtr ptr)

{

    cout << "In Function Name: " << ptr->GetName() << endl;

    return ptr;

}

int main()

{

    auto sharedPointer = make_shared<MyClass>("MyClass", 10);

    {

        auto newSharedPointer = PassSharedPtr(sharedPointer);

ChapTer 2  Modern C++



77

        if (sharedPointer)

        {

            cout << "First Object Name: " << sharedPointer->GetName() << endl;

        }

        cout << "Second Object Name: " << newSharedPointer->GetName() << endl;

    }

    return 0;

}

The shared_ptr in Listing 2-36 is different from the unique_ptr that you have seen 

before. A shared_ptr can be copied through your program, and you can have multiple 

pointers pointing to the same object. This is shown in Figure 2-13 where the output from 

the First Object Name statement can be seen.

Figure 2-13. Using a shared_ptr

 Using a weak_ptr

Modern C++ also allows you to hold weak references to smart pointers. This allows you 

to get a reference to a pointer to a shared object temporarily while you need it for as  

long as the shared object exists. This tracking allows for better memory management. 

Listing 2-37 shows how you can achieve this using a weak_ptr.

ChapTer 2  Modern C++



78

Listing 2-37. Using a weak_ptr

#include <iostream>

#include <memory>

using namespace std;

class MyClass

{

private:

    string m_Name;

    int m_Value;

public:

    MyClass(const string& name, int value)

        : m_Name{ name }

        , m_Value{ value }

    {

      cout << "Constructing!" << endl;

    }

    ~MyClass()

    {

        cout << "Destructing!" << endl;

    }

    const string& GetName() const

    {

      return m_Name;

    }

    int GetValue() const

    {

        return m_Value;

    }

};

ChapTer 2  Modern C++



79

using MySharedPtr = shared_ptr<MyClass>;

using MyWeakPtr = weak_ptr<MyClass>;

auto PassSharedPtr(MySharedPtr ptr)

{

    cout << "In Function Name: " << ptr->GetName() << endl;

    return ptr;

}

int main()

{

    MyWeakPtr weakPtr;

    {

        auto sharedPointer = make_shared<MyClass>("MyClass", 10);

      weakPtr = sharedPointer;

        {

            auto newSharedPointer = PassSharedPtr(sharedPointer);

            if (sharedPointer)

            {

                 cout << "First Object Name: " << sharedPointer->GetName() 

<< endl;

            }

             cout << "Second Object Name: " << newSharedPointer->GetName() 

<< endl;

          auto sharedFromWeak1 = weakPtr.lock();

          if (sharedFromWeak1)

          {

             cout << "Name From Weak1: " << sharedFromWeak1->GetName()  

<< endl;

          }

      }

    }

ChapTer 2  Modern C++



80

    auto sharedFromWeak2 = weakPtr.lock();

    if (!sharedFromWeak2)

    {

      cout << "Shared Pointer Out Of Scope!" << endl;

    }

    return 0;

}

You can see in Listing 2-37 that a weak_ptr can be assigned a shared_ptr; however, 

you cannot access the shared object directly through the weak pointer. Instead, a 

weak pointer supplies a lock method. The lock method returns a shared_ptr instance 

pointing to the object that you are referencing. This shared_ptr holds the object alive 

for the entirety of its scope if it ends up being the last pointer pointing to the object. The 

lock method always returns a shared_ptr; however, the shared_ptr returned by lock 

will fail an if test if the object no longer exists. You can see this at the end of the main 

function where lock is called after the object has been deleted. Figure 2-14 shows that 

the weak_ptr cannot get a valid shared_ptr after this has occurred.

Figure 2-14. A weak_ptr failing to lock a deleted object

ChapTer 2  Modern C++



81
© J. Burton Browning and Bruce Sutherland 2020 
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_3

CHAPTER 3

Working with Text
Working with text will be one of the most regular tasks a C++ programmer will have to 

deal with. You are likely to need to read in user input, write out messages to the user, 

or write logging functionality for other programmers to more easily debug running 

programs. Unfortunately, working with text is not an easy or straightforward task. All 

too often, programmers rush into the job and make fundamental errors with their text 

handling which become major issues later into their projects. The worst of these is not 

properly accounting for localized versions of text strings. Working with English character 

sets is generally easy as all English characters and punctuation fit into the ASCII 

character set. This is convenient as every character needed to represent the English 

language can fit into a single 8-bit char variable. Things become problematic as soon 

as you are required to support foreign languages with your programs. Every character 

which you need to support will no longer fit into a single 8-bit value. C++ can handle 

non-English languages in a number of ways which will be covered in this chapter.

 Recipe 3-1. Representing Strings in Code Using 
Literals
 Problem
It is often useful to supply output text when debugging programs. To do this, C++ allows 

you to embed strings directly into your code.

 Solution
C++ programs have a concept known as a string table, and all string literals in your 

program are included in the program’s executable.



82

 How It Works
A standard C++ string literal is easy to work with. Listing 3-1 shows code which creates a 

string literal.

Listing 3-1. A String Literal

#include <iostream>

#include <string>

using namespace std;

namespace

{

    const string STRING{ "This is a string"s };

}

int main()

{

    cout << STRING << endl;

    return 0;

}

The string literal in this example is the sentence which is included inside the quote 

marks and followed by the letter s. The compiler will create a table of strings during 

compilation and place them all together. You can see this string inside the exe file created 

from the source in Figure 3-1 (use Visual Studio for Windows to compile it). Download 

and install HxD hex editor from https://mh-nexus.de/en/hxd/ to open the exe file.

Chapter 3  Working With text

https://mh-nexus.de/en/hxd/


83

Figure 3-1. A screenshot from HxD showing the string literal embedded into an 
executable

Chapter 3  Working With text



84

You can use string literals to initialize STL string objects. The compiler will find all 

of the strings in your program and use the address from the string table to initialize 

your string. You can see this in Listing 3-1 where the pointer STRING is initialized using 

the string literal; in effect, this code is actually telling the compiler to add the literal to 

the string table and get the address of this specific string from the table to pass it to the 

string constructor.

The string literal in Listing 3-1 is a C++14-style string literal. Older-style string literals 

must be used with care as they come with a few caveats. The first is that you should never 

try to alter the contents of a string literal. Consider the code in Listing 3-2. Note if using 

VS instead of Clang, you will receive an error.

Listing 3-2. Editing a String Literal

#include <iostream>

using namespace std;

namespace

{

    const char* const STRING{ "This is a string" };

    char* EDIT_STRING{ "Attempt to Edit" };

}

int main()

{

    cout << STRING << endl;

    cout << EDIT_STRING << endl;

    EDIT_STRING[0] = 'a';

    cout << EDIT_STRING << endl;

    return 0;

}

Listing 3-2 adds a new string literal which is assigned to a non-const pointer. The 

main function also has code which tries to edit the first character (position 0) in the string 

to be a lower case a. This code will compile without error; however, you should receive a 

warning from a C++14 or higher compiler, as it is perfectly valid to attempt to alter strings 

Chapter 3  Working With text



85

using the array operator. However, it is a runtime exception to try to alter data contained 

within string literals. Trying to run this program results in the error shown in Figure 3-2.

You can catch these errors at compile time rather than runtime by following a very 

simple piece of advice. Always assign old-style string literals to variables of type const 

char* const. You can use the makefile from Listing 3-3 if you want to enforce this in a 

very straightforward fashion.

Listing 3-3. Compiling with Warnings as Errors

main: main.cpp

        clang++ -Werror -std=c++1y main.cpp -o main

Compiling your program with the makefile in Listing 3-3 will ensure that the 

compiler fails to build your application with non-const string literals. An example of the 

output you can expect can be seen in Figure 3-3.

Figure 3-2. Runtime error generated when attempting to alter string literals

Chapter 3  Working With text



86

The second problem caused by string literals is that they increase the size of your 

program. In a digital world, reducing the download size of your programs is a key target 

to help increase the number of installs of your software. Removing unnecessary string 

literals is one thing you can do to reduce the size of your executable. Listing 3-4 shows 

how this can be achieved using the preprocessor.

Listing 3-4. Removing Debug String Literals from Builds

#include <iostream>

#include <string>

using namespace std;

#define DEBUG_STRING_LITERALS !NDEBUG

namespace

{

#if DEBUG_STRING_LITERALS

    using StringLiteral = string;

#endif

    StringLiteral STRING{ "This is a String!"s };

}

Figure 3-3. Error output when compiling with –Werror and Wwritable string 
literals

Chapter 3  Working With text



87

int main()

{

    cout << STRING << endl;

    return 0;

}

Listing 3-4 creates a preprocessor symbol DEBUG_STRING_LITERALS using the NDEBUG 

symbol. The NDEBUG preprocessor symbol stands for not debug, and therefore we can 

use it to determine whether we would like to have debug string literals included in our 

program or not. The definition of the type alias StringLiteral is then wrapped in a 

#if…#endif block which ensures that StringLiteral only exists when building debug 

builds. The NDEBUG symbol is commonly used in IDEs when building release builds of 

your program. As many of the samples that accompany this book are built using make, 

you will have to manually define this in your makefile. An example makefile is shown in 

Listing 3-5.

Listing 3-5. A Makefile That Defines NDEBUG

main: main.cpp

        clang++ -D NDEBUG -O2 -Werror -std=c++1y main.cpp -o main

At that point, you will also need to wrap any code which creates or uses any variables 

of the StringLiteral type. You should see a problem at this point; using this define 

means that you cannot have any string literals in your program. A better solution is 

shown in Listing 3-6.

Listing 3-6. Separating Debug and Non-debug String Literals

#include <iostream>

#include <string>

using namespace std;

#define DEBUG_STRING_LITERALS !NDEBUG

namespace

{

#if DEBUG_STRING_LITERALS

    using DebugStringLiteral = string;

Chapter 3  Working With text



88

#endif

#if DEBUG_STRING_LITERALS

    DebugStringLiteral STRING{ "This is a String!"s };

#endif

}

int main()

{

#if DEBUG_STRING_LITERALS

    cout << STRING << endl;

#endif

    return 0;

}

Using the debug literals for diagnostic code, as in Listing 3-6, that the end user 

should never see allows you to remove strings and code and in turn reduces the size of 

your executable and increases execution speed. If you are using MS Visual Studio (and 

some other non-listed IDEs) on Windows or a Mac, you can simply compile as a release 

version instead of a debug version when you are finally ready to build a program ready 

for users. This method is much easier but would not work on Linux-based IDEs (until 

Visual Studio is supported on Linux).

 Recipe 3-2. Localizing User-Facing Text
 Problem
You never know when you might need to support a language other than your own native 

tongue. Ensure that any strings the user can see come from a localized source.

 Solution
Build a string manager class which returns strings from a self-created table and only ever 

reference strings using IDs.

Chapter 3  Working With text



89

 How It Works
You could legitimately code your entire project by communicating with the user using 

strings that you define in your source as string literals. This has a few major drawbacks. 

First is that it’s difficult to switch out languages on the fly. Today, it’s very likely that 

your software will be distributed via the Internet. It’s exceptionally unlikely that your 

program will not be used by people who speak a different language than yourself. On 

large development teams, there is a possibility that people have a different first language. 

Building the ability to localize text into your programs from the beginning will save you 

many headaches further down the track. This is achieved by loading in the string data for 

your program from a file. You can then include multiple different languages in your data 

by writing your strings in your native tongue and having friends or a translation service 

translate the strings into other languages for you.

You will need to create a class to handle the localized string content for your game. 

Listing 3-7 shows the class definition for the Localization Manager.

Listing 3-7. The Localization Manager

#pragma once

#include <array>

#include <cinttypes>

#include <string>

#include <unordered_map>

namespace Localization

{

    using StringID = int32_t;

    enum class Languages

    {

        EN_US,

        EN_GB,

        Number

    };

    const StringID STRING_COLOR{ 0 };

Chapter 3  Working With text



90

    class Manager

    {

    private:

        using Strings = std::unordered_map<StringID, std::string>;

        using StringPacks =

            std::array<Strings, static_cast<size_t>(Languages::Number)>;

        StringPacks m_StringPacks;

        Strings* m_CurrentStringPack{ nullptr };

        uint32_t m_LanguageIndex;

    public:

        Manager();

        void SetLanguage(Languages language);

        std::string GetString(StringID stringId) const;

    };

}

There are a number of things being done in Listing 3-7. The first aspect of the source 

to pay attention to is the namespace. You’ll find it easier to manage your code if you keep 

different classes in namespaces that have names which make sense. For the localization 

module, I’ve used the name Localization. This will help make it clear in your code 

when you are using classes and objects from this module.

There is a type alias being created to act as an identifier for different strings. Once 

again, a type alias is useful here as you may decide to change the type of your string IDs 

at some point in the future. There is an enum class which determines the languages the 

Localization Manager supports. The StringID STRING_COLOR is defined as being 0. This 

is the only StringID in this example as it is all we need to illustrate how the Localization 

Manager operates.

The Manager itself defines some private type aliases to make the code clear. There is 

an alias defined to allow us to create an unordered_map of StringID to std::string 

pairs and another that allows the creation of an array of these string maps. There is also a 

variable declared to instantiate an array of string maps as well as a pointer to the current 

string map in use. The class has a constructor and two other methods, SetLanguage and 

GetString. Listing 3-8 shows the source for the constructor.

Chapter 3  Working With text



91

Listing 3-8. Localization::Manager Constructor

Manager::Manager()

{

    static const uint32_t INDEX_EN_US{ static_cast<uint32_t>(Languages::EN_US) };

    m_StringPacks[INDEX_EN_US][STRING_COLOR] = "COLOR"s;

    static const uint32_t INDEX_EN_GB{ static_cast<uint32_t>(Languages::EN_GB) };

    m_StringPacks[INDEX_EN_GB][STRING_COLOR] = "COLOUR"s;

    SetLanguage(Languages::EN_US);

}

This basic constructor is initializing two string maps, one for the US English language 

and one for British English. You can see the different spellings of the word color being 

passed into each map. The last line of the source sets the default language to US English. 

The SetLanguage method is shown in Listing 3-9.

Listing 3-9. Localization::Manager::SetLanguage

void Manager::SetLanguage(Languages language)

{

     m_CurrentStringPack =  &(m_StringPacks[static_cast<uint32_t> 

(language)]);

}

This method is straightforward. It simply sets the m_CurrentStringPack variable to 

store the address of the string map for the selected language. You must static_cast the 

enum-type variable as C++’s STL array will not allow you to use an index which is not a 

numeric type. You can see the static_cast in action converting the language parameter 

to a uint32_t.

The last method in the Manager class is the GetString method which you can see in 

Listing 3-10.

Chapter 3  Working With text



92

Listing 3-10. Localization::Manager::GetString

std::string Manager::GetString(StringID stringId) const

{

    stringstream resultStream;

    resultStream << "!!!"s;

    resultStream << stringId;

    resultStream << "!!!"s;

    string result{ resultStream.str() };

    auto iter = m_CurrentStringPack->find(stringId);

    if (iter != m_CurrentStringPack->end())

    {

        result = iter->second;

    }

    return result;

}

The GetString method begins by building a default string to return from the 

function. This will allow you to print out any missing string IDs in your program to help 

with localization testing efforts. The unordered_map::find method is then used to 

search for the string ID in the map. You know if the find call was successful if it returns a 

valid iterator. It will return the end iterator if the search fails to find a match. The if 

statement is checking to see whether the string ID was found in the map. If it was found, 

the string for the given ID is stored in the result variable and passed back to the method 

caller.

Note You could make the default missing string happen only for non-final builds. 
this would save the execution cost of building this string on your end users’ 
computers. they should hopefully never see missing strings in their programs.

Listing 3-11 lists an updated main function which shows how this Manager can be 

used in your code.

Chapter 3  Working With text



93

Listing 3-11. Using the Localization::Manager class

#include <iostream>

#include "LocalizationManager.h"

using namespace std;

int main()

{

    Localization::Manager localizationManager;

    string color{ localizationManager.GetString(Localization::STRING_COLOR) };

    cout << "EN_US Localized string: " << color.c_str() << endl;

    localizationManager.SetLanguage(Localization::Languages::EN_GB);

    color = localizationManager.GetString(Localization::STRING_COLOR);

    cout << "EN_GB Localized string: " << color.c_str() << endl;

    color = localizationManager.GetString(1);

    cout << color.c_str() << endl;

    return 0;

}

The main function now creates an instance of the Localization::Manager class. 

You can see an example of how to retrieve a string from the manager and use it to 

output using cout. The language is then switched to British English, and the string is 

retrieved and printed a second time. For completeness’s sake, the last example shows 

what happens when you request a string ID which does not exist. Figure 3-4 contains the 

output from the program.

Chapter 3  Working With text



94

This figure shows output as you would expect. The US English spelling of color 

appears first, followed by the British English spelling, and finally the missing ID is 

output with triple exclamation points at the beginning and end. This should help to have 

missing string identifiers stand out in your program.

Lastly, locale may be of help to also consider for international audiences when 

dealing with monetary or numeric data. For string data it is not very handy though, 

especially considering that ASCII cannot represent the wide range of characters UTF-8 

can. Use Visual Studio (or Clang) to try the code in Listing 3-12. This solution and what 

follows in the next recipe should all be considered as various pieces you can use to make 

your code better suited to an international audience.

Listing 3-12. Locale for Numeric and Monetary Data

#include <iostream>

#include <locale>

#include <iomanip>

#include <iterator>

#include <string>

using namespace std;

int main()

{

      float dollar = 12345;

      cout.precision(2);

      cout.imbue(locale("en_US.UTF-8"));

      cout << "American locale: " << put_money(dollar) << endl;

Figure 3-4. The output from the Localization Manager's strings

Chapter 3  Working With text



95

      cout.imbue(locale("fr_FR.UTF-8"));

      wcout << "French locale: " << put_money(dollar) << endl;

      cout.imbue(locale("de_DE.UTF-8"));

      wcout << "German locale: " << put_money(dollar) << endl;

      //Not too exciting with alpha though!

      cout.imbue(locale("ru_RU.UTF-8"));

      cout << "Russian locale: " << endl;

      string alpha = "abcdefg";

      for (char letter : alpha)

            wcout << letter << endl;

      cout.imbue(locale(""));//Or use default system local

      wcout << "Default locale: " << put_money(dollar) << endl;

      return 0;

}

In the previous example, an enhanced for statement was used to traverse a string 

of characters (iterable list) automatically, and we used wcout for international (wide) 

character support as opposed to standard (narrow) cout for only ASCII and ANSI 

characters. UTF-8 character locales you might wish to consider are as follows:

Afrikaans af_ZA.UTF-8

Albanian sq_AL.UTF-8

Arabic ar_SA.UTF-8

Basque eu_ES.UTF-8

Belarusian be_BY.UTF-8

Bosnian bs_BA.UTF-8

Bulgarian bg_BG.UTF-8

Catalan ca_ES.UTF-8

Croatian hr_HR.UTF-8

Chinese (Simplified) zh_CN.UTF-8

Chinese (Traditional) zh_TW.UTF-8

Czech cs_CZ.UTF-8

(continued)

Chapter 3  Working With text



96

Danish da_DK.UTF-8

Dutch nl_NL.UTF-8

English en.UTF-8

English (US) en_US.UTF-8

Estonian et_EE.UTF-8

Farsi fa_IR.UTF-8

Filipino fil_PH.UTF-8

Finnish fi_FI.UTF-8

French fr_FR.UTF-8

French (Ca) fr_CA.UTF-8

Gaelic ga.UTF-8

Gallego gl_ES.UTF-8

Georgian ka_GE.UTF-8

German de_DE.UTF-8

Greek el_GR.UTF-8

Gujarati gu.UTF-8

Hebrew he_IL.utf8

Hindi hi_IN.UTF-8

Hungarian hu.UTF-8

Icelandic is_IS.UTF-8

Indonesian id_ID.UTF-8

Italian it_IT.UTF-8

Japanese ja_JP.UTF-8

Kannada kn_IN.UTF-8

Khmer km_KH.UTF-8

Korean ko_KR.UTF-8

Lao lo_LA.UTF-8

(continued)

Chapter 3  Working With text



97

Lithuanian lt_LT.UTF-8

Latvian lat.UTF-8

Malayalam ml_IN.UTF-8

Malaysian ms_MY.UTF-8

Maori mi_NZ.UTF-8

Mongolian mn.UTF-8

Norwegian no_NO.UTF-8

Nynorsk nn_NO.UTF-8

Polish pl.UTF-8

Portuguese pt_PT.UTF-8

Portuguese (Brazil) pt_BR.UTF-8

Romanian ro_RO.UTF-8

Russian ru_RU.UTF-8

Samoan mi_NZ.UTF-8

Serbian sr_CS.UTF-8

Slovak sk_SK.UTF-8

Slovenian sl_SI.UTF-8

Spanish es_ES.UTF-8

Swedish sv_SE.UTF-8

Tamil ta_IN.UTF-8

Thai th_TH.UTF-8

Tongan mi_NZ.UTF-8'

Turkish tr_TR.UTF-8

Ukrainian uk_UA.UTF-8

Vietnamese vi_VN.UTF-8

Chapter 3  Working With text



98

 Recipe 3-3. Reading Strings from a File
 Problem
Embedding user-facing text in your source code makes future text updates and 

localization difficult to manage.

 Solution
You can load your localized string data from a data file.

 How It Works
I’m going to show you how to load string data into your program from a comma- 

separated values (.csv) file. Before you can load such a file, you will need to create one. 

Figure 3-5 shows the data I entered into Excel for export as a .csv file.

Chapter 3  Working With text



99

I have used Excel to create a very basic .csv file. You can see the Color and Colour 

values I used in the last section as well as the US and UK spellings of flavor. Figure 3-6 

shows how this file appears in a basic text editor.

Figure 3-5. The strings.csv file in Excel 2013

Chapter 3  Working With text



100

Each row from the Excel document has been placed into its own line in the .csv file, 

and each column has been separated by a comma. This is from where the .csv derives its 

name. Now that we have a .csv file, we can load the data in the Localization::Manager’s 

constructor. Listing 3-13 contains code which can be used to load and parse the string 

.csv file.

Listing 3-13. Loading Strings from a .csv

Manager::Manager()

{

    ifstream csvStringFile{ "strings.csv"s };

    assert(csvStringFile);

    if (csvStringFile)

    {

        while (!csvStringFile.eof())

        {

            string line;

            getline(csvStringFile, line);

            if (line.size() > 0)

            {

Figure 3-6. The strings.csv file opened in Notepad++

Chapter 3  Working With text



101

                // Create a stringstream for the line

                stringstream lineStream{ line };

                // Use the line stream to read in the string id

                string stringIdText;

                getline(lineStream, stringIdText, ',');

                stringstream idStream{ stringIdText };

                uint32_t stringId;

                idStream >> stringId;

                // Loop over the line and read in each string

                uint32_t languageId = 0;

                string stringText;

                while (getline(lineStream, stringText, ','))

                {

                    m_StringPacks[languageId++][stringId] = stringText;

                }

            }

        }

    }

    SetLanguage(Languages::EN_US);

}

The code to read in the strings.csv file isn’t overly complicated. The first step is to 

open the file for reading, and the code achieves this using an ifstream object. C++ 

provides the ifstream class to read data in from files and provides methods to achieve 

this. The first method we use is the overloaded pointer operator. This is called when we 

use assert or if to determine whether the file passed into the ifstream was valid and 

was opened. This is followed by a while loop which will run until the end of the file or the 

eof method returns true. This is ideal because we do not wish to stop reading data until 

all of our strings are loaded.

The ifstream class provides a getline method which can be used with C-style string 

arrays. It’s generally better and less error prone to use std::string rather than raw C 

strings, so in Listing 3-12, you can see a use of the std::getline method which takes 

a reference to any type of stream. The first use of getline retrieves a whole line of text 

Chapter 3  Working With text



102

from the .csv file into a std::string object. This line contains data about a single string 

starting with its ID, followed by each of the localized versions of the text.

The std::getline method has a very useful third parameter. By default, the method 

retrieves text from a file until it reaches a newline character; however, we can pass in a 

different character as a third parameter, and the function will stop gathering text when 

this character is encountered. Listing 3-11 makes use of this feature by passing in a 

comma as the delimiter. This allows us to pull out the values from each of the cells in the 

Excel document.

The getline function requires a stream object to be passed to it however the 

line was read into a std::string. You can see that this problem is solved by creating 

a stringstream object and passing the line variable to the constructor. Once the 

stringstream has been created, the getline method is used to retrieve the string ID using 

a stringstream object.

Note C++ provides several methods to convert strings into values. these include 
stoi to convert to integers and stof to convert to floats as well as others. these 
are all defined in the string header file. You’ll also find a function there named 
to_string which can be used to convert several different types into a string. 
these aren’t always supplied by the implementation of the StL that you may be 
using. the version of libstdc++ currently available in Cygwin, for example, does not 
provide these functions; therefore, the code samples have not used them.

After the method has retrieved the ID, it loops over the rest of the line and reads out 

the string data for each language. This relies on the Languages enum class definition 

having the languages in the same order as the columns in the .csv file.

 Recipe 3-4. Reading the Data from an XML File
 Problem
While .csv files are a very simple format and great for some applications, they have a 

major flaw; separating strings by comma means that you cannot use commas in your 

string data because the loading code would interpret those as the end of the string. If this 

happens, the code can crash as it tries to read in too many strings and overrun the array.

Chapter 3  Working With text



103

 Solution
Save the string file as an XML document and use a parser to load the data.

 How It Works
The RapidXML library is an open source XML solution which can be used with your 

C++ applications. It is supplied as a header file which can be included into any source 

file you need to have XML handling capabilities. You can download the latest version 

of RapidXML from the following location: http://rapidxml.sourceforge.net/. Save 

the Excel document using the XML Spreadsheet 2003 file type. The code shown in this 

section is capable of loading this type of XML file. Listing 3-14 shows the entire file which 

contains our string data.

Listing 3-14. The XML Spreadsheet File

<?xml version="1.0"?>

<?mso-application progid="Excel.Sheet"?>

<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:x="urn:schemas-microsoft-com:office:excel"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:html="http://www.w3.org/TR/REC-html40">

 <DocumentProperties xmlns="urn:schemas-microsoft-com:office:office">

  <Author>Bruce Sutherland</Author>

  <LastAuthor>Bruce</LastAuthor>

  <Created>2014-06-13T06:29:44Z</Created>

  <Version>15.00</Version>

 </DocumentProperties>

 <OfficeDocumentSettings xmlns="urn:schemas-microsoft-com:office:office">

  <AllowPNG/>

 </OfficeDocumentSettings>

 <ExcelWorkbook xmlns="urn:schemas-microsoft-com:office:excel">

  <WindowHeight>12450</WindowHeight>

  <WindowWidth>28800</WindowWidth>

  <WindowTopX>0</WindowTopX>

  <WindowTopY>0</WindowTopY>

Chapter 3  Working With text

http://rapidxml.sourceforge.net/


104

  <ProtectStructure>False</ProtectStructure>

  <ProtectWindows>False</ProtectWindows>

 </ExcelWorkbook>

 <Styles>

  <Style ss:ID="Default" ss:Name="Normal">

   <Alignment ss:Vertical="Bottom"/>

   <Borders/>

   <Font ss:FontName="Calibri" x:Family="Swiss" ss:Size="11" 

ss:Color="#000000"/>

   <Interior/>

   <NumberFormat/>

   <Protection/>

  </Style>

 </Styles>

 <Worksheet ss:Name="strings">

  <Table ss:ExpandedColumnCount="3" ss:ExpandedRowCount="2" 

x:FullColumns="1"

   x:FullRows="1" ss:DefaultColumnWidth="54" ss:DefaultRowHeight="14.25">

   <Row>

    <Cell><Data ss:Type="Number">0</Data></Cell>

    <Cell><Data ss:Type="String">Color</Data></Cell>

    <Cell><Data ss:Type="String">Colour</Data></Cell>

   </Row>

   <Row>

    <Cell><Data ss:Type="Number">1</Data></Cell>

    <Cell><Data ss:Type="String">Flavor</Data></Cell>

    <Cell><Data ss:Type="String">Flavour</Data></Cell>

   </Row>

  </Table>

  <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

   <PageSetup>

    <Header x:Margin="0.3"/>

    <Footer x:Margin="0.3"/>

    <PageMargins x:Bottom="0.75" x:Left="0.7" x:Right="0.7" x:Top="0.75"/>

   </PageSetup>

Chapter 3  Working With text



105

   <Selected/>

   <ProtectObjects>False</ProtectObjects>

   <ProtectScenarios>False</ProtectScenarios>

  </WorksheetOptions>

 </Worksheet>

</Workbook>

You might be able to tell from this file listing that our parsing code is going to be 

required to ignore an awful lot of data. From the document root, we will access the string 

data through the Workbook node and then the Worksheet, Table, Row, Cell, and finally 

Data nodes.

Note this xML data format is very verbose and a bit heavy on unnecessary data. 
You would be better served by writing your own lightweight exporter using excel’s 
Visual Basic for applications macro support, but that topic is out of the scope of 
this book.

Listing 3-15 covers the code necessary to use RapidXML to load your string data.

Listing 3-15. Using RapidXML to Load the Strings

Manager::Manager()

{

    ifstream xmlStringFile{ "strings.xml"s };

    xmlStringFile.seekg(0, ios::end);

    uint32_t size{ static_cast<uint32_t>(xmlStringFile.tellg()) + 1 };

    char* buffer{ new char[size]{} };

    xmlStringFile.seekg(0, ios::beg);

    xmlStringFile.read(buffer, size);

    xmlStringFile.close();

    rapidxml::xml_document<> document;

    document.parse<0>(buffer);

    rapidxml::xml_node<>* workbook{ document.first_node("Workbook") };

    if (workbook != nullptr)

    {

Chapter 3  Working With text



106

        rapidxml::xml_node<>* worksheet{ workbook->first_node("Worksheet") };

        if (worksheet != nullptr)

        {

            rapidxml::xml_node<>* table{ worksheet->first_node("Table") };

            if (table != nullptr)

            {

                rapidxml::xml_node<>* row{ table->first_node("Row") };

                while (row != nullptr)

                {

                    uint32_t stringId{ UINT32_MAX };

                    rapidxml::xml_node<>* cell{ row->first_node("Cell") };

                    if (cell != nullptr)

                    {

                         rapidxml::xml_node<>* data{ cell->first_

node("Data") };

                        if (data != nullptr)

                        {

                             stringId = static_cast<uint32_t>(atoi(data-

>value()));

                        }

                }

                if (stringId != UINT32_MAX)

                {

                    uint32_t languageIndex{ 0 };

                    cell = cell->next_sibling("Cell");

                    while (cell != nullptr)

                    {

                        rapidxml::xml_node<>* data = cell->first_node("Data");

                        if (data != nullptr)

                        {

                             m_StringPacks[languageIndex++][stringId] = 

data->value();

                        }

Chapter 3  Working With text



107

                        cell = cell->next_sibling("Cell");

                    }

                }

                row = row->next_sibling("Row");

            }

        }

    }

}

This listing has a lot going on, so we will break it down section by section. The first 

step involves using the following code to load the entire contents of the XML file into 

memory:

    ifstream xmlStringFile{ "strings.xml"s };

    xmlStringFile.seekg(0, ios::end);

    uint32_t size{ static_cast<uint32_t>(xmlStringFile.tellg()) + 1 };

    char* buffer{ new char[size]{} };

    xmlStringFile.seekg(0, ios::beg);

    xmlStringFile.read(buffer, size);

    xmlStringFile.close();

You need the entire file to be stored in a memory buffer which is null terminated, and 

this is why the file is opened using ifstream, and then seekg is used to move to the end 

of the stream. Once at the end, the tellg method can be used to work out how big the 

file is. There is a 1 added to the value from tellg to ensure that there is enough memory 

allocated to allow for a null terminating character as RapidXML requires. Dynamic 

memory allocation is used to create the buffer in memory, and memset clears the entire 

buffer to contain zeroes. The seekg method is used to move the file stream location to 

the beginning of the file before read is used to obtain the entire contents of the file into 

the allocated buffer. The last step is to close the file stream as soon as the code is finished 

with the file.

These two lines are responsible for initializing the XML data structure from the 

contents of the file:

    rapidxml::xml_document<> document;

    document.parse<0>(buffer);

Chapter 3  Working With text



108

This code creates an XML document object which contains a parse method. The 0 

passed as a template parameter can be used to set different flags on the parser, but this 

example has no need for any of these. Now that the code has created a parsed representation 

of the XML document, it can begin to access the nodes it contains. The next few lines retrieve 

pointers to the Workbook, Worksheet, Table, and Row nodes:

    rapidxml::xml_node<>* workbook{ document.first_node("Workbook") };

    if (workbook != nullptr)

    {

        rapidxml::xml_node<>* worksheet{ workbook->first_node("Worksheet") };

        if (worksheet != nullptr)

        {

            rapidxml::xml_node<>* table{ worksheet->first_node("Table") };

            if (table != nullptr)

            {

                rapidxml::xml_node<>* row{ table->first_node("Row") };

                while (row != nullptr)

                {

These lines are all straightforward. There is only a single Workbook, Worksheet, 

and Table in a simple Excel XML document; so we can simply ask each node for its first 

child of that name. Once the code gets to the row elements, there is a while loop. This 

will allow us to go over each line from the spreadsheet and load our strings into the 

appropriate maps. The entire row while loop is as follows:

    rapidxml::xml_node<>* row{ table->first_node("Row") };

    while (row != nullptr)

    {

        uint32_t stringId{ UINT32_MAX };

        rapidxml::xml_node<>* cell{ row->first_node("Cell") };

        if (cell != nullptr)

        {

            rapidxml::xml_node<>* data{ cell->first_node("Data") };

            if (data != nullptr)

            {

                stringId = static_cast<uint32_t>(atoi(data->value()));

Chapter 3  Working With text



109

            }

        }

        if (stringId != UINT32_MAX)

        {

            uint32_t languageIndex{ 0 };

            cell = cell->next_sibling("Cell");

            while (cell != nullptr)

            {

                rapidxml::xml_node<>* data = cell->first_node("Data");

                if (data != nullptr)

                {

                    m_StringPacks[languageIndex++][stringId] = data->value();

                }

                cell = cell->next_sibling("Cell");

            }

        }

        row = row->next_sibling("Row");

    }

The while loop starts by getting the stringId from the first Cell and Data nodes. 

The atoi function is used to turn the C-style string into an integer that must be cast to 

an unsigned int. The following if checks whether a valid string ID was obtained; if 

it was, then the code enters another while loop. This loop grabs each string from the 

subsequent Cell and Data nodes and places them into the correct map. It does this by 

setting the language index to 0 initially and post-incrementing the index after each string 

is entered. This, again, requires that the localized strings be entered into the spreadsheet 

in the correct order.

That is all you need to be able to load string data in from XML files. You should be 

able to come up with a better way to generate these files which doesn’t consume so 

much data. You might also reach a point where having all of your text loaded consumes 

too much system RAM. At that point, you should consider splitting each language into a 

separate file and only loading the languages when you need them. It will be unlikely for a 

user to need every translated language which you choose to support.

Chapter 3  Working With text



110

 Recipe 3-5. Inserting Runtime Data into Strings
 Problem
Occasionally, you will be required to enter runtime data such as numbers or the user’s 

name into your strings. While C++ supports the older C functions for formatting C-style 

strings, these do not work with STL’s string class.

 Solution
The Boost library provides extensive library support for C++ which includes methods 

and functions for formatting data held in STL strings.

 How It Works
To begin, you should add a new row to your spreadsheet with the following data: 2, %1% 

%2%, %2% %1%. You should place each element that comes after a comma in a new cell. 

Listing 3-16 has updated the main function to utilize this new string.

Listing 3-16. Using boost::format

#include <iostream>

#include "LocalizationManager.h"

#include "boost/format.hpp"

using namespace std;

int main()

{

    Localization::Manager localizationManager;

     std::string color{ localizationManager.GetString(Localization::STRING_

COLOR) };

    std::cout << "EN_US Localized string: " << color.c_str() << std::endl;

     std::string flavor{ localizationManager.GetString(Localization::STRING_

FLAVOR) };

    std::cout << "EN_US Localized string: " << flavor.c_str() << std::endl;

Chapter 3  Working With text



111

    localizationManager.SetLanguage(Localization::Languages::EN_GB);

    color = localizationManager.GetString(Localization::STRING_COLOR);

    std::cout << "EN_GB Localized string: " << color.c_str() << std::endl;

    flavor = localizationManager.GetString(Localization::STRING_FLAVOR);

    std::cout << "EN_GB Localized string: " << flavor.c_str() << std::endl;

    color = localizationManager.GetString(3);

    std::cout << color.c_str() << std::endl;

    std::cout << "Enter your first name: " << std::endl;

    std::string firstName;

    std::cin >> firstName;

    std::cout << "Enter your surname: " << std::endl;

    std::string surname;

    std::cin >> surname;

    localizationManager.SetLanguage(Localization::Languages::EN_US);

     std::string formattedName{ localizationManager.

GetString(Localization::STRING_NAME) };

    formattedName = str( boost::format(formattedName) % firstName % surname );

    std::cout << "You said your name is: " << formattedName << std::endl;

    localizationManager.SetLanguage(Localization::Languages::EN_GB);

    formattedName = localizationManager.GetString(Localization::STRING_NAME);

    formattedName = str(boost::format(formattedName) % firstName % surname);

    std::cout << "You said your name is: " << formattedName << std::endl;

    return 0;

}

You can see that the additions to main in Listing 3-16 ask the user to enter their own 

name. The call to cin will stall program execution until the user has entered their first 

name and then surname. Once the program has stored the user’s name, it changes the 

language to EN_US and gets the string from the Localization Manager. The next line uses 

the boost::format function to replace the symbols in the string with the firstName and 

surname values. Our new string contained the symbols %1% and %2%. This is used to 

decide which variables are replaced into the string. The call to format is followed by a % 

Chapter 3  Working With text



112

operator and then the firstName string. Because firstName is the first parameter passed 

to the % operator, it will replace the %1% in our string. Similarly, the surname will be 

used to replace the %2% because it is the second parameter passed using %.

This all works because the format function is setting up an object which is returned 

from the format function. This object is then passed to its % operator which stores the 

value in firstName. This first call to operator % returns a reference to the Boost format 

object which is passed to the second call to the operator %. The symbols in the source 

string aren’t actually resolved until the format object is passed into the str function. 

Boost declares the str function in the global namespace; therefore, it does not need 

a namespace scope operator. The str method takes the format object and constructs 

a new string with the parameters replaced into the appropriate positions. When 

you entered the source strings into the spreadsheet, the EN_GB string had the names 

switched. You can see the results of the code in Figure 3-7.

Figure 3-7. The output from boost::format

You can use boost::format to replace all sorts of data into strings. Unfortunately, 

Boost does not follow the same conventions as the standard C printf functions; 

therefore, you will be required to use different strings to standard C programs. A full 

list of the formatting options provided by Boost can be found at www.boost.org/doc/

libs/1_55_0/libs/format/doc/format.html.

The makefile needed to include the boost/format.hpp header in your program is 

relatively straightforward. You can see it in Listing 3-17.

Chapter 3  Working With text

http://www.boost.org/doc/libs/1_55_0/libs/format/doc/format.html
http://www.boost.org/doc/libs/1_55_0/libs/format/doc/format.html


113

Listing 3-17. Including the Boost Library

main: main.cpp LocalizationManager.cpp

        clang++ -g -std=c++1y -Iboost_1_55_0 main.cpp LocalizationManager.

cpp -o main

You can see from this makefile that we are using the 1.55 version of the Boost 

library and that the file is placed in the same folder as the makefile. The convention for 

including Boost headers is to name the boost folder in the include directive; therefore, 

the –I switch in the clang++ command simply tells the compiler to look inside the 

boost_1_55_0 folder. The boost folder sits inside this folder.

Chapter 3  Working With text



115
© J. Burton Browning and Bruce Sutherland 2020 
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_4

CHAPTER 4

Working with Numbers
Computers are designed and built to crunch numbers. The programs you write will take 

advantage of the computational power of computers to provide experiences to users that 

are completely dependent on your ability to understand and utilize the tools provided by 

C++ to manipulate numbers. C++ provides support for different types of numbers. This 

support includes whole numbers and real numbers as well as multiple different ways of 

storing and representing these.

The C++ integer types will be used to store whole numbers, and the floating-point 

types will be used to store real numbers with decimal points. There are different tradeoffs 

and considerations to be taken into account when using each type of number in C++, 

and this chapter will introduce you to different challenges and scenarios where each 

type is appropriate. You’ll also see an older technique named fixed point arithmetic that 

can use integer types to approximate floating-point types.

 Recipe 4-1. Using the Integer Types in C++
 Problem
You need to represent whole numbers in your program but are unsure of the limitations 

and capabilities of the different integer types.

 Solution
Learning about the different integer types supported by C++ will allow you to use the 

correct type for the task at hand.



116

 How It Works
 Working with the int Type

C++ provides an exact representation of the different integer types supported by modern 

processors. All of the integer types behave in exactly the same way; however, they may 

contain more or less data than each other. Listing 4-1 shows how to define an integer 

variable in C++.

Listing 4-1. Defining an Integer

int main()

{

    int wholeNumber= 64;

    return 0;

}

As you can see, an integer is defined using the int type in C++. The int type in C++ 

can be used in conjunction with standard arithmetic operators that allow you to add, 

subtract, multiply, divide, and take the modulus (remainder of integer division).  

Listing 4-2 uses these operators to initialize additional integer variables.

Listing 4-2. Initializing Integers Using Operators

#include <iostream>

using namespace std;

int main()

{

    int wholeNumber1 = 64;

    cout << "wholeNumber1 equals " << wholeNumber1 << endl;

    int wholeNumber2 = ( wholeNumber1 + 32 );

    cout << "wholeNumber2 equals " << wholeNumber2 << endl;

    int wholeNumber3 = ( wholeNumber2 - wholeNumber1 );

    cout << "wholeNumber3 equals " << wholeNumber3 << endl;

Chapter 4  Working With numbers



117

    int wholeNumber4 = ( wholeNumber2 * wholeNumber1 );

    cout << "wholeNumber4 equals " << wholeNumber4 << endl;

    int wholeNumber5 = ( wholeNumber4 / wholeNumber1 );

    cout << "wholeNumber5 equals " << wholeNumber5 << endl;

    int wholeNumber6 = ( wholeNumber4 % wholeNumber1 );

    cout << "wholeNumber6 equals " << wholeNumber6 << endl;

    return 0;

}

The code in Listing 4-2 contains lines that use operators to initialize additional 

integers. The operators can be used in a number of ways. You can see that the operators 

can have either literal values such as 32 or other variables on either side. Figure 4-1 

shows the output from this program.

Figure 4-1. The output from running the code in Listing 4-2

The output from Listing 4-2 is shown in Figure 4-1. The following list explains how 

the values shown in the output end up in each variable:

• The variable wholeNumber1 was initialized with the value of 64, and 

therefore the output is 64.

• The literal 32 is added to the value of wholeNumber1 and stored in 

wholeNumber2; therefore, the output is 96.

• The next line outputs 32 as the code has subtracted wholeNumber2 

from wholeNumber1. The effect of this is that we have managed to 

Chapter 4  Working With numbers



118

store the literal value from the initialization of wholeNumber2 in the 

variable wholeNumber3.

• The value of wholeNumber4 is output as 6144 which is the result of 

64∗96.

• The program prints the value of 96 for wholeNumber5 as it is the result 

of dividing 6144 by 64 or the value of wholeNumber4 divided by the 

value of wholeNumber1.

• The value of wholeNumber6 is output as 32. The modulo operator 

returns the remainder from a division. In this case, the remainder of 

96/64 is 32; therefore, the modulo operator has returned 32.

 Working with Different Types of Integers

The C++ programming language provides support for different types of integers.  

Table 4- 1 shows the different types of integers and their properties.

Table 4-1. The C++ Integer Types

Type Name Number of Bytes Minimum Value Maximum Value

char 1 -128 127

short 2 -32,768 32,767

int 4 -2,147,483,648 2,147,483,647

long 4 -2,147,483,648 2,147,483,647

long long 8 -9,223,372,036,854,775,808 9,223,372,036,854,775,807

Table 4-1 lists the five main types that C++ supplies to work with whole numbers. The 

problem C++ presents is that these types are not always guaranteed to represent the number of 

bytes as shown in Table 4-1. This is because the C++ standard leaves the decision of how many 

bytes up to the platform. The situation isn’t entirely the fault of C++. Processor manufacturers 

may choose to represent integers using different numbers of bytes, and therefore the compiler 

writers for those platforms are free to alter the types to suit their processor by the standard. 

You can however write code that guarantees the number of bytes in your integers by using the 

cinttypes header. Table 4-2 shows the different integers available through cinttypes.

Chapter 4  Working With numbers



119

The types supplied by cinttypes contain the number of bits that they represent. 

Given that there are 8 bits in a byte, you can see the relationship by the type and the 

number of bytes in Table 4-2. Listing 4-3 uses the same operators as Listing 4-2 but is 

updated to use the int32_t type in place of int.

Listing 4-3. Using the int32_t Type with Operators

#include <iostream>

#include <cinttypes>

using namespace std;

int main()

{

    int32_t whole32BitNumber1{ 64 };

    cout << "whole32BitNumber1 equals " << whole32BitNumber1 << endl;

    int32_t whole32BitNumber2{ whole32BitNumber1 + 32 };

    cout << "whole32BitNumber2 equals " << whole32BitNumber2 << endl;

    int32_t whole32BitNumber3{ whole32BitNumber2 - whole32BitNumber1 };

    cout << "whole32BitNumber3 equals " << whole32BitNumber3 << endl;

    int32_t whole32BitNumber4{ whole32BitNumber2 * whole32BitNumber1 };

    cout << "whole32BitNumber4 equals " << whole32BitNumber4 << endl;

    int32_t whole32BitNumber5{ whole32BitNumber4 / whole32BitNumber1 };

    cout << "whole32BitNumber5 equals " << whole32BitNumber5 << endl;

Table 4-2. The cinttypes Integers

Type Name Number of Bytes Minimum Value Maximum Value

int8_t 1 -128 127

int16_t 2 -32,768 32,767

int32_t 4 -2,147,483,648 2,147,483,647

int64_t 8 -9,223,372,036,854,775,808 9,223,372,036,854,775,807

Chapter 4  Working With numbers



120

    int whole32BitNumber6{ whole32BitNumber2 % whole32BitNumber1 };

    cout << "whole32BitNumber6 equals " << whole32BitNumber6 << endl;

    return 0;

}

The output resulting from this code is similar to that of Figure 4-1 as you can see in 

Figure 4-2.

Figure 4-2. The output when using the int32_t and code from Listing 4-3

Table 4-3. C++’s Built-In Unsigned Types

Type Name Number of Bytes Minimum Value Maximum Value

unsigned char 1 0 255

unsigned short 2 0 65,535

unsigned int 4 0 4,294,967,295

unsigned long 4 0 4,294,967,295

unsigned long 

long

8 0 18,446,744,073,709,551,615

 Working with Unsigned Integers

The types shown in Tables 4-1 and 4-2 have unsigned counterparts. Using an unsigned 

version of the type means that you will no longer have access to negative numbers; 

however, you will have a much longer range of positive numbers represented by the 

same number of bytes. You can see the C++ standard unsigned types in Table 4-3.

Chapter 4  Working With numbers



121

The unsigned types store the same range of numbers as their signed counterparts. 

Both a signed char and an unsigned char can store 256 unique values. The signed 

char stores values from -128 to 127, while the unsigned version stores the 256 values 

from 0 to 255. The built-in unsigned types suffer from the same problem as the signed 

types: they may not represent the same number of bytes on different platforms. C++’s 

cinttypes header file provides unsigned types that guarantee their size. Table 4-4 

documents these types.

Table 4-4. The cinttypes Header File’s Unsigned Integer Types

Type Name Number of Bytes Minimum Value Maximum Value

uint8_t 1 0 255

uint16_t 2 0 65,535

uint32_t 4 0 4,294,967,295

uint64_t 8 0 18,446,744,073,709,551,615

Now that you have seen a standard way of representing integers at the beginning 

of the chapter and a way to deal with different processors to ensure standard byte size 

with cinttypes, the rest of the chapter will not implement cinttypes but will focus on a 

standard way of implementing data types. Either is appropriate depending on your 

needs however.

 Recipe 4-2. Making Decisions with Relational 
Operators
 Problem
You are writing a program and must make a decision based on the result of a comparison 

between two values.

 Solution
C++ provides relational operators that return true or false based on the comparison 

being calculated.

Chapter 4  Working With numbers



122

 How It Works
C++ provides four major relational operators. These are

• The equality operator

• The inequality operator

• The greater-than operator

• The less-than operator

These operators allow you to quickly compare two values and determine whether 

the result is true or false. The result of a true or false comparison can be stored in the 

bool type provided by C++. A bool can only represent either true or false.

 The Equality Operator

Listing 4-4 shows the equality operator in use.

Listing 4-4. The C++ Equality Operator

#include <iostream>

using namespace std;

int main()

{

    int equal1 = 10;

    int equal2 = 10;

    bool isEqual = equal1 == equal2;

    cout << "Are the numbers equal? " << isEqual << endl;

    int notEqual1 = 10;

    int notEqual2 = 100;

    bool isNotEqual = notEqual1 == notEqual2;

    cout << "Are the numbers equal? " << isNotEqual << endl;

    return 0;

}

Chapter 4  Working With numbers



123

The code in Listing 4-4 generates the output shown in Figure 4-3.

Figure 4-3. Output from the relational equality operator

The equality operator will set a bool variable’s value to true (represented by 1 in the 

output) in the event of the values on both sides of the operator being the same. This is 

the case where Listing 4-4 compares equal1 to equal2. The result of the operator is false 

when the values on both sides are different as when the code compares notEqual1 to 

notEqual2. For equality purposes, 0 is false and any positive integer (typically 1) is true.

 The Inequality Operator

The inequality operator is used to determine when numbers are not equal. Listing 4-5 

shows the inequality operator in use.

Listing 4-5. The Inequality Operator

#include <iostream>

using namespace std;

int main()

{

    int equal1 =  10;

    int equal2 = 10;

    bool isEqual = equal1 != equal2;

    cout << "Are the numbers not equal? " << isEqual << endl;

Chapter 4  Working With numbers



124

    int notEqual1 = 10;

    int notEqual2 = 100;

    bool isNotEqual = notEqual1 != notEqual2;

    cout << "Are the numbers not equal? " << isNotEqual << endl;

    return 0;

}

The output generated by Listing 4-5 is shown in Figure 4-4.

Figure 4-4. The output from Listing 4-5 showing the results of the inequality 
operator

You can see from Listing 4-5 and Figure 4-4 that the inequality operator will return 

true when the values are not equal and false when the values are equal.

 The Greater-Than Operator

The greater-than operator can tell you whether the number on the left is greater-than the 

number on the right. Listing 4-6 shows this in action.

Listing 4-6. The Greater-Than Operator

#include <iostream>

using namespace std;

int main()

Chapter 4  Working With numbers



125

{

    int greaterThan1 = 10;

    int greaterThan2 =1;

    bool isGreaterThan = greaterThan1 > greaterThan2;

     cout << "Is the left greater than the right? " << isGreaterThan  

<< endl;

    int notGreaterThan1 = 10 ;

    int notGreaterThan2 = 100;

    bool isNotGreaterThan = notGreaterThan1 > notGreaterThan2;

     cout << "Is the left greater than the right? " << isNotGreaterThan  

<< endl;

    return 0;

}

The greater-than operator sets the value of a bool to be either true or false. The result 

will be true when the number on the left is greater than the number on the right and 

false when the number on the right is greater than that on the left. Figure 4-5 shows the 

output generated by Listing 4-6.

Figure 4-5. The output generated by Listing 4-6

 The Less-Than Operator

The less-than operator produces the opposite result of the greater-than operator. The 

less-than operator returns true when the number on the left is less than that on the right. 

Listing 4-7 shows the operator in use.

Chapter 4  Working With numbers



126

Listing 4-7. The Less-Than Operator

#include <iostream>

using namespace std;

int main()

{

    int lessThan1 = 1;

    int lessThan2 = 10;

    bool isLessThan = lessThan1 < lessThan2;

    cout << "Is the left less than the right? " << isLessThan << endl;

    int notLessThan1 = 100;

    int notLessThan2 = 10;

    bool isNotLessThan = notLessThan1 < notLessThan2;

    cout << "Is the left less than the right? " << isNotLessThan << endl;

    return 0;

}

Figure 4-6 shows the results when the code in Listing 4-7 is executed.

Figure 4-6. The output generated when the less-than operator is used in 
Listing 4-7

Chapter 4  Working With numbers



127

 Recipe 4-3. Chaining Decisions with Logical 
Operators
 Problem
Sometimes your code will require that multiple conditions are satisfied in order to set a 

Boolean value to true.

 Solution
C++ provides logical operators that allow the chaining of relational statements.

 How It Works
C++ provides two logical operators that allow the chaining of multiple relational 

statements. These are

• The && (AND) operator

• The || (OR) operator

 The && Operator

The && operator is used when you would like to determine that two different relational 

operators are both true. Listing 4-8 shows the && operator in use.

Listing 4-8. The Logical && Operator

#include <iostream>

using namespace std;

int main()

{

    bool isTrue { (10 == 10) && (12 == 12) };

    cout << "True? " << isTrue << endl;

    bool isFalse = isTrue && (1 == 2);

Chapter 4  Working With numbers



128

    cout << "True? " << isFalse << endl;

    return 0;

}

The value of isTrue is set to true because both of the relational operations result in a 

true value. The value of isFalse is set to false because both of the relational statements 

do not result in a true value. The output of these operations can be seen in Figure 4-7.

Figure 4-7. The logical && operator output generated by Listing 4-8

 The Logical || Operator

The logical || operator (logical OR) is used to determine when either or both of the 

statements used are true. Listing 4-9 contains code that tests the results of the || operator.

Listing 4-9. The Logical || Operator

#include <iostream>

using namespace std;

int main()

{

    bool isTrue { (1 == 1) || (0 == 1) };

    cout << "True? " << isTrue << endl;

    isTrue = (0 == 1) || (1 == 1);

    cout << "True? " << isTrue << endl;

Chapter 4  Working With numbers



129

    isTrue = (1 == 1) || (1 == 1);

    cout << "True? " << isTrue << endl;

    isTrue = (0 == 1) || (1 == 0);

    cout << "True? " << isTrue << endl;

    return 0;

}

The resulting output generated by this code can be seen in Figure 4-8.

Figure 4-8. The output generated when using logical || operators

Listing 4-9 proves that the logical || operator will return true whenever either or both 

of the relational operations are also true. When both are false, the || operator will also 

return false.

Note there is a commonly used optimization named “short-circuit evaluation” 
when using logical operators. execution will end as soon as the operator is 
satisfied. this means that a || operator will not evaluate the second term when the 
first is true, and the && operator will not evaluate the second term when the first is 
false. be wary of this when calling functions in the right-side statement that have 
secondary effects outside of their boolean return value—such as in the snippet “if 
(x < 12) && (z = 13)” where z would never be set to equal 13 if x was not less than 
12 due to short-circuit evaluation. if you need both sides evaluated regardless of 
the logic, use binary logical operators instead.

Chapter 4  Working With numbers



130

 Recipe 4-4. Using Hexadecimal Values
 Problem
You are working with code that contains hexadecimal values, and you need to 

understand how they work.

 Solution
C++ allows the use of hexadecimal values (base 16) in code, and programmers routinely 

use hex values when writing out binary representation of numbers.

 How It Works
Computer processors use a binary representation to store numbers in memory and 

use binary instructions to test and modify these values. Due to its low-level nature, C++ 

provides bitwise operators that can operate on the bits in variables exactly as a processor 

would. A bit of information can either be a 1 or a 0. We can construct higher numbers 

by using chains of bits. A single bit can represent the digit 1 or 0. Two bits however can 

represent 0, 1, 2, or 3. This can be achieved because two bits can represent four unique 

signals: 00, 01, 10, and 11. The C++ int8_t data type is made up of 8 bits. The data in 

Table 4-5 shows how these different bits are represented numerically.

Table 4-5. The Numerical Values of Bits in an 8-Bit Variable

128 64 32 16 8 4 2 1

1 0 0 0 1 0 0 1

A uint8_t variable that stored the value represented by Table 4-4 would contain the 

number 137. Based on the preceding table, add only the values in the table that are “on” 

or have a “1” under them to get 137. In fact, an 8-bit variable can store 256 individual 

values. You can work out the number of values a variable can store by raising the number 

2 to the power of the number of bits, that is, 2^8 is 256.

Chapter 4  Working With numbers



131

Note negative numbers are represented in signed types using the same number 
of bits as unsigned types. in table 4-5, a signed value would lose the position at 
128 to become a sign bit. You can convert a positive number to a negative using 
the two’s Complement of the number. to do this, you flip all of the bits and add 1. 
For a two bit number 1, you would have the binary representation 01. to get the 
two’s Complement, and therefore the negative, firstly flip the bits to 10 and then 
add 1 ending with 11. in an 8-bit value, you’d follow the same process. 00000001 
becomes 11111110, and adding 1 results in 11111111. no matter the number of 
bits in a variable, -1 is always represented in two’s Complement by all bits being 
turned on; this is a useful fact to remember.

Writing bits out in their entirety quickly gets out of hand when dealing with 16-, 

32-, and 64-bit numbers. Programmers tend to write binary representations in a 

hexadecimal format instead. Hex numbers are represented by the values 0–9 and A, B, 

C, D, E, and F. The values A–F represent the numbers 10–15. It takes 4 bits to represent 

the 16 hexadecimal values; therefore, we can now represent the bit pattern in Table 4-5 

using the hexadecimal 0x89 where the 9 represents the lower 4 bits (8+1 is 9) and the 8 

represents the higher 4 bits.

Listing 4-10 shows how you can use hexadecimal literals in your code and use cout 

to print them to the console.

Listing 4-10. Using Hexadecimal Literal Values

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

    uint32_t hexValue{ 0x89 };

    cout << "Decimal: " << hexValue << endl;

    cout << hex << "Hexadecimal: " << hexValue << endl;

    cout << showbase << hex << "Hexadecimal (with base): " << hexValue << endl;

    return 0;

}

Chapter 4  Working With numbers



132

Hexadecimal literals in C++ are preceded by 0x. This lets the compiler know that 

you intend for it to interpret the number in hex and not decimal. Octal base 8 values are 

preceded by a 0. Figure 4-9 shows the effect of the different output flags used with cout in 

Listing 4-10.

Figure 4-9. Printing out hexadecimal values

The cout stream by default prints the decimal representation of integer variables. 

You must pass flags to cout to alter this behavior. The hex flag informs cout that it should 

print the number in hexadecimal; however, this does not automatically prepend the 0x 

base. If you wish your output to have the base on your hexadecimal numbers (and you 

usually will so that other users don’t read the value as decimal 89 instead of 137), you 

can use the showbase flag which will make cout add the 0x to your hex values.

Listing 4-10 stores the value of 0x89 in a 32-bit integer type, but the representation 

still only has an 8-bit value. The other 6 bits are implicitly 0. The proper 32-bit 

representation of 137 would actually be 0x00000089.

Note While it’s acceptable to drop the 0s when they are implied, however, it is 
also common practice to print all eight hex values out when a 32-bit number is 
intended. this is more important when representing negative numbers such as -1. 
When using an int32_t, 0xF would represent 16 or 0x0000000F where -1 would 
be 0xFFFFFFFF. be sure you’re setting the value you really wanted when using 
hexadecimal values.

Chapter 4  Working With numbers



133

 Recipe 4-5. Bit Twiddling with Binary Operators
 Problem
You are developing an application where you would like to pack data into as small a 

format as possible.

 Solution
You can use bitwise operators to set and test individual bits on a variable.

 How It Works
C++ provides the following bitwise operators:

• The & (bitwise AND) operator

• The | (bitwise OR) operator

• The ^ (exclusive OR) operator

• The << (left shift) operator

• The >> (right shift) operator

• The ~ (One’s Complement) operator

 The & (Bitwise AND) Operator

The bitwise AND operator returns a value that has all of the bits that were set in both the 

left and right sides of the operator. Listing 4-11 shows an example of this in action.

Listing 4-11. The & Operator

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

    uint32_t bits{ 0x00011000 };

Chapter 4  Working With numbers



134

    cout << showbase << hex;

     cout << "Result of 0x00011000 & 0x00011000: "  << (bits & bits)  

<< endl;

     cout << "Result of 0x00011000 & 0x11100111: "  << (bits & ~bits)  

<< endl;

    return 0;

}

Listing 4-11 makes use of both the & and ~ operators. The first use of & will result 

in the value 0x00011000 being output to the console. The second use of & is used in 

conjunction with ~. The ~ operator flips all of the bits; therefore, the output from this use 

of & will be 0. You can see this in Figure 4-10.

Figure 4-10. The output resulting from Listing 4-11

 The | (Bitwise OR) Operator

The bitwise OR operator returns a value that contains all of the set bits from the left and 

right sides of the operator. This is true whether either or both of the values are set. The 

only time a 0 will be placed into a bit is when both the left and right sides of the operator 

do not have that position set. Listing 4-12 shows the | operator in use.

Chapter 4  Working With numbers



135

Listing 4-12. The | Operator

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

    uint32_t leftBits{ 0x00011000 };

    uint32_t rightBits{ 0x00010100 };

    cout << showbase << hex;

     cout << "Result of 0x00011000 | 0x00010100: " << (leftBits | rightBits) 

<< endl;

     cout << "Result of 0x00011000 & 0x11100111: " << (leftBits | ~leftBits) 

<< endl;

    return 0;

}

The first use of | will result in the value 0x00011100, and the second will result in 

0xFFFFFFFF. You can see that this is true in Figure 4-11.

Figure 4-11. The output generated by Listing 4-12

The values stored in leftBits and rightBits share a single bit position that is set to 1. 

There are two positions where one has a bit set and the other doesn’t. All three of these 

bits are set in the resulting value. The second use demonstrates that all bits are set so 

long as the bit position is set in one of the two places. The distinction between the two is 

important when you look at the results of the next operator.

Chapter 4  Working With numbers



136

 The ^ (Exclusive OR) Operator

This operator will produce a single bit of difference between its output and the output of 

the | operator shown in Figure 4-11. This is because the exclusive OR operator only sets 

the resulting bit to true when either the left or the right bit is set, not when both are set 

and not when neither is set. Unlike the logical OR, exclusive OR will return false if both 

sides are true; only one side can be true with this OR. The first | operator in Listing 4-12 

resulted in the value 0x00011100 being stored as the result. The ^ operator will result in 

0x00001100 being stored when using the same values. Listing 4-13 shows the code for 

this scenario.

Listing 4-13. The ^ Operator

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

    uint32_t leftBits{ 0x00011000 };

    uint32_t rightBits{ 0x00010100 };

    cout << showbase << hex;

     cout << "Result of 0x00011000 ^ 0x00010100: " << (leftBits ^ rightBits) 

<< endl;

     cout << "Result of 0x00011000 ^ 0x11100111: " << (leftBits ^ ~leftBits) 

<< endl;

    return 0;

}

The evidence of the different output produced can be seen in Figure 4-12.

Chapter 4  Working With numbers



137

 The << and >> Operators

The left shift and right shift operators are handy tools that allow you to pack smaller sets 

of data into larger variables. Listing 4-14 shows code that shifts a value from the lower 16 

bits of a uint32_t into the upper 16 bits.

Listing 4-14. Using the << Operator

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

    const uint32_t maskBits{ 16 };

    uint32_t leftShifted{ 0x00001010 << maskBits };

    cout << showbase << hex;

    cout << "Left shifted: " << leftShifted << endl;

    return 0;

}

This code results in the value 0x10100000 being stored in the variable leftShifted. 

This has freed up the lower 16 bits which you can now use to store another 16-bit value. 

Listing 4-15 uses the |= and & operators to do just that.

Figure 4-12. The output generated by the ^ operator in Listing 4-13

Chapter 4  Working With numbers



138

Note each of the bitwise operators has an assignment variant for use in 
statements such as that in Listing 4-15.

Listing 4-15. Using a Mask to Pack Values into a Variable

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

    const uint32_t maskBits{ 16 };

    uint32_t leftShifted{ 0x00001010 << maskBits };

    cout << showbase << hex;

    cout << "Left shifted: " << leftShifted << endl;

    uint32_t lowerMask{ 0x0000FFFF };

    leftShifted |= (0x11110110 & lowerMask);

    cout << "Packed left shifted: " << leftShifted << endl;

    return 0;

}

This code now sees two separate 16-bit values being packed into a single 32-bit 

variable. The value packed into the lower 16 bits has all of its upper 16 bits masked out 

using the & operator in conjunction with a mask value, in this case 0x0000FFFF. This 

ensures that the |= operator leaves the values in the upper 16 bits unchanged by virtue of 

the fact that the value being OR’d in won’t have any of those upper bits set. You can see 

this is true in Figure 4-13.

Chapter 4  Working With numbers



139

The final two lines of output in Figure 4-13 are the result of operations to unmask 

the values from the lower and upper sections of the variable. You can see how this was 

achieved in Listing 4-16.

Listing 4-16. Unmasking Packed Data

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

    const uint32_t maskBits{ 16 };

    uint32_t leftShifted{ 0x00001010 << maskBits };

    cout << showbase << hex;

    cout << "Left shifted: " << leftShifted << endl;

    uint32_t lowerMask{ 0x0000FFFF };

    leftShifted |= (0x11110110 & lowerMask);

    cout << "Packed left shifted: " << leftShifted << endl;

    uint32_t lowerValue{ (leftShifted & lowerMask) };

    cout << "Lower value unmasked: " << lowerValue << endl;

    uint32_t upperValue{ (leftShifted >> maskBits) };

    cout << "Upper value unmasked: " << upperValue << endl;

    return 0;

}

Figure 4-13. The results of masking values into integers using bitwise operators

Chapter 4  Working With numbers



140

The & operator and the >> operator are used in Listing 4-16 to retrieve the two 

distinct values from our packed variable. Unfortunately, this code has an issue that has 

yet to be uncovered. Listing 4-17 provides an example of the issue.

Listing 4-17. Shifting and Narrowing Conversions

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

    const uint32_t maskBits{ 16 };

    uint32_t narrowingBits{ 0x00008000 << maskBits };

    return 0;

}

The code in Listing 4-17 would fail to compile. You will receive an error that a 

narrowing conversion was going to take place, and your compiler will prevent you from 

building your executable until the problem code is fixed. The problem here is that the 

value 0x00008000 has the 16th bit set, and once it is shifted 16 bits to the right, the 32nd 

bit would be set. This would cause the value to become a negative number under normal 

circumstances. At this stage, you have two different options in your arsenal to deal with 

the situation.

Note some of the code samples are not using the = operator to initialize 
variables, such as uint32_t maskBits = 16; instead, both ways are being 
used, with initialization such as in Listing 4-17 using uniform initialization that 
was introduced in C++11. uniform initialization is the form of initialization using 
the {} operator as seen in some of the examples. the major benefit of uniform 
initialization is the protection from narrowing conversions described in the 
preceding code, but both methods are 100% acceptable.

Listing 4-18 shows how you can use an unsigned literal to tell the compiler the value 

should be unsigned.

Chapter 4  Working With numbers



141

Listing 4-18. Using Unsigned Literals

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

    const uint32_t maskBits{ 16 };

    uint32_t leftShifted{ 0x00008080u << maskBits };

    cout << showbase << hex;

    cout << "Left shifted: " << leftShifted << endl;

    uint32_t lowerMask{ 0x0000FFFF };

    leftShifted |= (0x11110110 & lowerMask);

    cout << "Packed left shifted: " << leftShifted << endl;

    uint32_t lowerValue{ (leftShifted & lowerMask) };

    cout << "Lower value unmasked: " << lowerValue << endl;

    uint32_t upperValue{ (leftShifted >> maskBits) };

    cout << "Upper value unmasked: " << upperValue << endl;

    return 0;

}

Adding a u to the end of a numeric literal causes the compiler to evaluate that literal as an 

unsigned value. Another option would have been to use signed values instead. However, this 

introduces a new consideration. When right shifting signed values, the sign bit is placed into 

the new values coming in from the right. The following things can occur:

• 0x10100000 >> 16 becomes 0x00001010.

• 0x80800000 >> 16 becomes 0xFFFF8080.

Listing 4-19 and Figure 4-14 show code and output that proves the negative sign bit 

propagation.

Chapter 4  Working With numbers



142

Listing 4-19. Right Shifting Negative Values

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

    const uint32_t maskBits{ 16 };

    int32_t leftShifted{ 0x00008080 << maskBits };

    cout << showbase << hex;

    cout << "Left shifted: " << leftShifted << endl;

    int32_t lowerMask{ 0x0000FFFF };

    leftShifted |= (0x11110110 & lowerMask);

    cout << "Packed left shifted: " << leftShifted << endl;

    int32_t rightShifted{ (leftShifted >> maskBits) };

    cout << "Right shifted: " << rightShifted << endl;

     cout << "Unmasked right shifted: " << (rightShifted & lowerMask)  

<< endl;

    return 0;

}

You can see the new code needs to extract the upper masked value in the bold lines 

in Listing 4-19. A shift alone is no longer suitable when using signed integers. Figure 4-14 

shows the output proving this point.

Figure 4-14. Output showing the sign bit propagation after a right shift

Chapter 4  Working With numbers



143

As you can see, I’ve had to shift the variable to the right and mask out the upper bits 

in order to retrieve the original value from the upper part of the variable. After our shift, 

the value contained the decimal value -32,640 (0xFFFF8080), but the value we expected 

was actually 32,896 (0x00008080). 0x00008080 was retrieved by using the & operator 

(0xFFFF8080 | 0x0000FFFF = 0x00008080).

 Recipe 4-6. C++20 “Spaceship” or Three-Way 
Comparison Operator
 Problem
You want to utilize the spaceship operator in your code to benefit from the 

improvements in C++ version 20.

 Solution
You can use the spaceship operator to allow the compiler to automatically generate 

comparison operators instead of manually coding it.

 How It Works
As of 2019, the C++20 implements Herb Sutter’s proposal for the “spaceship operator” or 

three-way comparison operator:

• The “compare” header is needed.

• Not all features of the new version 20 C++ standard are supported by 

all compilers (as of late 2019).

• You can optimize your code with this operator.

The three-way comparison operator or the “spaceship” operator is new to C++20 and 

provides a way to streamline comparison operations. The header <compare> is required 

for it to work as is a C++20-compliant compiler such as MS Visual Studio 19.

Chapter 4  Working With numbers



144

The operator ( <=> ) is called the spaceship operator due to the fact that it looks 

like an old-style ASCII spaceship from various early computer games. It is designed 

to be used in a class, struct, or function instead of as a standalone operator as with 

the previous comparison operators you have just seen. In fact, behind the scenes, the 

compiler generates automatically all of the comparison operators you have just used, so 

your code will be much more streamlined given that it fits your needs.

When implemented, you can choose various comparison options: strong ordering, 

weak ordering, partial ordering, strong equality, and weak equality. The first two both 

include all six relational operators (==, !=, <, >, <=, >=):

• Strong ordering – Does not allow incomparable values; implies 

substitutability; equivalent values are indistinguishable; less, 

equivalent, equal, and greater are member constants

• Weak ordering – Does not allow incomparable values; does not imply 

substitutability; equivalent values may be indistinguishable; less, 

equivalent, and greater are member constants

• Partial ordering – Does allow incomparable values; does not imply 

substitutability; less, equivalent, greater, and unordered are member 

constants

• Strong equality – Only equality and inequality comparisons; there 

is no > or <, and this implies substitutability; equivalent, equal, 

nonequivalent, and nonequal are member constants

• Weak equality – Only equality and inequality comparisons; it does 

not imply substitutability; member constants are only equivalent and 

nonequivalent; and equivalent values may be distinguishable

Based on a simple evaluation of some numeric values, Listing 4-20 will use weak 

ordering to demonstrate use of the spaceship operator. Use Visual Studio 19 or higher 

and make sure under project properties you set the language to “std latest” and not 

C++17 or lower.

Chapter 4  Working With numbers



145

Listing 4-20. Implementation of “Spaceship” Operator

#include <iostream>

#include <compare>

using namespace std;

struct num_value {

      int num;

};

constexpr weak_ordering operator<=>(num_value lhs, num_value rhs)

{

      return lhs.num <=> rhs.num;

}

void compare_them(weak_ordering value)

{

      if (value == 0)

            cout << "equal\n";

      else if (value < 0)

            cout << "less\n";

      else if (value > 0)

            cout << "greater\n";

      else

            cout << "Should not see this!";

}

int main()

{

      num_value x{ 11 };

      num_value y{ 2 };

      compare_them(x <=> y);

      return 0;

}

Chapter 4  Working With numbers



147
© J. Burton Browning and Bruce Sutherland 2020 
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_5

CHAPTER 5

Classes
Classes are the language feature that sets C++ apart from the C programming language. 

The addition of classes to C++ allows it to be used for programs designed using the 

object-oriented programming (OOP) paradigm. OOP quickly became the main software 

engineering practice used worldwide to build complex applications. You can find class 

support in most leading languages today, including Java, C#, and Objective-C.

 Recipe 5-1. Defining a Class
 Problem
Your program design calls for objects, and you need to be able to define classes in your 

programs.

 Solution
C++ provides the class keyword and syntax for creating class definitions.

 How It Works
The class keyword is used in C++ to create class definitions. This keyword is followed 

by the class name and then the body of the class. You will probably note that they seem 

similar to structs; however, classes offer many more features that structs do not.  

Listing 5-1 shows a class definition.



148

Listing 5-1. A Class Definition

class Vehicle

{

};

The Vehicle class definition in Listing 5-1 tells the compiler that it should recognize 

the word Vehicle as a type. This means code can now create variables of type Vehicle. 

Think of a class object as a noun (person, place, or thing). Listing 5-2 shows this in action.

Listing 5-2. Creating a Vehicle Variable

class Vehicle

{

};

int main(int argc, char* argv[])

{

    Vehicle myVehicle;

    return 0;

}

Creating a variable like this results in your program creating an object. In the 

common terminology used when working with classes, the class definition itself is 

referred to as the class. Variables of the class are referred to as objects, so you can have 

multiple objects of the same class. The process of creating an object from a class is 

referred to as instantiating a class. As we will see next, these “nouns” have properties 

such as color or size, or a vehicle might have a “number of doors,” “engine size,” “number 

of wheels,” and so on. Note that Visual Studio and some other compilers may generate a 

warning for “unreferenced local variable” or similar.

Chapter 5  Classes



149

 Recipe 5-2. Adding Data to a Class
 Problem
You would like to be able to store data in your classes.

 Solution
C++ allows classes to contain variables. Each object gets its own unique variable and can 

store its own values.

 How It Works
C++ has the concept of a member variable: a variable that exists in the class definition. 

Each instantiated object from the class definition gets its own copy of the variable. 

Listing 5-3 shows a class that contains a single member variable.

Listing 5-3. The Vehicle Class with a Member Variable

#include <cinttypes>

class Vehicle

{

public:

    uint32_t m_NumberOfWheels;

};

The Vehicle class contains a single uint32_t variable to store the number of wheels 

the vehicle has. Listing 5-4 shows how you can set this value and print it.

Listing 5-4. Accessing Member Variables

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

{

Chapter 5  Classes



150

public:

    uint32_t m_NumberOfWheels;

};

int main(int argc, char* argv[])

{

    Vehicle myCar;

    myCar.m_NumberOfWheels = 4;

    cout << "Number of wheels: " << myCar.m_NumberOfWheels << endl;

    return 0;

}

Listing 5-4 shows that you can use the dot (.) operator to access member variables 

on an object. This operator is used twice in the code: once to set the value of m_

NumberOfWheels to 4 and once to retrieve the value to print it. Listing 5-5 adds another 

instance of the class to show that different objects can store different values in their 

members.

Listing 5-5. Adding a Second Object

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

{

public:

    uint32_t m_NumberOfWheels;

};

int main(int argc, char* argv[])

{

    Vehicle myCar;

    myCar.m_NumberOfWheels = 4;

    cout << "Number of wheels: " << myCar.m_NumberOfWheels << endl;

Chapter 5  Classes



151

    Vehicle myMotorcycle;

    myMotorcycle.m_NumberOfWheels = 2;

    cout << "Number of wheels: " << myMotorcycle.m_NumberOfWheels << endl;

    return 0;

}

Listing 5-5 adds a second object and names it myMotorcycle. This instance of the 

class has its m_NumberOfWheels variable set to 2. You can see the different output values 

in Figure 5-1.

 Recipe 5-3. Adding Methods
 Problem
You need to be able to carry out repeatable tasks on a class.

 Solution
C++ allows programmers to add functions to classes. These functions are known as 

member methods and have access to class member variables.

Figure 5-1. The output generated by Listing 5-5

Chapter 5  Classes



152

 How It Works
You can add a member method to a class simply by adding a function to that class.  

Any function you add can then use the member variables that belong to the class. Listing 5-6 

shows two member methods in action. Set and Get member methods are named such 

that a “setter” places values into a variable that otherwise might not be accessible from the 

public interface, to protect the integrity of the data or to ensure it is valid. “Getters” obtain 

and return a value from the class to the public interface. You do not need to name them 

as such, but for readability it helps. Note the example does not enforce any integrity of the 

data. We will build on this in later examples.

Listing 5-6. Adding Member Methods to a Class

#include <cinttypes>

class Vehicle

{

public:

    uint32_t m_NumberOfWheels;

    void SetNumberOfWheels(uint32_t numberOfWheels)

    {

        m_NumberOfWheels = numberOfWheels;

    }

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

The Vehicle class shown in Listing 5-6 contains two member methods: 

SetNumberOfWheels takes a parameter that is used to set the member m_NumberOfWheels, 

and GetNumberOfWheels retrieves the value of m_NumberOfWheels. Listing 5-7 uses these 

methods.

Chapter 5  Classes



153

Listing 5-7. Using the Member Methods from the Vehicle Class

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

{

private:

    uint32_t m_NumberOfWheels;

public:

    void SetNumberOfWheels(uint32_t numberOfWheels)

    {

        m_NumberOfWheels = numberOfWheels;

    }

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

int main(int argc, char* argv[])

{

    Vehicle myCar;

    myCar.SetNumberOfWheels(4);

    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

    Vehicle myMotorcycle;

    myMotorcycle.SetNumberOfWheels(2);

    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;

    return 0;

}

Chapter 5  Classes



154

The member methods are used to alter and retrieve the value of the m_NumberOfWheels 

member variable in Listing 5-7. The output generated by this code is shown in Figure 5-2.

 Recipe 5-4. Using Access Modifiers
 Problem
Exposing all member variables to calling code can lead to several problems including 

high coupling and higher maintenance costs.

 Solution
Use the C++ access modifiers to utilize encapsulation and hide class implementations 

from calling code.

 How It Works
C++ provides access modifiers that allow you to control whether code can access internal 

member variables and methods. Listing 5-8 shows how you can use the private access 

modifier to restrict access to a variable and the public access specifier to provide 

methods that access the member indirectly.

Figure 5-2. The output generated by the code in Listing 5-7

Chapter 5  Classes



155

Listing 5-8. Using the public and private Access Modifiers

#include <cinttypes>

class Vehicle

{

private:

    uint32_t m_NumberOfWheels;

public:

    void SetNumberOfWheels(uint32_t numberOfWheels)

    {

        m_NumberOfWheels = numberOfWheels;

    }

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

To use an access modifier, insert the keyword into your class, followed by a colon. 

Once invoked, the access modifier is applied to all member variables and methods 

that follow until another access modifier is specified. In Listing 5-8, this means the m_

NumberOfWheels variable is private and the SetNumberOfWheels and GetNumberOfWheels 

member methods are public.

If you tried to access m_NumberOfWheels directly in calling code, your compiler would 

give you an access error. Instead, you have to access the variable through the member 

methods. Listing 5-9 shows a working sample with a private member variable.

Listing 5-9. Using Access Modifiers

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

{

private:

Chapter 5  Classes



156

    uint32_t m_NumberOfWheels;

public:

    void SetNumberOfWheels(uint32_t numberOfWheels)

    {

        m_NumberOfWheels = numberOfWheels;

    }

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

int main(int argc, char* argv[])

{

    Vehicle myCar;

    // myCar.m_NumberOfWheels = 4; -Access error

    myCar.SetNumberOfWheels(4);

    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

    Vehicle myMotorcycle;

    myMotorcycle.SetNumberOfWheels(2);

    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;

    return 0;

}

You can see the error that the compiler generates by uncommenting the bold line in 

Listing 5-9. Encapsulating data in this manner allows you to alter the implementation at 

a later time without affecting the rest of your code. Listing 5-10 updates the code from 

Listing 5-9 to use a completely different method of working out the number of wheels on 

a vehicle.

Chapter 5  Classes



157

Listing 5-10. Altering the Vehicle Class Implementation

#include <vector>
#include <cinttypes>
#include <iostream>

using namespace std;

class Wheel
{

};

class Vehicle
{
private:
    using Wheels = vector<Wheel>;
    Wheels m_Wheels;

public:
    void SetNumberOfWheels(uint32_t numberOfWheels)
    {
        m_Wheels.clear();
        for (uint32_t i = 0; i < numberOfWheels; ++i)
        {
            m_Wheels.push_back({});
        }
    }

    uint32_t GetNumberOfWheels()
    {
        return m_Wheels.size();
    }
};

int main(int argc, char* argv[])
{
    Vehicle myCar;
    myCar.SetNumberOfWheels(4);

    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

Chapter 5  Classes



158

    Vehicle myMotorcycle;

    myMotorcycle.SetNumberOfWheels(2);

    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;

    return 0;

}

Comparing the Vehicle class from Listing 5-9 and that in Listing 5-10 reveals that 

the implementations of SetNumberOfWheels and GetNumberOfWheels are completely 

different. The class in Listing 5-10 doesn’t store the value in a uint32_t member; 

instead, it stores a vector of Wheel objects. The SetNumberOfWheels method adds a 

new instance of Wheel to the vector for the number supplied as its numberOfWheels 

parameter. The GetNumberOfWheels method returns the size of the vector. The main 

function in both listings is identical, as is the output generated by executing the code.

 Recipe 5-5. Initializing Class Member Variables
 Problem
Uninitialized variables can cause undefined program behavior.

 Solution
C++ classes can initialize their member variables at instantiation and provide 

constructor methods for user-supplied values.

 How It Works
 Uniform Initialization

Classes in C++ can use uniform initialization to provide default values to class members 

when they’re instantiated. Uniform initialization allows you to use a common syntax 

when initializing built-in types or objects created from your classes. C++ uses the curly 

braces syntax to support this form of initialization. Listing 5-11 shows a class with a 

member variable initialized in this way.

Chapter 5  Classes



159

Listing 5-11. Initializing a Class Member Variable

#include <cinttypes>

class Vehicle

{

private:

    uint32_t m_NumberOfWheels{};

public:

    uint32 GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

In Listing 5-11, the class’s m_NumberOfWheels member is initialized using uniform 

initialization. This is achieved using the curly braces after the name. No value is supplied 

to the initializer, which causes the compiler to initialize the value to 0. Listing 5-12 shows 

this class used in context.

Listing 5-12. Using the Vehicle Class

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

{

private:

    uint32_t m_NumberOfWheels{};

public:

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

Chapter 5  Classes



160

int main(int argc, char* argv[])

{

    Vehicle myCar;

    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

    Vehicle myMotorcycle;

    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;

    return 0;

}

Figure 5-3 shows the output generated by this code.

Figure 5-3 shows output with a 0 for each class. This is an improvement on code that 

doesn’t initialize the data, as shown in Figure 5-4.

Figure 5-3. The output generated by the code in Listing 5-12

Chapter 5  Classes



161

 Using Constructors

Figure 5-3 represents a better situation than Figure 5-4, but neither is ideal. You’d really like 

the myCar and myMotorcycle objects in Listing 5-12 to print different values. Listing 5-13 

adds an explicit constructor so that you can specify the number of wheels when instantiating 

classes. Default constructors are automatically created for you, but if you explicitly define 

them, you get more control over what happens when you create an object as you will see.

Listing 5-13. Adding a Constructor to a Class

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

{

private:

    uint32_t m_NumberOfWheels{};

public:

    Vehicle(uint32_t numberOfWheels)

        : m_NumberOfWheels{ numberOfWheels }

    {

    }

Figure 5-4. The output generated by a program that doesn’t initialize its member 
variables

Chapter 5  Classes



162

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

int main(int argc, char* argv[])

{

    Vehicle myCar{ 4 };

    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

    Vehicle myMotorcycle{ 2 };

    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;

    return 0;

}

Listing 5-13 adds the ability to initialize the number of wheels on a Vehicle at the 

time of instantiation. It does this by adding an explicit constructor to the Vehicle class 

that takes the number of wheels as a parameter. The use of an explicit constructor lets 

you rely on a function call to occur at the time of object creation. This function is used to 

ensure that all the member variables your class contains have been properly initialized. 

Uninitialized data is a very common cause of unexpected program behavior such as 

crashes.

The myCar and myMotorcycle objects are instantiated with different values for their 

number of wheels. Unfortunately, adding an explicit constructor to the class means you 

can no longer construct default versions of this class; you must always supply a value for 

the number of wheels in Listing 5-13. Listing 5-14 overcomes this limitation by adding an 

explicit default operator to the class, in case no value is given.

Listing 5-14. Default Constructors

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

{

Chapter 5  Classes



163

private:

    uint32_t m_NumberOfWheels{};

public:

    Vehicle() = default;

    Vehicle(uint32_t numberOfWheels)

        : m_NumberOfWheels{ numberOfWheels }

    {

    }

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

int main(int argc, char* argv[])

{

    Vehicle myCar{ 4 };

    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

    Vehicle myMotorcycle{ 2 };

    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;

    Vehicle noWheels;

    cout << "Number of wheels: " << noWheels.GetNumberOfWheels() << endl;

    return 0;

}

The Vehicle class in Listing 5-14 contains an explicit default constructor. The 

default keyword is used along with an equals operator to inform the compiler that you 

want to add a default constructor to this class. Thanks to the uniform initialization of 

the m_NumberOfWheels variable, you can create an instance of the class noWheels that 

contains 0 in the m_NumberOfWheels variable. Figure 5-5 shows the output generated by 

this code.

Chapter 5  Classes



164

 Recipe 5-6. Cleaning Up Classes
 Problem
Some classes require their members to be cleaned up when an object is being destroyed.

 Solution
C++ provides for destructors to be added to classes that allow code to be executed when a 

class is being destroyed.

 How It Works
You can add a special destructor method to your classes in C++ using the ~ syntax 

(“tilde”). Listing 5-15 shows how to achieve this.

Listing 5-15. Adding a Destructor to a Class

#include <cinttypes>

#include <string>

using namespace std;

class Vehicle

{

private:

Figure 5-5. The output generated by Listing 5-14, showing the 0 in the noWheels 
class

Chapter 5  Classes



165

    string m_Name;

    uint32_t m_NumberOfWheels{};

public:

    Vehicle() = default;

    Vehicle(string name, uint32_t numberOfWheels)

        : m_Name{ name }

        , m_NumberOfWheels{ numberOfWheels }

    {

    }

    ~Vehicle()

    {

        cout << m_Name << " is being destroyed!" << endl;

    }

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

The Vehicle class in Listing 5-15 contains a destructor. This destructor simply prints 

out the name of the object being destroyed. The constructor can be initialized with the 

name of an object, and the default constructor of Vehicle calls the default constructor of 

the string class automatically. Listing 5-16 shows how this class can be used in practice.

Listing 5-16. Using Classes with Destructors

#include <cinttypes>

#include <iostream>

#include <string>

using namespace std;

class Vehicle

{

private:

Chapter 5  Classes



166

    string m_Name;

    uint32_t m_NumberOfWheels{};

public:

    Vehicle() = default;

    Vehicle(string name, uint32_t numberOfWheels)

        : m_Name{ name }

        , m_NumberOfWheels{ numberOfWheels }

    {

    }

    ~Vehicle()

    {

        cout << m_Name << " is being destroyed!" << endl;

    }

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

int main(int argc, char* argv[])

{

    Vehicle myCar{ "myCar", 4 };

    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

    Vehicle myMotorcycle{ "myMotorcycle", 2 };

    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;

    Vehicle noWheels;

    cout << "Number of wheels: " << noWheels.GetNumberOfWheels() << endl;

    return 0;

}

Chapter 5  Classes



167

As you can see from the main function in Listing 5-16, you don’t have to add any 

special code to call a class destructor. Destructors are called automatically when objects 

go out of scope. In this case, the calls to the destructors of the Vehicle objects occur after 

the return. Figure 5-6 shows the output from this program to prove the destructor code is 

executed.

It’s important to pay attention to the order in which these destructors are called.  

The Vehicle objects are destroyed in an order that’s the reverse of that in which they 

were created. This is important if you have resources that rely on being created and 

destroyed in the correct order.

The compiler implicitly creates a default destructor if you don’t define your own. You 

can also explicitly define a destructor using the code shown in Listing 5-17.

Listing 5-17. Explicitly Defining a Destructor

#include <cinttypes>

class Vehicle

{

private:

        uint32_t m_NumberOfWheels{};

public:

        Vehicle() = default;

        Vehicle(uint32_t numberOfWheels)

Figure 5-6. The output generated by Listing 5-16, showing that destructors have 
been executed

Chapter 5  Classes



168

                : m_NumberOfWheels{ numberOfWheels }

        {

        }

        ~Vehicle() = default;

        uint32_t GetNumberOfWheels()

        {

                return m_NumberOfWheels;

        }

};

It’s considered good practice to always be explicit with your default constructor and 

destructors. Doing so removes any ambiguity from the code and lets other programmers 

know that you were happy with the default behavior. The omission of this code could 

lead others to believe that you overlooked its inclusion.

 Recipe 5-7. Copying Classes
 Problem
You would like to ensure that you’re copying data from one object to another in a proper 

manner.

 Solution
C++ provides the copy constructor and assignment operator that you can use to add 

code to your class that is executed when a copy takes place.

 How It Works
You can copy objects in C++ in a number of scenarios. An object is copied when you pass 

it into the constructor of another object of the same type. An object is also copied when 

you assign one object to another. Passing an object into a function or method by value 

also results in a copy operation taking place.

Chapter 5  Classes



169

 Implicit and Default Copy Constructors and Assignment Operators

C++ classes support these operations through the copy constructor and assignment 

operator. Listing 5-18 shows the default versions of these methods being invoked in the 

main method.

Listing 5-18. Using the Copy Constructor and Assignment Operator

#include <cinttypes>

#include <iostream>

#include <string>

using namespace std;

class Vehicle

{

private:

    string m_Name;

    uint32_t m_NumberOfWheels{};

public:

    Vehicle() = default;

    Vehicle(string name, uint32_t numberOfWheels)

        : m_Name{ name }

        , m_NumberOfWheels{ numberOfWheels }

    {

    }

    ~Vehicle()

    {

        cout << m_Name << " at " << this << " is being destroyed!" << endl;

    }

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

Chapter 5  Classes



170

int main(int argc, char* argv[])

{

    Vehicle myCar{ "myCar", 4 };

    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

    Vehicle myMotorcycle{ "myMotorcycle", 2 };

    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;

    Vehicle myCopiedCar{ myCar };

    cout << "Number of wheels: " << myCopiedCar.GetNumberOfWheels() << endl;

    Vehicle mySecondCopy;

    mySecondCopy = myCopiedCar;

    cout << "Number of wheels: " << mySecondCopy.GetNumberOfWheels() << endl;

    return 0;

}

The myCopiedCar variable is constructed using a copy constructor. This is achieved 

by passing another object of the same type into myCopiedCar’s brace initializer. The 

mySecondCopy variable is constructed using the default constructor. Thus, the object is 

initialized with an empty name and 0 as the number of wheels. The code then assigns to 

mySecondCopy using myCopiedCar. You can see the results of these operations in Figure 5- 7.

Figure 5-7. The output generated by Listing 5-18

As expected, you have three objects named myCar, each of which has four wheels. 

You can see the distinct objects when the destructor prints the address in memory where 

each object resides.

Chapter 5  Classes



171

 Explicit Copy Constructors and Assignment Operators

The code in Listing 5-18 takes advantage of the implicit copy constructor and assignment 

operator. The C++ compiler automatically adds these functions to your classes when 

it encounters code that will use them. Listing 5-19 shows how you can create these 

functions explicitly.

Listing 5-19. Explicitly Creating the Copy Constructor and Assignment Operator

#include <cinttypes>

#include <iostream>

#include <string>

using namespace std;

class Vehicle

{

private:

    string m_Name;

    uint32_t m_NumberOfWheels{};

public:

    Vehicle() = default;

    Vehicle(string name, uint32_t numberOfWheels)

        : m_Name{ name }

        , m_NumberOfWheels{ numberOfWheels }

    {

    }

    ~Vehicle()

    {

        cout << m_Name << " at " << this << " is being destroyed!" << endl;

    }

    Vehicle(const Vehicle& other) = default;

    Vehicle& operator=(const Vehicle& other) = default;

Chapter 5  Classes



172

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

The signature for a copy constructor resembles that of a normal constructor. It’s a 

method with no return type; however, the copy constructor takes a constant reference 

to an object of the same type as a parameter. The assignment operator uses operator 

overloading to overload the = arithmetic operator for the class when the right side of the 

statement is another object of the same type, as in someVehicle = someOtherVehicle. 

The default keyword comes in useful again to allow you to communicate with other 

programmers that you’re happy with the default operations.

 Disallowing Copy and Assignment

Sometimes you’ll create classes in which you absolutely don’t want copy constructors 

and assignment operators to be used. C++ provides the delete keyword for these cases. 

Listing 5-20 shows how this is implemented.

Listing 5-20. Disallowing Copy and Assignment

#include <cinttypes>

#include <iostream>

#include <string>

using namespace std;

class Vehicle

{

private:

    string m_Name;

    uint32_t m_NumberOfWheels{};

public:

    Vehicle() = default;

    Vehicle(string name, uint32_t numberOfWheels)

        : m_Name{ name }

        , m_NumberOfWheels{ numberOfWheels }

Chapter 5  Classes



173

    {

    }

    ~Vehicle()

    {

        cout << m_Name << " at " << this << " is being destroyed!" << endl;

    }

    Vehicle(const Vehicle& other) = delete;

    Vehicle& operator=(const Vehicle& other) = delete;

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

int main(int argc, char* argv[])

{

    Vehicle myCar{ "myCar", 4 };

    cout << "Number of wheels: " << myCar.GetNumberOfWheels() << endl;

    Vehicle myMotorcycle{ "myMotorcycle", 2 };

    cout << "Number of wheels: " << myMotorcycle.GetNumberOfWheels() << endl;

    Vehicle myCopiedCar{ myCar };

    cout << "Number of wheels: " << myCopiedCar.GetNumberOfWheels() << endl;

    Vehicle mySecondCopy;

    mySecondCopy = myCopiedCar;

    cout << "Number of wheels: " << mySecondCopy.GetNumberOfWheels() << endl;

    return 0;

}

The delete keyword is used in place of default to inform the compiler that you 

don’t wish the copy and assignment operations to be available to a class. The code in the 
main function will no longer compile and operate.

Chapter 5  Classes



174

 Custom Copy Constructors and Assignment Operators

In addition to using the default versions of these operations, it’s possible to supply your 

own versions. This is done by using the same signatures for the methods in your class 

definition but providing a method body in place of the default assignment.

More often than not in modern C++, the places you’ll overload these operators are 

limited; but it’s important to be aware of the one place where you absolutely want to do so.

The default copy and assignment operations carry out a shallow copy. They call the 

assignment operator on each member of an object and assign the value from the class 

passed in. There are occasions when you have a class that manually manages a resource, 

such as memory, and a shallow copy ends up with a pointer in both classes pointing to 

the same address in memory. If that memory is freed in the class’s destructor, you’re left 

in a situation where one object is pointing to memory that has been freed by another. In 

this case, your program is likely to crash or exhibit other strange behaviors. Listing 5-21 

shows an example in which this could occur.

Note the code in listing 5-21 is purposefully constructed to create a situation 
that would be better solved by using an stl string class. this code is simply 
intended to be an easy-to-understand example of how things can go wrong.

Listing 5-21. Shallow-Copying a C-Style String Member

#include <cinttypes>

#include <cstring>

#include <iostream>

using namespace std;

class Vehicle

{

private:

    char* m_Name{};

    uint32_t m_NumberOfWheels{};

Chapter 5  Classes



175

public:

    Vehicle() = default;

    Vehicle(const char* name, uint32_t numberOfWheels)

        : m_NumberOfWheels{ numberOfWheels }

    {

        const uint32_t length = strlen(name) + 1; //  Add space for null 

terminator

        m_Name = new char[length]{};

        strcpy(m_Name, name);  //note warning if using VS 2019

    }

    ~Vehicle()

    {

        delete m_Name;

        m_Name = nullptr;

    }

    Vehicle(const Vehicle& other) = default;

    Vehicle& operator=(const Vehicle& other) = default;

    char* GetName()

    {

        return m_Name;

    }

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

int main(int argc, char* argv[])

{

    Vehicle myAssignedCar;

    {

        Vehicle myCar{ "myCar", 4 };

        cout << "Vehicle name: " << myCar.GetName() << endl;

Chapter 5  Classes



176

        myAssignedCar = myCar;

        cout << "Vehicle name: " << myAssignedCar.GetName() << endl;

    }

    cout << "Vehicle name: " << myAssignedCar.GetName() << endl;

    return 0;

}

The main function in Listing 5-21 creates two instances of the Vehicle class. The 

second is created in a block. This block causes the myCar object to be destructed when 

the block ends and the object goes out of scope. This is a problem because the last 

line of the block invokes the assignment operator and does a shallow copy of the class 

members. After this takes place, the myCar and myAssignedCar objects point to the same 

memory address in their m_Name variables. This memory is released in the destructor for 

myCar before the code tries to print the name of myAssignedCar. You can see the result of 

this error in Figure 5-8.

Figure 5-8 proves that the shallow copy results in a dangerous situation for the code. 

The memory pointed to by the m_Name variable in myAssignedCar is no longer valid 

as soon as the myCar variable has been destroyed. Listing 5-22 solves this problem by 

providing a copy constructor and an assignment operator that carry out a deep copy of 

the class. It actually copies the data instead of pointing to an address.

Figure 5-8. Output showing the error from shallow-copying an object before it’s 
destroyed

Chapter 5  Classes



177

Listing 5-22. Carrying Out a Deep Copy

#include <cinttypes>

#include <cstring>

#include <iostream>

using namespace std;

class Vehicle

{

private:

    char* m_Name{};

    uint32_t m_NumberOfWheels{};

public:

    Vehicle() = default;

    Vehicle(const char* name, uint32_t numberOfWheels)

        : m_NumberOfWheels{ numberOfWheels }

    {

         const uint32_t length = strlen(name) + 1; //  Add space for null 

terminator

        m_Name = new char[length]{};

         strcpy(m_Name, name);  //  line will generate warning with Visual 

Studio

    }

    ~Vehicle()

    {

        delete m_Name;

        m_Name = nullptr;

    }

    Vehicle(const Vehicle& other)

    {

        const uint32_t length = strlen(other.m_Name) + 1; //  Add space 

for null 

terminator

        m_Name = new char[length]{};

        strcpy(m_Name, other.m_Name);

Chapter 5  Classes



178

        m_NumberOfWheels = other.m_NumberOfWheels;

    }

    Vehicle& operator=(const Vehicle& other)

    {

        if (m_Name != nullptr)

        {

            delete m_Name;

        }

         const uint32_t length = strlen(other.m_Name) + 1; //  Add space 

for null 

terminator

        m_Name = new char[length]{};

        strcpy(m_Name, other.m_Name);

        m_NumberOfWheels = other.m_NumberOfWheels;

        return *this;

    }

    char* GetName()

    {

        return m_Name;

    }

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

int main(int argc, char* argv[])

{

    Vehicle myAssignedCar;

    {

        Vehicle myCar{ "myCar", 4 };

        cout << "Vehicle name: " << myCar.GetName() << endl;

Chapter 5  Classes



179

        myAssignedCar = myCar;

        cout << "Vehicle name: " << myAssignedCar.GetName() << endl;

    }

    cout << "Vehicle name: " << myAssignedCar.GetName() << endl;

    return 0;

}

This time, the code provides methods to be carried out when a copy or assignment 

takes place. The copy constructor is invoked when a new object is created by copying 

an old object, so you never need to worry about deleting the old data. The assignment 

operator, on the other hand, can’t guarantee that the existing class didn’t already exist. 

You can see the implications of this in the assignment operator when it’s responsibly 

deleting the memory allocated for the existing m_Name variable. The result of these deep 

copies can be seen in Figure 5-9.

Figure 5-9. The result of using a deep copy

The output is now correct, thanks to the use of a deep copy. This gives the 

myAssignedCar variable its own copy of the name string rather than simply having its 

pointer assigned the same address as the myCar class. The proper solution to solving the 

problem in this case is to use an STL string in place of the C-style string, but the example 

will be valid if you ever have to write classes that may end up pointed to the same 

dynamically allocated memory or stack memory in the future.

Chapter 5  Classes



180

 Recipe 5-8. Optimizing Code with Move Semantics
 Problem
Your code is running slowly, and you think the problem is caused by copying temporary 

objects.

 Solution
C++ provides support for move semantics in the form of a move constructor and a move 

assignment operator.

 How It Works
The code shown in Listing 5-23 performs a deep copy of an object to avoid the scenario 

where a different object is left pointing at an invalid memory address.

Listing 5-23. Using Deep Copy to Avoid Invalid Pointers

#include <cinttypes>

#include <cstring>

#include <iostream>

using namespace std;

class Vehicle

{

private:

    char* m_Name{};

    uint32_t m_NumberOfWheels{};

public:

    Vehicle() = default;

    Vehicle(const char* name, uint32_t numberOfWheels)

        : m_NumberOfWheels{ numberOfWheels }

    {

Chapter 5  Classes



181

         const uint32_t length = strlen(name) + 1; //  Add space for null 

terminator

        m_Name = new char[length]{};

        strcpy(m_Name, name);  //warning generated if using Visual Studio

    }

    ~Vehicle()

    {

        delete m_Name;

        m_Name = nullptr;

    }

    Vehicle(const Vehicle& other)

    {

         const uint32_t length = strlen(other.m_Name) + 1; //  Add space 

for null 

terminator

        m_Name = new char[length]{};

        strcpy(m_Name, other.m_Name);

        m_NumberOfWheels = other.m_NumberOfWheels;

    }

    Vehicle& operator=(const Vehicle& other)

    {

        if (m_Name != nullptr)

        {

            delete m_Name;

        }

         const uint32_t length = strlen(other.m_Name) + 1; //  Add space 

for null 

terminator

        m_Name = new char[length]{};

        strcpy(m_Name, other.m_Name);

        m_NumberOfWheels = other.m_NumberOfWheels;

        return *this;

    }

Chapter 5  Classes



182

    char* GetName()

    {

        return m_Name;

    }

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

int main(int argc, char* argv[])

{

    Vehicle myAssignedCar;

    {

        Vehicle myCar{ "myCar", 4 };

        cout << "Vehicle name: " << myCar.GetName() << endl;

        myAssignedCar = myCar;

        cout << "Vehicle name: " << myAssignedCar.GetName() << endl;

    }

    cout << "Vehicle name: " << myAssignedCar.GetName() << endl;

    return 0;

}

This is the correct solution when you know that two objects may live a considerable 

time but one may be destroyed before the other, which would likely result in a crash. 

Sometimes, however, you know that the object you’re copying from is about to 

destroyed. C++ allows you to optimize such situations using move semantics.  

Listing 5-24 adds a move constructor and a move assignment operator to the class and 

uses the move function to invoke them.

Listing 5-24. The Move Constructor and Move Assignment Operator

#include <cinttypes>

#include <cstring>

#include <iostream>

Chapter 5  Classes



183

using namespace std;

class Vehicle

{

private:

    char* m_Name{};

    uint32_t m_NumberOfWheels{};

public:

    Vehicle() = default;

    Vehicle(const char* name, uint32_t numberOfWheels)

        : m_NumberOfWheels{ numberOfWheels }

    {

         const uint32_t length = strlen(name) + 1; //  Add space for null 

terminator

        m_Name = new char[length]{};

        strcpy(m_Name, name);  //warning generated if using Visual Studio

    }

    ~Vehicle()

    {

        if (m_Name != nullptr)

        {

            delete m_Name;

            m_Name = nullptr;

        }

    }

    Vehicle(const Vehicle& other)

    {

        const uint32_t length = strlen(other.m_Name) + 1; //  Add space 

for null 

terminator

        m_Name = new char[length]{};

        strcpy(m_Name, other.m_Name);

        m_NumberOfWheels = other.m_NumberOfWheels;

    }

Chapter 5  Classes



184

    Vehicle& operator=(const Vehicle& other)

    {

        if (m_Name != nullptr)

        {

            delete m_Name;

        }

         const uint32_t length = strlen(other.m_Name) + 1; //  Add space 

for null 

terminator

        m_Name = new char[length]{};

        strcpy(m_Name, other.m_Name);

        m_NumberOfWheels = other.m_NumberOfWheels;

        return *this;

    }

    Vehicle(Vehicle&& other)

    {

        m_Name = other.m_Name;

        other.m_Name = nullptr;

        m_NumberOfWheels = other.m_NumberOfWheels;

    }

    Vehicle& operator=(Vehicle&& other)

    {

        if (m_Name != nullptr)

        {

            delete m_Name;

        }

        m_Name = other.m_Name;

        other.m_Name = nullptr;

        m_NumberOfWheels = other.m_NumberOfWheels;

        return *this;

    }

Chapter 5  Classes



185

    char* GetName()

    {

        return m_Name;

    }

    uint32_t GetNumberOfWheels()

    {

        return m_NumberOfWheels;

    }

};

int main(int argc, char* argv[])

{

    Vehicle myAssignedCar;

    {

        Vehicle myCar{ "myCar", 4 };

        cout << "Vehicle name: " << myCar.GetName() << endl;

        myAssignedCar = move(myCar);

        //cout << "Vehicle name: " << myCar.GetName() << endl;

        cout << "Vehicle name: " << myAssignedCar.GetName() << endl;

    }

    cout << "Vehicle name: " << myAssignedCar.GetName() << endl;

    return 0;

}

Move semantics work by providing class methods that take rvalue references as 

parameters. These rvalue references are denoted by using the double ampersand 

operator on the parameter type. You can invoke the move operations using the move 

function; you can see this in action in the main function.

The move function can be used here because you know that myCar is about to be 

destroyed. The move assignment operator is invoked, and the pointer address is shallow- 

copied to myAssignedCar. The move assignment operator releases the memory that the 

object may already have been using for m_Name. Importantly, it then copies the address 

from other before setting other.m_Name to nullptr. Setting the other object’s pointer to 

nullptr prevents that object from deleting the memory in its destructor. In this case, the 

Chapter 5  Classes



186

code is able to move the value of m_Name from other to this without having to allocate 

more memory and deep-copy the values from one to the other. The end result is that 

you can no longer use the value of m_Name stored by myCar—the commented-out line in 

Listing 5-24’s main function would result in a crash.

 Recipe 5-9. Implementing Virtual Functions
 Problem
You wish to utilize an abstract base class to build other derived classes from without 

using memory as a non-abstract base class would.

 Solution
C++ provides support for virtual functions which cannot be instantiated but can be 

overridden for subsequent child classes.

 How It Works
Virtual functions are abstract classes when cannot be instantiated and are designed to 

be built upon as a derived class that can be instantiated. So think of them as building 

blocks that will be overridden in future derived classes. The base class is the abstract 

class which cannot be used to create a new object directly. You can also use the 

“virtual” keyword to similar effect with structs as well. Listing 5-25 shows a simple 

implementation of a virtual base class.

Listing 5-25. Virtual Functions

#include <iostream>

using namespace std;

// Abstract base class

class Invoice

{

public:

      float sub_total;

      void get_sub()

      {

Chapter 5  Classes



187

            cin >> sub_total;

      }

      //Virtual Function

      virtual float do_math() = 0;

};

class Discount : public Invoice

{

public:

      float do_math()

      {     //.10% discount

             return (sub_total * 1 - (sub_total * .10)); //  warning of 

narrowing 

conversion

      }

};

class No_discount : public Invoice {

public:

      float do_math()

      {

            return sub_total * 1;

      }

};

int main()

{

      Discount d;

      No_discount n;

      cout << "Enter subtotal for discount: \n";

      d.get_sub();

      cout << "Discount amount is: " << d.do_math() << endl;

      cout << "Enter subtotal for no discount: ";

      n.get_sub();

      cout << "No Discount cost is: " <<n.do_math() << endl;

      return 0;

}

Chapter 5  Classes



189
© J. Burton Browning and Bruce Sutherland 2020 
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_6

CHAPTER 6

Inheritance
C++ allows you to build complex software applications in a number of ways. One of the 

most common is the object-oriented programming (OOP) paradigm. Classes in C++ are 

used to provide a blueprint for objects that contain your data and the operations that can 

be carried out on that data.

Inheritance takes this a step further by letting you construct complex hierarchies of 

classes. In the previous chapter, we ended with virtual functions, so this chapter will add 

to that discussion. As such, suffice to say the C++ language provides various different 

features you can use to organize your code in a logical manner via OOP features.

 Recipe 6-1. Inheriting from a Class
 Problem
You’re writing a program that has a natural is-a relationship between objects and would 

like to reduce code duplication.

 Solution
Inheriting a class from a parent class allows you to add your code to the parent and share 

it between multiple derived types.

 How It Works
In C++, you can inherit one class from another. The inheriting class gains all the 

properties of the base class. Listing 6-1 shows an example of two classes that inherit from 

a shared parent class.



190

Listing 6-1. Class Inheritance

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

{

private:

    uint32_t m_NumberOfWheels{};

public:

    Vehicle(uint32_t numberOfWheels)

        : m_NumberOfWheels{ numberOfWheels }

    {

    }

    uint32_t GetNumberOfWheels() const

    {

        return m_NumberOfWheels;

    }

};

class Car : public Vehicle

{

public:

    Car()

        : Vehicle(4)

    {

    }

};

Chapter 6  InherItanCe



191

class Motorcycle : public Vehicle

{

public:

    Motorcycle()

        : Vehicle(2)

    {

    }

};

int main(int argc, char* argv[])

{

    Car myCar{};

    cout << "A car has " << myCar.GetNumberOfWheels() << " wheels." << endl;

    Motorcycle myMotorcycle;

     cout << "A motorcycle has " << myMotorcycle.GetNumberOfWheels()  

<< " wheels." << endl;

    return 0;

}

The Vehicle class contains a member variable to store the number of wheels the 

vehicle has. This value is initialized to 0 by default or is set in the constructor. Vehicle is 

followed by another class named Car. The Car class contains only a constructor that is 

used to call the constructor for Vehicle. The Car constructor passes the number 4 into 

the Vehicle constructor and therefore sets m_NumberOfWheels to 4.

The Motorcycle class also contains only a constructor, but it passes 2 to the Vehicle 

constructor. Because both Car and Motorcycle inherit from the Vehicle class, they both 

inherit its properties. They both contain a variable to hold the number of wheels, and 

they will both have a method to retrieve the number of wheels. You can see this in the 

main function, where GetNumberOfWheels is called on both the myCar object and the 

myMotorcycle object. Figure 6-1 shows the output generated by this code.

Chapter 6  InherItanCe



192

The Car class and the Motorcycle class both inherit the properties of Vehicle and 

both set the appropriate number of wheels in their constructor.

 Recipe 6-2. Controlling Access to Member Variables 
and Methods in Derived Classes
 Problem
Your derived class needs to be able to access the fields in its parent.

 Solution
C++ access modifiers have an effect on the way variables can be accessed in derived 

classes. Using the correct access modifier is essential in properly constructing a class 

hierarchy that is protected from accidental modification.

 How It Works
 The public Access Specifier

The public access specifier grants public access to a variable or method in a class. This 

applies equally to member variables and methods. Anything can access variables or 

methods (functions) if they are flagged as public. You can see this clearly in Listing 6-2.

Figure 6-1. Output generated by the code in Listing 6-1

Chapter 6  InherItanCe



193

Listing 6-2. The public Access Specifier

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

{

public:

    uint32_t m_NumberOfWheels{};

    Vehicle() = default;

};

class Car : public Vehicle

{

public:

    Car()

    {

        m_NumberOfWheels = 4;

    }

};

class Motorcycle : public Vehicle

{

public:

    Motorcycle()

    {

        m_NumberOfWheels = 2;

    }

};

int main(int argc, char* argv[])

{

    Car myCar{};

    cout << "A car has " << myCar.m_NumberOfWheels << " wheels." << endl;

    myCar.m_NumberOfWheels = 3;

    cout << "A car has " << myCar.m_NumberOfWheels << " wheels." << endl;

Chapter 6  InherItanCe



194

    Motorcycle myMotorcycle;

     cout << "A motorcycle has " << myMotorcycle.m_NumberOfWheels  

<< " wheels." << endl;

    myMotorcycle.m_NumberOfWheels = 3;

     cout << "A motorcycle has " << myMotorcycle.m_NumberOfWheels << " wheels."  

<< endl;

    return 0;

}

Any variables with public access can be accessed by a derived class. Both the 

Car constructor and the Motorcycle constructor take advantage of this and set the 

number of wheels they have appropriately. The downside is that other code can also 

access the public member variables. You can see this in the main function, where the 

m_NumberOfWheels is read and assigned to both the myCar object and the myMotorcycle 

object. Figure 6-2 shows the output generated by this code.

 The private Access Specifier

Instead of making variables public, you can make them private and provide public 

accessors to them. Set and Get methods might be used to enforce data integrity (e.g., 

make sure a variable is only given a positive value, a password is a certain length or 

complexity, etc.), or for a Get method, it could return a private variable that otherwise 

would not be accessible. Listing 6-3 shows the use of a private member variable.

Figure 6-2. The output generated by Listing 6-2

Chapter 6  InherItanCe



195

Listing 6-3. The private Access Specifier

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

{

private:

    uint32_t m_NumberOfWheels{};

public:

    Vehicle(uint32_t numberOfWheels)

        : m_NumberOfWheels{ numberOfWheels }

    {

    }

    uint32_t GetNumberOfWheels() const

    {

        return m_NumberOfWheels;

    }

};

class Car : public Vehicle

{

public:

    Car()

        : Vehicle(4)

    {

    }

};

class Motorcycle : public Vehicle

{

public:

    Motorcycle()

        : Vehicle(2)

Chapter 6  InherItanCe



196

    {

    }

};

int main(int argc, char* argv[])

{

    Car myCar{};

    cout << "A car has " << myCar.GetNumberOfWheels() << " wheels." << endl;

    Motorcycle myMotorcycle;

     cout << "A motorcycle has " << myMotorcycle.GetNumberOfWheels()  

<< " wheels." << endl;

    return 0;

}

Listing 6-3 shows the use of the private access specifier with the m_NumberOfWheels 

variable. The Car and Motorcycle classes can no longer access the m_NumberOfWheels 

variable directly; therefore, the Vehicle class provides a method to initialize the variable 

through its constructor. This makes the classes a little harder to work with but adds the 

benefit of not allowing any external code direct access to the member variable. You can 

see this in the main function, where the code must get the number of wheels through the 

GetNumberOfWheels accessor method.

 The protected Access Specifier

The protected access specifier allows for a mix of public and private access specifiers. 

It acts like a public specifier for classes that derive from the current class, and it acts 

like a private specifier for external code, or the “public interface.” Listing 6-4 shows this 

behavior.

Listing 6-4. The protected Access Specifier

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

Chapter 6  InherItanCe



197

{

protected:

    uint32_t m_NumberOfWheels{};

public:

    Vehicle() = default;

    uint32_t GetNumberOfWheels() const

    {

        return m_NumberOfWheels;

    }

};

class Car : public Vehicle

{

public:

    Car()

    {

        m_NumberOfWheels = 4;

    }

};

class Motorcycle : public Vehicle

{

public:

    Motorcycle()

    {

        m_NumberOfWheels = 2;

    }

};

int main(int argc, char* argv[])

{

    Car myCar{};

    cout << "A car has " << myCar.GetNumberOfWheels() << " wheels." << endl;

    Motorcycle myMotorcycle;

Chapter 6  InherItanCe



198

     cout << "A motorcycle has " << myMotorcycle.GetNumberOfWheels()  

<< " wheels." << endl;

    return 0;

}

Listing 6-4 shows that both Car and Motorcycle can access the m_NumberOfWheels 

variable directly from their parent class, Vehicle. Both classes set the m_NumberOfWheels 

variable in their constructors. The calling code in the main function doesn’t have access 

to this variable and therefore has to call the GetNumberOfWheels method to be able to 

print this value.

 Recipe 6-3. Hiding Methods in Derived Classes
 Problem
You have a derived class that needs behavior in a method that is different than the 

behavior provided by the parent class.

 Solution
C++ allows you to hide methods in parent classes by defining a method with the same 

signature in the derived class.

 How It Works
You can hide a method in a parent class by defining a method with exactly the same 

signature in the base class. This example shows how derived classes can use explicit 

method hiding to provide functionality that differs from the parent class’s. This is a key 

concept to understand when you’re using inheritance, because it’s the primary method 

employed to differentiate hierarchies of class types.

Listing 6-5 contains a Vehicle class, a Car class, and a Motorcycle class. The Vehicle 

class defines a method named GetNumberOfWheels that returns 0. The same method is 

defined in the Car class and the Motorcycle class; these versions of the method return 4 

and 2, respectively.

Chapter 6  InherItanCe



199

Listing 6-5. Hiding Methods

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

{

public:

    Vehicle() = default;

    uint32_t GetNumberOfWheels() const

    {

        return 0;

    }

};

class Car : public Vehicle

{

public:

    Car() = default;

    uint32_t GetNumberOfWheels() const

    {

        return 4;

    }

};

class Motorcycle : public Vehicle

{

public:

    Motorcycle() = default;

    uint32_t GetNumberOfWheels() const

    {

        return 2;

    }

};

Chapter 6  InherItanCe



200

int main(int argc, char* argv[])

{

    Vehicle myVehicle{};

     cout << "A vehicle has " << myVehicle.GetNumberOfWheels() << " wheels." 

<< endl;

    Car myCar{};

     cout << "A car has " << myCar.GetNumberOfWheels()  

<< " wheels." << endl;

    Motorcycle myMotorcycle;

     cout << "A motorcycle has " << myMotorcycle.GetNumberOfWheels()  

<< " wheels." << endl;

    return 0;

}

The main function in Listing 6-5 calls the three different versions of 

GetNumberOfWheels and returns the appropriate value for each. You can see the output 

generated by this code in Figure 6-3.

Accessing these methods directly through objects or pointers to these class types 

results in the correct output.

Figure 6-3. The output generated by executing the code in Listing 6-5

Chapter 6  InherItanCe



201

Note Method hiding doesn’t work properly when you’re using polymorphism. 
accessing a derived class through a pointer to a base class results in the method 
on the base class being called. this is very rarely the behavior you want. See 
recipe 8-5 for the proper solution when using polymorphism.

 Recipe 6-4. Using Polymorphic Base Classes
 Problem
You would like to write generic abstract base code that works with pointers to base 

classes and that still calls the proper methods in derived classes.

 Solution
The virtual keyword allows you to create methods that are designed to be overridden 

by derived classes.

 How It Works
The virtual keyword tells the C++ compiler that you would like a class to contain a 

virtual method table (v-table). A v-table contains lookups for methods that allows the 

correct method to be called for a given type even if the object is being accessed through 

a pointer to one of its parent classes. Listing 6-6 shows a class hierarchy that uses the 

virtual keyword to specify that a method should be included in the class’s v-table.

Listing 6-6. Creating a Virtual Method

#include <cinttypes>

class Vehicle

{

public:

    Vehicle() = default;

    virtual uint32_t GetNumberOfWheels() const

    {

Chapter 6  InherItanCe



202

        return 2;

    }

};

class Car : public Vehicle

{

public:

    Car() = default;

    uint32_t GetNumberOfWheels() const override

    {

        return 4;

    }

};

class Motorcycle : public Vehicle

{

public:

    Motorcycle() = default;

};

The Car and Motorcycle classes in Listing 6-6 derive from the Vehicle class. The 

GetNumberOfWheels method in the Vehicle class is listed as a virtual method. This causes 

any calls to that method through a pointer to be made through the v-table. Listing 6-7 

shows a full example with a main function that accesses objects through a Vehicle pointer.

Listing 6-7. Accessing Virtual Methods Through a Base Pointer

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

{

public:

    Vehicle() = default;

Chapter 6  InherItanCe



203

    virtual uint32_t GetNumberOfWheels() const

    {

        return 2;

    }

};

class Car : public Vehicle

{

public:

    Car() = default;

    uint32_t GetNumberOfWheels() const override

    {

        return 4;

    }

};

class Motorcycle : public Vehicle

{

public:

    Motorcycle() = default;

};

int main(int argc, char* argv[])

{

    Vehicle* pVehicle{};

    Vehicle myVehicle{};

    pVehicle = &myVehicle;

     cout << "A vehicle has " << pVehicle->GetNumberOfWheels() << " wheels." 

<< endl;

    Car myCar{};

    pVehicle = &myCar;

    cout << "A car has " << pVehicle->GetNumberOfWheels() << " wheels." << endl;

Chapter 6  InherItanCe



204

    Motorcycle myMotorcycle;

    pVehicle = &myMotorcycle;

     cout << "A motorcycle has " << pVehicle->GetNumberOfWheels()  

<< " wheels." << endl;

    return 0;

}

The main function defines a pointer to a Vehicle object on its first line. This pointer 

is then used in each of the cout statements to access the GetNumberOfWheels method 

for the current object. The Vehicle and Motorcycle objects have the address of the 

Vehicle::GetNumberOfWheels method in their v-tables; therefore, both return 2 for their 

number of wheels.

The Car class overrides the GetNumberOfWheels method. This causes Car to replace 

the address for Vehicle::GetNumberOfWheels in the lookup table with the address of 

Car::GetNumberOfWheels. As a result, when the same Vehicle pointer is assigned the 

address of myCar and subsequently calls GetNumberOfWheels, it calls the method defined 

in the Car class and not that defined in the Vehicle class. Figure 6-4 shows the output 

generated by the code in Listing 6-7, where you can see that this is the case.

Figure 6-4. The output generated by executing the code in Listing 6-7

The override keyword is used at the end of the GetNumberOfWheels method’s 

signature in the Car class. This keyword is a hint to the compiler that you expect this 

method to override a virtual method in the parent class. The compiler will throw an error 

if you enter the signature incorrectly or if the signature of the method you’re overriding is 

changed later. This feature is very useful, and I recommend that you use it (although the 

override keyword itself is optional).

Chapter 6  InherItanCe



205

 Recipe 6-5. Preventing Method Overrides
 Problem
You have a method that you don’t wish to be overridden by deriving classes.

 Solution
You can use the final keyword to prevent classes from overriding a method.

 How It Works
The final keyword informs the compiler that you don’t want a virtual method to be 

overridden by a deriving class. Listing 6-8 shows an example of using the final keyword.

Listing 6-8. Using the final Keyword

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

{

public:

    Vehicle() = default;

    virtual uint32_t GetNumberOfWheels() const final

    {

        return 2;

    }

};

class Car : public Vehicle

{

public:

    Car() = default;

Chapter 6  InherItanCe



206

    uint32_t GetNumberOfWheels() const override

    {

        return 4;

    }

};

class Motorcycle : public Vehicle

{

public:

    Motorcycle() = default;

};

int main(int argc, char* argv[])

{

    Vehicle* pVehicle{};

    Vehicle myVehicle{};

    pVehicle = &myVehicle;

     cout << "A vehicle has " << pVehicle->GetNumberOfWheels() << " wheels." 

<< endl;

    Car myCar{};

    pVehicle = &myCar;

    cout << "A car has " << pVehicle->GetNumberOfWheels() << " wheels." << endl;

    Motorcycle myMotorcycle;

    pVehicle = &myMotorcycle;

     cout << "A motorcycle has " << pVehicle->GetNumberOfWheels()  

<< " wheels." << endl;

    return 0;

}

The GetNumberOfWheels method in the Vehicle class uses the final keyword to 

prevent derived classes from trying to override it. This causes the code in Listing 6-8 to 

fail to compile, because the Car class attempts to override GetNumberOfWheels. You can 

comment out this method to get the code to compile.

Chapter 6  InherItanCe



207

The final keyword can also stop further overrides of a method in a longer chain. 

Listing 6-9 shows how this is possible.

Listing 6-9. Preventing Overrides in an Inheritance Hierarchy

#include <cinttypes>

class Vehicle

{

public:

    Vehicle() = default;

    virtual uint32_t GetNumberOfWheels() const

    {

        return 2;

    }

};

class Car : public Vehicle

{

public:

    Car() = default;

    uint32_t GetNumberOfWheels() const final

    {

        return 4;

    }

};

class Ferrari : public Car

{

public:

    Ferrari() = default;

    uint32_t GetNumberOfWheels() const override

    {

        return 5;

    }

};

Chapter 6  InherItanCe



208

Vehicle defines a virtual method named GetNumberOfWheels that returns the value 2. 

Car overrides this method to return 4 (this example ignores the fact that not all cars have 

four wheels) and declares that the method is final. No other classes deriving from Car 

are allowed to override the same method. This makes sense for the application if the 

requirements only need support for four-wheeled cars. The compiler will throw an error 

when it reaches any class that derives from Car or derives from any other class that has 

Car in its hierarchy and that tries to override the GetNumberOfWheels method.

 Recipe 6-6. Creating Interfaces
 Problem
You have a base class method that should not define any behavior but should simply be 

overridden by deriving classes.

 Solution
You can create pure virtual methods in C++ that don’t define a method body.

 How It Works
You can define pure virtual methods in C++ by adding = 0 to the end of the method 

signature. Listing 6-10 shows an example.

Listing 6-10. Creating Pure Virtual Methods

#include <cinttypes>

#include <iostream>

using namespace std;

class Vehicle

{

public:

    Vehicle() = default;

    virtual uint32_t GetNumberOfWheels() const = 0;

};

Chapter 6  InherItanCe



209

class Car : public Vehicle

{

public:

    Car() = default;

    uint32_t GetNumberOfWheels() const override

    {

        return 4;

    }

};

class Motorcycle : public Vehicle

{

public:

    Motorcycle() = default;

    uint32_t GetNumberOfWheels() const override

    {

        return 2;

    }

};

int main(int argc, char* argv[])

{

    Vehicle* pVehicle{};

    Car myCar{};

    pVehicle = &myCar;

    cout << "A car has " << pVehicle->GetNumberOfWheels() << " wheels." << endl;

    Motorcycle myMotorcycle;

    pVehicle = &myMotorcycle;

     cout << "A motorcycle has " << pVehicle->GetNumberOfWheels()  

<< " wheels." << endl;

    return 0;

}

Chapter 6  InherItanCe



210

The Vehicle class defines GetNumberOfWheels as a pure virtual method. This has 

the effect of ensuring that an object of type Vehicle can never be created. The compiler 

doesn’t allow this because it doesn’t have a method to call for GetNumberOfWheels.  

Car and Motorcycle both override this method and can be instantiated. You can see this 

occur in the main function. Figure 6-5 shows that the methods return the correct values 

for Car and Motorcycle.

A class that contains a pure virtual method is known as an interface. If a class inherits 

from an interface and you wish to be able to instantiate that class, you must override 

any pure virtual methods in the parent. It’s possible to derive from an interface and not 

override these methods, but that derived class can then only be used as an interface to 

further derived classes.

 Recipe 6-7. Multiple Inheritance
 Problem
You have a class that you wish to derive from more than one parent class.

 Solution
C++ supports multiple inheritance.

Figure 6-5. The output generated by executing the code in Listing 6-10

Chapter 6  InherItanCe



211

 How It Works
You can derive a class from multiple parents in C++ using a comma-separated list of 

parent classes. Listing 6-11 shows how this can be achieved.

Listing 6-11. Multiple Inheritance

#include <cinttypes>

#include <iostream>

using namespace std;

class Printable

{

public:

    virtual void Print() = 0;

};

class Vehicle

{

public:

    Vehicle() = default;

    virtual uint32_t GetNumberOfWheels() const = 0;

};

class Car

    : public Vehicle

    , public Printable

{

public:

    Car() = default;

    uint32_t GetNumberOfWheels() const override

    {

        return 4;

    }

Chapter 6  InherItanCe



212

    void Print() override

    {

        cout << "A car has " << GetNumberOfWheels() << " wheels." << endl;

    }

};

class Motorcycle

    : public Vehicle

    , public Printable

{

public:

    Motorcycle() = default;

    uint32_t GetNumberOfWheels() const override

    {

        return 2;

    }

    void Print() override

    {

        cout << "A motorcycle has " << GetNumberOfWheels() << " wheels." << endl;

    }

};

int main(int argc, char* argv[])

{

    Printable* pPrintable{};

    Car myCar{};

    pPrintable = &myCar;

    pPrintable->Print();

    Motorcycle myMotorcycle;

    pPrintable = &myMotorcycle;

    pPrintable->Print();

    return 0;

}

Chapter 6  InherItanCe



213

The Car and Motorcycle classes both derive from multiple parents. These classes 

are now both Vehicles and Printables. You can see the interplay between the two 

parents in the overridden Print methods. These methods both call the overridden 

GetNumberOfWheels method in Car and Motorcycle. The main function accesses 

the overridden Print methods through a pointer to a Printable object, using 

polymorphism to call the correct Print method and also the correct GetNumberOfWheels 

method in Print. Figure 6-6 shows that the output from the program is correct.

Figure 6-6. Output showing that multiple inheritance works with 
polymorphism

Chapter 6  InherItanCe



215
© J. Burton Browning and Bruce Sutherland 2020 
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_7

CHAPTER 7

The STL Containers
The Standard Template Library (STL) consists of a standard set of functionality that 

implementers are required to support. Creating a standard ensures that code can be 

used interchangeably on different platforms and operating systems as long as the 

supplied implementations conform to that standard. A large part of the standard 

defines a set of containers that can be used to store data structures. This chapter looks at 

different scenarios where each of the STL containers proves useful.

Note The string container was covered in Chapter 3.

 Recipe 7-1. Storing a Fixed Number of Objects
 Problem
You have a requirement to store a fixed number of objects in your program.

 Solution
C++ provides built-in arrays that can be used for this purpose; however, the STL array 

provides a more flexible interface compared to other STL containers.

 How It Works
C++ has support for built-in arrays that have existed since the formation of the language. 

If you have programmed in C or C++ before, these will be familiar to you. Listing 7-1 

shows a standard C-style array.



216

Listing 7-1. A C-Style Array

#include <cinttypes>

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

    const uint32_t numberOfElements{ 5 };

    int32_t normalArray[numberOfElements]{ 10, 65, 3000, 2, 49 };

    for (uint32_t i{ 0 }; i < numberOfElements; ++i)

    {

        cout << normalArray[i] << endl;

    }

    return 0;

}

This code shows the use of a C-style array in C++. The array contains five integers, 

and the main function has a for loop that is used to iterate the array and print out the 

values at each position. It’s also possible to use a range-based for loop to iterate a 

C-style array. Listing 7-2 shows how this is done.

Listing 7-2. Using a Range-Based for Loop with a C-Style Array

#include <cinttypes>

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

    const uint32_t numberOfElements{ 5 };

    int32_t normalArray[numberOfElements]{ 10, 65, 3000, 2, 49 };

    for (auto&& number : normalArray)

    {

        cout << number << endl;

    }

    return 0;

}

ChapTer 7  The STL ConTainerS



217

The main function in Listing 7-2 takes advantage of a range-based for loop to iterate 

the array. This is a useful construct to use when you have no need for the value of the 

index of the array.

Note The range-based for loop in Listing 7-2 uses syntax that looks like a rvalue 
reference. This isn’t the case. head to Chapter 2 if you’re not sure how this code 
works or of the difference between an lvalue and a rvalue.

C-style arrays are useful in many circumstances; however, modern C++ also 

provides another version of arrays that can be used with the STL iterators and 

algorithms. Listing 7-3 shows how to define an STL array.

Listing 7-3. Using an STL array

#include <array>

#include <cinttypes>

#include <iostream>

int main(int argc, char* argv[])

{

    const uint32_t numberOfElements{ 5 };

    std::array<int32_t, numberOfElements> stlArray{ 10, 65, 3000, 2, 49 };

    for (uint32_t i = 0; i < numberOfElements; ++i)

    {

        std::cout << stlArray[i] << std::endl;

    }

    for (auto&& number : stlArray)

    {

        std::cout << number << std::endl;

    }

    return 0;

}

ChapTer 7  The STL ConTainerS



218

Listing 7-3 shows that an STL array is defined by passing the type stored in the 

array and the number of elements it contains into the type template. Once the array 

has been defined, it can be used interchangeably with a normal C-style array.  

This is because the range-based for loop can iterate both types of array and because 

the STL array defines an array operator overload that allows elements to be accessed 

using [].

Note The major advantage of using the STL array container over C-style arrays is 
that it allows access to STL iterators and algorithms.

Arrays store their objects in a contiguous block of memory. This means that the 

address of each array element lies next to each other in memory. This makes them very 

efficient for iteration. An array will generally result in excellent cache coherency and as 

a result cause fewer stalls as the processor reads from RAM into a local cache. Arrays are 

excellent choices for algorithms where performance is paramount and a fixed number of 

objects is needed.

 Recipe 7-2. Storing a Growing Number of Objects
 Problem
Sometimes you will not know at compile time how many objects you need to store in 

your array.

 Solution
The STL provides the vector template that allows for dynamically growing arrays.

 How It Works
The vector works in a very similar way to array. Listing 7-4 shows the definition of a 

vector and two styles of for loop.

ChapTer 7  The STL ConTainerS



219

Listing 7-4. Using STL vector

#include <cinttypes>

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char* argv[])

{

    vector<int32_t> stlVector{ 10, 65, 3000, 2, 49 };

    for (uint32_t i = 0; i < stlVector.size(); ++i)

    {

        std::cout << stlVector[i] << std::endl;

    }

    for (auto&& number : stlVector)

    {

        std::cout << number << endl;

    }

    return 0;

}

The major difference between the definitions of a vector and an array is the lack of 

a size. As a vector is resizable, setting a limit on the number of elements it can contain 

makes little sense. This manifests itself in the traditional for loop in the main function. 

You can see that the loop end condition checks for completion by comparing the index 

against the value returned from the size method. In this case, size will return 5 as the 

vector contains five elements. Listing 7-5 lets you see that a vector can be resized at 

runtime unlike an array.

Listing 7-5. Resizing a Vector

#include <cinttypes>

#include <iostream>

#include <vector>

ChapTer 7  The STL ConTainerS



220

using namespace std;

int main(int argc, char* argv[])

{

    vector<int32_t> stlVector{ 10, 65, 3000, 2, 49 };

    cout << "The size is: " << stlVector.size() << endl;

    stlVector.emplace_back( 50 );

    cout << "The size is: " << stlVector.size() << endl;

    for (auto&& number : stlVector)

    {

        std::cout << number << endl;

    }

    return 0;

}

The resulting output from Listing 7-5 is shown in Figure 7-1.

Figure 7-1. The output generated by Listing 7-5 showing a growing vector

Figure 7-1 shows that the vector has grown from size 5 to size 6 after the call to 

emplace_back. The range-based for loop prints out all the values stored in the vector. 

You can see that emplace_back has added the value to the end of the vector.

ChapTer 7  The STL ConTainerS



221

The way a vector resizes is implementation defined which means that it’s up to the 

vendor creating the library you are using. All implementations operate by using a similar 

method. They generally tend to allocate memory for a new array internally that includes 

the current size of the vector as well as a variable number of empty slots for new values. 

Listing 7-6 contains code that uses the capacity method to determine how many 

elements the vector is capable of storing before it will resize.

Listing 7-6. A Resizing vector

#include <cinttypes>

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char* argv[])

{

    vector<int32_t> stlVector

    {

        1,

        2,

        3,

        4,

        5,

        6,

        7,

        8,

        9,

        10,

        11,

        12,

        13,

        14,

        15,

        16

    };

ChapTer 7  The STL ConTainerS



222

    cout << "The size is: " << stlVector.size() << endl;

    cout << "The capacity is: " << stlVector.capacity() << endl;

    stlVector.emplace_back(17);

    cout << "The size is: " << stlVector.size() << endl;

    cout << "The capacity is: " << stlVector.capacity() << endl;

    for (auto&& number : stlVector)

    {

        std::cout << number << std::endl;

    }

    return 0;

}

The code in Listing 7-6 creates a vector that contains 16 elements. Figure 7-2 shows 

the effect adding a new element has on the capacity of the vector.

Figure 7-2. Output showing the increased capacity of a vector when using 
Microsoft Visual Studio 2013 STL

ChapTer 7  The STL ConTainerS



223

Figure 7-2 shows that adding a value to a vector does not result in an increase in size 

of one element. Microsoft has decided that their implementation of the STL will increase 

the capacity of the vector by 50%. Adding a new element to a vector of size 16 adds 

capacity for eight new elements when a single new element is added.

It’s also possible to add elements into a vector at places other than the end. Listing 7-7 

shows how the emplace method can be used for this purpose.

Listing 7-7. Adding Elements to Arbitrary Points in a vector

#include <cinttypes>

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char* argv[])

{

    vector<int32_t> stlVector

    {

        1,

        2,

        3,

        4,

        5

    };

    auto iterator = stlVector.begin() + 2;

    stlVector.emplace(iterator, 6);

    for (auto&& number : stlVector)

    {

        std::cout << number << std::endl;

    }

    return 0;

}

ChapTer 7  The STL ConTainerS



224

Listing 7-7 uses an iterator to place the value 6 into the third position of the vector. 

This operation increases the capacity of the vector if necessary and shifts all elements 

after the position one place to the right. Figure 7-3 shows the output from this operation.

Figure 7-3. The output from Listing 7-7 showing the element inserted into the 
third position in the vector

It is also possible to remove elements from a vector. Listing 7-8 shows code that 

removes each element of the vector using an iterator to the last element.

Listing 7-8. Removing Elements from a Vector

#include <cinttypes>

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char* argv[])

{

    vector<int32_t> stlVector

    {

        1,

        2,

        3,

        4,

        5,

        6,

        7,

ChapTer 7  The STL ConTainerS



225

        8,

        9,

        10,

        11,

        12,

        13,

        14,

        15,

        16

    };

    cout << "The size is: " << stlVector.size() << endl;

    cout << "The capacity is: " << stlVector.capacity() << endl << endl;

    for (auto&& number : stlVector)

    {

        std::cout << number << ", ";

    }

    while (stlVector.size() > 0)

    {

        auto iterator = stlVector.end() - 1;

        stlVector.erase(iterator);

    }

    cout << endl << endl << "The size is: " << stlVector.size() << endl;

    cout << "The capacity is: " << stlVector.capacity() << endl << endl;

    for (auto&& number : stlVector)

    {

        std::cout << number << ", ";

    }

    std::cout << std::endl;

    return 0;

}

The while loop in the main function of Listing 7-8 erases each element from the 

vector one by one. This will change the size of the vector but not the capacity. Listing 7-9 

adds code to reduce the capacity of the vector.

ChapTer 7  The STL ConTainerS



226

Listing 7-9. Reducing the Capacity of a vector

#include <cinttypes>

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char* argv[])

{

    vector<int32_t> stlVector

    {

        1,

        2,

        3,

        4,

        5,

        6,

        7,

        8,

        9,

        10,

        11,

        12,

        13,

        14,

        15,

        16

    };

    while (stlVector.size() > 0)

    {

        auto iterator = stlVector.end() - 1;

        stlVector.erase(iterator);

        if ((stlVector.size() * 2) == stlVector.capacity())

        {

            stlVector.shrink_to_fit();

        }

ChapTer 7  The STL ConTainerS



227

        cout << "The size is: " << stlVector.size() << endl;

        cout << "The capacity is: " << stlVector.capacity() << endl << endl;

    }

    return 0;

}

As the while loop removes elements, it also checks for when the size of the vector 

reaches half of the capacity. When this condition is met, the shrink_to_fit method is 

called. Figure 7-4 shows the effect shrink_to_fit has on the capacity of the vector.

Figure 7-4. The effect of shrink_to_fit on a vector's capacity

ChapTer 7  The STL ConTainerS



228

Resizing a vector, either up or down, comes with a performance cost. New memory 

has to be allocated, and the elements in the internal array have to be transferred from 

one to another. Two things are recommended in this scenario:

• Work out the maximum number of elements that can be added to 

the vector at runtime and use the reserve method to allocate the 

requisite amount of memory required only once.

• Determine if you can avoid using a vector altogether and use an 

array to create a pool of objects. This can be achieved by reusing 

elements in the array using a scheme such as a least recently used 

algorithm.

 Recipe 7-3. Storing a Set of Elements That Is 
Constantly Altered
 Problem
You have a set of data where you will be constantly entering and removing elements to 

and from arbitrary positions.

 Solution
The STL provides two containers that offer efficient insertion and deletion from the 

middle of the container. These are the list and forward_list containers.

 How It Works
The array and vector containers store elements in contiguous memory. This provides 

for fast iteration over the set as they play into the strengths of the modern CPU 

architectures. The array container cannot be added to or removed from at runtime; 

elements can only be altered. The vector container can have elements added and 

removed, but this requires a new memory allocation and the transfer of all elements 

from the old memory block to the new memory block.

ChapTer 7  The STL ConTainerS



229

The list containers on the other hand do not store elements in contiguous blocks of 

memory. Instead, each element in the list is stored in an independent node that contains 

a pointer to the next and last elements in the list. This allows bidirectional traversal in 

the list container. A forward_list only stores a pointer to the next element, not the 

last, and can therefore only be traversed front to back. Adding and removing elements 

from a list becomes a trivial exercise in updating the pointers that reference the next and 

last nodes in the list structure.

This noncontiguous storage results in a performance penalty when traversing the 

list. The CPU cache cannot always preload the next element in the list; therefore, these 

structures should be avoided for sets of data that are regularly traversed. Their advantage 

comes from the rapid insertion and deletion of nodes. Listing 7-10 shows a list 

container in use.

Listing 7-10. Using a list

#include <cinttypes>

#include <iostream>

#include <list>

using namespace std;

int main(int argv, char* argc[])

{

    list<int32_t> myList{ 1, 2, 3, 4, 5 };

    myList.emplace_front(6);

    myList.emplace_back(7);

    auto forwardIter = myList.begin();

    ++forwardIter;

    ++forwardIter;

    myList.emplace(forwardIter, 9);

    auto reverseIter = myList.end();

    --reverseIter;

    --reverseIter;

    --reverseIter;

    myList.emplace(reverseIter, 8);

ChapTer 7  The STL ConTainerS



230

    for (auto&& number : myList)

    {

        cout << number << endl;

    }

    return 0;

}

The list container used in the main function of Listing 7-10 allows for forward and 

backward traversal from the iterators returned from begin or end. Figure 7-5 contains 

the output generated by traversing the list where you can see the arbitrary order of the 

added elements.

Figure 7-5. The output when traversing the list container in Listing 7-10

Listing 7-11 shows similar code with a forward_list.

Listing 7-11. Using a forward_list

#include <cinttypes>

#include <forward_list>

#include <iostream>

using namespace std;

ChapTer 7  The STL ConTainerS



231

int main(int argv, char* argc[])

{

    forward_list<int32_t> myList{ 1, 2, 3, 4, 5 };

    myList.emplace_front(6);

    auto forwardIter = myList.begin();

    ++forwardIter;

    ++forwardIter;

    myList.emplace_after(forwardIter, 9);

    for (auto&& number : myList)

    {

        cout << number << endl;

    }

    return 0;

}

There are a few differences in Listing 7-11 when compared to Listing 7-10.  

A forward_list does not contain the methods emplace and emplace_back. It does 

contain emplace_front and also emplace_after which allow you to add elements to 

the beginning of the forward_list or after a specific position in the forward_list.

 Recipe 7-4. Storing Sorted Objects in a Container 
That Enables Fast Lookups
 Problem
You have a large collection of objects that you would like to be ordered and frequently 

have to look up to find specific information.

 Solution
The STL provides the set and map containers that can automatically sort their objects 

and provide very fast search characteristics.

ChapTer 7  The STL ConTainerS



232

 How It Works
The set and map containers are associative containers. This means that they associate 

their data elements with a key. In the case of a set the key is the object or value itself, 

and for a map the key is a value supplied along with an object or value.

These containers are implemented using binary search trees, and this is why they 

offer automatic sorting and fast search characteristics. Binary search trees operate by 

comparing keys for objects. If an object’s key is less than that of the current node, then it 

is added to the left; if it is greater, it goes to the right.

Note in fact, you can provide a function to both containers that allows you to 
specify the sort order for yourself.

Listing 7-12 shows the creation of a set that orders its elements from smallest to 

largest.

Listing 7-12. Using a set

#include <cinttypes>

#include <iostream>

#include <set>

#include <string>

using namespace std;

class SetObject

{

private:

    string m_Name;

    int32_t m_Key{};

public:

    SetObject(int32_t key, const string& name)

        : m_Name{ name }

        , m_Key{ key }

    {

    }

ChapTer 7  The STL ConTainerS



233

    SetObject(int32_t key)

        : SetObject(key, "")

    {

    }

    const string& GetName() const

    {

        return m_Name;

    }

    int32_t GetKey() const

    {

        return m_Key;

    }

    bool operator<(const SetObject& other) const

    {

        return m_Key < other.m_Key;

    }

    bool operator>(const SetObject& other) const

    {

        return m_Key > other.m_Key;

    }

};

int main(int argv, char* argc[])

{

    set<SetObject> mySet

    {

        { 6, "Six" },

        { 3, "Three" },

        { 4, "Four" },

        { 1, "One" },

        { 2, "Two" }

    };

    for (auto&& number : mySet)

ChapTer 7  The STL ConTainerS



234

    {

        cout << number.GetName() << endl;

    }

    auto iter = mySet.find(3);

    if (iter != mySet.end())

    {

        cout << "Found: " << iter->GetName() << endl;

    }

    return 0;

}

The set defined in the main function of Listing 7-12 is initialized with five SetObject 

instances. Each of these instances stores an integer key and a string representation of 

that key. By default, a set is initialized to order the elements it contains from lowest to 

highest. You can see this proven in Figure 7-6.

Figure 7-6. The output generated by the code in Listing 7-12

The ordering of class objects was achieved using operator overloading. The SetObject 

class overloads the < and > operators, and this enables the class to be used with these 

operators. When adding a new element, the set will call a comparison function that 

determines the order the elements should appear in the set. The default case calls for 

the use of the < operator on the elements. As you can see, the SetObject class compares the 

m_Key variables in the operators to determine the order in which they should be stored.

Listing 7-13 shows how you can alter the default set to order the elements from 

highest to lowest.

ChapTer 7  The STL ConTainerS



235

Listing 7-13. Ordering Elements in a set from Highest to Lowest

#include <cinttypes>

#include <functional>

#include <iostream>

#include <set>

#include <string>

using namespace std;

class SetObject

{

private:

    string m_Name;

    int32_t m_Key{};

public:

    SetObject(int32_t key, const string& name)

        : m_Name{ name }

        , m_Key{ key }

    {

    }

    SetObject(int32_t key)

        : SetObject(key, "")

    {

    }

    const string& GetName() const

    {

        return m_Name;

    }

    int32_t GetKey() const

    {

        return m_Key;

    }

ChapTer 7  The STL ConTainerS



236

    bool operator<(const SetObject& other) const

    {

        return m_Key < other.m_Key;

    }

    bool operator>(const SetObject& other) const

    {

        return m_Key > other.m_Key;

    }

};

using namespace std;

int main(int argv, char* argc[])

{

    set<SetObject, greater<SetObject>> mySet

    {

        { 6, "Six" },

        { 3, "Three" },

        { 4, "Four" },

        { 1, "One" },

        { 2, "Two" }

    };

    for (auto&& number : mySet)

    {

        cout << number.GetName() << endl;

    }

    auto iter = mySet.find(3);

    if (iter != mySet.end())

    {

        cout << "Found: " << iter->GetName() << endl;

    }

    return 0;

}

ChapTer 7  The STL ConTainerS



237

The only difference between Listing 7-12 and Listing 7-13 is the addition of a 

second template parameter to set. Listing 7-13 supplies the greater template from the 

functional header. This template will create a method from a function that can call the 

> operator on two SetObject instances. You can imagine that the default set had an 

implied less parameter:

set<SetObject, less<SetObject>>

Figure 7-7 shows the resulting output from a set with elements ordered from highest 

to lowest.

Figure 7-7. The set ordered from highest to lowest using greater

Listing 7-14 shows how you can add elements to a set after initialization.

Listing 7-14. Adding Elements to a set

#include <cinttypes>

#include <functional>

#include <iostream>

#include <set>

#include <string>

using namespace std;

class SetObject

{

private:

    string m_Name;

    int32_t m_Key{};

ChapTer 7  The STL ConTainerS



238

public:

    SetObject(int32_t key, const string& name)

        : m_Name{ name }

        , m_Key{ key }

    {

    }

    SetObject(int32_t key)

        : SetObject(key, "")

    {

    }

    const string& GetName() const

    {

        return m_Name;

    }

    int32_t GetKey() const

    {

        return m_Key;

    }

    bool operator<(const SetObject& other) const

    {

        return m_Key < other.m_Key;

    }

    bool operator>(const SetObject& other) const

    {

        return m_Key > other.m_Key;

    }

};

int main(int argv, char* argc[])

{

    set<SetObject, greater<SetObject>> mySet

    {

ChapTer 7  The STL ConTainerS



239

        { 6, "Six" },

        { 3, "Three" },

        { 4, "Four" },

        { 1, "One" },

        { 2, "Two" }

    };

    for (auto&& number : mySet)

    {

        cout << number.GetName() << endl;

    }

    cout << endl;

    mySet.emplace(SetObject( 5, "Five" ));

    for (auto&& number : mySet)

    {

        cout << number.GetName() << endl;

    }

    cout << endl;

    auto iter = mySet.find(3);

    if (iter != mySet.end())

    {

        cout << "Found: " << iter->GetName() << endl;

    }

    return 0;

}

The emplace method can be used to add new elements to a set as in Listing 7-14. 

Figure 7-8 shows that the new element was inserted into the set in the correct position 

given the greater ordering.

ChapTer 7  The STL ConTainerS



240

The map container is very similar to the set container except for the fact that the 

key is stored independently of the object value. Listing 7-15 shows code to create a map 

container.

Listing 7-15. Creating a map

#include <cinttypes>

#include <functional>

#include <iostream>

#include <map>

#include <string>

using namespace std;

class MapObject

{

private:

    string m_Name;

public:

Figure 7-8. Shows a new element has been added to the set in the correct position

ChapTer 7  The STL ConTainerS



241

    MapObject(const string& name)

        : m_Name{ name }

    {

    }

    const string& GetName() const

    {

        return m_Name;

    }

};

int main(int argv, char* argc[])

{

    map<int32_t, MapObject, greater<int32_t>> myMap

    {

        pair<int32_t, MapObject>(6, MapObject("Six")),

        pair<int32_t, MapObject>(3, MapObject("Three")),

        pair<int32_t, MapObject>(4, MapObject("Four")),

        pair<int32_t, MapObject>(1, MapObject("One")),

        pair<int32_t, MapObject>(2, MapObject("Two"))

    };

    for (auto&& number : myMap)

    {

        cout << number.second.GetName() << endl;

    }

    cout << endl;

    myMap.emplace(pair<int32_t, MapObject>(5, MapObject("Five")));

    for (auto&& number : myMap)

    {

        cout << number.second.GetName() << endl;

    }

    cout << endl;

ChapTer 7  The STL ConTainerS



242

    auto iter = myMap.find(3);

    if (iter != myMap.end())

    {

        cout << "Found: " << iter->second.GetName() << endl;

    }

    return 0;

}

Listing 7-15 achieves exactly the same result as the code in Listing 7-14 using a map 

in place of a set. The MapObject class does not contain a key, nor does it contain any 

overloaded operators to compare the objects instantiated using this class. That’s because 

the key for a map is stored independently of the data. Elements are added to a map using 

the pair template, and each pair associates a key value to an object.

The code for a map is more verbose than that for a set; however, the objects 

contained can be less complex. A map is a good candidate over a set when the key is 

not related to the rest of the data in the class. Objects that have a natural order and are 

already comparable are good candidates for storing in a set.

The iterator to a map is also a pair. The MapObject it contains can be retrieved using 

the second field on the iterator, while first stores the key value. Iterating over a map 

or a set is a slow operation as the elements are not contained in contiguous memory. 

The benefit of associative containers is mostly their fast lookups, while the ordering is a 

secondary benefit that should only be used sparingly for performance reasons.

 Recipe 7-5. Storing Unsorted Elements 
in a Container for Very Fast Lookups
 Problem
You have a set of data that does not need to be sorted but will be used for frequent 

lookups and data retrieval.

 Solution
The STL provides the unordered_set and unordered_map containers for this purpose.

ChapTer 7  The STL ConTainerS



243

 How It Works
The unordered_set and unordered_map containers are implemented as hash maps. 

A hash map provides for constant time insertion, removal, and searching of objects. 

Constant time means that the operations will take the same length of time regardless of 

how many elements are in the container.

As the unordered_set and unordered_map containers are hash maps, they rely on  

a hashing function being supplied that can convert your data into a numeric value. 

Listing 7-16 shows how you can create a set to store user-defined classes that can be 

hashed and compared.

Listing 7-16. Using an unordered_set

#include <cinttypes>

#include <functional>

#include <iostream>

#include <string>

#include <unordered_set>

using namespace std;

class SetObject;

namespace std

{

    template <>

    class hash<SetObject>

    {

    public:

        template <typename... Args>

        size_t operator()(Args&&... setObject) const

        {

            return hash<string>()((forward<Args...>(setObject...)).GetName());

        }

    };

}

ChapTer 7  The STL ConTainerS



244

class SetObject

{

private:

    string m_Name;

    size_t m_Hash{};

public:

    SetObject(const string& name)

        : m_Name{ name }

        , m_Hash{ hash<SetObject>()(*this) }

    {

    }

    const string& GetName() const

    {

        return m_Name;

    }

    const size_t& GetHash() const

    {

        return m_Hash;

    }

    bool operator==(const SetObject& other) const

    {

        return m_Hash == other.m_Hash;

    }

};

int main(int argv, char* argc[])

{

    unordered_set<SetObject> mySet;

    mySet.emplace("Five");

    mySet.emplace("Three");

    mySet.emplace("Four");

    mySet.emplace("One");

    mySet.emplace("Two");

ChapTer 7  The STL ConTainerS



245

    cout << showbase << hex;

    for (auto&& number : mySet)

    {

        cout << number.GetName() << " - " << number.GetHash() << endl;

    }

    auto iter = mySet.find({ "Three" });

    if (iter != mySet.end())

    {

         cout << "Found: " << iter->GetName() << " with hash: "  

<< iter->GetHash() << endl;

    }

    return 0;

}

Using an unordered_set to store class objects requires some difficult to understand 

code. First off, we have a partial specialization for the hash template. This allows us to 

create a function that is capable of creating a hash value for the SetObject class. This is 

achieved by passing a SetObject instance and calling the STL hash function for a string. 

The SetObject instance is passed to the () operator using a universal reference and the 

forward function to achieve perfect forwarding.

Note Templates are covered in Chapter 9; and universal references are covered 
along with lvaues, rvalues, and perfect forwarding in Chapter 2.

The SetObject class requires an overloaded == operator to function properly in an 

unordered_set. The code would not compile if this was missing. The m_Hash member 

variable is not needed. I simply included this to show you the values hash creates and 

how you can call the hash function for yourself. If the m_Hash variable did not exist, you 

could compare the m_Name strings for equality. Figure 7-9 shows the resulting output 

generated by this code.

ChapTer 7  The STL ConTainerS



246

An unordered_map does not come with the difficulty of creating your own hash 

function so long as you use a type for the key that the STL can already hash. Listing 7-17 

shows an unordered_map that uses an integer as the key.

Listing 7-17. Using unordered_map

#include <cinttypes>

#include <iostream>

#include <string>

#include <unordered_map>

using namespace std;

class MapObject

{

private:

    string m_Name;

public:

    MapObject(const string& name)

        : m_Name{ name }

    {

    }

Figure 7-9. The output generated by Listing 7-16

ChapTer 7  The STL ConTainerS



247

    const string& GetName() const

    {

        return m_Name;

    }

};

int main(int argv, char* argc[])

{

    unordered_map<int32_t, MapObject> myMap;

    myMap.emplace(pair<int32_t, MapObject>(5, MapObject("Five")));

    myMap.emplace(pair<int32_t, MapObject>(3, MapObject("Three")));

    myMap.emplace(pair<int32_t, MapObject>(4, MapObject("Four")));

    myMap.emplace(pair<int32_t, MapObject>(1, MapObject("One")));

    myMap.emplace(pair<int32_t, MapObject>(2, MapObject("Two")));

    cout << showbase << hex;

    for (auto&& number : myMap)

    {

        cout << number.second.GetName() << endl;

    }

    auto iter = myMap.find(3);

    if (iter != myMap.end())

    {

        cout << "Found: " << iter->second.GetName() << endl;

    }

    return 0;

}

Listing 7-17 shows that the unordered_map container stores key-value pairs as its 

elements. The first field of the pair stores the key, while the second field of the pair 

stores the value, in this case an instance of MapObject.

ChapTer 7  The STL ConTainerS



248

 Recipe 7-6. Using C++20 Designated Initialization
 Problem
You wish to experiment with the new C++20 feature of Designated Initialization.

 Solution
Visual Studio 2019 version 16.4 or higher revisions support the new C++ feature of 

Designated Initialization. You will need to go into the project settings though and 

select C++ Language Standard C++ Latest Working Draft and not ISO C++17 since older 

versions do not support this feature.

 How It Works
This feature introduces a new syntax that initializes an aggregate by specifying pairs of 

public data member designators followed by two ways to initialize object properties, via 

direct initialization or braces. The C++20 proposal lists items to justify this new feature:

 1) To increase readability and explicitness. Data members are given 

names.

 2) More flexible and sustainable aggregate initialization. If a data 

member is not directly initialized, it receives a default value. Items 

must be initialized in order however.

 3) Increased interoperability between C and C++. By being 

compatible with C Designated Initialization, C++ is more 

interoperable with C code.

Try out the following code, using Visual Studio 2019 16.4 or higher, to see this feature 

in operation.

Listing 7-18. Designated Initialization in C++ 20

//Designated Initialization C++ 20

//Don't forget to set Visual Studio 19 to C++ Latest working draft C++ version

// 20 and not ISO 17!

#include <iostream>

ChapTer 7  The STL ConTainerS



249

#include <string>

using namespace std;

struct person { string name; int age; int weight; float height; };

int main()

{

      //Two ways to set values equal initializers or via brace initializers.

      person bill{ .name{"Bill"}, .age = 22, .weight = 180, .height{6.2} };

      // you get an error if designator order does not match declaration order

      person sally{ .name= "Sally", .age = 19, .weight = 120 };

      // var. height initialized to 0 since left out

      //print data

cout << "Person " << bill.name << " has a height of " << bill.height << endl;

cout << "Person " << sally.name << " has a height of " << sally.height << endl;

      return 0;

}

ChapTer 7  The STL ConTainerS



251
© J. Burton Browning and Bruce Sutherland 2020 
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_8

CHAPTER 8

The STL Algorithms
The STL provides a set of algorithms that can be used along with the containers that 

it also supplies. These algorithms all work with iterators. An iterator is an abstraction 

mechanism that allows traversal behavior on many different STL collections. This 

chapter covers iterators and some of different algorithms along with their uses.

 Recipe 8-1. Using an Iterator to Define a Sequence 
Within a Container
 Problem
You have an STL container and would like to mark a sequence within that container that 

begins and ends at certain points.

 Solution
The STL provides iterators that work with all containers and can be used to denote the 

beginning and end of a sequence within a container. The sequence can include every 

node in the container, or it can include a subset of the nodes in the container.

 How It Works
Iterators are designed to work in a similar manner to pointers. Their syntax turns out to 

be very similar. You can see the use of iterators in Listing 8-1.



252

Listing 8-1. Using an iterator with a vector

#include <cinttypes>

#include <iostream>

#include <vector>

using namespace std;

int main(int arcg, char* argv[])

{

    using IntVector = vector<int32_t>;

    using IntVectorIterator = IntVector::iterator;

    IntVector myVector{ 0, 1, 2, 3, 4 };

     for (IntVectorIterator iter = myVector.begin();  

iter != myVector.end(); ++iter)

    {

        cout << "The value is: " << *iter << endl;

    }

    return 0;

}

A vector of int type is created in the main function in Listing 8-1. A type alias is used 

to make a new type of IntVector to represent this type of collection. A second alias is 

used to represent the type of the iterator that is used with this collection. You can see 

that the iterator type is accessed through the initial vector type. This is necessary as 

the iterator must also operate on the same type of objects that the vector itself operates 

with. Including the iterator type within the vector type allows you to specify the type to 

operate on, in this case int32 _t, at the same time for both.

The iterator type is used to get references to the beginning and the end of the 

myVector collection in the for loop. The begin and end methods of a vector return 

iterators. A collection is said to be empty if the iterator denoting the beginning of 

the collection is equal to the iterator denoting the end of the collection. This is the first 

property that iterators share in common with pointers; they are comparable.

Chapter 8  the StL aLgorithmS



253

The iter variable in the for loop is initialized to the value returned by the 

vector::begin method. The for loop executes until the iter variable is equal to the 

iterator returned by the vector::end method. This shows that sequences of values in a 

collection can be represented by two iterators, one at the beginning of a sequence and 

one at the end of a sequence. An iterator provides an increment operator that allows 

the iterator to be moved to the next element in the sequence. This is how the iter 

variable in the for loop can be initialized to the iterator returned by begin and can be 

tested against end until the sequence traversal has been completed. This also happens to 

be another property that iterators share with pointers: an increment or decrement will 

move the iterator to the next or last element in a sequence.

Note Not all iterators support increment and decrement operations. You’ll see 
some situations where that is the case in the following paragraphs.

The last operation that is important to cover with an iterator is the dereference 

operator. You may be familiar with this from standard pointer operations, and this is 

the last property that iterators share with pointers. You can see from Listing 8-1 that the 

dereference operator is used to retrieve the value represented by the iterator. In this 

example, the dereference is used to retrieve each iterator from the collection to be sent to 

the console. Figure 8-1 shows that this is the case.

Figure 8-1. The output from Listing 8-1 when the myVector collection is traversed

Chapter 8  the StL aLgorithmS



254

Trying to print out the iterator without using the dereference operator would have 

resulted in a compilation error as the cout::<< operator does not include support for 

iterator types.

The code from Listing 8-1 is using a standard forward iterator. This type of iterator 

provides non-const access to each element in the container. Listing 8-2 shows the 

implication of this attribute.

Listing 8-2. Using Non-const Iterators

#include <cinttypes>

#include <iostream>

#include <vector>

using namespace std;

int main(int arcg, char* argv[])

{

    using IntVector = vector<int32_t>;

    using IntVectorIterator = IntVector::iterator;

    IntVector myVector(5, 0);

    int32_t value{ 0 };

    for ( IntVectorIterator iter = myVector.begin(); iter != myVector.end(); 

++iter)

    {

        *iter = value++;

    }

    for ( IntVectorIterator iter = myVector.begin(); iter != myVector.end(); 

++iter)

    {

        cout << "The value is: " << *iter << endl;

    }

    return 0;

}

Chapter 8  the StL aLgorithmS



255

If you were to compare Listing 8-2 to Listing 8-1, you would see that the initialization 

of the myVector collection is handled in a different way. Listing 8-2 initializes the vector 

to contain five copies of the value 0. A for loop then walks the vector and assigns 

the post-incremented value variable to each position in myVector using the iterator 

dereference operator. This is possible due to the non-const nature of the iterator type. 

If you wish to use an iterator that you know should not have write access to its value, 

then you can use a const_iterator as shown in Listing 8-3.

Listing 8-3. Using a const_iterator

#include <cinttypes>

#include <iostream>

#include <vector>

using namespace std;

int main(int arcg, char* argv[])

{

    using IntVector = vector<int32_t>;

    using IntVectorIterator = IntVector::iterator;

    using ConstIntVectorIterator = IntVector::const_iterator;

    IntVector myVector(5, 0);

    int32_t value{ 0 };

    for ( IntVectorIterator iter = myVector.begin(); iter != myVector.end(); 

++iter)

    {

        *iter = value++;

    }

    for ( ConstIntVectorIterator iter = myVector.cbegin(); iter != myVector.

cend(); ++iter)

    {

        cout << "The value is: " << *iter << endl;

    }

    return 0;

}

Chapter 8  the StL aLgorithmS



256

Listing 8-3 uses the vector::cbegin and vector::cend methods in the second for 

loop to gain access to the elements of myVector without providing write access. Any 

attempt to assign values to a const_iterator results in a compile error being thrown 

when you try to build your program. The iterator and const_iterator types provided 

by C++ collections are both examples of forward iterators. That means that they both 

traverse the collection in the order you would suspect, from beginning to end. STL 

collections also supply support for the reverse_iterator and const_reverse_iterator 

types. These allow you to traverse your sequence backward. Listing 8-4 shows the use of 

a reverse_iterator to initialize the myVector collection from highest to lowest.

Listing 8-4. Initializing myVector Using a reverse_iterator

#include <cinttypes>

#include <iostream>

#include <vector>

using namespace std;

int main(int arcg, char* argv[])

{

    using IntVector = vector<int32_t>;

    using IntVectorIterator = IntVector::iterator;

    using ConstIntVectorIterator = IntVector::const_iterator;

    using ReverseIntVectorIterator = IntVector::reverse_iterator;

    using ConstReverseIntVectorIterator = IntVector::const_reverse_iterator;

    IntVector myVector(5, 0);

    int32_t value { 0 };

    for ( ReverseIntVectorIterator iter = myVector.rbegin(); iter != 

myVector.rend(); ++iter)

    {

        *iter = value++;

    }

Chapter 8  the StL aLgorithmS



257

     for ( ConstIntVectorIterator iter = myVector.cbegin(); iter != myVector.

cend(); ++iter)

    {

        cout << "The value is: " << *iter << endl;

    }

    return 0;

}

Listing 8-4 shows that the reverse_iterator should be used with the rbegin and 

rend methods supplied by vector. Incrementing a reverse_iterator causes it to move 

backward through the collection. Figure 8-2 shows that the myVector collection has 

stored the values in reverse order.

Figure 8-2. The values from myVector in reverse order

The output in Figure 8-2 can also be achieved using the code in Listing 8-5 which 

uses a const_reverse_iterator to print the values.

Listing 8-5. Using a const_reverse_iterator to Print myVector in Reverse

#include <cinttypes>

#include <iostream>

#include <vector>

using namespace std;

Chapter 8  the StL aLgorithmS



258

int main(int arcg, char* argv[])

{

    using IntVector = vector<int32_t>;

    using IntVectorIterator = IntVector::iterator;

    using ConstIntVectorIterator = IntVector::const_iterator;

    using ReverseIntVectorIterator = IntVector::reverse_iterator;

    using ConstReverseIntVectorIterator = IntVector::const_reverse_iterator;

    IntVector myVector(5, 0);

    int32_t value{ 0 };

    for ( IntVectorIterator iter = myVector.begin(); iter != myVector.end(); 

++iter)

    {

        *iter = value++;

    }

    for (ConstReverseIntVectorIterator iter = myVector.crbegin();

        iter != myVector.crend();

        ++iter)

    {

        cout << "The value is: " << *iter << endl;

    }

    return 0;

}

Listing 8-5 uses const_reverse_iterator along with the crbegin and crend 

methods to walk the collection from last to first and print the values in reverse order.

Iterators will play an important part in the rest of this chapter as they are used as the 

input to the algorithms supplied by the STL.

Chapter 8  the StL aLgorithmS



259

 Recipe 8-2. Calling a Function on Every Element 
in a Container
 Problem
You have a container and would like a simple method to call a function on every element.

 Solution
The STL provides the for_each function that takes a beginning iterator, an ending 

iterator, and a function to call on each element between the two.

 How It Works
The for_each function can be passed two iterators. These iterators define the beginning 

point and the end point in the container that should be traversed. The third parameter 

is a function that should be called for each element. The element itself is passed into the 

function. Listing 8-6 shows a use of the for_each function.

Listing 8-6. The for_each Algorithm

#include <algorithm>

#include <cinttypes>

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char* argv[])

{

    vector<int32_t> myVector

    {

        1,

        2,

        3,

        4,

        5

    };

Chapter 8  the StL aLgorithmS



260

    for_each(myVector.begin(), myVector.end(),

        [](int32_t value)

        {

            cout << value << endl;

        });

    return 0;

}

The code in Listing 8-6 creates a vector with five elements, the numbers 1 through 5. 

The for_each function is passed the iterators returned by the begin and end methods to 

define the range of values that should be passed to the function supplied in parameter 3. 

Parameter 3 is an unnamed function or a lambda.

The square braces of the lambda denote a capture list. This list is used to allow the 

lambda access to variables that exist in the function where it is created. In this case, we 

do not capture any variables from the function. The brackets then denote the parameter 

list. The lambda in Listing 8-1 takes an int32_t as a parameter as that is the type stored 

in the vector. The curly braces denote the function body just as they do with standard 

function bodies. Executing this code results in the output shown in Figure 8-3.

Figure 8-3. The output generated by the for_each and lambda in Listing 8-6

This output is generated because the for_each algorithm passes the integer from 

each position in myVector into the function supplied, in this case a lambda.

Chapter 8  the StL aLgorithmS



261

 Recipe 8-3. Finding the Maximum and Minimum 
Values in a Container
 Problem
Occasionally you will want to find the largest or smallest value in a container.

 Solution
The STL provides algorithms that allow you to find both the largest and smallest values 

in an STL container. These are the min_element and max_element functions.

 How It Works

 Finding the Minimum Value in a Container
The min_element function operates by taking an iterator to the beginning and the end 

of a given sequence. It walks this sequence and finds the minimum value contained in 

that sequence. Listing 8-7 shows this algorithm being used.

Listing 8-7. Using the min_element Algorithm

#include <algorithm>

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char* argv[])

{

    vector<int> myVector{ 4, 10, 6, 9, 1 };

    auto minimum = min_element(myVector.begin(), myVector.end());

    cout << "Minimum value: " << *minimum << std::endl;

    return 0;

}

Chapter 8  the StL aLgorithmS



262

In this case, you can see that a vector is being used to store integer elements. The 

min_element function is passed the iterator that denotes the beginning and the end 

of the sequence contained by the vector. This algorithm returns an iterator to the 

element that contains the smallest value. I’m using auto here to avoid having to write out 

the entirety of the iterator’s type (which would be vector<int>::iterator). It is clear 

that an iterator is returned when looking at the line that outputs the value. The pointer 

dereference operator is required to retrieve the integer value from the iterator. You can 

see the output generated by the code in Figure 8-4.

Figure 8-4. The output from Listing 8-7 showing the retrieved minimum value

The container in Listing 8-7 shows a trivial case where the container stores 

integer values. This case is trivial as two int variables are already comparable using 

the < operator. You can use min_element with your own classes by providing an 

overloaded < operator in your class. You can see an example of this in Listing 8-8.

Listing 8-8. Using min_element in Conjunction with a class That Contains a  

< Operator

#include <algorithm>

#include <iostream>

#include <vector>

using namespace std;

class MyClass

{

Chapter 8  the StL aLgorithmS



263

private:

    int m_Value;

public:

    MyClass(const int value)

        : m_Value{ value }

    {

    }

    int GetValue() const

    {

        return m_Value;

    }

    bool operator <(const MyClass& other) const

    {

        return m_Value < other.m_Value;

    }

};

int main(int argc, char* argv[])

{

    vector<MyClass> myVector{ 4, 10, 6, 9, 1 };

    auto minimum = min_element(myVector.begin(), myVector.end());

    if (minimum != myVector.end())

    {

        cout << "Minimum value: " << (*minimum).GetValue() << std::endl;

    }

    return 0;

}

Listing 8-8 differs from Listing 8-7 in that it uses a vector of MyClass objects rather 

than a vector of integer values. The call to min_element however remains exactly the 

same. In this case, the min_element call will walk the sequence and use the < operator 

added to the MyClass class to find the lowest value. It’s also necessary to protect against 

hitting the end of the sequence in this case as the end element will not point to a valid 

object and therefore the dereference and call to GetValue will likely crash.

Chapter 8  the StL aLgorithmS



264

Another option to compare nonbasic types is to provide a comparison function 

directly to the min_element function. This option is shown in Listing 8-9.

Listing 8-9. Using a Separate Function with min_element

#include <algorithm>

#include <iostream>

#include <vector>

using namespace std;

class MyClass

{

private:

    int m_Value;

public:

    MyClass(const int value)

        : m_Value{ value }

    {

    }

    int GetValue() const

    {

        return m_Value;

    }

};

bool CompareMyClasses(const MyClass& left, const MyClass& right)

{

    return left.GetValue() < right.GetValue();

}

int main(int argc, char* argv[])

{

    vector<MyClass> myVector{ 4, 10, 6, 9, 1 };

     auto minimum = min_element(myVector.begin(), myVector.end(), 

CompareMyClasses);

Chapter 8  the StL aLgorithmS



265

    if (minimum != myVector.end())

    {

        cout << "Minimum value: " << (*minimum).GetValue() << std::endl;

    }

    return 0;

}

In Listing 8-9, we supply a pointer to a comparison function to the min_element 

function. This function is used to compare the values returned from the MyClass 

GetValue method. The comparison function is constructed in a very specific way and 

takes two parameters, both constant references to MyClass objects. The function should 

return true if the first parameter is evaluated as being less than the second. The names 

left and right are chosen to help visualize the usual look of a < operator. The call to 

min_element is altered to contain a third parameter, the pointer to the CompareMyClasses 

function. The code shown in both Listings 8-8 and 8-9  produces output that is identical 

to that shown in Figure 8-4.

 Finding the Maximum Values in a Container

Where the min_element function can be used to find the smallest value in a sequence, 

the max_element function can be used to find the largest. The function can be used in 

exactly the same way as the min_element function as you can see in Listing 8-10.

Listing 8-10. Using max_element

#include <algorithm>

#include <iostream>

#include <vector>

using namespace std;

class MyClass

{

private:

    int m_Value;

Chapter 8  the StL aLgorithmS



266

public:

    MyClass(const int value)

        : m_Value{ value }

    {

    }

    int GetValue() const

    {

        return m_Value;

    }

    bool operator <(const MyClass& other) const

    {

        return m_Value < other.m_Value;

    }

};

bool CompareMyClasses(const MyClass& left, const MyClass& right)

{

    return left.GetValue() < right.GetValue();

}

int main(int argc, char* argv[])

{

    vector<int> myIntVector{ 4, 10, 6, 9, 1 };

    auto intMinimum = max_element(myIntVector.begin(), myIntVector.end());

    if (intMinimum != myIntVector.end())

    {

        cout << "Maxmimum value: " << *intMinimum << std::endl << std::endl;

    }

    vector<MyClass> myMyClassVector{ 4, 10, 6, 9, 1 };

    auto overrideOperatorMinimum = max_element(myMyClassVector.begin(),

        myMyClassVector.end());

    if (overrideOperatorMinimum != myMyClassVector.end())

Chapter 8  the StL aLgorithmS



267

    {

        cout << "Maximum value: " << (*overrideOperatorMinimum).GetValue() 

            << std::endl << std::endl;

    }

    auto functionComparisonMinimum = max_element(myMyClassVector.begin(),

        myMyClassVector.end(),

        CompareMyClasses);

    if (functionComparisonMinimum != myMyClassVector.end())

    {

        cout << "Maximum value: " << (*functionComparisonMinimum).GetValue() 

            << std::endl << std::endl;

    }

    return 0;

}

Listing 8-10 shows that the max_element function can be used in place of the min_

element function. It’s important to realize that the max_element function still uses the 

< operator. It may seem that the max_element would use the > operator instead, but it’s 

just as valid to use the < operator and respond to a result of false rather than true to 

indicate that one value is greater than another.

 Recipe 8-4. Counting Instances of a Value 
in a Sequence
 Problem
Sometimes you may wish to know how many instances of a specific value exist in a 

sequence.

 Solution
The STL provides an algorithm called count. This algorithm can search through a 

sequence of values and return the number of times a supplied value is found.

Chapter 8  the StL aLgorithmS



268

 How It Works
The count function takes three parameters, a beginning iterator, an ending iterator, 

and a value to find. Given these three pieces of information, the algorithm will return the 

number of times the value is present. Listing 8-11 shows this algorithm in use.

Listing 8-11. Using the count Algorithm

#include <algorithm>

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char* argv[])

{

    vector<int> myVector{ 3, 2, 3, 7, 3, 8, 9, 3 };

    auto number = count(myVector.begin(), myVector.end(), 3);

    cout << "The number of 3s in myVector is: " << number << endl;

    return 0;

}

The code in Listing 8-11 will have the count function walk the sequence and return 

the number of times the value 3 is encountered. You can see that the result of this 

operation is 4 in Figure 8-5.

Figure 8-5. The resulting output generated by Listing 8-11

Chapter 8  the StL aLgorithmS



269

C++ also provides some special predicate functions that can be used in conjunction 

with character data and the count_if function. These include functions that can be used to 

count the number of upper- or lowercase letters and whether a character is alphanumeric, 

white space, or punctuation. You can see all of these in action in Listing 8-12.

Listing 8-12. Using Character Predicates with count

#include <algorithm>

#include <cctype>

#include <iostream>

#include <string>

using namespace std;

int main(int argc, char* argv[])

{

    string myString{ "Bruce Sutherland!" };

    auto numberOfCapitals = count_if(

        myString.begin(),

        myString.end(),

        [](auto&& character)

        {

            return static_cast<bool>(isupper(character));

        });

    cout << "The number of capitals: " << numberOfCapitals << endl;

    auto numberOfLowerCase = count_if(

        myString.begin(),

        myString.end(),

        [](auto&& character)

        {

            return static_cast<bool>(islower(character));

        });

    cout << "The number of lower case letters: " << numberOfLowerCase << endl;

Chapter 8  the StL aLgorithmS



270

    auto numberOfAlphaNumerics = count_if(

        myString.begin(),

        myString.end(),

        [](auto&& character)

        {

            return static_cast<bool>(isalpha(character));

        });

     cout << "The number of alpha numeric characters:  

" << numberOfAlphaNumerics << endl;

    auto numberOfPunctuationMarks = count_if(

        myString.begin(),

        myString.end(),

        [](auto&& character)

        {

            return static_cast<bool>(ispunct(character));

        });

    cout  << "The number of punctuation marks: " << numberOfPunctuationMarks 

<< endl;

    auto numberOfWhiteSpaceCharacters = count_if(

        myString.begin(),

        myString.end(),

        [](auto&& character)

        {

            return static_cast<bool>(isspace(character));

        });

     cout << "The number of white space characters:  

" << numberOfWhiteSpaceCharacters << endl;

    return 0;

}

The predicates can be seen being passed to the count_if function using a lambda 

in Listing 8-12. The lambda is necessary for the count_if template to be properly 

satisfied that the function being supplied is a predicate that returns a bool. The count_if 

function will return the number of times the supplied function returns true. You can see 

the result of the different calls to count_if in Figure 8-6.

Chapter 8  the StL aLgorithmS



271

The string supplied in Listing 8-12 is fairly simple so it’s easy to confirm that the 

character predicates are working as expected. You can cross-check the results from 

Figure 8-6 to confirm this is the case.

 Recipe 8-5. Finding Values in a Sequence
 Problem
You may wish to find an iterator to the first element in a sequence that matches a specific 

value.

 Solution
The STL provides the find function to retrieve iterators to the first element in a sequence 

that matches a supplied value.

 How It Works
The find function can be used to retrieve an iterator to the first element that matches a 

value that you supply. You can use this to walk along a sequence from beginning to end. 

Listing 8-13 shows how you can use this along with a while loop to move along an entire 

sequence.

Figure 8-6. The results from calling the code in Listing 8-12

Chapter 8  the StL aLgorithmS



272

Listing 8-13. Using find

#include <algorithm>

#include <iostream>

#include <string>

using namespace std;

int main(int argc, char* argv[])

{

    string myString{ "Bruce Sutherland" };

    auto found = find(myString.begin(), myString.end(), 'e');

    while (found != myString.end())

    {

        cout << "Found: " << *found << endl;

        found = find(found+1, myString.end(), 'e');

    }

    return 0;

}

The code in Listing 8-13 will print out the letter e twice as there are two of these in the 

string stored in the variable myString. The first call to find returns an iterator that points to 

the first instance of the character e in the string. The call inside the while loop then starts at the 

position immediately after that iterator. This causes the find function to search progressively 

through the supplied set of data and eventually reach the end. The while loop will terminate 

once this occurs. The code in Listing 8-13 generates the output shown in Figure 8-7.

Figure 8-7. The output generated by executing the code shown in Listing 8-13

Chapter 8  the StL aLgorithmS



273

 Recipe 8-6. Sorting Elements in a Sequence
 Problem
Sometimes you will have data in a container that has become out of order, and you wish 

to reorder that data.

 Solution
The STL provides the sort algorithm to reorder data in a sequence.

 How It Works
The sort function takes an iterator to the beginning of a sequence and an iterator to the 

end of a sequence. It will automatically sort the values between the iterators into an 

ascending numerical order. You can see code that demonstrates this in Listing 8-14.

Listing 8-14. Using the sort Algorithm

#include <algorithm>

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char* argv[])

{

    vector<int> myVector{ 10, 6, 4, 7, 8, 3, 9 };

    sort(myVector.begin(), myVector.end());

    for (auto&& element : myVector)

    {

        cout << element << ", ";

    }

    cout << endl;

    return 0;

}

The code in Listing 8-14 will reorder the values in myVector into ascending order. 

Figure 8-8 shows the output this code generates.

Chapter 8  the StL aLgorithmS



274

Figure 8-8. The myVector elements sorted into ascending order

If you wish to sort the data into a custom order, such as descending, then you 

must supply a predicate function to the sort algorithm. Listing 8-15 shows the use of a 

predicate to sort a numeric vector into descending order.

Listing 8-15. Using a Predicate with sort

#include <algorithm>

#include <iostream>

#include <vector>

using namespace std;

bool IsGreater(int left, int right)

{

    return left > right;

}

int main(int argc, char* argv[])

{

    vector<int> myVector{ 10, 6, 4, 7, 8, 3, 9 };

    sort(myVector.begin(), myVector.end(), IsGreater);

    for (auto&& element : myVector)

    {

        cout << element << ", ";

    }

    return 0;

}

Chapter 8  the StL aLgorithmS



275

The data in myVector in Listing 8-15 is the same as the data stored in Listing 8-14. 

The difference between the two listings is the use of the IsGreater function in Listing 8-15. 

This is passed to the sort function and is used to compare the values in myVector. The 

standard sort function will order values from lowest to highest as you saw in Figure 8-8. 

Figure 8-9 shows that the code in Listing 8-15 will order the numbers from highest 

to lowest.

Figure 8-9. The output generated by Listing 8-15 with numbers ordered from 
highest to lowest

 Recipe 8-7. Looking Up Values in a Set
 Problem
You want to look for values in an ordered set of data.

 Solution
The set container stores key values and is a handy tool to have available.

 How It Works
The find function will examine the set for the key you are searching for. If found, it 

returns a “true” which will execute the if statement; otherwise, the else is returned, 

meaning that no parts were found. This example also inserts a new record in the ordered 

set after initial creation. Try the code that demonstrates this in Listing 8-16.

Chapter 8  the StL aLgorithmS



276

Listing 8-16. Using an Ordered set.XE “sorting algorithm: : : : :”

//Example of simple lookup of an ordered set

#include <iostream>

#include <string>

#include <set>

using namespace std;

struct Inventory

{

    string Name;

    int SKU;

    string Description;

    float Price;

};

bool operator<(const Inventory& p1, const Inventory& p2)

{

    return p1.Name < p2.Name;

}

set<Inventory> items

{

    { "hammer", 100, "standard regular hammer", 10.00 },

    { "saw", 200,  "wood saw with plastic handle", 5.99 },

    { "nails", 300, "12 size nails, 10 ct.", 2.99 },

    { "saw", 400, "metal cutting saw", 13.99 }

};

int main()

{

    items.insert({ "glue", 500, "sticky", 1.99 });

    if (items.find({ "glue", 0, "", 0.0 }) != items.end())

        cout << "We have your part in stock!\n";

    else

        cout << "We could not find that part.\n";

    return 0;

}

Chapter 8  the StL aLgorithmS



277
© J. Burton Browning and Bruce Sutherland 2020 
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_9

CHAPTER 9

Templates
The Standard Template Library (STL) is written using a language feature provided by 

C++ called templates. Templates provide a method you can use to write generic code 

that can be specialized at compile time to create concrete functions and classes of 

varying types. The only requirement for template code is that output can be generated 

for all of the types used to specialize a template in your program. Put another way, you 

might have a template that compares three ints or three characters or three floats, but 

regardless it accepts three item types to compare. The rest of the chapter will further 

explain this valuable topic.

 Recipe 9-1. Creating a Template Function
 Problem
You would like to create a function that can be passed different types of parameters and 

return different types of values.

 Solution
It’s possible to use method overloading to supply different versions of a function for each 

type you wish to support, but this still limits you to functions with the types supplied.  

A better approach is to create a template function that can be specialized to work with 

any type.

 How It Works
C++ includes a template compiler that can be used to turn generic function definitions 

into concrete functions at compile time.



278

 Creating a Template Function

Templates allow you to write code without specifying concrete types. Code usually 

contains the types you wish to work with; Listing 9-1 shows a function written under 

these normal circumstances.

Listing 9-1. A Non-template Function

#include <iostream>

using namespace std;

int Add(int a, int b)

{

    return a + b;

}

int main(int argc, char* argv[])

{

    const int number1{ 1 };

    const int number2{ 2 };

    const int result{ Add(number1, number2) };

    cout << "The result of adding" << endl;

    cout << number1 << endl;

    cout << "to" << endl;

    cout << number2 << endl;

    cout << "is" << endl;

    cout << result;

    return 0;

}

The Add function in Listing 9-1 is a standard C++ function. It takes two int parameters 

and returns an int value. You could supply a float version of this function by copying 

the function and altering every reference to int so that it used a float instead. You could 

then do the same for string and any other types you wished the function to support. The 

problem with this approach is that you must duplicate the function for every type, even 

though the body of the function remains the same. An alternative solution is to use a 

template function. You can see a template version of Add in Listing 9-2.

Chapter 9  templates



279

Listing 9-2. A Template Version of Add

template <typename T>

T Add(const T& a, const T& b)

{

    return a + b;

}

As you can see, the template version of Add no longer uses the concrete type int. 

Instead, the function is defined inside a template block. The template keyword is used 

to tell the compiler that the next block of code should be treated as a template. This is 

followed by an angled bracket section (< >) that defines any types the template uses. 

This example defines a single template type, represented by the character T. T is then 

used to specify the return type and the types of both parameters being passed to the 

function.

Note It’s a good idea to pass parameters to template functions as const 
references. the initial implementation of Add passed int types by value, but 
there’s no guarantee that a template won’t be used by a type that would create a 
performance penalty when passed by value, such as a copied object.

Now that you have templatized the Add function, you can see in Listing 9-3 that the 

calling code in the main function is no different than that shown in Listing 9-1.

Listing 9-3. Calling the Template Add Function

#include <iostream>

using namespace std;

template <typename T>

T Add(const T& a, const T& b)

{

    return a + b;

}

int main(int argc, char* argv[])

{

Chapter 9  templates



280

    const int number1{ 1 };

    const int number2{ 2 };

    const int result{ Add(number1, number2) };

    cout << "The result of adding" << endl;

    cout << number1 << endl;

    cout << "to" << endl;

    cout << number2 << endl;

    cout << "is" << endl;

    cout << result;

    return 0;

}

Listing 9-3 contains a call to the Add function in exactly the same place as the code in 

Listing 9-1. This is possible because compilers can implicitly work out the correct type to 

use with a template.

 Explicit vs. Implicit Template Specialization

Sometimes you want to be explicit about the types your template can use. Listing 9-4 

shows an example of explicit template specialization.

Listing 9-4. Explicit and Implicit Template Specialization

#include <iostream>

using namespace std;

template <typename T>

T Add(const T& a, const T& b)

{

    return a + b;

}

template <typename T>

void Print(const T& value1, const T& value2, const T& result)

{

    cout << "The result of adding" << endl;

    cout << value1 << endl;

Chapter 9  templates



281

    cout << "to" << endl;

    cout << value2 << endl;

    cout << "is" << endl;

    cout << result;

    cout << endl << endl;

}

int main(int argc, char* argv[])

{

    const int number1{ 1 };

    const int number2{ 2 };

    const int intResult{ Add(number1, number2) };

    Print(number1, number2, intResult);

     const float floatResult{ Add(static_cast<float>(number1),  

static_cast<float>(number2)) };

    Print<float>(number1, number2, floatResult);

    return 0;

}

Listing 9-4 adds a template Print function that takes three templatized parameters. 

This function is called twice in the main function. The first time, the template type is 

deduced implicitly. This is possible because all three parameters passed to the function 

are of type int; therefore, the compiler works out that you intended to call an int 

version of the template. The second call to Print is explicit. This is achieved by adding 

angled brackets containing the type to use (in this case float) immediately after the 

function name. This is necessary due to the different types of variables being passed to 

the function. Here number1 and number2 are both of type int, but floatResult is of type 

float; as a result, the compiler can’t deduce the correct type to use with the template. 

Visual Studio generated the following error when I tried to compile this code using 

implicit specialization:

error C2782: 'void Print(const T &,const T &,const T &)' : template 

parameter 'T' is ambiguous

Chapter 9  templates



282

 Recipe 9-2. Partially Specializing a Template
 Problem
You have a template function that won’t compile with a specific type.

 Solution
You can create template overloads using partial template specialization.

 How It Works
The body of a template function contains code that requires implicit properties from the 

types you use to specialize that template. Consider the code in Listing 9-5.

Listing 9-5. A Template Function

#include <iostream>

using namespace std;

template <typename T>

T Add(const T& a, const T& b)

{

    return a + b;

}

template <typename T>

void Print(const T& value1, const T& value2, const T& result)

{

    cout << "The result of adding" << endl;

    cout << value1 << endl;

    cout << "to" << endl;

    cout << value2 << endl;

    cout << "is" << endl;

    cout << result;

    cout << endl << endl;

}

Chapter 9  templates



283

int main(int argc, char* argv[])

{

    const int number1{ 1 };

    const int number2{ 2 };

    const int intResult{ Add(number1, number2) };

    Print(number1, number2, intResult);

    return 0;

}

This code requires two implicit properties from the types used by the Add function 

and then the Print function. The Add function requires that the type used can also be 

used with the + operator. The Print function requires that the type used can be passed 

to the << operator. The main function uses these functions with int variables, so both of 

these conditions are met. If you were to use Add or Print with a class you created, then 

chances are that the compiler wouldn’t be able to use that class with the + or << operator.

Note the “proper” solution in this case is to add overloaded + and << operators 
so that the original code works as expected. this example shows how you can use 
partial specialization to achieve the same result.

You can easily update Listing 9-5 to use a simple class, as shown in Listing 9-6.

Listing 9-6. Using Templates with Classes

#include <iostream>

using namespace std;

class MyClass

{

private:

    int m_Value{ 0 };

public:

    MyClass() = default;

    MyClass(int value)

Chapter 9  templates



284

        : m_Value{ value }

    {

    }

    MyClass(int number1, int number2)

        : m_Value{ number1 + number2 }

    {

    }

    int GetValue() const

    {

        return m_Value;

    }

};

template <typename T>

T Add(const T& a, const T& b)

{

    return a + b;

}

template <typename T>

void Print(const T& value1, const T& value2, const T& result)

{

    cout << "The result of adding" << endl;

    cout << value1 << endl;

    cout << "to" << endl;

    cout << value2 << endl;

    cout << "is" << endl;

    cout << result;

    cout << endl << endl;

}

int main(int argc, char* argv[])

{

    const MyClass number1{ 1 };

Chapter 9  templates



285

    const MyClass number2{ 2 };

    const MyClass intResult{ Add(number1, number2) };

    Print(number1, number2, intResult);

    return 0;

}

The code in Listing 9-6 won’t compile. Your compiler won’t be able to find suitable 

operators that can be used with the MyClass type for + and <<. You can fix this problem 

by using partial template specialization, as shown in Listing 9-7.

Listing 9-7. Using Partial Template Specialization

#include <iostream>

using namespace std;

class MyClass

{

private:

    int m_Value{ 0 };

public:

    MyClass() = default;

    MyClass(int value)

        : m_Value{ value }

    {

    }

    MyClass(int number1, int number2)

        : m_Value{ number1 + number2 }

    {

    }

    int GetValue() const

    {

        return m_Value;

    }

Chapter 9  templates



286

};

template <typename T>

T Add(const T& a, const T& b)

{

    return a + b;

}

template <>

MyClass Add(const MyClass& myClass1, const MyClass& myClass2)

{

    return MyClass(myClass1.GetValue(), myClass2.GetValue());

}

template <typename T>

void Print(const T& value1, const T& value2, const T& result)

{

    cout << "The result of adding" << endl;

    cout << value1 << endl;

    cout << "to" << endl;

    cout << value2 << endl;

    cout << "is" << endl;

    cout << result;

    cout << endl << endl;

}

template <>

void Print(const MyClass& value1, const MyClass& value2, const MyClass& result)

{

    cout << "The result of adding" << endl;

    cout << value1.GetValue() << endl;

    cout << "to" << endl;

    cout << value2.GetValue() << endl;

    cout << "is" << endl;

    cout << result.GetValue();

    cout << endl << endl;

}

Chapter 9  templates



287

int main(int argc, char* argv[])

{

    const MyClass number1{ 1 };

    const MyClass number2{ 2 };

    const MyClass intResult{ Add(number1, number2) };

    Print(number1, number2, intResult);

    return 0;

}

The code in Listing 9-7 adds specialized versions of Add and Print. It does so by 

using an empty template-type specifier and the concrete MyClass types in the function 

signatures. You can see this in the Add function, where the parameters being passed are 

of type MyClass and the return value is of type MyClass. The partially specialized Print 

function also passes const references to MyClass variables. The template functions can 

still be used with variables such as ints and floats but now also explicitly support the 

MyClass type.

For the sake of completeness, Listing 9-8 shows a preferred implementation that 

adds + and << operator support to MyClass.

Listing 9-8. Adding + and << Operator Support to MyClass

#include <iostream>

using namespace std;

class MyClass

{

    friend ostream& operator <<(ostream& os, const MyClass& myClass);

private:

    int m_Value{ 0 };

public:

    MyClass() = default;

    MyClass(int value)

        : m_Value{ value }

    {

    }

Chapter 9  templates



288

    MyClass(int number1, int number2)

        : m_Value{ number1 + number2 }

    {

    }

    MyClass operator +(const MyClass& other) const

    {

        return m_Value + other.m_Value;

    }

};

ostream& operator <<(ostream& os, const MyClass& myClass)

{

    os << myClass.m_Value;

    return os;

}

template <typename T>

T Add(const T& a, const T& b)

{

    return a + b;

}

template <typename T>

void Print(const T& value1, const T& value2, const T& result)

{

    cout << "The result of adding" << endl;

    cout << value1 << endl;

    cout << "to" << endl;

    cout << value2 << endl;

    cout << "is" << endl;

    cout << result;

    cout << endl << endl;

}

Chapter 9  templates



289

int main(int argc, char* argv[])

{

    const MyClass number1{ 1 };

    const MyClass number2{ 2 };

    const MyClass intResult{ Add(number1, number2) };

    Print(number1, number2, intResult);

    return 0;

}

This code adds support for the + operator to MyClass directly. A function is also 

specified for the << operator that works along with the ostream type. This works because 

cout is compatible with ostream (which stands for output stream). This function signature 

is added as a friend of MyClass so that the function can access internal data from MyClass. 

You could also leave the GetValue accessor and not add the operator as a friend function. 

A friend function can access private and protected members even though it is out of scope, 

so it extends the functionality of only public and private access specifiers.

 Recipe 9-3. Creating Class Templates
 Problem
You would like to create a class that can store variables of different types without 

duplicating all the code.

 Solution
C++ allows for the creation of template classes that support abstract types.

 How It Works
You can define a class as a template using the template specifier. The template 

specifier takes types and values as parameters that the compiler uses to build a 

specialization of the template code. Listing 9-9 shows an example that uses an abstract 

type and value to construct a template class.

Chapter 9  templates



290

Listing 9-9. Creating a Template Class

#include <iostream>

using namespace std;

template <typename T, int numberOfElements>

class MyArray

{

private:

    T m_Array[numberOfElements];

public:

    MyArray()

        : m_Array{}

    {

    }

    T& operator[](const unsigned int index)

    {

        return m_Array[index];

    }

};

int main(int argc, char* argv[])

{

    const unsigned int ARRAY_SIZE{ 5 };

    MyArray<int, ARRAY_SIZE> myIntArray;

    for (unsigned int i{ 0 }; i < ARRAY_SIZE; ++i)

    {

        myIntArray[i] = i;

    }

    for (unsigned int i{ 0 }; i < ARRAY_SIZE; ++i)

    {

        cout << myIntArray[i] << endl;

    }

    cout << endl;

Chapter 9  templates



291

    MyArray<float, ARRAY_SIZE> myFloatArray;

    for (unsigned int i{ 0 }; i < ARRAY_SIZE; ++i)

    {

        myFloatArray[i] = static_cast<float>(i)+0.5f;

    }

    for (unsigned int i{ 0 }; i < ARRAY_SIZE; ++i)

    {

        cout << myFloatArray[i] << endl;

    }

    return 0;

}

The class MyArray creates a C-style array of type T and a number of elements. Both 

of these are abstract at the time you write the class and are specified at the time you use 

them in your code. You can now use the MyArray class to create an array of any size and 

containing any number of elements that can be represented by an int. You can see this 

in practice in the main function, where the MyArray class template is specialized to 

create an array of ints and an array of floats. Figure 9-1 shows the output generated 

when running this code: the two arrays contain different types of variables.

Figure 9-1. The output generated by running the code in Listing 9-9

Chapter 9  templates



292

Note the creation of an array template wrapper is a simple example that shows 
the foundation of the std::array template supplied by the stl. the stl version 
supports stl iterators and algorithms and is a better choice than writing your own 
implementation.

 Recipe 9-4. Creating Singletons
 Problem
You have a system, and you would like to create a single instance of it that you can access 

from many places in your application.

 Solution
You can use a template to create a Singleton base class.

 How It Works
The basis of the singleton is a class template. The Singleton class template contains a 

static pointer to an abstract type that can be used to represent any type of class you like. 

A byproduct of using a static pointer is that the instance of the class can be accessed 

from anywhere in your program. You should be careful not to abuse this, although it can 

be a useful property. Listing 9-10 shows how to create and use a Singleton template.

Listing 9-10. The Singleton Template

#include <cassert>

#include <iostream>

using namespace std;

template <typename T>

class Singleton

{

private:

    static T* m_Instance;

Chapter 9  templates



293

public:

    Singleton()

    {

        assert(m_Instance == nullptr);

        m_Instance = static_cast<T*>(this);

    }

    virtual ~Singleton()

    {

        m_Instance = nullptr;

    }

    static T& GetSingleton()

    {

        return *m_Instance;

    }

    static T* GetSingletonPtr()

    {

        return m_Instance;

    }

};

template <typename T>

T* Singleton<T>::m_Instance = nullptr;

class Manager

    : public Singleton < Manager >

{

public:

    void Print() const

    {

        cout << "Singleton Manager Successfully Printing!";

    }

};

Chapter 9  templates



294

int main(int argc, char* argv[])

{

    new Manager();

    Manager& manager{ Manager::GetSingleton() };

    manager.Print();

    delete Manager::GetSingletonPtr();

    return 0;

}

The Singleton class in Listing 9-10 is a template class that contains a private static 

pointer to the abstract type T. The Singleton constructor assigns a cast of this to the 

m_Instance variable. It’s possible to use a static_cast in this manner because you know 

that the type of the object will be the type supplied to the template. The class’s virtual 

destructor is responsible for setting m_Instance back to nullptr; there are also reference 

and pointer accessors to the instance.

Listing 9-10 then uses this template to create a Singleton-capable Manager class. It 

does so by creating a class that inherits from Singleton and passes its own type into the 

Singleton template parameter.

Note passing the type of a class into a template from which the class derives is 
known as the curiously recursive template pattern.

The main function creates a Manager using the new keyword. The Manager isn’t stored 

as a reference or pointer to the class. Although you could do this, it’s better to simply 

use the accessor to the Singleton from this point. You do so by using the static function 

syntax with the name of the derived class. The main function creates a reference to the 

Manager instance by calling the Manager::GetSingleton function.

The Singleton instance is deleted by calling delete on the value returned by 

Manager::GetSingletonPtr. This causes ~Singleton to be called, which clears the 

address stored in m_Instance and releases the memory used to store the instance.

Note this Singleton class is based on the implementation originally written by 
scott Bilas in Game Programming Gems (Charles river media, 2000).

Chapter 9  templates



295

 Recipe 9-5. Calculating Values at Compile Time
 Problem
You need to calculate complex values and would like to avoid computing them at runtime.

 Solution
Template metaprogramming takes advantage of the C++ template compiler to calculate 

values at compile time and save runtime performance for users.

 How It Works
Template metaprogramming can be a complex topic to understand. This complexity 

comes from the scope of the C++ template compiler’s capabilities. In addition to letting 

you carry out generic programming by abstracting types from functions and classes, the 

template compiler can also compute values.

Hashing data is a common method of comparing two sets of data for equality. 

It works by creating a hash of the data at the time of creation and comparing the 

hash to the runtime version of the data. You can use this method to detect changes 

in executables of data files when your program is being executed. The SDBM hash 

is a simple-to-implement hashing function; Listing 9-11 shows a normal function 

implementation of the SDBM hash algorithm.

Listing 9-11. The SDBM Hash Algorithm

#include <iostream>

#include <string>

using namespace std;

unsigned int SDBMHash(const std::string& key)

{

    unsigned int result{ 0 };

    for (unsigned int character : key)

    {

        result = character + (result << 6) + (result << 16) - result;

Chapter 9  templates



296

    }

    return result;

}

int main(int argc, char* argv[])

{

    std::string data{ "Bruce Sutherland" };

    unsigned int sdbmHash{ SDBMHash(data) };

    cout << "The hash of " << data << " is " << sdbmHash;

    return 0;

}

The SDBMHash function in Listing 9-11 works by iterating over the supplied data 

and calculating a result by manipulating each byte from the data set into a result 

variable. This functional version of SDBMHash is useful for creating a hash of data loaded 

at runtime, but here the data being supplied was known at compile time. You can 

optimize the execution speed of your program by replacing this function with a template 

metaprogram. Listing 9-12 does just that.

Listing 9-12. Replacing SDBMHash with a Template Metaprogram

#include <iostream>

using namespace std;

template <int stringLength>

struct SDBMCalculator

{

     constexpr static unsigned int Calculate(const char* const stringToHash, 

unsigned int& value)

    {

        unsigned int character{

            SDBMCalculator<stringLength - 1>::Calculate(stringToHash, value)

        };

        value = character + (value << 6) + (value << 16) - value;

        return stringToHash[stringLength - 1];

    }

Chapter 9  templates



297

     constexpr static unsigned int CalculateValue(const char* const 

stringToHash)

    {

        unsigned int value{};

         unsigned int character{ SDBMCalculator<stringLength>::Calculate 

(stringToHash, value) };

        value = character + (value << 6) + (value << 16) - value;

        return value;

    }

};

template<>

struct SDBMCalculator < 1 >

{

     constexpr static unsigned int Calculate(const char* const stringToHash, 

unsigned int& value)

    {

        return stringToHash[0];

    }

};

constexpr unsigned int sdbmHash{ SDBMCalculator<16>::CalculateValue("Bruce 

Sutherland") };

int main(int argc, char* argv[])

{

    cout << "The hash of Bruce Sutherland is " << sdbmHash << endl;

    return 0;

}

You can immediately see that the code in Listing 9-12 looks much more complicated 

than that in Listing 9-11. The syntax required to write template metaprograms isn’t the 

nicest to read. The main function is now a single line of code. The hash value is stored 

in a constant, and no call is made to any of the template functions. You can test this 

by placing a breakpoint in the template functions and running a release build of your 

program.

Chapter 9  templates



298

The template metaprogram in Listing 9-12 works by using recursion. The length of 

the data to be hashed is supplied to the template parameter and can be seen when the 

sdbmHash variable is initialized. Here, 16 is passed to the template, which is the length 

of the string “Bruce Sutherland”. The template compiler recognizes that it has been 

supplied with data that it can evaluate at compile time, and therefore it automatically 

calls the Calculate metaprogram function in the CalculateValue function. This 

recursion occurs until the terminator is hit. The terminator is the partially specialized 

version of Calculate that is written to be called once the length of the data to be 

hashed is 1. When the terminator is reached, the recursive calls begin to unwind, and 

the compiler eventually stores the result of the template metaprogram in the sdbmHash 

variable. You can see the template metaprogram in action using a debug build. The 

compiler won’t optimize out the template metaprogram in a debug build, which allows 

you to test your code and step through it to see the results. Figure 9-2 shows the output 

from running the code in Listing 9-12.

Figure 9-2. The output generated by the code in Listing 9-12, showing the SDBM 
hash of the string “Bruce Sutherland”

Chapter 9  templates



299

 Recipe 9-6. Calculating Values at Compile Time
 Problem
You would like to extend your knowledge of templates to include the new C++20 feature 

of Concepts.

 Solution
MS Visual Studio version 19.3 and above support the new C++20 feature of Concepts. 

Concepts extend the capability of templates.

 How It Works
Templates, as you have seen, enforce constraints which specify arguments a template 

requires, as part of the behavior to which templates are designed to select overloaded 

functions and so on. As such, C++20 has a new feature, Concepts, which are named sets 

of requirements. Each concept is a predicate or assertion which is evaluated at compile 

time and is used as a constraint on the interface of a template that it meets a condition.

Try the next example using MS Visual Studio 16.3.4 (a minimum of this version) and 

make sure you have changed the language standard to C++20/Preview working standard. 

The program checks to see if something is “hashable” or able to be broken down and 

stored in an array. If not, it provides the appropriate message. The fact that it is hashable 

or not is the constraint.

An important note on building this application: Visual Studio 16.3.4 will give 

IntelliSense syntax errors on your IDE. This is due to the very new nature of Concepts 

being just integrated with Visual Studio. As such IntelliSense is not aware of the function, 

yet it does work and will compile fine. Build and Compile to make the executable 

Windows application and run it from a command prompt. Do not build the application 

via Debug: Start Without Debugging. Use Build and Compile to make the executable. 

After running the program from the command prompt, uncomment // foo(foobar{}); 

// not hashable and recompile. You will note that the error states that “associated 

constraints are not satisfied” from the concept you just wrote!

Chapter 9  templates



300

Listing 9-13. Example of Concepts C++ 20 Feature

//Simple example of concepts

#include <iostream>

#include <string>

#include <cstddef>

#include <concepts>

using namespace std;

template<typename T>

concept Hashable = requires(T a)

{

    { hash<T>{}(a) }->convertible_to<size_t>;

};

struct foobar {};/// this one will not hash!

template<Hashable T>

void foo(T);

int main() {

     foo("abc 123 this is easy!"s); // this is hashable

     //uncomment the following and it will error since this

     //object is not hashable as the string of chars was.

     // foo(foobar{}); // not hashable

    return 0;

};

Chapter 9  templates



301
© J. Burton Browning and Bruce Sutherland 2020 
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_10

CHAPTER 10

Memory
Memory is a fundamentally important resource in modern computers. All the data 

that your program operates on will at some point or another be stored into RAM to 

be retrieved by the processor at a later time when required to complete part of your 

algorithms.

Because of this, it’s vitally important for a C++ programmer to understand how 

and when your program uses different types of memory. This chapter introduces three 

different memory spaces, how they can be utilized, and the potential performance 

impacts that each may cause on your programs.

 Recipe 10-1. Using Static Memory
 Problem
You have an object that you would like to be able to access anywhere in your code.

 Solution
Static memory can be thought of as global variables. These variables and their values can 

be accessed by any part of your program at any time, or put another way, they do not go 

out of scope for the duration of the program.

 How It Works
The compiler you use automatically adds memory in static memory space for any 

globals you create. The address of static variables can usually be found in the address 

space of your executable and as such can be accessed by any part of your program at any 

time. Listing 10-1 shows an example of an unsigned integer global variable.



302

Listing 10-1. An Unsigned Integer Global Variable

#include <iostream>

using namespace std;

unsigned int counter = 0;

void IncreaseCounter()

{

    counter += 10;

    cout << "counter is " << counter << endl;

}

int main()

{

    counter += 5;

    cout << "counter is " << counter << endl;

    IncreaseCounter();

    return 0;

}

The variable counter in Listing 10-1 is declared with global scope. The result is that 

the variable can be accessed globally in your program. You can see this in effect in the 

main function and in the IncreaseCounter function. Both of these functions increase the 

value of the same global counter variable. The result shown in Figure 10-1 confirms that 

this is the case.

Figure 10-1. Output showing the result of changing a global variable

Chapter 10  MeMory



303

Global variables may be useful under certain circumstances but can cause many 

problems in other situations. Recipe 9-4 showed the use of a static class member variable 

to create a Singleton object. A static member is also a type of global variable and as such 

is accessible from anywhere in your program. A general problem with static variables is 

their order of creation. The C++ standard doesn’t guarantee that static variables will be 

initialized in a given order. This can cause programs that use many dependent globals to 

run into problems and crashes as a result of an unexpected initialization order. Global 

variables also cause many problems in multithreaded programming because multiple 

threads can access the static address space at the same time with unexpected results. It’s 

generally recommended that you keep the usage of global variables to a minimum. It is 

also important to note that local variables with the same name will have precedence and 

mask globals with the same name as Listing 10-1B will show.

Listing 10-1B. Masking a Global Variable 

#include <iostream>

using namespace std;

unsigned int counter = 0;

void IncreaseCounter()

{

    counter += 10;

    cout << "Global counter is " << counter << endl;

}

int main()

{

    counter += 5;

    cout << "counter is " << counter << endl;

    IncreaseCounter();

    int counter = 999;

    cout << "Local counter is " << counter << endl;

    IncreaseCounter();

    cout << "Local counter is " << counter << endl;

    return 0;

}

Chapter 10  MeMory



304

 Recipe 10-2. Using Stack Memory
 Problem
You require memory for temporary variables for doing work within functions.

 Solution
A C++ program can use a growing and shrinking stack to provide temporary space for 

local variables.

 How It Works
Because all variables in a C++ program are required to be backed by memory, temporary 

space is created on the fly for variables defined within functions. This is achieved using a 

stack. When a function is called, the compiler adds machine code that allocates enough 

stack space to store all the variables needed by a function.

The stack is manipulated using two registers (on x86-based CPUs) called esp and 

ebp. esp is the stack pointer, and ebp is the base pointer. The base pointer is used to store 

the address of the previous stack frame. This allows the current function to return to the 

correct stack when its execution is over. The esp register is used to store the current top of 

the stack; this allows the ebp to be updated if the current function calls another function.

The process of creating enough space on the program stack for local variables is 

shown in Listing 10-2.

Listing 10-2. x86 Assembly Showing the Creation of a 20 Byte Stack Frame

push ebp

mov ebp, esp

sub esp 20

The three lines of x86 Assembly language in Listing 10-2 show the basics of stack 

frame creation in x86. First, the push instruction is used to move the current base pointer 

onto the stack. The push instruction moves esp down far enough to store the value of ebp 

and then moves that value onto the stack. The current value of esp is then moved into 

ebp, moving the base pointer up to the beginning of the current stack frame. The last 

instruction subtracts the size of the stack frame from esp. It should be clear from this that 

a stack in an x86-based computer grows down toward 0.

Chapter 10  MeMory



305

A program then accesses each of the variables in the stack using an offset from the 

base pointer. You can see these three lines in the disassembly from Visual Studio shown 

in Figure 10-2.

Figure 10-2. Disassembly from an x86 program, showing the creation of a stack frame

Listing 10-3 shows the code from which the disassembly in Figure 10-2 is taken.

Listing 10-3. Simple Program Used to View the Disassembly

#include <iostream>

using namespace std;

void Function()

{

    int a = 0;

    cout << a;

}

Chapter 10  MeMory



306

int main()

{

    Function();

    return 0;

}

All the local variables that you create are allocated on the stack. Class variables’ 

constructors are called at the point they’re created, and their destructors are called when 

the stack is being destroyed. Listing 10-4 shows a simple program that consists of a class 

with a constructor and a destructor.

Listing 10-4. Class Variables on the Stack

#include <iostream>

using namespace std;

class MyClass

{

public:

    MyClass()

    {

        cout << "Constructor called!" << endl;

    }

    ~MyClass()

    {

        cout << "Destructor called!" << endl;

    }

};

int main()

{

    MyClass myClass;

    cout << "Function body!" << endl;

    return 0;

}

Chapter 10  MeMory



307

The constructor of the variable myClass in Listing 10-4 is called at the point of 

initialization. The rest of the function body is executed, and the class destructor is called 

when the variable goes out of scope. The myClass variable goes out of scope after the 

return statement. This happens because the local variables in the function may be 

needed to calculate the value returned from the function. You can see the output from 

Listing 10-4 in Figure 10-3.

Figure 10-3. The output from running the code in Listing 10-4

The code in Listing 10-4 shows the creation and destruction of class variables in a 

function. It’s also possible to control the creation of stack frames in C++. You do so by 

using curly braces to create a new scope within an existing scope. Listing 10-5 creates 

several different scopes, each with their own local variables.

Listing 10-5. Creating Multiple Scopes

#include <iostream>

using namespace std;

class MyClass

{

private:

    static int m_Count;

    int m_Instance{ -1 };

Chapter 10  MeMory



308

public:

    MyClass()

        : m_Instance{m_Count++}

    {

        cout << "Constructor called on " << m_Instance << endl;

    }

    ~MyClass()

    {

        cout << "Destructor called on " << m_Instance << endl;

    }

};

int MyClass::m_Count{ 0 };

int main(int argc, char* argv[])

{

    MyClass myClass1;

    {

        MyClass myClass2;

        {

            MyClass myClass3;

        }

    }

    return 0;

}

The code in Listing 10-5 shows the use of curly braces to create multiple stack frames 

within a single function. The class MyClass contains a static variable m_Count that is 

used to track the different instances. This variable is post-incremented every time a 

new instance is created, and the pre-incremented value is stored in m_Instance. The 

destructor is called on local variables each time a scope is closed. The results are shown 

in Figure 10-4.

Chapter 10  MeMory



309

 Recipe 10-3. Using Heap Memory
 Problem
You need to create a large pool of memory that outlives a single local scope.

 Solution
C++ provides the new and delete operators that allow you to manage large pools of 

dynamically allocated memory..

 How It Works
Dynamically allocated memory is important to many long-running programs. It’s 

essential for programs that allow users to generate their own content or load resources 

from files. It’s usually very difficult if not impossible to provide enough memory for 

programs such as web browsers that are used to stream videos or social media content 

without the use of dynamically allocated memory, because you’re unable to determine 

your memory requirements at the time of creating your program.

You can allocate dynamic memory in an address space commonly called the 

heap using the C++ new and delete operators. The new operator returns a pointer to 

dynamically allocated memory that is large enough to store the type of variable being 

created. Listing 10-6 shows how the new and delete operators are used.

Figure 10-4. Output showing the destruction order of objects with multiple scopes

Chapter 10  MeMory



310

Listing 10-6. Using new and delete

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

    int* pInt{ new int };

    *pInt = 100;

    cout << hex << "The address at pInt is " << pInt << endl;

    cout << dec << "The value at pInt is " << *pInt << endl;

    delete pInt;

    pInt = nullptr;

    return 0;

}

This code uses the new operator to allocate enough memory to store a single int 

variable. A pointer is returned from new and stored in the variable pInt. The memory 

returned is uninitialized, and it’s generally a good idea to initialize this memory at the 

point of creation. You can see this in main, where the pointer dereference operator is 

used to initialize the memory pointed to by pInt to 100.

Once you have allocated memory from the heap, it’s your responsibility to ensure 

that it’s returned correctly to the operating system. Failing to do so results in a memory 

leak. Memory leaks can cause problems for users and often result in poor computer 

performance, memory fragmentation, and, in severe cases, computer crashes due to 

insufficient memory.

You return heap memory to the operating system using the delete operator. This 

operator tells the system that you no longer need all the memory that was returned from 

the initial call to new. Your program should no longer attempt to use the memory returned 

by new after the call to delete has been made. Doing so causes undefined behavior that 

more often than not results in a program crash. Crashes caused by access to freed memory 

are usually very difficult to find, because they manifest themselves in places that you can’t 

link to the offending code in any way. You can ensure that your program doesn’t access 

deleted memory by setting any pointers to the memory to nullptr.

The output from Listing 10-6 is shown in Figure 10-5.

Chapter 10  MeMory



311

The new and delete operators in Listing 10-6 are used to allocate single objects. 

There are also new and delete array operators for allocating multiples of the same object. 

Listing 10-7 shows the array new and delete operators in action.

Listing 10-7. The Array new and delete Operators

#include <iostream>

using namespace std;

class MyClass

{

private:

    int m_Number{ 0 };

public:

    MyClass() = default;

    ~MyClass()

    {

        cout << "Destroying " << m_Number << endl;

    }

    void operator=(const int value)

    {

        m_Number = value;

    }

};

Figure 10-5. The output showing the address of and value stored in dynamically 
allocated memory from Listing 10-6

Chapter 10  MeMory



312

int main(int argc, char* argv[])

{

    const unsigned int NUM_ELEMENTS{ 5 };

    MyClass* pObjects{ new MyClass[NUM_ELEMENTS] };

    pObjects[0] = 100;

    pObjects[1] = 45;

    pObjects[2] = 31;

    pObjects[3] = 90;

    pObjects[4] = 58;

    delete[] pObjects;

    pObjects = nullptr;

    return 0;

}

The code in Listing 10-7 creates an array of objects. The MyClass class consists of an 

overloaded assignment operator to initialize the created objects and a destructor that 

shows the destruction order of the elements in the array. Using the standard delete 

operator on an array of objects can cause various problems for your program, because 

the standard delete operator only calls the class destructor on the first element of the 

array. If your class had allocated its own memory, then each of the subsequent objects 

in the array would leak their memory. Using the delete array operator ensures that each 

of the destructors in your array is called. You can see that each of the destructors for the 

elements in the array is called in Figure 10-6.

Figure 10-6. The output showing that each of the destructors has been called 
when using the array delete operator

Chapter 10  MeMory



313

 Recipe 10-4. Using Automated Shared Memory
 Problem
You have an object that can be shared by multiple systems with different lifespans.

 Solution
C++ provides the shared_ptr template that can automatically delete memory when it’s 

no longer needed.

 How It Works
Dynamically allocated memory in C++ must be deleted by a programmer. This means 

you’re responsible for ensuring that your program behaves as a user expects at all times. 

C++ provides the shared_ptr template, which tracks how many places in your program 

are sharing access to the same memory and can delete that memory when it’s no longer 

needed. Listing 10-8 shows how you can create a shared pointer.

Listing 10-8. Creating a Shared Pointer

#include <iostream>

#include <memory>

using namespace std;

class MyClass

{

private:

    int m_Number{ 0 };

public:

    MyClass(int value)

        : m_Number{ value }

    {

    }

Chapter 10  MeMory



314

    ~MyClass()

    {

        cout << "Destroying " << m_Number << endl;

    }

    void operator=(const int value)

    {

        m_Number = value;

    }

    int GetNumber() const

    {

        return m_Number;

    }

};

using SharedMyClass = shared_ptr< MyClass >;

int main(int argc, char* argv[])

{

    SharedMyClass sharedMyClass{ new MyClass(10) };

    return 0;

}

This code contains a class, MyClass, that has a private integer member variable. 

There is also a type alias used to represent a shared_ptr to a MyClass object. This type 

alias is used to make writing your code easier and more maintainable in the long term. 

The shared_ptr template itself takes a parameter to the type of object that you would 

like to share around your program. In this case, you want to share dynamic objects of 

type MyClass.

An instance of SharedMyClass is created on the first line of the main function. This 

instance is initialized with a dynamically allocated MyClass object. The MyClass object 

itself is initialized with the value 10. The only other code in the body of main is the return 

statement. Despite this, Figure 10-7 shows that the destructor of MyClass has been called 

on the object stored in sharedMyClass.

Chapter 10  MeMory



315

The shared_ptr template automatically calls delete on the memory it wraps 

once the last instance of that shared_ptr goes out of scope. In this case, there is only a 

single shared_ptr in the main function; therefore, the MyClass object is deleted, and its 

destructor is called after the function return statement is executed.

Listing 10-9 shows how you can use a shared_ptr to transfer ownership of shared 

memory from one function to another and still maintain this automated cleanup code.

Listing 10-9. Transferring Dynamic Memory Between Functions

#include <iostream>

#include <memory>

using namespace std;

class MyClass

{

private:

    int m_Number{ 0 };

public:

    MyClass(int value)

        : m_Number{ value }

    {

    }

Figure 10-7. Output showing that the MyClass destructor has been called in 
Listing 10-8

Chapter 10  MeMory



316

    ~MyClass()

    {

        cout << "Destroying " << m_Number << endl;

    }

    void operator=(const int value)

    {

        m_Number = value;

    }

    int GetNumber() const

    {

        return m_Number;

    }

};

using SharedMyClass = shared_ptr< MyClass >;

void ChangeSharedValue(SharedMyClass sharedMyClass)

{

    if (sharedMyClass != nullptr)

    {

        *sharedMyClass = 100;

    }

}

int main(int argc, char* argv[])

{

    SharedMyClass sharedMyClass{ new MyClass(10) };

    ChangeSharedValue(sharedMyClass);

    return 0;

}

Listing 10-9 creates a SharedMyClass instance pointing to a MyClass object initialized 

with the value 10. The sharedMyClass instance is then passed by value into the 

ChangeSharedValue function. Passing a shared_ptr by value makes a copy of the pointer. 

Chapter 10  MeMory



317

You now have two instances of the SharedMyClass template, both pointing to the same 

MyClass instance. The destructor for MyClass isn’t called until both of the shared_ptr 

instances have gone out of scope. Figure 10-8 shows that the initial value of the MyClass 

instance was changed and that the destructor was only called a single time.

Figure 10-8. Output showing that the shared object’s stored value was changed 
and destroyed a single time

 Recipe 10-5. Creating Single-Instance Dynamic 
Objects
 Problem
You have an object that you would like to pass around, but you only wish to have a single 

instance of that object.

 Solution
C++ provides the unique_ptr template, which allows a pointer instance to be transferred 

but not shared.

 How It Works
unique_ptr is a template that can be used to store a pointer to dynamically allocated 

memory. It differs from shared_ptr in that there can only be a single reference to the 

dynamic memory at a time. Listing 10-10 shows how to create a unique_ptr.

Chapter 10  MeMory



318

Listing 10-10. Creating a unique_ptr

#include <iostream>

#include <memory>

using namespace std;

class MyClass

{

private:

    int m_Number{ 0 };

public:

    MyClass(int value)

        : m_Number{ value }

    {

    }

    ~MyClass()

    {

        cout << "Destroying " << m_Number << endl;

    }

    void operator=(const int value)

    {

        m_Number = value;

    }

    int GetNumber() const

    {

        return m_Number;

    }

};

using UniqueMyClass = unique_ptr< MyClass >;

void CreateUniqueObject()

{

    UniqueMyClass uniqueMyClass{ make_unique<MyClass>(10) };

}

Chapter 10  MeMory



319

int main(int argc, char* argv[])

{

    cout << "Begin Main!" << endl;

    CreateUniqueObject();

    cout << "Back in Main!" << endl;

    return 0;

}

The unique_ptr in Listing 10-10 is created inside a function to demonstrate that the 

instance of the dynamically created object is destroyed when the unique_ptr goes out of 

scope. You can see this reflected in the output in Figure 10-9.

Figure 10-9. Output showing the destruction of a dynamically allocated object 
stored in a unique_ptr

Listing 10-10 showed that a unique_ptr can be used to automatically delete 

dynamically allocated memory when it’s no longer needed. It didn’t show that a unique_

ptr can be used to transfer ownership of a single object between different scopes. This is 

shown in Listing 10-11.

Listing 10-11. Transferring Dynamically Allocated Memory Between unique_

ptr Instances

#include <iostream>

#include <memory>

using namespace std;

Chapter 10  MeMory



320

class MyClass

{

private:

    int m_Number{ 0 };

public:

    MyClass(int value)

        : m_Number{ value }

    {

    }

    ~MyClass()

    {

        cout << "Destroying " << m_Number << endl;

    }

    void operator=(const int value)

    {

        m_Number = value;

    }

    int GetNumber() const

    {

        return m_Number;

    }

};

using UniqueMyClass = unique_ptr< MyClass >;

void CreateUniqueObject(UniqueMyClass& referenceToUniquePtr)

{

    UniqueMyClass uniqueMyClass{ make_unique<MyClass>(10) };

    cout << hex << showbase;

    cout << "Address in uniqueMyClass " << uniqueMyClass.get() << endl;

    referenceToUniquePtr.swap(uniqueMyClass);

    cout << "Address in uniqueMyClass " << uniqueMyClass.get() << endl;

Chapter 10  MeMory



321

}

int main(int argc, char* argv[])

{

    cout << "Begin Main!" << endl;

    UniqueMyClass uniqueMyClass;

    CreateUniqueObject(uniqueMyClass);

    cout << "Address in main's uniqueMyClass " << uniqueMyClass.get() << endl;

    cout << dec << noshowbase << "Back in Main!" << endl;

    return 0;

}

The code in Listing 10-11 creates an instance of MyClass in the CreateUniqueObject 

function. That function also takes a reference to another unique_ptr<MyClass> that 

is used to transfer the dynamically allocated object out of the function. The transfer is 

achieved using the swap function supplied by the unique_ptr template. The MyClass 

destructor is called at the end of the main function when all the UniqueMyClass instances 

have gone out of scope. You can see the transfer of memory and the destruction order of 

the MyClass instance in Figure 10-10.

Figure 10-10. The output showing the transfer of a unique_ptr and the 
destruction of its dynamically allocated memory

Chapter 10  MeMory



322

 Recipe 10-6. Creating Smart Pointers
 Problem
You would like to use automated pointer management on systems that don’t support 

shared_ptr and unique_ptr.

 Solution
You can use member variables in a class to track how many references to the data are 

currently in use.

 How It Works
The unique_ptr and shared_ptr templates were added to the STL in C++11. Some 

programs are written without access to C++11 or without access to the STL. In this 

situation, you can write your own smart pointer implementation. To begin, you need 

to create an object that can be used to reference-count. Reference counting works by 

increasing an integer every time you make a copy of the object you would like to count. 

Listing 10-12 shows the code for a reference-counting class.

Listing 10-12. The Code for a Reference-Counting Class

class ReferenceCount

{

private:

    int m_Count{ 0 };

public:

    void Increment()

    {

        ++m_Count;

    }

    int Decrement()

    {

        return --m_Count;

    }

Chapter 10  MeMory



323

    int GetCount() const

    {

        return m_Count;

    }

};

The ReferenceCount class is pretty basic. It simply consists of a member variable to 

keep track of a count and methods to increase and decrease that count. The GetCount 

method is there to provide access to the count, to allow for printing during debugging.

The ReferenceCount class is then used in a template class called SmartPointer. This 

class provides a template parameter you can use to specialize the template with the type 

of object you want to be automatically tracked. The class has a member variable that is 

a pointer to the object being tracked and another pointer to a ReferenceCount object. 

The ReferenceCount object is accessed through a pointer so that it can be shared among 

multiple SmartPointer objects that are all accessing the same dynamically allocated 

object. You can see the code for SmartPointer in Listing 10-13.

Listing 10-13. The SmartPointer Class

template <typename T>

class SmartPointer

{

private:

    T* m_Object{ nullptr };

    ReferenceCount* m_ReferenceCount{ nullptr };

public:

    SmartPointer()

    {

    

    }

    SmartPointer(T* object)

        : m_Object{ object }

        , m_ReferenceCount{ new ReferenceCount }

    {

        m_ReferenceCount->Increment();

Chapter 10  MeMory



324

        cout << "Created smart pointer! Reference count is "

            << m_ReferenceCount->GetCount() << endl;

    }

    virtual ~SmartPointer()

    {

        if (m_ReferenceCount)

        {

            int decrementedCount = m_ReferenceCount->Decrement();

            cout << "Destroyed smart pointer! Reference count is "

                << decrementedCount << endl;

            if (decrementedCount == 0)

            {

                delete m_ReferenceCount;

                delete m_Object;

            }

            m_ReferenceCount = nullptr;

            m_Object = nullptr;

        }

    }

    SmartPointer(const SmartPointer<T>& other)

        : m_Object{ other.m_Object }

        , m_ReferenceCount{ other.m_ReferenceCount }

    {

        m_ReferenceCount->Increment();

        cout << "Copied smart pointer! Reference count is "

            << m_ReferenceCount->GetCount() << endl;

    }

    SmartPointer<T>& operator=(const SmartPointer<T>& other)

    {

        if (this != &other)

        {

            if (m_ReferenceCount && m_ReferenceCount->Decrement() == 0)

            {

                delete m_ReferenceCount;

Chapter 10  MeMory



325

                delete m_Object;

            }

            m_Object = other.m_Object;

            m_ReferenceCount = other.m_ReferenceCount;

            m_ReferenceCount->Increment();

        }

        cout << "Assigning smart pointer! Reference count is "

            << m_ReferenceCount->GetCount() << endl;

        return *this;

    }

    SmartPointer(SmartPointer<T>&& other)

        : m_Object{ other.m_Object }

        , m_ReferenceCount{ other.m_ReferenceCount }

    {

        other.m_Object = nullptr;

        other.m_ReferenceCount = nullptr;

    }

    SmartPointer<T>& operator=(SmartPointer<T>&& other)

    {

        if (this != &other)

        {

            m_Object = other.m_Object;

            m_ReferenceCount = other.m_ReferenceCount;

            other.m_Object = nullptr;

            other.m_ReferenceCount = nullptr;

        }

    }

    T& operator*()

    {

        return *m_Object;

    }

};

Chapter 10  MeMory



326

You can see the member variables that are used to store the dynamically allocated 

object and the ReferenceCount object in the SmartPointer class in Listing 10-13. The 

m_Object pointer is a pointer to an abstract templatized type; this allows the use of any 

type to be tracked by the SmartPointer template.

The first public methods in SmartPointer are the constructors. A new SmartPointer 

can be created either as a null pointer or pointing to an already-existing object. A null 

SmartPointer has both m_Object and m_ReferenceCount set to nullptr. The other 

constructor takes a pointer to T that causes a SmartPointer to be initialized. In this case, 

a new ReferenceCount object is created to track the use of the object being passed to 

the constructor. The side effect of this is that a new SmartPointer can only be created 

when initialized with an object pointer; a null SmartPointer can only be assigned from 

another SmartPointer object.

The SmartPointer destructor checks whether a ReferenceCount object is being held 

by the class (remember that it could be nullptr in a null SmartPointer). If a pointer to 

a ReferenceCount object is held, its count is decremented. If the count has reached 0, 

then you know this SmartPointer is the last to be referencing this dynamically allocated 

object. In this case, you’re free to delete both the ReferenceCount object and the object 

being held by the SmartPointer.

The next method in the SmartPointer is the copy constructor. This method simply 

copies the m_Object and m_ReferenceCount pointers from the parameter passed to the 

method into the object being copy-constructed. It then makes sure the reference count is 

incremented. The call to Increment is essential because you now have two SmartPointer 

objects that are referencing the same dynamically allocated object. Missing the call to 

Increment here would cause delete to be called in the destructor of the first of these 

SmartPointers to go out of scope.

The assignment operator has a slightly different job than the copy constructor. In the 

copy constructor, you’re free to assume that the existing object is new and therefore not 

already pointing to an existing object or ReferenceCount instance. This isn’t true in the 

assignment operator; therefore, it’s necessary to account for this occurrence. You can 

see that the assignment operator first checks to ensure that the operator isn’t assigning 

an object to itself; in this case, there would be no work to be done. If a new object is 

being assigned, then there is a check to see whether the ReferenceCount pointer is valid. 

If it is, then Decrement is called; and in the case where this returns 0, the existing m_

ReferenceCount and m_Object pointers are deleted. The m_Object and m_ReferenceCount 

pointers are always copied from the parameter to the assignment operator method into the 

variables of this, and Increment is called on the new ReferenceCount object.

Chapter 10  MeMory



327

Next in the class are a move constructor and move assignment operator. These are 

present to conform with the C++ rule of five. This is a programming guideline that 

suggests that in any case where you overload the copy constructor or assignment 

operator, you should overload all five of the destructor, copy constructor, assignment 

operator, move constructor, and move assignment operator. Move operations are 

destructive in nature, so no calls to Increment or Decrement are made. These are 

unnecessary because the m_Object and m_ReferenceCount pointers are set to nullptr 

on the parameter in both cases, meaning delete will never be called in their destructors. 

Supporting the move constructor and move assignment operator provides a more efficient 

method to pass SmartPointer objects into and out of functions.

The final method provides access to the data stored by the SmartPointer object. This 

could result in crashes if this method is called on null SmartPointer objects. You should 

take care to only try to dereference valid SmartPointer instances.

Note Listing 10-14 contains debug code to allow the printing of object state for 
the purposes of illustration. this code can be removed from a working solution.

Listing 10-14 shows a complete working example of the SmartPointer class in use.

Listing 10-14. Using SmartPointer

#include <iostream>

using namespace std;

class ReferenceCount

{

private:

    int m_Count{ 0 };

public:

    void Increment()

    {

        ++m_Count;

    }

    int Decrement()

    {

Chapter 10  MeMory



328

        return --m_Count;

    }

    int GetCount() const

    {

        return m_Count;

    }

};

template <typename T>

class SmartPointer

{

private:

    T* m_Object{ nullptr };

    ReferenceCount* m_ReferenceCount{ nullptr };

public:

    SmartPointer()

    {

    }

    SmartPointer(T* object)

        : m_Object{ object }

        , m_ReferenceCount{ new ReferenceCount }

    {

        m_ReferenceCount->Increment();

         cout << "Created smart pointer! Reference count is "  

<< m_ReferenceCount->GetCount() << endl;

    }

    virtual ~SmartPointer()

    {

        if (m_ReferenceCount)

        {

            int decrementedCount = m_ReferenceCount->Decrement();

             cout << "Destroyed smart pointer! Reference count is "  

<< decrementedCount << endl;

Chapter 10  MeMory



329

            if (decrementedCount <= 0)

            {

                delete m_ReferenceCount;

                delete m_Object;

            }

            m_ReferenceCount = nullptr;

            m_Object = nullptr;

        }

    }

    SmartPointer(const SmartPointer<T>& other)

        : m_Object{ other.m_Object }

        , m_ReferenceCount{ other.m_ReferenceCount }

    {

        m_ReferenceCount->Increment();

         cout << "Copied smart pointer! Reference count is "  

<< m_ReferenceCount->GetCount() << endl;

    }

    SmartPointer<T>& operator=(const SmartPointer<T>& other)

    {

        if (this != &other)

        {

            if (m_ReferenceCount && m_ReferenceCount->Decrement() == 0)

            {

                delete m_ReferenceCount;

                delete m_Object;

            }

            m_Object = other.m_Object;

            m_ReferenceCount = other.m_ReferenceCount;

            m_ReferenceCount->Increment();

        }

         cout << "Assigning smart pointer! Reference count is "  

<< m_ReferenceCount->GetCount() << endl;

Chapter 10  MeMory



330

        return *this;

    }

    SmartPointer(SmartPointer<T>&& other)

        : m_Object{ other.m_Object }

        , m_ReferenceCount{ other.m_ReferenceCount }

    {

        other.m_Object = nullptr;

        other.m_ReferenceCount = nullptr;

    }

    SmartPointer<T>& operator=(SmartPointer<T>&& other)

    {

        if (this != &other)

        {

            m_Object = other.m_Object;

            m_ReferenceCount = other.m_ReferenceCount;

            other.m_Object = nullptr;

            other.m_ReferenceCount = nullptr;

        }

    }

    T& operator*()

    {

        return *m_Object;

    }

};

struct MyStruct

{

public:

    int m_Value{ 0 };

    ~MyStruct()

    {

        cout << "Destroying MyStruct object!" << endl;

    }

};

Chapter 10  MeMory



331

using SmartMyStructPointer = SmartPointer< MyStruct >;

SmartMyStructPointer PassValue(SmartMyStructPointer smartPointer)

{

    SmartMyStructPointer returnValue;

    returnValue = smartPointer;

    return returnValue;

}

int main(int argc, char* argv[])

{

    SmartMyStructPointer smartPointer{ new MyStruct };

    (*smartPointer).m_Value = 10;

    SmartMyStructPointer secondSmartPointer = PassValue(smartPointer);

    return 0;

}

Listing 10-14 shows a MyStruct instance being passed between the main and 

PassValue functions using the SmartPointer template. A type alias is created to 

ensure that the type of the SmartPointer for MyStruct is valid and easily maintainable 

throughout. The code uses the constructor, copy constructor, and assignment operators 

from the SmartPointer template. The MyStruct object is automatically deleted only 

when the last of the SmartPointer instances has gone out of scope at the end of the main 

function.

Figure 10-11 shows the output generated when running the code in Listing 10-14.

Chapter 10  MeMory



332

 Recipe 10-7. Debugging Memory Problems by 
Overloading new and delete
 Problem
You have some memory issues in your program and would like to add diagnostic code to 

the allocations and deallocations in the program.

 Solution
C++ allows the replacement of the new and delete operators with custom written versions.

 How It Works
The C++ new and delete operators boil down to being function calls. The signature for 

the global new function is

void* operator new(size_t size);

The signature for the global delete function is

void delete(void* ptr);

Figure 10-11. A working example of SmartPointer in action

Chapter 10  MeMory



333

The new function takes the number of bytes to be allocated as a parameter, and 

the delete function takes a pointer to a memory address that has been returned from 

new. These functions can be replaced to provide added debugging information to your 

program. Listing 10-15 shows an example of adding a header to your memory allocations 

to help with program debugging.

Listing 10-15. Adding a Header to Memory Allocations

#include <cstdlib>

#include <iostream>

using namespace std;

struct MemoryHeader

{

    const char* m_Filename{ nullptr };

    int m_Line{ -1 };

};

void* operator new(size_t size, const char* filename, int line) noexcept

{

    void* pMemory{ malloc(size + sizeof(MemoryHeader)) };

    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemory) };

    pMemoryHeader->m_Filename = filename;

    pMemoryHeader->m_Line = line;

    return static_cast<void*>(static_cast<char*>(pMemory)+sizeof(MemoryHeader));

}

void operator delete(void* pMemory) noexcept

{

     char* pMemoryHeaderStart{ reinterpret_cast<char*>(pMemory)-

sizeof(MemoryHeader) };

     MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*> 

(pMemoryHeaderStart) };

Chapter 10  MeMory



334

    cout << "Deleting memory allocated from: "

        << pMemoryHeader->m_Filename << ":" << pMemoryHeader->m_Line << endl;

    free(pMemoryHeader);

}

#define new new(__FILE__, __LINE__)

class MyClass

{

private:

    int m_Value{ 1 };

};

int main(int argc, char* argv[])

{

    int* pInt{ new int };

    *pInt = 1;

    delete pInt;

    MyClass* pClass{ new MyClass };

    delete pClass;

    return 0;

}

This code replaces the new and delete functions with custom versions. The custom 

version of new doesn’t conform to the standard signature, so a macro was used to replace 

the standard version. This was done to allow the compiler to tell the custom new function 

the filename and line number where new is called. This allows you to track down 

individual allocations to their exact place in the program source code. This can be a very 

useful debugging tool when you’re dealing with memory problems.

The custom new function adds the size of the MemoryHeader structure to the number 

of bytes being requested by the program. It then sets the m_Filename pointer in the 

MemoryHeader struct to the filename parameter supplied to new. The m_Line member 

is similarly set to the line parameter passed in. The address returned from new is the 

address of the beginning of the user area of memory, not including the MemoryHeader 

structure; this allows your debugging information to be added and addressed at the 

memory subsystem level and be completely transparent to the rest of your program.

Chapter 10  MeMory



335

The delete function shows a basic use for this debugging information. It simply 

prints out the line where the memory chunk being freed was allocated. It gets the 

address of the memory header by subtracting the size of the header from the address the 

function was passed.

The new macro is used to give a simple method for passing the __FILE__ and 

__LINE__ macros to the overloaded new function. These macros are known as built-in 

macros and are supplied by most modern C++ compilers. These macros are replaced by 

a pointer to the filename and the line number where they’re used. Adding them to the 

new macro results in the filename and line number for every call to new in your program 

being passed to the custom new allocator.

The malloc and free functions used in the new and delete functions are the C-style 

memory allocation functions. These are used to prevent conflicts with the many different 

types of C++ allocation functions. The functions shown in Listing 10-15 are suitable 

for allocating single objects. It’s also possible to replace the C++ array new and delete 

functions. It’s essential to replace these functions when you’re trying to track down 

problems such as memory leaks. Listing 10-16 shows these functions in action.

Listing 10-16. Replacing the Array new and delete Operators

#include <cstdlib>

#include <iostream>

using namespace std;

struct MemoryHeader

{

    const char* m_Filename{ nullptr };

    int m_Line{ -1 };

};

void* operator new(size_t size, const char* filename, int line) noexcept

{

    void* pMemory{ malloc(size + sizeof(MemoryHeader)) };

    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemory) };

    pMemoryHeader->m_Filename = filename;

    pMemoryHeader->m_Line = line;

Chapter 10  MeMory



336

    return static_cast<void*>(static_cast<char*>(pMemory)+sizeof(MemoryHeader));

}

void* operator new[](size_t size, const char* filename, int line) noexcept

{

    void* pMemory{ malloc(size + sizeof(MemoryHeader)) };

    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemory) };

    pMemoryHeader->m_Filename = filename;

    pMemoryHeader->m_Line = line;

    return static_cast<void*>(static_cast<char*>(pMemory)+sizeof(MemoryHeader));

}

void operator delete(void* pMemory) noexcept

{

     char* pMemoryHeaderStart{ reinterpret_cast<char*>(pMemory)-sizeof 

(MemoryHeader) };

     MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*> 

(pMemoryHeaderStart) };

    cout << "Deleting memory allocated from: "

        << pMemoryHeader->m_Filename << ":" << pMemoryHeader->m_Line << endl;

    free(pMemoryHeader);

}

void operator delete[](void* pMemory) noexcept

{

     char* pMemoryHeaderStart{ reinterpret_cast<char*>(pMemory)-sizeof 

(MemoryHeader) };

     MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemoryHea

derStart) };

    cout << "Deleting memory allocated from: "

        << pMemoryHeader->m_Filename << ":" << pMemoryHeader->m_Line << endl;

    free(pMemoryHeader);

}

Chapter 10  MeMory



337

#define new new(__FILE__, __LINE__)

class MyClass

{

private:

    int m_Value{ 1 };

};

int main(int argc, char* argv[])

{

    int* pInt{ new int };

    *pInt = 1;

    delete pInt;

    MyClass* pClass{ new MyClass };

    delete pClass;

    const unsigned int NUM_ELEMENTS{ 5 };

    int* pArray{ new int[NUM_ELEMENTS] };

    delete[] pArray;

    return 0;

}

The array new and delete operators’ signatures differ from the standard new and 

delete operators only by having the [] operator present in their signatures, as you can 

see in Listing 10-16. Figure 10-12 shows the output generated by this code.

Figure 10-12. Output showing the use of the replaced new and delete operators

Chapter 10  MeMory



338

The new and delete functions you have seen so far in this recipe have been global 

replacements for the new and delete operators. It’s also possible to replace new and 

delete for specific classes. You can add these functions directly to a class definition, 

and those functions will be used when creating and destroying dynamic instances of 

that type of object. Listing 10-17 shows code that replaces the global new, new[], delete, 

and delete[] operators and also adds new and delete operators to the MyClass class 

definition.

Listing 10-17. Adding new and delete Operators to MyClass

#include <cstdlib>

#include <iostream>

using namespace std;

struct MemoryHeader

{

    const char* m_Filename{ nullptr };

    int m_Line{ -1 };

};

void* operator new(size_t size, const char* filename, int line) noexcept

{

    void* pMemory{ malloc(size + sizeof(MemoryHeader)) };

    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemory) };

    pMemoryHeader->m_Filename = filename;

    pMemoryHeader->m_Line = line;

    return static_cast<void*>(static_cast<char*>(pMemory)+sizeof(MemoryHeader));

}

void* operator new[](size_t size, const char* filename, int line) noexcept

{

    void* pMemory{ malloc(size + sizeof(MemoryHeader)) };

    MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*>(pMemory) };

    pMemoryHeader->m_Filename = filename;

    pMemoryHeader->m_Line = line;

Chapter 10  MeMory



339

    return static_cast<void*>(static_cast<char*>(pMemory)+sizeof(MemoryHeader));

}

void operator delete(void* pMemory) noexcept

{

     char* pMemoryHeaderStart{ reinterpret_cast<char*>(pMemory)-

sizeof(MemoryHeader) };

     MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*> 

(pMemoryHeaderStart) };

    cout << "Deleting memory allocated from: "

        << pMemoryHeader->m_Filename << ":" << pMemoryHeader->m_Line << endl;

    free(pMemoryHeader);

}

void operator delete[](void* pMemory) noexcept

{

     char* pMemoryHeaderStart{ reinterpret_cast<char*>(pMemory)-sizeof 

(MemoryHeader) };

     MemoryHeader* pMemoryHeader{ reinterpret_cast<MemoryHeader*> 

(pMemoryHeaderStart) };

    cout << "Deleting memory allocated from: "

        << pMemoryHeader->m_Filename << ":" << pMemoryHeader->m_Line << endl;

    free(pMemoryHeader);

}

class MyClass

{

private:

    int m_Value{ 1 };

Chapter 10  MeMory



340

public:

    void* operator new(size_t size, const char* filename, int line) noexcept

    {

        cout << "Allocating memory for MyClass!" << endl;

        return malloc(size);

    }

    void operator delete(void* pMemory) noexcept

    {

        cout << "Freeing memory for MyClass!" << endl;

        free(pMemory);

    }

};

#define new new(__FILE__, __LINE__)

int main(int argc, char* argv[])

{

    int* pInt{ new int };

    *pInt = 1;

    delete pInt;

    MyClass* pClass{ new MyClass };

    delete pClass;

    const unsigned int NUM_ELEMENTS{ 5 };

    MyClass* pArray{ new MyClass[NUM_ELEMENTS] };

    delete[] pArray;

    return 0;

}

The new and delete operators in the MyClass definition are called in the main 

function when creating a single instance of MyClass. You can see that this is the case in 

the output shown in Figure 10-13.

Chapter 10  MeMory



341

 Recipe 10-8. Calculating Performance Impacts 
of Code Changes
 Problem
You would like to determine whether changes you’re making to code are faster or slower 

than the existing code. Once your code is about ready for initial alpha testing, this might 

be a good way to ensure final optimization.

 Solution
C++ provides access to a computer system’s high-performance timers to carry out high- 

precision timing.

 How It Works
The C++ programming language provides access to a high-resolution timer that allows 

you to make timing measurements around different parts of your code. This lets you 

record the time taken for your functions or algorithms and compare these across 

different versions to work out which are the most efficient and performant.

Listing 10-18 shows code that is used to time three different numbers of iterations 

around a loop.

Figure 10-13. Output showing the use of member new and delete operators in MyClass

Chapter 10  MeMory



342

Listing 10-18. Using chrono::high_resolution_timer

#include <chrono>

#include <iostream>

using namespace std;

void RunTest(unsigned int numberIterations)

{

    auto start = chrono::high_resolution_clock::now();

    for (unsigned int i{ 0 }; i < numberIterations; ++i)

    {

        unsigned int squared{ i*i*I };

    }

    auto end = chrono::high_resolution_clock::now();

    auto difference = end - start;

    cout << "Time taken: "

        << chrono::duration_cast<chrono::microseconds>(difference).count()

        << " microseconds!" << endl;

}

int main(int argc, char* argv[])

{

    RunTest(10000000);

    RunTest(100000000);

    RunTest(1000000000);

    return 0;

}

This listing shows that the chrono namespace in the STL provides a struct named 

high_resolution_clock with a static function called now. This function returns an object 

that is of type time_point from the chrono::system_clock struct. Listing 10-18 uses 

the auto keyword to deduce this type for the start and end variables in the RunTest 

function. Both start and end are initialized using the high_resolution_timer::now 

function, start before the for loop and end after the for loop. The value of start is 

subtracted from the value of end to give the duration of time elapsed while the function 

Chapter 10  MeMory



343

was executing the loop. The chrono::duration_cast template is then used to convert 

the time_point difference variable into a representation that can be expressed in a 

human-readable form, in this case microseconds.

The RunTest function is called three different times from the main function. Each call 

has a different number of loop iterations to be run, to show that the timing code can be 

used to tell which of the runs is the least time-efficient. Figure 10-14 shows the output 

generated when running the program on an Intel Core i7-3770.

Figure 10-14. Output showing that each subsequent call to RunTest in Listing 10- 18 
takes longer to execute

duration_cast can be used to convert system times into nanoseconds, milliseconds, 

seconds, minutes, and hours, as well as microseconds. Microsecond precision is what 

you’re looking for when optimizing many computer programming algorithms. The 

timing techniques used in this recipe will prove useful when comparing the impacts of 

memory storage types on program efficiency.

 Recipe 10-9. Understanding the Performance 
Impacts of Memory Choices
 Problem
You have a program that is performing poorly, but you aren’t sure why.

Chapter 10  MeMory



344

 Solution
There is no silver bullet to solve performance problems in modern computer programs. 

However, a lack of understanding of how memory works on a modern computer can lead 

to poorly performing programs. Understanding the impacts of cache misses on program 

performance will help you write better-performing programs.

 How It Works
The speed of modern processors has accelerated at a much faster rate than memory 

access latencies. This had led to a situation where processing performance can be 

severely hampered by poor memory access patterns in your programs. Understanding 

how to structure your C++ programs to take effective use of processor cache memory is 

essential to writing the most performant programs possible.

Reading and writing data from main memory can take several hundred cycles on 

modern computer systems. Processors implement caches to help alleviate this problem. 

A modern CPU cache works by reading large chunks of data simultaneously from main 

memory into much faster cache memory. These chunks are known as cache lines. An 

L1 cache line on an Intel Core i7-3770 processor is 32 KB in size. The processor reads an 

entire 32 KB chunk into the L1 cache in a single go. If the data you’re reading or writing 

isn’t present in the cache, the result is a cache miss, and the processor must retrieve the 

data from L2 cache, L3 cache, or system RAM. Cache misses can be very expensive, and 

seemingly innocuous mistakes or choices in your code can have massive performance 

implications. Listing 10-19 contains one loop to initialize some arrays and three different 

loops that have different memory access patterns.

Listing 10-19. Exploring the Performance Impacts of Memory Access Patterns

#include <chrono>

#include <iostream>

using namespace std;

const int NUM_ROWS{ 10000 };

const int NUM_COLUMNS{ 1000 };

int elements[NUM_ROWS][NUM_COLUMNS];

int* pElements[NUM_ROWS][NUM_COLUMNS];

Chapter 10  MeMory



345

int main(int argc, char* argv[])

{

    for (int i{ 0 }; i < NUM_ROWS; ++i)

    {

        for (int j{ 0 }; j < NUM_COLUMNS; ++j)

        {

            elements[i][j] = i*j;

            pElements[i][j] = new int{ elements[i][j] };

        }

    }

    auto start = chrono::high_resolution_clock::now();

    for (int i{ 0 }; i < NUM_ROWS; ++i)

    {

        for (int j{ 0 }; j < NUM_COLUMNS; ++j)

        {

            const int result{ elements[j][i] };

        }

    }

    auto end = chrono::high_resolution_clock::now();

    auto difference = end - start;

    cout << "Time taken for j then i: "

        << chrono::duration_cast<chrono::microseconds>(difference).count()

        << " microseconds!" << endl;

    start = chrono::high_resolution_clock::now();

    for (int i{ 0 }; i < NUM_ROWS; ++i)

    {

        for (int j{ 0 }; j < NUM_COLUMNS; ++j)

        {

            const int result{ elements[i][j] };

        }

    }

Chapter 10  MeMory



346

    end = chrono::high_resolution_clock::now();

    difference = end - start;

    cout << "Time taken for i then j: "

        << chrono::duration_cast<chrono::microseconds>(difference).count()

        << " microseconds!" << endl;

    start = chrono::high_resolution_clock::now();

    for (int i{ 0 }; i < NUM_ROWS; ++i)

    {

        for (int j{ 0 }; j < NUM_COLUMNS; ++j)

        {

            const int result{ *(pElements[i][j]) };

        }

    }

    end = chrono::high_resolution_clock::now();

    difference = end - start;

    cout << "Time taken for pointers with i then j: "

        << chrono::duration_cast<chrono::microseconds>(difference).count()

        << " microseconds!" << endl;

    return 0;

}

The first loop in Listing 10-19 is used to set up two arrays. The first array stores 

integer values directly, and the second array stores pointers to integers. Each of the 

arrays contains 10,000 × 1,000 unique elements.

It’s important to understand how multidimensional arrays are laid out in memory, 

to understand why this test creates the results it does with respect to cache miss 

performance problems. A 3 × 2 array can be thought of as laid out as shown in Table 10- 1.

Table 10-1. The Layout of a 3 × 2 Array

Column 1 Column 2 Column 3

Row 1 1 2 3

Row 2 4 5 6

Chapter 10  MeMory



347

But computer memory isn’t two-dimensional in this manner. The elements of the 

array are laid out linearly in memory in the order of the numbers shown in Table 10-1. 

Given a 4 byte integer size, that means the value in Row 2 Column 1 can be found 12 

bytes after the value in Row 1 Column 1. Extend the row size to 10,000, and you can see 

that there is no possibility for the element at the beginning of a following row residing in 

the same cache line as the previous row.

This fact allows the performance implications of cache misses to be tested with a 

simple loop. You can see this in the second loop in Listing 10-18, where the incremented 

j value is used to walk along the columns rather than the rows. The third loop walks 

along the array in the correct order. That is, it walks along the rows in linear order in 

memory. The fourth loop walks along the pElement array in linear order but has to 

dereference a pointer to reach the values stored in the array. The results show you the 

impacts of cache-unaware programming in the first loop, the ideal situation in the 

second, and the result of unnecessary memory indirection in the third. Figure 10-15 

shows these results.

Figure 10-15. The results from the loops in Listing 10-19

You can see that the processor in my computer has a tenfold increase in the length of 

time taken to complete a simple loop when walking an array out of order. Such problems 

can cause stutters and delays in programs that can leave users and customers feeling 

a sense of frustration with your software. The case with pointer dereferences is also 

around twice as slow as the case where the integers can be accessed directly. You should 

consider the implications of this before using dynamic memory liberally.

Chapter 10  MeMory



348

 Recipe 10-10. Reducing Memory Fragmentation
 Problem
You have a program that requires you to create a lot of small memory allocations over a 

long period of time, which introduces memory fragmentation problems..

 Solution
You can create a small block allocator that can be used to pack small allocations into 

larger pages.

 How It Works
The first step in bundling small allocations together is to create a class that contains a 

larger page of memory. This recipe shows you a straightforward way to wrap a 32 KB 

memory page in a class and manage allocations from this pool. The memory is tracked 

using an array of Boolean values that knows whether a given memory block is free or is 

in use. New pages of memory are added when all current pages are full.

The downside to this approach is that all allocations have a minimum size of 32 

bytes. Any request for memory that is smaller than 32 bytes is allocated an entire block 

from a currently active memory page. Pages are also freed when they’re completely 

empty, to ensure that the program doesn’t grow to a high watermark and never releases 

unneeded memory. Listing 10-20 shows the class definition for Page. Later in the 

chapter, you will find a complete working model, but for now let’s look at the parts.

Listing 10-20. The Page Class Definition

class Page

{

private:

    char m_Memory[1024 * 32];

    bool m_Free[1024];

    Page* m_pNextPage;

Chapter 10  MeMory



349

public:

    Page();

    ~Page();

    void* Alloc();

    bool Free(void* pMem);

    bool IsEmpty() const;

};

The Page class definition contains two arrays. There is a char array that serves 

memory allocation requests. This pool is an array of bytes and in this case is 32 KB in 

size. There are 1,024 individual blocks in the pool, each 32 bytes in size. The 1,024 blocks 

are mirrored in the Boolean array m_Free. This array is used to track whether a given 

block is already allocated or is free for allocation. The m_pNextPage pointer stores the 

address of the next page. The next page is used to allocate a block if the current page is 

entirely in use.

The class consists of five methods: a constructor, a destructor, an Alloc method, 

a Free method, and the IsEmpty method to determine if the page is no longer in use. 

Listing 10-21 shows the function bodies for the Page class’s constructor and destructor.

Listing 10-21. The Page Constructor and Destructor

Page()

    : m_pNextPage{ nullptr }

{

    memset(m_Free, 1, 1024);

}

~Page()

{

    if (m_pNextPage)

    {

        delete m_pNextPage;

        m_pNextPage = nullptr;

    }

}

Chapter 10  MeMory



350

The Page constructor is responsible for initializing the m_pNextPage pointer to 

nullptr and for setting all the elements in the m_Free array to true. The destructor for 

Page is responsible for deleting the object pointer to m_pNextPage if it has been allocated.

Listing 10-22 shows the code for the Page::Alloc method.

Listing 10-22. The Page::Alloc Method

void* Alloc()

{

    void* pMem{ nullptr };

    for (unsigned int i = 0; i < 1024; ++i)

    {

        if (m_Free[i] == true)

        {

            m_Free[i] = false;

            pMem = &m_Memory[i * 32];

            break;

        }

    }

    if (pMem == nullptr)

    {

        if (m_pNextPage == nullptr)

        {

            m_pNextPage = new Page();

        }

        pMem = m_pNextPage->Alloc();

        }

    return pMem;

}

The Alloc method is responsible for finding the first unused memory block in the 

page-linked list. The first step is to loop over the m_Free array and check each block to 

see whether it’s currently in use. If a free block is found, the pMem return value is set to the 

address of the free block. The Boolean for that block is set to false to indicate that the 

block is now in use. If a free block is found, the loop is broken.

Chapter 10  MeMory



351

In the event that a free block isn’t found, the memory must be allocated from another 

memory page. If another page has already been created, the pointer m_pNextPage already 

holds its address. If not, a new page is created. The Alloc method is then called on 

m_pNextPage. At this point, the Alloc method is recursive. It’s called repeatedly until a 

memory page is found that contains a free memory block to return up the stack to the calling 

code. The memory returned from a page must also be returned to that page when it’s no 

longer needed. The Free method in Listing 10-23 is responsible for carrying out this task.

Listing 10-23. The Page::Free Method

bool Free(void* pMem)
{
    bool freed{ false };

     bool inPage{ pMem >= m_Memory && pMem <= &m_Memory[(NUM_PAGES * BLOCK_
SIZE) - 1] };

    if (inPage)
    {
        unsigned int index{
            ( reinterpret_cast<unsigned int>(pMem)-reinterpret_cast 

<unsigned int>(m_Memory))
            / BLOCK_SIZE };

        m_Free[index] = true;
        freed = true;
    }
    else if (m_pNextPage)
    {
        freed = m_pNextPage->Free(pMem);

        if (freed && m_pNextPage->IsEmpty())
        {
            Page* old = m_pNextPage;
            m_pNextPage = old->m_pNextPage;
            old->m_pNextPage = nullptr;
            delete m_pNextPage;
        }
    }

    return freed;

}

Chapter 10  MeMory



352

The Page::Free method begins by checking whether the memory address being 

released is contained within the current page. It does so by comparing the address 

against the address of the beginning of the memory page and the address of the last 

block in the page. If the memory being freed is greater than or equal to the page address 

and less than or equal to the last block in the page, then the memory was allocated from 

this page. In this case, the m_Free Boolean for this block can be set back to true. The 

memory itself doesn’t need to be cleared, because new gives no guarantees of the values 

contained in the memory it returns—that is the responsibility of the caller.

If the memory was not found in the current Page, then the Free method checks whether 

the Page has a pointer to another Page object. If it does, then the Free method is called on 

that Page. The Free method is recursive in nature in the same way as the Alloc method. If 

the call to Free on m_pNextPage returned a true value, the Page is checked to see if it’s now 

empty. If it is, then the Page can be released. Because Page is using a simple linked list to track 

pages, you must make sure you don’t orphan the tails of the list. You need to ensure that the 

m_pNextPage pointer of the current page is set to point to the m_pNextPage pointer of the Page 

being released. The IsEmpty method is called in the Free method; the body of this method is 

shown in Listing 10-24.

Listing 10-24. The Page::IsEmpty Method

bool IsEmpty() const

{

    bool isEmpty{ true };

    for (unsigned int i = 0; i < NUM_PAGES; ++i)

    {

        if (m_Free[i] == false)

        {

            isEmpty = false;

            break;

        }

    }

    return isEmpty;

}

Chapter 10  MeMory



353

The IsEmpty method checks the free list to determine whether the page is currently 

in use. If any of the blocks in the Page aren’t free, than the Page isn’t empty. The linked 

list of pages is accessed through another class called SmallBlockAllocator. This 

simplifies the management of the pages for the calling code. Listing 10-25 shows the 

SmallBlockAllocator class.

Listing 10-25. The SmallBlockAllocator Class

class SmallBlockAllocator

{

public:

    static const unsigned int BLOCK_SIZE{ 32 };

private:

    static const unsigned int NUM_ BLOCKS { 1024 };

    static const unsigned int PAGE_SIZE{ NUM_ BLOCKS * BLOCK_SIZE };

    class Page

    {

    private:

        char m_Memory[PAGE_SIZE];

        bool m_Free[NUM_ BLOCKS];

        Page* m_pNextPage;

    public:

        Page()

            : m_pNextPage{ nullptr }

        {

            memset(m_Free, 1, NUM_ BLOCKS);

        }

        ~Page()

        {

            if (m_pNextPage)

            {

                delete m_pNextPage;

                m_pNextPage = nullptr;

            }

        }

Chapter 10  MeMory



354

        void* Alloc()

        {

            void* pMem{ nullptr };

            for (unsigned int i = 0; i < NUM_ BLOCKS; ++i)

            {

                if (m_Free[i] == true)

                {

                    m_Free[i] = false;

                    pMem = &m_Memory[i * BLOCK_SIZE];

                    break;

                }

            }

            if (pMem == nullptr)

            {

                if (m_pNextPage == nullptr)

                {

                    m_pNextPage = new Page();

                }

                pMem = m_pNextPage->Alloc();

            }

            return pMem;

        }

        bool Free(void* pMem)

        {

            bool freed{ false };

            bool inPage{ pMem >= m_Memory &&

                pMem <= &m_Memory[(NUM_ BLOCKS * BLOCK_SIZE) - 1] };

            if (inPage)

            {

                unsigned int index{

                    (reinterpret_cast<unsigned int>(pMem)-

                     reinterpret_cast<unsigned int>(m_Memory)) / BLOCK_SIZE };

Chapter 10  MeMory



355

                m_Free[index] = true;

                freed = true;

            }

            else if (m_pNextPage)

            {

                freed = m_pNextPage->Free(pMem);

                if (freed && m_pNextPage->IsEmpty())

                {

                    Page* old = m_pNextPage;

                    m_pNextPage = old->m_pNextPage;

                    old->m_pNextPage = nullptr;

                    delete m_pNextPage;

                }

            }

            return freed;

        }

        bool IsEmpty() const

        {

            bool isEmpty{ true };

            for (unsigned int i = 0; i < NUM_BLOCKS; ++i)

            {

                if (m_Free[i] == false)

                {

                    isEmpty = false;

                    break;

                }

            }

            return isEmpty;

        }

    };

    Page m_FirstPage;

Chapter 10  MeMory



356

public:

    SmallBlockAllocator() = default;

    void* Alloc()

    {

        return m_FirstPage.Alloc();

    }

    bool Free(void* pMem)

    {

        return m_FirstPage.Free(pMem);

    }

};

The Page class can be seen as an internal class to SmallBlockAllocator in Listing 10-25. 

This helps ensure that only the SmallBlockAllocator itself can be used as an interface to the 

Page objects. SmallBlockAllocator begins by creating static constants to control the size of 

the blocks and number of blocks each Page contains. The only public methods exposed from 

SmallBlockAllocator are an Alloc method and a Free method. These simply wrap calls 

to Page::Alloc and Page::Free and are called on the member m_FirstPage. This means 

the SmallBlockAllocator class always has at least one page of memory allocated for small 

allocations, and this page will be resident in your program for as long as SmallBlockAllocator 

is active.

Listing 10-26 shows the overloaded new and delete operators that are needed to 

route small allocations to SmallBlockAllocator.

Listing 10-26. Routing Small Allocations to SmallBlockAllocator

static SmallBlockAllocator sba;

void* operator new(unsigned int numBytes)

{

    void* pMem{ nullptr };

    if (numBytes <= SmallBlockAllocator::BLOCK_SIZE)

    {

        pMem = sba.Alloc();

    }

    else

Chapter 10  MeMory



357

    {

        pMem = malloc(numBytes);

    }

    return pMem;

}

void* operator new[](unsigned int numBytes)

{

    void* pMem{ nullptr };

    if (numBytes <= SmallBlockAllocator::BLOCK_SIZE)

    {

        pMem = sba.Alloc();

    }

    else

    {

        pMem = malloc(numBytes);

    }

    return pMem;

}

void operator delete(void* pMemory)

{

    if (!sba.Free(pMemory))

    {

        free(pMemory);

    }

}

void operator delete[](void* pMemory)

{

    if (!sba.Free(pMemory))

    {

        free(pMemory);

    }

}

Chapter 10  MeMory



358

The new and new[] operators in Listing 10-26 check the number of bytes being 

allocated against the supported block size of the SmallBlockAllocator class. If the size 

of memory being requested is smaller or equal to the block size of the SBA, the Alloc 

method is called on the static sba object. If it is larger, then malloc is used. The two 

delete functions both call Free on sba. If Free returns false, then the memory being 

released wasn’t present in any of the small block pages and is released using the free 

function.

That covers all the code needed to implement a simple small block allocator. Listing 10-27 

shows the entire listing for a working example program that uses this class.

Listing 10-27. A Complete Working Model Small Block Allocator Example

#include <cstdlib>

#include <iostream>

using namespace std;

class SmallBlockAllocator

{

public:

    static const unsigned int BLOCK_SIZE{ 32 };

private:

    static const unsigned int NUM_BLOCKS{ 1024 };

    static const unsigned int PAGE_SIZE{ NUM_BLOCKS * BLOCK_SIZE };

    class Page

    {

    private:

        char m_Memory[PAGE_SIZE];

        bool m_Free[NUM_BLOCKS];

        Page* m_pNextPage;

    public:

        Page()

            : m_pNextPage{ nullptr }

        {

            memset(m_Free, 1, NUM_BLOCKS);

        }

Chapter 10  MeMory



359

        ~Page()

        {

            if (m_pNextPage)

            {

                delete m_pNextPage;

                m_pNextPage = nullptr;

            }

        }

        void* Alloc()

        {

            void* pMem{ nullptr };

            for (unsigned int i{ 0 }; i < NUM_BLOCKS; ++i)

            {

                if (m_Free[i] == true)

                {

                    m_Free[i] = false;

                    pMem = &m_Memory[i * BLOCK_SIZE];

                    break;

                }

            }

            if (pMem == nullptr)

            {

                if (m_pNextPage == nullptr)

                {

                    m_pNextPage = new Page();

                }

                pMem = m_pNextPage->Alloc();

            }

            return pMem;

        }

        bool Free(void* pMem)

        {

Chapter 10  MeMory



360

            bool freed{ false };

            bool inPage{ pMem >= m_Memory &&

                pMem <= &m_Memory[(NUM_BLOCKS * BLOCK_SIZE) - 1] };

            if (inPage)

            {

                unsigned int index{

                    (reinterpret_cast<unsigned int>(pMem)-

                     reinterpret_cast<unsigned int>(m_Memory)) / BLOCK_SIZE };

                m_Free[index] = true;

                freed = true;

            }

            else if (m_pNextPage)

            {

                freed = m_pNextPage->Free(pMem);

                if (freed && m_pNextPage->IsEmpty())

                {

                    Page* old = m_pNextPage;

                    m_pNextPage = old->m_pNextPage;

                    old->m_pNextPage = nullptr;

                    delete m_pNextPage;

                }

            }

            return freed;

        }

        bool IsEmpty() const

        {

            bool isEmpty{ true };

            for (unsigned int i{ 0 }; i < NUM_BLOCKS; ++i)

            {

                if (m_Free[i] == false)

                {

                    isEmpty = false;

                    break;

Chapter 10  MeMory



361

                }

            }

            return isEmpty;

        }

    };

    Page m_FirstPage;

public:

    SmallBlockAllocator() = default;

    void* Alloc()

    {

        return m_FirstPage.Alloc();

    }

    bool Free(void* pMem)

    {

        return m_FirstPage.Free(pMem);

    }

};

static SmallBlockAllocator sba;

void* operator new(size_t numBytes, const std::nothrow_t& tag) noexcept

{

    void* pMem{ nullptr };

    if (numBytes <= SmallBlockAllocator::BLOCK_SIZE)

    {

        pMem = sba.Alloc();

    }

    else

    {

        pMem = malloc(numBytes);

    }

Chapter 10  MeMory



362

    return pMem;

}

void* operator new[](size_t numBytes, const std::nothrow_t& tag) noexcept

{

    void* pMem{ nullptr };

    if (numBytes <= SmallBlockAllocator::BLOCK_SIZE)

    {

        pMem = sba.Alloc();

    }

    else

    {

        pMem = malloc(numBytes);

    }

    return pMem;

}

void operator delete(void* pMemory)

{

    if (!sba.Free(pMemory))

    {

        free(pMemory);

    }

}

void operator delete[](void* pMemory)

{

    if (!sba.Free(pMemory))

    {

        free(pMemory);

    }

}

Chapter 10  MeMory



363

int main(int argc, char* argv[])

{

    const unsigned int NUM_ALLOCS{ 2148 };

    int* pInts[NUM_ALLOCS];

    for (unsigned int i{ 0 }; i < NUM_ALLOCS; ++i)

    {

        pInts[i] = new int;

        *pInts[i] = i;

    }

    for (unsigned int i{ 0 }; i < NUM_ALLOCS; ++i)

    {

        delete pInts[i];

        pInts[i] = nullptr;

    }

    return 0;

}

Chapter 10  MeMory



365
© J. Burton Browning and Bruce Sutherland 2020 
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_11

CHAPTER 11

Concurrency
Clock rate refers to the frequency the clock generator of a microprocessor can generate 

pulses. As of 2020, the main barrier to increasing the clock rate is cooling the chip since 

higher speeds generate more heat. Shrinking the chip size will increase speed and reduce 

heat, but nanotechnology must advance more before radical speed increases are realized.

But, back to our definition of frequency, these “pulses” or “clock cycles per second” 

are used to synchronize the operations of its components, which is a measure of 

processor speed. CPU performance improvements over time have been maintained 

by innovative CPU design and multiple processors being included on a single chip. 

Advanced programming capabilities are available to the programmer who can utilize 

concurrent programming or multithreaded programming.

Multithreaded programming requires attention to detail, but at this point you are 

ready for that. Many pitfalls await concurrent programs, including data that gets out of 

sync and therefore is wrong as well as deadlocks once your tasks require the use of locks to 

manage access. The recipes in this chapter introduce you to some practical applications of 

the STL features supplied by C++ to help you write multithreaded programs.

 Recipe 11-1. Using Threads to Execute  
Concurrent Tasks
 Problem
You’re writing a program that is performing poorly, and you’d like to speed up execution 

by using multiple processors in a system.



366

 Solution
C++ provides the thread type, which can be used to create a native operating system 

thread. Program threads can be run on more than a single processor and therefore allow 

you to write programs that can use multiple CPUs and CPU cores.

 How It Works
 Detecting the Number of Logical CPU Cores

The C++ thread library provides a feature set that lets programs use all the cores and 

CPUs available in a given computer system. The first important function supplied 

by the C++ threading capabilities that you should be aware of allows you to query 

the number of execution units the computer contains. Listing 11-1 shows the C++ 

thread::hardware_concurrency method.

Listing 11-1. The thread::hardware_concurrency Method

#include <iostream>

#include <thread>

using namespace std;

int main()

{

    const unsigned int numberOfProcessors{ thread::hardware_concurrency() };

     cout << "This system can run " << numberOfProcessors << " concurrent 

tasks" << endl;

    return 0;

}

This code uses the thread::hardware_concurrency method to query the number 

of simultaneous threads that can be run on the computer executing the program. 

Figure 11-1 shows the output generated by this program on my desktop computer.

Chapter 11  ConCurrenCy



367

Running the same code on a Surface Pro 2 with an Intel Core i5-4200U processor 

results in a value of 4 being returned, as opposed to the 8 returned by the Core i7-3770. 

You can see the results given by the Surface Pro 2 in Figure 11-2.

Running too many threads on a computer that has too few logical cores can cause 

the computer to become unresponsive, so it’s important to keep this in mind when 

you’re creating programs. This may explain why a certain processor minimum is listed in 

an application’s minimum specifications.

Figure 11-1. The result of calling thread::hardware_concurrency on an Intel 
Core i7-3770

Figure 11-2. The result of running Listing 11-1 on a Surface Pro 2

Chapter 11  ConCurrenCy



368

 Creating Threads

Once you know the system you’re running on might benefit from the use of concurrent 

execution, you can use the C++ thread class to create tasks to be run on multiple 

processor cores. The thread class is a portable, built-in type that allows you to write 

multithreaded code for any operating system.

Note the thread class is a recent addition to the C++ programming language. 
It was added in the C++11 language spec, so you may need to check the 
documentation for the StL library you’re using to ensure that it supports this feature.

The thread constructor is simple to use and takes a function to execute on another 

CPU core. Listing 11-2 shows a simple thread that outputs to the console.

Listing 11-2. Creating a thread

#include <iostream>

#include <thread>

using namespace std;

void ThreadTask()

{

    for (unsigned int i{ 0 }; i < 20; ++i)

    {

        cout << "Output from thread" << endl;

    }

}

int main()

{

    const unsigned int numberOfProcessors{ thread::hardware_concurrency() };

     cout << "This system can run " << numberOfProcessors << " concurrent 

tasks" << endl;

Chapter 11  ConCurrenCy



369

    if (numberOfProcessors > 1)

    {

        thread myThread{ ThreadTask };

        cout << "Output from main" << endl;

        myThread.join();

    }

    else

    {

        cout << "CPU does not have multiple cores." << endl;

    }

        return 0;

}

Listing 11-2 determines whether to create a thread based on the number of logical 

cores on the computer executing the program.

Note Most operating systems allow you to run more threads than there are 
processors, but you might find that doing so slows your program due to the 
overhead of managing multiple threads.

If the CPU has more than one logical core, the program creates a thread object called 

myThread. The myThread variable is initialized with a pointer to a function. This function 

will be executed in the thread context and, more likely than not, on a different CPU 

thread than the main function.

The ThreadTask function consists of a for loop that simply outputs to the console 

multiple times. The main function also outputs to the console. The intent is to show that 

both functions are running concurrently. You can see that this is true in Figure 11-3, 

where the output from main occurs in the middle of the output from ThreadTask.

Chapter 11  ConCurrenCy



370

 Cleaning Up After Threads

The main function in Listing 11-2 immediately calls the join method on the thread.  

The join method is used to tell the current thread to wait for the additional thread to 

end execution before continuing. This is important because C++ programs are required 

to destroy their own threads to prevent leaks from occurring. Calling the destructor on a 

thread object doesn’t destroy the currently executing thread context. Listing 11-3 shows 

code that has been modified to not call join on myThread.

Listing 11-3. Forgetting to Call join on a thread

#include <iostream>

#include <thread>

using namespace std;

Figure 11-3. The output showing that both main and ThreadTask, from 
Listing 11-2, are running concurrently

Chapter 11  ConCurrenCy



371

void ThreadTask()

{

    for (unsigned int i{ 0 }; i < 20; ++i)

    {

        cout << "Output from thread" << endl;

    }

}

int main(int argc, char* argv[])

{

    const unsigned int numberOfProcessors{ thread::hardware_concurrency() };

     cout << "This system can run " << numberOfProcessors << " concurrent 

tasks" << endl;

    if (numberOfProcessors > 1)

    {

        thread myThread{ ThreadTask };

        cout << "Output from main" << endl;

    }

    else

    {

        cout << "CPU does not have multiple cores." << endl;

    }

    return 0;

}

This code causes the myThread object to go out of scope before the ThreadTask 

function has completed execution. This can cause a thread leak in your program that may 

eventually cause the program or the operating system to become unstable. A program 

running on the Linux command line will fail with the error shown in Figure 11- 4.

Chapter 11  ConCurrenCy



372

As you can see, this warning isn’t particularly descriptive, and there’s no guarantee 

that you’ll get any warning when using other operating systems and libraries. It’s 

therefore important to be aware of your threads’ lifetimes and ensure that you’re dealing 

with them appropriately.

One approach is to use the join method to make the program wait for threads to 

finish before closing them down. C++ also provides a second option: the detach method. 

Listing 11-4 shows the detach method in use.

Listing 11-4. Using the detach Method

#include <iostream>

#include <thread>

using namespace std;

void ThreadTask()

{

    for (unsigned int i = 0; i < 20; ++i)

    {

        cout << "Output from thread" << endl;

    }

}

int main(int argc, char* argv[])

{

    const unsigned int numberOfProcessors{ thread::hardware_concurrency() };

Figure 11-4. The Linux error when a thread destructor is called before completion

Chapter 11  ConCurrenCy



373

     cout << "This system can run " << numberOfProcessors << " concurrent 

tasks" << endl;

    if (numberOfProcessors > 1)

    {

        thread myThread{ ThreadTask };

        cout << "Output from main" << endl;

        myThread.detach();

    }

    else

    {

        cout << "CPU does not have multiple cores." << endl;

    }

    return 0;

}

Listing 11-4 shows that the detach method can be used in place of join. The join 

method causes the program to wait for a running thread to complete before continuing, 

but the detach method doesn’t. The detach method allows you to create threads that 

outlive the execution of your program. These may be useful for system tasks that need 

to track time over long periods; however, I’m skeptical about whether many day-to-day 

programs will find a use for this method. There’s also a risk that your program will leak 

threads that have been detached and have no way to get those tasks back. Once an 

execution context in a thread has been detached, you can never reattach it.

 Recipe 11-2. Creating thread Scope Variables
 Problem
You have classes of objects that use static data in their implementations, and you’d like 

to use them with threads.

Chapter 11  ConCurrenCy



374

 Solution
C++ provides the thread_local specifier to allow the computer to create an instance of 

the static data on a per-thread basis.

 How It Works
Before I cover how to use thread_local, let’s step through a scenario where this problem 

can occur so you can clearly see the issue and the problem the solution itself can cause. 

Listing 11-5 contains a class that uses a static vector of objects to prevent many calls to 

new and delete.

Listing 11-5.  Creating a Class That Uses Static Data to Track State

#include <cstdlib>

#include <iostream>

#include <stack>

#include <thread>

#include <vector>

using namespace std;

class MyManagedObject

{

private:

    static const unsigned int MAX_OBJECTS{ 4 };

    using MyManagedObjectCollection = vector < MyManagedObject > ;

    static MyManagedObjectCollection s_ManagedObjects;

    static stack<unsigned int> s_FreeList;

    unsigned int m_Value{ 0xFFFFFFFF };

public:

    MyManagedObject() = default;

    MyManagedObject(unsigned int value)

        : m_Value{ value }

    {

    }

Chapter 11  ConCurrenCy



375

    void* operator new(size_t numBytes)

    {

        void* objectMemory{};

        if (s_ManagedObjects.capacity() < MAX_OBJECTS)

        {

            s_ManagedObjects.reserve(MAX_OBJECTS);

        }

        if (numBytes == sizeof(MyManagedObject) &&

            s_ManagedObjects.size() < s_ManagedObjects.capacity())

        {

            unsigned int index{ 0xFFFFFFFF };

            if (s_FreeList.size() > 0)

            {

                index = s_FreeList.top();

                s_FreeList.pop();

            }

            if (index == 0xFFFFFFFF)

            {

                s_ManagedObjects.push_back({});

                index = s_ManagedObjects.size() - 1;

            }

            objectMemory = s_ManagedObjects.data() + index;

        }

        else

        {

            objectMemory = malloc(numBytes);

        }

        return objectMemory;

    }

    void operator delete(void* pMem)

    {

        const intptr_t index{

            (static_cast<MyManagedObject*>(pMem) - s_ManagedObjects.data()) /

Chapter 11  ConCurrenCy



376

            static_cast<intptr_t>(sizeof(MyManagedObject)) };

         if (0 <= index && index < static_cast<intptr_t>(s_ManagedObjects.

size()))

        {

            s_FreeList.emplace(static_cast<unsigned int>(index));

        }

        else

        {

            free(pMem);

        }

    }

};

MyManagedObject::MyManagedObjectCollection MyManagedObject::s_ManagedObjects{};

stack<unsigned int> MyManagedObject::s_FreeList{};

int main(int argc, char* argv[])

{

    cout << hex << showbase;

    MyManagedObject* pObject1{ new MyManagedObject(1) };

    cout << "pObject1: " << pObject1 << endl;

    MyManagedObject* pObject2{ new MyManagedObject(2) };

    cout << "pObject2: " << pObject2 << endl;

    delete pObject1;

    pObject1 = nullptr;

    MyManagedObject* pObject3{ new MyManagedObject(3) };

    cout << "pObject3: " << pObject3 << endl;

    pObject1 = new MyManagedObject(4);

    cout << "pObject1: " << pObject1 << endl;

    delete pObject2;

    pObject2 = nullptr;

Chapter 11  ConCurrenCy



377

    delete pObject3;

    pObject3 = nullptr;

    delete pObject1;

    pObject1 = nullptr;

    return 0;

}

The code in Listing 11-5 overloads the new and delete methods on the 

MyManagedObject class. These overloads are used to return newly created objects 

from an initial pool of preallocated memory. Doing this would allow you to restrict the 

number of a given type of object to a prearranged limit but still let you use the familiar 

new and delete syntax.

Note the code in Listing 11-5 doesn’t actually enforce the limit; it simply falls 
back to dynamic allocation when the limit has been reached.

The managed class works by using a constant to determine the number of 

preallocated objects that should exist. This number is used to initialize a vector on 

the first allocation. Each subsequent allocation is fulfilled from this vector until it’s 

exhausted. A free list of indices is maintained. If an object from the pool is released, its 

index is added to the top of the free stack. Objects on the free list are then reissued in the 

order that they were added to this stack. Figure 11-5 shows that pObject3 ends up with 

the same address that was used by pObject1 before it was deleted.

Figure 11-5. Output showing the correct operation of the MyManagedObject pool

Chapter 11  ConCurrenCy



378

The operation of this managed pool uses a static vector and a static stack to 

maintain the pool across all MyManagedObject instances. This causes problems when 

coupled with threads, because you can’t be sure that different threads won’t try to 

access these objects at the same time.

Listing 11-6 updates the code from Listing 11-5 to use a thread to also create 

MyManagedObject instances.

Listing 11-6.  Using a thread to Create MyManagedObject Instances

#include <cstdlib>

#include <iostream>

#include <stack>

#include <thread>

#include <vector>

using namespace std;

class MyManagedObject

{

private:

    static const unsigned int MAX_OBJECTS{ 8 };

    using MyManagedObjectCollection = vector < MyManagedObject >;

    static MyManagedObjectCollection s_ManagedObjects;

    static stack<unsigned int> s_FreeList;

    unsigned int m_Value{ 0xFFFFFFFF };

public:

    MyManagedObject() = default;

    MyManagedObject(unsigned int value)

        : m_Value{ value }

    {

    }

    void* operator new(size_t numBytes)

    {

        void* objectMemory{};

Chapter 11  ConCurrenCy



379

        if (s_ManagedObjects.capacity() < MAX_OBJECTS)

        {

            s_ManagedObjects.reserve(MAX_OBJECTS);

        }

        if (numBytes == sizeof(MyManagedObject) &&

            s_ManagedObjects.size() < s_ManagedObjects.capacity())

        {

            unsigned int index{ 0xFFFFFFFF };

            if (s_FreeList.size() > 0)

            {

                index = s_FreeList.top();

                s_FreeList.pop();

            }

            if (index == 0xFFFFFFFF)

            {

                s_ManagedObjects.push_back({});

                index = s_ManagedObjects.size() - 1;

            }

            objectMemory = s_ManagedObjects.data() + index;

        }

        else

        {

            objectMemory = malloc(numBytes);

        }

        return objectMemory;

    }

    void operator delete(void* pMem)

    {

        const intptr_t index{

            (static_cast<MyManagedObject*>(pMem)-s_ManagedObjects.data()) /

            static_cast< intptr_t >(sizeof(MyManagedObject)) };

Chapter 11  ConCurrenCy



380

         if (0 <= index && index < static_cast< intptr_t  >(s_ManagedObjects.

size()))

        {

            s_FreeList.emplace(static_cast<unsigned int>(index));

        }

        else

        {

            free(pMem);

        }

    }

};

MyManagedObject::MyManagedObjectCollection MyManagedObject::s_ManagedObjects{};

stack<unsigned int> MyManagedObject::s_FreeList{};

void ThreadTask()

{

    MyManagedObject* pObject4{ new MyManagedObject(5) };

    cout << "pObject4: " << pObject4 << endl;

    MyManagedObject* pObject5{ new MyManagedObject(6) };

    cout << "pObject5: " << pObject5 << endl;

    delete pObject4;

    pObject4 = nullptr;

    MyManagedObject* pObject6{ new MyManagedObject(7) };

    cout << "pObject6: " << pObject6 << endl;

    pObject4 = new MyManagedObject(8);

    cout << "pObject4: " << pObject4 << endl;

    delete pObject5;

    pObject5 = nullptr;

    delete pObject6;

    pObject6 = nullptr;

Chapter 11  ConCurrenCy



381

    delete pObject4;

    pObject4 = nullptr;

}

int main(int argc, char* argv[])

{

    cout << hex << showbase;

    thread myThread{ ThreadTask };

    MyManagedObject* pObject1{ new MyManagedObject(1) };

    cout << "pObject1: " << pObject1 << endl;

    MyManagedObject* pObject2{ new MyManagedObject(2) };

    cout << "pObject2: " << pObject2 << endl;

    delete pObject1;

    pObject1 = nullptr;

    MyManagedObject* pObject3{ new MyManagedObject(3) };

    cout << "pObject3: " << pObject3 << endl;

    pObject1 = new MyManagedObject(4);

    cout << "pObject1: " << pObject1 << endl;

    delete pObject2;

    pObject2 = nullptr;

    delete pObject3;

    pObject3 = nullptr;

    delete pObject1;

    pObject1 = nullptr;

    myThread.join();

    return 0;

}

Chapter 11  ConCurrenCy



382

The code in Listing 11-6 uses a thread to allocate objects from the pool concurrently 

with the main function. This means the static pool can be accessed simultaneously 

from two locations, and your program can run into problems. Two common issues are 

unexpected program crashes and data races.

A data race is a more subtle problem and results in unexpected memory corruption. 

Figure 11-6 illustrates the problem.

The problem presented by allocating objects from the same pool may be subtle 

and difficult to spot at first. If you look closely, you see that pObject6 and pObject3 

are pointing to the same memory address. These pointers are created and initialized 

on different threads, and at no point do you expect them to point at the same memory 

address, even with object reuse in your pools. This again is a difficulty in working with 

threads. The associated problems are very time-sensitive, and their manifestations can be 

altered by the conditions of the computer at the time of execution. Other programs may 

create threads that cause your own to be delayed slightly, so that a problem in your thread 

logic can manifest itself in many different ways despite having the same root cause.

C++ provides a solution to this problem: the thread_local keyword. The thread_

local keyword works by telling the compiler that the static objects you’re creating 

should be unique for every thread you create that uses these objects. The side effect 

is that you don’t have a single shared instance of the static object across all classes. 

This is a significant departure from the normal usage of static, where there is a 

Figure 11-6. The problem caused by running into data races between threads

Chapter 11  ConCurrenCy



383

single shared object for all instances of the type. Listing 11-7 shows the memory pool 

functions and the associated static variables updated to use thread_local.

Listing 11-7. Using thread_local

#include <cstdlib>

#include <iostream>

#include <stack>

#include <thread>

#include <vector>

using namespace std;

class MyManagedObject

{

private:

    static thread_local const unsigned int MAX_OBJECTS;

    using MyManagedObjectCollection = vector < MyManagedObject >;

    static thread_local MyManagedObjectCollection s_ManagedObjects;

    static thread_local stack<unsigned int> s_FreeList;

    unsigned int m_Value{ 0xFFFFFFFF };

public:

    MyManagedObject() = default;

    MyManagedObject(unsigned int value)

        : m_Value{ value }

    {

    }

    void* operator new(size_t numBytes)

    {

        void* objectMemory{};

        if (s_ManagedObjects.capacity() < MAX_OBJECTS)

        {

            s_ManagedObjects.reserve(MAX_OBJECTS);

        }

Chapter 11  ConCurrenCy



384

        if (numBytes == sizeof(MyManagedObject) &&

            s_ManagedObjects.size() < s_ManagedObjects.capacity())

        {

            unsigned int index{ 0xFFFFFFFF };

            if (s_FreeList.size() > 0)

            {

                index = s_FreeList.top();

                s_FreeList.pop();

            }

            if (index == 0xFFFFFFFF)

            {

                s_ManagedObjects.push_back({});

                index = s_ManagedObjects.size() - 1;

            }

            objectMemory = s_ManagedObjects.data() + index;

        }

        else

        {

            objectMemory = malloc(numBytes);

        }

        return objectMemory;

    }

        void operator delete(void* pMem)

    {

        const intptr_t index{

            (static_cast<MyManagedObject*>(pMem)-s_ManagedObjects.data()) /

            static_cast<intptr_t>(sizeof(MyManagedObject)) };

         if (0 <= index && index < static_cast< intptr_t >(s_ManagedObjects.

size()))

        {

            s_FreeList.emplace(static_cast<unsigned int>(index));

        }

        else

Chapter 11  ConCurrenCy



385

        {

            free(pMem);

        }

    }

};

thread_local const unsigned int MyManagedObject::MAX_OBJECTS{ 8 };

thread_local MyManagedObject::MyManagedObjectCollection MyManagedObject:: 

s_ManagedObjects{};

thread_local stack<unsigned int> MyManagedObject::s_FreeList{};

void ThreadTask()

{

    MyManagedObject* pObject4{ new MyManagedObject(5) };

    cout << "pObject4: " << pObject4 << endl;

    MyManagedObject* pObject5{ new MyManagedObject(6) };

    cout << "pObject5: " << pObject5 << endl;

    delete pObject4;

    pObject4 = nullptr;

    MyManagedObject* pObject6{ new MyManagedObject(7) };

    cout << "pObject6: " << pObject6 << endl;

    pObject4 = new MyManagedObject(8);

    cout << "pObject4: " << pObject4 << endl;

    delete pObject5;

    pObject5 = nullptr;

    delete pObject6;

    pObject6 = nullptr;

    delete pObject4;

    pObject4 = nullptr;

}

Chapter 11  ConCurrenCy



386

int main(int argc, char* argv[])

{

    cout << hex << showbase;

    thread myThread{ ThreadTask };

    MyManagedObject* pObject1{ new MyManagedObject(1) };

    cout << "pObject1: " << pObject1 << endl;

    MyManagedObject* pObject2{ new MyManagedObject(2) };

    cout << "pObject2: " << pObject2 << endl;

    delete pObject1;

    pObject1 = nullptr;

    MyManagedObject* pObject3{ new MyManagedObject(3) };

    cout << "pObject3: " << pObject3 << endl;

    pObject1 = new MyManagedObject(4);

    cout << "pObject1: " << pObject1 << endl;

    delete pObject2;

    pObject2 = nullptr;

    delete pObject3;

    pObject3 = nullptr;

    delete pObject1;

    pObject1 = nullptr;

    myThread.join();

    return 0;

}

Listing 11-7 shows that you can specify static variables as having thread_local 

storage by adding the thread_local identifier to their declarations and definitions. 

The impact of this change is that the main function and the ThreadTask function have 

separate s_ManagedObjects, s_FreeList, and MAX_OBJECT variables in their own execution 

Chapter 11  ConCurrenCy



387

context. Now that there are two copies of each, you have twice the number of potential 

objects, because the pools have been duplicated. This may or may not be a problem for 

your program, but you should be careful when using thread_local and consider any 

unintended consequences. Figure 11-7 shows the result of running the code in Listing 11-7.

You can see the problems when using threads. The first line of output is split 

between the two threads, but it should be very apparent that the two threads are being 

assigned values from completely separate places in memory. This proves that the 

compiler has made sure the static variables are unique for each thread in the program. 

You could take this further by adding even more threads to the program and seeing that 

they’re allocating objects from different places in memory and that at no point can two 

pointers on different threads be pointing to the same memory address.

 Recipe 11-3. Accessing Shared Objects Using 
Mutual Exclusion
 Problem
You have an object that you would like to be able to access on more than one thread at  

a time.

Figure 11-7. Output when using thread_local

Chapter 11  ConCurrenCy



388

 Solution
C++ provides mutex objects that allow you to provide mutually exclusive access to 

sections of code.

 How It Works
A mutex can be used to synchronize threads. This is achieved by the mutex class and 

the methods it provides to acquire and release the mutex. A thread can be sure that no 

other thread is currently accessing a shared resource by waiting until it can acquire the 

mutex before continuing execution. The program in Listing 11-8 contains a data race: 

a situation in which two threads can access a shared resource at the same time which 

causes unstable and unexpected program behavior.

Listing 11-8. A Program Containing a Data Race

#include <cstdlib>

#include <iostream>

#include <stack>

#include <thread>

#include <vector>

using namespace std;

class MyManagedObject

{

private:

    static const unsigned int MAX_OBJECTS{ 8 };

    using MyManagedObjectCollection = vector < MyManagedObject >;

    static MyManagedObjectCollection s_ManagedObjects;

    static stack<unsigned int> s_FreeList;

    unsigned int m_Value{ 0xFFFFFFFF };

public:

    MyManagedObject() = default;

    MyManagedObject(unsigned int value)

Chapter 11  ConCurrenCy



389

        : m_Value{ value }

    {

    }

    void* operator new(size_t numBytes)

    {

        void* objectMemory{};

        if (s_ManagedObjects.capacity() < MAX_OBJECTS)

        {

            s_ManagedObjects.reserve(MAX_OBJECTS);

        }

        if (numBytes == sizeof(MyManagedObject) &&

            s_ManagedObjects.size() < s_ManagedObjects.capacity())

        {

            unsigned int index{ 0xFFFFFFFF };

            if (s_FreeList.size() > 0)

            {

                index = s_FreeList.top();

                s_FreeList.pop();

            }

            if (index == 0xFFFFFFFF)

            {

                s_ManagedObjects.push_back({});

                index = s_ManagedObjects.size() - 1;

            }

            objectMemory = s_ManagedObjects.data() + index;

        }

        else

        {

            objectMemory = malloc(numBytes);

        }

        return objectMemory;

    }

Chapter 11  ConCurrenCy



390

    void operator delete(void* pMem)

    {

        const intptr_t index{

            (static_cast<MyManagedObject*>(pMem)-s_ManagedObjects.data()) /

            static_cast<intptr_t>(sizeof(MyManagedObject)) };

         if (0 <= index && index < static_cast< intptr_t >(s_ManagedObjects.

size()))

        {

            s_FreeList.emplace(static_cast<unsigned int>(index));

        }

        else

        {

            free(pMem);

        }

    }

};

MyManagedObject::MyManagedObjectCollection MyManagedObject::s_ManagedObjects{};

stack<unsigned int> MyManagedObject::s_FreeList{};

void ThreadTask()

{

    MyManagedObject* pObject4{ new MyManagedObject(5) };

    cout << "pObject4: " << pObject4 << endl;

    MyManagedObject* pObject5{ new MyManagedObject(6) };

    cout << "pObject5: " << pObject5 << endl;

    delete pObject4;

    pObject4 = nullptr;

    MyManagedObject* pObject6{ new MyManagedObject(7) };

    cout << "pObject6: " << pObject6 << endl;

    pObject4 = new MyManagedObject(8);

    cout << "pObject4: " << pObject4 << endl;

Chapter 11  ConCurrenCy



391

    delete pObject5;

    pObject5 = nullptr;

    delete pObject6;

    pObject6 = nullptr;

    delete pObject4;

    pObject4 = nullptr;

}

int main(int argc, char* argv[])

{

    cout << hex << showbase;

    thread myThread{ ThreadTask };

    MyManagedObject* pObject1{ new MyManagedObject(1) };

    cout << "pObject1: " << pObject1 << endl;

    MyManagedObject* pObject2{ new MyManagedObject(2) };

    cout << "pObject2: " << pObject2 << endl;

    delete pObject1;

    pObject1 = nullptr;

    MyManagedObject* pObject3{ new MyManagedObject(3) };

    cout << "pObject3: " << pObject3 << endl;

    pObject1 = new MyManagedObject(4);

    cout << "pObject1: " << pObject1 << endl;

    delete pObject2;

    pObject2 = nullptr;

    delete pObject3;

    pObject3 = nullptr;

    delete pObject1;

    pObject1 = nullptr;

Chapter 11  ConCurrenCy



392

    myThread.join();

    return 0;

}

This program can’t prevent the code in ThreadTask and the main function from 

accessing the s_ManagedObjects and s_FreeList pools in the MyManagedObject class. 

Access to these objects can be protected by a mutex, as you can see in Listing 11-9.

Listing 11-9. Adding a Mutex to Protect Access to Shared Objects

#include <cstdlib>

#include <iostream>

#include <mutex>

#include <stack>

#include <thread>

#include <vector>

using namespace std;

class MyManagedObject

{

private:

    static const unsigned int MAX_OBJECTS{ 8 };

    using MyManagedObjectCollection = vector < MyManagedObject >;

    static MyManagedObjectCollection s_ManagedObjects;

    static stack<unsigned int> s_FreeList;

    static mutex s_Mutex;

    unsigned int m_Value{ 0xFFFFFFFF };

public:

    MyManagedObject() = default;

    MyManagedObject(unsigned int value)

        : m_Value{ value }

    {

    }

Chapter 11  ConCurrenCy



393

    void* operator new(size_t numBytes)

    {

        void* objectMemory{};

        s_Mutex.lock();

        if (s_ManagedObjects.capacity() < MAX_OBJECTS)

        {

            s_ManagedObjects.reserve(MAX_OBJECTS);

        }

        if (numBytes == sizeof(MyManagedObject) &&

            s_ManagedObjects.size() < s_ManagedObjects.capacity())

        {

            unsigned int index{ 0xFFFFFFFF };

            if (s_FreeList.size() > 0)

            {

                index = s_FreeList.top();

                s_FreeList.pop();

            }

            if (index == 0xFFFFFFFF)

            {

                s_ManagedObjects.push_back({});

                index = s_ManagedObjects.size() - 1;

            }

            objectMemory = s_ManagedObjects.data() + index;

        }

        else

        {

            objectMemory = malloc(numBytes);

        }

        s_Mutex.unlock();

        return objectMemory;

    }

Chapter 11  ConCurrenCy



394

    void operator delete(void* pMem)

    {

        s_Mutex.lock();

        const intptr_t index{

            (static_cast<MyManagedObject*>(pMem)-s_ManagedObjects.data()) /

            static_cast<intptr_t>(sizeof(MyManagedObject)) };

         if (0 <= index && index < static_cast< intptr_t >(s_ManagedObjects.

size()))

        {

            s_FreeList.emplace(static_cast<unsigned int>(index));

        }

        else

        {

            free(pMem);

        }

        s_Mutex.unlock();

    }

};

MyManagedObject::MyManagedObjectCollection MyManagedObject::s_ManagedObjects{};

stack<unsigned int> MyManagedObject::s_FreeList{};

mutex MyManagedObject::s_Mutex;

void ThreadTask()

{

    MyManagedObject* pObject4{ new MyManagedObject(5) };

    cout << "pObject4: " << pObject4 << endl;

    MyManagedObject* pObject5{ new MyManagedObject(6) };

    cout << "pObject5: " << pObject5 << endl;

    delete pObject4;

    pObject4 = nullptr;

    MyManagedObject* pObject6{ new MyManagedObject(7) };

    cout << "pObject6: " << pObject6 << endl;

Chapter 11  ConCurrenCy



395

    pObject4 = new MyManagedObject(8);

    cout << "pObject4: " << pObject4 << endl;

    delete pObject5;

    pObject5 = nullptr;

    delete pObject6;

    pObject6 = nullptr;

    delete pObject4;

    pObject4 = nullptr;

}

int main(int argc, char* argv[])

{

    cout << hex << showbase;

    thread myThread{ ThreadTask };

    MyManagedObject* pObject1{ new MyManagedObject(1) };

    cout << "pObject1: " << pObject1 << endl;

    MyManagedObject* pObject2{ new MyManagedObject(2) };

    cout << "pObject2: " << pObject2 << endl;

    delete pObject1;

    pObject1 = nullptr;

    MyManagedObject* pObject3{ new MyManagedObject(3) };

    cout << "pObject3: " << pObject3 << endl;

    pObject1 = new MyManagedObject(4);

    cout << "pObject1: " << pObject1 << endl;

    delete pObject2;

    pObject2 = nullptr;

    delete pObject3;

    pObject3 = nullptr;

Chapter 11  ConCurrenCy



396

    delete pObject1;

    pObject1 = nullptr;

    myThread.join();

    return 0;

}

This code uses a mutex to ensure that the new and delete functions in the 

MyManagedObject class are only executing on a single thread at any given time. This 

ensures that the object pool being maintained for this class is always in a valid state and 

that the same addresses aren’t being given to different threads. The code requires that 

the lock be held for the entire execution of the functions it’s protecting. C++ provides a 

helper class named lock_guard that automatically locks a mutex on construction and 

frees the mutex on destruction. Listing 11-10 shows a lock_guard in use.

Listing 11-10. Using a lock_guard

#include <cstdlib>

#include <iostream>

#include <mutex>

#include <stack>

#include <thread>

#include <vector>

using namespace std;

class MyManagedObject

{

private:

    static const unsigned int MAX_OBJECTS{ 8 };

    using MyManagedObjectCollection = vector < MyManagedObject >;

    static MyManagedObjectCollection s_ManagedObjects;

    static stack<unsigned int> s_FreeList;

    static mutex s_Mutex;

    unsigned int m_Value{ 0xFFFFFFFF };

Chapter 11  ConCurrenCy



397

public:

    MyManagedObject() = default;

    MyManagedObject(unsigned int value)

        : m_Value{ value }

    {

    }

    void* operator new(size_t numBytes)

    {

        lock_guard<mutex> lock{ s_Mutex };

        void* objectMemory{};

        if (s_ManagedObjects.capacity() < MAX_OBJECTS)

        {

            s_ManagedObjects.reserve(MAX_OBJECTS);

        }

        if (numBytes == sizeof(MyManagedObject) &&

            s_ManagedObjects.size() < s_ManagedObjects.capacity())

        {

            unsigned int index{ 0xFFFFFFFF };

            if (s_FreeList.size() > 0)

            {

                index = s_FreeList.top();

                s_FreeList.pop();

            }

            if (index == 0xFFFFFFFF)

            {

                s_ManagedObjects.push_back({});

                index = s_ManagedObjects.size() - 1;

            }

            objectMemory = s_ManagedObjects.data() + index;

        }

        else

        {

Chapter 11  ConCurrenCy



398

            objectMemory = malloc(numBytes);

        }

        return objectMemory;

    }

    void operator delete(void* pMem)

    {

        lock_guard<mutex> lock{ s_Mutex };

        const intptr_t index{

            (static_cast<MyManagedObject*>(pMem)-s_ManagedObjects.data()) /

            static_cast<intptr_t>(sizeof(MyManagedObject)) };

         if (0 <= index && index < static_cast<intptr_t>(s_ManagedObjects.

size()))

        {

            s_FreeList.emplace(static_cast<unsigned int>(index));

        }

        else

        {

            free(pMem);

        }

    }

};

MyManagedObject::MyManagedObjectCollection MyManagedObject::s_ManagedObjects{};

stack<unsigned int> MyManagedObject::s_FreeList{};

mutex MyManagedObject::s_Mutex;

void ThreadTask()

{

    MyManagedObject* pObject4{ new MyManagedObject(5) };

    cout << "pObject4: " << pObject4 << endl;

    MyManagedObject* pObject5{ new MyManagedObject(6) };

    cout << "pObject5: " << pObject5 << endl;

Chapter 11  ConCurrenCy



399

    delete pObject4;

    pObject4 = nullptr;

    MyManagedObject* pObject6{ new MyManagedObject(7) };

    cout << "pObject6: " << pObject6 << endl;

    pObject4 = new MyManagedObject(8);

    cout << "pObject4: " << pObject4 << endl;

    delete pObject5;

    pObject5 = nullptr;

    delete pObject6;

    pObject6 = nullptr;

    delete pObject4;

    pObject4 = nullptr;

}

int main(int argc, char* argv[])

{

    cout << hex << showbase;

    thread myThread{ ThreadTask };

    MyManagedObject* pObject1{ new MyManagedObject(1) };

    cout << "pObject1: " << pObject1 << endl;

    MyManagedObject* pObject2{ new MyManagedObject(2) };

    cout << "pObject2: " << pObject2 << endl;

    delete pObject1;

    pObject1 = nullptr;

    MyManagedObject* pObject3{ new MyManagedObject(3) };

    cout << "pObject3: " << pObject3 << endl;

    pObject1 = new MyManagedObject(4);

    cout << "pObject1: " << pObject1 << endl;

Chapter 11  ConCurrenCy



400

    delete pObject2;

    pObject2 = nullptr;

    delete pObject3;

    pObject3 = nullptr;

    delete pObject1;

    pObject1 = nullptr;

    myThread.join();

    return 0;

}

Using a lock_guard means you don’t have to worry about calling unlock on the 

mutex for yourself. It also conforms to the Resource Allocation Is Initialization (RAII) 

pattern that many C++ developers try to follow.

 Recipe 11-4. Creating Threads That Wait for Events
 Problem
You would like to create a thread that waits for another event in your program.

 Solution
C++ provides the condition_variable class that can be used to signal that an event 

has occurred to a waiting thread.

 How It Works
A condition_variable is another C++ construct that wraps a complex behavior into a 

simple object interface. It’s common in multithreaded programming to create threads 

that you would like to have wait for some event to occur in another thread. This is 

common in a producer/consumer situation, where one thread may be creating tasks 

and another thread is auctioning or carrying out those tasks. A condition variable is 

perfect in these scenarios.

Chapter 11  ConCurrenCy



401

A condition_variable requires a mutex to be effective. It works by waiting for some 

condition to become true and then attempting to acquire a lock on the mutex protecting 

a shared resource. Listing 11-11 uses a mutex, a unique_lock, and a condition_

variable to communicate between threads when a producer thread has queued work 

for two consumer threads.

Listing 11-11. Using a condition_variable to Wake a Thread

#include <condition_variable>

#include <cstdlib>

#include <functional>

#include <iostream>

#include <mutex>

#include <thread>

#include <stack>

#include <vector>

using namespace std;

class MyManagedObject

{

private:

    static const unsigned int MAX_OBJECTS{ 8 };

    using MyManagedObjectCollection = vector < MyManagedObject >;

    static MyManagedObjectCollection s_ManagedObjects;

    static stack<unsigned int> s_FreeList;

    static mutex s_Mutex;

    unsigned int m_Value{ 0xFFFFFFFF };

public:

    MyManagedObject() = default;

    MyManagedObject(unsigned int value)

        : m_Value{ value }

    {

    }

Chapter 11  ConCurrenCy



402

    unsigned int GetValue() const { return m_Value; }

    void* operator new(size_t numBytes)

    {

        lock_guard<mutex> lock{ s_Mutex };

        void* objectMemory{};

        if (s_ManagedObjects.capacity() < MAX_OBJECTS)

        {

            s_ManagedObjects.reserve(MAX_OBJECTS);

        }

        if (numBytes == sizeof(MyManagedObject) &&

            s_ManagedObjects.size() < s_ManagedObjects.capacity())

        {

            unsigned int index{ 0xFFFFFFFF };

            if (s_FreeList.size() > 0)

            {

                index = s_FreeList.top();

                s_FreeList.pop();

            }

            if (index == 0xFFFFFFFF)

            {

                s_ManagedObjects.push_back({});

                index = s_ManagedObjects.size() - 1;

            }

            objectMemory = s_ManagedObjects.data() + index;

        }

        else

        {

            objectMemory = malloc(numBytes);

        }

        return objectMemory;

    }

Chapter 11  ConCurrenCy



403

        void operator delete(void* pMem)

    {

        lock_guard<mutex> lock{ s_Mutex };

        const intptr_t index{

            (static_cast<MyManagedObject*>(pMem)-s_ManagedObjects.data()) /

            static_cast<intptr_t>(sizeof(MyManagedObject)) };

         if (0 <= index && index < static_cast<intptr_t>(s_ManagedObjects.

size()))

        {

            s_FreeList.emplace(static_cast<unsigned int>(index));

        }

        else

        {

            free(pMem);

        }

    }

};

MyManagedObject::MyManagedObjectCollection MyManagedObject::s_ManagedObjects{};

stack<unsigned int> MyManagedObject::s_FreeList{};

mutex MyManagedObject::s_Mutex;

using ProducerQueue = vector < unsigned int > ;

void ThreadTask(

    reference_wrapper<condition_variable> condition,

    reference_wrapper<mutex> queueMutex,

    reference_wrapper<ProducerQueue> queueRef,

    reference_wrapper<bool> die)

{

    ProducerQueue& queue{ queueRef.get() };

    while (!die.get() || queue.size())

    {

        unique_lock<mutex> lock{ queueMutex.get() };

        function<bool()> predicate{

Chapter 11  ConCurrenCy



404

            [&queue]()

            {

                return !queue.empty();

            }

        };

        condition.get().wait(lock, predicate);

        unsigned int numberToCreate{ queue.back() };

        queue.pop_back();

        cout << "Creating " <<

            numberToCreate <<

            " objects on thread " <<

            this_thread::get_id() << endl;

        for (unsigned int i = 0; i < numberToCreate; ++i)

        {

            MyManagedObject* pObject{ new MyManagedObject(i) };

        }

    }

}

int main(int argc, char* argv[])

{

    condition_variable condition;

    mutex queueMutex;

    ProducerQueue queue;

    bool die{ false };

     thread myThread1{ ThreadTask, ref(condition), ref(queueMutex), 

ref(queue), ref(die) };

     thread myThread2{ ThreadTask, ref(condition), ref(queueMutex), 

ref(queue), ref(die) };

    queueMutex.lock();

    queue.emplace_back(300000);

    queue.emplace_back(400000);

    queueMutex.unlock();

Chapter 11  ConCurrenCy



405

    condition.notify_all();

    this_thread::sleep_for( 10ms );

    while (!queueMutex.try_lock())

    {

        cout << "Main waiting for queue access!" << endl;

        this_thread::sleep_for( 100ms );

    }

    queue.emplace_back(100000);

    queue.emplace_back(200000);

    this_thread::sleep_for( 1000ms );

    condition.notify_one();

    this_thread::sleep_for( 1000ms );

    condition.notify_one();

    this_thread::sleep_for( 1000ms );

    queueMutex.unlock();

    die = true;

    cout << "main waiting for join!" << endl;

    myThread1.join();

    myThread2.join();

    return 0;

}

This code contains a complex scenario using the C++ language’s multithreading 

capabilities. The first aspect of this example that you need to understand is the method 

used to pass variables from main into the threads. When the thread object is created, 

you can think of the values you pass to it as being passed into a function by value. In 

effect, this causes your threads to receive copies of variables and not the variables 

themselves. This causes difficulty when you’re trying to share objects between threads, 

because changes in one aren’t reflected in the other.

Chapter 11  ConCurrenCy



406

You can overcome this limitation by using the reference_wrapper template.  

A reference_wrapper essentially stores a pointer to the object you’re trying to share 

between threads, but it helps overcome the problem where you would normally have 

to account for a null pointer by ensuring that the value can’t be null. When you pass the 

variable into the thread constructor, you actually pass the variable into the ref function, 

which in turn passes a reference_wrapper containing your object to thread. When 

the thread constructor makes a copy of the values you passed to it, you receive a copy 

of the reference_wrapper and not a copy of the object itself. You could achieve the 

same result by using pointers to objects, but this built-in C++ method is much simpler 

and provides more safety. The ThreadTask function retrieves the shared objects from 

their reference_wrapper instances using the get method supplied by the reference_

wrapper template.

The ThreadTask function is used by two different threads in the program, and 

therefore the use of reference_wrapper is essential to ensure that the two instances 

share the same mutex and condition_variable along with main. Each instance 

uses a unique_lock to wrap the behavior of the mutex. Curiously, a unique_lock 

automatically locks a mutex when it’s constructed, but the code in Listing 11-11 never 

calls unlock on the mutex. The unlock call is carried out by the wait method in the 

first instance. The condition_variable::wait method unlocks the mutex and waits 

for a signal from another thread that it should continue. Unfortunately, this waiting 

isn’t completely reliable, because some operating systems can decide to unblock 

threads without the appropriate signal being sent. For this reason, it’s a good idea 

to have a backup plan—and the wait method provides this by taking a predicate 

parameter. The predicate takes a variable that can be called like a function. The code 

in Listing 11-11 provides a closure that determines whether the queue is empty. When 

the thread wakes, because it has been signaled to wake either by the program or by 

the operating system, it first checks to see if the predicate is true before attempting to 

reacquire the lock on the supplied mutex. If the predicate is true, the wait function 

calls lock and returns; doing so allows the thread’s function to continue execution. 

The ThreadTask function creates the appropriate number of objects before starting 

over due to the while loop. At the end of each iteration of the while loop, the unique_

lock wrapper for the mutex goes out of scope; its destructor calls unlock on the 

mutex, allowing other threads to be unblocked.

Chapter 11  ConCurrenCy



407

Note the use of unique_lock in Listing 11-11 is technically inefficient. holding 
the lock for longer than it takes to retrieve the number of objects to be created 
from the queue essentially serializes the creation of the objects by causing all 
threads to synchronize while one thread is creating objects. this example is 
poorly designed on purpose to show how these objects can be used in practice.

Whereas the ThreadTask function is used in two threads to consume jobs from 

queue, the main function is a producer thread that adds jobs to queue. It begins by 

creating the two consumer threads that will carry out its tasks. Once the threads are 

created, the main function carries on with the task of adding jobs to queue. It locks the 

mutex, adds two jobs—one to create 300,000 objects and another to create 400,000 

objects—and unlocks the mutex. It then calls notify_all on the condition_variable. 

The condition_variable object stores a list of threads that are waiting for a signal to 

continue; the notify_all method wakes all of these threads so they can carry out work.

The main function then uses try_lock to show that it can’t add tasks while the 

threads are busy. In normal code, you could call lock; but this is an example of how to 

make a thread wait for a certain amount of time and how the try_lock method can be 

used to conditionally execute code if the mutex can’t be locked. More tasks are added to 

queue once try_lock returns true and before the mutex is unlocked again. The notify_

one function is then used to wake a single thread at a time to show that it’s possible to 

write code with finer control over threads. The second thread must also be awakened, 

or the program will stall on the join calls indefinitely.

Figure 11-8 shows the output generated by running this code. You see that main 

can be blocked while waiting for access to the mutex and that both threads are used to 

consume tasks from queue.

Chapter 11  ConCurrenCy



408

 Recipe 11-5. Retrieving Results from a Thread
 Problem
You would like to create a thread that is capable of returning a result.

 Solution
C++ provides promise and future objects that can be used to transfer data between threads.

 How It Works
 Using the promise and future Classes

Transferring data from a worker thread back to the thread that begins a task can be 

a complicated process. You must ensure mutually exclusive access to the memory set 

aside to store the result as well as handle all the signaling between threads. These 

signals include having the working thread specify when the result of the thread 

operation is available as well as having the scheduling thread wait for that result to be 

available. Modern C++ solves this problem using the promise template.

Figure 11-8. Output showing multiple threads being awakened by a condition 
variable

Chapter 11  ConCurrenCy



409

A promise template can be specialized with a thread task return type. This creates 

a contract between threads that allows the transfer of this type of object from one to 

another. A promise contains a future. This means a promise can fulfil its name: it 

essentially promises to provide a value of its specialized type to the holder of its future 

at some point in the future. There is no requirement for a promise to be used on more 

than a single thread, but promises are thread-safe and perfect for this job. Alternate uses 

for promise/future pairs could be to retrieve results from asynchronous operations such 

as HTTP requests. Listing 11-12 shows the use of a promise on a single thread.

Listing 11-12. Using a promise on One Thread

#include <future>

#include <iostream>

using namespace std;

using FactorialPromise = promise< long long >;

long long Factorial(unsigned int value)

{

    return value == 1

        ? 1

        : value * Factorial(value - 1);

}

int main(int argc, char* argv[])

{

    using namespace chrono;

    FactorialPromise promise;

    future<long long> taskFuture{ promise.get_future() };

    promise.set_value(Factorial(3));

    cout << "Factorial result was " << taskFuture.get() << endl;

    return 0;

}

Listing 11-12 shows the use of a promise to provide storage for a value that can be 

calculated later and retrieved in the future. You could use this for long-running tasks 

Chapter 11  ConCurrenCy



410

such as loading data from a file or retrieving information from a server. A program can 

continue rendering a UI or a progress bar while the promise hasn’t been fulfilled.

The promise is initialized with a default constructor, and you can use the get_future 

method to get the future into which the promise places its value. The set_value 

method on the promise sets the value on the future, and the get method on the future 

provides access to the value.

C++ provides the packaged_task template, which removes the need for you to 

create your own thread function. A packaged_task constructor takes the function to 

call as a parameter, a corresponding thread constructor that can take a packaged_task. 

A thread constructed in this way can automatically call the method in the supplied 

packaged_task and call set_value on its internal promise. Listing 11-13 shows the use 

of a packaged_task.

Listing 11-13. Using a packaged_task

#include <future>

#include <iostream>

using namespace std;

long long Factorial(unsigned int value)

{

    this_thread::sleep_for(chrono::seconds(2));

    return value == 1

        ? 1

        : value * Factorial(value - 1);

}

int main(int argc, char* argv[])

{

    using namespace chrono;

    packaged_task<long long(unsigned int)> task{ Factorial };

    future<long long> taskFuture{ task.get_future() };

    thread taskThread{ std::move(task), 3 };

     while (taskFuture.wait_until(system_clock::now() + seconds(1)) != 

future_status::ready)

Chapter 11  ConCurrenCy



411

    {

        cout << "Still Waiting!" << endl;

    }

    cout << "Factorial result was " << taskFuture.get() << endl;

    taskThread.join();

    return 0;

}

Listing 11-13 shows that the ThreadTask function is no longer needed when using a 

packaged_task. The packaged_task constructor takes a function pointer as a parameter. 

The packaged_task template also supplies a get_future method and is passed to a 

thread using move semantics.

Although a packaged task removes the need for a thread function, you must still 

create your own thread manually. C++ supplies a fourth level of abstraction that prevents 

you from having to worry about threads. Listing 11-14 uses the async function to call a 

function asynchronously.

Listing 11-14. Using async to Call Functions

#include <future>

#include <iostream>

using namespace std;

long long Factorial(unsigned int value)

{

    cout << "ThreadTask thread: " << this_thread::get_id() << endl;

    return value == 1

        ? 1

        : value * Factorial(value - 1);

}

int main(int argc, char* argv[])

{

    using namespace chrono;

    cout << "main thread: " << this_thread::get_id() << endl;

Chapter 11  ConCurrenCy



412

    auto taskFuture1 = async(Factorial, 3);

    cout << "Factorial result was " << taskFuture1.get() << endl;

    auto taskFuture2 = async(launch::async, Factorial, 3);

    cout << "Factorial result was " << taskFuture2.get() << endl;

    auto taskFuture3 = async(launch::deferred, Factorial, 3);

    cout << "Factorial result was " << taskFuture3.get() << endl;

    auto taskFuture4 = async(launch::async | launch::deferred, Factorial, 3);

    cout << "Factorial result was " << taskFuture4.get() << endl;

    return 0;

}

Listing 11-14 shows the different possible combinations of the async function and 

its overloaded version, which takes the launch enum as a parameter. The first call to 

async is the simplest: you call async and pass it a function and the parameters for that 

function. The async function returns a future that can be used to get the value returned 

from the function supplied to async. There is no guarantee, however, that the function 

will be called on another thread. All async guarantees is that the function will be called 

sometime between where you create the object and when you call get on the future.

The overloaded version of async gives you more control. Passing launch::async 

guarantees that the function will be called on another thread as soon as possible. This 

may not necessarily be a brand-new thread. The implementer of async is free to use 

any thread they choose. This may mean having a pool of threads that can be reused if 

they’re available. The deferred option, on the other hand, tells the returned future to 

evaluate the supplied function when get is called. This isn’t a concurrent process and 

causes the thread calling get to block, but again this is implementation specific and not 

the same across all C++ libraries. You have to check the documentation for your library 

or test your code by running and checking execution times and thread IDs.

The final call to async passes both async and deferred using an or. This is the same 

as calling async without specifying an execution policy and lets the implementation 

decide whether async or deferred should be used. Figure 11-9 shows the result of each 

call to async.

Chapter 11  ConCurrenCy



413

As you can see, the library uses the main thread for every call except the one explicitly 

marked as async. Be sure to test your programs on all platforms and libraries in use to 

ensure that you’re seeing the behavior you expect.

 Recipe 11-6. Synchronizing Queued Messages 
Between Threads
 Problem
You have a thread that you would like to live for the entire duration of your program and 

respond to messages it’s sent.

 Solution
You can use a combination of function, bind, condition_variable, mutex, and unique_

lock to create a double-buffered message queue to transfer work from one thread to 

another.

Figure 11-9. The thread IDs used when calling async

Chapter 11  ConCurrenCy



414

 How It Works
Many programs benefit from separating their display logic from their business logic (or, 

in video games, separating simulation from rendering) and running them on different 

CPU cores. Ultimately, these tasks can usually be carried out independently of each 

other as long as you can define a well-structured boundary between the systems and 

develop a method for transferring data from one thread to the other.

One such approach is to create a double buffer of messages or commands. The 

business logic thread can add commands to the queue, while the display logic thread 

is reading commands from the queue. Double buffering the queue allows you to 

reduce the number of sync points that exist between the threads in an effort to increase 

throughput on both. The producer thread carries out work and queues a lot of tasks into 

one side of the buffer, while the consumer thread is busy working through the last set 

of tasks to be queued. The only time delay that occurs on either thread is when one is 

finished and waiting for the other. Listing 11-15 shows the class definition for a double- 

buffered message queue.

Listing 11-15. Creating a Double-Buffered Message Queue

#include <future>

#include <iostream>

using namespace std;

template <typename T>

class MessageQueue

{

private:

    using Queue = vector < T > ;

    using QueueIterator = typename Queue::iterator;

    Queue m_A;

    Queue m_B;

    Queue* m_Producer{ &m_A };

    Queue* m_Consumer{ &m_B };

Chapter 11  ConCurrenCy



415

    QueueIterator m_ConsumerIterator{ m_B.end() };

    condition_variable& m_MessageCondition;

    condition_variable m_ConsumptionFinished;

    mutex m_MutexProducer;

    mutex m_MutexConsumer;

    unsigned int m_SwapCount{ 0 };

public:

    MessageQueue(condition_variable& messageCondition)

        : m_MessageCondition{ messageCondition }

    {

    }

    unsigned int GetCount() const

    {

        return m_SwapCount;

    }

    void Add(T&& operation)

    {

        unique_lock<mutex> lock{ m_MutexProducer };

        m_Producer->insert(m_Producer->end(), std::move(operation));

    }

    void BeginConsumption()

    {

        m_MutexConsumer.lock();

    }

    T Consume()

    {

        T operation;

        if (m_Consumer->size() > 0)

        {

Chapter 11  ConCurrenCy



416

            operation = *m_ConsumerIterator;

            m_ConsumerIterator = m_Consumer->erase(m_ConsumerIterator);

            assert(m_ConsumerIterator == m_Consumer->begin());

        }

        return operation;

    }

    void EndConsumption()

    {

        assert(m_Consumer->size() == 0);

        m_MutexConsumer.unlock();

        m_ConsumptionFinished.notify_all();

    }

    unsigned int Swap()

    {

        unique_lock<mutex> lockB{ m_MutexConsumer };

        m_ConsumptionFinished.wait(

            lockB,

            [this]()

            {

                return m_Consumer->size() == 0;

            }

        );

        unique_lock<mutex> lockA{ m_MutexProducer };

        Queue* temp{ m_Producer };

        m_Producer = m_Consumer;

        m_Consumer = temp;

        m_ConsumerIterator = m_Consumer->begin();

        m_MessageCondition.notify_all();

        return m_SwapCount++;

    }

};

Chapter 11  ConCurrenCy



417

The class template shown in Listing 11-15 is a functional message queue containing 

a double buffer for passing objects from one thread to another. It consists of two vectors, 

m_A and m_B, that are accessed through the pointers m_Producer and m_Consumer. The 

class, when used properly, allows for nonblocking access across the Add and Consume 

methods. If you were simply adding from one thread and consuming from another, you 

could buffer a lot of work without ever having to synchronize the threads.

The only time the two threads require synchronization is when the producer thread 

would like to synchronize work into the consumer thread. This is handled in the Swap 

method. The Swap method uses the m_ConsumptionFinished condition_variable to 

wait for the m_Consumer queue to be empty. The condition_variable here is notified 

by the EndConsumption method. This implementation relies on the consumer thread 

exhausting the queued objects before informing the queue that it has finished. Not doing 

so would result in a deadlock.

The Add method works by taking an rvalue reference to an object to be moved to 

the other thread. An rvalue reference is used to ensure that the object being sent to the 

other thread is invalidated in the current thread after being moved to the queue. This 

helps to prevent data races where the producer thread could be left a valid reference 

to data being sent to another thread. Every object added goes at the end of the queue 

so that objects can be consumed in order by the consumer. The Consume method pulls 

objects from the beginning of the queue using a copy operation and then removes the 

original object from the queue. The Swap method simply switches the m_Producer and 

m_Consumer pointers; it does this under the protection of both mutexes and therefore 

can be confident that the switch is occurring when all producer and consumer threads 

should be able to handle it. Swap also sets m_ConsumerIterator to the correct queue and 

issues a notify to all threads waiting for the swap operation to be complete.

To show this queue in action, the example in Listing 11-16 uses an object to maintain 

a running total of some arithmetic operations. The main function acts as a producer 

that adds operations to be completed to the queue, and a thread is created that receives 

these operations and carries them out. 

Listing 11-16. A Working MessageQueue Example

#include <cassert>

#include <future>

#include <iostream>

#include <vector>

Chapter 11  ConCurrenCy



418

using namespace std;

class RunningTotal

{

private:

    int m_Value{ 0 };

    bool m_Finished{ false };

public:

    RunningTotal& operator+=(int value)

    {

        m_Value += value;

        return *this;

    }

    RunningTotal& operator-=(int value)

    {

        m_Value -= value;

        return *this;

    }

    RunningTotal& Finish()

    {

        m_Finished = true;

        return *this;

    }

    int operator *() const throw(int)

    {

        if (!m_Finished)

        {

            throw m_Value;

        }

        return m_Value;

    }

};

template <typename T>

Chapter 11  ConCurrenCy



419

class MessageQueue

{

private:

    using Queue = vector < T > ;

    using QueueIterator = typename Queue::iterator;

    Queue m_A;

    Queue m_B;

    Queue* m_Producer{ &m_A };

    Queue* m_Consumer{ &m_B };

    QueueIterator m_ConsumerIterator{ m_B.end() };

    condition_variable& m_MessageCondition;

    condition_variable m_ConsumptionFinished;

    mutex m_MutexProducer;

    mutex m_MutexConsumer;

    unsigned int m_SwapCount{ 0 };

public:

    MessageQueue(condition_variable& messageCondition)

        : m_MessageCondition{ messageCondition }

    {

    }

    unsigned int GetCount() const

    {

        return m_SwapCount;

    }

    void Add(T&& operation)

    {

        unique_lock<mutex> lock{ m_MutexProducer };

        m_Producer->insert(m_Producer->end(), std::move(operation));

    }

Chapter 11  ConCurrenCy



420

    void BeginConsumption()

    {

        m_MutexConsumer.lock();

    }

    T Consume()

    {

        T operation;

        if (m_Consumer->size() > 0)

        {

            operation = *m_ConsumerIterator;

            m_ConsumerIterator = m_Consumer->erase(m_ConsumerIterator);

            assert(m_ConsumerIterator == m_Consumer->begin());

        }

        return operation;

    }

    void EndConsumption()

    {

        assert(m_Consumer->size() == 0);

        m_MutexConsumer.unlock();

        m_ConsumptionFinished.notify_all();

    }

    unsigned int Swap()

    {

        unique_lock<mutex> lockB{ m_MutexConsumer };

        m_ConsumptionFinished.wait(

            lockB,

            [this]()

            {

                return m_Consumer->size() == 0;

            }

        );

        unique_lock<mutex> lockA{ m_MutexProducer };

Chapter 11  ConCurrenCy



421

        Queue* temp{ m_Producer };

        m_Producer = m_Consumer;

        m_Consumer = temp;

        m_ConsumerIterator = m_Consumer->begin();

        m_MessageCondition.notify_all();

        return m_SwapCount++;

    }

};

using RunningTotalOperation = function < RunningTotal&() > ;

using RunningTotalMessageQueue = MessageQueue < RunningTotalOperation > ;

int Task(reference_wrapper<mutex> messageQueueMutex,

        reference_wrapper<condition_variable> messageCondition,

        reference_wrapper<RunningTotalMessageQueue> messageQueueRef)

{

    int result{ 0 };

    RunningTotalMessageQueue& messageQueue = messageQueueRef.get();

    unsigned int currentSwapCount{ 0 };

    bool finished{ false };

    while (!finished)

    {

        unique_lock<mutex> lock{ messageQueueMutex.get() };

        messageCondition.get().wait(

            lock,

            [&messageQueue, &currentSwapCount]()

            {

                return currentSwapCount != messageQueue.GetCount();

            }

        );

        messageQueue.BeginConsumption();

        currentSwapCount = messageQueue.GetCount();

Chapter 11  ConCurrenCy



422

        while (RunningTotalOperation operation{ messageQueue.Consume() })

        {

            RunningTotal& runningTotal = operation();

            try

            {

                result = *runningTotal;

                finished = true;

                break;

            }

            catch (int param)

            {

                // nothing to do, not finished yet!

                 cout << "Total not yet finished, current is: " << param << 

endl;

            }

        }

        messageQueue.EndConsumption();

    }

    return result;

}

int main(int argc, char* argv[])

{

    RunningTotal runningTotal;

    mutex messageQueueMutex;

    condition_variable messageQueueCondition;

    RunningTotalMessageQueue messageQueue(messageQueueCondition);

    auto myFuture = async(launch::async,

        Task,

        ref(messageQueueMutex),

        ref(messageQueueCondition),

        ref(messageQueue));

Chapter 11  ConCurrenCy



423

    messageQueue.Add(bind(&RunningTotal::operator+=, &runningTotal, 3));

    messageQueue.Swap();

    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 100));

     messageQueue.Add(bind(&RunningTotal::operator+=, &runningTotal, 100000));

    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 256));

    messageQueue.Swap();

    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 100));

     messageQueue.Add(bind(&RunningTotal::operator+=, &runningTotal, 100000));

    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 256));

    messageQueue.Swap();

    messageQueue.Add(bind(&RunningTotal::Finish, &runningTotal));

    messageQueue.Swap();

    cout << "The final total is: " << myFuture.get() << endl;

    return 0;

}

This code represents a complex use of many modern C++ language features. Let’s 

break the source into smaller examples to show how individual tasks are executed on a 

long-running helper thread. Listing 11-17 covers the RunningTotal class.

Listing 11-17. The RunningTotal Class

class RunningTotal

{

private:

    int m_Value{ 0 };

    bool m_Finished{ false };

public:

    RunningTotal& operator+=(int value)

    {

        m_Value += value;

        return *this;

    }

Chapter 11  ConCurrenCy



424

    RunningTotal& operator-=(int value)

    {

        m_Value -= value;

        return *this;

    }

    RunningTotal& Finish()

    {

        m_Finished = true;

        return *this;

    }

    int operator *() const throw(int)

    {

        if (!m_Finished)

        {

            throw m_Value;

        }

        return m_Value;

    }

};

The RunningTotal class in Listing 11-18 is a simple object that represents a long- 

running store of data. In a proper program, this class could be an interface to a web 

server, database, or rendering engine that exposes methods to update its state. For the 

purposes of this example, the class simply wraps an int that keeps track of the results of 

the operations and a bool that determines when the calculations are complete. These 

values are manipulated using an overridden += operator, -= operator, and * operator. 

There is also a Finished method that sets the m_Finished Boolean to true.

The main function is responsible for instantiating the RunningTotal object as well as 

the message queue and the consumer thread. It can be seen in Listing 11-18.

Listing 11-18. The main Function

#include <future>

#include <iostream>

using namespace std;

Chapter 11  ConCurrenCy



425

using RunningTotalOperation = function < RunningTotal&() >;

using RunningTotalMessageQueue = MessageQueue < RunningTotalOperation > ;

int main(int argc, char* argv[])

{

    RunningTotal runningTotal;

    mutex messageQueueMutex;

    condition_variable messageQueueCondition;

    RunningTotalMessageQueue messageQueue(messageQueueCondition);

    auto myFuture = async(launch::async,

        Task,

        ref(messageQueueMutex),

        ref(messageQueueCondition),

        ref(messageQueue));

    messageQueue.Add(bind(&RunningTotal::operator+=, &runningTotal, 3));

    messageQueue.Swap();

    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 100));

    messageQueue.Add(bind(&RunningTotal::operator+=, &runningTotal, 100000));

    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 256));

    messageQueue.Swap();

    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 100));

    messageQueue.Add(bind(&RunningTotal::operator+=, &runningTotal, 100000));

    messageQueue.Add(bind(&RunningTotal::operator-=, &runningTotal, 256));

    messageQueue.Swap();

    messageQueue.Add(bind(&RunningTotal::Finish, &runningTotal));

    messageQueue.Swap();

    cout << "The final total is: " << myFuture.get() << endl;

    return 0;

}

The first piece of important code in Listing 11-18 is the type aliases before main. 

These are used to create types that represent the message queue you’ll be using and 

the type of objects the message queue contains. In this case, I have created a type that 

Chapter 11  ConCurrenCy



426

you can use to carry out operations on the RunningTotal class. This type alias is created 

using the C++ function object, which allows you to create a representation of a function 

to be called later. This type requires that you specify the signature type of the function in 

the template—and you may be surprised to see that the signature is described without 

parameters. This means the functors stored in the queue won’t have parameters passed 

to them directly. This would normally cause issues for operations such as += and -= that 

need parameters; but the bind function comes to the rescue. You can see several uses 

of bind in the main function. All of these examples of bind are used to bind a method 

pointer to a method instance of that type. The second parameter passed to bind when 

using a method pointer should always be the instance of the object on which the method 

will be called. Any subsequent parameters are automatically passed to the function 

when the functor is executed. This automatic passing of bound parameters is why you 

don’t need to specify any parameter types in the type alias and why you can use a single 

queue to represent functions that have different signatures.

main creates a thread using the async function and queues several operations to be 

carried out on the thread along with multiple swaps. The last piece of the example is the 

Task function, which is executed on the second thread; see Listing 11-19.

Listing 11-19. The Task Function

#include <future>

#include <iostream>

using namespace std;

int Task(reference_wrapper<mutex> messageQueueMutex,

        reference_wrapper<condition_variable> messageCondition,

        reference_wrapper<RunningTotalMessageQueue> messageQueueRef)

{

    int result{ 0 };

    RunningTotalMessageQueue& messageQueue = messageQueueRef.get();

    unsigned int currentSwapCount{ 0 };

    bool finished{ false };

    while (!finished)

    {

Chapter 11  ConCurrenCy



427

        unique_lock<mutex> lock{ messageQueueMutex.get() };

        messageCondition.get().wait(

            lock,

            [&messageQueue, &currentSwapCount]()

            {

                return currentSwapCount != messageQueue.GetCount();

            }

        );

        messageQueue.BeginConsumption();

        currentSwapCount = messageQueue.GetCount();

        while (RunningTotalOperation operation{ messageQueue.Consume() })

        {

            RunningTotal& runningTotal = operation();

            try

            {

                result = *runningTotal;

                finished = true;

                break;

            }

            catch (int param)

            {

                // nothing to do, not finished yet!

                 cout << "Total not yet finished, current is: " << param  

<< endl;

            }

        }

        messageQueue.EndConsumption();

    }

    return result;

}

The Task function loops until the finished bool has been set to true. It waits for 

the messageCondition condition_variable to be signaled before continuing work, and 

it uses the lambda to ensure that a swap has actually occurred in case the thread was 

awakened by the operating system rather than by a notify call.

Chapter 11  ConCurrenCy



428

Once the thread has been kicked and there is work to be carried out, it calls the 

BeginConsumption method on the queue. This has the effect of locking the queue’s 

Swap method until all the current jobs in the thread have been completed. The 

currentSwapCount variable is updated to ensure that the condition_variable can 

guarantee safety the next time the loop is entered. A second while loop is responsible for 

pulling each of the functors from the queue until the queue is empty. This is where the 

bound function objects created by main are executed. The thread itself doesn’t know the 

substance of the work it’s carrying out; it simply responds to the requests that have been 

queued in the main function.

The * operator is used after every operation to test whether the Finished command 

has been sent. The RunningTotal::operator* method will throw an int exception 

containing the current value stored if the Finished method hasn’t been called. You can 

see how this is used in the Task function with the try…catch block. The result variable, 

finished bool, and break statements are executed only in the event that the operator* 

returns a value rather than throwing the value. The current total is printed to the console 

each time an operation completes that doesn’t mark the operations as finished. You can 

see the result of this code in Figure 11-10.

Figure 11-10. The output showing a working message queue in action

Chapter 11  ConCurrenCy



429
© J. Burton Browning and Bruce Sutherland 2020 
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_12

CHAPTER 12

Networking
Communicating over the Internet is becoming an increasingly integral part of many 

modern computer programs. It’s hard to find any programs that don’t connect to another 

instance of the same program or to a web server that provides essential functionality 

to some part of the program or an app. This creates opportunities for developers 

to specialize in the field of network programming. You can take several different 

approaches when writing connected programs, and using a high-level library is a valid 

technique; however, this chapter looks at the Berkeley Sockets library that can be used 

on macOS, Linux, and Windows.

Berkeley Sockets first appeared in 1983 in the Unix operating system. That OS became 

unencumbered by copyright issues in the late 1980s, allowing the Berkeley Sockets API 

to become the standard implementation used on most OSs today. Even though Windows 

doesn’t support Berkeley directly, its network API is almost entirely the same as the 

Berkeley standard API. Add to this the increased use of Linux as an OS, and you will 

quickly see the value of this chapter.

We will cover how to create and use sockets to produce programs that can 

communicate with each other over a network such as the Internet. Recipes 12-1, 12-2, 

and 12-3 cover the same material for each of the major OSs in use today. You should read 

the recipe relevant to the system you are using for development and then move on.

 Recipe 12-1. Setting Up a Berkeley Sockets 
Application on macOS
 Problem
You would like to create a network socket program that can be used on macOS.



430

 Solution
macOS supplies the Berkeley Sockets API as part of the OS which can be used without 

having to resort to external libraries.

 How It Works
Apple provides the Xcode IDE, which you can use to build macOS applications from an 

Apple computer. Xcode is freely available from the App Store. Once installed, you can use 

Xcode to create programs to be run on computers of your choosing. This recipe creates a 

command-line program that connects to the Internet and opens a socket to a server.

To begin, you have to create a valid project for your application. Open Xcode, and 

select the Create a new Xcode project option shown in Figure 12-1.

Figure 12-1. The Xcode Welcome screen with the Create a new Xcode project option

You’re asked to select the type of application you wish to create. Select the Command 

Line Tool option under the macOS Application category; Figure 12-2 shows this window.

Chapter 12  NetworkiNg



431

Next, you’re asked to nominate a folder in which to store your project files. After you 

do, the main Xcode window opens, and you can select your source files from the Project 

View on the left. Replace the code in the new CPP file with the code from Listing 12-1 to 

create an application that opens a socket to the Google HTTP web server.

Listing 12-1. Opening a Berkeley Socket

#include <iostream>

#include <netdb.h>

#include <sys/types.h>

#include <sys/socket.h>

using SOCKET = int;

using namespace std;

Figure 12-2. The macOS Application Command Line Tool option

Chapter 12  NetworkiNg



432

int main(int argc, const char * argv[])

{

    addrinfo hints{};

    hints.ai_family = AF_UNSPEC;

    hints.ai_socktype = SOCK_STREAM;

    addrinfo *servinfo{};

    getaddrinfo("www.google.com", "80", &hints, &servinfo);

    SOCKET sockfd{

         socket(servinfo->ai_family, servinfo->ai_socktype, servinfo->ai_

protocol)

    };

     int connectionResult{ connect(sockfd, servinfo->ai_addr, servinfo->ai_

addrlen) };

    if (connectionResult == -1)

    {

        cout << "Connection failed!" << endl;

    }

    else

    {

        cout << "Connection successful!" << endl;

    }

    freeaddrinfo(servinfo);

    return 0;

}

The code in Listing 12-1 requires a short primer on how the Internet works in order for you 

to fully understand what is happening. Before you can connect to a server, you need to know 

the address at which it’s located. This is best found using the domain name service (DNS). DNS 

works by keeping a cache of the server addresses for a given host name. In this example, you’re 

asking DNS for the address associated with www.google.com. If you’re creating a program to 

run on your own network, you can specify the IP addresses of the servers manually, but this 

usually isn’t possible for programs that access information using the Internet. Servers can be 

moved, and IP addresses can be changed or reused for different systems at different times. The 

getaddrinfo function asks DNS for the address associated with www.google.com on port 80.

Chapter 12  NetworkiNg

http://www.google.com
http://www.google.com


433

Server addresses for specific services usually consist of two parts: the IP address 

of the computer to connect to and the port of the specific service on that server that 

you wish to communicate with. The World Wide Web communicates using the HTTP 

protocol, which is commonly configured to serve data using port 80. You can see in 

Listing 12-1 that this is the port with which you try to establish a connection on the 

remote computer.

The getaddrinfo function takes the web address, the port, and two addrinfo 

structs as parameters. The first of these structs provides the DNS service with some 

hints as to the type of connection you want to establish with the remote computer. The 

two most important at this point are the ai_family and ai_socktype fields.

The ai_family field specifies the type of address you would like to retrieve for your 

program. This allows you to specify whether you want an IPv4, IPv6, NetBIOS, Infrared, 

or Bluetooth address. The option supplied in Listing 12-1 is unspecified, which allows 

the getaddrinfo function to return all the valid IP addresses for the requested web 

address. These valid IP addresses are represented by the same addrinfo struct and 

are passed back to the program through the pointer supplied to getaddrinfo’s fourth 

parameter.

The ai_socktype field lets you specify the type of transmission mechanism to be 

used with the socket in question. The SOCK_STREAM option in Listing 12-1 creates a socket 

that uses TCP/IP as the transport mechanism. This type of socket allows you to send 

packets of information that are guaranteed to arrive in order at the destination. The only 

other type of transmission mechanism used in this chapter is the SOCK_DGRAM type. This 

transport mechanism doesn’t guarantee that packets will arrive or that they will arrive 

in the order expected; however, it doesn’t have the same overheads that come with the 

TCP/IP mechanism and therefore can result in packets being sent with much lower 

latency between computers.

The servinfo returned by the getaddrinfo function can be used to create a socket.  

A socket file descriptor is obtained from the socket function, which is passed the 

info from the servinfo structure. The servinfo structure could be a linked list in this 

instance, because Google supports both the IPv4 and IPv6 address formats. You could 

write code here that chooses the address to use and acts appropriately. The ai_next field 

stores a pointer to the next element in the list for as long as the list has more elements. 

The ai_family, ai_socktype, and ai_protocol variables are all passed into the socket 

function to create a valid socket to use. You can call the connect function once you have 

a valid socket. The connect function takes the socket ID, the ai_addr field from the 

Chapter 12  NetworkiNg



434

servinfo object containing the address, and ai_addrlen to determine the length of the 

address. If the connection wasn’t obtained successfully, you receive a return value of -1 from 

connect. Listing 12-1 demonstrates this by printing whether the connection was successful.

 Recipe 12-2. Setting Up a Berkeley Sockets 
Application in Eclipse on Ubuntu
 Problem
You would like to create a network socket program that can be used on Ubuntu using 

Eclipse.

 Solution
Ubuntu supplies the Berkeley Sockets API as part of the OS which can be used without 

having to resort to external libraries.

 How It Works
The Eclipse IDE can be used to build applications on a computer running Linux. Eclipse 

is freely available from the Ubuntu Software Center. Once installed, you can use Eclipse 

to create programs to be run on computers of your choosing. This recipe creates a 

command-line program that connects to the Internet and opens a socket to a server.

To begin, you have to create a valid project for your application. Open Eclipse, and 

select the Project ➤ New option from the menu bar. The New Project wizard opens, as 

shown in Figure 12-3.

Chapter 12  NetworkiNg



435

The New Project wizard allows you to select C++ Project as an option. Then, click 

Next, and you’re presented with the C++ Project settings window shown in Figure 12-4.

Figure 12-3. The Eclipse New Project wizard

Chapter 12  NetworkiNg



436

In this window, you can name your project and decide which folder it should be 

created in. Under Project type, select Executable ➤ Hello World C++ Project. Doing so 

creates a project that’s configured to be built as an executable and that contains a source 

file for adding your own code.

Replace the code in the new CPP file with the code from Listing 12-2 to create an 

application that opens a socket to the Google HTTP web server.

Note the code and description that follow are exactly the same as in recipe 12- 1.  
if you’ve already read this material, you may wish to skip to recipe 12-4. if you skipped 
recipe 12-1 because macoS isn’t relevant to you, then read on.

Figure 12-4. The Eclipse C++ Project settings window

Chapter 12  NetworkiNg



437

Listing 12-2. Opening a Berkeley Socket

#include <iostream>

#include <netdb.h>

#include <sys/types.h>

#include <sys/socket.h>

using SOCKET = int;

using namespace std;

int main(int argc, const char * argv[])

{

    addrinfo hints{};

    hints.ai_family = AF_UNSPEC;

    hints.ai_socktype = SOCK_STREAM;

    addrinfo *servinfo{};

    getaddrinfo("www.google.com", "80", &hints, &servinfo);

    SOCKET sockfd{

         socket(servinfo->ai_family, servinfo->ai_socktype, servinfo-> 

ai_protocol)

    };

     int connectionResult{ connect(sockfd, servinfo->ai_addr, servinfo-> 

ai_addrlen) };

    if (connectionResult == -1)

    {

        cout << "Connection failed!" << endl;

    }

    else

    {

        cout << "Connection successful!" << endl;

    }

    freeaddrinfo(servinfo);

    return 0;

}

Chapter 12  NetworkiNg



438

The code in Listing 12-2 requires a short primer on how the Internet works in order for 

you to fully understand what is happening. Before you can connect to a server, you need to 

know the address at which it’s located. This is best found using the domain name service 

(DNS). DNS works by keeping a cache of the server addresses for a given host name.

In this example, you’re asking DNS for the address associated with www.google.com.  

If you’re creating a program to run on your own network, you can specify the IP addresses 

of the servers manually, but this usually isn’t possible for programs that access information 

using the Internet. Servers can be moved, and IP addresses can be changed or reused for 

different systems at different times. The getaddrinfo function asks DNS for the address 

associated with www.google.com on port 80.

Server addresses for specific services usually consist of two parts: the IP address 

of the computer to connect to and the port of the specific service on that server that 

you wish to communicate with. The World Wide Web communicates using the HTTP 

protocol, which is commonly configured to serve data using port 80. You can see in 

Listing 12-2 that this is the port with which you try to establish a connection on the 

remote computer.

The getaddrinfo function takes the web address, the port, and two addrinfo 

structs as parameters. The first of these structs provides the DNS service with some 

hints as to the type of connection you want to establish with the remote computer. The 

two most important at this point are the ai_family and ai_socktype fields.

The ai_family field specifies the type of address you would like to retrieve for your 

program. This allows you to specify whether you want an IPv4, IPv6, NetBIOS, Infrared, 

or Bluetooth address. The option supplied in Listing 12-2 is unspecified, which allows 

the getaddrinfo function to return all the valid IP addresses for the requested web 

address. These valid IP addresses are represented by the same addrinfo struct and 

are passed back to the program through the pointer supplied to getaddrinfo’s fourth 

parameter.

The ai_socktype field lets you specify the type of transmission mechanism to 

be used with the socket in question. The SOCK_STREAM option in Listing 12-2 creates 

a socket that uses TCP/IP as the transport mechanism. This type of socket allows 

you to send packets of information that are guaranteed to arrive in order at the 

destination. The only other type of transmission mechanism used in this chapter 

is the SOCK_DGRAM type. This transport mechanism doesn’t guarantee that packets 

will arrive or that they will arrive in the order expected; however, it doesn’t have the 

same overheads that come with the TCP/IP mechanism and therefore can result in 

packets being sent with much lower latency between computers.

Chapter 12  NetworkiNg

http://www.google.com
http://www.google.com


439

The servinfo returned by the getaddrinfo function can be used to create a socket.  

A socket file descriptor is obtained from the socket function, which is passed the 

info from the servinfo structure. The servinfo structure could be a linked list in this 

instance, because Google supports both the IPv4 and IPv6 address formats.

You could write code here that chooses the address to use and acts appropriately. 

The ai_next field stores a pointer to the next element in the list for as long as the list has 

more elements. The ai_family, ai_socktype, and ai_protocol variables are all passed 

into the socket function to create a valid socket to use. You can call the connect function 

once you have a valid socket. The connect function takes the socket ID, the ai_addr 

field from the servinfo object containing the address, and ai_addrlen to determine 

the length of the address. If the connection wasn’t obtained successfully, you receive a 

return value of -1 from connect. Listing 12-2 demonstrates this by printing whether the 

connection was successful.

 Recipe 12-3. Setting Up a Winsock 2 Application 
in Visual Studio on Windows
 Problem
You would like to create a network socket program that can be used on Windows 

machines.

 Solution
Microsoft supplies the Winsock library, which enables socket-based communication 

between computers.

 How It Works
The Windows OS doesn’t come with a native Berkeley Sockets implementation like 

macOS or Ubuntu. Instead, Microsoft supplies the Winsock library. This library is 

fortunately very similar to the Berkeley Sockets library, to the extent that most of 

the code is interchangeable between the three platforms. You can create a new C++ 

application that uses Winsock by opening Visual Studio and selecting Create a new 

project option. Doing so opens the New Project wizard shown in Figure 12-5.

Chapter 12  NetworkiNg



440

You want to create an empty project to run the sample code from this chapter. Select it, click 

Next, then enter a name, and choose a folder in which to store the data; then click Create. 

 Right-click Source files to add a new item, a C++ source file. This screen is shown in Figure 12-6.

Figure 12-5. The Visual Studio New Project wizard

Figure 12-6. The Win32 application wizard

Chapter 12  NetworkiNg



441

When you do, you’re presented with a working project. The project doesn’t support 

sockets, though, because Windows requires that you link against a library to provide socket 

support. You can do this by right-clicking the project from the Solution Explorer window 

and selecting Properties. Specify the libraries to be linked against. Right-click Project ➤ 

Linker ➤ Input. Figure 12-7 shows this window with the specific option selected.

Figure 12-7. The Visual Studio linker input options

You want to add a new library to the Additional Dependencies section. Select this 

option, and click the down arrow to open the edit dialog shown in Figure 12-8.

Chapter 12  NetworkiNg



442

The Winsock API is provided by the Ws2_32.lib static library. Enter this value in the 

text box, and click OK. This allows you to use the Winsock 2 API in your program without 

issue.

Replace the code in the new CPP file with the code from Listing 12-3 to create an 

application that opens a socket to the Google HTTP web server. Make sure though you 

have the ws2_32.lip file on your machine by checking with a search for it. If you do not 

have it, download it for free from a site such as www.dlldownloader.com/ws2_32-dll/ 

and place the file in both your lib directory for Visual Studio and your project directory.

Note the code and description that follow are mostly the same as in recipe 12- 1. 
however, some parts are unique to windows. if you’ve already read this material, you 
may wish to cover the windows-unique aspects and then skip to recipe 12-4. if you 
skipped recipe 12-1 and recipe 12-2, read on.

Listing 12-3. Opening a Winsock Socket

#include <iostream>

#include <winsock2.h>

#include <WS2tcpip.h>

using namespace std;

Figure 12-8. The Additional Dependencies dialog

Chapter 12  NetworkiNg

http://www.dlldownloader.com/ws2_32-dll/


443

int main(int argc, char* argv[])

{

    WSADATA wsaData;

    if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)

    {

        return 1;

    }

    addrinfo hints{};

    hints.ai_family = AF_UNSPEC;     // don't care IPv4 or IPv6

    hints.ai_socktype = SOCK_STREAM; // TCP stream sockets

    // get ready to connect

    addrinfo* servinfo{};  // will point to the results

    getaddrinfo("www.google.com", "80", &hints, &servinfo);

     SOCKET sockfd{ socket(servinfo->ai_family, servinfo->ai_socktype, 

servinfo->ai_protocol) };

     int connectionResult{ connect(sockfd, servinfo->ai_addr, servinfo->ai_

addrlen) };

    if (connectionResult == -1)

    {

        cout << "Connection failed!" << endl;

    }

    else

    {

        cout << "Connection successful!" << endl;

    }

    freeaddrinfo(servinfo);

    WSACleanup();

    return 0;

}

Chapter 12  NetworkiNg



444

The code sections in bold in Listing 12-3 are unique to the Windows socket library and 

aren’t transferable to the Unix and macOS implementations of Berkeley Sockets. Windows 

requires that your program start and shut down the Winsock library. This is achieved using 

the WSAStartup and WSACleanup functions. Another subtle difference is that the Winsock 

API specifies the SOCKET type to be an unsigned int. The Berkeley implementations found 

in macOS and Ubuntu both return a standard int from the socket function. The code in 

Listing 12-1 and Listing 12-2 uses a type alias to specify the SOCKET type to make the code 

appear more portable; however, the types still differ between the platforms.

This code requires a short primer on how the Internet works in order for you to fully 

understand what is happening. Before you can connect to a server, you need to know the 

address at which it’s located. This is best found using the domain name service (DNS). 

DNS works by keeping a cache of the server addresses for a given host name. In this 

example, you’re asking DNS for the address associated with www.google.com. If you’re 

creating a program to run on your own network, you can specify the IP addresses of the 

servers manually, but this usually isn’t possible for programs that access information 

using the Internet. Servers can be moved, and IP addresses can be changed or reused for 

different systems at different times. The getaddrinfo function asks DNS for the address 

associated with www.google.com on port 80.

Server addresses for specific services usually consist of two parts: the IP address 

of the computer to connect to and the port of the specific service on that server that 

you wish to communicate with. The World Wide Web communicates using the HTTP 

protocol, which is commonly configured to serve data using port 80. You can see in 

Listing 12-3 that this is the port with which you try to establish a connection on the 

remote computer.

The getaddrinfo function takes the web address, the port, and two addrinfo structs 

as parameters. The first of these structs provides the DNS service with some hints as to the 

type of connection you want to establish with the remote computer. The two most important 

at this point are the ai_family and ai_socktype fields.

Figure 12-9. Output from successful run of Listing 12-3

Chapter 12  NetworkiNg

http://www.google.com
http://www.google.com


445

The ai_family field specifies the type of address you would like to retrieve for your 

program. This allows you to specify whether you want an IPv4, IPv6, NetBIOS, Infrared, 

or Bluetooth address. The option supplied in Listing 12-3 is unspecified, which allows the 

getaddrinfo function to return all the valid IP addresses for the requested web address. 

These valid IP addresses are represented by the same addrinfo struct and are passed 

back to the program through the pointer supplied to getaddrinfo’s fourth parameter.

The ai_socktype field lets you specify the type of transmission mechanism to be used 

with the socket in question. The SOCK_STREAM option in Listing 12-3 creates a socket that 

uses TCP/IP as the transport mechanism. This type of socket allows you to send packets of 

information that are guaranteed to arrive in order at the destination. The only other type 

of transmission mechanism used in this chapter is the SOCK_DGRAM type. This transport 

mechanism doesn’t guarantee that packets will arrive or that they will arrive in the order 

expected; however, it doesn’t have the same overheads that come with the TCP/IP  

mechanism and therefore can result in packets being sent with much lower latency 

between computers.

The servinfo returned by the getaddrinfo function can be used to create a socket.  

A socket file descriptor is obtained from the socket function, which is passed the info 

from the servinfo structure. The servinfo structure could be a linked list in this instance, 

because Google supports both the IPv4 and IPv6 address formats. You could write code 

here that chooses the address to use and acts appropriately. The ai_next field stores a 

pointer to the next element in the list for as long as the list has more elements. The ai_family, 

ai_socktype, and ai_protocol variables are all passed into the socket function to create 

a valid socket to use. You can call the connect function once you have a valid socket. 

The connect function takes the socket ID, the ai_addr field from the servinfo object 

containing the address, and ai_addrlen to determine the length of the address.  

If the connection wasn’t obtained successfully, you receive a return value of -1 from connect. 

Listing 12-3 demonstrates this by printing whether the connection was successful.

 Recipe 12-4. Creating a Socket Connection Between 
Two Programs
 Problem
You would like to write a network client program and a server program that can 

communicate across a network.

Chapter 12  NetworkiNg



446

 Solution
You can use the Berkeley Sockets API to send and receive data across a socket.

 How It Works
Berkeley Sockets are designed to send and receive information across a network. The API 

provides send and recv functions to achieve this goal. The difficulty in getting this to work 

is that you have to ensure that your sockets are configured properly for data transfer.  

The operations required to receive data are very different than the operations required 

to send data when setting up your sockets. This recipe also creates code that can run on 

multiple platforms and compiles using Microsoft Visual Studio, using Xcode, or on a Linux 

machine using Clang as the compiler.

Note the Socket class won’t compile when using gCC because that compiler 
doesn’t yet support move constructors for the stringstream class. You can alter 
the sample code to prevent the need to call move with stringstream if you’re 
using gCC.

The first class to look at starts and stops Winsock when the program is built to run 

on Windows machines. This class shouldn’t have any effect when you’re building and 

running on macOS or Linux computers. Listing 12-4 shows how this can be achieved.

Listing 12-4. Wrapping Winsock

#include <iostream>

using namespace std;

#ifdef _MSC_VER

#pragma comment(lib, "Ws2_32.lib")

#include <WinSock2.h>

#include <WS2tcpip.h>

#define UsingWinsock 1

Chapter 12  NetworkiNg



447

using ssize_t = SSIZE_T;

#else

#define UsingWinsock 0

#endif

class WinsockWrapper

{

public:

    WinsockWrapper()

    {

#if UsingWinsock

        WSADATA wsaData;

        if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)

        {

            exit(1);

        }

#ifndef NDEBUG

        cout << "Winsock started!" << endl;

#endif

#endif

    }

    ~WinsockWrapper()

    {

#if UsingWinsock

        WSACleanup();

#ifndef NDEBUG

        cout << "Winsock shut down!" << endl;

#endif

#endif

    }

};

Chapter 12  NetworkiNg



448

int main()

{

    WinsockWrapper myWinsockWrapper;

    return 0;

}

The code in Listing 12-4 detects the presence of Microsoft Visual Studio using the 

preprocessor. Visual Studio defines the symbol _MSC_VER when building. You can use this 

when building a Windows program with Visual Studio to include Windows-specific files 

as I have done here. The Winsock 2 library is included using a pragma in this program 

only when Visual Studio is being used to build; the necessary Winsock header files are 

also included. A define is set up that’s used specifically for this program. When the code 

is building in Visual Studio, the UsingWinsock macro is defined as 1; when the code isn’t 

building using Visual Studio, it’s set to 0. Windows builds also require that you create 

a type alias to map SSIZE_T to ssize_t, because this type uses the lowercase spelling 

when not building on Windows computers.

The WinsockWrapper class detects the value of UsingWinsock in its constructor and 

destructor. If this value is 1, then the functions to start and stop the Winsock API are 

compiled in. This code isn’t compiled in when not building with Visual Studio; therefore, 

it’s safe to include in this manner.

The main function creates a WinsockWrapper object on its first line. This causes the 

constructor to be called and Winsock to be initialized on Windows machines; it has no 

effect on non-Windows builds. The Winsock API is also shut down when this object goes 

out of scope, because the destructor is called. You now have a convenient method for 

starting and stopping Winsock in a manner that is portable across multiple platforms.  

A successful run will show “Winsock started! Winsock shut down!” as output.

The Socket class is integral to communicating from one program to another. It’s 

responsible for providing an object-oriented wrapper for the C-based Berkeley Sockets 

API. The socket itself is represented by a descriptor that is essentially an int. A method 

creates a class that associates the data needed for creating Berkeley Sockets with the 

code necessary to work with sockets. The entire source for the Socket class is shown  

in Listing 12-5. Note this is part of a complete program and will not run by itself.  

Listing 12- 6 shows the class and driver as a complete application.

Chapter 12  NetworkiNg



449

Listing 12-5. Creating an Object-Oriented Socket Class

class Socket

{

private:

#if !UsingWinsock

    using SOCKET = int;

#endif

    addrinfo* m_ServerInfo{ nullptr };

    SOCKET m_Socket{ static_cast<SOCKET>(0xFFFFFFFF) };

    sockaddr_storage m_AcceptedSocketStorage{};

    socklen_t m_AcceptedSocketSize{ sizeof(m_AcceptedSocketStorage) };

    void CreateSocket(string& webAddress, string& port, addrinfo& hints)

    {

         getaddrinfo(webAddress.c_str(), port.c_str(), &hints,  

&m_ServerInfo);

        m_Socket = socket(

            m_ServerInfo->ai_family,

            m_ServerInfo->ai_socktype,

            m_ServerInfo->ai_protocol);

    }

    Socket(int newSocket, sockaddr_storage&& socketStorage)

        : m_Socket{ newSocket }

        , m_AcceptedSocketStorage(move(socketStorage))

    {

    }

public:

    Socket(string& port)

    {

#ifndef NDEBUG

        stringstream portStream{ port };

        int portValue{};

Chapter 12  NetworkiNg



450

        portStream >> portValue;

         assert(portValue > 1024); // Ports under 1024 are reserved for 

certain applications and protocols!

#endif

        addrinfo hints{};

        hints.ai_family = AF_UNSPEC;

        hints.ai_socktype = SOCK_STREAM;

        hints.ai_flags = AI_PASSIVE;

        string address{ "" };

        CreateSocket(address, port, hints);

    }

    Socket(string& webAddress, string& port)

    {

        addrinfo hints{};

        hints.ai_family = AF_UNSPEC;

        hints.ai_socktype = SOCK_STREAM;

        CreateSocket(webAddress, port, hints);

    }

    Socket(string& webAddress, string& port, addrinfo& hints)

    {

        CreateSocket(webAddress, port, hints);

    }

    ~Socket()

    {

        Close();

    }

    bool IsValid()

    {

        return m_Socket != -1;

    }

    int Connect()

Chapter 12  NetworkiNg



451

    {

        int connectionResult{

             connect(m_Socket, m_ServerInfo->ai_addr, m_ServerInfo-> 

ai_addrlen)

        };

#ifndef NDEBUG

        if (connectionResult == -1)

        {

            cout << "Connection failed!" << endl;

        }

        else

        {

            cout << "Connection successful!" << endl;

        }

#endif

        return connectionResult;

    }

    int Bind()

    {

         int bindResult{ ::bind(m_Socket, m_ServerInfo->ai_addr,  

m_ServerInfo->ai_addrlen) };

#ifndef NDEBUG

        if (bindResult == -1)

        {

            cout << "Bind Failed!" << endl;

        }

        else

        {

            cout << "Bind Successful" << endl;

        }

#endif

        return bindResult;

    }

Chapter 12  NetworkiNg



452

    int Listen(int queueSize)

    {

        int listenResult{ listen(m_Socket, queueSize) };

#ifndef NDEBUG

        if (listenResult == -1)

        {

            cout << "Listen Failed" << endl;

        }

        else

        {

            cout << "Listen Succeeded" << endl;

        }

#endif

        return listenResult;

    }

    Socket Accept()

    {

        SOCKET newSocket{

            accept(m_Socket,

            reinterpret_cast<sockaddr*>(&m_AcceptedSocketStorage),

            &m_AcceptedSocketSize)

        };

#ifndef NDEBUG

        if (newSocket == -1)

        {

            cout << "Accept Failed" << endl;

        }

        else

        {

            cout << "Accept Succeeded" << endl;

        }

#endif

        m_AcceptedSocketSize = sizeof(m_AcceptedSocketStorage);

Chapter 12  NetworkiNg



453

        return Socket(newSocket, move(m_AcceptedSocketStorage));

    }

    void Close()

    {

#ifdef _MSC_VER

        closesocket(m_Socket);

#else

        close(m_Socket);

#endif

        m_Socket = -1;

        freeaddrinfo(m_ServerInfo);

    }

    ssize_t Send(stringstream data)

    {

        string packetData{ data.str() };

         ssize_t sendResult{ send(m_Socket, packetData.c_str(), packetData.

length(), 0) };

#ifndef NDEBUG

        if (sendResult == -1)

        {

            cout << "Send Failed" << endl;

        }

        else

        {

            cout << "Send Succeeded" << endl;

        }

#endif

        return sendResult;

    }

    stringstream Receive()

    {

        const int size{ 1024 };

Chapter 12  NetworkiNg



454

        char dataReceived[size];

        ssize_t receiveResult{ recv(m_Socket, dataReceived, size, 0) };

#ifndef NDEBUG

        if (receiveResult == -1)

        {

            cout << "Receive Failed" << endl;

        }

        else if (receiveResult == 0)

        {

            cout << "Receive Detected Closed Connection!" << endl;

            Close();

        }

        else

        {

            dataReceived[receiveResult] = '\0';

            cout << "Receive Succeeded" << endl;

        }

#endif

        stringstream data{ dataReceived };

        return move(data);

    }

};

The Socket class comes with three different constructors, allowing you to create 

sockets for different purposes. The first public constructor only takes a port as a 

parameter. This method of construction is suitable for Socket objects used to listen 

for incoming connections. The hints addrinfo struct in the constructor sets the 

ai_flags parameter to the AI_PASSIVE value and passes an empty string for the 

address. This tells the getaddrinfo function to fill in the local computer’s IP address as 

the address to use for the socket. Using the local address this way lets you open sockets 

for listening on a computer—this is an essential task when you wish to receive data in a 

program from an external source.

The second public constructor takes an address and a port. This lets you create a 

Socket that automatically uses IPv6 or IPv4 and TCP/IP to create a socket that can be 

Chapter 12  NetworkiNg



455

used for sending data. Both the first and second constructors are for convenience—both 

could be deleted in favor of the third public constructor, which takes an address, a port, 

and an addrinfo struct and allows the user to configure a Socket as they wish.

The final constructor is a private constructor. This type of constructor is used when 

an external program connects to a socket listening for connections. You can see how this 

is used in the Accept method.

The IsValid method determines whether the Socket has been initialized with a 

proper descriptor. The socket function in CreateSocket returns -1 in the result of a 

failure; the default value of m_Socket is also -1.

The Connect method is used when you wish to establish a connection to a remote 

computer and you aren’t interested in receiving connections from other programs. 

It’s primarily used on the client side of a client-server relationship; however, it’s not 

inconceivable that you could write peer-to-peer programs that use different sockets for 

listening and connecting to others. Connect calls the Berkeley connect function but is 

able to use the m_Socket and m_ServerInfo objects from the object rather than your 

having to pass them manually from an external location.

The bind method is used when you wish to receive incoming connections. The 

Berkeley bind function is responsible for negotiating for access to the port you wish to 

use with the OS. The OS is responsible for sending and receiving the network traffic, 

and ports are used for the computer to know which program is waiting for data on 

which port. The scope operator on the bind function is necessary with this code when 

the using namespace std; statement is present. This tells the compiler to use the bind 

method from the global namespace and not from the std namespace. The bind method 

from the std namespace is used to create functors and has nothing to do with sockets.

The Listen method comes after the call to Bind and tells the socket to begin queuing 

connections from remote machines. The queueSize parameter specifies the size of the queue; 

once the queue is full, connections will be dropped by OS. The number of connections 

that your OS can support will vary. Desktop OSs generally support many fewer queued 

connections than server-specific OSs. A number such as 5 is fine for most uses.

The Accept method pulls connections from the queue created when Listen is called. 

Accept calls the Berkeley accept function, which takes the m_Socket variable as its first 

parameter. The second and third parameters are the m_AcceptedSocketStorage and 

m_AcceptedSocketSize variables. The m_AcceptedSocketStorage member variable is of 

type sockaddr_storage and not the sockaddr type that the accept method expects. The 

sockaddr_storage type is large enough to handle both IPv4 and IPv6 addresses,  

Chapter 12  NetworkiNg



456

but the accept method still expects a pointer to the sockaddr type. This isn’t ideal; 

however, it can be addressed using a reinterpret_cast, because accept also takes into 

account the size of the object being passed. The size is altered if the object returned 

is smaller than the size being passed in; therefore, the size is reset before the function 

returns. The m_AcceptedSocketStorage object is moved into the new Socket object 

being returned from the function to ensure that the copy in the initial Socket is 

invalidated.

The Close method is responsible for shutting down the Socket when it’s no longer 

needed. The closesocket function is called on Windows, and the close function is used 

on non-Windows platforms. The freeaddrinfo object is also released in the destructor 

for the class.

The next method is Send. Unsurprisingly, this method sends data to the machine on 

the other end of the connection. Send is set up to send a stringstream object for now, 

because properly serializing binary data is a little outside the scope of this book. You can 

see that the send Berkeley function is called with the m_Socket descriptor along with the 

string data and size pulled from the stringstream object passed in.

The Receive method is responsible for bringing data in from the remote connection. 

This call blocks until data is ready to be read from the socket connection. The Receive 

function can return three types of values: -1 when an error has been encountered, 

0 when the connection has been closed by the remote computer, or a positive value 

indicating the number of bytes received. The received data is read into a char array, 

which is in turn passed into a stringstream object to be returned from the function 

using a move constructor.

Now that you have a fully functioning Socket class, you can create programs to send 

and receive data. The code in Listing 12-6 can be used to create a program that waits for 

a remote connection and a single received message. Use Visual Studio 2019 to create this 

project and set Project, Properties, Configuration Properties, General, and C++ Language 

Standard to Default.

Listing 12-6. Creating a Program That Can Receive Data

#include <cassert>

#include <iostream>

#include <type_traits>

#include <vector>

#ifndef NDEBUG

Chapter 12  NetworkiNg



457

#include <sstream>

#endif

using namespace std;

#ifdef _MSC_VER

#pragma comment(lib, "Ws2_32.lib")

#include <WinSock2.h>

#include <WS2tcpip.h>

#define UsingWinsock 1

using ssize_t = SSIZE_T;

#else

#include <netdb.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <unistd.h>

#define UsingWinsock 0

#endif

class WinsockWrapper

{

public:

    WinsockWrapper()

    {

#if UsingWinsock

        WSADATA wsaData;

        if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)

        {

            exit(1);

        }

         cout << "Winsock started!" << endl;

#endif

    }

Chapter 12  NetworkiNg



458

    ~WinsockWrapper()

    {

#if UsingWinsock

        WSACleanup();

        cout << "Winsock shut down!" << endl;

#endif

    }

};

class Socket

{

private:

#if !UsingWinsock

    using SOCKET = int;

#endif

    addrinfo* m_ServerInfo{ nullptr };

    SOCKET m_Socket{ static_cast<SOCKET>(0xFFFFFFFF) };

    sockaddr_storage m_AcceptedSocketStorage{};

    socklen_t m_AcceptedSocketSize{ sizeof(m_AcceptedSocketStorage) };

    void CreateSocket(string& webAddress, string& port, addrinfo& hints)

    {

         getaddrinfo(webAddress.c_str(), port.c_str(), &hints,  

&m_ServerInfo);

        m_Socket = socket(

            m_ServerInfo->ai_family,

            m_ServerInfo->ai_socktype,

            m_ServerInfo->ai_protocol);

    }

    Socket(unsigned int newSocket, sockaddr_storage&& socketStorage)

        : m_Socket{ newSocket }

        , m_AcceptedSocketStorage(move(socketStorage))

    {

    }

Chapter 12  NetworkiNg



459

public:

    Socket(string& port)

    {

#ifndef NDEBUG

        stringstream portStream{ port };

        int portValue{};

        portStream >> portValue;

        assert(portValue > 1024);

         // Ports under 1024 are reserved for certain applications and 

protocols!

#endif

        addrinfo hints{};

        hints.ai_family = AF_UNSPEC;

        hints.ai_socktype = SOCK_STREAM;

        hints.ai_flags = AI_PASSIVE;

        string address{ "" };

        CreateSocket(address, port, hints);

    }

    Socket(string& webAddress, string& port)

    {

        addrinfo hints{};

        hints.ai_family = AF_UNSPEC;

        hints.ai_socktype = SOCK_STREAM;

        CreateSocket(webAddress, port, hints);

    }

    Socket(string& webAddress, string& port, addrinfo& hints)

    {

        CreateSocket(webAddress, port, hints);

    }

Chapter 12  NetworkiNg



460

    ~Socket()

    {

        Close();

    }

    bool IsValid()

    {

        return m_Socket != -1;

    }

    int Connect()

    {

        int connectionResult{

             connect(m_Socket, m_ServerInfo->ai_addr, m_ServerInfo-> 

ai_addrlen)

        };

#ifndef NDEBUG

        if (connectionResult == -1)

        {

            cout << "Connection failed!" << endl;

        }

        else

        {

            cout << "Connection successful!" << endl;

        }

#endif

        return connectionResult;

    }

    int Bind()

    {

         int bindResult{ ::bind(m_Socket, m_ServerInfo->ai_addr,  

m_ServerInfo->ai_addrlen) };

#ifndef NDEBUG

        if (bindResult == -1)

Chapter 12  NetworkiNg



461

        {

            cout << "Bind Failed!" << endl;

        }

        else

        {

            cout << "Bind Successful" << endl;

        }

#endif

        return bindResult;

    }

    int Listen(int queueSize)

    {

        int listenResult{ listen(m_Socket, queueSize) };

#ifndef NDEBUG

        if (listenResult == -1)

        {

            cout << "Listen Failed" << endl;

        }

        else

        {

            cout << "Listen Succeeded" << endl;

        }

#endif

        return listenResult;

    }

    Socket Accept()

    {

        SOCKET newSocket{

            accept(m_Socket,

                reinterpret_cast<sockaddr*>(&m_AcceptedSocketStorage),

                &m_AcceptedSocketSize)

        };

Chapter 12  NetworkiNg



462

#ifndef NDEBUG

        if (newSocket == -1)

        {

            cout << "Accept Failed" << endl;

        }

        else

        {

            cout << "Accept Succeeded" << endl;

        }

#endif

        m_AcceptedSocketSize = sizeof(m_AcceptedSocketStorage);

        return Socket(newSocket, move(m_AcceptedSocketStorage));

    }

    void Close()

    {

#ifdef _MSC_VER

        closesocket(m_Socket);

#else

        close(m_Socket);

#endif

        m_Socket = -1;

        freeaddrinfo(m_ServerInfo);

    }

    ssize_t Send(stringstream data)

    {

        string packetData{ data.str() };

         ssize_t sendResult{ send(m_Socket, packetData.c_str(), packetData.

length(), 0) };

#ifndef NDEBUG

        if (sendResult == -1)

        {

            cout << "Send Failed" << endl;

        }

Chapter 12  NetworkiNg



463

        else

        {

            cout << "Send Succeeded" << endl;

        }

#endif

        return sendResult;

    }

    stringstream Receive()

    {

        const int size{ 1024 };

        char dataReceived[size];

        ssize_t receiveResult{ recv(m_Socket, dataReceived, size, 0) };

#ifndef NDEBUG

        if (receiveResult == -1)

        {

            cout << "Receive Failed" << endl;

        }

        else if (receiveResult == 0)

        {

            cout << "Receive Detected Closed Connection!" << endl;

            Close();

        }

        else

        {

            dataReceived[receiveResult] = '\0';

            cout << "Receive Succeeded" << endl;

        }

#endif

        stringstream data{ dataReceived };

        return move(data);

    }

};

Chapter 12  NetworkiNg



464

int main(int argc, char* argv[])

{

    WinsockWrapper myWinsockWrapper;

    string port{ "3000" };

    Socket myBindingSocket(port);

    myBindingSocket.Bind();

    int listenResult{ myBindingSocket.Listen(5) };

    assert(listenResult != -1);

    Socket acceptResult{ myBindingSocket.Accept() };

    assert(acceptResult.IsValid());

    stringstream data{ acceptResult.Receive() };

    string message;

    getline(data, message, '\0');

    cout << "Received Message: " << message << endl;

    return 0;

}

After things compile properly, you will see a command prompt stating “Winsock 

started! Bind successful, Listen succeeded.” Note you may need to allow firewall access 

depending on your antivirus products installed. The code in Listing 12-6 creates a 

program that has a socket that waits for a single message to be received from a remote 

connection. The main function ends up consisting of only a handful of lines of code, 

thanks to the difficult work wrapped up in the WinsockWrapper and Socket classes.

The main function begins by creating a WinsockWrapper to initialize Winsock if 

running on a server built by Visual Studio for Windows computers. A Socket is then 

initialized to port 3000 with an empty address. This port will be used to listen for 

connections on the local computer. You can see that this is the case, because the main 

function goes on to call Bind and then Listen with a queue size of 5 before finally calling 

Accept. The Accept call blocks until a remote connection is present in the queue. Accept 

returns a separate Socket object that should be used to receive data. The Receive call 

on that Socket is also a blocking call, and the program waits there until data is available. 

The program ends by printing out the received message before returning.

Chapter 12  NetworkiNg



465

Once you have the preceding server program built and running, you need a client 

program to connect to it and send a message. This is shown in Listing 12-7.

Listing 12-7. The Client Program

#include <cassert>

#include <iostream>

#include <type_traits>

#ifndef NDEBUG

#include <sstream>

#endif

using namespace std;

#ifdef _MSC_VER

#pragma comment(lib, "Ws2_32.lib")

#include <WinSock2.h>

#include <WS2tcpip.h>

#define UsingWinsock 1

using ssize_t = SSIZE_T;

#else

#include <netdb.h>

#include <sys/types.h>

#include <sys/socket.h>

#define UsingWinsock 0

#endif

class WinsockWrapper

{

public:

    WinsockWrapper()

    {

Chapter 12  NetworkiNg



466

#if UsingWinsock

        WSADATA wsaData;

        if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)

        {

            exit(1);

        }

#ifndef NDEBUG

        cout << "Winsock started!" << endl;

#endif

#endif

    }

    ~WinsockWrapper()

    {

#if UsingWinsock

        WSACleanup();

#ifndef NDEBUG

        cout << "Winsock shut down!" << endl;

#endif

#endif

    }

};

class Socket

{

private:

#if !UsingWinsock

    using SOCKET = int;

#endif

    addrinfo* m_ServerInfo{ nullptr };

    SOCKET m_Socket{ static_cast<SOCKET>(0xFFFFFFFF) };

    sockaddr_storage m_AcceptedSocketStorage{};

    socklen_t m_AcceptedSocketSize{ sizeof(m_AcceptedSocketStorage) };

Chapter 12  NetworkiNg



467

    void CreateSocket(string& webAddress, string& port, addrinfo& hints)

    {

         getaddrinfo(webAddress.c_str(), port.c_str(), &hints, &m_

ServerInfo);

        m_Socket = socket(m_ServerInfo->ai_family,

            m_ServerInfo->ai_socktype,

            m_ServerInfo->ai_protocol);

    }

    Socket(unsigned int newSocket, sockaddr_storage&& socketStorage)

        : m_Socket{ newSocket }

        , m_AcceptedSocketStorage(move(socketStorage))

    {

    }

public:

    Socket(string& port)

    {

#ifndef NDEBUG

        stringstream portStream{ port };

        int portValue{};

        portStream >> portValue;

        assert(portValue > 1024);

         // Ports under 1024 are reserved for certain applications and 

protocols!

#endif

        addrinfo hints{};

        hints.ai_family = AF_UNSPEC;

        hints.ai_socktype = SOCK_STREAM;

        hints.ai_flags = AI_PASSIVE;

        string address{ "" };

        CreateSocket(address, port, hints);

    }

Chapter 12  NetworkiNg



468

    Socket(string& webAddress, string& port)

    {

        addrinfo hints{};

        hints.ai_family = AF_UNSPEC;

        hints.ai_socktype = SOCK_STREAM;

        CreateSocket(webAddress, port, hints);

    }

    Socket(string& webAddress, string& port, addrinfo& hints)

    {

        CreateSocket(webAddress, port, hints);

    }

    ~Socket()

    {

        Close();

    }

    bool IsValid()

    {

        return m_Socket != -1;

    }

    int Connect()

    {

        int connectionResult{ connect(

            m_Socket,

            m_ServerInfo->ai_addr,

            m_ServerInfo->ai_addrlen)

        };

#ifndef NDEBUG

        if (connectionResult == -1)

        {

            cout << "Connection failed!" << endl;

        }

Chapter 12  NetworkiNg



469

        else

        {

            cout << "Connection successful!" << endl;

        }

#endif

        return connectionResult;

    }

    int Bind()

    {

         int bindResult{ ::bind(m_Socket, m_ServerInfo->ai_addr,  

m_ServerInfo->ai_addrlen) };

#ifndef NDEBUG

        if (bindResult == -1)

        {

            cout << "Bind Failed!" << endl;

        }

        else

        {

            cout << "Bind Successful" << endl;

        }

#endif

        return bindResult;

    }

    int Listen(int queueSize)

    {

        int listenResult{ listen(m_Socket, queueSize) };

#ifndef NDEBUG

        if (listenResult == -1)

        {

            cout << "Listen Failed" << endl;

        }

Chapter 12  NetworkiNg



470

        else

        {

            cout << "Listen Succeeded" << endl;

        }

#endif

        return listenResult;

    }

    Socket Accept()

    {

         SOCKET newSocket{ accept(m_Socket, reinterpret_cast<sockaddr*> 

(&m_AcceptedSocketStorage), &m_AcceptedSocketSize) };

#ifndef NDEBUG

        if (newSocket == -1)

        {

            cout << "Accept Failed" << endl;

        }

        else

        {

            cout << "Accept Succeeded" << endl;

        }

#endif

        m_AcceptedSocketSize = sizeof(m_AcceptedSocketStorage);

        return Socket(newSocket, move(m_AcceptedSocketStorage));

    }

    void Close()

    {

#ifdef _MSC_VER

        closesocket(m_Socket);

#else

        close(m_Socket);

Chapter 12  NetworkiNg



471

#endif

        m_Socket = -1;

        freeaddrinfo(m_ServerInfo);

    }

    ssize_t Send(stringstream data)

    {

        string packetData{ data.str() };

         ssize_t sendResult{ send(m_Socket, packetData.c_str(), packetData.

length(), 0) };

#ifndef NDEBUG

        if (sendResult == -1)

        {

            cout << "Send Failed" << endl;

        }

        else

        {

            cout << "Send Succeeded" << endl;

        }

#endif

        return sendResult;

    }

    stringstream Receive()

    {

        const int size{ 1024 };

        char dataReceived[size];

        ssize_t receiveResult{ recv(m_Socket, dataReceived, size, 0) };

#ifndef NDEBUG

        if (receiveResult == -1)

        {

            cout << "Receive Failed" << endl;

        }

Chapter 12  NetworkiNg



472

        else if (receiveResult == 0)

        {

            cout << "Receive Detected Closed Connection!" << endl;

            Close();

        }

        else

        {

            dataReceived[receiveResult] = '\0';

            cout << "Receive Succeeded" << endl;

        }

#endif

        stringstream data{ dataReceived };

        return move(data);

    }

};

int main(int argc, char* argv[])

{

    WinsockWrapper myWinsockWrapper;

    string address("192.168.178.44");

    string port("3000");

    Socket myConnectingSocket(address, port);

    myConnectingSocket.Connect();

    string message("Sending Data Over a Network!");

    stringstream data;

    data << message;

    myConnectingSocket.Send(move(data));

    return 0;

}

Listing 12-7 shows that the same Socket class can be used on the server and the 

client. The client’s main function also uses the WinsockWrapper object to handle starting 

and closing the Winsock library. A Socket is then created that connects to IP address 

192.168.178.44. (This is the address of the computer I used to host the server program.) 

Chapter 12  NetworkiNg



473

The Connect method is called after the Socket is created to establish a connection 

between the two programs running on different computers. The Send method is the 

last function call and sends the string “Sending Data Over a Network!” Figure 12-10 

shows the output obtained by running the server on a MacBook Pro and the client on a 

Windows 8.1 desktop PC.

Figure 12-10. The output generated by running the server on macOS

 Recipe 12-5. Creating a Networking Protocol 
Between Two Programs
 Problem
You would like to create two programs that are able to communicate with each other 

following standard patterns.

 Solution
You can create an agreed-on protocol that both programs can follow so that each knows 

how to respond to a given request.

Chapter 12  NetworkiNg



474

 How It Works
A socket connection that is established between two programs can be used to send data 

both ways: from the program that initiated the connection to the receiver and also back 

from the receiver to the initiator. This feature allows you to write networked applications 

that can respond to requests and even build more complicated protocols that require 

several messages to be sent back and forth in a single application.

The most common example of a protocol in use today that you may be familiar with 

is HTTP. HTTP is the network protocol that powers the World Wide Web. It’s a request 

and response protocol that lets a client program request data from a server. Common 

applications can be seen when a browser requests a web page from a server, but it’s also 

not uncommon for mobile apps to use HTTP to transfer data between their app and their 

server back end. Other common protocols are FTP for facilitating file transfers between 

computers and the POP and SMTP e-mail protocols.

This recipe shows a very simple network protocol that asks a server for a question, 

has a client respond with an answer, and has the server tell the client whether the answer 

was correct. This protocol is trivial compared to a complicated example such as HTTP, 

but it’s an excellent place to start.

The protocol consists of four messages: QUESTION, ANSWER, QUIT, and FINISHED. The 

QUESTION message is sent from the client to the server when the user should be asked a 

question. The server responds to this message by sending a question to the client. The 

client responds to the question by sending ANSWER followed by the user’s answer to the 

server. The client could instead send QUIT to the server at any time to terminate the 

socket connection. Once the server has sent all the questions to the client, a subsequent 

QUESTION request from the client will result in FINISHED being sent to the client; then the 

connection will be terminated.

The server program in this recipe can handle multiple client connections at a time.  

It does this by accepting a single connection using the Socket::Accept method and then 

handing the Socket connected to the client through a thread using the async function. 

You can see the source for the server program in Listing 12-8.

Listing 12-8. The Protocol Server Program

#include <array>

#include <cassert>

#include <future>

Chapter 12  NetworkiNg



475

#include <iostream>

#include <thread>

#include <type_traits>

#include <vector>

#ifndef NDEBUG

#include <sstream>

#endif

using namespace std;

#ifdef _MSC_VER

#pragma comment(lib, "Ws2_32.lib")

#include <WinSock2.h>

#include <WS2tcpip.h>

#define UsingWinsock 1

using ssize_t = SSIZE_T;

#else

#include <netdb.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <unistd.h>

#define UsingWinsock 0

#endif

class WinsockWrapper

{

public:

    WinsockWrapper()

    {

#if UsingWinsock

        WSADATA wsaData;

Chapter 12  NetworkiNg



476

        if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)

        {

            exit(1);

        }

        cout << "Winsock started!" << endl;

#endif

    }

    ~WinsockWrapper()

    {

#if UsingWinsock

        WSACleanup();

        cout << "Winsock shut down!" << endl;

#endif

    }

};

class Socket

{

private:

#if !UsingWinsock

    using SOCKET = int;

#endif

    addrinfo* m_ServerInfo{ nullptr };

    SOCKET m_Socket{ static_cast<SOCKET>(0xFFFFFFFF) };

    sockaddr_storage m_AcceptedSocketStorage{};

    socklen_t m_AcceptedSocketSize{ sizeof(m_AcceptedSocketStorage) };

    void CreateSocket(string& webAddress, string& port, addrinfo& hints)

    {

         getaddrinfo(webAddress.c_str(), port.c_str(), &hints, &m_ServerInfo);

        m_Socket = socket(m_ServerInfo->ai_family,

            m_ServerInfo->ai_socktype,

            m_ServerInfo->ai_protocol);

    }

Chapter 12  NetworkiNg



477

    Socket(unsigned int newSocket, sockaddr_storage&& socketStorage)

        : m_Socket{ newSocket }

        , m_AcceptedSocketStorage(move(socketStorage))

    {

    }

public:

    Socket(string& port)

    {

#ifndef NDEBUG

        stringstream portStream{ port };

        int portValue{};

        portStream >> portValue;

        assert(portValue > 1024);

         // Ports under 1024 are reserved for certain applications and 

protocols!

#endif

        addrinfo hints{};

        hints.ai_family = AF_UNSPEC;

        hints.ai_socktype = SOCK_STREAM;

        hints.ai_flags = AI_PASSIVE;

        string address{ "" };

        CreateSocket(address, port, hints);

    }

    Socket(string& webAddress, string& port)

    {

        addrinfo hints{};

        hints.ai_family = AF_UNSPEC;

        hints.ai_socktype = SOCK_STREAM;

        CreateSocket(webAddress, port, hints);

    }

Chapter 12  NetworkiNg



478

    Socket(string& webAddress, string& port, addrinfo& hints)

    {

        CreateSocket(webAddress, port, hints);

    }

    ~Socket()

    {

        Close();

    }

    Socket(const Socket& other) = delete;

    Socket(Socket&& other)

        : m_ServerInfo( other.m_ServerInfo )

        , m_Socket( other.m_Socket )

        , m_AcceptedSocketStorage( other.m_AcceptedSocketStorage )

        , m_AcceptedSocketSize( other.m_AcceptedSocketSize )

    {

        if (this != &other)

        {

            other.m_ServerInfo = nullptr;

            other.m_Socket = -1;

            other.m_AcceptedSocketStorage = sockaddr_storage{};

             other.m_AcceptedSocketSize = sizeof(other.m_

AcceptedSocketStorage);

        }

    }

    bool IsValid()

    {

        return m_Socket != -1;

    }

    int Connect()

    {

        int connectionResult{

Chapter 12  NetworkiNg



479

            connect(m_Socket,

                m_ServerInfo->ai_addr,

                m_ServerInfo->ai_addrlen)

        };

#ifndef NDEBUG

        if (connectionResult == -1)

        {

            cout << "Connection failed!" << endl;

        }

        else

        {

            cout << "Connection successful!" << endl;

        }

#endif

        return connectionResult;

    }

    int Bind()

    {

         int bindResult{ ::bind(m_Socket, m_ServerInfo->ai_addr,  

m_ServerInfo->ai_addrlen) };

#ifndef NDEBUG

        if (bindResult == -1)

        {

            cout << "Bind Failed!" << endl;

        }

        else

        {

            cout << "Bind Successful" << endl;

        }

#endif

        return bindResult;

    }

Chapter 12  NetworkiNg



480

    int Listen(int queueSize)

    {

        int listenResult{ listen(m_Socket, queueSize) };

#ifndef NDEBUG

        if (listenResult == -1)

        {

            cout << "Listen Failed" << endl;

        }

        else

        {

            cout << "Listen Succeeded" << endl;

        }

#endif

        return listenResult;

    }

    Socket Accept()

    {

        SOCKET newSocket{

            accept(m_Socket,

                reinterpret_cast<sockaddr*>(&m_AcceptedSocketStorage),

                &m_AcceptedSocketSize)

        };

#ifndef NDEBUG

        if (newSocket == -1)

        {

            cout << "Accept Failed" << endl;

        }

        else

        {

            cout << "Accept Succeeded" << endl;

        }

Chapter 12  NetworkiNg



481

#endif

        m_AcceptedSocketSize = sizeof(m_AcceptedSocketStorage);

        return Socket(newSocket, move(m_AcceptedSocketStorage));

    }

    void Close()

    {

#ifdef _MSC_VER

        closesocket(m_Socket);

#else

        close(m_Socket);

#endif

        m_Socket = -1;

        freeaddrinfo(m_ServerInfo);

    }

    ssize_t Send(stringstream data)

    {

        string packetData{ data.str() };

         ssize_t sendResult{ send(m_Socket, packetData.c_str(), packetData.

length(), 0) };

#ifndef NDEBUG

        if (sendResult == -1)

        {

            cout << "Send Failed" << endl;

        }

        else

        {

            cout << "Send Succeeded" << endl;

        }

#endif

        return sendResult;

    }

Chapter 12  NetworkiNg



482

    stringstream Receive()

    {

        const int size{ 1024 };

        char dataReceived[size];

        ssize_t receiveResult{ recv(m_Socket, dataReceived, size, 0) };

#ifndef NDEBUG

        if (receiveResult == -1)

        {

            cout << "Receive Failed" << endl;

        }

        else if (receiveResult == 0)

        {

            cout << "Receive Detected Closed Connection!" << endl;

            Close();

        }

        else

        {

            dataReceived[receiveResult] = '\0';

            cout << "Receive Succeeded" << endl;

        }

#endif

        stringstream data{ dataReceived };

        return move(data);

    }

};

namespace

{

    const int NUM_QUESTIONS{ 2 };

    const array<string, NUM_QUESTIONS> QUESTIONS

    {

        "What is the capital of Australia?",

        "What is the capital of the USA?"

    };

    const array<string, NUM_QUESTIONS> ANSWERS{ "Canberra", "Washington DC" };

}

Chapter 12  NetworkiNg



483

bool ProtocolThread(reference_wrapper<Socket> connectionSocketRef)

{

    Socket socket{ move(connectionSocketRef.get()) };

    int currentQuestion{ 0 };

    string message;

    while (message != "QUIT")

    {

        stringstream sstream{ socket.Receive() };

        if (sstream.rdbuf()->in_avail() == 0)

        {

            break;

        }

        sstream >> message;

        stringstream output;

        if (message == "QUESTION")

        {

            if (currentQuestion >= NUM_QUESTIONS)

            {

                output << "FINISHED";

                socket.Send(move(output));

                cout << "Quiz Complete!" << endl;

                break;

            }

            output << QUESTIONS[currentQuestion];

        }

        else if (message == "ANSWER")

        {

            string answer;

            sstream >> answer;

            if (answer == ANSWERS[currentQuestion])

            {

                output << "You are correct!";

Chapter 12  NetworkiNg



484

            }

            else
            {
                 output << "Sorry the correct answer is "  

<< ANSWERS[currentQuestion];
            }
            ++currentQuestion;
        }
        socket.Send(move(output));
    }

    return true;
}

int main(int argc, char* argv[])
{
    WinsockWrapper myWinsockWrapper;

    string port("3000");
    Socket myListeningSocket(port);

    int bindResult{ myListeningSocket.Bind() };
    assert(bindResult != -1);
    if (bindResult != -1)
    {
        int listenResult{ myListeningSocket.Listen(5) };
        assert(listenResult != -1);
        if (listenResult != -1)
        {
            while (true)
            {
                Socket acceptedSocket{ myListeningSocket.Accept() };
                async(launch::async, ProtocolThread, ref(acceptedSocket));
            }
        }
    }

    return 0;

}

Chapter 12  NetworkiNg



485

After a successful build, you should see “Winsock started! Bind successful, Listen 

succeeded.” The server program in Listing 12-8 uses the same Socket class that is 

described in detail in Recipe 12-4. The main function is responsible for handling multiple 

clients simultaneously. It does this by creating a Socket and binding it to port 3000. The 

bound Socket is then asked to listen for incoming connections; it does so with a queue 

length of 5. The final part of main uses a while loop to accept any incoming connections 

and hands them off to the async function. The async function creates a thread to handle 

each Socket retrieved from Socket::Accept; the first parameter is launch::async.

The ProtocolThread function responds to the requests of the connected client and 

upholds the server side of the simple quiz network protocol. Data is transferred between 

the client and the server by packing a string into each packet. The message variable holds 

individual messages from a stringstream.

This protocol can be handled with a basic if...else if block. When the QUESTION 

message is received, the server packs the current question into the output stringstream. 

If the message is ANSWER, then the server checks whether the user is correct and packs 

the appropriate response into output. The output stringstream is sent to the client 

using the same Socket that received the data initially, showing that a Socket connection 

need not necessarily be a one-way communication channel. If the QUESTION message 

is received and all the questions that the server has available have been sent, then the 

server sends the client the FINISHED message and breaks out of the loop; this causes the 

Socket to fall out of scope and in turn closes the connection.

All of this activity requires a client to be connected to communicate with the server 

program. You can see a basic client implementation in Listing 12-9.

Listing 12-9. A Simple Quiz Protocol Client

#include <cassert>

#include <iostream>

#include <type_traits>

#ifndef NDEBUG

#include <sstream>

#endif

using namespace std;

#ifdef _MSC_VER

Chapter 12  NetworkiNg



486

#pragma comment(lib, "Ws2_32.lib")

#include <WinSock2.h>

#include <WS2tcpip.h>

#define UsingWinsock 1

using ssize_t = SSIZE_T;

#else

#include <netdb.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <unistd.h>

#define UsingWinsock 0

#endif

class WinsockWrapper

{

public:

    WinsockWrapper()

    {

#if UsingWinsock

        WSADATA wsaData;

        if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)

        {

            exit(1);

        }

        cout << "Winsock started!" << endl;

#endif

    }

    ~WinsockWrapper()

    {

Chapter 12  NetworkiNg



487

#if UsingWinsock

        WSACleanup();

        cout << "Winsock shut down!" << endl;

#endif

    }

};

class Socket

{

private:

#if !UsingWinsock

    using SOCKET = int;

#endif

    addrinfo* m_ServerInfo{ nullptr };

    SOCKET m_Socket{ static_cast<SOCKET>(0xFFFFFFFF) };

    sockaddr_storage m_AcceptedSocketStorage{};

    socklen_t m_AcceptedSocketSize{ sizeof(m_AcceptedSocketStorage) };

    void CreateSocket(string& webAddress, string& port, addrinfo& hints)

    {

        getaddrinfo(webAddress.c_str(), port.c_str(), &hints, &m_ServerInfo);

        m_Socket = socket(

            m_ServerInfo->ai_family,

            m_ServerInfo->ai_socktype,

            m_ServerInfo->ai_protocol);

    }

     Socket(unsigned int newSocket, sockaddr_storage&& socketStorage)code 

change

        : m_Socket{ newSocket }

        , m_AcceptedSocketStorage(move(socketStorage))

    {

    }

Chapter 12  NetworkiNg



488

public:

    Socket(string& port)

    {

#ifndef NDEBUG

        stringstream portStream{ port };

        int portValue{};

        portStream >> portValue;

        assert(portValue > 1024);

        // Ports under 1024 are reserved for certain applications and

        //protocols!

        //http://www.networksorcery.com/enp/protocol/ip/ports00000.htm

        // for more port details

#endif

        addrinfo hints{};

        hints.ai_family = AF_UNSPEC;

        hints.ai_socktype = SOCK_STREAM;

        hints.ai_flags = AI_PASSIVE;

        string address{ "" };

        CreateSocket(address, port, hints);

    }

    Socket(string& webAddress, string& port)

    {

        addrinfo hints{};

        hints.ai_family = AF_UNSPEC;

        hints.ai_socktype = SOCK_STREAM;

        CreateSocket(webAddress, port, hints);

    }

    Socket(string& webAddress, string& port, addrinfo& hints)

    {

        CreateSocket(webAddress, port, hints);

    }

Chapter 12  NetworkiNg



489

    ~Socket()

    {

        Close();

    }

    Socket(const Socket& other) = delete;

    Socket(Socket&& other)

        : m_ServerInfo(other.m_ServerInfo)

        , m_Socket(other.m_Socket)

        , m_AcceptedSocketStorage(other.m_AcceptedSocketStorage)

        , m_AcceptedSocketSize(other.m_AcceptedSocketSize)

    {

        if (this != &other)

        {

            other.m_ServerInfo = nullptr;

            other.m_Socket = -1;

            other.m_AcceptedSocketStorage = sockaddr_storage{};

             other.m_AcceptedSocketSize = sizeof(other.m_

AcceptedSocketStorage);

        }

    }

    bool IsValid()

    {

        return m_Socket != -1;

    }

    int Connect()

    {

        int connectionResult{ connect(

            m_Socket,

            m_ServerInfo->ai_addr,

            m_ServerInfo->ai_addrlen)

        };

Chapter 12  NetworkiNg



490

#ifndef NDEBUG

        if (connectionResult == -1)

        {

            cout << "Connection failed!" << endl;

        }

        else

        {

            cout << "Connection successful!" << endl;

        }

#endif

        return connectionResult;

    }

    int Bind()

    {

         int bindResult{ ::bind(m_Socket, m_ServerInfo->ai_addr,  

m_ServerInfo->ai_addrlen) };

#ifndef NDEBUG

        if (bindResult == -1)

        {

            cout << "Bind Failed!" << endl;

        }

        else

        {

            cout << "Bind Successful" << endl;

        }

#endif

        return bindResult;

    }

    int Listen(int queueSize)

    {

        int listenResult{ listen(m_Socket, queueSize) };

Chapter 12  NetworkiNg



491

#ifndef NDEBUG

        if (listenResult == -1)

        {

            cout << "Listen Failed" << endl;

        }

        else

        {

            cout << "Listen Succeeded" << endl;

        }

#endif

        return listenResult;

    }

    Socket Accept()

    {

        SOCKET newSocket{ accept(

            m_Socket,

            reinterpret_cast<sockaddr*>(&m_AcceptedSocketStorage),

            &m_AcceptedSocketSize)

        };

#ifndef NDEBUG

        if (newSocket == -1)

        {

            cout << "Accept Failed" << endl;

        }

        else

        {

            cout << "Accept Succeeded" << endl;

        }

#endif

        m_AcceptedSocketSize = sizeof(m_AcceptedSocketStorage);

        return Socket(newSocket, move(m_AcceptedSocketStorage));

    }

Chapter 12  NetworkiNg



492

    void Close()

    {

#ifdef _MSC_VER

        closesocket(m_Socket);

#else

        close(m_Socket);

#endif

        m_Socket = -1;

        freeaddrinfo(m_ServerInfo);

    }

    ssize_t Send(stringstream data)

    {

        string packetData{ data.str() };

         ssize_t sendResult{ send(m_Socket, packetData.c_str(), packetData.

length(), 0) };

#ifndef NDEBUG

        if (sendResult == -1)

        {

            cout << "Send Failed" << endl;

        }

        else

        {

            cout << "Send Succeeded" << endl;

        }

#endif

        return sendResult;

    }

    stringstream Receive()

    {

        const int size{ 1024 };

        char dataReceived[size];

        ssize_t receiveResult{ recv(m_Socket, dataReceived, size, 0) };

Chapter 12  NetworkiNg



493

#ifndef NDEBUG

        if (receiveResult == -1)

        {

            cout << "Receive Failed" << endl;

        }

        else if (receiveResult == 0)

        {

            cout << "Receive Detected Closed Connection!" << endl;

            Close();

        }

        else

        {

            dataReceived[receiveResult] = '\0';

            cout << "Receive Succeeded" << endl;

        }

#endif

        stringstream data{ dataReceived };

        return move(data);

    }

};

int main()

{

    WinsockWrapper myWinsockWrapper;

    string address("192.168.178.44");

    string port("3000");

    Socket mySocket(address, port);

    int connectionResult{ mySocket.Connect() };

    if (connectionResult != -1)

    {

        stringstream output{ "QUESTION" };

        mySocket.Send(move(output));

Chapter 12  NetworkiNg



494

        stringstream input{ mySocket.Receive() };

        if (input.rdbuf()->in_avail() > 0)

        {

            string question;

            getline(input, question, '\0');

            input.clear();

            while (question != "FINISHED")

            {

                cout << question << endl;

                string answer;

                cin >> answer;

                output << "ANSWER ";

                output << answer;

                mySocket.Send(move(output));

                input = mySocket.Receive();

                if (input.rdbuf()->in_avail() == 0)

                {

                    break;

                }

                string result;

                getline(input, result, '\0');

                cout << result << endl;

                output << "QUESTION";

                mySocket.Send(move(output));

                input = mySocket.Receive();

                getline(input, question, '\0');

                input.clear();

            }

        }

    }

    return 0;

}

Chapter 12  NetworkiNg



495

The client program in Listing 12-9 can connect to the running server in Listing 12-8 

and present the server quiz to the player. The client code is simpler than the server 

because it only has to consider a single connection and therefore has no need for threads 

or handling multiple sockets. The client does need to know the address of the server to 

connect to; the IP address is the IP for the computer you wish to connect to. The client 

sends QUESTION to the server and then waits for a response in the Receive call. Receive 

is a blocking call; therefore, the client sits and waits until the data is available. It then gets 

input from the player to send back to the server and waits for the response regarding 

whether the user is correct. This process is repeated in a loop until the server notifies the 

client that the quiz has ended.

The beauty of network protocols implemented in this manner is that they can be 

reused in different programs. If you wanted to extend this example, you could easily 

create a GUI version using a framework such as Qt, make all the calls to Receive occur 

in a thread, and have the UI animate a spinning logo to indicate to the user that the 

program is waiting for data to come across a remote connection. You could also extend 

the server application to store results and add to the protocol to let users restart quizzes 

that were in progress. In the end, the protocol simply specifies how two programs should 

communicate with each other to facilitate providing a service from one computer to 

another.

Chapter 12  NetworkiNg



497
© J. Burton Browning and Bruce Sutherland 2020 
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_13

CHAPTER 13

Scripting
C++ is a powerful programming language that can be used in a number of ways and 

supports several different programming paradigms. It allows for high-level object- 

oriented abstractions and generic programming, but it also allows you to code at a 

very low level that takes into consideration CPU characteristics such as the length of 

cache lines. This power comes at the expense of the need to compile the language into 

machine code. Compiling, building, and linking C++ is a task that programmers need to 

take on and not something that is simple for non-programmers to understand.

Scripting languages can help lower the barrier to making code-related changes to 

your program and enable art and design teams to take control over high-level tasks. It’s 

not uncommon for things such as screen layouts and UI flows to be written in a scripting 

language so they can easily be changed by non-programming members of a team. 

Several popular scripting languages are available such as Python, Ruby, R, and Lua. This 

chapter looks at how the Lua programming language differs from C++ and how the Lua 

interpreter and engine can be incorporated into your C++ programs.

 Recipe 13-1. Running Lua Commands in  
Visual Studio C++
 Problem
You wish to make a program using Visual Studio that incorporates the Lua scripting 

language.

 Solution
The Lua programming language can be easily integrated into your Visual Studio projects.



498

 How It Works
Visual Studio programs can be built from several constituent parts. Visual Studio 

supports this by creating a solution file for your application that contains one or more 

projects. A project in Visual Studio can be configured to create an EXE, a static library, a 

dynamic library, and so on.

For this recipe, you create a solution that consists of one project which has the 

Lua libraries installed via NuGet. Follow these steps to create a project that builds an 

application linked to the Lua C Library (your GUI may look slightly different since 

Visual Studio is a dynamically changing application). In this example, we will obtain 

three packages to allow the use of Lua in Visual Studio 2019: Sol3, Lua, and lua.redist by 

R. Ierusalimschy, L. H. de Figueiredo, and W. Cele. We will first start by running Lua code 

from within our C++ application:

 

 1. Sol is a framework for C++ and Lua binding. Download the sol.

hpp file you will need from https://github.com/ThePhD/sol2/

releases. Look up Sol on the Web for more info via  

 https://sol2.readthedocs.io/en/latest/.

Chapter 13  SCripting

https://github.com/ThePhD/sol2/releases
https://github.com/ThePhD/sol2/releases
https://sol2.readthedocs.io/en/latest/


499

 2. Start an empty C++ project; add a source file. Make sure that you 

set Project, Properties, Configuration Properties, General, and 

C++ Language Standard to Preview Latest C++20.

Figure 13-1. Start new Visual Studio project

 3. Copy the sol.hpp file into your Visual Studio project directory and 

add it as a header file.

 4. Copy the following code to the source file.

Listing 13-1. A Simple Lua Program in C++

#include "sol.hpp"

int main()

{

sol::state state;

state.open_libraries(sol::lib::base, sol::lib::package); // open libs

Chapter 13  SCripting



500

state.do_string("print(\'Hello World!\')");

        state.script("print('printing from a script now!')");

        state.~state(); // close it up

        return 0;

}

 5. Under References, use Manage NuGet Packages to install Lua and 

lua.redist. NuGet is the package manager for .NET which allows 

you to produce and consume packages (in our case, install Lua 

and associated runtime redistributables).

 6. Build the project, then select Debug, and start without debugging.

What you have done was installed the Lua libraries so Visual 

Studio could see them and then executed a Lua print command 

after loading two Lua libraries, one as a command and another as 

a script, which we will see can be used for more later. Lastly, we 

unloaded things from memory at the end.

Create and Open a Lua Script File in C++
The next example will use the same settings as the previous example, but allows the 

program to create a Lua script, puts a command (print) in it, and then reads and 

executes the script.

Listing 13-1B. A C++ Program Which Creates and Reads a Lua Script

#define SOL_ALL_SAFETIES_ON 1

#include "sol.hpp"

#include <fstream>

#include <iostream>

using namespace std;

int main()

{

        ofstream out("first_lua_script.lua"); // create a lua script from C++

Chapter 13  SCripting



501

         out << "print('Hello World from a lua script file')" << endl; //put 

a command in it

        out.close(); // close fstream

        sol::state lua;

        lua.open_libraries(sol::lib::base, sol::lib::package);

        lua.do_string("print('Write and read a Lua script')");

        try  // make sure we can open file

        {    // load and execute from file, both commands do same

                lua.script_file("first_lua_script.lua");

                lua.do_file("first_lua_script.lua");

        }

        catch (...) // give nice error if cannot open file

        {

                cerr << "Opps, I cannot open the file!";

        }

        lua.~state(); // close up nicely

        remove("a_lua_script.lua"); // delete file we created

        cout << "\nAll done!\n";

        return 0;

}

 Recipe 13-2. Creating a Lua Library Project 
in Eclipse
 Problem
You wish to create a C++ program using Lua as a scripting language, and you’re 

developing on a Linux computer with Eclipse installed. You also do not want to use a 

pre-compiled library but want to build your own from source.

Chapter 13  SCripting



502

 Solution
Lua is also supplied as source code, and you can create an Eclipse project that can be built 

into a static library for inclusion in other programs. You can download source code and 

pre-built binaries from Linux and Mac OS X from LuaBinaries (http://luabinaries.

sourceforge.net/download.html), but building your own allows for total control of the 

build process as the following will show.

 How It Works
The Eclipse IDE allows you to create new static library projects that can be linked into 

application projects. Download and install the version appropriate for your OS from 

www.eclipse.org/downloads/. Follow these steps to create an Eclipse project that builds 

a Linux-compatible static library for your Lua projects:

 1. Open your Eclipse IDE, and navigate to the C/C++ perspective.

 2. Right-click the Project Explorer window, and select New ➤ C++ 

Project.

 3. Expand the Static Library category, and select Empty Project.

 4. Give the project a name, and choose a folder to store the project.

 5. Click Finish.

 6. Right-click your new project in the Project Explorer window, and 

select New ➤ Source Folder. Give it a name.

 7. Download the Lua source from www.lua.org.

 8. Unpack the tar.gz file you obtained, and copy the .c and .h files 

from the src folder to your newly created project source folder.

 9. Right-click your project in the Project Explorer window, and select 

Refresh.

 10. Observe that the Lua source and header files appear in the Project 

Explorer window.

 11. Right-click the project, and select Build to ensure that the source 

compiles correctly.

Chapter 13  SCripting

http://luabinaries.sourceforge.net/download.html
http://luabinaries.sourceforge.net/download.html
http://www.eclipse.org/downloads/
http://www.lua.org


503

 12. Right-click empty space in the Project Explorer window, and 

select New ➤ C++ Project.

 13. Select Executable ➤ Hello World C++ Project.

 14. Set the Project Name field.

 15. Select a location.

 16. Click Finish.

 17. Right-click your new executable project in the Project Explorer 

window, and select Properties.

 18. Click the C/C++ Build category, and ensure that Configuration is 

set to Debug.

 19. Expand the C/C++ Build category, and click Settings.

 20. Select the Libraries option under the GCC C++ Linker category.

 21. Click the Add option in the Libraries section, and type Lua  

(you don’t need to type libLua.a—the lib and .a parts are added 

automatically).

 22. Click the Add option on the Library search path option.

 23. Click Workspace.

 24. Select the Debug folder in the Lua project.

 25. Repeat steps 18–24 for the Release configuration (you need to 

build the Lua project in the Release configuration before the 

Release folder and library are generated).

 26. Select the GCC C++ Compiler ➤ Includes section in the C/C++ 

Build ➤ Settings dialog.

 27. Set Configuration to All Configurations.

 28. Click the Add option in the Include paths section.

 29. Click the Workspace button.

 30. Select the source folder that you added to the Lua project in step 6.

 31. Select the Miscellaneous section under the GCC C++ Compiler 

settings in the C/C++ Build ➤ Settings section.

Chapter 13  SCripting



504

 32. Add –std=c++11 to the Other Flags field.

 33. Replace your main function with the source code in Listing 13-2.

Listing 13-2. A Simple Lua Program

#include "lua.hpp"

int main()

{

    luaState* pLuaState{ luaL_newstate() };

    if (pLuaState)

    {

        luaL_openlibs(pLuaState);

        lua_close(pLuaState);

    }

    return 0;

}

 34. Debug your application, and step through to ensure that the 

pLuaState variable in Listing 13-2 is valid and everything 

completes as expected.

The steps in this recipe allow you to create a Lua static library project in Eclipse that 

you can now use throughout the rest of this chapter.

 Recipe 13-3. Creating a Lua Project in Xcode
 Problem
You would like to create a C++ program in Xcode that uses the Lua programming 

language for scripting.

 Solution
You can create projects in Xcode that allow you to generate static libraries to be linked 

into C++ applications.

Chapter 13  SCripting



505

 How It Works
The Xcode IDE lets you create projects that can build executables or libraries. This recipe 

shows you how to configure a project to build the Lua source as a static library and link 

this into another project that generates an executable. Download the appropriate version 

of Xcode for your Apple OS from the App Store and then follow these steps to set up your 

projects:

 1. Open Xcode.

 2. Select Create a new Xcode project.

 3. Select the Library option in the OS X Framework & Library section.

 4. Click Next.

 5. Set Product Name to Lua.

 6. Change Framework to None.

 7. Change Type to Static.

 8. Select a folder to store the Xcode library project.

 9. Download the Lua source from www.lua.org.

 10. Unpack the tar,gz file obtained from the web page.

 11. Copy the source files from the src folder to the Lua project folder 

created in step 8.

 12. Right-click the project in Xcode, and select Add Files to Lua.

 13. Close Xcode.

 14. Open Xcode.

 15. Select Create a new Xcode project.

 16. Select the Command Line Tool option from the OS X Application section.

 17. Set the Product Name field.

 18. Uncheck the Use Storyboards option.

 19. Click Next.

 20. Select a folder to store the project.

Chapter 13  SCripting

http://www.lua.org


506

 21. Open Finder, and browse to the folder containing your Lua project.

 22. Drag the xcodeproj file into the app project in the Xcode window. 

You should now have the Lua project under the app project.

 23. Click the app project, and then click the Build Phases option.

 24. Expand the Link Binary with Libraries option.

 25. Click the plus sign.

 26. Select libLua.a from the Workspace section.

 27. Click Build Settings.

 28. Double-click the Header Search Paths option.

 29. Click the plus sign, and enter the path to the Lua source in your 

Lua project.

 30. Replace the code in AppDelegate.m with the code in Listing 13-3.

Listing 13-3. A Simple Lua Program for Xcode

#import "AppDelegate.h"

#include "lua.hpp"

@property (weak) IBOutlet NSWindow *window;

@end

@implementation AppDelegate

- (void)applicationDidFinishLaunching:(NSNotofication *)aNotification {

    lua_State* pLuaState{ luaL_newstate() };

    if (pLuaState)

    {

        luaL_openlibs(pLuaState);

        lua_close(pLuaState);

    }

}

- (void)applicationWillTerminate:(NSNotification *)aNotification {

}

@end

Chapter 13  SCripting



507

 31. Build and debug your program, using breakpoints to ensure that 

the Lua state is initialized properly.

The steps and code provided in this chapter were generated using Xcode 6.1.1.  

You may have to alter the remaining examples in the chapter to replace the main function 

with the applicationDidFinishLaunching Objective-C method. If your programs won’t 

compile, try changing Type of Source File from Objective-C to Objective-C++ in the 

Identity and Type settings.

 Recipe 13-4. Using the Lua Programming Language
 Problem
You’re a C++ programmer and would like to learn the Lua programming language before 

you add it to your own applications.

 Solution
The Lua programming language documentation is available at /www.lua.org, and a live 

demo for testing code is available at www.lua.org/demo.html. Download for Windows  

at https://github.com/rjpcomputing/luaforwindows/releases/tag/v5.1.5-52.  

For Linux and Mac. there are several methods such as via apt-get and others. But you 

can easily download the install binaries from http://luadist.org/. Depending on your 

platform, pick one and install it. Then use the Lua script editor to practice with this very 

useful language.

 How It Works
The Lua programming language differs from C++ almost entirely. C++ is a compiled 

language that executes directly on a CPU. Lua, on the other hand, is an interpreted 

language that is executed by a virtual machine that in turn is running on a CPU. The Lua 

language comes with a virtual machine that is written in C, and the source is supplied. 

This means you can embed the virtual machine in any C or C++ program you write and 

use the scripting language to write and control high-level features of your application.

It’s a good idea to learn some of the features of the Lua programming language 

before taking on such a task.

Chapter 13  SCripting

http://www.lua.org
http://www.lua.org/demo.html
https://github.com/rjpcomputing/luaforwindows/releases/tag/v5.1.5-52
http://luadist.org/


508

 Working with Variables

C++ variables are statically typed. That means the type is specified when the variable is 

declared and it can’t be changed at any point in the future. An int remains an int for the 

entirety of its lifetime. This helps make C++ programs predictable and highly performant 

when running on a CPU, because the correct instructions can be used on the correct 

types of variables. Lua code, on the other hand, runs in a virtual machine; therefore, 

there are fewer restrictions on the types a variable can represent. This leads to Lua being 

known as a dynamically typed language. Listing 13-4 shows the effect dynamic types 

have on an executing program.

Listing 13-4. Working with Lua Variables

variable = 1

print(variable)

print(type(variable))

variable = "1"

print(variable)

print(type(variable))

You can copy the code in Listing 13-4 and paste it directly into the Lua live demo 

available at www.lua.org/demo.html. The demo has controls to Run, Clear, Restore, and 

Restart the Lua virtual machine. Click Run after pasting or typing the code from Listing 13-4, 

and the following output is generated by the web page:

1

number

1

string

This output lets you see dynamic types in action. Listing 13-4 initially assigns an 

integer value to variable. This is output by the print function as the number 1 in the 

log. The type function returns a string that represents the type of the variable when it’s 

called. The first call to type returns number as the type of variable. A string representation 

of the value “1” is then assigned to variable. The print function represents the string 

Chapter 13  SCripting

http://www.lua.org/demo.html


509

value of 1 the same way as the integer value. There’s no way to tell from that which type 

is currently stored in the variable. The second call to the type function makes it clear that 

the value is actually a string and is no longer a number.

Dynamically typed languages can make interesting things happen to your program 

if you aren’t careful. In C++, there is no way to add a number to a string unless you 

overload the assignment operator to handle this special case. Lua can handle such an 

operation with ease. Listing 13-5 shows this in action.

Listing 13-5. Adding a Number to a String

variable = 1

print(variable)

print(type(variable))

variable = "1"

print(variable)

print(type(variable))

variable = variable + 1

print(variable)

print(type(variable))

Listing 13-5 adds an extra operation to the code originally shown in Listing 13-4. 

This operation adds the value 1 to variable. Recall from the earlier output that the 

value in variable was last represented by a string. The following output shows what has 

happened after executing Listing 13-5:

1

number

1

string

2.0

number

The variable now holds a number that is represented by the floating-point value 2.0. 

Not all strings are created equal, however. If you try to add a number to a string that can’t 

be converted to a numeric, then you’ll receive an error. Listing 13-6 shows code that 

attempts this.

Chapter 13  SCripting



510

Listing 13-6. Adding a Number to a Non-numeric String

variable = "name"

variable = variable + 1

This code causes the Lua virtual machine to produce the following error:

input:2: attempt to perform arithmetic on a string value (global 'variable')

All the Lua arithmetic operators can convert types. If both variables are integers, 

then the resulting value is also an integer. If one or both of the values are a  floating- 

point number, then the result is a floating-point number. And finally, if one or both 

of the values are a string that can be converted to a number, then the resulting value 

is a floating-point number. You saw this in the output from Listing 13-4, where the 

value shown by print was 2.0 with the .0 representing a floating-point number. Some 

operators, such as the division operator and the exponent operator, always return values 

that are represented by floating-point numbers.

These examples show one of the features of the Lua programming language that 

makes it easier for non-programmers to work with. You don’t need to have as firm 

a grasp on the underlying types of variables as you do when using C++. There is no 

concern about having an adequate number of bytes to represent the value 512 and 

having to choose between a char, a short, and an int. You also don’t need to be 

concerned with working with C-style strings or C++ STL strings. Any variable can store 

any type supported by Lua just by assigning a value to a variable at any time in the code.

 Working with Functions

The previous section showed that Lua has some built-in functions you can call. It’s also 

possible to create your own functions using the function keyword. Listing 13-7 creates a 

Lua function.

Listing 13-7. Creating and Calling a Function

variable = "name"

function ChangeName()

    variable = "age"

end

Chapter 13  SCripting



511

print(variable)

ChangeName()

print(variable)

Listing 13-7 begins by defining a variable that stores the value “name”. This is 

followed by a function definition that changes the value of variable to “age”. The code 

in the function isn’t called at the time of the function definition. This can be seen in the 

output generated by the print calls. The first call to print generates the output name, and 

the second call generates the output age.

This is a useful example because it shows that by default, Lua variables are global in 

nature. The value stored by variable is printed twice: once before the call to ChangeName 

and once after. If variable wasn’t global, you would expect the value to be the same 

both times. Lua does support the creation of local variables, but you must be careful with 

their usage. Listing 13-8 shows what happens when you make variable local.

Listing 13-8. Making variable Local

local variable = "name"

function ChangeName()

    variable = "age"

end

print(variable)

ChangeName()

print(variable)

Adding the local specifier to variable in Listing 13-8 doesn’t achieve anything 

for the code shown. Making this local essentially tells the Lua virtual machine that the 

variable can be accessed anywhere in the current scope—which means anywhere in the 

current file. If you’re using the Lua demo, you can imagine that the text box for entering 

your code is a single Lua file. To prevent the ChangeName function from accessing the 

same instance of variable, you have to use the local keyword on this variable as well, 

as shown in Listing 13-9.

Chapter 13  SCripting



512

Listing 13-9. Making the ChangeName variable Local

local variable = "name"

function ChangeName()

    local variable = "age"

end

print(variable)

ChangeName()

print(variable)

Both calls to print in Listing 13-9 result in the value “name” being printed to the 

output window. I recommend making all of your variables local to ensure that your code 

is less likely to introduce bugs that are hard to track down, caused by inadvertently using 

the same variable name in more than one place at a time.

Functions in Lua always return values. The ChangeName function in Listing 13-9 doesn’t 

specify a return value, so it implicitly returns nil. This can be seen in Listing 13- 10.

Listing 13-10. Function Returning nil

function GetValue()

    local variable = "age"

end

local value = GetValue()

print(value)

This code returns nil to the variable value, and this is printed by the print 

function. The nil value is the Lua equivalent of nullptr in C++. It means the absence of 

a value rather than representing 0. Trying to manipulate nil values results in a Lua error 

such as the following:

input:8: attempt to perform arithmetic on a nil value (local 'value')

This error was generated by trying to add 1 to value when it stores nil. You can 

avoid the error by properly returning a value from the GetValue function, as shown in 

Listing 13-11.

Chapter 13  SCripting



513

Listing 13-11. Returning Properly from a Function

function GetValue()

    return "age"

end

local value = GetValue()

print(value)

This listing shows that the return function can be used the same as it is in C++. 

Lua’s return statement isn’t the same as return in C++, though. You can use it to return 

multiple values from a function using the comma operator (,). Listing 13-12 shows this 

in action.

Listing 13-12. Multiple Return Values

function GetValues()

    return "name", "age"

end

local name, age = GetValues()

print(name)

print(age)

Listing 13-12 shows that to return and store multiple values from a function, you 

must use the comma operator on the return statement and the assignment statement 

when defining the function and calling the function.

 Working with Tables

Lua provides tables as a means of storing collections of information. A table can be used 

as either a standard array with an integer-based index or an associative array with key- 

value pairs. You create a table using curly braces, as shown in Listing 13-13.

Listing 13-13. Creating a Table

newTable = {}

This code simply creates a table that can now be used to store values. An associative 

table can use any type of variable as a key. This is true for strings, floats, integers, and 

even other tables. Listing 13-14 shows how to use a Lua table as an associative array.

Chapter 13  SCripting



514

Listing 13-14. Adding Values to an Associative Array

newTable = {}

newTable["value"] = 3.14

newTable[3.14] = "value"

keyTable = {}

newTable[keyTable] = "VALID"

print(newTable["value"])

print(newTable[3.14])

print(newTable[keyTable])

Listing 13-14 adds values to a Lua table using keys. There are examples of using 

strings, floats, and other tables as keys in this listing, and you can see how to use the 

array operator to assign values to a key in a table as well as read values from a table. 

Trying to read the value at newTable[3.14] would result in nil being returned before 

any value was assigned to that key. This is also how you can remove values from a table: 

assign nil to the key you wish to remove. Listing 13-15 shows the removal of objects 

from a table.

Listing 13-15. Removing Objects from a Table

newTable = {}

newTable["nilValue1"] = 1

newTable["nilValue2"] = 2

print(newTable["nilValue1"])

print(newTable["nilValue2"])

newTable["nilValue1"] = nil

print(newTable["nilValue1"])

print(newTable["nilValue2"])

Lua tables can also be used as C-style arrays, and the Lua language provides helper 

functions to aid in the management of these types of arrays. Listing 13-16 shows the 

creation of an array table and the modification of its elements.

Chapter 13  SCripting



515

Listing 13-16. Creating a Lua Array

newTable = {}

table.insert(newTable, "first")

table.insert(newTable, "second")

table.insert(newTable, "third")

print(newTable[2])

print(newTable[2])

table.insert(newTable, 2, "fourth")

print(newTable[2])

table.remove(newTable, 1)

print(newTable[1])

print(newTable[2])

print(newTable[3])

print(newTable[4])

Listing 13-16 uses the table.insert and table.remove Lua functions. You can use the 

insert function two ways: without an index, to add elements to the end of the array; or with 

an index as the second parameter, to insert elements into the array and shift everything from 

that point on up a place. This shows you that Lua arrays behave more like a C++ vector. The 

remove function takes the index that you would like to see removed from the array.

Lua also provides a # operator that can be used with array-style tables. Listing 13-17 

shows it in action.

Listing 13-17. Using the # Operator

newTable = {}

table.insert(newTable, "first")

table.insert(newTable, "second")

table.insert(newTable, "third")

print(#newTable)

newTable[9] = "fourth"

print(newTable[9])

print(#newTable)

Chapter 13  SCripting



516

The # operator in Listing 13-17 returns the last continuous index that it can find. 

The first three elements are added without issue, using the insert method; therefore, 

they have continuous indices. However, the element added manually at 9 doesn’t. This 

prevents you from being able to use the # operator to count the number of elements in 

the array unless you can be certain that all the indices in the array are contiguous.

 Using Flow Control

Lua provides an if statement, a for loop, and a while loop to help you structure your 

programs. These can be used to make decisions and to loop over all the elements in a 

table. Listing 13-18 shows the Lua if statement. 

Listing 13-18. Using the Lua if Statement

value1 = 1

value2 = 2

if value1 == value2 then

    print("Are equal")

elseif value1 ~= value2 then

    print("Not equal")

else

    print("Shouldn't be here!")

end

Lua’s if statement is formed by creating an expression that evaluates to not nil and 

not false wrapped in the if...then statement. The code in the if block creates its own 

scope and can consist of its own local variables. The elseif statement is supplied to allow 

multiple expressions to be evaluated in a sequential order, and the else statement can 

provide a default behavior of required. Both the elseif and else statements are optional 

and not required. The entire if statement block is terminated using the end keyword.

There are a couple of things to consider when coming from C++ to Lua and using 

flow control statements such as if. Assigning a 0 value to a variable would result in a 

positive test when working with if statements. The if statement evaluates for not nil 

and not false, so a value of 0 is given as true. Listing 13-18 also shows the not-equal 

operator, which in Lua uses the ~ character in place of the C++ language’s use of !.

These cases are also true of the while statement, as shown in Listing 13-19.

Chapter 13  SCripting



517

Listing 13-19. Using a Lua while Loop

value1 = 2

while value1 do

    print("We got here! " .. value1)

    value1 = value1 - 1

    if value1 == -1 then

        value1 = nil

    end

end

This code uses a while loop to show that a value of 0 evaluates to true in a Lua 

control statement. The output is as follows:

We got here! 2

We got here! 1

We got here! 0

The loop is finally terminated after the if statement has triggered and set the value 

of value1 to nil. A better method for controlling the termination of the while loop is 

shown in Listing 13-20.

Listing 13-20. Better while Termination

value1 = 2

while value1 do

    print("We got here! " .. value1)

    value1 = value1 - 1

    if value1 == -1 then

        break

    end

end

Listing 13-20 uses a break statement to exit the execution of the while loop. The 

break statement works exactly as you would expect when coming from C++. Yet another 

option for leaving the loop is shown in Listing 13-21.

Chapter 13  SCripting



518

Listing 13-21. Using Comparison Operators to Leave a Loop

value1 = 2

while value1 >= 0 do

    print("We got here! " .. value1)

    value1 = value1 - 1

end

Despite the value 0 resulting in a true result in the while loop test, a comparison 

for 0 or any other valid comparison eventually returns false under normal operating 

circumstances. Here the value of value1 is compared with 0, and the loop stops 

executing once the value falls below 0.

You can use the Lua for loop to iterate in an algorithm. Listing 13-22 shows a simple 

for loop.

Listing 13-22. A Lua for Loop

for i=0, 10, 2 do

    print(i)

end

This for loop prints the numbers 0, 2, 4, 6, 8, and 10. The statement to generate a for 

loop takes a start position (in this case, a variable and its value), a limit, and finally a step. 

This example creates a variable and assigns it 0, loops until the variable is greater than 

the limit, and adds the step to the variable at each iteration. The loop starts at 0, adds 2 

with each iteration, and ends once the variable holds a number greater than 10. It the 

step was negative, it would loop until the variable held a value less than the limit.

You can also use a for loop to iterate over tables using the pairs or ipairs function. 

Listing 13-23 shows these in action.

Listing 13-23. Using pairs and ipairs

newTable = {}

newTable["first"] = 1

newTable["second"] = 2

newTable["third"] = 3

Chapter 13  SCripting



519

for key, value in pairs(newTable) do

    print(key .. ": " .. value)

end

newTable = {}

table.insert(newTable, "first")

table.insert(newTable, "second")

table.insert(newTable, "third")

for index, value in ipairs(newTable) do

    print(index .. ": " .. value)

end

The pairs function returns the key and value from each element in an associative 

array table, and the ipairs function returns the numeric indices of an array-style table. 

This code shows the benefit of Lua’s ability to return multiple values from a function.

 Recipe 13-5. Calling Lua Functions from C++
 Problem
You have a task in your program that would benefit from the fast iteration capabilities 

afforded by scripting in Lua.

 Solution
The Lua programming language comes with source code that allows you to compile and 

execute scripts while your program is running.

 How It Works
The Lua C++ API provides a programming interface to the Lua state’s stack. The C++ API 

can manipulate this stack to pass parameters to Lua code and receive values from Lua in 

return. This capability lets you create Lua source files that can then act as Lua functions. 

These Lua functions can be updated while your program is running, allowing you to iterate 

on your program logic much more quickly than would be possible with C++ alone.

Chapter 13  SCripting



520

The Lua APIs are supplied using the C programming language. This means you 

have to create proxy objects if you wish to take a more C++-style approach to using Lua. 

Listing 13-24 shows how you can create a program that loads and executes a Lua script 

as a function from C++.

Listing 13-24. Calling a Simple Lua Script as a Function

#include <iostream>

#include "lua.hpp"

using namespace std;

class Lua

{

private:

    lua_State* m_pLuaState{ nullptr };

public:

    Lua()

        : m_pLuaState{ luaL_newstate() }

    {

        if (m_pLuaState)

        {

            luaL_openlibs(m_pLuaState);

        }

    }

    ~Lua()

    {

        lua_close(m_pLuaState);

    }

    Lua(const Lua& other) = delete;

    Lua& operator=(const Lua& other) = delete;

    Lua(Lua&& rvalue) = delete;

    Lua& operator=(Lua&& rvalue) = delete;

    bool IsValid() const

    {

Chapter 13  SCripting



521

        return m_pLuaState != nullptr;

    }

    int LoadFile(const string& filename)

    {

        int status{ luaL_loadfile(m_pLuaState, filename.c_str()) };

        if (status == 0)

        {

            lua_setglobal(m_pLuaState, filename.c_str());

        }

        return status;

    }

    int PCall()

    {

        return lua_pcall(m_pLuaState, 0, LUA_MULTRET, 0);

    }

};

class LuaFunction

{

private:

    Lua& m_Lua;

    string m_Filename;

    int PCall()

    {

        return m_Lua.PCall();

    }

public:

    LuaFunction(Lua& lua, const string& filename)

        : m_Lua{ lua }

        , m_Filename(filename)

    {

        m_Lua.LoadFile(m_Filename);

    }

Chapter 13  SCripting



522

    ~LuaFunction() = default;

    LuaFunction(const LuaFunction& other) = delete;

    LuaFunction& operator=(const LuaFunction& other) = delete;

    LuaFunction(LuaFunction&& rvalue) = delete;

    LuaFunction& operator=(LuaFunction&& rvalue) = delete;

    int Call()

    {

        m_Lua.GetGlobal(m_Filename);

        return m_Lua.PCall();

    }

};

int main(int argc, char* argv[])

{

    Lua lua;

    if (lua.IsValid())

    {

        const string filename{ "LuaCode1.lua" };

        LuaFunction function(lua, filename);

        function.Call();

    }

    return 0;

}

Listing 13-24 shows a method of containing all the Lua C functions in a single class 

implementation. This lets you put the definitions for all of these methods in a single 

C++ file and limit the dependencies on Lua throughout your program. The Lua class 

is therefore responsible for maintaining the lua_State pointer that manages the Lua 

context for the program. This example creates a class that limits the ability to copy or 

move the Lua object; you may need this to be possible, but it isn’t necessary for these 

examples.

Chapter 13  SCripting



523

The constructor for the Lua class calls the luaL_newstate function. This function 

calls the lua_newstate function and passes default parameters. You could call lua_

newstate directly if you wanted to supply your own memory allocator to the Lua state 

machine. A successful call to luaL_newstate results in the m_pLuaState field storing 

a valid address for the state. If that’s true, then the luaL_openlibs function is called. 

This function automatically loads the Lua-provided libraries into the state you created. 

You can avoid calling this function if you have no need for the Lua built-in library 

functionality.

The Lua class destructor is responsible for calling lua_close to destroy the Lua 

context created by luaL_newstate in the constructor. The IsValid function provides 

a simple method for your calling code to determine whether the Lua context was 

initialized correctly in the constructor.

The LuaFunction class stores a reference to the Lua class that it uses for the context. 

This class once again prevents copying and moving. The constructor takes a reference to 

the Lua object that provides it with functionality and a string containing the name of the 

file to load that contains the Lua source code. The constructor uses the m_Lua object to 

call the LoadFile method and passes the m_Filename field. The LoadFile method calls 

luaL_loadfile, which reads the file, compiles the Lua source, and pushes a Lua function 

object onto the top of the Lua stack using the compiled code. If the luaL_loadfile call 

was successful, the lua_setglobal function is called. This function gets the top object 

from the stack and assigns it to a global object with the name supplied. In this case, the 

function object created by luaL_loadfile is assigned to a global variable named with 

the name of the source file.

The main function creates a LuaFunction object with a file named LuaCode1.lua. The 

source of this file is shown in Listing 13-25.

Listing 13-25. The Code from LuaCode1.lua

print("Printing From Lua!")

This Lua code results in a simple message being printed to the console. This occurs 

when the main function calls the LuaFunction::Call method. This method uses the 

Lua::GetGlobal function to move the global object with a given name to the top of the stack. 

In this case, the m_Filename variable moves the function object created in the LoadFile 

method onto the stack. The Lua::PCall method then calls the function that is closest to 

the top of the stack. The output generated by this program is shown in Figure 13-2.

Chapter 13  SCripting



524

Listing 13-24 doesn’t initialize any data to be consumed by the Lua script. You can 

handle this by creating classes to represent Lua types. Listing 13-26 creates a LuaTable 

class to create Lua tables in C++ that can then be accessed by Lua.

Listing 13-26. Creating a Lua Table in C++

#include <iostream>

#include "lua.hpp"

#include <vector>

using namespace std;

class Lua

{

private:

    lua_State* m_pLuaState{ nullptr };

public:

    Lua()

        : m_pLuaState{ luaL_newstate() }

    {

        if (m_pLuaState)

        {

            luaL_openlibs(m_pLuaState);

        }

Figure 13-2. The output generated by running the code in Listing 13-24 and 
Listing 13-25

Chapter 13  SCripting



525

    }

    ~Lua()

    {

        lua_close(m_pLuaState);

    }

    Lua(const Lua& other) = delete;

    Lua& operator=(const Lua& other) = delete;

    Lua(Lua&& rvalue) = delete;

    Lua& operator=(Lua&& rvalue) = delete;

    bool IsValid() const

    {

        return m_pLuaState != nullptr;

    }

    int LoadFile(const string& filename)

    {

        int status{ luaL_loadfile(m_pLuaState, filename.c_str()) };

        if (status == 0)

        {

            lua_setglobal(m_pLuaState, filename.c_str());

            Pop(1);

        }

        return status;

    }

    int PCall()

    {

        return lua_pcall(m_pLuaState, 0, LUA_MULTRET, 0);

    }

    void NewTable(const string& name)

    {

        lua_newtable(m_pLuaState);

        lua_setglobal(m_pLuaState, name.c_str());

    }

Chapter 13  SCripting



526

    void GetGlobal(const string& name)

    {

        lua_getglobal(m_pLuaState, name.c_str());

    }

    void PushNumber(double number)

    {

        lua_pushnumber(m_pLuaState, number);

    }

    void SetTableValue(double index, double value)

    {

        PushNumber(index);

        PushNumber(value);

        lua_rawset(m_pLuaState, -3);

    }

    double GetNumber()

    {

        return lua_tonumber(m_pLuaState, -1);

    }

    void Pop(int number)

    {

        lua_pop(m_pLuaState, number);

    }

};

class LuaTable

{

private:

    Lua& m_Lua;

    string m_Name;

public:

    LuaTable(Lua& lua, const string& name)

        : m_Lua{ lua }

        , m_Name(name)

Chapter 13  SCripting



527

    {

        m_Lua.NewTable(m_Name);

    }

    void Set(const vector<int>& values)

    {

        Push();

        for (unsigned int i = 0; i < values.size(); ++i)

        {

            m_Lua.SetTableValue(i +  1, values[i]);

        }

        m_Lua.Pop(1);

    }

    void Push()

    {

        m_Lua.GetGlobal(m_Name);

    }

};

class LuaFunction

{

private:

    Lua& m_Lua;

    string m_Filename;

    int PCall()

    {

        return m_Lua.PCall();

    }

protected:

    int Call()

    {

        m_Lua.GetGlobal(m_Filename);

        return m_Lua.PCall();

    }

Chapter 13  SCripting



528

    double GetReturnValue()

    {

        double result{ m_Lua.GetNumber() };

        m_Lua.Pop(1);

        return result;

    }

public:

    LuaFunction(Lua& lua, const string& filename)

        : m_Lua{ lua }

        , m_Filename( filename )

    {

        int status{ m_Lua.LoadFile(m_Filename) };

    }

};

class PrintTable

    : public LuaFunction

{

public:

    PrintTable(Lua& lua, const string& filename)

        : LuaFunction(lua, filename)

    {

    }

    double Call(LuaTable& table)

    {

        double sum{};

        int status{ LuaFunction::Call() };

        if (status)

        {

            throw(status);

        }

        else

        {

            sum = LuaFunction::GetReturnValue();

Chapter 13  SCripting



529

        }

        return sum;

    }

};

int main(int argc, char* argv[])

{

    Lua lua;

    if (lua.IsValid())

    {

        int loop = 2;

        while (loop > 0)

        {

            const string tableName("cTable");

            LuaTable table(lua, tableName);

            vector<int> values{ 1, 2, 3, 4, 5 };

            table.Set(values);

            const string filename{ "LuaCode.lua" };

            PrintTable printTableFunction(lua, filename);

            try

            {

                double result{ printTableFunction.Call(table) };

                cout << "Result: " << result << endl;

            }

            catch (int error)

            {

                cout << "Call error: " << error << endl;

            }

            cout << "Waiting" << endl;

            int input;

            cin >> input;

            --loop;

Chapter 13  SCripting



530

        }

    }

    return 0;

}

Listing 13-26 adds a LuaTable class along with the relevant methods to the Lua class 

to manage the table. The lua_newtable function creates a new table and pushes it onto 

the stack. Then element is then assigned to a global variable with the supplied name in 

the LuaTable constructor. Values are added to the table using the Lua::SetTableValue 

method. This method only supports number indices for the tables and works by pushing 

two numbers onto the stack: the index to be assigned in the table and the value to assign 

to that index.

The lua_rawset function assigns a value to an index on a table, with the table in 

question existing at the supplied index. The first element on the stack is referenced by -1, 

and this will be the value; the second element on the stack at this point is the index; and 

the third element is the table, so the value -3 is passed to the lua_rawset function. Both 

the index and the value are popped from the stack by this call, and therefore the table is 

once again found at position -1.

The LuaFunction class is inherited into a new class named PrintTable. This class 

provides a new call method that knows how to retrieve the value returned from the Lua 

script supplied. The Lua code in Listing 13-27 shows why this is necessary.

Listing 13-27. The LuaCode2.lua Source

local x = 0

for i = 1, #cTable do

  print(i, cTable[i])

  x = x + cTable[i]

end

return x

This code loops over the cTable table set up in C++ and prints out the values. It also 

calculates the total of all the values in the table and returns them to the calling code 

using the stack.

Chapter 13  SCripting



531

The C++ main function creates a table and assigns five integers to it using a 

vector. The PrintTable class creates a C++ Lua function with the LuaCode2.lua file. 

This function is called, and the value returned is retrieved from the stack using the 

Lua::GetReturnValue function.

The big thing to notice in main is the ability to reload Lua scripts and update the code 

executed at runtime. The main function stalls using cin. While it’s waiting, you can alter 

the Lua script and see the changes reflected once you unblock execution. Figure 13-3 

shows output proving that this can occur.

Figure 13-3. Output showing that scripts can be changed at runtime

This output shows that changing the Lua code and reloading the function replaces 

the code at the given global variable. I added a single line of output to the script: you can 

see this in the figure where the line “I changed this!” is printed.

Chapter 13  SCripting



532

 Recipe 13-6. Calling C Functions from Lua
 Problem
You have some highly complex code that would benefit from the high performance 

afforded by C/C++ code, but you would like to be able to call these functions from Lua.

 Solution
Lua provides the lua_CFunction type that lets you create C functions that can be 

referenced by Lua code.

 How It Works
The Lua API provides a type lua_CFunction that essentially determines the signature 

that can be used with a C function to allow it to be called from Lua. Listing 13-28 shows 

an example that creates a function that can add all the parameters supplied to it by Lua.

Listing 13-28. Calling a C Function from Lua

#include <iostream>

#include "lua.hpp"

#include <vector>

using namespace std;

namespace

{

    int Sum(lua_State *L)

    {

        unsigned int numArguments{ static_cast<unsigned int>(lua_gettop(L)) };

        lua_Number sum{ 0 };

        for (unsigned int i = 1; i <= numArguments; ++i)

        {

            if (!lua_isnumber(L, i))

            {

                lua_pushstring(L, "incorrect argument");

                lua_error(L);

Chapter 13  SCripting



533

            }

            sum += lua_tonumber(L, i);

        }

        lua_pushnumber(L, sum / numArguments);

        lua_pushnumber(L, sum);

        return 2;

    }

}

class Lua

{

private:

    lua_State* m_pLuaState{ nullptr };

public:

    Lua()

        : m_pLuaState{ luaL_newstate() }

    {

        if (m_pLuaState)

        {

            luaL_openlibs(m_pLuaState);

        }

    }

    ~Lua()

    {

        lua_close(m_pLuaState);

    }

    Lua(const Lua& other) = delete;

    Lua& operator=(const Lua& other) = delete;

    Lua(Lua&& rvalue) = delete;

    Lua& operator=(Lua&& rvalue) = delete;

    bool IsValid() const

    {

        return m_pLuaState != nullptr;

    }

Chapter 13  SCripting



534

    int LoadFile(const string& filename)

    {

        int status{ luaL_loadfile(m_pLuaState, filename.c_str()) };

        if (status == 0)

        {

            lua_setglobal(m_pLuaState, filename.c_str());

        }

        return status;

    }

    int PCall()

    {

        return lua_pcall(m_pLuaState, 0, LUA_MULTRET, 0);

    }

    void NewTable(const string& name)

    {

        lua_newtable(m_pLuaState);

        lua_setglobal(m_pLuaState, name.c_str());

    }

    void GetGlobal(const string& name)

    {

        lua_getglobal(m_pLuaState, name.c_str());

    }

    void PushNumber(double number)

    {

        lua_pushnumber(m_pLuaState, number);

    }

    void SetTableValue(double index, double value)

    {

        PushNumber(index);

        PushNumber(value);

        lua_rawset(m_pLuaState, -3);

    }

Chapter 13  SCripting



535

    double GetNumber()

    {

        return lua_tonumber(m_pLuaState, -1);

    }

    void Pop(int number)

    {

        lua_pop(m_pLuaState, number);

    }

    void CreateCFunction(const string& name, lua_CFunction function)

    {

        lua_pushcfunction(m_pLuaState, function);

        lua_setglobal(m_pLuaState, name.c_str());

    }

};

class LuaTable

{

private:

    Lua& m_Lua;

    string m_Name;

public:

    LuaTable(Lua& lua, const string& name)

        : m_Lua{ lua }

        , m_Name(name)

    {

        m_Lua.NewTable(m_Name);

    }

    void Set(const vector<int>& values)

    {

        Push();

        for (unsigned int i = 0; i < values.size(); ++i)

        {

            m_Lua.SetTableValue(i + 1, values[i]);

        }

Chapter 13  SCripting



536

        m_Lua.Pop(1);

    }

    void Push()

    {

        m_Lua.GetGlobal(m_Name);

    }

};

class LuaFunction

{

private:

    Lua& m_Lua;

    string m_Filename;

protected:

    int PCall()

    {

        m_Lua.GetGlobal(m_Filename);

        return m_Lua.PCall();

    }

    double GetReturnValue()

    {

        double result{ m_Lua.GetNumber() };

        m_Lua.Pop(1);

        return result;

    }

public:

    LuaFunction(Lua& lua, const string& filename)

        : m_Lua{ lua }

        , m_Filename(filename)

    {

        int status{ m_Lua.LoadFile(m_Filename) };

    }

};

Chapter 13  SCripting



537

class PrintTable

    : public LuaFunction

{

public:

    PrintTable(Lua& lua, const string& filename)

        : LuaFunction(lua, filename)

    {

    }

    double Call(LuaTable& table)

    {

        double sum{};

        int status{ LuaFunction::PCall() };

        if (status)

        {

            throw(status);

        }

        else

        {

            sum = LuaFunction::GetReturnValue();

        }

        return sum;

    }

};

int main(int argc, char* argv[])

{

    Lua lua;

    if (lua.IsValid())

    {

        const string functionName("Sum");

        lua.CreateCFunction(functionName, Sum);

        const string tableName("cTable");

        LuaTable table(lua, tableName);

Chapter 13  SCripting



538

        vector<int> values{ 1, 2, 3, 4, 5 };

        table.Set(values);

        const string filename{ "LuaCode3.lua" };

        PrintTable printTableFunction(lua, filename);

        try

        {

            double result{ printTableFunction.Call(table) };

            cout << "Result: " << result << endl;

        }

        catch (int error)

        {

            cout << "Call error: " << error << endl;

        }

        cout << "Waiting" << endl;

        int input;

        cin >> input;

    }

    return 0;

}

The Sum function in Listing 13-28 shows how a C function must interface with Lua. 

The signature is simple: a C function that can be called from Lua returns an integer and 

receives a pointer to a lua_State object as a parameter. When Lua calls a C function, it 

pushes the number of arguments passed onto the top of the Lua stack. This value is read 

by the function called, which can then loop and pull the appropriate number of elements 

from the stack. A C function then pushes the appropriate number of results onto the 

stack and returns the number of elements that the calling code must pop from the stack.

The Lua::CreateCFunction method uses the lua_pushcfunction method to push 

a lua_CFunction object onto the stack and then uses lua_setglobal to assign it to a 

named object in the global context. The main function simply calls CreateCFunction and 

supplies the name to use in Lua along with the function pointer to be used. The Lua code 

to call this function is shown in Listing 13-29.

Chapter 13  SCripting



539

Listing 13-29. Lua Code Calling a C Function

local x = 0

for i = 1, #cTable do

  print(i, cTable[i])

  x = x + cTable[i]

end

local average, sum = Sum(cTable[1], cTable[2], cTable[3])

print("Average: " .. average)

print("Sum: " .. sum)

return sum

This Lua code shows the call to Sum and retrieves the average and sum values.

 Recipe 13-7. Creating Asynchronous Lua Functions
 Problem
You have a long-running Lua operation that you would like to prevent from blocking 

your program’s execution.

 Solution
Lua allows you to create coroutines. These can be yielded from to let your program 

execution continue and allow for the creation of well-behaved, long-running Lua tasks. 

Each coroutine receives its own unique Lua context.

 How It Works
The Lua programming language allows for the creation of coroutines. Coroutines differ 

from normal functions in that they can call the coroutine.yield function from Lua to 

inform the state machine that their execution is suspended. The C API provides a resume 

function that you can call to wake up the coroutine after some time to allow the thread to 

check whether the situation it was waiting for has occurred. This could be because you 

want to wait for an animation to complete or the Lua script is waiting for information to be 

obtained from an I/O process, such as reading from a file or accessing data on a server.

Chapter 13  SCripting



540

You create a Lua coroutine using the lua_newthread function. Despite the name, 

a Lua coroutine is executed in the thread where the lua_resume call is made. The 

lua_resume call is passed a pointer to a lua_State object that contains a stack for the 

coroutine. The code executed on the stack is the Lua function object that exists closest to 

the top at the time of the lua_resume call. Listing 13-30 shows the C++ code required to 

set up a Lua thread and execute its code.

Listing 13-30. Creating a Lua Coroutine

#include <iostream>

#include <lua.hpp>

using namespace std;

class Lua

{

private:

    lua_State* m_pLuaState{ nullptr };

    bool m_IsThread{ false };

public:

    Lua()

        : m_pLuaState{ luaL_newstate() }

    {

        if (m_pLuaState)

        {

            luaL_openlibs(m_pLuaState);

        }

    }

    Lua(lua_State* pLuaState)

        : m_pLuaState{ pLuaState }

    {

        if (m_pLuaState)

        {

            luaL_openlibs(m_pLuaState);

        }

    }

Chapter 13  SCripting



541

    ~Lua()

    {

        if (!m_IsThread && m_pLuaState)

        {

            lua_close(m_pLuaState);

        }

    }

    Lua(const Lua& other) = delete;

    Lua& operator=(const Lua& other) = delete;

    Lua(Lua&& rvalue)

        : m_pLuaState( rvalue.m_pLuaState )

        , m_IsThread( rvalue.m_IsThread )

    {

        rvalue.m_pLuaState = nullptr;

    }

    Lua& operator=(Lua&& rvalue)

    {

        if (this != &rvalue)

        {

            m_pLuaState = rvalue.m_pLuaState;

            m_IsThread = rvalue.m_IsThread;

            rvalue.m_pLuaState = nullptr;

        }

    }

    bool IsValid() const

    {

        return m_pLuaState != nullptr;

    }

    int LoadFile(const string& filename)

    {

        int status{ luaL_loadfile(m_pLuaState, filename.c_str()) };

        if (status == 0)

        {

Chapter 13  SCripting



542

            lua_setglobal(m_pLuaState, filename.c_str());

        }

        return status;

    }

    void GetGlobal(const string& name)

    {

        lua_getglobal(m_pLuaState, name.c_str());

    }

    Lua CreateThread()

    {

        Lua threadContext(lua_newthread(m_pLuaState));

        threadContext.m_IsThread = true;

        return move(threadContext);

    }

    int ResumeThread()

    {

        return lua_resume(m_pLuaState, m_pLuaState, 0);

    }

};

class LuaFunction

{

private:

    Lua& m_Lua;

    string m_Filename;

public:

    LuaFunction(Lua& lua, const string& filename)

        : m_Lua{ lua }

        , m_Filename(filename)

    {

        int status{ m_Lua.LoadFile(m_Filename) };

    }

    void Push()

    {

Chapter 13  SCripting



543

        m_Lua.GetGlobal(m_Filename);

    }

};

class LuaThread

{

private:

    Lua m_Lua;

    LuaFunction m_LuaFunction;

    int m_Status{ -1 };

public:

    LuaThread(Lua&& lua, const string& functionFilename)

        : m_Lua(move(lua))

        , m_LuaFunction(m_Lua, functionFilename)

    {

    }

    ~LuaThread() = default;

    LuaThread(const LuaThread& other) = delete;

    LuaThread& operator=(const LuaThread& other) = delete;

    LuaThread(LuaThread&& rvalue) = delete;

    LuaThread& operator=(LuaThread&& rvalue) = delete;

    void Resume()

    {

        if (!IsFinished())

        {

            if (m_Status == -1)

            {

                m_LuaFunction.Push();

            }

            m_Status = m_Lua.ResumeThread();

        }

    }

Chapter 13  SCripting



544

    bool IsFinished() const

    {

        return m_Status == LUA_OK;

    }

};

int main(int argc, char* argv[])

{

    Lua lua;

    if (lua.IsValid())

    {

        const string functionName("LuaCode4.lua");

        LuaThread myThread(lua.CreateThread(), functionName);

        while (!myThread.IsFinished())

        {

            myThread.Resume();

            cout << "myThread yielded or finished!" << endl;

        }

        cout << "myThread finished!" << endl;

    }

    return 0;

}

The Lua class in Listing 13-30 contains a pointer to a lua_State object and a bool 

variable indicating whether a specific object has been created to handle a Lua thread. 

This is necessary to ensure that only a single Lua object is responsible for calling lua_

close in its destructor. You can see that this bool value is checked in the ~Lua method.

The m_IsThread bool is set to true in the Lua::CreateThread method. This method 

calls the lua_newthread function and passes the new lua_State pointer to a newly 

constructed Lua object. This object then has the m_IsThread bool set to true and is 

returned from the function. The Lua object is returned using move semantics. This 

ensures that there can’t be any duplicates of a single Lua object at any time, and this 

is enforced by the delete keyword being specified in the copy constructor and copy 

assignment operator. Only the move constructor and move assignment operator are 

defined.

Chapter 13  SCripting



545

The Lua::Resume method is also shown in Listing 13-30. This method is responsible 

for starting or resuming the execution of a Lua coroutine.

The LuaThread class is responsible for managing a Lua coroutine. The constructor 

takes an rvalue reference to a Lua object and a string containing the name of the file to 

be loaded. The class has fields to store the Lua object and a LuaFunction object that will 

be used to Push the function onto the coroutine’s stack.

The m_Status field determines when the coroutine has finished execution. 

It’s initialized to -1 because this value isn’t used by Lua to represent a state. The 

LUA_OK value is returned from lua_resume when the coroutine execution has been 

completed, and the LUA_YIELD value is returned when the coroutine has yielded. The 

LuaThread::Resume function first checks whether the status has been set to LUA_OK; if it 

has, then nothing is done. If the m_Status variable contains -1, then the m_LuaFunction 

object is pushed onto the stack. The m_Status variable is updated with the value 

returned by Lua::ResumeThread.

The main function uses all of this functionality by creating a LuaThread object and 

calling LuaThread::Resume in a while loop that executes until IsFinished returns true 

on the myThread object. The LuaCode4.lua file contains the Lua code from Listing 13-31, 

which contains several yields in a loop.

Listing 13-31. The LuaCode4.lua Source

for i=1, 10, 1 do

        print("Going for yield " .. i .. "!")

        coroutine.yield()

end

This is a simple example of how to use the coroutine.yield function from within 

Lua code. The lua_resume C function returns LUA_YIELD when this Lua function 

is executed in the running Lua script. Figure 13-4 shows the result of running the 

combination containing the C++ code in Listing 13-30 and the Lua code in Listing 13-31.

Chapter 13  SCripting



546

Figure 13-4. The output generated by executing Listing 13-30 in combination with 
Listing 13-31

Chapter 13  SCripting



547
© J. Burton Browning and Bruce Sutherland 2020 
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5_14

CHAPTER 14

3D Graphics Programming
C++ is the programming language of choice for developers of high-performance 

applications. This often includes applications that are required to display 3D graphics 

to a user. 3D graphics are common in medical applications, design applications, and 

video games. All of these types of applications demand responsiveness as a key usability 

feature. This makes the C++ language a perfect choice for this type of program, because 

programmers can target and optimize for specific hardware platforms.

Microsoft supplies the proprietary DirectX API for building 3D applications for the 

Windows operating system. This chapter, however, looks at writing a simple 3D program 

using the OpenGL API. OpenGL is supported on Windows, OS X, and most Linux 

distributions; it’s a perfect choice in this case, because you might be using any of these 

operating systems.

One of the more tedious aspects of OpenGL programming is the requirement to set 

up and manage windows in multiple operating systems if you’re targeting more than 

one. This job is made much easier by the GLFW package, which abstracts this task away 

behind an API so you don’t have to worry about the details.

 Recipe 14-1. An Introduction to GLFW
 Problem
You’re writing a cross-platform application containing 3D graphics, and you want a fast 

way to get up and running.

 Solution
GLFW abstracts out the task of creating and managing a window for many popular 

operating systems.



548

 How It Works
The GLFW API is written in the C programming language and can therefore be used in 

C++ applications without issue. The API is available to download from www.glfw.org. 

You can also read the documentation for the API at the same web site. The instructions 

to configure and build a GLFW library change frequently and so aren’t included in this 

chapter. At the time of this writing, the most up-to-date instructions for obtaining GLFW 

can be found at www.glfw.org.

The instructions for GLFW currently involve either using CMake to build a project 

that can then be used to compile a library that you can link into your own project or 

downloading pre-compiled binaries for Windows, Mac, or Linux from www.glfw.org/

download.html. Once you have this installed, you can use the code in Listing 14-1 to run 

a program that initializes OpenGL and creates a window for your program.

Listing 14-1. A Simple GLFW Program

#include "GLFW\glfw3.h"

int main(void)

{

    GLFWwindow* window;

    /* Initialize the library */

    if (!glfwInit())

        return -1;

    /* Create a windowed mode window and its OpenGL context */

    window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL);

    if (!window)

    {

        glfwTerminate();

        return -1;

    }

    /* Make the window's context current */

    glfwMakeContextCurrent(window);

    /* Loop until the user closes the window */

    while (!glfwWindowShouldClose(window))

Chapter 14  3D GraphiCs proGramminG

http://www.glfw.org
http://www.glfw.org
http://www.glfw.org/download.html
http://www.glfw.org/download.html


549

    {

        /* Render here */

        /* Swap front and back buffers */

        glfwSwapBuffers(window);

        /* Poll for and process events */

        glfwPollEvents();

    }

    glfwTerminate();

    return 0;

}

The code in Listing 14-1 is the sample program supplied on the GLFW web site 

to ensure that your build is working properly. It initializes the glfw library with a call 

to glfwInit. A window is created using the glfwCreateWindow function. The sample 

creates a window with 640 × 480 resolution and the title “Hello World”. If the window 

creation fails, then the glfwTerminate function is called. If it’s successful, the program 

calls glfwMakeContextCurrent.

The OpenGL API supports multiple rendering contexts, and you have to ensure 

that yours is the current context when you want to render. The main loop of the 

program continues until the glfwWindowShouldClose function returns true. The 

glfwSwapBuffers function is responsible for swapping the front buffer with the back 

buffer. Double-buffered rendering is useful to prevent the user from seeing unfinished 

frames of animation. The graphics card can display one buffer while the program is 

rendering into a second. These buffers are swapped at the end of each frame. The 

glfwPollEvents function is responsible for communicating with the operating system 

and receiving any messages. The program ends with a call to glfwTerminate to shut 

everything down.

The OpenGL API provides a lot of its functionality through extensions, and this 

means the functions you’re using may not be supported directly by the platform you’re 

working on. Fortunately, the GLEW library is available to help with using OpenGL 

extensions on multiple platforms. Again, the instructions for obtaining, building, and 

linking this library change from time to time. The latest information can be obtained 

from the GLEW web site at http://glew.sourceforge.net.

Chapter 14  3D GraphiCs proGramminG

http://glew.sourceforge.net


550

Once you have GLEW up and running, you can initialize the library using the 

glewInit function call shown in Listing 14-2.

Listing 14-2. Initializing GLEW

#include <GL/glew.h>

#include "GLFW/glfw3.h"

int main(void)

{

    GLFWwindow* window;

    // Initialize the library

    if (!glfwInit())

    {

        return -1;

    }

    // Create a windowed mode window and its OpenGL context

    window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL);

    if (!window)

    {

        glfwTerminate();

        return -1;

    }

    // Make the window's context current

    glfwMakeContextCurrent(window);

    GLenum glewError{ glewInit() };

    if (glewError != GLEW_OK)

    {

        return -1;

    }

    // Loop until the user closes the window

    while (!glfwWindowShouldClose(window))

    {

Chapter 14  3D GraphiCs proGramminG



551

        // Swap front and back buffers

        glfwSwapBuffers(window);

        // Poll for and process events

        glfwPollEvents();

    }

    glfwTerminate();

    return 0;

}

It’s important that this step occurs after you have a valid and current OpenGL 

context, because the GLEW library relies on this in order to load the most common 

extensions you may be using from the OpenGL API.

There are sample applications accompanying this book that have both GLEW and 

GLFW included and configured. You should download these if you would like to see 

a project that has been configured to work with these libraries. In addition, excellent 

documentation is available at the libraries’ web sites (http://glew.sourceforge.net/

install.html and www.glfw.org/download.html).

 Recipe 14-2. Rendering a Triangle
 Problem
You would like to render a 3D object in your application.

 Solution
OpenGL provides APIs to configure the rendering pipeline on a graphics card and 

display 3D objects onscreen.

 How It Works
OpenGL is a graphics library that allows an application to send data to a GPU in a 

computer to render images to a window. This recipe introduces you to three concepts 

that are necessary for rendering graphics to a window when using OpenGL on a modern 

computer system. The first is the concept of geometry.

Chapter 14  3D GraphiCs proGramminG

http://glew.sourceforge.net/install.html
http://glew.sourceforge.net/install.html
http://www.glfw.org/download.html


552

The geometry of an object is made up of a collection of vertices and indices.  

A vertex specifies the point in space where the vertex should be rendered onto the 

screen. A vertex passes through the GPU, and different operations are applied to it 

at different points. This recipe bypasses most of the processing of the vertices and 

instead specifies vertices in what is known as normalized device coordinates. A GPU 

transforms vertices using a vertex shader to generate vertices that sit inside a normalized 

cube. These vertices are then passed to a fragment shader, and the fragments are used to 

determine the output color to be written to the frame buffer at a given point. You learn 

more about these operations as you move through this chapter’s recipes.

The code in Listing 14-3 shows the Geometry class and how it can be used to specify 

storage for vertices and indices.

Listing 14-3. The Geometry Class

using namespace std;

class Geometry

{

public:

    using Vertices = vector < float >;

    using Indices = vector < unsigned short >;

private:

    Vertices m_Vertices;

    Indices m_Indices;

public:

    Geometry() = default;

    ~Geometry() = default;

    void SetVertices(const Vertices& vertices)

    {

        m_Vertices = vertices;

    }

    Vertices::size_type GetNumVertices() const

    {

        return m_Vertices.size();

    }

Chapter 14  3D GraphiCs proGramminG



553

    Vertices::const_pointer GetVertices() const

    {

        return m_Vertices.data();

    }

    void SetIndices(const Indices& indices)

    {

        m_Indices = indices;

    }

    Indices::size_type GetNumIndices() const

    {

        return m_Indices.size();

    }

    Indices::const_pointer GetIndices() const

    {

        return m_Indices.data();

    }

};

The Geometry class contains two vector aliases. The first alias is used to define a type 

that represents a vector of floats. This type is used to store vertices in the Geometry 

class. The second type alias defines a vector of unsigned shorts. This type alias is used 

to create the m_Indices vector that is used to store indices.

Indices are a useful tool when working with OpenGL because they allow you to 

reduce duplicate vertices in your vertex data. A mesh is typically made up of a collection 

of triangles, each of which shares edges with other triangles to create a complete shape 

that doesn’t have any holes. This means a single vertex that isn’t at the edge of an object 

is shared between multiple triangles. Indices let you create all the vertices for a mesh 

and then use the indices to represent the order in which OpenGL reads the vertices to 

create the individual triangles of the mesh. You see vertex and index definitions later in 

this recipe.

A typical OpenGL program consists of multiple shader programs. Shaders allow you 

control the behavior of multiple stages of the OpenGL rendering pipeline. At this point, 

you need to be able to create a vertex shader and a fragment shader that can act as a 

single pipeline for the GPU. OpenGL enforces this by having you create a vertex shader 

Chapter 14  3D GraphiCs proGramminG



554

and a fragment shader independently and link them into a single shader program. You 

typically have more than one of these, so the Shader base class in Listing 14-4 shows how 

to create a base class to be shared among multiple derived shader programs.

Listing 14-4. The Shader Class

class Shader

{

private:

    void LoadShader(GLuint id, const std::string& shaderCode)

    {

        const unsigned int NUM_SHADERS{ 1 };

        const char* pCode{ shaderCode.c_str() };

        GLint length{ static_cast<GLint>(shaderCode.length()) };

        glShaderSource(id, NUM_SHADERS, &pCode, &length);

        glCompileShader(id);

        glAttachShader(m_ProgramId, id);

    }

protected:

    GLuint m_VertexShaderId{ GL_INVALID_VALUE };

    GLuint m_FragmentShaderId{ GL_INVALID_VALUE };

    GLint m_ProgramId{ GL_INVALID_VALUE };

    std::string m_VertexShaderCode;

    std::string m_FragmentShaderCode;

public:

    Shader() = default;

    virtual ~Shader() = default;

    virtual void Link()

    {

        m_ProgramId = glCreateProgram();

        m_VertexShaderId = glCreateShader(GL_VERTEX_SHADER);

        LoadShader(m_VertexShaderId, m_VertexShaderCode);

Chapter 14  3D GraphiCs proGramminG



555

        m_FragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);

        LoadShader(m_FragmentShaderId, m_FragmentShaderCode);

        glLinkProgram(m_ProgramId);

    }

    virtual void Setup(const Geometry& geometry)

    {

        glUseProgram(m_ProgramId);

    }

};

The Shader class is the first time you see the use of the OpenGL API. This class 

contains variables for storing the IDs that OpenGL provides to act as handles to the 

vertex and fragment shaders as well as the shader program. The m_ProgramId field is 

initialized in the Link method when it’s assigned the result of the glCreateProgram 

method. m_VertexShaderId is assigned the value of the glCreateShader program, 

which is passed the GL_VERTEX_SHADER variable. The m_FragmentShaderId variable is 

initialized using the same variable, but it’s passed the GL_FRAGMENT_SHADER variable. 

You can use the LoadShader method to load shader code for either a vertex shader or 

a fragment shader. You can see this when the LoadShader method is called twice in 

the Link method: first, with the m_VertexShaderId and m_VertexShaderCode variables 

as parameters and, second, with the m_FragmentShaderId and m_FragentShaderCode 

variables. The Link method ends with a call to glLinkProgram.

The LoadShader method is responsible for attaching the shader source code to the 

shader ID, compiling the shader, and attaching it to the relevant OpenGL shader program. 

The Setup method is used while rendering objects and tells OpenGL that you would like 

to make this shader program the active shader in use. This recipe needs a single shader 

program to render a triangle to the screen. This shader program is created by deriving a 

class named BasicShader from the Shader class in Listing 14-4, as shown in Listing 14-5.

Listing 14-5. The BasicShader Class

class BasicShader

    : public Shader

{

private:

    GLint        m_PositionAttributeHandle;

Chapter 14  3D GraphiCs proGramminG



556

public:

    BasicShader()

    {

        m_VertexShaderCode =

            "attribute vec4 a_vPosition;                    \n"

            "void main(){                                   \n"

            "     gl_Position = a_vPosition;                \n"

            "}                                              \n";

        m_FragmentShaderCode =

            "#version 150                                   \n"

            "precision mediump float;                       \n"

            "void main(){                                   \n"

            "    gl_FragColor = vec4(0.2, 0.2, 0.2, 1.0);   \n"

            "}                                              \n";

    }

    ~BasicShader() override = default;

    void Link() override

    {

        Shader::Link();

        GLint success;

        glGetProgramiv(m_ProgramId, GL_ACTIVE_ATTRIBUTES, &success);

         m_PositionAttributeHandle = glGetAttribLocation(m_ProgramId,  

"a_vPosition");

    }

    void Setup(const Geometry& geometry) override

    {

        Shader::Setup(geometry);

        glVertexAttribPointer(

            m_PositionAttributeHandle,

            3,

            GL_FLOAT,

            GL_FALSE,

            0,

Chapter 14  3D GraphiCs proGramminG



557

            geometry.GetVertices());

        glEnableVertexAttribArray(m_PositionAttributeHandle);

    }

};

The BasicShader class begins by initializing the protected m_VertexShaderCode 

and m_FragmentShaderCode variables from the Shader class in its constructor. The Link 

method is responsible for calling the base class Link method and then retrieving handles 

to the attributes in the shader code. The Setup method also calls the Setup method in 

the base class. It then sets up the attribute in the shader program.

An attribute is a variable that receives data from a data stream or fields set using the 

OpenGL API functions from the application code. In this case, the attribute is a vec4 

field in the GL Shading Language (GLSL) code. GLSL is used to write OpenGL shader 

code; this language is based on C and is therefore familiar, but it contains its own types 

and keywords necessary for communication with the application-side OpenGL calls. 

The a_vPosition vec4 attribute in the vertex shader code is responsible for receiving 

every position in a stream of vertices sent to OpenGL for rendering. A handle to the 

attribute is retrieved using the glGetAttribLocation OpenGL API function that takes 

the program ID and the name of the attribute to be retrieved. The attribute handle for a 

vertex position can then be used with the glVertexAttribPointer function in the Setup 

method. This method takes the attribute handle as a parameter followed by the number 

of elements per vertex. In this case, the vertices are supplied with an x, y, z component; 

therefore. the number 3 is passed to the size parameter.

The GL_FLOAT value specifies that the vertices are floating-point. GL_FALSE tells 

OpenGL that the vertices should not be normalized by the API when it receives them. 

The 0 value tells OpenGL the size of the gap between positions of the vertex data; in this 

case there are no gaps, so you can pass 0. Finally, a pointer to the vertex data is supplied. 

After this function call, the glEnableVertexAttribArray function is called to tell 

OpenGL that the attribute should be enabled using the data supplied to it in the previous 

call, to supply position data to the vertex shader execution system on the GPU.

The next step is to use these classes in the main function to render a triangle to your 

window. Listing 14-6 contains the complete listing for a program that achieves this.

Chapter 14  3D GraphiCs proGramminG



558

Listing 14-6. A Program That Renders a Triangle

#include "GL/glew.h"

#include "GLFW/glfw3.h"

#include <string>

#include <vector>

using namespace std;

class Geometry

{

public:

    using Vertices = vector < float >;

    using Indices = vector < unsigned short >;

private:

    Vertices m_Vertices;

    Indices m_Indices;

public:

    Geometry() = default;

    ~Geometry() = default;

    void SetVertices(const Vertices& vertices)

    {

        m_Vertices = vertices;

    }

    Vertices::size_type GetNumVertices() const

    {

        return m_Vertices.size();

    }

    Vertices::const_pointer GetVertices() const

    {

        return m_Vertices.data();

    }

    void SetIndices(const Indices& indices)

    {

Chapter 14  3D GraphiCs proGramminG



559

        m_Indices = indices;

    }

    Indices::size_type GetNumIndices() const

    {

        return m_Indices.size();

    }

    Indices::const_pointer GetIndices() const

    {

        return m_Indices.data();

    }

};

class Shader

{

private:

    void LoadShader(GLuint id, const std::string& shaderCode)

    {

        const unsigned int NUM_SHADERS{ 1 };

        const char* pCode{ shaderCode.c_str() };

        GLint length{ static_cast<GLint>(shaderCode.length()) };

        glShaderSource(id, NUM_SHADERS, &pCode, &length);

        glCompileShader(id);

        glAttachShader(m_ProgramId, id);

    }

protected:

    GLuint m_VertexShaderId{ GL_INVALID_VALUE };

    GLuint m_FragmentShaderId{ GL_INVALID_VALUE };

    GLint m_ProgramId{ GL_INVALID_VALUE };

    std::string m_VertexShaderCode;

    std::string m_FragmentShaderCode;

Chapter 14  3D GraphiCs proGramminG



560

public:

    Shader() = default;

    virtual ~Shader() = default;

    virtual void Link()

    {

        m_ProgramId = glCreateProgram();

        m_VertexShaderId = glCreateShader(GL_VERTEX_SHADER);

        LoadShader(m_VertexShaderId, m_VertexShaderCode);

        m_FragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);

        LoadShader(m_FragmentShaderId, m_FragmentShaderCode);

        glLinkProgram(m_ProgramId);

    }

    virtual void Setup(const Geometry& geometry)

    {

        glUseProgram(m_ProgramId);

    }

};

class BasicShader

    : public Shader

{

private:

    GLint        m_PositionAttributeHandle;

public:

    BasicShader()

    {

        m_VertexShaderCode =

            "attribute vec4 a_vPosition;                    \n"

            "void main(){                                   \n"

            "     gl_Position = a_vPosition;                \n"

            "}                                              \n";

        m_FragmentShaderCode =

            "#version 150                                   \n"

Chapter 14  3D GraphiCs proGramminG



561

            "precision mediump float;                       \n"

            "void main(){                                   \n"

            "    gl_FragColor = vec4(0.2, 0.2, 0.2, 1.0);   \n"

            "}                                              \n";

    }

    ~BasicShader() override = default;

    void Link() override

    {

        Shader::Link();

         m_PositionAttributeHandle = glGetAttribLocation(m_ProgramId,  

"a_vPosition");

    }

    void Setup(const Geometry& geometry) override

    {

        Shader::Setup(geometry);

        glVertexAttribPointer(

            m_PositionAttributeHandle,

            3,

            GL_FLOAT,

            GL_FALSE,

            0,

            geometry.GetVertices());

        glEnableVertexAttribArray(m_PositionAttributeHandle);

    }

};

int CALLBACK WinMain(

    _In_  HINSTANCE hInstance,

    _In_  HINSTANCE hPrevInstance,

    _In_  LPSTR lpCmdLine,

    _In_  int nCmdShow

    )

{

    GLFWwindow* window;

Chapter 14  3D GraphiCs proGramminG



562

    // Initialize the library

    if (!glfwInit())

    {

        return -1;

    }

    // Create a windowed mode window and its OpenGL context

    window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL);

    if (!window)

    {

        glfwTerminate();

        return -1;

    }

    // Make the window's context current

    glfwMakeContextCurrent(window);

    GLenum glewError{ glewInit() };

    if (glewError != GLEW_OK)

    {

        return -1;

    }

    BasicShader basicShader;

    basicShader.Link();

    Geometry triangle;

    Geometry::Vertices vertices{

        0.0f, 0.5f, 0.0f,

        0.5f, -0.5f, 0.0f,

        -0.5f, -0.5f, 0.0f

    };

    Geometry::Indices indices{ 0, 1, 2 };

    triangle.SetVertices(vertices);

    triangle.SetIndices(indices);

    glClearColor(0.25f, 0.25f, 0.95f, 1.0f);

Chapter 14  3D GraphiCs proGramminG



563

    // Loop until the user closes the window

    while (!glfwWindowShouldClose(window))

    {

        glClear(GL_COLOR_BUFFER_BIT);

        basicShader.Setup(triangle);

        glDrawElements(GL_TRIANGLES,

            triangle.GetNumIndices(),

            GL_UNSIGNED_SHORT,

            triangle.GetIndices());

        // Swap front and back buffers

        glfwSwapBuffers(window);

        // Poll for and process events

        glfwPollEvents();

    }

    glfwTerminate();

    return 0;

}

The main function in Listing 14-6 shows how and where to use the Geometry and 

BasicShader classes to render a triangle to your window. The OpenGL API is available to 

use immediately after the call to glewInit has completed successfully. The main function 

follows this call by initializing a BasicShader object and calling BasicShader::Link and 

then a Geometry object to represent the vertices of a triangle. The vertices are supplied in 

a post-transformed state because the vertex shader in BasicShader isn’t carrying out any 

operations on the data passed through. The vertices are specified in normalized device 

coordinates; in OpenGL, these coordinates must fit inside a cube that ranges from -1, -1, 

-1 to 1, 1, 1 for the x, y, and z coordinates. The indices tell OpenGL the order in which to 

pass the vertices to the vertex shader; in this case, you’re passing the vertices in the order 

they’re defined.

The glClearColor function tells OpenGL the color to use to represent the background 

color when no other pixels have been rendered to that position. Here the color is set to 

light blue so it’s easy to tell when a pixel has been rendered to. Colors are represented in 

OpenGL using four components: red, green, blue, and alpha. The red, green, and blue 

Chapter 14  3D GraphiCs proGramminG



564

components combine to generate a color for a pixel. When all the component values are 1, 

the color is white; and when all the values are 0, the color is black. The alpha component 

is used to determine how transparent a pixel is. There’s little reason to set a transparency 

value of less than 1 on the background color.

You can find a call to glClear in the render loop. This call uses the values set by 

glClearColor to fill the framebuffer and overwrite anything rendered the last time 

this buffer was used. Remember that when you’re using double buffering, the buffer 

you’re rendering to is two frames old, not one. The BasicShader::Setup function sets 

up the shader with the current geometry for rendering. This could have been a one-time 

operation in this program, but it’s more common for programs to render more than one 

object with a given shader.

Finally, the glDrawElements function is responsible for asking OpenGL to render the 

triangle. The glDrawElements call specifies that you want to render triangle primitives, the 

number of indices to render, the type of the indices, and a pointer to the index data stream.

Figure 14-1 shows the output generated by this program.

Figure 14-1. The triangle rendered by the code in Listing 14-6

Chapter 14  3D GraphiCs proGramminG



565

 Recipe 14-3. Creating a Textured Quad
 Problem
GPU power is limited, and you would like to give your objects a more highly detailed 

appearance.

 Solution
Texture mapping allows you to create 2D images that you can map over the surface of a 

mesh to give the appearance of increased geometric complexity.

 How It Works
GLSL provides support for samplers that you can use to read texels from an assigned 

texture. A texel is a single color element from a texture; the term is short for texture 

element in the same way that pixel is short for picture element. The term pixel is usually 

used when referring to individual colors that make up the image on your display, 

whereas texel is used when referring to individual colors in a texture image.

A texture is mapped to a mesh using texture coordinates. Each vertex in a mesh 

is given an associated texture coordinate that you can use to look up the color to 

be applied to the fragment in a fragment shader. The texture coordinate from each 

vertex is interpolated across the surface of a polygon using an interpolator unit on the 

GPU. Interpolated values to be passed from a vertex shader to a fragment shader are 

represented in OpenGL using the varying keyword. This keyword makes logical sense 

because varyings are used to represent variables that vary across the surface of the 

polygon. Varyings are initialized in the vertex shader by being either assigned from an 

attribute or generated by code.

You need a way to represent mesh data that contains texture coordinates before you 

can worry about having textures in your applications. Listing 14-7 shows a definition of 

the Geometry class that supports texture coordinates in the vertex data.

Chapter 14  3D GraphiCs proGramminG



566

Listing 14-7. A Geometry Class That Supports Texture Coordinates

class Geometry

{

public:

    using Vertices = vector < float >;

    using Indices = vector < unsigned short >;

private:

    Vertices m_Vertices;

    Indices m_Indices;

    unsigned int m_NumVertexPositionElements{};

    unsigned int m_NumTextureCoordElements{};

    unsigned int m_VertexStride{};

public:

    Geometry() = default;

    ~Geometry() = default;

    void SetVertices(const Vertices& vertices)

    {

        m_Vertices = vertices;

    }

    Vertices::size_type GetNumVertices() const

    {

        return m_Vertices.size();

    }

    Vertices::const_pointer GetVertices() const

    {

        return m_Vertices.data();

    }

    void SetIndices(const Indices& indices)

    {

        m_Indices = indices;

    }

Chapter 14  3D GraphiCs proGramminG



567

    Indices::size_type GetNumIndices() const

    {

        return m_Indices.size();

    }

    Indices::const_pointer GetIndices() const

    {

        return m_Indices.data();

    }

    Vertices::const_pointer GetTexCoords() const

    {

         return static_cast<Vertices::const_pointer>(&m_Vertices 

[m_NumVertexPositionElements]);

    }

    void SetNumVertexPositionElements(unsigned int numVertexPositionElements)

    {

        m_NumVertexPositionElements = numVertexPositionElements;

    }

    unsigned int GetNumVertexPositionElements() const

    {

        return m_NumVertexPositionElements;

    }

    void SetNumTexCoordElements(unsigned int numTexCoordElements)

    {

        m_NumTextureCoordElements = numTexCoordElements;

    }

    unsigned int GetNumTexCoordElements() const

    {

        return m_NumTextureCoordElements;

    }

    void SetVertexStride(unsigned int vertexStride)

    {

        m_VertexStride = vertexStride;

Chapter 14  3D GraphiCs proGramminG



568

    }

    unsigned int GetVertexStride() const

    {

        return m_VertexStride;

    }

};

This code shows the definition for a Geometry class that stores vertices and indices 

in separate vectors. There are also fields that store the number of vertex position 

elements and the number of texture coordinate elements. A single vertex can consist of 

a variable number of vertex elements and a variable number of texture coordinates. The 

m_VertexStride field stores the number of bytes from the beginning of one vertex to the 

beginning of the next vertex. The GetTexCoords method is one of the more important 

methods in this class because it shows that the vertex data this class supports is in an 

array-of-structures format. There are two main ways to read in vertex data: you can set 

up separate streams for the vertices and the texture coordinates in separate arrays, or 

you can set up a single stream that interleaves the vertex position and texture coordinate 

data per vertex. This class supports the latter style, because it’s the most optimal data 

format for modern GPUs. The GetTexCoords method returns the address of the first 

texture coordinate using the m_NumVertexPositionElements as an index to find that 

data. This relies on your mesh data being tightly packed and your first texture coordinate 

coming immediately after the vertex position elements.

The next important element when rendering textured object with OpenGL is a class 

that can load texture data from a file. The TGA file format is simple and easy to use 

and can store image data. Its simplicity means it’s a common choice of file format for 

uncompressed textures when working with OpenGL. The TGAFile class in Listing 14-8 

shows how a TGA file is loaded.

Listing 14-8. The TGAFile Class

class TGAFile

{

private:

#ifdef _MSC_VER

#pragma pack(push, 1)

#endif

Chapter 14  3D GraphiCs proGramminG



569

    struct TGAHeader

    {

        unsigned char m_IdSize{};

        unsigned char m_ColorMapType{};

        unsigned char m_ImageType{};

        unsigned short m_PaletteStart{};

        unsigned short m_PaletteLength{};

        unsigned char m_PaletteBits{};

        unsigned short m_XOrigin{};

        unsigned short m_YOrigin{};

        unsigned short m_Width{};

        unsigned short m_Height{};

        unsigned char m_BytesPerPixel{};

        unsigned char m_Descriptor{};

    }

#ifndef _MSC_VER

    __attribute__ ((packed))

#endif // _MSC_VER

        ;

#ifdef _MSC_VER

#pragma pack(pop)

#endif

    std::vector<char> m_FileData;

    TGAHeader* m_pHeader{};

    void* m_pImageData{};

public:

    TGAFile(const std::string& filename)

    {

        std::ifstream fileStream{ filename, std::ios_base::binary };

        if (fileStream.is_open())

        {

            fileStream.seekg(0, std::ios::end);

Chapter 14  3D GraphiCs proGramminG



570

            m_FileData.resize(static_cast<unsigned int>(fileStream.tellg()));

            fileStream.seekg(0, std::ios::beg);

            fileStream.read(m_FileData.data(), m_FileData.size());

            fileStream.close();

            m_pHeader = reinterpret_cast<TGAHeader*>(m_FileData.data());

             m_pImageData = static_cast<void*>(m_FileData.data() + 

sizeof(TGAHeader));

        }

    }

    unsigned short GetWidth() const

    {

        return m_pHeader->m_Width;

    }

    unsigned short GetHeight() const

    {

        return m_pHeader->m_Height;

    }

    unsigned char GetBytesPerPixel() const

    {

        return m_pHeader->m_BytesPerPixel;

    }

    unsigned int GetDataSize() const

    {

        return m_FileData.size() - sizeof(TGAHeader);

    }

    void* GetImageData() const

    {

        return m_pImageData;

    }

};

Chapter 14  3D GraphiCs proGramminG



571

The TGAFile class contains a header structure that represents the header data 

included in a TGA file when saved by an image-editing program such as Adobe 

Photoshop. This structure has some interesting compiler metadata associated with 

it. A modern C++ compiler is aware of the memory layout of the data structures in 

applications. A given CPU architecture may operate more efficiently with variables 

that lie on certain memory boundaries. This is fine for structures that are non-portable 

and used in a single program on a single-CPU architecture, but it may cause problems 

for data that is saved and loaded by different programs on different computers. To 

counteract this, you can specify the amount of padding a compiler can add to your 

programs to optimize access to individual variables. The TGAHeader struct requires 

that no padding be added, because the TGA file format doesn’t contain any padding 

when the file is saved. This is achieved when using Visual Studio by using the pragma 

preprocessor directive along with the pack command to push and pop a packing value of 

1. This disables the automatic spacing of variables for speed efficiency. On most other 

compilers, you can use the __attribute__ ((packed)) compiler directive to achieve the 

same result.

The TGAHeader fields store metadata that represents the type of image data stored 

in the file. This recipe only deals with RGBA data in a TGA, so the only relevant fields 

are the width, height, and bytes per pixel. These are found in the file in the exact byte 

positions represented in the TGAHeader structure. The data from the file is mapped into 

the TGAHeader object by using a pointer. The filename is passed to the constructor for 

the class, and this file is opened and read using an ifstream object. The ifstream object 

is the STL class provided for reading data in from a file. The ifstream is constructed by 

passing it the filename to be opened and the binary data mode, because you want to 

read binary data from the file. The entire file is read into a vector of char variables by 

seeking to the end of the file, reading the position of the end of file to determine the size 

of the data in the file, and then seeking back to the beginning and using the size to resize 

the vector. The data is then read into the vector by using the ifstream read method that 

takes a pointer to the buffer where the data should be read and the size of the buffer to 

read into. You can then use reinterpret_cast to map the data read from the file onto a 

TGAHeader struct, and a static_cast can be used to store a pointer to the beginning of 

the image data.

Loading the TGA data is separated from the OpenGL texture setup by using separate 

classes. The data loaded from the TGA can be passed to the texture class shown in 

Listing 14-9 to create an OpenGL texture object.

Chapter 14  3D GraphiCs proGramminG



572

Listing 14-9. The Texture Class

class Texture

{

private:

    unsigned int m_Width{};

    unsigned int m_Height{};

    unsigned int m_BytesPerPixel{};

    unsigned int m_DataSize{};

    GLuint m_Id{};

    void* m_pImageData;

public:

    Texture(const TGAFile& tgaFile)

        : Texture(tgaFile.GetWidth(),

            tgaFile.GetHeight(),

            tgaFile.GetBytesPerPixel(),

            tgaFile.GetDataSize(),

            tgaFile.GetImageData())

    {

    }

    Texture(unsigned int width,

            unsigned int height,

            unsigned int bytesPerPixel,

            unsigned int dataSize,

            void* pImageData)

        : m_Width(width)

        , m_Height(height)

        , m_BytesPerPixel(bytesPerPixel)

        , m_DataSize(dataSize)

        , m_pImageData(pImageData)

    {

    }

    ~Texture() = default;

Chapter 14  3D GraphiCs proGramminG



573

    GLuint GetId() const

    {

        return m_Id;

    }

    void Init()

    {

        GLint packBits{ 4 };

        GLint internalFormat{ GL_RGBA };

        GLint format{ GL_BGRA };

        glGenTextures(1, &m_Id);

        glBindTexture(GL_TEXTURE_2D, m_Id);

        glPixelStorei(GL_UNPACK_ALIGNMENT, packBits);

        glTexImage2D(GL_TEXTURE_2D,

            0,

            internalFormat,

            m_Width,

            m_Height,

            0,

            format,

            GL_UNSIGNED_BYTE,

            m_pImageData);

    }

};

The Texture class initializes an OpenGL texture for use when rendering objects. The 

two class constructors are provided to simplify initializing the class from a TGA file or 

from in-memory data. The constructor that takes a TGAFile reference uses the C++11 

concept of delegating constructors to call the in-memory constructor. The Init method 

is responsible for creating an OpenGL texture object. This method can create RGBA 

textures from a BGRA source using the width and height supplied in the constructor. You 

might notice here that the source pixels in a TGA file are back to front; this method is 

responsible for transposing the red and green channels into the correct position for the 

GPU. The image data is copied onto the GPU by the glTextImage2D function so that draw 

calls can use this texture data in your fragment shaders.

Chapter 14  3D GraphiCs proGramminG



574

The next step in being able to render with textures is to look at the TextureShader 

class, which includes a vertex shader that can read in texture coordinates and pass them 

to the fragment shader through a varying object. You can see this class in Listing 14-10.

Listing 14-10. The TextureShader Class

class Shader

{

private:

    void LoadShader(GLuint id, const std::string& shaderCode)

    {

        const unsigned int NUM_SHADERS{ 1 };

        const char* pCode{ shaderCode.c_str() };

        GLint length{ static_cast<GLint>(shaderCode.length()) };

        glShaderSource(id, NUM_SHADERS, &pCode, &length);

        glCompileShader(id);

        glAttachShader(m_ProgramId, id);

    }

protected:

    GLuint m_VertexShaderId{ GL_INVALID_VALUE };

    GLuint m_FragmentShaderId{ GL_INVALID_VALUE };

    GLint m_ProgramId{ GL_INVALID_VALUE };

    std::string m_VertexShaderCode;

    std::string m_FragmentShaderCode;

public:

    Shader() = default;

    virtual ~Shader() = default;

    virtual void Link()

    {

        m_ProgramId = glCreateProgram();

        m_VertexShaderId = glCreateShader(GL_VERTEX_SHADER);

        LoadShader(m_VertexShaderId, m_VertexShaderCode);

Chapter 14  3D GraphiCs proGramminG



575

        m_FragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);

        LoadShader(m_FragmentShaderId, m_FragmentShaderCode);

        glLinkProgram(m_ProgramId);

    }

    virtual void Setup(const Geometry& geometry)

    {

        glUseProgram(m_ProgramId);

    }

};

class TextureShader

    : public Shader

{

private:

    const Texture& m_Texture;

    GLint m_PositionAttributeHandle;

    GLint m_TextureCoordinateAttributeHandle;

    GLint m_SamplerHandle;

public:

    TextureShader(const Texture& texture)

        : m_Texture(texture)

    {

        m_VertexShaderCode =

            "attribute  vec4 a_vPosition;                   \n"

            "attribute  vec2 a_vTexCoord;                   \n"

            "varying    vec2 v_vTexCoord;                   \n"

            "                                               \n"

            "void main() {                                  \n"

            "   gl_Position = a_vPosition;                  \n"

            "   v_vTexCoord = a_vTexCoord;                  \n"

            "}                                              \n";

        m_FragmentShaderCode =

            "#version 150                                   \n"

Chapter 14  3D GraphiCs proGramminG



576

            "                                               \n"

            "precision highp float;                         \n"

            "varying vec2 v_vTexCoord;                      \n"

            "uniform sampler2D s_2dTexture;                 \n"

            "                                               \n"

            "void main() {                                  \n"

            "   gl_FragColor =                              \n"

            "       texture2D(s_2dTexture, v_vTexCoord);    \n"

            "}                                              \n";

    }

    ~TextureShader() override = default;

    void Link() override

    {

        Shader::Link();

         m_PositionAttributeHandle = glGetAttribLocation(m_ProgramId,  

"a_vPosition");

         m_TextureCoordinateAttributeHandle = glGetAttribLocation 

(m_ProgramId, "a_vTexCoord");

        m_SamplerHandle = glGetUniformLocation(m_ProgramId, "s_2dTexture");

    }

    void Setup(const Geometry& geometry) override

    {

        Shader::Setup(geometry);

        glActiveTexture(GL_TEXTURE0);

        glBindTexture(GL_TEXTURE_2D, m_Texture.GetId());

        glUniform1i(m_SamplerHandle, 0);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

Chapter 14  3D GraphiCs proGramminG



577

        glVertexAttribPointer(

            m_PositionAttributeHandle,

            geometry.GetNumVertexPositionElements(),

            GL_FLOAT,

            GL_FALSE,

            geometry.GetVertexStride(),

            geometry.GetVertices());

        glEnableVertexAttribArray(m_PositionAttributeHandle);

        glVertexAttribPointer(

            m_TextureCoordinateAttributeHandle,

            geometry.GetNumTexCoordElements(),

            GL_FLOAT,

            GL_FALSE,

            geometry.GetVertexStride(),

            geometry.GetTexCoords());

        glEnableVertexAttribArray(m_TextureCoordinateAttributeHandle);

    }

};

The TextureShader class inherits from the Shader class. The vertex shader code 

in the TextureShader class constructor contains two attributes and a varying. The 

position element of the vertex is passed straight through without modification to the 

built-in gl_Position variable, which receives the final transformed position of a vertex. 

The a_vTexCoord attribute is passed to the v_vTexCoord varying. Varyings are used to 

transfer interpolated data from vertex shaders to fragment shaders, so it’s important that 

both your vertex shader and your fragment shader contain a varying with the same type 

and name. OpenGL works out the plumbing behind the scenes to make sure the varying 

output from the vertex shader is passed to the same varying in the fragment shader.

The fragment shader contains a uniform. Uniforms are more like shader constants 

in that they’re set by a single call for each draw call, and every instance of the shader 

receives the same value. In this case, every instance of the fragment shader receives 

the same sampler ID to retrieve data from the same texture. This data is read using the 

texture2D function, which takes a sampler2D uniform and the v_vTexCoord varying. The 

texture coordinate varying has been interpolated across the surface of a polygon, so the 

polygon is mapped using different texels from the texture data.

Chapter 14  3D GraphiCs proGramminG



578

The TextureShader::Setup function is responsible for initializing the sampler 

state before each draw call. The texture unit you want to use is initialized using the 

glActiveTexture function. A texture is bound to this texture unit using glBindTexture, 

which is passed the ID of the OpenGL texture. The uniform binding is somewhat 

unintuitive. glActiveTexture receives the constant value GL_TEXTURE0 as the value and 

not 0. This allows the glActiveTexture call to associate the texture with the texture- 

image unit binding, but the fragment shader doesn’t use the same value; instead, it uses 

an index to the texture-image units. In this case, GL_TEXTURE0 can be found at index 0, so 

the value 0 is bound to the m_SamplerHandle uniform in the fragment shader.

The sampler parameters are then initialized for the bound texture. They’re set to 

clamp the texture in both directions. This would be useful for cases where you want to 

use values outside the normal range of 0–1 for texture coordinates. It’s also possible to 

set up textures to wrap, repeat, or mirror in these cases. The next two options configure 

the settings for sampling textures when they’re minified or magnified on the screen. 

Minification happens when the texture is being applied to an object that takes up less 

screen space than the texture would at a 1-to-1 mapping. This could occur with a 512 × 

512 texture that was being rendered onscreen at 256 × 256. Magnification occurs in the 

opposite case, where the texture is being rendered to an object that is taking up more 

screen space than the texture provides texels for. The linear mapping uses the four texels 

nearest to the sampling point to work out an average of the color to be applied to the 

fragment. This gives textures a less blocky appearance at the expense of blurring the 

texture slightly. The effect is more pronounced depending on how much minification or 

magnification is applied to the texture.

The TextureShader::Setup function then initializes the data streams for the vertex 

shader’s attribute fields. The vertex position elements are bound to the  

m_PositionAttributeHandle location using the number of position elements  

from the geometry object as well as the stride from that location. After the  

attribute is initialized, it’s enabled with a call to glEnableVertexAttribArray.  

The m_TextureCoordinateAttributeHandle attribute is initialized using the same 

functions but with different data. The number of texture elements per vertex is  

retrieved from the geometry object, as is the texture coordinate stream. The stride of 

the data remains the same for both the vertex data and the texture data because they’re 

packed into the same stream in the array-of-structures format.

Chapter 14  3D GraphiCs proGramminG



579

The code in Listing 14-11 brings all of this together and adds a main function to show 

how a texture and geometry can be initialized to render a quad to the screen that has a 

texture image applied.

Listing 14-11. The Textured Quad Program

#include "GL/glew.h"

#include "GLFW/glfw3.h"

#include <string>

#include <vector>

using namespace std;

class Geometry

{

public:

    using Vertices = vector < float >;

    using Indices = vector < unsigned short >;

private:

    Vertices m_Vertices;

    Indices m_Indices;

    unsigned int m_NumVertexPositionElements{};

    unsigned int m_NumTextureCoordElements{};

    unsigned int m_VertexStride{};

public:

    Geometry() = default;

    ~Geometry() = default;

    void SetVertices(const Vertices& vertices)

    {

        m_Vertices = vertices;

    }

    Vertices::size_type GetNumVertices() const

    {

        return m_Vertices.size();

    }

Chapter 14  3D GraphiCs proGramminG



580

    Vertices::const_pointer GetVertices() const

    {

        return m_Vertices.data();

    }

    void SetIndices(const Indices& indices)

    {

        m_Indices = indices;

    }

    Indices::size_type GetNumIndices() const

    {

        return m_Indices.size();

    }

    Indices::const_pointer GetIndices() const

    {

        return m_Indices.data();

    }

    Vertices::const_pointer GetTexCoords() const

    {

         return static_cast<Vertices::const_pointer>(&m_Vertices[m_

NumVertexPositionElements]);

    }

    void SetNumVertexPositionElements(unsigned int numVertexPositionElements)

    {

        m_NumVertexPositionElements = numVertexPositionElements;

    }

    unsigned int GetNumVertexPositionElements() const

    {

        return m_NumVertexPositionElements;

    }

    void SetNumTexCoordElements(unsigned int numTexCoordElements)

    {

        m_NumTextureCoordElements = numTexCoordElements;

Chapter 14  3D GraphiCs proGramminG



581

    }

    unsigned int GetNumTexCoordElements() const

    {

        return m_NumTextureCoordElements;

    }

    void SetVertexStride(unsigned int vertexStride)

    {

        m_VertexStride = vertexStride;

    }

    unsigned int GetVertexStride() const

    {

        return m_VertexStride;

    }

};

class TGAFile

{

private:

#ifdef _MSC_VER

#pragma pack(push, 1)

#endif

    struct TGAHeader

    {

        unsigned char m_IdSize{};

        unsigned char m_ColorMapType{};

        unsigned char m_ImageType{};

        unsigned short m_PaletteStart{};

        unsigned short m_PaletteLength{};

        unsigned char m_PaletteBits{};

        unsigned short m_XOrigin{};

        unsigned short m_YOrigin{};

        unsigned short m_Width{};

        unsigned short m_Height{};

Chapter 14  3D GraphiCs proGramminG



582

        unsigned char m_BytesPerPixel{};

        unsigned char m_Descriptor{};

    }

#ifndef _MSC_VER

    __attribute__ ((packed))

#endif // _MSC_VER

        ;

#ifdef _MSC_VER

#pragma pack(pop)

#endif

    std::vector<char> m_FileData;

    TGAHeader* m_pHeader{};

    void* m_pImageData{};

public:

    TGAFile(const std::string& filename)

    {

        std::ifstream fileStream{ filename, std::ios_base::binary };

        if (fileStream.is_open())

        {

            fileStream.seekg(0, std::ios::end);

            m_FileData.resize(static_cast<unsigned int>(fileStream.tellg()));

            fileStream.seekg(0, std::ios::beg);

            fileStream.read(m_FileData.data(), m_FileData.size());

            fileStream.close();

            m_pHeader = reinterpret_cast<TGAHeader*>(m_FileData.data());

             m_pImageData = static_cast<void*>(m_FileData.data() + 

sizeof(TGAHeader));

        }

    }

Chapter 14  3D GraphiCs proGramminG



583

    unsigned short GetWidth() const

    {

        return m_pHeader->m_Width;

    }

    unsigned short GetHeight() const

    {

        return m_pHeader->m_Height;

    }

    unsigned char GetBytesPerPixel() const

    {

        return m_pHeader->m_BytesPerPixel;

    }

    unsigned int GetDataSize() const

    {

        return m_FileData.size() - sizeof(TGAHeader);

    }

    void GetImageData() const

    {

        return m_pImageData;

    }

};

class Texture

{

private:

    unsigned int m_Width{};

    unsigned int m_Height{};

    unsigned int m_BytesPerPixel{};

    unsigned int m_DataSize{};

    GLuint m_Id{};

    void m_pImageData;

Chapter 14  3D GraphiCs proGramminG



584

public:

    Texture(const TGAFile& tgaFile)

        : Texture(tgaFile.GetWidth(),

            tgaFile.GetHeight(),

            tgaFile.GetBytesPerPixel(),

            tgaFile.GetDataSize(),

            tgaFile.GetImageData())

    {

    }

    Texture(unsigned int width,

            unsigned int height,

            unsigned int bytesPerPixel,

            unsigned int dataSize,

            void pImageData)

        : m_Width(width)

        , m_Height(height)

        , m_BytesPerPixel(bytesPerPixel)

        , m_DataSize(dataSize)

        , m_pImageData(pImageData)

    {

    }

    ~Texture() = default;

    GLuint GetId() const

    {

        return m_Id;

    }

    void Init()

    {

        GLint packBits{ 4 };

        GLint internalFormat{ GL_RGBA };

        GLint format{ GL_BGRA };

        glGenTextures(1, &m_Id);

Chapter 14  3D GraphiCs proGramminG



585

        glBindTexture(GL_TEXTURE_2D, m_Id);

        glPixelStorei(GL_UNPACK_ALIGNMENT, packBits);

        glTexImage2D(GL_TEXTURE_2D,

            0,

            internalFormat,

            m_Width,

            m_Height,

            0,

            format,

            GL_UNSIGNED_BYTE,

            m_pImageData);

    }

};

class Shader

{

private:

    void LoadShader(GLuint id, const std::string& shaderCode)

    {

        const unsigned int NUM_SHADERS{ 1 };

        const char* pCode{ shaderCode.c_str() };

        GLint length{ static_cast<GLint>(shaderCode.length()) };

        glShaderSource(id, NUM_SHADERS, &pCode, &length);

        glCompileShader(id);

        glAttachShader(m_ProgramId, id);

    }

protected:

    GLuint m_VertexShaderId{ GL_INVALID_VALUE };

    GLuint m_FragmentShaderId{ GL_INVALID_VALUE };

    GLint m_ProgramId{ GL_INVALID_VALUE };

    std::string m_VertexShaderCode;

    std::string m_FragmentShaderCode;

Chapter 14  3D GraphiCs proGramminG



586

public:

    Shader() = default;

    virtual ~Shader() = default;

    virtual void Link()

    {

        m_ProgramId = glCreateProgram();

        m_VertexShaderId = glCreateShader(GL_VERTEX_SHADER);

        LoadShader(m_VertexShaderId, m_VertexShaderCode);

        m_FragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);

        LoadShader(m_FragmentShaderId, m_FragmentShaderCode);

        glLinkProgram(m_ProgramId);

    }

    virtual void Setup(const Geometry& geometry)

    {

        glUseProgram(m_ProgramId);

    }

};

class TextureShader

    : public Shader

{

private:

    const Texture& m_Texture;

    GLint m_PositionAttributeHandle;

    GLint m_TextureCoordinateAttributeHandle;

    GLint m_SamplerHandle;

public:

    TextureShader(const Texture& texture)

        : m_Texture(texture)

    {

        m_VertexShaderCode =

            "attribute  vec4 a_vPosition;                   \n"

Chapter 14  3D GraphiCs proGramminG



587

            "attribute  vec2 a_vTexCoord;                   \n"

            "varying    vec2 v_vTexCoord;                   \n"

            "                                               \n"

            "void main() {                                  \n"

            "   gl_Position = a_vPosition;                  \n"

            "   v_vTexCoord = a_vTexCoord;                  \n"

            "}                                              \n";

        m_FragmentShaderCode =

            "#version 150                                   \n"

            "                                               \n"

            "precision highp float;                         \n"

            "varying vec2 v_vTexCoord;                      \n"

            "uniform sampler2D s_2dTexture;                 \n"

            "                                               \n"

            "void main() {                                  \n"

            "   gl_FragColor =                              \n"

            "       texture2D(s_2dTexture, v_vTexCoord);    \n"

            "}                                              \n";

    }

    ~TextureShader() override = default;

    void Link() override

    {

        Shader::Link();

         m_PositionAttributeHandle = glGetAttribLocation(m_ProgramId,  

"a_vPosition");

         m_TextureCoordinateAttributeHandle = glGetAttribLocation 

(m_ProgramId, "a_vTexCoord");

        m_SamplerHandle = glGetUniformLocation(m_ProgramId, "s_2dTexture");

    }

    void Setup(const Geometry& geometry) override

    {

        Shader::Setup(geometry);

Chapter 14  3D GraphiCs proGramminG



588

        glActiveTexture(GL_TEXTURE0);

        glBindTexture(GL_TEXTURE_2D, m_Texture.GetId());

        glUniform1i(m_SamplerHandle, 0);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        glVertexAttribPointer(

            m_PositionAttributeHandle,

            geometry.GetNumVertexPositionElements(),

            GL_FLOAT,

            GL_FALSE,

            geometry.GetVertexStride(),

            geometry.GetVertices());

        glEnableVertexAttribArray(m_PositionAttributeHandle);

        glVertexAttribPointer(

            m_TextureCoordinateAttributeHandle,

            geometry.GetNumTexCoordElements(),

            GL_FLOAT,

            GL_FALSE,

            geometry.GetVertexStride(),

            geometry.GetTexCoords());

        glEnableVertexAttribArray(m_TextureCoordinateAttributeHandle);

    }

};

int CALLBACK WinMain(

    _In_  HINSTANCE hInstance,

    _In_  HINSTANCE hPrevInstance,

    _In_  LPSTR lpCmdLine,

    _In_  int nCmdShow

    )

Chapter 14  3D GraphiCs proGramminG



589

{
    GLFWwindow* window;

    // Initialize the library
    if (!glfwInit())
    {
        return -1;
    }

    // Create a windowed mode window and its OpenGL context
    window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL);
    if (!window)
    {
        glfwTerminate();
        return -1;
    }

    // Make the window's context current
    glfwMakeContextCurrent(window);

    GLenum glewError{ glewInit() };
    if (glewError != GLEW_OK)
    {
        return -1;
    }

    TGAFile myTextureFile("MyTexture.tga");
    Texture myTexture(myTextureFile);
    myTexture.Init();

    TextureShader textureShader(myTexture);
    textureShader.Link();

    Geometry quad;

    Geometry::Vertices vertices{
        -0.5f, 0.5f, 0.0f,
        0.0f, 1.0f,
        0.5f, 0.5f, 0.0f,
        1.0f, 1.0f,
        -0.5f, -0.5f, 0.0f,
        0.0f, 0.0f,

Chapter 14  3D GraphiCs proGramminG



590

        0.5f, -0.5f, 0.0f,
        1.0f, 0.0f

    };

    Geometry::Indices indices{ 0, 2, 1, 2, 3, 1 };

    quad.SetVertices(vertices);

    quad.SetIndices(indices);

    quad.SetNumVertexPositionElements(3);

    quad.SetNumTexCoordElements(2);

    quad.SetVertexStride(sizeof(float) * 5);

    glClearColor(0.25f, 0.25f, 0.95f, 1.0f);

    // Loop until the user closes the window

    while (!glfwWindowShouldClose(window))

    {

        glClear(GL_COLOR_BUFFER_BIT);

        textureShader.Setup(quad);

        glDrawElements(GL_TRIANGLES,

            quad.GetNumIndices(),

            GL_UNSIGNED_SHORT,

            quad.GetIndices());

        // Swap front and back buffers

        glfwSwapBuffers(window);

        // Poll for and process events

        glfwPollEvents();

    }

    glfwTerminate();

    return 0;

}

The full source for the program in Listing 14-11 shows how all the classes introduced 

in this recipe can be brought together to render a single textured quad. The TGAFile 

class is initialized to load the MyTexture.tga file. This is passed to the myTexture 

Chapter 14  3D GraphiCs proGramminG



591

object, which is of type Texture. The Texture::Init function is called to initialize the 

OpenGL texture object. The initialized texture is in turn passed to an instance of the 

TextureShader class, which creates, initializes, and links an OpenGL shader program 

that can be used to render 2D textured geometry. The geometry is then created; the 

vertices specified include three position elements and two texture coordinate elements 

for each vertex. OpenGL uses four vertices and six indices to render a quad made from 

two triangles. The vertices at indices 1 and 2 are shared by both triangles; you can see 

how indices can be used to reduce the required geometry definitions for the mesh. 

There’s another optimization advantage here: many modern CPUs cache the results 

from already-processed vertices, so you can read reused vertex data from a cache rather 

than have the GPU reprocess it.

The actual rendering is trivial after all the setup work is done. There are calls to clear 

the frame buffer, set up the shader, draw the elements, swap the buffers, and poll for 

operating system events. Figure 14-2 shows what the output from this program looks like 

when everything is complete and working properly.

Figure 14-2. Output showing a textured quad rendered using OpenGL

Chapter 14  3D GraphiCs proGramminG



592

 Recipe 14-4. Loading Geometry from a File
 Problem
You would like to be able to load mesh data from files created by artists on your team.

 Solution
C++ allows you to write code that can load many different file formats. This recipe shows 

you how to load Wavefront .obj files.

 How It Works
The .obj file format was initially developed by Wavefront Technologies. It can be 

exported from many 3D modeling programs and is a simple text-based format, making 

it an ideal intermediary for learning how to import 3D data. The OBJFile class in Listing 

14-12 shows how to load an .obj file from a source file.

Listing 14-12. Loading an .obj File

class OBJFile

{

public:

    using Vertices = vector < float > ;

    using TextureCoordinates = vector < float > ;

    using Normals = vector < float > ;

    using Indices = vector < unsigned short > ;

private:

    Vertices m_VertexPositions;

    TextureCoordinates m_TextureCoordinates;

    Normals m_Normals;

    Indices m_Indices;

public:

    OBJFile(const std::string& filename)

    {

Chapter 14  3D GraphiCs proGramminG



593

        std::ifstream fileStream{ filename, std::ios_base::in };

        if (fileStream.is_open())

        {

            while (!fileStream.eof())

            {

                std::string line;

                getline(fileStream, line);

                stringstream lineStream{ line };

                std::string firstSymbol;

                lineStream >> firstSymbol;

                if (firstSymbol == "v")

                {

                    float vertexPosition{};

                    for (unsigned int i = 0; i < 3; ++i)

                    {

                        lineStream >> vertexPosition;

                        m_VertexPositions.emplace_back(vertexPosition);

                    }

                }

                else if (firstSymbol == "vt")

                {

                    float textureCoordinate{};

                    for (unsigned int i = 0; i < 2; ++i)

                    {

                        lineStream >> textureCoordinate;

                        m_TextureCoordinates.emplace_back(textureCoordinate);

                    }

                }

                else if (firstSymbol == "vn")

                {

                    float normal{};

                    for (unsigned int i = 0; i < 3; ++i)

Chapter 14  3D GraphiCs proGramminG



594

                    {

                        lineStream >> normal;

                        m_Normals.emplace_back(normal);

                    }

                }

                else if (firstSymbol == "f")

                {

                    char separator;

                    unsigned short index{};

                    for (unsigned int i = 0; i < 3; ++i)

                    {

                        for (unsigned int j = 0; j < 3; ++j)

                        {

                            lineStream >> index;

                            m_Indices.emplace_back(index);

                            if (j < 2)

                            {

                                lineStream >> separator;

                            }

                        }

                    }

                }

            }

        }

    }

    const Vertices& GetVertices() const

    {

        return m_VertexPositions;

    }

    const TextureCoordinates& GetTextureCoordinates() const

    {

        return m_TextureCoordinates;

    }

Chapter 14  3D GraphiCs proGramminG



595

    const Normals& GetNormals() const

    {

        return m_Normals;

    }

    const Indices& GetIndices() const

    {

        return m_Indices;

    }

};

This code shows how to read data from an .obj file. The .obj data is stored in lines. 

A line that represents a vertex position starts with the letter v and contains three floating- 

point numbers representing the x, y, and z displacements of a vertex. A line beginning 

with vt contains a texture coordinate, and the two floating-point numbers represent the 

u and v components of the texture coordinate. The vn lines represent vertex normals 

and contain the x, y, and z components of the vertex normal. The last type of line you’re 

interested in begins with an n and represents the indices for a triangle. Each vertex is 

represented in the face using three numbers: an index into the list of vertex positions, an 

index into the texture coordinates, and an index into the vertex normals. All of this data 

is loaded into the four vectors in the class; there are accessors to retrieve the data from 

the class. The Geometry class in Listing 14-13 has a constructor that can take a reference 

to an OBJFile object and create a mesh that OpenGL can render.

Listing 14-13. The Geometry Class

class Geometry

{

public:

    using Vertices = vector < float >;

    using Indices = vector < unsigned short >;

private:

    Vertices m_Vertices;

    Indices m_Indices;

    unsigned int m_NumVertexPositionElements{};

    unsigned int m_NumTextureCoordElements{};

    unsigned int m_VertexStride{};

Chapter 14  3D GraphiCs proGramminG



596

public:

    Geometry() = default;

    Geometry(const OBJFile& objFile)

    {

        const OBJFile::Indices& objIndices{ objFile.GetIndices() };

        const OBJFile::Vertices& objVertexPositions{ objFile.GetVertices() };

        const OBJFile::TextureCoordinates& objTextureCoordinates{

            objFile.GetTextureCoordinates() };

        for (unsigned int i = 0; i < objIndices.size(); i += 3U)

        {

            m_Indices.emplace_back(i / 3);

            const Indices::value_type index{ objIndices[i] - 1U };

            const unsigned int vertexPositionIndex{ index * 3U };

            m_Vertices.emplace_back(objVertexPositions[vertexPositionIndex]);

            m_Vertices.emplace_back(objVertexPositions[vertexPositionIndex+1]);

             m_Vertices.emplace_back(objVertexPositions[vertexPositionIndex+2]);

            const OBJFile::TextureCoordinates::size_type texCoordObjIndex{

                objIndices[i + 1] - 1U };

            const unsigned int textureCoodsIndex{ texCoordObjIndex * 2U };

            m_Vertices.emplace_back(objTextureCoordinates[textureCoodsIndex]);

            m_Vertices.emplace_back(objTextureCoordinates[textureCoodsIndex+1]);

        }

    }

    ~Geometry() = default;

    void SetVertices(const Vertices& vertices)

    {

        m_Vertices = vertices;

    }

    Vertices::size_type GetNumVertices() const

    {

        return m_Vertices.size();

Chapter 14  3D GraphiCs proGramminG



597

    }

    Vertices::const_pointer GetVertices() const

    {

        return m_Vertices.data();

    }

    void SetIndices(const Indices& indices)

    {

        m_Indices = indices;

    }

    Indices::size_type GetNumIndices() const

    {

        return m_Indices.size();

    }

    Indices::const_pointer GetIndices() const

    {

        return m_Indices.data();

    }

    Vertices::const_pointer GetTexCoords() const

    {

         return static_cast<Vertices::const_pointer>(&m_Vertices 

[m_NumVertexPositionElements]);

    }

    void SetNumVertexPositionElements(unsigned int numVertexPositionElements)

    {

        m_NumVertexPositionElements = numVertexPositionElements;

    }

    unsigned int GetNumVertexPositionElements() const

    {

        return m_NumVertexPositionElements;

    }

    void SetNumTexCoordElements(unsigned int numTexCoordElements)

    {

Chapter 14  3D GraphiCs proGramminG



598

        m_NumTextureCoordElements = numTexCoordElements;

    }

    unsigned int GetNumTexCoordElements() const

    {

        return m_NumTextureCoordElements;

    }

    void SetVertexStride(unsigned int vertexStride)

    {

        m_VertexStride = vertexStride;

    }

    unsigned int GetVertexStride() const

    {

        return m_VertexStride;

    }

};

Listing 14-13 contains a constructor for the Geometry class that can build the 

geometry for OpenGL from an OBJFile instance. The OBJFile::m_Indices vector 

contains three indices per OpenGL vertex. The Geometry class for this recipe is only 

concerned with the vertex position index and the texture coordinate index, but the for 

loop is still configured to skip ahead three indices for each iteration. The vertex index for 

the Geometry object is the obj index divided by 3; the current vertex is constructed from 

the data obtained by looking up the obj vertex positions and texture coordinates for the 

given obj index obtained in each iteration of the for loop. The vertex indices and texture 

coordinate indices in the .obj file start at 1 and not 0, so 1 is subtracted from each index 

to get the correct vector index. This index is then multiplied by 3 for vertex position 

indices or 2 for texture coordinate indices, because there are three elements per vertex 

position and two elements per texture coordinate read in from the original .obj file. By 

the end of the loop, you have a Geometry object with the vertex and texture coordinate 

data loaded from the file. The code in Listing 14-14 shows how you can use these classes 

in a program to render a textured sphere that has been created and exported using the 

Blender 3D modeling package.

Chapter 14  3D GraphiCs proGramminG



599

Note most of the recipes in this book are self-contained, but the openGL api 
covers a lot of code that is necessary to carry out seemingly simple tasks.  
Listing 14-14 contains the Texture, Shader, and TextureShader classes 
covered in recipe 14-3.

Listing 14-14. Rendering a Textured Sphere

#include <cassert>

#include <fstream>

#include "GL/glew.h"

#include "GLFW/glfw3.h"

#include <memory>

#include <sstream>

#include <string>

#include <vector>

using namespace std;

class OBJFile

{

public:

    using Vertices = vector < float > ;

    using TextureCoordinates = vector < float > ;

    using Normals = vector < float > ;

    using Indices = vector < unsigned short > ;

private:

    Vertices m_VertexPositions;

    TextureCoordinates m_TextureCoordinates;

    Normals m_Normals;

    Indices m_Indices;

public:

    OBJFile(const std::string& filename)

    {

        std::ifstream fileStream{ filename, std::ios_base::in };

Chapter 14  3D GraphiCs proGramminG



600

        if (fileStream.is_open())

        {

            while (!fileStream.eof())

            {

                std::string line;

                getline(fileStream, line);

                stringstream lineStream{ line };

                std::string firstSymbol;

                lineStream >> firstSymbol;

                if (firstSymbol == "v")

                {

                    float vertexPosition{};

                    for (unsigned int i = 0; i < 3; ++i)

                    {

                        lineStream >> vertexPosition;

                        m_VertexPositions.emplace_back(vertexPosition);

                    }

                }

                else if (firstSymbol == "vt")

                {

                    float textureCoordinate{};

                    for (unsigned int i = 0; i < 2; ++i)

                    {

                        lineStream >> textureCoordinate;

                        m_TextureCoordinates.emplace_back(textureCoordinate);

                    }

                }

                else if (firstSymbol == "vn")

                {

                    float normal{};

                    for (unsigned int i = 0; i < 3; ++i)

                    {

Chapter 14  3D GraphiCs proGramminG



601

                        lineStream >> normal;

                        m_Normals.emplace_back(normal);

                    }

                }

                else if (firstSymbol == "f")

                {

                    char separator;

                    unsigned short index{};

                    for (unsigned int i = 0; i < 3; ++i)

                    {

                        for (unsigned int j = 0; j < 3; ++j)

                        {

                            lineStream >> index;

                            m_Indices.emplace_back(index);

                            if (j < 2)

                            {

                                lineStream >> separator;

                            }

                        }

                    }

                }

            }

        }

    }

    const Vertices& GetVertices() const

    {

        return m_VertexPositions;

    }

    const TextureCoordinates& GetTextureCoordinates() const

    {

        return m_TextureCoordinates;

    }

    const Normals& GetNormals() const

Chapter 14  3D GraphiCs proGramminG



602

    {

        return m_Normals;

    }

    const Indices& GetIndices() const

    {

        return m_Indices;

    }

};

class Geometry

{

public:

    using Vertices = vector < float >;

    using Indices = vector < unsigned short >;

private:

    Vertices m_Vertices;

    Indices m_Indices;

    unsigned int m_NumVertexPositionElements{};

    unsigned int m_NumTextureCoordElements{};

    unsigned int m_VertexStride{};

public:

    Geometry() = default;

    Geometry(const OBJFile& objFile)

    {

        const OBJFile::Indices& objIndices{ objFile.GetIndices() };

        const OBJFile::Vertices& objVertexPositions{ objFile.GetVertices() };

        const OBJFile::TextureCoordinates& objTextureCoordinates{

            objFile.GetTextureCoordinates() };

        for (unsigned int i = 0; i < objIndices.size(); i += 3U)

        {

            m_Indices.emplace_back(i / 3);

            const Indices::value_type index{ objIndices[i] - 1U };

            const unsigned int vertexPositionIndex{ index * 3U };

Chapter 14  3D GraphiCs proGramminG



603

            m_Vertices.emplace_back(objVertexPositions[vertexPositionIndex]);

            m_Vertices.emplace_back(objVertexPositions[vertexPositionIndex+1]);

            m_Vertices.emplace_back(objVertexPositions[vertexPositionIndex+2]);

            const OBJFile::TextureCoordinates::size_type texCoordObjIndex{

                objIndices[i + 1] - 1U };

            const unsigned int textureCoodsIndex{ texCoordObjIndex * 2U };

            m_Vertices.emplace_back(objTextureCoordinates[textureCoodsIndex]);

            m_Vertices.emplace_back(objTextureCoordinates[textureCoodsIndex+1]);

        }

    }

    ~Geometry() = default;

    void SetVertices(const Vertices& vertices)

    {

        m_Vertices = vertices;

    }

    Vertices::size_type GetNumVertices() const

    {

        return m_Vertices.size();

    }

    Vertices::const_pointer GetVertices() const

    {

        return m_Vertices.data();

    }

    void SetIndices(const Indices& indices)

    {

        m_Indices = indices;

    }

    Indices::size_type GetNumIndices() const

    {

        return m_Indices.size();

    }

Chapter 14  3D GraphiCs proGramminG



604

    Indices::const_pointer GetIndices() const

    {

        return m_Indices.data();

    }

    Vertices::const_pointer GetTexCoords() const

    {

         return static_cast<Vertices::const_pointer>(&m_Vertices 

[m_NumVertexPositionElements]);

    }

    void SetNumVertexPositionElements(unsigned int numVertexPositionElements)

    {

        m_NumVertexPositionElements = numVertexPositionElements;

    }

    unsigned int GetNumVertexPositionElements() const

    {

        return m_NumVertexPositionElements;

    }

    void SetNumTexCoordElements(unsigned int numTexCoordElements)

    {

        m_NumTextureCoordElements = numTexCoordElements;

    }

    unsigned int GetNumTexCoordElements() const

    {

        return m_NumTextureCoordElements;

    }

    void SetVertexStride(unsigned int vertexStride)

    {

        m_VertexStride = vertexStride;

    }

    unsigned int GetVertexStride() const

    {

Chapter 14  3D GraphiCs proGramminG



605

        return m_VertexStride;

    }

};

class TGAFile

{

private:

#ifdef _MSC_VER

#pragma pack(push, 1)

#endif

    struct TGAHeader

    {

        unsigned char m_IdSize{};

        unsigned char m_ColorMapType{};

        unsigned char m_ImageType{};

        unsigned short m_PaletteStart{};

        unsigned short m_PaletteLength{};

        unsigned char m_PaletteBits{};

        unsigned short m_XOrigin{};

        unsigned short m_YOrigin{};

        unsigned short m_Width{};

        unsigned short m_Height{};

        unsigned char m_BytesPerPixel{};

        unsigned char m_Descriptor{};

    }

#ifndef _MSC_VER

    __attribute__ ((packed))

#endif // _MSC_VER

        ;

#ifdef _MSC_VER

#pragma pack(pop)

#endif

    std::vector<char> m_FileData;

Chapter 14  3D GraphiCs proGramminG



606

    TGAHeader* m_pHeader{};

    void* m_pImageData{};

public:

    TGAFile(const std::string& filename)

    {

        std::ifstream fileStream{ filename, std::ios_base::binary };

        if (fileStream.is_open())

        {

            fileStream.seekg(0, std::ios::end);

            m_FileData.resize(static_cast<unsigned int>(fileStream.tellg()));

            fileStream.seekg(0, std::ios::beg);

            fileStream.read(m_FileData.data(), m_FileData.size());

            fileStream.close();

            m_pHeader = reinterpret_cast<TGAHeader*>(m_FileData.data());

             m_pImageData = static_cast<void*>(m_FileData.data() + 

sizeof(TGAHeader));

        }

    }

    unsigned short GetWidth() const

    {

        return m_pHeader->m_Width;

    }

    unsigned short GetHeight() const

    {

        return m_pHeader->m_Height;

    }

    unsigned char GetBytesPerPixel() const

    {

        return m_pHeader->m_BytesPerPixel;

    }

    unsigned int GetDataSize() const

    {

Chapter 14  3D GraphiCs proGramminG



607

        return m_FileData.size() - sizeof(TGAHeader);

    }

    void* GetImageData() const

    {

        return m_pImageData;

    }

};

class Texture

{

private:

    unsigned int m_Width{};

    unsigned int m_Height{};

    unsigned int m_BytesPerPixel{};

    unsigned int m_DataSize{};

    GLuint m_Id{};

    void* m_pImageData;

public:

    Texture(const TGAFile& tgaFile)

        : Texture(tgaFile.GetWidth(),

            tgaFile.GetHeight(),

            tgaFile.GetBytesPerPixel(),

            tgaFile.GetDataSize(),

            tgaFile.GetImageData())

    {

    }

    Texture(unsigned int width,

            unsigned int height,

            unsigned int bytesPerPixel,

            unsigned int dataSize,

            void* pImageData)

        : m_Width(width)

Chapter 14  3D GraphiCs proGramminG



608

        , m_Height(height)

        , m_BytesPerPixel(bytesPerPixel)

        , m_DataSize(dataSize)

        , m_pImageData(pImageData)

    {

    }

    ~Texture() = default;

    GLuint GetId() const

    {

        return m_Id;

    }

    void Init()

    {

        GLint packBits{ 4 };

        GLint internalFormat{ GL_RGBA };

        GLint format{ GL_BGRA };

        glGenTextures(1, &m_Id);

        glBindTexture(GL_TEXTURE_2D, m_Id);

        glPixelStorei(GL_UNPACK_ALIGNMENT, packBits);

        glTexImage2D(GL_TEXTURE_2D,

            0,

            internalFormat,

            m_Width,

            m_Height,

            0,

            format,

            GL_UNSIGNED_BYTE,

            m_pImageData);

    }

};

class Shader

{

Chapter 14  3D GraphiCs proGramminG



609

private:

    void LoadShader(GLuint id, const std::string& shaderCode)

    {

        const unsigned int NUM_SHADERS{ 1 };

        const char* pCode{ shaderCode.c_str() };

        GLint length{ static_cast<GLint>(shaderCode.length()) };

        glShaderSource(id, NUM_SHADERS, &pCode, &length);

        glCompileShader(id);

        glAttachShader(m_ProgramId, id);

    }

protected:

    GLuint m_VertexShaderId{ GL_INVALID_VALUE };

    GLuint m_FragmentShaderId{ GL_INVALID_VALUE };

    GLint m_ProgramId{ GL_INVALID_VALUE };

    std::string m_VertexShaderCode;

    std::string m_FragmentShaderCode;

public:

    Shader() = default;

    virtual ~Shader() = default;

    virtual void Link()

    {

        m_ProgramId = glCreateProgram();

        m_VertexShaderId = glCreateShader(GL_VERTEX_SHADER);

        LoadShader(m_VertexShaderId, m_VertexShaderCode);

        m_FragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);

        LoadShader(m_FragmentShaderId, m_FragmentShaderCode);

        glLinkProgram(m_ProgramId);

    }

    virtual void Setup(const Geometry& geometry)

    {

Chapter 14  3D GraphiCs proGramminG



610

        glUseProgram(m_ProgramId);

    }

};

class TextureShader

    : public Shader

{

private:

    const Texture& m_Texture;

    GLint m_PositionAttributeHandle;

    GLint m_TextureCoordinateAttributeHandle;

    GLint m_SamplerHandle;

public:

    TextureShader(const Texture& texture)

        : m_Texture(texture)

    {

        m_VertexShaderCode =

            "attribute  vec4 a_vPosition;                   \n"

            "attribute  vec2 a_vTexCoord;                   \n"

            "varying    vec2 v_vTexCoord;                   \n"

            "                                               \n"

            "void main() {                                  \n"

            "   gl_Position = a_vPosition;                  \n"

            "   v_vTexCoord = a_vTexCoord;                  \n"

            "}                                              \n";

        m_FragmentShaderCode =

            "#version 150                                   \n"

            "                                               \n"

            "varying vec2 v_vTexCoord;                      \n"

            "uniform sampler2D s_2dTexture;                 \n"

            "                                               \n"

            "void main() {                                  \n"

            "   gl_FragColor =                              \n"

            "       texture2D(s_2dTexture, v_vTexCoord);    \n"

            "}                                              \n";

Chapter 14  3D GraphiCs proGramminG



611

    }

    ~TextureShader() override = default;

    void Link() override

    {

        Shader::Link();

         m_PositionAttributeHandle = glGetAttribLocation(m_ProgramId,  

"a_vPosition");

         m_TextureCoordinateAttributeHandle = glGetAttribLocation 

(m_ProgramId, "a_vTexCoord");

        m_SamplerHandle = glGetUniformLocation(m_ProgramId, "s_2dTexture");

    }

    void Setup(const Geometry& geometry) override

    {

        Shader::Setup(geometry);

        glActiveTexture(GL_TEXTURE0);

        glBindTexture(GL_TEXTURE_2D, m_Texture.GetId());

        glUniform1i(m_SamplerHandle, 0);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        glVertexAttribPointer(

            m_PositionAttributeHandle,

            geometry.GetNumVertexPositionElements(),

            GL_FLOAT,

            GL_FALSE,

            geometry.GetVertexStride(),

            geometry.GetVertices());

        glEnableVertexAttribArray(m_PositionAttributeHandle);

        glVertexAttribPointer(

Chapter 14  3D GraphiCs proGramminG



612

            m_TextureCoordinateAttributeHandle,

            geometry.GetNumTexCoordElements(),

            GL_FLOAT,

            GL_FALSE,

            geometry.GetVertexStride(),

            geometry.GetTexCoords());

        glEnableVertexAttribArray(m_TextureCoordinateAttributeHandle);

    }

};

int main(void)

{

    GLFWwindow* window;

    // Initialize the library

    if (!glfwInit())

    {

        return -1;

    }

    glfwWindowHint(GLFW_RED_BITS, 8);

    glfwWindowHint(GLFW_GREEN_BITS, 8);

    glfwWindowHint(GLFW_BLUE_BITS, 8);

    glfwWindowHint(GLFW_DEPTH_BITS, 8);

    glfwWindowHint(GLFW_DOUBLEBUFFER, true);

    // Create a windowed mode window and its OpenGL context

    window = glfwCreateWindow(480, 480, "Hello World", NULL, NULL);

    if (!window)

    {

        glfwTerminate();

        return -1;

    }

    // Make the window's context current

    glfwMakeContextCurrent(window);

    GLenum glewError{ glewInit() };

Chapter 14  3D GraphiCs proGramminG



613

    if (glewError != GLEW_OK)

    {

        return -1;

    }

    TGAFile myTextureFile("earthmap.tga");

    Texture myTexture(myTextureFile);

    myTexture.Init();

    TextureShader textureShader(myTexture);

    textureShader.Link();

    OBJFile objSphere("sphere.obj");

    Geometry sphere(objSphere);

    sphere.SetNumVertexPositionElements(3);

    sphere.SetNumTexCoordElements(2);

    sphere.SetVertexStride(sizeof(float) * 5);

    glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

    glEnable(GL_CULL_FACE);

    glCullFace(GL_BACK);

    glEnable(GL_DEPTH_TEST);

    // Loop until the user closes the window

    while (!glfwWindowShouldClose(window))

    {

        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        textureShader.Setup(sphere);

        glDrawElements(GL_TRIANGLES,

            sphere.GetNumIndices(),

            GL_UNSIGNED_SHORT,

            sphere.GetIndices());

Chapter 14  3D GraphiCs proGramminG



614

        // Swap front and back buffers

        glfwSwapBuffers(window);

        // Poll for and process events

        glfwPollEvents();

    }

    glfwTerminate();

    return 0;

}

Listing 14-14 shows how to load and render an .obj file using the classes covered 

in this recipe and in Recipe 14-3. There are some differences in how the window is 

created in this recipe. The glfwWindowHint function specifies some of the parameters 

that you wish the frame buffer for the application to possess. The most important here 

is the depth buffer. A depth buffer works on modern GPUs by storing the normalized 

device coordinate of the z component from a polygon at each fragment position during 

rendering. You can then use a depth test to allow or disallow new color writes to the 

frame buffer during rendering. This is useful when rendering your sphere to ensure that 

the pixels rendered at the rear of the sphere don’t overwrite the colors for the fragments 

at the front of the sphere.

Face culling is also enabled to ensure that you see only the front faces of each polygon. 

Polygons can have two sides: front and back. OpenGL determines whether a polygon is 

front facing or back facing depending on the winding order of the vertices. By default, 

OpenGL determines that polygons whose vertices are specified in counterclockwise order 

are facing the front and polygons whose vertices are specified in clockwise order are facing 

the back. This can change when an object is rotating, so OpenGL can drop polygons early 

when they aren’t facing toward the camera. You can change the winding order of a front-

facing polygon using the glFrontFace function if you wish.

The earthmap.tga texture obtained from http://planetpixelemporium.com/

earth.html is loaded to give the sphere the appearance of the planet Earth; the sphere 

itself is loaded from a file named sphere.obj. You enable front-face culling by calling 

glEnable and passing the GL_CULL_FACE constant; the face to be culled is specified by 

calling glCullFace. The depth test is enabled by calling glEnable and passing GL_DEPTH_

TEST; and the glClear call is passed GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT 

to ensure that the color buffer and the depth buffer are both cleared at the beginning of 

each rendered frame.

Chapter 14  3D GraphiCs proGramminG

http://planetpixelemporium.com/earth.html
http://planetpixelemporium.com/earth.html


615

Compiling and running the code supplied along with the data from this book’s 

accompanying web site results in a program that renders the planet Earth as shown in 

Figure 14-3.

Figure 14-3. The rendered planet Earth generated by the code in Listing 14- 14

 Recipe 14-5. Working with C++20 Modules
 Problem
C++20 offers the new feature of Modules, which can be used along with header files. You 

want to experiment with them.

 Solution
C++ version 20 adds the new feature of Modules. While all C++ compilers do not support 

it, Visual Studio 19 does. Modules offer another solution for componentization of C++ 

programs and libraries.

Chapter 14  3D GraphiCs proGramminG



616

 How It Works
A module is a set of source code files that are compiled independently and eliminate 

or greatly reduce some problems associated with header files, and compilation speed 

increases. Modules can be imported in any order without concern for macro redefinitions. 

To see how Modules work, we will try a traditional multipart header, definition, and driver 

application. Then we’ll do the same thing as a module for comparison.

Multipart files—Separate class from implementation via separate 

files for header prototypes and function definitions

You can only imagine that with a very few classes or structs, your programs could 

get lengthy and messy in a hurry. If you implement the “work” a class does into separate 

files, that is, “header function prototype” files and “function definition” files, you can 

make your code much easier to read and debug. Other developers reading your code will 

thank you for this kindness in cleaner design.

For the next simple example, you will create three files in your empty C++ project. 

The first will be a header file that will have the same name (not extension since it will be 

a *.h file) as one of the CPP files. These will be the function prototype file and function 

definition file.

The first is a general summary of the functions, only what they take from or give back 

to the calling functions. The second defines exactly how the functions work. The names 

must be the same as the header file is included as a manual local library include (noted 

not with alligators <> but with “ ”). Of course, all files should be in the same folder. The 

last and final third file can have any valid name but is the actual driver code, has int 

main(), and does the real work. This next one has just one simple function. Of course, 

you can have more than three, but there will be only one driver. Try it with three files to 

see how it works.

Listing 14-15. Traditional Three-Part File Using Function Prototype Header, 

Function Definition, and Driver

//Header function prototype file simple.h   part 1 of 3

#include <string>

using namespace std;

class simple

{

Chapter 14  3D GraphiCs proGramminG



617

public:

        void show_stats();

private:

        string name = "Fred the barber";

};

//Function definition file

//simple.cpp part 2 of 3

#include <iostream>

#include <string>

#include "simple.h"

using namespace std;

void simple::show_stats()

{

        cout << "Name of barber is: " << name << endl;

}

//Driver main application

//main_app.cpp  part 3 of 3

#include <iostream>

#include "simple.h"

using namespace std;

int main()

{

        simple Fred;

        Fred.show_stats();

        system("pause");

        return 0;

}

And now let’s see how it would convert to a module, and don’t forget to change the 

project properties in Visual Studio 19 to working draft latest for C++ version 20! Add the 

main driver file as a standard C++ file and the module as a *.ixx file (add as a regular 

CPP file but rename it to have a *.ixx extension—although ISO conventions may adopt 

a *.ccpm designation in the future). It is important to note that you will also need 
to enable Modules support in Visual Studio as of version 16.4.5. To do this, go to 

Chapter 14  3D GraphiCs proGramminG



618

Project ➤ Properties ➤ Configuration Properties ➤ C/C++ ➤ All Options ➤ Enable C++ 

Modules (Experimental) and select Yes from the drop-down menu. Next we will compile 

the module and then compile the final program. You will have a solution, one project, 

and two files in the project. To make it work as of 16.4.5, the command prompt will be 

our friend.

 1. Start a C++ empty project in Visual Studio, and then add two C++ 

source files.

 2. For the module file, name it and add the following code:

Listing 14-16. A Modules Version of Listing 14-15

//module speech.ixx

export module speech;

export const char* show_stats()

{

    return "The barber is named Fred!\n\n";

}

 3. Compile the module via the command line by selecting

Tools ➤ Command Line ➤ Developer Command Prompt.

Then: cl -experimental:module -c speech.ixx

It should give you a message that basically says this is 

experimental, no warranty, your mileage will vary, and so on. 

Regardless, there is now a compiled *.obj file we can work with. 

Run dir (Enter) from the prompt to see the newly created file.

 4. For the main driver file, name it and add the following code:

// Driver file main_app.cpp

#include <iostream>

import speech;

using namespace std;

Chapter 14  3D GraphiCs proGramminG



619

int main()

{

    cout << show_stats() << '\n';

    return 0;

}

 5. Now, again from the command line, enter the following to 

compile your main application with the *.obj module file:

Cl -experimental:module main_app.cpp speech.obj

It will give the normal warning that it is experimental, but if all goes well and your 

virus checker does not automatically delete the file (which can happen with certain AV 

programs), perform a quick dir and you should see an executable file. Run it by typing 

main_app (Enter), and it will tell you who the barber is.

Chapter 14  3D GraphiCs proGramminG



621
© J. Burton Browning and Bruce Sutherland 2020 
J. B. Browning and B. Sutherland, C++20 Recipes, https://doi.org/10.1007/978-1-4842-5713-5

Index

A
Accept method, 455, 456
Add function, 278, 279, 283
ai_family field, 433, 438
ai_flags parameter, 454
ai_socktype field, 433, 438, 445
apt-get command, 4

B
begin/end methods, 252, 260
BeginConsumption method, 428
Berkeley Sockets

OS X application
ai_family field, 433
ai_socktype field, 433
code implementation, 431
Command Line Tool, 430
DNS, 432
getaddrinfo function, 433
socket function, 433
Xcode IDE, 430

send/receive functions, 446
Accept method, 455
Bind method, 455
client code implementation, 465–472
Close method, 456
code implementation, 456–464
Connect method, 473
IsValid method, 455

Listen method, 455
Receive method, 456
Socket class, 448–454
WinsockWrapper class, 448, 464
Wrapping Winsock, 446

Ubuntu, Eclipse, 434
ai_socktype field, 438
code implementation, 437
C++ Project settings window, 435
getaddrinfo function, 438
Google HTTP web server, 436
IP address, 438
socket function, 439

Bind method, 455
Bitwise operators

& (AND) operator, 133, 134
<< and >> operator, 137, 138
^ (executive) operator, 136
| (OR) operator, 134, 135

boost::format function, 21, 111
break command, 13, 15
breakpoint command, 18

C
Cache lines, 344
ChangeName function, 511, 512
chrono::duration_cast template, 343
clang command, 6, 7, 10, 113
Clang compiler, 10, 27

https://doi.org/10.1007/978-1-4842-5713-5


622

Classes
access modifiers, 154–156, 158
copy constructor /assignment operator

deep copy, 176, 177, 179
delete keyword, 172
disallow, 172, 173
explicit, 171, 172
implicit, 169, 170
shallow copy, 174, 176

definitions, 147, 148
destructors, 164, 165, 167, 168
initialization, 158, 160, 161

constructors, 161–164
member variable, 158

member methods, 151, 152, 154
member variable, 149, 150
move constructor/assignment 

operator, 180–184
virtual functions, 186, 187

Clock rate, 365
Close method, 456
Comma Separated Values (.csv) file, 98
Common Language  

Runtime (CLR), 1
comparison function, 265
Compile time constant,  

constexpr, 40–43
Concurrent programming

condition_variable, 400
notify_all method, 407
reference_wrapper template, 406
threads communication, 401, 402, 404
ThreadTask function, 406
try_lock method, 407
wait method, 406

double-buffered message queue
BeginConsumption method, 428
class definition, 414

Consume method, 417
currentSwapCount variable, 428
main function, 424
message queue, action, 417
∗ operator, 428
RunningTotal class, 423
Swap method, 417
Task function, 426

mutex
data race, 388–391
lock_guard class, 396–399
MyManagedObject  

class, 392–395
promise/future objects

async function, 411–413
data storage, 409
get_future method, 410
HTTP requests, 409
packaged_task, 410
promise template, 409
set_value method, 410

threads, 365
creation, 368
data race, 382
detach method, 372, 373
join method, 370
memory-pool functions, 383
MyManagedObject  

instances, 378–381
static vector, 374–377
Surface Pro 2, 367
thread, 366, 367
ThreadTask function, 369, 371

condition_variable class, 400
condition_variable::wait method, 406
constexpr keyword, 40
Consume method, 417
continue command, 15

Index



623

count function, 268
count_if function, 269–271
C++11 standard, 1, 39
C++ programming language

boost library, 20–22
code implementation, 9, 10
compilation modes, 19, 20
debugging

Cygwin/Linux, 11–15
OS X operating system, 16

GDB, 12, 14, 16
HelloWorld.cpp file, 10, 11
ISO standard, 25
LLDB debugger, 17, 18
low-level language, 1
OS X, 8, 9
text editor, 2, 4
Ubuntu operating system, 4
Windows operating system, 6

crbegin and crend methods, 258
C++20, 2
Current date and time, 55

comparing times, 57
count method, 58
system_clock::now  

method, 56, 58
time_point structure, 56

D
Destructors, 167
detach method, 372, 373
Domain name service (DNS), 432
dot (.) operator, 150

E
emplace method, 223, 239

F
Face culling, 614
final keyword, 205–207
find function, 271, 272, 275
finish command, 14, 17, 18
for_each function, 45, 259, 260
frame variable command, 18

G
get_future method, 410, 411
GetNumberOfWheels method, 204, 206, 

208, 210, 213
GetString method, 91, 92
GetTexCoords method, 568
GetValue method, 263, 264
glClearColor function, 563
glDrawElements function, 564
glewInit function, 550
GLEW library, 549
glFrontFace function, 614
glfwPollEvents function, 549
glfwSwapBuffers function, 549
glfwTerminate function, 549
glfwWindowHint function, 614
GL Shading Language (GLSL), 557, 565

H
Hashing data, 295
help command, 15, 18
shrink_to_fit method, 227

I
info command, 15
Inheritance

base class, 189, 190, 192
interface creation, 208–210

Index



624

member variables/methods, access 
specifier

private, 195, 196
protected, 196, 198
public, 192, 194

method hiding, 198–200
method overriding, 205, 206, 208
multiple, 210, 212, 213
virtual keyword, 201, 202, 204

Initializer lists, objects
construct objects, 29
construct vector, uniform  

initialization, 30, 31
explicit usage, 32
output, 31
vector constructor, 29

initializer_list variable, 32, 36
IsGreater function, 275
IsValid method, 455

J, K
Java virtual machine (JVM), 1

L
Lambdas

array into vector, 53
array values, 44
capture block, 45, 48
closure in a variable, 45, 46
Cygwin, 50
function template, 47
mutable closure, 52
myCopy by value, 49
typeid, 46

Listen method, 455

LLDB debugger, 18
Logical operators

&& operator, 127
|| operator, 128

Lua
C++ function

code implementation, 520, 522
constructor class, 523
destructor class, 523
Lua, 523, 530, 531
LuaCode1.lua, 523
LuaFunction, 523, 530
LuaTable class, 524–529

C functions, 532–536, 538
coroutines, 539

code implementation, 540–543
Lua, 545
LuaCode4.lua file, 545, 546
lua_newthread function, 540
LuaThread class, 545
m_IsThread bool, 544

CreateCFunction, 538
flow control

break statement, 517
elseif statement, 516
for loop statement, 518
if statement, 516
ipairs/pairs function, 519
while statements, 516, 517

functions
ChangeName  

function, 511, 512
definition, 510, 511
GetValue function, 512
return function, 513

library project
Eclipse, 501–504
Visual studio, 497–499

Inheritance (cont.)

Index



625

tables
associative array, 513
creation, 513
C-style arrays, 514
insert function, 515
# operator, 515
remove function, 515
remove objects, 514

variables
arithmetic operators, 510
dynamically typed language, 

507–509
floating-point numbers, 510
number, non-numeric string, 509
number, to a string, 509

Xcode project, 504–507
LuaFunction::Call method, 523
lvalue and rvalue references, 60

copy constructor, 63
default keyword, 70
move constructor, 65
move semantics, 61
performance benefits, 68
static counter, 61

M
Manager::GetSingleton function, 294
Memory

array new/delete functions, 335, 336
definition, 301
delete function, 335
fragmentation problems, 348
GetCount method, 323
heap memory, 309

array new/delete operators, 311, 312
delete operator, 310
dereference operator, 310

new/delete operators, 309, 310
pointer, 310

high-resolution timer, 341, 342
chrono, 342, 343
duration_cast, 343
RunTest function, 343

memory-access patterns,  
performance, 344–346

new/delete operators, 332
add header to memory, 333, 334
macros, 335
malloc, 335
MemoryHeader structure, 334
MyClass definition, 338–340
SmallBlockAllocator class, 356, 357

ReferenceCount class, 322, 323
SharedMyClass, 314
shared_ptr template, 313

creation, 313, 314
dynamic memory,  

transfer, 315, 316
MyClass destructor, 315
SharedMyClass instance, 314, 317

small-block allocator class, 358–363
SmartPointer class

code implementation, 323–325
constructors, 326
copy constructor, 326
destructors, 326
move constructor, 327
MyStruct instance, 327–331
ReferenceCount object, 326

stack memory, 304
class variables, 306
disassembly view, 305, 306
ebp register, 304
esp register, 304
multiple scopes, 307, 308

Index



626

Stack Frame creation, 304, 305
x86 Assembly language, 304

static memory, 301
global variable, masking, 303
unsigned integer global variable, 

301, 302
unique_ptr template, 317

creation, 317–319
dynamic memory, transfer, 319–321
swap function, 321

Method overriding, 205
min_element function, 261, 265, 267
move function, 185
Multiple inheritance, 210–213
Multithreaded programming, 365
myClosure variabl, 47
myThread variable, 369

N
Networking protocol

ANSWER message, 474
client code implementation, 485–494
FINISHED message, 474
HTTP, 474
ProtocolThread function, 485
QUESTION message, 474
QUIT message, 474
server code implementation, 474–484
Socket class, 485
socket connection, 474
stringstream, 485

next command, 14, 17, 18
Numbers

bitwise operators, 133
&, 133
<< and >>, 137, 140, 142

^, 136
|, 135

hexadecimal values, 130–132
integers, 115

cinttypes, 119
definition, 116
int32_t type, 119, 120
operators, 116, 117
types, 118
unsigned types, 120, 121
variables, 117, 118

logical operators, 127
&&, 127, 128
||, 128, 129

spaceship operator, 143–145

O
override keyword, 204

P, Q
Page class

Alloc method, 350
arrays, 349
constructor/destructor, 349
definition, 348
Free method, 351
IsEmpty method, 352
SmallBlockAllocator class, 353–356

pairs function, 519
parameter variable, 37
Pixel, 565
Pointers

make_unique template, 73
shared_ptr instances, 75
unique_ptr instances, 71, 73
weak_ptr instances, 77, 79, 80

Memory (cont.)

Index



627

print function, 281, 508
print command, 15, 18
Private access specifier, 195–196
Protected access specifier, 196–198
public access specifier, 192

R
rbegin method, 257
Receive method, 456
reference_wrapper template, 406
Relational operators, 122

equality, 122
greater-than, 124
inequality, 123
less-than, 125, 126

rend method, 257
Resource Allocation Is Initialization  

(RAII) pattern, 400
RunningTotal::operator∗ method, 428

S
SDBM hash algorithm, 295
seekg method, 107
set_value method, 410
showbase flag, 132
Singleton base class, 292
SmallBlockAllocator class, 353
SOCK_DGRAM type, 438
Socket class, 446
sorting algorithm, 273
Spaceship operator/three-way 

comparison operator, 143–145
Standard Template Library  

(STL), 1, 215, 277
std::for_each algorithm, 45
step command, 14, 17, 18

STL algorithms
count function, 268
count_if function, 269–271
find function, 271, 272
for_each function, 259, 260
iterator, 251

const_iterator, 255
const_reverse_iterator, 257, 258
int type, 252
for loop, 252
myVector collection, 253
non-const access, 254
reverse_iterator, 256, 257
vector, 252

min_element function, 261, 265, 267
comparison function, 265
GetValue method, 263, 264
< operator, 262, 263

set of data, 275, 276
sorting algorithm, 273, 275

STL containers, 215
C-style array, 216

iterators and algorithms, 217, 218
for loop, range based, 216, 217

designated initialization, 248
forward_list containers, 230, 231
list, 229, 230
map, 240–242
set, 231, 232, 234

emplace method, 237–239
highest to lowest, 235, 237

SetObject class, 245
unordered_map containers, 246, 247
unordered_set containers, 242, 243, 245
vector template, 219

capacity method, 221, 222
emplace method, 223
reduce capacity, 225, 227

Index



628

remove elements, 224, 225
resizing, 219, 220, 228
shrink_to_fit, 227

Swap function, 321

T
tellg method, 107
template keyword, 279
Templates

Add function, 278–280
class creation, 289, 291
explicit/implicit specialization, 280, 281
non-template function, 278
partial specialization

Add function, 283
+ and << operators,  

MYClass, 287–289
classes, 283, 285
code implementation, 285–287
implicit properties, 282
Print function, 283

SDBM hash function
Bruce Sutherland, 298, 300
code implementation, 295, 296
debug build, 298
hash value, 297
metaprogram, 296, 297, 300
recursion, 298

Singleton base class, 292, 294
Texel, 565
Text

boost:: :format function, 110, 111
boost library, 113
Localization Manager, 89

constructor method, 90
enum class, 90

GetString method, 91
manager class, 92
numeric/monetory data, 94, 95
SetLanguage method, 91

screenshot, HxD, 83
string.csv file, 99

code implementation, 100
getline method, 101
ifstream class, 101
std, 102
stringstream object, 102
text editor, 100

string literals
C++14 style, 84
compiler, 85
debug/non-debug literals, 87
editing, 84
exe file, 82
NDEBUG preprocessor, 87
non-const pointer, 84
remove debug, 86
runtime error, 85

XML document, 103
atoi function, 109
data structure, 107
load string data, 105, 106
parse method, 108
seekg method, 107
spreadsheet file, 103, 104
tellg method, 107
unsigned int, 109
while loop, 108

Texture::Init function, 591
TextureShader::Setup function, 578
thread::hardware_concurrency  

method, 366
thread_local  

keyword, 382

STL containers (cont.)

Index



629

ThreadTask function, 406
3D graphics, 547

GLFW, 547
code implementation, 548
glewInit function, 550, 551
glfwCreateWindow function, 549
glfwPollEvents function, 549
glfwSwapBuffers  

function, 549
glfwTerminate function, 549
OpenGL API, 549

OBJFile class
earthmap.tga texture, 614, 615
face culling, 614
Geometry class, 595–598
glfwWindowHint function, 614
load data, 592, 594, 595
rendering textured  

sphere, 599–609, 611, 612, 614, 
616–618

rendering triangle
attribute, 557
BasicShader class, 555, 556
code implementation, 557–562
Geometry class, 551–553
glClearColor function, 563
glDrawElements function, 564
glewInit function, 563
LoadShader method, 555
Shader class, 554, 555

textured quad
code implementation,  

579–588, 590, 591
Geometry class, 565, 567
GetTexCoords method, 568
ifstream object, 571
Init method, 573
mapping, 565

Texture class, 571, 573
TextureShader class, 574–578
TGA file class, 568–570, 590
TGAHeader fields, 571

time_t type, 56
try_lock method, 407
Type deduction

auto keyword, 33
auto keyword, uniform  

initialization, 35, 36
auto to deduce return type, 39
decltype keyword, 39
return type deduction, 38
return type function, 37
template function, 38

typeid method, 33, 34

U
Ubuntu operating system, 4, 5
unique_lock, 407
unordered_map::find method, 92
until command, 15

V
Variable initialization

compile narrowing  
conversions, 29

MyClass, 27
prevent narrowing  

conversions, 28
uniform initialization, 28
vexing parse problem, 26, 27

vector::end method, 253
vector::cend methods, 256
Virtual functions, 186
virtual keyword, 201

Index



630

W, X, Y, Z
Windows operating system, 6

clang command, 8
Cygwin installer, 6, 7

Winsock socket
Additional Dependencies dialog, 442
ai_family field, 445
ai_socktype field, 445
code implementation, 442

DNS, 444
getaddrinfo function, 444
library, 439
linker input options, 441
SDL, 441
servinfo, 445
socket function, 444
Visual Studio wizard, 440
Win32 application wizard, 440

Index


	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Beginning C++
	Recipe 1-1. Finding a Text Editor
	Problem
	Solution

	Recipe 1-2. Installing Clang on Ubuntu
	Problem
	Solution
	How It Works

	Recipe 1-3. Installing Clang on Windows
	Problem
	Solution
	How It Works

	Recipe 1-4. Installing Clang on macOS
	Problem
	Solution
	How It Works

	Recipe 1-5. Building Your First C++ Program
	Problem
	Solution

	Recipe 1-6. Debugging C++ Programs Using GDB in Cygwin or Linux
	Problem
	Solution
	How It Works

	Recipe 1-7. Debugging Your C++ Programs on macOS
	Problem
	Solution
	How It Works

	Recipe 1-8. Switching C++ Compilation Modes
	Problem
	Solution
	How It Works

	Recipe 1-9. Building with the Boost Library
	Problem
	Solution
	How It Works

	Recipe 1-10. Install Microsoft Visual Studio
	Problem
	Solution
	How It Works


	Chapter 2: Modern C++
	Recipe 2-1. Initializing Variables
	Problem
	Solution
	How It Works

	Recipe 2-2. Initializing Objects with Initializer Lists
	Problem
	Solution
	How It Works

	Recipe 2-3. Using Type Deduction
	Problem
	Solution
	How It Works

	Recipe 2-4. Using auto with Functions
	Problem
	Solution
	How It Works

	Recipe 2-5. Working with Compile Time Constants
	Problem
	Solution
	How It Works

	Recipe 2-6. Working with Lambdas
	Problem
	Solution
	How It Works

	Recipe 2-7. Working with Time
	Problem
	Solution
	How It Works
	Getting the Current Date and Time
	Comparing Times


	Recipe 2-8. Understanding lvalue and rvalue References
	Problem
	Solution
	How It Works

	Recipe 2-9. Using Managed Pointers
	Problem
	Solution
	How It Works
	Using unique_ptr
	Using shared_ptr Instances
	Using a weak_ptr



	Chapter 3: Working with Text
	Recipe 3-1. Representing Strings in Code Using Literals
	Problem
	Solution
	How It Works

	Recipe 3-2. Localizing User-Facing Text
	Problem
	Solution
	How It Works

	Recipe 3-3. Reading Strings from a File
	Problem
	Solution
	How It Works

	Recipe 3-4. Reading the Data from an XML File
	Problem
	Solution
	How It Works

	Recipe 3-5. Inserting Runtime Data into Strings
	Problem
	Solution
	How It Works


	Chapter 4: Working with Numbers
	Recipe 4-1. Using the Integer Types in C++
	Problem
	Solution
	How It Works
	Working with the int Type
	Working with Different Types of Integers
	Working with Unsigned Integers


	Recipe 4-2. Making Decisions with Relational Operators
	Problem
	Solution
	How It Works
	The Equality Operator
	The Inequality Operator
	The Greater-Than Operator
	The Less-Than Operator


	Recipe 4-3. Chaining Decisions with Logical Operators
	Problem
	Solution
	How It Works
	The && Operator
	The Logical || Operator


	Recipe 4-4. Using Hexadecimal Values
	Problem
	Solution
	How It Works

	Recipe 4-5. Bit Twiddling with Binary Operators
	Problem
	Solution
	How It Works
	The & (Bitwise AND) Operator
	The | (Bitwise OR) Operator
	The ^ (Exclusive OR) Operator
	The << and >> Operators


	Recipe 4-6. C++20 “Spaceship” or Three-Way Comparison Operator
	Problem
	Solution
	How It Works


	Chapter 5: Classes
	Recipe 5-1. Defining a Class
	Problem
	Solution
	How It Works

	Recipe 5-2. Adding Data to a Class
	Problem
	Solution
	How It Works

	Recipe 5-3. Adding Methods
	Problem
	Solution
	How It Works

	Recipe 5-4. Using Access Modifiers
	Problem
	Solution
	How It Works

	Recipe 5-5. Initializing Class Member Variables
	Problem
	Solution
	How It Works
	Uniform Initialization
	Using Constructors


	Recipe 5-6. Cleaning Up Classes
	Problem
	Solution
	How It Works

	Recipe 5-7. Copying Classes
	Problem
	Solution
	How It Works
	Implicit and Default Copy Constructors and Assignment Operators
	Explicit Copy Constructors and Assignment Operators
	Disallowing Copy and Assignment
	Custom Copy Constructors and Assignment Operators


	Recipe 5-8. Optimizing Code with Move Semantics
	Problem
	Solution
	How It Works

	Recipe 5-9. Implementing Virtual Functions
	Problem
	Solution
	How It Works


	Chapter 6: Inheritance
	Recipe 6-1. Inheriting from a Class
	Problem
	Solution
	How It Works

	Recipe 6-2. Controlling Access to Member Variables and Methods in Derived Classes
	Problem
	Solution
	How It Works
	The public Access Specifier
	The private Access Specifier
	The protected Access Specifier


	Recipe 6-3. Hiding Methods in Derived Classes
	Problem
	Solution
	How It Works

	Recipe 6-4. Using Polymorphic Base Classes
	Problem
	Solution
	How It Works

	Recipe 6-5. Preventing Method Overrides
	Problem
	Solution
	How It Works

	Recipe 6-6. Creating Interfaces
	Problem
	Solution
	How It Works

	Recipe 6-7. Multiple Inheritance
	Problem
	Solution
	How It Works


	Chapter 7: The STL Containers
	Recipe 7-1. Storing a Fixed Number of Objects
	Problem
	Solution
	How It Works

	Recipe 7-2. Storing a Growing Number of Objects
	Problem
	Solution
	How It Works

	Recipe 7-3. Storing a Set of Elements That Is Constantly Altered
	Problem
	Solution
	How It Works

	Recipe 7-4. Storing Sorted Objects in a Container That Enables Fast Lookups
	Problem
	Solution
	How It Works

	Recipe 7-5. Storing Unsorted Elements in a Container for Very Fast Lookups
	Problem
	Solution
	How It Works

	Recipe 7-6. Using C++20 Designated Initialization
	Problem
	Solution
	How It Works


	Chapter 8: The STL Algorithms
	Recipe 8-1. Using an Iterator to Define a Sequence Within a Container
	Problem
	Solution
	How It Works

	Recipe 8-2. Calling a Function on Every Element in a Container
	Problem
	Solution
	How It Works

	Recipe 8-3. Finding the Maximum and Minimum Values in a Container
	Problem
	Solution
	How It Works
	Finding the Minimum Value in a Container
	Finding the Maximum Values in a Container


	Recipe 8-4. Counting Instances of a Value in a Sequence
	Problem
	Solution
	How It Works

	Recipe 8-5. Finding Values in a Sequence
	Problem
	Solution
	How It Works

	Recipe 8-6. Sorting Elements in a Sequence
	Problem
	Solution
	How It Works

	Recipe 8-7. Looking Up Values in a Set
	Problem
	Solution
	How It Works


	Chapter 9: Templates
	Recipe 9-1. Creating a Template Function
	Problem
	Solution
	How It Works
	Creating a Template Function
	Explicit vs. Implicit Template Specialization


	Recipe 9-2. Partially Specializing a Template
	Problem
	Solution
	How It Works

	Recipe 9-3. Creating Class Templates
	Problem
	Solution
	How It Works

	Recipe 9-4. Creating Singletons
	Problem
	Solution
	How It Works

	Recipe 9-5. Calculating Values at Compile Time
	Problem
	Solution
	How It Works

	Recipe 9-6. Calculating Values at Compile Time
	Problem
	Solution
	How It Works


	Chapter 10: Memory
	Recipe 10-1. Using Static Memory
	Problem
	Solution
	How It Works

	Recipe 10-2. Using Stack Memory
	Problem
	Solution
	How It Works

	Recipe 10-3. Using Heap Memory
	Problem
	Solution
	How It Works

	Recipe 10-4. Using Automated Shared Memory
	Problem
	Solution
	How It Works

	Recipe 10-5. Creating Single-Instance Dynamic Objects
	Problem
	Solution
	How It Works

	Recipe 10-6. Creating Smart Pointers
	Problem
	Solution
	How It Works

	Recipe 10-7. Debugging Memory Problems by Overloading new and delete
	Problem
	Solution
	How It Works

	Recipe 10-8. Calculating Performance Impacts of Code Changes
	Problem
	Solution
	How It Works

	Recipe 10-9. Understanding the Performance Impacts of Memory Choices
	Problem
	Solution
	How It Works

	Recipe 10-10. Reducing Memory Fragmentation
	Problem
	Solution
	How It Works


	Chapter 11: Concurrency
	Recipe 11-1. Using Threads to Execute Concurrent Tasks
	Problem
	Solution
	How It Works
	Detecting the Number of Logical CPU Cores
	Creating Threads
	Cleaning Up After Threads


	Recipe 11-2. Creating thread Scope Variables
	Problem
	Solution
	How It Works

	Recipe 11-3. Accessing Shared Objects Using Mutual Exclusion
	Problem
	Solution
	How It Works

	Recipe 11-4. Creating Threads That Wait for Events
	Problem
	Solution
	How It Works

	Recipe 11-5. Retrieving Results from a Thread
	Problem
	Solution
	How It Works
	Using the promise and future Classes


	Recipe 11-6. Synchronizing Queued Messages Between Threads
	Problem
	Solution
	How It Works


	Chapter 12: Networking
	Recipe 12-1. Setting Up a Berkeley Sockets Application on macOS
	Problem
	Solution
	How It Works

	Recipe 12-2. Setting Up a Berkeley Sockets Application in Eclipse on Ubuntu
	Problem
	Solution
	How It Works

	Recipe 12-3. Setting Up a Winsock 2 Application in Visual Studio on Windows
	Problem
	Solution
	How It Works

	Recipe 12-4. Creating a Socket Connection Between Two Programs
	Problem
	Solution
	How It Works

	Recipe 12-5. Creating a Networking Protocol Between Two Programs
	Problem
	Solution
	How It Works


	Chapter 13: Scripting
	Recipe 13-1. Running Lua Commands in  Visual Studio C++
	Problem
	Solution
	How It Works
	Create and Open a Lua Script File in C++

	Recipe 13-2. Creating a Lua Library Project in Eclipse
	Problem
	Solution
	How It Works

	Recipe 13-3. Creating a Lua Project in Xcode
	Problem
	Solution
	How It Works

	Recipe 13-4. Using the Lua Programming Language
	Problem
	Solution
	How It Works
	Working with Variables
	Working with Functions
	Working with Tables
	Using Flow Control


	Recipe 13-5. Calling Lua Functions from C++
	Problem
	Solution
	How It Works

	Recipe 13-6. Calling C Functions from Lua
	Problem
	Solution
	How It Works

	Recipe 13-7. Creating Asynchronous Lua Functions
	Problem
	Solution
	How It Works


	Chapter 14: 3D Graphics Programming
	Recipe 14-1. An Introduction to GLFW
	Problem
	Solution
	How It Works

	Recipe 14-2. Rendering a Triangle
	Problem
	Solution
	How It Works

	Recipe 14-3. Creating a Textured Quad
	Problem
	Solution
	How It Works

	Recipe 14-4. Loading Geometry from a File
	Problem
	Solution
	How It Works

	Recipe 14-5. Working with C++20 Modules
	Problem
	Solution
	How It Works


	Index



